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Zusammenfassung

Es werden neue Anwendungen der Kommunikations- und Informationstheorie auf Prob-
leme in der molekularen Biologie behandelt. Im ersten Teil wird Quellencodierung genutzt
um die Speicheranforderungen von genomweiten Sequenzalignment Datensatzen zu ver-
ringern. Ein hocheffizienter Kompressionsalgorithmus basierend auf statistischen Mod-
ellen der Evolution und Techniken aus der binaren Bildcodierung wird vorgeschlagen.
Im zweiten Teil werden Parallelen zwischen der Marker Synchronisation tiber verrauschte
Kanéle und der Protein-DNA Bindungsstellensuche studiert. Statistische Bindungsstellen
Modelle und Inferenztechniken werden aus informationstheoretischer Sicht analysiert und
erweitert. Synchronisationseigenschaften von ausgewéhlten molekularen Markern werden
evaluiert und Evidenz fiir Selektionsdruck zugunsten effizienter Marker gefunden.

Abstract

This thesis covers novel applications of concepts from communications engineering to prob-
lems in molecular biology. In the first part the focus is placed on applying source coding
techniques to reduce the storage requirement of multiple genome alignment datasets used
in comparative genomics. A highly efficient lossless compression algorithm using well
established models of genome evolution and binary image compression techniques is in-
troduced. The second part studies parallels between sequence specific protein binding on
the molecular level and marker synchronization. The engineering concept of threshold
based marker synchronization over noisy channels is revised and extended. Binding site
models and in silico inference techniques are reviewed using information theory. Synchro-
nization properties of selected molecular markers are analysed and evidence for natural
selection pressure towards good markers is found.



Introduction

In 1948, C. E. Shannon has established the theoretical fundamentals of modern digital
communication systems [Sha48]. He quantitatively defined information in an abstract way,
independent of semantics, relying solely on the statistical characteristics of the information
source. Shannon has proved that messages generated by an information source can be
coded at an average rate as low as the uncertainty of the source and still be losslessly
reconstructed (source coding theorem). He has also proved that it is possible to code
the messages in a way that one can transmit them error-free over a noisy channel at
an average rate as high as the channel capacity (channel coding theorem). Ever since,
communications engineers have been devising algorithms to achieve the limits of these
two theorems. An extensive information and communication theoretic framework has
been developed to help analyse and design efficient ways to store, transmit and process
information.

In 1953, J. D. Watson and F. H. C. Crick [WC53] have deciphered the double helix
structure of the deoxyribonucleic acid (DNA). It has become apparent that the genetic
information stored in the DNA that is passed from generation to generation is stored as
a digital message from a quaternary alphabet. Thus, information and communication
theory can be used to study and analyse the storage, processing and transmission of ge-
netic information on the molecular level. The best understood type of genetic information
stored in the DNA are protein coding genes. The original involvement of information the-
orists with molecular genetics goes back to the discovery of the genetic code, the mapping
rule from the 4 letter alphabet of the DNA to the 20 letter alphabet of the proteins.
Prior to the experimental decipherment of the actual genetic code in the 1960s, several
different mapping schemes have been proposed by information theorists [Hay98], some
having high information density, others with error correcting capabilities. Thereafter, the
interaction between the two communities has ceased until recently. Some of the reasons
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are that for a long time it was believed that protein coding genes are more or less the
only functional regions in the genome and the fact that only a very limited amount of
sequence data was available. Recent advances in high-throughput sequencing technology
have made it possible to sequence whole genomes of complex species. The completion
of the first draft of the human genome in 2001 [LLB"01] has revealed that only several
percent of it is protein coding and that there are less protein coding genes than expected.
The sequencing of other vertebrate genomes could be completed soon after and compar-
ative genomics studies have uncovered that there exist many highly conserved putatively
functional regions under strong evolutionary pressure not coding for proteins [BPMT04].
Their function is still largely unknown, but it has been suggested that they might play
a role in gene regulation [Mat07], which governs when and in what amounts particular
genes get expressed into proteins.

The recent findings have raised many new open questions about the genetic information
stored in the genomes, its functionality, storage and processing. Together with the ex-
ponential growth of sequence data available in public databases, this has reignited the
interest of information theorists and communications engineers for molecular biology. To
name a few contributions: G. Battail has postulated the hypothesis that error correcting
codes are used on the DNA sequence level [Bat97]. J. Hagenauer et al. applied informa-
tion theory to gene mapping of complex diseases [HDG104,SGD*07] and to classifica-
tion of genetic sequence data [DHHMO05] as well as to comparative genomics [DHL108].
O. Milenkovic et al. introduced methods from channel coding to gene regulation [MV04].
W. Szpankowski et al. used source coding techniques to identify protein coding re-
gions [SRS05]. The initial research results confirm that modelling and analysing the way
nature deals with genetic information from a communications engineering perspective
can lead to its better understanding. The new insights generated by this interdisciplinary
research might even have the potential to help advance future communications systems.
Furthermore, methods from communications engineering can be used to reduce the storage
requirement of the exponentially growing sequence datasets.

This thesis covers novel applications of concepts from communications engineering to
problems in molecular biology. It has two parts. In Part I the focus is placed on ap-
plying source coding techniques to reduce the storage requirement of multiple genome
alignment datasets used in comparative genomics. Such alignments represent one of the
largest sequence datasets used in molecular biology. A highly efficient lossless compression
algorithm for multiple genome alignments is introduced. It uses well established models
of genome evolution and techniques from binary image compression. Part II of this the-
sis studies the parallels between sequence specific binding on the molecular level and
threshold based marker synchronization. Nature uses specific sequence patterns to mark
the target sites for different regulatory proteins and to distinguish information carrying
regions e.g. genes. The engineering concept of threshold based marker synchronization
over noisy channels is revised and extended. Binding site models and in silico inference
techniques are studied and reviewed using an information theoretic framework. Synchro-
nization properties of molecular markers are analysed and evidence for selection pressure
towards good markers is found. The structure of this thesis is as follows.



Fundamentals

Chapter 2 introduces the fundamentals from statistics and information theory required
in later chapters in the notation used throughout this work.

Chapter 3 provides the necessary background on molecular biology and genetics for non-
biologists. Topics from structural biology, molecular biology and evolutionary genetics are
covered. The different aspects of genetic information storage in the DNA, its processing
during gene expression and its transmission from generation to generation are presented
from the perspective of a communications engineer. Error correction implications of DNA
damage and mismatch repair are treated. Established statistical models of evolution are
explained in detail and used to model the evolutionary mutation channel in later chapters.

Part I

Chapter 4 deals with source coding in engineering. Entropy coding is explained with
focus on arithmetic coding. The concept of universal statistical prediction based coding
is presented next. The Context Tree Weighting algorithm serves as a representative. It is
very efficient at adaptively compressing Markov type dependencies. Universal dictionary
based coding is described as well. Concepts and techniques required by the multiple
alignment compressor proposed in Chapter 5 of this thesis are explained in more detail.

Chapter 5 treats compression of DNA sequence datasets. First, a brief overview of DNA
sequence compressors is provided. Subsequently, a novel compression scheme for multiple
genome alignment datasets is introduced. The construction and statistical regularities of
such alignment datasets are explained. The proposed algorithm is a highly efficient lossless
prediction based compressor combining predictions from statistical models of evolution
and binary image compression. The algorithm is shown to be nearly optimal under the
used model. With respect to the usage scenario, assuming a central provider of the dataset,
the algorithm is designed to achieve high compression at the cost of increased encoder
complexity. In addition, it is accounted for the possibility to decompress individual blocks.
Therefore, the algorithm could also be used to reduce the storage requirement of respective
database servers.

Part 11

Chapter 6 deals with marker synchronization in engineering. The focus is placed on
threshold based marker synchronization over noisy channels. At the transmitter specific
sequence patterns are inserted into the datastream to mark certain positions. A sliding
window detector evaluates a likelihood function at the receiver in order to determine
the original marker insertion points. Optimal likelihood functions are derived for various
channels including evolutionary channel models. The marker choice has a strong influence
on the synchronizer’s performance. Markers of the same length perform differently. The
exact computation of the synchronization success probability of a particular marker is



4 Chapter 1 m Introduction

difficult due to dependencies in the likelihood function values of neighbouring positions.
Herein a recursive formula for the exact computation of the synchronization probability
is derived for threshold based marker synchronization over discrete memoryless channels
and compared to the commonly used approximation assuming positionwise independence.

Chapter 7 analyses the use of markers on the molecular level with focus on sequence
specific DNA protein binding. The amount of experimentally verified binding sites is
currently very limited. Existing binding site models and in silico inference methods of
novel putative sites are studied using an information theoretic framework and extensions
are proposed. Subsequently, the synchronization properties of molecular markers are in-
vestigated. Actual binding sites are modelled as received noisy realizations of the original
marker. The marker evaluation method is used to study selected markers of important
DNA binding proteins in bacteria. Evidence for natural selection pressure towards the
use of markers with good synchronization properties is found.

Chapter 8 concludes the thesis providing an overview of the main contributions. It also
outlines possible directions of future research.

Partial results have been published in journal and conference papers listed in Appendix A.
The innovative multiple genome alignment compression algorithm has received the 2009
Capocelli Prize, which is the Best Paper Award of the Data Compression Conference
(DCC) [HDCHO09]. The work on the synchronization properties of molecular markers has
been awarded the 2006 Best Student Presentation Award of the International Society for
Computational Biology (ISCB) Student Council [HWO06].



Fundamentalsin Engineering

The purpose of this chapter is to introduce several fundamental concepts from communi-
cations engineering. Particularly important to this field is statistics detailed in Section 2.1
and information theory described in Section 2.2. With the establishment of information
theory in 1948 C. E. Shannon [Sha48] has revolutionized communications engineering and
laid the ground for modern digital communications systems. The following overview is
restricted to the concepts required in later chapters. Its primary purpose is to introduce
the notation that is used consistently throughout this work.

2.1 Theory of Statistics

The theory of statistics provides a framework for the collection, analysis and interpre-
tation of data. It allows to model, predict and draw inferences about the regularities
characterizing the data. In the following, selected concepts from probability theory, esti-
mation theory and statistical hypothesis testing will be presented. The reader is referred
to [Hae01] for further reading.

2.1.1 Probability Theory

Probability theory builds the mathematical foundation of statistics providing abstract
models for non-deterministic events and measured quantities.

Random Variables

Let X denote the countable non-empty sample space (alphabet) of the random vari-
able (RV) X and x € X be a realization of X. Let Pr(event) denote the probability of
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a particular event of the random experiment. The cumulative density function (CDF) of
X is defined as Fiy(z) = Pr(X < z). If X is a discrete random variable:

Fx(z)= > Px(), (2.1)

where Px(z) = Pr(X = z) is referred to as the probability mass function (PMF) and
satisfies ), Px(x) = 1 whereas Px(r) > 0,Vx € X. The cardinality (size) of the
alphabet is denoted with |X|.

For a continuous random variable X the CDF Fx(z) = Pr(X < z) is assumed to be
continuous in z and differentiable. The probability density function (PDF) is defined as
px () = OFx(x)/0x and satisfies [, px(x)dz = 1. Thus,

Fx(z) = /x px(z')dz’. (2.2)

Expectation

The expectation E{-} of an arbitrary function f(x) over the random variable X is defined
as:

E{f(x)} = Z f(x)Px(x) for discrete X, (2.3)
E{f(x)} = /Xf(:p)px(x)dx for continuous X. (2.4)

The expectation pux = E{X} is referred to as the mean. The i-th centralized moment
is defined as E {|X — pux/|'}, whereas the special case 02 = E {|X — pux/|*} is the so called
variance and o the standard deviation.

Joint Distribution

Let Y be another random variable. The joint PMF (for discrete X and Y') and PDF (for
continuous X and Y') are respectively defined as:

Pay(wy) = Pr({X =2} N {Y = y}), (25)
per(en) = g Par(ey) = g PX <spn (Y <o) (26)

Thus, Px(z) = > ey Pxy(x,y) in the discrete and px(z) = J7_pxy(zy)dy in the con-
tinuous case. In the context of joint distribution functions, the original distributions of
X and Y are referred to as marginals.

Conditional Distribution

The conditional probability of an event given a condition is defined as
Pr(event|condition). The conditional distribution function of two discrete random vari-
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ables X and Y is defined according to the Bayes’ rule as:

Pox(yl) = P);j(g’)y) _ PXY;E)J?ZL)E)PY(y). (2.7)

From this follows the chain rule:

Pxy(z,y) = Pxyy (z|y) Py (y) = Prix(ylz) Px(z). (2.8)

The random variables X and Y are independent if Py |x(y|x) = Py (y), or by applying the
chain rule if Pxy (z,y) = Px(x)Py(y). Generalization to more than two random variables
is straightforward.

Example Distribution Functions

Let X = (X, Xs2...Xy) be a vector of N independent discrete random variables X; €
X,Vi. They are referred to as independent and identically distributed (IID) iff Py,(z) =

Px(z),Vxr € X,i =1...N. A discrete distribution is uniform iff Px(x) = |17|,‘v’:p e X.

Iff Px,(z) = ﬁ, Ve € X,i=1...N the random variables are referred to as independent
and uniformly distributed (IUD).

A binary random variable is called Bernoulli distributed with Px(z = 1) = 6 and
Px(x = 0) = 1 —46. For N independent Bernoulli distributed RVs, the random vari-
able K = Ef\il X; measuring the number of independent success trials follows a binomial

distribution:

Py (k) = @7) oF(1—)NFk  0<EkE<N. (2.9)

Important continuous distributions used in this work are the Gaussian distribution
N (p, 0?) with variance o and mean

1 om)?
px(z) = e (2.10)

V2o

the Exponential distribution £(\) with the rate parameter A

px(z|\) = Ae™ x>0, (2.11)

and the Gamma distribution I'(n, A)

A e
px(zln,\) = %x" le=Ae, (2.12)

where x is the sum of n independent A-exponentially (2.11) distributed random variables
and I'(n) = (n — 1)!,n € N is the so called Gamma function.
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0 y 0
—>  pye(yld) P est(y) —>

Figure 2.1: Estimation model.

2.1.2 Estimation Theory

Estimation theory deals with inferring parameters underlying a probabilistic model from
measured observable data.

The estimation scenario used in this work is depicted in Figure 2.1. The vector y =
(y1,Y2 - .. yn) corresponds to realizations of the random variables Y = (Y1,Y5 ... Yy) with
y; € Y, Vi. The observation is conditioned on # according to the PDF py|e(y|f), where
0 in itself is a realization of a discrete random variable © distributed according to Pg(6).
An estimator tries to compute an estimate value 8 for 6 from the observation y using a
suitable estimation function est(y).

Estimation Functions

An optimal Bayesian estimator function is the so called maximum a-posteriori probability
estimator (MAP)

0 = arg max(Peyy (f]y)) = argmax

(PYe(yW)P@(9)

v(y) ) = argmax(py o (yl0) Po(0)),

(2.13)
where Pojy (0|y) is the posterior PMF. If the prior distribution Pe(f) is uniformly dis-
tributed, the estimation function simplifies to the maximum likelihood estimator (ML)

0 = arg max(pyo(y|0)), (2.14)
0co
which can also be used for suboptimal estimation if the prior distribution is unknown.

2.1.3 Hypothesis Testing

Hypothesis testing is part of statistical inference dealing with statistical decision making
based on observed data. In this work the log likelihood ratio (LLR) will be used.

Log Likelihood Ratio

The log likelihood ratio originates in statistical binary hypothesis testing. Let X =
(X1, X5... Xy) be a vector of N random variables with parametrized probability density
function pxje(x|0) and let & = (z1, 22 ...2x) be an observed realization of X. Given the
parameter space © and two complementary subspaces Oy and O, where O, U ©; = O
and ©g N ©; = (), the likelihood ratio A(x) is defined as the quotient of the likelihood
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of observing  under the two competing hypothesis Hg : 6 € Oy being the so called null
hypothesis and H; : # € ©; being the alternative hypothesis:

. pxmo(33|7'io)

Ax) = . 2.15
(=) Pxip (M) 219
The log likelihood ratio L(x) is defined as
PXHo(fL‘Wo))
L(x) =log(A(x)) =log | ——————= | . 2.16
(@) = log(A(z) = log (LX1 20 (2.16)

If the random variables in X are independent px|e(x|0) = Hfil px;jo(x;|#). For inde-
pendent X; the likelihood ratio A(z) = [[-, A(z;) and L(z) = Y1, L(x;), where L(x;)

is the symbolwise log likelihood ratio.

In hypothesis testing a threshold A is used L(x) < A to determine whether to reject the
null hypothesis Hy in favour of H;. Type I error occurs if H, is falsely rejected and
type II error if it is falsely accepted. The threshold A is usually chosen according to the
so called Neyman-Pearson criterion by upper bounding the probability of the type I error
p(L(x) < A|Hp). Thus,

A = argmax (p(L(z) < p|Ho) < a), (2.17)
m
where « is the chosen upper bound.

2.2 Information Theory

Information theory was founded by C.E. Shannon in 1948 [Sha48]. It provides a mathe-
matical framework for information quantification in the context of message transmission
and storage. Shannon’s definition of information is universal. It is independent from the
meaning of the message and relies solely on statistical properties of the message. Shannon
proved that a message generated by an information source can be losslessly compressed
up to the entropy of the source (source coding theorem) and that it is possible to code the
information in a way such that it can be transmitted error free over the channel (channel
coding theorem). In the following, relevant information theoretic quantities will be in-
troduced in Section 2.2.1. Subsequently, fundamentals of source coding are presented in
Section 2.2.2. Section 2.2.3 deals with information transmission. The reader is referred
to [CT06] for further reading.

2.2.1 Information Theoretic Quantities

In the following, important information theoretic quantities will be defined. The defini-
tions make use of statistical terms and notation introduced in Section 2.1.1.
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Entropy

Shannon has defined self-information of an event z as H(x) = log(1/Px(x)). The ex-
pectation F{H (x)} is referred to as entropy and represents a measure of the uncertainty
about the outcome of the random variable X. For a discrete random variable X, it can
be written:

H(X)=E{H(z)} = E{log } ZPX ) log 1(33) (2.18)

It can be shown that 0 < H(X) < log |X|, whereas the maximum entropy H(X) = log | X|
is reached in case of a uniform distribution and the minimum H(X) = 0 for a strictly
deterministic process, carrying no uncertainty about the outcome. The unit of entropy
depends on the chosen base of the logarithmic function in the self-information. For log =
log, = ld the unit of the entropy is bit.

For two discrete random variables X and Y the joint entropy is defined as the expectation
of the joint self-information H(z,y):

H(X,Y)=E{H(z,y)} = E{log Per(ey) } ) Pyy(z.y)log5———

zeX yey PXY (l‘ y)

(2.19)
Joint entropy is the uncertainty of X combined with Y. It is symmetric H(X,Y) =
H(Y, X) and attains values in the range max(H (X), H(Y)) < H(X,Y) < H(X)+ H(Y),
whereas the lower bound is reached when the uncertainty of the random variable with
lower entropy is contained in the uncertainty of the variable with higher entropy. The
upper bound is achieved for independent random variables.

The conditional entropy describes the uncertainty remaining in X given the random vari-
able Y and is defined as the expectation of the conditional self-information H (z|y):

H(X|Y) = E{H(z|ly)} = E{ log ———— PX\Y ) } szypxy x,y) log nyl(x|y)' (2.20)

Conditional entropy is in the range 0 < H(X|Y) < H(X). It converges towards zero if YV’
determines X and maximizes to H(X) if X and Y are statistically independent. Thus,
conditioning can only reduce entropy. Conditional entropy is in general not symmetric
H(Y|X) # H(X|Y). The following chain rule applies to entropies

H(Xy, ..., Xp) =Y H(Xi|X1,..., Xi1). (2.21)

For two random variables X and Y it reduces to H(X,Y)=H(X)+ HY|X)=H(Y)+
H(X|Y) = H(Y, X).
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Relative Entropy

The divergence of two discrete probability distributions with the probability mass func-
tions Px(X) and Qx(X) can be measured in terms of relative entropy, also called
Kullback-Leibler divergence [Kul59], defined as:

DIPC0Qx(0) = Bp{ 1og S0 L = 3 Pratos 90 2

However, relative entropy is not a metric distance measure as it only satisfies the identity
axiom

D(Px(X)||Qx (X)) = 0 iff Px(X) = @x(X), (2.23)

but neither the symmetry
D(Px(X)[|Qx(X)) # D(Qx (X)||Px(X)), (2.24)

nor the triangle inequality
D(Px(X)[|Qx (X)) £ D(Px(X)||Rx (X)) + D(Rx (X)||Qx(X)). (2.25)

The relative entropy can also be interpreted as the increase in the entropy estimate if the
random variable is falsely assumed to be distributed according to Qx(x) instead of the
true distribution Py (X)

D(Py (X)]|Qx (X)) = E{ log } ~ H(Py(X). (2.26)

1
Qx(z)
In the context of hypothesis testing by setting Py (X) = P(X|Hg) and Qx(X) =
P(X|H,), the Kullback-Leibler divergence D(P(X|Ho)||P(X|H1)) is the so called dis-
crimination information for hypothesis Hy over H;, which is the mean information per
sample for discriminating in favour of hypothesis H, against the hypothesis H;, when hy-
pothesis H, is true. This corresponds to the weight of evidence for Hy over H; expected
from each sample.

Mutual Information

Shannon has defined information as the reduction of uncertainty. As shown above, without
the knowledge of Y the uncertainty of X is H(X). Once Y is given the uncertainty reduces
to H(XY') and vice versa. Thus mutual information is defined as

[(X;Y) = H(X) — HX|Y) = HX) + HY) — HY,X) = HY) - HY|X). (2.27)

It attains values in the range of 0 < I(X;Y) < min(H(X),H(Y)) and vanishes for
random variables that are independent. In terms of probabilities the definition becomes:

H0657) = B} = Bl pr2 p L = 33 P (e os
zeX ye)y
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where [(z,y) is referred to as the mutual self-information. Thus, mutual information
equals the relative entropy of the joint probability mass function Pxy(X,Y) and the
product Px(X) - Py(Y) of marginal probability mass functions of X and Y

I(X;Y) = D(Pxy(X,Y)|[Px(X) - Py (Y)). (2.29)

Therefore, it can be considered a measure of statistical dependence between the random
variables X and Y.

2.2.2 Source Coding

Source coding refers to the effort of removing redundancy from an information source.
The aim of source coding is to represent the messages generated by an information source
with as few bits as possible. This process is called compression. A compression algorithm
makes use of the knowledge of statistical dependencies present in the information source
to achieve compression. In Chapter 4 of this thesis, typical source models in engineering
and the corresponding compression algorithms will be investigated. In Chapter 5, sources
from molecular biology will be treated. In the following, the theoretical limits of source
coding established by Shannon shall be briefly introduced.

Information Source

According to Shannon, “any stochastic process which produces a discrete sequence of
symbols chosen from a finite set may be considered a discrete source” [SSW93]. Thus,
a source X can be modelled as a sequence of random variables X = (X, Xs,...) gen-
erating symbols * = (x1,x9,...) with x; € X,Vi. In general, there may be arbitrary
dependencies among the random variables X; constituting the source. Typically, the
source is characterized by the joint PMF Px, x, x,(-), N € N. If the joint PMF is
time invariant Px, x,..xy () = Px,p1,Xos0..Xoun (1), YO € N, the source is referred to as
stationary. The source is ergodic if the sample and statistical mean coincide. More
precisely, if the observed relative frequency of a particular subsequence converges to its
probability for a sufficiently long observation of the source. If the random variables X;
are statistically independent Px,x,. x, ,(:|) = Px,, Vi, then the source is memoryless.
A special case of sources with memory is the Markov source. The n-th order Markov
source is characterized by dependence of the current symbol from n previous symbols

PXi\Xl---Xi—l('|') = PXi|Xi—n---Xi—1('|')'
Entropy Rate of the Source

Given the joint entropy of the source, the source’s entropy rate is defined as the symbolwise
entropy
1
H(X) = lim NH(Xl,XQ...XN). (2.30)

N—oo

For a memoryless source this simplifies to H(X) = %

Zﬁil H(X;), for an IID source
H(X) = H(X) and for an IUD source H(X) = log(|X|).
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Shannon’s Source Coding Theorem

Shannon’s fundamental source coding theorem defines a lower bound on the source code
rate R in bits/symbol achievable when losslessly compressing an infinitely long symbol
sequence x generated by the source X:

R>MH(X). (2.31)

The lower bound is only achievable by an optimal compressor for the given source and an
infinitely long observation. In practice the messages to be compressed have a finite length
and the aim is to device a compressor that compresses different messages generated by
the source with an average rate close to the entropy of the source.

2.2.3 Information Transmission

In the context of information transmission depicted in Figure 2.2, the message x =
(1,22 ... 2N) generated by a discrete information source X described by Px (X)) is trans-
mitted over a noisy channel. The receiver receives a noisy version of the original message
Y = (y1,¥2-..yn). The channel is characterized by the conditional PDF py x (Y| X) if
it is continuous and by the conditional PMF Py |x (Y |X) if being value discrete. The
depicted model is a simplified discrete time model of the physical channel, where the
received symbols y; represent the time sampled output of a matched filter.

T Channel Y
—> >
pyix(Y|X)

Figure 2.2: Transmission over a noisy channel.
Channel Capacity

The amount of information about X that can be transmitted over a channel is described
by the mutual information I(X;Y), quantifying the reduction of uncertainty about X
by observing Y. In general, it is more convenient to resort to the information rate being
the symbolwise mutual information describing the number of bits transmitted on average
per channel use

1

I(X;Y) = lim —I(X;Y)=H(X)—-H(X|Y). (2.32)
N—oco N

The channel capacity C' refers to the maximum achievable information rate for a given

channel. With the characteristic conditional channel distribution being given and fixed,

the maximization is done over all possible input distributions

C= max Z(X;Y). (2.33)

Px(X)
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Channel Models

In the following, several channel models relevant to this thesis shall be presented. All of
the used channels are assumed to be memoryless py|x (Y| X) = 1Y, py, x, (Y| X;) and
invariant py,x,(Y;|X;) = py|x (Y| X), Vi unless otherwise stated.

A A P(AlA) P(cla) P(G|A) P(T[A)
C ¢ o _| Plo) P(cc) Pelo) P(T[c)
o ¢ ™| Ple) P(cle) P(cle) P(T|e)
P(A|T) P(c|T) P(G|T) P(T|T)
T T
X Y

Figure 2.3: Discrete memoryless channel. In this example X = ) = {A,C, G, T}.

A discrete memoryless channel (DMC) is completely specified by the sets X', J and the
PMF Pyx(Y|X). In Figure 2.3 the PMF is described in form of a transition probability
matrix Py|x. The channel is called strongly symmetric if the values in the rows as well
as the columns of the probability transition matrix are permutations of each other. The
channel capacity in this case is achieved for uniformly distributed channel input and equals

1

—log|X| - S" P log — .
C =log|X| =) Pyix(ylx) 8 BT

yeY

(2.34)

A special case of the DMC is the binary symmetric channel (BSC). It is completely
characterized by the symbol error probability p. The channel capacity is in this case
Cpsc =1 — Hy(p), where Hy(p) is the so called binary entropy function.

A typical continuous memoryless channel model is the average white Gaussian noise chan-
nel (AWGN). This additive channel perturbs the transmitted symbols with white noise
Y = X + N, where N has the Gaussian distribution N'(0,02). Let the average transmis-
sion power be 02 = E, and the noise variance be the two-sided power spectral density

of the noise normalized by the average transmission power o2 = % If X is continuous

n
and has a Gaussian distribution, the channel capacity becomes Cayan = %log(l + QTEOS)
For discrete X the capacity has to be computed numerically under consideration of the

modulation scheme.
Channel Coding

According to Shannon’s channel coding theorem, the digital information messages to be
transmitted over a noisy channel can be encoded in a way that they can be reconstructed
without error at the receiver if encoded at a rate R smaller than the channel capacity
R < C. The channel encoder maps the messages of length K to longer codewords N > K,
which leads to a rate R = K/N and corresponds to systematically adding redundancy to
the information messages. Channel coding aims at finding suitable codes almost achieving
the channel capacity. The reader is referred to [Bos99] for further reading.



Fundamentals in Genetics

Genetics traces its origins back to the inheritance studies conducted by Georg
Mendel [Men86] around 1860. Modern genetics has become molecular and seeks to study
not only the molecular principles of inheritance but also the structure and function of
the genetic material at the molecular level. It comprises elements from several different
disciplines, particularly biology, biochemistry and biophysics. From information theoretic
perspective, insights gained on the molecular level have revealed that all genetic informa-
tion passed on to progeny, representing the blueprint of an organism, is stored as a long
linear sequence of letters from a four letter alphabet. This observation raises questions
about parallels to digital data storage, processing, synchronization and transmission tech-
niques used in communications engineering. The theoretical framework and the methods
developed to design and analyse digital communication systems can be used to study how
nature deals with genetic information on the molecular level. In this chapter, the fun-
damentals of molecular information storage, processing and transmission are presented
and complemented with a communications engineer’s view and interpretation. The main
mechanisms are very similar across all living organisms. However, there exist notable
differences between the two main domains of life - the prokaryotes and eukaryotes - that
have separated very early in evolutionary history. In the following, these two domains
of life are briefly introduced in Section 3.1. Subsequently, knowledge about the storage
of genetic information gained by molecular structural biology is presented in Section 3.2.
Afterwards, processing of genetic information researched primarily by molecular biology
is treated in Section 3.4. Finally, the insights of evolutionary genetics about the trans-
mission of genetic information are covered in Section 3.6. The presented overview is not
aiming at being exhaustive and it is abstracted to a certain degree, since its main purpose
is to help non-biologists to better understand the subsequent chapters. For further details,
the reader is referred to [AJWT08, Lew04, Kni06].
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Figure 3.1: An evolutionary tree depicting the three domains of life. Modified
from [Wik0§].

3.1 Domains of Life

In biological taxonomy the highest taxonomic rank of organisms is a domain. The cur-
rently widely accepted tree of life as depicted in Figure 3.1 consists of the following three
domains: archaea, bacteria and eukarya [WKW90]. The domains reflect the fundamental
evolutionary differences in the genomes of the three taxa. In the context of this work the
reduced tree of life, grouping archaea and bacteria together as prokaryotes based on their
outward appearance, is used. On the molecular level, archaea organisms resemble bacte-
ria in terms of metabolism and energy conversion, however they use genetic information
processing machinery similar to eukaryotes [AJWT08].

3.1.1 Prokaryotes

Prokaryotes are the older and less complex, yet a very successful unicellular life form.
Prokaryote cells typically live as independent individuals or in loosely organized colonies.
They are no more than a few micrometers large. Usually, they comprise a tough protective
cell wall that encloses a cytoplasmic compartment containing loosely floating DNA, RNA
and proteins. The prokaryotic genomes are shorter and simpler than those of eukaryotes.
However, opposed to their relatively simple structure, prokaryotic cells have adopted to
an enormous variety of ecological niches. In general, prokaryotes reproduce asexually.
Nonetheless, horizontal gene transfer takes place between prokaryote cells enhancing the
spread of advantageous traits in the population. The generation cycles of prokaryotes are
in general far shorter than those of eukaryotes and their population sizes are much larger.
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3.1.2 Eukaryotes

Opposed to prokaryotes, eukaryotes represent a complex form of life. Eukaryotic cells are
more elaborate and about 10 times larger in volume than those of prokaryotes. They
keep their DNA in a distinct, membrane-enclosed compartment referred to as the nucleus.
Eukaryotic genomes are densely packed and far larger in size. Often eukaryotic cells
form multicellular organisms. Eukaryotic organisms usually reproduce sexually. Thus,
eukaryotic cells possess a diploid copy of the genome, inheriting one copy from each parent.
It is hypothesized that eukaryotes have evolved from predator cells in the primordial
world engulfing and digesting other cells [AJW*08]. This hypothesis helps to explain why
eukaryotes protect their DNA by storing it in a separate nucleus and also the fact that they
contain small organelles that resemble bacteria within their cytoplasm (i.e. mitochondria
in animals and chloroplasts in plants). Today, these organelles are responsible for the
energy production in a eukaryotic cell. They possess their own genomes and processing
machinery. These organelles are believed to have been engulfed by an ancestral eukaryotic
cell and to have evolved in symbiosis with it by escaping digestion. The high level of
complexity of eukaryotic organisms leads to smaller populations and longer generation
cycles.

3.1.3 Information Theoretic Implications

The fundamentally different survival strategies of the two domains of life have strong
implications on the engineering aspects of the corresponding species. The minimalistic
and simplistic approach of prokaryotes with large populations and short generation cycles
imposes energetic constraints on individual organisms. This implies reduced complexity of
the molecular processes with focus on few simple and robust mechanisms. The amount of
genetic information passed from generation to generation is limited and restrained to the
minimum, resulting in small genomes. Adaptation to changing environments is achieved
by natural selection in large populations. Thus, the faithfulness of genetic information
passed by an individual to its progeny is not as crucial for the survival of the species.
In eukaryotes, on the other hand, the evolution seems to aim at achieving robustness via
increased complexity and redundancy on the level of individual organisms. The energetic
constraint upon the amount of genetic information passed on to the offspring is far weaker
and the genome size is generally much larger. However, due to long generation cycles
and small population sizes, the genetic information needs to be passed on to the next
generation at a high level of fidelity. Therefore, if there exist any error correcting means
in the sense of channel coding on the sequence level, it can be hypothesized that they are
more likely to be found in eukaryotes.

3.2 Structural Biology - Genetic Information Storage

Structural biology is a branch of molecular biology, biochemistry, and biophysics con-
cerned with the molecular structure of biological macromolecules, especially DNA, RNA
and proteins. Besides studying the composition and structure, it also focuses on how struc-
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Figure 3.2: Basic chemical components of double stranded DNA and its double helix
B-DNA conformation (left), DNA packaging in eukaryotes (right). Modified from [Nat08§].

tures are acquired and how alterations in the structure influence the specific function of
these macromolecules. This subject is of great interest to biologists since macromolecules
carry out most of the functions of the living cells, and because it is only by coiling into
specific three-dimensional shapes that they are able to perform these functions. The
actual three-dimensional conformation of a molecule is called tertiary structure.

3.2.1 DNA

The primary carrier of genetic information in all living cells is the deoxyribonucleic
acid (DNA) molecule - a long unbranched double stranded polymer chain formed of
monomers of four different types. These monomers are the so called nucleotides each
consisting of a deoxyribose sugar, a phosphate group and a base being either A-adenine,
C-cytosine, G-guanine or T-thymine. In a single DNA strand, the sugar of one nu-
cleotide is linked to the phosphate of the next one by strong covalent bonds resulting in
an alternating directed sugar phosphate backbone. Since the bases are not involved in
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the binding along a strand, the nucleotide sequence of a single strand can be arbitrary.
The two strands of double stranded DNA, however, are held together by hydrogen bonds
between opposing bases from each strand. Since the bonding is in general only possible
between A=T and C=G, the two DNA strands are complementary. The base pairs (bp)
A=T and C=G are held together by 2 and 3 hydrogen bonds respectively. Thus, based
on bonding strength, the bases can can be subdivided into weak W={A,T} and strong
S={G,C}. The binding between the two DNA strands is therefore stronger for GC rich
regions. Another grouping is possible according to the size of the bases. From chemical
point of view, the bases represent nitrogenous heterocyclic aromatic organic compounds.
While the larger purines denoted by R={A,G} possess two aromatic rings, the pyrimidines
denoted by Y={C,T} only have a single ring [TBS09]. Thus, a valid base pair always
contains 3 rings, see upper left portion of Figure 3.2.

W={A,T} - weak | R={A,G} - purine
S={C,G} - strong | Y={C,T} - pyrimidine

The sequence of nucleotides in the DNA is referred to as the primary structure. The
complementary structure of the two DNA strands is the so called secondary structure.
The tertiary structure is the double helix and was discovered in 1953 [WC53]. In the
double helix, the direction of the nucleotides in one strand is opposite to their direction
in the other strand. This arrangement is called anti-parallel. The asymmetric ends of
DNA strands are referred to as the 5" (five prime) and 3’ (three prime) ends, with the 5’
end being that with a terminal phosphate and the 3’ end being the one with a terminal
sugar. In its natural state, the DNA double helix assumes a conformation referred to as
B-DNA, which is a right handed spiral with a periodicity of about 10.4 bp or 3.4 nm.
The spaces between the twisted strands along the rotational axis of the double helix are
referred to as the grooves. Since the strands are not directly opposite to each other,
the grooves are unequally sized. The minor groove is 1.2 nm and the major groove
is 2.2 nm large [WDT*80], see lower left portion of Figure 3.2. The accessibility and
distinguishability of bases is better from the major groove. Therefore, sequence specific
DNA binding takes place primarily in the major groove [PS84]. DNA specific binding will
be studied in more detail in Section 7.1.2.

DNA packaging

While in prokaryotes the DNA usually freely floats in the cytoplasm, forming a closed ring,
in eukaryotes it is typically densely packed via chromatin. The packaging is commonly
referred to as the chromatin structure. The smallest packaging unit is a nucleosome
composed of a histone proteins octamer wrapped around by double-stranded DNA. It
makes the bases facing the histone octamer inward less accessible than those facing it
outward. The arrangement resembles “beads-on-a-string” and is folded in a helical struc-
ture called the chromatin filament, which is arranged in chromosomes in the eukaryotic
cell nucleus [AJW*08]. The described eukaryotic DNA packaging is depicted in the right
portion of Figure 3.2. It plays an important role in the gene regulation.



20 Chapter 3 m Fundamentals in Genetics
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Figure 3.3: DNA replication: Each of the original strands is used as a template and
complemented by a newly synthesized strand. Modified from [Nat08§].

DNA replication

The complementary base pair binding allows for a simple DNA copying mechanism and
easy replication of the double stranded DNA, using the two complementary DNA strands
as templates, see Figure 3.3. Each of the two replica contains one original and one
synthesized strand. Thus, if a mismatch base pair was present in the original double
stranded DNA, the two replica are not going to contain a mismatch any more but they
will differ at the position of the original mismatch base pair.

3.2.2 RNA

For further processing, DNA is transcribed into ribonucleic acid (RNA), see Section 3.4.1.
RNA is very similar to single stranded DNA. However, instead of T-thymine it uses the
base U-uracil, likewise binding to A-adenine. Additionally, the sugar is a ribose instead of a
deoxyribose, making the sugar phosphate backbone less stable [TBS09]. The best studied
function of RNA is serving as messenger RNA (mRNA) in the process of translation
of the protein coding DNA regions into proteins, as described in Section 3.4.3. The
mRNA is a complementary copy of the linear sequence of protein coding nucleotides
and serves as a template for the protein synthesizing machinery. Apart from mRNA,
especially in eukaryotes a lot of non-coding RNA (ncRNA) is transcribed [MMO06]. A
portion of the ncRNA serves regulatory purposes by binding complementary to mRNA,
preventing its translation. However, the function of most eukaryotic ncRNA is subject of
ongoing research. Partially, RNAs contain self-complementary sequences that allow parts
of the RNA to fold and pair with itself. Thereby, it forms short double helices, packed
together into structures akin to proteins, serving complex functions due to their specific
tertiary form. Best studied examples of such folded functional RNA are the ribosomal
RNA (rRNA) and the transfer RNA (tRNA), involved in mRNA to protein translation,
see Section 3.4.3. Figure 3.4 depicts the folded tertiary (left) and the secondary (right)
structure of a tRNA, where the secondary structure refers to the scaffold of the tertiary
structure, depicting the sequence and the partial complementary binding that takes place.
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Figure 3.4: The tertiary (left) and secondary (right) structure of a tRNA molecule.
Modified from [Wik08] and [Nat08§].

3.2.3 Proteins

Most functions in a cell are performed by macromolecules known as the proteins, whose
primary structure is a long polymer chain formed of 20 different amino acid monomers held
together by peptide bonds. In general, the amino acid sequence can be arbitrary except
for the first monomer, which is always methionine. The exact aminoacid sequence of a
protein is encoded in the DNA coding for that protein. The process of protein synthesis
and the mapping rule from the nucleotide to the aminoacid sequence is described in
Section 3.4.3. The 20 aminoacids have different biochemical properties. In particular,
depending on the polarity of the side chain, amino acids vary in their hydrophilic or
hydrophobic character. These properties are important in protein structure and protein-
protein interactions [Cre93]. In order for the protein to be able to fulfil its function within
the cell it has to assume its characteristic 3-D form. The process underlying this transition
is referred to as protein folding. Even though no complementary binding does take place
between amino acids, the folding patterns follow certain regularities. Two of the most
easily achievable folding patterns of a protein chain correspond to the most common forms
of protein secondary structure, the a-helix and the g-pleated sheets.These patterns are
very stable and held together by tight hydrogen bonds [MGH'03]. The three-dimensional
arrangement of the folding patterns is the tertiary structure of a protein. Figure 3.5
depicts an exemplary tertiary spatial structure of a protein, showing the a-helices (red)
and the (-sheets (yellow).! Determining the spatial structure of a protein is a tedious task
that can be accomplished by complicated crystallography experiments. The pronounced

Depicted is the N-terminal growth factor-like domain (GFLD) in amyloid precursor protein (PDB ID
1IMWP)
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Figure 3.5: Tertiary spatial structure of a protein. Modified from [Wik0§].

tertiary structures of proteins give them the ability to specifically and tightly bind to other
molecules including DNA, RNA and other proteins. The region of the protein involved
in the binding is the so called active site. Often several proteins bind together forming
a protein complex. A common role of proteins is to act as enzymes, catalysing chemical
reactions involved e.g. in metabolism, transcription, DNA repair and replication. Other
roles involve cell signalling and ligand binding and structural tasks like forming different
types of tissues. In the context of this work, proteins involved in gene expression, sequence
specifically binding to the DNA, will play a central role, see Chapter 7.

3.3 Genetic Information Storage and Engineering

3.3.1 DNA Damage Repair and Error Correction

The complementary binding between the two DNA strands in the double helix makes the
DNA macromolecule very stable. Additionally, the complementarity of the two strands
can be seen as a simple repetition code. In the cell, DNA is subject to many physical
and chemical agents known as mutagens (e.g. ultra violet light, radiation, free radicals).
They attack the DNA and chemically modify the bases. Thousands of such modifications
take place in the DNA of a human cell every day, however only a few accumulate as
mutation in the DNA sequence. The chemically modified bases are efficiently recognized,
removed and replaced by DNA excision repair proteins. The intact complementary base
is used as template for the replacement [FWS95]. In other words, the four bases represent
valid codewords, whereas the chemically modified bases do not, and are recognized as
erasures and replaced by using the “repeated” valid codeword on the complementary
strand. How important DNA repair is for living organisms, can be seen on the fact that
bacteria, possessing a sparse genome, use several percent of it to encode the DNA repair
proteins [AJWT08].

3.3.2 DNA Mismatch Repair and Error Correction

DNA mismatch repair is responsible for correcting mismatch errors in the DNA, most of
which are introduced during DNA replication. The DNA replication process is noisy in the
sense that wrong bases can be complemented. The damage is repaired by DNA mismatch
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Figure 3.6: Schematic illustration of gene expression. Note that in prokaryotes no
splicing takes place since prokaryotic protein coding genes consist of a single exon.

repair proteins capable of recognizing the deformation caused by the mismatch. During
replication, the template strand is known to the mismatch repair machinery, allowing it to
distinguish the wrongly incorporated nucleotide, excise it and replace it with the correct
one.

In [Mac02, Don03], it has been attempted to interpret the donor/acceptor pattern of the
three hydrogen bonds in a complementary base pair and the purine/pyrimidine property
of a base as a parity check code. The binary interpretation of the three residues and
the purine/pyrimidine character would theoretically allow for 16 different bases. In fact,
many of these can be successfully synthesized and were found to be processed by the
DNA replication machinery. Thus, it can be hypothesized that the nature has chosen
the particular subset of the four naturally occurring bases for coding theoretic purposes,
in order to minimize the probability of replication errors. In the proposed scheme, the
naturally occurring bases represent a subset of codewords with the highest minimum
distance to non-complementary counterparts.

3.4 Molecular Biology - Genetic Information
Processing

Molecular biology is the study of biology on the molecular level focusing on the interac-
tions between biological macromolecules DNA, RNA and proteins and how these interac-
tions are regulated. Molecular biology has evolved around the so called central dogma of
molecular biology, stating that the information transfer follows only in one direction from
DNA to mRNA via transcription and subsequently from mRNA to proteins in the process
referred to as translation. The whole process of protein production from the information
coded in the DNA is referred to as gene expression. The three main molecular processes
involved in gene expression - transcription, splicing and translation - are described in
detail in the following and are schematically depicted in Figure 3.6.
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Figure 3.7: Transcription of DNA to RNA by the RNA polymerase. Modified
from [Nat08].

3.4.1 Transcription

During transcription, an RNA copy of one of the two DNA strands is synthesized. The
DNA is unwound in the transcribed region and the strand complementary to the so called
coding strand is used as a template to synthesize the RNA. The copying and synthesis
is performed sequentially by the RNA polymerase protein. Transcription is directed.
The DNA template strand is read in the 3’ to 5’ direction, thus the new RNA strand
is synthesized from the 5" to the 3’ end. Obviously, the transcribed RNA has the same
sequence as the coding strand except that U-uracil is used instead of T-thymine. The
situation is depicted in Figure 3.7. The first DNA position that is transcribed, is called
the transcription start site (TSS). In molecular biology, directed processing is said to
follow downstream along the sequence. Thus, the sequence preceding the TSS is said to
be upstream and the transcribed sequence is seen as downstream of the T'SS with respect
to transcription.

The Transcription Process

Transcription is divided into three main stages: initiation, elongation and termination.
Initiation refers to the assembly of the transcription machinery around the TSS and the
transcription start. Elongation is the process of transcribing itself. Termination con-
cludes the transcription. The RNA synthesis is stopped and the transcription machinery
disassociates from the DNA.

Upstream of the TSS is the so called promoter region designating the transcription ini-
tiation site, see Figure 3.6. In prokaryotes the promoter region contains two sequence
specific DNA binding sites, recognized by the o-subunit of the RNA polymerase, situated
upstream of the TSS. Transcription initiation is far more complex in eukaryotes. The
main difference is that eukaryotic polymerases do not directly recognize their core pro-
moter sequences. In eukaryotes a collection of initiation proteins mediates the binding of
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the RNA polymerase and the initiation of transcription. Only after they have attached
to the promoter, does the RNA polymerase bind to it. The completed assembly is called
the transcription initiation complex. The eukaryotic promoter region contains upstream
of the TSS the so called TATA box and a pyrimidine or GC-rich initiator region directly
around the TSS. The elongation is interrupted at the terminator site. Prokaryotes use
two different strategies for transcription termination.

Transcription Regulation

Transcription has to be regulated, since every cell carries a copy of the whole genome,
but needs to express different genes at different concentration levels depending on its spe-
cialization or current environmental conditions. Transcriptional regulation follows several
different mechanisms and takes place in several regulation layers. The basic mechanism
is regulation by the promoter sequence, e.g. in bacteria different o-subunits, binding
specifically to different promoter sequences, are used under normal conditions and during
heat stress response. This way different groups of genes can be expressed as a reaction
to environmental stress. Direct regulation of individual genes is possible by regulatory
DNA binding proteins called transcription factors. These can bind to the DNA at specific
binding sites around the T'SS, acting either as silencers or enhancers. The regulation mech-
anisms are very varied, from blocking the access of the RNA polymerase to the promoter
by overlapping binding, to promoting transcription by assisting the RNA polymerase to
bind. Obviously, a particular transcription factor can only regulate genes that have a
corresponding binding site. The genes coding for transcription factors are themselves reg-
ulated. Additionally, the expression products of different genes (mostly proteins) interact
with each other and with other substances in the cell, thereby influencing the transcrip-
tion rates. These interactions are described by the so called gene regulatory networks.
More recently, it has become apparent that a lot of transcriptional regulation is governed
by epigenetic (non-DNA-sequence specific) mechanisms, altering the accessibility of DNA
to proteins and thereby modulating transcription. Examples include DNA packaging (in
particular the chromatin structure in eukaryotes, see Section 3.2.1), chemical modifica-
tion of DNA (e.g. DNA methylation that can be passed onto daughter cells and plays
a key role in cell specialization), as well as non-sequence specific DNA binding proteins.
In Chapter 7 the binding sites of proteins involved in transcription regulation will be
analysed and their synchronization properties studied.

3.4.2 Splicing

If the transcribed RNA codes for a protein, it is called messenger RNA (mRNA). In
eukaryotes gene expression involves an extra step before translation. Transcribed eukary-
otic mRNA initially contains segments called introns and exons, whereas only exons are
protein coding and the introns have to be spliced out prior to translation. In this state,
the mRNA is referred to as pre-mRNA, see Figure 3.6. The splicing of the introns and
subsequent joining of the remaining exons is done by the spliceosome. Within the intron,
a 3’ splice site, a 5’ splice site, and a branch site mark sequence specific cut points and
the binding site for the spliceosome [Bla03].
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Figure 3.8: Translation of mRNA to protein (left), genetic code (right). Modified
from [Nat08] and [Wik0§].

3.4.3 Translation

As described in Section 3.2.3, proteins are formed by a linear sequence of amino acids of 20
different types. The process of mapping the mRNA sequence to the amino acid sequence
is called translation. Translation takes place in the cytoplasm on a large ribonucleoprotein
assembly called the ribosome. The sequence of nucleotides in the mRNA molecule is read
consecutively in groups of three referred to as codons. Thus, there exist 4% = 64 different
codons. However, there are only 20 different amino acids. The mapping, also called genetic
code, is redundant and some codons encode the same amino acid, see Figure 3.8 (right).
Adaptor tRNA molecules are responsible for the mapping, see Figure 3.8 (left). An amino
acid is first attached to a tRNA molecule, which by complementary base pair binding
recognizes the appropriate codon. The genetic code redundancy implies that there are
either as many tRNA molecules as there are codons, or that some tRNAs can base pair
with more than one codon. In fact, some tRNAs are constructed in a way that they
require accurate base pairing only at the first two positions of the codon and can tolerate
a mismatch (or wobble) at the third position. Note that many of the alternative codons
for an amino acid differ only in their third nucleotide, see Figure 3.8 (right). While the
tRNAs are responsible for the mapping of codons to amino acids, it is the ribosome that
synthesizes the amino acid polypeptide chain. The translation takes place in the 5 to 3’
direction. It begins with the start codon AUG that is recognized by a unique initiator tRNA
molecule, which encodes for methionine (Met), see Figure 3.6. During the elongation phase
the mRNA is processed block wise codon by codon. In each step, the ribosome waits for
the appropriate tRNA to bind to the currently processed codon. Subsequently, the amino
acid attached to the tRNA is added to the growing polypeptide chain before the ribosome
moves to process the next codon, see Figure 3.8 (left). The process is repeated until one
of the three stop codons UAA, UAG, UGA is reached. A release factor then binds to the
ribosome, releasing the completed polypeptide chain.
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Only the mRNA sequence between the start and the stop codon is translated. The mRNA
contains an untranslated region (UTR) on the 5" and the 3’ end, see Figure 3.6. The 5’ end
contains a sequence specific binding site that facilitates the recognition of the translation
start. In prokaryotes it is the Shine-Dalgarno (SD) sequence, in eukaryotes the so called
Kozak sequence.

3.5 Genetic Information Processing and Engineering

3.5.1 Transcription and Error Correction

During transcription elongation simple proofreading mechanisms ensure the faithfulness
of the transcribed RNA. However, they are fewer and less effective than those involved in
DNA replication resulting in a lower copying fidelity. While DNA replication achieves an
error rate of 107! per base pair, transcription has an error rate around 107¢ [Rad01] per
nucleotide. This seems like meaningful trade-off between accuracy and efficiency, since
transcribed RNA does not serve the purpose of passing genetic information to progeny.
Interestingly, the rate at which the DNA polymerase replicates the DNA is much higher
than the rate at which the RNA polymerase transcribes the DNA. However, at the high
speed, the DNA polymerase replicates with an error rate of 1072 —107° and it is the DNA
mismatch repair, see Section 3.3.2, that effectively reduces the overall error rate of DNA
replication.

The DNA damage repair described in Section 3.3.1 has been found to show higher activity
in transcribed regions [FKC'02]. The reason is that the RNA polymerase molecule,
performing the transcription, is itself capable of recognizing damaged nucleotides on the
template strand and recruit DNA damage repair proteins to it. This guarantees that
important, often transcribed, DNA regions are error checked and corrected more often
and ensures that they experience less mutations than other regions under the assumption
of identical damage rates per time unit across the genome. This partially resembles error
correction in magnetic platter hard disk drives. The information signal on the magnetic
track is subject to degradation. Present-day drives store the data with high information
density using efficient channel codes. If an information block on the drive is found to
be damaged on read access but can still be decoded, it is re-encoded and written to a
different sector on the drive. Blocks which are read more frequently get error checked and
corrected more often.

3.5.2 Translation and Error Coding

The original involvement of information theorists with molecular genetics goes back to the
discovery of the genetic code. In the period between the discovery of the DNA structure in
1953 and the decipherment of the genetic code 1961-1969, when no actual DNA sequences
and only very few amino acid sequences were known, several different coding schemes
describing the mapping of the DNA sequence (4 letter alphabet) to a protein (amino acid
sequence from a 20 letter alphabet) were proposed by coding theory experts. Some of
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them had high information density, while others had foreseen error correction capabilities.
A review of the proposed codes can be found in [Hay98]. The experimental discovery of
the actual genetic code (the mapping rule of the 43 = 64 DNA sequence triplets to the
20 amino acids and a stop symbol) was a disappointment for the coding community,
since it does not seem to implement any of the two. From this time, there has been
little interaction between the two communities until recently. The question why the
genetic code has evolved the way it is remains open. Remarkably, it is identical across all
domains of life with a few minor exceptions. Recent studies suggest the optimality of the
code in terms of error minimization using metrics based on physio-chemical properties
of the resulting amino acids like their hydrophobicity [FWKO03]. Obviously, errors are
differently weighted in terms of their effect on the function, which is not being accounted
for by traditional models from communications engineering trying to minimize the overall
error number. Other results indicate that the genetic code is optimal in terms of allowing
an additional information signal to be modulated on top of it [TA07], e.g. the signal for
sequence specific binding sites. Apparently, evolution imposes additional constraints on
the optimization of the genetic code, which makes its modelling rather peculiar. One of
the constraints seems to be the minimization of the effect of frame shift errors [BVKOT7].
Since the genetic code is a block code, a frame shift error leads to a completely different
amino acid sequence. The used codon mapping ensures that a stop codon is very likely
to be encountered soon after a frame shift error. The resulting shortened faulty protein
is quickly degraded.

3.5.3 Gene Expression and Marker Synchronization

In all the steps of gene expression, it is necessary that it can be recognized where to start
and stop the processing. In transcription the transcription start site has to be found. In
splicing the exon intron borders have to be identified and in translation the coding part of
the mRNA has to be recognized. This information is typically encoded in the sequence,
often in form of sequence specific binding sites as described in this section (e.g. promoter,
Shine-Dalgarno sequence, start and stop codons). In engineering, this process strongly
resembles the use of marker sequences in synchronization. Binding sites of regulatory
proteins can be analogously interpreted as synchronization markers. Parallels between
binding site recognition and synchronization, as well as the synchronization properties of
selected binding patterns, will be studied in Chapter 7.

3.6 Evolutionary Genetics - Genetic Information
Transmission

That the main driving force of evolution and speciation is adaptation to changing environ-
mental conditions by means of natural selection was discovered by Darwin in 1859 [Dar59],
long before anything was known about the molecular mechanisms underlying it. Darwin
has postulated the theory of universal common descent, stating that any two species have
a common ancestor and that speciation follows along a binary evolutionary tree (phyloge-
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netic tree) starting from the common ancestor, where each node of the tree corresponds
to a speciation event. The main laws of genetic heredity from parents to offspring were
discovered by Mendel in 1886 [Men86]. Evolutionary genetics refers to the research field
that helped to unite both theories. The link is established by studying evolution in terms
of gene changes within a population and by uncovering the processes that convert the
variation within population into permanent variations between species. Modern molecu-
lar evolutionary genetics studies the evolutionary processes acting upon genomes on the
molecular level.

3.6.1 Genome Evolution

According to evolutionary theory, a certain degree of mutation is necessary to allow for
adaptation of different species to changing environmental conditions. Propagation of evo-
lutionary disadvantageous mutations is hindered by natural selection in contrast to neutral
and the rare advantageous mutations. The living cells do not possess any mechanism for
controlled mutation of their genome. On the molecular level the evolution rather depends
on “mistakes” followed by non-random survival. Most of the genetic changes simply result
from failures in the normal mechanisms of DNA replication and damage repair. Thus, the
mutations are the result of DNA damage that has not been repaired and has been passed
on to the offspring along the germline. DNA replication and repair mechanisms have been
found to operate at an extraordinary high fidelity rate. Once a mutation has been fixed in
the species population it becomes permanent. When comparing two evolutionary closely
related genomes like human and chimpanzee, the differences will be rather small due to
the short evolutionary distance to their common ancestor. However, conserved regions
between more distant species like human and mouse are likely to be a result of purify-
ing selection suppressing mutations interfering with their function. The more distant the
species are, the more difficult it becomes to identify homologous regions sharing common
ancestry since they are likely to have diverged too much.

3.6.2 Types of Mutations

Mutations can be categorized using different criteria. In the context of this work, we want
to focus on inheritable mutations affecting the germline cells and not mutations in somatic
cell lines (body cells) leading e.g. to cancer. In terms of effects on evolutionary fitness, it
can be differentiated between the most frequent neutral mutations occurring at a steady
rate that have no harmful or beneficial effect on the organism, deleterious mutations that
have a negative effect decreasing the fitness of an organism and rare advantageous muta-
tions that have a positive effect. Only neutral and advantageous mutations have a chance
of spreading in the population and becoming permanent. Permanent mutations lead to
structural differences in the genomes of separate species. While large scale mutations
lead to chromosomal and genome rearrangements, small scale mutations affect one or few
nucleotides.



30 Chapter 3 m Fundamentals in Genetics

T A ofAl
I

C
I
|

G

| I I |
AT G|c

Figure 3.9: Substitutions are primarily caused by mismatch errors introduced during
DNA replication. If left uncorrected, in the next replication round the introduced mis-
match will lead to a mutation in one of the DNA copies. Modified from [Nat08].

Small Scale Mutations

There are three types of small-scale mutations affecting the DNA: substitutions, insertions
and deletions. A substitution exchanges a DNA nucleotide by another one. Substitutions
result primarily from DNA replication mismatch errors, see Figure 3.9. These are more
likely to occur if the replicated nucleotides are chemically modified due to untreated
DNA damage caused by mutagens. A quantitative analysis of evolutionary rates has
found that the substitution rate among the human, rat and mouse genome is around 0.65
substitutions per site for DNA positions that evolve neutrally (sites that are not under
natural selection) [CBS*04]. The small scale insertion and deletion (InDel) mutations
insert /remove a single or multiple nucleotide(s) into/from the DNA strand. InDels are
far less likely than substitutions and were found to occur at a rate being only 5% of the
substitution rate [CBS*04]. InDels are particularly problematic in exons. If the length of
the affected nucleotides is not a multiple of 3, they cause a frame shift in the codon reading
frame changing the following amino acid sequence and typically leading to a premature
translation stop. The main cause of InDels is believed to be the affinity of single stranded
DNA to fold and form loops. The biochemical processes giving rise to substitution and
InDel mutations are fundamentally different, and it can be assumed that these events
occur independently from each other.

Large Scale Mutations

The major cause of large-scale mutations are DNA double strand breaks. These can result
in a chromosome part being deleted, translocated or duplicated. The translocation can be
seen as a deletion of a larger region followed by a subsequent insertion of the deleted part
into the same or a different chromosome. Analogously a duplication is the insertion of a
duplicated portion in the same or a different chromosome. Such large scale duplications
play an important role in genome evolution. In particular, gene duplications allow genes to
evolve towards new functionality while retaining the original function [Zha03]. Large scale
duplications may involve whole chromosomes or even entire genomes [Spr02]. Since DNA
is double stranded, an insertion can happen in two different ways, see the right portion
of Figure 3.10. Note that the two possibilities a) and b) are flipped realizations of each
other. Thus, with respect to the reference genome, the insertion of a duplicated region
manifests either as an exact copy or a palindromic copy being the reverse complement.
The situation shall be explained in more detail using an example.
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Figure 3.10: Large scale deletion (left). Large scale insertion (right) can take place
in two different ways leading either to an exact a) or a palindromic copy b). Modified
from [Nat08].

Example: Assume a DNA region with the reference sequence 5’ -gtgtag-3’ is duplicated
and inserted at another position in the genome in the middle of a region with the reference
sequence 5’-. . . ATCTCCAGTCAGCT ...-3’. The double stranded DNA snippet duplicate

5’-gtgtag-3’
3’-cacatc-5’

can be inserted into the new region in the following two ways

5°-...ATCTCCAgtgtagGTCAGCT ...-3’  5°-...ATCTCCActacacGTCAGCT ...-3’
3’-...TAGAGGTcacatcCAGTCGA ...-5°  3’-...TAGAGGTgatgtgCAGTCGA ...-5’

With respect to the reference sequence (first row), the left insertion leads to an exact
duplication and the flipped insertion on the right results in a palindromic duplication.
The sequence ctacac inserted into the reference strand by the palindromic duplication is
the reverse complement of the original duplicated reference sequence gtgtag. *

When comparing the human and the mouse genome a total of around 180 large scale
genome rearrangements are found [AJWT08]. Large scale mutations are thus by far
not as frequent as small scale mutations but they influence large regions. In particular,
duplications can even involve entire chromosomes or the whole genome. The duplicated
copies are subject to small scale mutations after a duplication event and accordingly
diverge over evolutionary time. Because of large scale mutations, different genomes can
greatly differ in length. Parts that exist in one genome may not be present in another and
vice versa. Additionally, parts that both genomes inherited from their common ancestor
may be located at different positions in the genomes and may exhibit different nucleotide
compositions because of small scale mutations.
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3.7 Genetic Information Transmission and
Engineering

In the following genetic information transmission over evolutionary time scales shall be
modelled. The focus is placed on evolutionary substitutions for which there exist well
established statistical models. In Chapter 5 the derived channel model is used to compress
the nucleotide portion of multiple genome alignments, in Chapter 7 it is used to study
the synchronization properties of mutating binding sites.

3.7.1 Substitution Channel - Continuous Time Markov Process

The evolution of a single nucleotide over time shall be modelled in the following. The
nucleotide alphabet is denoted by A = {A,C,G,T}. Let the random variable Xy, with
realization o € A, model a single ancestral DNA site, and let X; represent this site
after time ¢t. The time dependent evolutionary discrete memoryless channel described by
the probabilities P(x; = jlzg = i) = pi;(t), i,j € A has to be characterized. Let Xy
represent the nucleotide at some intermediate time 0 < ¢’ < t. Given that the nucleotide
mutation rates are not changing over time, it is reasonable to assume that the transition
Xo — Xy — X, form a homogeneous continuous time Markov chain {X;};>¢, t € RY, i.e.
for all h,t > 0, Xy, is conditionally independent of { X }s<; given X;. Such Markov chain
is characterized by a rate matrix R = [r;;], 7,7 € A that is stable and conservative [Nor97]

0<r;<oo Vi#j (stable) (3.1a)
Z rij =0 Vi (conservative) (3.1b)
J

Let the probabilities P(z; = jlrg = i) = p;;(t) be the elements of the matrix P(t)
describing the discrete memoryless subtitution channel, see Figure 3.11.

Xo—P P(t)=Px,x, —P» X;

Figure 3.11: The evolutionary time dependent DMC channel.

The rate matrix R and the channel matrix P(t) are related as follows

d
2 P(t) = P()R, (3.2)

The time dependent channel matrix P(t¢) can thus be computed as [Nor97]

P(t) = 'E, (3.3)
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where e/® denotes the matrix exponential of ¢ - R. In Appendix B.1 it is shown how to
evaluate the exponential of a matrix. Many properties of the scalar exponential extend
to the matrix exponential as well. In particular, note that

P(t, + 1) = et IR — hiR 2R (3.4)

The homogeneity of the continuous time Markov process also implies that it is memoryless
and stationary with the equilibrium distribution 7 = (m,, m¢, 7g, 7r). The equilibrium
distribution fulfils

TR=0 (3.5a)
wP(t) =m. (3.5b)

Additionally, for any initial distribution A the continuous time process generated by R
converges to the equilibrium distribution [Nor97]
lim AP(t) — . (3.6)
t—o00
In the framework of evolutionary modelling the continuous time Markov process is as-
sumed to be reversible [Yan06]. In other words, the expected amount of substitutions

from nucleotide ¢ to nucleotide j is equal to the amount of change from j to ¢ in steady
state Vi, j € A, hence:

7Tﬂ“ij = ﬂ-jrji (37&)
Tipij(t) = 7;pji(t). (3.7b)

With IT = diag(7) it can be equivalently written
IR = I1(STI) = (STI)"TI = R'11, (3.8)

where the rate matrix R = SII is the product of a symmetric matrix S and II. Since

7 is a PMF it has 3 free parameters. Due to the reversibility (3.7a) and conservativeness
constraint (3.1b), the symmetric matrix S has 6 free parameters. Thus, the general time
reversible evolutionary model (GTR) has exactly 9 free parameters and

* T T mrY
R | ma  x med mre
TR =
GTR mpB T x  m( ’

Ty TeE Te(  x

(3.9)

where the x symbols on the diagonal are dependent parameters to be computed according
to the conservativeness constraint (3.1b) such that the row sums equal zero. The model
can be further simplified by imposing the following two additional constraints. First, the
steady state substitution rates between purines (A <> G) as well as between pyrimidines
(C <> T) are identical. Note that the purines are denoted by R = {A,G} and pyrimidines
by Y = {C,T}. This kind of substitutions are called transitions. Second, the transversion
rates between purines and pyrimidines (R <> Y) are identical, see Figure 3.12. Imposing
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Figure 3.12: Graphical representation of the HKY model. Full lines are transitions and
dashed lines represent transversions.

these constraints reduces the overall number of free parameters to 5. The corresponding
substitution model is called the Hasegawa, Kishino, and Yano evolutionary model (HKY)

* T T TrQ
mo Kk mea Tf3
mfp T x T«
Ty T Te  x

(3.10)

RHKY =

The HKY model accounts for the fact that the rate of transitions has been found to often
exceed the rate of transversions rrs > 77, [PH99]. This is surprising, since for identical
substitution rates a = 3, the transition/transversion ratio is rather expected to equal
r7s/TTe = 0.5. As can be seen from Figure 3.12

rrs __Blmtmettetr) 0. (3.11)
ey (2my + 27 + 2 + 27mr) 2«

In fact, in bacteria the ratio can be as high as rps/rp, = 2 [Och03]. It is hypothesized,
that this is related to the fact that bases of the same type are more similar in the physio-
chemical sense. Thus, the corresponding mismatches are more difficult to recognize for
the mismatch repair machinery. The HKY model has been found to be a reasonable
simplification [HRY 03] of the GTR model for most evolutionary studies. In some cases,
further simplification is possible by assuming that the mutation rates are identical and
thereby reducing the number of free parameters to 4. The resulting model is the so called
Felsenstein evolutionary model (FEL)

* TcQx Tghx TTQ
A * TgQx T
TaQx T * T
TpaX TcX TgX *

Rpp = (3.12)

Further simplification is possible by assuming that the stationary distribution is equiprob-
able my = m¢ = mg = mr = 1/4. This constraint, when applied to the HKY model, leads to
the so called Kimura 2 parameter evolutionary model (K2P). Imposed on the FEL model,
it leads to the single free parameter Jukes Cantor evolutionary model (JC)
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Figure 3.13: Channel Capacity of the K2P and the JC evolutionary model for ¢t = 1.

* a [ « * a a «
1l a x a 1l a x a «

Rycap = 41 B a * « Rye = 4l a a * « (3.13)
a B a * a a a *

The corresponding channel matrices can be evaluated [Yan06]. For the K2P model, the
channel matrix Pgop(t) is characterized by

_ _(a+B) e - . .
TtHie+3e 2t ifi=j no mutation
kB, .
pi(t) = Lplemat — L1570 if i — 5 transition . (3.14)
1 — e if i — j transversion

For the JC model Pj(t) is characterized by
1, 3 —at s, _ - :
-+ e if 7 = j no mutation
p(t)=< 1 1 . . (3.15)

7 1€ if i # j mutation
The rows and columns of the resulting channel matrices P(t) are permutations of each
other. Thus, the K2P and the JC evolutionary channel models are symmetric DMC chan-
nels and their capacity can be computed using (2.34). Figure 3.13 depicts the channel
capacity for the K2P model (surface) and the JC model (line). It can be seen that the ca-
pacity is exponentially decreasing. A typical K2P scenario with a transition/transversion
ratio rpg /T, > 0.5 would correspond to a point on the plane portion left of the JC line.
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Figure 3.14: Analogy between nucleotide evolution on a phylogenetic tree and the SIMO
transmission model.

3.7.2 Nucleotide Evolution is SIMO Transmission

In terms of communications engineering, evolution can be regarded as a single input mul-
tiple output (SIMO) transmission system. The common ancestor is the single transmitter
and the currently living species are the receivers. The genome of the common ancestor is
the transmitted message and the genomes of the currently living species are the received
messages. The phylogenetic tree describing the evolutionary relationships corresponds
to the signal paths from the transmitter to the receivers. Speciation events, being the
inner nodes in the phylogenetic tree, are the scattering points in the signal paths, see
Figure 3.14. The SIMO transmission model is particularly well suited to describe the
evolution of single homologous nucleotides. However, it is not suited to describe the
evolution of whole genomes, in particular it cannot account for large scale mutations like
duplications and translocations leading to rearrangements in the transmitted genome. The
modelling capability for small scale InDel mutations within homologous regions, sharing
common ancestry, is also limited. Probabilistic modelling of the InDel events is difficult.
In information theory, the insertion and deletion channel is hard to treat analytically,
e.g. the capacity for the general case is still unknown. Additionally, the InDel events
typically stretch across several consecutive nucleotides, preventing symbol-wise indepen-
dent channel models as used for substitutions in general acting upon single nucleotides.
However, since the InDel and the substitution process seem to be largely uncorrelated
and independent, they can be modelled separately. In [CBS*04] the independence was
shown for the human, rat and mouse. For the purpose of this work, the SIMO channel
will be solely used to model the evolution of homologous nucleotides.

Substitution SIMO channel

Let us assume that N homologous nucleotides can be observed in N species. According to
the evolutionary theory, their ancestor has diverged into two independent nucleotides some
time ago, and any of those two nucleotides could have become the ancestor of another
two and so on. The generalized homologous nucleotide evolution model is depicted in
Figure 3.15. The relationship of the observed nucleotides is described by the phylogenetic
tree being a tree like graph 7 with nodes representing DNA nucleotides and edges the
phylogenetic relationship. An edge is drawn from node u to v if u is an ancestor of v.
The node u is the parent of v, and v is the child of u. A phylogenetic tree is binary,
i.e. every node has either one parent or none, and every node has either two children
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Figure 3.15: The SIMO channel model for homologous nucleotides.

or none. The single node without parents is called the root of the tree and is denoted
by v. Nodes without children are called leaves and represent the observed homologous
nucleotides in species that exist today. Each branch in 7 has a certain length representing
the evolutionary distance between the connected nodes associated with it. The transition
probabilities between any two nodes v and v in 7 connected by a branch are consequently
given by

P(t,,) = ™", (3.16)

where t,, € R is the evolutionary distance between u and v.

The evolution of a single nucleotide on a tree 7 with branch lengths 7 = {t,, : (u,v) € T}
and N leaves can be described as follows. Starting from nucleotide x, in the common
ancestor, at any node u the nucleotide x, is transmitted to each child v with transition
probabilities specified by (3.16). This process continues until the nucleotides zy,, i =
1,.., N are observed at the leaves. Due to stationarity, the nucleotide distribution at any
node in the tree is identical to the equilibrium distribution 7t of the process.

3.7.3 Estimation on the Tree - Felsenstein Algorithm

In order to determine the common ancestor, the nucleotide, most likely to have been
transmitted over the SIMO channel, has to be estimated given the nucleotides at the
leaves and the evolutionary model { R, 7, 7, 7}. Let @, = [zy,, ..x(,] denote the observable
nucleotides at the leaves. The maximum likelihood estimate of the common ancestor
nucleotide z, is then equal to

T, = arg max p(@|z,). (3.17)

Due to the stationarity assumption of the underlying Markov substitution process p(x,) =
Tz, V2, € A, the maximum a-posteriori estimate can also be computed as

T, = arg max (p(x¢|z) 7, ), (3.18)
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The probability of observing a single nucleotide at leaf ¢; is simple and given as

plre) = Y plag|zople) = Y p(

a:tE.A actE.A

Vg, - (3.19)

Because of the property expressed in (3.4), the transition probabilities are calculated
as el4® where e, 1s just the sum of the distances between all nodes leading from
the root t to leaf ¢;. The calculation of the joint probability p(a,) is more complicated
and has to take into account the phylogenetic dependencies among nucleotides. An effi-
cient procedure for calculating the likelihood was presented by Felsenstein in 1981 [Fel81].
Felsenstein’s algorithm is an application of the belief propagation sum-product algorithm
to tree-like graphs. Belief propagation algorithms were developed independently by com-
munications engineers for channel decoding purposes [JBCRT74,Pea82]. Let x) denote
the observations at the leaves of the subtree rooted at u, and let v and w be children
of u, see Figure 3.15. Note that xy) = x¢ and xyw) = [Tew), Tew)]. Since X, and X,
are conditionally independent, given X,, the conditional probability p(xs)|z,) can be
expressed recursively as

p(wf(u)‘xu) (wf(v w[(w ‘xu)
Ly(v xu w) | Lu
= (@) | 20)P(T ()| 20) (3.20)
< P(@ew)|0)p (xv|37U)> X (Z p<wé(w)|xw)p(xw‘xu)> 5
€A TwEA

where the transition probabilities p(z,|r,) and p(x,|z,) are known from P(t,,) and
P(t,), see (3.16), and p(xew)|r,) and p(ew)|e,) were calculated in previous iterations.
The algorithm starts at the leaves with initial probabilities

|1 itr =2
plzlze) = { 0 otherwise ’ (3.21)

for a leave node ¢; and proceeds up to the root in an iterative fashion according to (3.20).
Finally, the common ancestor can be computed according to (3.17) or (3.18). Also the
probability of the observed N nucleotides can be computed as

plae) = p(@u)| 7o) s, (3.22)

xcEA

3.7.4 Substitution Space Time Model

The substitution model described above accounts for the temporal evolution of a single
DNA site leading to multiple observations. Computational genome analysis and biological
experiments show that different sites of DNA exhibit different rates of substitutions. The
substitution rates were found to be generally lower at functional sites due to natural se-
lection pressure hindering mutation accumulation. To model the variable rates, a discrete
process ©; is introduced, where the index j corresponds to the nucleotide site position
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Figure 3.16: Time-Space model of the nucleotide evolution accounting for the spatial
rate variation.

in the ancestor sequence. This spatial process interacts with the time-process by scaling
the distances of the tree at each position j by the factor 6;, which is a realization of the
process. The corresponding nucleotide position then evolves along the phylogenetic tree
with transition probabilities between the nodes u and v depending on 6;

P(t,,) = %k, (3.23)

The space-time transmission model accounting for variable rates is depicted in Figure 3.16.
Different models for ©; were proposed [Yan06,FC96, MFP05]. Typically, ©; is assumed to
have a Gamma like distribution and show Markov type dependencies based on the biolog-
ical observation that neighbouring sites of the DNA sequences generally have correlated
rates. In a sense, the behaviour of ©; resembles that of fading in slow fading channels.
The rate variation ¢; can be estimated by using numerical optimization methods with the
Felsenstein estimator [Nie97].

3.7.5 Summary of the Nucleotide Evolution Model

The parameters used to model the nucleotide evolution resulting from substitution mu-
tations are summarized in Table 3.1.

Parameter Description Variability
T phylogenetic tree invariable
T tree branch lengths invariable
R substitution rate matrix invariable for large sections
™ stationary distribution  invariable for large sections

rate variation variable between sites

P

Table 3.1: Overview of parameters specifying the nucleotide evolution model.

3.8 Summary

This Chapter has provided a brief overview of the various aspects of genetic information
storage, processing and transmission from an engineer’s perspective. The most important
insights for the follow-up chapters shall be summarized briefly.
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The entire genetic information of an organism is stored in its DNA as a discrete signal from
a quaternary nucleotide alphabet A = {A,C,G,T}. The two strands of the DNA double
helix are complementary. Thus, the entire genome can be described by using one of the
strands, namely the reference strand. The complementary binding takes place between
the base pairs A=T and C=G. With respect to binding strength, it can be distinguished
between weak W={A,T} and strong S={C,G} bases. In terms of size, bases are subdivided
in purines R={A,G} and pyrimidines Y={C,T}. While the RY-distribution seems random
along the genome, the WS-distribution, the so called GC-content, varies for different regions.

The best studied genetic information processing mechanism is gene expression - the pro-
cess of producing proteins from the information encoded in the DNA. The processing steps
differ in the two domains of life - the simple single cellular prokaryotes comprising bacteria
and archaea, and the more complex generally multicellular eukaryotes comprising animals
and plants. In both domains, DNA is first transcribed into RNA using complementary
binding. The RNA resembles single stranded DNA. In eukaryotes, the transcribed RNA
contains non-coding regions that have to be spliced out before translation. During trans-
lation the RNA is sequentially mapped in blocks of three nucleotides to an amino acid
sequence following a fixed mapping rule called the genetic code. In order to assume its
function, the amino acid sequence of a protein has to fold into a certain 3-D shape. The
steps of gene expression are regulated by different regulatory proteins binding sequence
specifically to the DNA or RNA and acting either as repressors or activators. Sequence
specific binding sites are also used to mark the spot for the gene expression machinery,
where to start the processing. This very much resembles the use of markers in synchro-
nization in engineering and will be studied in detail in Chapter 7.

Nature seeks a compromise between the degree of fidelity of the genetic information trans-
mission from generation to generation and the mutational level necessary for evolutionary
adaptation to changing environmental conditions. The living cells do not possess any
mechanisms for directed mutational adaptation. The source of mutations are random
DNA damage and DNA replication errors. Adaptation takes place via natural selection
affecting which mutations become permanent in a population. There exist efficient mech-
anisms correcting most of the DNA damage. Likewise, the noisy DNA replication process
is complemented by highly efficient mismatch repair. Both error correcting mechanisms
greatly reduce the overall error rate. Changes in the DNA sequence that become fixed
are called mutations. In terms of the effect on the genome structure, it is distinguished
between large scale mutations (i.e. deletions, duplications and translocations) causing
genome rearrangements and more frequent small scale mutations (i.e. short insertions,
deletions and substitutions) acting locally. The substitution process, being the most
frequent type of mutation, can be modelled as a discrete memoryless channel using con-
tinuous time Markov models. Thus, the nucleotide evolution resembles the single input
multiple output (SIMO) transmission systems. The mutational models of genome evolu-
tion play an important role when devising compression algorithms for genomic data. This
shall be discussed in detail in Chapter 5.
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Source Coding Aspects in Genetics






Compression in Engineering

The main motivation for digital data compression is to reduce the amount of space nec-
essary to store or transmit a message. The Morse code, invented in 1838 for the use in
telegraphy, is an early example of digital data compression. In telegraphy short and long
pulses are used for data transmission. A binary pulse sequence is used for the transmis-
sion of each letter. Morse has come up with the idea to use shorter binary codewords
for the transmission of letters such as ”e” and ”t” that are more frequent in the English
language, thereby reducing the average transmission time of a message. Modern work
on data compression began in the late 1940s with the introduction of information theory
focusing solely on statistical properties of the encoded data. In the framework of informa-
tion theory the letters are regarded as symbols generated by a source being the language
and having certain statistical properties. With the source coding theorem, Shannon has
established that lossless compression of symbols from a source is possible as long as the
compression rate is higher or equal to the entropy of the source [Sha48]. In 1949, Shan-
non and Fano devised a systematic way to assign codewords to encoded symbols based
on their distribution. An optimal assignment method was found by Huffman [Huf52] in
1951. The compression efficiency can be further increased by combining several symbols
to blocks. Unfortunately, the maximum block length is highly limited for Huffman coding
since its complexity grows exponentially with increasing block length. In 1979, arithmetic
coding was introduced by Rissanen [RL79]. Although slightly inferior to Huffmann in
terms of compression rate, its complexity scales linearly with increasing block length.
Both Huffman and arithmetic coding belong to the category of entropy coders, asymp-
totically achieving entropy for large blocks of symbols. However, they both require prior
knowledge of the symbol distribution. Symbolwise entropy coding can be combined with
statistical prediction algorithms, using higher order context models to refine the coding
distribution for each encoded symbol. Different prediction algorithms, based on learn-
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ing variable order Markov models and using suitable model mixing strategies to make a
prediction, have been developed. Particularly well performing in terms of compression
efficiency, computational complexity and memory requirement are Prediction by Partial
Matching introduced by Cleary and Witten [CW84] and Context Tree Weighting invented
by Willems et al. [WST95]. The latter is among the very few algorithms offering both,
theoretical guaranteed asymptotic and good practical performance. Since these prediction
algorithms do not require a-priori knowledge of the statistics of the underlying Markov
models and are capable of learning it during compression, they are referred to as uni-
versal compressors. Another class of algorithms, belonging to the category of universal
compressors, are dictionary based algorithms using the idea of encoding the message by
pointers to repeating patterns in the already encoded portion of the message. Originally
introduced by A. Lempel and J. Ziv [ZL77] in 1977, the dictionary based algorithms are
particularly well suited for the compression of text data. All the mentioned compression
algorithms are lossless, meaning that the original message can be reconstructed error free
from the compressed output. Many of the basic algorithms exist in several refined vari-
ants. The overview provided in the following is by far not exhaustive. It is restricted only
to selected representatives, variants and concepts that will be required in Chapter 5 in
order to develop lossless compression algorithms suitable for genetic data.

4.1 Entropy Coding

An analysis of entropy coding including detailed derivations and proofs can be found
for example in [CT06]. In data compression the basic idea is to assign short codewords
to symbols (or blocks of symbols) with high frequency and long codewords to seldom
ones. The message to be encoded is assumed to have been generated by an IID source
X modelled as a series of random variables X = (X7, X5, ...) generating symbols & =
(x1,9,...), where z; € X ,Vi. A source code C is a mapping of X to the set of finite
length strings of symbols from a discrete alphabet. Throughout this work, the codewords
are assumed to be binary. Let C(z) denote the codeword corresponding to = and |C(x)]
denote its length measured in bit. The expected length of the code E{|C(z)|} is

E{|C(x)]} = ) Px(2)|C(2)]. (4.1)

VreX

In order to make instantaneous decoding possible, the set of codewords has to be prefix-
free, meaning that no codeword is a prefix of any other codeword. Prefix-freedom makes
the end of each codeword instantaneously recognizable in the encoded data stream, even
though the codewords have different lengths. Short codewords cannot be assigned to all
source symbols if the code is to be prefix-free. The set of possible codeword lengths for
instantaneous codes is limited by the Kraft inequality [Kra49]

> 2l < (4.2)
VeeX

The expected length of the code in (4.1) is minimized under the constraint imposed by
the Kraft inequality if codeword lengths |C'(z)| are chosen according to the PMF of X,
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ideally |C(x)] = 1d %. However, the codeword length has to be rounded up to the

nearest integer due to the restriction of having to use integer codeword lengths. Thus, for
an optimal binary prefix-free code

10()| = [m le(a:)w . (4.3)

The difference of the actual codeword length to the ideal one is the codeword redundancy

1
Px<l’)

For optimal binary prefix-free codes 0 < §(z) < 1 bit. The performance of a code
is measured in terms of the average amount of bits used per source symbol also re-
ferred to as the code rate R. For symbolwise coding and IID sources the code rate
R = E{|C(x)|} bits/symbol and is lower bounded by the entropy H(X) < R. The as-
signment of codeword lengths according to (4.3) leads to a code rate R within 1 bit of the
symbol entropy

5(z) = |C(z)] — 1d (4.4)

H(X)<R< H(X)+1. (4.5)

Obviously, the lower bound is achieved if Vx € X In € N : Px(z) = 2% Especially
codes for highly non-uniform distributions are likely to result in high code rates up to the
overhead of 1 bit/symbol. By encoding blocks of N symbols jointly " = (x;...xy), the
codeword redundancy is 0 < () < 1 bit. The average amount of bits used per source

symbol is R = E{|C(«")|}/N and it is lower bounded by the entropy rate H(X?"). For
N TID symbols encoded jointly H(XY) = H(%N) = H(X) and thus

1
H(X)§R<H(X)+N. (4.6)
Hence, using large block lengths, a code rate R arbitrarily close to the symbolwise entropy

H(X) can be achieved for IID sources.

4.1.1 Huffman Coding

An optimal prefix code for a given distribution can be constructed by a simple algorithm
developed by Huffman [Huf52]. The algorithm works by creating a binary tree of nodes.
The tree is build from the leaves to the root. Each symbol of the source alphabet is
represented by a leaf node, which is labelled with the probability of the corresponding
symbol. First, the two nodes with the lowest probability are determined. Subsequently,
their parent node is created and the sum of the probability weight of its children is assigned
to it. Ome branch to a child is designated with a binary 1, the other with a binary 0.
The number of free nodes, i.e. leaves and nodes without a parent is reduced by one. This
merging step is performed until there is only one parent node left. This node is the root
of the tree and has a probability of one. The prefix-free binary codeword C(z) for each
symbol z € X is the sequence of the binary zeros and ones assigned to the branches of
the tree on the way from the root to the leaf corresponding to the symbol x.
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P(z) C(z)
P(G) =1/16 1m
5/16 :
P(C) =4/16 110
©) =4 0 10/16 ¢
P(A) =5/16 5 14— root 10
P(T) =6/16 0
0
Figure 4.1: Huffman tree and prefix-free Huffman code for the sequence

GATTTACCATTTACCA.

Example: Figure 4.1 depicts a Huffman tree constructed for the 16 symbols long sequence
GATTTACCATTTACCA from a four symbol alphabet using blocks of size one. The symbol
probabilities were estimated using frequency counts P(G) = 1/16, P(C) = 4/16, P(A) =
5/16, P(T) = 6/16. Under the assumption that they correspond to the background distri-
bution the entropy evaluates to H(X) = 1.81 bits/symbol. The encoded sequence requires
31 bits as opposed to 32 bits needed without compression and R = 1.94 bits/symbol.

Different codes can be built depending on the labelling of the tree branches and on the
combination of nodes with the same weights. However, they all achieve the same code
rate R. While at the encoder the symbol probabilities of the source can be estimated from
the frequency counts in the message to be encoded, the decoder has to know the symbol
probabilities a-priori. Thus, these have to be transmitted together with the encoded data.
Even though, Huffman coding works optimally and can reach entropy arbitrarily close by
combining symbols to large blocks, it is limited by the memory requirement growing
exponentially with increasing block length. The reason is that the entire PMF P(XY)
for all |X |V possible realizations of a block has to be stored in order to compute the
codeword mapping.

4.1.2 Arithmetic Coding

When grouping symbols to blocks, the memory limitation of the Huffman code can be
avoided by using arithmetic coding (AC), whose complexity scales linearly with increasing
block length. Arithmetic coding is based on the Shannon-Fano-Elias coding, which is
slightly inferior to Huffman coding in terms of the codeword redundancy and thus the
achievable code rate.

Shannon-Fano-Elias Coding

The Shannon-Fano-Elias coding is based on the idea of computing the codeword from the
cumulative distribution function

Fx(z)= Y  Px(a). (4.7)

Vo':x' <z
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The calculation of the CDF requires that some kind of fixed ordering is imposed on the
symbols in x € X. This ordering can be arbitrary, e.g. the natural lexicographic ordering
can be imposed. Since X is a discrete random variable, Fx(z) is a step function. In
order to describe an z, it is sufficient to pick a real number r € I(z) in the interval
I(z) = [Fx(x) — Px(x), Fx(x)). The intervals {I(z)},cx are non-overlapping I(z) N
I(z') = 0,V2' € {X\z} and subintervals of the unit interval I(z) C [0,1),Vx € X. The
binary expansion of the chosen real number r, stripped of the leading ’0.’, can then be
used as a codeword 0.C(x) = (7)2. However, an expansion of most real numbers in the
binary alphabet is of infinite length, e.g. (%)2 = 0.011101.... In order to minimize the
codeword redundancy, the shortest codeword C(z) in the interval has to be found. This

can be accomplished by choosing 7 initially as the midpoint of the interval

r = Fx(z) — 5 Px(2), (48)
and truncating 7(.) its binary representation to the first [1d(2/Px(z))] bits, see [CT06]
0.0(2) = T((r)),  |C()] = [m PXZ(J;)W _ [m le(x)w +1 (4.9)

The resulting codewords C(z),Vx € X are prefix-free. The coding redundancy is 1 <
d(z) < 2 bits and the code achieves a code rate

H(X)+1<R< H(X)+2. (4.10)

By encoding blocks of N IID symbols £ = (z1...zy) jointly, the bounds of the code
rate become tighter and shift towards the entropy

1 2
H<X)+N§R<H<X>+N' (4.11)
Again, by using large block lengths, a code rate arbitrarily close to the symbolwise entropy
can be achieved. The described Shannon-Fano-Elias coding procedure is always inferior
to Huffman coding in terms of the code rate, see (4.6). However, the difference decreases
with increasing block length and both schemes converge to the entropy for N — oo.
Compared to Huffman coding, the knowledge of the PMF of all possible realizations of
a block P(X?) is not necessary. The codeword |C(™)| can be computed only from
P(z™) and F(x), which can be computed recursively even for sources with memory.
Forn=1...N

P(x") = Py, jgn-1 (" )Pz ") (4.12a)
F(z")=F(@" ') = P(a"™") Y Pye(2/lz") (4.12Db)

Thus, only the conditional PMFs Py, jzn-1(X,|2""") have to be known or estimated for
allm = 1... N in order to be able to apply the Shannon-Fano-Elias coding. Note that
for memoryless sources Py, gn-1(X,|2"') = P(X,). The presented recursion assumes
arbitrary accuracy for the computation. However, in practice the computation needs to
be implementable in fixed-point arithmetic. A fixed-point implementable algorithm was
first presented in [RL79] and is referred to as arithmetic coding.
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G A TTTACCATTTACC A
0 0
1/16 1/162 ..
5/16 5/162
I 6l = 3.73214681 x 10'°
10/16 .10/162
1 1/16

Figure 4.2: Arithmetic coding applied to the sequence GATTTACCATTTACCA.
Arithmetic Coding

The key to an implementation in fixed-point arithmetic is not to consider infinite pre-
cision points for the cumulative distribution function but subintervals in the unit inter-
val [RL79]. Let F(x") denote the CDF of block probabilities and F(z,) the CDF of the
n-th symbol in the block. The solution relies on a recursive computation of the interval
Iy = [Ilow IN9") = [F(2N) — P(x™), F(2™)) that the codeword must lie. The recursion
is defined as

Iy=10,1) (4.13a)
L, = [I'? + (F(zy) — P(2)) - Lo |, 117 + Fx) - L) n=1...N, (4.13b)
where |I,,| = IM9" — ['ov = P(z") denotes the size of the interval. The first identical bits

in the binary representations of the intervals correspond to the codeword C(z") € Iy
that Shannon-Fano-Elias coding would assign to ™. Thus, the codeword length satisfies

1C(x™)| = [101 w +1, (4.14)

P(xN)

and the coding redundancy 1 < 6(x") < 2 bit. With every new input symbol z,,, the
corresponding interval I,, becomes shorter. The low and high end of the interval get closer
with increasing n and begin to agree in the first few bits of their binary representation.
These are also the first few bits of the final codeword C'(®). They are not going to change
with increasing n and thus can be shifted out of the calculation. By effectively scaling
the interval in every step, the entire calculation can be done with fixed-point arithmetic.
Implementation details are described e.g. in [BCW90)].

Example: Figure 4.2 shows the encoding process for the 16 symbols long sequence
N =GATTTACCATTTACCA. To store this sequence from a four symbol alphabet would
require 32 bits when left uncoded. The symbol probabilities were estimated using fre-
quency counts P(G) = 1/16, P(C) = 4/16, P(A) = 5/16, P(T) = 6/16. The final interval
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after encoding all symbols is of size |I14] = P(z") = 3.73248 x 10'9/16'¢, leading to
|C(x™)] = [28.8806] + 1 = 30 bits, which is 1 bit less than the 31 bits needed with
symbolwise Huffman coding, see Example in Section 4.1.1. This performance gain comes
from the fact that arithmetic coding encodes the symbols of the sequence jointly as one
block. Note that Huffman coding for the whole block would be infeasible. *

The decoding process is similar. The first symbol Z; is the sub-interval of the unit
interval in which the floating point codeword falls. In other words 7 is the symbol with
the lowest ordinal number, whose CDF is greater than the encoded real-valued number
r = (0.C(z™))10. In every step the bounds of the interval are updated analogously to the
encoder and the section of the new interval in which the codeword lies is searched

Iy =1[0,1) (4.15a)
T, = arg 51612 (I + Fx, (&) - |[In-a]) = 7) (4.15b)
I, = [Iigiﬂl + (FXn(fn) - PXn (i"n)) ’ |]n—1|v ‘[Tllgiﬂl + FXn (i"n) ) |]n—1|) ) (4-15C)

The recursion has to be terminated after N steps. Thus, N must be a-priori known or
additionally transmitted to the decoder. The complexity of encoding and decoding is
symmetric.

4.2 Universal Statistical Prediction Based Coding

With arithmetic coding a nearly optimal, memory and computationally efficient solu-
tion to encoding long messages was found. However, the PMFs Py, |gn-1(X,|x" 1), Vn €
{1... N} characterizing the source have to be known to the encoder/decoder. In order to
make arithmetic coding universal, it has to be combined with some statistical prediction
algorithm capable of predicting the coding distribution of the next symbol from symbols
already encoded/decoded in the past. In case of an IID source, this is known as adap-
tive arithmetic coding. The prediction based approach was successfully extended even to
sources with memory. Such predictors use a mixture of adaptive higher order context mod-
els to estimate the coding distribution of the next symbol given the preceding ones. The
predicted distribution is used by arithmetic coding to encode the next symbol. The first
algorithm of this kind, called Prediction by Partial Matching, was introduced in [CW84].
In [WST95], the Context Tree Weighting method was presented and analytically shown
to have desirable asymptotic as well as practical coding properties.

4.2.1 Adaptive Arithmetic Coding

First, let the source be IID, i.e. P(X,) = P(X),Vn € {1...N}. A suitable adaptive
predictor for the coding distribution of the next symbol from symbols already encoded
in the past is needed. Such estimators are generally based on the symbol occurrence
frequency counts of past symbols. However, using the empirical frequency count directly
as predictor neglects unobserved events, e.g. an unlikely symbol might not appear at all
in a short message generated by the source and thus would have an empirical frequency
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count of zero. This would be detrimental for compression purposes since the log loss,
defined as log(1/p(x)), of an unobserved but possible event z is infinite. One possibility
to alleviate the situation, is to add a constant pseudo-count to every possible symbol,
e.g. the Laplace predictor uses a pseudo-count of 1. Another predictor from the class
of the add-constant predictors is the Krichevsky Trofimov estimator (KT) [KT81], which
uses a pseudo-count of 1/2. The KT estimator was shown to possess certain optimality
properties when the number of possible elements is fixed and the sample size increases to
infinity.

Example: Let the source be an IID DNA sequence source and the 16 symbols long se-
quence x = GATTTACCATTTACCA be the observed sample. Being from a 4 symbol alphabet
and using a pseudo-count of 1/2, the overall amount of symbols is || +4-1/2 = 18 and the

. L ; 5+1/2 A 441/2 p
KT predicted source distribution is going to be P(A|x) = +18/ , P(Clx) = +18/ , P(Glx) =
U2 P(T|x) = 22 %

For the purpose of universal compression of IID sources the PMF estimate to be used by
the arithmetic encoder is updated with each encoded symbol. Using the KT estimator
the PMF estimates are

_ fo(@ ) +1/2 :

reX

= 4.16

an‘mn—l<xn = 2|z )

n—l) n—1

where [/ (AZE is the count of 2’ in the subsequence "~ '. The estimated probability
P(x") = P(x,|x"1)P(x"!) can be computed recursively and the estimated probability
of the block " to be encoded evaluates to

P(xN) = ] Plaala). (4.17)

Example: Let ¥ = 01110 and the source be binary = € {0,1}

R n—1 1/2 R n—1 1/2
Plan = 1lan ) = DEIHLE - pip gpgnory - L@
n n
The estimated probability P(01110) = R T *

Instead of the actual probability P(x™) = [[y.cy Px(X = 2V @) the estimated
probability p(wN ) is used with arithmetic coding to compute the codeword. Thus,

C(xN)| = {m n } + 1, (4.18)

P(x)
and an additional parameter estimation redundancy 1d(P(z™)/P(2")) is introduced into
the codeword redundancy. It is upper bounded by

1d(P(x™)/P(x")) < WT_l AN +1d|x|, (4.19)
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see [BEY06] for a proof. Therefore, the codeword redundancy of the KT estimator is
upper bounded by

1

N
<) (4.20b)
P(xN)
X|—1
<=l s 2 (4.20)
~ ~~ < coding

parameter estimation

Example: Let the source be binary z € {0,1} and N = 1024, the individual codeword
redundancy is upper bounded by §(x!0%) = %ld 1024 + 1 4+ 2 = 8 bit. Maximum 2 bits
are lost due to the coding redundancy of arithmetic coding and only a maximum of 6 bits
is used by the parameter estimation, which is considerably less than would be necessary
to store the PMF's separately. *

4.2.2 Context Tree Weighting

Up to now, the source was assumed to be memoryless. In the following, the Context Tree
Weighting (CTW) prediction algorithm for sources with memory will be presented.

Tree Source

Suppose that the PMF, according to which the next symbol is generated, depends on the
preceding generated symbols. A tree can be used to describe such a source. Each node
of the tree has exactly |X| branches and each edge is associated with a symbol from the
source alphabet. Thus, every path from a leaf to the root is associated with a unique
sequence s and all the leaf node sequences build a set S of variable length suffix-free
sequences, meaning that no sequence s € § is a suffix of any other. Consequently, the
tree has exactly |S| leaves and Ilffll:ll inner nodes. Each leaf sequence is associated with a
PMF P(X]|s). These PMFs are the parameters of the tree model defined by the set S. In
a message "V generated by a tree source, every realization x,, is, due to the suffix-freedom
of §, unambiguously associated with a preceding suffix s(n) € S and thus also with a
corresponding PMF P(X,|s(n)) according to which it has been generated. An example
binary tree source is depicted in Figure 4.3. In order to be able to determine the suffix
of the first D symbols x,,Vn = 1...D, where D = maxgcs(|s]) is the maximum tree
depth, the past D symbols preceding ¥ have to be known. These past symbols have to
be transmitted separately.

Example: Let £V = 0100110 be a sequence generated by the tree source depicted in
Figure 4.3 and the sequence 10 be the past symbols. The probability P(z™) evaluates to
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Parameters P(X|s): Model:
S = {1,10,00}

Ps=1)=0.1:
P(0]s=1)=09 :

P(1s=10)=103:
P(0|s =10) = 0.7 :

P(1|s=00) =05 :
P(0]s = 00) = 0.5 :

Figure 4.3: Tree source with parameters and model.

past | x; To I3 Ty 5 Tg Tr
10| 0O 1 0 0 1 1 0
s(n) =1 10 00 1 10 00 1 1 *
Pxz¥)y=107 - 05 - 09 - 07 - 05 - 01 - 09]|=~10"2

Given the tree source model § and the corresponding PMFs, arithmetic coding can be
used to encode a message generated by that source. The aim, however, is to device a
universal compressor for tree sources capable of learning the tree source parameters (the
PMFs associated with each s € §) as well as its model (the set S defining the topology).

Tree Source with Unknown Parameters

Let us assume that the model § is known, whereas the parameters are not. All symbols
T, that have the same suffix x, € " : s(n) = s form a memoryless subsequence 2,
whose statistics is determined by the PMF P(X|s). Thus, a separate estimator P(z)
can be used for every subsequence of symbols with the same preceding suffix in order to

compute P(zV) = [[,.s P(xY). The codeword length then becomes

|C(z™)] 1. (4.21)

1
= [ld = | +
IRAEA

Example: Let ¥ = 0100110 be again a sequence generated by a tree source with the
model § depicted in Figure 4.3 and the sequence 10 be the past symbols. However, this
time the model parameters are assumed to be unknown. The estimated probability P (™)
is computed as
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past | x; To I3 Ty I Tg Ty
10 0 1 0 0 1 1
:I:{V = 0 1 0 | =010
m{\() =10 0 =00
mé\() = 1 1 =11
P(x)) = 3 i S =%
P(xf) = | 3 g 5
P(xfy) = 3 i :
P(z") = % % % % % i % = 10924
and the codeword length |C(x)| = [6.83] + 1 = 8 bit. *
The codeword redundancy is upper bounded by
P N
S(@) < 1d -2 1%s) ) +2 (4.222)
H P(x
N
< |S|y <|S|) + 2, (4.22b)

where |S \7(%) is the parameter estimation redundancy and
z-1d | X for0<z<1
— - 4.2
() { ‘X‘T_lldz+ld|X| for 1 <z (4.23)

A detailed proof can be found in [BEY06].
Tree Source with Unknown Parameters and Model

If the tree model is not known, a so called context tree can be used to compute the
appropriate coding distributions. A context tree has a topology of a fully blown source
tree of chosen depth D, restricted to paths that correspond to contexts (suffices) of length
D that have already been observed in the encoded portion " of the message ™. Thus,
every node of the tree is associated with a unique context c representing the path from
that node to the root. Potentially every leaf and inner node of the context tree could
be a leaf of the actual source tree model. For such nodes Hy : ¢ € S the KT estimated
probability P.(n|H) = P(z) would be appropriate for their description. The alternative
Hi : ¢ ¢ S that the node is an inner node of the actual source tree, is best described
by the product of the probabilities associated with its children Pe(n|H1) = []y.cx Pec(n).
The contexts cc,Ve € X correspond to the set of children of the node with context ¢,
e.g. {010,110} are the children of ¢ = 10 in the binary case. Since S is not known,
we do not know which of the two hypothesis Hy and H; is valid for P.(n). Thus, the
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Pe=3 (for f1) = (2,1)
Pz i
1
(nyfll) =(1,1)
(f07 1) = (17 1) Pe = 8
P =i
(fo,f1)7= (4,3)
P, = 3048
(fo, f1) = (1,0)
P =t
(fo,f1%= (2,0)
Pm B
(for f1) = (1,0) 0
Po=1
(f07 fl) = (07 2) 1) = (27 2)
P=t

=(0,2)

i (fo, f1
P =

)
3
8

Figure 4.4: Weighted context tree for the message 0100110, passed symbols were 110.

weighted average of the two hypothesis is a good description. Different weighting can be
used at different nodes if a-priori knowledge about the tree source is available. With no
a-priori knowledge, it is best to use equal weighting of both hypothesis at each node, thus
P.(n) = P“("‘H")”;Pc("ml). The following recursive update rule is obtained for the node
probabilities P.(n) on the context tree

P(xm) if ¢ is a leave

Pe(n) = % <ﬁ($g) + H Pcc(n)> if ¢ is an inner node

VeeX

(4.24)

The recursively obtained probability P,(n) at the root t of the context tree is the so called
context tree weighting estimate Popw (2) = Pe(n) for the probability of the observed
sequence . In addition to the probabilities P.(n), the frequency count f,(z?),Vx € X
has to be stored for every node of the context tree in order to be able to compute P(:L'Z)
using the KT estimator. Given the context tree at n — 1, computing PCTW(:B") requires
only the recursive update from the leaf to the root of the D + 1 nodes on the path of the
context tree that corresponds to the context , p...7,_1. The PMFs P(X,|z"1),Vn =
1...N required by the arithmetic encoder can be calculated as

PCTw(SL’.’Bn_l)

SO L Yz eX. (4.25)
Perw (1)

Z5Xn|wn71(a:n = xlx" ) =
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Example: Let 110 be the past symbols and =% = 0100110. The context tree for & is
depicted in Figure 4.4. Examplary in the node ¢ = 10, the subsequence of " with 10 as
context &l = zyx4. Consequently, fo(zl) = 2 and f;(z)) = 0. Thus, the probability

~

P(x}) = 2 and Pio(N) = 2BHELZ — 5/16. *

Additional redundancy is needed to encode the tree model. This redundancy is upper
bounded by the complexity of the actual source tree that is best described by the overall
number of nodes in the source tree being %73_'1_1 Thus, the codeword redundancy of
CTW is composed of model, parameter and coding redundancy and upper bounded by

X8 -1 N
5(x™ <|7 Sy —= 2 . 4.26
@S Tt |7<|S|)+vd_ 58
N ~ v - ~  coding
model parameter

The codeword redundancy is only dependent on the number of parameters |S| and the
sequence length N. It approaches the Rissanen lower bound [Ris76] for large N

X|—1
lim 6(zY) = i
N—oo

1d N. (4.27)

This is true for any tree source. The CTW can be considered to show minimum description
length (MDL) [GRO7] behaviour if one accepts that redundancy is needed to describe the
source model and parameters.

4.2.3 Decomposition Context Tree Weighting

The CTW algorithm was originally derived for binary sources and performs particularly
well for such sources. Application of CTW to multi-alphabets can be accomplished in two
different ways. Either the generalized multi-alphabet CTW, as described in Section 4.2.2,
can be used or the binary version is applied to the binary representation of the alphabet
symbols. The sooner has been found to perform relatively poorly with American Standard
Code for Information Interchange (ASCII) encoded texts. A slight improvement can be
achieved using the so called Good-Turing estimator instead of KT [BEY06]. Using binary
CTW requires several adjustments for good performance [TVW97]. Direct application
of binary CTW to the binary representation of ASCII texts is not advisable, since the
different bit positions of the binary representation of an ASCII symbol have different un-
derlying statistics. Thus, in case of byte encoded ASCII symbols each byte is decomposed
into 8 bits and a different CTW tree is used for every bit position in the byte. The de-
composition reduces the total number of parameters, and thus the redundancy. Assuming
that the depth of the context has been set to two preceding ASCII symbols, the first bit
has the two preceding ASCII as context. The second bit has the two ASCII and the first
bit as context, etc. The underlying tree source can only have leaves at ASCII borders. In
order to decrease the model redundancy and prevent overfitting, the binary trees should
only be weighted at the ASCII borders. The inner ASCII bit borders cannot be leaves
of the underlying tree source, thus their weights are computed as P.(n) = Pye(n)Pic(n).
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The estimation redundancy depends on the number of parameters. However, after de-
composition many of the parameters are 0 or 1 because of non-occurring ASCII symbols,
e.g. certain bit positions remain zero all the time if only upper case letters are used.
Unfortunately, the KT estimator shows the highest prediction error for such deterministic
sequences. This can be dealt with by using the zero-redundancy estimator instead of KT

Pon(a") = 5Perla”) + P0(fo(@") = 0)+ DA =0),  (429)

where 9(+) is the indicator function with J(true) = 1 and J(false) = 0. This limits the
redundancy for deterministic sequences (all zeros or all ones) to 2 bits and increases the
upper bound for the parameter redundancy of non-deterministic sequences only by 1 bit
compared to KT. The decomposition based CTW approach can be successfully applied
to the compression of DNA datasets, as described in Chapter 5.

4.3 Universal Dictionary Based Coding

Another very popular class of universal compression schemes is universal dictionary based
coding, originally introduced by Lempel and Ziv in [ZL77,ZL78|. Dictionary based coders
are simple to implement and asymmetric in the sense that decompression is far less com-
plex than compression, making them particularly interesting for data distribution. In
addition, they are especially well suited for data containing variable length repeating pat-
terns, like natural texts or binary computer programs. These properties have resulted
in high popularity and widespread use of adaptive dictionary based coding. Their com-
pression rate has been shown to asymptotically achieve the entropy rate of the source for
any stationary ergodic source. The key idea of dictionary based coding is to parse the
message that is to be encoded into subsequences and to replace repeating subsequences
by pointers to already encoded past occurrences.

In the two seminal papers [ZL77,ZL78], Lempel and Ziv (LZ) have proposed two distinct
versions of the first dictionary based compression algorithm: a sliding window and a tree-
structure based version referred to as LZ77 and LZ78 respectively. Meanwhile, dictionary
based coding has been extended and refined in many aspects. However, the basic concept
remained unchanged and shall be discussed in more detail in the following as it builds
the basis for the most successful DNA sequence compression algorithms described in
Section 5.1.1.

4.3.1 Sliding Window Lempel Ziv - LZ77

The algorithm described in [ZL77] uses a buffer of predefined depth D storing the past
symbols =, px,_pi1...Tp_1. The longest match to the following symbol sequence
TpTpat ... is searched for in the buffer. The match is encoded by an offset pointer o
to its location within the window, its length [ and the symbol z,,; that follows the
match. Thus, z, ... %, 041-1 = Tpn ... Tp—1 and the triplet to be encoded is (o, , x,1,),
whereas 0 < | < o < D. If no match is found the triplet (0,0, z,) is encoded. For the
next iteration, n is set to n = n 4+ [+ 1. Huffman coding is used to compress the triplets.
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Example: The sequence GATTTACCATTTACCA shall be compressed. Matching sequences
in each encoding step are underlined. The respective x,, carries a hat, for example in the
second step A.

Step | GATTTACCATTTACCA | (
GATTTACCATTTACCA | (
GATTTACCATTTACCA | (
GATTTACCATTTACCA | (
(
(
(
(

GATTTACCATTTACCA
GATTTACCATTTACCA
GATTTACCATTTACCA
GATTTACCATTTACCA

N O O = W N+

Huffman coding is used to encode the triplets whereas the pairs (0,1) and the symbols
ZTne are encoded using separate Huffman trees. *

The algorithm uses a dictionary that consists of all subsequences of the sliding buffer win-
dow. A slightly modified version introduced in [SS82] is used in most practical implemen-
tations today, e.g. gzip, pkzip. Increasingly popular state of the art LZ77 based algorithm
that achieves good compression rates is Lempel-Ziv-Markov chain algorithm (LZMA). It
uses a refined dictionary scheme and an adaptive coding scheme similar to arithmetic
coding to encode the pointers. LZMA is used e.g. in the popular 7z implementation.

4.3.2 Tree Structured Lempel Ziv - LZ78

The approach presented in [ZL78| parses the message into subsequences, where each
subsequence is the shortest subsequence not seen earlier. A dictionary is build in form of
a tree, where the paths from the root to each node represent subsequences observed so
far. The path from the root to a leaf of the dictionary tree, matching the subsequence
to be encoded next, represents the longest match. The matched subsequence plus the
following symbol z represent the shortest new subsequence, unobserved so far. The path
corresponding to the matched subsequence is prolonged using the symbol x. Therefore,
one node is added to the dictionary tree in every step imposing an order on the nodes.
Each new subsequence is encoded by the symbol x following the match and a pointer to
the match in terms of an offset o in subsequences. Thus, the pair to be encoded is (o, z).

Example: The sequence  GATTTACCATTTACCA would be parsed into the
subsequences  G,A,T,TT,AC,C,AT,TTA,CC,A and encoded using the pairs
(0,6)(0,4)(0,T)(L,T)(3,C)(0,C)(5,T)(4,4)(3,C)(0,A). *

The most commonly used variant of LZ78 is the Lempel-Ziv-Welch algorithm (LZW) used
by the Unix compress utility.
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4.4 Summary

In this chapter, different lossless source coding schemes have been presented. The Huffman
algorithm was introduced as the optimal symbolwise entropy coding scheme for memory-
less sources with known statistics loosing at most 1 bit per symbol. Encoding blocks of
symbols jointly reduced the loss to 1 bit per block, however the complexity was found to
grow exponentially with increasing block length. Arithmetic coding was presented as the
entropy coder of choice for longer messages generated by memoryless sources with known
statistics. While it needs 1 bit extra per block compared to the optimal Huffman coding,
the complexity grows only linearly with increasing block size. Subsequently, universal
coding schemes capable of adapting to the source during the encoding process were pre-
sented. The universal compressors use either an adaptive statistical or a dictionary based
prediction model to adjust to the source. The remaining redundancy after prediction is
encoded using one of the entropy coding schemes. The presented representatives of both
types of universal algorithms were found to asymptotically achieve the entropy rate for
stationary ergodic sources. However, their practical performance differs for different kinds
of sources due to the limited message length and computational complexity. While the
statistical prediction algorithms like Context Tree Weighting perform particularly well
for variable order Markov model type of sources, the Lempel-Ziv dictionary based com-
pressors are particularly suited for sources producing repetitive subsequence patterns, e.g.
written texts. Thus, the prediction based universal algorithms are universal in the sense
of adapting to the actual source statistics, however they make certain a-priori assumptions
about the general statistical model of the class of sources they have been designed for.

In Chapter 5, the presented universal prediction based source coding schemes will serve as
basis for devising suitable universal compressors for voluminous sequence and alignment
datasets generated and used in molecular biology.



Compression in Genetics

Due to recent progress in high-throughput DNA sequencing technology the amount of data
available in public sequence databases e.g. GenBank at the National Center for Biotech-
nology Information (NCBI) [BKML*10], the University of California Santa Cruz (UCSC)
Genome Browser [KBD'03] or the Ensembl database [HBB*02] is growing exponentially.
Large sequence databases typically provide a limited web-interface and partial direct ac-
cess to their database sufficient for the analysis of specific short genomic regions e.g.
particular genes. However, genome-wide statistical analysis is only possible using a local
copy of the data raising the problem of efficient storage and distribution.

Over the past few years the sequencing of many complex species, having large genomes,
has been completed. In Section 5.1 state-of-the-art DNA sequence compression algorithms
are discussed. However, the compressibility of genomic DNA sequence data seems to be
limited. The availability of multiple genomes has given rise to the field of comparative
genomics. In order to be able to compare whole genomes they have to be aligned first.
The resulting whole genome alignments represent one of the largest sequence datasets
in molecular biology. Genomes are subject to large scale mutations like translocations
and duplications, and many small scale mutations including insertions, deletions and sub-
stitutions. Therefore whole genome alignments comprise many locally aligned blocks of
regions from different genomes that share common ancestry, see Section 5.2. In Section 5.3
a highly efficient lossless compression scheme for such alignment blocks, relying on evo-
lutionary models and techniques from lossless binary image compression is introduced.
The whole genome alignments are distributed in form of multiple alignment format files
containing the alignment blocks and position information about the aligned regions. In
Section 5.4 the first compression algorithm for such multiple alignment format files is
introduced. It is capable of reducing the file size tenfold and is two times more efficient
than alternative universal compression algorithms.
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5.1 DNA Sequence Compression

One representative of voluminous static datasets used in molecular biology are the ref-
erence DNA sequences of whole genomes. The human genome for example comprises
approximately 3 -10% nucleotides. A new human reference sequence is only released every
few years (i.e. hgl7 in 2004, hg18 in 2006 and the current version hgl9 in 2009). Uncom-
pressed DNA sequence data requires 2 bits/symbol due to the four nucleotides alphabet
A ={A C,G T}. Single genomic DNA sequences seem largely incompressible using tradi-
tional compression algorithms as will be shown in Section 5.1.2. New compression schemes
have been developed specifically for genomic DNA sequences, best of which up to now
attain compression rates of around 1.8 bits/symbol [CDAMOT7]. A common property of
these algorithms is that they use knowledge about genome evolution and composition for
refining the DNA source model. Selected DNA compression algorithms are presented in
Section 5.1.1. However, the improvement of roughly 10% against the uncompressed state
has so far been insufficient for a broad adoption of such compression schemes for distri-
bution and storage purposes. Nonetheless, DNA specific compressors can be successfully
applied in phylogenetic classification [LBCT01] and to clustering of genomic data studied
by the author in [HDG04, DHHMO05]. DNA compressors can also be used to study local
DNA information content [DPAT07].

5.1.1 DNA Compression Algorithms

As detailed in Section 3.6.2, throughout evolution genomes are subject to mutations. Most
frequent are substitutions, where single nucleotides transform into a different ones. Less
frequent are duplications of longer sequence segments, where a duplicate is inserted at
some other position in the genome either as an exact or palindromic copy (flipped reverse
complement). Both types of replica (copy and palindromic copy) will be referred to as
a repeat in the following. Genomic sequences thus contain point mutated repeats, which
can be exploited to achieve compression. This regularity is particularly well captured
by extended Lempel-Ziv like dictionary based compression schemes. Along the genome
there exist regions where the bonding between the two strands is stronger and where it is
weaker. Since the G=C bond is stronger than an A=T bond such regions are going to have
a high GC (low AT) and a low GC (high AT) content respectively. This regularity appears
particularly well suited for statistical prediction based compression.

Palindromes

The first regularity exploited by compression algorithms specifically designed for DNA
sequences were palindromes. Similar to Lempel-Ziv Biocompress [GT93] and Biocom-
press 2 [GT94] are dictionary based. Exact copies and exact palindromic copies above a
certain length are stored using an offset pointer and length. An extra flag-bit is encoded
additionally per copy indicating whether it is palindromic or not. A large buffer is used in
order to catch distant copies. The only difference between the two versions is in the way
they store the remaining bases. While Biocompress leaves them uncompressed, Biocom-
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press 2 uses adaptive arithmetic coding of order 2. A refined two-pass approach under
the name Cfact was proposed in [RDDD96].

Example: The following sequence contains one longer palindromic repeat starting at
position 31. It is encoded using the triplet (offset, length, palindrome) = (21,11, true).

TGTAACCGAGoATTATTACCAGCTGGACATGT3; GGTAATAATCGTCGCGATA. . . *

Approximate Repeats

Chen et al. [CKLO1] were with GenCompress among the first to suggest approximate
repeats instead of exact repeats. In this manner large scale duplications that have been
modified by small scale mutations can be recognized and harnessed for compression as
long as they have not diverged too much. In addition to encoding the offset pointer, the
length and the palindrome-flag for the approximate repeat, also the number and the set
of small scale edit operations necessary to describe the differences in the approximate
repeat has to be encoded. Each edit operation is itself described by one of the three
types insertion, deletion, substitution, by the position offset within the repeat and the
base if necessary. An approximate repeat is only encoded as such if a compression gain is
achieved.

Example: The following sequence contains one longer approximate palindromic repeat
starting at position 31 containing one substitution. The approximate repeat is encoded
using the quadruplet (offset, length, palindrome, edits) = (21,11, true, 1) and the substi-
tution edit operation (type, offset, base) = (substitution,5,C)

TGTAACCGAG o ATTATTACCAGCTGGACATGT3; GGTCATAATCGTCGCGATA. . . *

In [CLMTO02]| an improved version was introduced under the name DNAcompress using a
two pass approach, finding significant approximate repeats in one pass and encoding these
in another pass. The remaining bases are encoded using arithmetic coding of order-2.

Model Weighting

The currently best performing group of genomic DNA compression algorithms uses con-
cepts from dictionary as well as statistical prediction based coding described in Section 4.2.
The DNA-eXpertModel compressor [CDAMOT] encodes a sequence symbol by symbol. A
probability distribution is predicted for each symbol and encoded using arithmetic cod-
ing. The prediction is a weighted mixture of predictions from different models, called
experts. Experts based on Markov type dependencies, local and global empirical symbol
distributions, as well as dictionary based repeats are used. The weighting of the models
is adapted according to the local prediction performance of each expert. The weights
of experts performing locally well is increased. The positionwise self-information can be
used to identify regions with low information content, e.g. repetitive sites [DPAT07].



62 Chapter 5 m Compression in Genetics

5.1.2 Performance Comparison of DNA Compressors

The DNA sequence compression performance of different compression algorithms is typ-
ically tested on a standard benchmarking corpus comprising various sequence data in-
cluding regular genes, chloroplast, mitochondria and bacteria genomes. Table 5.1 shows
the compression rates achieved on the corpus by different compression algorithms. For
comparison purposes Lempel-Ziv (LZ) and Context Tree Weighting (CTW) were chosen
as representatives of universal dictionary and statistical prediction based source coders.
DNAcompress (DNAc) and DNA-eXpertModel (DNAx) were picked as representatives of
DNA specific compressors. While DNAc is an example of an extended dictionary based
approach, DNAXx is prediction driven and as of now the best DNA source coder. The in-
dividual sequences were obtained from the GenBank database [BKML*10]. The sequence
size is provided in symbols, whereas a symbol corresponds to a base. The compression
rate is in bits/symbol. Note, that the empirical symbolwise background distribution is
roughly 2 bits/symbol for all sequences. Note that 2 bits/symbol would also be needed if
the symbols were stored uncompressed due to the quaternary nucleotide alphabet.

‘ sequence ‘ length H LZ ‘ CTW ‘ DNAc ‘ DNAx ‘
Genes
HUMDYSTROP 38,770 || 2.31 | 1.92 1.91 1.90
HUMGHCSA 66,495 || 1.52 | 1.88 1.03 1.00
HUMHPRTB 56,737 || 2.18 | 1.92 1.82 1.75
Chloroplast
CHMPXX 121,024 || 2.15 | 1.82 1.67 1.66
CHNTXX 155,844 || 2.22 | 1.93 1.61 1.61
Mitochondria
MPOMTCG 186,608 || 2.21 | 1.96 1.89 1.89
Bacteria
H.Influenza | 1,830,029 || 2.12 | 1.91 1.88 1.88
E.Coli 4,630,230 || 2.14 | 1.94 1.92 1.92

Table 5.1: Compression results obtained for the standard DNA compression benchmark-
ing corpus - length is provided in symbols (bases), compression rate in bits/symbol.

Remarks on the DNA compression benchmarking corpus

e (enes are generally difficult to compress. HUMGHCSA is an exception as it contains
a very long approximate repeat coding for two similar human growth hormones.

e Chloroplast DNA of higher plants contains a relatively long palindrome leading to
good compression ratios for DNA specific compression algorithms.

e Mitochondria and Bacteria genomes consist primarily of coding sequences and are
thus difficult to compress.
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Figure 5.1: Growth in the storage requirement of multiple genome alignment datasets
released by UCSC. Circles indicate number of species aligned.

e The corpus only contains small genomes, since the proposed DNA specific compres-
sors are incapable of compressing large genomes for complexity reasons. This is due
to the fact that the approximate repeat search is a non-deterministic polynomial-
time hard (NP-hard) problem with respect to the sequence length.

Dictionary based LZ type compression algorithms assuming exact local repeats fail to com-
press genomic DNA data. They lack a strategy for distinguishing between repeats worth
encoding and those, which are not. This leads to an expansion instead of compression
as can be seen in Table 5.1. Statistical prediction based algorithms like CT'W generally
manage to slightly compress the DNA sequences, which can be partially attributed to
the exploitation of the regionwise variation in the sequence GC content. However, pure
statistical prediction based compressors are unable to profit from palindromic or distant
approximate repetitions. The best compressors specifically designed for genomic DNA
also use such dependencies. They achieve the best compression ratios for DNA sequence
data at the cost of high complexity. However, the compression gain is limited. This has so
far prevented a broad adoption of DNA specific compression algorithms for transmission
and storage purposes.

5.2 Multiple Genome Alignment

A particularly voluminous static dataset in molecular genetics are whole genome align-
ments. They are essential for computational genome annotation as well as studies of
evolution and variation. Genomes of different species are aligned using an extra symbol
representing the missing entries. Both, the UCSC comparative genomics group and the
Ensembl Compara project [CABT03] provide multiple genome alignment datasets of ver-
tebrate species. They are roughly hundred gigabytes large, rapidly growing in size with
every release incorporating newly sequenced genomes, see Figure 5.1. In this work, the
first compression algorithm for multiple genome alignment datasets is developed.
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Figure 5.2: Paralog homologous regions are depicted. Their ordering and direction in
different species can change during evolution due to large scale mutations causing genome
rearrangements.

5.2.1 Motivation for Multiple Genome Alignments

Many areas of molecular biology research, in particular computational genome annota-
tion and evolutionary genomics, have benefited from multiple genome alignment data
generated by comparative genomics [DH04, Bla07]. Comparative analysis of homologous
DNA sequences that share common ancestry helps to obtain a functional map of the
human genome. It is the driving force behind the sequencing efforts of other vertebrate
species. Homologous regions are likely to encode similar functions, and a function that
was experimentally verified in one species can be mapped to homologous sequences in
related species. Conservation studies on multiple genome alignments of vertebrates have
revealed many highly conserved and thus likely functional regions outside of the pro-
tein coding and known functional DNA [DRS*03]. The current knowledge about the
human genome is quite limited. The role of most putative functional regions remains
poorly understood. Comparing the human genome to that of other species and studying
how different regions have evolved provides valuable additional knowledge simplifying the
identification of the putative function even if the actual function is unknown in all the
aligned species. For example, coding regions, RNA genes and regulatory sites are subject
to different evolutionary constraints that leave distinguishable “evolutionary signatures”.
Thus, even conserved homologous regions with unknown function can be pre-assigned a
putative functional category based on the observed evolutionary footprint [Bla07].

5.2.2 The Multiple Genome Alignment Problem

The challenge in constructing multiple genome alignments is to meaningfully compare the
available sequenced genomes to each other by identifying homologous regions of common
ancestry. However, the identification of homologous sequences is a non-trivial task since
genomes of different species can greatly differ due to genomic mutations explained in
Section 3.6.2. While small-scale mutations affect the DNA locally, altering a single or
several nucleotides, large-scale mutations lead to a reorganization of the genome, see
Figure 5.2. The further diverged the sequences are, the more difficult it is to obtain
an evolutionary correct alignment. Once homologous sequences have diverged beyond a
certain point, they cannot be reliably distinguished from non-homologous ones. Therefore,
it is not possible to align whole genomes, but only the still identifiable homologous regions,
resulting in a set of many locally aligned multiple sequence alignment (MSA) blocks.

In fact, multiple genome alignments are a mixture of global and local alignments. In a
global alignment all the input sequences are aligned in a single alignment. Thus, global
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alignments assume that the orthologous regions are co-linear and no rearrangements have
taken place, which is unrealistic for whole genomes even for closely related species. A
local alignment approach first determines homologous segments of the input sequences
and only aligns those. This results in a mosaic of homology predictions in which the
aligned segments are not necessarily co-linear, see Figure 5.2. However, by giving up the
co-linearity assumption the risk of aligning regions that are not true homologs increases.
Therefore, multiple genome alignment algorithms typically use a mixed approach. First,
sets of pairwise homologous regions are identified for all species. Subsequently, the ob-
tained pairwise sets are assembled into chains of co-linear sets. Short homologous pairwise
regions, breaking locally the co-linearity in the assembly, are most likely false positives
instead of true homologs and are thus removed from the dataset. The remaining homolo-
gous regions are aligned into MSA blocks using a progressive alignment scheme relying on
pairwise alignments, see Section 5.2.4. The accuracy of the obtained MSA blocks largely
depends on the used pairwise alignment procedure.

5.2.3 Pairwise Alignment - Smith Waterman Algorithm

Assume that two homologous sequences s; and sy are given. During evolution, both
sequences experience small scale mutations, i.e. substitution and short insertion/deletion
events. The latter result in sequences of unequal lengths, and it is necessary to reconstruct
the homology of the nucleotides by aligning the sequences. A special symbol “~”, called
the “gap”, is introduced to mark missing entries due to insertion/deletion events. Assume
that the sequences have lengths |s;| and |ss|, then a pairwise sequence alignment is a
matrix A = A2*L with A = {A,C,G,T,-} having the following properties:

L. max{|si[,[s2]} < L < [s1] + |s2],
2. no column of A contains only gap symbols,

3. the ith row of A with gaps removed is identical to s;.

The Smith-Waterman algorithm (SW) [SW81] is capable of performing optimal pairwise
alignment of two homologous sequences. It has to be provided with substitution and gap
penalty scores S(x,z’) that fulfil

> (0 for x = 2’ no mutation

<0 for z # 2’ mutation (5-1)

S(x, ") {
Given this scoring system, the SW algorithm determines the optimal pairwise alignment
using dynamic programming. A matrix Ms2/XIsilwhere each row 1 < i < |sy| corre-
sponds to the respective nucleotide in the sequence s, and every column 1 < j < |sy| to
the respective nucleotide in sy, is constructed for this purpose. Each element in the ma-
trix represents the two residues of the sequences being aligned at that position, see (5.4).
To calculate M(z;,z;) one looks at the alignment that has been already made up to
that point and finds the best way to continue. Thereby, a diagonal update corresponds
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to the assumption of a match or substitution. A vertical update assumes a gap inser-
tion in s; and a horizontal update a gap insertion in s;. Assuming the initial values
Mz, x0) = M(x;,x0) = M(xg,2;) = 0,Vi,j, the matrix M is constructed recursively
according to the following rule

0
M(l’ifl, .T}jfl) + S(J?Z, SL’]')
M(zi—y, ;) + S(z4,-)
M (i, j-1) + S(=, ;)
After constructing the entire matrix, one can go back starting in the lower right corner

from M (z|s,|, 7|s,)) and trace which way through the matrix back to M(z1,z;) gives the
best alignment by moving back in each step to that position among

M(x;,x;) = max

Vi, . (5.2)

M(x;_1,2;—1) diagonal step (homologous nucleotides)
M(x;—1,x;)  vertical step (insert gap in s;) ) (5.3)
M(z;,z;—1)  horizontal step (insert gap in s5)

that has the maximum score. The diagonal direction is preferred for equally weighted
steps. An alignment constructed this way is optimal for the given scoring scheme S.

Example: Let the homologous sequences be

81 = ACACACT
sy = AGCACACA

and the penalty scoring scheme be equal to S(z,gap) = S(gap, z) = S(mismatch) = —1,

S(match) = 2. Following the recursion in (5.2), the matrix M evaluates to

ACAC A C T
A2 1 21 2 1 0
Gj1 111 1 1 O
cio0 3 2 3 2 3 2

M=| A2 254 5 4 3 (5.4)

cC|1 447 6 7 6
A2 36 6 9 8 7
c|i1 4 5 8 8 11 10
Af2 3 6 7 10 10 10

The optimal path through the matrix is highlighted and corresponds to the alignment

A-CACACT
A= AGCACACA (5.5)
*k

Although optimal for the alignment of two sequences, the Smith-Waterman algorithm is
too slow for long sequences and it does not account for genome rearrangements. This
can be achieved using heuristic Blast type algorithms [AGM190] performing seeded align-
ments. In the first step, short exact matches are identified in the two genomes to be
aligned. Subsequently, they are used as seeds to a Smith-Waterman like extension algo-
rithm expanding the matching seed in both directions into aligned homologous regions.
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Figure 5.3: (A): a small alignment of 5 species with the corresponding phylogenetic tree.
(B): the estimated maximum a posteriori common ancestor nucleotide for each column.
(C): maximum likelihood estimate of the rate variation parameter éj for each column, see
Section 3.7.4.

5.2.4 Multiple Sequence Alignment (MSA)

There exist several possibilities for extending the pairwise alignment scheme to multiple
homologous sequences. In the context of multiple genome alignments progressive align-
ment is used. It relies on the phylogenetic tree describing the evolutionary relationship be-
tween the species to be aligned [BKR*04,BP04,BDC*03]. The closest species are aligned
first. Their parent node is assigned the resulting subalignment and the corresponding
common ancestor sequence estimated using the Felsenstein algorithm, see Section 3.7.3.
The ancestral sequence now represents the subalignment. This procedure is repeated until
all sequences are aligned. Since the phylogenetic tree is binary, each step consists of the
pairwise alignment of a subalignment (group of already aligned sequences), represented by
the common ancestor, against another. The subalignment produced for a certain clade is
not revised when combined with another one. This can result in suboptimal alignments,
especially with respect to gaps. Therefore, post-processing algorithms are often used to
fine-tune the position of gaps.

Example: An MSA block of homologous sequences from human, tenrec, platypus,
chicken, and lizard together with the corresponding phylogenetic tree is shown in Fig-
ure 5.3 (A). Gaps in the alignment were caused by insertions/deletions, e.g. the gaps in
positions 7 — 13 were most likely caused by an insertion in the lizard, whereas in positions
29 —31 by a deletion in the chicken. It can be seen, that the gaps tend to appear in blocks
and that the gap pattern shows strong regularities, see the background color of the MSA
matrix. This property can be exploited for compression. The Felsenstein estimate of the
common ancestor sequence of the depicted alignment is provided in Figure 5.3 (B). The
common ancestor nucleotide has been estimated for each column. Note that the actual
common ancestor species most likely did not contain the nucleotides 7-13. These have
most likely been introduced by an insertion in the lizard branch. Note that Figure 5.3
(C) will be explained in Section 5.3.1. *
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5.2.5 Whole Genome Alignment Datasets

Computing multiple genome alignments of vertebrates currently requires an enormous
capacity of computational resources. Therefore, they are generally pre-computed by
large annotation labs and centrally provided for public download by large databases like
UCSC [KBD103] and Ensembl [HAAT09]. Due to genome rearrangements caused by
large-scale mutations, genome alignment datasets consist of many MSA blocks. In this
work, the multiple genome alignment of 28 vertebrate species [MRHT07] (multiz28way)
provided by UCSC serves as test dataset. It comprises alignment blocks containing from
2 up to 28 species. It uses human as reference species, meaning that a human homol-
ogous sequence is present in each MSA block. Note that a complete multiple genome
alignment would also include MSA blocks unalignable with human. The MSA blocks are
stored in several so called multiple alignment format (MAF) files, described in detail in
Section 5.4.1. There exists one alignment file for each human chromosome comprising all
MSA blocks containing homologs on that human chromosome. In the MAF file each MSA
block carries supplementary information about the position of the aligned homologs in
the respective genomes and the alignment score. The supplementary information makes
up about 20% of the original file size, the remaining 80% are occupied by the MSA
blocks. Thus, the overall compression efficiency for the whole genome alignment datasets
is primarily dependent on how efficiently the MSA blocks can be compressed.

5.3 Multiple Sequence Alignment Compression

In the following a two step compression scheme for MSA blocks is proposed and analysed.
Being from a 5 symbol alphabet, an uncompressed MSA requires 1d(5) = 2.32 bits/symbol.
For the multiz28way reference dataset the herein proposed compression algorithm reduces
the compression rate to approximately 1.0 bits/symbol.

The statistical dependencies of MSA blocks are basically governed by the two under-
lying and largely independent evolutionary processes, the substitution and the inser-
tion/deletion mutational process, see Section 3.6.2. While there exist well established sta-
tistical models for the nucleotide substitution process described in detail in Section 3.7.1,
modelling the insertion/deletion mutations is difficult. Therefore, in the proposed evolu-
tionary based compression scheme the nucleotides in an MSA are compressed using the
predictions obtained from the nucleotide substitution model, whereas the gaps are en-
coded independently using techniques from lossless binary image compression. Encoding
the nucleotides and the gaps separately is justified by the independence of the two un-
derlying mutational processes and should not introduce an inherent loss to the achievable
compression rate. For complexity reasons a suboptimal algorithm has to be used to com-
press the nucleotide portion of the alignment blocks. However, the proposed suboptimal
solution is shown to perform close to the optimum.
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Figure 5.4: Phylogenetic tree depicting the species in the multiz28way dataset and
their evolutionary relationships. The subtree corresponding to the species subset human,
tenrec, platypus, chicken, lizard used in Figure 5.3 (A) is highlighted. The time (branch
length) is measured in number of substitutions/site.

5.3.1 Compression of Nucleotides

As described in Section 3.7.4, the substitution process is a continuous time Markov process
characterized by the evolutionary parameters { R, 7,7, 7, 6,} all of which are fixed except
for the positionwise variable rate heterogeneity parameter ¢;, see Table 3.1. The fixed
parameters only need to be encoded once for the whole multiple genome alignment dataset
and are typically provided along with it. The rate heterogeneity 6; needs to be encoded
for each MSA column separately. For the multiz28way reference dataset the reversible
substitution rate matrix equals to

—-0.991 0.179 0491 0.321
0.257 —1.002 0.187  0.558
k= 0.706  0.187 —1.162 0.269 ’ (5:6)

0.321 0388  0.187 —0.896

and the associated background distribution is @ = (0.295,0.205, 0.205,0.295). The phy-
logenetic tree 7 and the corresponding branch lengths 7 describing the evolutionary re-
lationship between the species in the dataset are depicted in Figure 5.4.

Figure 5.3 (A) depicts one exemplary MSA block from the dataset and the corresponding
pruned phylogenetic tree reduced to the species actually present in the alignment block.
The pruned tree is easily derived from the full tree and corresponds to the highlighted
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subtree in Figure 5.4. Note that it has a younger common ancestor node than the full
tree. In fact, every alignment column is associated with a subtree of the full tree defined
by the subset of species in which the homologous nucleotides have actually been found.
In the extreme case of a single nucleotide present in an alignment column, see positions
7-13 in Figure 5.3 (A), the subtree is composed of a single root node and the nucleotide
corresponds to the common ancestor. The maximum likelihood estimate of the rate
heterogeneity parameter éj is plotted in Figure 5.3 (C).

Columnwise and Nucleotidewise Approach

Two different encoding approaches for the nucleotide portion of MSAs are proposed in
the following. Both rely on the well studied evolutionary substitution model presented in
Section 3.7 that describes the evolutionary relationships between homologous nucleotides.
The nucleotides in each MSA column are homologous in the sense of sharing a common
ancestor. The substitution mutation process acts independently upon each alignment
column. The evolutionary parameters characterizing the model are assumed to be given,
but omitted from the notation where not needed. For each alignment column j the set
of species leaf nodes ¢ corresponding to the homologous nucleotides actually observed
in that column is determined first. Subsequently, the gaps are removed leading to the
vector of homologous nucleotides x; observed in the column. Note that the evolutionary
relationship of the species leaf nodes ¢ is described by a subtree of the full phylogenetic
tree T.

In Section 3.7.3, the Felsenstein algorithm was introduced as an efficient way of computing
the probability p(w%) of observing a set of homologous nucleotides in different species given
the evolutionary model relating the species. The obtained probabilities for each column
can be losslessly encoded using arithmetic coding. This columnwise approach represents
an optimal encoding strategy given the evolutionary model. However, it is only feasible for
small numbers of nucleotides per column, since the arithmetic encoder used to encode the
column probabilities requires the exact knowledge of the complete PMF for all possible
column realizations. Their number is of the order O(|A|Y), where |A] is the alphabet
cardinality and N the number of nucleotides in the column.

Therefore, an alternative nucleotidewise encoding scheme is proposed. A representative
common ancestor nucleotide #7 is encoded for each column together with the set of con-
ditional probabilities p(xﬂf{),% = 1...N of all the leaf nucleotides observed in that
column. The representative common ancestor #{ is a function of the column realization
:cz and is chosen in a way minimizing the amount of bits required to encode the column j

N
4] = arg max (Hp(:pélht)) . (5.7)

i=1
The computation neglects the dependencies of the nucleotides in the column introduced
by the topology of the phylogenetic tree characterizing the SIMO channel, see Figure 5.5.

The distances between the root and the leaves are the same in both schemes. The esti-
mated common ancestor nucleotide 27 corresponds to the maximum likelihood estimate
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Figure 5.5: SIMO channel models used by the proposed compression schemes. In con-
trast to the columnwise scheme, the nucleotidewise scheme neglects the topology of the
phylogenetic tree.

under the assumption that the nucleotides have evolved independently. It differs from
the maximum likelihood estimate obtained with the Felsenstein algorithm (3.17) that
accounts for the topology of the tree. In fact, in many SIMO transmission channel mod-
els used in communications engineering this is the preferred model, since typically the
“scattering topology “ of the SIMO channel is unknown or difficult to estimate. For com-
pression purposes the objective is not to reconstruct evolution as accurately as possible,
but to minimize the overall compression rate. The brute force search for the representa-
tive common ancestor nucleotide #/ that minimizes the compression rate of a column is
easily performed and is actually faster than the computation of the evolutionary correct
estimate using the Felsenstein algorithm. At the decompressor #¢ is known. Thus, the
nucleotidewise compression scheme is asymmetric. The encoding process is more com-
plex than the decoding. This nicely fits the static multiple genome alignment datasets.
The encoding process itself can be computationally demanding and should be optimized
in terms of compression efficiency, as it is only performed once by the dataset provider.
Therefore, 7 can be chosen using the brute force search such that it minimizes the com-
pression rate and not by simply selecting the most frequent nucleotide in the alignment
column ZE% Decoding is performed by each user of the data separately on a standard
workstation. Thus, it should be fast and simple.

Note that due to gaps the number and subset of species actually present in a particular
MSA column j is varying, see Figure 5.3. The average compression rate achievable for a
particular subset depends on the distance to the common ancestor of all the species in
the subset, the number of species and the rate heterogeneity parameter 6. For a small
number of species in the subset, the achievable average compression rates can be computed
analytically for both compression schemes. For the columnwise compression the average
compression rate

1
R. = H(X)). (5.8)
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Average compression rates for the nucleotide portion of MSA
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Figure 5.6: Average achievable compression rates per nucleotide for the columnwise
R.(0) (full lines) and nucleotidewise R, (#) (dotted lines) compression scheme for a 5 and
a 2 species dataset having identical common ancestors.

For the nucleotidewise compression scheme the average compression rate

R, = % (Zp(:cg) log %) + H(Xt), (5.9)

Va, H’iil p(l‘zz |jt)

where 7, is the representative common ancestor computed according to (5.7). Since the
alignment columns are assumed to be independent except for the rate heterogeneity, the

average amount of bits needed for the encoding of Z, is H(X,). For a small number of
species the PMF of . is computed as

pla) = > pla), (5.10)

Vg f(ze)=2c

where f(x,) is the estimator from (5.7). When compressing real MSA data, the represen-
tative common ancestor nucleotides can be compressed using some universal compression
scheme, e.g. the Context Tree Weighting algorithm, presented in Section 4.2.2.

Figure 5.6 depicts R, and R, as a function of the rate heterogeneity 6 for two differently
large species subsets. Both subsets have the same common ancestor. The corresponding
phylogenetic tree can be found in Figure 5.3. It can be seen that for small values of
0 the proposed compression schemes can dramatically reduce the compression rates for
datasets comprising more species, compare the 2 and the 5 species dataset. As expected,
the columnwise compression (full lines) saturates at 2 bits/symbol for high values of §. The
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Figure 5.7: Average achievable compression rates per nucleotide for the columnwise
R.(0) (full lines) and nucleotidewise R,,(#) (dotted lines) compression scheme for 2 species
datasets having different common ancestors.

nucleotidewise compression (dotted lines) suffers an inherent loss because the nucleotides
in a column are encoded separately as if they have evolved independently instead of on a
tree. This effect is particularly well observable for low 6 values. Encoding the represen-
tative common ancestor nucleotides separately introduces additional loss. The impact is
especially strong for a small number of species, see the 2 species dataset. However, for a
larger number of species and higher values of # the nucleotidewise approach benefits from
being able to choose the common ancestor nucleotide such that the number of bits needed
for encoding the column is minimized. It can even outperform the columnwise approach
in this case, see the 5 species dataset. Figure 5.7 studies R. and R,, for two equally large
species subsets having a different common ancestor. The human, tenrec subset has a
significantly younger common ancestor than the human, lizard subset as can be seen from
the phylogenetic tree in Figure 5.3. The closer is the common ancestor, the slower is the
degradation of the compression rate with increasing 6.

The presented results promise substantial compression gains for a high degree of con-
servation (low values of #) and many species in the dataset. Homologous sequences are
alignable only if they have not diverged to much. Thus, low average values of 6 can be ex-
pected for columns of MSA blocks in multiple genome alignment datasets. The proposed
evolutionary compression scheme also nicely fits the fact that the number of species in
the datasets is rapidly increasing, see Figure 5.1. More species lead to more homologous
nucleotides per column and thus to a decreasing average compression rate per nucleotide.
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Empirical cumulative distribution function of 6 (multiz28way)

2.5 T T T T T

0 0.5 1 1.5 2 2.5 3
0

Figure 5.8: The empirical cumulative distribution function of 6 values in the multiz28way
dataset estimated using maximum likelihood.

Compression of the Rate Heterogeneity Parameter

The empirical cumulative distribution function of the estimated 6 values for the mul-
tiz28way dataset is plotted in Figure 5.8. The values were estimated using a maximum
likelihood estimator [DHL*08]. Based on the prevailing low values of 6, it can be con-
cluded that the use of the evolutionary substitution model for compression promises high
compression gains for the nucleotide portion of the MSA blocks. However, the rate het-
erogeneity parameter 6; needs to be stored for each column j. In order to be able to
efficiently compress the € values they have to be quantized. By using quantized values of
6 the evolutionary prediction used to losslessly compress the nucleotides becomes coarser.
The less quantization levels are used, the better compressible are the 6 values, but the
more bits are needed to compress the nucleotides. The objective function of the quantiza-
tion is the minimization of the overall compression rate comprising the compression of the
0 values and the nucleotides and not the accurate reconstruction of 8. Therefore, instead
of the Lloyd-Max quantizer, non-linear programming optimization [GMWS81] has to be
used to determine the optimal quantized values of 6 for different numbers of quantization
levels. Table 5.2 shows the overall compression rate per nucleotide for MSA blocks in the
chromosome 21 (chr21) MAF file using different numbers of optimized quantization levels.
The factual compression rate achieved was used as optimization function. As described
in Section 3.7.4 strong Markov type correlations exist between neighbouring sites with
respect to rate heterogeneity. Therefore the concatenated sequence of quantized 6 values
is compressed jointly using the Context Tree Weighting compression algorithm detailed
in Section 4.2.2.

Note that the compression rate per nucleotide differs from the compression rate per MSA
symbol, since only a portion of an MSA are nucleotides. Surprisingly, using a single
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Optimal Quant. Levels | Comp. Rate
0.77 1.16
0.24, 1.98 1.15

Table 5.2: Minimum achievable compression rates for the nucleotide portion of MSA
blocks in bits/nucleotide (multiz28way-chr21). The compression rates account for both
the encoding of the quantized rate heterogeneities and the nucleotides.

quantization level for # turns out to be sufficient for the considered multiz28way dataset.
Obviously, the 6 sequence is deterministic in this case and does not have to be stored.
Increasing the number of quantization steps further only marginally improves the com-
pression rate. It can be concluded that for the purpose of compressing the multiz28way
dataset the space time process of rate variation can be omitted from the computation by
scaling the tree branch lengths 7 in the evolutionary model by the factor 0.77.

Algorithm Summary and Implementation Aspects

Algorithm 5.1 summarizes the final nucleotide compression algorithm. It relies on the
nucleotidewise compression scheme. Note that in an actual implementation the algorithm
can be considerably speeded up by pre-computing the channel matrices PXZ 1x, for the
set of all possible subtree leaves ¢; which equals to the leaves of the full phylogenetlc tree
T and for the set of all possible root nodes v which equals to all the non-leave nodes of
T. The fact that column realizations :13% sometimes repeat in an MSA block can be used
to further increase the encoding speed.

Algorithm 5.1 Compress nucleotides

Require: alignment block A, evolutionary model parameters {R, T, 7}
1: for all alignment columns do

Determine set of species leaf nodes ¢ corresponding to nucleotides in column
Encode ¢
Compute x, (remove gaps from column)
Set t to the common ancestor node of the subtree of 7 corresponding to ¢
for all leaf nodes ¢; do

Compute channel matrix PXM X, =€
end for

R'ttﬁﬁi

N
9:  Estimate common ancestor nucleotide Z, = arg max (H Pz, ))
Ty
i=1
10:  Encode 7,
11:  for all species leaf nodes ¢; do
12: Encode p(zy,|Z.)
13:  end for

14: end for




76 Chapter 5 m Compression in Genetics

5.3.2 Compression of Gaps

In Figure 5.3 (A) the background color of the symbols (white for nucleotides and grey for
gaps) represents the binary image of size of the original MSA that has to be compressed
in order to encode the positions of gaps. It turns out that a template driven predictor
is capable of thoroughly describing the dependencies in the puncturing pattern, allowing
for its efficient compression. The predicted probabilities are encoded using arithmetic
entropy coding. While, at the encoder it is unimportant, whether the nucleotides or
gaps are encoded first, at the decoder the puncturing pattern has to be recovered before
decompressing the nucleotides.

Small scale evolutionary insertion and deletion events typically involve multiple neigh-
bouring nucleotides. During the course of evolution, events that have occurred in a com-
mon ancestor propagate to the derived subspecies resulting in rectangular blocks of gap
symbols in MSA. Thus, the binary MSA gap puncturing matrix shows strong horizontal
and vertical correlations that can be used for compression. However, these regularities
have different nature from those found in x-ray images or facsimile data. State-of-the-art
lossless compression algorithms for these types of binary image data, like Joint Bi-level
Image Experts Group (JBIG) [HAC'92] have been found to have difficulties in delivering
satisfactory compression rates for gap puncturing matrices. For this reason a template
driven prediction based compression algorithm is proposed to compress the puncturing
matrices.

Puncturing Matrix Compression

In case of strong local correlations in image data, the neighbouring pixels carry a lot
of information about the pixel of interest and can thus be used to reliably predict its
value. If the purpose of the prediction is compression, only pixels that have already been
encoded can be used for the prediction context C. In case of encoding the pixels row by
row from left to right, only pixels in the rows above and left of the encoded pixel z( in
the current row can be used as prediction context x. = (z_1,7_o,...,2_p) where D is
the size of the context in pixels. The conditional prediction PMF Py, x, can be trained
on sample puncturing matrices or learned adaptively as described later. The conditional
probability p(zg|x.) is computed for each pixel in the puncturing matrix and encoded
using arithmetic coding. The empirical conditional entropy H(Xy|X.) derived from all
MSA gap puncturing matrices in the chr21 MAF file can be used as an estimate for the
expected compression rate. Permuting different contexts of increasing size it was found
that the prediction context depicted in Figure 5.9 presents the best context of size 4 and
that increasing the context size D any further improves the expected compression rate
H(Xo|X.) =~ 0.17 bits/symbol only marginally and thus represents a suitable trade-off
between complexity and compression gain. In order to be able to use this context the
first column and the first two rows have to be encoded separately. The contexts used to
encode these edges are also depicted in Figure 5.9. The pixel in the upper left edge of each
MSA is saved uncoded. The procedure is summarized in Algorithm 5.2. Note that the
separation between the main and the edge contexts has been omitted for simplification.
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Figure 5.9: Left: Best Main Context of depth D = 4, Right: Edge Contexts a) first
column, b) first row, ¢) second row.

Algorithm 5.2 Compress gap positions

Require: alignment block A, prediction context C, prediction PMF Px x,,

: Encode the size of A

: Convert A to binary gap puncturing matrix

: for all pixels do
Set ¢ to the current pixel
Set ¢ to the neighbouring pixels according to the prediction context C'
Encode p(xo|zc)

end for

IS A >

In order to make the puncturing matrix compression algorithm universal the conditional
prediction PMF Px; x. has to be learned in course of the compression. Using a Context
Tree Weighting model [WST95] seems particularly suitable for this task, since the CTW
algorithm shows excellent convergence behaviour in terms of learning quickly the statistics
of finite size context sources from finite length training data, see Section 4.2.2. The
context tree structure implies an order of the context symbols. However, the pixels in
the prediction context x. are not inherently ordered. For best results the order should be
chosen such that H(Xy|X;) > H(Xo|X;-1), Vi. The indexing of the prediction contexts in
Figure 5.9 already reflects this order.

Comparison to other Lossless Compressors

The proposed puncturing matrix compressor (PMc) has been compared to other state-of-
the-art approaches for lossless compression including JBIG and JBIG2 [HAC"92] (specif-
ically developed for source coding of medical images and fax data) and LZ (traditionally
used for file compression on PCs). The obtained compression rates for the puncturing
matrices of each MSA block in the chr2l MAF file were used to plot an approximate
function of the compression rate as a function of the MSA block size in symbols. The
result is shown in Figure 5.10. Also depicted is a histogram of the block lengths. It
can be seen that for all algorithms the compression rate improves with increasing size
of the puncturing matrix. This is especially the case for the JBIG compressor. Its bad
compression rate for small and medium size puncturing matrices implies wrong initial
assumptions about image statistics.
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MSA puncturing matrices: compression rates and normalized histogram
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Figure 5.10: Compression rates for puncturing matrices of MSA blocks (chromosome 21
from the multiz28way dataset).

Table 5.3 shows the average compression rates achieved for all MSA puncturing matrices
of chr21. The proposed PMc algorithm clearly outperforms its competitors.

PMc | JBIG | JBIG 2 | LZ
0.17 | 0.30 0.48 | 0.53

Table 5.3: Average compression rate for gap puncturing matrices in bits/symbol
(mulitz28way-chr21).

5.3.3 Multiple Sequence Alignment Compressor (MSAc)

Finally, the complete multiple sequence alignment compressor (MSAc) shall be described
and its performance evaluated. MSAc compresses the alignment files MSA block by block.
The nucleotides are compressed using the nucleotidewise compression scheme MSAc based
on the probabilistic evolutionary model for substitutions described in Algorithm 5.1. The
gap positions are compressed using the compression scheme presented in Algorithm 5.2 re-
lying on image compression techniques. A two-dimensional (2-D) context driven predictor
is used to compress the binary gap puncturing matrix. The static evolutionary parame-
ters comprised of the rate matrix R, the full phylogenetic tree 7 and the corresponding
branch lengths 7 are compressed once for the whole dataset.
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Algorithm 5.3 Multiple genome sequence alignment compressor (MSAc)

Require: set of alignment blocks {A; ... Ay}, prediction context C, evolutionary model
parameters {R, T, 7}
Encode {R, T, 7}
Train the prediction PMF Py x, (required by gap positions compression)
Encode PMF Py, x,
for all alignment blocks A, do
Compress nucleotides in A,, (Algorithm 5.1)
Compress gap positions in A,, (Algorithm 5.2)
end for

5.3.4 Performance and Comparison

Table 5.4 shows the overall achievable compression rates for different alignment files in the
multiz28way dataset. For comparison purposes also the compression rate for the optimal
columnwise compressor MSAc (col) and LZ is provided. The standard MSAc based on the
nucleotidewise scheme has been abbreviated as MSAc (nuc) in Table 5.4. Note that the
columnwise encoder MSAc (col) is not feasible for datasets containing more than a few
species since the complete PMF of all possible column realizations (of the order O(|.A|?®)
for the multiz28way dataset), required by the arithmetic encoder, cannot be computed.
Nonetheless, the compression rate that would be achieved using the columnwise compres-
sion scheme can be estimated since the column probabilities p(wz), Vj are computable. For
MSAc the overall achievable compression rates are calculated as follows. For example, the
MSA blocks in chr21 MAF file contain on average 74.7% nucleotides, the remaining sym-
bols are gaps. The nucleotides are compressed at a rate of R,=1.16 bits/nucleotide, see
Table 5.2. The compression rate for gap positions per MSA symbol is 0.17 bits/symbol,
see Table 5.3. Thus, the overall compression rate for chr21 is

1.04 bits/symbol = 74.7% nucleotide/symbol x 1.16 bits/nucleotide + 0.17 bits/symbol.

The currently used LZ source coding is outperformed by a factor of approximately 1.6.
Note that the gzip compressor with the best compression setting was applied to a row
by row concatenation of all MSA blocks in the chr21 MAF file in order to compute the
compression rates for LZ. The results for the regular chromosomes chr01-chr22 making up
almost all of the dataset are very similar. The corresponding alignment files all contain
around 74% nucleotides. The compression rates for the sex chromosome chrY are higher,
since it has a higher nucleotide portion of 89%. This is due to the fact that it is under
stronger evolutionary pressure, since it only occurs in males in a single copy. The other sex
chromosome chrX behaves similarly to regular chromosomes. The proposed nucleotidewise
compressor MSAc (nuc) is only 5% worse than the infeasible but optimal columnwise
compressor MSAc (col). With respect to complexity MSAc operates asymmetrically with
significantly simpler decompression. The decompression can be performed in reasonable
time on an ordinary workstation. With newly included species into the whole genome
alignment datasets the compression rate of MSAc can be expected to further improve.
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Data MSAc LZ | size in %
(nuc) | (col)
chrl 1.01 | 0.94 | 1.62 8.25%
chr2 1.00 | 0.94 | 1.63 8.84%
chr3 1.00 | 0.94 | 1.62 7.38%
chr4 1.01 | 0.96 | 1.64 6.38%
chrb 1.00 | 0.94 | 1.63 6.46%
chr6 1.00 | 0.95 | 1.63 6.10%
chr7 1.01 | 0.96 | 1.63 5.31%
chr8 1.02 | 0.96 | 1.64 4.99%
chr9 1.01 | 0.95 | 1.62 4.21%
chr10 1.02 | 0.96 | 1.64 4.76%
chrll 1.02 | 0.96 | 1.63 4.75%
chr12 1.00 | 0.94 | 1.62 4.60%
chr13 1.01 | 0.96 | 1.64 3.38%
chr14 1.00 | 0.94 | 1.62 3.24%
chrl5 1.01 | 0.95 | 1.62 2.90%
chr16 1.03 | 0.97 | 1.63 2.77%
chrl7 1.02 | 0.95 | 1.60 2.83%
chrl8 1.01 | 0.96 | 1.64 2.72%
chr19 1.08 | 1.02 | 1.60 1.40%
chr20 1.03 | 0.96 | 1.64 2.18%
chr21 1.04 | 0.99 | 1.66 1.10%
chr22 1.07 | 1.01 | 1.64 1.07%
chrX 0.99 | 0.93 | 1.60 4.12%
chrY 1.19 | 1.18 | 1.68 0.26%

| multiz28way | 1.01 | 0.96 | 1.63 | 100.00% |

Table 5.4: Overall compression rate for MSA in bits/symbol using different algo-
rithms (uncompressed 2.32 bits/symbol required). The proposed nucleotidewise scheme
MSAc (nuc) performs only 5% worse than the optimal but infeasible columnwise scheme
(col). Compared to LZ, the compression rate is improved by a factor of 1.6.

A great advantage of MSAc compared to LZ is that with small adjustments it allows to
decompress any single MSA block without having to decompress the entire dataset. This
can be achieved by replacing the universal adaptive CTW prediction algorithm in the
compression of the common ancestor and of the puncturing matrix by their static coun-
terparts using the empirical distribution derived from the dataset for prediction. This
adjustment increases the encoder complexity since it requires a two pass approach. The
empirical distributions are collected in the first pass and subsequently used for compres-
sion in the second pass. Even though the empirical distributions now have to be encoded
separately, the compression rate remains effectively unchanged. The complexity at the
decoder is decreased, since it knows the prediction statistics a-priori and does not have to
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learn it adaptively from already decoded data. Knowing the prediction statistics a-priori
allows to decompress any single MSA block without the needed of decompressing the
preceding blocks. The shift in complexity towards the encoder fits the envisaged distribu-
tion scenario. Additionally, the ability to decode any MSA block separately opens MSAc
completely new application possibilities. LZ can only reasonably compress the dataset if
compressing all MSA blocks jointly and is thus primarily suited for the distribution of
the entire dataset at once. However, MSAc could also be used to decrease the storage
requirement, of database servers. Using MSAc, the dataset can be stored compressed on
the server and the queried MSA blocks decompressed on the fly.

5.4 Multiple Alignment Format Files Compression

Currently, the whole genome alignment datasets provided by UCSC are distributed in
form of multiple alignment format files. The MAF files can be downloaded LZ com-
pressed from the UCSC genome browser website [KBD*03]. There exists one MAF file
for each human chromosome comprising all MSA blocks containing homologs on that hu-
man chromosome. In the MAF file each MSA block carries supplementary information
about the position of the aligned sequences in the reference genomes, see Table 5.5. This
supplementary information makes up about 20% of the original file size, the remaining
80% are occupied by the MSA blocks. With MSAc, proposed in Section 5.3, an efficient
compression algorithm for the MSA blocks has been derived. In the following possibilities
of efficiently compressing the supplementary information shall be explored. An efficient
multiple alignment format file compressor (MAFc) using MSAc to encode the MSA blocks
is proposed and its overall performance evaluated.

5.4.1 Multiple Alignment Format (MAF)

Each MSA block is stored in a MAF file using the format shown in Table 5.5. The first
line in each block is designated for the alignment score (score) returned by the alignment
algorithm. Each row in the alignment contains position information about the aligned
homologous region. The position information refers to the placement in the reference
genomes used to construct the alignment. It comprises the species and chromosome
(spec.chr), the start position in the chromosome (start), the length of the respective
homolog in nucleotides (|seq|) and the DNA strand (strand). Additionally, the respective
chromosome length is provided (|spec.chr|). Note that the name of the reference genome
assembly is used to denote the species, e.g. "hgl18“ refers to the human genome assembly
released by the UCSC genome browser in 2006 [KKZ*06]. Accordingly, the chromosomes
correspond to the respective assembly. The reference strand is denoted by a 7+ symbol.

5.4.2 Compression of MAF Supplementary Data

In order to compress the supplementary information it is important to understand its
statistical regularities with respect to the whole dataset. In general, the different types
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spec.chr start |seq| strand |spec.chr|] MSA

a score=34150.000000

s hgl8.chr2l 0882599 133 + 46944323 GAGGCTTTCG. ..
s eriEurl.scaffold_266948 48 125 - 8534 GAAG--TCCG...
s panTro2.chrlb 81691913 133 - 100063422 GAAG--TTCG...
s dasNovl.scaffold_971 14781 117 + 130999 GAA--TTTCG...
a score=41484.000000

s hgl8.chr2l 9882732 233 + 46944323 CACATAA--G...
s panTro2.chrlb 81692046 233 - 100063422 CACATAA--C...
s

dasNovl.scaffold_971 14898 236 + 130999 CTCATGAGAC...

Table 5.5: Two MSA blocks in a multiple alignment format (MAF) file.

of position information show different statistical regularities and can thus be compressed
separately. While the more subtle dependencies are accounted for in a pre-processing step,
the remaining data is compressed as a sequence using CTW described in Section 4.2.2.
Being a higher order statistical prediction based coder, CTW is capable of learning and
using the Markov type dependencies left in the sequence. In the following, the exploited
statistical regularities are discussed for each type of position information.

e (score - alignment score) Each MSA block is associated with an alignment score.

This score is computed by the alignment algorithm. The scores are variable integer
values mostly 4 to 6 digits long. The alignment scores are compressed as a sequence
of digits separated by a space symbol using CTW. Although the digits are equally
likely, the space symbol is more frequent and never followed by a space symbol. The
CTW algorithm is capable to learn and benefit from these regularities.

(spec - species) Homologous sequences are typically only found in a smaller subset
of all species in the dataset. Thus, for each MSA it is necessary to encode the
corresponding species subset. The ordering of the species in the subset is always the
same and corresponds to the ordering in the phylogenetic tree, depicted in Figure 5.4.
Since human is used as reference in the multiz28way dataset, every MSA block starts
with the human species. Only homologous sequences that have not diverged too
much can be identified by the alignment algorithm. Therefore, species distant to
human occur very rarely in the dataset. Additionally, the phylogenetic dependencies
described by the tree influence the species present in a subset. For example, if a
homolog to human has been found in the mouse it is very likely that a homolog
is also present in the rat since mouse and rat are very closely related compared to
their evolutionary distance to human. In the proposed algorithm the species are
encoded as a sequence from a 28 symbol alphabet using CTW. The actual names
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of the reference genomes are stored in a separate table. Note that since every MSA
block starts with the human species, the number of species in each MSA block can
be recovered from the decoded species sequence and does not have to be stored
separately.

e (chr - chromosome) The regular chromosome names (chrl, chr2 ... chrM) are en-
coded as a sequence from a higher order alphabet using CTW. The compression
benefits from the fact that the standard naming scheme always assigns the name to
the chromosomes in a species in decreasing order of the chromosome length. The
longest chromosome is given the name chrl. The longer chromosomes are likely
to contain more homologs due to their size and are thus also more frequent in the
whole genome alignment dataset. Apart from the standard chromosome names,
there exist names like scaffold 971 etc. in the multiz28way dataset, see Table 5.5.
These originate from the limitations of modern high-throughput DNA sequencing
methods, i.e. during ”shotgun “-sequencing the DNA is split into many overlapping
chunks of several hundred base pairs length that are subsequently sequenced and
computationally re-assembled to chromosomes. Unfortunately, not all chunks can
be unambiguously positioned in the actual chromosomes and have to be referenced
using the scaffold_number scheme, where the chunk number is highly variable. The
"unpositioned “ chromosome chunks thus cannot be encoded together with the reg-
ular chromosomes and have to be encoded separately.

e (|spec.chr| - chromosome length) Each chromosome in a species has a certain
length. For compression purposes it is sufficient to encode the length once for
each spec.chr combination. Lengths of repeating spec.chr combinations are skipped
in a pre-processing step. The remaining lengths are encoded as a sequence of digits
separated by a space symbol using CTW. This is analogous to the encoding of the
alignment scores. The proposed algorithm encodes the lengths in the order of ap-
pearance of the unique spec.chr combinations in the MAF file. This represents an
efficient way of encoding also the association between each length and the respective
spec.chr combination.

e (start - position in chromosome) In order to efficiently compress the start po-
sitions in the chromosomes it is important to realize that contiguous homol-
ogous sequences often get split over several consecutive MSA blocks due to
large scale deletions and translocations. For example, the homologs of hgl8,
panTro2, dasNovl are contiguous in the two MSA blocks shown in Table 5.5, i.e.
MSA, (start)=MSA; (start)+MSA; (|seq|). The alignment had to be split into two
MSA blocks due to a shorter homolog in eriEurl resulting from a large scale dele-
tion. Therefore, instead of encoding the absolute value of the start position, it is
advisable to encode the offset to the preceding homolog segment if a homolog for the
same species and on the same chromosome is present in the previous MSA block,
i.e. instead of MSA,(start) encode MSA, (start)-MSA,_;(start)-MSA,_1(|seq|) in
such case. The replacement is done in the pre-processing step. The resulting inte-
ger values are as previously encoded as a sequence of digits separated by a space
symbol using CTW.



84 Chapter 5 m Compression in Genetics

e (|seq| - sequence length) The length of the homologous region in each species is
already encoded in the MSA block and does not have to be encoded separately. It
is the number of nucleotides in the corresponding MSA row.

e (strand - DNA strand) Homologous sequences are equally likely found on the ref-
erence "+ and the complementary strand ”-“. The binary strand information
might thus seem incompressible at first. However, following the argument about
contiguous homologous sequences split onto several consecutive MSA blocks, used
to encode the start position, the strand information does not have to be encoded for
sequence segments in an MSA block contiguous with the segments in the previous
block. These are skipped in a pre-processing step. The remaining binary sequence
is encoded using CTW.

e (MSA) An efficient compression scheme for MSA blocks has been introduced and
analysed in Section 5.3 under the name MSAc.

The compressibility of the different types of position information using the dependencies
described above is summarized in Table 5.6. Most of the statistical dependencies involve
correlations between subsequent MSA blocks. Note that using such dependencies makes
it impossible to decode the position information for any single MSA block without having
to decode the position information for all the preceding blocks in the MAF file.

Type Description Compressibility
(score) MSA alignment score  low

(spec) species very high

(chr) chromosome very high
(|spec.chr|) chromosome length high

(start) homolog start position high

(strand) homolog DNA strand  average

Table 5.6: Qualitative summary of the compressibility of the supplementary position
information in MAF files. The position information occupies around 20% of the file size.

5.4.3 Performance and Comparison

In the following the overall compression performance of the proposed lossless MAFc file
compressor shall be evaluated. The original MAF files are stored using ASCII coding.
Every character including the MSA symbols is stored using 1 byte or 8 bits. Note that
the use of ASCII coding introduces a significant overhead. For example, for MSA symbols
being from a 5 symbol alphabet only 2.32 bits/symbol would be needed in uncompressed
state. The ASCII coded original MAF files are thus very large and highly compressible.
The MAFc compressor encodes the MSA blocks using the MSAc algorithm proposed in
Section 5.3, the position information is compressed as described in the previous section.
Figure 5.11 depicts exemplary the composition of the chr2l.maf file before (left) and
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score <1%
spec 4%
chr 6%

|spec.chr| 5%
chr 2%
start 5% |spec.chr| 2% spec 1%
strand <1% start 3% score 1%

strand <1%

MSA 79% MSA 91%
original MAF file MAFc compressed
size: 506MB size: 52MB

Figure 5.11: Composition of the chr21.maf file before (left) and after compression using
MAFec (right). The overall file size is reduced almost tenfold.

after compression using MAFc (right). In case of the original file (left) the proportion
refers to the percentage of ASCII symbols occupied by the given type of data. For
the compressed file the percentage values refer to the relative amount of bits spent on
encoding the respective feature. The overall file size is reduced almost tenfold. The
decrease is reflected by the area reduction of the pie chart. The MSA blocks occupy
91% of the compressed file as opposed to 79% of the original file. In other words, the
position information is compressed more efficiently than the MSA blocks. The individual
comparison of the relative space requirement of the different kinds of position information
before and after compression implicates that the integer values score, |spec.chr|, start
are more difficult to compress than the spec, chr, strand. The latter group benefits from
the fact that it is a coarser type of position information, i.e. there are only 28 different
species, < 30 different chromosomes and 2 DNA strands. Consequently, the several ASCII
symbols long species and chromosome names can be efficiently encoded as symbols from a
higher order alphabet. As for the DNA strand information, solely by using binary instead
of ASCII coding an 8 fold reduction is achieved.

However, the overhead introduced by using ASCII coding in the original MAF files can also
be utilized by traditional universal statistical and dictionary based compression algorithms
like CTW and LZ described in detail in Chapter 4. Therefore, in order to assess the
benefit of using the source specific compressor MAFc it has to be compared also to these
algorithms. Table 5.7 provides a detailed comparison. The original file size of the different
MATF files in the multiz28way dataset and the relative size after compression using MAFc,
CTW and LZ is shown. The size of the individual MAF files largely correlates with the size
of the respective human chromosomes and also gradually decreases with the chromosome
number. The only significant exception is chr20 that contains a higher proportion of
conserved regions [DMAT01]. Both CTW and LZ manage to reduce the size of the MAF
files around fivefold. Thereby, the CTW algorithm performs around 7% better than
LZ. The proposed MAFc compressor reduces the file size almost tenfold to 10.4% of the
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original | relative compressed size

File size MAFc | CTW LZ
chrl.maf 4.0 GB 10.3% | 19.4% | 21.1%
chr2.maf 4.3 GB 10.4% | 19.6% | 21.1%

chr3.maf 3.6 GB | 10.3% | 19.6% | 21.1%
chr4.maf 3.1 GB | 10.5% | 19.7% | 21.3%
chr5.maf 3.1 GB | 10.3% | 19.5% | 21.2%
chr6.maf 3.0 GB 10.3% | 19.5% | 21.2%
chr7.maf 2.6 GB | 10.4% | 19.6% | 21.2%
chr8.maf 24 GB | 10.7% | 19.6% | 21.4%
chr9.maf 20GB | 10.4% | 19.6% | 21.2%
chr10.maf 23GB | 10.4% | 19.5% | 21.2%
chr1l.maf 23GB | 10.4% | 19.5% | 21.2%
chr12.maf 22GB | 10.3% | 19.5% | 21.1%
chr13.maf 1.6 GB 10.8% | 19.6% | 21.3%
chr14.maf 1.6 GB | 10.2% | 19.5% | 21.0%
chr15.maf 1.4 GB | 10.3% | 19.5% | 21.1%
chr16.maf 1.3GB | 10.4% | 19.5% | 21.3%
chr17.maf 1.4 GB | 10.7% | 19.2% | 21.0%
chr18.maf 1.3 GB 10.7% | 19.6% | 21.4%
chr19.maf 0.7 GB 11.8% | 19.4% | 21.2%
chr20.maf 1.1 GB | 10.9% | 19.6% | 21.4%
chr21.maf 0.5GB | 11.6% | 19.6% | 21.5%
chr22.maf 0.5GB | 11.8% | 19.6% | 21.6%
chrX.maf 20GB | 10.5% | 20.0% | 21.0%
chrY .maf 0.1 GB | 14.7% | 22.4% | 23.2%

| multiz28way [ 48.5 GB | 10.4% | 19.7% | 21.3% |

Table 5.7: Relative file size in % of compressed MAF files using different compression
algorithms. The original uncompressed file size in Gigabyte (GB) is provided in the second
column.

original file size on average and performs twice as good as the competitors. While CTW
and LZ perform comparably for all regular chromosomes, MAFc¢ suffers a slight penalty
when compressing small MAF files, see chr19,21,22. This relates to the slightly worse
compressibility of the respective MSA blocks, see also Table 5.4. Particularly difficult
to compress for all algorithms seems chromosome Y. This relates to the fact that it is a
haploid chromosome occurring only in the male lineage. For this reason it is subject to
stronger evolutionary pressure and in general shows a higher degree of conservation than
other chromosomes resulting in MSA blocks with fewer gaps that are harder to compress.

A beneficial capability of MSAc is that any individual MSA block can be decompressed
without having to decompress all the preceding blocks. As discussed in Section 5.3.3 this
opens up the possibility of reducing the storage requirement of database servers. This
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advantageous property has been preserved in MAFc. It is only the supplementary position
information that has to be decompressed for the entire MAF file at once. This represents a
great advantage opposed to the competitors. Currently, when setting up a local database
the uncompressed MAF files have to be used. With MAFc¢ the compressed files could be
used as the database back end reducing the overall storage requirement tenfold.

5.5 Summary

Recent advances in high-throughput DNA sequencing technology have led to the com-
pletion of evermore whole genome sequencing projects. The amount of sequence data
becoming available is growing exponentially raising questions about efficient storage and
distribution. This chapter has focused on source coding techniques for the voluminous
sequence datasets used in genetics.

First, an overview of compression algorithms specifically developed for DNA sequence
compression has been provided. The compressibility of genomic DNA sequence data seems
rather limited. Consequently, DNA specific compression algorithms have so far not been
broadly adopted for storage purposes. The key component to achieving any compression
at all has turned out to be appropriate modelling of genomic sequence evolution.

The availability of multiple sequenced genomes has given rise to the field of compara-
tive genomics. However, evolutionary mutations complicate genome comparisons. Large
scale deletions, duplications and translocations result in rearrangements in the genome
sequences. Additionally, the genomes are subject to small scale mutations comprising in-
sertions, deletions and substitutions affecting only several neighbouring nucleotides. Thus,
in order to compare genomes, the homologous regions sharing common ancestry have to
be identified first. Subsequently, these have to be aligned using an extra gap symbol to
compensate for the small scale insertions and deletions. A whole genome alignment is
thus a set of many aligned blocks of homologous regions. Computing whole genome align-
ments requires huge computational power. Therefore, they are typically precomputed by
several labs and curated by large public databases. In this thesis the first highly efficient
lossless compression scheme for the alignment blocks has been proposed. The nucleotide
portion of the alignment blocks is compressed using well established statistical models of
evolutionary substitutions. Unfortunately, no elaborate statistical models exist for inser-
tions and deletions. However, the gap positions were found to be well compressible using
techniques from lossless binary image compression. The alignment blocks are distributed
in form of multiple alignment format files containing also position information about the
aligned regions. It is possible to compress this supplementary information efficiently by
exploiting subtle dependencies in the position information of consecutive alignment blocks.
The herein proposed compression MAFc algorithm for multiple alignment files reduces the
file size tenfold and is twice as efficient as the universal compression algorithms like the
dictionary based Lempel-Ziv or the statistical prediction based Context Tree Weighting.
A great advantage of the MAFc algorithm against its competitors is that it allows to
decompress individual alignment blocks without having to decompress the entire dataset.
This property opens up completely new possibilities. For example, MAFc could also be
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used as back end of database servers. Such servers are often queried for by researchers
for individual alignments.

The proposed innovative algorithm for the compression of whole genome alignments has
received the 2009 Capocelli Prize, which is the Best Paper Award of the Data Compression
Conference [HDCHO09]. Its extension and theoretical analysis was presented in the IEEE
Transactions on Information Theory [HDCH10].



Part 11

Marker Synchronization in Genetics






Marker Synchronization in
Engineering

This chapter will concentrate on the traditional marker synchronization problem as for-
mulated in [Bar53]. Particular positions in the data stream are marked by inserting short
sequence patterns, also called syncwords, before the transmission over a noisy channel. At
the receiver the synchronizer tries to identify the insertion positions in the received data.
In communications engineering markers are typically used to distinguish the borders of
data frames. The engineering aspects of marker synchronization shall be studied in detail
in this chapter. After defining the synchronization model in Section 6.1 suitable likelihood
functions for marker detection will be derived in Section 6.2. In Section 6.3 techniques
to study the synchronization performance of different markers of the same length will be
developed. The sequence specific binding taking place on the molecular level is compa-
rable to marker synchronization. The analysis presented in this chapter will account for
the specific aspects of molecular marker synchronization, such that the derived models
can be applied to study actual binding sites in Chapter 7.

6.1 Synchronization Model

The original data stream with embedded syncwords is transmitted over a noisy channel.
At the receiver the synchronizer searches for the positions in the received data stream,
where the syncwords have originally been embedded. It is assumed that symbolwise
synchronization has already been established and that the syncwords have a fixed length L.
Using the received data stream gy, the syncword detector evaluates a suitable likelihood
function L(u) for each position p in y describing the likelihood that p corresponds to
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Figure 6.1: Synchronization model: (top) transmission model, (bottom) detection strate-
gies: A) threshold synchronizer, B) maximization synchronizer

the insertion point of a syncword in the original transmitted sequence. In general, two
basic types of marker synchronizers are used depending on whether information about the
distribution of syncword insertion positions in the data stream is available at the receiver
or not. The two types are described in the following and depicted in Figure 6.1.

6.1.1 Threshold Synchronizer

If the distribution of syncword insertion positions in the data stream is unknown, the syn-
chronizer has to rely on threshold based detection. A position p is declared to correspond
to a syncword insertion point if L(u) > A, see Figure 6.1 A). The choice of a suitable
threshold value A will be discussed later in the context of optimal likelihood functions
derived in Section 6.2. In Chapter 7, it will be shown that marker synchronization at the
molecular level in the cell closely resembles threshold based synchronization.

6.1.2 Maximization Synchronizer

If the syncwords are inserted periodically into the data stream, which is often the case in
applications from communications engineering, the success rate of the synchronizer can
be significantly improved using a maximization based detection strategy. Assuming that
syncwords of length L are inserted every K data symbols, the synchronizer knows that
the syncword has been inserted at exactly one position in a received window of length
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L + K. Therefore, it evaluates the likelihood function for all possible insertion positions
p=1...L+ K in a received window and declares ji = argmax,(L(¢)) maximizing the
likelihood function to be the most likely syncword insertion position, see Figure 6.1 B). In
its simplest version the synchronizer does this for a single block of length L 4+ K. Further
improvement can be achieved by combining predictions from several consecutive blocks.
Another possibility is to pass a list of likely candidates to higher processing stages like the
channel decoder as suggested in [Rob95]. In this manner, a priori knowledge about the
channel encoded data frames can be used to improve the synchronization performance. A
maximization synchronizer can also be used if the syncwords were inserted aperiodically
according to a known distribution and if the position of the preceding syncword has
already been successfully established [KB04].

6.2 Likelihood Functions for Marker Synchronization

The optimal likelihood function and suitable approximations thereof for the standard
model assuming binary phase shift keying (BPSK) modulation, AWGN channel and sym-
bolwise IUD data frames, were first introduced by Massey in [Mas72]. Herein a general
optimal LLR based likelihood function suitable for both threshold and maximization based
synchronization will be derived. It will be shown that using a single fixed syncword is
optimal and that in this case the LLR is equivalent to the mutual self-information between
the received sequence at a position and the syncword. The derived LLR will be adapted
to the standard model and shown to be proportional and thus equivalent to Massey’s pro-
posal. Suitable approximations of the self-information based likelihood function will be
proposed for low and high signal to noise ratio (SNR) and compared to the approximations
proposed by Massey. The proposed low SNR approximation will be shown to be superior.
In order, to be able to account for the particularities of the synchronization mechanism
observed in genetics the derived LLR will be adapted to the discrete memoryless case and
the evolutionary substitution channel models.

6.2.1 Optimal General Log Likelihood Ratio Function

Given the received sequence vy, the optimal estimation function for the starting position
u of the syncword is the a-posteriori probability p(u|y) as used by the MAP estimator.
However, it simplifies to the ML estimation function p(y|u), since each position p is
assumed to be equally likely

Larap(p) = p(ply) = p(ylp) P(p) o< Larr(p) = p(ylp). (6.1)
In the following, the optimal likelihood function Ly, (1) = p(y|p) shall be simplified.
Assume a received window y = (y1...yry+x) of size L + K with one syncword insertion

of a marker pattern of length L, see Figure 6.1. For a time-invariant memoryless channel
and IID data symbols

L+K

L) = 3 [ pWurials)P(s) - [] 32 ppeisld) P(a), (6.2)

s =1 i=L+1 d
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Figure 6.2: Optimal Synchronizer for IID data.

where s corresponds to a possible marker pattern (syncword), P(s) is the probability that
the marker s is used at the transmitter, d is a data symbol and P(d) is the data symbol
distribution. Note that for different positions p in the received window y the likelihood
function is evaluated in a tailbiting fashion ¥; = ¥; mod (1+K), Vi. Thus, in order to greatly
simplify the expression we can divide by the u independent constant term

L+K

1> plwld)Pa). (6.3)

i=1 Vd
The logarithm of the resulting expression is the following LLR

L

Y 1Ip@urials)P(s)

Lypr(p) = log == . (6.4)
H > pWuria|d)P(d)

It is dependent only on (y,...Yu+r—1) = r(p), the portion of the received sequence y
tested against the assumption to correspond to the originally embedded syncword se-
quence. Thus, the optimal detector can compute (6.4) using only a window of the size of
the syncword L containing r(u) as depicted in Figure 6.2. For a communications system
this means that the computation of the likelihood function can start in a sliding window
fashion already after receiving the first L symbols. For the molecular synchronization
system this means that a detector molecule stretching only around the syncword can op-
erate optimally. In order to simplify the notation, in the remaining part of this section,
the dependency of the likelihood function from the position p will be implicitly assumed
but notationally omitted, i.e. 7(u) ~ r and Lppr(p) ~ Lprg. The derived likelihood
function Ly g is in fact a LLR of the null hypothesis H, that the observation r originates
from the transmission of a syncword and the alternative hypothesis H; that it originates
from a transmission of the data portion of the frames

(6.5)
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The likelihood function Ly ;g is optimal for both threshold and maximization synchronizer
under the assumption that the source of data frames is IID, the channel time-invariant
and memoryless. For the threshold based synchronizer the threshold A is chosen according
to the Neyman-Pearson criterion in (2.17) by fixing the probability of falsely rejecting the
null hypothesis H, that the observation r originates from a syncword insertion. Ly can
be interpreted as the weight of evidence for H, over H;.

Thus, the Kullback-Leibler distance

Zp(’r|s)P s

D(P(R|H,)||P(RIH:)) /Zp r[8)P(s) log —* ir. (6.6)

H ZP(WW)P d

where R denotes the random variable corresponding to the received sequence r, can
be used to measure the mean information per sample for discriminating in favour of
hypothesis H, that r originates from a syncword transmission against the hypothesis H;
that it originates from the data transmission. Since the conditional channel PDF and
the data symbol distribution would typically be predetermined in the synchronization
system to be designed, the only free system parameter is the syncword use distribution
P(s) at the transmitter. Optimal choice for P(s) is one that maximizes the discrimination
information D(P(R|Ho)||P(R|H1)). In fact, for [IUD data the discrimination information
is maximized when any single syncword is permanently used at the transmitter. In case
of IID data, the least likely single syncword according to the data symbol distribution
achieves the maximum. When using a single syncword, the optimal likelihood function
becomes:

L
Hp(ri|8i) L p(rilsi)
LLLRzlog T =1 :ZlOg v

HZp(n\d)P(d) =1 depmd)p(d)

1 rl|s) 1 rl, i)
zzl ° Zp rild) P zzl % po(ri) Po(s:)
d

Z (si;mi) = 1(s;7), (6.7)

where I(s;7) is the mutual self-information between the syncword s and the received
sequence 1, whereas r is assumed to be a received realization of the IID data process, see
also Section 2.2.1.
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6.2.2 Likelihood Function for AWGN Channel

The standard model used in the literature in the context of marker synchronization as-
sumes the use of a fixed single syncword and IUD distributed data frames. The transmis-
sion follows over an AWGN channel y = = + n using BPSK modulation = € {+1}. Thus,
the channel distribution function is Gaussian py|x(y|z) = N (z, 0?) with o* = QNTOSv where
y is the normalized output of the matched filter, E the average transmission power per
symbol, and % the two sided power spectral density of the white noise.

Inserting the Gaussian distribution function from (2.10) into (6.7) and simplifying the
expression results in:

risi/o?

e

L
L = 1 .
LLR Zzl og Z e”d/"QP(d)

(6.8)

d
Assuming that the data symbols are IUD and using cosh(z) = (e” + e~%)/2 leads to

L L
1 i
Liip= = E r;S; — E In cosh (%) ) (6.9)
1 i=1

1=

Massey’s Rule

Note that the Lyr in (6.9) derived for the standard model is proportional and thus
equivalent to the optimal likelihood function L, proposed by Massey [Mas72]:

L L
L= risi—o®Y Incosh (%) = Lo, (6.10)
=1 i=1

where the first term corresponds to the so called soft-correlation rule L,o. Alternatively
to the soft-correlation, the so called hard-correlation rule L,c can be used

L L
Ly = Z TS, Lyc = Z sign (1) s;. (6.11)
i=1 i=1

Approximations of Massey’s Rule

In order to simplify the optimal rule, Massey has proposed to approximate cosh(x) =
ell/2 - 2 > 1 for large SNR (E,/N,) and In(cosh(x)) ~ 22/2 : # < 1 for low SNR. This
results in

L L
Ly =Y risi = ) Inil for high SNR, (6.12)
i=1 =1

L L

7 low 1
Liow = Znsi ~ 52 er for low SNR. (6.13)

=1 i=1
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Conditional Self-Information

In Section 6.2.1 it has been argued that the use of a single fixed syncword for marker
synchronization is optimal. In (6.7) the optimal likelihood function for this case has been
shown to be equivalent to the mutual self-information /(s; r) between the fixed syncword s
and the received sequence 7. Since, I(s;r) = H(s)—H(s|r) and H(s) is independent of y,
the likelihood function Ly ;r can be simplified using only the conditional self-information

Ly =—H(slr) ==Y H(si|r). (6.14)

i=1

The value of Ly can be interpreted as the negative uncertainty (in bits if log = 1d)
about the syncword s given the received sequence r at position p in the received data
stream. In the context of EXIT chart analysis it has been shown [TH02, Hag04] that for
BPSK modulated transmission over an AWGN channel, as used in the standard model,
the conditional entropy can be computed in a simple way, namely as

H(X|Y) = E{log(1 + e~ *Exir@yy, (6.15)

where (] 0 P 0 5

p(yle = + r=+
L =In|—F——= In(—=——1]=—=y+ Lx. 6.16
avteln =i (BEE=T) i (BT ) = b i 019
Lx
Thus, (6.14) becomes:
L

Ly =— Zlog(l + 6—5,’(27",’/02_LD))’ (6.17)

i=1
where Lp is the log-likelihood of the IID data symbols. The likelihood function Ly is
simpler to compute than the one introduced by Massey (6.10) and it is not limited to
IUD data sources. However, assuming [UD data further simplification is possible:

L

Ly =~ log(1+e /o), (6.18)

i=1

Approximations of Conditional Self-Information

It is possible to approximate (6.18) in several different ways. For high SNR the max-log
approximation log(z + y) = log(max(z,y)) : ||z — y|| > 0 is suitable leading to

L
Lhih — _ Z (max(0, —rys;)) = L9, (6.19)

i=1
This approximation is identical to Massey’s high SNR rule in (6.12). Analogously, only
terms where sign (r;) # sign (s;) contribute to the computation. A suitable approximation
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syncword: 0001011 data frame length: 21
100 T T T T T T T T

— Lo - low SNR
— Lsc - soft correlation
— Ljc - hard correlation
—@’;jgh, L9 - high SNR
- -LlI_'}’“ - low SNR

LLLR7 LM, LH - optimal

1071

Simulated probability of synchronization error

SNR (E,/Ny) in dB

Figure 6.3: Synchronization performance of different likelihood functions. Detector:
maximization synchronizer, Syncword: 0001011, Data frame length K = 21, Iterations:
3-10°

for low SNR is achieved using the series expansion In(1 +z) =z : -1 <z <1

L

zgw _ _ Z 6—27’1'51'/‘72’ (6.20)

i=1

At this point, it can be asked whether this approximation is better than the low SNR
approximation by Massey in (6.13). Indeed, this new approximation should be superior,
since it can be transformed into an approximation proportional to (6.13) by further Taylor
expansion e® ~ (1 + x + 22 /2)

L
Elﬁw = Z(QTZ‘SZ‘/O'Q — (27’2‘82‘/0'2)2> X El]\‘}w. (621)

i=1

In order to assess the performance of the derived likelihood functions simulations for the
standard model have been performed. Figure 6.3 depicts the synchronization performance
for the maximization synchronizer. Monte Carlo simulations were performed in order to
determine the synchronization error probability. The sequence 0001011 of length L =7
was chosen as syncword. The data frames length was set to K = 21 and the simulation
was performed using 3 - 10® iterations.

It can be seen that the self-information based approximation of the optimum likelihood
function LY® performs close to the optimum and outperforms all other approximations for
the chosen SNR range, even for high SNR values. The low SNR approximation rule L
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cannot be recommended since its performance degrades rapidly with increasing SNR.
The plot also signifies the great improvement provided by Massey’s optimal likelihood
function L), as opposed to the soft-correlation rule Lyo used prior to Massey’s proposal.
It also shows that for high SNR values the hard-correlation rule Lo outperforms the
soft-correlation.

6.2.3 Likelihood Functions for Discrete Memoryless Channels

A DMC channel is fully characterized by a transition probability matrix, see Section 2.2.3.
Thus, the L function in (6.7) can be evaluated as

T’Z S;

ZP r;|d) P

In case of IUD data the denominator term can be neglected. A special case of the DMC
is the BSC. The use of hard decisions in the standard model is actually equivalent to the
transmission over a binary symmetric channel with error probability p = % erfc(y/Es/No).
Thus,

f1=p ifry=s
Assuming [UD data symbols and adding L log(p) to (6.22) we get the likelihood function:
1—
LBSC = Z lOg p (624)
Vie{1,...L}\ p
which is equivalent to:
| —du(s,r) if0<p<0.5
Lasc = { dp(s,r) if05<p<1 "~ (6.25)

The term dj, (s, r) is the Hamming distance (number of mismatches) between the syncword
s and the received sequence r. This is equivalent to the hard-correlation rule Ly¢ in (6.11)
for the usual transmission error probability range 0 < p < 0.5.

6.2.4 Likelihood Functions for Substitution Channel Models

In the following the optimal likelihood function shall be adapted to the evolutionary sub-
stitution channel models studied in Section 3.7.1. The substitution channel models are
an instance of DMC channels. The channel transition probability matrices are computed
according to (3.3) using the corresponding rate matrices. The substitution process is a
continuous time Markov process with the stationary distribution 7 corresponding to the
background distribution of the genome 7 = (m,,me, 7, 7). In the context of marker
synchronization 7 corresponds to the IID data symbol distribution Pp. The stationary
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behaviour of the data symbol distribution with respect to the channel allows to further
simplify the optimal likelihood function for DMC in (6.22). Thus, for the general substi-
tution channel model GTR, see Section 3.7.1

—  P(ris)
Lorr = Y log ) (6.26)
=1

For the symmetric K2P and JC channels that presume TUD stationary distribution further
simplification is possible

L
Liap = Y _log P(ry]s;). (6.27)

i=1

In case of the JC channel the mutation probability is identical for all possible substitutions.
Let p denote the probability that a mutation has occurred, then

| 1—=p if r; = s; no mutation
P(rils:) = { p/3  if r; # s; substitution - (6.28)

Following an analogous argumentation as for the BSC channel we get

;o —du(s,r) if0<p<3/4
foe = { du(s,r) #3/4<p<l’ (6.29)

where the term dj(s, ) is the Hamming distance. Note that for the JC channel model the
probability that no mutation occurs is always higher than the probability of a substitution.
Therefore, 0 < p < 3/4 and we can simplify to

LJC = —dh(S, 'r). (630)

6.3 Marker Performance and Syncword Choice

In the following, the question of choosing a good syncword shall be investigated. As shown
in Section 6.2.1 with respect to the optimal likelihood function any single syncword pattern
performs equally well for IUD data. However, even for noiseless transmission and IUD
data different patterns of the same length are not equally likely to be spuriously emulated
in a received window of finite size.

Example: Consider noiseless transmission of the all zero syncword 0000000 of length
L = 7 in binary IUD data. The marker pattern can be spuriously emulated at any
position in the received window apart from the insertion point. However, the pattern
0001011 cannot be emulated at positions overlapping with the syncword. Apparently, the
self-overlap property of the syncword plays an important role. *

In the following a method for the quantitative analysis of the synchronization properties of
different syncword patterns shall be derived. In the context of quantitative syncword per-
formance analysis it is important to consider the synchronization scheme and distinguish
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L | rw ]

r(p+1) = L(p) and L(u + 1)
are dependent
fori=1...L—1

r(p+ L)

Figure 6.4: The likelihood function L(u) exhibits dependencies for neighbouring posi-
tions p due to overlap of received sequences r in detector window for neighbouring .

between threshold and maximization based synchronization. The syncword optimization
problem will be defined as finding the syncword § for which the probability psync(s) of
correctly recognizing the insertion position of the syncword in the received data stream is
maximized. Note that from now on, in order to simplify further notation, the dependency
of psync(s) from the syncword s will be always assumed, but not explicitly stated unless
necessary Psync(S) ~» Dsyne. The probability psy,. is the probability that the position ji de-
clared to be a syncword by the synchronizer corresponds to an actual syncword insertion
position pgy, see also Figure 6.1

§ = arg max (Psync) = arg max (p(f = psw)) , (6.31)

Computing the exact value of pgyn. for given synchronization parameters and model is a
non-trivial task due to the dependencies of the value of L(u) for neighbouring positions
p. The likelihood value L(u) shows dependencies on its L — 1 neighbours. The reason is
that the received values » = (y, ... Yu+1-1), used by the detector for the computation of
L(p) as shown in (6.4), are partially also used for computing L(p +¢) fori=1... L —1,
see Figure 6.4. Surprisingly, these dependencies are commonly neglected in the literature.

In the following, the focus will be placed on threshold synchronization in the context of
transmission over discrete memoryless channels, since this scenario is the most relevant
one for applications in molecular biology. Herein a recursive expression for exact compu-
tation of pgyn. Will be derived for this scenario and compared to pgy,. computed under the
assumption of independent L(u) and commonly used in the literature. It will be shown
that neglecting the dependencies can lead to quite inaccurate estimates of the synchro-
nization performance. For scenarios, where the computation of exact psy,. is not feasible,
a qualitative answer to the question of optimal syncword selection will be attempted. The
maximization based synchronization will be treated by providing a literature overview on
different commonly used syncword selection criteria.

6.3.1 Threshold Based Synchronization

The threshold based synchronizer evaluates the likelihood function L(u) over the received
data stream using a sliding window of size L. It declares the first position where L(p) > A
to be the syncword insertion position. Let k denote the starting offset of the the search
from the actual syncword insertion position gy, see Figure 6.5, and pgy,.(k) denote the
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Figure 6.5: Threshold based syncword search. The search is started k steps ahead of
the actual syncword insertion point gy .

probability of successful synchronization when starting the search at offset k

The overall synchronization success probability pgyn. is the average synchronization prob-
ability of the synchronizer for the different starting offsets k. Thus, it depends on the
probability distribution p(k) of the starting offsets k

Psync = Zpsyn(:(k)p(k) (633)

In the following, a novel recursive formula for the computation of the exact synchronization
probability psyn.(k) for noiseless and noisy transmission will be derived and used to identify
optimal syncwords. The results will be compared to the classical approach assuming
independence of the observations L(u). Under this assumption an inexact synchronization
probability psync(k) is computed as

Pagne(k) = [ [ P (L(usw — i) < X) - p(L(psw) = A) = [[ (@ = prar(d) - prar(0) ~ (6.34)

i=1 i=1

where ppit(i) = p(L(usw — i) > A) is the probability that position pgy — i is considered
a syncword insertion position by the threshold synchronizer (a hit is claimed by the
synchronizer at psy — 7).

Noiseless Transmission

For noiseless transmission the synchronizer would only declare synchronization at p if the
pattern observed in the detector window 7 (1) is identical to the syncword s.

In [Nie73a] it has been proven that the expected distance d in sliding window steps to the
first occurrence of pattern s in a semi-infinite IUD distributed random data stream from
alphabet A depends on the pattern length L and its self-overlap structure

L
E{d} =Y hWAl'~ L, (6.35)
=0

where ), 0 < i < L are the so-called bifix! indicators of the pattern describing its

!The term bifix introduced was originally coined by J. Massey, see [Nie73a]
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self-overlap structure
' 1 ifi=0
h(l) = 1 if (81 .S ) (SL i+1 - SL) Vi=0...L . (636)
0 if (s1...8;) # (Sp—iy1---5L)

Per definition h®) = h(® = 1. In order to simplify the notation, let i denote the decimal
representation of the pattern specific bifices (R~1 ... h(1). For sequences without any
self-overlap (also referred to as bifix-free) h = 0. In general, 0 < h < 2571 — 1. Loosely
speaking, h is an indicator of the degree of the syncword’s self-overlap.

Example:

s = 00101 — (R7D A1) =(0,0,0,0) — h=0
s = 00010 — (hL7Y Ay =(0,0,0,1) — h=1
s =00000 — (hEV . pWy=(1,1,1,1) — h=1

In [BD95] it was found that the probability density function p(d) of the distance to the
first occurrence of the pattern s can be computed recursively as

n(L,d
Z (REA=DR0=0 g0y p(d — 1), p(0) = rP), (6.37)

where ) = p(s;...s;) is the probability of occurrence of the pattern prefix (s ...s;) in
the data and r(® = 1 per definition. Obviously, for IUD symbols ) = 1/|A|',¥s. The
generalization to IID distributed data streams was introduced in [BSV05]%.

Example: Assuming binary IID data where p(0) =g and p(1) =1—qg=1p

s =010 = (@ O @ @) = (1 q,pq, pg®)
5§ =100 — (r©@ +O @ Oy = (1, p,pq, pg?)

Since, p(d) is a PMF Y 77 p(d) = 1. Additionally, from the recursive definition follows
that p(d) is a monotonically decreasing function, i.e. p(d — 1) > p(d).

The probability psyn.(k) of first observing the syncword after sliding & steps is very similar
to the search for the syncword pattern in random data. The difference is that the syncword
has been embedded into the random data stream at the position with a fixed probability
of one. Thus, the recursive definition in (6.37) can be used to recursively compute pgyn.(k)
by adjusting the initial probability of the recursion

n(L,k
psync Z h(L+1 Dy — Ay )psym(k - l), psyHC(O) =1 (6-38)

This simply corresponds to a scaling of the PMF in (6.37) by a factor of 1/7(*). The reader
is referred to Appendix B.2 for a derivation and intuitive explanation of Equation (6.38).

2Note that r(!) was mistakenly defined as the probability of the suffix tail (s;,_;11...s7) in [BSV05]
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Syncword performance (different bifices): L = 5, IUD data, noiseless
1 T T T T T T T T T

Synchronization success probability

0 5 10 15 20 25 30 35 40 45 50
k - Starting offset of search

Figure 6.6: Exact psy,.(k) and approximated pgyn.(k) probability of successful synchro-
nization if starting k& symbols ahead of the syncword insertion point (syncword length
L =5, IUD data, noiseless channel).

Figure 6.6 depicts psync(k) for syncwords of length L = 5 with different bifix patterns
h. The data symbols are assumed to be IUD. Thus, all syncwords with the same bifix
pattern perform equally well. The dotted lines represent the approximation pPgy,.(k)
in (6.34) assuming independent L(x). Note that py (i) in (6.34) equals to

. hE=0p@ if § < I
phit(l) = .

L)
The results imply that the approximation pgyn.(k) overestimates the actual synchroniza-
tion performance pgy,.(k) for sequences with a small degree of self-overlap h and under-
estimates the performance for sequences with a large self-overlap. For small values of k
bifix-free sequences have a higher probability to be correctly detected. For high values of
k self-overlapping sequences perform better.

(6.39)

r( else

In the following, the overall synchronization success probability pg,n. shall be assessed for
different syncwords. As shown in (6.33), psync depends on the distribution p(k) of the
search starting offsets k. Assume a fixed data frame length K and that each syncword
search is started randomly at any 0 < k < K. Thus, p(k) is equally distributed p(k) =
1/(K+1),0 <k < K. The overall synchronization success probability in (6.33) becomes

K
1
sync — E sncku 6.4
py K+1k:0py () ( O)
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and the best syncword is one that maximizes

K

§ = argmax (Psyne) = arg maXZpsync(k:). (6.41)
k=0

In the following it shall be proven that for IUD data any bifix-free syncword h = 0 is the
best and maximizes (6.41). Equation (6.35) implies that the probability of not observing
a pattern after sliding for K steps in IUD data is the lowest for bifix-free patterns and
increases with h. In other words, 1 — 5% o p(d|sp—o) < 1 =357 . p(d|Shs0). Thus,

Zfliop(d\sh:o) > Efl(zop(d\sbo) and because p(d) is proportional to psyn.(k)

K
Zpsync k|3h 0 Z Zpsync k:|3h>0 (642)
k=0 k=0

Together with (6.41), this proves that for noiseless transmission of IUD data and equally
likely 0 < k£ < K the bifix-free syncwords are optimal for threshold based synchronization
independently of how large K is, even though the advantage diminishes for large values
of K. Since pgyn(k) is monotonically decreasing this result can be extended to all mono-
tonically decreasing search start distributions p(k). If the data is IID distributed, one
would expect the bifix-free syncword which is least likely to be emulated in the data to
be the best syncword choice. For noiseless transmission this would be a pattern of the
form BA... A, where A is the least and B is the second least likely symbol.

Figure 6.7 depicts pgyn. for syncwords of length L = 5 with different bifix patterns h. It
confirms that bifix-free syncwords s,—g perform best independently of K and that the
performance decreases with increasing bifix pattern indicator h. The plot demonstrates
the importance of choosing a good syncword, compare the performance of bifix-free sync-
words sj,—¢ to the maximum overlapping syncwords s,—;5. The approximation pgy,. as-
suming independent L(p) overestimates the true psy,. for syncwords with a small degree
of self-overlap and greatly underestimates the true performance in case of a high degree
of self-overlap.

Discrete Noisy Channels

In case of transmission over discrete noisy channels the threshold synchronizer recognizes
all patterns &’ = {s] ... sy} for which the likelihood function L(s’) > A.

In [BSV05] the PDF of the search for the first occurrence of a single pattern (6.37) in IID
data has been generalized to the search for the first occurrence of any pattern from a set
of patterns

psi(d) = Z psi(d, sh), (6.43)

where pg/(d, s}) refers to the probability that pattern s} is the first pattern from &’ found
at position d in the semi-infinite IID data stream. This probability can be expressed
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Syncword performance (different bifices): L = 5, IUD data, noiseless
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Figure 6.7: Overall exact pgyn. and approximated ps,,. probability of successful synchro-
nization as a function of data frame length K assuming that the actual starting offsets
k < K are equally likely (syncword length L = 5, IUD data, noiseless channel).

recursively

min(L,d)

N
po(d ) =3 S0 (W < D) pe(d— 1) pe(0,5) =1,

j=1 I=1

(6.44)
where r is the probability that the suffix of length [ of the pattern s} appears in the
data frame as introduced in (6.37). The factors hji with j,7 € {1...L} are the so-called
cross-bifix indicators indicating whether the suffix of s’ and the prefix of s}, both of length

[, are identical. By definition hg»?) =1,Vy,1.

Example: Let &' = {s] = 010, s}, = 100}, then

_{hi hag| | (3) 1o @2 _ |0 1 m_ |10 o _ |11
h_[h21h22}. § 01h_007h_107h_11(6.45)

*

In the following a modified version of this recursive formula shall be used in the computa-
tion of psync(k) for the threshold based synchronization model over discrete channels. Let
s denote the originally used syncword and &’ = {s/...sy} be the set of all patterns of
length L believed to originate from s by the threshold synchronizer s’ € &’ iff L(s") > A.
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Given the transition probability matrix of the DMC, the probabilities p(s;|s) that the
original syncword s is received as s can be directly calculated. Thus, the synchroniza-
tion success probability psy..(k) can be expressed as

Poyne(k) = Y psr(k, 8})p(si]s), (6.46)

sieS!

where ps/(k,s}) is the probability that the first pattern from S’ closest to the actual
syncword insertion point is s; and is situated k positions away from the actual insertion
point. In analogy to the approach used in the previous section for the noiseless case,
the recursion in (6.44) can be adjusted for the recursive computation of the probability
ps(k, s;) by setting the initial probability to one ps/(0, sj) = 1,Vs; € &'

N min(L,k)

ps(k Z Z ( (L+1-1D) fl h(Ll l)>ps,(]<;—l,s;-) ps(0,85) = 1,Vj.
Jj=

(6.47)
The suffix probabilities r§l) must be computed according to the PMF of the IID data after
transmission.

Again, the exact synchronization performance pg,,. shall be compared to the approxima-
tion Psyn. computed under the assumption of independence of L(y). For the noisy case
the probability ppi(l) in (6.34) becomes

Prit(l) = thzt(l |si)p(sils), (6.48)

where pp;i(1]s}) is the probability of observing any pattern from S’ exactly [ symbols
ahead of the syncword insertion point, given that the originally embedded syncword was
received as s

Ry i< L

N
Z i J

prar(lls}) = < 73 : (6.49)
>

else

In the following, simulation results for the standard model assuming IUD data sym-
bols, a BSC channel and equally distributed k& < K, see (6.40), shall be presented and
discussed. For the BSC the likelihood function is the negative Hamming distance be-
tween the received pattern and the syncword, see (6.25). The threshold of detection
A = —d;"** is thus equivalent to minus the maximum tolerable Hamming distance. Thus,

={s':dy(s,s) < d*} and the probability p(s}|s) can be computed as
p(sils) = p™ ) (1 — p)fmtleis), (6.50)

(2

where p is the symbol error probability of the BSC.
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Best syncwords: L =7, IUD data, BSC p = 0.1, d}"** =1
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Figure 6.8: Performance comparison of the best syncwords according the exact psy,. and
approximated pgy,. synchronization probability (syncword length L = 7, IUD data, BSC
p=0.1, d"** = 1). The approximation pgy,. fails to recognize the best syncwords.

Figure 6.8 shows the overall synchronization success probability for syncwords s that
perform best for at least one K. IUD data and transmission over a BSC with error
probability p = 0.1 was assumed. The syncword length was set to L = 7 and the detection
threshold was set according to the maximum tolerable Hamming distance dj'** = 1. The
full lines represent the performance of the best syncwords according to the exact pgync
synchronization success probability and the dotted line represents the best syncwords
according to the approximation pgy,. assuming independent L(u). It can be seen that
the optimal syncword depends on K and is not necessarily bifix-free. The plot also
demonstrates that ps,,. is not optimal for choosing the best syncword. According to
Psyne the syncwords s(,—gy € {0001101,0100111, 1011000, 1110010} would erroneously be
considered optimal for any K in the plotted range. From now on, we will restrain to using
the exact formula for pgy,. in order to determine optimal syncwords.

In Figure 6.8 the maximum Hamming distance was fixed. However, the choice of proper
d"* also depends on the parameter K. For example, for d}"** = 0 the set &’ = {s] = s}
contains only the original syncword. The probability that the transmitted syncword
s remains unchanged is relatively low causing bad performance for small K compared
to dj'*® > 0. However, the probability of emulation of a pattern recognized by the
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Best syncwords: L =7, IUD data, BSC p = 0.1, d;*** = {0,1}
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Figure 6.9: Performance comparison of the best syncwords obtained using different
thresholds dj"** = {0,1} (syncword length L = 7, IUD data, BSC p =0.1).

synchronizer in the received data is higher for d;*** > 0. As a result d;'** = 0 outperforms
dp®® > 0 for larger K. Thus, the choice of best d}'* as well as the syncword s depends on
K. Figure 6.9 depicts the synchronization success probability pgy,. for the best syncwords
of length L = 7 and for d;"** = {0,1}. In comparison to Figure 6.8 the combination
of (dp*® = 1,84-1) € {0111110,1000001}) is outperformed by (dj'*® = 0,¥S(p—0)) for
K > 30. For 13 < K < 30 (d* = 1,s4—0 € {0001011,0010111,1101000,1110100})
should be used and for K < 13 (d}"** = 1,s,—0 € {0001101,0100111,1011000,1110010}).
However, K < 13 is unlikely to be used in a real system due to the amount of bits used
for the syncword vs. for the data.

Note that the syncwords claimed to perform equally well are actually flipped realizations
of each other in terms of flipping the bits and flipping the patterns from left to right.
Consequently, all have the same bifix pattern h. For BSC and IUD data such flipped
realizations are expected to perform equally well. This notion can be used to reduce the
set of all |A|X syncwords that need to be compared in order to find the best performer.
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6.3.2 Maximization Based Synchronization

The maximization based synchronizer evaluates the likelihood function L(u) for each
position in the received window (y; ...yr4+x) of length L+ K Positions ft = arg max,, L(u)
are potential syncwords. If several candidates are found, which is often the case for discrete
channels, the synchronizer chooses randomly one of the candidates as [

r . .
Pogne(8) = Y |ﬂ|p(#), fr=argmaxLip), Vu=1...L + K, (6.51)
Vipsw Ep

where |f1] refers to the cardinality of the set fi. In order to compute pgyn.(s) the prob-
abilities of all possible sets g for which pugy € f have to be determined, which can be
done for the noiseless case, but turns out to be infeasible for noisy channels.

Noiseless Transmission

For maximization based synchronization and noiseless transmission, the syncword opti-
mization problem simplifies to finding syncwords s of length L that are least likely to
appear at any position in the transmitted frames. This is obviously the case for the so
called bifix-free syncwords whose prefix and suffix of any length do not overlap. Bifix-
freedom of syncwords guarantees that all emulated syncword realizations in the data are
non-overlapping with each other and thus independent. Additionally, the emulated copies
do not overlap with the actual syncword. Thus, no more than || < | K/L| copies of the
syncword can be found in the data portion of the frame. These emulated copies are the
sole source of error. The synchronization success probability for bifix-free syncwords sj,—
can be calculated. For IUD data this has been accomplished using combinatorics [Nie73b]

(-1 <K —(L- 1)1') A (6.52)

141 l

LK/L]

psync<3h20> =1~ Z

where | A| refers to the cardinality of the used alphabet. In [Rob95] it has been pointed
out that increasing L has a large positive impact on performance, while increasing K
degrades the performance only slightly for moderate and large K. In case the syncwords
are self-overlapping sp~¢ (not bifix-free) the exact synchronization success probability
Dsync(Sn>0) cannot be easily computed due to the dependencies between possible overlap-
ping syncword instances. However, since in addition to the equally likely non-overlapping
syncword emulation, self-overlapping emulation can occur for not bifix-free sequences,
they will qualitatively perform worse psync(Sn>0) > Psync(Sn—o). For IUD data all bifix-
free syncwords perform equally good. The result can be extended to IID data. Again,
the bifix-free pattern that is least likely to occur in the IID data can be expected to be
the best syncword choice. It is going to be of the form A ... AB, where A is the least and
B the second least likely symbol.

Having proven that for noiseless transmission bifix-free syncwords are optimal for thresh-
old and maximization based synchronization, one could ask how many bifix-free syncwords
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Figure 6.10: Ratio of bifix-free sequences of length L from Alphabet A.

of certain length N (L) actually exist for a given alphabet A. In [GMS02] a recursive for-
mula was derived for the binary alphabet. The extension to higher order alphabets is
straight forward and leads to

|Al ifL=1
N(L)=1<¢ |A|-N(L—-1)—N(L/2) if L even . (6.53)
|A|l-N(L—-1) else

The ratio of bifix free sequences converges quickly against a fixed value as shown in
Figure 6.10.

Noisy Channel

For noisy channels computing the synchronization success probability psyn.(s) precisely
becomes intractable for the maximization based synchronization. This is also the case
for discrete channels including the simple BSC channel. In the literature the question of
syncword choice for maximization based synchronization is typically addressed under the
assumption of independent L(u), which allows to reduce the problem to finding the sync-
word maximizing some function related to the synchronization success probability in the
portion where data and syncword overlap. Usually, the side lobes of the autocorrelation
function (ACF) R are combined with a min-max or min-average method to select the
best candidate. Barker has proposed the use of syncwords with autocorrelation side lobes
of magnitude smaller than one |Rs(p)| < 1,Vu : 1 < p < L — 1 in his pioneering work
from 1953 [Bar53]. They exist only for lengths L = 2,3,4,5,7,11, 13 and are particularly
suitable for noisy channels with phase ambiguities, which can occur when using modula-
tion schemes such as BPSK. The term phase ambiguity refers to the fact that the receiver
cannot differentiate between the possible mappings of the original symbols to the received
sequence (e.g the receiver cannot distinguish between 00101 and 11010). Barker’s findings
were extended to sequences of other lengths using a min-average rule on the side lobes of
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the ACF |Rg4| in [Wil62, MS64]. A min-max rule was used in [Boe67]. In 1971, Neuman
and Hoffman noticed that not only the amplitudes of the sidelobes of the ACF play an
important role, but also their exact position [NH71]. It can be shown, that this position
dependency is actually related to the degree of the bifices. In [Sch80] the approximate
synchronization success probability pgyn.(s) of threshold based synchronization under the
assumption of independent L(u) was used to search for good syncwords for maximization
synchronization®. In [LT87] the upper bound on pgy,.(s) for Gaussian channels assum-
ing independent L(u) was introduced. In [Rob95] the result was generalized to arbitrary
phase shift keying (PSK) modulation schemes and used to search for optimal syncwords
according to the bound. Possibly, as an extension of this work, the results presented
in [Sch80, LT87, Rob95] can be revised using the exact formula for pgy,.(s) introduced in
Section 6.3.

6.4 Summary

Marker synchronization in engineering has been studied in detail in this chapter. The
main motivation was that sequence specific binding on the molecular level shows strong
parallels to marker synchronization as will be detailed in Chapter 7. The derivations
and analysis were conducted such that the results are easily applicable to the biological
scenario.

In engineering marker synchronization refers to the recovery of insertion positions of short
sequence markers artificially introduced into the transmitted data stream to tag certain
positions, e.g. the borders of transmitted data frames. At the receiver the synchronizer
evaluates for each position in the received data stream a likelihood function conveying
the likelihood that the position is an actual marker insertion point. In this thesis a
general optimal likelihood function was derived. Under the assumption of a memoryless,
time-invariant channel and IID data the optimal likelihood function only depends on the
observation in a detection window of the size of the syncword and corresponds to the
LLR between the hypothesis that the observation originates from a syncword insertion
and the hypothesis that the observation was generated by the data. It has been shown
that using a single fixed marker as syncword at the transmitter is optimal and that the
LLR corresponds to the mutual self-information between the received sequence in the
detection window and the syncword.

An optimal likelihood function and approximations thereof for the standard model assum-
ing an AWGN channel, BPSK modulation and IUD data have been originally proposed
by Massey in [Mas72]. Equivalence between the derived LLR and Massey’s proposal has
been established. Using the self-information a new approximation to the optimal likeli-
hood function superior to the approximations proposed by Massey was derived. The LLR
was adapted to discrete channel models including the evolutionary substitution channel
models required for the analysis of the biological scenario.

3Please note that [Sch80] uses combinatorics based notation for psync(s) as opposed to the bifix notation
used throughout this work. In addition, psync($) is referred to as first-pass acquisition probability.
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Subsequently the question of assessing the synchronization performance of different
marker patterns has been addressed. Focus was placed on threshold based marker syn-
chronization over discrete memoryless channels since this setting closely resembles the
biological scenario. The threshold synchronizer declares synchronization for positions
where the likelihood function attains values above a certain threshold. The synchroniza-
tion performance was found to depend on the self-overlap pattern of the syncword with
itself. It was proven that for noiseless transmission and threshold based detection the
overlap-free syncwords are always optimal. For noisy transmission the synchronization
success probability depends in addition to the self-overlap also on the cross-overlap to all
other patterns recognized by the synchronizer. For the noisy case the choice of optimal
syncword cannot be answered in general, but depends on the SNR, the frame length and
the chosen threshold value.

The exact computation of the synchronization success probability is a difficult issue since
the values of the likelihood function are not independent for neighbouring positions.
Herein, a recursive formula for the exact computation of the synchronization success
probability has been derived and compared with the approximation assuming position-
wise independence of the likelihood values commonly used in the literature. It was found
that the approximation tends to greatly overestimate the synchronization performance
of syncwords with a small degree of self-overlap and underestimate the performance of
syncwords with a high degree of self-overlap. Additionally, the approximation was demon-
strated to be incapable to correctly determine the best syncword.






M arker Synchronization in
Genetics

In this chapter parallels between marker synchronization in engineering and genetics shall
be investigated. As described in Chapter 3, the genetic information is distributed all
over the genome. Often, sequence specific markers are used by the molecular machinery
to distinguish information carrying regions. Marker synchronization is utilized across
different layers of genetic information processing including transcription, translation and
splicing. Specific sequence markers are also used by regulatory proteins that need to bind
at specific binding sites in the genome. These sites are subject to evolutionary mutations
and the molecular machinery allows for a certain degree of variation in the recognized
sequence patterns. Binding site recognition strongly resembles threshold based marker
synchronization over a noisy channel.

In Section 7.1 established quantitative models for binding sites are presented and analysed
using an information theoretic framework. In particular, it is accounted for the limited
sample size of experimentally verified binding sites. Section 7.2 addresses the in silico
inference of novel putative binding sites from already known and verified ones. Paral-
lels to threshold based synchronization are established and an extension to the current
approach is proposed. In Section 7.3 current knowledge about the in vivo recognition
of binding sites by the molecular machinery is presented. Selected markers utilized in
prokaryotic transcription are studied in terms of their synchronization performance using
the framework derived in Chapter 7.
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7.1 Sequence Specific Binding

Sequence specific binding takes place in the DNA as well as the RNA domain. In general,
for RNA binding sites the sequence specific binding follows the same principle as the
complementary nucleotide base pairing, see Section 3.2.1. DNA binding sites are usually
directly bound by proteins and the binding mechanism is more complex. In the following,
the focus will be placed on protein DNA binding. However, the introduced quantitative
models are also applicable to RNA binding sites. In Section 7.1.1 the basic aspects of
protein DNA binding are briefly introduced. Established statistical binding site models
are discussed in Section 7.1.2 from an information theoretic point of view. Particular
focus is placed on the fact that the sample of actually experimentally verified sites is very
small for most proteins. A commonly used assumption is that the nucleotides in a binding
site contribute to the binding independently. In Section 7.1.3 mutual information is used
to study positionwise dependencies in binding sites.

7.1.1 Protein DNA Binding

The DNA binding proteins include transcription factors which modulate the process of
transcription, nucleases which cleave DNA molecules, and histones which are involved in
DNA packaging in the cell nucleus. The amino acid residues of a DNA binding protein
involved in the binding are commonly referred to as the binding domain. A protein’s
DNA binding domain is usually composed of a recognition and a stabilization region. The
recognition of DNA by the protein takes place at two levels. The non-specific binding
between the protein side-chains and the DNA sugar/phosphate backbone is responsible
for attaching to the DNA double helix and is independent of the nucleotide composition.
Sequence specific binding takes place between the protein side-chains and the nucleotide
bases. Sequence specificity is generally stronger in the portion of the DNA binding domain
attaching to the major groove of the DNA which relates to the fact that the base pairs
are more exposed in this region, see Section 3.2.1.

The DNA binding domains of different proteins can be characterized according to the
protein folding pattern they form. Three common DNA binding domains involved in
transcription regulation are the helix-turn-helix, the zinc finger, and the leucine zipper
domain depicted in Figure 7.1. It can be seen that the base specific interactions take place
primarily in the DNA major groove and are usually realized by the protein a-helices, see
also Section 3.2.3.

7.1.2 Binding Motifs

A set of aligned experimentally verified binding sites bound by the same protein in vivo
is commonly referred to as the binding motif. In the following, established description
models for binding motifs shall be presented and analysed.



7.1 Sequence Specific Binding 117

helix-turn-helix zinc finger leucine zipper

Figure 7.1: Common DNA binding domains. Depicted are the helix-turn-helix, the zinc
finger, and the leucine zipper domain. Modified from [Wik0§].

Consensus Sequence

The simplest description of a binding motif is the consensus sequence. The consensus
sequence assigns each column in the alignment a letter, which can be either the most
frequent nucleotide (majority vote) or a representative description of the group of nu-
cleotides observed, e.g. N for any nucleotide or R for purines. A consensus sequence allows
for easy visual comparisons. However, it is only a qualitative description of a binding
motif distorting the quantitative properties.

Position Frequency Matrix

A more accurate description of binding motifs is the position frequency matrix (PFM)
corresponding to a nucleotide frequency count for each column in the binding motif. A
normalized PFM approximates the positionwise PMF Px,(z),z € X,i = 1...L of the
binding motif, where L is the length of the motif and X = {A,C,G, T} is the nucleotide
alphabet. This description presumes positionwise independence in the binding motif. In
biological terms, the nucleotides are assumed to contribute to the binding independently.

Sequence Logo

An easily interpretable visualization of the PFMs are the sequence logos introduced
in [SS90]. A sequence logo depicts the nucleotides occurring in each column vertically
scaled and sorted according to their relative frequency of occurrence in the respective
binding motif column. In other words, the nucleotides in a column are scaled and stacked
in the order of importance with the most frequent nucleotides placed on top. Most fre-
quent nucleotides appear on top of each column and are equivalent to the consensus
sequence. The height of each column stack is scaled by its information content defined as
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Figure 7.2: The DNA (red/blue) bound helix-turn-helix binding domain (green) of the
transcription factor FNR is depicted together with the sequence logo, position frequency
matrix and the consensus sequence of the corresponding binding motif derived from 74
annotated FNR binding sites in E. coli.

R = H, — H(X)), (7.1)

where H, is the background entropy of the genome and H(X;) is the entropy of the i-th
column in the binding motif [SSGE86|. Under the assumption that the genome is IUD,
the information content can be computed as

R;=1d|X| - H(X;) =2+ Y _ Px,(x)ld P,(x). (7.2)
ze{X}

Consequently, R; is in the range of 0 < R; < 2 bit. Loosely speaking, the column height
measures the conservation of a column in bits, whereas R = 2 bits indicates absolute
conservation and R = 0 bits no conservation.

Example: The sequence logo, the PFM and the consensus sequence of the binding
motif of the transcription factor protein (FNR) is depicted in Figure 7.2. The bind-
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ing motif was extracted from the 74 E. coli binding sites annotated in the Regulon
database [GCJJPG08]. In Section 3.2.1 it has been pointed out that due to the wound
double helix structure of the DNA, the sequence specific binding takes place primarily in
the major groove region where the bases are more accessible to the binding protein. As
a consequence, the conservation pressure on each position in a consecutive binding motif
is influenced by its accessibility. Roughly speaking the protein can distinguish between
all 4 nucleotides in the center of the major groove, since it can reliably recognize the
base pair type A—T or C — G and its orientation A—T vs. T—A and C—G vs. G—C.
However, in the minor groove distinguishing between the different orientations is difficult
and the protein generally only distinguishes between the 2 base pair types [SRR76]. As a
result, in the minor groove 0 < R; < 1 bit. ! In Figure 7.2, this property is reflected by
the sine like wave with a periodicity of 10.4 bp corresponding to the DNA double helix
turn periodicity [SBS93]. The FNR protein has a helix-turn-helix binding domain. It is
a transcriptional dual regulator [LGT76]. *

Small Sample Size Correction

A binding motif typically comprises only a small amount of actually verified binding sites.
The columnwise PMFs Py, (x), thus have to be estimated from a limited sample size using
frequency counts Py, (x) = f;(z)/N, where f;(z) is the count and N the number of binding
sites in the binding motif. In [Mil55, Bas59] it has been shown that the frequency count
based estimate of entropy H (X) is a biased, asymptotically normal estimate of the real
entropy H(X). Using Taylor series expansion of H (X) around Px an approximation for
the expectation of the sampled uncertainty can be derived:

E{H(X)} = H(X) — ;ﬂ;; +0 (%) : (7.3)

where |X| is the cardinality of the alphabet. In [AKO1] it has been proven that the
frequency based entropy estimate always underestimates the true entropy E{H(X)} <
H(X),VPx. Thus, for large enough N >> |X|, a correction term can be used to improve
the estimate of a columns entropy

oy X1
H(X)~ HX N X|. 7.4
(X)m H(X)+ ok N>> X (7.4)
—
e(N)

Taking the limited sample size into account, the information content in (7.1), used to
scale each column in a sequence logo, should be approximated as

Ri=H, — H(X:) ~ H, — (FI(XZ-) + e(N)) , (7.5)

where e(N) is the correction term from (7.4).

IThis could be interpreted as fading on the channel or varying rate heterogeneity parameter.
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7.1.3 Positionwise Independence of Binding Sites

The presented models for the description of binding sites assume that the nucleotides
contribute to the binding independently. In order to test whether this assumption holds,
pairwise dependencies between the binding motif columns shall be studied using mutual
information. Restricting to pairwise dependencies is justified by the small sample size
due to low number of experimentally verified binding sites. The true mutual information
I(X;Y) has to be determined from a frequency count based estimate I(X;Y). Using
Taylor series expansion around the independence point , the following approximation is
obtained for mutual information

(X =Dy -1)
2N 1n?2 ’

In [HDG"04, GDHMO5] it has been shown that for independent random variables X, Y
the mutual information /(X;Y’) approximately follows a gamma distribution

I(X;Y)~ I(X;Y) - N >> |X]-|V]. (7.6)

~

1 1
I(X;Y)~T | =(]X] =1 1)), —— ). .
vy~ T (G031 = DY = 1D, 75 ) &
This observation can be used to test for statistical independence between X and Y. Based
on the chosen significance level a (typically a=0.05), the significance of the observed value
of I(X;Y) can be assessed by comparison with the corresponding quantile

1 1

e= oo (5020 - DI~ 15775 ) (73)
where ¢ stands for the critical value. If I(X;Y) > ¢ the random variables X and Y
are dependent with a 1 — a probability?. The proposed mutual information based inde-
pendence test was used to study dependencies between binding site positions of E. coli
transcription factors annotated in the Regulon database [GCJJPGT08]. In accordance
with [TO07] we found that some factors show evidence of dependencies while others do
not. For example, Figure 7.3 shows the mutual information /(X;Y) between different
positions of the binding motif of the transcription factor FNR, whose sequence logo is
depicted in Figure 7.2. The binding motif comprises N = 74 annotated binding sites.
The diagonal corresponds to neighbouring positions in the binding motif. The distance to
the diagonal is proportional to the distance of the columns in the motif. The significance
level was set to o = 5% which yields a critical value of ¢ = 0.16 bits according to (7.8).
The motif columns showing dependencies above the critical value are mostly neighbouring
columns. This was also observed for other transcription factors showing any significant
interposition dependence. The proximal dependencies are believed to relate directly to
the 3-D structure of the DNA binding protein domain. A possible explanation for distant
dependencies are conformational changes in the DNA structure. The presence of a partic-
ular base at a certain position might alter the accessibility of the base at the dependent
position. Note that for some DNA binding proteins dependencies between neighbouring
nucleotide positions have also been validated experimentally [MS01, BHCCO1].

2In [DGH*06,SGDT07] we have successfully applied this significance test to gene mapping of complex
diseases
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Figure 7.3: Mutual information between different positions of the FNR binding motif.
The motif comprises 74 annotated binding sites. Positions above the critical value are
dependent with a probability of 95%.

7.2 Binding Site Inference and Synchronization

An important field of bioinformatics research motivated by the lack of experimentally
verified sites is in silico binding site inference of novel putative binding sites from already
known and verified ones. Binding site inference uses a scheme very similar to threshold
based marker detection described in Section 6.1. The genome is scanned for positions /i
for which the likelihood function L(u) that the position p is a binding site lies above a
certain threshold g = {p : L(u) > A}, see Figure 7.4. The likelihood function used in
binding site inference will be presented in Section 7.2.1. It is based on binding motif data
and proportional to the binding energy. In Section 7.2.2 it is compared to the likelihood
function used in synchronization and shown to correspond to a LLR of two competing
hypotheses. This finding is used to evaluate the discrimination information contained in
the binding motifs of different proteins. In Section 7.2.3 discrimination information is
used to propose an extension to the current binding site inference scheme.

7.2.1 Likelihood Function for Binding Site Inference

Current binding site inference algorithms conduct the search for novel putative binding
sites using a sliding window of size L corresponding to length of the binding motif. In
analogy to Section 6.2 the pattern observed in the sliding window shall be denoted r =
(r1i,r2...rp). Although, it has been found in the previous section that some binding
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Figure 7.4: In silico inference of putative binding sites is analogous to threshold based
syncword detection.

motifs show significant positionwise dependencies, additivity in protein DNA interactions
will be assumed in the following. In [BBS02] it has been shown that this assumption is
adequate in the context of binding site inference. In binding site inference the likelihood
function Lpg;(r) that the sequence r is a binding site is usually computed as

L

LBSI<T> = Z 1d

i=1

PXi(Ti)

m(r:)

(7.9)

where Py, is the PMF of the ith binding motif column and w = (m,, 7¢, 7g, 7r) is the
background distribution of the genome [WS04].

Relationship to Binding Energy

It has been shown in [SF98] that the maximum likelihood estimate for the binding energy
of sequence r given only the binding motif is

L

E(r)=-=)In % (7.10)

i=1
and is proportional to the likelihood function Lpggy

LBSI<T> = —IHQE(T') (711)

Pseudocounts

The true columnwise distributions Py, in the binding motif have to be estimated from
positionwise frequency counts f;(z). Pseudocounts ¢ are added to the frequency counts
in order to compensate for the typically small amount of actually verified binding sites N
comprising the binding motif.

. filz) +c-m(x)
s N +¢ '

(7.12)

Using pseudocounts compensates for rarely occurring nucleotides in a binding motif col-
umn that might be absent from a small sample by chance. Additionally, the technical
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issues related to taking a logarithm of zero when computing the weights are omitted.
Although the use of pseudocounts has become ubiquitous, there is no standard way of
choosing them. Often, the pseudocount is set to ¢ = v/N as proposed in [LAB93].
However, in a recent systematic study based on actual transcription factor binding motifs
from the TRANSFAC database [WDKKO96]| it has been suggested that using ¢ = 0.8 is
preferable [NFNOS8|. Interestingly, this value is very close to the pseudocount used by the
Krichevsky Trofimov probability distribution estimator presented earlier in Section 4.2.1
in the context of adaptive compression.

7.2.2 Comparison to the Synchronization Likelihood Function
The likelihood function Lgg; for binding site inference in (7.9) can similarly to the optimal

likelihood function for marker synchronization in (6.5) be interpreted as a LLR

L

LBSI = Z

i=1

T1|HO P('l"|7‘[0)
1d =1d . 7.13
Z P(r;|Hy) P(r|H,) ( )

Assuming the general evolutionary substitution channel in (6.26), the alternative hypoth-
esis H is the same as for synchronization, namely that the observed sequence 7 originates
from the IID genome background process. However, care needs to be taken with respect
to the underlying hypothesis Hy. In the context of binding site inference, p(r|Hy) denotes
the likelihood that r is a sequence recognized by the binding protein. In the engineer-
ing terminology this would represent the likelihood that r is a sequence recognized by
the synchronizer. However, the Hy hypothesis used in the optimal likelihood function
for marker synchronization as derived in Chapter 6, see (6.5), is that = is the syncword
transmitted over the channel. In other words, in engineering the synchronizer decision is
based on the a-posteriori probability of the received syncword given the knowledge about
the channel. In binding site inference the decision is based on the probability that the
observed pattern is recognized by the binding protein given the binding motif.

Binding Motifs and Discrimination Information

Using the notion that the likelihood function Lgg; for binding site inference can be inter-
preted as a LLR of two hypothesis, the Kullback-Leibler divergence D(Px||7) can be used
to measure the discrimination information contained in the binding motif of a protein

D(Px||w) = ZD(PXZ-IIW), (7.14)

and used to compare the binding specificity of different proteins. Note that D(Px,||)
has to be estimated from frequency counts Px, = f;(z;)/N. Using Taylor series expansion
we arrive at the following approximation for large enough N

AT T O N2’

D(

7) ~ D(F

N >> |X|. (7.15)
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Figure 7.5: Sequence logos and discrimination information of the binding motifs of the
E. coli transcription factors FNR and CRP. The discrimination information is lower for
CRP although the motif is longer.

A shorter binding motif with high specificity can have a higher overall discrimination
information than a highly variable longer motif. Note that for [TUD genomes the discrimi-
nation information becomes identical to the information content in (7.2) used to scale the
sequence logo columns. Thus, for IUD genomes the height of each column in a sequence
logo corresponds to the specificity of the respective motif position.

Example: Figure 7.5 depicts the sequence logos and discrimination information of the
binding motifs of the E. coli transcription factor protein (CRP) and (FNR). The motifs
were obtained from the Regulon database [GCJJPGT08]. The genome distribution of
E. coli is m = (my, 7e, mg, mr) = (24.6%, 25.4%, 25.4%, 24.6%), which is almost IUD. Note
that there exist many species with a strongly biased nucleotide composition. Although
the FNR motif is shorter, it shows a higher specificity. *

7.2.3 Vicinity Extended Binding Site Inference

Current binding site inference methods restrict the computation of Lggr in (7.13) to the
binding motif [Sto00]. This is only optimal under the assumption that the vicinity of
binding sites is IID distributed according to the genome background distribution. How-
ever, this is often not true. For example, the vicinity of transcription start sites and
splice sites, where most of the regulatory proteins bind, has been shown to experience a
strong nucleotide composition bias [TAACT04]. The bias is believed to partially origi-
nate from transcription coupled DNA repair mechanisms discussed in Section 3.5.1. The
nucleotide composition around E. coli transcription start sites annotated in the Regulon
database [GCJJPG™08] is depicted in Figure 7.6. There is a nucleotide bias towards the
weak A and T nucleotides. Note that the strong bias around -35 and -10 base pairs ahead
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Figure 7.6: Nucleotide bias around transcription start sites in E. coli.

of the transcription start site is caused by the promoter binding sites situated at this
location and discussed in detail in Section 7.3.4.

Recalling the derivation of the optimal LLR for synchronization in Section 6.2, it becomes
obvious that for optimal performance positions with biased distribution around the bind-
ing site should be included in the computation of the likelihood in (7.13). In other words,
the optimal likelihood function for binding site inference should not be restricted to the
size of the binding site, but should also include the vicinity as long as its distribution is
biased. This extension increases the overall discrimination information. The per position
discrimination information D(Px,||7) can be used to determine which positions should be
included. Note that the Kullback-Leibler divergence follows a gamma distribution [Par06]

D(Pyllm) ~ T (021~ 1) 773 ) (7.16)

This notion can be used to test for identity and to compute a significance threshold, see
Section 7.1.3. In Figure 7.7 the vicinity of the FNR binding sites has been included in
the alignment. It can be seen that the motif is surrounded by sites which are divergent
with a 95% probability (marked red). This fact is also reflected by the extended sequence
logo on top of the divergence plot. By including these sites the false positive inference
rate could be slightly reduced.
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Figure 7.7: Positionwise divergence plot for the FNR binding motif and its vicinity.
There exist divergent sites in the vicinity. These should be included in an optimal likeli-
hood function for binding site inference.

7.2.4 Limitations of Binding Site Inference

It has been found that binding site inference methods relying solely on binding motif
data greatly suffer from a high rate of false positives [WS04]. In other words, essentially
almost all predicted binding sites that are generated with such methods will have no
functional role®. Whether a potential site is an actual in vivo binding site depends apart
from its sequence also from many other often epigenetic factors like the DNA methyla-
tion pattern and the limited accessibility of potential sites due to DNA packaging, see
Section 3.2.1. Additionally, the content of adjoining sequences and proximity of other
bound proteins has been found to play an important role [WS04]. However, datasets
comprising the listed binding site sequence unrelated factors that could be used to im-
prove the prediction accuracy are currently almost non-existent. Nonetheless, there exists
phylogenetic foot printing data about candidate sites originating from multiple genome
alignments, see Section 5.2. Under the assumption that mutations within regions having
sequence-specific functionality accumulate slower due to evolutionary selection pressure,
the identified binding site candidates can be filtered using evolutionary conservation pro-
files provided by comparative genomics [UVEBO03|. In this fashion, the false positive rate
can be reduced tenfold while retaining 70% of the experimentally validated sites [WS04].

3This has been referred to as the “futility” theorem in [WS04].
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Figure 7.8: Binding site detection is a mixture of 3-D and 1-D diffusion. Sliding length
K refers to the length of the DNA region scanned by the protein during the 1-D diffusion.
Modified from [Wik08].

7.3 Molecular Synchronization

The in vivo binding site recognition shall be addressed in the following. In Section 7.3.1
the known biological aspects of binding site detection are presented. Section 7.3.2 estab-
lishes the parallels to threshold based synchronization. General properties of molecular
markers are explained in Section 7.3.3. It is hypothesized that fundamental molecular
processes are likely to use markers with good synchronization properties. This hypoth-
esis is confirmed for the prokaryotic transcription initiation in Section 7.3.4 using the
synchronization marker evaluation method derived in Chapter 6.

7.3.1 Binding Site Detection

The exact mechanism by which proteins detect binding sites in vivo remains an open
question and is difficult to uncover experimentally [GGO8]. Nonetheless, current ex-
perimental evidence supports the hypothesis that the detection is a mixture of three-
dimensional (3-D) and one-dimensional (1-D) diffusion. The DNA binding protein floats
in the cell nucleus looking for the DNA in a 3-D diffusion process. Once the double helix
is found, it is bound non-specifically by the protein and searched for a marker in a 1-D
diffusion sliding process, see Figure 7.8. Note that the protein can bind the linear DNA
in two possible orientations. During the 1-D diffusion the protein undergoes randomly
sliding steps to the left and to the right along the DNA. Eventually, if no marker is found,
a dissociation event occurs. The characteristic distance explored between the association
and dissociation events is referred to as the sliding length K. Due to the random na-
ture of the 1-D diffusion, the same DNA sites are sampled repeatedly. The 3-D diffusion
keeps the protein from spending too long ‘oversampling’” any particular region of the DNA
contour by 1-D diffusion.

As explained in Section 3.2.1, most sequence specific protein DNA interactions take place
in the major groove of the DNA. Since the DNA is a twisted double helix, this raises
the question whether the protein rotates around the DNA helix during the 1-D diffusion.
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Although rotation has not yet been directly observed, there exists indirect experimental
evidence [SSS04, GGO8]. This implies that the DNA is probed for the marker in single
nucleotide sliding window steps. Binding affinity is used to probe for the marker. It can
be concluded that the 1-D diffusion portion of the DNA binding site search corresponds
to threshold based synchronization studied in Chapter 6.

7.3.2 Parallels to Threshold Synchronization

In Chapter 6 optimal marker synchronization techniques in engineering have been studied.
It can be assumed that marker detection on the molecular level has evolved towards the
use of an optimal binding site detection strategy. In Section 6.2.1, it has been argued that
for synchronization purposes it is optimal to use a single syncword at the transmitter. In
molecular biology this syncword is not known and has to be deduced from a set of binding
sites corresponding to the received noisy realizations of it. Since the binding sites are still
recognized by the binding protein, they can be assumed to have not diverged too much
from the original syncword. Given the binding motif of a protein derived from its actual
verified binding sites, the maximum likelihood estimate of the original syncword is the
consensus sequence, see Section 7.1.2. Therefore, the molecular syncword of a protein
shall be defined as the consensus sequence of its binding motif.

The threshold synchronizer evaluates a likelihood function for each position in a sliding
window fashion. A threshold value is used to decide whether a position is claimed to be
a syncword insertion point. Apart from the syncword also sequences that the syncword
is likely to mutate to are recognized. Optimal likelihood functions for well established
evolutionary substitution channel models have been derived in Section 6.2.4. In the
context of molecular DNA binding site detection the equivalent of the likelihood function
is the binding affinity of the binding protein to a particular DNA sequence, which can also
be expected to have evolved towards optimality. Thus, assuming a substitution channel,
it is valid to use the derived likelihood functions to study molecular synchronization.
Neglecting insertions and deletions is justified by the fact that they are far less frequent
and mostly have a detrimental effect on the functionality of a binding site. Opposed to
the engineering case, the parameters of the substitution channel and the threshold value
of the detector are not known. However, both can be estimated from the experimentally
verified binding sites. The channel is estimated from the binding motif using maximum
likelihood and the threshold value is chosen such that there is a good agreement between
the annotated binding patterns and the ones recognized by the threshold detection, see
Section 7.3.4.

7.3.3 General Properties of Molecular Markers

Unlike syncwords used in engineering, molecular markers can also be subject to other
optimization criteria apart from maximizing the synchronization success probability, e.g.
the marker might have to allow for easy unzipping of the two DNA strands and therefore
has to be AT-rich (A-T bond is weaker).



7.3 Molecular Synchronization 129
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Figure 7.9: The two possible orientations A) and B) that a protein can bind to DNA.
Modified from [Wik08].

The particularities of nucleotide accessibility in double stranded DNA also have impli-
cations on the structure of binding sites. In case of DNA protein binding, the binding
site is often composed of two markers with a certain spacing. This relates to the twisted
character of the double helix and the varying accessibility of the base pairs to the protein
attaching from the side, see Section 7.1.1. For good synchronization performance the two
markers should have a large Hamming distance and a possibly small cross-bifix in order
to reduce the risk of shifted synchronization due to confusing one marker for the other,
see also Section 6.3.

Additionally, for undirected binding proteins the marker should be self-reverse comple-
mentary. The self-reverse complementarity of the marker allows the binding site to be
recognized in any of the two possible orientations that the protein can bind to the dou-
ble stranded DNA, see Figure 7.9. Thereby, the overall recognition efficiency is effectively
doubled. Note that undirected binding proteins are such that do not need to recognize the
direction of the DNA. This is for instance the case for most transcription factors. Proteins
involved in transcription initiation are an example of directed proteins, see Section 7.3.4.

Example: The consensus sequence of the FNR transcription factor comprises two 5 bp
long syncwords separated by 4 arbitrary base pairs, see Figure 7.2. The Hamming distance
of the two equals dj;(TTGAT,ATCAA) = 3. Note that no prefix of the first syncword is a
suffix of the second, effectively reducing the risk of shifted synchronization. Additionally,
the consensus sequence of the FNR protein is a spaced inverted repeat.

1. orientation
7\

3 — .. TTGAT---- ATCAA--- -5
5 — .- AACTA---- TAGTT---— 3

.

Vv
2. orientation

This allows the FNR protein to recognize the binding site in any of the two possible
orientations that it can bind to the DNA. *
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Figure 7.10: Depicted is the E. coli ¢ promoter structure. It comprises two distinct
6 bp long markers with the shown sequence logos (top) and consensus sequences (bottom).

Further constraints result from the simple fact that there exist binding sites for many
different proteins. While some proteins bind to similar sites with the objective of mutually
exclusive binding, many proteins use distinct sites that should not be bound by others.
Markers for proteins requiring distinct sites should have a large Hamming distance and
a small cross-bifix. Considering the amount of different binding proteins, good markers
cannot be used by all binding proteins. However, fundamental processes like transcription
are likely to have evolved towards the use of markers with good synchronization properties.

7.3.4 Synchronization Performance of Transcription Markers

In the following, the synchronization performance of prokaryotic transcription markers
shall be studied using the framework derived in Section 6.3. Note that the procedure is
equally applicable to other binding sites.

Marker Use in Prokaryotic Transcription

The step in transcription involving marker detection is transcription initiation. In the fol-
lowing transcription initiation will be explained for the Escherichia coli bacterium (E. coli)
a common prokaryotic model organism. General background on the process of transcrip-
tion is provided in Section 3.4.1. The transcription in prokaryotes is performed by the
RNA polymerase (RNAp) protein complex. RNAp comprises a core enzyme and a de-
tachable subunit called sigma factor (o factor). The RNAp weakly attaches to the DNA
and rapidly slides along the double helix until it disassociates again [AJWT08]. Once
RNAp slides into a sequence specific region called a promoter, it binds tightly and ini-
tiates the transcription by opening up the double helix. The ¢ factor is responsible for
the recognition of the promoter and makes specific contact with the bases exposed on the
outside of the double helix. The main o factor is called ¢ and is used for transcrip-
tion under normal conditions*. The remaining o factors are primarily used in reaction to
environmental changes, e.g. during heat stress response.
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Structure of the Promoter

In the following we will restrain to the use of 0™ for which there exist 672 documented
E. coli promoters in the Regulon database [GCJJPGT08]. A ¢™ promoter comprises
two 6 bp long markers that lie 17 & 2 bp apart. They are called the -35 and the -10
region respectively. Their names refer to their approximate midpoint distance to the
transcription start site. The sequence logos and the consensus sequences of the two
promoter markers are depicted in Figure 7.10. It can be seen that both sequences are well
conserved.

The Promoter Synchronization Model

The synchronization performance of the two markers shall be studied using the method for
threshold based synchronization over discrete memoryless channels derived in Section 6.3.
In order to be able to apply the method, an appropriate channel model, its parameters
and a good threshold value, have to be determined first.

The well established substitution channel models that have been presented and ex-
plained in detail in Section 3.7.1 can be used to study the synchronization proper-
ties of binding sites. In E. coli the genome background distribution is slightly biased
7 = (my, 7o, e, ) = (0.246,0.254,0.254,0.246) [GACE"T00]. Additionally, for bacteria
the transition/transversion ratio is strongly biased rpg/rr, = 2 [Och03]. Thus, the con-
tinuous time Markov model of the substitution process is best described using the HKY

rate matrix
* T Tef T

T Kk T T3
mp T x Mo
ma Tl mea ok

RHKY = (717)

The transition probability matrix P characterizing the substitution channel is the matrix
exponential of the rate matrix P = "B, where ¢ is the evolutionary time and reflects
the degree of conservation. Given the genome background distribution 7, the transi-
tion/transversion ratio rrg/rr, = % and by setting o = 1, the only remaining free
parameter is the degree of conservation t. It can be estimated using maximum likelihood
from actual binding sites under the assumption that the consensus sequence has been
transmitted over the HKY channel. Note that all positions in the binding motif are as-
sumed to be subject to the same channel. An estimate of ¢t based on the 673 annotated
o™ promoters leads to the following channel matrix

0.755 0.047 0.158 0.046
0.046 0.748 0.047 0.153
0.153 0.047 0.748 0.046 |~
0.046 0.158 0.047 0.755

Py = (7.18)

It can be seen that the probability of a substitution occurring at any position in the
promoter consensus sequence when transmitted over this channel is around 25%.

4The number 70 in ¢7° refers to the molecular weight of the ¢ factor in kilo Dalton.
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The optimal likelihood function for the substitution channel has been derived in Sec-
tion 6.2.4. However, the actual likelihood function used by the o-factor is the binding
affinity. Even though, the exact binding affinity of the o-factor to different nucleotides
is not known, it is justified to assume that it has evolved towards optimality and should
be proportional to the optimal likelihood function for the substitution channel derived in

(6.26).

At last the threshold value of detection remains to be determined. With respect to
the threshold value, it turns out that by fixing the false negative rate to a = 10% in
the Neyman-Pearson criterion (2.17) a threshold value is obtained that leads to a good
agreement between the annotated promoter markers actually recognized by the o-factor
and the markers recognized by the detection. In engineering fixing o = 10% means
that at most 10% of the transmitted markers would not be recognizable by the threshold
synchronizer at the receiver due to transmission errors.

Synchronization Performance of the -35 and -10 Promoter Region

The two markers of the o79 promoter are subject to several different constraints. Since the
transcription is directed, the promoter should not be a spaced inverted repeat. In fact,
the Hamming distance to the reverse complement should be sufficiently large to prevent
binding in the opposite orientation. This requirement seems to be fulfilled

dy(TTGACA - - - TATAAT, ATTATA - - - TGTCAA) = 6.

Additionally, the use of two markers involves the risk of shifted synchronization, due to
confusing one marker with the other. Therefore, the two markers should have a large
Hamming distance and a small cross-bifix overlap, which is the case

d,(TTGACA, TATAAT) = 4.

Note that the DNA has to be unzipped during transcription initiation in the -10 promoter
region [AJW™08]. This imposes an additional constraint on the composition of the -10
region which is motivated biologically and not by the synchronization performance. It
has to be AT-rich since the A-T bond is weaker.

The length K (sliding length) of the region scanned by the RNAp during a 1-D diffusion
search actually corresponds to the data frame length K, see Section 6.3. For all search
attempts where a binding site is present in the scanned region, the starting offsets k
are equally distributed. The question to be answered is how do the actual ¢” promoter
consensus markers perform compared to other markers of the same length. Could nature
have chosen better markers? A relative comparison makes it possible to treat the two
promoter markers separately. This greatly simplifies the computation, since it is no more
necessary to compare 42 marker patterns but only 4. The separate consideration is
justified because the spacing between the two markers is large compared to their actual
length and because the risk of shifted synchronization due to confusing one marker with
the other is low.
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Synchronization performance evaluation of the 079 promoter markers
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Figure 7.11: Relative synchronization performance of the o7y promoter markers. The
upper and lower bound correspond to the performance of the best and worst performing
patterns for any given sliding length K (data frame length).

Figure 7.11 depicts the performance of the -35 and the -10 marker for different RNAp
sliding lengths K (data frame lengths) under the assumption that a marker is present in
the scanned region. Note that the derived P,., channel and threshold corresponding to
a = 10% was used. Also depicted is the upper and lower bound. The bounds correspond
to the performance of the best and worst markers for a particular sliding length K re-
spectively. It can be seen that the -35 region is performing close to the upper bound for
the entire plotted range of possible sliding lengths. The -10 promoter is slightly inferior
but still a good performer. The limited performance of the -10 region can be attributed
to the biologically imposed requirement of AT-richness. It can be concluded that the -35
marker of the o7y promoter confirms the hypothesis that important molecular markers
evolve towards superior synchronization performance.

7.4 Summary

In this Chapter the parallels between marker synchronization in engineering and sequence
specific binding in genetics have been studied. Sequence markers are used by the molec-
ular machinery across different stages of genetic information processing to distinguish
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information carrying regions and to mark binding positions for regulatory proteins. The
insights about marker synchronization gained in Chapter 6 were used to study in silico
inference techniques of putative binding sites and the in vivo binding site detection on
the molecular level.

First, quantitative description models of binding sites were analysed using an information
theoretic framework. Particular attention was paid to the appropriate treatment of the
small sample size resulting from a small amount of experimentally verified binding sites
available in public databases. The focus was placed on DNA protein binding. Mutual
information was used to test the independence of binding site positions.

An important field of bioinformatics research motivated by the lack of experimentally
verified sites is the in silico binding site inference. Parallels were established between
the likelihood function used in inference and in synchronization. As an extension to the
current inference scheme it has been proposed to include the neighbouring positions of
the binding sites into the inference algorithms to improve performance. Kullback-Leibler
divergence was used to measure the per position discrimination information of binding
sites and their vicinity and to decide which positions should additionally be included.

The in vivo binding site detection strongly resembles threshold based synchronization over
noisy channels. The binding sites are subject to evolutionary mutations and the binding
protein typically allows a certain variability in the recognized sequence patterns. The
consensus sequence of binding sites of the same type has been defined as the molecular
syncword used by the protein. The experimentally verified binding sites were consid-
ered to be noisy realizations of it and used to estimate the parameters of the underlying
substitution channel. General properties of molecular markers have been studied. Tran-
scription factors that do not need to distinguish the direction of the DNA were shown
to have evolved towards the use of self-reverse complementary markers which effectively
doubles their synchronization performance. Some molecular markers were shown to be
subject to biologically motivated constraints that restrict their synchronization perfor-
mance. The marker evaluation method derived for threshold based synchronization over
discrete memoryless channels in Chapter 6 was used to assess the performance of the pro-
moter marker in prokaryotic transcription initiation. The marker was found to perform
close to the optimum.

The author has been awarded the 2006 Best Student Presentation Award of the Inter-
national Society for Computational Biology (ISCB) Student Council for the work on the
synchronization properties of molecular markers [HW06].



Conclusion

Modern communication systems are digital. Representing information digitally offers the
possibility to code it in a way such that it can be losslessly compressed or transmitted
error-free over a noisy channel [Sha48]. Interestingly, the genetic information of each
organism is stored in the DNA as a quaternary digital signal. Therefore, the theory and
methods developed to design and analyse communication systems can also be used to
study the storage, processing and transmission of genetic information to progeny on the
molecular level. Recent progress in DNA sequencing technology has caused an exponential
growth of the available sequence data. The sequencing of the human genome [LLB101]
and other vertebrate genomes has enabled comparative genomics. The genetic information
was found to comprise more than protein coding genes. It has been revealed that the
information stored in the DNA and its processing is far from understood [BPM*04,Che07].
The increasing availability of sequence data and the newly raised questions have also
ignited the interest of communication engineers and information theorists. The initial
research results [HDG'04,SGD 07, DHHMO05, DHL*08, MV04, SRS05] confirm that the
interdisciplinary approach can be highly beneficial. On the one hand, methods to store,
distribute and analyse the large amounts of collected data are contributed. On the other
hand, new insights are gained by modelling and studying molecular information processing
from a communications theoretic perspective.

The results obtained during this thesis represent contributions in both areas. In Part I
a highly efficient compression algorithm for multiple genome alignment datasets has been
developed. In Part II parallels between marker synchronization and sequence specific
binding have been established. Evidence that molecular markers evolve also under the
constraint of good synchronization performance has been found. In the following, the
main contributions shall be summarized.
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Part I

In Part I the problem of efficient storage and distribution of multiple genome alignment
datasets has been addressed. Such alignments are used for comparative studies and rep-
resent one of the largest sequence datasets used in molecular biology. Every few years a
new dataset comprising roughly twice as many species is released. In order to compare
genome sequences of different species, they have to be aligned to compensate for evo-
lutionary mutations comprising insertions, deletions and substitutions. An extra “gap”
symbol is used to denote the missing entries in the alignment. Large scale mutations
cause genome rearrangements. Therefore, multiple genome alignment datasets comprise
many locally aligned blocks of homologous regions that share common ancestry. Typ-
ically, the genome alignments are pre-computed by large labs possessing the necessary
computational resources and centrally provided for download.

In this thesis the first highly efficient lossless compression scheme for genome alignments
has been proposed. In order to design a good algorithm, different types of universal source
coding techniques and DNA specific compression algorithms have been studied first. The
key to DNA compression was found to be appropriate modelling of genome evolution.
The statistical dependencies present in multiple genome alignments are determined by
the mutational processes and the evolutionary relationship of the aligned species. There-
fore, the nucleotide portion of the alignment is compressed using predictions based on well
established statistical models of evolutionary substitutions in combination with arithmetic
coding. Due to the lack of elaborate statistical models for insertions and deletions, the
gap positions have to be compressed differently. Techniques from lossless binary image
compression are used. The multiple genome alignment datasets are distributed in form
of multiple alignment format files containing for each aligned block also the position in-
formation about the contained homologous regions. It is possible to efficiently compress
this supplementary information by exploiting subtle dependencies in the position informa-
tion of consecutive blocks. The proposed multiple alignment file compression algorithm
(MAFc) reduces the file size tenfold and is twice as efficient as the universal compression
algorithms like the dictionary based Lempel-Ziv or the statistical prediction based Con-
text Tree Weighting. The complexity of compression is higher than that of decompression
which fits the distribution scenario. An important feature of the MAFc algorithm is that it
allows to decompress individual alignment blocks without having to decompress the entire
dataset. Thus, MAFc is also suitable as back end of database servers that are typically
queried by researchers for individual alignment blocks. The algorithm scales well in terms
of newly included species in the dataset. The more species are included the better com-
pression rate can be expected. The proposed algorithm has received the 2009 Capocelli
Prize, which is the Best Paper Award of the Data Compression Conference [HDCHO09].

The MAFc algorithm is currently optimized for the multiple genome alignment datasets
provided by the UCSC Genome Browser database. In future work it could be adopted to
datasets provided by the Ensembl database. Additionally, the possibilities of using the
algorithm in the context of biological data analysis could be investigated. For example,
it could be used as an alternative measure of evolutionary conservation.
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Part 11

In Part II of this thesis parallels between binding site detection and marker synchroniza-
tion over noisy channels have been studied. Marker synchronization in engineering refers
to the recovery of the insertion points of short sequence patterns artificially introduced
into the transmitted data stream to mark certain positions. At the receiver a threshold
synchronizer evaluates in a sliding window fashion for each position the likelihood that it
is an actual marker insertion point. The scenario closely resembles binding site detection
on the molecular level. In DNA protein binding the protein slides along the DNA using
binding energy to find its sequence specific binding site.

Marker use in engineering was reviewed first. Thereby, novel results could be obtained,
demonstrating that the interdisciplinary research can also benefit engineering. The opti-
mal likelihood function for marker synchronization over Gaussian channels and approxi-
mations thereof were introduced by J. Massey in [Mas72]. Herein, it has been shown that
the optimal likelihood function is equivalent to the mutual self-information between the
syncword and the received pattern observed at a position. Based on this observation a
new superior approximation has been derived for the Gaussian channel. The likelihood
function was further adopted to discrete memoryless channels, in particular, to the evolu-
tionary substitution channel models. Different syncword patterns of the same length are
known to perform differently well with respect to the synchronization success probability.
The exact computation of this probability is non-trivial due to the dependencies of the
likelihood function values of neighbouring positions, which is generally neglected in the
literature. Herein, an exact recursive formula is proposed for discrete memoryless chan-
nels and shown to deviate significantly from the approximation assuming independence.
In future work, the formula could be adapted to continuous channel models.

The DNA binding sites of a particular protein can be regarded as noisy realizations
of the molecular marker recognized by the protein transmitted over the evolutionary
substitution channel. Currently, the amount of experimentally verified binding sites is
rather limited. Established binding site models and in silico binding site inference methods
were reviewed under this aspect from an information theoretic perspective and extensions
were proposed. The in vivo binding site detection and the synchronization properties
of selected molecular markers were studied next. Transcription factors were shown to
have evolved towards the use of self-reverse complementary markers which effectively
doubles their synchronization performance. The syncword evaluation method derived for
threshold based synchronization over discrete memoryless channels was used to assess the
performance of the promoter marker used in prokaryotic transcription initiation. The
marker was found to perform close to the optimum. In future work the method could
be applied to other binding proteins. The work on the synchronization properties of
molecular markers has been awarded the 2006 Best Student Presentation Award of the
International Society for Computational Biology (ISCB) Student Council [HWO06].






Publications

Parts of this work were published in the following articles:

Journal Papers

[1]

P. Hanus, J. Dingel, G. Chalkidis, and J. Hagenauer, “Compression of whole genome
alignments,” IEFE Transactions on Information Theory, vol. 56 no. 2, pp. 696-705,
2010.

J. Weindl, Z. Dawy, P. Hanus, J. Zech, and J. C. Mueller, “Modeling promoter search
by E. coli RNA polymerase: One-dimensional diffusion in a sequence-dependent en-
ergy landscape,” Journal of Theoretical Biology, vol. 259, no. 3, pp. 628-634, 2009.

J. Dingel, P. Hanus, N. Leonardi, J. Hagenauer, J. Zech, and J. Mueller, “Local
conservation scores without a priori assumptions on neutral substitution rates,” BMC
Bioinformatics, vol. 9, no. 1, p. 190, 2008.

P. Hanus, B. Goebel, J. Dingel, J. Weindl, J. Zech, Z. Dawy, J. Hagenauer, and J. C.
Mueller, “Information and communication theory in molecular biology,” FElectrical
Engineering (Archiv fuer Elektrotechnik), vol. 90, no. 2, pp. 161-173, 2007.

7. Dawy, P. Hanus, J. Weindl, J. Dingel, and F. Morcos, “On genomic coding theory,”
FEuropean Transactions on Telecommunications, vol. 18, no. 8, pp. 873-879, 2007.

J. Weindl, P. Hanus, Z. Dawy, J. Zech, J. Hagenauer, and J. C. Mueller, “Modeling
DNA-binding of Escherichia coli sigma 70 exhibits a characteristic energy landscape
around strong promoters,” Nucleic Acids Research, vol. 35, no. 20, pp. 7003-7010,
2007.



140 Appendix A = Publications

[7] M. Sarkis, B. Goebel, Z. Dawy, J. Hagenauer, P. Hanus, and J. C. Mueller, “Gene
mapping of complex diseases-A comparison of methods from statistics information

theory, and signal processing,” IEEFE Signal Processing Magazine, vol. 24, no. 1, pp.
83-90, 2007.

[8] P. Hanus and J. Hagenauer, “Information theory helps historians,” IEEE Information
Theory Society Newsletter, vol. 55, no. 8, 2005.

Conference Proceedings

[9] P. Hanus, J. Dingel, G. Chalkidis, and J. Hagenauer, “Source coding scheme for
multiple sequence alignments,” in Proceedings of the Data Compression Conference
(DCC09), Mar. 2009, pp. 183-192. (Best Paper Award)

[10] V. Y. Kuryshev and P. Hanus, “Compression based classification of primate en-
dogenous retrovirus sequences,” in Proceedings of the International Workshop on
Computational Systems Biology (IWCSB0S), Jun. 2008, pp. 81-84.

[11] P. Hanus, “Synchronization properties of protein binding sites,” in Proceedings of
the International Conference on Intelligent Systems for Molecular Biology Student
Council Symposium (ISMBO7), Jul. 2007.

[12] P. Hanus, J. Dingel, J. Zech, J. Hagenauer, and J. C. Mueller, “Information theoretic
distance measuers in phylogenomics,” in Proceedings of the International Workshop
on Information Theory and Applications (ITA07), Jan. 2007, pp. 421-425.

[13] P. Hanus and J. Weindl, “Synchronization model of transcription initiation in
prokaryotes,” in Proceedings of the International Conference on Intelligent Systems
for Molecular Biology Student Council Symposium (ISMBO06), Aug. 2006. (Best Stu-
dent Presentation Award)

[14] P. Hanus, J. Dingel, J. Hagenauer, and J. Mueller, “An alternative method for detect-
ing conserved regions in multiple species,” in Proceedings of the German Conference
on Bioinformatics (GCB05), Oct. 2005, p. 64.

[15] P. Hanus, Z. Dawy, J. Hagenauer, and J. C. Mueller, “DNA classification using
mutual information based compression distance measures,” in Proceedings of the
International Conference of Medical Physics (ICMP05), Sep. 2005, pp. 1434-1435.

[16] B. Goebel, M. Sarkis, Z. Dawy, P. Hanus, J. Hagenauer, and J. C. Mueller, “Mutual
information and independent component analysis in population-based gene map-
ping,” in Proceedings of the International Conference of Medical Physics (ICMPO05),
Sep. 2005, pp. 1452-1453.

[17] P. Hanus, J. Dingel, J. Hagenauer, and J. C. Mueller, “An alternative method for
detecting conserved elements in multiple sequence alignments,” in Proceedings of the

European Conference on Computational Biology Student Council (ECCBO05), Sep.
2005, pp. 18-20.



141

[18] Z. Dawy, J. Hagenauer, P. Hanus, and J. C. Mueller, “Mutual information based
distance measures for classification and content recognition with applications to ge-

netics,” in Proceedings of the IEEE International Conference on Communications
(1CC05), vol. 2, May 2005, pp. 820-824.

[19] J. Hagenauer, Z. Dawy, B. Gobel, P. Hanus, and J. Mueller, “Genomic analysis using

methods from information theory,” in Proceedings of the IEEE Information Theory
Workshop (ITW04), Oct. 2004, pp. 55-59.






Dervations

B.1 Matrix Exponential

The matrix exponential e is defined by its Taylor expansion and is easily evaluated if
the singular value decomposition for R exists: Let R be a rate matrix on A and suppose

R can be decomposed as
R=UDU ', (B.1)

where U denotes the matrix of eigenvectors and ® the matrix with the eigenvalues of R
in the diagonal. Then it can be shown that [Nor97]:

P(t) = =U*U,
with
elor 0
0 el

For most types of rate matrices assumed in molecular evolution theory, the singular value
decomposition of R always exists. In particular it always exists for rate matrices defining
a reversible process [Kel79).

B.2 Synchronization Success Probability

In the following the recursive formula for the synchronization success probability psym.(k)
in (6.38) shall be derived and intuitively explained. Note that the channel is assumed
to be noiseless. In this case the synchronization success probability psyn.(k) can also be



144 Appendix B m Derivations

interpreted as the probability that no other occurrence of the syncword s is found when
sliding back £ steps from the pattern insertion position. First, assume k > L such that
the detector at position k only sees symbols originating from the data and there is no
overlap between the inserted syncword and the observation. Let psq(k) be the probability
that the first emulated occurence of s is found after sliding back exactly k steps. Since
bifix-free patterns do not overlap py.u(k) can be expressed Vs(,—g) as the probability that
no emulation has taken place until the position (k — L) multiplied by the probability r(*)
of emulation of s in the data

pfail(k) = T(L)psync(k: - L)avs(h:O)- (BZ)

If the pattern is not bifix-free, then for [ = 1... L — 1 portions of the emulated s for which
the bifix h(“~Y exists will lead to a failure already at (k — ). Their contribution has to
be subtracted from (B.2). Thus, for £ > L

L—-1
pfail(k) = T(L)psynca{; - L) - Z h(Lil)T(l)pfail(k - l)7vs7 <B3)

=1
and using the fact that prei(k) = pPsync(k — 1) — psync(k) we obtain

L—1
psynt:(k) = psync(k_ 1) _Z h(Lil)T(l) (psync(k_l_ 1) _psync(k_l)) _T(L)psynt:(k_[/)- <B4)
=1

By setting r(© = 1) = h(E) = 1 per definition it can be further simplified to

L
Pagne(k) =Y (REF0p0=0 — pE=0pOY (ke — 1), Wk > L. (B.5)

=1

Finally, the special case of 0 < & < L has to be treated and the initial value of the
recursion pg,n.(0) set arriving at Equation (6.38).
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