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Preface

Abstract

Models with a warped extra dimension as first proposed by Randall and Sundrum offer
possible solutions to the gauge hierarchy and flavor hierarchy problems. In this thesis we
concentrate on the particularly well-motivated Randall-Sundrum model with custodial
protection of the T parameter and the ZbLb̄L vertex and carefully work out its flavor
structure. Based on these results we study how the presence of additional Kaluza-
Klein states affects particle-antiparticle oscillations and rare decays and derive analytic
expressions for the most relevant K and B physics observables. In the course of the
ensuing global numerical analysis we confirm the stringent bound on the Kaluza-Klein
mass scale which is imposed by indirect CP violation in K0 − K̄0 oscillations. Yet, we
are able to show that agreement with all available data on ∆F = 2 observables can be
obtained for TeV-scale Kaluza-Klein masses without significant fine tuning. Furthermore
we find large possible effects in CP violation in Bs − B̄s oscillations as well as in rare
K decays, which however are mutually exclusive. The impact on rare decay branching
ratios of B mesons on the other hand turns out to be small and very challenging to
measure in the near future. In addition we identify a number of distinct correlations
between different observables and find that a very specific pattern of flavor violation is
present. This pattern can be used to distinguish the model under consideration from
other frameworks of new physics, as we demonstrate explicitly for the Littlest Higgs
model with T-parity and the Standard Model with a sequential fourth generation of
quarks and leptons.

Zusammenfassung

Modelle mit einer gekrümmten zusätzlichen Raumdimension, wie sie zuerst von Ran-
dall und Sundrum vorgeschlagen wurden, ermöglichen sowohl eine Lösung des Hierar-
chieproblems als auch des Flavorproblems. In der vorliegenden Arbeit konzentrieren wir
uns auf ein besonders fundiertes Randall-Sundrum Modell, in dem der T-Parameter und
die ZbLb̄L Kopplung vor großen Korrekturen geschützt sind, und erarbeiten sorgfältig
seine Flavorstruktur. Ausgehend hiervon untersuchen wir, wie die Existenz zusätzlicher,
massiver Kaluza-Klein-Zustände die Meson-Antimeson Mischung und seltene Mesonen-
zerfälle beeinflusst und leiten hierzu analytische Ausdrücke für die wichtigsten Obser-
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Preface

vablen in den K und B Mesonensystemen ab. Im Laufe der anschließend durchgeführten
globalen numerischen Analyse bestätigen wir zunächst den strengen Mindestwert für
die Massenskala der Kaluza-Klein-Zustände, welcher durch die indirekte CP-Verletzung
in der Mischung von K0 − K̄0 Mesonen notwendig gemacht wird. Zugleich gelingt
es uns aber zu zeigen, dass auch für Kaluza-Klein-Massen von der Größenordung der
TeV-Skala eine Übereinstimmung der Modellvorhersagen mit allen verfügbaren experi-
mentellen ∆F = 2 Resultaten ohne großes Feintuning möglich ist. Darüber hinaus finden
wir eine potentiell große CP-Verletzung in der Mischung von Bs − B̄s Mesonen sowie
große Effekte in seltenen Kaon-Zerfällen, wobei jedoch beide Effekte nicht gleichzeitig
auftreten können. Die Auswirkungen auf die seltenen Zerfälle von B-Mesonen erweisen
sich als deutlich kleiner und ihre Messung stellt in naher Zukunft eine große Heraus-
forderung dar. Zusätzlich zeigen wir eine Reihe von deutlichen Korrelationen zwischen
verschiedenen Observablen auf und folgern, dass die Flavorverletzung im vorliegenden
Fall einem charakteristischen Muster folgt. Mit Hilfe dieses Musters ist es möglich, das
betrachtete Modell von anderen Modellen neuer Physik zu unterscheiden, wie wir konkret
am Beispiel des Littlest Higgs Modells mit T-Parität und des Standardmodells mit einer
vierten Generation von Quarks und Leptonen demonstrieren.
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Chapter 1

Introduction

“Who ordered that?” exclaimed Isidor Rabi upon the discovery of the muon in cosmic
rays in 1936. Since then the situation in particle physics has drastically changed. The
discovery of any new physics (NP) effect beyond the Standard Model (SM) today would
rather be a relief than a nuisance: While the SM is afflicted by a number of conceptual
shortcomings that call for its extension, on the other hand it performs remarkably well
in accommodating all available data, and no clear indication whatsoever of NP has been
observed.

The strongest evidence for the incompleteness of the SM is given by its blindness towards
gravity. The electromagnetic, weak and strong forces are an integral part of the SM, while
Einstein’s theory of general relativity and the SM as a quantum field theory are defined
for mutually exclusive physical regimes. However the absence of gravity per se is not the
main problem. The strength of the gravitational interactions become comparable to the
remaining three forces at the Planck scale, which is roughly MPl ' 1019 GeV, while the
scale of electroweak (EW) physics is set by the Higgs vacuum expectation value (VEV)
v ' 246 GeV. If the SM is assumed to be valid beyond the weak scale and up to the
Planck scale where it is replaced by a more fundamental theory, the large separation
between the Planck and EW scales is not stable with respect to quantum corrections.
Since the Higgs is a scalar particle, its potential is not protected by chiral or gauge
symmetries and is thus affected by quantum corrections which are only cut off by the
Planck scale. In consequence the generic size of the EW scale is set by the Planck scale
unless tremendously fine-tuned cancellations occur. This lack of a plausible mechanism
that effectively separates the EW and Planck scales is commonly referred to as the gauge
hierarchy problem.

A second hierarchy problem of the SM is encountered in its quark sector. The masses
of the quarks are measured to be vastly different, ranging over more than five orders of
magnitude from the small up quark mass mu ∼ 0.25 MeV to the large top quark mass
mt ∼ 170 GeV. A similar observation is made in the mixing of the quarks, where the
very hierarchical Cabibbo-Kobayashi-Maskawa (CKM) matrix comprises mixing angles
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1. Introduction

that differ by almost three orders of magnitude. Unlike the EW scale, these parameters
of the SM Lagrangian can be fixed by hand and are protected from excessive quantum
corrections by an approximate chiral symmetry. Simply setting the masses and mixing
angles to their hierarchic experimental values however contradicts the naturalness prin-
ciple [1] that requires a physical parameter to be O(1) unless the degree of symmetry
is increased if the parameter is set to zero. The lack of a plausible mechanism that
determines the sizes of the SM flavor parameters is referred to as the flavor hierarchy
problem or flavor puzzle.

Numerous attempts to solve the above two problems have been undertaken in the lit-
erature. A stabilization of the EW scale is most notably achieved in supersymmetric
models [2–5], but also in Technicolor models [6, 7], where electroweak symmetry break-
ing (EWSB) is induced by the condensate of a strongly coupled sector, or in models
of large extra dimensions [8] where the EW scale can be naturally small. Flavor sym-
metries [9–16] on the other hand are widely employed to address the flavor hierarchy
problem. However, while the solution of either problem taken for itself apparently is
feasible, a simultaneous treatment of both in a phenomenologically viable theory is an
almost unaccomplishable challenge. Supersymmetric flavor models [17–23] are among
the most promising efforts in this context, but also these are subject to serious phe-
nomenological tensions [24,25].

An appealing solution to both problems becomes possible in the framework proposed
by Randall and Sundrum (RS) [26]. They suggested to consider a compactified warped
extra dimension that is bounded by two 3-branes, referred to as the UV brane and the IR
brane. By virtue of the warped metric the effective energy scale depends exponentially
on the position along the extra dimension. Thus by localizing gravitational physics on
the UV brane and confining the SM fields and the Higgs boson to the IR brane, they
were able to address the smallness of the EW scale as compared to the Planck scale in
an elegant manner.

Soon however the smallness of the effective energy scale on the IR brane turned out to
induce almost unsurmountable tensions with flavor observables and electroweak precision
tests (EWPT). This phenomenological problem can be resolved by realizing that the
solution of the gauge hierarchy problem only requires the Higgs field to be localized on
the IR brane, while all other particles can in principle be allowed to propagate in the
five-dimensional (5D) bulk. In fact, promoting the SM gauge bosons and fermions to
bulk fields [27–29] and slightly enlarging the bulk gauge group to comprise a custodial
symmetry [30] leads to a model that is free from dangerous 4-fermion operators and
beyond that is consistent with EWPT, where the most stringent constraints are imposed
by the T parameter and the precisely measured ZbLb̄L coupling.

Amending the original RS setup in the manner illustrated above turns out to also offer a
conceptually novel way of addressing the flavor hierarchy problem: By localizing the bulk
quark fields non-uniformly along the extra dimension their hierarchical coupling strength
to the Higgs boson can be explained to be of purely geometrical origin. Furthermore, as
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the localization properties of the SM quarks are found to depend exponentially on O(1)
parameters, this approach allows to naturally generate the large hierarchies in the quark
spectrum from a very soft hierarchy in the model parameters. In connection with this
geometrical origin of the quark mass hierarchy a so called RS-GIM mechanism (named
in allusion to the Glashow-Iliopoulos-Maiani mechanism [31] in the SM) arises that keeps
flavor changing neutral currents (FCNCs) under control.

In this thesis we will introduce the simplest RS model with custodial protection of the
T parameter and the ZbLb̄L vertex. This conceptual analysis that partially has been
published in [32] is complemented by a full scale phenomenological study of particle-
antiparticle oscillations and rare decays in the K and B meson systems. These studies
have also been published in [33–36].

The remainder of this work is organized as follows. In chapter 2 we introduce the
original RS setup and show in detail how the gauge hierarchy problem is addressed
in a 5D space with a warped non-factorizable metric. After detaching the SM fields
from the IR brane and developing the formalism that is necessary to describe bulk
fields in a warped background we turn towards the phenomenologically motivated RS
model with custodial symmetry (RSc) that is characterized by the enlarged gauge group
SU(3)c × SU(2)L × SU(2)R × U(1)X × PLR. We list the full particle content of that
model together with the most general bulk action and show how this 5D theory can be
reduced to an effective four-dimensional (4D) theory with additional heavy states and
modified interaction terms. The flavor structure of the resulting 4D description of the
RSc turns out to be very elaborate and will be discussed in great detail in chapter 3. In
the course of this analysis we will demonstrate explicitly how the localization properties
of bulk fermions can be used to generate the observed hierarchies in the quark masses and
mixing angles. Subsequently we will work out the mass matrices and fermion couplings
that are present in the RSc. Chapter 4 is devoted to an analysis of the tree level FCNCs
mediated by the Z and Higgs bosons as well as the additional ZH , Z

′, A(1), G(1) states
which are present in the RSc. We will point out how flavor observables related to the
oscillations of neutral K and B mesons and to rare K and B decays are affected by these
tree level FCNCs and derive expressions for all these observables which are conveniently
given in terms of the gauge-fermion and Higgs-fermion couplings worked out in the
previous chapter. A global numerical analysis of the most relevant ∆F = 2 and ∆F = 1
observables will be performed in chapter 5. We will show how the severe experimental
constraint on the εK parameter can be satisfied and also impose the other constraints
that are available for the ∆F = 2 sector. Our analysis of K and B oscillations will
be concluded by a study of CP violation in the Bs system. Subsequently we will turn
towards rare K and B decays and give maximal ranges for NP effects in their branching
ratios. A considerable part of this study will be devoted to correlations between different
rare decay modes as these can be seen as parameter-independent signatures of the model.
These characteristic signatures will then be used to contrast the RSc to the Littlest Higgs
model with T-parity (LHT) and the SM with a sequential fourth generation of quarks
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1. Introduction

and leptons (SM4) and to point out how these models could be distinguished by future
experiments. Our conclusions will be presented in chapter 6, and a few technical details
are relegated to the appendix.
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Chapter 2

The Custodially Protected
Randall-Sundrum Model

The idea of introducing additional spatial dimensions first arose in Nordstrøm’s [37] and
shortly afterwards in Kaluza and Klein’s [38, 39] attempts to unify Maxwell’s theory of
electrodynamics and gravity in the first decades of the 20th century. These theories
tentatively identified the massless photon with the (55)-component of the metric tensor
but eventually turned out to be not quantizable and had to be discarded. Later, in the
context of string theory which is only well-defined in 9+1 or 10+1 space-time dimensions
[40,41] extra dimensions re-emerged. In the late 90’s they were realized to be a potential
solution of the gauge hierarchy problem first in the context of large extra dimensions,
and most prominently in the Arkani-Hamed-Dimopoulos-Dvali (ADD) model [8] which
suggested the presence of two or more compactified large extra dimensions. “Large” in
this context refers to sizes of the compactified extra dimensions in the sub-millimeter
range, which is barely not excluded by experiments probing gravitational interactions
at short distances, for instance the Eötwash gravity balance experiment [42, 43]. In the
ADD model the smallness of the weak scale as compared to the observed Planck scale is
explained by the fact that the graviton propagates into the large extra dimensions and
thus the force of gravity seems to be “diluted” from the standpoint of a four-dimensional
observer. The fundamental scale of gravity then can be chosen to be of order of the weak
scale since the dilution of the gravitational force is equivalent to a much larger effective
suppression scale of gravity in four dimensions. The crucial novelty of this approach is
the realization that the Planck scale is not necessarily fundamental—gravity has only
been probed directly up to energies corresponding to the millimeter scale [42, 43]—and
hence could be of the same size as the weak scale. Explicitly,

M2
Pl ∼M2+nVn , (2.1)

where MPl is the observed (large) Planck scale, M is the fundamental scale of gravity, n
is the number of large extra dimensions and Vn is the volume of the extra-dimensional
space. In particular n = 2 and compactification radii rc for the extra dimensions in the
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2. The Custodially Protected Randall-Sundrum Model

range 100µm−1mm can explain the Planck-EW hierarchy while still predicting distinct
graviton signatures at near-future collider experiments.
This explanation of the Planck-EW hierarchy however has one conceptual shortcoming:
If gravity is to be suppressed by a sufficient amount by introducing only a reasonably
small number of extra dimensions, these extra dimensions have to be large in size. But
then the typical compactification radius rc ∼ O(100µm) corresponds to an energy scale
µc ∼ 1/rc ∼ O(10−3eV ) which is much smaller than the EW scale. Thus by explaining
the Planck-EW hierarchy, in this way a new unexplained hierarchy between the weak
scale and the compactification scale has been introduced.
The RS setup which will be discussed in this chapter approaches the Planck-EW hierar-
chy problem from a different angle. Also in the RS setup an additional space dimension
is introduced with the difference that the 5D space now is warped instead of flat. As a
consequence, the fundamental scale of the theory will be Planck-like in contrast to the
the ADD model where the EW scale is the only fundamental scale.

2.1 The Original Randall-Sundrum Setup

Inspired by the shortcomings of the ADD approach towards an explanation of the Planck-
EW hierarchy, Randall and Sundrum [26] proposed a setup in which this hierarchy
is generated by a warped non-factorizable background metric which is defined on the
space M4 × S1/Z2 where M4 is the ordinary 4D Minkowski space. This metric complies
with Poincaré invariance along the ordinary 4D space-time dimensions and is a solution
of the 5D Einstein equations for appropriately adjusted cosmological constants on the
boundaries and in the bulk of the S1/Z2 orbifold. Explicitly, the RS metric is given by

ds2 = e−2kyηµνdx
µdxν − dy2 ≡ gMNdx

MdxN , (2.2)

where y ∈ [0, L = πrc] is the extra-dimensional coordinate, k ∼ MPl is the curvature
scale and ηµν = Diag(1,−1,−1,−1) is the 4D Minkowski metric. In our convention,
Greek indices run from 0 to 3, while Latin indices run from 0 to 4.
The boundaries of the extra dimension at y = 0 and y = L are referred to as the
ultraviolet (UV) and infrared (IR) brane. The metric for the ordinary 4D space that is
induced by (2.2) depends on the position along the extra dimension through the so-called
warp factor e−2ky. In particular, length and time scales blow up exponentially when
moving from the UV brane towards the IR brane1. By simple dimensional considerations
energy scales are accordingly found to shrink exponentially. Alternatively, the same
conclusion is reached if one considers a scalar field that is confined to the IR brane and
obtains a VEV [26]. To ensure proper normalization in the 4D theory, a rescaling of this
scalar field, and accordingly of its VEV, by a factor of e−kL is necessary. This feature
of the metric (2.2) is used to explain the exponential hierarchy between the EW and

1This can be seen by considering a fixed proper volume in four dimensions. For larger distances y from
the UV brane the warp factor becomes exponentially smaller which has to be balanced by exponentially
growing length and time scales.
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The Original Randall-Sundrum Setup

the Planck scale in the following manner. If the length L of the extra dimension (or
equivalently the compactification radius) is chosen to be by a small factor larger than
the inverse Planck scale and the Higgs field, whose VEV sets the EW scale, is localized
on the IR brane, an exponentially large v/MPl ratio arises naturally:

v

MPl

' e−kL ≈ 10−16 for kL ≈ 36 . (2.3)

Formally, the compactification radius of the extra dimension arises as the VEV of a
modulus field that a priori can take any value [26] and as such needs to be stabilized
by some additional mechanism. For instance this can be achieved by introducing ad-
ditional heavy scalar and fermion fields, as done by Goldberger and Wise [44]. These
additional heavy fields radiatively generate an effective potential for the modulus field
whose vacuum state then can be adjusted by one’s choice of the masses of the heavy fields.

The above setup for our purposes has two parameters: the curvature scale k and the
compactification radius rc or equivalently the length L of the extra-dimensional interval.
As the product kL ' 36 is fixed by the requirement of addressing the Planck-EW hier-
archy, it is convenient to swap the parameter L for the mass scale of the lightest excited
KK states fRS = ke−kL ∼ O( TeV). Beyond these two geometric parameters there are in
principle further parameters such as the bulk and brane cosmological constants and the
masses of the heavy scalars and fermions introduced to stabilize the compactification
radius. We will however not include these additional parameters into our parameter
counting since they are fixed once the compactification radius and the metric are speci-
fied.

As a final remark on the original geometric setup [26] we want to point out that the
warped metric (2.2) corresponds to a slice of 5D anti-de-Sitter space (AdS5) between
the two boundaries at y = 0 and y = L. This observation has significant implications
since a theory in AdS5 is related to a 4D conformal field theory (CFT) without gravity
on the boundary of the AdS5 space via the AdS/CFT duality. This correspondence is
a special case of the Maldacena conjecture [45]. A large number of applications of this
correspondence have been discussed in the literature (see for instance [46–51]), among
them those in which the extra-dimensional setup is used as a mere tool for making
strongly coupled theories, such as Technicolor, calculable by relating them to models
with warped extra dimensions.

The RS setup can be used as a basis for realistic models of EWSB [30, 50, 52–55] and
gauge coupling unification [56, 57]. We will not discuss these issues in the following but
concentrate on the modifications of the original RS setup that lead to the construction
of the custodially protected RS model (RSc).
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2. The Custodially Protected Randall-Sundrum Model

2.2 The Standard Model in the Bulk

In the original RS setup [26] all force and matter fields except for the graviton are local-
ized on the IR brane of the extra dimensional space. In a strict sense this localization is
only required for the Higgs field in order to ensure that the EW scale is stabilized by the
warped down cut-off MPle

−kL. All remaining fields, the SM fermions and gauge bosons,
can in principle be allowed to propagate in the extra dimension. In fact, constraining the
SM to the IR brane bears phenomenological problems. The only available effective energy
scale on the IR brane is given by the EW scale. Hence non-renormalizable higher dimen-
sional operators involving fermions and gauge bosons are generically only suppressed by
powers of the EW scale, according to their individual dimension. Experimentally on the
other hand, these non-renormalizable operators are strongly constrained. For instance,
EWPT set a lower bound on the effective suppression scale Λ & (5− 10) TeV, which is
a manifestation of the well known little hierarchy problem. Much more severe are the
constraints that arise when proton decay or flavor observables, such as the infamous
and very precisely measured observable εK are considered. This observable is strongly
affected by left-right operators that are enhanced by renormalization group (RG) effects
and chiral factors. To suppress contributions from non-renormalizable operators at a
sufficient level, an effective suppression scale far beyond the EW scale [58],

Λ & (104 − 105) TeV , (2.4)

is required. Discrete symmetries can in principle forbid the unwanted higher-dimensional
operators, but these operators have to be suppressed up to very high orders due to the
extreme discrepancy between the EW scale and the required suppression scale (2.4).
In view of these facts it is a natural development to allow all SM fields except for
the Higgs field to propagate in the extra-dimensional bulk. In this case the effective
suppression scale felt by the light fermions can be much larger than the one cutting off
radiative corrections to the Higgs mass and dangerous non-renormalizable operators can
be sufficiently suppressed.
We will for this reason from now on consider a RS setup in which the Higgs boson is
localized on the IR brane of the 5D space, while all SM fermions and gauge bosons can
propagate freely in the extra-dimensional bulk. A comprehensive study analyzing the
behavior of fields of different spin in a 5D theory was performed in [59]. Historically, the
gauge bosons were the first to be allowed to propagate into the bulk [27,28], to be shortly
afterwards followed by the fermion fields. In [29] massless fermion fields were analyzed
and it was found that in this case all bulk fermion fields are localized exponentially
towards the IR brane. Since however in odd numbers of space-time dimensions any
theory of fermions is necessarily non-chiral, bulk mass terms are in general allowed.
Their impact was investigated in [60] and it was found that the localization of fermionic
zero modes depends exponentially on these mass terms. This property of the localization
of fermionic zero modes has far-reaching consequences on the flavor structure of the RSc
model and allows to address the flavor puzzle in an utterly novel way as we will discuss
in section 3.2.
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The Standard Model in the Bulk

2.2.1 Bulk Dynamics of Free Fields

The dynamics of the different bulk fields can be obtained from the free 5D action in
which all interaction terms have been set to zero. This action is given by

Sfree =

L∫
0

dy

∫
d4x
√
g

[
−1

4
FMNF

MN +
1

2
ψ̄
(
iΓM(∂M + ωM)−mψ

)
ψ

]
+ h.c. , (2.5)

where FMN = ∂MAN − ∂NAM is the field strength tensor, mψ = ck is the fermion bulk
mass, ΓM are the Dirac matrices in curved space-time and

√
g is the Lorentz-invariant

measure of integration. The spin-connection ωM accounts for the dependence of Lorentz
transformations on the position along the extra dimension and will drop out in the
derivation of the bulk equations of motion (EOMs).

In the above free action we did not bother to include the Higgs kinetic terms and the
Higgs potential, since we committed ourselves to the brane Higgs case. For illustration
and to be later able to extrapolate from a brane localized Higgs to more general scenarios
we however state that

SHiggs
free =

L∫
0

dy

∫
d4x
√
g
[
(∂MH)†(∂MH)− V (H)

]
, (2.6)

where the V (H) is the Higgs potential.

Applying the variational principle δSfree = 0 to (2.5), (2.6) and following the discussion
in [59] we find2 [−e2kyηµν∂µ∂ν + esky∂5(e−sky∂5)−M2

Φ

]
Φ(xµ, y) = 0 . (2.7)

This equation summarizes the EOMs of gauge fields, fermions and scalars in a compact
form. In the case of gauge fields, Φ ≡ Aµ, s = 2 and M2

Φ = 0, while in the case of
fermions ψL,R has to be rescaled by Φ = e−2kyψL,R with s = 1 and M2

Φ = c(c± 1)k2 for
the left- and right-handed modes. For a bulk scalar field one has to set Φ = H, s = 4
and the particular form of M2

Φ depends on the Higgs potential V (H).

The first step towards solving the differential equation (2.7) is to separate the dependence
on the 4D coordinate xµ and on y. This can be achieved via a Kaluza-Klein (KK)
decomposition of the bulk fields,

Φ(xµ, y) =
1√
L

∞∑
n=0

φ(n)(xµ)f (n)(y) . (2.8)

2Note that in [59] a different convention for the metric tensor is used, and that therein
ηµν = Diag(−1,+1,+1,+1).
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2. The Custodially Protected Randall-Sundrum Model

Before we proceed, we want to make some comments about the KK decomposition (2.8).
It implies that for a 4D observer each bulk field in 5D space manifests itself as an infinite
KK tower of particle solutions φ(n)(xµ). The dependence of these particle solutions on the
extra-dimensional coordinate is encapsuled in the bulk profiles or shape functions f (n)(y).
In the more intuitive limiting case of a flat extra-dimensional space, that is for k → 0,
the y-dependence on the r.h.s. of (2.8) would be described by sine and cosine functions
with ever decreasing wavelengths corresponding to heavier and heavier particles.
Inserting the KK-decomposition (2.8) into the EOMs (2.7) we obtain[

∂2
5 − sk∂5 − (M2

Φ − e2kym2
n)
]
f (n)(y) = 0 , (2.9)

where mn is the mass of the n-th KK mode,

ηµν∂µ∂νφ
(n)(xµ) = m2

nφ
(n)(xµ) . (2.10)

The EOMs (2.9) are second order differential equations, and as such their solutions
f (n)(y) are ambiguous unless two additional conditions are specified. We can choose
these to be the boundary conditions (BCs) of the bulk profiles on the UV and IR branes.
In principle there are no constraints on how these BCs have to be chosen, but the most
applicable ones are referred to as Dirichlet and Neumann BCs:

Neumann (+) BC

∂5f
(n)(y)

∣∣∣
brane

= 0 , (2.11)

Dirichlet (−) BC

f (n)(y)
∣∣∣
brane

= 0 . (2.12)

In the following we will write (+−) for a Neumann BC on the UV brane and Dirichlet
BC on the IR brane and accordingly for the remaining combinations of BCs.

The above approach of neglecting all interaction terms, in particular the Higgs interac-
tions, and first working with the action for free fields Sfree is referred to as the perturbative
approach. In this approach the non-interacting EOMs are solved and afterwards—as we
will do in chapter 3—the various couplings and mass matrices are worked out. The
effects of EWSB then are treated as small perturbations to these mass matrices and
amount to O(v2/M2

KK) corrections which shift the masses of the heavy KK modes and
induce mixing between modes of different KK levels.
The exact approach on the other hand, in which terms proportional to the Higgs VEV v
are included into the action, results in modified BCs on the IR brane for the fermions and
gauge bosons. The shape functions that are now obtained as solutions of the EOMs are
slightly distorted near the IR brane. These distorted modes already encode the effects
of EWSB and correspond to mass eigenstates which obey orthonormality relations.
Both approaches have advantages and disadvantages; for instance the perturbative ap-
proach is more intuitive but at the same time can only be an approximation as long as
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The Standard Model in the Bulk

only a finite number of KK modes is taken into account. The exact approach on the
other hand automatically includes the effects of the infinite towers of KK modes, but
also is less intuitive and obscures interesting features of the model such as cancellations
among contributions from different gauge eigenstates to physical observables. We will
continue to employ the perturbative approach, and it has been shown in [32, 61] that
both approaches lead to equivalent results.

2.2.2 Gauge Fields

To eventually solve the EOMs (2.9) we have to consider gauge bosons and fermions
separately. For gauge bosons the KK decomposition reads

Vµ(xµ, y) =
1√
L

∞∑
n=0

V (n)
µ (xµ)f (n)

gauge(y) , (2.13)

and we obtain for the gauge KK modes [59]

f (0)
gauge(y) = 1 , (2.14)

f (n)
gauge(y) =

eky

Nn

[
J1

(mn

k
eky
)

+ b1(mn)Y1

(mn

k
eky
)]

(n = 1, 2, . . . ) , (2.15)

where J1(x) and Y1(x) are the Bessel functions of first and second kind. It is important

to note that the flat zero mode f
(0)
gauge(y) exists only for (++) BCs. An interesting and

phenomenologically important feature of the warped geometrical background is that all
higher gauge boson modes are strongly peaked towards the IR brane which can be seen
from the eky factor in (2.15). In fig. 2.1 we show the profile functions of the first KK
modes with (++) and (−+) BCs.

The bulk profiles f
(n)
gauge(y) for given BCs satisfy the orthonormality conditions

1

L

L∫
0

dy f (n)
gauge(y)f (m)

gauge(y) = δnm . (2.16)

The coefficient b1(mn) and mn depend on the boundary conditions on the branes. For
(++) fields one obtains [59]

b1(mn) = −J1(mn/k) +mn/k J
′
1(mn/k)

Y1(mn/k) +mn/k Y ′1(mn/k)
= b1(mne

kL) , (2.17)

which can only be solved numerically for mn and b1(mn). For large values of n, the result
can be well approximated by [59]

b1(mn) = 0 , mgauge
n '

(
n− 1

4

)
πfRS (n = 1, 2, . . . ) , (2.18)
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2. The Custodially Protected Randall-Sundrum Model

Figure 2.1: The first gauge boson KK modes for (++) (blue, lower curve) and (−+) (red, upper curve)
BCs.

however for small values of n it is safer to use the exact numerical result. For the first
excited (++) mode for instance we find

mgauge
1 (++) ' 2.45ke−kL ≡ 2.45fRS ≡M++ , (2.19)

where we have introduced the effective new physics scale fRS ≡ ke−kL. For (−+) fields
mn and b1(mn) have to be determined by solving

b1(mn) = −J1(mn/k)

Y1(mn/k)
= −J1(mne

kL/k) +mne
kL/k J ′1(mne

kL/k)

Y1(mnekL/k) +mnekL/k Y ′1(mnekL/k)
. (2.20)

In this case we find for the mass of the first excited mode

mgauge
1 (−+) ' 2.40ke−kL ≡ 2.40fRS ≡M−+ , (2.21)

which corresponds to a ∼ 2% suppression of mgauge
1 with respect to the (++) case.

Finally, the constant Nn in (2.15) has to be determined from the normalization condition
(2.16). For fields (also fermions and scalars) with a Neumann BC on the IR brane, Nn

is approximately given by [59]

Nn ' ekL/2√
πLmn

. (2.22)

Note that this approximation is not valid in case of a Dirichlet BC on the IR brane.

We conclude the treatment of bulk gauge bosons with some remarks on the fixing of a
suitable gauge. The BCs of a gauge field Vµ automatically imply opposite BCs for its
5-component. In the RSc model no gauge fields with a Dirichlet BC on the IR brane are
present, and hence there is no massless 5-component for any gauge field. This allows us
to work in the V5 = 0, ∂µV

µ = 0 gauge for all gauge bosons and entirely disregard their
5-components.
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2.2.3 Fermion Fields

For fermions the KK decomposition reads

ψL,R(xµ, y) =
e2ky

√
L

∞∑
n=0

ψ
(n)
L,R(xµ)f

(n)
L,R(y) , (2.23)

and the fermionic modes are given by [59]

f
(0)
L (y) =

√
(1− 2c)kL

e(1−2c)kL − 1
e−cky , (2.24)

f
(n)
L (y) =

eky/2

Nn

[
Jα

(mn

k
eky
)

+ bα(mn)Yα

(mn

k
eky
)]

(n = 1, 2, . . . ) , (2.25)

where α = |c+1/2| and again f
(0)
L (y) exists only for (++) BCs for the left-handed mode.

The right-handed modes automatically obey BCs opposite to those of the left-handed
modes and their bulk profiles f

(n)
R (y) can be obtained from f

(n)
L (y) by replacing c→ −c

in the above formulae. The f
(n)
L,R(y) for given BCs satisfy the orthonormality conditions

1

L

L∫
0

dy ekyf
(n)
L,R(y)f

(m)
L,R(y) = δnm . (2.26)

From (2.26) we see that the fermionic profiles with respect to the flat tangent space
metric are given by

f̃
(0)
L =

√
(1− 2c)kL

e(1−2c)kL − 1
e( 1

2
−c)ky , (2.27)

f̃
(n)
L =

eky

Nn

[
Jα

(mn

k
eky
)

+ bα(mn)Yα

(mn

k
eky
)]

(n = 1, 2, . . . ) , (2.28)

where the factor eky in (2.26) has been absorbed into the the shape functions to make the
localization of the zero mode more explicit. In particular we find that the left-handed
zero mode f̃

(0)
L is flat for c = 1

2
, peaked towards the UV brane for c > 1

2
and peaked

towards the IR brane for c < 1
2
. In fig. 2.2 we show the fermion zero mode profile for

three different bulk mass parameters as well as the first KK mode profile.

As in the gauge boson case, bα(mn) and mn are determined through the BCs on the
branes. In the case of left-handed fermions, a (−) BC implies

f
(n)
L (y)

∣∣∣
brane

= 0 , (2.29)

while the (+) BC is modified with respect to the gauge field case and reads

(∂y + ck)f
(n)
L (y)

∣∣∣
brane

= 0 . (2.30)
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2. The Custodially Protected Randall-Sundrum Model

Figure 2.2: Left panel: Fermion zero mode profiles for c = 0.6 (red, dotted), c = 0.5 (blue, solid) and
c = 0.4 (green, dashed). Right panel: Fermion KK mode for (++) BCs and c = 0.6.

For right-handed fields, again the replacement c→ −c has to be made. bα(mn) and mn

are derived completely analogously to the gauge boson case and also here the resulting
equations can only be solved numerically. An approximate expression for the fermion
masses however is given by

mfermion
n '

(
n+

1

2

(∣∣∣∣c+
1

2

∣∣∣∣− 1

)
∓ 1

4

)
πfRS , (2.31)

where the ∓ sign corresponds to a (±) BC for the left-handed fermion mode on the IR
brane. As with the analogous expressions for gauge boson masses, the accuracy of this
approximation improves with increasing n.

In the discussion above we defined the left- and right-handed fermion modes f
(n)
L,R. How-

ever, in any odd number of space-time dimensions, no chiral representations of the
Lorentz group exist. We were able to introduce the left- and right-handed fermion
modes because just as in four dimensions we can decompose a fermion field ψ into its
components ψ+ and ψ− that are eigenstates of the γ5 operator,

γ5ψ+ = +ψ+ , γ5ψ− = −ψ− . (2.32)

Unlike however in the 4D case, where ψ− and ψ+ sit in the (2, 1) and (1, 2) representations
of the Lorentz group, in 5D they are parts of the same representation. This is a serious
problem since in the low energy limit we want to reproduce the SM, which is a genuinely
chiral theory in which left- and right-handed fields transform differently under the SU(2)L
gauge symmetry group. A solution to this problem is given by the above observation that
the ψ+ and ψ− components of a fermion field have to obey opposite boundary conditions.
Whenever a ψ+ mode has (++) BCs and accordingly contains a massless zero mode, its
ψ− counterpart comprises only heavy modes, and vice versa. This allows to introduce
a separate multiplet for each chiral component of a SM fermion, such that for each
generation of SM quarks three multiplets are needed: QL(++), uR(−−), dR(−−), where
the BCs are given for the respective ψ− components. Since in each of these multiplets
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either the ψ+ or the ψ− mode, but not both, contain a massless zero mode, it is now
possible to identify the ψ− component with a left-handed fermion and the ψ+ component
with a right-handed fermion such that in the end a chiral theory is obtained.

If finally the BCs of the left-handed mode are either (+−) or (−+), both the left- and
right-handed fields consist of heavy modes only.

To conclude this discussion of fermion bulk dynamics we want to point out that the
fermion bulk mass parameters c are generation dependent, such that for instance they
can be different for the up- and top-quark. We have seen above that for each quark
generation in the SM three different multiplets are necessary to obtain a chiral 4D theory.
Each of these multiplets comes in three distinct copies that correspond to the three quark
generations, such that we end up with nine potentially different bulk mass parameters.
To unambiguously address the bulk mass parameters c we introduce the notation cik
where i is the flavor index and k denotes the particular multiplet. We will return to the
issue of assigning the SM quarks to multiplets of the bulk gauge group in section 2.5.3.

2.2.4 Scalar Fields

Although in the framework considered in this thesis we assume that the Higgs field is
strictly confined to the IR brane, and therefore no bulk scalars are present, for com-
pleteness we also solve the EOMs for this case. Inserting the KK decomposition for bulk
scalars

H(xµ, y) =
1√
L

∞∑
n=0

H(n)(x)h(n)(y) (2.33)

into the EOMs (2.7) with s = 4 and M2
Φ = ak2, we find that the general solution

yields zero for either choice of BCs. A non-vanishing solution can only be obtained if a
boundary mass term ∓2βk with β = 2 ± α ≡ 2 ±√4 + a is introduced on the UV and
IR branes. Then, the solution reads

h(y) =

√
2kL(β − 1)

e2kL(β−1) − 1
eβky . (2.34)

We can now swap the parameter a for β which controls the localization of the scalar zero
mode. For β < 1 (β > 1) the mode is localized towards the UV (IR) brane and it is flat
for β = 1. For β � 1, which is a reasonable choice if the scalar mode is to represent a
bulk Higgs field, (2.34) simplifies to

h(y) =
√

2kL(β − 1)ekLeβk(y−L) . (2.35)

In the limit β → ∞ the brane Higgs case is recovered. Instead of taking this limit,
for calculational purposes it is more convenient to replace the Higgs bulk profile by a
δ-function, h(y)→ √Le−kyδ(y − L).
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2. The Custodially Protected Randall-Sundrum Model

The scalar KK modes finally are given by

h(n)(y) =
e2ky

Nn

[
c1Jα

( mn

ke−ky

)
+ c2Yα

( mn

ke−ky

)]
, (2.36)

where c1,2 are arbitrary constants, the Nn have to be chosen such that the modes are
normalized properly,

1

L

L∫
0

dy e−2kyh(n)(y)h(m)(y) = δnm , (2.37)

and the mn are approximately given by

mn ≈
(
n+

1

2

√
4 + a− 3

4

)
πfRS . (2.38)

Typically, the scalar KK modes are significantly heavier than the gauge and fermion KK
modes and can be neglected in phenomenological analyses [59].

2.3 The Gauge Group of the RSc

In this section we want to briefly review the phenomenological constraints from EWPT
imposed on the RS model with bulk fermions and point out how an enlarged bulk gauge
group can contribute to satisfy these constraints. Since a simultaneous fit of oblique and
non-oblique corrections is beyond the scope of this thesis (see however [62–71]) we will
focus on the three most stringent individual constraints. These are the Peskin-Takeuchi
S and T parameters [62] as well as the anomalous ZbLb̄L coupling.

The T parameter is sensitive to the breaking of the custodial symmetry and can be
seen as a measure for the total isospin breaking of the NP sector. It is easy to see that
in the RS model as discussed until now isospin is already broken at the tree level [72]:
After EWSB the gauge boson zero modes mix with their heavy KK partners and thereby
obtain slightly distorted shape functions. Since these distortions are non-universal for
the different gauge bosons, isospin is necessarily broken. It is therefore no surprise that
for the RS model with bulk SM fields excessive contributions to the T parameter are
found [72–75]. This is in clear contrast to the combined fit [76] of LEP data which yields
a rather small value for the T parameter,

T = 0.02± 0.09 , (2.39)

where MH = 117 GeV and U = 0 have been assumed. To reconcile the RS model in
its present form with this small value requires specific fermion localization patterns and
even in the most favorable case still imposes a bound on the KK scale of typically 10 TeV
which is beyond the reach of the LHC. At first sight this result is surprising, since the
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brane localized Higgs sector has a custodial symmetry even after EWSB and one näıvely
would expect that corrections to the T parameter therefore are small.
This puzzle has been resolved in [30] where it has been shown that the custodial symme-
try needs to be gauged in order to be effective3 and that enlarging the bulk gauge group
by an additional SU(2)R factor virtually eliminates corrections to the T parameter at
tree level. With this additional gauge factor, the bulk gauge group is given by

SU(3)c × SU(2)L × SU(2)R × U(1)X , (2.40)

where the inclusion of U(1)X is necessary in order to obtain the correct hypercharges.

The S parameter on the other hand is isospin symmetric and is associated with the (UV
finite part of the) momentum dependence of the Z boson self energy. As it is independent
of isospin breaking effects it can be thought of as a measure of the total size of the NP
sector and it is not protected by the custodial symmetry. In fact, for a RS setup with
the above gauge group (2.40) the S parameter is found as

S ≈ 12πv2

M2
KK

, (2.41)

which in conjunction with the result of the combined EW fit [76],

S = 0.04± 0.09 , (2.42)

yields the lower bound for the mass of the lightest KK gauge boson,

MKK ∼> (2− 3) TeV . (2.43)

In addition to the oblique corrections which are parameterized by S, T , U , we also have
to consider non-oblique corrections. The phenomenologically most relevant of these are
corrections to the ZbLb̄L coupling which are experimentally bounded by [76]

−2 · 10−3 . δgZbLb̄L . 6 · 10−3 (at 95% C.L.) . (2.44)

In the RS setup with bulk fermions the corrections to the ZbLb̄L coupling are found to
have the parameter dependence [30]

δgZbLb̄L ∝
1− 2c

3− 2c

1

M2
KK

, (2.45)

3This becomes evident if the 4D CFT dual [77] of the model is considered. Here the Higgs boson
corresponds to a light composite state of the CFT. Since a global symmetry in the CFT corresponds
to a gauge symmetry in 5D, the custodial symmetry needs to be gauged in order to protect the Higgs
sector.
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2. The Custodially Protected Randall-Sundrum Model

where c is the localization parameter of the (tL, bL) quark doublet. The closer the bL
is localized towards the IR brane the larger the correction, the closer it is localized
towards the conformal point (c = 1/2) the smaller the correction. The obvious choice
for satisfying the experimental constraint (2.44) for not too large MKK, that is to simply
localize the bL very close to the conformal point, does not work since in this case the large
top mass cannot be reproduced anymore. Fortunately, the gauged custodial symmetry
that was introduced to protect the T parameter can also be used to keep corrections to the
ZbLb̄L coupling under control [78]. For the custodial symmetry to unfold its protective
effect also in this case, we need to impose the additional discrete Z2 symmetry that
relates the two SU(2) gauge factors to each other4,

PLR : SU(2)L ↔ SU(2)R . (2.46)

This requires that the SU(2)L,R coupling constants are equal, gL = gR ≡ g, and that
all fermions are embedded into PLR symmetric representations of the bulk gauge group.
Finally, the bL needs to be embedded in a multiplet such that it is a PLR eigenstate, or
in other words, T 3

R = T 3
L. If this is the case, the ZbLb̄L coupling is protected by the PLR

symmetry to all orders, and so are the couplings of all other quarks for which T 3
R = T 3

L

holds. In the following we will see that this is in particular the case for the ZdiLd̄
j
L and

ZuiRū
j
R couplings (i, j = 1, 2, 3).

The final gauge group, which we will consider in the remainder of this thesis, is the
following:

SU(3)c × SU(2)L × SU(2)R × U(1)X × PLR . (2.47)

With this gauge group, the multiplet assignment of the bL quark and the other SM
quarks discussed above and a KK scale satisfying the bound MKK ∼> (2 − 3) TeV all
constraints from EWPT are satisfied at the tree level5.

2.4 Projection to Four Dimensions

Through the KK decomposition (2.8) the road towards “condensing” the 5D theory to
a 4D theory with additional heavy states and modified SM couplings has been opened.
By separating the dependence of the fields on ordinary 4D space coordinates xµ and the
extra-dimensional coordinate y we can effectively perform the integration over the fifth
dimension,

S =

L∫
0

dy

∫
d4xL →

∫
d4xL′ . (2.48)

4The imposition of this discrete symmetry can in fact be motivated by considering a custodial O(4)
symmetry which decomposes as O(4) ∼ SU(2)L × SU(2)R × PLR.

5In particular the T parameter receives loop corrections that are due to the breaking of the custodial
symmetry by BCs on the UV brane, as was pointed out in [55], and we will return to this issue in section
3.2.2.
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The interaction terms in the effective 4D Lagrangian density L′ comprise overlap integrals
of the shape functions.
The most important role in our analysis will be played by the gauge-fermion couplings
obtained in the procedure of integrating over the extra dimension. The SM gauge-
fermion couplings, which involve fermionic zero modes and gauge boson zero modes, at
leading order are not modified as the gauge zero modes (2.14) are distributed flatly along
the extra dimension and hence the normalization condition (2.26) for the fermionic zero
modes applies. On the other hand there now also are interactions between KK gauge
bosons and SM fermions. To discuss these couplings we introduce the shorthand

g(y) = f (1)
gauge(y, (++)) (2.49)

for the bulk profiles of Z(1) and W
(1)
L (as well as for the KK gluons G(1)a and KK photon

A(1)), and
g̃(y) = f (1)

gauge(y, (−+)) (2.50)

for the bulk profiles of Z
(1)
X and W

(1)
R . The overlap integrals for KK gluonic and photonic

currents and for the ones for the KK modes Z(1) and W
(1)
L then are given by

Ri
k

nm

(BC)L,R =
1

L

L∫
0

dy ekyf
(n)
L,R(y, cik, BC)f

(m)
L,R(y, cik, BC) g(y) , (2.51)

while for Z
(1)
X we have

P ik
nm

(BC)L,R =
1

L

L∫
0

dy ekyf
(n)
L,R(y, cik, BC)f

(m)
L,R(y, cik, BC) g̃(y) (2.52)

with g̃(y) 6= g(y) as the shape functions depend weakly on BCs. For charged currents

mediated by W
(1)
R we also have

S ik
nm

(BC)(BC ′)L,R =
1

L

L∫
0

dy ekyf
(n)
L,R(y, cik, BC)f

(m)
L,R(y, cik, BC

′) g̃(y) . (2.53)

To clarify the discussion in the following chapters we define the intuitive shorthands

Rk
nm

(BC)L,R ≡ Diag

(
R1
k

nm

(BC)L,R,R2
k

nm

(BC)L,R,R3
k

nm

(BC)L,R

)
,

Pk
nm

(BC)L,R ≡ Diag

(
P1
k

nm

(BC)L,R,P2
k

nm

(BC)L,R,P3
k

nm

(BC)L,R

)
,

Sk
nm

(BC)(BC ′)L,R ≡ Diag

(
S1
k

nm

(BC)(BC ′)L,R,S2
k

nm

(BC)(BC ′)L,R,S3
k

nm

(BC)(BC ′)L,R

)
.

(2.54)
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2. The Custodially Protected Randall-Sundrum Model

The overlap integrals Ri
k

nm

(BC)L,R and P ik
nm

(BC)L,R will be of great importance for our

analysis of tree level exchanges of KK gluons and EW gauge bosons in the following
chapters. Examples for both as functions of the fermion bulk mass parameter c are
shown in fig. 2.3. From this we can see that the breaking of the custodial symmetry

Figure 2.3: Overlap integrals R (left) of the (++) and P (right) of the (−+) gauge boson KK modes
with fermion zero modes.

by BCs on the UV brane has virtually no impact on the overlap integrals for fermions
localized towards the IR brane (c . 0.5) but that for UV localized fermions (c & 0.5)
this breaking effect is more relevant.

2.5 Particle Content

2.5.1 Gauge Sector

The gauge group of the RSc given in (2.47) is larger than the SM gauge group which is
broken to the electromagnetic gauge group by the Higgs VEV,

SU(3)c × SU(2)L × U(1)Y
〈H〉−→ SU(3)c × U(1)Q . (2.55)

Hence it needs to be broken explicitly in a way that does not spoil the desired features
of the custodial isospin and parity discussed in section 2.3. Such a breaking pattern can
be achieved by assigning different BCs to the gauge fields on the UV brane which will
have little impact on physics close to the IR brane. In particular we need to break the
SU(2)R × U(1)X × PLR subgroup of the bulk gauge group and accordingly the gauge
fields of the RSc with their appropriate BCs6 are given by

W a
Lµ(++) , Bµ(++) ,

W b
Rµ(−+) , ZXµ(−+) , (2.56)

6These BCs can be naturally achieved by adding a scalar SU(2)R doublet with QX = 1/2 charge on
the UV brane, that develops a VEV vUV →∞ (see [79,80] for details).
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Particle Content

where a = 1, 2, 3 and7 b = 1, 2. This assignment of BCs explicitly breaks both SU(2)R
and U(1)X on the UV brane,

SU(2)R × U(1)X → U(1)Y . (2.57)

In fig. 2.4 we summarize the resulting symmetry breaking pattern. The fields Bµ and
ZXµ in (2.56) are related to the original fields W 3

Rµ and Xµ via

ZXµ = cosφW 3
Rµ − sinφXµ ,

Bµ = sinφW 3
Rµ + cosφXµ , (2.58)

where
cosφ =

g√
g2 + g2

X

, sinφ =
gX√
g2 + g2

X

. (2.59)

Of the above gauge bosons those with (++) BCs, W a
Lµ and Bµ, have a zero mode in

their KK decomposition which is flat along the extra dimension and massless before
EWSB. The lightest mode in the KK tower of the remaining gauge bosons with (−+)
BCs on the other hand is strongly peaked towards the IR brane and has a TeV-scale
mass mgauge

1 (−+) ' 2.40f as discussed in section 2.2.2.

SU(2)L × SU(2)R

×PLR × U(1)X

SU(2)L × U(1)Y

Planck brane TeV brane

SU(2)V × U(1)X

×PLR

Figure 2.4: The symmetry breaking pattern of the RSc.

Anticipating EWSB it will be useful to follow [81] and define

W±
Lµ =

W 1
Lµ ∓ iW 2

Lµ√
2

, W±
Rµ =

W 1
Rµ ∓ iW 2

Rµ√
2

, (2.60)

as well as

Zµ = cosψW 3
Lµ − sinψBµ ,

Aµ = sinψW 3
Lµ + cosψBµ , (2.61)

7Note that one of the WR states has merged into the B, ZX system.
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2. The Custodially Protected Randall-Sundrum Model

where the mixing angle ψ is given in terms of gauge couplings by

cosψ =
1√

1 + sin2 φ
, sinψ =

sinφ√
1 + sin2 φ

. (2.62)

Note that in the SM the mixing angle in the analog of (2.61) would be given by the
Weinberg angle θW . Because of mixing between the gauge boson zero modes and heavy
KK modes in the RSc, ψ and θW are different from each other at order O(v2/f 2).

2.5.2 Electroweak Symmetry Breaking

We already anticipated the breaking of the EW symmetry by the VEV of the Higgs
boson in the previous subsection. For the derivation of the gauge boson mass eigenstates
after EWSB we will now properly introduce the Higgs field. In the spirit of the custodial
symmetry the Higgs field needs to transform as a self-dual bi-doublet of the SU(2)L ×
SU(2)R bulk symmetry and be neutral under the U(1)X ,

H =

(
π+/
√

2 −(h0 − iπ0)/2

(h0 + iπ0)/2 π−/
√

2

)
0

. (2.63)

Self-duality in this context implies that

H̃ = ε†H∗ε = H , (2.64)

where ε is the Levi-Civita-tensor, the totally antisymmetric tensor of rank two. When
the neutral component h0 of the Higgs bi-doublet develops a 4D effective VEV, the bulk
symmetry group is broken according to

SU(2)L × SU(2)R × PLR → SU(2)V × PLR . (2.65)

We see explicitly that not only in the Higgs sector but also in the gauge sector of the
theory an unbroken custodial symmetry SU(2)V remains intact, which is responsible for
the protection of the T parameter. Similarly the PLR symmetry, protecting the ZdiLd̄

j
L

coupling, remains unbroken.
Combining the symmetry breakings by BCs on the UV brane and by the Higgs VEV on
the IR brane, we see that the low energy effective theory is described by the spontaneous
breaking pattern

SU(2)L × U(1)Y → U(1)Q , (2.66)

as anticipated in section 2.5.1 and required by phenomenology.
Now due to the unbroken gauge invariance of QED and QCD, the gluon and photon
fields including their KK modes do not couple to the Higgs boson at leading order in
perturbation theory and hence do not mix with each other or with Z

(0)
µ , Z

(1)
µ , Z

(1)
Xµ and

the higher KK modes of Z and ZX . Therefore, even after EWSB we have

MA(0) = 0 , MA(1) = M++ ,

MG(0) = 0 , MG(1) = M++ , (2.67)
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and the corresponding states remain mass eigenstates. On the other hand the kinetic
terms for the Higgs field (see 2.5.4)

SHiggs =

L∫
0

dy

∫
d4x
√
gTr

[
(DMH(xµ, y))†(DMH(xµ, y))

]
(2.68)

lead to O(v4/M2
KK) corrections to the masses of W

(0)±
Lµ , W

(1)±
Lµ and W

(1)±
Rµ as well as of

Z
(0)
µ , Z

(1)
µ and Z

(1)
Xµ, and mixing between states of the same electric charge is induced.

Here v = 246 GeV denotes the effective 4D VEV of the h0 component in (2.63), and

〈H〉 =

(
0 −v/2
v/2 0

)
. (2.69)

If we restrict our discussion to the n = 0, 1 gauge boson modes, the gauge-Higgs inter-
actions in (2.68) after EWSB lead to the two mass matrices M2

charged and M2
neutral,

L ⊃ −
(
W

(0)+
L W

(1)+
L W

(1)+
R

)
M2

charged

W
(0)−
L

W
(1)−
L

W
(1)−
R



− 1

2

(
Z(0) Z(1) Z

(1)
X

)
M2

neutral

Z(0)

Z(1)

Z
(1)
X

 , (2.70)

which are explicitly given by8

M2
charged =


g2v2

4L
g2v2

4L
I+

1 −g2v2

4L
I−1

g2v2

4L
I+

1 M2
++ + g2v2

4L
I++

2 −g2v2

4L
I−+

2

−g2v2

4L
I−1 −g2v2

4L
I−+

2 M2
−− + g2v2

4L
I−−2

 , (2.71)

and

M2
neutral =


g2v2

4L cos2 ψ

g2v2I+1
4L cos2 ψ

−g2v2 cosφI−1
4L cosψ

g2v2I+1
4L cos2 ψ

M2
++ +

g2v2I++
2

4L cos2 ψ
−g2v2 cosφI−+

2

4L cosψ

−g2v2 cosφI+1
4L cosψ

−g2v2 cosφI−+
2

4L cosψ
M2
−− +

g2v2 cos2 φI−−2

4L

 , (2.72)

where the angles φ and ψ have been defined in (2.59) and (2.62). The overlap integrals
I±1 , I±±2 and I±∓2 for a brane Higgs are given by

I+
1 = g(L) , I−1 = g̃(L) ,

I++
2 = g(L)2 , I−−2 = g(L)2 , I−+

2 = g(L)g̃(L) , (2.73)

8Note that the coupling constant g is the fundamental 5D coupling constant that is related to the
4D coupling constant by g =

√
Lg4D.
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2. The Custodially Protected Randall-Sundrum Model

where g(y) and g̃(y) are the KK-1 bulk profiles of gauge bosons with (++) and (−+)
BCs, as defined in (2.49), (2.50).

The diagonalization of the mass matrices (2.71) and (2.72) can be simplified considerably
if the effects of the SU(2)R breaking by BCs on the UV brane are neglected. These effects
will become important in the analysis of observables that are sensitive to the breaking
of the custodial symmetry9, such as the T-parameter, but their inclusion is not crucial
for the analysis of flavor observables which will be performed in chapter 5. For this
analysis we will need to calculate the O(v2/M2

KK) corrections to the couplings of the
light gauge bosons Z and W± as well as O(1) corrections to the couplings of the heavy
gauge bosons. Since in Feynman diagrams the contributions of the latter couplings
will always be suppressed by large gauge boson masses in the propagators, the O(1)
accuracy aimed for by us is indeed adequate. At this level of accuracy, it turns out that
the O(v2/M2

KK) splitting in the overlap integrals I±±2 , I±∓2 can be safely neglected and
we identify I−−2 = I−+

2 = I+−
2 = I++

2 ≡ I2. As a further simplification we will also
neglect the ∼ 2% discrepancy between the masses of the first excited gauge boson modes
with (++) and (−+) BCs,

M2
++ = M2

−− ≡M2 . (2.74)

The overlap integrals I±1 finally will be treated in a semi-exact way, as the small dis-
crepancy between I+

1 and I−1 softly breaks the custodial protection of the ZdiLd̄
j
L and

ZuiRū
j
R couplings which will be discussed in chapter 3. For this reason we will distinguish

between I+
1 and I−1 in the expression for the Z boson mass eigenstate, but in all other

expressions set I+
1 = I−1 ≡ I1.

With these assumptions the diagonalization of (2.71) and (2.72) yields the charged mass
eigenstates

W± = W
(0)±
L +

g2v2I1

4LM2

(
W

(1)±
R −W (1)±

L

)
,

W±
H =

1√
2

(
W

(1)±
L −W (1)±

R

)
,

W ′± =
1√
2

(
W

(1)±
R −W (1)±

L

)
− g2v2I1

2
√

2LM2
W

(0)±
L , (2.75)

and the neutral ones

Z = Z(0) − g2v2

4LM2 cos2 ψ

(
−I+

1 Z
(1) + cosφ cosψI−1 Z(1)

X

)
,

ZH =
1√
2

(
cosφZ(1) +

1

cosψ
Z

(1)
X

)
,

9For a collection of formulae that are necessary for the exact diagonalization of the mass matrices
(2.71), (2.72) the reader is referred to [32].
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Z ′ =
1√
2

(
cosφZ

(1)
X −

1

cosψ
Z(1)

)
− g2v2I1

2
√

2LM2 cosψ
Z(0) . (2.76)

The corresponding masses in the charged sector are found to be

M2
W =

g2v2

4L

(
1− g2v2I2

1

2LM2

)
,

M2
WH

= M2 ,

M2
W ′ = M2

(
1 +

g2v2I2

2LM2

)
, (2.77)

and

M2
Z =

g2v2

4L cos2 ψ

(
1− g2v2I2

1

2LM2

)
,

M2
ZH

= M2

(
1 +

g2v2I2

4LM2

(
1− 1

cosφ

))
,

M2
Z′ = M2

(
1 +

g2v2I2

4LM2

(
1 +

1

cosφ

))
, (2.78)

for the neutral mass eigenstates10. In all the formulae above, the coupling g is the
fundamental 5D weak coupling constant and is related to the 4D coupling by g =

√
Lg4D.

2.5.3 Fermion Sector

The gauge bosons we discussed in the previous subsection transformed in the adjoint
representation of their respective gauge group. The fermions present in the RSc which
we will discuss now are not subject to suchlike constraints. Yet, phenomenology imposes
several conditions on the gauge transformation properties of fermions in the framework
we are considering. We will briefly discuss these constraints and give the multiplet as-
signments for the quark fields in the RSc. The fermionic mass matrices that arise after
EWSB and that connect fermionic zero modes and higher KK modes are—because of
the elaborate multiplet structure—more complicated than those for the gauge bosons.
Therefore, we will not discuss them here but devote a whole section to their treatment
in chapter 3.

Since QCD and QED are unbroken symmetries in the RSc we can assign each quark field
a quantum number of SU(3)c × U(1)Q. All quark fields that we will introduce in the
following transform as triplets under the SU(3)c gauge group. Tracing the mixing (2.58),

10Note that for ψ = 0 the results for the neutral gauge bosons reduce to those given for the charged
gauge bosons.

25
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(2.61) of the SU(2)L × SU(2)R × U(1)X gauge bosons into the photon mass eigenstate
we find for the electric charge of a fermion in terms of its fundamental quantum numbers

Q = T 3
L + T 3

R +X , (2.79)

where T 3
L,R are the field’s 3-components of the SU(2)L,R isospins and X is its charge

under the U(1)X gauge group.

Owing to the solution of the 5D chirality problem which was described in section 2.2.3,
we need three distinct multiplets of SU(2)L × SU(2)R for each generation of SM quarks
to embed the left-handed doublets qiL and the right-handed up-type and down-type
singlets uiR and diR, where i = 1, 2, 3 is the generation index. Fortunately, phenomenology
provides guidelines towards which multiplets to choose. To start with, in order for the
protection of the ZbLb̄L coupling outlined in section 2.3 to be effective, the SU(2)L ×
SU(2)R quantum numbers of the left-handed bottom quark need to satisfy the condition
T 3
R = T 3

L. Since left-handed quarks must transform as doublets of SU(2)L, we have
T 3
L = −1/2 for the bL quark and accordingly T 3

R = −1/2, which implies that the (tL, bL)
quark doublet must transform as components of a (2,2) bi-doublet under the SU(2)L×
SU(2)R gauge group. As far as the protection of the ZbLb̄L vertex is concerned, this is
only mandatory for the (tL, bL) quark doublet but not for the (uL, dL) and (cL, sL) quark
doublets. In order not to explicitly break the flavor symmetries that are present in the
Yukawa-less SM and in order to keep the theory as simple as possible, we also assign
the (uL, dL) and (cL, sL) quark doublets to bi-doublets of the SU(2)L × SU(2)R gauge
group. With the quantum numbers T 3

L,R of all the left-handed down-type quarks being
fixed we can now use (2.79) to determine the U(1)X quantum number that is required
to reproduce the proper electric charge. We find that the three quark bi-doublets need
to have charge QX = 2/3 in order to achieve this.
The requirement of eventually being able to construct Yukawa interactions that yield SM-
like mass terms for the quarks now forces also the right-handed quarks to have the U(1)X
charges QX = 2/3 (since the Higgs bi-doublet is neutral under the U(1)X). This implies
that the right-handed up-type quarks uiR have T 3

R = 0, while the right-handed down-type
quarks diR have T 3

R = −1. The most economic multiplet assignment consistent with these
requirement is the uiR transforming as singlets and the diR transforming as triplets of the
SU(2)R. More precisely, the diR need to transform as components of a (3,1)⊕ (1,3)
representation of SU(2)L × SU(2)R which is closed under the PLR parity. While these
multiplets are the most economic choice, larger multiplets, such as (1,2j+ 1) for the uiR
and (2`+ 1,1)⊕ (1,2`+ 1) for the diR, j, ` = 1, 2, ... are also conceivable in principle
but tend to introduce phenomenological tensions11. In the following we will therefore
assume that the SM quarks are embedded into the minimal multiplets introduced above.
Finally, both the (2,2) and the (3,1)⊕ (1,3) representations contain additional states
which must be prevented from obtaining light or even massless zero modes. This can be

11For instance, if the tR is embedded into a triplet of SU(2)R, its mass is suppressed by a factor of
1/
√

2 relative to the singlet case. This requires an un-naturally large top Yukawa coupling in order to
reproduce the observed top mass.
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achieved by assigning adequate BCs. Also here artistic freedom is limited and we are
in addition tightly bound by the symmetry breaking pattern on the UV brane given in
(2.57):

• the SM quarks must have (++) BCs,

• the heavy fields must not have (−−) BCs lest their chiral partners contain massless
zero modes,

• neither SU(2)L nor SU(2)R may be broken by BCs on the IR brane,

• only SU(2)R may be broken by BCs on the UV brane.

The unique solution that is consistent with all of these constraints is given by the fol-
lowing assignment of SM quarks to multiplets of SU(2)L × SU(2)R × U(1)X :

ξi1L =

(
χuiL (−+)5/3 quiL (++)2/3

χdiL (−+)2/3 qdiL (++)−1/3

)
2/3

,

ξi2R = uiR(++)2/3 ,

ξi3R = T i3R ⊕ T i4R =

 ψ′iR(−+)5/3

U ′iR(−+)2/3

D′iR(−+)−1/3


2/3

⊕
 ψ′′iR (−+)5/3

U ′′iR (−+)2/3

Di
R(++)−1/3


2/3

, (2.80)

where the subscript of a multiplet denotes the U(1)X charge and the subscripts of the
individual fields correspond to their electric charges as determinded by (2.79). It should
be mentioned that in this multiplet assignment the SM dR quark corresponds to the zero
mode of the DR field. The corresponding states of opposite chirality12 can be obtained
from (2.80) by changing the chirality and exchanging (+) and (−) BCs. Of these fields
those with (++) BCs contain massless zero modes that will obtain O(v) masses after
EWSB and can be (up to O(v2/M2

KK) mixing effects with KK quark fields) identified
with the SM quarks.
Apart from the SM quarks, even the above minimal embedding into multiplets of the
bulk gauge group gives rise to a number of additional, heavy (approximately) vector-like
quark fields. Arranged according to their electric charges, these are

Q = 5/3 : χui(n), ψ′i(n), ψ′′i(n) ,

Q = 2/3 : qui(n), ui(n), U ′i(n), U ′′i(n), χdi(n) ,

Q = −1/3 : qdi(n), Di(n), D′i(n) . (2.81)

Thus we see that the framework of custodial protection, by requiring the left-handed
doublets to transform as bi-doublets of the bulk gauge group, invariably introduces ad-
ditional heavy quark fields with exotic charges of which the lightest can have TeV-scale

12The left- and right-handed modes are (see discussion of the 5D chirality problem in section 2.2.3)
defined via ψL,R = ∓γ5ψL,R.
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2. The Custodially Protected Randall-Sundrum Model

masses. The presence of these states offers interesting experimental signatures and in
fact a smoking gun signature for the RSc.

The generalization of the multiplet assignment (2.80) to the lepton sector (with right-
handed Dirac neutrinos) is straightforward and requires only two modifications. First,
the leptons all are color singlets and second, they all need to be neutral under U(1)X in
order to reproduce the correct electric charges.

2.5.4 Fundamental Bulk Action

In section 2.5.2 we already made use of the 5D action coupling the Higgs to the gauge
bosons in order to be able to derive the gauge bosons’ mass matrices. The form of
this action in fact was determined by Lorentz invariance and the concept of the covari-
ant derivative. Also the fermion couplings are determined by these principles, yet the
appearance of non-fundamental fermion representations renders the construction of the
corresponding terms in the action more intricate. In this section we will give the total
5D bulk action from which all effective 4D interactions can be derived by integrating out
the fifth dimension as indicated in section 2.4. This action can be decomposed as

S =

L∫
0

dy

∫
d4x (Lgauge + Lfermion + LHiggs + LYuk) , (2.82)

with the various contributions being discussed in the following.

Gauge sector The kinetic terms for the gauge fields are given by

Lgauge =
√
g

[
−1

4
GA
MNG

MN,A − 1

4
LaMNL

MN,a − 1

4
Rα
MNR

MN,α − 1

4
XMNX

MN

]
, (2.83)

where
GA
MN = ∂MG

A
N − ∂NGA

M − gsfABCGB
MG

C
N (A = 1, . . . , 8) (2.84)

corresponds to SU(3)c and gs is the 5D strong coupling constant.

LaMN = ∂MW
a
L,N − ∂NW a

L,M − gεabcW b
L,MW

c
L,N (a = 1, 2, 3) , (2.85)

Rα
MN = ∂MW

α
R,N − ∂NWα

R,M − gεαβγW β
R,MW

γ
R,N (α = 1, 2, 3) (2.86)

correspond to SU(2)L and SU(2)R, with equal gauge coupling g, and

XMN = ∂MXN − ∂NXM (2.87)

is the field strength tensor of U(1)X , whose coupling constant is given by gX . Here and
in the following the square root of g = det gMN = e−8ky has to be included in order to
obtain an invariant integration measure. We denote SU(2)L indices by lower-case Latin
letters a, b, . . . and SU(2)R indices by lower-case Greek letters α, β, . . . . SU(3)c indices
are denoted by capital Latin letters A,B, . . . , but are usually not made explicit in order
to simplify the notation.
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Quark sector The quark sector contains fields with the following transformation prop-
erties under SU(2)L × SU(2)R × U(1)X ,

(ξi1)aα ∼ (2,2)2/3 , (2.88)

ξi2 ∼ (1,1)2/3 , (2.89)

ξi3 = (T i3)a ⊕ (T i4)α ∼ (3,1)2/3 ⊕ (1,3)2/3 . (2.90)

All these multiplets transform as triplets under SU(3)c. The fermionic Lagrangian is
then given by

Lfermion =
1

2

√
g

3∑
i=1

[
(ξ̄i1)aαiΓ

M(D1
M)ab,αβ(ξi1)bβ + (ξ̄i1)aα(iΓMωM − ci1k)(ξi1)aα

+ ξ̄i2(iΓMD2
M + iΓMωM − ci2k)ξi2

+ (T̄ i3)aiΓ
M(D3

M)ab(T
i
3)b + (T̄ i3)a(iΓ

MωM − ci3k)(T i3)a

+ (T̄ i4)αiΓ
M(D4

M)αβ(T i4)β + (T̄ i4)α(iΓMωM − ci3k)(T i4)α

]
+ h.c. , (2.91)

where summation over repeated indices is understood. Writing out the “+h.c.” term
explicitly, one finds that the two terms including the spin connection ωM cancel each
other [82]. Here, ΓM = EM

A γ
A with13 γA = {γµ,−iγ5}, and EM

A is the inverse vielbein
defined through

gMN = EM
A E

N
B η

AB , (2.92)

i.e. it connects the warped space to the flat tangent space. For the case of the RS metric
(2.2), we have

EM
A =


1 for A = M = 5 ,

eky for A = M = µ ,

0 otherwise ,

(2.93)

and the vielbein eAM is given by

eAM =


1 for A = M = 5 ,

e−ky for A = M = µ ,

0 otherwise .

(2.94)

The spin connection ωM is defined through

ωM = eAN(∂ME
N
B + ΓNMKE

K
B )
σA

B

2
, (2.95)

13Here, γ5 = iγ0γ1γ2γ3 is defined in the usual 4D way.
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with σAB = 1
4
[γA, γB] and the Christoffel symbols ΓNMK = 1

2
gNR(∂KgMR + ∂MgKR −

∂RgMK), which yields in case of the RS metric (2.2)

ωM =

{
i
2
ke−kyγµγ

5 for M = µ ,

0 for M = 5 .
(2.96)

The covariant derivatives Di
M are given by

(D1
M)ab,αβ = (∂M + igst

AGA
M + igXQXXM)δabδαβ

+ ig(τ c)abW
c
L,Mδαβ + ig(τ γ)αβW

γ
R,Mδab ,

D2
M = ∂M + igst

AGA
M + igXQXXM ,

(D3
M)ab = (∂M + igst

AGA
M + igXQXXM)δab + gεabcW c

L,M ,

(D4
M)αβ = (∂M + igst

AGA
M + igXQXXM)δαβ + gεαβγW γ

R,M . (2.97)

Here tA = λA/2 (A = 1, . . . , 8) are the generators of the fundamental representation of
SU(3)c, where λA are the Gell-Mann matrices. τa = σa/2 (τα = σα/2) are the generators
of the fundamental SU(2)L (SU(2)R) representations, where σa, σα are the Pauli matri-
ces, and −iεabc and −iεαβγ are the generators of the adjoint triplet representations of
SU(2)L and SU(2)R. Recall that despite having the same matrix structure, the SU(2)L
and SU(2)R generators act on different internal spaces.
In addition, the components of the T i3,4 triplets, as given in (2.80) are not identical to
those components associated with a, α = 1, 2, 3. Instead,

(T i3)a =

 1√
2
(ψ′i +D′i)

i√
2
(ψ′i −D′i)
U ′i

 , (T i4)α =

 1√
2
(ψ′′i +Di)

i√
2
(ψ′′i −Di)

U ′′i

 . (2.98)

The same structure also appears in the gauge sector, where the W 1,2
L,R are related to W±

L,R

via W±
L,R = 1/

√
2(W 1

L,R ∓ iW 2
L,R).

The fundamental Lagrangian density for the lepton sector with right-handed Dirac neu-
trinos can be obtained from the fermion Lagrangian (2.91) by setting gs = gX = 0 in
the covariant derivatives (2.97), which takes care of the fact that all leptons transform
as singlets under SU(3)c × U(1)X .

Higgs sector The Lagrangian describing the Higgs bi-doublet H, given in (2.63), reads

LHiggs =
√
g
[
(DMH)†aα(DMH)aα − V (H)

]
, (2.99)

with
(DMH)aα = ∂MHaα + ig(τ c)abW

c
L,MHbα + ig(τ γ)αβW

γ
R,MHaβ (2.100)
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and V (H) being the potential that eventually leads to EWSB.
Note that in case of a bulk Higgs field, H contains massive KK modes in addition to the
zero mode. Their couplings are, due to a similar bulk profile, roughly the same as the
Higgs zero mode couplings. The potential V (H) then has to be constructed in such a
way that only the zero mode obtains a VEV, as otherwise the consistency with EWPT
would be spoiled. Apart from that, since the scalar KK modes are even heavier than the
gauge and fermionic KK modes, they can be safely neglected in most phenomenological
applications. Therefore, we will not give an explicit expression for V (H), but merely
assume that it leads to a VEV for the zero mode and the particular shape function h(y),
as given in (2.34).
The kinetic terms in LHiggs are responsible for the effects of EWSB in the gauge sector
which were discussed in detail in section 2.5.2.

Yukawa sector Finally, we need to construct the Higgs couplings to fermion fields,
which will yield the masses of the SM fermions after EWSB. For simplicity, we restrict
ourselves to the quark sector, and the Yukawa couplings for the lepton sector can then
be obtained in a completely analogous way.
The most general Yukawa coupling including the Higgs bi-doublet H and the quark fields
ξi1,2,3 is given by

LYuk = −
√

2
√
g

3∑
i,j=1

[
− λuij(ξ̄i1)aαHaαξ

j
2

+
√

2λdij
[
(ξ̄i1)aα(τ c)ab(T

j
3 )cHbα + (ξ̄i1)aα(τ γ)αβ(T j4 )γHaβ

]
+ h.c.

]
, (2.101)

where again summation over repeated indices is understood. The normalization factor√
2 enters the second term in order to canonically normalize the fermion triplets T j3,4,

and the overall signs of the two contributions are chosen such that the (00)-components
of the mass matricesM(2/3) andM(−1/3) in (3.11), (3.12) carry an overall plus sign.14

Interestingly, while the first coupling, proportional to λuij, contributes only to the mass
matrix of charge +2/3 quarks, the second term, proportional to λdij, contributes to all
charge +5/3, +2/3 and −1/3 mass matrices.

We conclude this chapter by noting that it is possible to extend the theory by adding
contributions to the action that are confined to the UV or IR branes. Indeed any such
terms that are consistent with the symmetries of the theory will be generated at the loop
level even if they are set to zero at tree level. In order to keep the presentation as clear
as possible, we will not consider this most general case, but restrict ourselves to the bulk
action given in (2.82). The only exception to this rule will be our treatment of different
fundamental QCD coupling constants in our numerical analysis in chapter 5.

14Recall that the fermionic mass term possesses an overall minus sign.
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Chapter 3

The Flavor Structure of the RSc

In section 3.1 of this chapter we will first analyze the mass matrices which arise after
EWSB for the quark fields introduced in section 2.5.3. The structure of these matrices
and also that of the quark coupling matrices in the RSc is within a certain margin
determined by the specific localization of the quark zero modes which will be discussed
in section 3.2. Having worked out the quark spectrum of the RSc we will turn our
attention towards flavor non-universalities in the couplings of quarks to gauge bosons and
the consequential flavor violating couplings. In the RSc there are two main effects which
lead to flavor non-universalities in the couplings of quarks to gauge bosons: The first
effect arises in the couplings of quark zero modes (whose localization is flavor dependent)
to the non-uniformly localized KK gauge boson modes. This effect will be referred to
as flavor violation from gauge boson mixing and will be discussed in section 3.4. In
the course of this analysis we will work out how the custodial protection which was
originally introduced to protect the ZbLb̄L coupling also strongly affects the other Z
and Z ′ couplings. The second main, yet usually subdominant, origin of flavor violating
couplings lies in the mixing of quark zero modes with heavy KK fermions of the same
electric charge. This mechanism will be referred to as flavor violation from KK fermion
mixing and will be treated in great detail in section 3.5. A quantitative comparison
of both effects will be performed in the same section. Finally, in addition to flavor
violating gauge couplings, also flavor violating Higgs couplings are present in the RSc.
Their sources will be briefly summarized in section 3.6.

While in the present work we will concentrate on the couplings that are relevant for
the analysis of tree level corrections to a number of observables, the calculation of loop
diagrams in the framework of the RSc would require also the knowledge of vertices that
exclusively contain non-SM particles. The derivation of all these couplings is beyond the
scope of this work, and the reader is referred to [32] where a complete list of couplings
that arise in the RSc has been given.
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3.1 Quark Mass Matrices

The transformation to mass eigenstates in the gauge sector has been performed in section
2.5.2. The goal of the present section is to construct and diagonalize the mass matrices for
the quark fields comprised by the multiplets that are given in (2.80) and their opposite
chirality counterparts. To this end we will only consider zero modes and the lowest
(n = 1) KK modes. As there are only few quark fields with zero modes, we will assign
to them the superscript (0). For the excited KK modes we will just use the notation of
(2.80), making the (n = 1) index implicit.
We will have to deal with three mass matrices corresponding to the electric charges +5/3,
+2/3 and −1/3. To this end we group the fermion modes into the following vectors. For
the +5/3 charge mass matrix we have

ΨL(5/3) =
(
χuiL (−+), ψ′iL(+−), ψ′′iL (+−)

)T
,

ΨR(5/3) =
(
χuiR (+−), ψ′iR(−+), ψ′′iR (−+)

)T
, (3.1)

where the flavor index i = 1, 2, 3 runs over the three quark generations. We thus deal
with 9-dimensional vectors. Note that in this sector only massive excited KK states are
present. For the charge +2/3 mass matrix the corresponding vectors read

ΨL(2/3) =
(
q
ui(0)
L (++), quiL (++), U ′iL(+−), U ′′iL (+−), χdiL (−+), uiL(−−)

)T
,

ΨR(2/3) =
(
u
i(0)
R (++), quiR (−−), U ′iR(−+), U ′′iR (−+), χdiR (+−), uiR(++)

)T
. (3.2)

Here the first components are zero modes, and i = 1, 2, 3 so that we deal with 18-
dimensional vectors. The −1/3 charge vectors finally are given by

ΨL(−1/3) =
(
q
di(0)
L (++), qdiL (++), D′iL(+−), Di

L(−−)
)T

,

ΨR(−1/3) =
(
D
i(0)
R (++), qdiR (−−), D′iR(−+), Di

R(++)
)T

. (3.3)

Again the first entries are zero modes, the remaining ones massive KK modes, and
i = 1, 2, 3, so that in this case a 12-dimensional vector is obtained.
In order to establish the notation for the construction of the mass matrices let us briefly
recall some basic properties of the fermion multiplets and bulk profiles that have been
stated in sections 2.2.3, 2.5.3 and 2.5.4.

1. We have three bulk mass matrices c1, c2, c3 corresponding to the three O(4) ∼
SU(2)L×SU(2)R×PLR representations ξi1, ξ

i
2, ξ

i
3 (i = 1, 2, 3 is the flavor index). In

general, the ck are arbitrary hermitian 3×3 matrices, where k = 1, 2, 3 corresponds
to the O(4) multiplet ξk. In the following we choose to work in the basis where they
are real and diagonal, i.e. each of them is described by three real parameters cik.
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This can always be achieved by appropriate field redefinitions of the ξi multiplets.
Explicitly we then have:

c1 ≡ Diag(c1
1, c

2
1, c

3
1) , (3.4)

and similarly for c2 and c3. For a given O(4) multiplet with fixed flavor index all
bulk mass parameters for different components of the multiplet are equal to each
other.

2. The allowed Yukawa couplings, giving mass to the quark zero modes after EWSB,
have to preserve the full O(4) ∼ SU(2)L × SU(2)R × PLR gauge symmetry. The
possible gauge invariant terms in the full 5D theory can be found in section 2.5.4.

3. The effective 4D Yukawa matrices will involve the quark and Higgs shape functions.
We will denote the fermionic ones by fQL,k(y) and fQR,l(y), corresponding to the k-th
and l-th component of ΨL(Q) and ΨR(Q) in (3.1)–(3.3), and h(y) is the Higgs
shape function as given in (2.34).

Having at hand this information and restricting ourselves to (n = 0, 1) for simplicity, we
obtain the following effective 4D Yukawa couplings

[
Y

(5/3)
ij

]
kl

=
1√

2L3/2

∫ L

0

dy λdijf
5/3
L,k (y)f

5/3
R,l (y)h(y) ,

[
Y

(2/3)
ij

]
kl

=
1

2L3/2

∫ L

0

dy λdijf
2/3
L,k (y)f

2/3
R,l (y)h(y) ,

[
Ỹ

(2/3)
ij

]
kl

=
1√

2L3/2

∫ L

0

dy λuijf
2/3
L,k (y)f

2/3
R,l (y)h(y) ,

[
Y

(−1/3)
ij

]
kl

=
1√

2L3/2

∫ L

0

dy λdijf
−1/3
L,k (y)f

−1/3
R,l (y)h(y) . (3.5)

These effective Yukawa matrices are given for the most general case of Higgs field prop-
agating into the bulk with shape function h(y). In our case of a brane Higgs we have to
replace the Higgs shape function by a δ-function, h(y)→ √Lekyδ(y − L). If we further
define the brane overlaps of the quark zero modes as

F i
Q ≡

ekL/2√
L
fL(y = L, ci1; ++) ,

F i
u,d ≡

ekL/2√
L
fR(y = L, ci2,3; ++) , (3.6)

we obtain for the effective Yukawa matrices [Ỹ
(2/3)
ij ]00 and [Y

(−1/3)
ij ]00 which are relevant
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for the masses of the SM quarks,[
Ỹ

(2/3)
ij

]
00

=
1√
2
F i
Qλ

u
ijF

j
u ,[

Y
(−1/3)
ij

]
00

=
1√
2
F i
Qλ

d
ijF

j
d . (3.7)

Finally, we also mention that for (n = 1) KK modes

f (1)(y = L, ci1,2,3) =

{
ekL/2√

L

√
2 for (++) and (−+) BCs

0 for (+−) and (−−) BCs
(3.8)

holds to a very good approximation independently of the values of the ci1,2,3.

Interestingly, the Yukawa coupling proportional to λdij, connecting ξi1 with ξj3 and being
responsible for the SM down quark Yukawa couplings, leads to mass terms not only for
the charge −1/3 quarks, but simultaneously also to mass terms for the charge +5/3 and
+2/3 quarks. This is a direct consequence of T j3 and T j4 being placed in the adjoint
representations of SU(2)L and SU(2)R, as can be seen in (2.80).

On the other hand, the term proportional to λuij, connecting ξi1 with ξj2 and being thus
responsible for the SM up quark Yukawa coupling, contributes only to the mass matrix
for the charge +2/3 quarks.

Finally the fermionic KK masses, which can be obtained from solving the bulk equations
of motion, have to be included in the mass matrices. Note that both the fermion shape
function and the KK mass depend on the bulk mass parameter c and on the BCs.

In what follows we will use the 3 × 3 KK fermion mass matrices MKK
k (BC-L), where

k = 1, 2, 3 labels the representations in (2.80) and their opposite chirality counterparts,
and (BC-L) are the BCs for the left-handed modes.

In terms of the mode vectors (3.1)–(3.3) we can write

Lmass = −Ψ̄L(5/3)M(5/3) ΨR(5/3) + h.c.

−Ψ̄L(2/3)M(2/3) ΨR(2/3) + h.c.

−Ψ̄L(−1/3)M(−1/3) ΨR(−1/3) + h.c. . (3.9)

In order to distinguish zero modes from the KK fermions we will assign the index (0)
to the zero mode components of the vectors (3.1)–(3.3). Then the quark mass matrices
read

M(5/3) =


MKK

1 (−+) v
[
Y

(5/3)
ij

]
12
−v
[
Y

(5/3)
ij

]
13

v
[
Y

(5/3)
ij

]†
21

MKK
3 (+−) 0

−v
[
Y

(5/3)
ij

]†
31

0 MKK
3 (+−)

 , (3.10)
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M(2/3) = (3.11)

v
[
Ỹ

(2/3)
ij

]
00

0 −v
[
Y

(2/3)
ij

]
02

v
[
Y

(2/3)
ij

]
03

0 v
[
Ỹ

(2/3)
ij

]
05

v
[
Ỹ

(2/3)
ij

]
10

MKK
1 (++) −v

[
Y

(2/3)
ij

]
12

v
[
Y

(2/3)
ij

]
13

0 v
[
Ỹ

(2/3)
ij

]
15

0 −v
[
Y

(2/3)
ij

]†
21

MKK
3 (+−) 0 −v

[
Y

(2/3)
ij

]†
24

0

0 v
[
Y

(2/3)
ij

]†
31

0 MKK
3 (+−) v

[
Y

(2/3)
ij

]†
34

0

−v
[
Ỹ

(2/3)
ij

]
40

0 −v
[
Y

(2/3)
ij

]
42

v
[
Y

(2/3)
ij

]
43

MKK
1 (−+) −v

[
Ỹ

(2/3)
ij

]
45

0 v
[
Ỹ

(2/3)
ij

]†
51

0 0 −v
[
Ỹ

(2/3)
ij

]†
54

MKK
2 (−−)


,

M(−1/3) =



v
[
Y

(−1/3)
ij

]
00

0 −v
[
Y

(−1/3)
ij

]
02

v
[
Y

(−1/3)
ij

]
03

v
[
Y

(−1/3)
ij

]
10

MKK
1 (++) −v

[
Y

(−1/3)
ij

]
12

v
[
Y

(−1/3)
ij

]
13

0 −v
[
Y

(−1/3)
ij

]†
21

MKK
3 (+−) 0

0 v
[
Y

(−1/3)
ij

]†
31

0 MKK
3 (−−)


. (3.12)

These three matrices have to be diagonalized via bi-unitary transformations to find the
quark mass eigenstates. In the case of the Higgs field being confined exactly to the IR
brane, only Yukawa couplings to those fermion modes are non-vanishing that obey a (+)
BC on the IR brane. In that case some of the entries in the above mass matrices in
(3.10)–(3.12) vanish:

M(5/3)21 =M(5/3)31 = 0 ,

M(2/3)21 =M(2/3)31 =M(2/3)51 = 0 ,

M(2/3)24 =M(2/3)34 =M(2/3)54 = 0 ,

M(−1/3)21 =M(−1/3)31 = 0 . (3.13)

We can then diagonalize the charge +5/3, +2/3 and −1/3 mass matrices by

MDiag(5/3) = X †LM(5/3)XR , (3.14)

MDiag(2/3) = U †LM(2/3)UR , (3.15)

MDiag(−1/3) = D†LM(−1/3)DR , (3.16)

and the corresponding rotations of the ΨL,R vectors of fermion modes are

ΨL,R(5/3)mass = X †L,R ΨL,R(5/3) , (3.17)

ΨL,R(2/3)mass = U †L,R ΨL,R(2/3) , (3.18)

ΨL,R(−1/3)mass = D†L,R ΨL,R(−1/3) . (3.19)
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3. The Flavor Structure of the RSc

Note that XL,R, UL,R and DL,R are unitary 9× 9, 18× 18 and 12× 12 matrices.

3.2 Solution to the Flavor Puzzle

The exponential dependence of the quark field zero modes on the bulk mass parameters
can be used to advantage in the attempt to reproduce the SM quark masses and CKM
mixing angles. In section 3.2.1 we will see how very hierarchical 4D Yukawa matrices
can be generated from anarchic O(1) parameters in the 5D Theory. The constraints on
the parameter space, in particular on the bulk mass parameters, that are imposed by
this construction will be outlined in section 3.2.2.

3.2.1 The SM Yukawa Sector

As was discussed in the previous section the effective 4D Yukawa matrices are in the
case of a brane Higgs (up to a factor of

√
2) given by (3.7),(

Y 4D
u,d

)
ij

= F i
Qλ

u,d
ij F

j
u,d , (3.20)

where no sum over repeated indices is implied. We see that in the brane Higgs case
the expressions for the effective 4D Yukawa matrices factorize into the brane overlaps
of the left-handed quark doublets, the fundamental 5D Yukawa matrices and the brane
overlaps of the right-handed quark singlets. Two comments about the natural absolute
sizes and structures of the ingredients of (3.20) are in order at this point. First, the
brane overlaps F i

Q,u,d generically display a large hierarchy as they depend exponentially
on the quarks’ bulk mass parameters which are assumed to be of order one. Second, the
fundamental 5D Yukawa matrices λu,d are assumed to be anarchic with entries of order
one.

With these two facts given—large hierarchies in the brane overlaps and no structure in the
fundamental 5D Yukawa matrices—expression (3.20) strongly resembles the proposal by
Froggatt and Nielsen [83] on how large hierarchies in the quark sector can be explained.
This resemblance is only one of outcome, but not of concept, since the underlying physics
in both cases is vastly different. A table identifying several conceptual features in the RSc
and in the Froggatt-Nielsen setup can be found in [33] where also the original Froggatt-
Nielsen formulae are given. To demonstrate how the large hierarchies are generated it
is enough to consider approximate relations (see e.g. [84]) between quark masses and
mixing angles that neglect any possible structure in the Yukawa matrices and are valid
at the O(1) level. They are given by

mi
u,d '

v√
2
F i
Q

〈
λu,d

〉
F i
u,d , θij '

F i
Q

F j
Q

, (3.21)
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where
〈
λu,d

〉
is the typical size of the entries of λu,d and θij are the mixing angles in the

CKM matrix VCKM = U †LDL with

mDiag
u = U †LmuUR ,

mDiag
d = D†LmdDR . (3.22)

To clarify how realistic quark masses and mixing angles can arise, we will now exemplarily
determine the quark brane overlaps F i

Q,u,d by using the approximate formulae (3.21).
From there the bulk mass parameters ciQ,u,d can be easily derived via (3.6) and (2.24).

For this demonstration we assume that the typical size of Yukawa couplings
〈
λu,d

〉
is 3

and that for the third-generation quark doublet F 3
Q = 0.4 holds. Both choices will be

motivated in section 3.2.2. First, F 1
Q and F 2

Q can be determined from (3.21) to be

F 2
Q ' λ2

CF
3
Q ' 0.02 and F 1

Q ' λ3
CF

3
Q ' 0.005 , (3.23)

where λC ' 0.23 is the sine of the Cabibbo angle. Now all remaining brane overlaps are
fixed by the quark mass spectrum,

F 1,2,3
u '

√
2mu,c,t

3vF 1,2,3
Q

' (0.0006, 0.04, 0.7) ,

F 1,2,3
d '

√
2md,s,b

3vF 1,2,3
Q

' (0.001, 0.005, 0.01) . (3.24)

These näıve estimates in practice will be modified by O(1) factors, depending on the
particular structure of the Yukawa matrices λu,d. From (3.6) and (2.24) we find for the
bulk mass parameters

c1
Q ' 0.63 , c2

Q ' 0.57 , c3
Q ' 0.42 ,

−c1
u ' 0.67 , −c2

u ' 0.53 , −c3
u ' −0.35 ,

−c1
d ' 0.66 , −c2

d ' 0.60 , −c3
d ' 0.57 . (3.25)

The bulk mass parameters in (3.25) are O(1) and display only a very soft hierarchy.
We have seen explicitly how this choice together with totally anarchic Yukawa matrices
can lead to the large hierarchies in the quark masses and mixing angles. Thus the RS
setup addresses the SM flavor puzzle by localizing the quark zero modes in a flavor-
dependent manner (for first attempts in that direction see [85]). Still the RS model does
not actually solve the flavor puzzle, but merely postpones it. There is no prediction for
the actual values of the bulk mass parameters and Yukawa couplings made by the RS
model, and a more fundamental theory is required to predict the values of the respective
parameters. On the other hand, the achievement of the RS model clearly is to reduce
the hierarchies in quark masses and mixing angles from exponential to linear ones in a
motivated manner.
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This mechanism to generate hierarchies, which works very well for quarks, fails in the
case of the lepton sector. The crucial difference is that in the lepton sector the mixing
angles of the leptonic mixing matrix are not small but one is even close to maximal [76].
In a setup resembling the one discussed above a localization of the lepton fields that
would explain the mass hierarchy in the lepton sector would also imply small mixing
angles. In the following we will not deal with flavor mixing in the lepton sector and just
state that there are several proposals in the literature on how a realistic lepton sector
can be achieved [86–88].

As a final point in this section we want to continue our keeping track of parameters of the
RSc and state how the fundamental 5D Yukawa matrices can be parameterized in a non-
redundant way. Details and intermediate steps of this procedure can be found in [33].
We start from the singular value decomposition for the up- and down-type fundamental
Yukawa matrices

λu =
1

k
eiφuU †uDuVu , λd =

1

k
eiφdU †dDdVd , (3.26)

where Uu,d, Vu,d are SU(3) matrices and Du,d are real and diagonal. The SU(3) matrices
can be parameterized through the Euler decomposition for SU(3) matrices [89]

U(α, a, γ, c, β, b, θ, φ) = eiλ3αeiλ2aeiλ3γeiλ5ceiλ3βeiλ2beiλ3θeiλ8φ , (3.27)

where λi are the generators of SU(3), a, b, c are mixing angles and α, β, γ, φ, θ are
phases. We can now use the freedom to rephase the quark fields QL, uR and dR and
arrive at

λu =
1

k
U †u(0, aUu , 0, cUu , βUu , bUu , θUu , 0)Du Vu(αVu , aVu , γVu , cVu , βVu , bVu , 0, 0) ,

λd =
1

k
Ud(0, aUd , γUd , cUd , βUd , bUd , 0, 0)Dd Vd(αVd , aVd , γVd , cVd , βVd , bVd , 0, 0) , (3.28)

with Du = Diag(y1
u, y

2
u, y

3
u) and Dd = Diag(y1

d, y
2
d, y

3
d). From this parameterization we

find 18 real parameters and ten physical phases in the fundamental 5D Yukawa matrices.
This parameterization of the fundamental Yukawa matrices looks rather cumbersome.
On this account we want to alert the reader that it is of utmost importance to have an
expression for λu,d in terms of fundamental model parameters. Only then it is possible
to scan the parameter space in an unprejudiced way and not to introduce artificial
correlations. A parameterization based on phenomenological quantities, which however
is unsuited for our present purposes, has been given in [32].

3.2.2 A Localization Ambiguity

In the previous section the natural generation of large hierarchies in the quark spectrum
and mixing angles via delocalized quark wave functions has been demonstrated. We will
show now that this procedure still leaves some freedom of choice for the nine quark bulk
mass parameters. As can bee seen from the expression (3.20) for Y 4D

u,d , even for fixed

40



Solution to the Flavor Puzzle

5D Yukawa matrices λu, λd the localization parameters are not fixed unambiguously.
In fact, in [84] it has been pointed out that the quark spectrum and mixing angles are
invariant under simultaneous shifts of FQ and Fu, Fd,

FQ → ζFQ , Fu,d → 1

ζ
Fu,d , (3.29)

where ζ is some real, positive parameter. This linear shift on FQ,u,d implies a non-linear
transformation of the cQ,u,d parameters which can easily be derived from (3.6) and (2.24).
It has to be made clear that the shift (3.29) is not a symmetry of the RS since although
leaving invariant the Yukawa sector it has physical impact on the KK spectrum and the
couplings of the model. However, if it is not a symmetry of the model, the presence
of such a shift transformation implies that beyond the six quark masses, three mixing
angles and one CP violating phase an additional piece of information is necessary to
make one’s choice of localization parameters unambiguous and to allow for meaningful
predictions for flavor signatures. For instance, localizing the right-handed quark fields
very close to the IR brane and the left-handed quark fields very close to the UV brane
(ζ < 1) enhances the right-handed couplings while the opposite localization scheme
enhances the left-handed couplings. Observables such as εK that receive the largest
contribution from left-right operators (see section 4.1) are rather robust with respect to
those variations whereas most branching ratios of rare K and B decays (see section 4.2)
can vary by several orders of magnitude. In the following we will see how the requirement
of perturbativity, experimental bounds on gauge couplings such as Wt̄LbL and ZtLt̄L (see
for instance [90–97]), and constraints from electroweak precision observables as discussed
in section 2.3 can be used to narrow down the valid parameter space. In doing so it is
sufficient to analyze the constraints on the

(
c3
Q, c

3
u

)
plane, since for given c3

Q, c3
u all other

localization parameters are fixed by the quark spectrum and mixing angles. We will now
discuss the three main constraints on the

(
c3
Q, c

3
u

)
plane.

Perturbativity In order to keep physics perturbative up to reasonably high energy
scales, the dimensionfull Yukawa couplings λu, λd cannot be arbitrarily large (see e.g. [98–
100]). In näıve dimensional analysis, the 1-loop contribution to the Yukawa couplings
with loop momenta cut off at energy E would be ∼ (〈λu,d〉E)3/(16π2), where 〈λu,d〉 is
the typical size of entries in λu, λd. If this contribution is required to be smaller than the
tree level term for energies as large as the mass of the NKK-th KK mode, this requires
〈λu,d〉k . 2π/NKK. For the minimal requirement of NKK = 2 this leads to 〈λu,d〉k . 3.
This bound on the size of a typical entry of the 5D Yukawa matrices λu and λd also puts
constraints on the quark localization parameters cQ and cu,d. In particular the large top
quark mass requires that the product F 3

QF
3
u can be no smaller than (

√
2mt)/(3v) ≈ 0.27,

forbidding the left-handed quark doublet of the third generation and the right-handed
top quark singlet to be localized too far away from the IR brane. The constraint on
the

(
c3
Q, c

3
u

)
plane from perturbativity is shown in fig. 3.1; the 3-contour belonging to

(
√

2mt)/(3v) = FQ3Fu3 marks the boundary of the allowed parameters space, forbidding
all values to its right. The remaining contours correspond to lower typical values for the
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3. The Flavor Structure of the RSc

Figure 3.1: The constraint imposed on the
(
c3Q, c

3
u

)
plane by the requirement that the theory remains

perturbative up to energies E 'M (2)
KK. Areas to the right of the 3-contour are excluded.

entries of the Yukawa matrices. If we take into account that with the parameterization for
the Yukawa matrices λu, λd chosen in section 3.2.1 the average size of a Yukawa coupling
is rather 〈λu,d〉k ≈ 3/2, values of (c3

Q, c
3
u) close to the 3-contour are very unlikely.

ZtLt̄L and Wt̄LbL couplings The left-handed coupling of the Z boson to bottom
quarks is protected in the RSc [78] and is found to be under control throughout the(
c3
Q, c

3
u

)
plane [55]. The same is true for the right-handed couplings of the Z boson to

top quarks. Under these circumstances corrections are expected to be most relevant for
the left-handed coupling of the Z boson to top quarks. Indeed, we find that for an IR
localized left-handed third generation bi-doublet ξ3

1,L these corrections can amount to
as much as 20%. Admittedly there are no experimental constraints on this coupling to
date [101], which is mainly due to the production mechanism via the strong interaction
at the Tevatron, the overwhelming γ → tt̄ background and the fact that tt̄ pairs at the
Tevatron are produced almost at rest which suppresses polarization effects. On the other
hand, this coupling is expected to become accessible at the LHC once enough statistics
is available.
Sizable corrections are also possible for the Wt̄LbL coupling, which is weakly constrained
by single top production at the Tevatron, |Vtb| = 0.91(8) [102], but very strongly bounded
once unitarity of the CKM matrix is assumed [76].
Assuming that both abovementioned couplings will be found to be SM-like in the future,
a strong localization of the right-handed top quark towards the IR brane would be
preferred. The level of corrections to the ZtLt̄L and Wt̄LbL couplings in dependence on
the localization parameters is shown in fig. 3.2. We will analyze the issue of modified
gauge-fermion interactions in more detail in sections 3.4 and 3.5.
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Figure 3.2: Percentaged corrections to the couplings Wt̄LbL (left panel) and ZtLt̄L (right panel).

Electroweak precision observables Ironically, the fermion fields arising from the
enlarged multiplets (2.80) introduced in order to protect the ZbLb̄L coupling give rise to
loop level contributions to the T parameter [55]. This contribution turns out to be nega-
tive, unless the left-handed third generation bi-doublet ξ3

1L is localized strongly towards
the IR brane which will result in a positive contribution to the T parameter as would
be preferred by experimental data [76]. On the other hand, the contributions to T are
small but negative for ξ3

1L being localized close to the conformal point cQ3 . 0.5. The
dependence of the correction to the T parameter on the relevant localization parameters
is shown in fig. 3.3.

From the above discussion we see that the only parameter configuration that is favored
by both ZtLt̄L and the T parameter violates perturbativity. The remaining portion of
parameter space that allows for a positive loop contribution to the T parameter leads
to a large negative contribution to the ZtLt̄L and Wt̄LbL couplings. However, due to
experimental uncertainties, a small but negative loop contribution to the T parameter is
still not excluded depending on the exact value of the S parameter. Following this line
of argument, the favored area in the

(
c3
Q, c

3
u

)
plane then is given by the left-handed bi-

doublet ξ3
1L being localized close to the conformal point, cQ3 . 0.5, and the right-handed

top quark singlet being strongly localized towards the IR brane, −c3
u . 0. Throughout

the numerical analysis of the present thesis we will therefore assume 0.4 6 c3
Q 6 0.45.

It is important to note that this particular corner in the
(
c3
Q, c

3
u

)
plane is only favored

because the custodial symmetry protects the Z couplings to the right-handed up-type
quarks from large corrections. A localization of the right-handed top singlet this close to
the IR brane would be disastrous in the minimal RS model without custodial protection
(which will be denoted RSm from now on). As a result, the RSc tends to favor enhanced
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3. The Flavor Structure of the RSc

Figure 3.3: The constraint imposed on the
(
c3Q, c

3
u

)
plane by the T parameter, based on [55].

right-handed couplings of the EW gauge bosons while the RSm shows no such trend and
left- and right-handed couplings are expected to be enhanced or suppressed to roughly
the same degree. Already from this insight it becomes clear that the RSc and RSm
models should display very different signatures for flavor observables, and in particular
rare decays of K and B mesons.

3.3 Flavor Parameters and Total Parameter Count

Before we proceed to calculating the phenomenologically relevant flavor violating ver-
tices, we want to give account of the number of model parameters of the RSc. As already
done above, we can without loss of generality choose a basis in which the bulk mass ma-
trices c1, c2, c3 are diagonal. In this case they yield nine real and independent flavor
parameters. For the parameterization of the fundamental Yukawa matrices λu, λd, as
can be explicitly seen from the parameterization (3.28), we need the total number of 18
real parameters and ten complex phases. This number is consistent with the fact that
two arbitrary unitary 3 × 3 matrices together have 18 real parameters and 18 complex
phases, and that the flavor symmetries of the RSc allow to absorb eight complex phases
by field re-definitions. Thus we find 27 real parameters and 10 complex phases in the
flavor sector of the RSc, which is 18 real parameters and 9 complex phases in excess
of the SM case1. These additional parameters can be readily identified as the quark
bulk masses which generically are represented by three 3 × 3 hermitian matrices. Even
without further investigation of the flavor structure of the RSc we can conclude at this

1An analogous parameter counting also applies to the lepton sector of the RSc.

44



Fermion Couplings in the Zero Mode Approximation

point that the RSc does not fall into the class of models with Minimal Flavor Violation
(MFV) [103–106].

Apart from the parameters in the flavor sector there are two parameters k and L re-
lated to the geometrical setup which can be exchanged for the suppression factor e−kL

and the mass scale MKK. Of these, the former is fixed by the requirement to address
the gauge hierarchy problem2, while the latter can be chosen arbitrarily in the range
MKK & (2− 3) TeV. Additional parameters in this context, such as the bulk and brane
cosmological constants or parameters related to the stabilization of the modulus rc = L/π
are assumed to be chosen such that the RS geometrical setup is obtained. Furthermore
they are assumed to have no significant impact on the phenomenology of the RSc.
The fundamental gauge couplings g, gX are related to the 4D couplings via gi =

√
Lg4D

i

and are thus determined by the measured weak and electromagnetic coupling constants.
The matching of the fundamental QCD coupling constant gs to the measured coupling
on the other hand is modified in the presence of brane kinetic terms such that at the KK
scale, where g4D

s ' 1, gs can take values between
√
L/2 and

√
L and has to be treated

as a free parameter (this matching is treated in more detail in section 3.4.2).
In the case of a Higgs boson that is localized on the IR brane, we can assume the
Higgs sector to have the minimal set of parameters µ and λ. If the Higgs is detached
from the IR brane, the localization parameter β constitutes an additional free parameter.

Finally, for comparison we also give the number of parameters of other NP models, such
as the LHT and SM4 that we will contrast against the RSc in section 5.4: Compared
to the SM, the LHT has seven additional real parameters and three complex phases
[108–111], while the SM4 has five relevant additional real parameters and two complex
phases [112].

3.4 Fermion Couplings in the Zero Mode Approxi-

mation

In this section we will analyze the flavor violating couplings of quark zero modes to
the lightest KK gauge bosons. Apart from directly entering tree level flavor changing
processes, the KK gauge bosons after EWSB can also mix into the zero modes with
identical quantum numbers. This is relevant for the Z and W± gauge bosons which in
this process also receive flavor changing couplings, typically suppressed by mixing angles
that are O(v2/M2

KK).

3.4.1 The RS-GIM Mechanism

The KK modes of the gauge bosons—unlike their flat zero modes—are localized non-
uniformly along the fifth dimension. More precisely, they are peaked strongly towards

2For an alternative approach see however [107].

45



3. The Flavor Structure of the RSc

the IR brane (see fig. 2.1). The couplings of these KK modes to quark zero modes, which
are also localized non-uniformly, are described by the overlap integrals Rk

00
(++)L,R and

P ik
00

(++)L,R defined in (2.51), (2.52) and (2.54), where the first applies to (++) BCs

of the KK gauge boson mode and the latter to (−+) BCs. These integrals manifestly
depend on the bulk mass parameter c of the fermion that interacts with the KK gauge
boson. Hence the 3 × 3 gauge coupling matrices in the flavor eigenbasis are diagonal,
but they are not universal. When transformed to the mass eigenbasis via bi-unitary
rotations, these non-universal coupling matrices will obtain off-diagonal entries signaling
flavor changing interactions. At first sight such flavor violating couplings of gauge bosons
which, although heavy, are exchanged at the tree level seem to be disastrous for the RSc
from a phenomenological point of view. Fortunately, these couplings have a particular
structure which strongly suppresses their impact on the most relevant flavor observables.
This feature of RS models with non-universally localized bulk fermions is referred to as
the RS-GIM mechanism.
The basis of the RS-GIM mechanism is that the KK gauge boson modes have a local-
ization that is very similar to that of the brane localized Higgs field: both are relevant
only close to the IR brane. Hence the couplings of the zero mode fermions to the KK
gauge bosons are roughly proportional to their overlaps FQ, Fu, Fd with the IR brane,[

ε̂
−1/3,2/3
L

]
ii
∼ (F i

Q)2 ,[
ε̂

2/3
R

]
ii
∼ (F i

u)
2 ,[

ε̂
−1/3
R

]
ii
∼ (F i

d)
2 , (3.30)

where the diagonal 3 × 3 matrices ε̂QL,R denote the couplings of fermion zero modes to
KK gauge bosons in the flavor eigenbasis. These matrices have to be rotated to the mass
eigenbasis via bi-unitary rotations,

∆̂
2/3
L,R = U †L,Rε̂

2/3
L,RUL,R ,

∆̂
−1/3
L,R = D†L,Rε̂

−1/3
L,R DL,R , (3.31)

where the 3× 3 unitary rotation matrices UL,R, DL,R have been defined in (3.22).

We will now investigate the structure of the coupling matrices ∆̂Q
L,R, starting with the

case of only two light quark flavors. If the rotation matrices UL,R, DL,R are hierarchical,

and we have seen in section 3.2.1 that they in fact are, the off-diagonal entries of ∆̂Q
L,R

in the two flavor case for small mixing angle θ are schematically given by(
1 −θ
θ 1

)(
ε11 0
0 ε22

)(
1 θ
−θ 1

)
=

(
ε11 +O(θ2) θ(ε11 − ε22)
θ(ε11 − ε22) ε22 +O(θ2)

)
. (3.32)

We see that the flavor changing couplings involving the light quarks (that have small εii ∼
(F i

Q,u,d)
2) are not only suppressed by the absolute smallness of their overlaps with the
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IR brane, but also by the comparably small difference of these. The situation drastically
changes in the three flavor case. Now also terms involving the third generation—with its
large IR brane overlap but very small mixing with the first two generations—contribute
to the flavor transitions among the two light flavors. Schematically, these contributions
are given by ∆12 ∼ ε33θ13θ23 which through θi3 ∼ F i

Q,u,d/F
3
Q,u,d is still suppressed by the

small IR brane overlaps of the light quarks, although not by the splitting in these overlaps
as was the case for two quark flavors. This situation is similar to the SM where loop
contributions to flavor changing processes vanish in the limit of universal quark masses
due to the unitarity of the CKM matrix [31], hence the naming RS-GIM mechanism.

The typical sizes of flavor changing couplings of quark zero modes to KK gauge bosons
are governed by the typical IR brane overlaps of the quarks and hence in the end by
the quark masses and mixing angles. This allows to define patterns or textures for the
coupling matrices ∆̂Q

L,R that characterize the hierarchies between the averaged entries.

We will denote the pattern in the ∆̂Q
L coupling matrices by RS-GIM(Q) and the ones in

∆̂
−1/3,2/3
R by RS-GIM(d), RS-GIM(u). This characterization will be convenient in our

comparison of the impact of KK fermions and of gauge boson mixing on flavor changing
couplings in section 3.5.

Finally, we want to point out a further implication of the generation of flavor chang-
ing couplings from non-universalities in the gauge couplings of flavor eigenstates. We
have seen in the two flavor case how the off-diagonal elements of the coupling matri-
ces ∆̂Q

L,R are related to the couplings ε̂QL,R and to the mixing angle θ. Using the fact

that Det(∆̂Q
L,R) = Det(ε̂QL,R) and Tr(∆̂Q

L,R) = Tr(ε̂QL,R), we can generalize this relation
to the three flavor case and find that a condition exists which puts an upper bound
on the typical sizes of the sums of the absolute squares of the off-diagonal coupling
elements |[∆̂Q

L,R]12|2 + |[∆̂Q
L,R]13|2 + |[∆̂Q

L,R]23|2. But this implies that—typically—these
off-diagonal coupling elements cannot be simultaneously large. This feature can be seen
in fig. 3.4 where we show the absolute squares of the 21 and 32 elements of the ∆̂

−1/3
L

coupling matrix (for a (++) KK gauge boson) as a density plot for a random sample of
parameter sets. Here light areas correspond to a high density of parameter points while
dark areas indicate a low density.

3.4.2 Couplings to KK Gluons and Photons

Since both QCD and QED remain unbroken in the RSc, gluons and photons of different
KK level do not mix with each other. The massless gluons and photons therefore couple
to the fermion zero modes in a flavor-diagonal and flavor-universal manner. The first
gluonic and photonic KK modes GA(1) and A(1) on the other hand have flavor changing
couplings to the fermion zero modes, as was discussed in a more general framework in
the previous subsection. Here, up to factors of i, Dirac and color matrices, the couplings
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Figure 3.4: Absolute squares of the 21 and 32 elements of the ∆̂−1/3
L coupling matrix for a (++) KK

gauge boson.

in the flavor eigenbasis are given by

ε̂
−1/3
L (A(1)) = ε̂

2/3
L (A(1)) =

Qe√
L
R1
00

(++)L ,

ε̂
−1/3
R (A(1)) =

Qe√
L
R3
00

(++)R ,

ε̂
2/3
R (A(1)) =

Qe√
L
R2
00

(++)R , (3.33)

and
ε̂QL,R(G(1)) =

gs
Qe

ε̂QL,R(A(1)) , (3.34)

where gs and e are the fundamental 5D couplings which at the tree level and in the
absence of brane kinetic terms are related to the experimentally determined 4D cou-
plings by gs =

√
Lg4D

s and e =
√
Le4D. Since the bulk profiles of the left-handed

and right-handed fermion zero modes in general are different from each other, we have
ε̂QL (G(1), A(1)) 6= ε̂QR (G(1), A(1)) which indicates parity violation in the couplings of fermion
zero modes to KK gluons and KK photons.
Analogous to the general discussion in the previous subsection, the couplings of quark
zero modes to KK gluons and KK photons in the mass eigenbasis are given by

∆̂
−1/3
L (G(1), A(1)) = D†L ε̂

−1/3
L (G(1), A(1))DL ,

∆̂
−1/3
R (G(1), A(1)) = D†R ε̂

−1/3
R (G(1), A(1))DR ,

∆̂
2/3
L (G(1), A(1)) = U †L ε̂

2/3
L (G(1), A(1))UL ,

∆̂
2/3
R (G(1), A(1)) = U †R ε̂

2/3
R (G(1), A(1))UR . (3.35)
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Before we proceed, some comments about the matching condition gs =
√
Lg4D

s are in
order. As mentioned, this relation holds if the coupling constants are matched in the
absence of brane kinetic terms for the gluons. However, such brane kinetic terms are not
forbidden by symmetry principles and as such will be generated at the loop level even if
their bare values are zero. In particular on the UV brane where the momentum cut-off is
large these effects are sizeable and induce negative brane kinetic terms. These effectively
reduce the 5D coupling by roughly 50% such that we obtain the lowest possible value
gs
∣∣
1-loop

=
√
Lg4D

s /2. For an RG evolved QCD coupling g4D
s (µ 'MKK) ' 1 and

√
L ' 6

we accordingly find3 gs = 6 for tree level matching and gs = 3 if no bare brane kinetic
terms are present and loop effects are taken into account. In the case of positive brane
kinetic terms at the tree level, the fundamental QCD coupling is effectively enhanced
such that values up to gs ' 12 are possible.

On the other hand, in order for the theory to retain perturbative calculability up to ener-
gies somewhat beyond the mass of the second KK mode, the fundamental QCD coupling
must not be too large. Näıve dimensional analysis suggests gs ' 6 as an upper bound
for this coupling and the inclusion of helicity and color factors even suggests that gs ' 3
marks the maximal value [100]. Since this is an estimate from näıve dimensional analysis
we will choose gs = 6 as a reference value in order to be conservative and not to preclude
interesting flavor effects right from the start. For completeness we will nevertheless also
consider the lowest possible value gs = 3 in our numerical analysis in chapter 5.

3.4.3 Couplings to the Z, ZH and Z ′ Gauge Bosons: Custodial
Protection

Before EWSB the couplings of Z(0) to quark flavor eigenstates are flavor universal,

ε̂
−1/3
L (Z(0)) = g4D

Z,L(d)1 ,

ε̂
−1/3
R (Z(0)) = g4D

Z,R(d)1 ,

ε̂
2/3
L (Z(0)) = g4D

Z,L(u)1 ,

ε̂
2/3
R (Z(0)) = g4D

Z,R(u)1 , (3.36)

3In the following discussion it will be convenient to set
√
k ≡ 1 such that

√
L ' 6. This identification

is possible since all relevant quantities are sensitive to the product kL only. The only exception to this
rule, MKK, is fixed to its value by hand.
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3. The Flavor Structure of the RSc

while the ones of Z(1) and Z
(1)
X are not. The Z(1) couplings are proportional to the KK

gluon and KK photon couplings and are given by

ε̂
−1/3
L (Z(1)) = g4D

Z,L(d)R1
00

(++)L ,

ε̂
−1/3
R (Z(1)) = g4D

Z,R(d)R3
00

(++)R ,

ε̂
2/3
L (Z(1)) = g4D

Z,L(u)R1
00

(++)L ,

ε̂
2/3
R (Z(1)) = g4D

Z,R(u)R2
00

(++)R . (3.37)

The Z
(1)
X couplings finally are proportional to the Pk

00
(++)L,R integrals defined in (2.52)

and (2.54),

ε̂
−1/3
L (Z

(1)
X ) = κ4D

1 (d)P1
00

(++)L ,

ε̂
−1/3
R (Z

(1)
X ) = κ4D

5 (d)P3
00

(++)R ,

ε̂
2/3
L (Z

(1)
X ) = κ4D

1 (u)P1
00

(++)L ,

ε̂
2/3
R (Z

(1)
X ) = κ4D

3 (u)P2
00

(++)R . (3.38)

The couplings g4D
Z,L(u, d), g4D

Z,R(u, d), κ4D
1 (u, d), κ4D

5 (u, d) are collected in appendix A.

After EWSB the gauge eigenstates Z(0), Z(1) and Z
(1)
X mix among each other to form the

mass eigenstates Z, ZH and Z ′. This a priori implies that the couplings of all three mass
eigenstates are flavor non-universal. We will now investigate this issue in more detail.
With the composition of the neutral mass eigenstates given in (2.76) we find for the Z,
ZH and Z ′ couplings

ε̂QL,R(Z) = ε̂QL,R(Z(0)) +
M2

Z

MKK

[
−I+

1 ε̂
Q
L,R(Z(1)) + I−1 cosφ cosψ ε̂QL,R(Z

(1)
X )
]
,

ε̂QL,R(ZH) =
1√
2

[
cosφ ε̂QL,R(Z(1)) +

1

cosψ
ε̂QL,R(Z

(1)
X )

]
,

ε̂QL,R(Z ′) =
1√
2

[
cosφ ε̂QL,R(Z

(1)
X )− 1

cosψ
ε̂QL,R(Z(1))

]
− M2

Z

M2
KK

I1√
2
ε̂QL,R(Z(0)) . (3.39)

In the limit of exact PLR symmetry and neglecting the symmetry breaking effects by
BCs on the UV brane, we have I+

1 = I−1 and for the overlap integrals

Rk
00

(BC)L,R = Pk
00

(BC)L,R , (3.40)
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such that ε̂QL,R(Z(1)) and ε̂QL,R(Z
(1)
X ) are equal up to the different coupling constants g4D

Z

and κ4D. Then,

ε̂QL,R(Z) = ε̂QL,R(Z(0)) +
M2

Z

MKK

I1

[−g4D
Z (F ) + cosφ cosψ κ4D(F )

] ε̂QL,R(Z(1))

g4D
Z (F )

,

ε̂QL,R(ZH) =
1√
2

[
cosφ g4D

Z (F ) +
1

cosψ
κ4D(F )

]
ε̂QL,R(Z(1))

g4D
Z (F )

,

ε̂QL,R(Z ′) =
1√

2 cosψ

[
cosφ cosψ κ4D(F )− g4D

Z (F )
] ε̂QL,R(Z(1))

g4D
Z (F )

− M2
Z

M2
KK

I1√
2
ε̂QL,R(Z(0)) ,

(3.41)

where g4D
Z (F ) and κ4D(F ) have to be chosen appropriately from g4D

Z,L(u, d), g4D
Z,R(u, d)

and κ4D
1 (u, d), κ4D

3 (u, d). To translate the flavor eigenbasis couplings in (3.41) into the
mass eigenbasis we simply have to replace the ε̂ coupling matrices by ∆̂, which can be
obtained from the former by bi-unitary rotations analogous to (3.35).
We see from (3.41) that the Z and Z ′ couplings are proportional to the same combination
of coupling constants,

g4D
Z (F )− cosφ cosψ κ4D(F ) , (3.42)

and with the explicit expressions for these coupling constants given in appendix A we find
that for F = dL and F = uR the combination (3.42) vanishes. This is the manifestation of
the custodial protection at the technical level. For the Z couplings to left-handed down-
type and right-handed up-type quarks the corrections to the leading coupling g4D

Z (F )1
are strongly suppressed, so that the flavor conserving couplings are SM-like—among
them the ZbLb̄L coupling—and the flavor changing couplings vanish in the limit of exact
PLR symmetry. It is interesting to note, and this fact was overlooked in the literature
for some time, that the construction which was aimed at protecting the ZbLb̄L coupling,
in the end also suppresses corrections to all other ZdiLd̄

j
L couplings and also to the

ZuiRū
j
R couplings. The Z ′ which is subject to the same protection in the limit of exact

PLR symmetry does not couple to the left-handed down-type and right-handed up-type
quarks at all. As an example, in fig. 3.5 we contrast the left- and right-handed Zds̄ and
Zsb̄ couplings using the set of parameter points from our global numerical analysis in
chapter 5. We want to point out the following observations:

• With active custodial protection we see that the left-handed couplings are on aver-
age suppressed by roughly two orders of magnitude. The slightly stronger suppres-
sion in the case of the left-handed (bs) coupling is due to the fact that for heavier
quarks the impact of symmetry breaking effects by BCs on the UV brane become
less relevant, as can be seen in fig. 2.3.

• As a consequence, (∆̂
−1/3
R (Z))sd is larger than (∆̂

−1/3
L (Z))sd for a dominant part of

the allowed parameter points and is on average larger than (∆̂
−1/3
L (Z))sd by two

orders of magnitude.
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• The dominance of (∆̂
−1/3
R (Z))bs over (∆̂

−1/3
L (Z))bs is less pronounced, but still on

average (∆̂
−1/3
R (Z))bs is larger than (∆̂

−1/3
L (Z))bs by one order of magnitude. The

reason for this behavior is independent of the custodial protection and lies in the
fact that the left-handed doublet always is localized closer to the IR brane than
the right handed down-type singlet and thus couples more strongly to KK gauge
bosons. This effect is particularly pronounced for the b quark (cf. the näıve estimate
for the fermionic IR brane overlaps in the discussion that led to (3.24)).

• The values of (∆̂
−1/3
R (Z))bs are on average larger than (∆̂

−1/3
R (Z))sd by one order

of magnitude, as the (bR, sR) system is localized closer to the IR brane than the
(sR, dR) system.

• If the cancellation due to the custodial protection is removed (by setting the
κ coupling constants to zero) the left-handed couplings considerably exceed the
right-handed couplings, as is to be expected from the ratio of coupling constants
|g4D
Z,L(d)/g4D

Z,R(d)| ' 5.5 and the fact that the relevant left handed modes are local-
ized closer towards the IR brane than the right handed modes.

For (∆̂
−1/3
L,R (Z))bd we find values between those for the (bs) and (sd) cases.

Figure 3.5: |∆̂−1/3
L (Z)|ij vs. |∆−1/3

R (Z)|ij for ij = sd (left panel) and ij = bs (right panel). The
blue points are obtained after imposing all constraints from ∆F = 2 observables (see section 5.2). The
purple points show the effect of removing the custodial protection. The solid lines display the equality
|∆̂−1/3

L (Z)|ij = |∆̂−1/3
R (Z)|ij .

3.4.4 Couplings to the W± Gauge Bosons

In the flavor eigenbasis the couplings of the W
(0)+
L and W

(1)+
L gauge bosons are given by

ε̂L(W
(0)+
L ) =

g4D

√
2
1 ,

ε̂L(W
(1)+
L ) =

g4D

√
2
R1
00

(++)L , (3.43)
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such that for the mass eigenstates W±, W±
H , W ′± given in (2.75) we find

ε̂L(W+) =
g4D

√
2

[
1− I1

M2
W

M2
KK

R1
00

(++)L

]
,

ε̂L(W+
H ) =

g4D

2
R1
00

(++)L ,

ε̂L(W ′+) = −g
4D

2

[
R1
00

(++)L + I1
M2

W

M2
KK

1

]
. (3.44)

The couplings of the SU(2)R gauge bosonW
(1)±
R do not enter above as it mediates changes

of T 3
R and hence does not couple to pairs of SM quarks. Again, we can transform the

couplings to flavor eigenstates to the mass eigenbasis using the unitary matrices UL,
DL. In contrast to the SM, where the CKM matrix is simply given by U †LDL, the CKM
matrix in the RSc is given by

VCKM = U †L

[
1− I1

M2
W

M2
KK

R1
00

(++)L

]
DL

≡ V 0
CKM +

v2

M2
KK

U †L ∆gaugeDL . (3.45)

Since ∆gauge in general is not proportional to the unit matrix, the CKM matrix (3.45) is
not unitary. We will return to this issue and investigate typical deviations of the CKM
matrix from its SM structure in section 3.5.4.

3.5 Impact of KK Fermions

In this section we will investigate the quantitative impact of heavy vector-like KK
fermions on SM fermion couplings. This effect is relevant for the couplings of all massive
gauge bosons, but we will concentrate on the couplings of SM quarks to the Z and W±

gauge bosons as well as to the first KK excitation of the gluons. A particularly elegant
way to proceed is to construct an effective theory by integrating out the heavy modes
that mix with the SM fermions at O(v2/M2

KK). The construction of such an effective
theory starting from a generic theory with heavy vector-like fermions has been presented
in [35], where also a comparison of the exact numerical calculation4 in the context of the
RSc to the results obtained in the effective theory approach has been performed. In sec-
tion 3.5.1 we will recapitulate the most important aspects of this derivation. In sections
3.5.2–3.5.5 we will give the expressions obtained in the effective theory and calculate the
corrections to the affected couplings. A central concern of the presented analysis will

4By exact numerical calculation we refer to the explicit construction of the full (multi-dimensional)
gauge coupling and mass matrices connecting all considered states and the transformation of the former
into the mass eigenbasis by numerical diagonalization of the latter.
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be to show that the custodial protection of the ZdiLd̄
j
L and ZuiRū

j
R couplings discussed

in section 3.4.3 is not spoilt by the presence of mixing of the SM quarks with heavy
vector-like KK states.

3.5.1 The Effective Theory Approach

Effective theory approaches treating the impact of heavy vector-like fermions have been
presented in [113] in a covariant formulation and more recently in [35] in terms of in-
dividual fields. We will follow the latter approach and to this end define the vectors
ΨL,R(Q) , Q = 5/3, 2/3,−1/3 which comprise the SM quarks as well as an arbitrary
number of heavy vector-like states5. We will assume in the following that also the heavy
vector-like states are organized in three distinct generations. Then the ΨL,R(2/3) states
have 3(N + 1) components and the ΨL,R(−1/3) states have 3(M + 1) components each.
In the case of the RSc in which the first excited KK states are taken into account, these
vectors are given by (3.2)–(3.3), such that N = 5 and M = 3.

Fundamental Lagrangian Before the heavy states are integrated out and before the
EW symmetry is broken, the most general Lagrangian density relevant for our analysis
is given by

L = Lkin + L̃mass + LYuk + LZ + LW + LKK gluons , (3.46)

and we will discuss its parts in the following. The (canonically normalized) kinetic terms
for all quarks in the theory are conventionally given by

Lkin = Ψ̄L(2/3)i/∂ΨL(2/3) + Ψ̄R(2/3)i/∂ΨR(2/3)

+ Ψ̄L(−1/3)i/∂ΨL(−1/3) + Ψ̄R(−1/3)i/∂ΨR(−1/3) , (3.47)

and their mass terms before EWSB read

L̃mass = −Ψ̄L(2/3)M̃(2/3)ΨR(2/3)− Ψ̄L(−1/3)M̃(−1/3)ΨR(−1/3) + h.c. . (3.48)

Here M̃(2/3) and M̃(−1/3) are 3(N + 1)× 3(N + 1) and 3(M +1)×3(M +1) diagonal
matrices. The first three entries on the diagonal corresponding to SM quark masses
vanish at this stage, while the remaining entries are O(f) with f being the mass scale
of heavy fermions (in the RSc, this mass scale f is given by the KK scale MKK). The
masses of the SM quarks as well as corrections to the masses of the heavy states are
as usual generated through Yukawa interactions in the process of EWSB. As far as our
analysis of corrections to fermion couplings from mixing with heavy vector-like states is
concerned, it will be sufficient to consider the lower component Φ of the Higgs doublet.
The Yukawa interactions in terms of the quark vectors ΨL,R(Q) are given by

LY = −Φ
[
Ψ̄L(2/3)Y(2/3)ΨR(2/3)

+ Ψ̄L(−1/3)Y(−1/3)ΨR(−1/3) + h.c.
]
, (3.49)

5Our discussion will not be affected by the presence of additional quarks with exotic charges, as is
in fact the case in the RSc.
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where Y(2/3) and Y(−1/3) are 3(N + 1)× 3(N + 1) and 3(M + 1)× 3(M + 1) complex
matrices. For easier reference we will denote the 3×3 matrices in flavor space that build
up these matrices by Yαβ(2/3) and Yαβ(−1/3), where α, β = 0, 1, ..., N or 0, 1, ...,M .
The couplings to the Z andW± gauge bosons6 are conveniently defined by LZ = Jµ(Z)Zµ

and LW = Jµ(W+)W+µ + h.c. where

Jµ(Z) = Ψ̄L(2/3)γµA2/3
L (Z)ΨL(2/3)

+ Ψ̄R(2/3)γµA2/3
R (Z)ΨR(2/3)

+ Ψ̄L(−1/3)γµA−1/3
L (Z)ΨL(−1/3)

+ Ψ̄R(−1/3)γµA−1/3
R (Z)ΨR(−1/3) , (3.50)

and

Jµ(W+) = Ψ̄L(2/3)γµGL(W+)ΨL(−1/3)

+ Ψ̄R(2/3)γµGR(W+)ΨR(−1/3) . (3.51)

In the above expressions (3.50), (3.51) the matrices A2/3
L,R(Z) and A−1/3

L,R (Z) are 3(N +
1)×3(N+1) and 3(M+1)×3(M+1) matrices, while GL,R(W+) are 3(N+1)×3(M+1)
matrices.
The couplings to KK gluons finally are described by LKK gluons = Jµ(GA(1))GA(1)µ with

Jµ(GA(1)) = Ψ̄L(2/3)γµA2/3
L (GA(1))ΨL(2/3)

+ Ψ̄R(2/3)γµA2/3
R (GA(1))ΨR(2/3)

+ Ψ̄L(−1/3)γµA−1/3
L (GA(1))ΨL(−1/3)

+ Ψ̄R(−1/3)γµA−1/3
R (GA(1))ΨR(−1/3) , (3.52)

where A2/3
L,R(GA(1)) and A−1/3

L,R (GA(1)) are 3(N + 1)× 3(N + 1) and 3(M + 1)× 3(M + 1)
matrices.
Also here it will be convenient to decompose these coupling matrices into their 3× 3
building blocks [AL,R(Z)]αβ, [AL,R(GA(1))]αβ, [GL,R(W+)]αβ which are matrices in flavor
space. These building blocks can be shown to have the following model-independent
properties [114]:

i) [AL,R(Z)]00 and [AL,R(Z)]ii are non-zero diagonal matrices

ii) [AL,R(Z)]ij = 0 for i 6= j

iii) [AL,R(Z)]i0 = [AL,R(Z)]0j = 0 ,

6More accurately, we are dealing with the couplings to the linear combinations of gauge fields that
after EWSB will be identified with the Z and W± bosons.
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where the [AL,R(Z)]αβ in this listing also stand for [GL,R(W+)]αβ. The only statement
that can be made about the [AL,R(GA(1))]αβ matrices at this stage is that they are all
diagonal. They are however not proportional to the unit matrix since they couple quark
zero modes to a non-flat gauge KK mode and as such their diagonal entries depend on the
localization parameters of the individual quark modes. It should also be emphasized that
all these coupling matrices discussed above are given before EWSB and hence couplings
that were non-vanishing in [32] because of the mixing of Z and W± with other gauge
bosons are absent now.

Integrating out of heavy states Having at hand all the relevant terms in the funda-
mental Lagrangian, we can construct a low-energy theory that involves only SM quark
and gauge boson fields and the Higgs field. There are several methods for achieving this
goal. In the context of our analysis it is most convenient to integrate out the heavy
fermions at tree level by using their EOMs. Inserting the solution for these equations
into the fundamental Lagrangian (3.46) and expanding in powers of 1/f results in an
effective Lagrangian of which the D = 4 part is the SM Lagrangian and the D = 6 part
is the one we are interested in. The corrections to the Z and W± couplings that result
from the mixing with heavy vector-like fermions are then obtained by performing EWSB
through the replacement

Φ =
1√
2

[v +H] , (3.53)

where H denotes the physical neutral Higgs boson and v = 246 GeV is the conventional
vacuum expectation value.
This procedure is well known (see for instance [66, 115]), and instead of presenting the
details of this derivation we will give a recipe for finding the corrections to the couplings
in question directly from the fundamental Lagrangian (3.46). To this end we introduce

Lmass = −Ψ̄L(2/3)M(2/3)ΨR(2/3)− Ψ̄L(−1/3)M(−1/3)ΨR(−1/3) + h.c. , (3.54)

whereM(2/3) andM(−1/3) are 3(N+1)×3(N+1) and 3(M+1)×3(M+1) matrices.
They are constructed by adding L̃mass in (3.48) and the mass terms resulting from the
Yukawa Lagrangian in (3.49) after EWSB. As done for the Yukawa and gauge coupling
matrices we decompose these mass matrices into their building blocks Mαβ(2/3) and
Mαβ(−1/3) which are 3× 3 matrices in flavor space. Among the building blocks are the
matrices M00(2/3) and M00(−1/3) that represent the mass matrices of the SM quarks
in the absence of heavy vector-like states.
The mass matrices M(2/3) and M(−1/3) are complex and non-diagonal, and despite
their obvious model dependence there are a number of properties that hold model-
independently:

1. Mkk = O(f) for k 6= 0,

2. M00 = v√
2
Y00 = O(v),

3. Mij = v√
2
Yij for i 6= j 6= 0 are O(v) (or vanish entirely)
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4. M0k = v√
2
Y0k and Mk0 = v√

2
Yk0 are generally O(v), but if M0k 6= 0 then Mk0 = 0

and vice versa. This property follows from the fact [114] that only one of the
chiralities of each vector-like fermion couples to the SM quarks through mass terms.

To simplify expressions we introduce the shorthand Mkk(Q) ≡Mk(Q) for the 3× 3 mass
matrices with identical indices. With this notation the solutions to the EOMs can be
written for the M heavy charge −1/3 fermions Dk

L,R as7

Dk
L = −

3∑
j=1
j 6=k

[
M−1

k M †
0k −M−1

k M †
jkM

−1
j M †

0j

]
dL ,

Dk
R = −

3∑
j=1
j 6=k

[
M−1

k Mk0 −M−1
k MkjM

−1
j Mj0

]
dR , (3.55)

where terms on the r.h.s. that do not affect the final expressions at O(v2/f 2) were
dropped. In (3.55) all mass matrices are for the down-type quarks, that is Mαβ =
Mαβ(−1/3). Analogous expressions for the up-type quarks can be easily obtained by
replacing the quark fields and mass matrices accordingly.
We can now plug (3.55) into the fundamental Lagrangian (3.46) to obtain an effective
theory in which no heavy vector-like states are present anymore. Before we can however
use this effective theory to calculate corrections to the quark couplings, we need to re-
normalize the kinetic terms of the light quarks. Indeed, inserting (3.55) into the kinetic
terms of the heavy fields in (3.47) we find that the light quark kinetic terms are no longer
canonically normalized. Keeping only the leading O(v2/f 2) terms, the canonical form of
the kinetic terms is recovered through the transformations

dL →
(
1− 1

2
M0kM

−2
k M †

0k

)
dL ,

dR →
(
1− 1

2
M †

k0M
−2
k Mk0

)
dR , (3.56)

where summation over repeated indices is understood.
The resulting effective theory that contains only light quarks allows to derive the correc-
tions to the SM quark-gauge couplings in a straightforward manner. This procedure is in
principle also applicable to the Higgs couplings if the full expression (3.53) for Φ is used
to obtain the solution to the EOMs of the heavy states instead of just its constant VEV.
However, the corrections to the SM quark-Higgs couplings obtained in this framework
are negligible (see discussion in [33,35]) as certain effects that have been shown to affect
the Higgs couplings in [116] are not visible in an effective theory approach. We will
briefly discuss these effects in section 3.6.
In the following we will discuss the expressions for mass and gauge coupling matrices of
the SM quarks that are obtained from the effective theory we have constructed.

7In this, dL,R and Dk
L,R with k = 1, ...M are vectors in flavor space.
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3.5.2 Corrections to SM Mass Matrices

For the mass matrices of up- and down-type quarks, as defined in (3.54) but with all
heavy states removed, we find the general expression

M = M00 +M0kM
−1
k MkjM

−1
j Mj0

− 1

2

[
M0kM

−2
k M †

0kM00 +M00M
†
k0M

−2
k Mk0

]
, (3.57)

where here and in the following summation over repeated indices but with k 6= j is
understood, as indicated in (3.55). In (3.57) the correction to M00 in the first line
originates from pure heavy mass terms and the correction in the second line is introduced
by the canonical redefinition of the light quark fields (3.56).

In order to be able to give expressions for gauge couplings in the mass eigenbasis, we
need to diagonalize the mass matrices M(Q) , Q = −1/3, 2/3 in (3.57) via bi-unitary
transformations. Since this procedure is straightforward, in the following we will only
give expressions for the gauge couplings in the flavor eigenbasis. For the numerical
comparison in later sections we will of course consider the gauge couplings in the mass
eigenbasis.

3.5.3 Corrections to Z Couplings

For the couplings to neutral Z gauge bosons as defined in (3.50) but with heavy vector-
like states removed we find

AL(Z) = [AL(Z)]00 +M0kM
−1
k [AL(Z)]kkM

−1
k M †

0k

− 1

2

(
M0kM

−2
k M †

0k [AL(Z)]00 + [AL(Z)]00M0kM
−2
k M †

0k

)
, (3.58)

and

AR(Z) = [AR(Z)]00 +M †
k0M

−1
k [AR(Z)]kkM

−1
k Mk0

− 1

2

(
M †

k0M
−2
k Mk0 [AR(Z)]00 + [AR(Z)]00M

†
k0M

−2
k Mk0

)
. (3.59)

These formulae apply to both charge +2/3 and −1/3 quarks with appropriate use of

[A
2/3
L,R(Z)]αα or [A

−1/3
L,R (Z)]αα couplings, and similarly for the mass matrices. The correc-

tions in (3.58) and (3.59) which modify the tree level value are of different origin: The
corrections in the respective first lines are due to interactions of heavy states with the
SM Z gauge boson while the remaining corrections stem from the canonical redefinition
of the SM quarks.

We will now adapt these model-independent expressions to the RSc. The coupling matri-
ces [AQL,R]αα in this case are proportional to 3× 3 unit matrices with the proportionality
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(0,0) (1,1) (2,2) (3,3)

A
−1/3
L g4D

Z,L(d) g4D
Z,L(d) g4D

Z (D′) g4D
Z,R(d)

A
−1/3
R g4D

Z,R(d) g4D
Z,L(d) g4D

Z (D′) g4D
Z,R(d)

Table 3.1: Weak charges in the coupling matrices of down-type quarks to the Z gauge boson.

(0,0) (1,1) (2,2) (3,3) (4,4) (5,5)

A
2/3
L g4D

Z,L(u) g4D
Z,L(u) g4D

Z (U ′) g4D
Z (U ′′) g4D

Z (χd) g4D
Z,R(u)

A
2/3
R g4D

Z,R(u) g4D
Z,L(u) g4D

Z (U ′) g4D
Z (U ′′) g4D

Z (χd) g4D
Z,R(u)

Table 3.2: Weak charges in the coupling matrices of up-type quarks to the Z gauge boson.

constants given by the weak charges8 collected in tables 3.1 and 3.2. The explicit struc-
ture of the mass matrices for the charge 2/3 and −1/3 quarks is given in (3.11) and
(3.12). In the following we give the final expressions for the ZdiL,Rd̄

j
L,R and ZuiL,Rū

j
L,R

couplings in the RSc taking advantage of model specific cancellations wherever possible.

Zdi
Ld̄j

L couplings Adapting (3.58) to the RSc and considering first the charge −1/3
quarks we find

A
−1/3
L (Z) = g4D

Z,L(d)1

+
(
g4D
Z (D′)− g4D

Z,L(d)
)
M02

1

M2
2

M †
02

+
(
g4D
Z,R(d)− g4D

Z,L(d)
)
M03

1

M2
3

M †
03 , (3.60)

where for the mass matrix elements Mαβ = Mαβ(−1/3) can be obtained from (3.12).
Evidently, the terms involving M1 have cancelled against each other as a consequence of
[A
−1/3
L ]00 = [A

−1/3
L ]11. With the expressions for the coupling constants given in appendix

A we finally find

A
−1/3
L (Z) = g4D

Z,L(d)1+
1

2

g4D

cosψ

(
M03

1

M2
3

M †
03 −M02

1

M2
2

M †
02

)
. (3.61)

In the limit of exact PLR symmetry PLR(D) = D′ holds and as a consequence we have
|M03| = |M02|, M3 = M2 which guarantees that the O(v2/M2

KK) correction to the cou-

pling A
2/3
L (Z) vanishes. This result again expresses the protection of the ZdiLd̄

j
L couplings

which is a consequence of the choice T 3
R = T 3

L for the quantum numbers of the left-handed
down-type SM quarks. We also see that the assignment of the right-handed down-type

8Note that tables 3.1 and 3.2 explicitly show the vector-like couplings of the KK fermions in the RSc.
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SM quark to the PLR symmetric (3,1)⊕ (1,3) multiplet is a vital condition for the
protection of the ZdiLd̄

j
L coupling in the presence of mixing with heavy vector-like KK

states.

Zdi
Rd̄j

R couplings For the right-handed down-type SM quarks, (3.59) in the RSc takes
the following form:

A
−1/3
R (Z) = g4D

Z,R(d)1

+
(
g4D
Z,L(d)− g4D

Z,R(d)
)
M †

10

1

M2
1

M10

+
(
g4D
Z (D′)− g4D

Z,R(d)
)
M †

20

1

M2
2

M20 . (3.62)

This time the terms involvingM3 have cancelled each other as a consequence of [A
−1/3
R ]00 =

[A
−1/3
R ]33. Using the expressions for the Z couplings collected in appendix A we find

A
−1/3
R (Z) = g4D

Z,R(d)1− g4D

cosψ

(
1

2
M †

10

1

M2
1

M10 +M †
20

1

M2
2

M20

)
. (3.63)

Now the terms O(v2/M2
KK) do not cancel each other and the mixing of SM quarks with

KK fermions has an impact on right-handed down-type quark couplings to the Z boson.
We will investigate the relative size of this effect compared to the result obtained in the
zero mode approximation (ZMA) at the end of this section.

Zui
Lūj

L couplings For the left-handed up-type SM quarks we find from (3.58)

A
2/3
L (Z) = g4D

Z,L(u)1

+
(
g4D
Z (U ′)− g4D

Z,L(u)
)
M02

1

M2
2

M †
02

+
(
g4D
Z (U ′′)− g4D

Z,L(u)
)
M03

1

M2
3

M †
03

+
(
g4D
Z,R(u)− g4D

Z,L(u)
)
M05

1

M2
5

M †
05 , (3.64)

where this time the mass matrix elements Mαβ = Mαβ(2/3) can be obtained from (3.11).
The terms in (3.64) are not related by the custodial parity PLR. Using the explicit charge
factors given in appendix A we find in this case

A
2/3
L (Z) = g4D

Z,L(u)1− 1

2

g4D

cosψ

(
M02

1

M2
2

M †
02 +M03

1

M2
3

M †
03 +M05

1

M2
5

M †
05

)
. (3.65)

We see that the terms O(v2/M2
KK) do not cancel each other and the mixing of SM quarks

with KK fermions has an impact on the left-handed up-quark couplings to the Z boson.
We will return to this issue and investigate the relative size of this effect compared to
the ZMA result at the end of this section.
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Zui
Rūj

R couplings Finally, using (3.59) we find

A
2/3
R (Z) = g4D

Z,R(u)1

+
(
g4D
Z,L(u)− g4D

Z,R(u)
)
M †

10

1

M2
1

M10

+
(
g4D
Z (χd)− g4D

Z,R(u)
)
M †

40

1

M2
4

M40 . (3.66)

As in the case of the ZdiLd̄
j
L couplings we note that the terms in the above expression

are related by the custodial parity PLR, which acts on the quark fields as PLR(qu) = χd,
PLR(u) = u, and also ensures that |M10| = |M40| and M1 = M4, up to small symmetry
breaking effects by the BCs on the UV brane. With the explicit charge factors given in
appendix A we find

A
2/3
R (Z) = g4D

Z,R(u)1+
1

2

g4D

cosψ

(
M †

10

1

M2
1

M10 −M †
40

1

M2
4

M40

)
. (3.67)

Evidently, in the limit |M10| = |M40|, M1 = M4, the O(v2/M2
KK) correction to the cou-

pling A
2/3
R (Z) vanishes, expressing the protection of the ZuiRū

j
R couplings even in the

presence of mixing with KK fermions. Also here the cancellation hinges on the fact that
the right-handed up-type SM quark is assigned to the PLR symmetric (1,1) multiplet of
the bulk gauge group.

Having worked out the explicit expressions (3.61), (3.63), (3.65), (3.67) for the Z cou-
plings in the effective theory we now want to compare the impact of KK fermions on
these couplings to the one arising from the mixing of SM gauge bosons with heavy KK
gauge modes. To this end we denote the KK fermion contribution to a given Z coupling
by [AQL,R(Z)]ijKK while the contribution from gauge boson mixing to a given Z coupling is

denoted by [AQL,R(Z)]ijgauge. These quantities then are calculated for the set of parameter
points that will be used for the analysis of rare K and B decays in chapter 5 and that are
found to reproduce the quark masses and mixings as well as the measured observables
in K0 − K̄0 and B0 − B̄0 oscillations.

For the ZdiLd̄
j
L and ZuiRū

j
R couplings which are protected by the custodial symmetry, the

relative impact of KK fermion mixing turns out to be very small. This is due to the fact
that the effects of SU(2)R × PLR breaking by BCs on the UV brane are much smaller
for fermionic KK modes than they are for the gauge boson KK modes. As an example,
in fig. 3.6 we compare the contributions from KK fermion mixing and gauge boson
mixing that enter the ZsLd̄L and ZcRūR couplings. In these density plots, light-colored
areas correspond to a high density of parameter points while darker areas correspond to
lower densities. We see that for all points in parameter space the KK fermion mixing
contribution is by several orders of magnitude smaller than the contribution from gauge
boson mixing.
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3. The Flavor Structure of the RSc

Figure 3.6: Comparison of contributions from KK fermion mixing and gauge boson mixing to the
custodially protected ZsLd̄L coupling (left panel) an to the custodially protected ZcRūR coupling (right
panel). These results have been obtained by using the effective theory expressions.

In the case of couplings that are not protected by the custodial symmetry, the corrections
from KK fermion mixing are still subdominant but can in principle be of the same order
of magnitude as the contribution from gauge boson mixing. To get a feeling for in
which elements of the ZdiRd̄

j
R, ZuiLū

j
L couplings these corrections can potentially become

important, it is instructive to investigate the patterns of hierarchy in the KK fermion
and gauge boson mixing contributions separately and eventually compare them to each
other.
We find that the hierarchies in the gauge boson mixing contributions [AQL,R(Z)]gauge

which enter the couplings of the Z boson are constrained by the presence of the RS-
GIM mechanism (cf. section 3.4.1). This should be compared to the flavor hierarchies
in the corrections [AQL,R]KK stemming from KK fermion mixing. From the state vectors
(3.2), (3.3) and from the mass matrices of up- and down-quarks in (3.11), (3.12) we find
that here the patterns are dictated by the hierarchies in the fermion zero mode shape
functions on the IR brane, FQ, F u, F d, which are vectors in flavor space and have been
defined in (3.6). More precisely, the contributions from KK fermion mixing to gauge
couplings should typically be proportional to outer products of these quantities, given
by e.g.

(
F u ◦ F d

)
ij
≡ F u

i F
d
j . In table 3.3 we summarize the expected hierarchies between

flavor transitions for couplings that are not protected by the custodial symmetry.
As indicated above these hierarchies allow to predict for which flavor transition j → i the
effects of KK fermion mixing can potentially become important compared to the gauge
boson mixing contributions. We list the entries that receive the largest relative contri-
butions from KK fermion mixing in the fourth row of table 3.3. In the case of A

2/3
L (Z),

the flavor hierarchies in gauge boson mixing and KK fermion mixing contributions are
roughly equal, such that the relative importance of KK fermion mixing is roughly equal
for all flavor transitions of this coupling. We compare the gauge boson mixing and KK
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ZdRdR ZuLuL

[A(Z)]gauge -pattern RS-GIM (d) RS-GIM (Q)

[A(Z)]KK -pattern Fd ◦ Fd FQ ◦ FQ
|[A(Z)]KK/[A(Z)]gauge| maximal in sd tc, tu, cu

Table 3.3: Hierarchies in the gauge boson mixing and KK fermion mixing contributions to the Z boson
couplings that are not protected by the custodial symmetry. In the last line we give the elements of the
coupling matrices which is on average affected most by KK fermion mixing.

fermion mixing contributions for the flavor transitions that are expected to be affected
most by the latter contribution in fig. 3.7. Also here we find that the contributions from
gauge boson mixing typically are dominant.

Figure 3.7: Comparison of contributions from KK fermion mixing and gauge boson mixing to the
unprotected ZsRd̄R coupling (left panel) and to the unprotected ZtLc̄L coupling (right panel).

In summary we find that for all Z couplings the KK fermion contribution is significantly
smaller than the contribution from gauge boson mixing for a majority of points in pa-
rameter space, and in particular for those points that produce the largest effects in the
respective coupling. This result is fortunate for several reasons. First, the contributions
from the mixing with KK fermions are highly model-dependent, inasmuch as they de-
pend critically on the multiplets of the bulk gauge group that are chosen to accommodate
the SM quarks. Second, and even more important, the calculation of these contributions
requires detailed knowledge of the bulk profiles of the KK fermion modes and of the full
fermionic mass matrices which is not required for the calculation of the gauge mixing
contribution.

63
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(0,0) (1,1) (2,2)

GL g4D/
√

2 g4D/
√

2 g4D

GR 0 g4D/
√

2 g4D

Table 3.4: Weak charges in the coupling matrices of the W+ gauge boson.

3.5.4 Corrections to Charged Couplings

For the couplings to charged gauge bosons as defined in (3.51) but with heavy vector-like
states removed we find

GL(W+) =
[
GL(W+)

]
00

+M0k(2/3)M−1
k (2/3)

[
GL(W+)

]
kk
M−1

k (−1/3)M †
0k(−1/3)

− 1

2
M0k(2/3)M−2

k (2/3)M †
0k(2/3)

[
GL(W+)

]
00

− 1

2

[
GL(W+)

]
00
M0k(−1/3)M−2

k (−1/3)M †
0k(−1/3) , (3.68)

GR(W+) = M †
k0(2/3)M−1

k (2/3)
[
GR(W+)

]
kk
M−1

k (−1/3)Mk0(−1/3) , (3.69)

where the non-vanishing coupling matrices [GL,R(W+)]αα with α = 0, i are proportional
to 3 × 3 unit matrices and the proportionality constants in the RSc are collected in
table 3.4. We note that the first of these equations (3.68) has the same structure as the
Z couplings in (3.58) and (3.59). The first correction on the r.h.s. originates from the
interactions of the heavy fermion fields with SM gauge bosons and the remaining terms
in (3.68) are the consequence of the redefinitions of the light fields given in (3.56). An
exception in this sense is the coupling GR(W+) which vanishes at leading order so that
the redefinitions of the light fields do not matter at order v2/f 2.
Two consequences of (3.68) and (3.69) are of particular interest: an additional contribu-
tion to the violation of unitarity of the CKM matrix and the appearance of right-handed
W couplings. We will discuss both effects quantitatively in the following.

Violation of unitarity of the CKM matrix Rotating (3.68) to the mass eigenbasis
we find that also KK fermion mixing modifies the CKM matrix:

VCKM = U †LGL(W+)DL ≡ U †L
[
GL(W+)

]
00
DL +

v2

M2
KK

U †L ∆KKDL . (3.70)

We will now compare this correction to the CKM matrix to the one arising from gauge
boson mixing, v2

M2
KK
U †L ∆gaugeDL, given in (3.45). As it turns out, the contribution from

KK fermion mixing for most elements of the CKM matrix is numerically smaller than
the gauge boson mixing contribution. Analogous to our approach in the case of the Z
couplings we can work out the textures of the matrices ∆V KK

CKM and ∆V gauge
CKM to identify

the entries in which the relative impact of the KK fermion mixing is typically maximal.
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Figure 3.8: Comparison of contributions from KK fermion mixing and gauge boson mixing to the
W+t̄LsL (left panel) and W+t̄LbL coupling (right panel).

We find that ∆V gauge
CKM roughly has the same structure as the CKM matrix itself, while the

structure of ∆V KK
CKM is dictated by the outer product FQ ◦ FQ. Accordingly, the largest

relative impact of KK fermion mixing typically occurs in the tb, ts and cb elements of the
CKM matrix. In fig. 3.8 we compare the corrections from gauge boson and KK fermion
mixing to the CKM matrix for the data sets also used in our global numerical analysis in
chapter 5. We observe that only in the case of the tb element the impact of KK fermions
is typically larger than the impact of gauge boson mixing.

Finally, in table 3.5 we list the typical and maximal deviations of the CKM unitarity
relations that are found in the RSc. The quantities Ku and Kd listed in that table are
defined as

Ku ≡ VCKMV
†

CKM = 1+
v2

M2
KK

U †L (∆r + ∆†r)UL ,

Kd ≡ V †CKMVCKM = 1+
v2

M2
KK

D†L (∆†r + ∆r)DL , (3.71)

where “r” can stand for either “gauge” or “KK”. This table shows that the impact from
both KK fermion and gauge boson to the violation of CKM unitarity is small; still, for
the first column and first row unitarity relations, the deviation from the SM is of the
same order as the current experimental uncertainty [76], such that with improved data
one could in principle put constraints on the RSc parameter space. In doing so one would
also have to study effects that modify the definition of the weak gauge coupling, such
as corrections to the muon decay amplitude, and preferably also electroweak precision
observables.
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〈Kgauge−1〉 |Kgauge−1|max 〈KKK−1〉 |KKK−1|max

|Vud|2 + |Vcd|2 + |Vtd|2 = Kd
11 3.5·10−3 3.5·10−3 6.8·10−7 1.9·10−5

0.95 5·10−2 8·10−5

|Vus|2 + |Vcs|2 + |Vts|2 = Kd
22 3.3·10−3 3.5·10−3 2.4·10−5 5.1·10−4

5·10−2 0.95 2·10−3

|Vub|2 + |Vcb|2 + |Vtb|2 = Kd
33 1.4·10−2 1.9·10−2 8.4·10−3 2.1·10−2

1·10−5 2·10−3 1

|Vud|2 + |Vus|2 + |Vub|2 = Ku
11 3.5·10−3 3.5·10−3 1.8·10−6 3.3·10−5

0.95 5·10−2 1·10−5

|Vcd|2 + |Vcs|2 + |Vcb|2 = Ku
22 3.3·10−3 3.5·10−3 3.9·10−5 4.8·10−4

0.95 5·10−2 2·10−3

|Vtd|2 + |Vts|2 + |Vtb|2 = Ku
33 1.4·10−2 1.9·10−2 8.4·10−3 2.1·10−2

8·10−5 2·10−3 1

VudV
∗
us + VcdV

∗
cs + VtdV

∗
ts = Kd

12 1.4·10−6 5.4·10−5 9.1·10−7 2.5·10−5

0.22 0.22 4·10−4

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = Kd

13 3.7·10−5 3.0·10−4 2.0·10−5 1.8·10−4

4·10−3 9·10−3 9·10−3

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = Kd

23 1.6·10−4 1.6·10−3 9.4·10−5 8.7·10−4

9·10−4 4·10−2 4·10−2

VudV
∗
cd + VusV

∗
cs + VubV

∗
cb = Ku

12 1.1·10−5 2.7·10−4 4.5·10−6 1.1·10−4

0.22 0.22 2·10−4

VudV
∗
td + VusV

∗
ts + VubV

∗
tb = Ku

13 7.2·10−5 4.2·10−4 3.2·10−5 2.2·10−4

9·10−3 9·10−3 4·10−3

VcdV
∗
td + VcsV

∗
ts + VcbV

∗
tb = Ku

23 5.9·10−4 1.7·10−3 3.0·10−4 1.1·10−3

2·10−3 4·10−2 4·10−2

Table 3.5: CKM unitarity relations and the amount by which they are broken in the RSc. For
comparison in the first column we also give numerical values for the absolute values of the three terms
on the l.h.s. of the relations separately.
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Right-handed W± couplings From (3.69) we see that in the RSc the W± gauge bo-
son not only couples to left-handed quarks, but also to the right-handed ones. Analogous
to the CKM matrix we can define a coupling matrix VR that describes the transitions of
mass eigenstates mediated by W± such that the interaction vertices are given by

ūiRW
+djR ∼

g4D

√
2

(VR)ij . (3.72)

Following the line of argument in section 3.5.3, where we deduced the pattern of the KK
fermion mixing contribution to the Z couplings, we find that the VR coupling matrix
has a hierarchy among its elements that is very different from that of the CKM matrix.
Being characterized by the pattern described by F u ◦ F d, the elements of VR increase
mildly along its rows, e.g. V ud

R < V us
R < V ub

R and more strongly along its columns, e.g.
V ud

R < V cd
R < V td

R . This implies that VR is neither approximately diagonal nor symmetric.
Numerically, using the same sets of parameter points also used for the analysis of rare
decays in chapter 5, we find the entries of VR to have the typical values

VR ≈
1 · 10−7 1 · 10−7 3 · 10−7

9 · 10−6 3 · 10−5 3 · 10−5

8 · 10−5 2 · 10−4 9 · 10−4

 . (3.73)

For comparison, we mention that indirect bounds on right-handed W couplings from the
measurement of the b → sγ decay branching ratio and LEP precision data have been
derived in [90–97]. There it is found that the most severe constraints apply to the Wt̄RbR
coupling which is constrained at the 4‰ level, and we conclude that right-handed W
couplings at present impose no significant constraint on the RSc parameter space.

3.5.5 Corrections to KK Gluon Couplings

The expressions for the KK gluon couplings after the heavy vector-like states have been
integrated out are in fact analogous to those for the Z couplings with two differences: In
the RSc the occurring 3 × 3 coupling matrices are not proportional to the unit matrix
and hence do not commute with the 3 × 3 mass matrices, and further also coupling
matrices [AL,R(GA(1))]αβ with α 6= β can be non-vanishing9. Taking this into account we
can adapt (3.58), (3.59) to the KK gluon couplings and find

AL(GA(1)) =
[
AL(GA(1))

]
00

+M0kM
−1
k

[
AL(GA(1))

]
k`
M−1

` M †
0`

− 1

2
M0kM

−2
k M †

0k

[
AL(GA(1))

]
00

− 1

2

[
AL(GA(1))

]
00
M0kM

−2
k M †

0k , (3.74)

9The reason for the second difference lies in the fact that unlike for the Z and W± coupling matrices
now also gauge couplings involving different KK levels of quarks are present. In the former cases such
couplings were vanishing by virtue of the flat gauge boson bulk profiles and orthonormality conditions
for the fermion profiles.
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(0,0) (1,1) (2,2) (3,3) (0,1)&(1,0) (0,3)&(3,0)

A
−1/3
L R1

00
(++)L R1

11
(++)L R3

11
(+−)L R3

11
(−−)L R1

01
(++)L -

A
−1/3
R R3

00
(++)R R1

11
(−−)R R3

11
(−+)R R3

11
(++)R - R3

01
(++)R

Table 3.6: Overlap integrals in the coupling matrices of down-type quarks to the KK gluon Ga(1).

(0,0) (1,1) (2,2)&(3,3) (4,4) (5,5) (0,1)&(1,0) (0,5)&(5,0)

A
2/3
L R1

00
(++)L R1

11
(++)L R3

11
(+−)L R1

11
(−+)L R2

11
(−−)L R1

01
(++)L -

A
2/3
R R2

00
(++)R R1

11
(−−)R R3

11
(−+)R R1

11
(+−)R R2

11
(++)R - R2

01
(++)R

Table 3.7: Overlap integrals in the coupling matrices of up-type quarks to the KK gluon Ga(1).

and

AR(GA(1)) =
[
AR(GA(1))

]
00

+M †
k0M

−1
k

[
AR(GA(1))

]
k`
M−1

` M`0

− 1

2
M †

k0M
−2
k Mk0

[
AR(GA(1))

]
00

− 1

2

[
AR(GA(1))

]
00
M †

k0M
−2
k Mk0 . (3.75)

As was the case for the Z coupling these formulae apply to both charge +2/3 and −1/3
quarks with appropriate use of couplings and mass matrices. Also the statements about
the origin of the different corrections made subsequent to (3.58) (3.59) apply here.
The coupling matrices [AL,R(GA(1))]αβ are all proportional to the strong coupling con-
stant g4D

s , but also involve overlap integrals of the profiles of the KK gluon and the
fermions participating in the interaction. Explicit expressions for the coupling matrices
in terms of the overlap integrals Rk

nm
(BC)L,R defined in (2.51), (2.54) are given in tables

3.6 and 3.7. Evaluating the corrections to the KK gluon couplings numerically, we find
that they amount to at most 10% of the ZMA results and hence can be safely neglected.

3.6 Flavor Violating Higgs Couplings from Profile

Discontinuities

Flavor off-diagonal Higgs couplings in the mass eigenbasis can arise whenever the RS
contributions to quark masses and to the Yukawa couplings are not aligned. In the
mass insertion approximation the RS contributions up to O(v2/M2

KK) are represented
by the two diagrams in fig. 3.9. The first diagram contributes equally to the quarks’
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masses after EWSB and their Yukawa couplings. The second diagram however affects
masses and Yukawa couplings in a different manner since its contribution to the Yukawa
couplings comes with a combinatorial factor of three that is due to the three different
choices of which two external Higgs lines are set to their VEVs. This shift between quark
masses and Yukawa couplings results in flavor off-diagonal Higgs couplings once we go
to the mass eigenstate basis.

q
(0)
L d

(0)
R

+ × ×
q
(0)
L d

(0)
Rd

(n)
R d

(n)
L q

(n)
R q

(n)
L

Figure 3.9: RS contributions to quark masses and Yukawa couplings.

At first glance the overall contribution from the second diagram in fig. 3.9 seems to be
negligible since both the q

(n)
R and d

(n)
L modes obey Dirichlet boundary conditions on the

IR brane. This is the reason why we did not discuss the Higgs couplings in the effective
theory approach employed in the previous section. In [116] however the point has been

made that the profiles of q
(n)
R and d

(n)
L do not exactly vanish on the IR brane but display

a small discontinuity that is proportional to the Higgs VEV. After regularization of this
discontinuity and summing over the infinite tower of KK modes it is found that a non-
vanishing misalignment between quark masses and Yukawa couplings is generated by
this diagram. In the following we will briefly summarize the main results of [116] and
set the notation for the discussion of the phenomenological impact of tree level Higgs
exchanges in chapter 4.
The relevant Lagrangian is given by

LYuk =
∞∑

n1=0

q̄
i(n1)
L λdij

∞∑
n2=0

d
j(n2)
R H +

∞∑
m1=1

d̄
i(m1)
L λ̄dij

∞∑
m2=1

q
j(m2)
R H + h.c. , (3.76)

where λd and λ̄d are fundamental 5D Yukawa matrices. It is important to note that the
Yukawa matrix λ̄d which couples the scalar currents d

i(m1)
L q

j(m2)
R to the Higgs field is not

required for the generation of quark masses and hence could be set to zero, which would
eliminate the second diagram’s contribution to flavor off-diagonal Higgs couplings. How-
ever, since this choice for λ̄d without profound physical reason contradicts naturalness,
in the following we will set λ̄d to be equal10 to λd.
An additional source of misalignment between quark masses and Yukawa couplings is
the modification of the kinetic terms by the mixing of SM quarks and KK quarks af-
ter EWSB as described in section 3.5.1 and first discussed in this context in [84] (see
also [117]). These flavor-dependent corrections to the kinetic terms make redefinitions
of the quark fields necessary which in turn give rise to an additional shift between quark
masses and Yukawa couplings. For the first two generations of quarks this contribution

10Note that the choice λ̄d = λd is mandatory in the bulk Higgs scenario.
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3. The Flavor Structure of the RSc

is found to be negligible, but for the third generation this effect can be of the same size
as the one outlined above.

After this rather qualitative description we now summarize the main results of [116] for
the case of a brane-localized Higgs field. The total misalignment between quark masses
and Yukawa couplings comprises two contributions, ∆̂d = ∆̂d

1 + ∆̂d
2, where ∆̂d

1 is the
contribution represented by the diagrams in fig. 3.9 and ∆̂d

2 is due to rescaling of the
quark fields as to canonize their kinetic terms. Explicitly, the authors of [116] find

∆̂d
1 =

2

3
FQλ

d
(
λ̄d
)†
λdFd

v3

f 2
RS

, (3.77)

and

∆̂d
2 = md

(
md†K(cQ) +K(−cd)md†)md 1

f 2
RS

, (3.78)

where fRS = ke−kL ≈ MKK/2.45 is the warped-down curvature of the extra dimension
which sets the scale of mass of the lightest KK states. The matrices K(c) = Diag(K(ci))
and FQ,d = Diag(f(ciQ,d)) are functions that depend on the quark localization and are
defined via

f(c) ≡
√

1− 2c

1− e−(1−2c)kL
, (3.79)

K(c) ≡ 1

1− 2c

1

e(1−2c)kL − 1

(
−1 +

e(1−2c)kL − e−2kL

3− 2c
+
e(2c−1)kL − e−2kL

1 + 2c

)
. (3.80)

The flavor off-diagonal components of the Yukawa couplings in the mass eigenbasis are
obtained from ∆̂d via the bi-unitary transformation

Ŷoff-diag. = D†L∆̂dDR , (3.81)

where DL and DR are the unitary rotations that diagonalize the down-type quark mass
matrix.
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Chapter 4

Impact on Flavor Observables

With the spectrum and couplings of the RSc at hand there are now two different ap-
proaches, direct and indirect, to test its implications experimentally. Following the
former approach, additional particle states are analyzed in high energy collisions where
they manifest themselves as resonances or in their decay products. The indirect ap-
proach on the other hand is based on the fact that processes which are very rare in
the SM can receive detectable corrections from the exchange of virtual heavy states. Of
particular interest in this context are processes that connect states with different flavor
content and that in the SM can only take place at loop level. In the following we will ad-
here to the indirect approach and investigate the impact of the RSc on flavor observables.

In chapter 3 the appearance of flavor violating couplings of fermions to neutral gauge
bosons and the Higgs has been pointed out and their origin has been discussed. Given
these couplings it is obvious that the RSc contains FCNCs at the tree level mediated by
particles with masses which are—if the original RS solution of the Planck-EW hierarchy
problem [26] is taken at face value—not very much larger than the EW scale. Fortunately,
there is a built-in protection of observables related to light quarks in the initial and
final states, the so-called RS-GIM mechanism which was introduced in section 3.4.1.
Nevertheless it is mandatory to determine the quantitative impact of these tree level
FCNCs on flavor observables and investigate whether the RS-GIM mechanism sufficiently
suppresses flavor violation in the RSc. To answer this question we will discuss in detail
the contributions of tree level KK gluon, EW gauge boson and Higgs exchanges to the
amplitudes MK

12 , Md
12 and M s

12 in the RSc and give formulae for ∆MK , ∆Md, ∆Ms,
εK , SψKS , Sψφ, ∆Γq/Γq and AqSL in a form suitable for the study of the size of the new
contributions. Parts of this analysis have already been published in [33].

To extend our analysis to rare decays of K and B mesons we will subsequently generalize
the gauge invariant SM functions X, Y , Z to the RSc taking into account the tree level
contributions of EW gauge bosons. The generalized flavor dependent functions Xi,
Yi, Zi, (i = K, d, s) then will be used to derive expressions for the branching ratios
of the exclusive decays K+ → π+νν̄, KL → π0νν̄, Bd,s → µ+µ−, KL → µ+µ− and
KL → π0`+`−, as well as for the two inclusive modes B → Xd,sνν̄ in a compact form.
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4. Impact on Flavor Observables

While the first comprehensive study of rare decays was performed by us in [34], partial
studies have been presented in [98,118,119].
Our presentation includes the contributions from all operators originating exclusively
from tree level exchanges of electroweak gauge bosons. Consequently we do not discuss
the dipole operators that enter the respective effective Hamiltonians first at the one-
loop level. This implies that the effective Hamiltonians for b → d`+`− and b → s`+`−

transitions given below are incomplete and we cannot yet perform the phenomenology
of decays such as B → K∗`+`−, B → Xs,d`

+`− and B → Xs,dγ.

4.1 Particle-Antiparticle Oscillations

4.1.1 ∆F = 2 Processes in the SM

In the present section we will use conventions and notation of [120] so that an easy
comparison with the SM predictions and with the results obtained in the LHT and SM4
models in section 5.4 will be possible.
The SM Hamiltonians for K0− K̄0 and B0

s,d− B̄0
s,d oscillations can be found in (3.1) and

(3.2) of [120]. The SM contribution to the off-diagonal element M12 in the neutral K
and Bd meson mass matrices is given as(

MK
12

)
SM

=
G2
F

12π2
F 2
KB̂KmKM

2
W

[
λ∗2c η1Sc + λ∗2t η2St + 2λ∗cλ

∗
tη3Sct

]
, (4.1)

(
Md

12

)
SM

=
G2
F

12π2
F 2
Bd
B̂BdmBdM

2
W

[(
λ

(d)∗
t

)2

ηBSt

]
, (4.2)

where λi = V ∗isVid and λ
(q)
t = V ∗tbVtq with Vij the elements of the CKM matrix. Sc, St and

Sct are the one-loop box functions for which explicit expressions are given e. g. in [120].
The factors ηi are QCD corrections evaluated at the next-to-leading order (NLO) level
in [121–125]. Finally B̂K and B̂Bd are the well-known non-perturbative factors. The
amplitude (M s

12)SM can be obtained from (4.2) by simply replacing d by s.
It should be emphasized that in the SM only a single operator

(s̄d)V−A(s̄d)V−A = [s̄γµ(1− γ5)d]⊗ [s̄γµ(1− γ5)d] (4.3)

and accordingly

(b̄q)V−A(b̄q)V−A =
[
b̄γµ(1− γ5)q

]⊗ [b̄γµ(1− γ5)q
]

(4.4)

contributes to MK
12 and M q

12 (q = d, s). Moreover, complex phases only enter through

the CKM factors λi and λ
(q)
t .

4.1.2 ∆F = 2 Processes in the RSc

Tree Level KK Gluon Contributions The expressions (4.1) and (4.2) for (M12)SM

can be generalized to include the new tree level contributions from neutral KK gauge
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d
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s

G
(1)
µ

+

d

s d

s

G
(1)
µ

Figure 4.1: Tree level contribution of the lightest KK gluon to K0 − K̄0 oscillations.

bosons and the Higgs boson. We begin our discussion with the tree level exchanges of the
lightest KK gluons G

(1)
µ which are shown in fig. 4.1. With the flavor off-diagonal couplings

of SM quark mass eigenstates to the lightest KK gluon, ∆ij
L,R(G(1)) ≡ (∆̂

−1/3
L,R (G(1)))ij

defined in (3.35) the effective Hamiltonian for ∆S = 2 transitions is given by[H∆S=2
eff

]QCD

KK
=

pUV
2

2M2
KK

[(
∆sd
L (G(1))

)2 (
s̄Lγµt

AdL
) (
s̄Lγ

µtAdL
)

+
(
∆sd
R (G(1))

)2 (
s̄Rγµt

AdR
) (
s̄Rγ

µtAdR
)

+ 2∆sd
L (G(1))∆sd

R (G(1))
(
s̄Lγµt

AdL
) (
s̄Rγ

µtAdR
) ]

, (4.5)

where pUV takes into account the potential impact of brane kinetic terms on the matching
of the 5D to the 4D QCD coupling constant. We observe that the tree level contributions
have a flavor structure that is different from the CKM pattern and that new operators
enter the effective Hamiltonians for K oscillations. Diagrams analogous to those in
fig. 4.1 contribute to B0

d,s − B̄0
d,s mixing and the relevant effective Hamiltonians can be

obtained by replacing sd in (4.5) by bd and bs.
The effective Hamiltonian in (4.5) is valid at scales µ ∼ O(MKK) and has to be evolved
to low energy scales µ ∼ O(2 GeV), µ ∼ O(mb) at which the hadronic matrix elements
of the operators in question can be calculated by means of lattice methods. The relevant
anomalous dimension matrices necessary for this RG evolution have been calculated at
two-loop level in [126,127] and analytic formulae for the relevant QCD factors analogous
to ηi in (4.1) and (4.2) can be found in [128].
Since the gluon induced operators in (4.5) have a non-trivial color structure it will be
convenient in view of the RG evolution to transform them to the operator basis used
in [128],

QV LL1 = (s̄γµPLd) (s̄γµPLd) ,

QV RR1 = (s̄γµPRd) (s̄γµPRd) ,

QLR1 = (s̄γµPLd) (s̄γµPRd) ,

QLR2 = (s̄PLd) (s̄PRd) , (4.6)
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where we suppressed color indices as they are summed over within each bracket.
A straightforward application of the so-called Fierz identities (see e.g. [129]) yields the
effective Hamiltonian for KK gluon mediated ∆S = 2 transitions in the basis (4.6) with
the Wilson coefficients corresponding to µ ∼ O(MKK),[H∆S=2

eff

]QCD

KK
=
[
CV LL

1 QV LL1 + CV RR
1 QV RR1 + CLR

1 QLR1 + CLR
2 QLR2

]
, (4.7)

where [
CV LL

1 (MKK)
]QCD

=
2

3

p2
UV

4M2
KK

(
∆sd
L (G(1))

)2
,

[
CV RR

1 (MKK)
]QCD

=
2

3

p2
UV

4M2
KK

(
∆sd
R (G(1))

)2
,

[
CLR

1 (MKK)
]QCD

= −2

3

p2
UV

4M2
KK

∆sd
L (G(1))∆sd

R (G(1)) ,

[
CLR

2 (MKK)
]QCD

= −4
p2

UV

4M2
KK

∆sd
L (G(1))∆sd

R (G(1)) . (4.8)

Analogous expressions exist for the B0
d − B̄0

d and B0
s − B̄0

s systems, with sd replaced by
bd and bs.

Tree Level Electroweak Contributions The KK gluon tree level contributions in
fig. 4.1 discussed until now are believed to dominate the NP contributions to ∆F = 2
processes in the RSc. However we will demonstrate now that while this assumption is
justified in the case of εK and ∆MK , in the case of Bd,s observables it is mandatory to
include also tree level EW gauge boson contributions. The dominant EW contributions
in the RSc do not come from the Z boson but from tree level exchanges of the two new
heavy gauge bosons ZH and Z ′. They also turn out to be much larger than the KK
photon contribution.
Let us begin with the KK photon contribution A(1). The contributing diagrams are
analogous to those shown in fig. 4.1 with G(1) replaced by A(1). The calculation on the
other hand is simplified relative to the KK gluon case by the fact that in the absence of
the color matrices tA one immediately obtains the result in the operator basis (4.6). We
find the following corrections to the Wilson coefficients Ci(MKK) in (4.8):[

CV LL
1 (MKK)

]QED
=

1

2M2
KK

[
∆sd
L (A(1))

]2
,

[
CV RR

1 (MKK)
]QED

=
1

2M2
KK

[
∆sd
R (A(1))

]2
,

[
CLR

1 (MKK)
]QED

=
1

M2
KK

[
∆sd
L (A(1))

] [
∆sd
R (A(1))

]
,
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[
CLR

2 (MKK)
]QED

= 0 , (4.9)

with the couplings ∆ij
L,R(A(1)) ≡ (∆̂

−1/3
L,R (A(1)))ij defined in (3.35). We observe that in

contrast to KK gluon exchange this time no contribution to the CLR
2 operator is induced.

Next we consider the contributions of the Z, ZH and Z ′ gauge bosons to the effective
Hamiltonian of particle-antiparticle mixing. While the KK gluon and photon contri-
butions are universal to all RS models with bulk fermions, the contributions discussed
in the following depend sensitively on the EW gauge group and the choice of fermion
representations. In particular they will be very different in the RSc and RSm models
(for flavor analyses in the RSm see for instance [84,117]).
The calculation of O(v2/M2

KK) tree level contributions from the Z, ZH and Z ′ gauge
bosons proceeds similarly to the calculation of the KK photon contribution and we find[

CV LL
1 (MKK)

]EW
=

1

2M2
KK

[(
∆sd
L (Z(1))

)2

+
(

∆sd
L (Z

(1)
X )
)2
]
,

[
CV RR

1 (MKK)
]EW

=
1

2M2
KK

[(
∆sd
R (Z(1))

)2

+
(

∆sd
R (Z

(1)
X )
)2
]
,

[
CLR

1 (MKK)
]EW

=
1

M2
KK

[
∆sd
L (Z(1))∆sd

R (Z(1)) + ∆sd
L (Z

(1)
X )∆sd

R (Z
(1)
X )
]
,

[
CLR

2 (MKK)
]EW

= 0 , (4.10)

where the couplings ∆ij
L,R(Z(1)) ≡ (∆̂

−1/3
L,R (Z(1)))ij and ∆ij

L,R(Z
(1)
X ) ≡ (∆̂

−1/3
L,R (Z

(1)
X ))ij can

be obtained from (3.37), (3.38) and already include the relevant weak couplings and
charges.

At this point it is not necessary to transform the gauge bosons to the mass eigenbasis.
We still want to point out that the mass eigenstate Z contributes negligibly and that the
Z ′ contribution is suppressed with respect to the one of ZH . In the case of the Z boson,
flavor violating couplings are suppressed by M2

Z/M
2
KK with respect to those of ZH and

in addition by the custodial protection. The light Z mass entering the propagator can
only partly compensate for this.
In order to estimate the size of EW contributions when compared to the KK gluon
exchanges we factor out all the couplings and charge factors from the different ∆sd

L,R

matrices. The remaining ∆̃sd
L,R then are universal for the gauge bosons considered here

up to small deviations due to the different boundary condition of Z
(1)
X on the UV brane,

whose inclusion amounts to only a percent effect on ∆sd
L,R(Z

(1)
X ).

Adding the contributions (4.8), (4.9), (4.10) and evaluating the various couplings we find

CV LL
1 (MKK) =

1

4M2
KK

(0.67p2
UV + 0.02 + 0.56)(∆̃sd

L )2 ,

CV RR
1 (MKK) =

1

4M2
KK

(0.67p2
UV + 0.02 + 0.98)(∆̃sd

R )2 ,
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CLR
1 (MKK) =

1

4M2
KK

(−0.67p2
UV + 0.04 + 1.13)(∆̃sd

L ∆̃sd
R ) , (4.11)

where the three contributions correspond to tree level exchanges of the KK gluon, KK
photon and combined (Z,ZH , Z

′) exchanges1. The Wilson coefficient CLR
2 (MKK) re-

ceives only KK gluon contributions at µ ∼ O(MKK) and, as we will see below, also a
contribution from tree level Higgs exchanges, but is not modified by EW interactions.

The EW contributions are dominated by ZH exchanges and in the case of CV LL
1 , CV RR

1

and CLR
1 amount to +87% (+350%), +150% (+600%) and −175% (−700%) corrections

for gs = 6 (gs = 3). In particular the sign of CLR
1 (MKK) is reversed by the inclusion of

the EW contributions.

We conclude that the EW gauge boson contributions to the Wilson coefficients CV LL
1 , CV RR

1

and CLR
1 at µ ∼ O(MKK) are of the same order as the KK gluon contributions and have

to be taken into account. In the case of εK and ∆MK the strong enhancement of the
coefficient CLR

2 through QCD renormalization group effects and the chiral enhancement
of the hadronic matrix element of QLR2 assure that KK gluon contributions still dominate
over EW contributions, although the reversal of the sign of CLR

1 slightly intensifies the
constraints from εK and ∆MK . However, in the case of Bd,s physics observables the QCD
renormalization group enhancement in the LR sector is smaller than in the K sector and
the chiral enhancement of 〈QLR2 〉 and 〈QLR1 〉 is absent. Therefore the QV LL1 operator
becomes important even without the EW contributions and it is further enhanced when
these contributions are taken into account.

At first sight our finding that EW contributions can compete with QCD contributions
or even exceed them is surprising. On the other hand one should remember that KK
gluon contributions similarly to EW contributions are suppressed by their large masses
and the main difference between these contributions results from gauge couplings, color
factors, weak charges and RG effects. Our analysis shows that with the exception of CLR

2

all these effects conspire to make EW heavy gauge boson contributions as important as
the KK gluon contributions in ∆B = 2 observables.

Tree Level Higgs Contributions The Lagrangian relevant for Higgs contributions
to ∆S = 2 transitions is given by

LHiggs
NC = −Ŷ21s̄LdRH − Ŷ ∗12s̄RdLH , (4.12)

where Ŷ is the down-type 3 × 3 Yukawa matrix for quarks in the mass eigenbasis at
energy scale µ ∼ O(MH) as given in (3.81). If we define ∆H

R ≡ Ŷ21, ∆H
L ≡ Ŷ ∗12, the

effective Hamiltonian for ∆S = 2 transitions induced by tree level Higgs exchanges is

1These results are obtained neglecting the running of the EW gauge couplings between the EW scale
MZ and the KK scale MKK. Taking into account also these contributions, we would have corrections
to the gauge couplings at the 5% level, so that we can easily neglect them.
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found to be[H∆S=2
eff

]Higgs
=

1

2M2
H

[(
∆H
L

)2
(s̄PLd)(s̄PLd) +

(
∆H
R

)2
(s̄PRd)(s̄PRd)

+ 2∆H
L ∆H

R (s̄PLd)(s̄PRd)
]
, (4.13)

which in the operator basis of [128] is equivalent to the effective Hamiltonian[H∆S=2
eff

]Higgs
=

1

2M2
H

[(
∆H
L

)2
QSLL

1 +
(
∆H
R

)2
QSRR

1 + 2∆H
L ∆H

RQ
LR
2

]
. (4.14)

Relative to the operator basis (4.6), tree level Higgs exchanges induce the additional
operators QSLL

1 , QSRR
1 and the operators QSLL

2 , QSRR
2 that these mix with under renor-

malization, such that the full operator basis is given by

QV LL1 = (s̄γµPLd) (s̄γµPLd) , QSLL1 = (s̄PLd)(s̄PLd) ,

QV RR1 = (s̄γµPRd) (s̄γµPRd) , QSRR1 = (s̄PRd)(s̄PRd) ,

QLR1 = (s̄γµPLd) (s̄γµPRd) , QSLL2 = (s̄σµνPLd)(s̄σµνPLd) ,

QLR2 = (s̄PLd) (s̄PRd) , QSRR2 = (s̄σµνPRd)(s̄σµνPRd) . (4.15)

The Wilson coefficients at energy scale µ ∼ O(MH) are given by[
CSLL

1 (MH)
]Higgs

=
1

2M2
H

(
∆H
L

)2
,

[
CSRR

1 (MH)
]Higgs

=
1

2M2
H

(
∆H
R

)2
,

[
CLR

2 (MH)
]Higgs

=
1

M2
H

∆H
L ∆H

R . (4.16)

Analogous expressions for the Bd,s systems can be obtained by replacing ∆H
L = Ŷ ∗12,

∆H
R = Ŷ21 by Ŷ ∗13, Ŷ31 and Ŷ ∗23, Ŷ32.

4.1.3 Combined Contributions to M12 at the Physical Scale

With the various contributions given in (4.8)–(4.10) we obtain the total Wilson coeffi-
cients induced by tree level exchange of gauge bosons,

[Ci(MKK)]gauge = [Ci(MKK)]QCD + [Ci(MKK)]QED + [Ci(MKK)]EW . (4.17)

The RG evolution of the gauge boson contribution from µ ∼ O(MKK) to a low energy
scale µ0 can be performed separately from the additive SM contribution, even if QV LL1

is equal up to a factor of 1/4 to the SM operator (s̄d)V−A (s̄d)V−A. We recall that QV LL1
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and QV RR1 renormalize without mixing with other operators and their evolution being
the same as QCD is insensitive to the sign of γ5. But as CV LL

1 (MKK) 6= CV RR
1 (MKK),

their Wilson coefficients at µ0 will differ from each other. On the other hand QLR1 and
QLR2 mix under renormalization so that the RG evolution operator is a 2× 2 matrix.
The tree level Higgs contribution is generated at a different scale and displays a different
behavior under RG evolution such that is has to be dealt with separately. The flavor
off-diagonal Yukawa couplings entering (4.12) are generated at or beyond the KK mass
scale. In the following, we will take this scale to be µ = MKK. From this high energy
scale the Yukawa couplings have to be evolved down to the scale µ = MH of the Higgs
mass where new effective interactions are generated by tree level exchanges of the Higgs
boson. The RG evolution of these couplings is in fact identical to that of quark masses
and is well known at the NLO level. From this scale in turn the Wilson coefficients of the
new operators have to be evolved down to the physically relevant scale µ0 according to
their anomalous dimensions as was done in the case of the gauge boson contribution. As
QSLL,SRR1 and QSLL,SRR2 mix under renormalization, also their RG evolution operators
are given by 2× 2 matrices.
At the physically relevant scale µ0 the contributions [Ci(µ0)]gauge and [Ci(µ0)]Higgs stem-
ming from tree level gauge boson and Higgs exchanges, can be added up to form the
total NP contribution. The outcome of this analysis is an effective Hamiltonian relevant
at the low energy scale µ0,[H∆S=2

eff

]
KK

=
[
CV LL

1 (µ0)QV LL1 + CV RR
1 (µ0)QV RR1

+ CLR
1 (µ0)QLR1 + CLR

2 (µ0)QLR2

+ CSLL
1 (µ0)QSLL1 + CSLL

2 (µ0)QSLL2

+ CSRR
1 (µ0)QSRR1 + CSRR

2 (µ0)QSRR2

]
, (4.18)

with analogous expressions for the ∆B = 2 Hamiltonians.
The contribution of the KK gauge bosons G(1), A(1), ZH , Z

′ and the Higgs boson to the
off-diagonal element MK

12 is then obtained from

2mK

(
MK

12

)∗
KK

= 〈K̄0| [H∆S=2
eff

]
KK
|K0〉 . (4.19)

To this end one has to evaluate the hadronic matrix elements

〈K̄0|Qi(µ)|K0〉 ≡ 〈Qi(µ)〉 (4.20)

which can be parameterized as follows

〈QV LL1 (µ)〉 = 〈QV RR1 (µ)〉 =
2

3
m2
KF

2
KB

V LL
1 (µ) , (4.21)

〈QLR1 (µ)〉 = −1

3
R(µ)m2

KF
2
KB

LR
1 (µ) , (4.22)

〈QLR2 (µ)〉 =
1

2
R(µ)m2

KF
2
KB

LR
2 (µ) , (4.23)
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〈QSLL1 (µ)〉 = 〈QSRR1 (µ)〉 = − 5

12
R(µ)m2

KF
2
KB

SLL
1 (µ) , (4.24)

〈QSLL2 (µ)〉 = 〈QSRR2 (µ)〉 = −R(µ)m2
KF

2
KB

SLL
2 (µ) , (4.25)

where the chiral enhancement factor R(µ) is given by

R(µ) =

(
mK

ms(µ) +md(µ)

)2

. (4.26)

The scale-dependent Bi parameters are known from lattice calculations and are related
to the parameters B1, B2, B3, B4 and B5 calculated in [130,131] by

BV LL
1 ≡ B1 , B

LR
1 ≡ B5 , B

LR
2 ≡ B4 , B

SLL
1 ≡ B2 , B

SLL
2 ≡ 5

3
B2 − 2

3
B3 . (4.27)

It should be stressed that the Bi(µ) are not RG invariant parameters in contrast to B̂K

in (4.1), but in view of the results in [128,130,131] it is easier to use them in this way.

Collecting all these results we find (µL = 2 GeV)

(
MK

12

)
KK

=
1

3
mKF

2
K ·
[ (
CV LL

1 (µL) + CV RR
1 (µL)

)
BK

1

− 1

2
R(µL)CLR

1 (µL)BK
5 +

3

4
R(µL)CLR

2 (µL)BK
4

− 5

8
R(µL)

(
CSLL

1 (µL) + CSRR
1 (µL)

)
BK

2

− 3

2
R(µL)

(
CSLL

2 (µL) + CSRR
2 (µL)

)(5

3
BK

2 −
2

3
BK

3

)]∗
. (4.28)

Analogous expressions can be derived for
(
Md

12

)
KK

and (M s
12)KK relevant for B0

d − B̄0
d

and B0
s − B̄0

s oscillations. For these, µb = 4.6 GeV has to be used, and

Rq(µ) =

(
mBq

mb(µ) +mq(µ)

)2

. (4.29)

The values for Bi in the MS-Näıve Dimensional Regularization (NDR) scheme that we
will use in our analysis have been extracted from [130] and [131] for the K0 − K̄0 and
B0
s,d − B̄0

s,d systems. They are collected in table 4.1, together with the relevant values

of µ0. The final results for MK
12 , Md

12 and M s
12, which govern the analysis of ∆F = 2

transitions in the RSc, are then given by

M i
12 =

(
M i

12

)
SM

+
(
M i

12

)
KK

(i = K, d, s) . (4.30)
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B1 B2 B3 B4 B5 µ0

K0-K̄0 0.57 0.68 1.06 0.81 0.56 2.0 GeV

B0-B̄0 0.87 0.79 0.92 1.15 1.73 4.6 GeV

Table 4.1: Values of the parameters Bi in the MS-NDR scheme obtained in [130] (K0-K̄0) and [131]
(B0-B̄0). The scale µ0 at which Ci are evaluated is given in the last column. For B̂K in (4.1) we use
B̂K = 0.725± 0.026 [132].

4.1.4 Basic Formulae for ∆F = 2 Observables

We now collect the formulae that we will use in our numerical analysis. We would like to
emphasize that, although physical observables are phase convention independent, some
of the formulae collected in this section depend on the phase convention chosen for the
CKM matrix and yield correct results only if the standard phase convention [133] is used
consistently.
The KL −KS mass difference is given by

∆MK = 2
[
Re
(
MK

12

)
SM

+ Re
(
MK

12

)
KK

]
(4.31)

and the CP-violating parameter εK by

εK =
κεe

iϕε

√
2(∆MK)exp

[
Im
(
MK

12

)
SM

+ Im
(
MK

12

)
KK

]
, (4.32)

where we use ϕε = (43.51 ± 0.05)◦ and κε = 0.92 ± 0.02 [134] thus taking into account
that ϕε 6= π/4 and including an additional effect from ImA0, the imaginary part of the
0-isospin amplitude in K → ππ.
For the mass differences in the B0

d,s − B̄0
d,s systems we have

∆Mq = 2 |(M q
12)SM + (M q

12)KK| (q = d, s) . (4.33)

Let us then write [135]

M q
12 = (M q

12)SM + (M q
12)KK = (M q

12)SMCBqe
2iϕBq (4.34)

where (
Md

12

)
SM

=
∣∣(Md

12

)
SM

∣∣ e2iβ , β ≈ 22◦ ,

(M s
12)SM = |(M s

12)SM| e2iβs , βs ' −1◦ , (4.35)

with the phases β and βs are defined through

Vtd = |Vtd|e−iβ and Vts = −|Vts|e−iβs . (4.36)
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We find then

∆Mq = (∆Mq)SMCBq (4.37)

and2

SψKS = sin(2β + 2ϕBd) ,

Sψφ = sin(2|βs| − 2ϕBs) , (4.38)

with the latter two observables being the coefficients of sin(∆Mdt) and sin(∆Mst) in the
time dependent CP asymmetries in the B0

d → ψKS and B0
s → ψφ decays. Thus in the

presence of non-vanishing NP phases ϕBd and ϕBs these two asymmetries do not measure
β and βs but (β + ϕBd) and (|βs| − ϕBs).
Finally, we give the expressions for the width differences ∆Γq and the semileptonic CP-
asymmetries AqSL,

∆Γq
Γq

= −
(

∆Mq

Γq

)exp
[

Re

(
Γq12

M q
12

)SM cos 2ϕBq
CBq

− Im

(
Γq12

M q
12

)SM sin 2ϕBq
CBq

]
, (4.39)

AqSL = Im

(
Γq12

M q
12

)SM cos 2ϕBq
CBq

− Re

(
Γq12

M q
12

)SM sin 2ϕBq
CBq

. (4.40)

Theoretical predictions of both ∆Γq and AqSL require the non-perturbative calculation of
the off-diagonal matrix element Γq12, the absorptive part of the B0

q − B̄0
q amplitude. For

further details the reader is referred to section 3.8 of [120] and we here just give [136]

Re

(
Γd12

Md
12

)SM

= −(3.0± 1.0) · 10−3 , Re

(
Γs12

M s
12

)SM

= −(2.6± 1.0) · 10−3 , (4.41)

Im

(
Γd12

Md
12

)SM

= −(6.4± 1.4) · 10−4 , Im

(
Γs12

M s
12

)SM

= (2.6± 0.5) · 10−5 . (4.42)

Finally, we notice that Re
(

Γs12
Ms

12

)SM

� Im
(

Γs12
Ms

12

)SM

and that hence for SM-like ∆Ms a

correlation between AsSL and Sψφ exists. This correlation has been pointed out in [137]
and has been investigated model-independently in [138] and in the context of the LHT
and SM4 models in [120] and [139]. We will see in chapter 5 that such a correlation also
exists in the RSc.

2These simple formulae follow only if there are no additional weak phases in the decay amplitudes
for B0

d → ψKS and B0
s → ψφ. In the RSc there are tree level charged current contributions with

non-vanishing weak phases; however, these are suppressed by M2
W /M

2
KK with respect to the SM and

therefore can be neglected.
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4.2 Rare K and B Decays

4.2.1 The K → πνν̄ System

We will start our discussion of exclusive rare decays with the famous K → πνν̄ system.
Both the charged and the neutral mode are theoretically very clean, but also extremely
difficult to measure due to the neutrinos in the final state. While Br(K+ → π+νν̄) has
been observed at the E949 experiment in Brookhaven [140],

Br(K+ → π+νν̄)exp = (17.3+11.5
−10.5) · 10−11 , (4.43)

which is to be compared to the most recent SM prediction [141]

Br(K+ → π+νν̄)SM = (8.5± 0.7) · 10−11 , (4.44)

the KL → π0νν̄ decay still awaits discovery. Here the experimental upper bound [142]

Br(KL → π0νν̄) ≤ 6.7 · 10−8 (4.45)

exceeds the SM prediction [143]

Br(KL → π0νν̄)SM = (2.8± 0.6) · 10−11 (4.46)

by more than three orders of magnitude. A more stringent model-independent theoretical
bound on Br(KL → π0νν̄) can be deduced from the Grossman-Nir (GN) bound [144],

Br(KL → π0νν̄) ≤ 4.3Br(K+ → π+νν̄) , (4.47)

in connection with the measurement of Br(K+ → π+νν̄). The experimental situation
described above will improve significantly within the next decade when the NA62 exper-
iment at CERN (K+ → π+νν̄) and the E14 experiment at KEK (KL → π0νν̄) will start
their operation.
Apart from favorable experimental prospects, the great importance of the K → πνν̄
system is added to by its discriminating power between different models of NP. For
instance, it has been shown in [145] that in models in which NP enters dominantly
through left-handed couplings and the NP phase in εK and the K → πνν̄ system is
universal, points in the (Br(K+ → π+νν̄), Br(KL → π0νν̄)) plane are forced to lie on
two distinct branches. This behavior for instance has been observed in the LHT [111]
and the SM4 [139]. In this sense a precise measurement of both modes in the K → πνν̄
system could shed light on elementary properties of physics beyond the SM and help to
distinguish between different models of NP. We will return to this issue in chapter 5.
The effective Hamiltonian for s→ dνν̄ transitions in the SM is given as

[Hνν̄
eff ]

K
SM = g2

SM

∑
`=e,µ,τ

[
λ(K)
c X`

NNL(xc) + λ
(K)
t X(xt)

]
(s̄d)V−A(ν̄`ν`)V−A + h.c. , (4.48)
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s

d

ν

ν

1

Figure 4.2: Tree level contributions of Z, Z ′ and ZH to the s→ dνν̄ effective Hamiltonian.

where xi = m2
i /M

2
W and λ

(K)
i = V ∗isVid. The functions X`

NNL(xc), X(xt) comprise internal
charm and top quark contributions and are known to high accuracy including QCD
corrections [141, 146, 147]. For convenience we have introduced the notation for the
effective SM coupling

g2
SM =

GF√
2

α

2π sin2 θW
. (4.49)

As we have seen in section 3.4, in the RSc the Z boson and the additional heavy neu-
tral gauge bosons ZH and Z ′ have flavor violating couplings. Accordingly the effective
Hamiltonian receives contributions from the tree level exchange of these particles. The
diagrams corresponding to the Z contribution are shown in fig. 4.2, and a straightforward
calculation of these diagrams yields the new contribution to [Hνν̄

eff ]K ,

[Hνν̄
eff ]

K
Z =

∆νν
L (Z)

M2
Z

[
∆sd
L (Z)(s̄Lγ

µdL) + ∆sd
R (Z)(s̄Rγ

µdR)
]

(ν̄LγµνL) + h.c. . (4.50)

The contributions of Z ′ and ZH to [Hνν̄
eff ]K can be obtained from (4.50) by replacing

Z by Z ′ and ZH . Explicit expressions for the quark couplings ∆sd
L,R(Z), ∆sd

L,R(Z ′) and
∆sd
L,R(ZH) can be obtained from (3.39), while the flavor universal neutrino couplings

∆νν
L (Z), ∆νν

L (Z ′) and ∆νν
L (ZH) are given in appendix A.

Combining the contributions of Z, Z ′ and ZH in (4.50) with the SM contribution in
(4.48),

[Hνν̄
eff ]

K
= [Hνν̄

eff ]
K
SM + [Hνν̄

eff ]
K
Z + [Hνν̄

eff ]
K
Z′ + [Hνν̄

eff ]
K
ZH

, (4.51)

we find the total effective Hamiltonian for s→ dνν̄ transitions,

[Hνν̄
eff ]

K
= g2

SM

∑
`=e,µ,τ

[
λ(K)
c X`

NNL(xc) + λ
(K)
t XV−A

K

]
(s̄d)V−A(ν̄`ν`)V−A

+ g2
SM

∑
`=e,µ,τ

[
λ

(K)
t XV

K

]
(s̄d)V (ν̄`ν`)V−A + h.c. . (4.52)

In this we have introduced the generalized loop functions XV−A
K and XV

K ,

XV−A
K = X(xt) +

∑
i=Z,Z′,ZH

(XK
i )V−A , XV

K =
∑

i=Z,Z′,ZH

(XK
i )V , (4.53)
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which will turn out to be useful later on. The individual contributions to these are given
by

(XK
i )V−A =

1

λ
(K)
t

∆νν
L (i)

4M2
i g

2
SM

[
∆sd
L (i)−∆sd

R (i)
]
, (4.54)

(XK
i )V =

1

λ
(K)
t

∆νν
L (i)

2M2
i g

2
SM

∆sd
R (i) , (4.55)

where i = Z, ZH , Z
′.

Having at hand the effective Hamiltonian for s → dνν̄ transitions it is straightfor-
ward to obtain explicit expressions for the branching ratios Br(K+ → π+νν̄) and
Br(KL → π0νν̄). Due to the tree level exchanges of EW gauge bosons in the RSc the
operator (s̄d)V (ν̄ν)V−A is present in addition to the usual SM operator (s̄d)V−A(ν̄ν)V−A.
Therefore both matrix elements 〈π+|(s̄d)V−A|K+〉 and 〈π+|(s̄d)V |K+〉 have to be evalu-
ated. Fortunately, as both K+ and π+ are pseudoscalar mesons, only the vector current
part contributes and we simply have〈

π+|(s̄d)V−A|K+
〉

=
〈
π+|(s̄d)V |K+

〉
. (4.56)

This means that the effects of NP contributions can be effectively collected in a single
function that generalizes the SM loop function X(xt). Denoting this function by

XK ≡ XV−A
K +XV

K ≡ |XK |ei θKX , (4.57)

we can make use of the formulae of section 3.3 in [111]. In particular we have

Br(K+ → π+νν̄) = κ+

[
r̃2A4 |XK |2 + 2r̃P̄c(X)A2Rt |XK | cos βKX + P̄c(X)2

]
,

Br(KL → π0νν̄) = κL

[
VtsVtd
λ5

]2

(sin βKX )2|XK |2 , (4.58)

with [141,143,147–149]

κ+ = (5.36± 0.026) · 10−11 , κL = (2.31± 0.01) · 10−10 ,

r̃ =

∣∣∣∣VtsVcb
∣∣∣∣ ' 0.98 , A = 0.822(16) , Rt =

1

λ

∣∣∣∣VtdVcb
∣∣∣∣ = 0.97 ,

P̄c(X) =

(
1− λ2

2

)
Pc(x) , Pc(X) = 0.42± 0.05 , (4.59)

where Pc(X) is calculated in the SM and includes next-to-next-to-leading order (NNLO)
QCD corrections [141], electroweak corrections [143] and long distance contributions
[149]. The angle βKX finally is defined as

βKX = β − βs − θKX , (4.60)

with β and βs introduced in (4.36).
Note that, in contrast to the real function X(xt), the new function XK is complex
which implies new CP-violating effects that can be best tested in the very clean decay
KL → π0νν̄.
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4.2.2 Inclusive Decays B → Xdνν̄ and B → Xsνν̄

B decays with neutrinos in the final state provide a very good probe of modified Z pen-
guin contributions [150,151]. Unfortunately, their measurement appears to be even more
challenging than that of the rare K decays discussed in section 4.2.1 (for a summary of
experimental prospects at future Super-B machines see however [152]). Recent analyses
of these decays within the SM and several NP scenarios can be found in [153,154].
From the analysis of rare B decays in [34] we know that the effects in the two exclusive
modes B → Kνν̄ and B → K∗νν̄ are small, and we will therefore in the following
concentrate on the theoretically clean decays B → Xs,dνν̄.
The result for s → dνν̄ transitions obtained in the previous section can be generalized
to the case of b→ dνν̄ and b→ sνν̄ transitions by properly adjusting the flavor indices
and neglecting the internal charm contributions. The effective Hamiltonian for b→ qνν̄
(q = d, s) is then found as

[Hνν̄
eff ]

Bq = g2
SM

∑
`=e,µ,τ

[
λ

(q)
t XV−A

q

]
(b̄q)V−A(ν̄`ν`)V−A

+g2
SM

∑
`=e,µ,τ

[
λ

(q)
t XV

q

]
(b̄q)V (ν̄`ν`)V−A + h.c. , (4.61)

with
XV−A
q = X(xt) +

∑
i=Z,Z′,ZH

(Xq
i )V−A , XV

q =
∑

i=Z,Z′,ZH

(Xq
i )V . (4.62)

The individual contributions to this are given by

(Xq
i )V−A =

1

λ
(q)
t

∆νν
L (i)

4M2
i g

2
SM

[
∆bq
L (i)−∆bq

R (i)
]
, (4.63)

(Xq
i )V =

1

λ
(q)
t

∆νν
L (i)

2M2
i g

2
SM

∆bq
R (i) , (4.64)

where i = Z, ZH , Z
′ and again all relevant ∆bq

L,R entries can be obtained from (3.39).
From this effective Hamiltonian we can now derive expressions for the branching ratios
Br(B → Xd,sνν̄). Generalizing the corresponding formulae in [111] to also incorporate
right-handed currents, we find

Br(B → Xsνν̄)

Br(B → Xsνν̄)SM

=

∣∣∣XV−A
s + XV

s

2

∣∣∣2 +
∣∣∣XV

s

2

∣∣∣2
X(xt)2

. (4.65)

We started our derivation of these branching ratios from the effective Hamiltonian for
s → dνν̄ transitions. In fact, in the SM and models with Constrained Minimal Flavor
Violation (CMFV) [105, 106, 138], in which all flavor violation is governed by the CKM
matrix and only SM operators are relevant3 we find the decay modes K → πνν̄ and

3See [7, 103,104] for a more general definition of MFV, in which new operators are allowed.
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B → Xd,sνν̄ to depend on a single real function X, which implies a strong correlation
between these modes. In contrast to this in the RSc the generalized functions Xi (i =
K, d, s) are flavor non-universal and complex and accordingly we expect the universality
in NP effects in the mentioned decay modes to be strongly violated. We will investigate
this breakdown of universality in chapter 5 in more detail.

4.2.3 KL → π0`+`−

Until now we have been discussing decay processes with neutrinos in the final state. We
will now extend our discussion to decays into systems containing also charged leptons. We
start with the rare decays KL → π0e+e− and KL → π0µ+µ− which are dominated by CP-
violating contributions. In the SM the main contribution comes from the mixing induced
CP violation and its interference with the direct CP violating contribution [155–158].
The direct CP violating contribution to the branching ratio is ∼ 4 · 10−12, while the
CP conserving contribution is at most 3 · 10−12. Among the rare K meson decays the
decays in question belong to the theoretically cleanest, although second to the K → πνν̄
decays. Furthermore, the KL → π0`+`− modes are not as sensitive to NP contributions
as KL → π0νν̄, as the dominant CP violating contributions are practically determined
by the measurement of the parameter εK and the KS → π0`+`− decay branching ratios
and NP can only affect the subleading direct CP violating contribution. As was however
pointed out in [159], in the presence of large new CP violating phases the direct CP
violating contribution can become the dominant contribution and the branching ratios
for KL → π0`+`− can be significantly enhanced.

In the SM, neglecting QCD corrections, the top quark contribution to the effective
Hamiltonian for s→ d`+`− reads[

H`¯̀

eff

]K
SM

= −g2
SM

[
λ

(K)
t Y (xt)

]
(s̄d)V−A(¯̀̀ )V−A

+4g2
SM sin2 θW

[
λ

(K)
t Z(xt)

]
(s̄d)V−A(¯̀̀ )V + h.c. . (4.66)

Here Y (xt) and Z(xt) are one-loop functions, analogous to X(xt), which result from
penguin and box diagrams. The charm contributions and QCD corrections are irrelevant
for the discussion presented here but will be included in our numerical analysis. We also
remark that in principle also dipole operators could be included here, but that in K
decays, as discussed in [160], they can be fully neglected.

Also in this case, [H`¯̀
eff]K receives tree level contributions of the gauge bosons Z, Z ′ and

ZH , and as now charged leptons appear in the final state, also the KK photon A(1)

contributes. The quark couplings on the left hand side of the diagram shown in fig. 4.3
are the same as those already encountered in the case of the s → dνν̄ transition. The
couplings on the right hand side, which involve charged leptons are parameterized by
the matrices ∆``

L,R(Z) listed in appendix A. Evaluating the Z exchange in fig. 4.3 results
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Figure 4.3: Tree level contributions of Z, Z ′, ZH and A(1) to the s→ d`+`− effective Hamiltonian.

in [
H`¯̀

eff

]K
Z

=
1

M2
Z

[
∆bs
L (Z)(s̄Lγ

µdL) + ∆bs
R (Z)(s̄Rγ

µdR)
]

× [∆``
L (Z)(¯̀

Lγµ`L) + ∆``
R(Z)(¯̀

Rγµ`R)
]

+ h.c. , (4.67)

which contains additional operators relative to (4.66). The exchange of Z ′, ZH and A(1)

gauge bosons yields analogous contributions which can simply be obtained from (4.67)
by consecutively replacing Z by Z ′, ZH and A(1).
Following along the lines of discussion in section 4.2.1, we find that the effective Hamil-
tonian governing s→ d`+`− transitions can be written in the compact form[

H`¯̀

eff

]K
= −g2

SM

[
λ

(K)
t Y V−A

K

]
(s̄d)V−A(¯̀̀ )V−A

+4g2
SM sin2 θW

[
λ

(K)
t ZV−A

K

]
(s̄d)V−A(¯̀̀ )V

−g2
SM

[
λ

(K)
t Y V

K

]
(s̄d)V (¯̀̀ )V−A

+4g2
SM sin2 θW

[
λ

(K)
t ZV

K

]
(s̄d)V (¯̀̀ )V + h.c. , (4.68)

where we have introduced the functions Y V−A,V
K and ZV−A,V

K defined as

Y V−A
K = Y (xt) +

∑
i=Z,Z′,ZH ,A(1)

(Y K
i )V−A , Y V

K =
∑

i=Z,Z′,ZH ,A(1)

(Y K
i )V ,

ZV−A
K = Z(xt) +

∑
i=Z,Z′,ZH ,A(1)

(ZK
i )V−A , ZV

K =
∑

i=Z,Z′,ZH ,A(1)

(ZK
i )V . (4.69)

The individual gauge bosons’ contributions entering (4.69) are given by

(Y K
i )V−A = − 1

λ
(K)
t

[
∆``
L (i)−∆``

R(i)
]

4M2
i g

2
SM

[
∆sd
L (i)−∆sd

R (i)
]
,

(ZK
i )V−A =

1

λ
(K)
t

∆``
R(i)

8M2
i g

2
SM sin2 θW

[
∆sd
L (i)−∆sd

R (i)
]
,
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(Y K
i )V = − 1

λ
(K)
t

[
∆``
L (i)−∆``

R(i)
]

2M2
i g

2
SM

∆sd
R (i) ,

(ZK
i )V =

1

λ
(K)
t

∆``
R(i)

4M2
i g

2
SM sin2 θW

∆sd
R (i) , (4.70)

where i = Z, ZH , Z
′, A(1).

The effective Hamiltonian (4.68) now allows to conveniently derive the branching ratios
for the KL → π0`+`− decay modes. As in the case of the K → πνν̄ system only the
vector current part of Y V−A

K , ZV−A
K contributes to the final branching ratios and we can

therefore define the functions

YK = Y V−A
K + Y V

K = |YK | eiθKY ,
ZK = ZV−A

K + ZV
K = |ZK | eiθKZ , (4.71)

which are sufficient to jointly describe the SM and RSc contributions. Using [159] we
can adapt the formulae in [156–158,161] to the RSc and find

Br(KL → π0`+`−) =
(
C`

dir ± C`
int |as|+ C`

mix |as|2 + C`
CPC

) · 10−12 , (4.72)

where

Ce
dir = (4.62± 0.24)(ω2

7V + ω2
7A) , Cµ

dir = (1.09± 0.05)(ω2
7V + 2.32ω2

7A) ,

Ce
int = (11.3± 0.3)ω7V , Cµ

int = (2.63± 0.06)ω7V ,

Ce
mix = 14.5± 0.05 , Cµ

mix = 3.36± 0.20 ,

Ce
CPC ' 0 , Cµ

CPC = 5.2± 1.6 ,

|as| = 1.2± 0.2 , (4.73)

with

ω7V =
1

2π

[
P0 +

|YK |
sin2 θW

sin βKY
sin(β̄ − β̄s)

− 4|ZK | sin βKZ
sin(β̄ − β̄s)

][
Imλ

(K)
t

1.4 · 10−4

]
,

ω7A = − 1

2π

|YK |
sin2 θW

sin βKY
sin(β̄ − β̄s)

[
Imλ

(K)
t

1.4 · 10−4

]
. (4.74)

Here P0 = 2.88± 0.06 [160] includes NLO QCD corrections and

βKY = β̄ − β̄s − θKY , βKZ = β̄ − β̄s − θKZ , (4.75)

with θKY,Z defined in (4.71). The effect of the NP contributions is mainly observable in
ω7A, as the corresponding contributions to ω7V cancel to a large extend.
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The present experimental bounds [162,163],

Br(KL → π0e+e−) < 28 · 10−11 , Br(KL → π0µ+µ−) < 38 · 10−11 , (4.76)

are still by one order of magnitude larger than the SM predictions [161],

Br(KL → π0e+e−)SM = 3.54+0.98
−0.85

(
1.56+0.62

−0.49

) · 10−11 ,

Br(KL → π0µ+µ−)SM = 1.41+0.28
−0.26

(
0.95+0.22

−0.21

) · 10−11 , (4.77)

with the values in parentheses corresponding to the “−” sign in (4.72), that is to de-
structive interference between contributions of direct and indirect CP violation. A recent
discussion of the current theoretical status of this interference sign can be found in [164]
where the results of [157,158,165] are critically analyzed. From this discussion, construc-
tive interference seems to be favored although as yet no final assessment of this issue is
possible.

4.2.4 The Short Distance Contribution to KL → µ+µ−

The short distance (SD) contribution to Br(KL → µ+µ−) is governed by the same
effective Hamiltonian that is also responsible for the KL → π0`+`− decays. Despite this
analogy, in contrast to the decays discussed until now the SD contribution calculated
here is only a part of a dispersive contribution to KL → µ+µ− which is by far dominated
by the absorptive contribution with two internal photon exchanges. Consequently the SD
contribution constitutes only a small fraction of the branching ratio. Moreover, because
of long distance (LD) contributions to the dispersive part of KL → µ+µ−, the extraction
of the SD part from the data is subject to considerable uncertainties. The most recent
(conservative) estimate gives [166]

Br(KL → µ+µ−)SD ≤ 2.5 · 10−9 , (4.78)

to be compared with the SM prediction (0.8± 0.1) · 10−9 [167].
When evaluating the SD contribution to Br(KL → µ+µ−) two simplifications occur with
respect to the KL → π0`+`− modes. Since KL is a pseudoscalar, we have

〈0|(s̄d)V |KL〉 = 0 , (4.79)

so that only the axial part of the quark vertex contributes. Due to the conserved vector
current then also the vector component of the µ̄µ-vertex drops out and as in the SM
only the axial part is relevant. In consequence only the (V − A) ⊗ (V − A) operator
contributes and following [159] we thus obtain for the RSc

Br(KL → µ+µ−)SD = 2.08 · 10−9
[
P̄c (YK) + A2Rt

∣∣Y V−A
K

∣∣ cos β̄KY
]2
, (4.80)

where we have defined
β̄KY ≡ β − βs − θ̄KY , (4.81)

and

P̄c (YK) ≡
(

1− λ2

2

)
Pc (YK) , (4.82)

with Pc (YK) = 0.113± 0.017 [167].
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4.2.5 Bd,s → µ+µ−

Of particular interest are the branching ratios of the decay modes Bd,s → µ+µ−, of which
at least the Bs → µ+µ− decay is hoped to be measured in the coming years. Up to today
there are only experimental upper bounds on these two modes by the CDF [168] and
DØ [169] (in parentheses) experiments,

Br(Bs → µ+µ−) ≤ 5.8 (12) · 10−8 , Br(Bd → µ+µ−) ≤ 1.8 · 10−8 , (4.83)

which are still larger than the respective SM predictions [139,170]

Br(Bs → µ+µ−)SM = (3.2±0.2)·10−9 , Br(Bd → µ+µ−)SM = (1.1±0.1)·10−10 , (4.84)

by one order (two orders) of magnitude for Bs → µ+µ− (Bd → µ+µ−).
As in the SM and in models of CMFV, both these modes experience a strong chiral
suppression in the RSc. This suppression cannot be removed through the exchanges
of the gauge bosons that are present in the RSc, but in principle could be removed
through tree level exchanges of the Higgs boson. However, the flavor changing quark-
Higgs couplings in the RSc are found to be small [33, 36, 116] and beyond that Higgs
contributions to Bd,s → µ+µ− are suppressed by the tiny Hµ̄µ vertex. Consequently we
can restrict our attention to the contributions of the SM Z boson and the heavy KK
gauge bosons ZH , Z ′ and A(1).
The Bd,s → µ+µ− decays are governed by the effective Hamiltonian for b→ s`+`− tran-
sitions which can be obtained from (4.67)–(4.70) by properly adjusting the flavor indices
and neglecting the charm contribution. We note that in this case also the operators Q7γ

and O8G which are responsible for the b→ sγ decay would enter the effective Hamilto-
nian. These operators arise at the loop level and their calculation in the RSc is beyond
the scope of the present work. Fortunately, following the line of argument in section
4.2.4 we find that also here only the (V − A) ⊗ (V − A) operator contributes to the
branching ratio and we find (q = d, s)

Br(Bq → µ+µ−)

Br(Bq → µ+µ−)SM

=
|Y V−A
q |2
Y (xt)2

. (4.85)

This concludes our analysis of flavor observables in the down quark sector, which is the
foundation for our numerical analysis in the following chapter.
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Chapter 5

Global Numerical Analysis

Having carefully calculated the flavor dependent corrections to the gauge and Higgs cou-
plings and the resulting modifications of flavor observables, we are now in the situation
to perform a global analysis of particle-antiparticle oscillations and rare decays in the
K and B meson systems. The main focus and aims of our analysis will be presented
in section 5.1 where also the numerical procedure is described in a manner as to keep
our approach fully traceable. Section 5.2 is devoted to a study of NP effects in particle-
antiparticle oscillations in the K and B meson systems, and rare K and B decays will
be discussed in section 5.3. We will conclude our global analysis by a comparison of the
results found in the RSc to two other models of NP, the LHT and SM4 models, in section
5.4.

5.1 Preliminaries

In the following numerical analysis we will not so much try to include the numerous
sub-leading flavor effects that are present in the RSc, but rather perform a theoretically
sound and complete calculation taking into account the main flavor violating effects and
give a survey of the main phenomenological features of the model. The most pressing
issues in the author’s view that concern flavor observables and that have to be clarified
are listed in the following.

We have seen that there are various contributions to ∆F = 2 observables. The natural
question in this context then is which of these contributions is the dominant one, and
which implications about the pattern of flavor violation result from its dominance. Fur-
thermore, is it possible to reproduce all ∆F = 2 observables, and in particular εK , in
the presence of comparably light KK modes without having to rely on strong accidental
cancellations among different parameters? If so, how much potential for large effects in
CP violating observables in the Bs system is left?

In our subsequent analysis of ∆F = 1 observables we will again have to investigate
which of the particles that can be exchanged at tree level yields the dominant contribu-
tion and which pattern of flavor violation results from this fact. Since in this context
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we are talking mainly about EW gauge bosons1, the question naturally arises whether
this pattern is model-independent or relies on the presence of the custodial symmetry.
After we have addressed these rather technical issues we will work out by how much the
various decay rates of K and B mesons can deviate from their SM values and whether
there are—preferably parameter independent—correlations between different rare decay
rates. In conjunction with this issue it is also interesting to investigate whether signifi-
cant enhancements beyond the SM in different observables are possible simultaneously.
In particular the answers to the latter two questions will yield important input to the
comparison of the RSc to the LHT and SM4 models.

The strategy for the following global numerical analysis was first developed in [33] in the
framework of ∆F = 2 observables and afterwards extended to the analysis of ∆F = 1
observables in [34]. Final refinements that allow to include the NP effects of tree level
Higgs exchanges were implemented in [36]. For details beyond those given in this section
the reader is referred to these papers.
First we note that the custodial symmetry of the RSc allows consistence with EWPT
for masses of the lightest KK states as low as2 MKK ≥ (2 − 3) TeV and we accordingly
fix the new physics scale fRS = ke−kL = 1 TeV, which corresponds to

MKK ' 2.45 TeV . (5.1)

In order to be able to predict the size of NP effects in a sensible manner we need to
constrain the parameter space to those regions that reproduce the SM quark masses and
mixing angles, as well as the Jarlskog invariant [171], all within 2σ of their measured
value. Concretely, we proceed as follows. In the flavor sector the 28 parameters com-
prising the absolute values, angles and phases entering the parameterization (3.28) of
the fundamental Yukawa matrices λu,d are randomly chosen in their respective ranges
[1/3, 3], [0, π/2] and [0, 2π]. Of these, the range for the absolute values is determined by
the requirement that the theory remains perturbative somewhat beyond the mass of the
second KK excitation [98–100], and by the fact that we want to avoid extreme (IR) lo-
calizations for the right-handed top quark. Subsequently, the nine bulk mass parameters
are determined in a manner such that the resulting 4D Yukawa matrices reproduce the
quark spectrum of the SM. This procedure is considerably simplified by employing the
Froggatt-Nielsen formulae [83] which can also be found in [33]. In this, it is important
that the fit is performed to the quark masses at the high scale µs ∼ O(MKK) which have
to be determined from the MS masses using NLO RG evolution. The quark masses and
mixing angles relevant for our analysis are given in tables 5.1 and 5.2. Since however
the quark spectrum does not unambiguously fix the nine bulk mass parameters we can
choose c3

Q randomly in the range

0.4 ≤ c3
Q ≤ 0.45 , (5.2)

1The Higgs contributions are negligible here since its couplings to leptons are mass suppressed.
2EWPT also impose constraints on the bulk mass parameters of the fermions [55], which are taken

into account by our choice of c3Q (cf. section 3.2.2).
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which is motivated by our analysis in section 3.2.2. In this context we want to point out
that the impact of the choice of this range on NP effects in flavor observables is small as
long as c3

Q < 0.5.

µ = 2 GeV µ = 4.6 GeV µ = 172 GeV µ = 3 TeV

mu(µ) 3.0(10) MeV 2.5(8) MeV 1.6(5) MeV 1.4(5) MeV

md(µ) 6.0(15) MeV 4.9(12) MeV 3.2(8) MeV 2.7(7) MeV

ms(µ) 110(15) MeV 90(12) MeV 60(8) MeV 50(7) MeV

mc(µ) 1.04(8) GeV 0.85(7) GeV 0.55(4) GeV 0.45(4) GeV

mb(µ) — 4.2(1) GeV 2.7(1) GeV 2.2(1) GeV

mt(µ) — — 162(2) GeV 135(2) GeV

Table 5.1: Renormalized quark masses at various scales, evaluated using NLO RG running. The 1σ
uncertainties are given in parentheses.

For each parameter point that is found to reproduce the SM quark masses and mixing
angles we subsequently evaluate the ∆F = 2 observables discussed in section 4.1 for two
different values of the fundamental QCD coupling constant, gs = 6 as the reference value
and also the smallest possible value gs = 3. The input parameters that are necessary for
this task are given in table 5.2. In addition to the observables themselves we determine
the amount of fine tuning in each observable according to the measure introduced by
Barbieri and Giudice (BG) [172],

∆BG(O)
∣∣∣
x

= Max
i

∣∣∣∣ d logO

d log xi

∣∣∣∣ = Max
i

∣∣∣∣Oxi dOdxi
∣∣∣∣ , (5.3)

where O is an observable and x = (x1, x2, ...) is a point in parameter space. Since we are
interested in typical or generic values of observables and the associated BG fine tuning
in the RSc, we will present our results in the form of density plots rather than ordinary
scatter plots. Having at hand predictions for all ∆F = 2 observables we will then impose
the available experimental constraints from εK , ∆MK , ∆Md, ∆Ms and SψKS on the
parameter space3. In applying these constraints we impose rather conservative bounds
in order not to overlook interesting signatures in the not yet measured observables. To
also keep track of the BG fine tuning ∆BG(εK), we will distinguish between points in
parameter space with ∆BG(εK) ≤ 20 and ∆BG(εK) > 20. With the suchlike prepared
parameter sets we will finally investigate the impact of NP contributions on the CP
violating observables in Bs mixing, Sψφ, AsSL and ∆Γs/Γs.
For our analysis of rare K and B decays we will again only take into account those pa-
rameter points that simultaneously satisfy all experimental constraints from ∆F = 2 ob-
servables. We will calculate the decay branching ratios for the K → πνν̄, KL → π0`+`−,

3As a result we obtain two sets of parameter points, one of them being consistent with the data for
the choice of gs = 6 and the other for gs = 3. To be able to compare the phenomenological predictions
for the different values of gs we ensure that both sets have roughly the same size.
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KL → µ+µ−, Bd,s → µ+µ− and B → Xd,sνν̄ modes and show the most interesting cor-
relations between those—since it turns out that the results are distributed around the
SM predictions—in the form of ordinary scatter plots. In these scatter plots, light blue
points correspond to the choice gs = 3, dark blue points correspond to gs = 6 and orange
points imply that in addition to gs = 6 also the fine tuning constraint ∆BG(εK) ≤ 20
has been imposed. On occasion we will remove the custodial protection for the purpose
of illustration. In this case, light-red points correspond to gs = 3, dark-red points corre-
spond to gs = 6 and green points imply that in addition to gs = 6 also the fine tuning
constraint has been imposed.

Some of the discovered correlations turn out to be different in the RSc than in other
models of NP, such as the LHT and SM4 models. Since correlations between observables
allow to make statements about parameter independent phenomenological model fea-
tures, we will compare these correlations in the RSc to those in the two aforementioned
NP models.

λ = |Vus| = 0.2255± 0.0019 GF = 1.16637 · 10−5 GeV−2

|Vub| = (3.93± 0.36) · 10−3 MW = 80.403(29) GeV

|Vcb| = (41.2± 1.1) · 10−2 [76] α(MZ) = 1/127.9

γ = 78(20)◦ sin2 θW = 0.23122

JSM =
(
3.08+0.16

−0.18

) · 10−5 [76] m0
K = 497.614 MeV

∆MK = 0.5292(9) · 10−2 ps−1 mBd = 5279.5 MeV [76]

|εK | = (2.229± 0.012) · 10−3 [132] mBs = 5366.4 MeV [133]

∆Md = (0.507± 0.005) ps−1 η1 = 1.32(32) [121]

∆Ms = (17.77± 0.12) ps−1 [173] η3 = 0.47± 0.04 [122,123]

SψKS = 0.672± 0.024 [132] η2 = 0.5765± 0.0065 [124]

m̄c = (1.268± 0.009) GeV [132,174,175] ηB = 0.551± 0.007 [124,176]

m̄t = (163.5± 1.7) GeV [177] FBs = (238.8± 9.5) MeV

FK = (155.8± 1.7) MeV FBd = (192.9± 9.9) MeV

B̂K = 0.725± 0.026 FBs

√
B̂Bs = (275± 13) MeV

B̂Bd = 1.26± 0.11 FBd

√
B̂Bd = (216± 15) MeV [132]

B̂Bs = 1.26± 0.11 [132] ξ = 1.21(4) [178]

B̂Bs/B̂Bd = 1.00(3) [178] αs(MZ) = 0.118(2) [76]

Table 5.2: Values of the experimental and theoretical quantities used as input parameters.
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5.2 K and B Meson Oscillations

5.2.1 Anatomy of RSc Contributions

We will start our numerical analysis with a look at the off-diagonal mixing amplitudes
M i

12, (i = K, d, s) which are the basic quantities from which all ∆F = 2 observables
can be calculated. Hence the pattern of NP contributions can be inferred from these
objects in the most transparent manner. The M i

12 receive contributions from tree level
exchanges of KK gluons, the ZH and Z ′ gauge bosons, as well as from the Higgs boson,
while the contributions from the KK photon and the Z gauge boson are subleading. The
first question we want to address is which of the individual contributions, the one from
gauge bosons or the one from the Higgs boson, typically is dominant. To this end in
the left panel of fig. 5.1 we show the imaginary and real parts of the Higgs contributions
(MK

12)Higgs divided by the gauge boson contribution (MK
12)gauge for a fundamental QCD

coupling constant gs = 3 and a Higgs mass MH = 115 GeV. The same is shown for the
Bs system in the right panel of that figure. Since we are interested in typical effects, we
chose to present our results in the form of density plots in which light areas correspond
to a high density of points and darker areas correspond to lower densities. For the plots

Figure 5.1: |Im(MK
12)gauge/Im(MK

12)Higgs| vs. |Re(MK
12)gauge/Re(MK

12)Higgs| (left panel) and
|Im(Ms

12)gauge/Im(Ms
12)Higgs| vs. |Re(Ms

12)gauge/Re(Ms
12)Higgs| (right panel), all plotted on logarithmic

axes.

in fig. 5.1 we have chosen the lowest possible value for the fundamental QCD coupling,
gs = 3 to be conservative. We see that even for this choice the gauge boson contribution
dominates the Higgs contribution by one to two orders of magnitude4 in both the K

4Here we have forestalled the fact that despite the partial cancellation in CLR1 larger values of gs
do lead to larger total gauge boson contributions even in the Bd,s systems where CLR2 is not clearly
dominant.
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and Bs systems. From the dominance of the gauge boson contribution in the Bs system
we deduce that the larger Higgs couplings to heavy quarks are compensated by larger
KK gauge boson couplings in this case (cf. the discussion of the RS-GIM mechanism).
We therefore conclude that the Higgs contribution to ∆F = 2 observables can be safely
neglected in the remainder of our analysis and we therefore will employ the notation
(M12)RSc instead of (M12)gauge et cetera from now on.

Higgs contributions beyond the brane Higgs scenario As a short digression from
the main line of our analysis we want to investigate under which circumstances the Higgs
contributions can actually exceed the gauge boson contributions. For simplicity we will
only consider the gluonic part of the latter contribution, but for fixed value of gs the
following results also apply to the remaining contributions. To extrapolate our hitherto
acquired results to the bulk Higgs case we use [100]

(δεK)gluon ∝ (gs)
2

Y 2
KK

1

a2(β)

1

M2
KK

, (5.4)

where a(β) depends on the localization of the Higgs field and YKK is the typical coupling
of the Higgs field to the lightest fermionic KK excitations. For a brane localized Higgs
we find that YKK = 2〈λd〉. Furthermore, from (3.77) we see that the Higgs contribution
to εK scales like

(δεK)Higgs ∝ Y 2
KK

M2
KK

, (5.5)

with nearly no dependence on the localization of the Higgs field [116].
Using (5.4), (5.5) we can infer an estimate for the ratio R ≡ 〈(δεK)gluon/(δεK)Higgs

〉
for

arbitrary values of (gs, YKK, β) from the value R0 that is determined for (gs = 3, YKK '
3, β =∞). Explicitly,

R(gs, YKK, β) '
(gs

3

)2
(

0.5

a(β)

)2(
3

YKK

)4

R0 , (5.6)

where the ratio R0 is found to be R0 ∼ 33 and a(β) is given for several values of β
in [100]: a(∞) = 0.5, a(2) = 0.75, a(1) = 1, a(0) = 1.5.
In fig. 5.2 we show the ratio R(gs = 3, YKK, β) as a function of β for two different values of
YKK. The lower curve corresponds to the maximal value consistent with the perturbativ-
ity estimate, YKK = 6

√
2 (where an additional factor

√
2 is due to the localization of the

Higgs in the bulk [100]), and the upper one to the value YKK = 6/
√

2, which corresponds
to the average if values are randomly chosen between 0 and the maximal value. We
observe that as soon as the Higgs field is detached from the IR brane the Higgs contribu-
tion to εK can in principle exceed the KK gluon contribution, although depending on the
typical size of Yukawa couplings this outcome is not imperative. The possible dominance
of the Higgs contributions is largely due to the increase of the maximally allowed value
for YKK by a factor of

√
2, but also by the shift of the quark zero modes towards the UV
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Figure 5.2: The ratio R for gs = 3 as a function of β for YKK = 6
√

2 (lower curve) and YKK = 6/
√

2
(upper curve).

brane that becomes possible for a bulk Higgs5 and is parameterized by the function a(β).

Next, we want to investigate the absolute size of the RSc contribution to ∆F = 2
observables. In fig. 5.3 we show the complex plane of KK gluon and EW contributions

Figure 5.3: |Re(M i
12)RSc/Re(M i

12)SM| and |Im(M i
12)RSc/Im(M i

12)SM| plotted on logarithmic axes for
the K system (i = K, left panel) and the Bs system (i = s, right panel).

to MK,s
12 normalized to the SM short distance contribution (MK,s

12 )SM for the reference
value gs = 6. In the left panel, where the K system is shown, we see that while the

5At this point it is important to keep in mind that observables that depend on positive powers of
YKK ∝ λd, such as the neutron EDM dn [98], Br(B → Xsγ) [100] and ε′/ε [179] for fixed MKK constrain
the size of the Yukawa couplings such that configurations for which the Higgs contribution is found to
be dominant may already be excluded.
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real part of the RSc contribution can be enhanced over Re(MK,s
12 )SM by several orders

of magnitude—which clearly is in contradiction to the ∆MK measurement even in the
presence of sizeable LD contributions to that observable—typical values are roughly
comparable to the SM value. Thus, due to the large uncertainty in the non-perturbative
LD contributions to ∆MK , this observable does not impose a stringent constraint on the
RSc parameter space and agreement with experimental data is naturally obtained. In the
case of the imaginary part the situation is vastly different. Since the RSc contribution
to MK

12 is expected to have an O(1) phase, its imaginary part typically exceeds the λt-
suppressed imaginary part of (MK

12)SM by more than two orders of magnitude. Thus,
unlike ∆MK , εK ∝ Im(MK

12) is expected to impose a stringent bound on the model’s
parameter space. This large disparity in the imaginary parts is a manifestation of the
flavor coincidence problem which is common to most models of physics beyond the SM.
It also illustrates the impact and failure of the RS-GIM mechanism: Despite tree level
contributions of TeV-scale particles that are enhanced chirally and by RG running effects
(by more than two orders of magnitude), the real part of MK

12 is on average adequately
protected from too large corrections. Only in the case of the imaginary part which
is strongly suppressed in the SM (by roughly two orders of magnitude) the RS-GIM
mechanism is overcome and corrections are typically too large.
The analogous situation in the case of the Bs system is shown in the right panel of
fig. 5.3. Again we observe that enhancements of both real and imaginary parts of M s

12

by several orders of magnitude are possible. Typical values for the real part of the RSc
contribution on the other hand are even smaller than the SM value, while typical values
for the imaginary part exceed the SM by a mere order of magnitude. Also here the
latter fact is due to a suppression of Im(M s

12)SM with respect to Re(M s
12)SM, although

the suppression is weaker than in the K system. We conclude that while in this case
the experimental data on ∆Ms can be naturally reproduced, the O(1) phase of (M s

12)
implies significant effects in CP violating observables such as Sψφ.
In the Bd system which is not shown we find that again both the real and imaginary
parts of (Md

12)RSc can exceed the SM by several orders of magnitude while the typical
values roughly have the same size as the SM contribution. Agreement for both ∆Md and
SψKS with the experimental data therefore can be naturally obtained and no stringent
bound on the parameter space is imposed by these observables.

After we have obtained an overview of the absolute size of RSc effects in the K and
Bd,s systems, we now will investigate the underlying operator structure. In fig. 5.4 we
have calculated the isolated contributions of the QV LL1 and QLR2 operators6 for gs = 6
in the K and Bs systems. In the left panel of that figure we see that the impact of
the scalar left-right operator QLR2 typically exceeds the impact of the left-left operator
QV LL1 by two orders of magnitude. From this we can conclude that the exchange of KK
gluons dominates the RSc contribution to K0 − K̄0 oscillations for a fundamental QCD

6We choose to consider QLR2 alone as it is the only operator that at leading order is not generated by
the exchange of EW gauge bosons. The contribution of the other left-right operator QLR1 is subleading
and proportional to the one from QLR2 .
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Figure 5.4: The ratio of the contributions of onlyQLR2 andQV LL1 to (MK
12)RSc (left panel) and (Ms

12)RSc

(right panel) as functions of (M i
12)RSc/(M i

12)SM (i = K, s).

coupling gs = 6. This dominance still prevails if we take gs = 3 for the fundamental
QCD coupling even if we assume that the QV LL1 operator is of purely EW origin.

In the right panel of fig. 5.4 the ratio of the QLR2 and QV LL1 operator contributions to
B0
s−B̄0

s oscillations is shown. This time the scalar left-right operator typically contributes
less than the left-left operator albeit still at a comparable level for gs = 6. For lower
values of the fundamental QCD coupling however it is clear that the contribution from
the QLR2 operator becomes less important. We recall that the QV LL1 operator receives
sizeable (for gs = 3 even dominant) contributions from tree level exchanges of EW gauge
bosons. Thus, in contrast to the K system, EW contributions have a significant impact
in the Bs and also Bd systems—a fact that has been overlooked in the literature for some
time.

We will conclude this survey of the anatomy of the RSc contributions to ∆F = 2 ob-
servables by briefly explaining the dominance of the different operators in the K and
Bd,s systems. First, in the K system the impact of both left-right operators, QLR1,2 is
chirally enhanced by a factor R(µ) ≈ 20, whereas the same factor in the Bd,s system
only amounts to Rq(µ) ≈ 1. Second, in particular the operator QLR2 is enhanced in the
RG evolution from the high scale µs ' 3 TeV down to the physically relevant scales
µL ' 2 GeV for the K system and µb ' 4.6 GeV for the Bd,s systems. Accordingly, the
enhancement is stronger in the former case. Finally, the flavor violating effect in the Bd,s

systems are stronger for left-handed quarks than for right handed ones. The reason for
this behavior is that in order to reproduce the large top mass the left-handed (tL, bL)
doublet and the right-handed top singlet tR need to be localized in the IR, while all other
quark fields are UV localized. In consequence the bL couples stronger to the IR localized
KK gluons than the bR does. This effect is in fact also present in the K system—the
(cL, sL) doublet is localized closer to the conformal point than the sR singlet is—but
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it is much weaker here7. For the same reason also the impact of the QV RR1 operator is
sub-leading in the Bd,s systems. Finally we mention that we did not need to discuss the
contribution from the QLR1 operator as it is proportional to the QLR2 contribution but
significantly smaller for all viable values of gs.

5.2.2 The εK Constraint

Our discussion of the RSc contributions to MK
12 in the previous section already raised

the issue of reconcilability of εK with the experimental data which within uncertainties
agrees with the SM value. From the left panel of fig. 5.3 we can in fact conclude that
generically εK in the RSc is by more than two orders of magnitude too large. In [99]
this observation has been used to derive a lower bound MKK ≥ 20 TeV on the KK scale.
In a more detailed analysis [33] which determined the average BG fine tuning that is
necessary to obtain a viable prediction for εK , we confirmed this bound by requiring
that the average fine tuning is smaller than O(20). While a number of model building
attempts to soften this bound can be found in the literature [180–183], we will follow a
different approach here.
The estimate in [99] for the bound on the KK scale assumes that the fundamental
Yukawa matrices λu,d are completely anarchic—but what happens if this assumption is
relaxed? To answer this question we will resort to the parameterization for the Yukawa
matrices given in section 3.2.1 and the ranges for the parameters stated in section 5.1,
but keep the KK scale fixed at MKK ' 2.45 TeV. The Yukawa matrices obtained in
this manner are clearly not anarchic, as their various entries can differ by as much as
an order of magnitude. To ensure that the predictions for flavor observables that are
obtained in this approach do not depend on extremely unlikely cancellations between
model parameters, we also calculate the BG fine tuning. In fig. 5.5 we show the BG fine
tuning in εK as a function of that observable normalized to its experimental value for
two different values of the fundamental QCD coupling gs. From the left panel of this
figure we immediately see that typically εK ∼ O(102)(εK)exp and that in this case the fine
tuning is small, typically below 20. For lower and more realistic values of εK the average
fine tuning steeply increases so that for values that are consistent with the experimental
data we find an average tuning of O(700). Despite this generic trend there obviously
are areas in parameter space for which (εK)exp is roughly reproduced and the required
tuning is moderate or even small. In the right panel of fig. 5.5 the same situation is
shown for the minimal QCD coupling gs = 3. In this case, the typical value for εK is
roughly by a factor of four smaller, while the fine tuning is more or less independent of
the size of this coupling.
To conclude the treatment of εK we repeat that there are indeed areas in parameter
space for which εK can be naturally consistent with experiment. While it is obviously
true that for these areas in parameter space the NP contributions are small and therefore
higher order effects such as loop corrections become important, a case can be made that

7This can be seen from the approximate values of the brane overlaps F iQ, F id given in (3.23) and
(3.24).
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Figure 5.5: The BG fine tuning in εK as a function of |εK/(εK)exp| plotted on a logarithmic scale for
gs = 6 (left panel) and gs = 3 (right panel).

these corrections leave the global picture unchanged. In the case of the impact of KK
fermions on the gauge couplings this statement has been checked numerically.

5.2.3 Experimentally Measured ∆F = 2 Observables

In the previous section we have seen that the strong constraint imposed on the RSc by
εK can be satisfied in a natural way. In the present section we will extend our fine tuning
analysis to the remaining ∆F = 2 observables that have been measured experimentally.
In particular we will consider the CP conserving mass differences ∆MK , ∆Md and ∆Ms

as well as the CP asymmetry in the Bd system, SψKS .

We will first look at ∆MK which is sensitive to the real part of MK
12 . Although this

observable depends on the same fundamental quantity as εK , we see in the left panel
of fig. 5.6, where we show the fine tuning in ∆MK as a function of that observable
normalized to its experimental value, that typical values in the RSc are SM-like and
thus slightly short of the experimental measurement. In view of the large theoretical
uncertainties in the non-perturbative LD contributions to ∆MK we find that the RSc
prediction agrees well with the data if we assume that the SD contribution amounts to
(70± 10)% of the measured value. The average fine tuning turns out to be smaller than
20 for the phenomenologically relevant region, which is clearly much smaller than in the
case of εK . This fact comes as no surprise if we recall the generic features of (MK

12)RSc

shown in fig. 5.3 where we found its real part to be roughly comparable to the SM value.

The CP asymmetry SψKS which is sensitive to the CP violating phase in Bd mixing is
measured to very high accuracy and is very clean on the theoretical side. Also here we
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Figure 5.6: The BG fine tuning in ∆MK as a function of |∆MK/(∆MK)exp| plotted on a logarithmic
scale for gs = 6.

are interested in whether the RSc can naturally reproduce the experimental data. As
done for the ∆S = 2 observables, we calculate the BG fine tuning in SψKS and show
our results in fig. 5.7. Typical values for SψKS are SM-like and slightly larger than the
experimental result, while the average fine tuning is found to be very small, roughly
. 5. Taken together, figs. 5.5–5.7 indicate that beyond naturally satisfying individual
constraints from ∆F = 2 observables, the RSc is able to resolve certain tensions that
occur in the unitarity triangle fits of the SM. The observables ∆Md and ∆Ms display
a behavior that is very similar to the case of SψKS and we therefore do not show the
corresponding plots.

In our discussion of all observables for which experimental results exist we have seen that
all individual constraints can be satisfied naturally. Among those the εK constraint is the
most severe and its imposition drastically reduces the available parameter space. Our
initial question however was whether it is possible to satisfy all experimental constraints
on ∆F = 2 observables simultaneously. We find that this is indeed possible. Even more
we find that εK and the other ∆F = 2 observables are only weakly correlated, such
that filtering for those points that yield a valid (untypically small) εK does not preclude
the possibility of satisfying the remaining constraints, which are typically met. As an
example for this fact we show the correlation between SψKS and εK in fig. 5.8.

For the remainder of this analysis we will only consider those points in parameter space
that in addition to the SM quark masses, mixing angles and CP invariant also satisfy all
available constaints from ∆F = 2 processes in the K, Bd and Bs systems.
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Figure 5.7: The BG fine tuning in SψKS
as a function of SψKS

for gs = 6.

Figure 5.8: SψKS
as a function of |εK/(εK)exp| plotted on a logarithmic scale for gs = 6.
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5.2.4 CP Violation in the Bs System

With the constrained parameter sets constructed in the previous section we are now
able to investigate the possible size of effects in the not yet (precisely) measured CP
violating observables in the Bs system, namely the time-dependent CP asymmetry Sψφ
in the decay Bs → ψφ, the semileptonic CP asymmetry AsSL and the normalized width
difference ∆Γs/Γs. These three quantities constitute a particularly interesting system of
observables: If the decay Bs → ψφ is not affected by non-perturbative contributions, a
measurement of Sψφ beyond its tiny SM value would be a clear-cut signal for CP violation
in Bs mixing. Furthermore, in this case there are strong model-independent correlations
between Sψφ, AsSL and ∆Γs/Γs such that a deviation in either of these observables from
its SM value entails deviations from the SM also in the other two observables. These
considerations have gained in importance with the recent data from Tevatron [184–186],
hinting at an enhancement in Sψφ by more than an order of magnitude over the SM
value (Sψφ)SM ' 0.04.
In the left panel of fig. 5.9 we show the semileptonic CP asymmetry AsSL as a function of
Sψφ. The model-independent correlation between these two observables advertised above
is immediately noticeable. Due to this correlation, both observables can be enhanced or
suppressed only simultaneously. While values of these asymmetries close to the SM seem
to be most likely, we find that the whole range of NP phases is possible so that −1 <
Sψφ < 1 and the value Sψφ ' 0.7 recently reported by the CDF and DØ collaborations
[184–186] can be reached. Accordingly, also AsSL can be enhanced by two orders of
magnitude beyond its SM value. In the right panel of fig. 5.9 we show the same plot
but this time for the minimal fundamental QCD coupling gs = 3. We observe that
while the model-independent correlation is even more pronounced, the lower value of
gs does not derogate the possible enhancement in the CP asymmetries beyond the SM.
Large effects, although they seem to occur slightly less frequently, are possible also in
this case. We therefore conclude that the—by roughly a factor four—smaller total RSc
contributions for gs = 3 are balanced by a greater number of parameter points that pass
the phenomenological constraints. Finally, we are interested in the dependence of CP
violation in the Bs system on the degree naturalness of our choice of parameter space.
To this end we impose an additional constraint on the amount of fine tuning in εK ,
∆BG(εK) ≤ 20. We find that this constraint does not qualitatively modify the situation
shown in fig. 5.9 beyond obvious statistical effects.
In the left panel of fig. 5.10 finally we show the normalized width difference ∆Γs/Γs
as a function of Sψφ. Also here the correlation between these two observables is a
striking feature of the plot and could become particularly useful if in the future a precise
measurement of ∆Γs/Γs will be available and in this manner large values for Sψφ could
in principle be excluded. Unfortunately the converse, that is the exclusion of small Sψφ,
is not feasible in this framework. In the right panel of fig. 5.10 we show the same plot but
for the minimal fundamental QCD coupling gs = 3. As was the case for AsSL, the impact
of this change is small. Also an imposition of the fine tuning constraint ∆BG(εK) ≤ 20
has no specific effect apart from reducing the total number of parameter points.
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Figure 5.9: AsSL normalized to its SM value as a function of Sψφ for gs = 6 (left panel) and gs = 3
(right panel).

Figure 5.10: ∆Γs/Γs as a function of Sψφ for gs = 6 (left panel) and gs = 3 (right panel).
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5.3 Rare K and B Decays

5.3.1 Anatomy of Z, ZH and Z′ Contributions

The key to understanding the relative sizes of different decay branching ratios and corre-
lations between them in the RSc lies in the knowledge of the proportions of the various
NP contributions. We will therefore begin our analysis of rare K and B decays with an
investigation of the anatomy of the Z, ZH and Z ′ contributions.
The NP contributions to the functions X, Y and Z given in section 4.2 are a product
of three main components: the coupling of the respective gauge boson to the down-type
quarks, its propagator in the low energy limit, and finally the gauge boson’s coupling
to leptons. For a given meson system characterized by the flavor indices (ij) there
are six distinct contributions from the three gauge bosons Z, ZH and Z ′ coupling to
left- and right-handed down-type quarks, ∆ij

L,R(Z) ,∆ij
L,R(ZH) ,∆ij

L,R(Z ′). Two of them,
the couplings of Z and Z ′ to the left-handed quarks are suppressed by the custodial
symmetry. To understand the relative sizes of these six contributions, it is necessary to
investigate the hierarchies in the above mentioned building blocks as we will do in the
following.
We note that in case of the Y and Z functions also the KK photon A(1) contributes.
However its couplings to fermions are suppressed by the smallness of the electromagnetic
coupling e4D and the electric quark charge, so that its contributions turn out to be small
(if not absent) in all cases.

Couplings to quarks For the gauge couplings to left-handed quarks the hierarchy
is given by the mixing of gauge bosons into mass eigenstates, cf. (2.76), and by the
suppression induced by the custodial protection. Numerically, we find

∆ij
L (ZH) : ∆ij

L (Z ′) : ∆ij
L (Z) ∼ O(104) : O(103) : 1 . (5.7)

For the couplings to the right-handed quarks, the hierarchy is solely determined by the
mixing of gauge bosons into mass eigenstates, and is given by

∆ij
R(ZH) : ∆ij

R(Z ′) : ∆ij
R(Z) ∼ O(102) : O(102) : 1 , (5.8)

where these hierarchies hold for the K, Bd and Bs systems likewise, that is for ij = sd,
ij = bd and ij = bs.
We note that in the presence of an exact protective PLR symmetry the flavor violating
couplings ∆ij

L (Z) and ∆ij
L (Z ′) would vanish identically. In this limit the same linear

combination of Z(1) and Z
(1)
X enters the Z and Z ′ mass eigenstates, so that the same

cancellation of contributions is effective. Taking into account the PLR-symmetry breaking
effects on the UV brane, the custodial protection mechanism is not exact anymore, but
still powerful enough to suppress ∆ij

L (Z) by two orders of magnitude. In the case of Z ′,

the mixing angles for Z(1) and Z
(1)
X are modified by roughly 10% when including the

violation of the PLR symmetry. Accordingly, the protection is weaker in the case of Z ′
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and ∆ij
L (Z ′) is suppressed only by one order of magnitude compared to the case without

protection.
As the right-handed down-type quarks are no PLR-eigenstates, the custodial protection
mechanism is not effective in the case of ∆ij

R(Z) and ∆ij
R(Z ′), which explains the different

pattern of hierarchies in the right-handed sector. This general picture is unaffected by
the inclusion of the effects of KK fermion mixing as has been shown in section 3.5.

Gauge boson propagators If we assume the additional neutral gauge bosons ZH
and Z ′ to be degenerate in mass, their contribution to the functions X, Y and Z is
suppressed by a factor M2

Z/M
2
KK ∼ O(10−3) with respect to the Z contribution.

Couplings to leptons For this comparison, we assume the lepton zero mode localiza-
tion to be flavor independent, that is we assume degenerate bulk masses in the lepton
sector. Since leptons are significantly lighter than the quarks of the same generation, we
choose them to be localized towards the UV brane and set the bulk mass parameters to
c = ±0.7 for left- and right-handed leptons. This assumption is well motivated by the
observation that the flavor conserving couplings depend only very weakly on the actual
value of c, provided c > 0.5 for left-handed leptons (c < −0.5 for right-handed leptons).
Since the couplings of gauge boson mass eigenstates are dominated by the Z(0) and Z(1)

contributions8, their hierarchy does not depend on the particular handedness or charge
of the involved leptons. In contrast to the ZH and Z ′ coupling, the Z coupling to the
lepton sector is not suppressed by an overlap integral of shape functions and hence is
expected to be dominant. Numerically,

∆νν,``
L,R (ZH) : ∆νν,``

L,R (Z ′) : ∆νν,``
L,R (Z) ∼ O(10−1) : O(10−1) : 1 . (5.9)

This hierarchy is obviously the same in the K, Bd and Bs systems.

The above considerations now can be used to weight the contributions of Z, ZH and
Z ′ coupling to left- and right-handed quarks. Combining the ratios obtained in the
previous three paragraphs we find that the contributions from the ZH and Z coupling to
left-handed quarks are comparable in size, while the corresponding contribution from Z ′

is clearly negligible. The contribution from couplings to right-handed quarks is strictly
dominated by the Z gauge boson. To finally determine the dominant overall contribution,
we note that due to the custodial protection and the particular structure of the model
the Z boson couples much more strongly to right-handed quarks than to left-handed
quarks, ∆ij

R(Z) � ∆ij
L (Z), which is even more the case if we concentrate on parameter

sets that can produce significant modifications to the functions X, Y and Z. Hence
the main message from our semi-analytic analysis is the following: If the effects in rare
K and B decays are significant, they are dominantly caused by the Z boson coupling

8This is due to the fact that the absolute value of the overlap integral of a (++) gauge boson with
UV localized fermions is much larger than the corresponding absolute value of the overlap integral for
a (−+) gauge boson, as can be seen in fig. 2.3.
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to right-handed down-type quarks. This is in contrast to other models of NP, where
left-handed couplings yield the dominant contribution to rare decays—such as the LHT
or SM4 models—and we can expect a very specific pattern of flavor violation for rare
decays in the RSc.

5.3.2 Violation of Universality

As the tree level contributions from the Z boson turned out to be dominant, we restrict
our qualitative discussion to these contributions, and from this try to predict the relative
sizes of possible NP effects in the K and Bd,s systems. In our quantitative analysis we
will however consider the full NP contribution. We will first determine the typical
sizes of the generalized loop functions XV,V−A

i , Y V,V−A
i and ZV,V−A

i (i = K, d, s) in the
RSc. To do so we have to take into account that NP contributions are enhanced non-
universally by factors 1/λ

(i)
t relative to the SM. As these factors have largely disparate

sizes, λ
(K)
t ' 4 · 10−4, λ

(d)
t ' 1 · 10−2 and λ

(s)
t ' 4 · 10−2, such that

1

λ
(K)
t

:
1

λ
(d)
t

:
1

λ
(s)
t

∼ 100 : 4 : 1 , (5.10)

we would näıvely expect the deviation from the SM functions in the K system to be by
more than an order of magnitude larger than in the Bd system, and those in turn by a
factor of four larger than in the Bs system. Having at hand numerical results for a large
number of parameter sets, we find that the strong hierarchy in the factors 1/λ

(i)
t is only

partially compensated by the opposite hierarchy in the Z couplings ∆ij
R(Z),

∆bs
R (Z) : ∆bd

R (Z) : ∆sd
R (Z) ∼ 9 : 6 : 1 , (5.11)

so that still larger effects are expected in K physics than in Bd,s physics. In any case
the universality of the functions X, Y and Z in the K and B systems that is present in
the SM is necessarily broken in the RSc.

Combining (5.10) and (5.11) we find that the size of the NP contributions on average
drops by a factor of four when going from the K to the Bd system and by another factor
of two when going from the Bd to the Bs system.

How would this situation change in the absence of the custodial symmetry? In this case
the left-handed Z couplings would yield the dominant contribution to tree level rare
decays. Based on our parameter sets9 we find for the left-handed couplings

∆bs
L (Z) : ∆bd

L (Z) : ∆sd
L (Z) ∼ 130 : 30 : 1 , (5.12)

9To be exact, apart from checking consistence with EWPT, one would have to repeat the analysis of
∆F = 2 observables in the absence of custodial symmetry. Since however the most stringent constraint
in the ∆F = 2 sector comes from εK which is KK gluon dominated and since the remaining observables
turn out to be roughly in agreement with experiment, taking the same parameter sets should not
drastically modify the following result.
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and we see that the hierarchy in the 1/λ
(i)
t is roughly compensated10. Hence we expect

the relative NP effects in the K and B systems to be roughly of the same size. This very
different pattern compared to the RSc could one day allow to distinguish experimentally
between the RSc and RSm models if several decay branching ratios are observed above
the SM expectation.
After this brief digression we return to our initial objective of determining the deviations
of the generalized loop functions XV,V−A

i , Y V,V−A
i and ZV,V−A

i (i = K, d, s) from the
SM values X0(xt), Y0(xt) and Z0(xt). First we determine the possible ranges for Xi

(i = K, d, s). The 5σ ranges for these quantities are numerically found to be

0.60 ≤ |XK |
X(xt)

≤ 1.30 , 0.90 ≤ |Xd|
X(xt)

≤ 1.12 , 0.95 ≤ |Xs|
X(xt)

≤ 1.08 , (5.13)

where we have imposed the fine tuning constraint ∆BG(εK) ≤ 20 and taken into account
that theses distributions can be asymmetric around the SM value. As predicted, the
relative size of NP effects in the K system is by approximately a factor of four larger
than that in the Bd system which in turn is by a factor of two larger than in the Bs

system. This implies that CP conserving effects in the K system are much larger than
in the B systems, where they in fact are found to be disappointingly small. We do not
state the ranges for the Y and Z functions (see however [34]) as these scale inversely to
the SM values

X(xt) = 1.48 , Y (xt) = 0.94 , Z(xt) = 0.65 , (5.14)

and hence can be inferred from (5.13).
In the left panel of fig. 5.11 we show the breakdown of universality in the absolute values
of XK and Xs. The black line in this plot indicates the CMFV limit in which the X,
Y , Z functions are universal for the K and B systems. In the RSc this universality is
strongly broken, mainly by the large effects in the K system.
A similar picture is obtained for the ranges of the phases of Xi (i = K, d, s),

−45◦ ≤ θKX ≤ 25◦ , −9◦ ≤ θdX ≤ 8◦ , −2◦ ≤ θsX ≤ 7◦ . (5.15)

These different ranges imply that the in any case experimentally inaccessible CP violating
effects in b → dνν̄ and b → sνν̄ transitions are very small, but also that those in KL

decays can be significant. An analogous pattern is found for the phases of the Yi and
Zi functions which can be found in [34]. In the right panel of fig. 5.11 we illustrate the
breakdown of universality in the phases θKX and θsX .
Apart from the obvious breakdown of universality, fig. 5.11 displays a second interesting
feature. Especially in the right panel of that figure we see that extremal effects in both
phases do not tend to show up simultaneously. If we assume anarchic phases in the
elements of the coupling matrix ∆ij

R(Z), which dominantly enters the Xi functions—and

10This is a subtle consequence of the fact that it is the hierarchy in the IR brane overlaps of the
left-handed doublets which is responsible for the smallness of the CKM mixing angles.
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Figure 5.11: Breakdown of universality between |XK |, |Xs| (left panel) and Arg(XK), Arg(Xs) (right
panel). The light blue points represent data sets obtained for gs = 3, dark blue points correspond to
gs = 6 and orange points indicate the imposition of the fine tuning constraint ∆BG(εK) ≤ 20 for gs = 6.
The solid black line indicates the flavor universal CMFV limit.

there is no indication why this should not be the case—this finding can be explained in
the light of the discussion that led to fig. 3.4: For a given point in parameter space, the
couplings of the Z boson to different meson systems do not tend to be simultaneously
large.

5.3.3 Rare K Decays

From our analysis of the X, Y , Z functions in the previous section we know that
the most spectacular effects can be expected in the K system. In this section we
will consider the theoretically cleanest and most prominent modes of rare K decays,
Br(K+ → π+νν̄), Br(KL → π0νν̄), Br(KL → π0`+`−) and the short distance contribu-
tion to Br(KL → µ+µ−).

Of the above decays the K → πνν̄ modes are highly sensitive to NP and beyond that
offer the possibility of distinguishing between different models of NP once both branch-
ing ratios are accurately measured. In fig. 5.12 we show Br(KL → π0νν̄) as a function
of Br(K+ → π+νν̄). We find that Br(K+ → π+νν̄) can be enhanced by roughly a
factor of two, which would allow to reach the central experimental value of ∼ 17 · 10−11.
For Br(KL → π0νν̄) the enhancement is typically even larger and can reach up to val-
ues of four such that the model-independent Grossman-Nir bound [144], which puts an
upper bound on Br(KL → π0νν̄) for given Br(K+ → π+νν̄) can be saturated in the
RSc. So after all the KL → π0νν̄ mode is more sensitive to the impact of the RSc than
the K+ → π+νν̄ mode. Apart from the possible enhancements it is noteworthy that
in the RSc the two branching ratios are virtually uncorrelated. Unlike in the LHT or
SM4 models, where a strict branch structure was found [111, 139], here fixing the value
of either branching ratio does not preclude or favor a particular value for the second
branching ratio. The reason for this different behavior has been pointed out in [145]. In
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Figure 5.12: Br(KL → π0νν̄) as a function of Br(K+ → π+νν̄). The shaded area represents the
experimental 1σ-range for Br(K+ → π+νν̄) with the central value indicated by the dashed vertical line.
The GN bound is displayed by the dotted line, while the solid line indicates equality of both branching
ratios. The black point represents the SM prediction.

Figure 5.13: Br(KL → π0µ+µ−) as a function of Br(KL → π0e+e−) assuming constructive interfer-
ence. The black point represents the SM prediction.

summary, in the two other NP models the strong correlation in the Br(K → πνν̄) plane
is caused by the εK constraint which, due to the presence of right-handed currents and
non-universal phases in εK and K → πνν̄ loses its constraining power in the RSc. We
will briefly return to the non-correlation in the K → πνν̄ system in section 5.4 where
we compare the global features of the RSc to those of the LHT and SM4 models.

The second pair of branching ratios we want to have a closer look at is the KL → π0`+`−

system. In fig. 5.13 we show Br(KL → π0µ+µ−) as a function of Br(KL → π0e+e−).
Both branching ratios can be typically enhanced by 40%, staying still far below their
experimental upper bounds (4.76). We also observe that the two branching ratios are
strongly correlated, as was also found in the LHT and SM4 models. Such a correlation in
fact is common to all models in which no scalar operators are present [157,158,161]. So
while on the one hand the correlation shown in fig. 5.13 gives no handle on distinguishing
between the RSc, LHT and SM4 models, detecting its violation by experiment would
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Figure 5.14: Br(KL → π0e+e−) (upper curve) and Br(KL → π0µ+µ−) (lower curve) as a function of
Br(KL → π0νν̄) assuming constructive interference in Br(KL → π0`+`−). The black points represent
the SM predictions.

shed light on the operator structure of new physics.

In fig. 5.14 we show Br(KL → π0e+e−) and Br(KL → π0µ+µ−) as functions of Br(KL →
π0νν̄). Again we observe a strong correlation between these modes, implying that a
strong enhancement of Br(KL → π0νν̄) entails a significant enhancement of Br(KL →
π0`+`−). Since both branching ratios receive dominantly or exclusively CP violating
contributions, the strong correlation between both implies that the CP phase that en-
ters these modes is universal. Finally we note that the gradient of the correlation is
smaller than one, so that the typical enhancement in Br(KL → π0`+`−) is smaller than
in Br(KL → π0νν̄). This is related to the fact that the NP effects in the former modes
are dominated by indirect CP violating contributions which are basically fixed by εK
and KS → π0`+`−, as discussed in section 4.2.3.

The last observable that we want to analyze in this section is related to the KL → µ+µ−

decay. While it is known that the SD contribution constitutes only a small fraction
of the whole dispersive contribution to the branching ratio, the LD contributions are
afflicted with large uncertainties. Therefore the perturbative part of the branching ratio
Br(KL → µ+µ−) cannot be directly related to the measured branching ratio. A con-
servative upper bound on Br(KL → µ+µ−)SD however has been derived in [166] and is
given in (4.78). In the left panel of fig. 5.15 we show Br(KL → µ+µ−)SD as a function
of Br(K+ → π+νν̄). Clearly, Br(KL → µ+µ−)SD can be enhanced beyond the indirect
bound (4.78), although this is typically not the case. Even more striking is the strong
inverse correlation between the two CP conserving branching ratios Br(KL → µ+µ−)SD

and Br(K+ → π+νν̄): Large enhancements of the former mode up to or beyond its indi-
rect bound require SM-like values for the latter mode and vice versa, and it is interesting
to note that a confirmation of the central value of the K+ → π+νν̄ branching ratio in
the RSc would imply a vanishing SD contribution to Br(KL → µ+µ−). The reason for
this correlation can be traced back to the dominance of the right-handed Z coupling in
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Figure 5.15: Left panel: The SD contribution to Br(KL → µ+µ−) as a function of Br(K+ → π+νν̄).
Right panel: The same, but with removed custodial symmetry. The shaded area represents the experi-
mental 1σ-range for Br(K+ → π+νν̄) with the central value indicated by the dashed vertical line. The
dashed horizontal line corresponds to the indirect bound (4.78) on Br(KL → µ+µ−)SD and the black
point represents the SM prediction.

the framework of the RSc. Since π+, K+ and KL are pseudo-scalar mesons, we find for
the matrix elements

〈π+|(s̄d)V−A|K+〉 = +〈π+|(s̄d)V+A|K+〉 ,
〈0|(s̄d)V−A|KL〉 = −〈0|(s̄d)V+A|KL〉 , (5.16)

so that the (V +A) RSc contribution faces the (V −A) SM contribution with an opposite
sign in the two branching ratios considered here. The correctness of these considerations
can be easily checked: by removing the custodial protection. This is shown in the right
panel of fig. 5.15. Without custodial protection the left-handed Z couplings are no longer
suppressed and in fact constitute the dominant source of NP effects, which results in a
simultaneous suppression or enhancement of Br(KL → µ+µ−)SD and Br(K+ → π+νν̄).
Thus the correlation between the two modes considered here represents a very good probe
of the operator structure of NP and has the potential to exclude the RSc. In view of this,
theoretical progress on the determination of the LD contribution to Br(KL → µ+µ−)
would be of vital importance.

5.3.4 Rare B Decays

In the following we want to give an overview over the exclusive decays Br(Bd,s → µ+µ−)
and the two inclusive modes Br(B → Xd,sνν̄). From our general analysis in section
5.3.2 we already know that NP effects in the B systems are much less spectacular than
in the K system. On the other hand these modes are highly sensitive to the effects of the
custodial symmetry and offer an interesting experimental ground for studying its impact.
Decay modes that do not suffer from the suppression of the left-handed couplings and
that can potentially be strongly enhanced, such as B → Xsγ and B → Xs`

+`− require
the inclusion of loop-induced dipole operators and are beyond the scope of this thesis.
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Figure 5.16: Left panel: Br(Bs → µ+µ−) as a function of Br(Bd → µ+µ−). Right panel: The same,
but with removed custodial symmetry. The black line corresponds to the CMFV correlation and the
black point represents the SM prediction.

Estimates for the branching ratios of these modes in the RSc have however been obtained
in [98,100].

In the left panel of fig. 5.16 we show the purely leptonic modes Bd,s → µ+µ−. As
indicated above, we find the possible enhancements of both branching ratios to be very
small, roughly 10% for Bd → µ+µ− and 5% for Bs → µ+µ−. These small effects are
caused by the absence of scalar operators which could in principle lift the strong chiral
suppression of these modes, and by the custodial protection which suppresses the left-
handed Z couplings below the level of the right-handed couplings. If the suppression from
the custodial protection is lifted11, as we show in the right panel of fig. 5.16, the possible
effects in both modes are considerably larger and amount to typically 50% forBd → µ+µ−

and 80% for Bs → µ+µ−. Let us now return to the left panel of fig. 5.16 which displays
another interesting feature. As was the case for the XK and Xs functions in section 5.3.2
(see fig. 5.11), also here (though less pronounced) we observe that simultaneous effects in
the two branching ratios seem to be disfavored12. This observation again can be traced
back to our discussion of the relation between different flavor violating quark couplings
of a given gauge boson in the context of fig. 3.4. We finally mention that the black line
corresponds to the CMFV limit in which the ratio of both branching ratios is equal to
their ratio in the SM. This CMFV correlation is obviously strongly broken in the RSc,
regardless of the presence or absence of the custodial protection.

The situation in the case of the inclusive modes B → Xd,sνν̄ shown in fig. 5.17 is very

11Note that the removal of the custodial protection as done here in general leads to tensions with
EWPT such that for a more detailed analysis one would have to take these constraints into account as
well. So while we are certainly in no position to make predictions for the RSm model, the procedure
employed by us allows to investigate the impact of the custodial protection.

12This effect is even less pronounced (if present at all) in the case of removed custodial protection.
The difference here is that in the absence of custodial protection, there is no single coupling that is
clearly dominant.
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Figure 5.17: Left panel: Br(B → Xdνν̄) as a function of Br(B → Xsνν̄). Right panel: The same,
but with removed custodial symmetry. The black line corresponds to the universal CMFV result given
by the ratio |Vtd|2/|Vts|2 and the black point represents the SM prediction.

similar to the one discussed above. The enhancement of these modes in the RSc is
small, typically below 5% and as for the purely leptonic modes strong enhancements are
possible if the custodial protection is removed. Also here the CMFV correlation between
the branching ratios is strongly violated.

5.3.5 Correlations Between Observables in K and B Physics

Until now we have only considered K and B observables separately. What we have seen
in this analysis so far is that the most significant NP effects can show up in rare K de-
cays, in particular in the K → πνν̄ system, and in the observables that are related to CP
violation in Bs mixing, in particular in the time dependent CP asymmetry Sψφ. In the
present section we want to address the question whether these effects are independent
of each other or in fact correlated.

We commence our analysis by contrasting the two single most spectacular observables in
the RSc from the viewpoint of possible enhancements, Br(KL → π0νν̄) and Sψφ, which
are shown in fig. 5.18. The most striking feature of this plot is that large enhancements
in Br(KL → π0νν̄) and Sψφ are mutually exclusive. Large values in either observable
strongly favor a SM-like value in the second observable. Thus a confirmation of the
recent combined analysis [184] of the CDF [185] and DØ [186] collaborations which
suggest a value for Sψφ as high as ' 0.7 would preclude almost any visible effect in
KL → π0νν̄ in the context of the RSc. If on the other hand a SM-like time dependent
CP asymmetry Sψφ is found in future experiments, the road would be open for large
effects in KL → π0νν̄. The correlation between the CP conserving decay branching ratio
Br(K+ → π+νν̄) and Sψφ turns out to be very similar and we do not show it here.
Although beyond doubt it is too soon to speculate we take the liberty of mentioning
that in this context a confirmation of the central values of both the Br(K+ → π+νν̄)
and Sψφ measurements would put the RSc under pressure. In this sense the upcoming
experiments NA62, E14 and LHCb really have the potential to seriously challenge or
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Figure 5.18: Br(KL → π0νν̄) as a function of the CP asymmetry Sψφ. The black point represents
the SM prediction.

even exclude the RSc.
On account of the significance of the correlation discussed above we will try to give an
explanation for its emergence. We have seen earlier in the discussion of the RS-GIM
mechanism in section 3.4.1 that for a given chirality the entries of the gauge coupling
matrices are related and have the tendency not to be large simultaneously. The rare K
decay modes are dominated by the right-handed Z coupling, so a large K branching ra-
tio favors small V bRs̄R couplings, where V = Z, ZH , Z

′, A(1), G(1). As Sψφ also receives
contributions from the QV LL1 operator (see fig. 5.4) which is insensitive to right-handed
couplings this effect alone does not explain the observed correlation. A second effect that
is of relevance here was pointed out in [187]. In those cases where the QV LL1 operator
yields a significant contribution to Sψφ, the left-handed quarks are slightly more localized
towards the IR brane than on average. By virtue of the transformation given in (3.29)
this implies that for fixed Yukawa couplings the right-handed quarks are slightly farther
away from the IR brane. This entails smaller right-handed couplings and hence smaller
rare decay branching ratios. We have however checked that in this context the former
effect is the dominant one13.

In fig. 5.19 we show the ratio Br(Bs → µ+µ−)/Br(Bs → µ+µ−)SM as a function of
Br(K+ → π+νν̄) both with and without custodial symmetry. Also here we identify
a correlation between both observables that disfavors simultaneous large effects. Since
this time the correlation is due to the structure of the right-handed couplings alone, it
is weaker than the one between K → πνν̄ and Sψφ. Still, for values of Br(K+ → π+νν̄)
close to the experimental central value, Br(Bs → µ+µ−) is essentially SM-like.
To conclude our discussion of correlations between K and B decays in fig. 5.20 we show
the branching ratios Br(KL → µ+µ−)SD and Br(Bs → µ+µ−). As before, effects are
larger in the K than in the Bs mode, and also here significant effects are favored to be
mutually exclusive. The CMFV correlation which is represented by the black line also

13This can be done e.g. by considering also the correlations between Sψφ and Br(Bs → µ+µ−) which
should also be mutually exclusive if the second effect was the dominant one.
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Figure 5.19: Left panel: The ratio Br(Bs → µ+µ−)/Br(Bs → µ+µ−)SM as a function of Br(K+ →
π+νν̄). Right panel: The same, but with removed custodial symmetry. The shaded area represents the
experimental 1σ-range for Br(K+ → π+νν̄) with the central value indicated by the dashed vertical line.
The black point represents the SM prediction.

here is strongly violated.
If the custodial protection is removed, as is shown in the right panels of figs. 5.19 and 5.20,
the left-handed Z couplings are no longer suppressed and the possible NP effects in the
K and B decay modes become comparable in size. This behavior can be quantitatively
understood based on the hierarchy in the SM contributions, which is determined by
(5.10) and on the hierarchy of the left-handed Z couplings given in (5.12).

Figure 5.20: Left panel: Br(KL → µ+µ−)SD as a function of Br(Bs → µ+µ−). Right panel: The
same, but with removed custodial symmetry. The dashed horizontal line corresponds to the indirect
bound (4.78) on Br(KL → µ+µ−)SD while the solid line indicates the CMFV correlation. The black
point represents the SM prediction.

5.4 Comparison to Other Models of New Physics

In the previous sections 5.2 and 5.3 we have identified a number of parameter inde-
pendent phenomenological correlations and properties of the RSc. These features are
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characteristic for the RSc and can be used to distinguish it from other models of NP.
To demonstrate how and under which circumstances this can be achieved we will in
the following perform an explicit comparison with two selected NP models: the Littlest
Higgs model with T-parity and the SM with a sequential fourth generation of quarks.

5.4.1 The Littlest Higgs Model with T-Parity

One way to protect the Higgs mass from large corrections and thereby resolve the little hi-
erarchy problem is to let the Higgs arise as a pseudo Goldstone boson of a spontaneously
broken (approximate) global symmetry [188, 189]. The characteristic features of little
Higgs models [190, 191] is that the symmetry breaking of the global symmetry occurs
collectively such that corrections to the Higgs potential at the 1-loop level diverge at most
logarithmically. The most economic implementation of collective symmetry breaking is
achieved in the case of the Littlest Higgs model [192] (LH), which is based on the sym-
metry breaking pattern SU(5)→ SO(5) and in which the additional gauge bosons AH ,
ZH , W±

H , as well as a heavy partner to the top quark and a phenomenologically irrelevant
scalar triplet Φ are present. By construction, the LH model is an effective theory with a
cut-off Λ ' 4πfLH, where fLH is the scale at which the global symmetry is spontaneously
broken. To prevent tree level exchanges of the additional gauge bosons, in which case
EWPT would imply a strong bound on the NP scale fLH, a discrete Z2 symmetry denoted
T-parity [193,194] is introduced which then allows a symmetry breaking scale as low as
fLH ' 500 GeV. Phenomenological consistency of the resulting Littlest Higgs model with
T-parity (LHT) requires the additional introduction of a second, T -odd, top partner and
of three generations of mirror quarks and leptons [195]. The masses of the additional
particles depend on the symmetry breaking scale and are typically ∼ (300− 1500) GeV.
While the LH model belonged to the class of MFV models and NP effects were found
to be small [196, 197], the interactions of the mirror quarks with SM quarks and heavy
gauge bosons effectively introduce an additional mixing matrix VHd [198] with 3 + 3
additional flavor parameters [110], such that the LHT model is beyond MFV. On the
other hand, NP in the LHT enters exclusively through left-handed couplings and accord-
ingly no non-SM operators are induced. From this pattern we can expect that there are
significant effects in flavor violating observables, but also that there are distinct corre-
lations between different observables. A number of flavor analyses have been performed
in [120,199–205], and a recent numerical update can be found in [206]. In the following
we will highlight the observables that allow for the most definite distinction from the RSc.

In fig. 5.21 we show the semileptonic CP asymmetry AsSL as a function of Sψφ in the
LHT. Also here the decay amplitude for B → ψφ receives no additional weak phase
and hence there is a strong correlation between AsSL and Sψφ. In contrast to the RSc
(cf. fig. 5.9), Sψφ can hardly be enhanced beyond ∼ 0.2 which would seriously challenge
the LHT model if the recent data suggesting Sψφ ' 0.7 is confirmed.

In CP violation in the Bs system the difference between the LHT and RSc models is
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Figure 5.21: AsSL as a function of Sψφ in the LHT (figure taken from [120]). The black circle represents
the SM prediction.

found to be only gradual, but due to the different coupling structure in both models we
expect a more drastic discrepancy in the correlations between rare K decays. In fig. 5.22
we show the correlations between Br(K+ → π+νν̄) and Br(KL → π0νν̄) (left panel) and
Br(KL → µ+µ−)SD (right panel). We note that while the overall amount of possible NP
effects is roughly comparable in both models, in the K → πνν̄ system (cf. fig. 5.12) there
now is a strong correlation between both branching ratios which results in two distinct
branches in the Br(K → πνν̄) plane. This correlation implies that if the measurement of
Br(K+ → π+νν̄) is confirmed, Br(KL → π0νν̄) in the LHT is predicted to be essentially
SM-like. In the RSc no such prediction for the latter branching ratio can be given. The
reason for this different behavior is that due to the absence of new operators in the
LHT and due to the universality of CP phases, ∆S = 2 and ∆S = 1 observables are
strongly related and thus the constraint on the εK parameter excludes large areas in
the Br(K → πνν̄) plane. In the RSc on the other hand, left-right operators contribute
significantly to the εK parameter, thus spoiling the relation between the ∆S = 2 and
∆S = 1 sectors. For a more detailed explanation in a model-independent framework the
reader is referred to [145]. As already mentioned, the K → πνν̄ system thus can be seen
as a sensitive probe of the operator structure of NP models.

Also in the case of Br(KL → µ+µ−) and Br(K+ → π+νν̄) we observe a correlation in
the LHT that is very different from the one that was found in the context of the RSc
(cf. fig. 5.15). In fact, the correlation in the LHT strongly resembles the one obtained for
the case of removed custodial protection in the RSc. This once more emphasizes that in
the LHT left-handed couplings play the dominant role while in the RSc this part is taken
by the right-handed couplings unless the custodial protection is absent. If we further
assume that the central experimental value for Br(K+ → π+νν̄) will continue to stay
above the SM value, this would imply an almost vanishing value for Br(KL → µ+µ−)SD

in the RSc, while the LHT predicts a SD contribution to the branching ratio that is very
close to the indirect bound (4.78).
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Figure 5.22: Correlations between rare K decay branching ratios in the LHT. Left panel: Br(KL →
π0νν̄) as a function of Br(K+ → π+νν̄). The shaded area represents the experimental 1σ-range for
Br(K+ → π+νν̄) with the central value indicated by the dashed vertical line. Right panel: Br(KL →
µ+µ−)SD as a function of Br(K+ → π+νν̄). The dashed horizontal line corresponds to the indirect
bound (4.78) on Br(KL → µ+µ−)SD and the black points represent the respective SM predictions. Both
figures were taken from [206].

To summarize, we have seen that in particular the time-dependent CP asymmetry Sψφ,
the branching ratios in the K → πνν̄ system and the SD contribution to Br(KL →
µ+µ−) would, if measured with sufficient accuracy, provide an excellent chance to dis-
tinguish between the RSc and LHT models or even to strongly disfavor both of them.
On the other hand, a number of qualitative features are shared by both models. Among
them are the comparably small effects in rare B decays, a mutual exclusiveness of large
effects in rare K decays and Sψφ

14 as well as the strictly linear correlations between
Br(KL → π0`+`−) and Br(KL → π0νν̄) which signal the universality of the CP phase
in these modes and the absence of scalar operators.

5.4.2 The Standard Model with a Fourth Generation

The SM with a sequential fourth generation of quarks and leptons is one of the simplest
extensions of the SM. While it does not solve any of the conceptual problems that afflict
the SM, the SM4 is likely to have a number of profound implications. For instance, while
being consistent with EWPT [207–212], the presence of a fourth generation could allow to
reconcile the lower bound on the Higgs mass from LEPII with the SM fit [208,210,213].
Furthermore, SU(5) gauge coupling unification [214], EW baryogenesis [215–217] and
dynamical EWSB [218–223] could be viable in the context of the SM4.
The mass of the additional top quark t′ which is relevant for additional flavor violation
in the down-sector has to lie in the range 300 GeV ≤ mt′ ≤ 600 GeV (with the lower
bound given by non-observation and EWPT and the upper bound being imposed by the
Landau pole of the t′ Yukawa coupling) and thus is lighter than the additional particles
in both the LHT and RSc models. Apart from that the chief features of the SM4 can be

14It should be noted that the deeper reason for this feature is different in both models. In the case
of the LHT it is given by the severe constraint on the εK parameter which excludes simultaneous large
effects [111].
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Figure 5.23: Left Panel: Br(Bs → µ+µ−) as a function of Sψφ in the SM4. Right panel:
Br(K+ → π+νν̄) as a function of Sψφ in the SM4. The shaded areas represent the experimental 1σ-
ranges with the central values indicated by dashed lines and the black points represent the respective
SM predictions. Both figures were taken from [139].

summarized by stating that the effects of the t′ do not decouple, in contrast to the LHT
and RSc models, and that also in the SM4 no new operators are generated besides those
that are present in the SM. In the flavor sector the generalization to four generations
introduces three additional mixing angles θi4 (i = 1, 2, 3), and two additional phases δ14,
δ24.

In a recent analysis [139] we investigated the possible flavor effects in the SM4 and
found spectacular deviations from the SM in various observables. While the following
discussion is based on that paper, numerous additional analyses have been performed
in [209–212, 224–230]. In the following we will highlight the phenomenological features
of the SM4 that most spectacularly deviate from those identified in the RSc.

We start with the correlation between Br(Bs → µ+µ−) and Sψφ which is shown in the left
panel of fig. 5.23. In the RSc the former observable was found to be potentially enhanced
by at most 5% beyond its SM value. In the SM4 on the other hand, Br(Bs → µ+µ−)
not only can be enhanced by more than a factor of three, but is also subject to a strong
positive correlation with Sψφ. Thus if the large measured value for Sψφ prevails, a SM-
like value for Br(Bs → µ+µ−) would put the SM4 under pressure while an enhanced
branching ratio clearly would disfavor the RSc.

In the right panel of fig. 5.23 we have plotted Br(K+ → π+νν̄) as a function of Sψφ.
By itself this plot shows the large possible enhancements in both observables that are
possible in the SM4 whereas no clear correlation is visible. Additionally we notice that
in contrast to the RSc large simultaneous enhancements in Sψφ and Br(K+ → π+νν̄)
are possible. So while a confirmation of the current central values of these observables
would certainly rule out the RSc, the SM4 could easily accommodate that.

The correlations between rare K decays were identified as a powerful probe of a model’s
operator structure. In the left panel of fig. 5.24 we show Br(KL → π0νν̄) as a function
of Br(K+ → π+νν̄) in the SM4. The possible enhancement in the K+ → π+νν̄ mode is
found to be roughly a factor of four, while KL → π0νν̄ can be enhanced by more than a
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Figure 5.24: Correlations between rare K decay branching ratios in the SM4. Left panel:
Br(KL → π0νν̄) as a function of Br(K+ → π+νν̄). Right panel: Br(KL → µ+µ−)SD as a function
of Br(K+ → π+νν̄). The shaded areas represent the experimental 1σ-ranges with the central values
indicated by dashed lines and the black points represent the respective SM predictions. Both figures
were taken from [139].

factor of 40. Similar to the LHT there is a clear branch structure in the Br(K → πνν̄)
plane that arises because of the purely left-handed NP couplings and the universality of
the CP phase in the K → πνν̄ system and K0− K̄0 mixing [145]. In the SM4 the upper
branch saturates the GN bound, and on the lower branch Br(K+ → π+νν̄) is bounded
from above such that branching ratios cannot exceed the central experimental value by
more than 10%. Thus, finding the two branching ratios in the K → πνν̄ system to lie
in between the two branches in the left panel of fig. 5.24 or finding Br(K+ → π+νν̄)
significantly beyond the current experimental value for SM-like Br(KL → π0νν̄) would
put the SM4 under pressure while such an outcome is clearly possible within the RSc.
On the other hand, if in the future Br(K+ → πνν̄) is found at or beyond its current
experimental central value and Br(KL → π0νν̄) is found close to the GN bound, the
RSc would be disfavored although such a result could in principle be obtained in fine
tuned scenarios.

A further possibility to distinguish between the different NP models under consideration
is through Br(KL → µ+µ−)SD and Br(K+ → π+νν̄) which are shown for the SM4 in
the right panel of fig. 5.24. Here the correlation is less clear-cut than in the RSc and
LHT models: While there is a pronounced branch on which both branching ratios are
either simultaneously enhanced or suppressed, a number of additional structures can
be identified such that basically every outcome for the branching ratios is possible15.
Hence future experimental and theoretical results that strongly disfavor the RSc, such
as Br(K+ → π+νν̄) being measured close to the current experimental central value and
Br(KL → µ+µ−)SD being determined to be SM-like or larger, can be easily reproduced
within the SM4 framework.

In conclusion, the most characteristic features of the SM4 that allow to tell it apart from

15In [139] it has been shown that the different structures in the right panel of fig. 5.24 can be related
to different classes of parameter sets that are characterized by the scaling (n1, n2, n3) of the mixing
angles (θ14, θ24, θ34) as (approximate) powers of λC = |Vus|.
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both the LHT and RSc models are the following:

• The SM4 has the potential to generate branching ratios for Bs → µ+µ− that exceed
10−8 which clearly is impossible in the RSc and LHT models,

• there is a positive correlation between Br(Bs → µ+µ−) and Sψφ,

• simultaneous enhancements in Br(K → πνν̄) and Sψφ are possible,

• the correlation between Br(K+ → π+νν̄) and Br(KL → µ+µ−)SD allows for values
that are off the main linear branch,

• and finally the Br(K → πνν̄) system displays a clear branch structure as is ex-
pected from the operator structure of the SM4, with the upper branch saturating
the GN bound and the lower branch being cut off not far beyond the experimental
central value for Br(K+ → π+νν̄).

On the other hand since also in the SM4 no scalar operators are present and the CP phase
entering CP violating K decays is universal, the linear correlations between Br(KL →
π0`+`−) and Br(KL → π0νν̄) in the SM4 are very similar to those in the LHT and RSc
models although the absolute size of enhancements is larger. In particular we find that
the former modes can be enhanced by as much as an order of magnitude while in the
latter mode an enhancement by a factor of 40 is possible.
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Chapter 6

Conclusions

From the model building point of view, the RS model with custodial symmetry and bulk
fermions offers an interesting solution to two of the main problems of the SM: While
the gauge hierarchy problem is solved by virtue of the warped background metric, the
generation of a hierarchical quark spectrum is achieved by the non-uniform localization
of quark fields along the fifth dimension. Since the localization of bulk fermions de-
pends exponentially on their O(1) bulk mass parameters, large hierarchies in masses
and mixing angles can be obtained in a natural manner, as we have demonstrated ex-
plicitly. As a side effect, the non-uniform localization of quark fields also induces tree
level FCNCs. We have carefully studied the two main origins hereof, namely the flavor
dependent couplings of KK gauge bosons to SM quarks and the mixing of SM quarks
with heavy KK states. We have shown explicitly that the first contribution is domi-
nant and that a pattern of flavor violation arises which implies smaller effects for light
quarks and larger effects for heavy quarks. This fact, which is commonly referred to
as the RS-GIM mechanism, is responsible for the comparably small corrections to the
particularly well measured K physics observables and thus significantly ameliorates the
flavor coincidence problem. While this is a rather qualitative statement, we set out to
perform a quantitative analysis of the impact on flavor observables in the RSc. Based
on our results for the flavor violating couplings, we derived analytic expressions for their
impact on particle-antiparticle oscillations and rare decays and subsequently performed
a global numerical analysis of flavor observables in the RSc.
The first part of this analysis was devoted to the implications of the RSc for the observ-
ables in the ∆F = 2 sector. Here we concentrated on the the mass differences ∆MK ,
∆Md and ∆Ms in the neutral K and B meson systems as well as on the measure of
indirect CP violation in K0 − K̄0 mixing, εK , on the CP asymmetries SψKS and Sψφ,
the semileptonic CP asymmetry AsSL and the width difference ∆Γs. To be able to make
an assessment of how naturally the available experimental constraints can be satisfied
in the RSc, we also considered the fine tuning in each observable. The results of our
analysis of ∆F = 2 observables can be summarized as follow:

• K0 − K̄0 oscillations are found to be dominantly affected by the contributions of
the QLR2 operator which receives strong chiral and QCD enhancements. As this
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operator cannot be induced by EW gauge bosons, tree level exchanges of KK gluons
yield the most important contributions to ∆S = 2 observables for all viable values
of the fundamental QCD coupling constant 3 ≤ gs ≤ 6.

• The strong chiral and QCD enhancement encountered in the K system is absent in
the case of B0 − B̄0 oscillations and other operators, most notably QV LL1 , become
relevant. Consequently, tree level exchanges of the EW gauge bosons ZH and Z ′

have a considerable impact on ∆B = 2 observables and need to be taken into
account.

• The contributions of the Higgs boson, the KK photon A(1) and the Z boson to
∆F = 2 observables on the other hand are found to be negligible, where the
suppression of the latter is a consequence of the custodial protection of the ZbLb̄L
coupling.

• Although the generic bound MKK & 20 TeV [99] which is induced by the εK con-
straint is roughly confirmed by our analysis, the RSc can accommodate this con-
straint for considerably lower values MKK ' (2−3) TeV with only small or moder-
ate fine tuning, if the assumption of strictly anarchic Yukawa couplings is relaxed.
On top of this, the remaining experimental constraints in the ∆F = 2 sector,
namely ∆MK , ∆Md,s and SψKS can be simultaneously satisfied almost without
any necessary fine tuning.

• After imposing all available ∆F = 2 constraints, the time-dependent CP asymme-
try Sψφ can still be strongly enhanced beyond its small SM prediction such that
the full range −1 ≤ Sψφ ≤ 1 can be populated. Due to the model independent
correlation [137] between the semileptonic CP asymmetry AsSL and Sψφ also the
former observable can be enhanced by roughly two orders of magnitude beyond its
SM value. These possible enhancements are to a good approximation independent
of the choice of the fundamental QCD coupling constant 3 ≤ gs ≤ 6.

The second part of our numerical analysis addressed the quantitative effects in rareK and
B decays which are still possible after all available constraints from the ∆F = 2 sector
have been imposed. Here we considered the branching ratios for the decay modes K+ →
π+νν̄, KL → π0νν̄, KL → π0`+`− (` = e, µ), KL → µ+µ−, Bd,s → µ+µ− and B →
Xd,sνν̄. Apart from giving the mere possible enhancements in these branching ratios
we also analyzed in detail the emerging parameter independent correlations between
different branching ratios and also between ∆F = 2 and ∆F = 1 observables. The
results of this part of our analysis are summarized by the following statements:

• Taking into consideration the different masses and coupling strengths to quarks
and leptons of the EW gauge bosons, the right-handed Z couplings are found to
yield the dominant contribution to rare K and B decays. This fact is due to
the custodial suppression of the left-handed Z couplings and is responsible for a
very specific pattern of flavor effects and the emergence of a number of interesting
correlations between different branching ratios.
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• In particular, enhancements in rare K decay branching ratios are potentially large,
but only very much smaller effects are observed in the Bd,s systems. This hierar-
chical pattern is unique to the RS model with custodial symmetry and is absent
in the minimal RS model.

• Quantitatively, Br(KL → π0νν̄), Br(K+ → π+νν̄), Br(KL → µ+µ−)SD can be
enhanced by factors of two to three and Br(KL → π0`+`−) by roughly 40%,
while the enhancements in B decay modes are typically below 10%. As was the
case for the CP asymmetries Sψφ and AsSL, we find that also here the ranges for
possible enhancements are independent of the fundamental QCD coupling constant
3 ≤ gs ≤ 6.

• Connected to this pattern of flavor violation we observe that the flavor universality
in the generalized loop functions X, Y , Z is strongly broken. This breakdown of
universality can also be observed at the level of branching ratios where the relevant
CMFV relations are strongly violated.

• We identify a number of interesting correlations between different rare K decay
modes but also between the latter and the CP asymmetry Sψφ.

In contrast to models with dominant left-handed currents, where the K → πνν̄
modes are strongly correlated, there is no visible correlation in the RSc.

The short distance contribution to Br(KL → µ+µ−) is inversely correlated to the
branching ratio of the K+ → π+νν̄ decay mode such that an enhancement in either
branching ratio is accompanied by a suppression in the other mode. This behavior
can be traced back to the dominance of the right-handed Z couplings.

Finally, the CP asymmetry Sψφ is strongly correlated with rare K decay branching
ratios. This correlation implies that simultaneous enhancements in both systems
beyond the respective SM predictions are disfavored in the RSc. Unlike the previous
correlations, this result is independent of the EW gauge group and hence is present
in both the RSc and RSm models.

These results, and in particular the specific correlations between various different observ-
ables that we have identified, allow in principle for an experimental test of the RSc and
a clear distinction from other models of NP. We have indicated how such a distinction
can be performed for different future experimental outcomes in the particular case of
the LHT and SM4 models. Results for key observables in this context will hopefully be
supplied within the next years by the upcoming flavor experiments NA62 (K+ → π+νν̄)
and LHCb (Sψφ, Bs → µ+µ−) at CERN as well as E14 at KEK (KL → π0νν̄). In this
sense flavor physics really is complementary to direct NP searches in high energy colli-
sions, as will be performed at the ATLAS and CMS experiments, and could even lead
to the discovery of the first real evidence for physics beyond the Standard Model.
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Appendix A

Couplings and Charge Factors

In this appendix we list all the couplings and the charge factors that were used throughout
this thesis, and that can be easily computed using

g4D
Z (F ) =

g4D

cosψ

[
T 3
L − (sinψ)2Q

]
,

κ4D(F ) =
g4D

cosφ

[
T 3
R − (Q− T 3

L) sin2 φ
]
, (A.1)

together with tables A.1 and A.2. First, we give the charge factors in the couplings of
SM down-type quarks (both left- and right-handed) to the Z, ZX gauge bosons,

g4D
Z,L(d) =

g4D

cosψ

[
−1

2
+

1

3
sin2 ψ

]
, g4D

Z,R(d) =
g4D

cosψ

[
1

3
sin2 ψ

]
,

κ4D
1 (d) =

g4D

cosφ

[
−1

2
− 1

6
sin2 φ

]
, κ4D

5 (d) =
g4D

cosφ

[
−1 +

1

3
sin2 φ

]
. (A.2)

Analogously, the charge factors in the couplings of SM up-type quarks (both left- and

Field Charge Q Isospin T 3
L Isospin T 3

R

q
ui(0)
L (++) 2

3
1
2

−1
2

q
di(0)
L (++) −1

3
−1

2
−1

2

uiR(++) 2
3

0 0

Di
R(++) −1

3
0 −1

Table A.1: SM quark content of the RSc.
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right-handed) to the Z, ZX gauge bosons read:

g4D
Z,L(u) =

g4D

cosψ

[
1

2
− 2

3
sin2 ψ

]
, g4D

Z,R(u) =
g4D

cosψ

[
−2

3
sin2 ψ

]
,

κ4D
1 (u) =

g4D

cosφ

[
−1

2
− 1

6
sin2 φ

]
, κ4D

3 (u) =
g4D

cosφ

[
−2

3
sin2 φ

]
, (A.3)

and the charge factors in the couplings of the additional (vector-like) fermion fields (χu
i
,

χd
i
, U ′i, U ′′i and D′i) to the Z, ZX gauge bosons are given by

g4D
Z (χu) =

g4D

cosψ

[
1

2
− 5

3
sin2 ψ

]
, κ4D (χu) =

g4D

cosφ

[
1

2
− 7

6
sin2 φ

]
,

g4D
Z

(
χd
)

=
g4D

cosψ

[
−1

2
− 2

3
sin2 ψ

]
, κ4D

(
χd
)

=
g4D

cosφ

[
−1

2
+

5

6
sin2 φ

]
,

g4D
Z (U ′) = gZ(U ′′) =

g4D

cosψ

[
−2

3
sin2 ψ

]
, κ4D (U ′) = κ (U ′′) =

g4D

cosφ

[
−2

3
sin2 φ

]
,

g4D
Z (D′) =

g4D

cosψ

[
−1 +

1

3
sin2 ψ

]
, κ4D (D′) =

g4D

cosψ

[
4

3
sin2 φ

]
. (A.4)

The lepton couplings of Z, ZH and A(1) that were used in the present work can be
obtained from the corresponding quark couplings by

• replacing the c’s in all R
00

(++)L,R by ±0.7 for left- and right-handed lepton modes,

• adjusting the couplings and charge factors properly.

The relevant couplings can be determined through (A.1) and for the charged leptons are
given by

g4D
Z,L(`) =

g4D

cosψ

(
−1

2
+ sin2 ψ

)
, g4D

Z,R(`) =
g4D

cosψ
sin2 ψ ,

κ4D
1 (`) = −1

2
g4D cosφ , κ4D

5 (`) = −g4D cosφ , (A.5)

while for the case of neutrinos we find

g4D
Z,L(ν) =

1

2

g4D

cosψ
, g4D

Z,R(ν) = 0 , (A.6)

κ4D
1 (ν) = −1

2
g4D cosφ , κ4D

5 (ν) = 0 . (A.7)

The lepton couplings that are most relevant for our analysis are those of the Z boson.
These couplings are dominated by the Z(0) admixture of the Z mass eigenstate and
accordingly are given by

∆``
L,R(Z) = g4D

Z,L,R(`) , ∆νν
L (Z) = g4D

Z,L(ν) . (A.8)
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For the lepton couplings of ZH and Z ′ we finally obtain the explicit expressions

∆``,νν
L (ZH) =

1√
2L

L∫
0

dy eky [fL(y, c = 0.7)]2
(
g4D
Z,L(`, ν) cosφ g(y) +

κ4D
1 (`, ν)

cosψ
g̃(y)

)
,

∆``,νν
R (ZH) =

1√
2L

L∫
0

dy eky [fR(y, c = 0.7)]2
(
g4D
Z,R(`, ν) cosφ g(y) +

κ4D
5 (`, ν)

cosψ
g̃(y)

)
,

∆``,νν
L (Z ′) = − g2v2I1

2
√

2LM2 cosψ
gZ,L(`, ν)

+
1√
2L

L∫
0

dy eky [fL(y, c = 0.7)]2
(

cosφκ4D
1 (`, ν) g̃(y)− gZ,L

cosψ
g(y)

)
,

∆``,νν
R (Z ′) = − g2v2I1

2
√

2LM2 cosψ
gZ,R(`, ν)

+
1√
2L

L∫
0

dy eky [fR(y, c = 0.7)]2
(

cosφκ4D
5 (`, ν) g̃(y)− gZ,R

cosψ
g(y)

)
. (A.9)
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Field Charge Q Isospin T 3
L Isospin T 3

R

χuiL (−+) 5
3

1
2

1
2

χdiL (−+) 2
3

−1
2

1
2

quiL (++) 2
3

1
2

−1
2

qdiL (++) −1
3

−1
2

−1
2

uiL(−−) 2
3

0 0

ψ′iL(+−) 5
3

1 0

ψ′′iL (+−) 5
3

0 1

U ′iL(+−) 2
3

0 0

U ′′iL (+−) 2
3

0 0

D′iL(+−) −1
3

−1 0

Di
L(−−) −1

3
0 −1

Table A.2: Heavy quark content of the RSc. The quantum numbers of the the right-handed heavy
quarks are the same and only their parities on the boundaries have to be reversed.
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