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Zusammenfassung

In dieser Arbeit werden etliche Abhängigkeitsstrukturen für Zählvariablen, aber auch stetige

Zielvariablen, untersucht. Diese Zählvariablen weisen typischerweise nicht nur Überdispersion

auf, sondern haben auch einen hohen Anteil an Nullen; zwei Eigenschaften, die kaum von klas-

sischen Verteilungen erklärt werden können. Regressionsmodelle für abhängige beschreibende

Variablen werden ebenfalls untersucht. In einer Anwendung aus der Genetik werden verschiedene

Ansätze verglichen, um mittels ”QTL mapping” auf dem Genom nach signifikanten Regionen

zu suchen, die ursächlich für bestimmte Phänotypen sind. Dabei werden überraschende Ein-

blicke in die Ursachen von Überdispersion präsentiert. Zeitliche Abhängigkeit wird im Kon-

text von ”generalized estimating equations” für verallgemeinerte Poisson Zielvariablen betra-

chtet. Damit soll das Outsourcingverhalten von Patentanmeldungen von 107 Firmen über

acht Jahre beschrieben werden. Für die Jahresgesamtschäden in der Versicherung wird ein

Abhängigkeitsmodell basierend auf Pair-Copula-Konstruktionen entwickelt. Die Herausforderung

bei diesem Problem liegt darin, daß die Versicherungsschäden aus einigen der abhängigen Margi-

nalien Null sein können, die marginalen Schadenhöhenverteilungen daher nicht in das klassische

Copula-Konzept passen. Pair-Copula-Konstruktionen sind deshalb sehr attraktiv, da sie er-

lauben, eine hochdimensionale Dichtefunktion als Produkt bivariater Copulas und marginaler

Dichten zu definieren. Zuletzt wird ein Verfahren zur Erzeugung hochdimensionaler Zählvariablen

mit vorab spezifizierter Pearson-Korrelation entwickelt. Dieser neue Ansatz basiert ebenfalls

auf Pair-Copula-Konstruktionen und hat eine höhere Genauigkeit als ein bekannter Vergleichs-

Ansatz.





Abstract

In this thesis, several dependence structures for dependent count responses and continuous

responses will be investigated. These count variables are typically not only overdispersed but

also show a large share of zero observations which cannot be described by classical distributions.

Therefore, zero-inflated generalized Poisson count regression and other regression models will be

considered. Dependence in the responses as well as in the describing variables will be considered.

In an application to genetics several methods of searching for causal genome regions for a certain

trait will be compared. Surprising insights on another source of overdispersion will be presented.

Temporal dependence will be addressed in the context of generalized estimating equations for

generalized Poisson responses. We apply this approach to fit models for the outsourcing behavior

of patent applications processes of 107 companies over eight years. In the field of dependent

insurance claim totals, a dependence model based on pair-copula constructions will be developed.

The challenge of this problem is that the insurance claims of some of the dependent margins may

be zero, and a marginal claim size distribution will therefore not fit in the general framework

of copula modeling. Pair-copula applications are especially appealing since they allow to define

a high dimensional density function by a product of bivariate copulas and marginal densities.

Finally this thesis will deal with an input modeling problem: a method for sampling from

high-dimensional count random vectors with a specified Pearson correlation will be developed.

For this challenging problem a novel approach also based on pair-copula constructions will be

developed and prove to outperform a well-known benchmark approach. Software packages for

R related to many of the topics have been developed.
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Introduction

”But he does not wear any clothes” said the little child in Hans Christian Andersen’s ”The

Emperors’s New Clothes.”

Thomas Mikosch (2006) on copulas.

It is my personal belief that over the years to come, research will be able to put further

garments on the poor man so that eventually in Hans Christian Andersen’s words we can

truly say ”Goodness! How well they suit your Majesty! What a wonderful fit! What a cut!

What colors! What sumptuous robes!”.

Paul Embrechts (2009).

In the famous article by Mikosch (2006), Mikosch bashes the concept of copulas and continues

to say that he wonders why more and more of his colleagues became immersed in copulas: ”I

suspect that some include the word copula in the title of their papers not because they contribute

to the theory on copulas, but because they believe that one can publish easier.”

Four years after Mikosch’ article, nobody doubts that the concept of copulas is and will be

one of the key concepts in dependence modeling. While a discussion of some of his criticism, such

as questioning the justification of having uniform margins, has not been widely perpetuated, his

article may be seen as an appeal for a correct and well-reflected utilization of copulas. David X.

Li’s pioneering model for the pricing of collateralized debt obligations (CDOs) proved to be an

example of a model being adopted by the financial sector with too little reflection: the Gaussian

copula model turned out to be over-simplistic for quantifying the dependence of risks. Mikosch

(2006) and Embrechts (2009) name as major challenges in copula modeling

• copulas with discrete margins,

• difficulties arising in high dimension,

• the choice of a suitable copula class and

• difficulties in applying copulas in time series analysis.

This thesis will deal will dependent data analysis. Despite its focus on dependent data, it will

not exclusively deal with copula models; the model formulation in the single chapters will rather

be driven by the problem at hand. A major emphasis of the thesis will be on overdispersed
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count data with many zeros. This thesis will touch several of the issues raised by Mikosch and

Embrechts: it will deal with temporally clustered data, for which we will indeed not use a copula

model. In fact, a specification based on generalized estimating equations will be developed. The

difficulty of dealing with copulas with discrete margins will be addressed. In particular, a

sampling approach for discrete data as well as trivariate copula models with binary margins will

be developed. The problem of dimensionality will in general be addressed by using the concept

of pair copula constructions. They allow to construct high-dimensional density functions based

on a cascade of bivariate copulas. They also allow to cancel out from this construction all pairs

of conditional margins who are close to independence, hence reducing the dimensionality of the

model. Copula choice is addressed in the context of pair copula constructions as well as classical

copula models. Graphical tools will be used and a choice criterion based on tests for non nested

model selection will be illustrated.

There are multivariate representatives of several count distributions, such as a multivariate

Poisson distribution (Kawamura (1979) or Karlis and Meligkotsidou (2005)), the multivariate

Negative Binomial (Kopociński (1999)) or a multivariate generalization (Vernic (2000)) of the

generalized Poisson distribution (Consul and Jain (1970)). They have, however, several short-

comings. Most of them either allow for exchangeable covariance structures only or the modeling

of negative correlation is not possible. Due to the difficulty in calculating the required proba-

bilities, their usefulness is limited in dimensions larger than two.

As starting point of this thesis consider the paper by Czado, Erhardt, Min, and Wagner

(2007) which is based on my diploma thesis. In this paper the authors develop a flexible zero-

inflated generalized Poisson regression model, which allows for regression effects not only on the

mean but also on the dispersion and zero-inflation level.

In general there are two natural extensions of the Poisson distribution, which allow for

modeling a difference between the mean and the variance: the Negative Binomial (or Poisson-

Gamma) distribution and the generalized Poisson distribution. The generalized Poisson distri-

bution GP (µ, ϕ) was first introduced by Consul and Jain (1970) and subsequently studied in

detail by Consul (1989). We refer to its mean parametrization (see e.g. Consul and Famoye

(1992)):

for y ∈ {0, 1, . . .} PGP (Y = y| µ, ϕ) =
µ(µ+ (ϕ− 1)y)y−1

y!
ϕ−ye−

1
ϕ
(µ+(ϕ−1)y),

where µ and ϕ are larger than 0. In the case of underdispersion (ϕ < 1), another additional

condition needs to be fulfilled, i.e., ϕ > max(12 , 1 −
µ
m) where m is the largest natural number

with µ+m(ϕ− 1) > 0. The GP distribution does not belong to the exponential family even if

the dispersion parameter ϕ is known. For Y ∼ GP (µ, ϕ) mean and variance are given E(Y ) = µ

and V ar(Y ) = ϕ2µ. This allows for modeling over- or underdispersion. However, in the case

of underdispersion (ϕ ∈ (0, 1)), the support of the distribution depends on µ and ϕ, which is

difficult to enforce when µ and ϕ need to be estimated. Therefore throughout the thesis we

restrict to equi- and overdispersion, i.e., ϕ ≥ 1.

When comparing to the Negative Binomial (NB) distribution, the GP distribution has several

advantages. While the NB distribution with pmf

P (Y = y|µ,Ψ) =
Γ(y + Ψ)

Γ(Ψ)y!

(
Ψ

µ+ Ψ

)Ψ( µ

µ+ Ψ

)y
,

and E(Y ) = µ, V ar(Y ) = µ(1 + µ
Ψ) contains the basic Poisson distribution only as a limiting

case for Ψ → ∞, the GP distribution contains the Poisson class for ϕ = 1. Second, unlike
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the NB distribution the dispersion factor in GP is independent of the mean. Hence, in the NB

distribution the statistical modeling of overdispersion is less transparent than in case of the GP.

For a detailed comparison between GP and NB we refer the readers to Joe and Zhu (2005).

A zero-inflated generalized Poisson (ZIGP) distribution is a further extension of the GP

distribution, which allows to model additional probability mass at zero. The ZIGP distribution is

defined as a mixture of a distribution concentrated at 0 and the generalized Poisson distribution:

PZIGP (Y = y|µ, ϕ, ω) = ω + (1− ω) PGP (Y = y|µ, ϕ),

where ω ∈ [0, 1] is the zero-inflation parameter. Mean and variance of Y ∼ ZIGP (µ, ϕ, ω) are

given by

E(Y ) = (1− ω)µ and V ar(Y ) = E(Y )
(
ϕ2 + µω

)
.

In some data sets a constant overdispersion and/or constant zero-inflation parameter might

be too restrictive. Therefore, Czado, Erhardt, Min, and Wagner (2007) extend the ZIGP re-

gression model of Famoye and Singh (2003) by allowing for regression on ϕ and ω and develop

a ZIGPR(µi, ϕi, ωi) regression model. Most of the chapters of this thesis are based on the

ZIGPR(µi, ϕ, ω) regression model of Famoye and Singh (2003) which does not include additional

regression effects on the dispersion and zero-inflation parameters. Generalized Poisson regres-

sion GPR(µi, ϕ) and zero-inflated Poisson regression ZIPR(µi, ω) can be defined accordingly

by assuming the responses in the regression model to follow a GP (µi, ϕ) or a ZIP (µi, ω) dis-

tribution, respectively. Additionally, generalized Poisson regression specification GPR(µit, ϕit)

for temporally clustered data will be investigated. It will allow for regression on the dispersion

parameter for which similar as in Czado et al. (2007) a shifted log link will be used. In order

to specify appropriate regression models for the overdispersion and zero-inflation parameters,

(Czado, Erhardt, Min, and Wagner 2007, Section 5) develop tools for an exploratory data anal-

ysis. The software for such models including exploratory tools has been implemented in the R

package ”ZIGP” available on CRAN.

Similar to generalized linear models all observations are assumed to be independent in these

regression models. The data may, however, be multivariate, or temporally or spatially clustered.

For the patent data investigated by Czado et al. (2007), the time series character is accounted

for by allowing the regression designs to depend on the observation year. If however the temporal

dependence is not completely captured by this specification, this might result in wrong parameter

standard errors and hence model misspecification, i.e., some of the regressors in the model might

actually be insignificant.

Multivariate analysis will be the central theme of this thesis. We extend the work by Czado,

Erhardt, Min, and Wagner (2007) by investigating different dependence structures, i.e.,

• regression

• temporal dependence

• spatial dependence and

• multivariate models.

In what follows a general outline of the contribution of this thesis to the described topics

will be given.
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In Chapter 1 we investigate a problem in genetics, i.e., the search for the location of

significant genotype locations for certain disease traits. Such data is rather extreme since the

number of covariates is a lot higher than the sample size and covariates are mutually correlated.

This chapter is based on Erhardt, Bogdan, and Czado (2010). We consider the problem of

locating multiple interacting quantitative trait loci (QTL) influencing traits which are measured

in counts. In many applications the distribution of the count variable has a spike at zero, which

e.g. may correspond to the absence of certain disease symptoms. Zero-inflated generalized

Poisson regression (ZIGPR) allows for an additional probability mass at zero and hence allows

for an improvement in model fit and the detection of significant trait loci. It has already been

used successfully to locate QTL with interval mapping. ZIGPR can be also used to locate several

interacting QTL. The most difficult part in this process is the estimation of the QTL number.

As discussed in the literature of normal traits, the classical model selection criteria often have a

strong tendency to overestimate the QTL number. To solve this problem modified versions of

the Bayesian Information Criterion (mBIC and EBIC) were proposed and successfully used for

QTL mapping. We apply these criteria for locating QTL based on ZIGPR as well as simpler

models. We present the results of an extensive simulation study, which shows its good power

of QTL detection, while controlling the false discovery rate at a reasonable level. The study

also clearly demonstrates the advantage of using ZIGPR over some simpler statistical models.

Another important finding is that the standard Poisson regression is not suited for QTL mapping

since the number of QTL is dramatically overestimated. This behavior can be attributed to the

inability of the Poisson regression to account for data over-dispersion and strongly discourages

from its application for identifying factors influencing count data. The proposed method of QTL

detection based on ZIGPR is used to analyze the mice gallstone data of Lyons et al. (2003), who

investigate among other traits the highly zero-inflated number of gallstones, which a population

of mice developed. In comparison to their analysis our results suggest the existence of a novel

QTL on chromosome 4, which influences the number of gallstones by interaction interacting

with another QTL, previously identified on chromosome 5. The R software is available from

www-m4.ma.tum.de/Papers/Erhardt/qtl-zigp-code.rar.

Chapter 2 is based on Erhardt and Czado (2009a) and Erhardt and Czado (2009c) and deals

with the problem of sampling of such count random vectors which have a certain specified Pear-

son correlation. We sample from dependent vectors using pair-copula constructions (PCC) and

use C-vines, a graphical tool to organize such PCC. A major task is to determine the appropriate

copula parameters to obtain the specified target correlation. We will introduce a sequential and

very fast root finding routine to approximate them using bisection: for dimension T , T (T −1)/2

simple root finding step have to be carried out, usually done within seconds. Further we will

illustrate that our sampling approach generates accurate results even in high dimensions and for

relatively small sample sizes in several settings with Poisson, generalized Poisson, zero-inflated

generalized Poisson and Negative Binomial margins in a variety of settings. We compare it to a

simple ”naive” sampling method and the NORTA (NORmal-To-Anything) method for discrete

margins and illustrate that these methods are less accurate since the empirical correlation of

the sample has a higher absolute deviation from the desired target correlation. Moreover, the

input parameters obtained by NORTA may need a posteriori correction in order to result in a

positive definite base correlation matrix, which is not necessary in our approach. The software

is implemented in the R package ”corcounts”.
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A simulation study based on this sampling method will be included in Chapter 3. This

chapter is based on Erhardt and Czado (2009b) and deals with temporal dependence. It may be

seen as an extension of the model in Czado, Erhardt, Min, and Wagner (2007). The data consist

of a time series of responses and explanatory variables of eight consequent years. We consider a

specification based on generalized estimating equations (GEE, Liang and Zeger (1986)) which fit

parameters based on sums of weighted residuals and may be applied for example to the Poisson

distribution. We discuss generalized Poisson response data. Despite some advantages over

the negative binomial distribution, this distribution has not been considered in the context of

GEE. To fit the additional dispersion parameter of the GP distribution, second level estimating

equations based on covariance residuals (Prentice and Zhao (1991)) are necessary. This requires

knowledge of variances of empirical covariances, which for most discrete distributions except the

binary cannot be derived from first level GEE. We approximate them by a novel approach. The

specification used in this chapter allows for regression on the dispersion parameter of the GP

distribution, i.e., the dispersion parameters may vary with covariates thus allowing to identify

covariate combinations where one finds large and small overdispersion effects. In the real data

example dealing with the outsourcing of patent filing processes, Czado et al. (2007) used time as

a regressor in the model in an effort to obtain independent residuals. Exploratory data analysis

tools developed in this paper are utilized to choose regression for the dispersion parameters.

In extension of Czado et al. (2007), the GEE specification will allow to actually quantify the

temporal dependence. For the given data, the GEE approach will outperform longitudinal

Poisson regression and GP setups with only constant dispersion parameter.

Count regression models for spatially clustered data will be investigated in Chapter 4 (based

on Czado, Schabenberger, and Erhardt (2009)). The real data example is based on the number

of ambulant treatments a patient received within the private health care system. We examine

not only the Poisson distribution but also the generalized Poisson, the negative Binomial as

well as the zero-inflated Poisson distribution as possible response distribution. We add random

spatial effects for modeling spatial dependency and develop and implement MCMC algorithms

for Bayesian estimation. In an application the presented models are used to analyze the number

of benefits received per insured person in a German private health insurance company. Especially

for health insurance benefits there is a significant spatial pattern in the utilization, i.e., urban

versus rural areas or East-West differences. Model comparison between various non nested model

classes is non standard. We utilize a test proposed by Vuong (1989) and the distribution-free

test proposed by Clarke (2007) for non nested model comparison and illustrate how they may

be applied in a Bayesian context. This is a novel approach since so far these two tests have

only been used in classical estimation. Also, the comparison between spatial covariate and / or

spatial effect specifications for count regression data has not been carried out elsewhere. The

software is implemented in the R package ”spatcounts”.

The insurance data investigated in Chapter 4 also includes inpatient and dental treatments

as well as claim sizes for the same portfolio of insured persons. Health insurance claims in these

fields are likely to be highly dependent since they will be influenced by the health status and

age of the insured person. For this data we develop a joint model of the yearly claim totals

based on pair copula constructions in Chapter 5 (based on Erhardt and Czado (2010)). In

many insurance applications there are numerous claim totals which are zero. However, the

modeling of zero claims together with non-zero claims is often not necessary, since marginally

one is interested in claim totals given that at least one claim occurred. On the other hand, as
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soon as dependent claims in different coverage fields occur, one needs to consider all years for

which in at least one policy field a claim occurred. A marginal claim distribution will then have

an additional point mass at zero, hence this probability function will not be continuous at zero

and the cdfs will not be uniform. Therefore using a copula approach to model dependency is

not straightforward. We present a novel approach of modeling the joint density of total claims

in the presence of many zero observations based on copulas for binary and continuous margins.

We illustrate how pair copula constructions under marginals can be utilized for this problem.

The zero claim events in this model will be discrete binaries which may be dependent. Since the

dimension will only be three, we may explicitly write down and fit the joint probability obtained

by a copula for discrete margins. Copula choice for such discrete margins is carried out by a

novel approach.

6



Chapter 1

Locating multiple interacting

quantitative trait loci with the

zero-inflated generalized Poisson

regression

1.1 Introduction

Despite a long history of QTL mapping (see e.g. Sax (1923)) this research field is still a very

active area in which perpetually new statistical methodologies are developed. The majority of

methods proposed in the literature, like classical interval mapping (Lander and Botstein (1989)

and Haley and Knott (1992)), composite interval mapping (Zeng (1993), Zeng (1994)), multiple

QTL mapping (Jansen (1993) and Jansen and Stam (1994)) or multiple interval mapping (Kao,

Zeng, and Teasdale (1999)) are designed for the situation when the trait has a normal distribu-

tion. Since in many practical cases this assumption is violated, we observe lately a considerable

effort to develop new methods, which could handle other trait distribution types. In this con-

text we mention recent articles on the analysis of ordinal traits (see e.g., Yi, Xu, George, and

Allison (2004), Yi, Banerjee, Pomp, and Yandell (2007), Coffman, Doerge, Simonsen, Nichols,

and Duarte (2005) or Li, Wang, and Zeng (2006)), nonparametric methods based on ranks (see

e.g., Kruglyak and Lander (1995), Zou, Yandell, and Fine (2003) or Zak, Baierl, Bogdan, and

Futschik (2007)), extension of multiple interval mapping to generalized linear models Chen and

Liu (2009) or specific methods which can handle a ”spike” in the trait distribution (see e.g.,

Broman (2003) and Li and Chen (2009)). In case the trait is a count variable it often occurs

that it has a ”spike” at zero. A clear example of such a phenomenon is provided by the gallstone

data of Lyons et al. (2003), where the number of gallstones is considered and a large proportion

of mice did not develop any disease symptoms. As illustrated by Cui and Yang (2009), such

data can be efficiently modeled using the zero-inflated generalized Poisson regression (ZIGPR,

Famoye and Singh (2003)). In contrast to the generalized Poisson regression ZIGPR allows for

excess zeros, which may be due to other than genetic reasons. The simulations and the real

data analysis reported in Cui and Yang (2009) show that interval mapping based on ZIGPR

can efficiently locate QTL influencing the count traits. Cui and Yang (2009) also suggest to ap-

ply ZIGPR in order to locate several interacting QTL, based on the multiple interval mapping

7
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approach.

From the statistical point of view the most difficult part in fitting the multiple regression

model lies in the estimation of the number of significant predictors. As discussed in Broman and

Speed (2002) and Bogdan, Ghosh, and Doerge (2004), the classical model selection criteria have

a strong tendency to overestimate the number of QTL when the number of markers is comparable

to the sample size n. These experimental observations were confirmed by theoretical results in

Bogdan, Ghosh, and Żak-Szatkowska (2008) and Chen and Chen (2008), which show that the

classical Bayesian Information Criterion (BIC, Schwarz 1978) is not consistent when the number

of potential regressors increases to infinity quicker then
√
n. To correct for this behavior of the

BIC, several modifications of this criterion were proposed in the literature (e.g. see Ball (2001),

Bogdan, Ghosh, and Doerge (2004), Manichaikul, Moon, Sen, Yandell, and Broman (2009)).

Specifically, Bogdan, Ghosh, and Doerge (2004) propose to modify BIC by supplementing it

with the Binomial prior distribution on the QTL number. If the expected value of this prior

distribution does not depend on the number of markers, this leads to an additional “penalty”

for the model dimension, which prevents overestimation. As illustrated by theoretical results

in Bogdan, Ghosh, and Żak-Szatkowska (2008), mBIC controls the number of falsely detected

QTL and has some asymptotic optimality properties in the context of selecting the best multiple

regression model under sparsity. Recently, another interesting extension of the BIC, EBIC, was

proposed by Chen and Chen (2008). In its standard form (e.g., see Li and Chen (2009)) EBIC

uses a non informative uniform prior on the number of QTL. Chen and Chen (2008) support

EBIC by showing its consistency.

In a sequence of papers Baierl, Bogdan, Frommlet, and Futschik (2006), Baierl, Futschik,

Bogdan, and Biecek (2007), Zak, Baierl, Bogdan, and Futschik (2007) and Bogdan, Frommlet,

Biecek, Cheng, Ghosh, and Doerge (2008) mBIC was successfully used to locate multiple inter-

acting QTL. Specifically, Zak, Baierl, Bogdan, and Futschik (2007) proposed a nonparametric

version of mBIC based on ranks, which can be used to analyze traits which do not have a nor-

mal distribution. However, the rank methods are only well justified if the trait has a continuous

distribution. Therefore they have to be used with care when the trait has a ”spiked” distribu-

tion, i.e., when some proportion of the trait data are concentrated at one point. Recently, a

very interesting application of EBIC to the traits with ”spiked” distributions was proposed in

Li and Chen (2009). Li and Chen (2009) use the approach of Broman (2003) and model such

traits with a mixture of a distribution concentrated at one point and a distribution from the

general exponential family. They show that an appropriately modified BIC can be used suc-

cessfully to locate QTL influencing such traits. Here we extend this approach and apply mBIC

and EBIC for locating multiple interacting QTL based on the zero-inflated generalized Poisson

regression. Note that this application goes beyond the framework of Li and Chen (2009), since

the generalized Poisson distribution does not belong to the exponential family.

We illustrate the performance of mBIC and EBIC to a ZIGPR with an extensive simulation

study. The results of this study show that the proposed methods allow for a good power of

QTL detection, while keeping the false discovery rate at a reasonable level. They also clearly

illustrate the superior performance of ZIGPR over other simplified methods analyzing count

traits. Here, among other findings, we present the interesting phenomenon of overestimating

the number of QTL by the standard Poisson regression. This behavior can be attributed to the

inability of the Poisson regression to account for data over-dispersion and therefore it should not

be applied for identifying QTL’s based on count data. We also report results of the analysis of
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the mice gallstone data of Lyons et al. (2003), which confirms the good performance of mBIC

applied to ZIGPR. Specifically, our method confirms the existence of a QTL on a chromosome 5,

influencing the number of gallstones, and additionally suggests a novel QTL on chromosome 4.

The program in R, which can be used for future real data analyses, is available at http://www-

m4.ma.tum.de/Papers/Erhardt/qtl-zigp-code.rar.

The outline of the chapter is as follows. In Section 1.2 we introduce and discuss our ZIGPR

model for QTL mapping. In Section 1.3 we introduce the corresponding versions of mBIC and

EBIC. In Section 1.4 we present results of the extensive simulation study comparing ZIGPR to

simpler versions of Poisson regression as well as with a standard least squares regression with

regard to the performance of mBIC. Section 1.5 contains the results of the analysis of mice

gallstone data of Lyons et al. (2003) and Section 1.6 contains a summary as well as directions

for further research.

1.2 Zero-inflated generalized Poisson regression

One of the simplest distributions which can be used to model count traits is the Poisson distri-

bution. However, the range of applications of this distribution is very limited due to the lack of

its flexibility. Specifically, the standard Poisson model assumes that the trait variance is equal

to its mean. As discussed later in this chapter, this weakness becomes particularly disturbing

when the Poisson distribution is used together with model selection tools for locating multiple

interacting QTL.

There are two natural extensions of the Poisson distribution, which allow for modeling a

difference between the mean and the variance: the Negative Binomial (or Poisson-Gamma)

distribution and the generalized Poisson distribution. In this chapter we focus on the general-

ized Poisson distribution GP (µ, ϕ), which was first introduced by Consul and Jain (1970) and

subsequently studied in detail by Consul (1989) (for details, see Introduction).

When comparing to the Negative Binomial (NB) distribution, the GP distribution has several

advantages. While the NB distribution with pmf

P (Y = y|µ,Ψ) =
Γ(y + Ψ)

Γ(Ψ)y!

(
Ψ

µ+ Ψ

)Ψ( µ

µ+ Ψ

)y
,

and E(Y ) = µ, V ar(Y ) = µ(1 + µ
Ψ) contains the basic Poisson distribution only as a limiting

case for Ψ → ∞, the GP distribution contains the Poisson class for ϕ = 1. Second, unlike

the NB distribution the dispersion factor in GP is independent of the mean. Hence, in the NB

distribution the statistical modeling of overdispersion is less transparent than in case of the GP.

For a detailed comparison between GP and NB we refer the readers to Joe and Zhu (2005).

A zero-inflated generalized Poisson (ZIGP) distribution is a further extension of the GP

distribution, which allows to model a ”spike” at zero. Such a ”spike” occurs quite often when

the response variable counts disease symptoms (like e.g. the gallstones). As explained in Cui

and Yang (2009), the over-excess of zeros may result from the fact that a certain fraction of

a population was not exposed to the disease virus. Again we refer to the Introduction for a

definition of the ZIGP distribution.

To model the dependence of the count response variable on explanatory variables Famoye

and Singh (2006) introduced a zero-inflated generalized Poisson regression model for independent

Yi ∼ ZIGP (µi, ϕ, ωi), where µi and ωi are defined through the log-linear and logit link functions,
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respectively. In this article we will restrict to the case when the zero-inflation parameter ω does

not depend on genetic factors, while the dependency of µi on explanatory variables is given

through the log-linear link function

log µi = β0 +
k∑

j=1

βjXji .

The constant ω can be interpreted as the fraction of the population which was not exposed to

the disease virus. Moreover, we observed that due to some confounding of µ and ω, a precise

separation of regressors influencing these two parameters is hardly possible with the sample

sizes typically used for QTL mapping. Therefore the extension of our model to include the

dependency of ω on the genetic factors did not bring the expected benefits over the restricted

version.

The class of considered ZIGPR models contains the subclasses of zero-inflated Poisson re-

gression (ZIPR, ϕ = 1), generalized Poisson regression (GPR, ω = 0) and standard Poisson

regression (PoiR, ϕ = 1, ω = 0).

1.3 mBIC and EBIC for ZIGPR

Consider the problem of locating multiple interacting QTL in experimental populations. In this

case precise estimators of QTL positions can be obtained with the multiple interval mapping

approach (see e.g. Li and Chen (2009)). However, due to the computational complexity, this

method is rarely used in the genome-wide searches for interacting (epistatic) QTL. To reduce

the computational burden, interesting genome regions can be initially chosen by identification

of important marker-trait associations. In this situation regressor variables are defined by the

genotypes of available markers. In case of a backcross design or recombinant inbred lines there

are only two genotypes possible at every locus and each of the markers may be represented by

just one dummy variable: Xij = 1
2 or Xij = −1

2 , depending on the number of alleles from the

reference parental line present at marker j for the ith individual. In case of an intercross design

there are three possible genotypes and, according to the Cockerham’s model (see Kao and Zeng

(2002)), each of the markers can be represented by two dummy variables:

Additive Effect for

individual i:

Xaij =





1 if the jth marker has a genotype gij = AA,

0 if the jth marker has a genotype gij = aA,

−1 if the jth marker has a genotype gij = aa.

Dominance Effect

for individual i:

Xdij =

{
1/2 if jth marker has a genotype gij = Aa,

−1/2 otherwise .

Let Y = (Y1, Y2, . . . , Yn)T denote the vector of values of some quantitative trait for n indi-

viduals and let Xn×Nm denote the corresponding design matrix, whose columns contain dummy

variables corresponding to all available markers. Note that for the backcross and recombinant

inbred lines Nm = m, where m is the number of available markers, while for the intercross

Nm = 2m.

We assume that the relationship between QTL genotypes (coded as above) and the count trait

can be described by a zero-inflated generalized Poisson regression model. As already discussed,
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we will focus on identification of markers which are closest to the QTL. In our search, apart from

main effects (additive and dominance), we may include two-way interactions (epistatic effects).

Thus our task consists in choosing the best model of the form Yi ∼ ZIGP (µi, ϕ, ω), with

log(µi) = β0 +
∑

j∈I
βjXij +

∑

(u,v)∈U
γuvXiuXiv, (1.3.1)

where I is a subset of the set N = {1, . . . , Nm} and U is a subset of N ×N . Note that the total

number of potential two-way interactions is equal to Ne = Nm(Nm − 1)/2.

Remark 1. In principle the model (1.3.1) could be extended to include interactions of higher

order. However, due to the increased multiple testing problem, the power for identification of

such interactions is very limited for sample sizes typically used in QTL mapping. Therefore,

genome-wide searches for high-order interactions are rarely carried out.

Since we do not know the QTL number nor their locations, we use a model selection pro-

cedure for choosing the best regressors in model (1.3.1). One popular method for this purpose

is the Schwarz Bayesian Information Criterion (BIC). However, when locating QTL with the

standard least-squares regression, BIC was found to have a strong tendency to overestimate

the QTL number (see e.g. Broman and Speed (2002)). As discussed in Bogdan, Ghosh, and

Żak-Szatkowska (2008), this phenomenon is closely related to the well known multiple testing

problem. Specifically, in Bogdan, Ghosh, and Żak-Szatkowska (2008) it is proved that under

the orthogonal design the expected number of “false discoveries” produced by BIC converges to

infinity if Nm√
n
→∞. In Bogdan, Ghosh, and Doerge (2004) an alternative Bayesian explanation

is provided. The Bayesian model selection suggests choosing the model Mj that has the highest

posterior probability

P (Mj |Y ) ∝ L(Y |Mj)π(Mj) ,

where L(Y |Mj) is the likelihood of the data given the model Mj and π(Mj) is a prior probability

of Mj . The standard BIC neglects π(Mj) and uses the Laplace approximation for logL(Y |Mj)

(see Ghosh, Delampady, and Samanta (2006)), which results in

BIC = log(L(Y |Mj , δ̂j))−
1

2
kj log(n) ,

where δ̂j is the maximum likelihood estimate of the parameter vector in model Mj and kj denotes

the dimension of δj .

In Bogdan, Ghosh, and Doerge (2004) it is observed that neglecting π(Mj) corresponds to

assigning the same prior probability to each model. It is easy to check that this leads to the

implicit Binomial B
(
Nm,

1
2

)
prior on the number of main effects. This prior is concentrated

mainly on the interval
(
Nm−3

√
Nm

2 , Nm+3
√
Nm

2

)
and assigns an unsuitably large prior probability

to the event that the true number of QTL is close to Nm

2 . This in turn causes the BIC to choose

relatively large models. To solve this problem, in Bogdan, Ghosh, and Doerge (2004) a modified

version of the BIC, called mBIC, has been proposed. The mBIC criteria allows to take prior

information on the number of QTL into account. Let E(k) and E(r) denote the expected values

of the prior distributions for the number of main and epistatic effects, respectively. In mBIC the

parameter p = 1
2 in the Binomial prior distribution for the number of true regressors is replaced

with pa = E(k)
Nm

for the main effects and pe = E(r)
Ne

for the interactions.
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After some simple algebra (for details see e.g., Bogdan, Ghosh, and Doerge (2004) or Zak-

Szatkowska and Bogdan (2010)), we obtain that mBIC selects the model which maximizes the

expression

mBIC := 2 log(L(Y |Mj , δ̂j)))− (kj + rj) log(n)− 2kj log(l − 1)− 2rj log(u− 1), (1.3.2)

where kj and rj are the numbers of main and interaction effects in the model Mj , l = 1
pa

and

u = 1
pe
. In the case of no prior information, Bogdan, Ghosh, and Żak-Szatkowska (2008) suggest

using

l =
Nm

4
, (1.3.3)

when the scan is restricted to main effects only and

l =
Nm

2.2
and u =

Ne

2.2
, (1.3.4)

when epistatic effects are considered as well.

In comparison to BIC, the standard version of mBIC for detecting main effects and two-ways

interactions contains the additional penalty term

2kj log

(
Nm

2.2
− 1

)
+ 2rj log

(
Ne

2.2
− 1

)
,

which depends on the number of markers used in the genome scan. As shown in Bogdan, Ghosh,

and Żak-Szatkowska (2008), in case of the standard least squares regression this additional term

allows to deal with the multiple testing problem and guarantees that the overall type I error

does not exceed 0.08 for a sample size of 200 and more than 30 markers. Due to the consistency

of mBIC, the probability of the type I error decreases when the sample size increases.

The choice of the same penalty constant (namely 2.2) for main and interaction effects re-

sults in dividing the probability of the overall type I error in two approximately equal parts:

probability of detection of a “false” additive effect and probability of detection of a “false” in-

teraction. Note that this choice implies a larger penalty for interaction terms than for main

effects (since Ne >> Nm), so the power of detecting interaction effects is substantially smaller

than the power of detecting main effects. This choice is a deliberate decision, justified by the

fact that main effects are usually easier to interpret and more “important” than interactions

and scientists are usually not interested in searching for interactions at the price of sacrificing

the power of detecting main effects.

Calculations presented in Bogdan, Ghosh, and Doerge (2004), Bogdan, Frommlet, Biecek,

Cheng, Ghosh, and Doerge (2008) and Bogdan, Ghosh, and Żak-Szatkowska (2008), which

lead to the specific choices of l and u, are based on the assumption that the likelihood ratio

statistics for testing the significance of specific explanatory variables have asymptotically the

chi-square distribution. Since, under some mild regularity conditions, this assumption is satisfied

for the Generalized Linear Models (see e.g. Shao (1999)), the proposed choices for l and u are

appropriate also in this case. An extensive simulation study, confirming good properties of the

mBIC in the context of logistic and Poisson regression, can be found in Zak-Szatkowska and

Bogdan (2010). Note however that ZIGPR does not fit the general framework of GLM, since

the ZIGP distribution does not belong to the exponential family. In this case a standard choice

of l and u can be justified by theoretical results on the asymptotic normality of the maximum
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likelihood estimate of δ = ((βj)j∈I , (γuv)(u,v)∈U , ϕ, ω), presented in Czado, Erhardt, Min, and

Wagner (2007) based on Min and Czado (2010). This implies that under the null hypothesis the

corresponding likelihood ratio test statistics have also asymptotically a chi-square distribution.

The appropriateness of the standard choice of l and u for ZIGPR is confirmed by the simulation

study, presented in the next section.

A similar modification of BIC was recently proposed by Chen and Chen (2008), who intro-

duce an extended BIC (EBIC), based on the different prior choices for the model dimension.

In comparison to mBIC, the priors used by EBIC substantially prefer models of larger dimen-

sions. Specifically, the standard, most restrictive version of the EBIC, assumes that the prior

distribution on the number of main effects is uniform on the set {0, 1, . . . , Nm} (see Li and Chen

(2009)). After assigning the same prior probability to all models of the same dimension this

results in π(Mj) = 1
Nm+1

(
Nm

k

)−1
. Interestingly, the same prior is proposed in Scott and Berger

(2008), where it results from the application of a hierarchical model with a non informative, uni-

form prior on the proportion of true regressors p. The choice between mBIC and EBIC should

depend on the prior expectations concerning the QTL number. As illustrated by theoretical

results discussed in Bogdan, Frommlet, Biecek, Cheng, Ghosh, and Doerge (2008) and proved in

Bogdan, Chakrabarti, and J.K.Ghosh (2008), mBIC has some asymptotic optimality properties

in the context of selecting the best multiple regression model under sparsity. Therefore mBIC

seems to be especially appropriate in case when one expects that the number of true predictors

is much smaller than the number of columns in the “total” design matrix. To compare these

two criteria, in the next section we present results of an extensive simulation study, in which we

identify important main effects with the standard version of mBIC

mBIC := 2 log(L(Y |Mj , δ̂j)))− k log(n)− 2k log

(
Nm

4
− 1

)
, (1.3.5)

and the standard version of EBIC

EBIC := 2 log(L(Y |Mj , δ̂j)))− k log(n)− 2 log

(
Nm

k

)
. (1.3.6)

1.4 Simulation study

Simulations are carried out to investigate the performance of our proposed methods of QTL

detection for a backcross design. We simulate genotypes of Nm = 100 markers located on 20

mice chromosomes. These marker positions are identical to the ones in the data set investigated

by Lyons et al. (2003). The marker positions are supplemented by k = 10 fictional QTL’s (not

matching any of the markers) located on chromosomes 1 to 6. Figure 1.1 plots the marker and

QTL positions on these 6 chromosomes.

Trait values are generated from the ZIGPR model, Yi ∼ ZIGP (µi(β), ϕ, ω)), with

µi(β) := exp
{

2.05 +X ′
Q,iβ

}
, i = 1, . . . , n , (1.4.1)

where XQ,i = (XQ1,i, . . . , XQ10,i)
′ denotes the vector of 10 QTL genotypes coded as −1/2 and

1/2 for homozygotes and heterozygotes, respectively, and parameter values are chosen as

β = (−0.20, 1.00, 0.25,−0.60, 0.80, 1.20, 0.70,−0.15,−0.40, 1.50)′ .

Additionally, we choose ϕ = 2 and investigate small as well as medium sized zero-inflation of

ω ∈ {20%, 40%}.
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Figure 1.1: Marker positions and positions of the true QTL.

Our simulation results are based on N = 1000 replicates for the sample sizes n = 200 and

n = 500. In each run new random markers and QTL genotypes are generated from the map,

the coefficients β , however, are kept identical. In each of these replications model selection

is carried out using a forward selection procedure. At first we start with the Null model,

i.e., we fit ZIGPR(µi(β0), ϕ, ω)), where β0 is the coefficient of an intercept. We sequentially

add the marker which increases the standard version of mBIC (1.3.5) the most, as long as

mBIC grows. Additionally, we carry out forward selection based on mBIC with a Gaussian

linear model (LM), a Poisson regression (PoiR), generalized Poisson regression (GPR) and zero-

inflated Poisson regression (ZIPR). We include the standard least squares regression LM, since

it is capable of identifying correlations between explanatory and response variables, and may

perform reasonably choosing important predictors for the ZIGP data. Also, due to the central

limit theorem, we expect that mBIC with LM will control the number of false positives, even

when the true data are generated according to ZIGPR. Additionally, for each model class we

perform model selection based on the standard version of EBIC given in (1.3.6).

Results of the simulation study are compared for the five model classes. We consider the

following statistics:

• true positives (TP): number of selected effects whose distance to the simulated QTL’s was

less or equal 20 cM ; if more than one effect was caught in the interval around a certain

QTL only one of them was counted

• false positives (FP): number of selected effects whose distance to the simulated QTL’s was

higher than 20 cM

• false positives (FP) + false negatives (FN), where FN = 10− TP

• power: TP/10

• observed false discovery rate : FDR = FP/(FP + TP )
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n = 200

mBIC

ω = 20% ω = 40%

LM PoiR ZIPR GPR ZIGPR LM PoiR ZIPR GPR ZIGPR

FP 0.125 21.075 11.309 0.658 0.357 0.106 27.033 9.614 0.296 0.373

FP+FN 6.944 22.903 13.486 7.952 5.371 8.260 29.025 12.460 9.631 6.623

Power 0.318 0.817 0.782 0.271 0.499 0.185 0.801 0.715 0.066 0.375

FDR 0.036 0.711 0.575 0.188 0.062 0.050 0.764 0.558 0.282 0.088

EBIC

ω = 20% ω = 40%

FP 0.149 40.869 19.746 0.880 0.604 0.090 53.568 15.354 0.281 0.614

FP+FN 6.879 41.808 21.377 7.943 5.196 8.368 54.276 17.671 9.633 6.397

Power 0.327 0.906 0.837 0.294 0.541 0.172 0.929 0.768 0.065 0.422

FDR 0.040 0.809 0.682 0.213 0.090 0.044 0.846 0.645 0.270 0.116

n = 500

mBIC

ω = 20% ω = 40%

LM PoiR ZIPR GPR ZIGPR LM PoiR ZIPR GPR ZIGPR

FP 0.112 24.662 14.818 0.642 0.215 0.117 30.817 13.813 0.405 0.234

FP+FN 4.830 25.519 15.723 6.102 3.541 5.949 31.847 15.088 8.381 4.047

Power 0.528 0.914 0.909 0.454 0.667 0.417 0.897 0.873 0.202 0.619

FDR 0.019 0.723 0.607 0.112 0.028 0.025 0.770 0.599 0.142 0.033

EBIC

ω = 20% ω = 40%

FP 0.144 40.428 26.274 0.984 0.466 0.120 48.520 23.765 0.465 0.435

FP+FN 4.662 40.936 26.878 6.145 3.397 5.815 49.110 24.665 8.490 3.940

Power 0.548 0.949 0.940 0.484 0.707 0.430 0.941 0.910 0.198 0.649

FDR 0.023 0.805 0.725 0.149 0.055 0.024 0.835 0.708 0.154 0.057

Table 1.1: Average number of false positives (FP), false positives + false negatives (FP+FN),

power and false discovery rate (FDR) based on mBIC and EBIC for different model classes and

n = 200, 500 and ω = 20%, 40%

In Table 1.1 we will tabulate the averages of FP , power, FP + FN and FDR. Figure 1.2

plots the estimated power against the magnitude of the true regression coefficients β.

From Table 1.1 and Figure 1.2 we see that a higher number of observations substantially

eases the detection of significant effects. On the other hand, higher zero-inflation makes the

detection of correct effects more difficult even in the correctly specified ZIGPR model. Also,

according to Figure 1.2, the power of detection clearly increases with the magnitude of the true

regression coefficients.

Due to its lowest false discovery rates while maintaining high power rates, the ZIGP regres-

sion model is definitely the best of the regression models considered. Interestingly, the second

best is the standard least squares regression model, LM. While LM clearly performs worse than

the correct ZIGPR model, it substantially outperforms other misspecified models based on the

Poisson regression. Specifically, LM offers a much larger power than the General Poisson (GPR)

model without the zero inflation parameter. In case of the models without the overdispersion

parameter, PoiR and ZIPR, we observe the opposite. These models offer a much higher power

than LM, or even ZIGPR, but instead lead to the detection of a large number of false positives.

FDR of the procedures based on PoiR and ZIPR systematically exceeds 50%, which means that

the number of false positives usually exceeds the number of true discoveries. We believe that

these models pick too many regressors in order to account for the data heterogeneity caused by

overdispersion.

In Table 1.2 we report the results of a further simulation study, in which the data were
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Figure 1.2: Power for different sizes of true regression coefficients based on several model classes.

Note that the lines are linearly interpolated to increase visual comparability.

generated according to the standard Poisson regression model PoiR, with µi defined by (1.4.1).

Since this is only meant to be an illustrative example, we restrict to the case of a scan based on

mBIC for n = 200 mice. In this case PoiR and ZIPR perform similarly bad. The same holds for

the performance of GPR and ZIGPR. The reason is simply that in the model classes allowing for

excess zeros, the zero-inflation parameter for Poisson traits is estimated to be close to zero, hence

the performance only depends on the underlying distribution, which is not inflated (i.e., Poisson

and GP, respectively). Interestingly, also in this case PoiR and ZIPR substantially overestimate
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n = 200, mBIC

LM PoiR ZIPR GPR ZIGPR

FP 0.095 8.200 8.150 0.405 0.410

FP+FN 5.285 9.830 9.810 3.920 3.930

Power 0.481 0.837 0.834 0.648 0.648

FDR 0.018 0.476 0.475 0.053 0.053

Table 1.2: Average number of false positives (FP), false positives + false negatives (FP+FN),

power and false discovery rate (FDR) based on mBIC and EBIC for different model classes when

the traits come from a Poisson distribution

the number of QTL. The number of false positives produced by these methods is approximately

equal to the number of true discoveries, with FDR close to 50%. At the same time procedures

based on GPR work very well, maintaining a reasonable power and FDR at the level close to

5%. It turns out that the poor behavior of the method based on PoiR or ZIPR results from

the model misspecification, caused by the discrepancy between the marker and QTL location.

Here we give a simple illustrative example: we generate Poisson traits with 10 true effects

Xi := (Xi1, . . . , Xi10)
′ and µi := exp(2.05 +X ′

iβ), where β is chosen as before. Then we fit two

GPR models, one using Xi as regressors and one using misspecified Xmis
i := (Xmis

i1 , . . . , Xmis
i10 )′,

which are random and reflect genotypes referring to a recombination fraction with distance of

10cM to Xi in each component. In the left panel of Table 1.3 we see that in the first case ϕ

is estimated to be 1.01. This illustrates that the GPR class contains the PoiR class and that

the dispersion can be estimated with a very good precision. In the second case, however, the

regressors are misspecified by not knowing the exact trait loci and the marker genotypes Xmis

are used instead. Now ϕ is estimated to be 3.25 (see right panel of Table 1.3), i.e., the estimated

variance exceeds the estimated mean by a factor of more than 10. As one can see in Table 1.2

this leads to a dramatic overfit when using PoiR since this model cannot reflect the additional

overdispersion and picks too many regressors in order to account for the data heterogeneity.

Zero-inflation also leads to overdispersion, however one can see in Table 1.1 for the ZIPR case

that zero-inflation alone is insufficient to compensate the lack of the overdispersion parameter.

Estimate Std. Error Pr(> |z|) Estimate Std. Error Pr(> |z|)

Interc. 2.064 0.031 < 2 · 10−16 Interc. 2.197 0.081 < 2 · 10−16

X1 −0.211 0.031 10−11 Xmis
1 −0.097 0.097 0.316

X2 0.920 0.038 < 2 · 10−16 Xmis
2 0.836 0.104 7 · 10−16

X3 0.266 0.037 5 · 10−13 Xmis
3 0.211 0.103 0.041

X4 −0.566 0.029 < 2 · 10−16 Xmis
4 −0.673 0.097 5 · 10−12

X5 0.812 0.035 < 2 · 10−16 Xmis
5 0.626 0.105 3 · 10−9

X6 1.228 0.049 < 2 · 10−16 Xmis
6 1.137 0.118 < 2 · 10−16

X7 0.696 0.038 < 2 · 10−16 Xmis
7 0.379 0.102 2 · 10−4

X8 −0.174 0.033 10−7 Xmis
8 −0.191 0.097 0.049

X9 −0.417 0.033 < 2 · 10−16 Xmis
9 −0.310 0.099 0.002

X10 1.518 0.046 < 2 · 10−16 Xmis
10 1.199 0.114 < 2 · 10−16

Table 1.3: GP fit of Poisson data (n = 200) based on the 10 true effects (X1, . . . , X10)
′ (left

panel) with ϕ̂ = 1.01 (0.051). GP fit of the same data based on 10 misspecified effects correlated

with (X1, . . . , X10)
′ which are 10cM away from the true effects (right panel), ϕ̂ = 3.25 (0.477).

Comparing the performance of mBIC and EBIC under the most appropriate ZIGPR model
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we observe that both these criteria perform very well and their results do not differ much. As

expected, EBIC offers slightly larger power at the price of a larger, but still reasonable, FDR.

Our simulations show that the power of these criteria increases and the expected number of false

positives decreases as the samples size goes up, which strongly suggest that these criteria are

consistent also under the ZIGPR model.

1.5 Real data analysis

The data by Lyons et al. (2003) considers different phenotypes related to gallstones. While

Lyons et al. (2003) focus on the gallstone weight, a score for solid gallstones and the gallbladder

volume, we will focus on the number of gallstones the 277 male mice developed. The data is

publicly available at

http://phenome.jax.org/phenome/protodocs/QTL/QTL-Lyons3.xls

and refers to an intercross of CAST/Ei and 129S1/SvImJ inbred mice. Since the phenotypes

considered in Lyons et al. (2003, Figure 5) are related to the number of gallstones the mice

developed, we perform a preselection of interesting chromosomes based on this figure. Hence

we restrict our search to eight chromosomes accounting for 41 markers, i.e., we consider the

chromosomes 2, 3, 4, 5, 7, 17, 18 and 19. We replace missing genotypes by their expected

values, given the flanking markers (see for instance Haley and Knott (1992)). Additive and

dominance effects are added separately, according to the specification provided in Section 1.3,

with a corresponding to the CAST/Ei allele. As a search method we used forward selection with

mBIC based on ZIGPR. The reason for which we chose mBIC rather than EBIC, is that mBIC

has been adapted for the search of interaction effects. In this case mBIC adjusts to the increased

“multiple testing” problem by changing the penalty constant from 4 to 2.2 (see (1.3.2)). The

adaptation of EBIC for the search of interactions is not obvious and we are not aware of existing

solutions to this problem.

We performed two different analyses. At first we searched only for main effects with the

standard version of mBIC (1.3.2) and a penalty constant provided in (1.3.3). In this case

mBIC identifies one additive effect at D5Mit183 (“D5Mit183(a)”). This is in line with the

result of Lyons et al. (2003), which found this marker to be significant for all three Gallstone

related traits considered in their study. A model summary is given in the upper panel of Table

1.4. Note that asymptotic normality of the maximum likelihood estimates of the dispersion

parameter ϕ and zero-inflation parameter ω have been shown in Czado, Erhardt, Min, and

Wagner (2007, Theorem 1). Therefore we report the p-values of the Wald test also for these

estimates. Additionally, we performed the search for both additive and interaction effects using

mBIC (1.3.2) with constants provided in (1.3.4). In this search we detected an interaction

term between two additive effects: D5Mit183 and a novel suggestive QTL, D4Mit42. A model

summary is given in the middle panel of Table 1.4. Additionally, in the lower panel of Table

1.4 we provide the results of the analysis based on the model including additive effects of both

D5Mit183 and D4Mit42 and their interaction. Interestingly, the p-value corresponding to the

interaction term between D5Mit183 and D4Mit42 is substantially smaller than the p-values

corresponding to the additive effects, which suggests that the interaction between D5Mit183

and D4Mit42 plays a very important role in determining the expected number of gallstones.

This observation is confirmed by the graphical representation in Figure 1.3. In accordance
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Estimate Std. Error z value Pr(> |z|)

Intercept 0.067 0.983 0.068 0.946

D5Mit183(a) −1.292 0.432 −2.991 0.003

ϕ 6.799 3.560 1.909 0.056

ω 0.631 0.362 1.743 0.081

Intercept −0.156 0.572 −0.272 0.786

D5Mit183(a):D4Mit42(a) −2.298 0.495 −4.647 3.4 · 10−6

ϕ 5.776 2.520 2.293 0.022

ω 0.575 0.167 3.437 0.001

Intercept −0.864 0.573 −1.510 0.131

D5Mit183(a) −1.244 0.442 −2.817 0.005

D4Mit42(a) −0.215 0.476 −0.451 0.652

D5Mit183(a):D4Mit42(a) −2.177 0.548 −3.973 7.1 · 10−5

ϕ 5.387 2.185 2.466 0.014

ω 0.458 0.163 2.809 0.005

Table 1.4: ZIGPR model summaries of forward selection based on mBIC for different regression

designs.

with the results of the search for main effects this figure suggests that the expected number of

gallstones decreases when the number of 129S1/SvImJ alleles at D5Mit183 increases. However,

according to the bottom graph, the effect of D5Mit183 strongly depends on the genotype at

D4Mit42, and is most pronounced for mice who are homozygous for 129S1/SvImJ allele at

D4Mit42. Specifically, the average number of gallstones is decisively the largest in the group of

mice with the combination of dummy variables equal to (-1,1), which corresponds to the mice

homozygous for CAST/Ei allele at D5Mit183 and for 129S1/SvImJ allele at D4Mit42. Finally

we add that we also carried out a scan based on the LM. Neither in the search over main effects

nor in the search including epistatic effects a significant effect could be caught.

1.6 Discussion

We investigated the applicability of different versions of Poisson regression and the modified

Bayesian Information Criterion for locating multiple interacting quantitative trait loci influenc-

ing count traits. Our research demonstrates very good properties of the zero-inflated generalized

Poisson regression in this context. ZIGPR takes into account both the overdispersion and an

over-excess of zeros and performs much better than simplified versions of Poisson regression in

case when both these parameters play an important role. Moreover, we found out that the

overdispersion parameter allows to compensate for a model misspecification due to the discrep-

ancy between marker and QTL locations. Therefore, the search for markers associated with

the count trait based on ZIGPR gives much better results than the one based on the standard

Poisson regression, even when the data are generated according the latter. Also, our simulations

illustrate very good properties of the modified versions of the Bayesian Information Criterion,

mBIC and EBIC, as applied to select important predictors for ZIGPR. Both these criteria per-

form in a similar way and guarantee a good power of QTL detection, while keeping the false

discovery rate at a low level. The reported real data analysis shows the possible gains, which

can be obtained when ZIGPR with mBIC is used for detection of interacting QTL.
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Figure 1.3: Average number of gallstones in different groups of mice, specified by dummy vari-

ables corresponding to the additive effects of D5Mit183 and D4Mit42.

Good properties of mBIC in the context of sparse orthogonal multiple regression were

confirmed by the results on its asymptotic optimality, proved in Bogdan, Chakrabarti, and

J.K.Ghosh (2008). Our preliminary results suggest that similar asymptotic optimality results

can be proved for EBIC. However, the extension of these results to the nonorthogonal designs

and ZIGPR models presents a major challenge and remains a topic for future research.

Due to the complexity of a large scale simulation study, whose main purpose was the compar-

ison of different Poisson regression models, we reduced the attention to the search over markers.

Note that the computational effort for the simulation study carried out in Table 1.1 was very

high. We made quite some effort to optimize the R code, nevertheless the repeated search for
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significant effects over the 100 main effects was running for more than 20 days on a parallelized

32-core cluster with 2.6 GHz processors. However, an extension of the proposed methodology to

the multiple interval mapping is in general quite straightforward and, concerning the estimates

of QTL effects and positions, goes along the line of an interval mapping for ZIGPR, as proposed

in Cui and Yang (2009). Concerning the estimate of a QTL number, a successful application of

EBIC for the multiple interval mapping with mixture General Linear Models was presented in Li

and Chen (2009). Also, the results reported in Bogdan, Frommlet, Biecek, Cheng, Ghosh, and

Doerge (2008) show that if markers are on the average distant by more than 5 cM then mBIC

may be successfully used with the multiple interval mapping. However, the results reported in

Bogdan, Frommlet, Biecek, Cheng, Ghosh, and Doerge (2008) show also that if markers are

very densely spaced (less than 5 cM apart) then the neighboring marker genotypes are strongly

correlated and the penalty in mBIC and EBIC should be substantially relaxed. We believe that

the corresponding scaling coefficients provided in Bogdan, Frommlet, Biecek, Cheng, Ghosh,

and Doerge (2008) would work well also for ZIGPR but an exact verification requires a very

intensive simulation study and is out of the scope of the present chapter.

To reduce the complexity of our simulation study we identified the best regression model with

a forward selection. Our simulations, as well as results reported in Broman (1997), Broman and

Speed (2002), and Bogdan, Ghosh, and Doerge (2004), show that the forward selection usually

performs very well in the context of QTL mapping. However, the real data analysis reported in

Bogdan, Frommlet, Biecek, Cheng, Ghosh, and Doerge (2008) illustrates that in some situations

this procedure may fail to identify the optimal model. The uncertainty related to the model

choice can be well expressed within the Bayesian framework by the posterior model probabilities.

The Bayesian approach for the analysis and comparison of ZIGPR models was investigated e.g.

in Gschlößl and Czado (2008). However, the computational complexity of the full Bayes analysis

by Markov Chain Monte Carlo (MCMC) substantially limits its range of applications in the

context of localizing multiple interacting QTL. Note however that both mBIC and EBIC allow

an approximation to the posterior probabilities of different models according to

P (Mi|Y ) ≈ exp(xBIC(i)/2)∑
j exp(xBIC(j)/2)

, (1.6.1)

where xBIC denotes mBIC (1.3.2) or EBIC (1.3.6) and the sum in the denominator is over

all possible ZIGPR models. Thus, to estimate the posterior probability of a given model by

the modified BIC it is enough to visit each of the plausible models just once. This allows to

substantially reduce the computational burden in comparison to the MCMC methods, which

typically require multiple visits of each model, and then estimate the posterior probability by the

frequency of such visits. However, the estimate of P (Mi|Y ) provided in (1.6.1) may be accurate

only if the majority of plausible models is represented in the denominator. Therefore, to use

mBIC or EBIC in a Bayesian context, a suitable, computationally efficient search strategy still

needs to be developed.



Chapter 2

A method for approximately

sampling high-dimensional count

variables with prespecified Pearson

correlation

2.1 Introduction

Input modeling comes into play when stochastic simulations are carried out where there is un-

certainty in the simulated system. The input model represents the uncertainty. In the context of

sampling from multivariate random variables it consists in the selection and fitting of a multivari-

ate distribution whose behavior cannot be predicted with certainty. The task of sampling from

a multivariate random vector becomes especially challenging when a multivariate distribution

with the desired properties does not exist.

The goal of this chapter is to sample from count random variables (rv’s) Y1, . . . , YT with

Yt ∼ Ft, t = 1, . . . , T with prespecified corr(Y ) = ΣY , with (t, t∗)th element ΣY
tt∗ = ρtt∗ and

ρ11 = 1. Kawamura (1979) defines a multivariate binomial distribution B(N, pi) and shows

that for N → ∞ under the condition that Npi = λi and a single common correlation term

ρtt∗ = ρ > 0, one can obtain a multivariate Poisson distribution with marginal parameters λi.

Tsiamyrtzis and Karlis (2004) criticize the limited use of multivariate discrete models due to

the difficulty in calculating the required probabilities and suggest a more efficient calculation of

the joint probabilities. Karlis and Meligkotsidou (2005) generalize multivariate Poisson models

and construct a model which allows for individual correlations for each pair of variables. This

distribution, however, does not allow for negative correlation.

Kopociński (1999) develop a multivariate negative binomial distribution, whereas Vernic

(2000) develops a multivariate generalization of the generalized Poisson (Consul and Jain (1970))

distribution both capable of modeling exchangeable covariance. It must be recognized that

multivariate discrete distributions discussed in the literature have several shortcomings and

hence are often not suited to represent the desired dependence structure.

Lurie and Goldberg (1998) introduce an ”approximate method for sampling correlated ran-

dom variables from partially-specified distributions” and state that it may be applied to con-

tinuous margins. This approach is based on Li and Hammond (1975), who use the multivariate

22



2.1. INTRODUCTION 23

normal distribution for a sampling algorithm. They manipulate the correlations of the multi-

variate multinomial distribution by a constrained optimization approach using some distance

measure between these correlations and the target correlations. Li and Hammond (1975) mini-

mize over all ρtt∗ , 1 ≤ t < t∗ ≤ T simultaneously rather than - as in our approach - separately

in a sequential order over correlations and partial correlations.

A widely used ”naive” sampling approach is based on sampling from a Gaussian copula

while assuming that the correlation parameters of the copula coincide with the desired target

correlation. A more promising approximative solution to this problem is the NORTA method

(’NORmal To Anything’), (see Cario and Nelson (1997) and Chen (2000)) which is based on the

work of Marida (1970) and Li and Hammond (1975). Avramidis, Channouf, and L’Ecuyer (2009)

apply it to discrete margins. A Gaussian copula is used to define a bivariate distribution. The

copula parameter is approximated separately for each pair of margins of the high dimensional

problem. In each case this is a problem of root finding and is solved using different optimization

routines. Potentially, all pairwise copula parameters need to be corrected afterwards in order to

obtain a positive definite correlation matrix. Based on the same approach, the ARTA method

(Autoregressive-To-Anything) by Cario and Nelson (1996) allows to sample from univariate

autoregressive time series. Further, Biller and Nelson (2003) combine these approaches. This

Vector-Autoregressive-To-Anything technique (VARTA) extends the methodology applied by

NORTA for margins with an autoregressive structure. Biller and Ghosh (2006) give an overview

of a variety of input modeling approaches.

Building on the work on vines of Joe (1996), Bedford and Cooke (2001a), Bedford and

Cooke (2001b) and Bedford and Cooke (2002), the work of Aas, Czado, Frigessi, and Bakken

(2009) uses pair-copula decompositions of a general multivariate distribution and proposes a

new method to perform inference. Our general idea is to use a conditional sampling approach

based on pair-copula constructions, i.e., a decomposition of a T -dimensional distribution to a

product of bivariate copulas. Since these bivariate copulas (Gaussian in our case) have only one

copula parameter, we can use root finding based on bisection to determine optimal parameters

for each pair-copula and use them to derive an approximate set of parameters for a copula in

dimension T .

In order to account for a different upper and lower tail dependence Biller (2009) develops in-

put models also based on such vine models. She suggests to select two-dimensional (conditional)

copulas accounting for the desired behavior. For given data, maximum likelihood estimators of

the copula parameters can be determined at data being sampled from the multivariate distri-

butions obtained by these estimators. However the issue of determining the input parameters

for other, hypothetical correlations is not subject of the chapter. A similar characterization for

the NORTA distribution with a C-vine has been suggested in Biller and Gunes (2008), but with

a different purpose: to account for parameter uncertainty in large-scale stochastic simulations

with correlated inputs.

Our approach is innovative in the following context: it generates a sample from a multivariate

specification where the empirical correlation of the sample comes very close to a hypothetical

target correlation even when the sample size is small. It is not very numerically demanding:

for dimension T , T (T − 1)/2 simple root finding step have to be carried out, usually done

within seconds. We illustrate that the naive method and NORTA are less suitable for this

problem since the empirical correlation of the sample has a higher absolute deviation from the

desired target correlation. Moreover, the input parameters obtained by NORTA may need a
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posteriori correction in order to result in a positive definite base correlation matrix, which is

not necessary in our approach. An implementation for R is available as package corcounts on

’The Comprehensive R Archive Network’ (CRAN). A simulation study based on our sampling

method will be carried out in the context of generalized estimating equations in Chapter 3 of

this thesis.

This chapter is organized as follows: In Section 2.2, we will review basic properties of mul-

tivariate distributions and copulas and also will introduce additional building blocks needed.

Section 2.3 consists of a high level version of the approach giving background insights. Af-

terwards we derive the sampling approach in detail for the trivariate case. An algorithm in

pseudo-code will also be given. The general case in dimension T using a vine structure for a

PCC will be discussed in Section 2.4. We summarize the naive and the NORTA methods in

Section 2.5. For Negative-Binomial data in dimension 8 we illustrate the advantages of our

approach comparing the C-vine sampling approach to the competing methods. An extensive

simulation study is given in Section 2.6. We conclude with a summary and discussion in Section

2.7.

2.2 Copulas and multivariate Distributions

We aim to develop an approach for sampling from vectors of dependent random variables (rv’s)

with specified Pearson correlation. In general, our approach is applicable to continuous as well as

discrete margins. We focus on the class of discrete and especially count distributions since they

are the more challenging and hence more general class in the following sense: the efficiency of the

empirical correlation as a correlation estimator is lower for discrete than for continuous margins,

hence the manipulation of an empirical correlation matrix, which our approach is based on, is

difficult for small sample sizes. Also, the inversion method is based on more general pseudo-

inverses. For fitting such simulated count data with a different specification, i.e., generalized

estimating equations, see the simulation study in Erhardt and Czado (2009c). We consider the

Poisson distribution and also a generalized Poisson (GP) distribution which contains the Poisson

class but additionally allows for extra dispersion. Moreover, in many applications it is desirable

to allow for excess zeros, therefore we also consider the zero-inflated generalized Poisson (ZIGP)

distribution containing the Poisson and the GP class as special cases. Finally we consider the

popular Negative-Binomial (NB) distribution.

Consul and Jain (1970) introduced the GP distribution, which can model under- and overdis-

persion by an additional dispersion parameter ϕ and contains the Poisson distribution for ϕ = 1.

The ZIGP distribution has an additional zero-inflation parameter ω allowing for excess zeros

and hence a second source of overdispersion. For ω = 0, the ZIGP distribution simplifies to

the GP distribution. In order to allow for a comparison between these distribution families, the

mean parameterization was chosen for all of them. The pmf of these distributions together with

means and variances are given in Table 2.1.

We will use a PCC based on bivariate copulas to obtain multivariate multivariate uniform

vectors and combine it with the inversion sampling method. A two-dimensional copula C is a

bivariate cdf C : [0, 1]2 → [0, 1] whose univariate margins are uniform on [0, 1], i.e., C(u1, 1) = u1
and C(1, u2) = u2. For two continuous rv’s Y := (Y1, Y2)

′ with marginal distributions F1, F2,

the rv Ft(Yt) is uniform on [0, 1], hence while Ft reflects the marginal distribution of Yt, C
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P (Y = y) E(Y ) V ar(Y )

Poisson µ

y!
e−µ µ µ

GP µ(µ+(ϕ−1)y)y−1

y!
ϕ−ye

− 1
ϕ
(µ+(ϕ−1)y)

, µ E(Y )ϕ2

where ϕ > max( 1
2
, 1− µ

m
) and m is the largest natural number

with µ+m(ϕ− 1) > 0, if ϕ < 1.

ZIGP 1l{y=0}

[

ω + (1− ω)e
− µ
ϕ

]

+1l{y>0}

[

(1− ω)µ(µ+(ϕ−1)y)y−1

y!
ϕ−ye

− 1
ϕ
(µ+(ϕ−1)y)

]

, (1− ω)µ E(Y )
(

ϕ2 + µω
)

where in the case for ϕ < 1 the same condition as in the GP

case must hold.

NB Γ(y+Ψ)
Γ(Ψ)y!

(

Ψ
µ+Ψ

)Ψ (

µ

µ+Ψ

)y

µ µ(1 + µ

Ψ
)

Table 2.1: Pmf’s of the Poisson, GP, ZIGP and NB distribution together with their means and variances

reflects the dependence. Sklar (1959) shows that these characteristics can be separated, i.e.,

FY (y1, y2) = C(F1(y1 | θ1), F2(y2 | θ2)|τ ), (2.2.1)

where τ are the corresponding copula parameters. If a multivariate cdf of Y exists, there

is a copula C which separates the dependence structure from the marginal distributions. If

the margins are continuous, C is unique. Vice versa, according to (2.2.1) we can construct a

multivariate cdf from two marginal distributions using a bivariate copula C. For a more detailed

introduction to copulas, see for instance Joe (1997) or Nelsen (2006). Our sampling approach

is based on Gaussian copulas.

Definition 1 (Gaussian copula). The bivariate Gaussian copula is a function C : [0, 1]2 → [0, 1]

with

C(u1, u2|τ12) := Φ2

(
Φ−1(u1),Φ

−1(u2)|τ12
)
, (2.2.2)

where Φ2(·, ·|τ12) is the cdf of the bivariate normal distribution with mean µ = 02 and covariance

τ12 and Φ−1(·) is the inverse of the univariate standard normal cdf.

The bivariate Gaussian copula density is defined as

c(u1, u2|τ12) = φ2
(
Φ−1(u1),Φ

−1(u2)|τ12
) 2∏

t=1

1

φ(Φ−1(ut))
,

where φ2 is the bivariate normal pdf with mean µ = 02 and covariance τ12.

The following monotonicity property has been shown by Cario and Nelson (1997, Proposi-

tions 1, 2 and Theorem 1).

Proposition 1. For Y := (Y1, Y2)
′ count variables with parameter θ := (θ′1,θ

′
2)

′ and joint

cdf FY (y1, y2|θ) = C(F1(y1|θ1), F2(y2|θ2)|τ12) with a Gaussian copula C, the Pearson correla-

tion between Y1 and Y2 denoted by ρ12(τ12,θ) is a strictly monotone function in τ12. Further

ρ12(τ12,θ) > 0 (< 0) for τ12 > 0 (< 0) and ρ12(0,θ) = 0. The maximum and minimum

boundaries of ρ12 are reached for ρ12(1,θ) ≤ 1 and ρ12(−1,θ) ≥ −1.

Another important building block for our construction will be partial correlations. Partial

correlation is the correlation between two variables while controlling for a third or more other
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variables. Let Z = (Z1, Z2,Z
′
3)

′ be a standardized T -component random vector, where Z3 =

(Z3, . . . , ZT )′ is a (T − 2)-dimensional random vector. Let its correlation matrix

Σ =



σ11 σ12 σ′

13

σ12 σ22 σ′
23

σ13 σ23 Σ33


 , Σ−1 =:



σ11 σ12 σ13′

σ12 σ22 σ23′

σ13 σ23 Σ33


 .

According to Srivastava and Khatri (1979, p. 53f), partial correlation between Z1 and Z2

while controlling Z3 denoted by σ12|3:T is defined as the correlation between Z1−σ′
13Σ

−1
33 Z3 and

Z2 − σ′
23Σ

−1
33 Z3, which is the correlation between Z1 and Z2 after eliminating the best linear

effects of Z3 from both variables, and that σ12|3:T = −σ12√
σ11σ22

. For I := {1, . . . , T} and for any

subset I∗ ⊆ I, which contains at least i, j and k, Pearson (1916) derived the recurrence

σij|I∗\{i,j} =
σij|I∗\{i,j,k} − σik|I∗\{i,j,k} · σjk|I∗\{i,j,k}√

(1− σ2ik|I∗\{i,j,k})(1− σ2jk|I∗\{i,j,k})
, (2.2.3)

i.e., partial correlations of the (T − 2)nd order can be calculated from the (T − 3)rd order.

We now illustrate the construction of a multivariate density function of uniform random

variables based on a PCC. We restrict to the trivariate case, for general dimension we refer to

Aas, Czado, Frigessi, and Bakken (2009). Let Ut ∼ Gt, t = 1, 2, 3 continuous uniform margins

with joint density

g(u1, u2, u3) = g1(u1)g2|1(u2|u1)g3|12(u3|u1, u2).

Since gt(ut) ≡ 1 and Gt(ut) = ut, we have according to Sklar

g(u1, u2) = c12(u1, u2), therefore g2|1(u2|u1) = c12(u1, u2)

and g(u2, u3|u1) = c23|1(G2|1(u2|u1), G3|1(u3|u1)) · g2|1(u2|u1) g3|1(u3|u1),
hence g3|12(u3|u1, u2) = c23|1(G2|1(u2|u1), G3|1(u3|u1)) · g3|1(u3|u1).

The conditional cdf’s G2|1(u2|u1) and G3|1(u3|u1) can be calculated according to Joe (1996).

He proved under regularity conditions for u := (u2, . . . , uT )′, u−i := (u2, . . . , ui−1, ui+1, . . . , uT )′

that the conditional cdf at u1 can be calculated as

G(u1|u) =
∂C
(
F (u1|u−i), F (ui|u−i)|τu1ui|u−i

)

∂F (ui|u−i)
. (2.2.4)

Similar to Aas, Czado, Frigessi, and Bakken (2009) we abbreviate the expression for u = u2 and

unconditional cdf’s as margins in (2.2.4) as a function h. Then h(u2, u1, τ12) := G2|1(u2|u1) and

h(u3, u1, τ13) := G3|1(u3|u1). Later on we will also need the conditional cdf’s

G1|2(u1|u2) = h(u1, u2, τ12)

G3|12(u3|u1, u2,ΣZ) = h

(
h(u3, u1, τ13), h(u2, u1, τ12), τ23|1

)
. (2.2.5)

In the case of a bivariate Gaussian copula, Aas, Czado, Frigessi, and Bakken (2009) show

that h(u1, u2, τ12) = Φ

(
Φ−1(u1)−τ12Φ−1(u2)√

1−τ212

)
. The inverse of this h-function with respect to the

first argument is h−1(u1, u2, τ12) = Φ
(

Φ−1(u1)
√

1− τ212 + τ12Φ
−1(u2)

)
which may be regarded

as a conditional quantile function of U2 given U1.
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Now let Ut := Φ(Zt), t = 1, 2, 3 with Φ(·) the standard normal cdf. Further let Z :=

(Z1, Z2, Z3)
′ and Z ∼ N3(0,Σ

Z), ΣZ = (τij)i,j=1,...,3, τii = 1. Using all these building blocks,

the corresponding PCC of U := (U1, U2, U3)
′ is

g(u1, u2, u3) = c12(u1, u2|τ12) · c23|1(h(u2|u1, τ12), h(u3|u1, τ13)|τ23|1) · c13(u1, u3|τ13),(2.2.6)

where the copula densities ctt∗ and h refer to the Gaussian copula. Further τ12 and τ13 are

the correlation of (Z1, Z2) and of (Z1, Z3), respectively. Finally, τ23|1 represents the conditional

correlation between Z2 and Z3 given Z1, i.e., cov(Z2, Z3|Z1)/
√

var(Z2|Z1)var(Z3|Z1). According

to Kurowicka and Cooke (2006, Proposition 3.29), τ23|1 coincides in this case of Gaussian copulas

with the partial correlation between Z2 and Z3 given Z1, for which according to (2.2.3),

τ23|1 =
τ23 − τ12τ13√

(1− τ212)(1− τ213)
. (2.2.7)

More general, for any elliptical, multivariate hypergeometric, multivariate negative hypergeomet-

ric, multinomial and Dirichlet distribution, partial and conditional correlation coincide (Baba,

Shibata, and Sibuya (2004)).

In the construction of our approach, there are three levels of correlated rv’s:

Level Distribution Correlation

(i) Multivari-

ate normal

(Z1, Z2, Z3)
′ ∼ N3

(
0,ΣZ

)
(ΣZ)tt∗ = τtt∗

(ii) Uniform U1, U2, U3 ∼ unif(0, 1), Ut := Φ(Zt), t = 1, . . . , 3. Joint

density g(u1, u2, u3) according to PCC in (2.2.6) with

Gaussian copulas.

τ12, τ13, τ23|1

(iii) Count rv Y := (Y1, Y2, Y3)
′ counts, Yt := F−1

t (Ut|θt), t = 1, 2, 3

and θt parameters of margin t. Further, F−1
t (Ut|θt)

is the pseudo-inverse of Ft at Ut (i.e., F−1
t (Ut|θt) :=

inf(Q ∈ N | Ft(Q|θt) = Ut)).

(ΣY )tt∗ = ρtt∗

Remarks:

• Since τtt∗ 6= corr(Yt, Yt∗), τtt∗ is sometimes referred to as ”association parameter”.

• For known ΣZ one may sample ”top-down” from levels (i) to (ii) and use continuous

U1, . . . , UT as a correlated input for (iii). This may be regarded as a multivariate general-

ization of inversion sampling.

• The bivariate margins of U := (U1, U2, U3)
′ are given by G(u1, u2) = C12(u1, u2|τ12),

G(u1, u3) = C13(u1, u3|τ13) and G(u2, u3) = C23(u2, u3|τ23) with τ23 determined by (2.2.7).

• If we specify the PCC by correlations and partial correlations with any arbitrary values in

(−1, 1), then the corresponding ΣZ is positive definite (see Joe (2006)).

2.3 Sampling trivariate count RV’s

After some general background we will derive the algorithm given in Section 2.3.2.
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2.3.1 Background

We provide an overview on the methodology our approach is based on and on how we adapt it

for our purpose.

The general approach used is conditional sampling (e.g., see Biller and Ghosh (2006)), i.e.,

the sampling from a rv Ut using the conditional cdf of Ut given U1, . . . , Ut−1. To generate T = 3

correlated rv’s, one samples u1, u2|1, u3|12 ∼ unif(0, 1) independent. These ut|1:(t−1), t = 1, 2, 3

may be regarded as realizations from G1 and the conditional cdfs G2|1 and G3|12, respectively.

Then our sampling scheme reads

Algorithm 1 Conditional sampling combined with inversion sampling

Conditional sampling from PCC for U Inversion

(i) u1 y1 = F−1
1 (u1|θ1)

(ii) u2 = G−1
2|1(u2|1|u1) = h−1(u2|1, u1, τ12), y2 = F−1

2 (u2|θ2)
(iii) u3 = G−1

3|12(u3|12|u1, u2) = h−1(h−1(u3|12, h(u2, u1, τ12), τ23|1), u1, τ13), y3 = F−1
3 (u3|θ3).

Here, the conditional quantiles have been determined using the expressions in (2.2.5). Note

that this is only one possible order for determining the margins. A different ordering can be cho-

sen by selecting a different PCC for U . For this order, our sampling approach will approximate

τ12 followed by τ23|1 and τ13. For known copula parameters, this approach in general dimension

has been applied to a C-vine by Aas, Czado, Frigessi, and Bakken (2009, Algorithm 1). We will

now adapt their algorithm and determine (conditional) correlation parameters τtt∗(ΣY ,θ) by

minimizing the absolute deviation of empirical correlation coefficients from specified target cor-

relations ρtt∗ . The adaption is carried out in the following way: we sample independent vectors

ut|1:(t−1) := (u1t|1:(t−1), . . . , u
n
t|1:(t−1))

′ ∈ [0, 1]N , t = 1, 2, 3 with unt|1:(t−1) ∼ unif(0, 1) i.i.d. and

manipulate sequentially the a priori unknown copula parameters of the PCC (2.2.6) such that

the empirical correlation of the vectors ut ∈ [0, 1]N , t = 1, 2, 3 obtained from Algorithm 1 is close

to the desired target correlation. These manipulations are carried out immediately, i.e., while

the conditional sampling algorithm is being executed, hence limiting the computational time.

The problem of sampling from Y is the problem of approximating suitable copula parameters.

Regarding existence and uniqueness of a solution, Biller and Nelson (2003) stress that in general

searching the ”true, correct” input model for such a problem is neither a theoretical supportable

nor practically useful paradigm. Instead input modeling needs to be viewed as customizing a

highly flexible model that can capture the important features of interest.

We assume the conditional correlations to be corr(Y2|y1, Y3|y1) = ρ23|1 with

ρ23|1 :=
ρ23 − ρ12ρ13√

(1− ρ212)(1− ρ213)

for corr(Y1, Y2) = ρ12, corr(Y1, Y3) = ρ13 and corr(Y2, Y3) = ρ23. This recursive expression

is in fact a property of the partial correlations (2.2.3) and would only apply to multivari-

ate normal rv’s. We assume that the count data (Y1, Y2, Y3)
′ has approximately the same

conditional correlation structure, i.e., that corr(Y2|y1, Y3|y1) ≈ ρ23|1. Set θ := (θ′1,θ
′
2,θ

′
3)

′.
Our aim is to determine τ12 = τ12(ρ12,θ1,θ2), τ13 = τ13(ρ13,θ1,θ3) and τ23|1 = τ23|1(Σ

Y ,θ),

such that corr(F−1
1 (U1|θ1), F−1

2 (U2|θ2), F−1
3 (U3|θ3)) ≈ ΣY and (Φ−1(U1),Φ

−1(U2),Φ
−1(U3)) ∼
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N3(03,Σ
Z(ΣY ,θ)), with

ΣZ(ΣY ,θ) := Σ3

[
τ12(ρ12,θ1,θ2), τ13(ρ13,θ1,θ3), τ23(Σ

Y ,θ)
]

:=




1 τ12(ρ12,θ1,θ2) τ13(ρ13,θ1,θ3)

τ12(ρ12,θ1,θ2) 1 τ23(Σ
Y ,θ)

τ13(ρ13,θ1,θ3) τ23(Σ
Y ,θ) 1


 .

Here, τ23(Σ
Y ,θ) := τ23|1(Σ

Y ,θ)
√

(1− τ212(ρ12,θ1,θ2))(1− τ213(ρ13,θ1,θ3)) + τ12(ρ12,θ1,θ2)

τ13(ρ13,θ1,θ3) can be obtained according to (2.2.7). Using the monotonicity property of Propo-

sition 1, we can express the correlation and conditional correlation among the discrete margins

Yt as a function of the correlation parameters of Z and the marginal parameters of Yt, i.e.,

ρtt∗ = ρtt∗(τtt∗ ,θt,θt∗) and ρtt∗|1:(t−1) = ρtt∗|1:(t−1)(Σ
Z ,θ).

2.3.2 Derivation of the sampling algorithm for T = 3

The sampling algorithm for T := 3 will be derived first and a corresponding pseudo-code given

later. As preparation, choose the target correlations ρtt∗ , the marginal distributions Ft(·|θt),
t = 1, . . . , T . In general, the sample size will beN , i.e., we sample a set of rv’s of dimensionN×T .

According to our experience the algorithm works well even for small N ≥ 500. Throughout the

algorithm T (T − 1)/2 bisection searches will be carried out. We sample unt|1:(t−1) ∼ unif(0, 1)

i.i.d. for t = 1, 2, 3 and n = 1, . . . , N .

Algorithm 1, (ii): Set un2 (τ12) := G−1
2|1(u

n
2|1|un1 ) = h−1(un2|1, u

n
1 , τ12), therefore un2|1 can be

expressed as un2|1 = G2|1(u
n
2 |un1 ) = h(un2 , u

n
1 , τ12). Then, {un1 , un2 (τ12), n = 1, . . . , N} is a sample

from the joint distribution of (U1, U2), i.e., G12(u
n
1 , u

n
2 (τ12)) = C12(u

n
1 , u

n
2 (τ12)|τ12). Set

yn1 (θ1) := F−1
1 (un1 |θ1) and yn2 (θ2, τ12) := F−1

2 (un2 (τ12)|θ2). (2.3.1)

With ȳ1(θ1) := 1
N

∑N
n=1 y

n
1 (θ1) and ȳ2(θ2, τ12) := 1

N

∑N
n=1 y

n
2 (θ2, τ12), let

ρ̂12(θ1,θ2, τ12) :=

∑N
n=1(y

n
1 (θ1)− ȳ1(θ1))(yn2 (θ2, τ12)− ȳ2(θ2, τ12))√∑N

n=1(y
n
1 (θ1)− ȳ1(θ1))2

∑N
n=1(y

n
2 (θ2, τ12)− ȳ2(θ2, τ12))2

(2.3.2)

the empirical correlation coefficient based on the sample {yn1 (θ1), y
n
2 (θ2, τ12), n = 1, . . . , N}.

Using bisection, find τ12 such that |ρ̂12(θ1,θ2, τ12) − ρ12| < ε, where ρ12 is the desired target

correlation. Denote the optimal value by τ
(1)
12 and set un2 := un2 (τ

(1)
12 ), n = 1, . . . , N . Lower and

upper boundaries for the initiation of the bisection search over τ12 will be [−1, 0] for ρ12 < 0 and

[0, 1] for ρ12 ≥ 0. Each evaluation of ρ̂12(θ1,θ2, τ12) requires the calculation of the two quantiles

(2.3.1) and of the empirical correlation coefficient (2.3.2). An anonymous referee pointed out

that since yn1 (θ1) and yn2 (θ2, τ12) are discrete, ρ̂12(θ1,θ2, τ12) will only take distinct values. Hence

for a very small N , a solution of the bisection might not exist, for N →∞ the probability of no

solution converges to zero for fixed ε > 0. For N = 500 and ε = 10−3 we never came across such

a case. Also, let τ
(1)
13 and τ

(1)
23 unspecified and τ

(1)
23|1 :=

τ
(1)
23 −τ (1)12 τ

(1)
13√

(1−(τ
(1)
12 )2)(1−(τ

(1)
13 )2)

(therefore, (2.2.3)

holds). Set ΣZ(1) := Σ3

[
τ
(1)
12 , τ

(1)
13 , τ

(1)
23

]
. Now G12(u

n
1 , u

n
2 |τ

(1)
12 ) is the joint distribution of U1

and U2 with association τ
(1)
12 . Then {(un1 , un2 ), n = 1, . . . , N} is a sample from C12(u1, u2|τ (1)12 ).

(iii): According to (2.2.5) we have

un3|12 = G3|12(u
n
3 |un1 , un2 ,ΣZ(1)) = h

(
h(un3 , u

n
1 , τ

(1)
13 )︸ ︷︷ ︸

=:un
3|1

(τ
(1)
23|1

)

, h(un2 , u
n
1 , τ

(1)
12 )︸ ︷︷ ︸

=un
2|1

, τ
(1)
23|1

)
, (2.3.3)
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where both τ
(1)
13 and τ

(1)
23|1 are unknown. For unspecified τ

(1)
23|1, u

n
3|1(τ

(1)
23|1) can be expressed as

un3|1(τ
(1)
23|1) = h−1(un3|12, h(un2 , u

n
1 , τ

(1)
12 ), τ

(1)
23|1) = h−1(un3|12, u

n
2|1(τ

(1)
12 ), τ

(1)
23|1). (2.3.4)

Now we carry out a simplified transformation which we discuss in Remark 2 afterwards. Set

yn2|1(θ2, τ
(1)
12 ) := F−1

2 (un2|1(τ
(1)
12 )|θ2) and yn3|1(θ3, τ

(1)
23|1) := F−1

3 (un3|1(τ
(1)
23|1)|θ3). (2.3.5)

Using the empirical correlation coefficient based on the sample {yn2|1(θ2, τ
(1)
12 ), yn3|1(θ3, τ

(1)
23|1), n =

1, . . . , N}, i.e.,

ρ̂23|1(θ2,θ3, τ23|1) :=

∑N
n=1(y

n
2|1(θ2)− ȳ2|1(θ2))(yn3|1(θ3, τ23|1)− ȳ3|1(θ3, τ23|1))√∑N

n=1(y
n
2|1(θ2)− ȳ2|1(θ2))2

∑N
n=1(y

n
3|1(θ3, τ23|1)− ȳ3|1(θ3, τ23|1))2

,

(2.3.6)

where ȳ2|1(θ2) := 1
N

∑N
n=1 y

n
2|1(θ2) and ȳ3|1(θ3, τ23|1) := 1

N

∑N
n=1 y

n
3|1(θ3, τ23|1), find by bisection

τ23|1 such that |ρ̂23|1(θ2,θ3, τ23|1) −ρ23|1| < ε. Denote the optimal value by τ
(2)
23|1 and set un3|1 :=

un3|1(τ
(2)
23|1) for n = 1, . . . , N .

Remark 2. If τ
(1)
13 was known and τ

(1)
23|1 to be determined by bisection, the correct way to proceed

after (2.3.4) would be a) to set

un2 := h−1(un2|1, u
n
1 , τ

(1)
12 ), yn2 (θ2, τ

(1)
12 ) := F−1

2 (un2 |θ2) and

un3 (τ
(1)
23|1) := h−1(un3|1(τ

(1)
23|1), u

n
1 , τ

(1)
13 ), yn3 (θ3, τ

(1)
13 ) := F−1

3 (un3 (τ
(1)
23|1)|θ3)

and b) to eliminate the best linear effect of yn1 (θ1) from both variables and hence determine the

empirical partial correlation. Then we could manipulate τ
(1)
23|1 such that this partial correlation

matches ρ23|1 (since ρ23|1 is a partial correlation). Note that h−1 can be viewed as a conditional

quantile function and that for τ
(1)
12 = τ

(1)
13 = 0 they simplify to quantile functions, i.e., the

dependency on the conditioning variable is suppressed. On the other hand, in our transformation

we set a) ũn2 := h−1(un2|1, u
n
1 , 0) = un2|1 and ũn3 (τ

(1)
23|1) := h−1(un3|1(τ

(1)
23|1), u

n
1 , 0) = un3|1(τ

(1)
23|1) and

compensate for the suppressed dependency on un1 by matching the classical correlation coefficient

with the target partial correlation. Note also that we set τ
(1)
12 = τ

(1)
13 = 0 only in this intermediate

step. For the following steps we will not keep ũn2 or ũn3 (τ
(1)
23|1), we only keep an ”optimal” τ

(2)
23|1.

Now define τ
(2)
12 := τ

(1)
12 , τ

(2)
13 unspecified and

τ
(2)
23 := τ

(2)
23|1 ·

√
(1− (τ

(2)
12 )2)(1− (τ

(2)
13 )2) + τ

(2)
12 τ

(2)
13 . Set ΣZ(2) := Σ3

[
τ
(2)
12 , τ

(2)
13 , τ

(2)
23

]
.

Since according to (2.3.3), un3|1 can also be expressed as h(un3 , u
n
1 , τ13) (where τ13 has to be

determined), we need to define

un3 (τ13) := h−1(un3|1, u
n
1 , τ13),

yn1 (θ1) := F−1
1 (un1 |θ1) and yn3 (θ3, τ13) := F−1

3 (un3 (τ13)|θ3)

and determine the empirical correlation of {yn1 (θ1), y
n
3 (θ3, τ13), n = 1, . . . , N}, i.e.,

ρ̂13(θ1,θ3, τ13) :=

∑N
n=1(y

n
1 (θ1)− ȳ1(θ1))(yn3 (θ3, τ13)− ȳ3(θ3, τ13))√∑N

n=1(y
n
1 (θ1)− ȳ1(θ1))2

∑N
n=1(y

n
3 (θ3, τ13)− ȳ3(θ3, τ13))2

, (2.3.7)
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where ȳ1(θ1) := 1
N

∑N
n=1 y

n
1 (θ1) and ȳ3(θ3, τ13) := 1

N

∑N
n=1 y

n
3 (θ3, τ13). Using bisection find τ13

such that |ρ̂13(θ1,θ3, τ13) − ρ13| < ε. Denote the optimal value by τ
(3)
13 and set un3 := un3 (τ

(3)
13 ).

Also, let τ
(3)
12 := τ

(2)
12 , τ

(3)
23|1 := τ

(2)
23|1 and τ

(3)
23 := τ

(3)
23|1 ·

√
(1− (τ

(3)
12 )2)(1− (τ

(3)
13 )2) + τ

(3)
12 τ

(3)
13 . Set

ΣZ(3) := Σ3

[
τ
(3)
12 , τ

(3)
13 , τ

(3)
23

]
.

Now define ynt := F−1(unt |θt) for t = 1, 2, 3. Then for each n (yn1 , y
n
2 , y

n
3 ) is a realization from

the joint count distribution with margins F (·|θt) and approximate correlation ΣY .

We will store all quantities to a lower-triangular matrix V n = (vnt,j)t=1,...,T, j=1,...,t for n =

1, . . . , N in the algorithm ( identical to the scheme in Aas, Czado, Frigessi, and Bakken (2009,

Algorithm 1)). Row t of V n is associated with margin t. The first column of V n will be

initiated with unt|1:(t−1) and will be overwritten by certain unt|t∗ and finally unt . We may overwrite

these values for efficient storing reasons. The following t − 1 columns of row t will store the

arguments of h necessary for the next row, i.e., the next margin t + 1. For example, vn2,2 will

store un2|1 = G2|1(u
n
2 |un1 , τ12) because it is necessary in order to sample un3|1 (see (2.3.4)). A

corresponding pseudo-code is presented in Algorithm 2. For simplicity we drop the superscript

iteration index for the τ ’s.

Algorithm 2 Sampling from a C-vine in dimension 3 (explicit, avoiding loops)

Initiation:

• Determine target correlations (ρ12, ρ13, ρ23) and ρ23|1, where ρ23|1 := ρ23−ρ12ρ13√
(1−ρ212)(1−ρ213)

;

• Sample unt|1:(t−1), t = 1, 2, 3, n = 1, . . . , N independent uniform on [0, 1];

• Set vn1,1 ← un1 , n = 1, . . . , N ;

Begin:

(i)

for n = 1, . . . , N do

vn2,1 ← un2|1;

Calculate un2 = G−1
2|1(u

n
2|1|un1 , τ12) = h−1(un2|1, u

n
1 , τ12):

Using bisection, find τ12 such that |ρ̂12(θ1,θ2, τ12)− ρ12| < ε,

where ρ̂12(θ1,θ2, τ12) is defined in (2.3.2);

vn2,1 ← h−1(vn2,1, v
n
1,1, τ12);

Calculate un2|1 = G2|1(u
n
2 |un1 , τ12) = h(un2 , u

n
1 , τ12) (will be needed for (ii)):

vn2,2 ← h(vn2,1, v
n
1,1, τ12);

end for

(ii)

for n = 1, . . . , N do

vn3,1 ← un3|12;

Calculate un3|1 = G−1
23|1(u

n
3|12|un2|1, τ23|1) = h−1(un3|12, u

n
2|1, τ23|1) and

un3 = G−1
3|1(G

−1
23|1(u

n
3|12|un2|1, τ23|1), un1 , τ13) = h−1(un3|1, u

n
1 , τ13):

Using bisection, find τ23|1 such that |ρ̂23|1(θ2,θ3, τ23|1)− ρ23|1| < ε,

where ρ̂23|1(θ2,θ3, τ23|1) according to (2.3.6);
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Using bisection, find τ13 such that |ρ̂13(θ1,θ3, τ13)− ρ13| < ε,

where ρ̂13(θ1,θ3, τ13) is defined in (2.3.7);

vn3,1 ← h−1(vn3,1, v
n
2,2, τ23|1);

vn3,1 ← h−1(vn3,1, v
n
1,1, τ13);

end for

yn1 ← F−1
1 (vn1,1|θ1), yn2 ← F−1

2 (vn2,1|θ2) and yn3 ← F−1
3 (vn3,1|θ3);

Return: yn1 , yn2 , yn3 .

2.4 Sampling T -variate count RV’s

For high-dimensional distributions there are many possible pair-copula decompositions for the

same multivariate distribution. Bedford and Cooke (2001b) introduced a graphical model called

regular vine to help organize them. Decomposition (2.2.6) is a vine copula in dimension 3.

Vines have been constructed and investigated by Kurowicka and Cooke (2006) while Aas, Czado,

Frigessi, and Bakken (2009) study the statistical inference problem. In general, there are canoni-

cal vines (C-vines) and D-vines. We focus on C-vines but the approach can be applied to D-vines

as well.

T
1

T
2

T
3

T
4

34|12                 35|12

45|123

34|12

23|1 25|1

35|12

24|1

12
13

14

15
25|1

24|1

23|1

1

2 3

5

4

15

14

13
12

Figure 2.1: Five dimensional C-vine.

A T -dimensional regular vine is represented by T − 1 trees. Tree j has T + 1− j nodes and

T − j edges. Each edge corresponds to a pair-copula density. Edges in tree T become nodes

in tree j + 1. Two nodes in tree j + 1 are joined by an edge if the corresponding edges in tree

j share a node. The complete decomposition is defined by the T (T−1)
2 edges (i.e., pair-copula

densities) and the marginal densities. A C-vine in particular is a regular vine for which each

tree has a unique node that is connected to T − j edges. Note that for dimension 3, the C-

vine and D-vine are identical. A graphical illustration of the five-dimensional C-vine is given
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in Figure 2.1. Here, the unique node connected to the T − j edges is chosen as 1 in T1 and

t(t + 1)|1 : (t − 1) in T2 to T4. Without loss of generality, we will base all our simulations on

this decomposition. Once we have chosen the connecting node in every tree, the decomposition

of the multivariate distribution and the order in which partial correlations will be determined

in our algorithm, is fixed. One starts with margin 1 in T1 and determines the correlation τ12
since the connecting node 12 in T2 represents τ12. Then in T1, node 1 is connected by edge 12

to node 2, therefore we obtain margin 2. If we continue, we determine the partial correlation

τ23|1, which is the connecting node in T3, hence this edge in T2 will connect 12 (τ12 is already

determined) to 13. The recursive expression for the partial correlations (2.2.3) allows for a one-

to-one relationship between the correlations and partial correlations of the multivariate normal

distribution (see Joe (2006)). Thus the multivariate distribution defined by the Gaussian copula

is fully specified as well. After determining τ13 we can sample margin 3 (see T1). The next

partial correlations to be obtained in order to sample margin 4 will be τ34|12, τ24|1 and τ14.

Finally, we will proceed with τ45|123, τ35|12, τ25|1 and τ15. In general, we will generate samples

{ynk|1:(k−1)(θk), y
n
t|1:(k−1)(θt, τkt|1:(k−1)), n = 1, . . . , N}, where ynk|1:(k−1)(θk) := F−1

k (unk|1:(k−1)|θk)
and ynt|1:(k−1)(θt, τkt|1:(k−1)) := F−1

t (unt|1:(k−1)(τkt|1:(k−1))|θt). Similar to (2.3.4), for independent

un1 , . . . , u
n
T |1:(T−1) we recursively define for t = 2, . . . , T and k = 1, . . . , t− 1

unt|1:(k−1)(τkt|1:(k−1)) := h−1(unt|1:k, u
n
k|1:(k−1)(τk(k−1)|1:(k−2))|τkt|1:(k−1))

unk|1:(k−1)(τk(k−1)|1:(k−2)) := h(unk|1:(k−2)(τk(k−1)|1:(k−2)), u
n
k−1|1:(k−2)|τk(k−1)|1:(k−2)).

The approximating partial correlation coefficient of the sample is given by

ρ̂kt|1:(k−1)(θk,θt, τkt|1:(k−1)) :=
∑N

n=1(y
n
k|1:(k−1)(θk)− ȳk|1:(k−1)(θk))(y

n
t|1:(k−1)(θt, τkt|1:(k−1))− ȳt|1:(k−1)(θt, τkt|1:(k−1)))

√

∑N

n=1(y
n
k|1:(k−1)(θk)− ȳk|1:(k−1)(θk))2

∑N

n=1(y
n
t|1:(k−1)(θt, τkt|1:(k−1))− ȳt|1:(k−1)(θt, τkt|1:(k−1)))2

,

(2.4.1)

where ȳk|1:(k−1)(θk) := 1
N

∑N
n=1 y

n
k|1:(k−1)(θk) and ȳt|1:(k−1)(θt, τkt|1:(k−1)) :=

1
N

∑N
n=1 y

n
t|1:(k−1)(θt, τkt|1:(k−1)).

2.4.1 Sampling algorithm in dimension T

Algorithm 3 Sampling from a C-vine in dimension T

Initiation:

• Determine target correlations;

• Sample unt|1:(t−1), t = 1, . . . , T , n = 1, . . . , N independent uniform on [0, 1];

• Set vn1,1 ← un1 , n = 1, . . . , N ;

Begin:

for t = 2, . . . , T and n = 1, . . . , N do

vnt,1 ← unt|1:(t−1);

for k = t− 1 to 1 do
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Using bisection, find τkt|1:(k−1) such that

|ρ̂kt|1:(k−1)(θk,θt, τkt|1:(k−1))− ρkt|1:(k−1)| < ε,

where ρ̂kt|1:(k−1)(θk,θt, τkt|1:(k−1)) is defined in (2.4.1);

Set vnt,1 ← h−1(vnt,1, v
n
k,k, τkt|1:(k−1));

end for

unt ← vnt,1;

if t < T then

for j = 1 to t− 1 do

vnt,j+1 ← h(vnt,j , v
n
j,j , τjt|1:(j−1));

end for

end if

end for

ynt ← F−1
t (vnt,1|θt), t = 1, . . . , T , n = 1, . . . , N ;

Return: ynt , t = 1, . . . , T .

In the R package corcounts the marginal distributions can be specified as Poisson, generalized

Poisson, zero-inflated Poisson, zero-inflated generalized Poisson or negative binomial distribution

with marginal parameters as well as the target correlation set by the users. Then correlated rv’s

from these distributions having approximately the specified correlation will be sampled. The

runtime needed for the generation of one set of variables depends not only on the dimension of

the problem but also on how fast quantiles of the desired marginal distribution can be calculated.

Only the Poisson and the negative binomial quantile functions are part of the R base functions.

For all other distributions, the quantile functions are part of the ”corcounts” package and are

not as fast. The runtime in seconds for generating one set of T × N variables, T = 2, . . . , 5,

N = 500, 2000, 5000 for different marginal distributions on a PC with Intel processor, 2GHz and

1GB RAM is given in Table 2.2.

T = 2 T = 3 T = 4 T = 5

N 500 2000 5000 500 2000 5000 500 2000 5000 500 2000 5000

Poi 0.03 0.04 0.06 0.06 0.19 0.42 0.15 0.43 0.96 0.18 0.79 1.96

NB 0.05 0.19 0.45 0.13 0.39 1.00 0.26 0.80 1.98 0.40 1.57 3.64

GP 0.48 2.58 5.46 1.70 5.24 14.59 3.08 12.45 27.71 4.71 23.66 52.05

ZIP 0.34 1.59 5.57 0.98 5.33 11.95 2.58 9.60 25.36 4.69 21.87 52.86

ZIGP 0.40 0.69 5.64 1.10 4.84 12.06 2.64 8.94 21.31 7.70 20.02 58.95

Table 2.2: Runtime in seconds for generating one set of T ×N variables, T = 2, . . . , 5, number

of observations N = 500, 2000, 5000 in each cell

2.5 NORTA Sampling Method with Illustration to NB count

Data

In this section we will compare our sampling approach to a naive approach and the NORTA

approach for sampling count rv’s. The naive approach is to use our desired target correlation
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ΣY and generate for a sample of N subjects n-dimensional multivariate normal random vectors

with covariance ΣY , i.e. Zk ∼ Nn(0,ΣY ), k = 1, . . . , N. Next we transform the sample zk =

(zk1, . . . , zkn)′ to the uniform level uk := (Φ(zk1), . . . ,Φ(zkn))′, k = 1, . . . , N and determine

the sample correlation Σ̂
U

of {uk, k = 1, . . . , N}. Then we generate outcomes according to

the generalized Poisson distribution (see Table 2.1) with cdf Fi by determining the quantiles

of the GP distribution with mean µi and variance µiϕ
2
i at uki, k = 1, . . . , N , i = 1, . . . , n,

i.e. ynaiveki := F−1
i (uki|µi, ϕi), and ynaivek := (ynaivek1 , . . . , ynaivekn )′. The sample correlation of

{ynaivek , k = 1, . . . , N} will be denoted by Σ̂
Y naive

.

As second benchmark, we will consider the NORTA method(see Cario and Nelson (1997)

and Avramidis, Channouf, and L’Ecuyer (2009)): the Pearson correlation between Yt and Yt∗ is

given by ρtt∗ := corr(Yt, Yt∗) = E(Yt,Yt∗ )−E(Yt)E(Yt∗ )√
var(Yt)var(Yt∗ )

. If we define a bivariate cdf of (Yt, Yt∗) by

a bivariate Gaussian copula with correlation parameter τtt∗ , i.e. F2(yt, yt∗ |τtt∗) := Ctt∗(Ft(yt |
θt), Ft∗(yt∗ | θt∗)|τtt∗), we may write ρtt∗(τtt∗) := g(Yt,Yt∗ |τtt∗ )−E(Yt)E(Yt∗ )√

var(Yt)var(Yt∗ )
, where

g(Yt, Yt∗ |τtt∗) = E(YtYt∗) =

∫ ∞

−∞

∫ ∞

−∞
F−1
t (Φ(zt))F

−1
t∗ (Φ(zt∗))φ2(zt, zt∗ |τtt∗)dztdzt∗ .

For zt,i := Φ−1(Ft(i)) and zt∗,j := Φ−1(Ft∗(j))

g(Yt, Yt∗ |τtt∗) =
∞∑

i=1

∞∑

j=1

ij

(∫ zt,i

zt,i−1

∫ zt∗,j

zt∗,j−1

φ2(zt, zt∗ |τtt∗)dztdzt∗

)

=
∞∑

i=1

∞∑

j=1

ij
[
Φ2(zt,i−1, zt∗,j−1|τtt∗)− Φ2(zt,i, zt∗,j−1|τtt∗)

−Φ2(zt,i−1, zt∗,j |τtt∗) + Φ2(zt,i, zt∗,j |τtt∗)
]

≈
Kt∑

i=0

Kt∗∑

j=0

Φ2(zt,i, zt∗,j |τtt∗), (2.5.1)

where Kt and Kt∗ are defined as the quantiles of Ft and Ft∗ at some value close to 1 (we use

1−10−6). According to Srivastava and Khatri (1979, p. 48), the derivative of g(Yt, Yt∗ |τtt∗) w.r.t.

τtt∗ is ∂
∂τtt∗

g(Yt, Yt∗ |τtt∗) =
∑∞

i=0

∑∞
j=0 φ2(zt,i, zt∗,j |τtt∗), where we use ∂

∂τtt∗
Φ2(zt,i, zt∗,j |τtt∗) =

∂2

∂zt,i∂zt∗,j
Φ2(zt,i, zt∗,j |τtt∗). An implementation for rank correlations has been implemented by

Avramidis, Channouf, and L’Ecuyer (2009) in Java. It can easily be altered to deal with Pearson

correlation. The implementation is available at

http://www.iro.umontreal.ca/ lecuyer/myftp/nortadisc/java/ .

In the Java implementation we use the NI2A method, one out of four suggested methods for

finding the root of f(τtt∗) := g(Yt, Yt∗ |τtt∗) − E(Yt)E(Yt∗) − ρtt∗
√

var(Yt)var(Yt∗) where the

derivative of f is identical to that of g. NI2A finds a root of f by numerically integrating its

derivative, for details see Avramidis, Channouf, and L’Ecuyer (2009, Subsection 3.1.3).

Now if Σ := (τtt∗)t,t∗=1,...,T is not positive definite one can perform a correction step to obtain

a ’close’ positive definite correlation matrix. We use the eigenvalue correction (see Ghosh and

Henderson (2003)) where Σ is decomposed into eigenvalues and eigenvectors and all negative

eigenvalues are set to some ε > 0 (in our case, ε := 10−15). The corrected correlation matrix will

be denoted by ΣNORTA. We use ΣNORTA and generate for a sample of N subjects T -dimensional
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multivariate normal random vectors with covariance ΣNORTA, i.e. Zn ∼ NT (0,ΣNORTA),

n = 1, . . . , N. Next we transform the sample zn = (zn1, . . . , znT )′ to the uniform level un :=

(Φ(zn1), . . . ,Φ(znT ))′, n = 1, . . . , N and proceed as in the naive approach by determining the

quantiles at unt := Φ(znt), n = 1, . . . , N , t = 1, . . . , T , i.e. yNORTAnt := F−1
t (unt|µt, ψt), and

yNORTAn := (yNORTAn1 , . . . , yNORTAnT )′. The sample correlation of {yNORTAn , n = 1, . . . , N} will

be denoted by Σ̂
Y NORTA

.

For a first illustrative comparison of the algorithms we generate outcomes according to the

Negative Binomial distribution (see Table 2.1) with cdf Ft, mean µt and variance µt(1+ µt
ψt

). We

choose as sampling setting T = 8 and N = 100 000. Also we use as target correlation matrix

an exchangeable structure, i.e., ΣY = (ρtt∗) with ρtt∗ = 0.6 ∀t 6= t∗ and ρtt = 1. Marginal

means of the eight-dimensional NB distribution were set to µ := (4, 25, 120, 2, 28, 7, 27, 5)′, size

parameters to ψ := (3.2, 2.22, 40, 0.38, 9.33, 0.88, 21.6, 0.95)′.
Sampling based on the naive approach results in a sample of count variables whose correlation

matrix is estimated to

Σ̂
Y naive

=



























1.0000, 0.5789, 0.5813, 0.5081, 0.5822, 0.5523, 0.5787, 0.5567

0.5789, 1.0000, 0.5795, 0.5098, 0.5784, 0.5583, 0.5737, 0.5545

0.5813, 0.5795, 1.0000, 0.4888, 0.5991, 0.5450, 0.5957, 0.5483

0.5081, 0.5098, 0.4888, 1.0000, 0.4963, 0.5118, 0.4881, 0.5134

0.5822, 0.5784, 0.5991, 0.4963, 1.0000, 0.5535, 0.5935, 0.5535

0.5523, 0.5583, 0.5450, 0.5118, 0.5535, 1.0000, 0.5430, 0.5482

0.5787, 0.5737, 0.5957, 0.4881, 0.5935, 0.5430, 1.0000, 0.5452

0.5567, 0.5545, 0.5483, 0.5134, 0.5535, 0.5482, 0.5452, 1.0000



























,

where the off-diagonal average absolute deviation from the target correlation is 0.0494 Sam-

pling based on NORTA gives

Σ̂
YNORTA

=



























1.0000, 0.5925, 0.5979, 0.5285, 0.5964, 0.5673, 0.5942, 0.5714

0.5925, 1.0000, 0.5813, 0.5373, 0.5846, 0.5658, 0.5799, 0.5680

0.5979, 0.5813, 1.0000, 0.5111, 0.5992, 0.5491, 0.5970, 0.5554

0.5285, 0.5373, 0.5111, 1.0000, 0.5183, 0.5401, 0.5103, 0.5371

0.5964, 0.5846, 0.5992, 0.5183, 1.0000, 0.5575, 0.5960, 0.5645

0.5673, 0.5658, 0.5491, 0.5401, 0.5575, 1.0000, 0.5514, 0.5593

0.5942, 0.5799, 0.5970, 0.5103, 0.5960, 0.5514, 1.0000, 0.5578

0.5714, 0.5680, 0.5554, 0.5371, 0.5645, 0.5593, 0.5578, 1.0000



























.

The average absolute deviation from the target correlation is 0.0368. On the other hand,

using the C-vine approach, we get

Σ̂
Y
=



























1.0000, 0.6026, 0.6095, 0.5977, 0.5992, 0.5921, 0.6005, 0.5917

0.6026, 1.0000, 0.6074, 0.6012, 0.6056, 0.6028, 0.6042, 0.6049

0.6095, 0.6074, 1.0000, 0.5599, 0.6149, 0.5882, 0.6225, 0.5888

0.5977, 0.6012, 0.5599, 1.0000, 0.5709, 0.6223, 0.5635, 0.6204

0.5992, 0.6056, 0.6149, 0.5709, 1.0000, 0.5896, 0.6228, 0.5928

0.5921, 0.6028, 0.5882, 0.6223, 0.5896, 1.0000, 0.5925, 0.6188

0.6005, 0.6042, 0.6225, 0.5635, 0.6228, 0.5925, 1.0000, 0.5941

0.5917, 0.6049, 0.5888, 0.6204, 0.5928, 0.6188, 0.5941, 1.0000



























,

where the off-diagonal absolute deviations from the target correlations have an average value

of 0.0121. This shows that we can expect gains of the C-vine sampling approach compared to

the naive also also the NORTA one.
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2.6 Simulation Study

We want to investigate the small sample performance of our proposed sampling method for a cor-

related count vector Y = (Y1, . . . , YT ) with target correlation ρtt∗ = corr(Yt, Yt∗), 1 ≤ t < t∗ ≤ T .

For this we use the mean absolute deviation with respect to the target correlation: we generate

i.i.d. samples from Y using either the C-vine, naive or NORTA sampling method. Based on the

i.i.d. sample we assess the performance by the absolute deviation of the corresponding empirical

correlations of the sampled values to the target correlations. To estimate this deviation we use R

replications of the N dimensional sample of Y . In particular we denote by yrn = (yn1, . . . , ynT )

the nth sampled count random vector of replication r, r = 1, . . . , R. Then the deviation

is estimated by d̂tt∗ := 1
R

∑R
r=1 |ρ̂rtt∗ − ρtt∗ |, where ρ̂rtt∗ :=

∑N
n=1(y

r
nt−ȳrt )(yrnt∗

−ȳr
t∗
)√∑N

n=1(y
r
nt−ȳrt )2

√∑N
n=1(y

r
nt∗

−ȳr
t∗
)2

and ȳrt := 1
N

∑N
n=1 y

r
nt ∀t = 1, . . . , T . We consider the mean absolute value of d̂tt∗ , i.e.

MEANAD := 1
T (T−2)/2

∑
1≤t<t∗≤T |d̂tt∗ | as an overall performance measure. Note that the

deviation estimates d̂tt∗ are dependent since the components of yrn are correlated. Therefore the

standard error of MEANAD cannot be estimated easily, hence we do not consider it. Never-

theless, the average of d̂tt∗ is still a consistent estimator of its mean.

In order to get a first insight on the accuracy of the C-vine algorithm we choose a trivari-

ate example, i.e., we choose three Poisson margins with mean 10 and an exchangeable target

correlation with ρ = 0.5 and choose a random N uniform from [500, 10000]. For ε = 10−2 we

repeat the sampling R = 1000 times and report empirical quantiles of d̂12, d̂13 and d̂23. We

see in Table 2.3 that even for the pair of margins (2, 3) for which τ23 is determined via partial

correlations τ23|1 the median absolute deviation d̂23 is below ε which demonstrates the accuracy

of our approach. Now we proceed with a general simulation study investigating many parameter

Min. 1st Qu. Median Mean 3rd Qu. Max.

d̂12 0.0000 0.0016 0.0039 0.0042 0.0064 0.0100

d̂13 0.0000 0.0019 0.0041 0.0043 0.0065 0.0100

d̂23 0.0000 0.0031 0.0080 0.0165 0.0162 0.0955

Table 2.3: Empirical quantiles of d̂12, d̂13 and d̂23 for C-vine sampling in a trivariate setting

with Poi(10) margins and target exchangeable correlation of 0.5, R = 1000, ε = 10−2 and N

random uniform between 500 and 10000.

settings. While again we set R = 1000 we now fix N = 1000. We consider the four distributions

introduced in Section 2.2. Marginal parameters θt are µt in the Poisson case, (µt, ϕt) in the GP

case, (µt, ϕt, ωt) in the ZIGP case and (µt, ψt) in the NB case. Variances V ar(Yrit) will be equal

in the GP and NB case if we set ϕ2
t = 1 + µt

ψt
or equivalently ψt = µt

ϕ2
t−1

.

We investigate the influence the dimension T and the size of the correlation in an exchange-

able and an AR(1) target correlation structure, i.e., ρtt∗ = ρ and ρtt∗ = ρ|t−t
∗|, respectively.

The settings were ρ ∈ {0.1, 0.4, 0.7}, T ∈ {2, 5, 10}. Medium sized marginal parameters accord-

ing to Table 2.4 were used. Results are summarized in Table 2.5. According to Table 2.5,

in all settings chosen, MEANAD is lower for C-vine sampling than for the other approaches.

Whereas for NORTA MEANAD increases slowly with the dimension T it increases faster for

C-vine sampling. For NORTA the explanation is given by Ghosh and Henderson (2003) who

show that the probability of a negative definite correlation matrix produced by NORTA in-
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T Parameters

Poi 2 µ := (8, 20)′

5 µ := (8, 20, 11, 9, 13)′

10 µ := (8, 20, 11, 9, 13, 19, 5, 27, 12, 10)′

GP µ as in Poisson case

2 ϕ := (1.5, 1.5)′

5 ϕ := (1.5, 1.5, 2, 3.5, 1.5)′

10 ϕ := (1.5, 1.5, 2, 3.5, 1.5, 2.5, 3, 2, 1.5, 2)′

ZIGP µ and ϕ as in GP case

2 ω := (0.2, 0.25)′

5 ω := (0.2, 0.25, 0.15, 0.3, 0.1)′

10 ω := (0.2, 0.25, 0.15, 0.3, 0.1, 0.2, 0.15, 0.05, 0.24, 0.1)′

NB µ as in Poisson case

2 ψ := (6.4, 16)′

5 ψ := (6.4, 16, 3 2
3 , 0.8, 10.4)′

10 ψ := (6.4, 16, 3 2
3 , 0.8, 10.4, 3.62, 0.625, 9, 9.6, 3 1

3 )′

Table 2.4: Marginal parameter choices for T = 2, 5 and 10 and exchangeable correlation structure

for different marginal distributions (marginal variances for GP and NB margins are chosen to

be equal)

creases with dimension and is around 85% for T = 10. In our approach, however, the reason

for this behavior is simply error propagation, since for larger T a greater share of association

parameters needs to be determined indirectly via partial correlations. While a higher target

correlation ρ leads to an increase of MEANAD for C-vine sampling, NORTA sampling even

faintly improves with growing ρ. For all approaches, the AR(1) settings perform slightly worse

than the exchangeable ones. For C-vine sampling overdispersed settings perform worse than

equidispersed ones. Zero-inflation also increases overdispersion and hence worsens the results.

For zero-inflated margins NORTA basically fails to find the appropriate input parameters. Even

the naive approach performs better. For other settings the naive approach performs worse than

NORTA in the settings where ρ is larger than 0.1. In general, we confirm the insights of Biller

and Ghosh (2006) who stress that the efficiency of NORTA depends on the target correlation

and the distributional class.

2.7 Summary and Discussion

This chapter develops an applied approach in the difficult field input modeling for high-dimensional

correlated count data. It is an approximating sampling method since we a) use a partial corre-

lation property for conditional correlations and b) carry out a simplified intermediate transfor-

mation in order to determine partial correlation parameters. Nevertheless, since this simplified

approach is only used to determine partial correlation parameters, the margins have the desired

distributions, i.e., an error only occurs as far as the correlation of the outcomes is concerned.

Despite these simplifications we show via simulation that our approach generates count variables

with precise correlation. We compared our approach to NORTA, the most famous competitor

for the problem at hand. A shortcoming of both our and the NORTA approach is that not all

correlations can be sampled. As Cario and Nelson (1997) pointed out (Proposition 1) the upper
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exchangeable AR(1)

ρ Poisson GP ZIGP NB Poisson GP ZIGP NB

0.1 2 0.0044 0.0043 0.0044 0.0042 0.0044 0.0042 0.0043 0.0043

0.0253 0.0267 0.0350 0.0247 0.0248 0.0274 0.0349 0.0255

0 .0252 0 .0247 0 .0256 0 .0250 0 .0263 0 .0265 0 .0253 0 .0263

5 0.0075 0.0073 0.0074 0.0071 0.0072 0.0069 0.0072 0.0069

0.0256 0.0256 0.0333 0.0260 0.0252 0.0258 0.0290 0.0257

0 .0250 0 .0271 0 .0275 0 .0262 0 .0252 0 .0259 0 .0263 0 .0262

10 0.0103 0.0101 0.0105 0.0101 0.0098 0.0097 0.0101 0.0098

0.0254 0.0259 0.0319 0.0259 0.0254 0.0255 0.0265 0.0255

0 .0251 0 .0272 0 .0276 0 .0267 0 .0253 0 .0257 0 .0257 0 .0256

0.4 2 0.0047 0.0045 0.0045 0.0046 0.0046 0.0046 0.0045 0.0047

0.0222 0.0220 0.1173 0.0219 0.0210 0.0215 0.1148 0.0216

0 .0209 0 .0230 0 .0298 0 .0228 0 .0217 0 .0228 0 .0299 0 .0232

5 0.0096 0.0109 0.0114 0.0104 0.0104 0.0101 0.0105 0.0100

0.0215 0.0231 0.1042 0.0229 0.0238 0.0250 0.0654 0.0245

0 .0217 0 .0348 0 .0452 0 .0319 0 .0236 0 .0313 0 .0365 0 .0291

10 0.0124 0.0139 0.0145 0.0133 0.0148 0.0148 0.0155 0.0150

0.0213 0.0235 0.0887 0.0228 0.0246 0.0253 0.0411 0.0250

0 .0216 0 .0364 0 .0440 0 .0331 0 .0243 0 .0288 0 .0306 0 .0280

0.7 2 0.0045 0.0046 0.0046 0.0046 0.0045 0.0045 0.0047 0.0046

0.0128 0.0139 0.2044 0.0139 0.0133 0.0141 0.2042 0.0132

0 .0142 0 .0164 0 .0373 0 .0154 0 .0147 0 .0165 0 .0373 0 .0162

5 0.0108 0.0150 0.0180 0.0135 0.0150 0.0166 0.0166 0.0155

0.0130 0.0143 0.1362 0.0139 0.0185 0.0194 0.0958 0.0193

0 .0145 0 .0371 0 .0630 0 .0313 0 .0185 0 .0358 0 .0547 0 .0319

10 0.0127 0.0177 0.0194 0.0150 0.0194 0.0197 0.0209 0.0194

0.0131 0.0148 0.1243 0.0143 0.0210 0.0226 0.0647 0.0224

0 .0143 0 .0378 0 .0567 0 .0332 0 .0215 0 .0351 0 .0431 0 .0324

Table 2.5: Mean absolute deviation (MEANAD) based on R = 1000 replications of N =

1000 samples of size T for exchangeable target correlation ρ and different count margins and

parameters as in Table 2.4 (bold: C-vine sampling, bold italics: NORTA sampling, italics: naive

sampling)

and lower boundaries of feasible absolute correlations may be smaller than 1. An advantage

of C-vine sampling over NORTA is that the resulting input correlation is already positive defi-

nite (Joe (2006)). Throughout all settings we investigated, our sampling approach had a lower

absolute deviation than NORTA.



Chapter 3

Generalized estimating equations for

longitudinal generalized Poisson

count data with regression effects on

the mean and dispersion level

3.1 Introduction

This chapter considers longitudinal setups for generalized Poisson (GP) data using GEE. The

GP distribution has first been introduced by (Consul and Jain 1970). GP regression models

(GPR) were discussed by (Consul and Famoye 1992) and (Famoye 1993). (Famoye, J.T., and

K.P. 2004) apply generalized Poisson regression to accident data, whereas (Famoye and Singh

2003) develop a zero-inflated generalized Poisson regression model. A multivariate generalization

of the generalized Poisson distribution capable of modeling exchangeable covariance structures

has been developed by (Vernic 2000) and is applied to insurance. Statistical inference regarding

the generalized Poisson distribution is done by (Tripathi and Gupta 1984). A Bayesian analysis

is carried out by (Scollnik 1995) and (Gschlößl and Czado 2008). The interest in the class of

GPR models is driven by the fact that it can handle under- and overdispersion, which count

data very often exhibits. We allow for regression effects not only on the mean but on the

dispersion parameter as well. In this case we will illustrate that we need to focus on the

case of overdispersion, which most data exhibits. This regression specification allows to model

overdispersion by individual characteristics (e.g. by a company’s industry) and to improve

model fit when constant dispersion is insufficient. The fact that the GP distribution is a hyper

model of the Poisson distribution allows for nested model comparison if the mean specifications

are hierarchical. The variance function of the GP distribution can be written as a product

of the mean and an independent dispersion parameter, which eases regression specifications of

the dispersion parameter. In contrast to the negative binomial distribution exploratory tools

for suitable choice and transformation of describing variables for the dispersion parameter have

already been developed by (Czado, Erhardt, Min, and Wagner 2007).

GEE have been introduced by (Liang and Zeger 1986) which are also known by GEE1.

Second level GEE (GEE2, (Prentice and Zhao 1991)) allow to determine variance parameters as

well. (Yan and Fine 2004) consider generalized estimating equations for the Poisson distribution.

40
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An implementation can be found in the R package ’geepack’ (see (Yan 2002)). (Hall and Severini

1998) develop extended generalized estimating equations which are based on a Taylor series

expansion of an extended quasi-likelihood function. According to (Hilbe 2007, p. 119) they

are less accurate for the estimation of the dispersion than GEE2, which which our approach is

based on. For the conditional fixed-effects negative binomial distribution, generalized estimating

equations are implemented in Stata ((StataCorp 2007)). (Hilbe 2007, Section 10.4) emphazises

that in this setup the dispersion parameter is not estimated as a separate parameter, it is

apportioned across panels. So far, no approach for fitting the dispersion parameters of the

negative binomial distribution, even without regression effects, has been developed.

A comparison of three models starting with the regular Poisson GEE extended by dispersion

designs will be carried out in this chapter. Since these models might be nonnested, partial

deviance, likelihood ratio tests or AIC are not applicable. Instead we use the ’quasilikelihood

under independence criterion’ (QIC) introduced by (Pan 2001) for variable selection and the

Wald-Wolfowitz run test ((Chang 2000)) for assessing the goodness-of-fit.

The usefulness of our extensions will be demonstrated in an application to make-or-buy

decision drivers in the field of patent filing processes. This data has already been examined by

(Wagner 2006b), who used negative binomial panel regression to fit the data. (Wagner 2006a)

applies Transaction Cost Economics and a resource based view on make-or-buy decisions of

patent related services. (Czado, Erhardt, Min, and Wagner 2007) apply zero-inflated generalized

Poisson (ZIGP) regression to this data and present tools for an exploratory data analysis to select

covariates on the dispersion level, which will also be used in this chapter. While in the ZIGP

paper the observation year was conditioned on by considering it as a covariate, this temporal

dependency will actually be quantified in this chapter. The implementation is carried out in R.

The chapter is innovative with regard to the following aspects: first of all, despite its ad-

vantages over the negative binomial distribution, the GP distribution has not been considered

in the context of GEE. Thereby we suggest an approach to approximate higher mixed moments

for second level estimating equations. Secondly the GP distribution allows to let the dispersion

parameter vary with covariates thus to identify covariate combinations where one finds large

and small overdispersion effects. The dispersion coefficients will be estimated using second-level

estimating equations. Thirdly, a closer look at the patent data including a quantification of the

time dependency will be taken.

The chapter is organized as follows: Section 3.2 introduces our GPR regression setup. In

Section 3.3, we show how the GEE approach by (Liang and Zeger 1986) and the extensions by

(Prentice and Zhao 1991) can be applied to estimate parameters in our setup. A simulation study

investigating small sample properties will be given in Section 3.4 showing a satisfactory behavior

for medium sample sizes. Subsection 3.5.1 reviews the variable selection criterion for panel data

by (Pan 2001) while in Subsection 3.5.2 an overview of our extensions to GEE techniques applied

to longitudinal Poisson data is given and the goodness-of-fit will be compared for the different

setups. Section 3.6 applies our findings to patent outsourcing data and interprets the results of

our ’best’ model. We conclude with a summary and discussion section.

3.2 A GEE setup for longitudinal count data

Let Yit ∼ GP (µit, ϕit). For the GP distribution we refer to the Introduction chapter. Assume

we have longitudinal responses Yit for t = 1, . . . , T time points and i = 1, . . . ,K subjects, which
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we arrange as follows:

Y11 . . . Y1T Y 1∼ ∈ N
T
0

...
...

... (independent random vectors)

YK1 . . . YKT Y K∼ ∈ N
T
0

Y ∼1 ∈ N
K
0 . . . Y ∼T ∈ N

K
0

.

Here Y i := Y i∼ = (Yi1, . . . , YiT )′ summarizes the T dimensional vector of dependent variables

for subject i. Observations from different subjects are assumed to be independent. Similarly

Y ∼t := (Y1t, . . . , YKt)
′ ∈ N

K
0 collects the i.i.d. marginal data at time point t. Moreover let

µi(β) := E(Y i | β) ∈ R
T denote the vector of means of subject i. Variances are given by

σ2it(δ) := var(Yit|δ) with δ being a vector summarizing all parameters which influence the

variance. Correlations are modeled by a ’working correlation matrix’ R1(λ1) = (ρtt∗(λ1)) ∈
[−1, 1]T×T for Y i, which will be equal for all subjects. Without loss of generality, assume a

scalar λ1 ∈ [−1, 1], which allows for the most common correlation structures used in the litera-

ture. We investigate two specifications for R1(λ1), i.e.

• exchangeable: ρtt∗(λ1) = λ1 and ρtt(λ1) = 1, λ1 ∈ (−1, 1),

• first-order autoregressive AR(1): ρtt∗(λ1) = λ
|t−t∗|
1 and ρtt(λ1) = 1, λ1 ∈ (−1, 1).

Collecting all observations in a vector Y := (Y ′
1, . . . ,Y

′
K)′ the correlation matrix of Y is

corr(Y ) =




R1(λ1) 0T×T . . . 0T×T
0T×T R1(λ1) 0T×T

...
. . .

...

0T×T 0T×T . . . R1(λ1)



∈ R

KT×KT . (3.2.1)

The advantage of using a GEE approach is that one does not need to specify the joint distribution

of Y ∈ R
K×T but it is enough to specify the first two moments of the distribution. For t =

1, . . . , T we assume the following marginal specification for Y ∼t ∼ GP (µ∼t,ϕ∼t) where µ∼t :=

(µ1t, . . . , µKt)
′ and ϕ∼t := (ϕ1t, . . . , ϕKt)

′, i.e., we have E(Y ∼t) = µ∼t and

var(Y ∼t) =



µ1tϕ

2
1t . . . 0

...
. . .

...

0 . . . µKtϕ
2
Kt


 . (3.2.2)

Since for some data a constant overdispersion parameter might be too restrictive, we allow for

regression on both mean and overdispersion parameters. Thereby, we use (known) explanatory

variables xit = (1, xit1, . . . , xitp)
′ for the mean and wit = (1, wit1, . . . , witq)

′ for overdispersion,

i = 1, . . . ,K, t = 1, . . . , T .

Another possibility for specifying the influence of regressors on the distribution’s hetero-

geneity would be to regress on the variances directly. However, this would imply that we would

have to set ϕit :=
√

var(Yit)
E(Yit)

which might fall below 1 for some observations. According to the

definition of the underdispersed GP distribution, in this case ϕit > max(12 , 1−
µit
mit

) needs to be

fulfilled and the cumulative sum of probabilities needs not be 1 (see (Consul and Jain 1970, p.

4)). Therefore we prefer to regress on the overdispersion parameter itself. In order to specify ap-

propriate regression models for the overdispersion parameter, we utilize tools for an exploratory
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data analysis suggested by (Czado, Erhardt, Min, and Wagner 2007, Section 5), which will be

illustrated in Section 3.6.1. Finally we allow individual (known) exposure variables Eit > 0.

The complete specification is given by:

1. Random components:

Let Yit ∼ GP (µit, ϕit), where {Yit, 1 ≤ i ≤ K, 1 ≤ t ≤ T} are independent over all i and

dependent with correlation matrix R1(λ1) for t = 1, . . . , T .

2. Systematic components:

Two linear predictors ηµit(β) = x′
itβ and ηϕit(α) = w′

itα, i = 1, . . . ,K, t = 1, . . . , T influence

the response Yit. Here, β = (β0, β1, . . . , βp)
′ and α = (α0, α1, . . . , αq)

′ are unknown

regression parameters. The matrices Xi = (xi1, . . . ,xiT )′ and W i = (wi1, . . . ,wiT )′

are the corresponding design matrices.

3. Parametric link components:

The linear predictors ηµit(β) and ηϕit(α) are related to µit(β) and ϕit(α), i = 1, . . . ,K,

t = 1, . . . , T as follows:

(i) Mean level

E(Yit | β) = µit(β) := Eite
x′
itβ = ex

′
itβ+log(Eit) > 0

⇔ ηµit(β) = log(µit(β))− log(Eit) (log link), (3.2.3)

(ii) Overdispersion level

ϕit(α) := 1 + ew
′
itα > 1

⇔ ηϕit(α) = log(ϕit(α)− 1)) (shifted log link). (3.2.4)

This setup for longitudinal count regression data {Yit, i = 1, . . . ,K; t = 1, . . . , T} we denote

by GPR(µit, ϕit,R1(λ1)). To be precise this is not a complete statistical formulation, since only

the margins and the covariance structure are specified. This however is sufficient for estimation

using a GEE approach. The following abbreviations will be used:

ρtt∗
(
λ1(γ)

)
:= [R1(λ1(γ))]tt∗ = corr(Yit, Yit∗), t 6= t∗,

λ1(γ) := e2γ−1
e2γ+1

= tanh(γ) ∈ (−1, 1), γ ∈ R, where

λ1(γ) parameter of the working correlation matrix,

δ := (β′,α′, γ)′ ∈ R
p+q+3, β ∈ R

p+1, α ∈ R
q+1,

Eit := known exposure of observation i at time t,

µit(β) := ex
′
itβ+log(Eit),

ϕit(α) := 1 + ew
′
itα = 1 + bit(α), bit(α) := ew

′
itα

The Fisher Z-transformation λ1(γ) := tanh(γ) ((Fisher 1921)) will be used to allow for

unconstrained optimization over γ (instead of constrained optimization over λ1 on (−1, 1)).

Also, this will allow to estimate the variance of γ̂ along with the variances of the estimates β̂

and α̂. Since λ1(0) = 0, using this transformation for testing H0 : γ = 0 versus H1 : γ 6= 0 will

correspond to testing H0 : λ1 = 0 versus H1 : λ1 6= 0.
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3.3 A GEE approach for GPR(µit, ϕit,R1(λ1))

Generalized estimating equations have first been introduced by (Liang and Zeger 1986) and will

be denoted by GEE1. Since GEE1 are based on weighted residuals, only parameters influencing

the means (i.e., β) can be estimated. In the GEE1 context, the correlation has to be estimated

separately using for instance estimators based on residuals. (Prentice and Zhao 1991) extend

generalized estimating equations (GEE2). These extensions allow to estimate the correlation

parameter γ simultaneously with β. The additional variance parameters α are estimated by

a second set of estimating equation based on covariance residuals. For E(Yit) = µit(β) and

var(Yit) = σ2it(δ), a working covariance matrix for Y i can be constructed by

V i1(δ) := A
1/2
i (δ)R1(λ1(γ))A

1/2
i (δ) ∈ R

T×T , (3.3.1)

where Ai(δ) := diag{σ2i1(δ), . . . , σ2iT (δ)}. Covariances will be denoted by σ2itt∗(δ) := cov(Yit,

Yit∗) and σ2
i (δ) :=

(
σ2itt∗(δ); t ≤ t∗; t, t∗ = 1, . . . , T

)′ ∈ R
T (T+1)/2 will be the vector of co-

variances of subject i. Further, let Si(β) = (Sitt∗(β); t ≤ t∗; t, t∗ = 1, . . . , T
)′ ∈ R

T (T+1)/2

be empirical covariances with entries Sitt∗(β) := (Yit − µit(β))(Yit∗ − µit∗(β)). Finally, let

R2(λ2) ∈ R
[T (T+1)/2]×[T (T+1)/2] be a working correlation matrix for Si(β) and λ2 its parameter.

With τ2itt∗(δ) := var(Sitt∗(β) | δ), we can again construct a working covariance

V i2(δ, λ2) := cov(Si(β) | δ, λ2) = diag
(
τi11(δ), τi12(δ), . . . , τiTT (δ)

)
R2(λ2)

×diag
(
τi11(δ), τi12(δ), . . . , τiTT (δ)

)
. (3.3.2)

We will address the problem of determining analytical expressions for τ2itt∗(δ) later. The esti-

mating equation according to GEE1 is

K−1/2
K∑

i=1

D′
i1(β)V −1

i1 (δ)(Y i − µi(β)) = 0p+1, (3.3.3)

where Di1(β) = ∂µi(β)
∂β ∈ R

T×[p+1] and 0p+1 is a (p+ 1)-dimensional vector of zeros. Parameter

α together with γ will be estimated using GEE2 by solving

K−1/2
K∑

i=1

D′
i2(δ)V −1

i2 (δ, λ2)
(
Si(β)− σ2

i (δ)
)

= 0q+2, (3.3.4)

where Di2(δ) :=
∂σ2

i (δ)
∂(α′,γ)′ ∈ R

[T (T+1)/2]×[q+2]. Additionally, Di12(δ) :=
∂σ2

i (δ)
∂β ∈ R

[T (T+1)/2]×[p+1]

will be calculated since we hope to gain information on the mean parameters β also from σ2
i (δ).

For the GP distribution, covariances are σ2itt∗(δ) = ρtt∗
(
λ1(γ)

)√
µit(β)ϕ2

it(α)
√
µit∗(β)ϕ2

it∗(α),

where ρtt∗
(
λ1(γ)

)
= corr(Yit, Yit∗), i = 1, . . . ,K. Their derivatives Di1(β), Di2(δ) and Di12(δ)

are given in the Appendix of this chapter. To solve (3.3.3) and (3.3.4) simultaneously, let

Di(δ) :=



∂µi(β)
∂β

∂σ2
i (δ)
∂β

0
∂σ2

i (δ)
∂(α′,γ)′


 =

(
Di1(δ) Di12(δ)

0 Di2(δ)

)
∈ R

[T (T+3)/2]×[p+q+3], (3.3.5)

V i(δ, λ2) :=

(
V i1(δ) 0

0 V i2(δ, λ2)

)
∈ R

[T (T+3)/2]×[T (T+3)/2], (3.3.6)
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f i(δ) :=

(
yi − µi(β)

si(β)− σ2
i (δ)

)
∈ R

T (T+3)/2 (3.3.7)

and Γ(δ, λ2) := K−1
∑K

i=1D
′
i(δ)V −1

i (δ, λ2)Di(δ). The overall set of estimating equations is

K−1/2
∑K

i=1D
′
i(δ)V −1

i (δ, λ2)f i(δ) = 0p+q+3. While δ will be updated by a Fisher-Scoring

step, residuals r̂ilm(δ̂) := silm(β̂) − σ2ilm(δ̂) may be used to estimate λ2. For example, for an

exchangeable matrix R2(λ2), define I∗ := {(lm, l∗m∗) : l ≤ l∗ ∧m ≤ m∗}. Then according to

(Liang and Zeger 1986, p. 18, Example 3), an estimate of λ2 is given by

λ̂2(δ̂) =

∑K
i=1

∑
(lm,l∗m∗)∈I∗ r̂ilm(δ̂)r̂il∗m∗(δ̂)

K
[
T (T+1)

2

(
T (T+1)

2 − 1
)
/2
]
− (p+ q + 3)

. (3.3.8)

According to (Prentice and Zhao 1991, Appendix 1), Z := K1/2
(
(β̂−β)′, (α̂−α)′, (γ̂−γ)′

)′
is asymptotically normal for K →∞ with mean 0p+q+3 and covariance

cov(Z) = K−1Γ−1(δ, λ2)

·
(

K∑

i=1

D′
i(δ)V −1

i (δ, λ2)cov
(
(Y ′

i,S
′
i(β))′

)
V −1
i (δ, λ2)Di(δ)

)

·Γ−1(δ, λ2) (3.3.9)

with cov
(
(Y ′

i,S
′
i(β))′

)
unknown. A consistent ’sandwich’ estimator of (3.3.9) is

Ωsw(δ̂, λ̂2) := K−1Γ−1(δ̂, λ̂2)

·
(

K∑

i=1

D′
i(δ̂)V −1

i (δ̂, λ̂2)f i(δ̂)f ′
i(δ̂)V −1

i (δ̂, λ̂2)Di(δ̂)

)

·Γ−1(δ̂, λ̂2) (3.3.10)

(see (Prentice and Zhao 1991, p. 828)). Alternatively, a model-based estimator of the variance

of Z is obtained by replacing cov((Y ′
i,S

′
i(β))′) by V i(δ̂, λ̂2) yielding

Ωmb(δ̂, λ̂2) := K−1Γ−1(δ̂, λ̂2). (3.3.11)

An issue still open is how to determine τ2itt∗(δ) := var
(
(Yit − µit(β))(Yit∗ − µit∗(β))

)
in (3.3.2).

Here τ2itt∗(δ) is a function of higher mixed moments E
[
Y l
itY

l∗
it∗
]
, l, l∗ = 1, 2 for which a closed

form is unknown. They can be determined only if t = t∗, since in this case moments up to order

4 are needed, which exist for the GP distribution (see (Consul 1989, p. 50)). However, if t < t∗ a

different approach is necessary. For this consider the general bivariate specification Y = (Y1, Y2)

with Y1 ∼ GP (µ1, ϕ1), Y2 ∼ GP (µ2, ϕ2) and correlation ρ. Here we abbreviate Y1 := Yit,

Y2 := Yit∗ , µ1 := µit(β), µ2 := µit∗(β), ϕ1 := ϕit(α), ϕ2 := ϕit∗(α) and ρ := ρtt∗
(
λ1(γ)

)
. We

would like to simulate from such a specification by using a bivariate Gaussian copula, i.e., by

first simulating (Z1, Z2) ∼ N2(0,Σ(ρ)) where Σ(ρ) is diagonal with elements g(ρ). This g(ρ)

is unknown and is approximately determined using the approach suggested by (Erhardt and

Czado 2009a).

To approximate τ2(θ) := var ((Y1 − µ1)(Y2 − µ2)) with θ := (µ1, µ2, ϕ1, ϕ2, ρ) we generate

a sample of Y r(θ) = (Y r
1 (θ), Y r

2 (θ)), r = 1, . . . , R using the above sampling approach. Now we

approximate τ̂2(θ) := 1
R

∑R
r=1

[
(yr1(θ)−µ1)(yr2(θ)−µ2)

]2
−
[
1
R

∑R
r=1(y

r
1(θ)−µ1)(yr2(θ)−µ2)

]2
.
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Since we are interested in an approximate analytical expression for τ2(θ) for arbitrary values

of θ, we use a log-normal regression approach to express τ̂2(θ) as a function of θ over a grid

of values (µ1, µ2, ϕ1, ϕ2, ρ). In particular we use grid values θj = (µ1j , µ2j , ϕ1j , ϕ2j , ρj), j =

1, . . . , 63 · 52 = 5 400 constructed by

1. {2, 8, 25, 50, 150, 400} for µ1j and µ2j , respectively,

2. {1, 2, 3, 6, 9} for ϕ1j and ϕ2j , respectively,

3. {−0.8,−0.5,−0.25, 0.25, 0.5, 0.8} for ρj .

In order to specify such a grid we started by fitting a GPR(µi, ϕi) regression model according to
(Czado, Erhardt, Min, and Wagner 2007) using the R software package ’ZIGP’ ((Erhardt 2009))
available on CRAN. Thereby we ignored the clustered structure of the data and assumed all
observations to be independent. Then we chose as smallest and largest grid points for µ1j and
µ2j , ϕ1j and ϕ2j , values not far outside the range of fitted means and overdispersion parameters,
respectively. The remaining grid points were chosen such that they were more dense at the lower
part of the chosen range where most of the fitted values could be found. The grid points for ρj
were chosen symmetric around 0 and also more close to 0. Let τ̂2j := τ̂2(θj) and consider the log-

normal regression of response τ̂2j with covariates µ1j , µ2j , ϕ1j , ϕ2j and ρj for j = 1, . . . , 5400.
From an exploratory data analysis we see that we need to distinguish the cases ρj < 0 and
ρj ≥ 0. For both cases we use as explanatory variables an intercept, log(µ1j), log(µ2j), log(ϕ1j),
log(ϕ2j) and ρj and all three-dimensional interactions. Then by backward selection we eliminate

nonsignificant effects according to the Wald test. The fitted mean function Ê(log(τ̂2j )) for log(τ̂2j )
for the case ρj ≥ 0 is given by

Ê(log
(
τ̂2j
)
) = −0.454 ·+1.027 · log(µ1j) + 2.615 · log(ϕ1j) + 0.974 · log(µ2j)

+2.650 · log(ϕ2j) + 1.186 · ρj − 0.135 · log(µ1j) · log(ϕ1j)

+0.010 · log(µ1j) · log(µ2j)− 0.028 · log(µ1j) · log(ϕ2j)− 0.110 · log(µ1j) · ρj
+0.086 · log(ϕ1j) · log(ϕ2j) + 0.913 · log(ϕ1j) · ρj − 0.116 · log(µ2j) · log(ϕ2j)

+0.804 · log(ϕ2j) · ρj − 0.058 · log(µ1j) · log(ϕ1j) · ρj
−0.056 · log(ϕ1j) · log(µ2j) · ρj − 0.087 · log(µ2j) · log(ϕ2j) · ρj (3.3.12)

with an adjusted R2 of 99.2%. For ρj ≤ 0 we get a similar expression (adjusted R2 =

99.96%. Finally for δ = (β,α, γ) and γ = tanh−1(ρ) = 1
2 log

(
1+ρ
1−ρ

)
we approximate τ2itt∗(δ) by

the analytical expression exp(Ê(log(τ̂2)|θ∗itt∗)), where θ∗itt∗ :=
(
µit(β), µit∗(β), ϕit(α), ϕit∗(α),

ρitt∗(λ1(γ))
)
.

3.4 Small sample properties of the GEE estimates

In a simulation study we generated N = 1000 samples from {Yit, i = 1, . . . ,K; t = 1, . . . T}
counts with Yit ∼ GP (µit, ϕit) independent for i = 1, . . . ,K and correlation Σ for Y i =

(Yi1, . . . , YiT ). As correlation matrix Σ we chose an autoregressive AR(1) structure, i.e., Σ =

Σ(λ), where [Σ(λ)]tt∗ = λ|t−t
∗|. Again this is facilitated using the approximate approach sug-

gested by (Erhardt and Czado 2009a).

’Small’ and ’large’ number of subjects of K = 250 and K = 500 were taken into consideration.

As test setting, we chose T = 8 and λ1 = 0.5. The design matrix for the mean level contains

an intercept, subject-specific and a time specific covariate, while the one for the dispersion level
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contains an intercept and a subject-specific one. In particular we use

log(µit) = β0 + β1 · xi + β2 · t/T (3.4.1)

log(ϕit − 1) = α0 + α1 · wi. (3.4.2)

Here xi is distributed equidistantly on [−1, 1] and wi on [−2, 2] over all subjects. Choosing

β1 = β2, the parameter values were chosen to be β = (1.32, 0.70, 0.70)′ and α = (0.21, 0.90)′ to

yield µit(β) ∈ [2, 15] and ϕit(α) ∈ [1.5, 4], respectively. QQ plots shown in Figure 3.1 were used

to assess the asymptotic normality of the estimates. The parameters on the mean level have
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Figure 3.1: QQ plots of centered and standardized estimates based on N = 1000 replications

(K = 250, 500, T = 8, λ = 0.5, β = (1.32, 0.70, 0.70)′, α = (0.25, 0.31, 0.31)′)
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approximately a normal distribution already for K = 250, while this is only approximately true

for K = 500 for the parameters on the dispersion level.

By considering the mean of the estimated parameters and estimated mean squared errors

(MSE) together with standard errors for both statistics, the predictive quality of the estimation

method will be assessed (see Table 3.1). The relative bias of an estimate θ̂ of θ is given by

b(θ, θ̂) = E(θ̂)−θ
θ and for a sample of N independent estimates it will be estimated by

b̂(θ, θ̂) =
1

Nθ

N∑

i=1

θ̂i − 1. (3.4.3)

The estimated variance of the estimated relative bias is given by v̂ar
(
b̂(θ, θ̂i)

)
:= 1/θ2v̂ar(θ̂),

where θ̂ := (θ̂1, . . . , θ̂N )′, and v̂ar(θ̂) := 1
N−1

∑N
i=1

(
θ̂i − 1

N

∑N
k=1 θ̂k

)2
. The mean squared error

(MSE) is given by

R(θ, θ̂) := E([θ̂ − θ]2) = var(θ̂) + b2(θ̂, θ). (3.4.4)

Its variance can be estimated by V̂ ar(R(θ, θ̂)) = 1
N (m4 − 4θm3 + 4θ2m2 − m2

2 + 4θm1m2 −
4θ2m2), where mk is the kth moment estimate of θ, so mk := 1

N

∑N
i=1 θ

k
i is an estimate of

µk = E(θk) ((Stekeler 2004, p. 126)). The standard deviations of the parameter estimates δ̂

will be calculated using ’sandwich’ estimates given in (3.3.10). This shows that the accuracy

of the estimations is satisfactory for medium sample sizes. The absolute values of the relative

bias in Table 3.1 are smaller for the mean effects than for the dispersion effects, hence the mean

coefficients are estimated better than the dispersion coefficients. This is due to the approximating

approach for determining τ2itt∗(δ).

Several alternative setups have also been investigated. The main results of these additional

simulations are that increasing the range of means µit(β) leads to even better results. The

reason is that a larger range of µit(β) covers a larger and steeper interval of the inverse link

function which implies larger absolute derivatives of the link functions and larger absolute true

values. These circumstances improve parameter estimation. Increasing overdispersion results

in worse estimates of the mean parameters. The reason is simply higher data heterogeneity in

the counts. Understandably, dispersion parameters are estimated better in this setting because

again, a larger and steeper interval of the inverse dispersion link is covered. Moreover, higher

correlated data improves the estimation of time-specific covariates. For all other covariates,

highly correlated data seems to carry less information over time than weakly correlated data.

Finally, increasing the number of time points T has a positive impact on the estimation quality

of the mean parameters. This is in line to what one would expect from longer time series.

3.5 Variable selection and model comparison

3.5.1 A variable selection criterion for nested models

Standard approaches for variable selection such as the Akaike Information Criterion (AIC)

((Akaike 1974)) require a fully specified likelihood. (Pan 2001) introduces a criterion for GEE

which uses only the quasi-likelihood. For a r.v. Y with E(Y ) = µ and var(Y ) = φV (µ), where

φ is a dispersion parameter, the quasi-likelihood function is defined as QL(µ, φ, y) =
∫ µ
y

y−t
φV (t)dt

((McCullagh and Nelder 1989, p. 325)). In the GP context, we have E(Yit) = µit(β) and

var(Yit) = ϕ2
it(α)µit(β), i.e., V (µit(β)) = µit(β) and φ = ϕ2

it(α), and obtain
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Para-

meter

True

value

T K Estimate Relative Bias MSE

µit ∈ [2, 15] β0 1.32 8 250 1.319 (0.067) 0.001 (0.051) 0.004 (3 · 10−8)

500 1.316 (0.048) 0.004 (0.036) 0.002 (9 · 10−9)

β1 0.7 8 250 0.696 (0.092) 0.004 (0.132) 0.009 (8 · 10−8)

500 0.701 (0.068) −0.001 (0.097) 0.005 (2 · 10−8)

β2 0.7 8 250 0.698 (0.063) 0.002 (0.090) 0.004 (2 · 10−8)

500 0.702 (0.044) −0.002 (0.063) 0.002 (5 · 10−9)

ϕit ∈ [1.5, 4] α0 0.21 8 250 0.215 (0.108) −0.005 (0.514) 0.012 (1 · 10−7)

500 0.223 (0.082) −0.013 (0.388) 0.007 (3 · 10−8)

α1 0.9 8 250 0.873 (0.181) 0.027 (0.201) 0.033 (2 · 10−6)

500 0.865 (0.139) 0.035 (0.154) 0.021 (9 · 10−7)

λ = 0.5 λ 0.5 8 250 0.489 (0.101) 0.011 (0.202) 0.010 (8 · 10−9)

500 0.504 (0.080) −0.004 (0.160) 0.006 (4 · 10−9)

Table 3.1: Average coefficients, relative bias (see 3.4.3) and mean squared error (see 3.4.4)

together with estimated ’sandwich’ standard deviations in round brackets according to (3.3.10)

for N = 1000 fitted samples

QL(µit(β), ϕit(α), yit) =

∫ µit(β)

yit

yit − t
ϕ2
it(α)t

dt (3.5.1)

=
1

ϕ2
it(α)

(yit log(µit(β))− µit(β))

+ constants ind. of (β,α).

If overall independence across times and subjects is assumed, the overall quasi-likelihood under

independence becomes

Q(β,α,y) :=

K∑

i=1

T∑

t=1

QL(µit(β), ϕit(α), yit) (3.5.2)

=
K∑

i=1

T∑

t=1

1

ϕ2
it(α)

(yit log(µit(β))− µit(β))

+ constants ind. of (β,α).

A model with parameter vector θ ∈ R
k and estimate θ̂ is compared by AIC(θ̂) := −2L(θ̂) +

2k. (Pan 2001) replaces the log-likelihood by the quasi-likelihood and the penalty term 2k by

2 trace(Ω−1
mb(δ̂, λ̂2)Ωsw(δ̂, λ̂2)). With δ̂ = (β̂, α̂, γ̂) and the working correlations matrix R1

being a function of γ, a ’quasi-likelihood under independence model criterion’ (QIC) is

QIC(δ̂, λ̂2) := −2Q(β̂, α̂, I,y) + 2 trace(Ω−1
mb(δ̂, λ̂2)Ωsw(δ̂, λ̂2)). (3.5.3)

As for the AIC, the smaller the QIC, the better the model.

3.5.2 Assessing model fit for nonnested models

Recall that we denote the GEE setup for correlated count data Y = (Yit, i = 1, . . . ,K; t =

1, . . . , T ) withGP (µit, ϕit) margins for Yit and working correlation matrixR byGPR(µit, ϕit,R).



50 CHAPTER 3. GEE FOR LONGITUDINAL GENERALIZED POISSON

Similar we denote by PoiR(µit,R) a setup with margin Yit ∼ Poi(µit). A GEE setup where

the overdispersion parameter for Yit is constant, we denote by GPR(µit, ϕ,R). The correspond-

ing model hierarchy is given in Figure 3.2. A covariate being significant in terms of the Wald

test (e.g. in the mean design of PoiR(µit,R)) can be insignificant in a different model (say

GPR(µit, ϕ,R)). The same holds for dispersion designs. Therefore, a pool of covariates chosen

in an exploratory data analysis will be reduced by backward selection using the QIC in each

one of our setup classes. Since design matrices may thus be different, their designs need not be

nested.

(1) PoiR(µit,R)

''
OOOOOOOOOOOOOOOOOO

wwoooooooooooooooooo

(2) GPR(µit, ϕ,R) (3) GPR(µit, ϕit,R)

ϕ > 1 ϕit > 1

Figure 3.2: Investigated setup hierarchy

There exists a test proposed by (Vuong 1989) which can be used to compare models with

nonnested settings. The test statistic, however, is based on the Kullback-Leibler information

criterion (KLIC), which requires a fully specified likelihood. Therefore, this approach cannot by

applied here. The same holds for a distribution-free test proposed by (Clarke 2007).

We will use the Wald-Wolfowitz run test for testing the goodness-of-fit as proposed by (Chang

2000) and also described in (Hilbe 2007, Section 4.2.1f). The residuals will be sorted by the

corresponding fitted means. We define an indicator whether the residual is positive (’1’) or

negative (’−1’) in the same ordering. Further np will be the number of positive, nn the number

of negative residuals. Let T the number of runs in the sequence of indicators. Under the null

hypothesis that the signs of the residuals are distributed in a random sequence, the expected

value and variance of T are given as E(T ) =
2npnn

np+nn
+ 1 and var(T ) =

2npnn(2npnn−np−nn)
(np+nn)2(np+nn−1)

. Then

WZ := T−E(T )√
var(T )

is approximately standard normal. A α level test can be constructed as

Reject H0 if |WZ | > q1−α/2 (3.5.4)

where q1−α/2 is the 1−α/2 quantile of the standard normal distribution. Note that this criterion

does not account for the model complexity, for the choice between competing setups one has to

consider the number of model parameters as well.

3.6 Application: Outsourcing of patent applications

3.6.1 Data description and model comparison

The data consists of patent information of the European Patent Office. It has been examined and

completed with corporate information by (Wagner 2006b). A zero-inflated generalized Poisson

regression model assuming independent observations has been considered by (Czado, Erhardt,

Min, and Wagner 2007) for this data. A more detailed description of this model will be given
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in Section 3.6.2. The survey considers 107 European companies over eight years (1993 to 2000).

There are two ways of filing a patent application: a company’s internal patent department can

undergo the application process itself or the company may delegate it to an external patent

attorney. (Wagner 2006b) examines make-or-buy decision drivers using negative binomial panel

regression. We will consider the three classes illustrated in Figure 3.2.

(Czado, Erhardt, Min, and Wagner 2007, Table 1) gives an overview of all influential vari-

ables. For more details see (Wagner 2006b, pp. 119-121). We used standard exploratory data

analysis tools to investigate main effects and two-dimensional interactions on the mean level.

The four strongest two-dimensional interactions were LN.COV ∗ BREADTH, CHEM.PHA ∗
LN.COV, CHEM.PHA ∗ SQRT.EMP and RDmiss ∗ CHEM.PHA. To find covariates which have

a significant influence on the overdispersion parameter, we apply the approach by (Czado, Er-

hardt, Min, and Wagner 2007, Section 5).

A covariate’s influence on the overdispersion parameter can be quantified by comparing sam-

ple mean to sample variances. For a level j of a categorical covariate wit or a class of a discretized

continuous covariate with njt observations, let δitj be a dummy indicating if observation wi,t falls

in class j, i.e., δitj = 1 if wi,t ∈ class j and 0 else. Sample mean and sample variance for j will be

µ̂jt(Y ) and σ̂2jt(Y ). For overdispersed GP data we have ϕit =
√

σ2
it

µit
. Therefore, in a regression

context using the shifted log link ϕit = 1+ewitα, we obtain witα = log

(√
σ̂2
jt(Y )

µ̂jt(Y )−1

)
=: ηjt(Y ).

If the data was not overdispersed, mean and variance would coincide and the fraction
σ̂2
jt

µ̂jt
would

be around 1 in every class. The values inside the logarithm would be close to zero. High values,

however, indicate overdispersion. A value larger than 0 indicates that the estimated variance

exceeds the estimated mean already more than four times. For the covariate EMP, the values of

ηjt(Y ) are plotted in Figure 3.3. We see that for smaller EMP the dispersion is lower whereas

for higher values it is high.
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Figure 3.3: Influence of EMP on the overdispersion parameter
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As a working correlation matrix for corr(Y i(β)) we choose AR(1), i.e., ρtt∗(λ1) = λ
|t−t∗|
1 ,

since the matrix of empirical correlations of residuals based on the model from (Czado, Er-

hardt, Min, and Wagner 2007) strongly suggests that it has this structure. For corr(Si(δ))

we choose the identity matrix IT (T+1)/2. For mean regression we select the covariates 1,

LN.COV, BREADTH, SQRT.EMP, INV.RDP, RDE1, RDE2, RDE3, RDmiss, CHEM.PHA,

ELEC.TEL.OTHER, YEAR, LN.COV ∗ BREADTH, CHEM.PHA ∗ LN.COV, CHEM.PHA ∗
SQRT.EMP and RDmiss ∗ CHEM.PHA. For overdispersion we select the covariates 1, ENGI-

NEER, CAR.SUPP.OTHER, MED.BIOT, YEAR, BREADTH.49.72, EMP.11291 and RDE.63.

All covariates have been centered and standardized for numerical stability. We apply backward

selection using the QIC (3.5.3), i.e., sequentially eliminate the covariate from the full model

which decreases the QIC the most (as long as QIC shrinks).

QIC Wald-Wolfowitz

full reduced full reduced

WZ (p) WZ (p)

p+ q + 1 p+ q + 1

(1) PoiR(µit,R) −215813.10 −216270.49 −1.34 (0.18) −2.02 (0.04)

17 12

(2) GPR(µit, ϕ,R) −2409.02 −2546.67 −0.56 (0.58) −2.53 (0.01)

18 12

(3) GPR(µit, ϕit,R) −3945.78 −4581.72 −0.46 (0.64) −0.48 (0.63)

25 14

Table 3.2: QIC (see (3.5.3)) and results of the Wald-Wolfowitz test (see (3.5.4)) of full and

reduced designs for the three model classes specified in Figure 3.2

Note that it make only sense to compare the QIC for nested settings. Poisson and GPR

models are not nested since for a dispersion of 1 in a GPR setting an infinitesimal small predictor

would be required. ’Full’ and ’reduced’ models within each model class, however, are nested.

Also, the ’full’ settings of (2) GPR(µit, ϕ,R) and (3) GPR(µit, ϕit,R) are nested. The QIC

statistics according to (3.5.3) and the result of the Wald-Wolfowitz test according to (3.5.4) can

be found in Table 3.2. We report WZ together with the p-value and the number of parameters.

Note that a p-value of more than 5% indicates that one cannot reject H0 on the 5% level and

hence the residuals indicate a good fit. A summary of the resulting model equations is given in

Table 3.3.
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Model Mean Dispersion p+ q + 1

PoiR(µit,R)

full

offset(E) + 1 + LN.COV + BREADTH + SQRT.EMP +

INV.RDP + RDE1 + RDE2 + RDE3 + RDmiss + CHEM.PHA

+ ELEC.TEL.OTHER + YEAR + LN.COV.BREADTH +

CHEM.PHA.LN.COV + CHEM.PHA.SQRT.EMP + RD-

miss.CHEM.PHA

1 (not estimated) 17

PoiR(µit,R)

reduced

offset(E) + 1 + LN.COV + BREADTH + SQRT.EMP + INV.RDP

+ RDmiss + CHEM.PHA + ELEC.TEL.OTHER + YEAR +

CHEM.PHA.LN.COV + RDmiss.CHEM.PHA

1 (not estimated) 12

GPR(µit, ϕ,R)

full

offset(E) + 1 + LN.COV + BREADTH + SQRT.EMP +

INV.RDP + RDE1 + RDE2 + RDE3 + RDmiss + CHEM.PHA

+ ELEC.TEL.OTHER + YEAR + LN.COV.BREADTH +

CHEM.PHA.LN.COV + CHEM.PHA.SQRT.EMP + RD-

miss.CHEM.PHA

1 18

GPR(µit, ϕ,R)

reduced

offset(E) + 1 + LN.COV + BREADTH + SQRT.EMP +

INV.RDP + RDmiss + CHEM.PHA + ELEC.TEL.OTHER +

LN.COV.BREADTH + CHEM.PHA.SQRT.EMP

1 12

GPR(µit, ϕit,R)

full

offset(E) + 1 + LN.COV + BREADTH + SQRT.EMP +

INV.RDP + RDE1 + RDE2 + RDE3 + RDmiss + CHEM.PHA

+ ELEC.TEL.OTHER + YEAR + LN.COV.BREADTH +

CHEM.PHA.LN.COV + CHEM.PHA.SQRT.EMP + RD-

miss.CHEM.PHA

1 + ENGINEER + CAR.SUPP.OTHER

+ MED.BIOT + YEAR +

BREADTH.49.72 + EMP.11291 +

RDE.63

25

GPR(µit, ϕit,R)

reduced

offset(E) + 1 + LN.COV + BREADTH + SQRT.EMP +

RDmiss + CHEM.PHA + ELEC.TEL.OTHER + YEAR +

LN.COV.BREADTH + CHEM.PHA.SQRT.EMP

1 + CAR.SUPP.OTHER + EMP.11291 14

Table 3.3: Model equations of the models shown in Figure 3.2 using backward selection by QIC (3.5.3)
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For these designs we now discuss the consequences of our suggested enhancements.

Adding a dispersion parameter Adding a dispersion parameter to the Poisson setup has

a positive impact on model fit. Comparing (1) PoiR(µit,R) to (2) GPR(µit, ϕ,R), the p-value

for rejecting H0 in the Wald-Wolfowitz test increases from 0.18 to 0.58 in the full settings. In

the reduced settings, however, both setups having the same number of parameters show no good

fit on the 5% level.

Regression on the dispersion parameter Comparing model (2) GPR(µit, ϕ,R) to

(3) GPR(µit, ϕit,R), the p-values of the Wald-Wolfowitz run test increases from 0.58 to 0.64

(full settings) and from 0.01 to 0.63 (reduced settings). This indicates the usefulness of allowing

for regression on the dispersion parameter. Since the full settings of these two models are nested,

the QIC can be used for model comparison here as well. There is a large decrease from −2409.02

to −3945.78, which reinforces the conclusion from above.

In terms of the Wald-Wolfowitz test, the full model (3) GPR(µit, ϕit,R) is to be preferred

over all other classes discussed (see Table 3.2). However, this goodness-of-fit criterion does not

account for the model complexity. Since the reduced design for (3) GPR(µit, ϕit,R) shows a

comparable test result (p-value of 0.63 instead of 0.64) but has only 14 parameters instead of

25 we choose this setup to be our best.

3.6.2 Model interpretation

The paper by (Czado, Erhardt, Min, and Wagner 2007) considers a zero-inflated generalized

Poisson regression model (among others) for this data. In the context of GEE, however, we

will not consider zero-inflation. We experienced that the inclusion of zero-inflation in the model

adds too much flexibility to the dispersion specification and that the Newton Raphson updates

often did not converge.

In the ZIGPR model of (Czado, Erhardt, Min, and Wagner 2007) the observation year is

allowed to be included as a covariate and is found to be highly significant in the dispersion level.

Hence the autocorrelation of the ZIGP residuals was very low. Due to this fact and due to

the different distributional assumptions, we stress that these two models cannot be compared

with respect to the panel correlation. However, as for the regression designs on the mean and

dispersion levels which we found to be most suitable, both models have a great deal in common.

There is a detailed graphical evaluation of the ZIGPR model in (Czado, Erhardt, Min, and

Wagner 2007).

We will now briefly interpret the reduced setup (3) GPR(µit, ϕit,R). Note that some of the

covariates in the GPR(µit, ϕit,R) setup in Table 3.4 are insignificant according to the Wald

test.

In contrast to the ZIGPR model mentioned, variable selection has been done using backward

selection with respect to QIC. In the ZIGPR model, RDmiss is insignificant and therefore does

not appear in the final model instead of AIC. This is a desirable result since RDmiss is a dummy

for missing R & D data. In our GPR model, RDmiss still appears, it is, however, insignificant

according to Wald: the p-value is 93.9% (Table 3.4). Obviously, the lack of modeling zero-

inflation in the GPR model is reflected in the higher overdispersion range of [2.20, 11.04] as

compared to [2.41, 10.15] in the ZIGPR model. Also, there is an additional interaction between

the Chemical / Pharmaceutical industry dummy and the square root of the number of employees
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Estimate Std. Error z-value Pr(> |z|)

µ REGRESSION

b0 1 −1.174 0.141 −8.344 < 2 · 10−16

b1 LN.COV 0.036 0.035 1.035 0.301

b2 BREADTH 0.043 0.029 1.459 0.145

b3 SQRT.EMP −0.222 0.050 −4.444 8.8 · 10−6

b4 RDmiss 0.004 0.046 0.076 0.939

b5 CHEM.PHA −0.403 0.384 −1.048 0.295

b6 ELEC.TEL.OTHER 0.504 0.157 3.198 0.001

b7 YEAR 0.067 0.033 2.046 0.041

b8 LN.COV.BREADTH −0.002 0.028 −0.073 0.942

b9 CHEM.PHA.SQRT.EMP 0.286 0.374 0.765 0.444

ϕ REGRESSION

a0 1 2.346 0.087 26.906 < 2 · 10−16

a1 CAR.SUPP.OTHER −0.961 0.099 −9.706 < 2 · 10−16

a2 EMP.11291 −1.096 0.106 −10.360 < 2 · 10−16

CORRELATION

γ 1.499 0.188 7.963 1.7 · 10−15

QIC -4581.72

Range µ [0.22, 568.44]

Range ϕ [2.33, 11.44]

λ̂1(γ) 0.90

Table 3.4: Summary of the fitted GPR(µit, ϕit,R) model obtained by backward selection using

QIC

SQRT.EMP. Further, the observation year remains in the mean design. On the other hand,

RDE1 and INV.RDP are not appearing any longer. On dispersion level, the engineering industry

dummy as well as YEAR and RDE.63 are eliminated in addition to effects already taken out

of the ZIGPR model. Neglecting correlation between the counts within each subject leads to

an underestimation of the predicted variances of the parameter estimates. Thus, the z values

calculated tend to be too large and therefore effects may be regarded as significant although

they are not. Comfortingly, the signs of the coefficients of common covariates in both models

compared do not change. Hence there is no turnaround in how means and dispersion are affected

by the chosen descriptive variables. Similar to (Czado, Erhardt, Min, and Wagner 2007) we will

look at patent outsourcing rates for the interpretation. In order to obtain outsourcing rates as

functions of the covariates, we will fix the exposure by its mode EM = 13.36. Then, we can

define functions µ̂(xk)
EM , where xk is the kth covariate. All other covariates will be fixed by their

mode as well, where for interacting covariates, their common mode will be used. Since there is

an additional interaction between CHEM.PHA and SQRT.EMP as compared to the ZIGPR fit,

we will look at the influence of EMP on the outsourcing rate in Figure 3.4 (1) since here there

might crop up a considerable difference of EMP’s influence on the outsourcing rates. For the

Chemical / Pharmaceutical industry, the interaction leads to an inverted influence of the number

of employees (compare to (Czado, Erhardt, Min, and Wagner 2007, Figure 4 (1))). While in

all remaining industries large companies in terms of employees tend to have their own patent

departments, large Chemical / Pharmaceutical companies are likely to contract out. As one can

see in Figure 3.4 (2), there is a positive time trend. The share of outsourced patent applications

was increasing in all industries. This reflects the general tendency to decrease economic risk by
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the outsourcing of services in recent years.
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Figure 3.4: Influence of EMP and YEAR on the outsourcing rate while fixing other covariates

by their empirical modes

We define the overdispersion factor of a random variable Yit ∼ GPR(µit, ϕit) as Vit :=
var(Yit)
E(Yit)

= ϕ2
it. There are only categorical covariates for overdispersion:

w :=(1, CAR.SUPP.OTHER, EMP.11291). Using (3.2.4), we define ϕ̂(w) := 1 + exp
(
α̂0 +

w1 · α̂1 + w2 · α̂2

)
. We use this overdispersion function to estimate V (X = x,W = w) = ϕ2

by V̂ (X = x,W = w) := ϕ̂(w)2. Table 3.5 lists V̂ (X = x,W = w) depending on the

settings arising from the categorical dispersion designs. As in (Czado, Erhardt, Min, and Wagner

2007, Table 6), companies in the Cars / Suppliers / ’Others’ sector are predicted to have lower

overdispersion than companies in other industries. Large companies show higher overdispersion,

which in line with the ZIGPR model as well.

Industry Employees V̂ (X = x,W = w)

Cars / Suppl. / Other ≥ 11 291 24.9

Cars / Suppl. / Other ≤ 11 291 5.5

Remaining industries ≥ 11 291 130.9

Remaining industries ≤ 11 291 20.2

Table 3.5: Estimated overdispersion factor in the ’best’ model (Table 3.4) depending on cate-

gorical overdispersion covariates

For more graphical evaluations, for example the effect of the interacting covariates LN.COV

and BREADTH on the outsourcing rate, see (Czado, Erhardt, Min, and Wagner 2007).

3.7 Conclusions and Discussions

We introduced a GPR(µit, ϕit,R) setup for longitudinal count data, which not only extends

the known Poisson GEE by overdispersion but also allows for regression on this parameter.

We estimate variances of empirical covariances by a log normal regression model using a data

designed grid. This grid can be adjusted when other data sets are considered.
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We carried out a comparison of different setups extending Poisson GEE using data dealing

with the determinants of patent outsourcing. We illustrated that every extension incorporated

in our GPR(µit, ϕit,R) setup improved model fit in terms of the QIC for nested comparisons and

the Wald-Wolfowitz run test for assessing the goodness-of-fit. Both QIC and the Wald-Wolfowitz

test chose the introduced GPR(µit, ϕit,R) setup as the one fitting our data best.

A short model interpretation confirmed insights of former work on the given data from an

economic point of view. We added some analytical and economic interpretation for mean and

overdispersion drivers in our ’best’ model. The correlation between outcomes of two subsequent

years is estimated to be 90%.

It would be interesting to compare the GEE approach to other estimating techniques such as

MCMC, maximization by parts or composite likelihood. Also, including zero-inflation in these

models will be subject of further research.

Appendix of Chapter 3

Covariance derivatives of the GP distribution

The derivatives of σ2itt∗(δ), i.e., Di1(β), Di2(δ) and Di12(δ), are given by

Di1(β) =
[
µit(β)xitr

]
t = 1, . . . , T , r = 1, . . . , p+ 1,

(3.7.1)

D′
i2(δ) =






ρtt∗(λ1(γ))

√
µit(β)µit∗(β)×

{bit(α)witrϕit∗(α)+

bit∗(α)wit∗rϕit(α)}




(t, t∗) ∈ I,

r = 1, . . . , q + 1[
∂ρtt∗ (λ1(γ))
∂λ1(γ)

4e2γ

(e2γ+1)2
σit(δ)σit∗(δ)

]
(t,t∗)∈I



, (3.7.2)

D′
i12(δ) =

[
1
2ρtt∗(λ1(γ)) ϕit(α)ϕit∗(α)×√
µit(β)µit∗(β) {xitr + xit∗r}

]

(t, t∗) ∈ I, r = 1, . . . , p+ 1

(3.7.3)

where I := {(t, t∗) | t ≤ t∗}.



Chapter 4

Non nested model selection for

spatial count regression models with

application to health insurance

4.1 Introduction

We speak of count data when the data values are contained in the natural numbers. A common

distribution for count data is the Poisson (Poi) distribution, which is rather restrictive since

variance and mean are equal. But often in observed count data the sample variance is consid-

erably larger than the sample mean - a phenomenon called over-dispersion. In such cases the

Poisson assumption is not appropriate for analyzing this data.

Frequently the negative Binomial (NB) distribution instead of the Poisson distribution is used

to model over-dispersed data. Another possibility for modeling over-dispersion is the generalized

Poisson (GP) distribution introduced by Consul and Jain (1973) which allows for a more flexible

variance function than the Poisson distribution by an additional parameter (see e.g. Consul and

Famoye (1992) and Famoye (1993)).

Over-dispersion may also be caused by a large proportion of zero counts in the data. Yip and

Yau (2005) stress that especially claim numbers often exhibit a large number of zeros and hence

traditional distributions may be insufficient. In addition to the zeros arising from the count data

model, zero-inflated models (see for example Winkelmann (2008)) also allow for excess zeros.

Zero-inflated models can be used in combination with any count data distribution. We consider

in this chapter the zero-inflated Poisson regression (ZIPR) (see e.g. Lambert (1992)) and the

zero-inflated generalized Poisson (ZIGPR) model. ZIGPR models have been investigated by

Famoye and Singh (2003), Gupta, Gupta, and Tripathi (2004), Bae, Famoye, Wulu, Bartolucci,

and Singh (2005), Joe and Zhu (2005) and Famoye and Singh (2006).

The variability in over-dispersed data can also be interpreted as unobserved heterogeneity

which is not sufficiently explained by the covariates. Especially for simple models with few

parameters, theoretical model predictions may not match empirical observations for higher mo-

ments. When information on the location of the individuals is known, the data is spatially

indexed. For count regression models, Gschlößl and Czado (2007) include spatial random effects

using a proper conditional autoregressive (CAR) model based on Pettitt, Weir, and Hart (2002).

In other words, one assumes random effects associated with geographic areas rather than indi-

viduals and presumes that the effects in neighboring regions are similar. In contrast to Gschlößl

58
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and Czado (2007), however, we also include covariates with spatial information, e.g. measures

for the degree of urbanity at a certain location. We carry out a comparison investigating whether

one of these two spatial specifications or both fit our data better.

Altogether, in this chapter we account for extra variability not only by addressing distribu-

tions capable of handling over-dispersion and over-dispersion caused by an excessive number of

zeros, we also take extra spatial variability in the data into account.

Since in these spatial models maximum likelihood estimation and confidence interval esti-

mation is not tractable we consider the models in a Bayesian context. Thus, for parameter

estimation Markov Chain Monte Carlo (MCMC) methods are used.

Model comparison between different model classes is non standard. For nested models, i.e.,

when one of the two models is a super model of the other, model comparison may be carried

out using tools like Akaike’s information criterion or likelihood ratio tests. This condition may

be violated when the distribution on which the two models are based, are different. Even within

such a class of regression models, two models may be non nested when they use different link

functions or when linear predictors are non hierarchical. We utilize a test proposed by Vuong

(1989) and the distribution-free test proposed by Clarke (2007) for non nested model comparison

and illustrate how they may be applied in a Bayesian context.

This is a novel approach since so far these two tests have only been used in classical esti-

mation. Also, the comparison between spatial covariate and / or spatial effect specifications for

count regression data has not been carried out elsewhere.

In our application we consider health insurance policies in the following context: for more

than 35000 policyholders, the data contain the number of benefits received by the patients in the

ambulant (i.e., outpatient) setting as well as several covariates like the total of all deductibles,

age, gender, number of physicians per inhabitants, number of inhabitants per square kilometer

and buying power. Further, we quantify the best fitted model according to DIC as well as Vuong

and Clarke test.

This chapter proceeds as follows. In Section 4.2 an overview on spatial count regression

models as well as the modeling of spatial effects is given, where we introduce a proper Gaussian

conditional autoregressive prior based on Pettitt, Weir, and Hart (2002). The necessary back-

ground to Bayesian inference and MCMC methods is briefly summarized in Section 4.3. This

includes the deviance information criterion of Spiegelhalter, Best, Carlin, and van der Linde

(2002) as a model selection criterion. The test proposed by Vuong (1989) and the distribution-

free test utilized in a Bayesian framework are presented in Section 4.4. An application to private

health insurance data for policyholders in Germany is presented in Section 4.5.

4.2 Spatial count regression models

4.2.1 Spatial effects

Spatial covariates

Spatial variation may sometimes be explained by covariates which vary spatially. Such covariates

we call ’spatial covariates’. Examples in our data set are the number of physicians per inhabitant

in a certain district, the number of inhabitants per square kilometer or the buying power per

district.
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CAR

In order to account for spatial heterogeneity we will incorporate, in addition to covariate infor-

mation, spatial random effects in the regression models. Therefore we consider the Gaussian

Conditional Autoregressive (CAR) formulation introduced by Pettitt, Weir, and Hart (2002)

which permits the modeling of spatial dependence and dependence between multivariate ran-

dom variables at irregularly spaced regions. Assume that J regions {1, . . . , J} are given and

let γ = (γ1, . . . , γJ)t the vector of spatial effects for each region. Let γ be multivariate normal

distributed with

γ ∼ NJ(0, σ2Q−1) (4.2.1)

where the precision matrix Q = (Qij)i,j=1,...,J is given by

Qij =





1 + |ψ| ·Ni i = j

−ψ i ∼ j
0 otherwise

. (4.2.2)

Here the notation i ∼ j indicates that the regions i and j are neighbors and Ni denotes the

number of neighbors of region i. Thus the full conditional distribution of γi given all the other

values γ−i, i = 1, . . . , J is

γi|γ−i ∼ N


 ψ

1 + |ψ| ·Ni

∑

j∼i
γj , σ

2 1

1 + |ψ| ·Ni


 . (4.2.3)

Parameter ψ determines the overall degree of spatial dependence. If all regions are spatially

independent, i.e., ψ = 0, the precision matrix Q (see (4.2.2)) reduces to the identity matrix,

whereas for ψ → ∞ the degree of dependence increases. The multivariate normal distribution

(4.2.1) is a proper distribution since Pettitt, Weir, and Hart (2002) show that the precision

matrix Q is symmetric and positive definite. Another convenient feature of this CAR model is

that according to Pettitt, Weir, and Hart (2002) the determinant of Q, which is needed for the

update of ψ in a MCMC algorithm, can be computed efficiently.

4.2.2 Count regression models

The count regression models considered in this chapter will be the Poisson (PoiR), the negative

Binomial (NBR), the generalized Poisson (GPR), the zero-inflated Poisson (ZIPR) and the zero-

inflated generalized Poisson (ZIGPR) regression. In order to allow for a comparison between

these distributions, we choose a mean parameterization for all of them. Their probability mass

functions (pmf) together with means and variances are given in Table 4.1. Regression models

for these considered distributions can be constructed similar to generalized linear models (GLM)

(McCullagh and Nelder (1989)). We denote the regression model with response Yi and (known)

explanatory variables xi = (1, xi1, . . . , xip)
t for the mean i = 1, . . . , n by ZIGPR(µi, ϕ, ω). For

individual observation periods, we allow exposure variables ti, which satisfy ti > 0 ∀i and in

case without individual exposure ti = 1 ∀i.

1. Random component:

{Yi, 1 ≤ i ≤ n} are independent with response distribution Poi(µi), NB(µi, r),

GP (µi, ϕ), ZIP (µi, ω) or ZIGP (µi, ϕ, ω).
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P (Y = y) E(Y ) V ar(Y )
Parameter

restriction

Poi(µ) exp{−µ}µy
y! µ µ µ ∈ R

NB(µ, r) Γ(y+r)
Γ(r)y!

(
r

µ+r

)r (
µ
µ+r

)y
µ µ(1 + µ

r ) r > 0

GP (µ, ϕ) µ(µ+(ϕ−1)y)y−1

y! ϕ−ye−
1
ϕ
(µ+(ϕ−1)y)

µ ϕ2µ ϕ > 0

ZIP (µ, ω) ω · 1l{y=0} + (1− ω) · exp(−µ)µyy! (1− ω)µ (1 − ω)µ(1 +

ωµ)

ω ∈ (0, 1)

ZIGP (µ, ϕ, ω) ω · 1l{y=0} + (1− ω)· (1− ω)µ (1−ω)µ(ϕ2+

ωµ)

ϕ > 0, ω ∈
(0, 1)

·µ(µ+(ϕ−1)y)y−1

y! ϕ−ye−
1
ϕ
(µ+(ϕ−1)y)

Table 4.1: Pmf’s of the Poisson, NB, GP, ZIP and ZIGP distribution together with their means

and variances in mean parameterization

2 Systematic component:

The linear predictor is ηµi (β) = xtiβ + γi which influence the response Yi. Here, β =

(βNS ,βS) are the unknown regression parameters with βNS = (β0, β1, . . . , βr)
t the non-

spatial explanatory factors, βS = (βr+1, βr+2, . . . , βp)
t the spatial covariates and γi the

spatial random effects (not included in our base models). The matrix X = (x1, . . . ,xn)t

is called design matrix.

3 Parametric link component:

To get a positive mean the linear predictor ηµi (β) is related to the parameters µi (β),

i = 1, . . . , n as follows:

E (Yi|β) = µi (β) := ti exp
{
xtiβ + γi

}
= exp

{
xtiβ + γi + log (ti)

}

⇔ ηµi (β) = log (µi (β))− log (ti) (log - link)

4.3 MCMC including model selection

In order to incorporate spatial random effects we consider the models in a Bayesian context

which allows the modeling of a spatial dependency pattern. The determination of the posterior

distributions require high dimensional integrations. MCMC will be used for parameter esti-

mation, in particular we use the Metropolis Hastings sampler introduced by Metropolis et al.

(1953) and Hastings (1970). For more information on Bayesian data analysis and MCMC meth-

ods see Gilks, S., and D. (1996) and Gelman, Carlin, Stern, and Rubin (2003). Throughout this

chapter, an independence MH sampler using the Student’s t-distribution with ν = 20 degrees of

freedom will be used. For details on the MCMC algorithms see Gschlößl and Czado (2008) and

Schabenberger (2009b).

The DIC (Spiegelhalter, Best, Carlin, and van der Linde (2002)) is a popular information

criterion which was designed to compare hierarchical models, and can easily be computed using

the available MCMC output. Let θ1, . . . ,θT be a sample from the posterior distribution of the
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model. The calculation of the DIC is based on two quantities. On one hand this is the so called

unstandardized deviance D(θ) = −2 log (p (y|θ)) where p (y|θ) is the observation model and on

the other hand the so called effective number of parameters pD defined by

pD := D(θ|y)−D(θ̄).

Here D(θ|y) := 1
T

∑T
t=1D

(
θt
)

is the estimated posterior mean of the deviance and D(θ̄) is the

deviance of the estimated posterior means θ̄ := 1
T

∑T
t=1D

(
θt
)
. Finally the DIC determined as

DIC = D(θ|y) + pD = 2D(θ|y)−D(θ̄).

The preferred model is the one which has the smallest DIC. DIC depends on the specific values

obtained in an MCMC run, thus it is difficult to assess how different DIC values have to be for

different models to select among these models. For exponential family models DIC approximates

the Akaike information criterion (AIC).

4.4 Non nested model selection

We use tests proposed by Vuong (1989) and Clarke (2003) to compare regression models which

need not to be nested. These tests are based on the Kullback-Leibler information criterion

(KLIC). According to Vuong (1989) the Kullback-Leibler distance is defined as

KLIC := E0[log h0(Yi|xi)]− E0[log f(Yi|υi, δ̂)],

where h0(·|·) is the true conditional density of Yi given xi, that is, the true but unknown model.

Let E0 denote the expectation under the true model, υi are the covariates of the estimated

model and δ̂ are the pseudo-true values of δ in model with f(Yi|υi, δ), which is not the true

model. Generally, the model with minimal KLIC is the one that is closest to the true, but

unknown, specification.

4.4.1 Vuong test

Consider two models, f1 = f1(Yi|υi, δ̂1) and f2 = f2(Yi|ωi, δ̂2) then if model 1 is closer to the

true specification, we have

E0[log h0(Yi|xi)]− E0[log f1(Yi|υi, δ̂
1
)] < E0[log h0(Yi|xi)]− E0[log f2(Yi|ωi, δ̂

2
)]

⇔ E0

[
log

f1(Yi|υi, δ̂
1
)

f2(Yi|ωi, δ̂
2
)

]
> 0 (4.4.1)

Vuong defines the statistics

mi := log

(
f1(yi|υi, δ̂

1
)

f2(yi|ωi, δ̂
2
)

)
, i = 1, . . . , n. (4.4.2)

If h0 is the true probability mass function, then m = (m1, . . . ,mn)t is a random vector with

mean µm0 = (µm1 , . . . , µ
m
n ) := E0(m). Hence, we can test the null hypothesis

H0 : µm0 = 0 against H1 : µm0 6= 0.
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The mean µm0 in the above hypothesis is unknown. With convenient standardization and the

central limit theorem Vuong (1989) shows that under H0

ν :=

√
n
[
1
n

∑n
i=1mi

]
√

1
n

∑n
i=1 (mi − m̄)2

D→ N (0, 1), as n→∞

where m̄ := 1
n

∑n
i=1mi. This allows to construct an asymptotic α-level test of H0 : µm0 = 0

versus H1 : not H0. It rejects H0 if and only if |ν| ≥ z1−α
2
, where z1−α

2
is the (1− α

2 )-quantile

of the standard normal distribution. The test chooses model 1 over 2, if ν ≥ z1−α
2
. This is

reasonable since according to the equivalence given in (4.4.1), significantly high values of ν

indicate a higher KLIC of model 1 as compared to model 2. Similarly, model 2 is chosen if

ν ≤ −z1−α
2
. No model is preferred for −z1−α

2
< ν < z1−α

2
. According to Clarke (2007, p.

349) the Vuong test must be corrected if the number of estimated coefficients in each model is

different. Vuong (1989) suggests to use the Schwarz correction, which is given by
[(p

2
log n

)
−
(q

2
log n

)]
. (4.4.3)

Here p and q are the number of estimated coefficients in models f1 and f2, respectively (Clarke

(2003, p. 78)). Thus the Vuong test statistic ν with Schwarz correction is defined as:

ν̃ :=

√
n
([

1
n

∑n
i=1mi

]
−
[(p

2 log n
)
−
( q
2 log n

)]
/n
)

√
1
n

∑n
i=1 (mi − m̄)2

.

4.4.2 Clarke test

An alternative to the Vuong test is a distribution-free test (see Clarke (2007)) which applies a

modified paired sign test to the differences in the individual log-likelihoods from two non nested

models. The null hypothesis of the distribution-free test is

H0 : P0

[
log

f1(Yi|υi, δ̂
1
)

f2(Yi|ωi, δ̂
2
)
> 0

]
= 0.5. (4.4.4)

Under the null hypothesis (4.4.4) the log-likelihood ratios should be symmetrically distributed

around zero. That means that about half the log-likelihood ratios should be greater and half

less than zero. Using mi as defined in (4.4.2), Clarke considers the test statistic

B =
n∑

i=1

1l{0,+∞}(mi), (4.4.5)

where 1lA is the indicator function which is 1 on the set A and 0 elsewhere. The quantity B

is the number of positive differences and follows a Binomial distribution with parameters n

and probability 0.5 under H0. If B is, under the null hypothesis, significantly larger than its

expected value, model f1 is ”better” than model f2. This allows to construct the following

distribution-free test.

First let mi (Yi) correspond to the random variable with value mi, then the null hypothesis

(4.4.4) is equivalent to

HDF
0 : P0 [mi (Yi) > 0] = 0.5 ∀i = 1, . . . , n.
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For the test problem HDF
0 : P0 [mi (Yi) > 0] = 0.5 ∀i = 1, . . . , n versus

HDF
1+ : P0 [mi (Yi) > 0] > 0.5, i = 1, . . . , n, the corresponding α - level upper tail test rejectsHDF

0

versus HDF
1+ if and only if B ≥ cα+, where cα+ is the smallest integer such that

∑n
c=cα+

(
n
c

)
0.5n ≤

α. If the upper tail test rejects HDF
0 then we decide that model 1 is preferred over model 2.

For the alternative HDF
1− : P0 [mi (Yi) > 0] < 0.5, i = 1, . . . , n, the α - level lower tail test

rejects HDF
0 versus HDF

1− if and only if B ≤ cα−, where cα− is the largest integer such that∑cα−

c=0

(
n
c

)
0.5n ≤ α (compare to Clarke (2007, p. 349)). If HDF

0 versus HDF
1− is rejected, then

model 2 is preferred over model 1. If HDF
0 cannot be rejected, no model is preferred.

Like the Vuong test this test is sensitive to the number of estimated coefficients in each

model. Once again, we need a correction for the degrees of freedom.

Since the distribution-free tests work with the individual log-likelihood ratios, we cannot

apply the Schwarz correction as in the Vuong test with the ”summed” log-likelihood ratio.

Clarke (2003) suggests to apply the average correction to the individual log-likelihood ratios.

So we correct the individual log-likelihoods for model f1 by a factor of
[( p

2n log n
)]

and the

individual log-likelihoods for model f2 by a factor of
[( q

2n logn
)]

.

In the Bayesian approach we can quantify the uncertainty of the test decisions for the Vuong

and Clarke test accordingly. For this we utilize the sampled parameter values from the MCMC

output and determine the test decision for each sampled value. This allows to estimate the

posterior percentages of how many times model 1 (model 2) was chosen over model 2 (model 1)

and the percentage of no test decision.

All MCMC algorithms for model fit and the model comparison are implemented in package

spatcounts (Schabenberger (2009a)) in R, which is available on CRAN.

4.5 Application

We now apply the models described in Section 4.3 to a large portfolio of a German health

insurer. Before the parametric models are fitted, a basic exploratory analysis is carried out. At

the end of this Section, all fitted models are compared using the DIC as well as the Vuong and

the Clarke tests described in Section 4.4.

4.5.1 Data description and exploration

The data set considers 37751 insured persons of a private health insurance company in 2007.

The response variable is the number of benefits received per patient for ambulant treatments.

In the German private health care system, the policyholders may opt to cover a part of each

invoice themselves, this amount is called deductible. Depending on the policy type and the

treatment setting, deductibles can be either an annual total or a percentage of each invoice. If

no bill is reimbursed throughout the whole year, the policyholder receives a refund. A variable

description including the response variable and the explanatory variables is given in Table 4.2.

Germany has 439 districts. The data includes patients from all districts.

Around 76% of the insured persons are male, which is typical for the policy line considered.

To obtain a first overview of the dependent variable Yi, a histogram of the observed count

frequencies is given in Figure 4.1). For a better graphical illustration, outliers Yi > 50 are not

displayed. The histogram shows that we have a high variation in Yi and a rather large number

of zeros. In particular 43% of the response data is equal to zero. The covariates can be split

up into two groups. The first group of the covariates depend on the patient like the total of
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Variable Type Description

Yi discrete Number of outpatient benefits re-

ceived by patient i.

DEDi continuous Total of all deductibles of patient

i.

AGEi discrete Age of patient i.

SEXi binary Indicator for gender of patient i.

(0 = female, 1 = male)

ZIPi categorical ZIP Code of the home address of

patient i.

D(i) categorical Indicates the home district for

patient i.

PHY S.INHj continuous with Number of physicians per inhab-

itant in district j

spatial information multiplied by 100.

URBANj continuous with Number of inhabitants per

square kilometer in district j.

spatial information

BPj continuous with Buying power in district j.

spatial information

Table 4.2: Variable description for the analyzed health insurance data set

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Frequency distribution
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Figure 4.1: Frequency distribution for the response variables (Y ∈ [0, 705] without outliers

Yi > 50).
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0 0.5 0 1500 2277 23760

Figure 4.2: Exploratory maps of the spatial covariates PHYS.INH (left panel), URBAN

(middle panel) and BP (right panel).

all deductibles with values DED ∈ [0, 1821], the age with AGE ∈ [3, 88] or the gender dummy

SEX. The second group of covariates are spatial covariates like the number of physicians per

inhabitant with PHYS.INH ∈ [0, 0.5622], the number of inhabitants per square kilometer with

value URBAN ∈ [39.28, 4060] or the average buying power BP ∈ [12277.4, 23760.38] in Euro.

The maps in Figure 4.2 show the spatial distribution of the spatial covariates. The number

of physicians per inhabitant in Germany seem to be distributed very uniformly (left panel of

Figure 4.2) whereas the most inhabitants per square kilometer can be found in the larger cities,

e.g. Berlin, Bremen, Hamburg, Munich or the Ruhr area (middle panel of Figure 4.2). West

Germany has higher buying power with a peak around Munich compared to East Germany

(former German Democratic Republic) (see right panel of Figure 4.2).

A natural next step is to look at scatter plots of the dependent variable Y against each

of the regressors. The LOWESS (solid line) and the GAM (dashed line) smoothing curves of

the scatter plot in Figure 4.3 indicates that the variable AGE has to be transformed, i.e., we

allow a quadratic influence on the response. In health insurance this is not unusual since in

general children and older people need more medical attendance. For numerical stability we use

standardized (sometimes called autoscaled) covariates for the variables DED, PHYS.INH,

URBAN and BP denoted with ”.s”.

4.5.2 Identification of base models

To establish base models we first analyze the data set in the statistical program ”R” without

spatial effects. We allow for an intercept, the covariates gender (SEX), the standardized co-

variates DED.s, PHYS.INH.s, URBAN.s and BP.s as well as the orthogonal polynomial

transformed covariates AGE.p1 (polynomial transformation of degree 1), AGE.p2 (polyno-

mial transformation of degree 2). For maximum likelihood parameter estimates we use the

function est.zigp() in the R package ZIGP developed by Erhardt (2009) for all models except

the negative Binomial regression model which is estimated with the basic R library MASS using

the function glm.nb().

In a next step sequential elimination according to a Wald test with 5% α-level of significance
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Figure 4.3: Scatter plot (including gam (dashed) and lowess (solid) smoothing lines) and box

plot of the number of benefits received per patient against age of the patient.

is conducted. In Table 4.3 the full and reduced regression specifications are given for every model

class considered in Section 4.2. The penalty term in the AIC statistic includes parameters which

are estimated (such as ϕ in GP (µi, ϕ)) and does not include them if they are fix (such as ϕ = 1

in Poi(µi)). We stress that the comparison of different models based on AIC is only possible

within one model class, that is when the distribution of the responses are the same and designs

are hierarchical. If the models are non nested, the test decisions should be based on the Vuong

test or the distribution-free test (Clarke test).

Table 4.4 displays for the models NBR, GPR, ZIPR and ZIGPR (defined as model (I) and

PoiR, NBR, GPR and ZIPR (defined as model II) the entries of the Vuong and Clarke tests for

each combination of model (I) and model (II). We choose an α-level of 5%, i.e., z1−α
2

= 1.96.

In the first line of each cell, the Vuong test statistic ν is given. In the second and third line

the decision of the Vuong test (V) and the Clarke test (C) is shown, i.e., if model (I) or (II) is

better. The corresponding p-values for each test are given in parentheses. For example V: (I)(
< 2 · 10−16

)
means that the Vuong test prefers model (I) with p-value smaller than 2·10−16. We

now discuss the conclusions to be drawn from Table 4.4. Since the Poisson model is not preferred

over any of the other model classes, we see evidence that the data is in fact overdispersed.

Overdispersion may be explained either by a dispersion parameter as in the GPR or the NBR

model, by excess zeros as in the ZIPR model, or both. Since the GPR model outperforms

the NBR model, we consider zero-inflation jointly with the GPR distribution, i.e., we also fit

a ZIGPR model. In general, the tests by Vuong and Clarke are suitable for pairwise model

comparison, thus they do not have to lead to an overall decision between all model classes, much

less do both test necessarily decide equivalently. In our case, however, the pairwise decisions

given in Table 4.4 are identical, and we can sort the models in a unique ranking: the GPR model

outperforms all other models and is followed downward by ZIGPR, NBR, ZIPR and the PoiR

model. The comparison of the ZIGPR(µi, ϕ, ω) model to all other model classes gives almost

identical results as the comparison of the GPR(µi, ϕ) model to these classes. The reason is that

the zero-inflation parameter in the ZIGPR model is estimated almost to zero (see Table 4.3)

and therefore the ZIGPR fit is almost identical to the GPR fit. In the comparison between the

GPR and ZIGPR model, the GPR model by far outperforms the ZIGPR model. This can be

explained by the nature of the two test: even if the likelihood contributions per observation in



68
C
H
A
P
T
E
R

4
.

M
O
D
E
L
S
E
L
E
C
T
IO

N
F
O
R

S
P
A
T
IA

L
C
O
U
N
T

R
E
G
R
E
S
S
IO

N

Model Model equation µ Dispersion

(SE)

Zero-

inflation

(SE)

l(θ̂) Para-

meters

AIC

PoiR(µi) 1 + DED.s + AGE.p1 + AGE.p2 +

SEX + PHYS.INH.s + URBAN.s +

BP.s

ϕ = 1 (not

estimated)

ω = 0 (not

estimated)

-218 486.8 8 436 990

NBR(µi, r) (full) 1 + DED.s + AGE.p1 + AGE.p2 +

SEX + PHYS.INH.s + URBAN.s +

BP.s

r̂ = 0.5811

(0.0062)

-99 552.8 9 199 124

NBR(µi, r) (re-

duced)

1 + DED.s + AGE.p1 + AGE.p2 +

SEX + BP.s

r̂ = 0.5811

(0.0062)

-99 553.3 7 199 121

GPR(µi, ϕ) (full) 1 + DED.s + AGE.p1 + AGE.p2 +

SEX + PHYS.INH.s + URBAN.s +

BP.s

ϕ̂ =

4.6369

(0.0397)

ω = 0 (not

estimated)

-96 849.1 9 193 716

GPR(µi, ϕ) (re-

duced)

1 + DED.s + AGE.p1 + AGE.p2 +

SEX + URBAN.s + BP.s

ϕ̂ =

4.6893

(0.0410)

ω = 0 (not

estimated)

-96 850.5 8 193 717

ZIPR(µi, ω) (full) 1 + DED.s + AGE.p1 + AGE.p2 +

SEX + PHYS.INH.s + URBAN.s +

BP.s

ϕ = 1 (not

estimated)

ω̂ = 0.4312

(0.0026)

-161 674.1 9 323 366

ZIPR(µi, ω) (re-

duced)

1 + DED.s + AGE.p1 + AGE.p2 +

SEX

ϕ = 1 (not

estimated)

ω̂ = 0.4312

(0.0026)

-161 675.4 6 323 363

ZIGPR(µi, φ, ω)
1 + DED.s + AGE.p1 + AGE.p2 +

SEX + PHYS.INH.s + URBAN.s +

BP.s

ϕ̂ =

4.7010

(0.0414)

ω̂ = 10−6

(0.0007)

-96 454.5 10 192 929

Table 4.3: Model specifications and AIC for each of the models after sequential elimination of insignificant covariates according to a Wald test

with α = 5%



4
.5
.

A
P
P
L
IC

A
T
IO

N
69

H
H

H
H
H
H

(I)

(II)
PoiR(µi) NBR(µi, r) GPR(µi, ϕ) ZIPR(µi, ω)

ν = 30.2

NBR(µi, r) V: (I)
(
< 2 · 10−16

)

C: (I)
(
< 2 · 10−16

)

ν = 34.7 ν = 4.2

GPR(µi, ϕ) V: (I)
(
< 2 · 10−16

)
V: (I)

(
2.26 · 10−5

)

C: (I)
(
< 2 · 10−16

)
C: (I)

(
< 2 · 10−16

)

ν = 21.4 ν = −24.7 ν = −25.0

ZIPR(µi, ω) V: (I)
(
< 2 · 10−16

)
V: (II)

(
< 2 · 10−16

)
V: (II)

(
< 2 · 10−16

)

C: (I)
(
< 2 · 10−16

)
C: (II)

(
< 2 · 10−16

)
C: (II)

(
< 2 · 10−16

)

ν = 34.7 ν = 4.3 ν = −137 ν = 25.0

ZIGPR(µi, ϕ, ω) V: (I)
(
< 2 · 10−16

)
V: (I)

(
2.14 · 10−5

)
V: (II)

(
< 2 · 10−16

)
V: (I)

(
< 2 · 10−16

)

C: (I)
(
< 2 · 10−16

)
C: (I)

(
< 2 · 10−16

)
C: (II)

(
< 2 · 10−16

)
C: (I)

(
< 2 · 10−16

)

Table 4.4: Model comparison using the Vuong and the Distribution-Free (Clarke) test; test statistic ν of the Vuong test together with decision

according to Vuong (V) and Clarke (C) and their p-values, respectively.
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both of these models are almost identical, there is a minimal correction toward the GPR

model by virtue of the larger Schwarz penalty term, which corrects for the additional zero-

inflation parameter in the ZIGPR model. Notwithstanding this application, overdispersion ex-

plained by both a dispersion parameter and zero-inflation simultaneously is present in many

other applications, e.g. the ZIGPR model considered by Czado, Erhardt, Min, and Wagner

(2007) to analyze patent filing processes.

By including a random spatial effect for each region extra heterogeneity in the data might

be taken into account by assuming a finer geographic resolution. The CAR prior presented in

Section 4.2 will be assumed for these spatial effects.

4.5.3 Bayesian inference using MCMC

The MCMC algorithms for the PoiR, NBR, GPR, ZIPR and ZIGPR models are run for 50000

iterations. The mean parameter µi, i = 1, . . . , n has the general form

µi = ti · exp
(
xtiβ + γD(i)

)

with the observation specific exposure ti fixed to 1. We fit models with spatial covariates

only (denoted by SC), models with spatial random effects only (denoted by CAR) and models

with both spatial random effects and spatial covariates (denoted by CAR+SC). Recall that we

have the spatial covariates: number of physicians per inhabitants (PHYS.INH.s), number of

inhabitants per square kilometer (URBAN.s) and buying power (BP.s).

The starting values for each parameter of the four models are taken from the regression with-

out spatial effect. That means we use the results of the R functions est.zigp() and glm.nb()

for all models with all covariates for SC and CAR+SC and without the spatial covariates for the

CAR model. The posterior means and 80% credible intervals for the model specific parameters

r, ϕ and ω in the different models are shown in Table 4.5 (the posterior means and 80% credible

intervals for the regression parameter vector β can be found in Schabenberger (2009b, p. 59)).

As in the base models in Section 4.5.2, the zero-inflation parameter in the ZIGPR model is

very close to zero for the SC, CAR and SC+CAR specifications. Note that only positive zero-

inflation is allowed, therefore the credible intervals cannot contain the zero. Since the ZIGPR

model becomes a GPR model when there is no zero-inflation present, we will no longer consider

the ZIGPR model for the remainder of this chapter.

Estimation of the regression parameter slightly differs between the models and also changes

when spatial effects are added, especially for the GPR models where large spatial effects are

observed. Although there are some insignificant covariates we do not reduce the models to

compare whether SC, CAR or CAR+SC is preferred. Estimation of the specific parameters is

rather similar in all models SC, CAR and CAR+SC. The range of the estimated spatial effects

in all of the models is roughly the same in each model even though the Poisson model captures

unexplained heterogeneity only by spatial effects. In the ZIP model the proportion of extras

zeros ω is estimated as 43%.

In Figure 4.4 we present map plots of the estimated posterior means. In Figure 4.5 the 80%

credible intervals of the spatial effects in the Poisson, negative Binomial, generalized Poisson

and zero-inflated Poisson models are given. In each Figure the model specification SC is shown

in the left panel, the CAR model specification in the middle panel and the CAR+SC model

specification in the right panel. Here we see that the spatial effects of all four regression models

are almost the same. The spatial covariates have nearly no influence but according to the 80%
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Parameter Model Mean (10%, 90%)

SC 0.5808 (0.5723, 0.5887)

r in NBR CAR 0.5912 (0.5831, 0.5995)

CAR+SC 0.5910 (0.5830, 0.5993)

SC 4.6840 (4.6271, 4.7412)

ϕ in GPR CAR 4.4492 (4.3994, 4.4999)

CAR+SC 4.4488 (4.3985, 4.4994)

SC 0.4312 (0.4278, 0.4346)

ω in ZIPR CAR 0.4310 (0.4276, 0.4345)

CAR+SC 0.4310 (0.4276, 0.4344)

SC 4.6825 (4.6544, 4.7110)

ϕ in ZIGPR CAR 4.4514 (4.4219, 4.4805)

CAR+SC 4.4518 (4.4214, 4.4792)

SC 2.4 · 10−4 (2.0 · 10−5, 5.5 · 10−4)

ω in ZIGPR CAR 1.6 · 10−4 (1.9 · 10−5, 4.0 · 10−4)

CAR+SC 1.5 · 10−4 (1.3 · 10−5, 3.4 · 10−4)

Table 4.5: Estimated posterior means and 80% credible intervals for the model specific param-

eters in the considered SC, CAR, CAR+SC models

credible interval they have a negative spatial effect. According to the 80% credible intervals the

CAR and the CAR+SC models have small significant spatial effect.

Unfortunately, the estimated empirical autocorrelations in some of the models decrease very

slow. Therefore to compare the different models we decide to thin the 50000 MCMC output by

choosing every 200th value.

In order to compare these models, the DIC, defined in Section 4.3, is considered. In Table

4.6, the DIC, the posterior mean of the deviance and the effective number of parameters are

listed for each model. E [D(θ|y)] is based only on the unscaled deviance (see Section 4.3)

which cannot be interpreted directly as an overall goodness of fit measure of one specific model.

However, E [D(θ|y)] can be used for comparing the model fit of several models when the number

of parameters is roughly the same.

For each regression model the model SC has the highest DIC value. The DIC for the CAR

and CAR+SC model is roughly the same. For SC models the effective number of parameters

pD is close to the true number, which is eight for the Poisson regression model and nine for the

NBR, GPR and ZIPR model. This is to be expected, since these models do not include random

effects. When spatial effects are added, the number of effective parameters increases rapidly.

The DIC and the posterior mean of the deviance, E [D(θ|y)], for CAR are the smallest in all

regression models except for the Poisson model. Here the DIC value of CAR+SC is slightly

lower than the one of CAR.

Note that the DIC must be used with care, since strictly speaking the DIC is defined for

distributions of the exponential family only. Additionally, if two models have similar DIC values

it is possible that the model decision varies for different MCMC runs. Therefore we make another

comparison using the Vuong and the Clarke test discussed in Section 4.4.
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PoiR

−0.7 0.70
SC

−0.7 0.70
CAR

−0.7 0.70
CAR+SC

NBR
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CAR

−0.7 0.70
CAR+SC
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−0.7 0.70
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Figure 4.4: Maps of the estimated posterior means (top panels) of the spatial effects in the PoiR,

NBR, GPR and ZIPR models SC, CAR and CAR+SC
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PoiR

SC CAR CAR+SC

NBR

SC CAR CAR+SC

GPR

SC CAR CAR+SC

ZIPR

SC CAR CAR+SC

Figure 4.5: Maps of the 80% credible intervals (white: strictly positive, black: strictly negative,

gray: zero is contained in 80% credible interval) of the spatial effects in the PoiR, NBR, GPR

and ZIPR models SC, CAR and CAR+SC
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Model DIC E [D(θ|y)] pD

SC 436990.8 436982.9 7.89

PoiR CAR 426818.5 426390.3 428.21

CAR+SC 426817.2 426388.9 428.24

SC 199124.9 199115.8 9.10

NBR CAR 198867.8 198651.8 216.00

CAR+SC 198868.1 198650.8 217.29

SC 192927.9 192918.5 9.33

GPR CAR 190764.4 190461.8 302.64

CAR+SC 190764.7 190461.4 303.30

SC 323367.0 323357.7 9.36

ZIPR CAR 318740.5 318364.8 375.66

CAR+SC 318742.2 318366.2 376.03

Table 4.6: DIC, E [D(θ|y)] and effective number of parameters pD for the different models

4.5.4 Model selection

Selecting spatial models

First of all we compare SC, CAR and CAR+SC for each regression model PoiR(µi), NBR(µi, r),

GPR(µi, ϕ) and ZIPR(µi, ω). Table 4.7 shows the percentage of 250 Vuong and Clarke test

decisions between model (I) and model (II). For the Vuong test we use the statistic ν and choose

again an α-level of 5%, i.e., the decision border is z1−α
2

= 1.96 For the Clarke test we report

B/n. The number of parameters p and q of model (I) and (II), neccessary for the corrections,

are taken from the DIC calculations, i.e., we use the effective number of parameters pD. The

decisions of the Vuong and Clarke tests given in Table 4.7 are not consistent. For the Poisson

regression models the SC specification performs poorly, however for the comparison between the

CAR and CAR+SC specifications only the Clarke test slightly prefers CAR. Since this model

has less covariates than CAR+SC, we choose this design as the preferred one within the Poisson

class. For the negative Binomial model there is no distinct decision between CAR and CAR+SC,

however the SC model is preferred over both of them. The same holds for the ZIPR class. For

the generalized Poisson regression models the test by Vuong prefers none of the models in all

three comparisons. Therefore we only consider the Clarke test, which slightly decides toward

the CAR model. Since this model also has the smallest DIC value (see Table 4.6), we choose

the CAR specification within the GPR class.

Selecting count distribution

Now we want to compare the observed preferred models PoiR CAR, NBR SC, GPR CAR and

ZIPR SC to get the overall favored one. Therefore we use again the Vuong and the Clarke test

like in the section before. The results are shown in Table 4.8. The first value in the round

brackets favors model (I), the second one stands for no decision taken and the right one prefers

model (II) (all in percent). For example (100%, 0%, 0%) means the test perfers model (I) over

model (II) in 100% of the sampled MCMC posterior parameter values based on 250 iterations.
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Model (I)/ (II) Test
Decision f.

No decision
Decision f.

model (I) model (II)

SC/CAR+SC
Vuong 0.0% 6.0% 94.0%

Clarke 0.0% 1.2% 98.8%

PoiR CAR/CAR+SC
Vuong 0.0% 100.0% 0.0%

Clarke 40.8% 19.2% 40.0%

CAR/SC
Vuong 93.6% 6.4% 0.0%

Clarke 98.8% 1.2% 0.0%

SC/CAR+SC
Vuong 100.0% 0.0% 0.0%

Clarke 100.0% 0.0% 0.0%

NBR CAR/CAR+SC
Vuong 1.2% 98.8% 0.0%

Clarke 47.6% 4.0% 48.4%

CAR/SC
Vuong 0.0% 0.0% 100.0%

Clarke 0.0% 0.0% 100.0%

SC/CAR+SC
Vuong 0.0% 100.0% 0.0%

Clarke 14.4% 35.2% 50.4%

GPR CAR/CAR+SC
Vuong 0.4% 99.6% 0.0%

Clarke 44.0% 18.4% 37.6%

CAR/SC
Vuong 0.0% 100.0% 0.0%

Clarke 55.2% 30.0% 14.8%

SC/CAR+SC
Vuong 0.0% 100.0% 0.0%

Clarke 100.0% 0.0% 0.0%

ZIPR CAR/CAR+SC
Vuong 0.0% 100.0% 0.0%

Clarke 51.6% 0.0% 48.4%

CAR/SC
Vuong 0.0% 100.0% 0.0%

Clarke 0.0% 0.0% 100.0%

Table 4.7: Decision of the Vuong and Clarke tests between model (I) and model (II) as a

percentage
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The generalized Poisson regression model CAR seems to fit our data in terms of the Vuong test

and the Clarke test the best. This model is preferred over all other models discussed (see Table

4.8).

H
H
H
H
H
H

(I)

(II)
PoiR CAR NBR SC GPR CAR

NBR SC
V (100%, 0%, 0%)

C (100%, 0%, 0%)

GPR CAR
V (100%, 0%, 0%) (100%, 0%, 0%)

C (100%, 0%, 0%) (100%, 0%, 0%)

ZIPR SC
V (100%, 0%, 0%) (0%, 0%, 100%) (0%, 0%, 100%)

C (100%, 0%, 0%) (0%, 0%, 100%) (0%, 0%, 100%)

Table 4.8: Selection of the response distributions ((I)>(II),(I)=(II),(I)<(II)) based on the Vuong

(V) and Clarke (C) tests

4.6 Conclusions

For count regression data we have presented several models. In order to model over-dispersion

we used models with an additional parameter as in the NBR and GPR model or models with

an extra proportion of zero observations like the zero-inflated model ZIPR.

Further, in order to account for unobserved spatial heterogeneity in the data we included

spatial random effects which allow for spatial correlations between observations and / or spatially

varying covariates.

These models were applied to analyze the number of ambulant benefits received per patient

in 2007. The DIC, the Vuong and the Clarke tests were used for model comparison. Models

allowing for over-dispersion showed a significantly better fit than an ordinary non spatial Poisson

regression model. For the NBR and the ZIPR model the inclusion of spatial effects did not

improve the model fit. For the Poisson model which does not allow for over-dispersion, and

the GPR model, the inclusion of spatial effects led to an improved model fit. According to the

considered criteria the GPR model with spatial random CAR effects but no spatial covariates is

to be preferred to all other models. However, the fitted spatial model shows no smooth surface

structure. Rather it indicates isolated specific regions where the covariates provide no adequate

fit.

There are several interesting avenues for further research. For instance, instead of analyzing

the number of ambulant benefits received by patient for one year only, it might be interesting

to include data over several years in order to examine whether the spatial pattern changes over

the years. Another interesting possibility is to extend the regression models by allowing for

regression on ϕ and ω in order to find a better model fit and to address heterogeneity on a more

differentiated basis.



Chapter 5

Modeling dependent yearly claim

totals including zero-claims in

private health insurance

5.1 Introduction

Dependencies in insurance data may occur in many fields. Claim frequencies and sizes are

likely to be dependent. A copula approach to this issue applied to car insurance data has

been developed by Kastenmeier (2008). Specifically in the field of health insurance, dependen-

cies between inpatient and outpatient treatments are considered by Frees, Gao, and Rosenberg

(2007). Pitt, Chan, and Kohn (2006) discuss multi-dimensional measures of health care uti-

lization. They model the dependency between six measures of medical care demand, which are

categorized numbers of visits to physicians. Zimmer and Trivedi (2006) use a copula for three

simultaneously determined outcomes, i.e., the health insurance status for married couples and

their individual health care demand. Dependencies between the number of visits of insured and

uninsured persons per year have been considered by Deb, Munkin, and Trivedi (2006). Spatial

clustering is investigated by Brezger and Lang (2006) where treatment costs are assumed to be

influenced by time, age, sex and spatial effects. A longitudinal model for normalized patient

days per year in Wisconsin nursing homes from 1995 through 2001 using copulas was developed

by Sun, Frees, and Rosenberg (2008).

The aim of this chapter is to develop a collective model of yearly claim totals capable of

reflecting the dependency between different coverage fields. This will allow to appropriately

predict which yearly total amount an insurer needs to reserve in order to cover expenditures for

an insured person depending on age, sex and other attributes. This is crucial for the pricing

of premiums and for risk management. Neglecting dependency between dependent fields may

result for example in a misspecification of significant policy characteristics or in false reserving

calculus, since diversification effects are neglected. Applications for such a model abound: in

operational risk, losses of different dependent types occur very seldom, hence many loss totals are

zero. Whenever policies cover different risks claim totals may be zero for some risk and positive

for other risks: a car insurance contract may cover vehicle damages of different subclasses or

third-party liabilities.

Claim frequency and claim size models are standard tools in non-life actuarial science. For

claim frequencies often many zeros are observed caused for example by deductibles. Specifically

77
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in private health insurance there is an additional incentive for excess zeros: the policyholder

receives a premium refund by the end of the year when not claiming a single reimbursement.

Based on claim frequency and claim size models one can construct models for the yearly total

claim which will be a continuous random variable only given that at least one claim occurred.

The interest, however, often lies in modeling claims in general. If one allows for claim frequencies

of zero, the yearly total claim distribution will have an additional point mass at zero. Using

a copula approach to model dependency of the yearly total claims thus requires the use of

discrete as well as continuous copula properties. We will develop such an approach and estimate

parameters using maximum likelihood.

In this chapter, we also utilize pair-copula constructions (PCC’s) of general multivariate dis-

tributions. We model multivariate data using a cascade of pair-copulas, acting on two variables

at a time. Pair-copula decompositions build on the work on vines of Joe (1996), Bedford and

Cooke (2001a), Bedford and Cooke (2001b) and Bedford and Cooke (2002). For high-dimensional

distributions there are many possible pair-copula decompositions for the same multivariate dis-

tribution. Bedford and Cooke (2001b) introduced a graphical model called regular vine to help

organize them. They also identified two important subclasses of regular vines, which they called

C- and D-vines. Pair-copula decomposed models also represent a very flexible class of higher-

dimensional copulas. While Kurowicka and Cooke (2006) considered nonstandard estimation

methods, Aas, Czado, Frigessi, and Bakken (2009) used maximum likelihood for statistical in-

ference and explored the flexibility to model financial time series. There are several advantages of

using PCC’s: a T -dimensional multivariate density of continuous margins will be expressed as a

product of marginal densities and bivariate copulas with individual parameters each. Therefore,

in high dimensions T the numerical evaluation of the joint density is very tractable. Each pair

of margins can be modeled separately, i.e., the copula class and hence tail dependence properties

can be chosen individually. Also, since Archimedean copulas (see e.g. Nelsen (2006, Chapter 4))

are capable only of modeling exchangeable correlation structures, PCC’s provide a possibility

for generalizing the correlation structure. Finally, model selection in the sense of eliminating

weakly correlated copula densities from the joint density can be facilitated.

The chapter is innovative with regard to the following aspects: first of all, we present a

novel opportunity for modeling the joint density of total claims including zero claims based on

copulas for binary and continuous margins. We illustrate how PCC’s can be utilized under

marginals. Finally we present a novel approach to choose the copula when the margins are

discrete. Our model will allow to model the dependency of large claim portfolios in the presence

of zero observations.

This chapter is organized as follows: in Section 5.2 we will give a short review of the concept

of copulas and illustrate how multivariate distributions can be constructed using pair-copula

constructions. In Section 5.3 an appropriate model for dependent yearly total claims including

the zero will be developed: while Subsection 5.3.1 deals with the aggregation to yearly totals,

Subsection 5.3.2 addresses the problem of specifying a copula based model dependent for claim

totals and zero-claim events. An application to health insurance including a detailed illustration

of how to deal with the copula choice problem will be given in Section 5.4. We conclude with a

summary and discussion.



5.2. COPULAS AND MULTIVARIATE DISTRIBUTIONS 79

5.2 Copulas and multivariate distributions

A J-dimensional copula CJ is a multivariate cdf CJ : [0, 1]J → [0, 1] whose univariate margins are

uniform on [0, 1], i.e., CJ(1, . . . , 1, uj , 1, . . . , 1) = uj ∀j ∈ {1, . . . , J}. For J continuous random

variables (rv) X := (X1, . . . , XJ)′ with marginal distributions F1, . . . , FJ and densities f1, . . . ,

fJ , all transformed rv’s Uj := Fj(Xj), j = 1, . . . , J are uniform on [0, 1], hence while Fj reflects

the marginal distribution of Xj , CJ reflects the dependency. Sklar (1959) shows that

FX(x1, . . . , xJ) = CJ(F1(x1), . . . , FJ(xJ)|ζ), (5.2.1)

where ζ are the corresponding copula parameters. If a multivariate cdf of X exists, there also

exists a copula CJ which separates the dependency structure from the marginal distributions.

If the margins are continuous, CJ is unique. Vice versa, according to (5.2.1) we can construct

a multivariate cdf from J marginal distributions using a J-dimensional copula CJ . For a more

detailed introduction to copulas, see for instance Joe (1997) or Nelsen (2006). Definitions of

some elliptical and Archimedean copulas together with their bivariate densities can be found in

Appendix 5.4.5.

While in this chapter we use J dimensional copulas to model dependent discrete margins, a

pair-copula construction (PCC) of the joint density will be utilized to describe the dependence

of continuous margins. A PCC consists of a cascade of pair-copulas, acting on two variables at a

time. In high dimensions there are many different PCC’s possible. Bedford and Cooke (2001b)

and Bedford and Cooke (2002) show that they can represent such a PCC in a sequence of nested

trees with undirected edges, which they call regular vine. One distinguishes between the classes

of C and D vines where in the trivariate case these classes coincide. In the following we will

illustrate the construction of a C-vine: a multivariate density can be expressed as a product of

conditional densities, i.e.

f(x1, ..., xJ) = f(xJ |x1, · · · , xJ−1)f(x1, · · · , xJ−1) =
J∏

j=2

f(xj |x1, · · · , xJ−1) · f(x1). (5.2.2)

Here F (·|·) and f(·|·) denote conditional cdf’s and densities, respectively. Using Sklar’s theorem

applied to conditional bivariate densities we can express f(xJ |x1, · · · , xJ−1) as

f(xJ |x1, · · · , xJ−1) =
f(xJ−1, xJ |x1, · · · , xJ−2)

f(xJ−1|x1, · · · , xJ−2)

= cJ−1,J |1,··· ,J−2 · f(xJ |x1, · · · , xJ−2). (5.2.3)

Here we use for arbitrary distinct indices i, j, i1, · · · , ik with i < j and i1 < · · · < ik the following

abbreviation for a bivariate conditional copula density evaluated at conditional cdf’s:

ci,j|i1,··· ,ik := ci,j|i1,··· ,ik(F (xi|xi1 , · · · , xik), F (xj |xi1 , · · · , xik)).

Joe (1996) showed that for a d-dimensional vector ν and a reduced vector ν−j equal to ν

but without component j the conditional cdf can be obtained recursively by

F (x|ν) =
∂C (F (x|ν−j), F (νj |ν−j))

∂F (x|ν−j)
. (5.2.4)

A detailed proof of this can be found for example in Czado, Min, Baumann, and Dakovic

(2009). For the special case where ν = {ν} it follows that F (x|ν) = ∂C(F (x),F (ν))
∂F (ν) . For the
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uniform margins U := F (x) and V := F (v) we define a function

h(u|v) :=
∂ C(u, v)

∂v
. (5.2.5)

This h function has been derived explicitly for many copulas by Aas, Czado, Frigessi, and Bakken

(2009). A summary of the ones used in this chapter is given in Table 5.12 in Appendix 5.4.5.

By recursive use of (5.2.3) one can express the product of conditional densities (5.2.2) by

f(x1, ..., xJ) = f(x1) ·
J∏

j=2

j−1∏

k=1

cj−k,j|1,··· ,j−k−1 · f(xj)

=
J∏

r=1

f(xr) ·
J∏

j=2

j−1∏

k=1

cj−k,j|1,··· ,j−k−1. (5.2.6)

For k = j − 1 the conditioning set in cj−k,j|1,··· ,j−k−1 is empty, i.e., we set c1,j|10 := c1,j .

In the trivariate there are only three theoretical decompositions of f (x1, x2, x3) (ignor-

ing the possibility of choosing different bivariate copula classes), whereas in higher dimen-

sions, there are many more. On possible decomposition is obtained by using f (x1, x2, x3) =

f1(x1)f2|1(x2|x1)f3|12(x3|x1, x2). Then the PCC is given by

f (x1, x2, x3) = c12(F1(x1), F2(x2)) c23|1(F2|1(x2|x1), F3|1(x3|x1))

·c13(F1(x1), F3(x3))
3∏

j=1

fj(xj). (5.2.7)

The joint density of pairs of margins corresponding to the PCC in (5.2.7) can be written as

f(x1, x2) =

∫
f1(x1)f2|1(x2|x1)f3|12(x3|x1, x2)dx3 = f1(x1)f2|1(x2|x1)

= c12(F1(x1), F2(x2))
2∏

j=1

fj(xj),

and similarly f(x1, x3) = c13(F1(x1), F3(x3))·f1(x1)f3(x3). The final margin requires integration,

i.e.

f(x2, x3) =

∫
f1(x1)f2|1(x2|x1)f3|12(x3|x1, x2)dx1

=

∫
c12(F1(x1), F2(x2)) · c23|1(h(F2(x2)|F1(x1)), h(F3(x3)|F1(x1)))

·c13(F1(x1), F3(x3))
3∏

j=1

fj(xj)dx1

=

∫ 1

0
c12(u1, u2) · c23|1(h(u2|u1), h(u3|u1)) · c13(u1, u3)

·
3∏

j=2

fj(F
−1
j (uj))du1, (5.2.8)

where we substitute uj = Fj(xj) and transform dx1 = 1
f1(xj)

du1. For most copula choices, the

integral in (5.2.8) can only be calculated numerically.
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5.3 A model for dependent yearly claim totals

In this section we aim to develop a joint model for yearly dependent total claims including

zero claims. One possible approach to this has been developed by Frees and Valdez (2008) and

has been applied to car accident claims where payments may occur in three different correlated

random classes. They point out that this is a nonstandard problem since all three claim types are

rarely observed simultaneously. In their approach, the combination of claims and zero claims is

modeled by a multinomial logit model. We will model yearly total claims for a certain claim type

and utilize a copula to obtain a joint model. In general, we assume that we have J dependent

yearly claims available. For a population of insured individuals this may be J different treatment

fields. A zero claim may arise for different reasons: first of all, a healthy patient simply had no

need to see a physician. Secondly, the invoice may be below a deductible. Thirdly, the insured

person will get a premium refund when not recovering a single bill throughout the year and

opts for this when expecting the refund to be higher than the invoice. In health insurance we

consider the dependence between ambulant, inpatient and dental treatments. Zero claim events

will certainly be dependent due to the health status of an insured person. The deductible will

not have an impact on the dependency of the zero claim events since they apply separately for

the three fields. The premium refund, however, will only be paid if no reimbursement is claimed

in either of these fields. Therefore, it will also influence the dependence.

5.3.1 Aggregation of claim frequencies and sizes to yearly totals

We will express the yearly total claim Tj in field j as

Tj := Wj · 0 + (1−Wj)NjS̄j = (1−Wj)T
+
j ≥ 0.

Here Wj is a binary indicator for the zero claim event, i.e., Wj = 1 if the claim is zero and

Wj = 0 else. Also, W := (W1, . . . ,WT )′ and W−j := (W1, . . . ,Wj−1,Wj+1, . . . ,WT )′. Further,

Nj is the positive number of claims and S̄j the average claim size (also strictly positive). In

general we will observe only S̄j |{Wj = 0} but we assume that S̄j |{Wj = 1} exists. Let the total

claim T+
j := NjS̄j > 0 if Wj = 0 and unknown but positive if Wj = 1.

A more general case is given when the single claims Skj , k = 1, . . . , Nj , which contribute

to the yearly total, are known and are i.i.d., i.e., if T+
j :=

∑Nj

k=1 Skj . Then the distribution of

T+
j will be obtained by convolution and can be approximated for example using the methods

summarized in the R package ’actuar’ (see Dutang, Goulet, and Pigeon (2008)). This chapter,

however, will focus on average claims but apart from the expression for total claims all approaches

carried out in this chapter apply in a similar way.

We denote probability mass functions (pmf) by p and their cumulative distribution functions

(cdf) by P . Probability density functions (pdf) and cdf of continuous random variables are

denoted by f and F , respectively. The following distributions for the zero claim event, claim

frequencies and sizes are assumed:

Wj ∼ binary(pWj
(1)), with pmf pWj

, cdf PWj
,

Nj |{Wj = 0,W−j} ∼ PNj |{Wj=0,W−j}, positive no. of claims, pmf pNj |{Wj=0,W−j},

S̄j |{Nj ,Wj = 0,W−j} ∼ FS̄j |{Nj ,Wj=0,W−j}, average claim size, pdf fS̄j |{Nj ,Wj=0,W−j}.

For data following these distributions regression models may be fitted. Then the realizations

w−j of W−j are used as regressors in the latter two models and additionally the realizations
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nj of Nj in the last one. It follows that T+
j := NjS̄j is conditionally independent of W−j .

Note that one only fits these two regression models to data with Wj = 0. The distribution

of Nj may be modeled using a zero-truncated count distribution (see for example Zuur, Leno,

Walker, Saveliev, and Smith (2009, Chapter 11)) which can be constructed based on any count

distribution. For example, let Nc follow some count distribution (Poisson, Negative-Binomial

etc.) with pmf pc, then N ∼ PN with pmf

pN (n) :=
pc(n)

1− pc(0)
, n = 1, 2, . . .

will be the zero-truncated representative of this count distribution.

Example 1. For the Negative Binomial (NB) distribution with mean parameter µ > 0, shape

parameter r > 0 and variance µ
(
1 + µ

r

)
a zero-truncated Negative Binomial (ZTNB) distribution

has the pmf

pN (n) :=
1

1−
(

r
µ+r

)r ·
Γ(n+ r)

Γ(r)Γ(n!)
·
(

r

µ+ r

)r
·
(

µ

µ+ r

)n
, n = 1, 2, . . . .

We can now model and quantify the dependency of the vectors W and T . On the one hand,

the number of zero claims W reflects the impact of the health insurer’s incentives for not having

a single claim throughout the year, which the insurer wants to know about in order to arrange

its deductibles and premium refund policy. On the other hand, the dependence of T can be

used for premium and risk capital calculation.

Let FTj the cdf of Tj , then a derivative at t = 0 does not exist and therefore only the derivative

conditional on {Wj = 0} may be called a density function. Similar to Heller, Stasinopoulos,

Rigby, and De Jong (2007) we simply refer to fTj as the probability function (pf) of Tj . Jørgensen

and de Souza (1994) and Smyth and Jørgensen (2002) consider models for continuous claim sizes

including zero claims. These are based on the class of Tweedie distributions (Tweedie (1984)),

which are members of the exponential family. In particular they use a compound Poisson-gamma

distribution which is contained in the class of the Tweedie distributions. Belasco and Ghosh

(2008) develop a model based on the Tobit model (Tobin (1958)) in which a zero outcome arises

from left-censoring. The marginal distributions of T+
j given Nj , Wj = 0 and W−j will be

denoted by

T+
j |{Nj ,Wj = 0,W−j} ∼ FT+

j |{Nj ,Wj=0,W−j}, with pdf fT+
j |{Nj ,Wj=0,W−j}.

For the moment, we drop the index j for field j and also the dependency on W−j .

Lemma 1. For average claims S̄, cdf and pdf of T+|{W = 0} are given by

FT+|{W=0}(t
+) =

∞∑

k=1

FS̄|{N,W=0}

(
t+

k
|{N = k}

)
pN |{W=0}(k)

fT+|{W=0}(t
+) =

∞∑

k=1

fS̄|{N,W=0}

(
t+

k
|{N = k}

)
pN |{W=0}(k).

Proof. See Appendix.

Lemma 2. The cdf of the yearly total claim T at t is

FT (t) = pW (0) + 1l{t>0}(1− pW (0))FT+|{W=0}(t). (5.3.1)

Proof. See Appendix.
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5.3.2 A joint distribution of yearly total claims based on copulas

In this section we develop a joint distribution of T := (T1, . . . , TJ)′. Utilizing copulas in order

to model dependency between T := (T1, . . . , TJ)′ is nonstandard since according to Lemma

2, Uj := FTj (Tj) will have a point mass at 0 and hence Uj will not be uniform on [0, 1].

Nevertheless, we will develop a joint distribution of Tj , j = 1, . . . , J , based on two copula

constructions, one with discrete margins W := (W1, . . . ,WJ)′ and one with continuous margins

T+ := (T+
1 , . . . , T

+
J )′. We allow W and T+ to be dependent random vectors and use the

conditional independence between W and T |W , i.e., we use

P (Tj ≤ tj ,Wj = wj , ∀j) = P ((1−Wj)T
+
j ≤ tj |{Wj = wj}, ∀j) · P (Wj = wj , ∀j).

Here pW := P (Wj = wj , ∀j = 1, . . . , J) can be obtained by constructing PW by a J dimensional

copula and using the formula of Song (2007)[p. 128] to obtain the joint pmf. For T+ a joint pdf

fT+|W and hence a joint cdf FT+|W may be constructed using a PCC. We stress that the PCC

is utilized for T+, which is unobserved for some observations of t+j but nevertheless we use the

conditional independence of W and T |W . The joint distribution of yearly total claims T and

zero claim events W will be given in Proposition 2.

Proposition 2. Let Tj = (1 − Wj) · T+
j and J0(w) :=

{
j ∈ {1, . . . , J} : Wj = 0

}
=

{j1(w), . . . , jn(w)} with n(w) the cardinality of J0(w). Then the joint probability function of T

and W is given by

fT ,W (t,w) = pW (w)fT+
1(w)

,...,T+
n(w)

|W (t+1(w), . . . , t
+
n(w)|w)

where fT+
1(w)

,...,T+
n(w)

|W (t+1(w), . . . , t
+
n(w)|w) is the joint pdf of T+ where all margins with Wj = 1,

j = 1, . . . , J are integrated out.

Proof. We consider

P (Tj ≤ tj , j = 1, . . . , J,W = w) = P ((1−Wj)T
+
j ≤ tj , ∀j|W = w) · pW (w)

= P (T+
jk
≤ tjk , jk ∈ J0(w)|W = w) · pW (w).

The joint probability function is obtained by deriving for tjk , jk ∈ J0(w), i.e.,

fT+
1(w)

,...,T+
n(w)

|W (t+1(w), . . . , t
+
n(w)|w) = ∂

∂t1(w)
. . . ∂

∂tn(w)
P (T+

jk
≤ tjk , jk ∈ J0(w)|W = w).

So whenever an observation T+
j |{Wj = 1} is unknown, the margin in the corresponding

PCC is integrated out. Hence the distribution of the vector T |W is defined for strictly positive

numbers.

Example 2. For J = 3,

fT ,W (t1, t2, t3, w1, w2, w3) = pW (w1, w2, w3) ·
[
1l{w=(1,1,1)′} + 1l{w=(1,1,0)′}fT+

3
(t3)

+1l{w=(1,0,1)′}fT+
2

(t2) + 1l{w=(0,1,1)′}fT+
1

(t1)

+1l{w=(1,0,0)′}fT+
2 ,T

+
3

(t2, t3) + 1l{w=(0,1,0)′}fT+
1 ,T

+
3

(t1, t3)

+1l{w=(0,0,1)′}fT+
1 ,T

+
2

(t1, t2) + 1l{w=(0,0,0)′}fT+(t1, t2, t3)
]
.
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We define PW (w1, . . . , wJ |ζW ) := CJ(PW1(w1), . . . , PWJ
(wJ)|ζW ) by a copula cdf CJ in

dimension J with copula parameters ζW . For binary margins,

pW (w1, . . . , wJ |ζW ) =

w1∑

j1=0

. . .

wJ∑

jJ=0

(−1)
∑J

k=1(jk+wk)

·CJ(PW1(j1), . . . , PWJ
(jJ)|ζW ). (5.3.2)

Proof. According to Song (2007)[p. 128]

pW (w1, . . . , wJ |ζW ) =
1∑

k1=0

. . .
1∑

kJ=0

(−1)k1+...+kJCJ
(
u1k1(w1), . . . , uJkJ (wJ)|ζW

)
,

where ut0(wt) := PWt(wt) and ut1(wt) := PWt(wt − 1). Now ut0(1) = PWt(1) = 1, ut1(1) =

PWt(0) and ut0(0) = PWt(0). Since ut1(0) = PWt(−1) = 0 and CJ(. . . , 0, . . . |ζW ) = 0 we only

need to consider kt ≤ wt. By transforming jt := wt − kt ≥ 0 we obtain the required result.

Note that PWj
(1) = 1, j = 1, . . . , J . In this case and given we use an elliptical or Archimedean

copula, the copula in (5.3.2) at such a marginal probability will be of the same class only with

decreased dimension. On the other hand, for the continuous random vector T+ we define

FT+(t+1 , . . . , t
+
J |ζT

+
) by a PCC introduced in (5.2.7).

We return to the trivariate case (J = 3). The bivariate marginal distributions are defined

according to (5.2.8), where fT+
2 ,T

+
3

(t+i2, t
+
i3) requires numerical integration. Let ζW the parameters

of the copula of W and ζT
+

:= (ζT
+

12 , ζ
T+

13 , ζ
T+

23|1)
′ the parameters of the PCC of T+. Since

the expression depending on ζW is independent of the expression depending on ζT
+

, i.e., for

ζ := (ζW , ζT
+

)′, the log-likelihood is l(ζ) = l(ζW ) + l(ζT
+

), which in a maximum likelihood

context can be fitted separately over those two parameter sets. For observations i = 1, . . . , I,

l(ζW ) =

I∑

i=1

log(pW (wi1, wi2, wi3))

=

I∑

i=1

log




wi1∑

j1=0

wi2∑

j2=0

wi3∑

j3=0

(−1)
∑3

k=1(jk+wik)CJ(PW1(j1), PW2(j2), PW3(j3)|ζW )


 ,

l(ζT
+

) =
I∑

i=1

[
1l{wi1=1,wi2=0,w3=0} · log(fT+

2 ,T
+
3

(t+i2, t
+
i3|ζT

+
))

+1l{wi1=0,wi2=1,wi3=0} · log(c13(FT+
1

(t+i1), FT+
3

(t+i3)|ζT
+

13 ))

+1l{wi1=0,wi2=0,wi3=1} · log(c12(FT+
1

(t+i1), FT+
2

(t+i2)|ζT
+

12 ))

+1l{wi1=0,wi2=0,wi3=0} ·
[
log(c12(FT+

1
(t+i1), FT+

2
(t+i2)|ζT

+

12 ))

+ log(c23|1(h(FT+
2

(t+i2)|FT+
1

(t+i1), ζ
T+

12 ), h(FT+
3

(t+i3)|FT+
1

(t+i1), ζ
T+

13 )|ζT+

23|1))

+ log(c13(FT+
1

(t+i1), FT+
3

(t+i3)|ζT
+

13 ))
]]

+ const. independent of ζT
+
.

5.4 Application to health insurance data

We will consider data from a German private health insurer. Each record represents one out

of 37 819 insured persons. Claim frequencies will be the number of benefits received by an
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Variable Description

Responses

Wijt Zero claim event (1 if zero claim) by patient i in treatment field j

and year t.

Nijt|{Wijt = 0} Total positive number of benefits received by patient i in treatment field

j and year t.

Tijt Total invoice for patient i in treatment field j and year t

(including deductibles).

S̄ijt|{Wijt = 0} Tijt/Nijt, average invoice of patient i in treatment field j and

year t.

Covariates

categorical

SEXi Dummy for gender of patient i.

discrete

AGEit Age of patient i at December, 31 in year t.

continuous

DEDijt Total of all deductibles of S̄ijt of patient i in treatment field j

and year t.

DEDijt Average deductible of patient i in treatment field j and year t

spatial

ZIPi ZIP code of the home address of patient i as of Dec. 31, 2007.

D(i) Dummy for home district of patient i as of Dec. 31, 2007. There

are 439 German districts. Individuals are spread over all districts.

continuous with spatial information

PHY S.INHD(i) (number of physicians in district D(i) listed in the yellow pages as

of April 15, 2008 divided by the number of inhabitants in district

D(i) in 2007) ·100.

URBAND(i) Number of inhabitants per square kilometer in district D(i) in 2007

BPD(i) Average buying power in Euro in 2007 in district D(i) on a scale of

nine scoring levels. Buying power has been determined as the average

net income per district + public transfer payments.

Table 5.1: Description of variables considered for claim frequencies and claim size models for

the health insurance data

insured person, where a benefit may be any treatment or prescription balanced to a patient,

i.e., a patient usually gets charged for several benefits during one visit. Claim sizes will be the

average invoice, i.e., the yearly total amount divided by the number of benefits. Responses as

well as explanatory variables have been observed in the ambulant (i.e., outpatient), inpatient

and dental field over three years from 2005 to 2007. We will abbreviate the treatment fields

by ’A’ for ambulant, ’I’ for inpatient and ’D’ for dental or indices j = 1, . . . , 3, respectively.

Around 76% of the insured persons are male, which is typical for the policy line considered.

All policyholders in the population are covered in all three fields. The private German health

care system allows for deductibles, which - depending on policy type and treatment - may be a

specific amount for a certain benefit or a percentage of the amount invoiced. Policyholders not

handing in a single bill for a whole year in any of the three fields will get a premium refund.

Therefore, we might not see the actual treatment numbers and amounts invoiced in the data.

A variable description including responses and explanatory variables will be given in Table 5.1.
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The data has been supplemented by data from different sources:

• a mapping of ZIP codes to 439 districts not including corporate ZIP codes

(http://www.manfrin-it.com/postleitzahlen/plz.html), completed by single queries for miss-

ing ZIP codes from http://w3logistics.com/infopool/plz/index.php,

• number of physicians per ZIP code listed in the yellow pages from 8233 automated web

requests searching for ’Arzt’ (physician) to http://web2.cylex.de,

• number of inhabitants and area in square kilometers of each of the 439 German districts

according to the GfK GeoMarketing GmbH

(http://www.gfk-geomarketing.de/marktdaten/samples.php),

• data transcribed from a map displaying the buying power per district by the GfK Geo-

Marketing GmbH

http://www.gfk-geomarketing.de/presse/bdm/html/01 2007.html,

reference Grafik: GfK GeoMarketing.

Fitting marginal distributions first and fitting the copula parameters for fixed margins af-

terwards is known as inference functions for margins or the IFM method (see for example Joe

(1997, Section 10.1)). In the following subsections we will briefly summarize the regression

models chosen for Wjt, Njt and S̄jt, j, t = 1, 2, 3.

5.4.1 Marginal zero claim event models

Consider a logistic regression model for Wij , i = 1, . . . , n, j = 1, . . . , J , i.e.

Wij ∼ binary
(

exp(xWt
ij βj)

1 + exp(xWt
ij βj)

)
.

We choose variables by backward selection based on the Wald test with a 5% significance level.

The model equations of the reduced designs are given in Table 5.2. An exemplary summary of

the regression model for WA7 is given in Table 5.3.

Model equations

WA5 ∼ 1 + 1lDEDA5≤100 + 1lAGE5≤32 ·AGE5 + 1lAGE5>32 ·AGE5 + SEX +BP

WA6 ∼ 1 + 1lDEDA6≤100 + 1lAGE6≤32 ·AGE6 + 1lAGE6>32 ·AGE6 + SEX +BP

WA7 ∼ 1 + 1lDEDA7≤100 + 1lAGE7≤32 ·AGE7 + 1lAGE7>32 ·AGE7 + SEX +BP

WI5 ∼ 1 + 1lDEDI5=0 + 1lAGE5≤32 ·AGE5 + 1lAGE5>32 ·AGE5 + SEX

WI6 ∼ 1 + 1lDEDI6=0 + 1lAGE6≤32 ·AGE6 + 1lAGE6>32 ·AGE6 + SEX

WI7 ∼ 1 + 1lDEDI7=0 + 1lAGE7≤32 ·AGE7 + 1lAGE7>32 ·AGE7 + SEX + PHY S.INH

WD5 ∼ 1 + 1lDEDD5=0 + 1lAGE5>32 ·AGE5 + SEX + PHSY.INH +BP

WD6 ∼ 1 + 1lDEDD6=0 + 1lAGE6≤32 ·AGE6 + 1lAGE6>32 ·AGE6 + SEX +BP

WD7 ∼ 1 + 1lDEDD7=0 + 1lAGE7≤32 ·AGE7 + 1lAGE7>32 ·AGE7 + SEX + PHY S.INH +BP

Table 5.2: Reduced model equations for each of the nine logistic regression models for Wjt,

j = 1, 2, 3 = A, I,D; t = 5, 6, 7 after applying sequential backward selection based on the Wald

test
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Estimate Std. Error z value Pr(>|z|)
(Intercept) −9.4914 0.9951 −9.54 < 2 · 10−16

1lDEDA7≤100 10.9182 0.9945 10.98 < 2 · 10−16

1lAGE7≤32 ·AGE7 0.3480 0.0284 12.26 < 2 · 10−16

1lAGE7>32 ·AGE7 −0.6850 0.0354 −19.35 < 2 · 10−16

SEX 0.1965 0.0425 4.63 3.7 · 10−6

BP −0.0795 0.0169 −4.71 2.5 · 10−6

Table 5.3: Model summary for the reduced logistic regression model of WA7.

5.4.2 Marginal claim frequency models

Let Nij , i ∈ Ij := {i = 1, . . . , n,Wij = 0}, j = 1, . . . , J follow the zero-truncated negative bino-

mial distribution (ZTNB) defined in Example 1. Further let wi(−j) := (wi1, . . . , wi(j−1), wi(j+1),

. . . , wiJ)′. Then a ZTNB regression model (see e.g. Cruyff and van der Heijden (2008)) is given

by

Nij |{xNij ,wi(−j)} ∼ ZTNB
(
µij(x

N
ij ,wi(−j)), rj

)
,

µij(x
N
ij ,wi(−j)) = exp(xNtij γ

1
j +wi(−j)γ

2
j ).

We utilize the Wald test for backward selection. Thereby we use the observed Fisher information

Model equations

NA5 ∼ 1 +DEDA5 + poly(AGE5)[, 1] + poly(AGE5)[, 2] + SEX +DEDA5 : poly(AGE5)[, 1] +

DEDA5 : poly(AGE5)[, 2] + SEX : poly(AGE5)[, 1] + SEX : poly(AGE5)[, 2] +WI5 +WD5

NA6 ∼ 1 + DEDA6 + poly(AGE6)[, 1] + poly(AGE6)[, 2] + SEX + URBAN + DEDA6 :

poly(AGE6)[, 1]+DEDA6 : poly(AGE6)[, 2]+SEX : poly(AGE6)[, 1]+SEX : poly(AGE6)[, 2]+

WI6 +WD6

NA7 ∼ 1 +DEDA7 + poly(AGE7)[, 1] + poly(AGE7)[, 2] + SEX +URBAN +BP +DEDA7 :

poly(AGE7)[, 1]+DEDA7 : poly(AGE7)[, 2]+SEX : poly(AGE7)[, 1]+SEX : poly(AGE7)[, 2]+

URBAN : BP +WI7 +WD7

NI5 ∼ DEDI5 +AGE5 + SEX + URBAN +BP + SEX : URBAN +WA5 +WD5

NI6 ∼ 1 +DEDI6 +AGE6 +BP +WA6

NI7 ∼ DEDI7 +AGE7 +BP +DEDI7 : AGE7 +WA7

ND5 ∼ 1+log(DEDD5)+poly(AGE5)[, 1]+poly(AGE5)[, 2]+SEX+URBAN+log(DEDD5) :

poly(AGE5)[, 1] + log(DEDD5) : poly(AGE5)[, 2] + SEX : poly(AGE5)[, 2] + poly(AGE5)[, 1] :

URBAN +WA5 +WI5

ND6 ∼ 1 + log(DEDD6) + poly(AGE6)[, 1] + poly(AGE6)[, 2] + SEX + log(DEDD6) :

poly(AGE6)[, 1] + log(DEDD6) : poly(AGE6)[, 2] + SEX : poly(AGE6)[, 1] + SEX :

poly(AGE6)[, 2] +WA6 +WI6

ND7 ∼ 1 + log(DEDD7) + poly(AGE7)[, 1] + poly(AGE7)[, 2] + SEX + URBAN + BP +

log(DEDD7) : poly(AGE7)[, 1] + log(DEDD7) : poly(AGE7)[, 2] + SEX : poly(AGE7)[, 1] +

SEX : poly(AGE7)[, 2] + poly(AGE7)[, 1] : URBAN +WA7

Table 5.4: Reduced model equations for each of the nine ZTNB claim frequency models after

applying sequential backward selection based on the Wald test

based on the numerical Hessian matrix obtained by the R routine optim. The reduced model
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equations are given in Table 5.4. For NA7, a summary of the reduced design is given in Table

5.5.

Estimate Std. Error z value Pr(> |z|)

Intercept 2.216 0.015 151.123 < 2 · 10−16

DEDA7 0.469 0.006 72.379 < 2 · 10−16

poly(AGE7)[, 1] 52.296 1.705 30.672 < 2 · 10−16

poly(AGE7)[, 2] 9.455 1.908 4.955 7.2 · 10−7

SEX −0.286 0.012 −23.794 < 2 · 10−16

URBAN 0.007 0.005 1.307 0.191

BP 0.003 0.005 0.641 0.521

DEDA7 : poly(AGE7)[, 1] −8.003 1.148 −6.972 3.1 · 10−12

DEDA7 : poly(AGE7)[, 2] −6.585 1.202 −5.477 4.3 · 10−8

SEX : poly(AGE7)[, 1] −14.489 1.887 −7.680 1.6 · 10−14

SEX : poly(AGE7)[, 2] 21.686 1.992 10.884 < 2 · 10−16

URBAN : BP −0.009 0.004 −2.359 0.018

WI7 0.618 0.014 45.614 < 2 · 10−16

WD7 0.237 0.011 21.081 < 2 · 10−16

Table 5.5: Model summary for the reduced ZTNB regression model of the claim frequencies for

treatment field ambulant in 2007 with dispersion parameter θ is estimated to be 2.15.

5.4.3 Marginal claim size models

As marginal models for the claim sizes S̄ij , i ∈ Ij := {i = 1, . . . , n,Wij = 0}, j = 1, . . . , J we

aim to use weighted log normal models given by

S̄ij |{xS̄ij ,wi(−j), nj} ∼ lognormal(xS̄tij α
1
j +wi(−j)α

2
j + njα

3
j , σj , weights ωS̄ij). (5.4.1)

Since we model average claims rather than actual claim sizes we observe high heteroscedasticy

in S̄ij which will depend on the number of claims per year for each observation. As for the

logarithmic transformation of the responses in the linear model the exact theoretical influence

of N on the heteroscedasticy cannot be determined. We perform a three step approach based

on ordinary least square (OLS) regression and weighted least square (WLS) regression (DeMaris

(2004, p.201)) with unknown weights. First we fit a log normal OLS regression model based on

{xS̄ij ,wi(−j), nj}. Now we want to allow for heteroscedasticy using a WLS approach. In order

to determine weights ωS̄ij , we regress the OLS squared residuals (as responses) on the model’s

predictors in another lognormal OLS regression model and use fitted values from this run as

variance estimates (see DeMaris (2004, p.205)). In a third step, we replace the OLS model

from the first step by the weighted regression (5.4.1). Variable selection is carried out using

backward selection based on the Wald test. For every design which we consider new weights are

determined, i.e., we update the estimated coefficients in order to predict variances. The choice

of regressors for determining the weights, however, is not changed throughout the backward

selection procedure. The model equations of the reduced fitted models are given in Table 5.6.

A model summary for S̄A7 is given in Table 5.7.

5.4.4 Results of fitting copulas to the binary and continuous margins

We model the dependency between the three treatment fields ambulant, inpatient and dental.

The years 2005 to 2007 will be investigated separately.
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Model equations

S̄A5 ∼ 1 +DEDA5 + poly(AGE5)[, 1] + poly(AGE5)[, 2] + SEX + URBAN +BP +DEDA5 :

SEX + URBAN : BP +WI5 +WD5 +NA5

S̄A6 ∼ 1 +DEDA6 + poly(AGE6)[, 1] + poly(AGE6)[, 2] + SEX + PHY S.INH + URBAN +

BP + URBAN : BP +WI6 +WD6 +NA6

S̄A7 ∼ 1 +DEDA7 + poly(AGE7)[, 1] + poly(AGE7)[, 2] + SEX + PHY S.INH + URBAN +

BP +DEDA7 : SEX + PHY S.INH : URBAN +WI7 +WD7 +NA7

S̄I5 ∼ 1+poly(DEDI5)[, 1]+poly(DEDI5)[, 2]+poly(AGE5)[, 1]+poly(AGE5)[, 2]+BP +WA5

S̄I6 ∼ 1 + poly(DEDI6)[, 1] + poly(DEDI6)[, 2] + poly(AGE6)[, 1] + SEX + BP + SEX :

BP +WA6 +NI6
S̄I7 ∼ 1 + poly(DEDI7)[, 1] + poly(DEDI7)[, 2] + poly(AGE7)[, 1] + SEX + PHY S.INH +

URBAN +BP + SEX : BP

S̄D5 ∼ 1+log(DEDD5)+poly(AGE5)[, 1]+poly(AGE5)[, 2]+SEX+PHY S.INH+URBAN+

BP +WA5 +ND5

S̄D6 ∼ 1 + log(DEDD6) + poly(AGE6)[, 1] + poly(AGE6)[, 2] +BP +WA6 +ND6

S̄D7 ∼ 1+log(DEDD7)+poly(AGE7)[, 1]+poly(AGE7)[, 2]+PHY S.INH+URBAN+BP +

URBAN : BP +WA7 +WI7 +ND7

Table 5.6: Reduced model equations for each of the nine average claim size models after applying

sequential backward selection based on the Wald test

Estimate Std. Error z value Pr(> |z|)

Intercept 3.4401 0.0093 369.23 < 2 · 10−16

DEDA7 0.1445 0.0057 25.51 < 2 · 10−16

poly(AGE7)[, 1] 19.5573 0.6597 29.65 < 2 · 10−16

poly(AGE7)[, 2] −6.4546 0.6748 −9.56 < 2 · 10−16

SEX 0.0263 0.0084 3.13 0.0018

PHY S.INH −0.0057 0.0042 −1.36 0.1732

URBAN 0.0315 0.0038 8.26 < 2 · 10−16

BP 0.0291 0.0037 7.92 < 2 · 10−16

DEDA7 : SEX −0.0140 0.0067 −2.09 0.0369

PHY S.INH : URBAN −0.0057 0.0025 −2.34 0.0195

WI7 0.0952 0.0101 9.40 < 2 · 10−16

WD7 −0.0166 0.0069 −2.39 0.0167

NA7 0.0066 0.0003 22.36 < 2 · 10−16

Table 5.7: Model summary for the reduced ZTNB regression model of the claim frequencies for

treatment field ambulant in 2007, θ estimated to be 2.41.

Binary margins

The distribution of eight combinations of zero-claims over the three fields in 2005 to 2007 is

listed in Table 5.8. More than 40% of the insured persons in every year did not claim any

reimbursement whatsoever. Recall that {Wj = 0} refers to not having a zero claim. The copula

arguments for (5.3.2) will be determined using predicted cdf P̂ (Wij ≤ 0|xWij ) = 1
1+exp(xWt

ij β̂j)

and P̂ (Wij ≤ 1|xWij ) = 1. In Table 5.9 the fitted copula parameters for the independence copula

as well as the trivariate Gaussian, Student t, Clayton and Gumbel copulas are given. Note that

we are not using a PCC for modeling the dependency between the binary margins. This would

imply multiple integration of the PCC with different upper boundaries in order to obtain joint
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A I D 2005 2006 2007

1 1 1 44.12% 41.27% 40.22%

1 1 0 2.49% 2.54% 2.55%

1 0 1 0.46% 0.39% 0.46%

0 1 1 13.73% 14.60% 13.73%

1 0 0 0.05% 0.04% 0.04%

0 1 0 30.20% 31.84% 33.40%

0 0 1 3.22% 3.35% 3.28%

0 0 0 5.74% 5.97% 6.32%

Table 5.8: Distribution of outcomes of W in the data for 2005 - 2007

cdfs of these margins, which would then be used in (5.3.2) for calculating the joint pmf. In

order to compare those fits we utilize a test proposed by Vuong (1989) and the distribution-free

test (Clarke (2007)) for nonnested model comparison. Both tests are described in Section 4.4.

The test decisions applied to our data are given in Table 5.10. Note that we also apply the

Year MLE

Gaussian (τ̂WAI , τ̂
W
AD, 2005 (0.373, 0.886, 0.420)′

τ̂WID)′ 2006 (0.319,0.816,0.384)′

2007 (0.382,0.886,0.410)′

Student t (ψ̂WAI , ψ̂
W
AD, 2005 (0.329,0.908,0.366,19.86)′

ψ̂WID, ν̂
W )′ 2006 (0.408, 0.759, 0.382, 18.73)′

2007 (0.405, 0.771, 0.387, 18.84)′

Clayton θ̂W 2005 0.642

2006 0.623

2007 0.640

Gumbel λ̂W 2005 1.917

2006 1.837

2007 1.838

Table 5.9: Fitted copula parameters for different trivariate copula families with binary margins

in 2005 - 2007. The preferred models according to Vuong and Clarke tests (see Table 5.10) are

highlighted in boldtype.

Schwarz correction described in these papers for the number of parameters. In each cell the

decisions toward model (I) labeled row-wise or (II) labeled column-wise are given. The decision

of the Vuong test together with its p value is given in the first row of each cell. The decision

of the Clarke test with the p value in brackets are given in the second row. We that see the

independence copula is not preferred over any other copula for both the Vuong and the Clarke

test in any year. Also the Clayton and Gumbel are not preferred over the Gaussian and Student

t copula fit. Between these two classes the Student t copula is preferred according to the Clarke

test in 2005, whereas the Vuong test decision is less significant. For 2006 and 2007 the Clarke

test chooses the Gaussian model with very low p-value. For all three years we see in Table

5.9 strong correlation between the binary margins. It is driven not only by the health status

of the insured person but also by the incentive the insurer sets: if no bill is refunded in any

of the three fields throughout the year, the policyholder will receive a premium refund. The
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more policyholders can ”optimize” their medical treatment patterns, the higher the correlation

between these fields will be. This explains the high correlation between ambulant and dental

treatments. Since the policyholders’ influence on whether or not they have to go to a hospital

(inpatient treatments) will be very low, the correlations between the ambulant/ dental field and

the inpatient field are relatively low.

H
H
H
H

H
H

(I)

(II) 2005

Gaussian Student t Clayton Gumbel

Indep. V: (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16

C: (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16

Gaussian (II) 0.0004 (I) < 2 · 10−16 (I) < 2 · 10−16

(II) < 2 · 10−16 (I) < 2 · 10−16 (I) < 2 · 10−16

Student t (I) < 2 · 10−16 (I) < 2 · 10−16

(I) < 2 · 10−16 (I) < 2 · 10−16

Clayton (II) < 2 · 10−16

(II) < 2 · 10−16

H
H
H
H

H
H

(I)

(II) 2006

Gaussian Student t Clayton Gumbel

Indep. V: (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16

C: (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16

Gaussian (II) 0.2063 (I) < 2 · 10−16 (I) < 2 · 10−16

(I) < 2 · 10−16 (I) < 2 · 10−16 (I) < 2 · 10−16

Student t (I) < 2 · 10−16 (I) < 2 · 10−16

(I) < 2 · 10−16 (I) < 2 · 10−16

Clayton (II) < 2 · 10−16

(II) < 2 · 10−16

H
H
H
H

H
H

(I)

(II) 2007

Gaussian Student t Clayton Gumbel

Indep. V: (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16

C: (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16

Gaussian (II) 0.0001 (I) < 2 · 10−16 (I) < 2 · 10−16

(I) < 2 · 10−16 (I) < 2 · 10−16 (I) < 2 · 10−16

Student t (I) < 2 · 10−16 (I) < 2 · 10−16

(I) < 2 · 10−16 (I) < 2 · 10−16

Clayton (I) < 2 · 10−16

(I) < 2 · 10−16

Table 5.10: Preferred model according to the tests proposed by Vuong (”V”, first row of each

cell) and Clarke (”C”, second row) followed by p-values for different copula choices modeling

the dependence structure of the binary margins W . The preferred models are highlighted in

boldtype.
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Continuous margins

The arguments of the PCC model given in (5.2.7) will be estimated using Lemma 1, i.e., for

i ∈ Ij

F̂T+
ij

(t+ij |xNij ,xS̄ij ,wi(−j), nij) :=
∞∑

k=1

F̂S̄

(
t+ij
k
|xNij ,xS̄ij ,wi(−j), nij

)
p̂N (k). (5.4.2)

Two additional choices have to be made in order to fully specify the PCC. First one needs to

determine which pairs of margins will be modeled by the unconditional copulas c12 and c13 and

which by c23|1, i.e., the problem of choosing a good permutation of the margins. Further one

needs to pick appropriate copula families to describe the dependency structure between pairs

of margins. The first problem may be addressed for example by performing a simple a priori

fit. Thereby we fit three arbitrary but identical bivariate Gaussian copulas on the subset of

the data, where all observations with at least on zero claim in either of the two margins have

been taken out. The two pairs of margins with the strongest fitted correlation parameter will be

modeled by c12 and c13. For the data at hand, there is no permutation necessary for any of the

three years, i.e., we choose treatment fields A, I and D to be the margins 1, 2 and 3, respectively,

hence c12 = cAI , c13 = cAD and c23|1 = cID|A. The second problem may be addressed by

looking at scatterplots for the same reduced data subsets. Since it is hard to detect typical

copula structures from scatterplots based on marginally transformed uniform margins uij :=

F̂T+
ij

(t+ij |xNij ,xS̄ij ,wi(−j), nij), j = 1, 2, 3, i ∈ Ij , we consider scatterplots of zij := Φ−1 (uij)),

where Φ−1(·) is the quantile of the standard normal distribution. We will compare these plots

to contour plots of the corresponding theoretical copulas with standard normal margins at the

maximum likelihood estimate of the empirical data. In Figure 5.1 scatterplots of Zj1 and Zj2 are

plotted for the pairs of margins AI and AD in 2005 to 2007. Additionally kernel density estimates

are added to these scatterplots. The theoretical contour plots for an appropriate copula choice

are plotted to the right of each scatterplot. The copula parameters are the MLE obtained from

the corresponding data conditional on {Wj1 = 0} and {Wj2 = 0}. Based on these copula choices

the conditional arguments of c23|1 can be calculated. For example, for 2005 we have to determine

uiI|A5 := hC(uiI5|uiA5, θ̂ = 0.33) and uiD|A5 := hGa(uiD5|uiA5, ρ̂ = 0.10), i ∈ IA ∩ II ∩ ID, where

hC and hGa are the h functions w.r.t. to the Clayton and the Gaussian copula, respectively (see

Appendix 5.4.5), and 0.33 and 0.10 are the MLE of these copulas determined in the previous

step. We will plot ziI|A5 := Φ−1(uiI|A5) and ziD|A5 := Φ−1(uiD|A5) in Figure 5.2 and proceed

similarly as before in order to choose appropriate copulas. The maximum likelihood estimates

when jointly estimating the copula parameters for the PCC’s are given in Table 5.11. Since

in 2006 the parameter of c23|1 of the Gumbel copula is close to 1 and the parameter of the

Gaussian copula for c23|1 in 2007 is close to 0, we replace these copulas by the independence

copulas. The optimal model choices are typed bold. For these copulas there is a one-to-one

relationship to Kendall’s τ , i.e., we can determine theoretical Kendall’s τ corresponding to the

ML copula parameters and compare them to the empirical Kendall’s τ . For the Gaussian and

the Student t copulas we transform τ := 2/π · sin−1(ρ), for the Clayton we need to calculate

τ := θ/(2+θ) and for the Gumbel we have τ := 1−1/λ (see for instance Frees and Valdez (1998,

Appendix B)). The empirical Kendall’s τ is based on the uniformely transformed margins. The

results concerning Kendall’s τ are given in the lower panel of Table 5.11: the theoretical and

empirical Kendall’s τ are quite close which confirms the results of our fitting approach. There

is a positive correlation between ambulant and inpatient as well as for ambulant and dental
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Copulas Year ζ̂
T+

AI ζ̂
T+

AD ζ̂
T+

ID|A
C / C / Ga 2005 0.333 0.096 −0.041
C / C / Gu 2006 0.346 0.176 1.010

C / C / Ind 0.345 0.176

t / C / Ga 2007 0.272, df = 20.9 0.144 −0.005

t / C / Ind 0.272, df = 20.9 0.144

corresponding Kendall’s τ

theor. 2005 0.143 0.061 −0.026

empir. 0 .171 0 .058 −0 .027
theor. 2006 0.147 0.081 0.010

theor. 0.147 0.081

empir. 0 .178 0 .082 0 .027

theor. 2007 0.175 0.067 −0.003

theor. 0.175 0.067

empir. 0 .173 0 .066 −0 .013

Table 5.11: Maximum likelihood estimates of the copula parameters for the Gaussian (Ga),

Student t (t), Clayton (C) and Gumbel copula (Gu). Corresponding theoretical Kendall’s τ and

empirical Kendall’s τ of copula data. Updated fit using the independence copula for ID|A in

2006 and 2007.

treatments for all three years, which is driven by the health status of the insured person. Given

ambulant treatments, the correlation between inpatient and dental treatments is close to zero

and is set to zero for 2006 and 2007.

5.4.5 Model interpretation

For the year 2007 we aim to investigate the influence of AGE on the predicted probability of a

refund P̂W (1, 1, 1|xWj ). Thereby we fix all other covariates, i.e., we fix the applied deductible

DEDA7 at its median value 34.85, whereas DEDI7 and DEDD7 will be fixed at 0. The buying

power will be fixed at its mode 19499.40 and the urbanity at its median 396.35. The number

of physicians per inhabitants we set to its mode 0.223. Modes are estimated using kernel

density estimates of histograms of the covariates. For men and women, the influence of AGE on

P̂W (1, 1, 1|xWj ) both under the joint model and assuming independence are graphed in the left

panel of Figure 5.3.
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Figure 5.1: Scatterplots of pairs of zij := Φ−1
(
F̂T+

ij
(t+ij |xNij ,xS̄ij ,wi(−j), nij)

)
, j = 1, 2, 3 with

contour plots of bivariate kernel density estimates for ambulant / inpatient margins (first col-

umn) and for ambulant / dental margins (third column). In column two (four) we show theo-

retical contour plots based on a chosen pair copula family for ambulant / hospital (ambulant /

dental) margins.
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Figure 5.2: Scatterplots of conditional pairs of zij1|j2 := Φ−1 (h(uij1 |uij2)), jk = 1, 2, 3 with

contour plots of bivariate kernel density estimates for inpatient / dental margins given the

ambulant margin (first column). In column two we show theoretical contour plots based on a

chosen pair copula family for each year.

Male insured persons have a higher refund probability in general. Since AGE was taken

into our models as a piecewise linear function there is a jump at 32. Whereas earlier than 32

the refund probability slightly increases, it rapidly falls when the person gets older, hence it

becomes increasingly difficult to get the premium refund. In a second step we are interested

in estimating the density of T+
1 + T+

2 + T+
3 , therefore we additionally fix AGE at its mode of
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Figure 5.3: Influence of AGE on the refund probability when assuming independence and using

the joint fitted probability pW (w) while fixing other covariates; density estimates of sums of

claims.

40.79. Further we assume we have a rather sick person and set W := (0, 0, 0)′, i.e., we assume

a claim occurred in each treatment field. The arguments of the PCC will be predictive cdfs

of T+
j , j = 1, 2, 3 determined according to (5.4.2). We approximate quantile functions for T+

j

using the R function ”approxfun” in package stats. Then we proceed by sampling (t+r1, t
+
r2, t

+
r3)

′,
r = 1, . . . , 100 000 from T . Sampling from a C-vine is straightforward, we refer to Aas, Czado,

Frigessi, and Bakken (2009) for details. Finally we compute t+r := t+r1 + t+r2 + t+r3 and plot its

density estimate using the stats function ”density”. On the right panel of Figure 5.3 we see

that the highest predicted density of T+
1 + T+

2 + T+
3 when using the joint model for males lies

around 1600 Euro (1750 Euro for females). Under the independence assumption the peaks of the

estimated densities are even higher, therefore the joint model also reflects diversification effects.

Summary and Discussion

For the first time, a multivariate analysis of claims including zero claims based on PCC’s was

carried out. We have fitted separately a joint distribution for total claims given zero claim

events and for the zero claims. The total claims given zero claim events can be expressed as

a PCC under margins. Whatever combination of zero claims occurs one gains knowledge in

terms of a likelihood contribution either on the correlation of the total positive claims or on the

correlation of the zero claims. Even if the percentage of positive claims in one or more margins

is very low, our approach yet allows to fit these data. In higher dimensional problems, however,

the computational effort of numerically integrating margins out, increases. Other approaches for

approximating high-dimensional integrals may be more efficient for the problem at hand and may

decrease the computational time. Such approaches might also allow to efficiently approximate

the joint cdf of the PCC and hence to model the dependency of the binary margins also based

on PCC’s. The choice of the bivariate copula families of such a PCC with binary margins is still
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an open question.

In an application to health insurance we saw that the zero claim events between ambulant

and dental treatments show a large positive correlation. There is a positive correlation also for

the positive claims fitted by the pair-copula construction. The correlation is driven by the health

status of the insured person. Given ambulant treatments, the correlation between inpatient and

dental treatments is very low and needs not be fitted by a copula for 2006 and 2007, i.e., we

may assume independence between the conditional margins.

Appendix of Chapter 5

Definition of selected copulas

Definition 2 (Gaussian copula). The J-dimensional Gaussian copula with association matrix

Σ = (τij)i,j=1,...,J is given by

CGJ (u1, . . . , uJ |Σ) := ΦJ

(
Φ−1(u1), . . . ,Φ

−1(uJ)|Σ
)
, (5.4.3)

where ΦJ(·|Σ) is the cdf of the J-dimensional normal distribution with mean µ = 0J and

covariance Σ, φJ(·|Σ) its density and Φ−1(·) is the quantile of the standard normal distribution.

In the special case of J = 2 we use notation CG12(u1, u2|τ12) = Φ2(Φ
−1(u1),Φ

−1(u2)|τ12)
instead of (5.4.3).

Definition 3 (Student t copula). The J-dimensional t copula with parameters ν and Ψ =

(ψij)i,j=1,...,J is given by

CtJ(u1, . . . , uJ |ν,Ψ) := FJ(t−1
ν (u1), . . . t

−1
ν (uJ)|ν,Ψ) (5.4.4)

=

∫ t−1
ν (u1)

−∞
. . .

∫ t−1
ν (uJ )

−∞

Γ(ν+J2 )

Γ(ν2 )
√

(πν)J |Ψ|

(
1 +

x′Ψ−1x

ν

)− ν+J
2

dx,

where FJ(·|ν,Ψ) is the joint cdf of a t distributed random vector with mean 0, covariance Ψ and

ν degrees of freedom, fJ(·|ν,Ψ) its density, and t−1
ν denotes the quantile function of a standard

univariate tν distribution.

For J = 2 we write Ct12(u1, u2|ν, ψ12) instead of (5.4.4).

Definition 4 (Archimedean copula). Archimedean copulas are defined as

CJ(u1, . . . , uJ |θ) = ϕ−1
( J∑

j=1

ϕ(uj)
)
, (5.4.5)

where function ϕ is called generator. Further ϕ : [0, 1] → [0,∞) is a continuous, strictly

monotonic decreasing convex function with ϕ(1) = 0.

We consider in particular the Clayton and the Gumbel copula. The generator for the J-

dimensional Clayton copula with parameter θ > 0 is ϕC(u) := 1
θ (u−θ−1). For the J-dimensional

Gumbel copula with parameter λ ≥ 1 is ϕGu(u) := (− log(u))λ. The bivariate copula densities

(for the Clayton and Gumbel see Venter (2001)) together with h functions defined in 5.2.4 (see

Aas, Czado, Frigessi, and Bakken (2009)) are given in Table 5.12.
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Bivariate copula density h(u1|u2)

Gaussian φ2
(
Φ−1(u1),Φ−1(u2)|τ12

)
· ∏2

j=1
1

φ(Φ−1(uj))
Φ
(

Φ−1(u1)−τ12Φ−1(u2)√
1−τ122

)

Student t f2(t−1
ν (u1), t−1

ν (u2)|ν, ψ12)· ∏2
j=1

1
fν(t

−1
ν (uj))

tν+1


 t−1

ν (u1)−ψ12t
−1
ν (u2)

√

ν+(t−1
ν (u2))

2
(1−(ψ12)2)

ν+1




Clayton (1 + θ)(u1u2)−1−θ(u−θ1 + u−θ2 − 1
)−1/θ−2

u−θ−1
2

(
u−θ1 + u−θ2 − 1

)−1−1/θ

Gumbel C12(u1, u2) (u1u2)−1 ((− log u1)λ +

(− log u2)λ)−2+2/λ(log u1 log u2)λ−1
[
1 + (λ− 1)((− log u1)λ + (− log u2)λ)−1/λ

]
,

where C12(u1, u2) = exp

(
−
[
(− log u1)λ +

(− log u2)λ
]1/λ

)

C12(u1, u2) 1
u2

(− log u2)λ−1

[
(− log u1)λ + (− log u2)λ

]1/λ−1

Table 5.12: Bivariate copula densities and h functions for selected copulas

5.5 Proofs of Lemmas and Propositions

Proof. (Lemma 1)

FT+|{W=0}(t
+) = P (NS̄ ≤ t+|{W = 0})

=
∞∑

k=1

P (NS̄ ≤ t+|{N = k,W = 0})P (N = k|{W = 0})

=
∞∑

k=1

P (S̄ ≤ t+

k
|{N = k,W = 0})P (N = k|{W = 0})

=

∞∑

k=1

FS̄|{N,W=0}

(
t+

k
|{N = k}

)
pN |{W=0}(k).

Proof. (Lemma 2) For t ≥ 0

FT (t) = P (T ≤ t)
= P (T ≤ t|{W = 1}) · P (W = 1) + P (T ≤ t|{W = 0}) · P (W = 0)

= P ((1−W )T+ ≤ t|{W = 1}) · P (W = 1)

+P (W = 0) · P ((1−W )T+ ≤ t|{W = 0})
= P (0 ≤ t|{W = 1}) · P (W = 1) + P (W = 0) · P (T+ ≤ t|{W = 0})
= P (W = 1) + 1l{t>0}P (W = 0) · FT+|{W=0}(t)

= pW (0) + 1l{t>0}(1− pW (0)) · FT+|{W=0}(t).
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Gschlößl, S. and C. Czado (2007). Spatial modelling of claim frequency and claim size in

non-life insurance. Scand. Actuar. J. 2007 (3), 202–225.
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