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Abstract

In this thesis, the Heisenberg-Pauli-Weyl uncertainty principle on the real line and the
Breitenberger uncertainty on the unit circle are generalized to Riemannian manifolds.
The proof of these generalized uncertainty principles is based on an operator theoretic
approach involving the commutator of two operators on a Hilbert space. As a momentum
operator, a special differential-difference operator is constructed which plays the role of a
generalized root of the radial part of the Laplace-Beltrami operator. Further, it is shown
that the resulting uncertainty inequalities are sharp. In the final part of the thesis, these
uncertainty principles are used to analyze the space-frequency behavior of polynomial
kernels on compact symmetric spaces and to construct polynomials that are optimally
localized in space with respect to the position variance of the uncertainty principle.






Zusammenfassung

In dieser Arbeit wird die Heisenberg-Pauli-Weyl’sche Unschéarferelation und das Unschér-
feprinzip von Breitenberger auf abstrakte Riemannsche Mannigfaltigkeiten verallgemein-
ert. Der Beweis dieses Unschérfeprinzips beruht auf einem operatortheoretischen Ansatz,
in dem der Kommutator von zwei Operatoren auf einem Hilbertraum verwendet wird.
Als Impulsoperator wird dabei ein spezieller Differential-Differenzenoperator konstruiert,
der sich als verallgemeinerte Wurzel des radialen Teils des Laplace-Beltrami-Operators
herausstellt. Ferner wird gezeigt, dass die resultierenden Ungleichungen scharf sind. Im
letzten Teil der Arbeit werden die abgeleiteten Unschérfeprinzipien dazu benutzt um das
Zeit-Frequenz-Verhalten von polynomiellen Kernen auf kompakten symmetrischen Réau-
men zu analysieren und Polynome zu konstruieren, die beziiglich der Ortsvarianz des
Unscharfeprodukts optimal lokalisiert sind.






Non domandarci la formula che mondi possa aprirti,
s1 qualche storta sillaba e secca come un ramo.
Codesto solo oggi possiamo dirti,

cio che non siamo, cio che non vogliamo.

FEugenio Montale, Non chiederci la
parola, Ossi di seppia, 1925
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"Aber an der scharfen Formulierung des Kausalgeset-
zes: ,,Wenn wir die Gegenwart genau kennen, kénnen
wir die Zukunft berechnen”, ist nicht der Nachsatz,
sondern die Voraussetzung falsch. Wir kénnen die
Gegenwart in allen Bestimmungsstiicken prinzipiell

[ ]
nicht kennenlernen. Deshalb ist alles Wahrnehmen I nt I'O dU.Ct lOn

eine Auswahl aus einer Fiille von Méglichkeiten und
eine Beschrinkung des zukiinftig Moéglichen."

W. Heisenberg, [33], p. 197

In his famous work "Uber den anschaulichen Inhalt der quantentheoretischen Kinematik
und Mechanik" (1927, [33]), Heisenberg revealed one of the fundamental principles of
quantum mechanics, the uncertainty principle. This principle states that the values of
two conjugate observables such as the position and the momentum of a quantum state f
can not both be precisely determined at the same time. In particular, the more precisely
one of the two properties is known, the less accurate the other variable can be measured.
The most common way to describe the uncertainty principle mathematically is due to the
following classical inequality, referred to as Heisenberg-Pauli-Weyl inequality (cf. [20]):
If f€ L*R) and || f|| = 1, then

,  to,wy € R. (11)

o |

L=t £ @t [ 1) = 2miwof (t)dt

In this formula, the quantum state f is interpreted as a L?-density function on the real
line R. The value varg(f) := Jp(t —to)?|f(¢)|?dt is the variance of the L*-density f with
respect to the mean value ¢y and is called the position variance of f. In view of the Fourier-
Plancharel transform F(f) of the function f, the value varp(f) := [g | f/(t)—2miwo f(t)|*dt
corresponds to the position variance of F(f) in the frequency domain and is called the
frequency or momentum variance of f. In this perspective, inequality (I.1) states that
the product of the two variances varg(f) and varg(f) of the density f is always larger

than ;. Moreover, equality in (I.1) can be attained if and only if f corresponds to a

Gaussian function, i.e., f(t) = Ce>™ote=Al=10)* where C' € C and A > 0.

If the function f is defined on a manifold different from the real line R, the question of
how to formulate an uncertainty principle like (I.1) becomes more difficult. One main
reason for this difficulty is due to the fact that for functions f on abstract manifolds it
is not clear how appropriate position and frequency variances can be defined, nor it is
clear whether Fourier techniques can be employed to determine a frequency variance.

To formulate an uncertainty principle on the unit circle T, an interesting approach was
pursued by Breitenberger in [6]. If one sets the frequency variance of a 2m-periodic
function f € L*([—m, 7)), || f]] =1, as

varg(f) :/7r 2dt

—T

swpa—| [ f@ s

—T
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and introduces a mean value €(f) by

() = [ elrla,

then it is possible to prove (cf. [6], [63], [68]) the following uncertainty principle:

1
(L= [e(NF) - vare(f) = 7l (1.2)
As the Heisenberg-Pauli-Weyl inequality, also (I.2) has a physical interpretation. If one
reads the value L ()
—le
varg(f) = ——=5%—
e(f)I?

as the angular variance of the 2m-periodic density function f, then inequality (I.2) states
that the values of the two observables angular position and angular momentum of f
can not both be exactly determined at the same time. Furthermore, Prestin and Quak
showed in [68] that the constant 1 on the right hand side of inequality (I.2) is optimal.

Starting out from the classical inequalities (I.1) and (I.2), there have been a variety of
attempts to generalize these uncertainty principles to more abstract settings. For the unit
sphere S¢, interesting results can be found in the papers of Rosler and Voit [73], Narcovich
and Ward [62], Goh and Goodman [27] and Freeden and Windheuser [22]. Further,
there exist several uncertainty principles for particular orthogonal expansions like the
Jacobi polynomials [54, 73], the Bessel functions [74] as well as the Laguerre and Hermite
polynomials [55]. Remarkable in this context is the fact that the classical inequalities
(I.1) and (I.2) as well as the uncertainty inequalities in the above mentioned papers are
proven by a related operator theoretic approach. Hereby, one defines two appropriate
operators A and B in a Hilbert space H. Then, the commutator [A, B] = AB — BA is
used to prove a simple Hilbert space inequality that provides the corner stone for the
aimed-at uncertainty principle. For a brief summary of this approach, we refer to the
survey articles of Folland and Sitaram [20] and Selig [79].

The aim of this thesis is to extend the uncertainty principles (I.1) and (I.2) to the more
general setting of a Riemannian manifold M by means of the above mentioned operator
theoretic approach. Similar as in (I.1) and (1.2), the obtained uncertainty principles con-
tain an uncertainty product consisting of a position and a frequency variance term for
which a general lower bound is derived. Of special interest for the proof of these uncer-
tainty principles are the techniques developed by Résler and Voit in [73]. In particular,
in the course of Chapter 2, we will define a Dunkl operator that turns out to be a gener-
alized root of the radial part of the Laplace-Beltrami operator A,; and that is used as a
momentum operator to describe the frequency variance of a function f € L*(M). If the
manifold M is diffeomorphic to the Euclidean space, the resulting uncertainty principle
(Theorem 2.54) will be similar to (I.1). On the other hand, if the manifold M is compact,
we will use, as in (I.2), an appropriately introduced mean value €,(f) to define a position
variance with respect to a point p € M (see Corollary 2.43).
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The proofs of the uncertainty principles are based on the following three ideas: First, one
uses the exponential map and geodesic polar coordinates on the Riemannian manifold M
to get an isometric isomorphism between the Hilbert space L?(M) and a weighted L*-
space on a cylindrical domain. Then, a symmetric extension of this weighted L2-space is
constructed and, thereon, an appropriate Dunkl operator is defined. Finally, this Dunkl
operator together with a properly defined position operator and the commutator of these
two operators is used to derive the uncertainty inequality. If M is diffeomorphic to the
Euclidean space, then this proof leads to sharp uncertainty inequalities, where equality
is attained for Gaussian-type functions on M. On the other side, if M is compact, then
the obtained uncertainty inequality is asymptotically sharp (see Proposition 2.58).

Beside the uncertainty inequalities derived in this thesis, there exist a lot of uncertainty
principles that are based on different approaches. In particular, we want to mention
the articles [11, 72] of Ricci et al. and the article [56] of Martini in which uncertainty
principles for general measure spaces have been worked out and that can be used also for
Riemannian manifolds. As excellent summaries for a variety of well-known uncertainty
principles, we refer also to the survey article [20] and the book [32] of Havin and Joricke.

The main advantages of the utilized operator theoretic approach in this thesis are the
sharpness of the resulting uncertainty principle and the availability of explicit expres-
sions varg(f) and varg(f) for the position variance and the frequency variance of the
function f. This turns the uncertainty principles developed in Chapter 1 and Chapter 2
into interesting auxiliary tools for space-frequency analysis. The variances varg(f) and
varp(f) provide a good measure on how well a function f is localized in the space and the
frequency domain and give substantial information on the space-frequency properties of
possible wavelets and frames. For the classical case M = R?, there exists a broad theory
on this subject and we refer to the monograph [29] as a fine introduction. Also on the
unit circle, the Breitenberger uncertainty principle (I1.2) provides a remarkable tool to
study the space-frequency localization of trigonometric wavelets (cf. [63], [69] and [78])
or to construct optimally space localized trigonometric polynomials (see the article [71]
of Rauhut). Similarly, a related formula for the position variance on the unit sphere S¢
can be used to determine space optimal spherical harmonics (see the work [48] of Lain
Fernandez).

The objective of the last chapter in this thesis is to make use of the above mentioned
advantages and to utilize the uncertainty principles developed in Chapter 1 and 2 for
space-frequency analysis. We will present a few scenarios in which these uncertainty
principles can be used to analyze the space-frequency behavior of particular polynomial
kernels and to construct polynomials that are optimally localized in space with respect to
the position variance. In particular, the theory of optimally space localized polynomials
on the unit circle and on the unit sphere is extended to the more general setting of Jacobi
expansions and compact two-point homogeneous spaces. These results are also related
to the works of Filbir, Mhaskar and Prestin [17] and Petrushev and Xu [66] in which
exponentially and sub-exponentially localized polynomials are constructed. Further, we
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will discuss the space-frequency behavior of the Christoffel-Darboux kernel which plays
an important role in the theory of polynomial approximation, in particular on compact
two-point homogeneous spaces (see the article [53] of Levesley and Ragozin). Finally, we
will consider the de La Vallée Poussin kernel as an example of a polynomial kernel for
which the uncertainty product tends to the optimal lower bound.

Outline of the thesis

In Chapter 1, we start out by giving a short overview on the existing theory of uncertainty
principles in general Hilbert spaces (Theorems 1.2 and 1.4). As first examples of these
principles based on an operator theoretic approach, we will encounter the Heisenberg-
Pauli-Weyl uncertainty on the real line (Theorem 1.5) and the Breitenberger principle
for 2m-periodic functions (Theorem 1.7). Then, based on an approach developed by
Rosler and Voit [73] involving a particular Dunkl operator, uncertainty inequalities for
functions in a weighted L?-space are constructed. The considered underlying sets are the
unit interval [0, 7] (Section 1.4.1) and the positive real half-axis (Section 1.4.3). Further,
in Section 1.4.2, we consider an interesting new intermediate result where the functions
in the uncertainty inequality have to satisfy a zero right-hand side boundary condition.
Finally, in Section 1.5, we will present uncertainty principles for weighted L2-spaces where
the weight function is connected to a particular orthogonal expansion. Thereby, we will
focus on functions that have an expansion in terms of Jacobi and Laguerre polynomials.

Chapter 2 contains the main new results of this thesis. In a first step, we will generalize
the theory of Chapter 1 to a multi-dimensional setting. In particular, we will proof
uncertainty principles for weighted L2-spaces where the underlying set is a cylinder Z¢
or a tube Z% of dimension d (Section 2.1). Using the exponential map on the tangent
space T,M of a Riemannian manifold M, we will construct an isometric isomorphism
that maps the Hilbert space L?(M) onto such a weighted L%-space. In this way, we are
able to proof uncertainty principles for general Riemannian manifolds by using the theory
of Section 2.1. We will distinguish between three different types of settings:

(1) In the first setting, the Riemannian manifold M is supposed to be compact. The
obtained uncertainty principle in Theorem 2.41 can be considered as a generalization
of the Breitenberger principle. As examples, we will encounter the d-dimensional
spheres (Section 2.6.1), the projective spaces (Section 2.6.2) and the flat tori (Section
2.6.3).

(2) In the second case, we get an uncertainty inequality (Theorem 2.51) for functions f
defined on a compact star-shaped subdomain €2 of a Riemannian manifold M with
Lipschitz continuous boundary 02 and the additional assumption that f vanishes at
0f). This uncertainty principle is a generalization of Theorem 1.24 in Section 1.4.2.

(3) In the third case, we will develop uncertainty principles for Riemannian manifolds
that are diffeomorphic to the Euclidean space R? (Theorem 2.54). It will turn out that
these uncertainty principles are multi-dimensional analogs of the original Heisenberg-
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Pauli-Weyl inequality. As an example, we will treat the hyperbolic space (Section
2.6.4).

In the third case, an important statement of Theorem 2.54 is the sharpness of the re-
sulting uncertainty inequality. The proof that the uncertainty principle for compact
Riemannian manifolds and the uncertainty principle for compact star-shaped domains
are also asymptotically sharp, can be found in Section 2.5. Finally, in Section 2.7, we
will investigate how information on the curvature of the Riemannian manifold M can
be used to simplify the derived uncertainty inequalities. In particular, depending on
the curvature, we will find easier to handle lower estimates of the original uncertainty
inequalities. The main part of Chapter 2 is already published and can be found in the
article [15].

In Chapter 3, we will use the uncertainty principle for Jacobi expansions on [0, 7] and
the related uncertainty principle for compact two-point homogeneous spaces, i.e., the
uncertainty principle for the spheres and the projective spaces developed in Section 2.6.1
and 2.6.2, to construct optimally space localized polynomials. In particular, we will de-
termine those elements of a finite-dimensional polynomial subspace that minimize the
position variance of the respective uncertainty principle.

In Section 3.1, we will develop a simple theory to determine the optimally space lo-
calized polynomials for Jacobi expansions on [0, 7] (Theorem 3.6). Using a generalized
Christoffel-Darboux formula, we can state these optimal polynomials explicitly (Corol-
lary 3.10). Further, we will compare the space-frequency localization of the optimally
space localized polynomials with the space-frequency behavior of other well known poly-
nomial kernels like the Christoffel-Darboux kernel and the de La Vallée Poussin kernel. It
turns out that the uncertainty product of the Christoffel-Darboux kernel tends linearly to
infinity as the order n of the polynomial kernel tends to infinity (Theorem 3.15), whereas
the uncertainty product of the de La Vallée Poussin kernel tends to the optimal lower
bound of the uncertainty principle (Theorem 3.16).

Section 3.2 contains some intermediate results to describe the behavior of the extremal
zeros of associated Jacobi polynomials if one of the involved parameters is changing. In
the final Section 3.3, these intermediate results are used to determine optimally space
localized polynomials on compact two-point homogeneous spaces.

In Chapter A of the appendix, we give a short introduction into the general theory of Rie-
mannian manifolds including the concepts of geodesics, the exponential map, curvature
and integration on manifolds. In the second appendix Chapter B, there is a recapitula-
tion of some basic facts concerning function spaces, the Stone-Weierstrass Theorem and
operators in Hilbert spaces.
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"The uncertainty principle "protects" quantum mechanics. Heisen-
berg recognized that if it were possible to measure the momentum
and the position simultaneously with a greater accuracy, the quan-
tum mechanics would collapse. So he proposed that it must be
impossible. Then people sat down and tried to figure out ways
of doing it, and nobody could figure out a way to measure the
position and the momentum of anything - a screen, an electron, a
billiard ball, anything - with any greater accuracy."

R.P. Feynman, R.B. Leighton and M. Sands, The Feynman
Lectures on Physics III: Quantum Mechanics, Addison Wesley
Publishing Company, 1965, p. 1-11

Uncertainty principles - An overview

1.1. Uncertainty inequalities in Hilbert spaces

In this first section, we will present a very common approach to express uncertainty prin-
ciples mathematically. It is based on a Hilbert space inequality involving the commutator
of two self-adjoint, or more generally, normal operators defined on the Hilbert space. The
various details of this theory and further references can be found in [19], [20], [28] and
[79]. A short introduction into the terminology of operators on Hilbert spaces can be
found in Section B.3 of the appendix.

A main advantage of the operator theoretic approach to uncertainty is the fact that
the uncertainty can be interpreted in terms of quantum mechanical observables. Let H
denote a Hilbert space with inner product (-,-) and norm || - || = 1/(:,-). Then, the
state of a quantum mechanical system is represented by a unit vector v € H, and the
observable quantity is usually represented by a self-adjoint operator A on H. By the
spectral theorem, there exists an operator-valued measure P such that A decomposes
into A = [AdP(\). The map u,(E) = (P(F)v,v) is a probability measure on R that
represents the distribution of the observable A in the state v. The mean and variance of
this measure are given by

ea(v) == (Av,v) = /RWP(A)U,U), (1.1)
vara(v) = || (A = ea(v)) v]|* = [[Av]]* = [ea(v)]? (1.2)
_ /R (A — £4(0))2(dP(\)v, v).



1. Uncertainty principles - An overview

The value €4(v) is called the expectation value of the observable A and var,(v) the
variance of A in the state v. In general, the variance vars(v) can be interpreted as a
measure of the uncertainty of A in the state v and an uncertainty principle is an assertion
about the product of two variances of two different observables A and B.

In the following, we suppose that the linear operators A and B are densely defined on H,
with domains D(A) C ‘H and D(B) C ‘H. The domain for the product AB is given by

D(AB) :={veD(B): BveD(A)}
and D(BA) likewise. If the commutator of the operators A and B is defined by
[A,B] := AB—BA on D([A, B]):=D(AB)ND(BA),
the following uncertainty principle holds (cf. [19, Theorem 1.34]):

Theorem 1.1.
If A and B are self-adjoint operators on a Hilbert space H, then

I(A = a)vl| - [[(B = b)v]| = ;I([A Blv,v)] (1.3)

for all unit vectors v € D([A, B]) and a,b € R. FEquality holds if and only if (A — a)v
and (B — b)v are purely imaginary scalar multiplies of one another.

It is not always the case that the considered operators A and B are self-adjoint, for
instance, when it is not possible to find a self-adjoint extension of a symmetric operator.
Analyzing the proof of Theorem 1.34 in [19], one can see that the symmetry of the
operators A and B suffices to prove the uncertainty principle. So, we get the following
generalization (cf. [79, Theorem 3.3)):

Theorem 1.2.
If A and B are symmetric operators on H, then

(A = a)vl| - [[(B = b)v| > ;|<[A7 Blv, v)] (1.4)
for all unit vectors v € D([A, B]) and a,b € R. FEquality holds if and only if (A — a)v
and (B — b)v are purely imaginary scalar multiplies of one another.
Proof. For a,b € R and v € D([A, B]), we have
[(A—a),(B—0)]v=ABv— BAv = [A, Blv.
Now, the symmetry of the operators A and B implies

([A, Blv,v) = (A —a)(B—=bv—(B—0)(A—a)v,v)
= ((B=0b)v,(A—a)v) — ((A—a)v, (B —b)v)
= 2iIm({(B — b)v, (A — a)v)).

10



1.1. Uncertainty inequalities in Hilbert spaces

The imaginary part of ([A, Blv,v) is bounded from above by the absolute value of
([A, B]v,v). Applying the Schwarz inequality yields

([4, Blv,v) < 2[((B = b)v, (A = a)v)| < 2[[(A = a)o| - [[(B = b)v].

Equality holds for the Schwarz inequality if and only if (A — a)v = A(B — b)v for A € C
and for the first inequality if and only if Re A = 0. O

Remark 1.3. The proof of inequality (1.4) is quite simple, but there are some subtleties
hidden in the statement of Theorem 1.2. In fact, there are examples where the domain
D([A, B]) of the commutator gets very small or consists only of the zero vector. Moreover,
the commutator [A, B] is in general not closed and one can show that inequality (1.4)
does usually not hold for vectors v € D([A, B]), where [A, B] denotes the closure of the
operator [A, B]. For the detailed investigation of these counterexamples, we refer to [20].
Altogether, we can conclude that, when using this kind of uncertainty inequality, one has

to keep a close watch at the domain D([A, B]) of the commutator.

Now, one may ask for which choices of a and b the left hand sides of inequalities (1.3) and
(1.4) are minimized. The answer is given by the Hilbert Projection Theorem. Namely,
for Av € 'H the point vy € span{v} with minimal distance to Av is exactly the orthogonal
projection of Av on the one-dimensional linear subspace spanned by v, i.e. v9 = (Av, v)v.
Therefore, if we take the variances

vara(v) = || (A — ea(®))o]* = min [[(A - a)o]?, (15)
varp(v) = (B — (0)o]* = win (B — bl (L6)

the inequalities (1.3) and (1.4) can be reformulated as

vary (v) - varg(v) > = [([A, Blv,v)|*. (1.7)

o |

Another interesting situation emerges when one of the two operators A or B is normal
on H, but not necessarily symmetric or self-adjoint. Also in this case, it is possible to
formulate an uncertainty principle like (1.4) (cf. [79, Theorem 5.1]).

Theorem 1.4.
If B is symmetric and A is a normal operator on the Hilbert space 'H, then

WA—MMWWB—MWE;MABWWH (1.8)

for all unit vectors v € D([A, B]) and a € C, b € R. Equality holds if and only if
(B—b)v=AA—-a)v=—-\NA"—aw

for a complex scalar A € C.

11



1. Uncertainty principles - An overview

Proof. If A is a normal operator, then also A — al is normal and A* — al is its adjoint
operator. Moreover, D(A*) = D(A) and [[(A — a)v|| = ||[(A* — a)v|| for all v € D(A).
Using the triangle and the Schwarz inequality, we get the estimate

[([A; Blv,v)| = [((A = a)(B = b)v — (B = b)(A = a)v,v)|

2 (B = b, (4 — )] + (A - a)o, (B — b))
1B = vyl - A" = @yl + (A= el - (B = byl

=2([(B = b)o] - [(A = a)v].
For the Schwarz inequality in (*x*), equality holds if and only if
(B="b)v=M(A—a)v, (B=>blv=»XA"—a)y, I, eC.

The normality of A implies that [A;| = |Az|. Finally, the triangle inequality in () becomes
an equality if and only if \; = —\s. O

1.2. The Heisenberg-Pauli-Weyl uncertainty principle

The first and undoubtedly most famous uncertainty principle goes back to Heisenberg
and his pathbreaking work [33] of 1927. The mathematical version of this principle was
formulated afterwards by Kennard [45] and by Pauli and Weyl (see [86], p. 77). It is the
main example of an uncertainty inequality in a Hilbert space and can be found nowadays
in numerous monographs and articles. As references, one may consider [19], [20], [29]
and [79].

The underlying Hilbert space for the Heisenberg-Pauli-Weyl-principle is the space L*(R)
of square integrable functions on the real axis R with inner product (f, g) := [z f(¢)g(t)dt
and norm || f||* := (f, f). As a position operator A and as a momentum operator B, we
define

Af(t) == tf(t), D(A) = {f € XR): tf € L*®)},
BF(t) = if(t), D(B):={f € ACk.(R): f € LA(R)}.

The set ACj,.(R) denotes the space of all locally absolutely continuous functions on R.
For a brief summary on absolutely continuous functions, we refer to Section B.1 of the
appendix. The operators A and B are densely defined in L*(R). Further, since

/ G(0)dt = /f tgD)dt  f,g € D(A),
/zf() /f ig()dt f.9 € D(B),

12



1.2. The Heisenberg-Pauli-Weyl uncertainty principle

the operators A and B are both symmetric on their respective domains. Moreover, with
a little bit of extra effort one can show that A and B are even self-adjoint (cf. [70, Lemma
2.2.1) and [85, Example (b), p. 318]). In terms of the Fourier-Plancharel transform

F(f)(w) = /}R]”(75)6—27rz‘wtci757 F_l(g)(t) — /Rg(w)eﬁmdw,
the momentum operator B can be reformulated as
Bf(t) = (F'AF(f))(1).

In this way, we get the following version of the Heisenberg-Pauli-Weyl principle:

Theorem 1.5 (Heisenberg-Pauli-Weyl uncertainty principle).
Let f € AC),(R) N LA(R) with tf, f',tf" € L*([R), || f]| =1 and

Q:Aﬂﬂ|ﬁ 0_/mf ) 2dw.

Then,
(1.9)

=

(Ief 12 = e, 01) - (LF1P = 1 HP) >

or equivalently

L= t?1f Pt - [ (= wo)F()w)fdo > . (1.10)

Equality is attained if and only if f(t) = Ce2mote=Mt=10)* for C'e C and X > 0.

Proof. We adopt Theorem 1.2 to the Hilbert space L*(R), the unit vector v = f and
the position and momentum operators A and B defined above. The domain of the
commutator D([A, B]) consists precisely of the functions f € AC),.(R) with ¢f, f',tf" €
L?(R). Moreover, for the values a and b, we take

Since [A, B]f = —if, inequality (1.9) follows directly from inequality (1.4). Further, due
to F(if')(w) = —2nwF(f)(w) and the Parseval identity, we get

=i [ FOFOd = —2n [ wlF(H)w)Pdo = ~2mw

and hence

varg(f) = [lif' = en(FFI* = 47 [ (w = wo)?|F(f)do.

13



1. Uncertainty principles - An overview

Therefore, inequality (1.10) is equivalent to (1.9). By Theorem 1.2, equality in (1.9)
holds if and only if if' + 2mwo f = —2i\(t — to) f with a real constant A. This condition
implies the differential equation

f'= =2\t —to) [ + 2miwo f.

The solutions of this differential equation correspond to the Gaussian functions G(t) =
Cle?riwote=A(t=10)* with constants C' € C. Further, the constant A has to be nonnegative
in order to guarantee G € L*(R). O

To keep the notation simple, we used in Theorem 1.5 the symbols ¢ f and ¢ f” as a shortcut
for the functions given by (¢tf)(t) = tf(t) and (¢tf')(t) = tf'(t). We will maintain this
notation in the upcoming sections. The Heisenberg-Pauli-Weyl-inequality (I.1) in the
introduction is evidently also equivalent to (1.9) and (1.10).

1.3. The Breitenberger uncertainty principle

A remarkable uncertainty principle for 27-periodic functions was formulated by Breit-
enberger [6] in 1983. As the Heisenberg-Pauli-Weyl principle, also the Breitenberger
principle is based on the operator theoretic approach of Section 1.1.

The underlying Hilbert space of the Breitenberger principle is the space L*([—,7]) of
square integrable 27-periodic functions with inner product

(f.9) = [ f(O)gban (1.11)

and norm || f||* := (f, f). On L?*([—7,7]), we define the operators
Af(t) =" f(t), D(A) = L*([-=,7]), (1.12)
Bf(t):==if'(t), D(B):={f € ACy : f € L*([-7, 7])}. (1.13)

The set AC5, denotes the space of all absolutely continuous 27-periodic functions on
[—m, m]. For the details on absolutely continuous functions, we refer again to Section B.1.
If we consider f as a L2-density distribution on the complex unit circle, the operator A
determines the angular position of the density f. In particular, the expectation value of
the operator A,

(/) i=ealf) = [ el Pa, (1.14)

can be interpreted as the center of mass (or mean value) of f in the complex plane.
Further, the operator A is a unitary operator on L?*([—m,7]). On the other hand, the
operator B gives the angular momentum of the density f. For two absolutely continuous
functions f, g € ACy,, integration by parts yields

[ irwea = [ swig@a.

—T
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1.3. The Breitenberger uncertainty principle

Thus, B is a symmetric operator and, moreover, self-adjoint (see [70, Lemma 2.3.1]).
Further, the commutator of A and B is given by

A BIf = icf — i (e ) = e f = AF,

where f € D([A, B]) = D(B). Now, it is possible to prove the following uncertainty
principle (cf. [6], [63], [68]):

Theorem 1.6.
Let f € AC,, C L2<[—7T,7T]) with € LQ([—F,W]) and || f|| = 1, then

(1= D) (1717 = 17 PP) = Fle(HP (1.15)

Equality in (1.15) is attained if and only if f(t) = Ce*t, |C| = \/%, is a normalized
trigonometric monomial.

Proof. We adopt Theorem 1.4 to the Hilbert space L?([—n, 71]) with the unitary operator
A and the symmetric operator B as defined in (1.12) and (1.13). For e4(f) = e(f) and

es(f) = (uf', f), we get

vara(f) = [[(A—ea(f)NfI? =1 - |e(f)]?,
varg(f) = (B —es(F)FI? = I1F17 = [ A

The commutator of A and B is given by [A, B]f =ie" f' — i< (" f). Hence,
D([A,B)) = {f € ACyy : f' € L*([-m,7])} = D(B).
Now, inequality (1.8) implies inequality (1.15).

Due to Theorem 1.4, equality in (1.15) holds if and only if

if' —en(f)f = Me" —e(/)f = =Ae™" = (),
for a complex scalar A € C. The second identity implies
£ ()\e“ et — e(f)A— X(f)) _9 f(t)(Re()\e‘“) — Re(Ae( f))) 0.

This condition can only be satisfied if f = 0 or if A = 0. In the latter case, we get
the equation if" — ep(f)f = 0. The solutions of this differential equation in D(B) are
precisely the monomials f(t) = Ce’**) where |C| = \/% and ep(f) =k, k € Z. 0

Motivated by Theorem 1.6, one defines

_ 1P

varg(f) := BTG (1.16)

15
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Im
1—|e(f)]?
le(f)I?
=(/) T ()P
N A

Figure 2: Geometric interpretation of the angular variance varg(f) on the complex unit

circle T. The function f is chosen such that e(f) = 2i and varg(f) = 3.

as the angular position variance of a 2w-periodic function f (see Figure 2) and

varp(f) = IfI* = [(F I (1.17)

as the angular momentum (or frequency) variance of f. Clearly, the definition of varg(f)

makes only sense if (f) # 0. If e(f) = 0, we call the function f nowhere localized and set

varg(f) = oo. Examples of nowhere localized 2m-periodic functions are the monomials
1

\/—2?6““, k € Z. Now, by Theorem 1.6, we get

Corollary 1.7 (Breitenberger uncertainty principle).
If f € ACy, C L*([—m,7]) such that [ € L*([—m, 7)), || f]| =1 and e(f) # 0, then

1— le()P

‘ . ne / 2
EGIE UL =1 HF)

V
]

(1.18)

Remark 1.8. In [68], Prestin and Quak showed that the constant § on the right hand
side of inequality (1.18) is optimal. An alternative proof for this optimality that works

in a more general setting will be given in Proposition 2.58.
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1.4. Uncertainty principles for weighted L>-spaces

1.4.1. The compact case

In this section, we are going to generalize the Heisenberg-Pauli-Weyl uncertainty principle
and the Breitenberger principle to the case when the Hilbert space H is a weighted L?-
space. In the first part, we consider as un underlying domain the interval [0, 7].

Assumption 1.9. An admissible weight function w on the interval [0, 7] satisfies the
properties

(i) we AC([0,7)), (1.19)
(ii)  w(t) >0, te(0,), (1.20)
(@i)  tr— t)% e L=([0, ). (1.21)

The symbol AC([0,7]) denotes the space of absolutely continuous functions f on the
interval [0,7]. For a short introduction into the notion of absolute continuity, we refer
again to Section B.1 of the appendix. Further, the condition (1.20) ensures that w is
strictly positive in the interior (0,7) and property (1.21) guarantees that the fraction %
is not decreasing too rapidly at the possible singularity points at ¢ =0 and ¢t = 7.

Example 1.10. Consider on [0, 7] the weight function wee(t) = sin®**™'¢, a > —1/2.
Then, the properties (1.19) and (1.20) are evidently satisfied. Further,

t(m —t)

Therefore, also (1.21) is satisfied. The measure w,, (t)dt corresponds to the orthogonality

; ‘ - ‘t(w — )20+ 1)23;"‘; < (2a+ D).

Waa t

Wea(t

measure of the ultraspherical polynomials Pl(a’a)(cos t) on [0, 7] (see Section 1.5.1).

Definition 1.11. For an admissible weight function w on [0, 7], we denote by L?([0, 7], w)
the Hilbert space of weighted square integrable functions on [0, 7] with the inner product

™

rghai= [ FOGDw (bt (1:22)

0
and norm |[f[[5, := (f, f)w-

Now, similar as in the case of the Breitenberger principle, one could think about the dif-
ferential operator B = % to be a suitable momentum operator for a possible uncertainty
principle on L?([0, 7], w). However, for absolutely continuous functions f, g € AC([0, 7)),
integration by parts yields

/0 " F6)gw(t)dt = f(m)g(ryw(r) — f(0)g(0)w(0)
+ [ fO)g' Dw(t)dt + /0 " F()g(t)w (t)dt.

™
0
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1. Uncertainty principles - An overview

Hence, the differential operator % is in general not symmetric on L*([0, 7], w) and the

two Theorems 1.2 and 1.4 can not be used to derive an uncertainty inequality in this
particular case. To circumnavigate this problem, we will use a differential-difference
operator T instead of the differential operator %. To define such a differential-difference
operator 1" properly, we require the symmetric extension of functions on the original
interval [0, 7| to functions on the doubled interval [—, 7] and the symmetric extension
of the weight function w.

Definition 1.12. On the doubled interval [—7, 7] we define the extended weight function
w by
1
w(t) == 5w(|t|), t € [-m, 7. (1.23)
By L*([—m, 7], @), we denote the Hilbert space of weighted square integrable functions
on [—m, 7] with the inner product

(oghai= [ FOgO@0)L (1:24)

—Tr

and norm || f|% := (f, f)a-
Definition 1.13. On L?*([—m, 7], @), we define the reflection operator ~ by
g(t) :=g(—t), forae. te[—m ]

We say that a function g € L*([—7, 7], @) is even (odd) if g = g (§ = —g, respectively).
The subspace of even functions in L?([—m, 7], W) is denoted by

L[, 7], w) := {g € L*([-m, 7], @) : § =g} (1.25)

The notion "for a.e. ¢ € [—m, 7]" in Definition 1.13 means that the statement holds for all
t € [—m, 7| except a set of Lebesgue measure zero. On L*([0, 7], w) and L*([—, 7], @),
we can introduce the even extension operator e and the restriction operator r as

e: L*([0, 7], w) — L*([~m, 7], @), e(f)(t) == f(It]), (1.26)
r: L*([-m, 7], @) — L*([0,7],w), 7(9) = glon- (1.27)

Then, the operators e and r constitute isometric isomorphisms between L*([0, 7], w) and
the space of even functions L2([—m, 7], w).

Since w € AC([0, 7)), its symmetrically extended function w € ACy, is absolutely con-
tinuous and 2m-periodic. In particular, its Radon-Nikodym derivative, denoted as

L di

= 1.28
=3 (1.28)

is an element of L'([—7,7]).
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1.4. Uncertainty principles for weighted L*-spaces

Definition 1.14. For an admissible weight function w satisfying Assumption 1.9, we
define on L?([—m, 7], @) the Dunkl operator T' by

Tg:=2 299 (1.29)

with the domain

dg W' g— g
D(T) = {g & I(-m @) N ACy : 00T e L2([—7r,7r],fu)}. (1.30)
w

Remark 1.15. The fact that w satisfies Assumption 1.9 plays a very important role in
Definition 1.14. It guarantees that the domain D(T’) of the Dunkl operator 7" is dense in
the Hilbert space L?([—, 7], w). In fact, we can show that the trigonometric polynomials
form a subset of D(T'). Obviously, if 73( ) =30 el is a trigonometric polynomial,
then P is absolutely continuous on [—m, 7], P(—7) = P(r) and P’ € L*([-7, 7], w).

Further, we have

_ W ()2 = ¢r —c— sin(lt) | .
/ 2 1?) 0 l; 2 i ) w(t)dt
(s s |2
e o (e )

Hence, since the weight function w satisfies property (1.21) and ; sin( ) € L*([0, 7], w), we

conclude that also %% € L*([—m, 7], ).

Whereas the differential operator 4 is in general not symmetric on L*([0,7],w), we
can now show that the Dunkl operator 7" is symmetric on the extended Hilbert space
L*([—m, m],w). Precisely this Dunkl operator will be used afterwards to determine an

uncertainty principle for functions in L*([0, 7], w).

Lemma 1.16.
The operator 1T is symmetric and densely defined on L*([—m, x|, w). Moreover, if 0 is
strictly positive on the whole interval |[—m, 7|, then iT is self-adjoint.

Proof. By the Stone-Weierstrass Theorem B.1, the trigonometric polynomials form a
dense subspace of Cy,, and thus also a dense subspace of L?*([—m,|,@). Hence, by
Remark 1.15, also D(T)) is a dense subset of L*([—, 7], @).

To prove the symmetry of iT', we follow in principle the proof of [73, Lemma 3.1]. For
two absolutely continuous functions, integration by parts is well defined (see equation
(B.4) in the appendix). So, for f,g € D(T), we get

" regmawa = [ % (@)
=~ [0 (70 + 05 ) atoar
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Now, by definition of the operator T', we get

™

[ Grpwaiwa =i [

—T —Tr

Therefore, the operator i7" is symmetric. In particular, the domain D(T") is a subset of
the domain D(T™) of the dual operator T* (see Section B.3).

We show now that i7" is self-adjoint if @ is strictly positive on the whole interval [—m, 7].
This can be done similarly as in [76, Example 13.4] by proving that also the inclusion
D(T*) C D(T) holds. Therefore, we take a function g € D(T*) and set f = T*g €
L3([—m, 7], @). Next, we define as a generalized primitive of f (with respect to the Dunkl
operator T'), the function

F(t) = wtt) /_: /() +2f(_7)w(r)dr+ /_: J@) = =) _2f<_7) dr. (1.31)

Since f € L*([—m, 7|, w) C L'([—m,7]), F is well defined and absolutely continuous on
[—7, 7] by the fundamental theorem of calculus for the Lebesgue integral. Moreover, we
get for a.e. t € [—m, 7]

TF(t) = f(t) +2f (=t) Zf(gi _: b +2f<_7)u7(7)d7
+ g;gl _: f(7) +2f(—7) o(T)dT + i _Qf(_t> = f(t),

and for F'(m)

) = —— [ g (T )

W(r) J-n 2 wm\ 2 e
_ 1 <Tg+ngl> _ 1 <g+g,T1> e
w(m) 2 o w(m)\ 2 i@

Hence, F is 2m-periodic and, in particular, an element of D(7"). Now, using the symmetry
of the operator 7', we get for all p € D(T')

(To,9)a = (0, T"9) s = (@, [lo = (0, TF)s = —(T0, F)g. (1.32)
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For f € L*([—m, 7|, w), the generalized primitive F' in (1.31) is an element of D(T) if
and and only if F(7) = 0. Hence, the range of the Dunkl operator T is the set of all
f € L3([—m, 7], w) for which [T f(7)w(7)dr = 0 holds, i.e. range(T)* is the subspace
of constant functions in L?([—n, x],@). Thus, equation (1.32) implies that g = —F + C
for a constant C' € C. Since —F + (' is absolutely continuous and 27-periodic and
g € L*([—m, 7], w), it follows that g € D(T') and, hence, that iT is self-adjoint. O

Example 1.17. Consider the weight function w(t) = t* on [0, ]. Then, the Dunkl operator
on L*([—m, 7], ) attains the form

dg 9(t) = 9(=t)
Tg(t 1)+ 2 .
o) = )+ 2200
The function h € L*([—m, x|, @) given by h(t) = [t|7! is not absolutely continuous on

[—m, 7] and therefore not in D(T). On the other hand, for any g € D(T') integration by
parts yields

ranyal =| [ (50 + 20000 - at-0) ) e
—| [ (at) + 29(-t)) sign(t) t2dt| < 3| [ lg(0)leFdt] < 6mlgla.

Hence, the functional (T'g, h)y is continuous on D(T'). This implies that h is an element
of D(T*) and that D(T') C D(T™). So, if the weight function w is not strictly positive on
the whole interval [0, 7], the operator i7" is in general not self-adjoint.

Using Theorem 1.4 and the Dunkl operator 7', we can deduce an uncertainty principle
for functions in the extended Hilbert space L2~([ m, 7], w). We fix a function h € D(T)
and define two operators A and B on L*(X% W) by

Ag = hg, D(A) = L*([~7, 7], @), (1.33)
Bg=iTg,  D(B)=D(T). (1.34)

The multiplication operator A is a normal and bounded operator on L?([—m, 7|, w). The
differential-difference operator B is symmetric due to Lemma 1.16. So, the next result is
an immediate consequence of Theorem 1.4.

Theorem 1.18.
For a fized multiplier h € D(T) and an even function g € D(T) N L*([—7,n], @), the
following inequality holds:

W

(nhgufb—%ﬁf') 1912 > L1t Th, ghal. (1.35)

Proof. We consider the operators A and B defined in (1.33) and (1.34). For an even
function g € D(T), the derivative T'g = ¢’ is odd. Thus, (Bg, g)s = (ig’, 9)s = 0 and
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(Ag, 9)s = (hg, 9)%. The commutator [A, B] of the operator A and B acting on functions
g € D(AB)ND(BA) =D(T) is given by

A, Blo(t) = ihT(t) T (ho)(1) = ~i(W(0)g(0) + ™57 )o(=1),

for a.e. t € [—m,]. Further, since g € L*([—7, 7], @) N D(T) is even, we get
[A, Blg = —(iTh)g. (1.36)

Inequality (1.35) now follows from inequality (1.8) with a = (hg, g)s, b = (Bg,g)s = 0
and formula (1.36) for the commutator. O

Theorem 1.18 gives a natural way to formulate an uncertainty principle for the initial
Hilbert space L?([0, 7], w). Namely, if f € L*([0,7],w), we can take the even extension
e(f) € L} ([—m, ], ) and then use inequality (1.35). A common choice for the multiplier
h in the definition (1.33) of the operator A is the 2m-periodic function h(t) = e (see [27,
(2.13)], [73, Theorem 2.2] and [79, Theorem 9.2.]). With this particular choice for the
multiplier h, we get

Theorem 1.19.

Assume that the weight function w satisfies Assumption 1.9. Let f € L*([0,7],w) N
AC([0, 7)) with f' € L*([0, 7], w) and normalized such that || f||, = 1. Then, the following
uncertainty principle holds:

(1= ([ eostlrPutoar) )17 >

! /07r (costw(t) + Sintw'(t)) |f(t)|dt

4

2

(1.37)

Equality in (1.87) can only be attained if f is a constant function.

Proof. It f € AC([0,7]) with f" € L*([0,n],w) and ||f|l, = 1, then e(f) € D(T) and
lle(f)]la = 1. Now, we can adopt inequality (1.35) to prove (1.37). As a multiplier h, we
choose h(t) = e, t € [-m,n]. Then h € D(T), and we get

Ihe(£)IE = leCHIE = 1 = 1.
(hel(£),e(fal = (ee(F)selfal = ([ costls@Puteiat)
() e = 17

iTh(t) = ( it ()

0

sint>, for a.e. t € [—m, 7.
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. . 7/ .
Further, since sint and % are odd functions on [—m, 7], we conclude

(el eliha = [ (= e~ Tl sint) el 0ot
__ /0“ (costw(t) + sintw’(t)>|f(t)|2dt.

Hence, inequality (1.37) holds. Due to Theorem 1.8, equality in (1.35) is attained if and
only if (note that a = (e"e(f),e(f))s and b= 0)

ie(f) = Me" —a)f = =ANe™ —a)f, \eC.
This identity implies
£ (Aeit + et —a) — Xa) _9 f(t)(Re()\e"t) _ Re(aA)) —0, tel[-mn].

This condition can only be satisfied if f = 0 or if A = 0. In the latter case we get i f’ = 0.
Thus, f has to be constant on [0, 7]. 0

Similar to the Breitenberger uncertainty principle (1.18), we can introduce a generalized
mean value ¢(f) for a function f € L*([0, 7], w) by

() 1= (eelf).elf))a = [ cost | (8) Pty (138)
Moreover, we denote the integral term on the right hand side of (1.37) as
p(f) == (=(iTeMe(f), e(f))g = /0” (costuw(t) +sintw(1))] £(£)|dt. (1.39)

Definition 1.20. If p(f) # 0, we define

_1—e(f)?
varg(f) = S (1.40)
varg (f) := 1]l (1.41)

The values varg(f) and varg(f) are called the position and the frequency variance of f,
respectively.

Corollary 1.21.
Let w satisfy Assumption 1.9 and let f € L*([0, 7], w)NAC([0, 7)) with f' € L*([0, 7], w),
| fllw =1 and p(f) # 0. Then, the following uncertainty principle holds:

(1.42)

| =

varg(f) - varp(f) >
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Proof. Clearly, (1.42) follows from (1.37). It remains to check the strict inequality in
(1.42). The only functions for which equality is attained in (1.37) are the constant
functions. If f = C'is constant on [0, 7], integration by parts with respect to the variable
t yields

p(1) = 1C] [ (costu(t) +sintw!(t))dt = 0.

Hence, there exists no function f with f € L*([0,n],w) N AC([0,x]), f' € L*([0, 7], w),
| fllw =1 and p(f) # 0 for which equality holds in (1.42). O

1.4.2. The compact case with zero boundary condition

In Theorem 1.18, the multiplier 4 has to be an element of the domain D(7") in order
that the commutator [A, B] is well defined for functions in D(T"). This is certainly the
case if h is given by h(t) = €*, but not if we choose, for instance, h(t) =t, t € [—m, 7.
However, the option h(t) =t is possible, if we restrict the domain of the Dunkl operator
T to functions g € AC([—m,n]) satisfying the boundary condition g(—m) = g(7) = 0.

Definition 1.22. Consider the Hilbert space L*([0,7],w) and the extension
L3([~m, 7], @) as in Definition 1.12. Then, we restrict the Dunkl operator 7" defined
in (1.29) by Tg = ¢’ + %% to the smaller domain

dg w'g—g W 9 N
— =, = L ([— . 1.4
o S0 g e D (m )} (149)

Dy(T) := {g € ACy, : g(m) =0, 5

In view of property (1.21) of the weight function w, the condition t%g € L*([-7,n], ) in
(1.43) is a growth condition on the function g at the point ¢ = w. This additional condition
will be needed in the proof of Theorem 1.23 below. Since Dy(T') C D(T'), Lemma 1.16
implies that the operator i7" is also symmetric on the smaller domain Dy(T).

On L?([—m, 7], ), we consider now the bounded operator A defined by Ag = hg and the
operator B = 1" defined on the smaller domain Dy(7"). In the following, we will show
that the commutator [A, B] is well defined for functions in Dy(T) if the multiplier A is
an element of

dh
M = {h c AC([—n, 7)) N L*([—7, 7], ) : 7 € L*([~m, 7], W),
V' h—h
m%¢%TeL%pmﬂﬂm} (1.44)

w2
Note that the functions h € M are not supposed to fulfill the periodicity condition
h(—m) = h(r) and that the condition (72 —?)Z 2k € [2([—7, «1],10) is weaker than the
condition 22" € L2([—7, 7],4) in the domain D(T). Now, similar to Theorem 1.18,
we get the following result for even functions in Dy(7):
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Theorem 1.23.
For a fized h € M and an even function g € Do(T)NL2([—, 7], W), we have the inequality

(hg, g)al’ 1
(g~ D=L g2 > 10z - 709, gl (145

Proof. The operator A defined by Ag = hg, h € M is a normal and bounded operator
on L*([—m, x|, w) and the operator B = iT with domain D(B) = Dy(T) is symmetric
due to Lemma 1.16. For ¢ € DO(T) and h € M, we have that hg € AC([—7,n]),
hg(—m) = hg(m) = 0 and that hg € L*(X4W). Further, we have

Hwhg hg @’h—hg%—f] w'y g—gh+h|?
w2 2 w2 2w
w' h— hg—i—f] wg—g
S e ET
@ h—h|? MR
cfor-s 52
=] >w 2 M @2

Hence, by definition of the domain DO(T) and the set /\/l, the product hg is in Dy(T)
and the commutator [A, Blg = h(iTg) —iT(hg) is well defined for functions g € Do(T™).
Inequality (1.45) now follows from inequality (1.8) with a = (hg, g)s and b = (iT'g, )«

(ig',9)a = 0. O

Since M D D(T), the set of admissible multipliers A in Theorem 1.23 is larger than in
Theorem 1.18. In particular, the multiplier i given by h(t) = t is an element of M\ D(T').

Theorem 1.24.

Assume that the weight function w satisfies Assumption 1.9. Let f € L*([0,7],w) N
AC([0,7]), f' € L*([0, 7], w), satisfying the zero boundary condition f(w) =0 and t%f €
L3([0,7],w). Further, let f be normalized such that ||f|l, = 1. Then, the following
uncertainty inequality holds:

e 171 > e [l (1.46)

Proof. We proceed as in the proof of Theorem 1.19. If f € AC([0, «1]) with f" € L*([0, 7]),
zero boundary condition f(r) = 0 and t% f € L*([0,7],w), then e(f) € Do(T). Now,
inserting g = e(f) and h(t) =t in inequality (1.45), we get

lhe(H)llG = lte(HIE = [1EfIL,
(he(f), e(f))a = (te(f), e(f))a = 0,
leC) e = 11Fllw,

(T(he(f)) — hTe(f)) (t) = e(f)(t) + w'(t)

ot

te(f)(t), fora.e. t e [—m, .
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@’

Further, since ¢ and % are odd functions on [—7, 7], we conclude
(T et~ HTe(feo = [ (14 0 0Pt
— 14 /; tw! (1)| £ () .

The operator A given by Ag = tg is symmetric. Since also B = T is symmetric, Theorem
1.2 states that equality in (1.45) holds if and only if (note that a = (te(f),e(f))s = 0,

b= (ie(f),e(f))a =0)
ie(f)'(t) =ixte(f)(t), te€|[-m 7], X€R,
i.e. if and only if f(t) = Ce. Since f has to satisfy the boundary condition f(m) =0,

this can only hold for the zero function. But the zero function is not a permissible
function in Theorem 1.24. Hence, inequality (1.46) is strict. O

1.4.3. The non-compact case

In this last part, we consider weighted square integrable functions on the nonnegative
real half axis [0,00). The resulting uncertainty principle will be a generalization of
the Heisenberg-Pauli-Weyl inequality. Hereby, the weight function w has to satisfy the
following conditions:

Assumption 1.25. An admissible weight functions w on the nonnegative real half axis
[0, 00) satisfies the properties

(i) w € ACue([0, ), (1.47)
(i)  w(t)>0, te(0,00), (1.48)
(iid) %’\M e L™([a, b)), for all [a,b] C [0, c0). (1.49)

Assumption 1.25 resembles Assumption 1.9 on the interval [0, 7]. The conditions (1.47)
and (1.48) guarantee that w is strictly positive on (0, 00) and locally absolutely contin-
uous. The property (1.49) ensures that the fraction t% is essentially bounded on every
interval [a,b] C [0,00). Further, there are no integrability restrictions on the weight
function w and, in particular, the integral [;° w(t)dt is not supposed to be finite. This
is, for instance, the case in the Heisenberg-Pauli-Weyl principle (Theorem 1.5), where
w(t) = 1.
Example 1.26. Consider the weight function w,(t) = t*e™*, o > 0, on [0,00). The
conditions (1.47) and (1.48) are evidently satisfied. Further,

’ we (1)

t

Wa(t)

Hence, also condition (1.49) is satisfied. The weight function w, determines the ortho-
gonality measure of the Laguerre polynomials (see Section 1.5.2).

(6]
=S -1 =la -t
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1.4. Uncertainty principles for weighted L*-spaces

Definition 1.27. For an admissible weight function w on [0,00), we denote by
L?([0,00),w) the Hilbert space of weighted square integrable functions on [0, 00) with

the inner product
oo

oghi= [ SO gDt (1.50)

0
and norm [|fI[3, == (f, f)w.

Similar as in Definition 1.12, we can also define a symmetric extended weight function w
on the real axis R.

Definition 1.28. On R, we define the symmetric extended weight function @ by

B(t) = ;w(|t\), teR. (151)

and denote by L*(R,w) the Hilbert space of weighted square integrable functions on R
with the inner product

(f.9ha = [ FOgn(t)dt (1.52)
and norm ||f13 := (f. f)a.

To relate the Hilbert spaces L?([0, 00), w) and L*(R, @), we introduce the even extension
operator e and the restriction operator r as

e: L*([0,00),w) — L*(R, @), e(f)(t):= f(|t]), (1.53)
r: LR, w) — L*([0,00),w), 7(g) := gli0.00)- (1.54)

The operators e and r define isometric isomorphisms between L?([0, c0), w) and the space
of even functions

for a.e. t € R.

LYR, @) = {g € L*(R,w): j=g}.
(—1)

Hereby, ¢ is defined as in the compact case by g(t) =

Since w € AC},.(]0,00)), the even function w € AC),.(R) is locally absolutely continuous
on R. Its Radon-Nikodym derivative, denoted as @' = %’, is locally integrable, i.e.,
W'\ (0] € L' ([a, b)) for all intervals [a,b] € R.

Definition 1.29. For a weight function w satisfying Assumption 1.25, we define on
L?(R, @) the Dunkl operator T by

dg w'g—g
Tg:=—+—"—"%— 1.
=%t e 2 (1.55)
with the domain
dg W' g —§
D(T) = {g € ACue(R) N LA(R, ) : d—i, %% e L2(R,w)}. (1.56)
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Remark 1.30. The fact that w satisfies Assumption 1.25 is crucial in Definition 1.29. It
ensures that the domain D(T') of the Dunkl operator 7' is dense in L*(R,w). Namely,
we can show that the C*°-functions with compact support in R, denoted as C°(R), are
included in D(T'). Clearly, if g € C°(R), then g is locally absolutely continuous on R
and ¢ € C®°(R) C L*(R,w). Further, if supp(g) C [-K, K], K > 0, we have

e e R

Hence, since w satisfies the property (1.49) and g%g € L*(R,w), we conclude that also
L9 e [*(R,w).

Now, as in the compact case (see Lemma 1.31), we can show that the Dunkl operator iT'
is symmetric.

Lemma 1.31.
The operator iT is symmetric and densely defined on L*(R,w).

Proof. The space C>°(R) of compactly supported C*°-functions is dense in L*(R,w). By
Remark 1.30, C°(R) is a subset of D(T'). Thus, also D(T) is a dense subset of L*(R,@).
Finally, for f,g € D(T'), we just have to follow the lines of the proof of Lemma 1.16 to
get the symmetry of 7. O

On the Hilbert space L?(R,w), we can now define the operators A and B as
Ag(t) = tg(t), D(A) = {g € R 0): tg e L*(R,@)}, (1.57)
Bg =iTg, D(B)=D(T). (1.58)

By Lemma 1.31, B = iT is symmetric, and for f,g € D(A), we get

(Af.gho = [ tFOg@ i)t = [ FOIg@ a0t = (£, Ag)a.

Therefore, also A is symmetric. Even more, it is possible to show (cf. [85], Example
(b), p. 318) that the operator A is self-adjoint. Now, adopting Theorem 1.2, we get the
following uncertainty principle (cf. [27, (2.20)]):

Theorem 1.32.

Suppose that w satisfies Assumption 1.25. Let f € L*([0,00),w) N AC.([0,0)) such
that f' tf, tf’,t%f € L*([0,00),w). Further, let f be normalized such that ||f|., = 1.
Then, the following uncertainty principle holds:

1 0 2
IS 1512 = g1+ [ @] (1.59)
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1.4. Uncertainty principles for weighted L*-spaces

Equality holds if and only if f = Ce™* | with a complez scalar C' and a real constant
A € R such that f fulfills the requirements of the theorem.

Proof. We consider the operators A and B defined in (1.57) and (1.58) on the Hilbert
space L*(R, ). The commutator of A and B is given by

w'(t)
w(t)
for all functions g € D(AB)ND(BA). If we consider only even functions g € L2(Y?, W),
we get

(A, Blg(t) = ~ig(t) i

tg(—t), fora.e teR,

| (1)
A, Blg(t) = —Zg(lf)(l e

Next, if f € ACie([0,00)) with f', tf, tf and t“ f in L?([0,00),w), then the even
extension e(f) lies in the domain D([A, B]) = D(AB) N D(BA) of the commutator.
Hence, if we apply the symmetric operators A and B to the function e(f), we get in
inequality (1.7):

), for a.e. t € R.

1Ae(HIE = lte(HIE = IILFI

Further, since @’ is an odd function and f is normalized, we conclude
{0, Ble(r)elnbal = | [ (1+ 00 )jethPatear
’ ’ b —o0 w(t)

- ’1 +/Oootw’(t)\f(t)]2dt‘.

Due to Theorem 1.2, equality in (1.59) holds if and only if ie(f) = —i2Ate(f), where
A is a real constant. The solution of this differential equation is exactly the Gaussian
function e(f)(t) = Ce " with a complex scalar C.. Restricted to the nonnegative real
half axis, this yields the assertion. O

Remark 1.33. Theorem 1.24 in Section 1.4.2 can be considered as an intermediate result
related to Theorem 1.18 in Section 1.4.1 and also to Theorem 1.32 above. Moreover,
it is possible to prove Theorem 1.24 in two different ways. The first way, presented in
Section 1.4.2, is by restricting the domain of the Dunkl operator 1" to functions with
zero boundary condition. Alternatively, Theorem 1.24 can be proven by restricting the
uncertainty inequality (1.59) above to functions that have compact support in the interval
[0, 7.
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1.5. Uncertainty principles for orthogonal expansions

If the weight function w determines the orthogonality measure of a set of orthogonal
polynomials, the theory presented in the last section leads directly to an uncertainty
relation for functions having an expansion in terms of orthogonal polynomials. The first
work in this area was done by Rosler and Voit [73] who used the Dunkl operator 7' to
develop an uncertainty principle for ultraspherical polynomials. Later on, these results
were generalized by Li and Liu [54] to Jacobi polynomials. Using similar techniques as for
the Jacobi polynomials, there have been developed uncertainty principles also for other
well known orthogonal expansions like the spherical Bessel functions [74], the Laguerre
polynomials and the generalized Hermite polynomials [55]. In this section, we will focus
on the uncertainty principles for Jacobi and Laguerre expansions.

1.5.1. Uncertainty principles for Jacobi expansions

For a, f > —1,the weight function w,g of the Jacobi polynomials is defined on [0, 7] as

t t
Wap(t) = 20T gin?ott <2> cos® Tt (2> . (1.60)

Integrating the weight function w,s from 0 to 7 yields (cf. [42, (4.0.2)])

Fla+1I(B+1)
Mo+ 5+2)

/7r Wap(t)dt = 20FF+1 (1.61)
0

Ifa,8> —%, the Jacobi weight w,g is a nonnegative and absolutely continuous function
on [0, 7]. Moreover, we have

wist) (@t f+1)+(a—F)eost

Was(t) sin ¢ (162)

Hence, the Jacobi weight function w,s satisfies Assumption 1.9.

The Jacobi polynomials P{*® on the interval [~1,1] can be defined by the explicit

n

formula (cf. [83, (4.21.1)])

plh) (x) =

n

(1.63)

F(n+a+l) Z":<H>F(n+j+a+ﬁ+1) (:L‘—l)j.
j

nln+a+p+1) = I'G+a+1) 2
Using the coordinate change [0, 7] — [—1,1] : ¢ — cost = z, we consider the polynomials
Péa’ﬁ) on the interval [0,7]. Then, the Jacobi polynomials P,ff"ﬁ) satisfy the following
orthogonality relation (cf. [42, Theorem 4.1.1])
/ Pr(na’ﬁ) (cos t)P,(f’"ﬂ)(cos twas(t)dt = h(“’ﬁ)5m7n, (1.64)
0

n
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where
(@) . 1 20D (v +m + DT(B +n + 1)

h = = .
" ||p,§a’5>||guﬂ nT(a+B+n+1D(a+p+2n+1)

(1.65)

The Jacobi polynomials { P(*#)(cost)}22, form a complete orthogonal set in the Hilbert
space L*([0, 7], wag) (follows from the Stone-Weierstrass Theorem B.1 and the fact that
the continuous functions on [0, 7] are dense in L?*([0, 7], was)). Moreover, they satisfy
the second-order differential equation [83, (4.2.1)]

LogP P = —n(n + a+ 8+ 1) PP, (1.66)
where the differential operator L, is given by

I @ (a+pB+1cost+a—-pBd
RATE sin t dt’

(1.67)

By Definition 1.14, the Dunkl operator 7" on the symmetrically extended Hilbert space
L*([—7, ], Wag) is given by

(a+ B+ 1)cost+ (a— ) g(t) — g(—t)
sint 2

Ty(t) = g'(t) + , geD(T). (1.68)

The differential-difference operator 7' is strongly related to the second-order differential
operator L,g. Namely, for functions f € C?([0,7]) with f'(0) = f/(7) = 0, we get

—Lagf = r((iT)*e(f))- (1.69)

Therefore, the operator T can be seen as a generalized root of the second-order differ-
ential operator L,g and the frequency variance var?’(f) of f can be written as

varg’ (f) = 1115, = iTe()z,, = (—Las, s (1.70)

Finally, if we introduce the generalized mean value e,5(f) as in (1.38) by

caslf) = [ cost (1) Puas(t)at, (L.71)

we can deduce from Corollary 1.42 an uncertainty principle for functions in L*([0, 7], wag)
(see also [54, Corollary 2] for an alternative formulation).

Corollary 1.34 (Uncertainty principle for Jacobi expansions).
Let f € AC([0,7)) 0 L2(0, 7], wag) with f' € L2([0, 7], wag), | Fllun, = 1 and

(@ =B) + (a+ B +2)eap(f) # 0.

Then, the following uncertainty principle holds:

11— 5aﬁ(f)2
= )]

(a+ G +2)°

/112
I, > (1.72)
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Proof. Corollary 1.34 is an immediate consequence of Corollary 1.21 when applied to the
weight function w,z. The only thing that remains to check is the formula for the integral
term on the right hand side of equation (1.37). This is done by the following simple
calculation:

/07r (costwag(t) + sintw'aﬁ(t)> |f(t)|%dt

_ /O” ((a+B+2)cost + (o= B3)) (1) Pwap(t)dt
= (a—0)+ (a+ B+ 2)eas(f). =

If « = (3, the polynomials PT(LO"Q) are called ultraspherical polynomials. In this case,
Corollary 1.34 corresponds to the original result of Résler and Voit [73, Theorem 2.2].

Corollary 1.35 (Uncertainty principle for ultraspherical expansions).
Let f € L*([0, 7], waa) N AC([0, 71]) with f € L*([0, 7], Waa), €aa(f) # 0 and normalized
such that || f||w.. = 1. Then, the following uncertainty principle holds:

1 _5aa(f)2 . 112 o 2
W > (a2 (1.73)

Remark 1.36. In the articles [54, Lemma 8] and [73, Proposition 3.3], it is shown that the
constant M on the right hand side of inequality (1.72) is optimal. An alternative
proof of this optimality will be given in Theorem 3.16 where we will show that for a
family V, of polynomial kernels of order n the uncertainty product in (1.72) tends to the

optimal constant as n — oo.

1.5.2. Uncertainty principles for Laguerre expansions

As an example for an orthogonal expansion on the nonnegative real half axis [0, c0), we

consider the Laguerre polynomials. For o« > —1 the Laguerre polynomials L{ can be
defined by the formula

et d™

L () = ——

w () n!dtm

and satisfy the orthogonality relation [42, Theorem 4.6.1]

(t"e™) (1.74)

Fla+n+1)
n!

Om,n- (1.75)

/0 ~ L)L ()t tdt =
Hence, the Laguerre polynomials are orthogonal on [0, 00) with respect to the weight
function w,(t) = t*e~*. It is well-known that they form a complete orthogonal set in
the Hilbert space L*(]0,0),w,) and satisfy the second-order differential equation [42,
(4.6.15)]

L L™ = —nL(®) (1.76)

n
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where the differential operator L, is given by

Lot b ira-pl (1.77)
o=t ! e :
For the fraction %7 we get in the case of the Laguerre polynomials
/
t
A :g—l, t € (0,00).
we(t) t

Thus, if > 0, the weight function w,s satisfies Assumption 1.25 and, by Definition
1.55, the Dunkl operator T on the extended Hilbert space L*(R,0,) is given by

9(t) —g(=1)

5 , forae teR, geD(T). (1.78)

Tg(t) =g (t) + ((; - signt)

Also this time, the Dunkl operator T is related to the second order differential operator
L. For functions f € C%(]0,00) with f/(0) = 0, we have

Lof =r[(To [t o T)e(f)]. (1.79)

So, in the case of the Laguerre polynomials, the operator L, can be decomposed with
help of the Dunkl operator 7" and the multiplication operator f — |t|f. Finally, as a
consequence of Theorem 1.32, we get the following uncertainty principle for functions in
L3([0,00), wq):

Corollary 1.37.
For a > 0, let f € L*([0,00),ws) N ACi,e([0,00)) such that f',tf, tf € L*([0,00),ws).
Further, let f be normalized such that ||f||w, = 1. Then, the following uncertainty
inequality holds:

o9 2
IS I, 2 51+ = [T P (1.80)
0

Equality holds if and only if f(t) = Ce ™" with a complex scalar C' and a nonnegative
real value A > 0.

1.6. Remarks and References

Uncertainty principles in Hilbert spaces. Among many other standard references, The-
orem 1.1 can be found in [19, Theorem 1.34] and [29, Lemma 2.2.2]. The Theorems 1.2
and 1.4 as well as their proofs are taken from [79].

The Heisenberg- Pauli- Weyl uncertainty principle. The Heisenberg-Paul-Weyl inequality
(1.10) goes back to the pathbreaking work [33] of Heisenberg in 1927. In his work,
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Heisenberg gives a detailed description and physical interpretation of (1.10). The precise
mathematical formulation of (1.10), though, can firstly be found in the article of Kennard
[45] and in the book of Weyl (see [86], p. 77) who credits the result to Pauli.

Among other standard references, the Heisenberg-Pauli-Weyl-inequality can be found in
the form of inequality (1.10) in [20, Theorem 1.1], [29, Theorem 2.2.1] and [79, Theorem
6.1]. In the form of inequality (1.9), it can be found in [19, Corollary 1.35] or in [70,
Theorem 2.2.3].

The Breitenberger uncertainty principle. The inequalities (1.15) and (1.18) go back to
the primary work of Breitenberger [6] in 1983. In a more mathematical form, these two
inequalities have been restated by Narcowich and Ward [63] in 1996 using the angular
momentum operator from physics. In the version of (1.15) and (1.18), the Breitenberger
uncertainty principle can be found in [68] and [78], [79]. The optimality of the constant
i on the right hand side of inequality (1.18) was firstly proven by Prestin and Quak in

the article [68].

Section 1.4.1. The results of Section 1.4.1 constitute a generalization of the work of
Rosler and Voit [73] who firstly used a Dunkl operator of the form (1.29) to prove an
uncertainty principle for functions on [0, 7] having an expansion in terms of ultraspherical
polynomials. The main results of the section are taken from the survey article [79] of
Selig and from the work [26, 27] of Goh and Goodman. Related results can be also found
in the article [55] of Li and Liu.

Assumption 1.9 is a slightly modified version of the assumptions on the weight function
w given in [27, p. 23].

The definition of the Dunkl operator 7" in (1.29) corresponds to the definition of the
Dunkl operator in [27, p. 23]. The definition (1.30) of the domain D(T) is slightly more
general than in [27, p. 23].

The proof of the symmetry of the Dunkl operator 7" in Lemma 1.16 is analog to the proof
of [73, Lemma 3.1]. The proof of the self-adjointness of 7" in Lemma 1.16 is very similar
to the proof of the self-adjointness of the differential operator & on L*([—m, ) (see [70,
Lemma 2.3.1]).

Theorem 1.18 and 1.19 are generalized versions of Theorem 9.1 and 9.2 in [79], respec-
tively. Inequality (1.42) corresponds to inequality (2.12) in [27].

Section 1.4.2. Section 1.4.2 is a new result and can be considered as an intermediate
result between Section 1.4.1 and Section 1.4.3. Namely, Theorem 1.24 can be proven in
two ways. One way to prove it is by restricting the domain of the Dunkl operator T'
to functions with zero boundary condition as shown in Section 1.4.2. The other way to
prove it is by restricting Theorem 1.32 in Section 1.4.3 to functions with compact support
in the interval [0, 7].

Section 1.4.3. The results of Section 1.4.3 are mainly taken from [27]. Related results
can also be found in [55].

Assumption 1.25 summarizes in a slightly modified way the assumptions on the weight
function w given in [27, p. 24].
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The definition of the differential-difference operator 7" in (1.55) corresponds to the defi-
nition of the Dunkl operator 7" in [27, p. 24]. The definition (1.56) of the domain D(T")
is slightly more general than in [27, p. 24].

Inequality (1.42) is a reformulation of inequality (2.19) in [27]. For the weight function
wWe(t) =t*, a > 0on [0, 00), inequality (1.42) reduces to the particular case of uncertainty
inequalities for Hankel transforms considered in [74].

Uncertainty principle for Jacobi polynomials. Corollary 1.34 can be found, in a slightly
modified form, in the article [54, Corollary 2]. The original version of Corollary 1.35 can
be found in [73, Theorem 2.2]. A qualitative uncertainty principle for Jacobi polynomials
can be found in the dissertation [18] of Fischer.

Uncertainty principle for Laguerre polynomials. A slightly different version of Corollary
1.37 can be found in [55, Theorem 9]. Similar to the Laguerre case, an uncertainty
principle for generalized Hermite polynomials was also proven in [55, Theorem 10].
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"In jeder Philosophie gibt es einen Punkt, wo die
"Uberzeugung" des Philosophen auf die Biihne tritt:
oder, um es in der Sprache eines alten Mysteriums zu
sagen:

adventavit asinus

pulcher et fortissimus."

Friedrich Nietzsche, Jenseits von Gut und Bose, 1886

Uncertainty principles on
Riemannian manifolds

This chapter includes the main statements of this thesis. We will combine the theory
of uncertainty principles in Chapter 1 with the geometric structure of a Riemannian
manifold. First, we will extend the theory of Section 1.4 to weighted L?-spaces on a
multi-dimensional cylindrical domain Z2. Then, this extended theory is used to develop
an uncertainty principle for square-integrable functions on arbitrary compact Riemannian
manifolds M. The main tools in this step are the exponential map exp,, on the tangential
space T, M and an isometric isomorphism from L?(M) onto a weighted L-space on the
cylindrical domain Z2. In a similar way, we will prove uncertainty principles for compact
star-shaped domains (2 C M with Lipschitz continuous boundary and for manifolds which
are diffeomorphic to the Euclidean space R?. Finally, we will show that the developed
uncertainty principles are asymptotically sharp in the case that the underlying manifold
is compact, and sharp if M is diffeomorphic to R?.

2.1. Weighted L’-inequalities on a multi-dimensional cylindrical
domain

2.1.1. Inequalities in the compact case

In this section, we are going to generalize the uncertainty principle of Theorem 1.19
to weighted L?-spaces where the underlying domain is not the interval [0, 7] but the
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2. Uncertainty principles on Riemannian manifolds

d-dimensional cylinder
7% :=10,7] x ST ={(t,&): t€[0,7], £ € S} c R, (2.1)

where S .= {f eERY: |EP=G+- -+ = 1} denotes the (d — 1)-dimensional unit
sphere in R%. The cylinder Z¢ is a differentiable submanifold of R4*! with left hand
boundary

Ozt :={(0,¢): €8} (2.2)
and right hand boundary

OrZ% = {(n,€): € € S¥}. (2.3)

A Riemannian structure on Z¢ is given by the restriction of the Euclidean metric in R4+
to Z%. Hence, Z% is a compact Riemannian manifold with boundary 07, and 0Zg. A
canonical measure on Z¢ is given by the product measure dtdu(§), where u denotes the
standard surface measure on S%!.

Assumption 2.1. As admissible weight functions on Z2, we consider positive functions
W satistying the properties

(i) WecCZy): W(,€ € Ao([0,n]) for p-ae. &SP,

W' = 62/ c L'(z9), (2.4)
(i4)  W(t, &) >0, (t,&) € (0,m) xS, (2.5)
(i3i)  t(m — t)m c L>™(Z%). (2.6)

w

Assumption 2.1 can be seen as an extension of Assumption 1.9 onto the d-dimensional
cylinder Z2. The symbol C(Z%) denotes the space of all continuous functions on the
compact manifold Z¢. Then, the first condition (2.4) says that the weight function W is
absolutely continuous with respect to the variable ¢ for p-a.e. fixed unit vector £ € S 1,
and that the Radon-Nikodym derivative W’ of W with respect to the variable ¢ is an
integrable function on ZZ. Hereby, the notion "for p-a.e. ¢ € ST!' means that the
statement holds for all unit vectors £ on S?! except a subset of y-measure zero, where u
is the standard Riemannian measure on S*!. The second condition (2.5) ensures that the
weight function W is strictly positive on the interior Z% \ {0, 2%, 0rZ%} of the cylinder
Z4. Finally, the condition (2.6) guarantees that the fraction t(m — t)%l is essentially
bounded on Z¢. Especially the last property (2.6) will play an important role in the
upcoming definition of the Dunkl operator.

Ezample 2.2. Consider the weight function W, : Z¢ — R, W,(t,£) := sin®*T ¢, a > —%.
The conditions (2.4) and (2.5) are obviously satisfied. Moreover,

t(mr — t)m =|2a+ 1)t(mr —t)cott| < (2a+ 1)m.

Hence, also condition (2.6) is satisfied. In Section 2.6.1, we will see that for o = % the
weight function W, is related to the exponential map on the unit sphere S¢.
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2.1. Weighted L?-inequalities on a multi-dimensional cylindrical domain

Definition 2.3. For an admissible weight function W on Z¢ we denote by L*(Z4, W)
the Hilbert space of weighted square integrable functions on Z¢ with the inner product

(oo = [, [ 1 09EOW ¢, dtdu(c). (27)

The space L*(Z4, W) is well defined and complete in the topology induced by the norm
| - I3 := (-, )w. This follows from the general theory of LP-spaces on measure spaces
(see Section B.1 of the appendix).

Similar as in Section 1.4, the differential operator % is in general not a symmetric op-

erator on the Hilbert space L*(Z¢,W). This difficulty can be solved by introducing an
appropriate differential-difference operator. To define such an operator, we have to dou-
ble the domain of the Hilbert space L?(Z% W). This is done by doubling the range of
the variable ¢.

Definition 2.4. On the doubled cylinder
X4 = [-7, 7] x S ¢ R (2.8)
we define the extended weight function W by

W(t6) = SW(IHL), (1.6 € X" 2.9

By L*(X¢, W), we denote the Hilbert space of weighted square integrable functions on
X? with the inner product

oghw = [, [ £t 09EOW (¢ E)dtdu(c). (210)

As the cylinder Z¢, also the doubled cylinder X? can be considered as a compact Rie-

mannian manifold with boundary
o X = {(-m,¢&): £ €S}, (2.11)
OrX®:={(m, &) : € €S (2.12)

As the Hilbert space L*(Z4, W), also the space L*(X% W) is a well defined and complete
Hilbert space with the norm || - | := (-, )y (see Section B.1).

Definition 2.5. On L*(X? W), we define the reflection operator ~ by

G(t, &) = g(—t, &), forae. (t,&) € X%

We say that a function g € L2(X¢, W) is even (odd) in the variable ¢ if it satisfies § = g
(g = —g, respectively). The subspace of even functions in L?(X% W) is denoted by

LAXYW) = {g e XX, W): g=g}. (2.13)
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2. Uncertainty principles on Riemannian manifolds

Similar as before, the notion "for a.e. (¢,£) € X" means that the statement holds for all
(t,€) € X9 except a set of measure zero, where in this case the measure is given by the
canonical product measure dtdu(§) on Z2.

To relate the original Hilbert space L*(Z4, W) with L?(X? W), we introduce the even
extension operator e and the restriction operator r as

e: LX(ZL,W) — LA(XEW),  e(f)(t,€) = f(|t],£), (2.14)
T L2(Xd, W) — LQ(Z;?, W), r(g) = g’[o’ﬂ.]xgdfl. (2.15)

Then, the operators e and r constitute isometric isomorphisms between the Hilbert space
L*(Z4, W) and the subspace L2(X4 W) of even functions.

By assumption (2.4), the weight function W is continuous on Z%, W (-, £) is absolutely
continuous for p-a.e. & € S%! and the Radon-Nikodym derivative W' is integrable
on Z¢. Thus, also the symmetrically extended function W is continuous on X% and
W(-,g) € AC,, is absolutely continuous for p-a.e. & € S 1. Moreover, its Radon-
Nikodym derivative with respect to the variable ¢, denoted as W' := 88‘2/ ,

the doubled cylinder X¢.

is integrable on

Similar as in Definition 1.14, we can now introduce a differential-difference operator on
L*(X W), referred to as Dunkl operator.

Definition 2.6. For a weight function W satisfying Assumption 2.15, we define the
Dunkl operator T on the Hilbert space L?(X<, W) by

dg W’g -
TXg = ( ~) 2.1

where k € C(S?!) denotes a strictly positive and continuous scaling function depending
on the variable £ € S%71. As a domain of 7%, we define

D(TY) := {g e LX(X4W): g(-,€) € ACy, for prae. € € S

99 W'9—9 _ 19/ i

it € LA(X ,W)}. (2.17)
The function x in (2.16) is an additional scaling function that allows to regulate the
dependency on the variable ¢ € S! in the Dunkl operator. In particular, such a scaling
function x will appear later on when we deal with uncertainty principles on compact
Riemannian manifolds. The definition (2.17) of the domain D(T%) is very similar to the
definition (1.30) in the one-dimensional case. In principle, the domain D(T*) consists

of all functions g that are absolutely continuous for p-a.e. fixed & € S%~! such that the

Radon-Nikodym derivative % and the fraction WW/ng are elements of L*(X% ).
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2.1. Weighted L?-inequalities on a multi-dimensional cylindrical domain

Remark 2.7. Assumption 2.1 and, in particular, property (2.6) of the weight function W
are crucial for Definition 2.6. These conditions ensure that the domain D(T*) of the
Dunkl operator is dense in L*(X? W). To prove this, we consider the set

cet) ={ge otx: P o0, om0 =sime). P60 = (x|
(2.18)

and show that Cy'(X%) is a subset of D(TX). Hereby, the t in the exponent indicates that
we consider functions that are continuously differentiable with respect to the variable ¢.
Obviously, if g € Cy/(X%), then g(-, &) is absolutely continuous for all£ € S ! and, since
X4 is compact, ‘3? € L*(X4,W). Tt remains to check that W 8 ¢ [2(X4,W). Since
% € O(X%) and g(—m,&) = g(m, &) for all € € ST1, the functlon m is continuous

on X< Thus, we get

(t 5 (t,€) —
L. / A ‘ W (t, €)dtdu(€)
2 2
W'(t.6)|" |9(t. &) — (=, &)|" =
= —t}) = W (t,&)dtd
/Sd 1 / =i | marem | W)
112 g—3 2
< |t = t¥)— “
W Loo(Zg) 2t(7r2 —t2) W
Since the weight function W satisfies property (2.6), we conclude that the fraction %%ﬁ

is in L3(X4 W).

Similar as in Lemma 1.16 for the one-dimensional setting, we can now show that the
Dunkl operator T is symmetric on L?( X% W).

Lemma 2.8. )
The operator iTX with domain D(TX) is symmetric and densely defined on L*(X*,W).

Proof. The set
Con(X7) = {g € C(X) : g(-7,8) = g(m,€)}

is dense in L2(X? W) (follows, for instance, from [38, Theorem 13.21]). Hence, for
every g € L*(X4, W) and € > 0 there exists a g. € Cor(X?) such that ||g — gl < €
Further, the space Cy(X?) defined in (2.18) is a subalgebra of Co,(X?) that contains
the constant functions, separates the points on X¢\ 9, X% and is closed under complex
conjugation. To see that Cy'(X9) separates the points on X7\ 9, X% we define for
p=(t1,&),q = (t2,&) € X\ 8, X%, t, — t # {0, 7}, the function s,(¢,¢) = SnU=l)

sin(ta—t1) °
Then, s; € Cyf(X%) and s1(p) = 0, s1(q) = 1. If t; — ty, = £, we define s,(t,&) =

coslt-tEL - Then, also s, € Cyy (X9) and so(p) = 0, sa(q) = 1. If ¢y = ty, & # &, we
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The answer to the ultimate question of life, the universe, and everything is ...

take as separating function s3(¢, &) = r(€), where r is a continuous function on S*! with
r(&) =0 and r(&) = 1.

Hence, by the Stone-Weierstrass Theorem B.1, Cy(X?) is dense in Cor(X?) and for
every g. € Cor(X?) there exists a g € Cyf(X?) such that ||g. — g1]|oc < €. Moreover, by
Remark 2.7, the function g; is an element of D(T¥). In total, we get

19 = g1l < lg = gellw + llge — g llwr
<etlg.—all [, [ W €dtan() < (1+ Wl )

Thus, D(T¥) is a dense subset of L*(X? W).

To check the symmetry of 7%, we essentially follow the lines of the proof of Lemma
1.16. For f,g € D(T?), using integration by parts with respect to the variable t, we get
the identity

/S“/ 8tt€ g(t, )W (¢, €)dtdp(€) / / faat( S)W(t,i))dtdu(é‘)
:_/Sd1~/—7r tg(attg) 9005 (t,f)

Now, by definition (2.16) of the operator T, we get

/Sd,l /_ ’ GTXF)(t,€)g(t, W (¢, ) dtdu(€)

=i [, [ ( % (0.) + 1. OTE o) )W 1.

vif [ sl B9 Og(t@%}fg W (t,€)dtd(c)

—=i [, [ (s 0% e + LR D anguie
—i [ [ se(re w#f(t g8~ 9=t ﬁﬁ///((i’g)W(t,ﬁ)dtdu(é)

_/ / (t, &) (T X g)(t, )W (t, €)dtdu(€).

Hence, the operator T is symmetric on the domain D(T%). O

Now, we fix a multiplier & € D(TX) and define two operators A and B on L?(X4 W) by
Ag := hg, D(A) = LA(X4, W), (2.19)
Bg :=iT%g,  D(B)=D(TY). (2.20)

The multiplication operator A is a normal and bounded operator on L?(X% ). The
differential-difference operator B is symmetric due to Lemma 1.16. For these two oper-
ators, Theorem 1.4 implies
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2.1. Weighted L?-inequalities on a multi-dimensional cylindrical domain

Theorem 2.9. 3
For a multiplier h € D(TX) and an even function g € L*( X4, W)ND(TX), the following

inequality holds:
(hg, 9)w |
gl — L0ty |20
( v 9]l

2 1
1 (gT*h, g) |- (2.21)

Proof. For an even function g € L2( X, W) ND(TX), we have

Tg(t,¢) = m(g)gg(t,g) for a.e. (¢,&) € X%

In particular, the function TX g satisfies TXg(t, &) = —TXg(—t,&) for a.e. (t,€) € X%,

implying that (Bg, g)yiy = (iT"g,9)yw = 0.
The commutator [A4, B] of A and B acting on functions g € D(AB) N D(BA) = D(T¥)

is given by

[A, Blg(t,€) = ihT* g(t, &) — iT* (hg)(t.€)
_ —lli h’ (t>€) h(t,f) B h(_t>€) .
- ( + w(t,é”) 9 )g< tvf)'
Since g € L2(X% W) ND(TX) is even, we get
[A, Blg = —(iT*h)g. (2.22)

Now, inserting the values a = (hg, g)yi;, b = (iT%g, g); = 0 and identity (2.22) for the
commutator [A, B] in inequality (1.8), we get inequality (2.21). O

An inequality for the initial Hilbert space L?(Z%, W) can now be formulated by extending
functions symmetrically onto the Hilbert space L*(X? W) and using Theorem 2.9. In
particular, for the subset

D(5: 28) = {f € L(ZL W)+ f(-.€) € AC(0.7]) for prave. € €57,

%)
a{ c L*(7¢, W)} c L*(z34 W), (2.23)

we get

Theorem 2.10.

Suppose that k € C(S*1) is a strictly positive scaling function on S™* and that the weight
function W satisfies Assumption 2.1. Let f € L*(Z¢W)ND(Z; Z%) be normalized such
that || f|lw = 1. Then, the following inequality holds:

(1= (L, [ eostlsteopwiiane)) 5

ETR

i (2.24)

2

i/Sd_l/oﬂ/i(f)<costW(t,§)+sintW’(@f))|f(ta§)|2dtd,u(f) :

Equality in (2.24) is attained if and only if f(-,&) = C¢ is constant for p-a.e. £ € ST1,
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2. Uncertainty principles on Riemannian manifolds

Proof. If f € D(5:Z%), then e(f)(-,£) € ACy, for prae. & € ! ||8e(f)||W = || |lw
and e(f) = e(f)”. Hence, the even extension e(f) € D(T¥) is an element of the domaln of
the Dunkl operator 7. Now, we adopt inequality (2.21) to prove (2.24). As a multiplier
function A in the definition (2.19) of the operator A, we choose

h(t,§) =", (t,6) € X7
Then, h € D(TY), and we have
Ihe(N5 = lle(NH5 = ILF IR =1,

(he(),ePhal? = el elPhal = ([, [ costl .0 arantc))
o el

IT5e(f) = =53
iTXh(t,€) = H(f)( et — MVNI//((;,E)) smt) for a.e. (t,&) € X%

w

Further, since sint and ‘é{;
g)( o eit . W/(ta g)

i nee = [, [ Tiee
= — /SCH /07r /i(f)(costW(t,f) + sintW’(t,f)) | f(t, &) Pdtdu(€).

sin t) le(f) (8, &) PW (¢, €)dtdu(€)

Hence, we have shown that inequality (2.24) holds.

Due to Theorem 1.8, equality in (2.24) is attained if and only if for a = (e"e(f), e(f))
and b = (iTXe(f),e(f))y = 0 the following identity holds:

- Oe(f)
ot

The second identity implies

= A" —a)e(f) = —Ae ™™ —a)e(f), AeC.

e(f)(t,€) ()\e“ + et —a) — 5\a> — 2 (f)(t, §)(Re( ety — Re(a)\)) —0

for p-a.e. € € S¥71. This condition can only be satisfied if e(f) = 0 or if A = 0. In

the latter case we get mae(f) = 0 for p-a.e. & € S Hence, e(f)(t,€) = C; for p-a.e.
€ €S and, in partlcular the function f does not depend on the variable ¢. O

Inequality (2.24) can evidently be seen as a multi-dimensional version of the uncertainty
principle (1.37) originally shown by Goh and Goodman in [27]. In both cases, the theory
and the techniques are conceptually the same. The difference lies in the fact that in
the higher-dimensional case above the weight function W and the Dunkl operator T%
additionally depend on a variable & € S%1.
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2.1. Weighted L?-inequalities on a multi-dimensional cylindrical domain

Ezample 2.11. For the weight function W, (¢, &) :~sir12°‘+1 t, « > —1/2, and the scaling
function x = 1 the Dunkl operator T% on L?(X? W,) reads as

Jdg cost g(t,&) — g(—t,§)
ot sin t 2 ’

In this case, inequality (2.24) attains the form

for a.e. (t,€) € X%

Tg(t,€) = -, (t,€) + (2a + 1)

2

(1= (L, [ estreormwomae) ) |5

> (a2 [ [ costf( O PWalt ddu))

This Dunkl operator is a multi-dimensional version of the Dunkl operator introduced by
Rosler and Voit in [73] for ultraspherical expansions.

2.1.2. Inequalities in the compact case with zero boundary condition

The commutator [A, B] in (2.22) is well defined for functions in D(T*) if the multiplier
function h is an element of D(T%). This is evidently the case if h is given by h(t,§) = e,
but not if we choose, for instance, h(t,£) = ¢t. In the second case we have to restrict,
similar as in Theorem 1.24, the domain of the Dunkl operator.

Definition 2.12. Let L?>(X% W) be the extension of L*(Z%, W) as in Definition 2.4. We
restrict the Dunkl operator 7% defined in (2.16) by T%g = x(% + WW'%) to the smaller
domain

Do(1¥) 1= {g € LA(X"W) s g(,€) € AChr, g(m.€) = O for prae. € € 8,

dg W’g—g W’ 9 d <5 }
= —T = t— LA(X* W) 5. 2.25

Since Dy(TX) C D(T¥), Lemma 2.8 implies that the operator i7% is also symmetric
on the smaller domain Dy(7%). Put in another way, the operator ¢7% on D(T%) is a
symmetric extension of iT% |DO(TX).

On L*(X?, W), we consider now the operator A defined by Ag = hg and the operator
B = iT*¥ defined on the restricted domain Dy(T*). In the following, we will show that
the commutator [A, B] is well defined for functions in Dy(T) if the multiplier function
h is an element of

(2.26)
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2. Uncertainty principles on Riemannian manifolds

We remark that the multipliers h € M™ | in contrast to functions g € D(T) do not have

to fulfill the periodicity condition h(—m,&) = h(m, &) for p-a.e. € € S and that the
condition (7% — tQ)WW/% € L*(X% W) is weaker than the condition VV[I/, 9 e [2(X¢, W)
in the domain D(7"). Similar to Theorem 2.9, we get the following result for even functions

in the restricted domain Dy(T%).

Theorem 2.13. )
For an even function g € L* (X% W) N Dy(TX) and a fized multiplier h € M*X the
following inequality holds:

|(hg. g)w I
(e
lollw

Proof. The operator A defined by Ag = hg is a normal and bounded operator on
L2(X4, W) and the operator B = iTX defined on D(B) = Do(T¥) is symmetric due
to Lemma 2.8. For an even g € L2(X%, W) N D(TX), we have T¥g(t,&) = r(£)Z(t,€)
for a.e. (¢,£) € X% Further, the fact that 2(¢,£) = —2(—¢,&) holds for a.c. (t,&) € X*
implies that (Bg, g)y = 0.

For the product hg of g € Do(TY) and h € M*, we have hyg(-,£) € ACyy, hg(—m, &) =
hg(m, &) = 0 for p-a.e. £ € S and 8hg € L*(X,W). Further,

(W(TXg) —T*(hg), g)w > (2.27)

W' hg — hi|? mh hg+g+vfﬂg—gh+h2
i 2w w2 2 w2
W'h — hg—l—g W’g g
S R e i e I
W' h— h W’ 2 W’g Ak
I H
< | =) 5| el + Ml + Ml

Thus, hg € Do(T¥) and the commutator [A, Blg = hiTXg — iT*(hg) is well defined
for functions g € Do(T). Inequality (2.27) now follows from inequality (1.8) with
a = (hg,g)w and b= (iT"g, g)yiy = 0. O

Since M* D D(T¥), we are more flexible in the choice of the multiplier ~ in Theorem
2.13 than in Theorem 2.9. In particular, functions h of the type h(t,£) = ¢(§)t, where
¢ is a nonnegative and continuous scaling function on S?~! are admissible multipliers in
Theorem 2.13. Now, for functions f in

Do 24) = { £ € LAZLW)  J(,€) € AC(0.7]), f(m€) =0 for prave. € € 5™,

of W'

ot f € (2 )} C L2(Z4W), (2.28)

we can derive the following inequality:
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2.1. Weighted L?-inequalities on a multi-dimensional cylindrical domain

Theorem 2.14.

Assume that v,k € C(S71) are strictly positive scaling functions on S¥1, and that the
weight function W satisfies Assumption 2.1. Let f € L*(Z4, W) N Dy(2; Z9) be normal-
ized such that ||f|lw = 1. Then, the following inequality holds:

at?

2

et <55 = 5| [ [ Hom@r (6 + v )l € Paedute)| (229

There is no function f € Do(2; Z2), ||fl|lw = 1, for which equality is attained in (2.29).

Proof. We proceed as in the proof of Theorem 2.10. If f(-,&) € AC([0,7]), f(7,§) =
for prae. € € STt and %L W f € L2(Z4, W), then the even extension e(f) € O(T
and we can adopt Theorem 2.13. If we choose the multiplier function h € MX a

h(t,€) = (&), (t,€) € X%, then we get in inequality (2.27):

1he(H)IT = llete(HI5 = letf Il
(he(f) 6(f)> = (cte(f), e(f))w = 0,

=5l = b3l
e~ (2 ) =0

W

T/

Wﬁit>e(f).

T (he( ) = KT (e(£))) = 1

. 1!
Further, since t and V[I/I//

(=il4, Ble(9),e(/)hw = {11+ VVVVt) (F)elf))

W
= [ U (7 (1,€) + W (2, ) 111, P,
Hence, inequality (2.29) is shown.

Since both operators A and B are symmetric, Theorem 1.2 states that equality in (2.29)
is attained if and only if

(1,6 = i©te(N(L.E), AER,

holds for a.e. (¢,€) € X4, i.e., if and only if f(¢,&) = C’(f’\%t2 for p-a.e. € € SY1. Since
f has to fulfill the boundary condition f(m, &) = 0 for p-a.e. £ € ST1, there exists no

function f € Do(5; Z2), || f|lw = 1, for which equality is attained in (2.29). O
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2. Uncertainty principles on Riemannian manifolds

2.1.3. Inequalities in the non-compact case

We leave now the compact case and generalize the uncertainty principle of Theorem 1.32
to weighted L2-spaces where the underlying domain is the d-dimensional one-sided tube

7% = {(t,6): t€[0,00), £ € ST} C R (2.30)

Similar as Z¢, also the non-compact set Z% is a Riemannian submanifold of R**! with
boundary

028 = {(0,§): ces™}. (2.31)
The canonical measure on Z< is given by the product measure dtdu().

Assumption 2.15. As admissible weight functions on Z< | we consider positive functions
W satistying the properties

(i) WeO(ZL): W(,§) € ACi.([0,00)) for p-ae. £ € ST

W'|g € LY(K) for all compact K € Z2 (2.32)

(i)  W(t,&) >0 forall (t,€) € (0,00) x S, (2.33)
/

(vi1) tMM// € L*(K) for all compact K € Z%. (2.34)

Assumption 2.15 can be considered as an adaption of Assumption 2.1 onto the non-
compact tube Z% . The first condition (2.32) says that the weight function W is absolutely
continuous with respect to the variable t for p-a.e. fixed unit vector ¢ € S*!, and that
the Radon-Nikodym derivative W' = %—Vf of W with respect to the variable ¢ is a locally
integrable function on Z%. The second property (2.33) implies that all the zeros of W are
at the boundary 9,22 of Z% . The third condition (2.34) guarantees that the fraction
t%l is essentially bounded on every compact subset of Z4. Further, we remark that
there are no integrability restrictions on the weight function W. In fact, the integral
Jsa—1 JoT W (t,€)dp(€)dt is not necessarily finite. This is, for instance, the case in the
Heisenberg-Pauli-Weyl principle for R? where the weight function W can be determined
as W (t,€) = t?7! (see the upcoming Section 2.4).

Ezample 2.16. Consider the weight function W,, : Z% — R, W, (t,&) = sinh”(rt),
v >0, r > 0. The conditions (2.32) and (2.33) are obviously satisfied. Moreover,

y (t 5) > 2r2t? 2
W (t.€) V( +k§1k‘2(7r2+r2t2)>’ _V< * 3)

Hence, also condition (2.34) is satisfied. In Section 2.6.4, we will see that for v =d — 1
the weight function W, is related to the hyperbolic space HY.

’ = |rvt coth(rt)| =

Definition 2.17. For an admissible weight function W on Z< | we denote by L*(Z% W)
the Hilbert space of weighted square integrable functions on Z% with the inner product

ogw = [ [T 1t 0gEOW( E)dtan(s) (235)
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2.1. Weighted L?-inequalities on a multi-dimensional cylindrical domain

As a substitute for the differential operator %, we construct, similar as in the case of the
nonnegative real half-axis (see (1.55)), a differential-difference operator on a symmetri-
cally extended Hilbert space.

Definition 2.18. On the two-sided tube
Y?:=R x S c R (2.36)
we define the extended weight function W by
~ 1
W(t.&) =Wt €), (¢ ey” (2.37)

By L2(Y4, W), we denote the Hilbert space of weighted square integrable functions on
Y? with the inner product

(Foghw = [, [ FEO9EOW (¢, dtdu©) (239)

The set Y¢ € R4 is a non-compact Riemannian manifold without boundary. The link
between the spaces L?(Z%, W) and L*(Y¢,W) is given by the operators e and r:

e: LX(ZL, W) — LAY W), e(f)(t,€) = f(|t|,&) forae. (t,&) €Y?  (2.39)
ri LAY W) = LHZE, W), 7(9) = glpeeyxsi1-

If we define
LYW = {g € LAY W) 1 g(t,€) = g(—t,€) for ae. (1,€) € Yd} (2.41)

as the subspace of even functions in L?(Y¢, W), then the operators e and r constitute
isometric isomorphisms between the Hilbert spaces L2(Z4, W) and L2(Y?, W).

By property (2.32), the weight function W is continuous on Z% and its Radon-Nikodym
derivative W’ with respect to ¢ is integrable on every compact subset K of Z%. Thus,
also the even extension W is continuous on Y¢, W(~, €) € ACj.(R) is locally absolutely
continuous for p-a.e. & € S* 1 and the Radon-Nikodym derivative W’ = 2% is integrable

ot
on every compact subset K of the two-sided tube Y.

Definition 2.19. For a weight function W satisfying Assumption 2.15, we define the
Dunkl operator TY on L?(Y¢, W) as

0g W'g—3g
™g:=—2+ 2 < 2.42
9=g vt W (2.42)
with the domain
D(TY) = {g c L2(YLW) 1 g(-,€) € AC1e(R)  for prae. € € ST,
09 W'g—3 5 }
= =2 c [LX(Y* W 24
at7 W 2 E ( ) ) Y ( 3)

where the reflection § is defined by §(t,€) = g(—t, &) for a.e. (t,€) € Y
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2. Uncertainty principles on Riemannian manifolds

Lemma 2.20.
The operator iTY  with the domain D(TY) is symmetric and densely defined on
LAY W).

Proof. We consider the subset CH{(Y?) := {g € C.(YY): % € C’C(Yd)} of the space
C.(Y?) of compactly supported and continuous functions on Y¢. C1#(Y?) is a subalgebra
of Cy(Y'?) that separates the points on Y, vanishes nowhere and is closed under complex
conjugation (ie. g € CH (YY) if ¢ € CM(Y?). Then, by a variant of the Stone-
Weierstrass Theorem (see Theorem B.2), every function g. € C.(Y?) C Co(Y?) can be
approximated uniformly by a function from C!M(Y?). Further, C1*(Y?) is a subset of
D(TY) if W satisfies Assumption 2.15 (this follows in the same way as in Remark 2.7).
Therefore, since the space C,(Y?) is dense in L2(Y4, W) (see, for instance, [38, Theorem
13.21]), we can conclude that D(TY) is dense in L2(Y¢, W).

For two functions f,g on D(TY), integration by parts with respect to the variable ¢ is
well defined (see equation (B.7)) and yields

Lo gt i idute) =~ [ [~ 50,65 (o0, W (1,0)) didu(e).
Now, following step by step the lines of the proof of Lemma 2.8 in which we proved the
symmetry of the operator iT%, we obtain the symmetry of 7. O

We define now the operators A and B on the Hilbert space L?(Y¢, W) by
Ag(t,€) :==tg(t,§), D(A)={ge L’(Y,W): tge L’V W)}, (2.44)
Bg(t,&) :=iT"g(t, &), D(B)=D(T"). (2.45)
By Lemma 2.20, B = ¢TY is symmetric, and for f,g € D(A), we have
Afghw = [, [ (OO (¢, dtdu(e)

= [ [ 5 el W ¢ drdu(c) = (£, Agh

Therefore, also A is symmetric. For functions f in

D(2 142, 78) = {feL?(Zd,W): F(€) € ACel[0,00)) for prae. € € S,
af of W
tf, a{ ta{ erLQ( W)}, (2.46)

we get now the following inequality:

Theorem 2.21.
Suppose that the weight function W satisfies Assumption 2.15. Let f € L*(Z4, W) N

D(gt,t tgt, Z4) such that ||fHW = 1. Then, the following inequality holds:

lefl - [2 = [ [T e orade| . @)
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2.1. Weighted L?-inequalities on a multi-dimensional cylindrical domain

Equality in (2.47) is attained if and only if f(t,§) = C’(f)e*’\tQ, with a complex valued
function C : S™' — C and a real constant X € R which have to be chosen such that f
satisfies the requirements of the theorem.

Proof. We consider the operators A and B defined in (2.44) and (2.45) on the Hilbert
space L?(Y¢,W). The commutator of A and B is given by

o9 . W'g—g 9 W'g+3g
A Blg=it— 4+ it —"—= —it— —ig(t — = 2.4
[4, Blg = it +it = ¢~ 98—l (2.48)
for all functions g € D(AB)ND(BA). If we consider only even functions g € L2(Y?, W),
we get
W/
A Blg = —i (1+t~>.
[A, Blg = —ig T
Next, if f € L*(ZL, W) ND(Z,t,t2;Z2), then the even extension e(f) € L2(Y4, W)
is an element of the domain D([A, B]) = D(AB) N D(BA). Hence, if we apply the

symmetric operators A and B to the even function e(f), we obtain in inequality (1.4):

1Ae(H)l5 = ite(HI5 = IEflv
a = (Ae(f),e(f))w = (te(f), e(f))w =0,

IBePI = i e Pl = [ 222 =

b= (Be(f). el = (120 ) iy o

T/

A, Ble(f) = —ie(£)(1+ tVVVV)

Further, since the identity map ¢ — ¢ and the function W’ are odd in ¢ and f is a
normalized function, we conclude

A, Bletr), el = |{ (1400 el

’1+/d1/ Wt )|

Finally, by Theorem 1.2, equality in (2.47) is attained if and only if

;9e(f)
ot

N
(t,§)|2dt‘.

= —i2Xte(f),

where A denotes a real constant. The solution of this differential equation corresponds
to a function e(f) of the form e(f)(t,&) = C(€)e ™. Restricted to the nonnegative
half-part ZZ of the tube Y%, this yields the assertion. O
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2. Uncertainty principles on Riemannian manifolds

Ezample 2.22. For the weight function W, ,(¢,£) = sinh”(rt), v > 0, 7 > 0, the Dunkl
operator 7% on L*(Y? W,,) reads as

l 5) — g<_ta 5)
2 7

TV g(t, &) = gz(t,é) + z/rcoth(rt)g( for a.e. (t,£) € Y%

Then, inequality (2.47) attains the form

2

2 1 > 2 v—1
‘1+y7‘ /S /0 H£(t, €)7 cosh (rt)dtdp(e)| . (2.49)

of
tflI? H >
e |5, 2 3

2.2. Uncertainty principles on compact Riemannian manifolds

This section is one of the main parts of this work. In the following, we will combine
the weighted L2-inequalities developed in Section 2.1.1 with the geometry of a compact
Riemannian manifold M and derive an uncertainty principle for functions on L?(M).
In a first step, we will show that the geometric structure of the compact manifold M
leads to an isometric isomorphism between the Hilbert space L?*(M) and a weighted
L*-space L*(Z4,Wyr,) on the cylindrical domain Z2. Then, we will use the uncertainty
inequality (2.24) for the space L?(Z<, Wy, to prove an uncertainty principle for compact
Riemannian manifolds.

2.2.1. An isomorphism between L*(M) and L*(Z¢, Wy,)

In this first part, we will show that the Hilbert space L?(M) of square integrable functions
on a compact Riemannian manifold M is isometrically isomorphic to a weighted L?-space
L*(Z2%, Wyy,) on the domain Z2. To this end, we will construct a chart that maps the
domain Z2 onto the compact manifold M and a pull back operator that maps functions
on M to functions on Z2. In total, we need three mappings: the exponential map exp,,
the polar transform P and a further coordinate transform Lg.

We start out by recapitulating some basics and refer to the Appendix A for a short
introduction into Riemannian manifolds. Over the entire section, we denote by M a
simply connected, d-dimensional, compact Riemannian manifold without boundary and
by T,M the tangent space at the point p € M. Further, we denote by f5; the canonical
Riemannian measure on M (see Section A.5).

Definition 2.23. We define the Hilbert space L?(M) of square integrable functions on
M as

L*(M) := {f : M — C: f Borel measurable, / |f(q)|Pdpa(q) < oo} (2.50)
M
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2.2. Uncertainty principles on compact Riemannian manifolds

with the inner product

(F.9h = [ F@g@dunla), f.g € L), (251)

and the norm ||f||ar := /(f, f)a, with the usual understanding that two functions
f,g € L*(M) are identified with each other if f(q) = g(q) for uy-a.e. ¢ € M, i.e., for all
q € M except a set of py-measure zero.

The proof that the Hilbert space L?(M) is well-defined and complete in the topology
induced by the norm || - ||as is standard. For further details, we refer to Section B.1 of
the appendix.

Definition 2.24. A distance metric d(p, q) between two points p and ¢ on the manifold
M is defined by

b
dlp, ) =inf [0t (2.52)
where v ranges over all piecewise differentiable paths v : [a,b] — M satisfying y(a) = p
and y(b) = ¢q. For p € M and 6 > 0, we introduce on M the open balls and spheres with
center p as
B(p,9) == {q € M, d(q,p) < d}, (2.53)
S(p,0) :={q € M, d(q,p) = 0}. (2.54)

Similarly, we define on the tangent space T, M

B(p,6) == {€ € T,M, |¢] < o), (2.55)
&(p.8) = {€ € T,M, |¢| = 5}, (2.56)
G, = G(p, 1), (2.57)

where |£| denotes the Euclidean length of £ in the tangent space T, M.

Now, as a first step to get a mapping from Z2 onto M, we consider the exponential map
exp,, from the tangent space T, M onto M.

Definition 2.25. Let p € M be fixed, § € T,M and 7¢ : R — M be the locally unique
geodesic with initial conditions v¢(0) = p and 7/(0) = & (see Section A.3). Then, the
exponential map exp,, : T,M — M is defined as

exp,(§) = 7¢(1). (2.58)

Since M is compact and, hence, topologically complete, the Theorem of Hopf and Rinow
(Theorem A.2) ensures that the geodesic ¢ can be defined on the whole real line R.
Thus, also the exponential map is well-defined on the whole tangent space T,M. The
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2. Uncertainty principles on Riemannian manifolds

exponential map exp,, defines a local diffeomorphism from a neighborhood of the origin
0 in the tangent space T,,M onto a neighborhood of p in M. In particular, for a small
6 > 0, the exponential exp, maps the balls B(p,d) C T, M isometrically onto the balls
B(p,d6) C M, i.e.,

exp, B(p, d) = B(p,9),
exp, &(p,d) = S(p,9).

Moreover, there exists a maximal star-shaped open domain ®, of the tangent space
T,M for which the exponential map exp, is a diffeomorphism and for which the image
D, = exp, ®,, covers the whole manifold M up to a set €}, of Riemannian measure zero
(see Theorem A.4), i.e.,

M =D,UC,. (2.59)

The null set C, corresponds to the image exp, €, of the boundary &, = 99, of ©,, and
is called the cut locus of p. Due to (A.30), we have the following formula for integrable
functions f on M:

| F@duaita) = [ flexp,(€)o(6)de, (2.60)
where 0(§) := det((dexp,)¢) denotes the Jacobian determinant of the exponential map
exp, and D, = D, U ¢,

Ezample 2.26. For the unit sphere S* = {q € R® : |¢|* = 1}, the tangent space T,S?
of a point p € S? can be identified with the orthogonal complement pt of the linear
vector space Rp in R*. The cut locus C, of p consists of the antipodal point {—p} and
D, = $*\ {—p}. The geodesics ¢ through the point p correspond to the great circles
passing through p. Further, ®, = B(p,7), €, = &(p, 7) and the Jacobian determinant
0(§) can be computed as (cf. [3, p. 57])

o) = .

Hence, by (2.60), we get for integrable functions f on S? the formula

[, f@duss(a) = [ flexp, (€) 2. (2.61)

B(p,m)

A draft of the exponential map exp, on T,S? can be seen in Figure 3.

Next, we are going to introduce polar coordinates on the tangent space 7,M. For a
precise distinction between the settings, we will always use the symbol &, to denote the
(d—1)-dimensional unit sphere in the tangent space 7,M, and the symbol S9! to denote
the unit sphere in R¢.
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2.2. Uncertainty principles on compact Riemannian manifolds

Figure 3: The exponential map exp,, on the unit sphere S2.

Definition 2.27. On the tubes [0,00) x &, and Z% = [0, 00) x S9!, we define the polar
transform P by

P:[0,00) x &, = T,M: P(t¢) =tE,
P:z% - RY: P(t,€) = t€, (2.63)
and the inverse polar transform by
P~ M\ {0} — (0,00) x &, = P7H(€) = ([¢], 159) (2.64)
PRI\ {0} — 24\ 0,28 0 PO = (€], £9). (2.65)

Now, using the polar transform P, we want to describe the set ®,, C T,M in terms of
the coordinates (¢,§) € [0,00) x &,,. To this end, we define

R(§) = sup {t{eD,}, (€6, (2.66)

as the Euclidean distance from the origin to the boundary ¢, = 09, in direction { € G,
(for an equivalent definition see also (A.18)). The distance R, considered as a real-
valued function on &,, is strictly positive and, moreover, Lipschitz continuous on &,
(see Theorem A.3 (c)). With help of the distance function R, we can define the pre-
image of the set D, under the polar transform P.

Definition 2.28. We define the d-dimensional subset Z% of [0,0) x &, as

Zh = {(t.€) : t€[0.RE)), € € &,} C [0,00) x &, (2.67)
with the boundary
0LZ = {(0,€) : € € G}, :
OrZy = {(R(€),€) : £ € 6,}. (2.69)
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2. Uncertainty principles on Riemannian manifolds

The set Z% is clearly a compact subset of [0,00) x &, and the polar transform P
maps Z% onto ®D,. Moreover, the transformation P defines a diffeomorphism from
Z4\ {01 2%, 0rZ4%} onto the open set D, \ {0}. Combining the polar transform P with
the exponential map exp,,, we have

exp, P(Z}) = M,

and exp, P defines a diffeomorphism from Z§ \ {0, Z%, 0rZ%} onto D, \ {p}. Hence, the
points (t,£) € Z4% determine a coordinate system on the manifold M and are usually
referred to as geodesic polar coordinates on M. Further, the polar transform P induces
a change of variables that yields the formula (see [75, Theorem 8.26])

/5 F(exp, (£))0(¢)de = /6 / F(exp, (t)E20(t)dtdp(€), (2.70)

where ;1 denotes the standard Riemannian measure on the unit sphere G, and the term
t4=1 corresponds to the Jacobian determinant of P.

To simplify the notation, we introduce the following pull backs of a function f on M:
Definition 2.29. For a function f : M — C, we define the pull back functions

expy i Dy —C, expl (€)= Flexp,(€)), (2.71)
FrZh—C (L) = Prexpl f(1,€) = expl F(t€) = flexp, (). (2.72)

The original function f and the pull backs f* and exp; f are related by the following

commutative diagram:
Tp M
exp,,

7%

Figure 4: The relation between the functions f, f* and expy f.

On 74, we introduce the weight function © by

O(t, &) = t1o(Le). (2.73)

Then, formula (2.70) can be rewritten as

/5 exp’, F(€)0(€)d¢ = / / O(t, €)dt du(€). (2.74)
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2.2. Uncertainty principles on compact Riemannian manifolds

Ezample 2.30. For the unit sphere S?, the distance R(£) to the cut locus is, independently
of the directional variable £ € &,, always equal to 7. Hence, if we parameterize the one-
dimensional unit sphere &, using an angular variable ¢ € [0,27), the formulas (2.61)
and (2.74) imply the following identity:

2
/2 ¢)dps (g / / F5(t, @) sint dt dy. (2.75)
S

Up to now, we have built a coordinate transformation exp, P that maps the set Z4 onto
M. To get the desired map from the cylinder Z¢ onto M, we have to introduce a third
coordinate transform form Z¢ onto Z4.

Definition 2.31. On Z¢, we define the coordinate transform Lg as

Lp:Z¢— 7%, (1,6) — (B¥7¢). (2.76)

The mapping S¥! — &,, £ — &, in (2.76) is well defined in the sense that there
exists a canonical identification between a unit vector ¢ € S ! C R? and an element
¢ € 6, C T,M. Since the function & — R(&) is strictly positive and Lipschitz continuous
on &, also the inverse function { — % is strictly positive and Lipschitz continuous on
S, (for the definition of Lipschitz continuous, see Section B.1). Hence, the mapping Lg
defines a lipeomorphism (or a bi-Lipschitzian mapping) from Z2 onto Z%. Moreover, the

points (7,£) € Z2 form a new coordinate system for the compact manifold M.

For the integral of a function over a domain, a lipeomorphism yields a similar transforma-
tion formula as a diffeomorphism (see [88, Section 2.2]). In our case, the lipeomorphism
Ly induces a change of variables that yields the following identity:

/Gp/ O(t, &)dtdu(¢ /Sd 1/ R(€ 7(2)@(@77 drdu(€), (2.77)

where the Jacobian determinant of Ly equals % almost everywhere.

Definition 2.32. For a function f* on Z4%, we define the pull back by the lipeomorphism
Ly as

Lpf 28 = C, Lpfi(r,€) = (19, (r,¢€ 2z, (2.78)
and introduce the weight function Wy, on Z2 as
Waip(1,6) = g50(%r.¢), (r,6) € [0,7] x S (2.79)

Example 2.33. Let M be the two-dimensional quadratic flat torus T2 = R?/(27Z)? with
side length 27r. For any point p € T2, the set D, in the tangent space T, T2 consists of
the points in the open square

|:|7T = {(51752) € TpT?r e < 51752 < 7T}
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2. Uncertainty principles on Riemannian manifolds

pP-m

VR N -6

(I ™ @p

Figure 5: The lipeomorphism PLzP~! in the case that M = T2 is the two-dimensional
flat torus with side length 27.

and the tangential cut locus €, corresponds exactly with the boundary of ;. Then,
PLgP~! maps the balls B(0,r) \ {0} with radius r > 0 in R? onto the squares [, \ {0}
with side length 2r (centered at the origin) in 7, T2, see Figure 5. This example will be
further discussed in Section 2.6.3.

Proposition 2.34.

The Hilbert space L?(M) is isometrically isomorphic to the Hilbert space L*(Z4, Way,)
with the weight function Wy, defined in (2.79). The isomorphism is explicitly given by
the pull back operator L P* exp,.

Proof. For the proof of Proposition 2.34, we just have to collect the changes of variables
induced by the exponential map exp,, the polar transform P and the lipeomorphism Lg.
If f,gin L?*(M), then we get

2.51)

(Fogh 2 [ F@)g@@dpa)

=" [, Flexp, (€)glexp, (€0(€)de

2 [ e orEae )
IO (O ) g0 (H ) drdu(€)

e /Sd LR (TR T O War (7. )drdu(¢)

(2
<LRf L >WM,p‘

Hence, the pull back operator Lz P* expy is an isometric homomorphism from L*(M) to
L*(Z3, Wr,). Since the point set {p} and the cut locus C, are subsets of y-measure
zero in M and exp, PLg, defines a lipeomorphism from Z4\{9,Z¢, dr Z%} onto M\ {p, C,,},

l\?
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2.2. Uncertainty principles on compact Riemannian manifolds

we can conclude that the operator LyP* expy : L*(M) — L*(ZZ, W)y, is also surjective
and, thus, an isomorphism. O

Remark 2.35. In the proof of Proposition 2.34 is implicitly stated that the Hilbert spaces
L*(M) and L*(Z%, Wy, are also isometrically isomorphic to the Hilbert space L?(D,, §)
with inner product

(o1l = [ o1(&)pal@0(6)d

Dp

and to the Hilbert space L*(Z4%,©) with inner product

Wiwne = [ [ wu(t, 000, )dtdu(e)

A summary for the links between the different Hilbert spaces is given in Figure 6.

epr LR

D, P Z4 Z1
@]
Tp M
* . % L*
LA(M) 20 12D, 0)— P s [2(28, ©) — e [2(Z2, Wy,)

Figure 6: The mappings exp,, P and Ly and the respective pull backs.

2.2.2. Uncertainty principles on compact Riemannian manifolds

The goal of this section is to prove an uncertainty principle for functions f in the
Hilbert space L*(M). To this end, we will use the isomorphism LjP*exp} : L*(M) —
L*(Z2, Wyy,) established in the last section, and adopt then Theorem 2.10 to get the
desired uncertainty inequality. First, we will show that the weight function Wy, defined
in (2.79) is admissible on Z¢, i.e. that it satisfies Assumption 2.1.

Lemma 2.36.
The weight function Wr, on Z2 satisfies Assumption 2.1.

Proof. The Jacobi determinant of the exponential map
0(t§) = det((dexp,)g), (t,€) €[0,00) x &,

is a positive and continuously differentiable function on @, and the zeros of 6, called the
conjugate points of p, lie at the boundary €, of D, (see [12, XII, Proposition 2.2] and
[8, Theorem I1.5.5]). Since the distance function R is Lipschitz continuous on &, (cf.
Theorem A.3 (c)) the weight function Wy, given by

Wiy (7, ) = Homrt19(Hedrg)

(
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2. Uncertainty principles on Riemannian manifolds

. L ow. . . . :
and its derivative W}, , = =5 with respect to the variable 7 are continuous functions

T

on Z¢. Hence, conditions (2.4) and (2.5) are satisfied.

By construction, the zeros of Wy, lie at the boundary 9, Z¢ and 9rZ¢ of the cylinder
Z4. Therefore, to validate property (2.6) we have to check that the function 7(7 — 7)%
is bounded at the boundary of Z¢. Due to [49, Chapter X, Corollary 3.3], 0(t£) has the

following Taylor expansion at t = 0:

o(te) = 1 — Ricf’g)t? +O(#). (2.80)

Therefore, the weight function Wy, (7, £) has the following Taylor expansion at 7 = 0:

Wagy(r,&) = DL gt RETRAED sy g

Thus,
W)
WM’P (T7 é)
and 7(m —7) Wy, ,/Warp is bounded in a small neighborhood at 7 = 0. Similarly, a Taylor
expansion of 0(t£) at t = R(§) (using Jacobi vector fields, see [49], Propositions 1X.5.1,
[X.5.3 and Proposition X.3.1) can be computed as

0(t€) = ce(R(§) — 1) + O((R(§) — )**),

where ¢g > 0 and 0 < k < d — 1 is the dimension of the kernel of the Jacobi matrix
(dexp,)re)e. So, the fraction

Wir,(7,€)

T(m—7)———= =—kr+O(r—71), 7—m,

WM,p (T> ’S)

— (d—1)+0()

is also bounded at the right hand boundary 9gZ¢ of Z4. In total, we can conclude that
W]/\/[’p(Tvg)

is uniformly bounded on Z2 and, hence, that property (2.6) is satisfied.
Wt p(7:6) 4

T(m—7)
O

In principal, Theorem 2.10 can now be adopted to determine an uncertainty principle
for functions on a compact Riemannian manifold. Beforehand, however, we will discuss
the mapping exp, PLp : Z% — M and the relation between continuous functions on M
and Z% in more detail. Further, we will investigate how the Dunkl operator on the space
L2(X? Why,) is related to a differential operator on M.

The composition exp, PLg is a continuous mapping from Z4 onto M. Moreover, exp, PLr
maps the left hand boundary 9,72 of the cylinder ZZ onto the point p and the right
hand boundary 9zrZ? onto the cut locus C,, of p. Hence, the image L} f* of a continuous
function f on M is also continuous on the cylinder Z¢, but not every function g € C(Z%)
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2.2. Uncertainty principles on compact Riemannian manifolds

is the image of a continuous function on M under the pull back operator L P* expj. This
is, for instance, the case if g € C(Z9) satisfies g(0,&;) # ¢(0,&) for & # &. So, if we
want to identify a continuous function g on Z¢ with a continuous function f on M, the
function g has to satisfy additional consistency conditions. These consistency conditions
are related to the topology of the compact Riemannian manifold M and, in particular,
to the form of the cut locus C,.

Definition 2.37. A continuous function g on Z¢ is called topologically consistent with
a continuous function f on M under the mapping exp, PLp if g(t,&) = L f*(t, §) for all
(t,€) € Z2. In this case, g satisfies the following consistency conditions:

9(0,&) = g(0,&)  for all &,& € S™, (2.81)
g(m,&1) = g(m, &) if exp, PLg(m, &) = exp, PLg(7, &) on M. (2.82)

Moreover, we introduce the function space C™ as

CM(z8) = {g € C(Z): g satisfies (2.81) and (2.82)}. (2.83)

The condition (2.81) implies that g is constant at the left hand boundary d;Z¢ of Z2.
Further, if the function g on Z¢ is topologically consistent with f € C(M), then the
constant value at 97 Z¢ corresponds exactly with the value f(p). The second condition
(2.82) ensures the topological consistency of the function g with the function f at the
points of the cut locus C,, of p, i.e., if exp, PLz maps two different points (7, 1), (7, &) €
Z4 onto the same point ¢ € C,, then g(m, &) = g(m,&) = f(g). Moreover, the operator
L3 P* expy; defines an isometric isomorphism from the space C'(M) onto the space CM(ZZ)
in the uniform norm.

In the following, whenever we consider functions on Z¢ that are supposed to reflect the
topological structure of the Riemannian manifold M we will ensure that the conditions
(2.81) and (2.82) are satisfied. In particular, these conditions will be added in the up-
coming definition of the domain of the radial differential operator.

Next, we want to introduce a radial frequency variance on the compact Riemannian
manifold M and relate it to a Dunkl operator 7. First of all, we introduce a new
notation for operators that enables us to switch easily between operators described in
geodesic polar coordinates (¢,£) € Z4 and operators on L*(M).

Definition 2.38. For an operator A on the Hilbert space L?*(Z4,0), we define its coun-
terpart A, on L*(M) by

A, LA(M) — L*(M) (A f)" = Af*. (2.84)
In particular, we define the multiplication with a function h € L?(Z4%,0) by

(hef) (t,€) = h(t. ) f*(¢,€) for ae. (t,€) € Zg,
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2. Uncertainty principles on Riemannian manifolds

and the radial differential operator %* with respect to p € M by

o \* of*
(at*f> (t,6) = a"i(t,g) for ae. (1,€) € Z1, (2.85)
with the domain
D(2 M) = {f € I2(M) : Linf*(-,€) € AC([0,7]), Linf* satisfies (2.86)
conditions (2.81) and (2.82) for p-a.e. £ € ST, gtf € LQ(M)}.

The definition (2.85) of the radial differential operator 2 can be described concretely

Ot x
by the following commutative diagram.

P* exp}
D(§.; M) C L*(M) —D(5; Z%) = D(5 s M)
2 2
Ot x ot
(M) o (740

Figure 7: Commutative diagram for the radial differential operator %* on M.

The condition L f*(+, &) € AC([0,n]) for p-a.e. & € ST ! in (2.86) is equivalent to the
fact that the function f is absolutely continuous on p-a.e. geodesic curve 7, starting
at 7¢(0) = p in direction 7¢(0) = ¢ and ending at the cut point y¢(R({)). Note that
the exponential map in (2.58) was exactly defined by the geodesics 7. Further, the
consistency conditions (2.81) and (2.82) ensure that for p-a.e. &,& € 6, the function

values f(7e,(0)) and f(7¢,(0)) coincide and that f(7e (R(&1))) coincides with f(ve, (R(€)))
if ve, (R(&1)) = e, (R(&2)) denotes the same point on the cut locus C, of p.

In the definition (2.86) of the domain D({, ; M) is also implicitly stated that the functions

f*(-,€) are absolutely continuous on [0, R(§)] for p-a.e. £ € &, and that the derivative

% * is an element of the Hilbert space L*(Z%,©). Hence, %* is a well defined function

in L?(M) and describes precisely the derivative of f with respect to the geodesic distance

t to the point p. Therefore, the denomination radial differential operator for the operator
%* is justified.
Moreover, since the continuously differentiable functions on M form a subspace of the

domain D(Z ; M), it follows from the Stone-Weierstrass Theorem B.1 that D(Z ; M) is
a dense subspace of L?(M). We can now define the following radial frequency variance

for a function f on the manifold M.
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2.2. Uncertainty principles on compact Riemannian manifolds

Definition 2.39. We define the radial frequency variance Var%p( f) of a function f €
D( gt* M) as
M —
varp,(f) = H(?t*f (2.87)
Adopting the pull back operator L3 P* expy, to the derivative %* f, we get
o .\ 0 T 0
L* _ — L* . * [ 7L* *.
R <8t*f> R (atf> R ornt
Hence, by Proposition 2.34, we can rewrite the latter definition as
M —
Vaer(f HR or WMVP'
Therefore, if we want to use vary/,(f) as a term for the frequency variance in Theorem
2.10, we have to choose the scaling function x in (2.24) as k(§) = R Lhe respective

Dunkl operator on L?(X?, WM,p) can be introduced as follows.

Definition 2.40. Let L?(X? W),;,) be the extension of the Hilbert space L*(Z4, W)
as in Definition 2.4. Then, we define the Dunkl operator T ﬁp on the Hilbert space

L2(X4 Way,) as

99  Wy,9—9
TS g P 2.88
R ] 289
with the domain
D(Tyy;,) = {g € LA(X W)« g(-,&) € ACy,  for prae. € € ST (2.89)

99 Whp9—39
87’ WMp 2

€ I2(X", WM,,)}

The definition (2.88) of the Dunkl operator T}y , corresponds to the definition (2.16) of
the Dunkl operator 7% with scaling function x = % and weight function W =W, The
domain D(T7yy,,) corresponds to the domain D(TX) defined in (2.17). We get now, as a
main result of this chapter, an uncertainty inequality for compact Riemannian manifolds.

Theorem 2.41.

Let M be a simply connected, compact Riemannian manifold without boundary and p €
M. If f € L3 (M) N D(L ;M) such that ||f||xr = 1, then, the following uncertainty
principle holds:

Q‘(@/Mmﬁ rf@m%u&wuﬂjﬂij;_
4’// ( cos( ;) + sin(gy) G ) (t, O1f*(t, &) Pdtdu(s)| -

Equality in (2.90) is attained if and only if f is constant.

£

(2.90)

2
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2. Uncertainty principles on Riemannian manifolds

Proof. If the function f € L*(M) N D(Z ;M), then the pull back Ljf* lies in
L*(Z3, W) ND(L; Z2) (see definition (2.23)). Further, the even extension e(L},f*) €
L2(X?% Why,) is an element of the domain D(T4y,) of the Dunkl operator Thy,. By
Lemma 2.36, we know that the weight function W, satisfies Assumption 2.1. Now,
using Theorem 2.10 together with the differential-difference operator Tﬁp, yields the
inequality

*

(1_</§,d / cos T |Lyf* Tf)| Wi (7, €)drdu(§ )> H ﬂ- 8157' Wiy

2
1 /S;d71/0 R’(TO(COSTWM,;,(T,Q—i—sinTWMp(T,f))]L fr(r ) Pdtdu(€)) -

Moreover, for the pull back operator L}, we have 7 = L3(%%), RaTL}‘%f (gtf*),
EWarp = Ly(©) and W}, = L3(©’). Hence, a coordinate transform with respect to the
lipeomorphism Ly implies inequality (2.90). Finally, by Theorem 2.10, equality in (2.90)
holds if and only if f*(-,£) = C¢ is constant for p-a.e. £ € &,. Since f € D(Z ;M)
satisfies the consistency condition (2.81) for p-a.e. £ € &), we have C; = C and f has
to be constant py-a.e. on M in order to obtain equality in (2.90). O

Similar to the Breitenberger uncertainty principle (1.18) and to the uncertainty principle
(1.38) for weighted L?-spaces on the interval, we can introduce a generalized mean value
g,(f) for a function f € L?(M) by

e f) = (LS "), e(Linf Wi, (2.91)
[ ot e ret daute),
Moreover, we denote the integral term on the right hand side of (2.90) as
oolf) = (- <zTi§p TYelLin ), (Ui N, (2.92)
- [ (g costity) + sin ) S48 71, OO i)
Definition 2.42. Let f € L2(M). If p,(f) # 0, we define

21_5p(f)2
! po(f)?

The value Var%p( f) is called the position variance of the function f at the point p € M.

varg (f) = (2.93)

Corollary 2.43.
Letp € M and f € L*(M)ND(& ; M) with || fllar = 1 and p,(f) # 0. Then,

d2
—. 2.94
. (2:94)

Varg{p(f) -Var%p(f) >
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2.2. Uncertainty principles on compact Riemannian manifolds

Proof. Evidently, (2.94) follows from (2.90). The only thing that remains to check is
the strict inequality in (2.94). The only functions for which equality can be obtained in
(2.90) are the constant functions. If f = C' is constant on M, integration by parts with
respect to the variable 7 yields

D= [ (s costgty)006.) + sin(5)8 (1, €) )t
= [ [ (cos Wagy () + sin Wy (7)) drd(€) = 0.

Hence, there exists no function f with f € L*(M)ND(Z ; M), || flls =1 and p,(f) # 0
for which equality can be attained in (2.94). O

Remark 2.44. Although inequality (2.94) is strict, we will show in Proposition 2.58 that
the constant - on the right hand side of (2.94) is optimal.

In contrast to Theorem 2.10 where we considered relatively general weight functions W
on Z¢, the weight function Wy, and its counterpart © in Theorem 2.41 play a more
substantial role. These weight functions are linked to the exponential map exp,, on the
tangent space 1), M and implicitly contain information on the curvature of the Riemannian
manifold M at the point p. We will see in Section 2.7 how this information can be used
to compute lower estimates of inequality (2.90).

Remark 2.45. Using the generalized mean value €,(f), we can search for a point p; € M
that can be interpreted as the expectation value of the density f € L*(M), ||f|lx = 1.
Namely, we consider the value €,(f) as a measure on how well the function f is localized
at the point p € M. Since || f||as = 1, the closer ,(f) approaches the value 1, the more
the L?-mass of f is concentrated at p. The point at which f is localized best is then
defined as the point py where €,(f) gets maximal, i.e.,

py = argsup &,(f). (2.95)
peEM

If ps is uniquely determined, we call it the expectation value of f.

2.2.3. The Dunkl and the radial Laplace-Beltrami operator

The Dunkl operator T ﬁ’p is closely related to the Laplace-Beltrami operator Aj; of the
Riemannian manifold M (see Section A.7 for a short introduction and the definition). For
a radial function F' centered at the point p € M, i.e., the pull back F* depends solely on
the radial distance t, the Laplace-Beltrami operator A,; reads in a small neighborhood
around p as (cf. [3, Proposition G.V.3])

(AU (8.€) = G50+ e G0
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2. Uncertainty principles on Riemannian manifolds

This second-order differential operator can be extended to the whole manifold M and
used globally for functions f on M. In geodesic polar coordinates (t,&) € Z%, we define
the operator A, ; as

o ot ¢) 0
ol GO+ gu g a

For radial functions centered at the point p, the operator A,; corresponds locally with
the Laplace-Beltrami operator Ay;. Therefore, the operator A, is referred to as radial
Laplace-Beltrami operator. Adopting the lipeomorphism Lz, we get for (7,£) € Z2 the
formula

(Apif)(t,€) = Jr(t,€). (2.96)

2

* * @ 62 WMP( 5) a * Lk
Li(Apef) (1,6) = R(E? (6 SLRf(7,6) + mELRJC (T, f))
As a domain of the radial Laplacian, we consider the set
0 0
D(A,,) = {f € CH(M): S Lpf*(0,€) = 5 Lif*(r,€) =0, £ € Sd—l}. (2.97)

So, if f € D(A,y), then iThy (e(Lyf*)) = gae(LRf ) e D(Tyy,), and we get the following

relation between the radial Laplace-Beltrami-operator A,; and the Dunkl operator zTﬁy
visualized in Figure 8:

e (Li(=Apef)") = (iTh1,) (L") (2.98)

P* expj, L* e ~
L2<M) N D(An ) & L2(Z%v @) — LQ(Z;?? WM,;D) - L2<Xd7 WM,p)
Ty,

A L2(X% War,)

X
zTM’p

L2(M) L2(73,©) — s [2(Z8, Wy,) —s LA(X, W)

P* expj,
Figure 8: Commutative diagram for the decomposition of —A, ;.

In this way, the differential-difference operator iTﬁp can be seen as a generalized sym-
metric root of the operator —A, ;. In particular, this relation gives a new view on the
frequency variance Var%p( f) of a function f € D(A,;) defined in 2.87. Namely, we get

VaI'
B p War,p

H O 5 =i

zTMp> (L) e(Upf") )y, = (=Dpuf, Far (2.99)
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2.3. Uncertainty principles on compact star-shaped domains

Formula (2.99) asserts that the frequency variance in the uncertainty inequality (2.94)
is completely determined by the radial derivative of the function f. Many authors (see,
for instance, [27] or [56]) prefer to use the full Laplace-Beltrami operator Ay, for the
frequency variance, i.e. var¥(f) := (—Auf, f)u, instead of the radial approach (2.99).
However, since vary,(f) < (=Auf, f)u for functions f that are locally supported at
p € M, we get sharper inequalities in (2.90) and (2.94) if we use the radial Laplace-
Beltrami operator.

2.3. Uncertainty principles on compact star-shaped domains

In this section, we will give an alternative uncertainty principle in the case that the
underlying domain of the L2-space is not a whole Riemannian manifold M but a compact
subset 2 C M. We will only consider functions that satisfy a zero boundary condition
at the boundary 0f2 of Q2. The goal is to establish an uncertainty principle for locally
supported functions with a position variance that is easier to handle than the position
variance (2.93) in the last section. For the proof of this uncertainty principle, we want to
adopt Theorem 2.14. Therefore, we have to show as in the last section that the Hilbert
space L*((2) is isometrically isomorphic to a weighted space L*(Z%, Wq,,). This is possible
if we assume that the compact set (2 is star-shaped with respect to a point p € M and
that its boundary 02 satisfies a Lipschitz condition.

Definition 2.46. We call a compact subset €2 of a Riemannian manifold M star-shaped
with respect to an interior point p € (Q if:

(i) For every point ¢ € € there exists a minimizing geodesic v with v¢(0) = p and
Ye(ty) = q such that v¢(t) € Q2 for all ¢ € [0, ¢,].

(ii) If ¢ € 0N is an element of the boundary 0 of €2, then ¢(t) ¢ 0 lies in the interior
of Q for all ¢t € [0,¢,).

By Q(&), we denote the length d(p, q) > 0 of the geodesic v, connecting the center point
p with a boundary point ¢ € 92 in direction { € &,. From now on, we will assume that
) is a compact star-shaped subset of a (not necessarily compact) Riemannian manifold
M and that the distance function () is Lipschitz continuous on &, C T,,M.

By L*(f2), we denote the Hilbert space of square integrable functions on € with scalar
product

(.90 = [ F@g@duna) (2.100)

and norm || f||3 := (f, f)a. To show that L?(Q) is isometrically isomorphic to a weighted
space L*(Z3, Wgq,), we use similar as in Section 2.2 three coordinate transforms: the
exponential map exp,, the polar transform P and a Lipschitz continuous mapping Leq.
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2. Uncertainty principles on Riemannian manifolds

Let Zé be defined as in (2.67) with the distance function @) instead of the distance
R and the boundaries 8LZ5 and 8RZ5. Since () is a star-shaped and compact set, the
composition exp, P is a well defined function on Zgg that maps the set Zg) \ {ang, aRZgg}
diffeomorphically onto the domain 2\ {p,0Q}. Further, the left hand boundary (9LZ£§
is mapped onto {p} and the right hand boundary 95 Z¢ onto the boundary 99 of Q. So
the points (¢,&) € Zg form a coordinate system for the domain €2, referred to as geodesic
polar coordinates on €. Moreover, for an integrable function f on €2, we get from (A.30)
and the polar transform P the integral formula

| @@ / / O(t, €)dtdu(¢), (2.101)

where the Jacobi determinant © is given as in (2.73).

Let Lg : Z¢ — Z§ be the coordinate transformation as defined in (2.76) with the distance
function () instead of R. Then, since the distance function () is assumed to be Lipschitz
continuous on &, the coordinate transform L is a lipeomorphism that maps Z4 onto
Zgg. Further, Ly induces a change of variables that leads, as in (2.77), to the integral
formula

/6/ O(t, €)dtdp(¢ / / U7, &) GO (L7, ) drdp().  (2.102)

Hereby, the Jacobian determinant of L equals % almost everywhere on Z¢.

For a function f* on ZQ, we define the pull back L, f* by the lipeomorphism Lg as in
(2.78) by
Ly *(1,€) := [(927.6),  (1.€) € [0,7] x S, (2.103)

and introduce the weight function W, on Z2 as
Wa,(7,€) == g50(%r.¢),  (7,€) € [0,7] x S, (2.104)

Then, analogously to Proposition 2.34, we get the following result.

Proposition 2.47.
The Hilbert space L*(Y) is isometrically isomorphic to the space L*(Z4,Wq,). The
isomorphism is given by the pull back operator Ly, P* expy.

Proof. We collect the coordinate changes given by the exponential map exp,, the polar
transform P and the lipeomorphism Lg. For f, g in L?(Q2), we get

/f 9(@)dprr(q)
(2.101) /6 / g (t,€)O(t, &)dtdu(¢)
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2.3. Uncertainty principles on compact star-shaped domains

L0 09 (B ) g (L, ) drdu(€)
0 [ Lot 0 T Wy drdi(€)

(2.104

D (L Lod i,
Hence, the pull back operator LjP* exp; is an isometric homomorphism from L3(92) to
L*(Z3,Wgq,). Since the point set {p} and the boundary 9 are sets of jy-measure zero
in 2 and exp, PL¢ defines a lipeomorphism from Z3\ {9, 2%, 0rZ2} onto Q\ {p, 9Q}, the
operator L§,P* exp} from L?(Q) to the space L*(ZZ, Wa,,) is also surjective and, thus, an
isomorphism. O

exp, P Lo

M>Q Z4

d
24

*

P* exp* L
oL 12(28,0) v [2(22, Wy,)

L2(9)
Figure 9: The mappings exp, P, Lg and the respective pull backs.

As in Lemma 2.36, we can now show that the weight function Wy, satisfies the required
Assumption 2.1.

Lemma 2.48.
The weight function Wo,, on Z¢ satisfies Assumption 2.1.

Proof. To prove Lemma 2.48, we just have to follow the lines of the proof of Lemma 2.36
and replace the cut locus distance R by the distance function Q. O

Now, in order to use Theorem 2.14, we have to guarantee that for f € L?(Q) the pull
back Lg, f* lies in Do(2;2%), as defined in (2.28). In particular, the function L oJ" has
to satisfy a zero boundary condition on dpZ%. Moreover, we want to make sure that
L5 f* fulfills the consistency condition (2.81), i.e. that Ly f*(0,&1) = L5 f*(0,&2) holds
for p-a.e. &,& € S¥1. Altogether, we define in the style of (2.86) the domain of the
radial differential operator %* on 2 C M as

Do(%*;ﬂ) = {f € L*(Q) : Lo f (-, &) € AC([0,7]), L f* satisfies (2.81) and

W/
oy e [2(72) Wg,p)}. (2.105)

* * 8 * *
LQf (ﬂ',é—) = 0 /,L—a;.e., ELQ']C 5 TWQJ)

By Proposition 2.47, the condition a%LE} f* € L*(Z4,Wq,) is equivalent to the property
%* f € L?(Q). As a position and frequency variance of a function f on Q with respect to
a point p, we will use the following expressions:
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2. Uncertainty principles on Riemannian manifolds

Definition 2.49. We define the position variance Vargp( f) and the radial frequency

variance var (f) of a function f € Dy(Z ; Q) as

varg, (f) = [[t.fII%, (2.106)

varg,(f) = Hat*f (2.107)
Due to Proposition 2.47, the radial frequency variance can be rewritten as

Q

var = :

rall) = H Q 87 Wa,,
Therefore, in order to use the expression Var%p( f) in Theorem 2.14 we have to choose
the scaling function k as k(§) = ol Related to this scaling function is the following

Dunkl operator:
Definition 2.50. Let L?(X? Wq,) be the extension of the Hilbert space L*(Z2, Wa,)
as in Definition 2.4. Then, we define the Dunkl operator Tgy, on L*(X? Wq,) as

0 W
g (20 Wapg =9 7\ |
’ Q 87‘ WQP 2

(2.108)

with the domain

Dy(Ta,) = {g € LX(XY, Wap) : g(-,§) € ACyy, g(m,€) =0 for pae. £ €S

/

69 " épg g " Q.p 2 d 17
- : , =g e LH( X W } 2.109
or” Wa, 2 T W Q,pg ( ) ( )

The definition (2.108) of the Dunkl operator Tg, corresponds to the definition (2.16) of
TX with the scaling function (&) = % and the weight function W = Wg,p. The domain
Dy(T¢,) corresponds to the restricted domain Do(T¥) defined in (2.25). By Lemma 2.8,

we know that iTg)zfp is symmetric on L?(X¢, Wg,p). Hence, we get the following uncertainty
principle for compact star-shaped domains:

Theorem 2.51.
Let M be a Riemannian manifold and 0 C M be a compact star-shaped domain with

interior point p and Lipschitz continuous boundary 0S). Let f € L*(2) N Do(at ;) such
that ||fllo = 1. Then, the following uncertainty principle holds:
Y P | R A A TCTCR S TS R | (2.110)

Proof If f € L*Q)NDy(Z,;Q), then, by Proposition 2.47, L of* € L*(Z1,Wa,) N
Do(; Z%) and the even extension e(Lf,f*) € L}(X¢, Wqy,) is an element of the domain
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2.4. Uncertainty principles on manifolds diffeomorphic to R?

Do(Tép) of the Dunkl operator Téfp. Moreover, we know from Lemma 2.48 that the weight
function Wy, satisfies Assumption 2.1. Then, if we consider the symmetric operators A
and B on L*(X? Wq,) defined by Ag = @Tg and Bg = 1T, g, we get in Theorem
2.14 the inequality

2

|r Ol
Q) or

111 /Sdfl /J(Wﬂ,p(ﬂ €) + TWg/Lp(T, f))|LZ2f*(T, §)|2d7'd,u(§)

Now, by the coordinate transformation Ly, we have 7 = L (a”), ZgaaTL* f* =1L (%f*)

and Wy, = L5(0'). This implies inequality (2.110). 0

HQ LZQf*

W,
Q,p Wﬂ,p

2

Ezxample 2.52. As an example of a compact star-shaped domain we consider the unit ball
B in R? centered at p = 0. In this case, the distance function Q is given by Q(&) =
for all £ € &, and the weight function © on Zé is given by ©(t,£) = t@!. Hence
O'(t,€) = (d — 1)t*"2 and Theorem 2.51 implies the inequality

0 I d?
2 = -
[ e

for all functions f € L?(B?) N Dy(2, ; BY) normalized such that || f||pa = 1.

(2.111)

2.4. Uncertainty principles on manifolds diffeomorphic to R?

We leave now the compact settings and consider Riemannian manifolds F that are dif-
feomorphic to the Euclidean space R?. In this particular case, the exponential map exp,,
defines a diffeomorphism from 7, E onto E. Thus, by (A.30) and the polar transform P,
we get for an integrable function f on E in geodesic polar coordinates (¢, &) € [0, 00) x S,

the formula
| F@dus(@) /’/ O, &)didp(€), (2.112)

where the weight function © is given as in (2.73). To keep the notation simple, we identify
the tangent space T,F with the Euclidean space R? and use the symbol Z2 instead of
[0, 00) x &,,. However, to indicate that we are working in the tangent space T,E, we will
still use the symbol &, for the unit sphere.

The Hilbert space L*(E) with inner product

(f,9)E —/ f(@)9(q)dur(q) (2.113)

is isometrically isomorphic to the Hilbert space L?(Z% ,©) with scalar product

(e = [ [ 005 @O didue), (2.114)
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2. Uncertainty principles on Riemannian manifolds

Now, we can derive an uncertainty principle on the non-compact Riemannian manifold
E by using the uncertainty principle on the tube Z% developed in Section 2.1.3. In
particular, we can adopt Theorem 2.21. First, we show that the weight function O is
admissible.

Lemma 2.53.
Let E be diffeomorphic to the Fuclidean space RY. Then the weight function © satisfies
Assumption 2.15.

Proof. Since E is diffeomorphic to R?, the Jacobi determinant 6(¢) = det((dexp,)¢) is
continuously differentiable and strictly positive on the whole tangent space 7, F. Hence
O(t, &) = t4710(t£) is continuously differentiable on Z2 and vanishes only at the boundary
OrZ% of Z%. Hence, the conditions (2.32) and (2.33) are satisfied. Further, since

o'(t, ) 0'(tS)
t =(d—1)+t
o6 17V atag
is bounded for every compact subset of Z% | also (2.34) is satisfied. O

From Theorem 2.21, we can now derive the following uncertainty principle for Riemannian
manifolds diffeomorphic to the Euclidean space.

Theorem 2.54.

Let E be a Riemannian manifold diffeomorphic to R and p € E. Let f € L*(E),
|flle = 1, such that f* € D(%,t,t%;Zﬂo) (see (2.46)) and such that the consistency
condition f*(0,&1) = f*(0,&) is satisfied for p-a.e. &.,& € S,. Then, the following
uncertainty principle holds:

2

o |2 1 o0
A1 |5 7], 2 3+ L [ el worane| (2.115)

Equality holds if and only if f*(t,&) = Ce™™, with a complez scalar C' and a real constant
A € R such that f satisfies the requirements of the theorem.

Proof. By Lemma 2.53, the weight function © satisfies Assumption 2.15 and ||f*|le =
Iflle = 1. Thus, the statement follows from Theorem 2.21. Hereby, the consistency
condition f*(0,&;) = (0, &) for p-a.e. &, & € &, makes sure that the complex constant
C' in the optimal function f*(t,&) = Ce™™ does not depend on the variable £ € &,. O

Definition 2.55. In the non-compact case, we define the position and frequency variance
of a function f at the point p € F as

varl, () = 6 A% = [ [ 21 PO dtau(©) (2116)

2 0o | 9 F*
E:/Gp/o (‘3Jj§<t’£)

2

varg,(f) = Haat*f O(t, &)dtdu(€). (2.117)
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In view of the latter definition, the following uncertainty inequality holds for all functions
satisfying the requirements of Theorem 2.54.

2

vk, () vk, () 2 310+ [ [T opadae) . @)

Ezample 2.56. If E =R% p € RY, then O(¢,&) = t¢1, ©'(t,€) = (d—1)t%"? and Theorem
2.54 implies the uncertainty principle

2 d2
> —. (2.119)
R~ 4

0
2 . —
£ f 1B - | 57 S

Equality in (2.119) is attained if and only if f(q) = Ce M4’ for a constant A > 0 and a
complex constant C'. This inequality is the d-dimensional analog of the one-dimensional
Heisenberg-Pauli-Weyl inequality (1.9).

Similar as in the case of a compact manifold M, there exists a relation between the Dunkl
operator TY given on L*(Y? ©) by

dg  ©'g-3
TYg= 24 2=

I=a"8 2
and the radial part of the Laplace-Beltrami operator Ag. As in (2.96), we introduce the
radial Laplace-Beltrami operator A, ; in geodesic polar coordinates (t,¢) as

0% ., O'(t,£) 0

(Api ) (t,6) == o (t,€) + 801.%) ot “(t,€), (t,€) e Z4, (2.120)
on the domain
2 2 8 *
D(A,,) = {f e CHE)NIHE): o f(0,6)=0, €€ Gp}. (2.121)

Now, for f € D(A,;), we can use the even extension e(f*) € L2(Y% ©) to get the
following decomposition of the radial Laplace-Beltrami operator A, ;, also shown in the
commutative diagram in Figure 10.

e((=Dpef)") = (T )e(f"). (2.122)

Hence, as in the compact setting, the operator i7" can be seen as a generalized symmetric
root of —A, ;. Further, since

= [iTe(s") Z): (=Dpif, e (2.123)

2
E

(1) = |57

we get a second representation of the frequency variance varg p( f)-
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2. Uncertainty principles on Riemannian manifolds

LAE)ND(A,,) =P [2(74 @)+ [2(Y, &)
iTY

A L2(Y, ©))
iTY

L2(E) o A2, 0)—= L2(Y", ©)

Figure 10: Commutative diagram for the decomposition of —A,; for Riemannian mani-
folds E diffeomorphic to R?.

2.5. Asymptotic sharpness of the uncertainty principles on
compacta

In this section, we show that the uncertainty principle (2.94) for compact Riemannian
manifolds M and the uncertainty principle (2.110) for compact star-shaped domains €2
are asymptotically sharp, i.e., that there exists a family of functions H) in the domain of
the differential operator 2 5, on M and Q such that for A — 0 equality is attained in (2.94)
and (2.110), respectively. For this purpose, we construct a family H, of Gaussian-like
functions on M and 2.

First, we prove an auxiliary result. For £ € Ny and ¢ > 0, we have the following
well-known moment formulas for the Gaussian function (cf. [64, p. 110]):

/ 12Re 2 gt — é_ikz)' gL (2.124)

k!
/ 2R et gy — SOt (2.125)

On [0, 00), we introduce for d € N, d > 1 and o > 0 the Gaussians G4, as

2
Con(t) i |\ VRO =2k 41,
) ma A o
\/;akﬂe i if d =2k + 2.

Then, the moment formulas (2.124) and (2.125) imply that G4, is a normalized function
in the Hilbert space Lj := L*([0,00),t*"") with ||Gq,llr2 = 1. Moreover, the following
properties hold:

Lemma 2.57.
Consider Gq, as an element of the Hilbert space L3. Then,
d
[tGaclis = 50° (2.126)
Gl = 5 (2.127)
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2.5. Asymptotic sharpness of the uncertainty principles on compacta

Proof. We prove equations (2.126) and
(2.124) and (2.125). For d odd and k =

—~

2.127) by direct calculation using the formulas
_1, we get

o 2 41 (d 2\’
, - 2 (e -5 2k
||Gd,a||L3 =~ Js \/%(2]{3)!0%+1 <dt€ 2 2) t dt

U
)

_ © 2 4FRl 1 e_%t%“dt:} k! (2k+2)!i:gi.
0 /7 (2k)! g2k+5 4(2k)! (k+1)! 02 202
o 2 4R 1 2 d
2 e -2 2k+2 _ - 2
HtGdJHLfl = \/7_T(2/€)!02k+1€ 2t dt 20 .

On the other hand, for d even and k = %, we have

2
© 2 1 d _
2 - 2k
||G/d,a||L3 - k! o2k+2 (dte 2°2> t™dt

0

(> 2 1 ,%tzkwdt_(k’—{—l)!l o d1
"o Kt T kK o2 207
© 2 1 t2 d
HtGd,o”%g - k! o2k+2 e Tt = S o,
o klo

Now, we consider first the uncertainty principle on a compact Riemannian manifold M
proven in Section 2.2 and show that inequality (2.94) is asymptotically sharp. We start
out by choosing § > 0 small enough such that the open ball B(p,d) with center p and
radius 0 is a subset of D, C M. Further, we define a C'*°-cut-off function s : [0, 00) —
[0, 1] with the property that ¢s(t) = 1 for 0 < ¢ < $, 0 < s(t) < 1for 2 <t <4, and

@s(t) = 0 for t > §. Then, we set ¢¢ 1= \/$ and define for A € (0,00) the family of
functions H, in geodesic polar coordinates at p € M by

H;(t,€) = Gaeon(t)os(t) (2.128)
and its normalization as ~
H)
Hy = =7, (2.129)
[ReaNbY;

Because of the cut-off function s, the functions Hy are compactly supported in B(p, ) C
M and, in particular, elements of L*(M) N D(%*; M). Now, we can show the following
proposition:

Proposition 2.58.
Let |&,| denote the volume of the unit sphere S, then

B 1— €p(H)\)2 _ d T
liny 5 = o /. g dn©) (2.130)

75



2. Uncertainty principles on Riemannian manifolds

2 d
M 2|6,| /s,

L0 .
lim >\2H8t*H’\ =@ W), (2.131)
| d o,

/l\l_)r%Pp(HA) = |6p| /6p R(g)d,u(f)~ (2-132)

In particular, the uncertainty inequality (2.94) is asymptotically sharp.

Proof. Beside Lemma 2.57, we need two facts for the proof. The first one is a property
of the weight function ©. If § > 0 is chosen small enough, we have for ¢ < ¢ the Taylor
expansion (cf. (2.80) and [8, XII §])

@(t, 6) — td_l _ Mtd+l + O(td+2), (2133)
d+1)Ri
O'(t, &) = (d— 1)t - d+ >§IC(€’ &a O(th), (2.134)
where Ric(-, -) denotes the Ricci tensor on T, M x T,,M (see Section A.6). The second fact
R(E)

concerns the Gaussian function Gd,% A Since the term ¢ = is uniformly bounded
above and below by positive constants, there exists for § > 0 and e > 0 a As, such that
for all A < A\;c and § € 6, we have

/ " Gaenr (DMt < e (2.135)
5/2

We consider now the L?-norm of Hy on M. Using the Taylor expansion (2.133) of the
weight function © and property (2.126) of Lemma 2.57, we get the estimate

~ 1
lim | 7133 = tim [ p | Gaeaes(t)?0(t, )dtdn(s)

= 11m/ /5 Gd’cé)\(t>2g05(t)2(tdfl + O(td+1))dtdu(§)

A—0

< lim / | G @ (47 + O+)) dedpe)
= }\li% |6p| + O()‘2) - |6p|>

where |&,| denotes the volume of the (d — 1)-dimensional unit sphere &, in the tangent
space T, M. Using property (2.135), we get for an arbitrary € > 0 and A < A5,

IHAl3 = / / ’ Glaeex (t)?@s (1) (1771 + O(*1) ) dtdpu(€)

> /G p | Gaea®?(47 + O™ ) dedpu(€) — el
(1—-¢6)|S,| + 0(\?).

Therefore, .
lim | A3 = 16, (2.136)
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2.5. Asymptotic sharpness of the uncertainty principles on compacta

We consider now equation (2.130). Using the Taylor expansion (2.133) of the weight
function © and property (2.126), we get the upper estimate

L= ep(Hy) = IIHAHM/G/ (1 — cos( 1)) e (1) 205(0)?O (1, ) dtdp(€)
< ||HA||M L. [ 20 G126t €)dd(c)
sm L |7 S Gaear P (11 + O(t)) dbdp(€)

d 1
= N [ Fdu(©) + O(XY).
47 AR, Js, BO

Further, since ||H)|» = 1, we have ¢,(H,) < 1 and, hence, (1 +¢,(H))) < 2. In total,
we get

. 1-— €p(H>\)2 . 1-— €p H)\
< .
e S2imey 2[6 | / (2.187)

Next, we turn to equation (2.131). For the following estimate, we use the Taylor expan-
sion (2.133) and equation (2.127) of Lemma 2.57.

H@L«HA v ||HA||?\4 - 12 Gd,c§)\(t)(p5(t))’2@(t,£)dtdﬂ(€)
< ke / [Gear P + 21Gi e @l et
F1Gaca @] (147 + 00+ )ded(e)
Thus, we get

9
I )\QHH
0 o

A—0

2 d
< — = . .
S 76 /. g nl©) (2.138)

Finally, we take a look at equation (2.132). Due to (2.133) and (2.134), the function

%I((Z ’g sin( == E t) has for small ¢ the Taylor expansion

o'(t,¢)

o) gt = (1 1)—— +O(t3). (2.139)

R(¢)
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2. Uncertainty principles on Riemannian manifolds

Using (2.139) and property (2.135), we derive for an arbitrary e > 0 and for A < A5,

9 I T oL - T * 2
ooty = [ [ (e cos(agt) + S sin(igt) ) [ (¢ POt )dtdu(€)

1 b T s t,£) . T
= m/GSP/O <R(£) COS(%t) + %((t?) SlIl(R(E)t)>
% (Gaeer(t)ps(t)) ©(t, €)dtdu(€)
d 5
| 7 || (Gacaltos(t)) (71 + Ot 1)) dtdu(s)

NENTRECE
d T

> —
~ IHA3, e R(E)

Thus, we conclude

dp(€)(1 —€) + O(X?).

. d .
ling (1) 2 1 /. igdu(©) (2.140)

Now, inserting the inequalities (2.137), (2.138) and (2.140) in the uncertainty inequality
(2.90), we get the same value on both sides, namely ﬁ(fgp %du(ﬁ))g. Thus, inequal-

ities (2.137), (2.138) and (2.140) are in fact equalities and the proposition is proven. 0O

Similarly, if €2 is a compact star-shaped subset of M, it is possible to prove that the
uncertainty principle (2.110) is asymptotically sharp. As above, we choose § > 0 small
enough such that B(p,d) C Q and use ¢s as a cut-off-function. Similar as in (2.128), we
define for \ € (0,00) a Gaussian-type family of functions HY by

H*(t,€) := Gaa(t)ps(t)
and the normalized functions by
o _

A . ~ .
13l

Obviously, the function Hf!' is supported in B(p,d) and is an element of L?*(M) N
DO(%*; Q). Moreover, we get the following asymptotic result:

Proposition 2.59.

N HRE  d

e =y 214
0 2 d

}\%A t*HA Rt (2.142)

) Qe Q 9

/l\m%l +/ / tO'(t, &) | Hy (¢, &) dtdu(€) = d. (2.143)

- &, Jo

In particular, the uncertainty principle (2.110) is asymptotically sharp.
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2.5. Asymptotic sharpness of the uncertainty principles on compacta

Proof. We consider first the L?-norm of H{ on . Similar as in (2.136), we get the
asymptotic formula
lin 793 = |6, | (2.144)

Next, we turn to equation (2.141). Using the Taylor expansion (2.133) of the weight
function © and property (2.126), we get the upper bound

It H2IE = ”HQHQ [ [ #Gareste ot dut)
< HH?HQ /6/ td+1+O(td+3))dtdu(£)
S, .
gy T O

Thus, in the limit A — 0, we get

[t HRE
— < - .
}gr(l) 12 5 (2.145)

Next, we consider equation (2.142). Proceeding in the same way as in the proof of
inequality (2.138), we get the estimate

8HA

lim \? 5%,

A—0

<

2 d
— 2.14
2 ( 6)

Finally, we turn to equation (2.143). Due to (2.134) and property (2.135), we derive for
an arbitrary € > 0 and for A < As.

/e,,/ () HY(t, &) Pdtdp(€) =

||HA||Q/ / de( )os(t )>2dtdu(§)

> (7 e (/o (G <t>%<t>)2(td*1 £ O+ - )aule)
(d_ 1)‘6p| 9

= W(l —€) + O(N?).

Thus, we can conclude

lim (1 +/ / "(t, E)) | HS (¢, €)|2dtdp(€ )) >d. (2.147)

Using the inequalities (2.145), (2.146) and (2.147) in the uncertainty inequality (2.110),
we get on both sides the value %. Thus, we have shown that the inequalities (2.145),

(2.146) and (2.147) are in fact equalities. 0
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2. Uncertainty principles on Riemannian manifolds

2.6. Examples

2.6.1. The spheres

As a first example of a compact Riemannian manifold, we start with the d-dimensional
sphere
St={qgeR™: ¢ +...+ ¢, ="}

with radius 7 > 0. The sphere S¢ is a submanifold of R4 and the canonical Riemannian
structure on S¢ is defined by the restriction of the standard Euclidean metric in R4*! to
the submanifold S?. If p € S?, we identify the tangent space T,S? with the orthogonal
complement pt of the linear vector space Rp in R4*!. An arbitrary point ¢ € S can
then be represented as

q = q(t,§) = reos(y)p + rsin(7)E,

where t € [0,77] and £ € &, is a unit vector in the hyperplane p*. For fixed &, the
functions ¢ (t) = q(t, £) describe the geodesics on S? starting at v¢(0) = p (see [9, Section
I1.3]), and the coordinates (¢,&) correspond to the geodesic polar coordinates at p. The
cut locus C), consists of the single point {—p} lying at the antipodal end of the sphere.
Further, the distance value R(§) is, independently from the directional variable &, equal
to rm. The weight function © can be determined as (cf. [3, p. 57])

O(t, &) = r*sin? (L), (2.148)

and the Laplace-Beltrami operator on S¢ as (cf. [8, IL.5, equation (29)])

\ 0, d—1 ., 0 As, (f*(t:8)]s,)
(Aggf) (t,g) = af (t,f) + , COt(;)a‘f (t,f) —+ 7'2 Sin2<£) s (2149)
for t € (0,7) and £ € &,. The radial part of the Laplacian is given as
0? d—1 0
(B (1,6) = 2 (1,6) + T Leor() (1, (2.150)

Now, an uncertainty principle on S¢ can be formulated as follows.

Corollary 2.60.
Letp € S? and f € L*(SY)ND(L ;S?) be normalized such that || f|sa = 1 and e,(f) # 0.
Then, the following uncertainty principle holds:

2
S @ (2.151)

21 2
sa 4

el

Ep

The constant %2 is optimal.
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Proof. If we apply Theorem 2.41 to the sphere S¢ and use the respective weight function
(2.148), the only thing that remains to validate is the right hand side of inequality (2.90).
This is done by the following simple calculation.

pol) = /6 P / ( @’((Zf))sin(ﬁ))|f*(t,§)|29(t;€)dtdﬂ(f)
d—1

" cot(t)sin(H) (1 ) sint (hdp(€) = ¢ (7).

:*8
T,P

The optimality of the constant % is a direct consequence of Proposition 2.58. O

Figure 11: Geometric interpretation of the position variance V&I‘i?p( f) on the sphere S?
with radius r» > 0.

If we consider only the radial functions on the unit sphere S¢ = S¢, inequality (2.151)
corresponds exactly with the uncertainty principle (1.73) proven in [73] for functions hav-
;1

ing an expansion in terms of the Gegenbauer polynomials Cy 2. This is not surprising
d—1
since the polynomials Cy 7 constitute a basis for the radial, square integrable functions
on S¢ and also the radial Laplacian (2.150) corresponds to the second-order differential
operator Ld 2 d-2 of the corresponding Gegenbauer polynomials defined in (1.67). The
sharpness of 1nequahty (2.151) is therefore also a consequence of the sharpness of the
uncertainty inequality (1.73) and vice versa.

2.6.2. The projective spaces

Our next main examples are the projective spaces. We start with the d-dimensional real
projective space RPZ. We consider the standard sphere S, with radius 2r and define the
antipodal map A : S4 — S¢ by Ap = —p. The real projective space RP? with diameter
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2. Uncertainty principles on Riemannian manifolds

r is then defined as the quotient of S¢. under the group G = {id, A}. Since G is a proper
and free isometry group on Sgr, we get in a canonical way a Riemannian metric on the
quotient RP? from the standard Riemannian metric on the covering S%.. Moreover, the
identification of RP? with S¢ /G allows the introduction of geodesic polar coordinates at
a point p as in the case of the sphere. In this way, the Riemannian measure on RP? can
be deduced from (2.148) as

dpigpa(t,€) = (2r)* " sin™ N (£)dtdp(€),  (t,€) € [0,r7] x &, (2.152)

The cut locus C, on RP? corresponds to the set of points lying on the equator of S¢, with
respect to the pole p. Since the antipodal points are also identified with each other on
the equator, the cut locus C,, is isometric to the real projective space RP¢~1. Due to our
special construction, the distance R(&) from p to the cut locus is, independently of the
direction ¢, equal to rr. Further, the Laplace-Beltrami operator on RP¢ can be deduced
from (2.149) as

62 f*
ot

(d—-1) 1+COS($)8f* Ag,(f” ( Hls,)
.

(Aazef)'(1:€) = T (1) + 75 = = o (,6) + (2.153)

Next, we take a look at the complex projective space CP¢, d = 2, 4,6, .... We identify the
complex space C:*! with the real Euchdean space R%*2 and consider the sphere SIH as
a Riemannian submanifold of C5+1, Then, the complex projective space CP? is defined
as the quotient of S C C:*+! under the group of complex scalars of absolute value
1 acting on S C:*+1. The projection S3 — CP? is a fibration (in particular a
submersion, see [3, Chapter 1, E5] and Section A.1 of the Appendix) known as the Hopf
fibration, and CP¢ can therefore be endowed with a unique Riemannian structure. If we
introduce geodesic polar coordinates (¢,€) € [0,77] x &, at a point p € CP¢, then the
weight function O(¢,&) assumes, independently of the dlrectlonal variable &, the value
(cf. [3, Chapter 2, F42], [35, p. 171])

O(t, &) = (2r)" 'sin (L) cos(L), (2.154)

and the geodesic distance R(€) from p to the cut locus C, ~ CP?~? is equal to 7. So,
the radial Laplacian A,; reads as

o2 f* d—2+dcos(t )8f
A *(t t t 2.155
( p,tf) ( 75) atz ( 5) 27"8111(7_) ( 5) ( )
Similarly, one obtains the quaternionic projective space HP¢, d = 4, 8,12, ..., by starting

with the unit sphere S3+3 as a Riemannian submanifold of the quaternionic space H+!
Then HP? is defined as the quotient of S4 under the group of unit quaternions acting
on S¢H ¢ Hi+., Again, the projection S3° — HP? is a fibration and HP? can be

endowed with a unique Riemannian structure. In geodesic polar coordinates at a point
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p, the weight function © for the quaternionic complex space can be computed as (see [3,
Chapter 2, F46], [35, p. 171])

O(t, &) = (2r)" 'sin® ! (L) cos? (L), (2.156)

2r 2r
where (,€) € [0,r7] X &,. The cut locus at t = R(§) = r7 is a Riemannian submanifold
of HP? isometric to HPY~*. Moreover, the radial Laplacian A,; on HP? reads as
2 f* d—4+ (d+2)cos(t)of
ot? 2rsin(1) ot

(Ap,tf)*<t7 f) = (ta 5) + (t7 5) (2157)

Beside the projective spaces RPY, CP? and HIP?, there exists a further projective space
constructed upon the octonions, the so called Cayley plane Ca,. As a 16-dimensional
homogeneous space, it can be defined as the quotient of the exceptional Lie group Fy s
and the spin group SO(9) (see [4, Chapter 3 G]). The weight function O(¢,¢) for the
Cayley plane can be written as (see [3, p. 113], [35, p. 171])

O(t, &) = (2r)* sin'® (L) cos™ (L), (2.158)

2r 2r

where (t,€) € [0,77m] x &,. The cut locus C, at t = R(§) = rr is isometric to the sphere
S®. The radial Laplacian A,; on Ca, reads as

0? 4+ 11cos() 0
A &) =—f"(t ——f(t,§). 2.159
P,tf( 75) Ot2 ( 75) + TSil’l(%) 6tf ( 75) ( )
To unify the notation for the projective spaces, we set By = —%,0,1,3 it M =

RP¢, CP¢, HIP?, Ca,., respectively. Then, the weight function © (¢, &) for the projective
spaces can be written as
On(t, &) = (2r)* ' sin™ (L) cos?PuHl( L), (2.160)
and the radial Laplacian reads as
0? d—2—20y+ (d+2Bx)cos(L) 0
AM * t _ * t r/ _— *
( p,tf) ( 76) atg ( 7€)+ 2rsin(f) at

So, an uncertainty principle for the projective spaces can be formulated as follows.

(t,€).  (2.161)

Corollary 2.61.
Let M be one of the projective spaces M = RP¢, CP¢, HP? and Ca,. Let p € M and
feLAMYND(Z ;M) such that || f|la = 1 and

Ot %)
Cd—2-28y  d+2+20u
polf) = 2r + 2r

Then, the following uncertainty principle holds:

L—,(f)° 0 2 d?
g (425 + - e (1)) 370> (2162)

ep(f) # 0.

The constant % on the right hand side is optimal.
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Proof. Due to equation (2.160), we have © (¢, &) = (2r)* ' sin(£ )4 ! cos(£ )2 . Now,
if we apply Theorem 2.41, we get on the right hand side of inequality (2.90):

=7 (eos(t) + g sin(h)) 171 OFOw (¢, tan(©)
— *f?p(f) N /6 /W d—2— 20y + (d+ 208u) cos(L) |

” F (PO (L, E)dtd(€)
d—2—23y d+2+28y

- 2r + 2r e (/).

The optimality of (2.162) follows from Proposition 2.58. O

1—ep(f)?

/-27. (1+3ep(f))?

Figure 12: Geometric interpretation of the position variance Varﬂgi’% (f) for the real pro-
jective space RP? with diameter rm > 0. The point G denotes the center of
gravity of RP? C R3.

It is well-known (see [24], [35]) that the radial square integrable functions on the projective

d—2
space at a point p have an expansion in terms of the Jacobi polynomials Pl( 2 o) (cos(1)).
Moreover, if r = 1, the radial Laplacian Apt in (3.49) corresponds exactly to the second-

d—2
order differential operator La s of the corresponding Jacobi polynomials Pl( 2 Pu)
2 b

defined in (1.67). Thus, if r = 1, inequality (2.162) restricted to radial functions on the
projective space is the same as the uncertainty principle (1.34) proven by Li and Liu in

d—2
[54] for the Jacobi polynomials Pl( 70,
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2.6.3. The flat tori

The flat tori T? are defined as the quotients of the Euclidean space R? under the action
of the free abelian groups (2rZ)¢, r > 0. In this way, the flat tori T¢ are compact
Riemannian manifolds with curvature K = 0. If p € T¢, the cut locus €, in the tangent
space T, T? corresponds to the surface of the d-dimensional cuboid [—7,7]? with center 0
and edge length 2r (see also Example 2.33). Since T? is a flat Riemannian manifold, the
weight function © reads as

O(t, &) =t (2.163)

and the Laplace-Beltrami operator Ars corresponds locally to the Laplacian in RY. If
q € [-r,r]?, we set the Euclidean norm as |g|> = t> = ¢? + -+ + ¢2 and the maximum
norm as |¢|e = max;—1,_q|¢|. The distance function R can then be expressed in terms

of ¢ # 0 as (‘q|) |q‘f| The inverse coordinate transform PLz'P~!, which maps the

cuboid [—r,7]?\ {0} onto the ball BZ\ {0}, can be written as PLg'P~': ¢ — Z “T'q"“’q
An uncertainty principle on T¢ can now be formulated as follows.

Corollary 2.62.
Letp € T¢ and f € L*(TY)ND(Z ;T?) be normalized such that || f|lga = 1 and p,(f) # 0.
Then, the following uncertainty principle holds:

2 d2
J> o (2169)

L= ([ ol o+ o))
' |
(/[_mn]d (T%LTO ( |q]o0) + d|q\ Sln( ‘q|oo)> |f(p+ Q)|2dq>

The constant % is optimal.

Proof. We adopt Theorem 2.41, to derive an uncertainty principle for the flat torus T¢.
Clearly, the conditions of Theorem 2.41 are fulfilled. The value €,(f) can be written as

R()
/Gp/ cos( eyt | (4, €) P14 dtdpa(€) = /[ y cos(Z|qloc)| f(p + q)[2dg.

—-r,r

Moreover, since R(‘g|) rhl“" and |g| = t, we get on the right hand side of (2.90)

n=J [ (g cos(igt) + S48 sin( )| (. €) PO, €)d(e)

,% 2
- [_m]d(r lq] cos(Tlgle) + T tsin(T |Q‘oo))‘f(p+(1)‘ dq.

Thus, by Theorem 2.41, we get inequality (2.164) and the optimality of the constant dZ
follows from Proposition 2.58. O
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2.6.4. The hyperbolic spaces

As an example of a Riemannian manifold that is diffeomorphic to R?, we consider the
hyperbolic space. If R4 is equipped with the symmetric bilinear form (x,y) = —xoyo +
>4 | i, the hyperbolic space H?, 7 > 0, is defined as the submanifold of R%*! satisfying

HY = {x c R (z,2) = —r? 20 > O}.

The bilinear form (-, ) restricted to H¢ induces a positive definite metric on H? and makes
it to a Riemannian manifold. Moreover, it is well-known (see [9, Chapter I1.3]) that the
hyperbolic space H? has constant negative sectional curvature K = —r% and the weight

function © at a point p € H? is given by
O(t,&) = r" ' sinh® (L), (t,€) €[0,00) x &), (2.165)
O'(t, &) = (d — 1)r*? cosh(%) sinh®* (). (2.166)

Now, using Theorem 2.54, we get the following uncertainty principle for the hyperbolic
space:

Corollary 2.63.
Let p € HY and f € L*(HY), ||fllme = 1, such that f* € D(gt,t,tgt,Zd) and the con-

sistency condition f*(0,&) = f*(0,&) is satisfied for p-a.e. &,& € &,. Then, the
following uncertainty principle holds:

IV |57 4], = 30+ =] EoorhE) ]

") (2.167)

Equality in (2.167) is obtained if and only if f*(t,€) = Ce " for a nonnegative constant
A >0 and a complex scalar C.

2.6.5. One-dimensional closed curves

If the manifold M is a closed one-dimensional curve, we can simplify inequality (2.90)
considerably. We consider a C*-differentiable Jordan curve v : [—r,7] — R? naturally
parameterized such that |y/(t)| = 1 for every t € [—r,r]. The geodesic distance on the
curve is then given as

d((t: \ / |dt\ EyT—

and the length of the whole curve is 2r. Now, for the formulation of the uncertainty
principle, we adopt the notation of the previous sections. Without loss of generality
we can assume that the point p at which the geodesic polar coordinates are introduced
corresponds to y(0). Then the cut locus corresponds to the point v(r) and the weight
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function © satisfies O(¢,&) = |7/ ({t)] = 1 for all t € [0,r] and £ € {£1}. The integration
on <y can be written in the polar coordinates as

[av="3 [ e

fe{x1}
and the Laplacian A, translates to

A FOUE) = Al (1(60) = o Fier),

Now, we can formulate the uncertainty principle (2.90) for the curve v as follows.

Corollary 2.64.

If f(1() € AC([=r7]), f(y(=r)) = f(v(r), &.f € L*(7) and [|fll, = 1, then the
following inequality holds:

1

7’21—51,(){)2 ‘ j> 2 (2.168)

d
7T2 €p(f ’dt*f

where

S () = [ cosEOLF( () P,

The constant i on the right hand side of inequality (2.168) is optimal.

We remark that this result can also be shown in a different way. Since a smooth Jordan
curve 7y with length 2r is isometric to the circle with radius =, the uncertainty for v can
directly be deduced from the Breitenberger uncertainty principle (1.7). Moreover, this
relation also shows that inequality (2.168) is optimal (see [68] for the optimality on the
unit circle).

2.7. Estimates of the uncertainty principles using comparison
principles

For general Riemannian manifolds with dimension d > 2, the right hand side of the
inequalities (2.90), (2.110) and (2.115) is usually hard to determine. However, it is
possible to simplify these terms if some further information on the curvature of the
Riemannian manifold is given. The main tool in this context is Bishop’s comparison
theorem. A short introduction into various concepts of curvature can be found in Section
A.6 of the appendix.

Theorem 2.65 (Bishop, [9], Theorem I11.4.1&2).
Let p € M and assume that all sectional curvatures K of M are less than or equal to a
constant K, then

o'(t,§)
o(t,¢)

k>0:

Z (d_ 1)\/ECOt<\/Et)7 (taf) € (07 ﬁ) X 6?’ (2169)
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2. Uncertainty principles on Riemannian manifolds

k=0: (@9/((;:5)) > (d— 1)1, (t,€) € (0,00) X B, (2.170)
k<0: Ot &) > (d — 1)v/—kcoth(v/—kt), (t,€) € (0,00) x &,, (2.171)
O(t,¢)
and
£>0: O8> kT sin(Va)™!, (1€) € (0, %) x Gy, (2.172)
k=0: O8>t (t,¢) € (0,00) x &,, (2.173)
k<0: O&)>( )—d? sinh(v=rt)™ 1, (£,€) € (0,00) x &,. (2.174)

FEquality in (2.169), (2.170), (2.171) and (2.172), (2.173), (2.174) holds if and only if,
for all permissible t, the ball B(p,t) C M is isometric to a ball of radius t in the d-
dimensional space M, of constant curvature k (M, = Scll/\/g, My, =R?* and M,, = H‘li/\/_—,_i
if k>0, k=0 and k <0, respectively).

We consider first the case when M is a compact Riemannian manifold. We assume that
the Ricci curvature on M satisfies

Ric(t€,t€) > ky(d — 1)t?

for a constant xk; > 0, ¢ > 0 and all unit tangent vectors £ in the tangent bundle T'M.
Then, the Bonnet-Myers Theorem [9, Theorem I1.6.1] states that the distance R(§) is
bounded from above by \/% Further, if we assume that all sectional curvatures on M are

less than or equal to a given constant ko, ko > k1, then Bishop’s comparison Theorem
(see equation (2.169)) states that

ot &)
> (d — 1)y/ka cot(/Kat) (2.175)
o(t,¢)
forall { € 6, and 0 <t < f Moreover, the Morse- Schonberg Theorem [9, Theorem
I1.6.3] ensures that the distance R(&) is bounded from below by - Combining (2.175)
and /K1 < % < /ka, we get the estimate

@(t,g), 3 ™
gl + aie Sin(wgt) =

iG] cos(\//i_gt) + (d — 1) /ry cot(y/Rat) sin(y/k1t) > dy/ky cos(y/kat)
r

() = [, [ costymnIF (PO atdn(€)

as a modified mean value, then the above assumptions ensure that

5p(f) > 5;2(f)
7 ) centered

holds for all functions f € L?(M) having compact support in the ball B(p, N
at p. So, modifying Theorem 2.41, we get to the following local uncertainty principle.

7© (7
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Corollary 2.66.
Let M be a compact Riemannian manifold (d > 2) whose Ricci curvature fulfills

Ric(t€, t€) > ky(d — 1)t

for all unit tangent vectors & € TM, and all of whose sectional curvatures K are less
than or equal to a constant ko, ke > k1 > 0. If f € L*(M) satisfies the assumptions of

Theorem 2.41 and has compact support in B(p, ﬁ), then the following inequality holds:
(1-g02) Ha i = mZesy (2.176)
p at* M - ! 4 P ’ ’

In the case that M is a d-dimensional sphere with radius ﬁ, we have K1 = Ky = K.
Inequality (2.176) then reduces to the well known principle (see the uncertainty inequality

(2.151) on the sphere S%)

2

2
s & 2
Sd_m4sp(f).

(1=a07)- |51

Thus, the point of Corollary 2.66 is that if M is a "sphere-like" manifold where the
curvature is varying only slightly around a constant x, then the resulting uncertainty
principle is also very similar to the uncertainty principle of a d-dimensional sphere with
curvature k.

Next, if € is a star-shaped subdomain of a Riemannian manifold M, then Bishop’s
comparison Theorem 2.65 implies the following modified version of Theorem 2.51.

Corollary 2.67.

Let M, d > 2, be a Riemannian manifold all of whose sectional curvatures are less than
or equal to a constant k and 2 C M be a compact star-shaped domain with respect to the
interior point p. If k > 0, let Q(&) < ﬁ for all & € &,. Further, assume that f € L*(Q)
fulfills the conditions of Theorem 2.51. Then, the following inequalities hold:

o 7 1 212
R>0: Sl |5 f > V- D)||y/tcot(vat) f| | (2.177)
o 2 &
k=0: |t.fl3- all. > T (2.178)
5 |0 L 1 2 |2
R VI < 4‘1+\/——H(d— 1)H\/tcoth(\/_—/-@t)*fHQ‘ L (2.179)
* 110

Finally, if £ is a Riemannian manifold diffeomorphic to R?, we can combine the uncer-
tainty principle (2.115) with Bishop’s comparison Theorem 2.65 and get the following
result.
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2. Uncertainty principles on Riemannian manifolds

Corollary 2.68.

Assume that E is a Riemannian manifold diffeomorphic to R all of whose sectional
curvatures are less than or equal to a constant k. Further assume that p € E and that
f € L*(E) satisfies the conditions of Theorem 2.54. Then, for k = 0, the inequality

2 d2
>

> (2.180)

It 1% -

Hat*f

and for k < 0, the inequality

111 - Hat fH i‘l—f—\/—_/f(d—1)H\/tcoth(\/—_/ft)*fH2’2 (2.181)

holds. The inequalities (2.180) and (2.181) do not differ from the uncertainty inequality
(2.115) if and only if E is isometric to the Euclidean space R? or to the hyperbolic space

Hfli = with constant negative curvature k, respectively.

2.8. Remarks and References

Weighted L?-inequalities on a cylindrical domain. The weighted L?-inequalities stated in
Section 2.1 are new and can be considered as multi-dimensional extensions of the results
in Section 1.4. In particular, the inequalities and the Dunkl operators of the subsections
2.1.1, 2.1.2 and 2.1.3 are multi-dimensional generalizations of the inequalities and the
Dunkl operators presented in the subsections 1.4.1, 1.4.2 and 1.4.3, respectively. As
in Section 1.4 also the methods used in Section 2.1 are based on the Dunkl operator
approach developed in [73] and [27]. The quote in the header of page 42 is taken from:
Douglas Adams, The Hitchhiker’s Guide to the Galaxy, 1979.

Uncertainty principles on compact Riemannian manifolds. The uncertainty principle
of Theorem 2.41, stated in this form, is an entirely novel result and can be considered
as a generalization of the Breitenberger uncertainty principle (1.15) on the unit circle.
Nonetheless, there exist various uncertainty principles in the literature that hold also
for compact Riemannian manifolds but are based on different approaches. For a general
review on various types of uncertainty principles, we refer to the survey article [20] and
the book [32].

A particularly interesting uncertainty principle for compact Riemannian manifolds can
be found in the recent work [56] of Martini. In [56], it is shown that for all o, 5 > 0 and
f € L?(M) with null mean value the following inequality holds:

I Fllar < Coslles P - 1 (~2an) 8 FIT.

This inequality is a special case of a more general theory treating uncertainty principles
on abstract measure spaces (see also [11] and [72]). The proof of this inequality is mainly
based on the spectral theorem and on estimates involving the heat semigroup generated
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by the Laplace-Beltrami operator Ay,. In contrast to the uncertainty inequality (2.94),
the constant C, g in the above inequality is not explicitly known.

Another interesting uncertainty principle for compact manifolds, a generalization of
the uncertainty principle of Hardy that is based on the eigenfunction expansion of the
Laplace-Beltrami operator Ay, can be found in the article [65].

Sections 2.3 and 2.4. Theorem 2.54 in Section 2.4 can be seen as a generalization of
the classical Heisenberg-Pauli-Weyl inequality (1.9). A variety of uncertainty principles
that are related to the uncertainty inequality (2.115) can be found in the literature, in
particular, in [20], [32] and [56]. However, Theorem 2.54 in this form is new and partic-
ularly interesting since the included uncertainty inequality is sharp and the underlying
proof is based on an operator theoretic approach that provides a position and a frequency
variance of a function f.

Theorem 2.51 in Section 2.3 is also a new result and has strong relations to the uncertainty
principles in Sections 2.2 and 2.4. In particular, if € is a compact star-shaped subset of
a manifold £ diffeomorphic to RY, then Theorem 2.51 is an immediate consequence of
Theorem 2.54.

Asymptotic sharpness. The usage of a Gaussian-type function instead of the heat kernel
to prove the asymptotic sharpness of the uncertainty principles in the Propositions 2.58
and 2.59 is novel in this thesis. In prior works, Fourier techniques and the heat kernel were
used to prove the asymptotic sharpness of the uncertainty principles for ultraspherical
expansions [73], for Jacobi expansions [54] and on the unit circle [68].

Uncertainty principles on the unit sphere. In the literature, there exist several uncer-
tainty principles on the unit sphere S? that are very similar to the one in Corollary 2.60.
In the first place, we mention the article [73] in which Corollary 2.60 was proven for
radial functions on the unit sphere S%, i.e. functions that have an expansion in terms of
ultraspherical polynomials.

Other works treating uncertainty principles on the sphere attained similar results as
in Corollary 2.60, but worked with slightly different techniques. In [62], the Laplace-
Beltrami operator Ag2 was used to define a frequency variance for functions on S%. For
the proof of the uncertainty inequality, a vector valued differential operator was intro-
duced to split the operator Agz. Similar results using the same technique as in [62] were
also obtained in [21, Section 5.5] and [22].

Later on, also in [26] and [27] vector valued differential operators were used to prove an
uncertainty principle on S? that is very similar to the uncertainty in Corollary 2.60.

Uncertainty principles on projective spaces. Corollary 2.61 is a novel result but strongly
related to uncertainty principles for Jacobi expansions. In fact, since the radial square
integrable functions on a projective space have an expansion in terms of Jacobi polyno-
mials, Corollary 2.61 restricted to radial functions corresponds exactly to the uncertainty
principle proven in [54]. The technical details of the projective spaces are primarily taken
from the books [3], [4] and the article [35].
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2. Uncertainty principles on Riemannian manifolds

Uncertainty principles on hyperbolic spaces. The uncertainty principle on hyperbolic
spaces formulated in Corollary 2.63 is novel. Another interesting local uncertainty prin-
ciple for hyperbolic spaces can be found in [82].

Estimates of the uncertainty principles using comparison principles. The usage of com-
parison theorems, in particular Bishop’s theorem, to estimate the uncertainty principles
explicitly in terms of the curvature of the Riemannian manifold is novel in this the-
sis. All the comparison theorems used in Section 2.7, including Bishop’s Theorem, the
Morse-Schonberg Theorem and the Bonnet-Myers Theorem used are taken from [9].
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"Two gin-scented tears trickled down the sides of his
nose. But it was all right, everything was all right,
the struggle was finished. He had won the victory
over himself. He loved Big Brother."

George Orwell, Nineteen Eighty-Four, 1949

Optimally space localized
polynomials

In this final chapter, we are going to study how the uncertainty principles of the previous
chapters can be used to find well-localized polynomials and to analyze the space-frequency
behavior of certain families of polynomials. In principle, we will consider two particular
settings: Jacobi expansions on the interval [0, 7] and spherical polynomials on compact
two-point homogeneous spaces.

In the first section, we will study the uncertainty inequality (1.72) for Jacobi expansions
with regard to polynomial subspaces of L*([0, 7], w,s). In particular, in Theorem 3.6
and in Corollary 3.10, we will give representations of those polynomials P{*? that are
optimally localized at the left hand boundary of the interval [0, 7] with respect to the
mean value e,45. We will show (Proposition 3.7) that the position variance vargﬁ of the
uncertainty principle gets minimal for the polynomials P{*#. Moreover, in Theorem 3.14,
we will prove that the uncertainty product vary’ (P . var?’ (P of the optimally
space localized polynomials P{*?) is uniformly bounded but does in general not tend to
the optimal constant as n — oo. Finally, we will analyze the space-frequency behavior
of two further well-known families of polynomials, the Christoffel-Darboux kernels and
the de La Vallée Poussin kernels. As a consequence of Theorem 3.15, we will see that the
uncertainty product for the Christoffel-Darboux kernel f(}fﬁﬁ) tends linearly to infinity
as n — oo, whereas the uncertainty product of the de La Vallée Poussin kernel V,, in
Theorem 3.16 tends to the optimal constant of the uncertainty principle.

The second section includes an intermediate result on the monotonicity of extremal zeros
of Jacobi and associated Jacobi polynomials when certain parameters are altered. This
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3. Optimally space localized polynomials

auxiliary result enables us to carry the optimality results of Theorem 3.6 over to the
setting of spherical polynomials on a compact two-point homogeneous space M.

In the last section, we will then investigate the uncertainty product on compact two-
point homogeneous spaces M, i.e., the spheres S¢ and the projective spaces RP4, CP?,
HP¢ and Ca,., in relation with certain spaces of spherical polynomials on M. Similar as
in Section 3.1, we will give in Theorem 3.28 and Corollary 3.29 explicit formulas for those
polynomials PM that are optimally localized at a point p € M with respect to the mean
value 5]]0” and that minimize the position variance Vargfp of the uncertainty principle.

3.1. Optimally space localized polynomials for Jacobi
expansions

We start out by introducing particular polynomial subspaces of the Hilbert space
L*([0, 7], wap). As in Section 1.5.1, the weight function wag given by

W, (t):2°‘+ﬁ+1 sin?et! t cog?Pt! t
b 2 2

denotes for a, f > —1 the Jacobi weight on the interval [0, 7] and Pl(a”g ) (cost) the Jacobi
polynomial of order [. Further, we define by

o P(avﬁ) t
P (cost) o= T1_(05) (3.1)
12

the respective orthonormal Jacobi polynomial on [0, 7].

Definition 3.1. As subspaces of L*([0, 7], wag), we consider the following three polyno-
mial spaces:

(1) The space spanned by the polynomials pl(a”g ), I <n:

11(ep) .= {P . P(t) = chpl(a’ﬁ)(cost), Cy. vy Cn € C} . (3.2)

1=0
(2) The space spanned by the polynomials pl(a’ﬁ), m<Il<n:

m,n

I8 .— {P c P(t) =) ap®(cost), cm,... cn € (C} . (3.3)

l=m

m—1
(3) The space spanned by a polynomial R(t) = p®? (cost)+ > elpl(a’m (cost) of degree
1=0
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3.1. Optimally space localized polynomials for Jacobi expansions

m and the polynomials pl(a’ﬁ), m+1<Il<n

H%’f) : {P P(t) =c,R(t) + > clpl(a’ﬁ)(cost), Cry vy Cn € C} . (34)

l=m+1

Further, we define the unit spheres of the spaces 1% Hg,‘j‘”ff) and H;g f)

s = {P et : ||Plly,, =1},
s = {P et : ||Plly,, =1},
Sien) = {Pengy : |Pllu,, =1}

Remark 3.2. Clearly, 19 c TI{*#) and H§§f’ C II(*A. In the literature, the spaces
Hfjj‘f) are sometimes called wavelet spaces and considered in a more general theory on
polynomial wavelets and polynomial frames, see for instance [58] and the references
therein. The standardization e,, = 1 for the highest expansion coefficient of the poly-
nomial R causes no loss of generality and is a useful convention for the upcoming cal-
culations. The polynomials in the spaces H%n play an important role in the theory of
polynomial approximation. Hereby, a usual choice for the polynomial R is the Christoffel-
Darboux kernel K% (¢) of order m given by

Kfff’ﬁ Z p(a”6 (Cos t).

As contemporary references on this topic we refer to [17] and [59].

The first goal of thls section is to study the localization of the polynomials in the spaces
1) 118 and H S ﬁ at the left hand boundary of the interval [0, 7] and to determine
those polynomlals that are in some sense best localized. As an analyzing tool for the
localization of a function f € L*([0, 7], wag) at the point ¢ = 0, we consider the mean
value

ool f) = [ cost|F(O)Pwas(t)dt (35)

as defined in (1.71). If || f|lw,, = 1, then —1 < e45(f) < 1, and the more the mass of
the L2-density f is concentrated at the boundary point ¢ = 0, the closer the value €,5(f)
gets to 1. Therefore, the value €,4(f) can be interpreted as a measure on how well the
function f is localized at the left hand boundary of the interval [0, 7]. We say that f is
localized at t = 0 if the value e,3(f) approaches 1.

Now, our aim is to find those elements of the polynomial spaces IT1{*?) Hﬁ;;‘f) and H%’ ’nﬁ)
that are optimally localized at the boundary point £ = 0. In partlcular, we want to solve
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the following optimization problems:

PP = arg max eqs(P), (36)
Pes{™?

Pl)) = arg max eq5(P), 37
’ Pesty)

PED = arg max_cos(P). (38)
y PES%?T[Z)

Since the linear spaces I1(®%%) Hgg‘f) and Hg-z ’f) are finite-dimensional, the unit spheres

S(e8) Sgﬁf) and ng) are compact subsets and the functional €,4 is bounded and con-
tinuous on the respective polynomial space. Hence, it is guaranteed that solutions of the
optimization problems (3.6), (3.7) and (3.8) exist.

Remark 3.3. Instead of searching for the polynomials P(*%) 77,(,3;{3) and 737(5 f ) that are
optimally localized at t = 0 and that maximize the mean value ¢,3, we could also search
for the polynomials that are optimally localized at the right hand boundary of the interval
[0, 7] and that minimize the mean value ,43. Since the weight function w,g and the Jacobi
polynomial p{®?) satisfy was(t) = wsa(m —t) and pl®?(cost) = (=1)"p{P¥ (cos(m — 1)),
minimizing e,5(P) with respect to polynomials in S(®%) Sgﬁ‘;ff) and S§§ ’f) yields the same
as maximizing e, (P) with respect to polynomials in S{%) ngf’ﬁ) and Sggf: ). Because
of this symmetric relation, it is entirely sufficient to consider only the maximization

problems (3.6), (3.7) and (3.8).

In order to describe the optimal polynomials, we need the notion of associated and of
scaled co-recursive associated polynomials. First of all, we know that the orthonormal
Jacobi polynomials pl(a’ﬁ ) satisfy the three-term recurrence relation (see [25, Table 1.1])

bl+1pl(i’1ﬁ)(:v) = (z — a)p\™? () — bp{*(z), 1=0,1,2,3,... (3.9)
«a Q, 1
P @) =0, py(e) = "
0
for x = cost in the interval [—1,1] and
ﬁ2 _ @2
_ C1=0,1,2, ... 3.10
“T@tarfArat it (8.10)
1
Al +a)(+B)(I+a+P) :
b = C1=1,2,3,... (311
: <(2l+a+ﬁ)2(2l+a+ﬁ+1)(2l+a+ﬁ—1) (3:11)

i b anDa+ DO(B+ 1))
b0_</o waﬁdt) —<2++ NCENCET) ) .

Then, the associated and the scaled co-recursive associated Jacobi polynomials are de-
fined as follows:
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3.1. Optimally space localized polynomials for Jacobi expansions

Definition 3.4. For ¢ > 0 (if ¢ > 0, assume that a + 3 # —2c¢), we define the associated
Jacobi polynomials pga”ﬁ ) (x,c) on the interval [—1, 1] by the shifted recurrence relation

bc+l+1 pl(j?lﬁ) (ZL’, C) = (ZE - ac-i—l)pl(aﬁ) (Iv C) - bc—i—l pl(gjlﬁ) (J:a C)v l= 0,1,2,..., (312)
P (z,¢) =0, P (2, c) = 1.

Further, for v € R and § > 0, we define the scaled co-recursive associated Jacobi poly-

nomials pl(a”g ) (x,c¢,7,d) on [—1,1] by the three-term recurrence relation

b1 Piy (2, ¢,7,8) = (2 — acid) P (2, ¢,79,8) = bew i) (x, ¢, 7, 0),
1=1,2,3,4..., (3.13)
[ a 53; — Qe — 7
p(() ﬁ)('r?Caﬂya(s) = 17 pg ,5)(1,’07,}/75) = 5 -
ﬁchl

The three-term recurrence relation of the co-recursive associated Jacobi polynomials

pl(i’lm (x,c,7,d) corresponds to the three-term recurrence relation of the associated Ja-

cobi polynomials except for the formula of the initial polynomial pga’ﬁ ) (x,¢,7,0). For

¢=0,~v=0and § = 1, we have the identities p\” (z,0) = p{*?(2,0,0,1) = by p\*” (2).

For m € N, the associated polynomials p§°‘ﬂ) (x,m) and pl(a’ﬁ) (x,m,,d) can be described

with help of the symmetric Jacobi matrix J*, 0 < m < n, defined by

4 bmia 00 e 0
b1 @mi1 bz O -0 0
goo | 0 bare Gwie bua o B (3.14)
0 e 0 bn—? An—1 bn—l
0 ... ... 0 b,y ap

If m = 0, we write J,, instead of JY. Then, in view of the three-term recurrence formulas
(3.12) and (3.13), the polynomials pW) (x,m) and pl(a’ﬁ) (x,m,v,d), 1 > 1, can be written
as (cf. [42, Theorem 2.2.4])

i (x,m) = det(a1, — I, ), (3.15)

(,3) _ o 0\ wm [ 0
pl ($5m7775) - det <$ ( O 1[_1 ) m—+1—1 ( 0 Ol—l >> ) (316)

where 1;,_; denotes the (I—1)-dimensional identity matrix and 0;_; the ({—1)-dimensional
zero matrix.

and

Next, we give a characterization of the mean value £,5(P) in terms of the expansion

coefficients ¢; of the polynomial P = >7" clpl(a’ﬁ ),
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3. Optimally space localized polynomials

Lemma 3.5.

For the polynomial P(t Z clpl cost we have

cap(P) = c"J,c, if Pelle?,

cap(P) =" I)'e, if Pe H;”),

cap(P) = e Iye + (€as(R) = am)|cm/?, if Pe ngn)v
with the coefficient vectors ¢ = (co,...,cy)t and € = (cpmy ..., ).

Proof. Using the three-term recurrence formula (3.9) and the orthonormality relation of
the Jacobi polynomials p( a6) , we get for P € Hf{"ﬁ)

n 2
> ap™ (cos t)‘ Wap(t)dt
1=0

cap(P) = /07r cost
_/ (Zc cost pi®?( cost)(chpl (cost) )wag(t)dt

n

= / (Z o) ballJrl D (cost) + ap!™ (cost) + bip'™? (cos t)))

(chpl (cost) )wag(t)dt

n—1

= Zal’Cl| + Z (bl+1ClCl+1 + bl+lclcl+1> =c"J,c.

If co =... =cm_1 = 0, we get the assertion for polynomials P in the space Hﬁfff). If
P e ngn , then P has the representation

m—1 n
P(t) = cp, (p,(fj’ﬂ)(cos 6+ > elpl(a”g)(cos t)) + > clpfa’ﬂ)(cos t),

=0 l=m+1

where the polynomial R is given by R(t) = p{®? (cost) + S7%," elpl(a’ﬁ)(cos t). Inserting

this representation in the upper formula for £,3(P) yields the identity e,5(P) = (e45(R)—
am)|cm|? + cHIMe. O

Using the characterization of e,5(P) in Lemma 3.5, we proceed to the solution of the
optimization problems (3.6), (3.7) and (3.8).

Theorem 3.6.
The solutions of the optimization problems (3.6), (3.7) and (3.8) are given by

P(aﬁ Zpl An+1) ( ﬁ)(cost), (3.17)
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3.1. Optimally space localized polynomials for Jacobi expansions

P (£) = 2 Z P g, m) 91 (cos ), (3.18)

(ayﬁ 5 (a,ﬁ) 3 19

Pro () = )+ Z pl An- m+17m YR, OR)p " (cost) |, (3.19)
l=m+1

where pl(a’m(m,m) and pl(a’ﬁ)(x,m,vn,csn) denote the associated and the scaled co-

recursive associated Jacobi polynomials as given in Definition 3.4 with the shift term
YR = €ap(R) — @ and the scaling factor or = |RIl3, |

The values \p11, /\n m+1 and )\f_m+1 denote the largest zero of the polynomials p,(ﬁtf) (x),

pfloﬁf,zﬂ(:lr, m) and pn m+1(x m,Yr,0r) in the interval [—1, 1], respectively. The constants

K1, ko and k3 are chosen such that the optimal polynomials lie in the respective unit sphere
and are uniquely determined up to multiplication with a complex scalar of absolute value
one. The mazimal value of €45 in the respective polynomial space is given by

M"gawg) = Imax gaﬁ(P) - )\n—i-lv

Pes{™?
Mye?) = max €ap(P) = A1,
7 Pesi?
M(aﬁ) N (P) _ )\R
’R,n - m(?&X ) gﬂéﬂ — n—m-1-
PeSy

Proof. We start out by determining the optimal solution Pr(r‘i;f) for the optimization
problem (3.7). The formula for the the optimal polynomial P{*?) follows then as a

special case if we set m = 0. First of all, Lemma 3.5 states that the mean value e,3(P)

(aﬂ)(

of a polynomial P(t) = 31, ap;*"” (cost) can be written as g,5(P) = ¢J™¢ with the

coefficient vector € = (¢, -+, ¢,)T. Thus, maximizing e,5(P) with respect to a normed
polynomlal P e S ,f is equwalent to maximize the quadratic functional ¢#J™€ subject
to |¢]* = 2, + 2y + -+ = 1. If X, denotes the largest eigenvalue of the

symmetric J acobi matrix J7', we have
cHyme < am el (3.20)

and equality is attained for the eigenvectors corresponding to A7, ;. Now, the largest
eigenvalue of the Jacobi matrix J corresponds exactly with the largest zero of the as-
sociated Jacobi polynomial pn W)L 1(x,m) (cf. [25, Theorem 1.31]). Using the recursion
formula (3.12) of the associated Jacobi polynomials pl(a’ﬁ ) (

value equation J;'¢ = A" € yields

x,m) with ¢,, = 1 the eigen-

pl(a;i (A ism), l=m,...n.

Finally, we have to normalize the coefficients ¢;, m < | < n, such that |¢[* = 1. This is
done by the absolute value of the constant 5. The uniqueness (up to a complex scalar
with absolute value 1) of the optimal polynomial P(*% follows from the fact that the
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3. Optimally space localized polynomials

largest zero of p{™?) +1(@,m) is simple (see [10, Theorem 5.3]). The formula for M%)

follows directly from the estimate in (3.20).

We consider now the third polynomial space Hggf). Lemma 3.5 states that in this case the

mean value e,3(P) of P(t) = ¢, R(t) + X1, i1 clpl(a’ﬁ)(cos t) can be written as e,3(P) =
cHIME + (ea5(R) — am)|em|?, with the coefficient vector € = (¢, - -+, ¢,)T. Maximizing
£q5(P) with respect to a polynomial P € S%f ’,’?) is therefore equivalent to maximize the
quadratic functional ¢#J™¢ + (e45(R) — am)|cm|? subject to (||R||fuw —Dlen|*+1e* = 1.
Using a Lagrange multiplier A and differentiating the Lagrange function, we obtain the
identity
T
J"E + yr(cm,0,---,0)" = A(éRcm, Cmil, """ ,cn)

as a necessary condition for the maximum, where vz = €44(R)—a., and or = ||R|[2, ,- By
the equation (3.16), this system of equations is related to the three-term recursion formula

(3.13) of the scaled co-recursive associated polynomials pl(a’ﬁ ) (x,m,vyr,0r). In particular,

the value A\ corresponds to a root of pﬁl‘i’fg 11(x,m,yg,0r). Moreover, the maximum of

cHIme 4+ yr|cm|? is attained for the largest root A = AR of pﬁfﬁiiﬂ(x, m,Yr,0r) and

the corresponding eigenvector

T
¢ = K3 <17p§“ﬁ)()\§_m+1, m, YR, 0R); - - - ,pg‘iﬁz(Aﬁ_mH, m, VR, 572)) ,

where the constant k3 is chosen such that the condition (6x — 1)|c,|* + |€]> = 1 is
satisfied. The uniqueness of the polynomial 7?7(3 nﬁ ) (up to a complex scalar of absolute
value one) follows from the simplicity of the largest root A% ., of the polynomials
pl(a’ﬁ ) (x,m,yr,0r) (see [10, Theorem 5.3]). From the above argumentation it is also

clear that the maximal value M7(3a i ) is precisely the largest cigenvalue AR - O

In Corollary 1.34, the uncertainty principle for functions f € L?([0, 7], was) was formu-
lated in terms of the following position variance:

1 —ap(f)?

af
(f) = :
varg (aigi2 N 5aﬁ(f>>2

(3.21)

As the mean value £,4(f), also the position variance var%’ (f) measures the localization
of the function f at the boundary point t = 0 of the interval [0, 7]. In fact, if we define
the subsets

ﬁﬁfﬂ) ={P € S,gf“’ﬁ)  eap(P) > M}y

LB =P eSS e,5(P) > M},

LY =P eSFD: cas(P) > A},
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3.1. Optimally space localized polynomials for Jacobi expansions

where \; = QE;% corresponds to the sole root of the Jacobi polynomial pga’ﬂ ), the

following proposition holds.

Proposition 3.7.
If the sets L,,, L™ and LR are nonempty, then

arg min_varg’(P) = arg max_u(P) = P,
peci? peci?

arg min Val'gﬁ(P) = arg max gaﬁ(P) — ’])(aﬁ)

peclyy pecl e
arg min vary (P) = arg max e,5(P) = (),
pecie? peLie? ’
Proof. We consider the space variance vary’ as a function of A = cap(f). We have
1— A2
af —
varg ()\) = m,
dvar’ () = 2N = A)A—2(1 =A%) —2(1 - M)
a7 (A= M)? IRCER
Therefore, the derivative %vargﬁ is strictly decaying on the open interval (A, 1) and

strictly increasing on (—1, A1). So, for P € LA L5, 55375) maximizing e,4(P) yields

7n ?

the same result as minimizing var%’ (P). O

Remark 3.8. Whereas it can not be guaranteed that the sets Eﬁ,‘j’f) and 553;5) are
nonempty, the non-emptiness of the sets £(*% n > 1, is a consequence of the interlacing
property of the zeros of the Jacobi polynomials (cf. [83, Theorem 3.3.2], [10, Theorem
5.3]). Namely, this interlacing property implies that e,5(P{*?) = X\, 11 > A, > ... > Ay

3.1.1. Explicit expression for the optimally space localized polynomials

Our next goal is to find explicit expressions for the optimal polynomials P25 Péﬁf) and

737(3 f ) derived in Theorem 3.6. To this end, we need a Christoffel-Darboux type formula

for the associated Jacobi polynomials pl(a’ﬁ)(x, m) and pl(a’ﬁ) (x,m,~,9).

Lemma 3.9.
Let pl(a’ﬁ) (x,m) and p}a’ﬁ)(:v,m,% ) be the associated and the scaled co-recursive associ-
ated Jacobi polynomials as defined in (3.12) and (3.13). Then, the following Christoffel-

Darbouz type formulas hold:

> A @p g, m) (3.22)
k=m
P @ m) = pn ( mpe O @) et (@)
= bn+1 + bm )
r—y T —y
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3. Optimally space localized polynomials

Zp D @)pi) (y,m, 7, 0) (3.23)
P @R m 7, 6) = B (g7, O (@)
n+1 vy
@O =Dy =) pe@)
r—y r—y

Proof. We follow the lines of the proof of the original Christoffel-Darboux formula (see
[10, Theorem 4.5]). By (3.9) and (3.12), we have for k& > m the identities

wp P ()P (y, m)
= bpapy) ()i (g, m) + ™ (@)p) (y, m) + bepi (2)pi ) (y, m),

yps 2 (@)p ) (y, m)
(.6 (o (o5)

= b p™? (@)D (g, m) + apl™? ()i (y, m) + b ()l (y, m).

Subtracting the second equation from the first, we get

(x — P (@)pD) (y, m)
= ber (P @, m) = o7 (@)pi ) (5, m)

— b (P ()i (y,m) — pff‘f’( i (ym)).

Let
(2,8) () plP) (,8) (1 ()
D L)Pi—m \Y, p Z)Pr_m Yy, m
Fy(,y) = by (#)Pkm ( )x—z ()i ( )

Then, the last equation can be rewritten as

pl(caﬂ)( )pl(c fr’?(yu ) Fk(‘r7y) - Fk—l(x7y)7 k Z m,

where F,,_1(z,y) = — byt 61)( ). Summing the latter from m to n, we obtain (3.22).

Analogously, we get for the scaled co-recursive associated polynomials

o @) (g, m, 7y, 0) = Gl y) — Gia(w,y), b >m+1,
PO (@)ps™ (y, m, v, 6) = plo? (x),

where

(@B) [N, (@.8) (@B) /. \. (a.5)
p Dh—m (Y, ,77,0) — p T)Ph_ a1 (Y, M, 7,0
Ga(y) = by 1 (@) ( )= pp(@)Pp i ( )7

T—Y
b, (a,9) (a,3) oy — ay, —
Gm(x,y) _ +1pm+1< ) pxm_ ;@( Yy—a 7)7 k>m4+ 1.
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3.1. Optimally space localized polynomials for Jacobi expansions

Then, summing from m to n, we get

n

Z p(a,@ pkafn)(yam 775) Z (Gk(‘ray) - Gk—l(x7y)) +p(a )( )

k=m+1
b @8 () (3y — a, — (@) (2)(z —
_G(ry) — 1P (T )+pxm_ (@)Y = am =7) | Pm (wZ(l“ y)
) r—y
(avﬂ) €T 5 _ 1 _ (avﬂ) T
r—y =Y
Hence, we obtain formula (3.23). O

As a direct consequence of the Christoffel-Darboux type formulas in Lemma 3.9, we get
the following explicit formulas for the optimal polynomials in Theorem 3.6:

Corollary 3.10.
The optimal polynomials PP, Péfj’f) and 737(3;;6) in Theorem 3.6 have the explicit form

Pt (cos ) (A1)
cost — A1

Y

Péaﬁ) (t) = K1bpia
(1) — oy oA (cOS OO i3, m0) + b cos1)
’ cost — A0t i1

PO (1) — (bn+1p;+€><cos DD ONR 1 Rs Or)

plaf)

m,n )

cost — AR 4

L PP (eost)((Or = DNT 1 = 7m) + bupla Y (cos )
cost — /\f,mﬂ ’

where the constants ki, Ko, k3 and the roots Apy1 AT and \F_ .\ are given as in
Theorem 3.6.

Ezxample 3.11. We consider the orthonormal Chebyshev polynomials ¢,, corresponding to
the Jacobi polynomials p(®?) with o = 3 = —% and the weight function w,s(t) = 1. The
orthonormal Chebyshev polynomials are explicitly given as (see [25, p. 28-29])

to(cost) = f’ tn(cost) = \/%cos(nt), n>1.

The largest zero of the Chebyshev polynomials ¢, is given by A1 = cos(5.55) (see
83, (6.3.5)]). The normalized associated polynomials ¢, (x,m), m > 1, correspond to the
Chebyshev polynomials u, of the second kind given by (see [25, p. 28-29])

up(cost) = \/Esm((n—kl)t)7 n > 0.

sint
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3. Optimally space localized polynomials

_T

-5)- So, in the case of

(_%v'%)

the Chebyshev polynomials, we get for the optimally space localized polynomials Py,
171
and PT(nQn 2), n > 1, the formulas

11 " k cos((n + 1)t) cos( 22
it = 2 (12 S (g et = 2 TR

— T cost— cos(2n+2)

The largest zero of the polynomials u,; is given by A,.; = cos(

=

PLE () = — M2 ) <Z sin <(k —m+Um

Q Sln(nfm+2 k=m

Jeosin). =1

n—m-+

11
The polynomials 7372_2’ 2) are almost identical to the Rogosinski kernel R,, which is defined
as

" km
=1 e .
R,(t) +2 kz::l cos <2n - 1) cos(kt), t€[0,7]

For more details on the Rogosinski kernel and the relation to the optimal polynomials

1.1
P77 we refer to [50, p. 112-114], [70, Section 5.2] and [71].
Py 0). Pt 2 (8), Pyt (1),
v
(3-3) (3-3) (11
Po.f2 (1) Pe.fs (1) Peg0 > (1)

Figure 13: Optimally space localized polynomials and wavelets for Chebyshev expansions
on [0,7] (a = =—3)
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3.1. Optimally space localized polynomials for Jacobi expansions

0.42,0.42 0.42,0.42 0.42,0.42
Py (#). PO (@), PO (),

0.42,0.42 0.42,0.42 0.42,0.42
P (@), P ). P2 t).

V Y v
[3 1 15 2 26 3 E N [3 1 15 2 25 3 3 0 05

Figure 14: Optimally space localized polynomials and wavelets for Jacobi expansions on
[0, 7] with « = 3 = 0.42

3.1.2. Space-frequency localization of the optimally space localized
polynomials

In this section, we will compute the frequency variance var%’(P@f) of the optimally
space localized polynomials P(*# . This will enable us to determine the space-frequency
localization of the polynomials P*% and, in particular, to determine the asymptotic
behavior of the uncertainty product var®’(P@f) . var?’(Pleh) as the degree n of the
polynomial P{*? tends to infinity. Again, we need a Christoffel-Darboux type formula,
but this time for the derivatives p{™” (z) := dwp,(f Ny, pl? (2) = j—;p,(f’m (x) of the

Jacobi polynomial pgf’ﬁ ),

Lemma 3.12.
The following Christoffel-Darboux type formulas hold:
n n 01 8 a,8) a,3) a,B
(@8 ()l ( '(@)p” (y) = o (@) ()
Z )+ Z
k=1 r—y
(a,ﬁ) (o, 8) _(a8) (o, 8)
:bn+1pn ( ) n (y> pn+1 (y) n (QZ)’ (324)
r—y
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3. Optimally space localized polynomials

n ’ 1 " "
o, o, a,B a, o, o,
> o™ @)p™ @) = S (P (@)pe? () e (@)pyY () (3.25)
n 1" ]_ " "
o, o, a,0 a, a,B8 a,
> o (@) ><x>=§bm (" @)ple? (@) = Py (@)pe " () (3.26)
n /3/ ]. a,ﬁ a, " a, "
Z M@ = Ghua (P ()P (@) = 3p3Y (2)p? ()

+ 3 (@)ple? () — p (@)pe D (x)) . (3.27)

Proof. In principle, we follow again the lines of the proof of Theorem 4.5 in [10]. By the
three-term recurrence relation of the orthonormal Jacobi polynomials (3.9), we have the
identities

i @) () = ((@p”) (@) = 7 (@) ()
= bkﬂpki?%x)p,ia D) + arp™ (@) (y)
+ b (@) () — o (@) (y),
voi” (@p? () = o7 (@) (pi™ ) () = 7 )
= by (@) () + e (@)Y (y)
+ b (@)p (y) — p (@)pl P (y).

Subtracting the second equation from the first, we get

(x =y (@) (y) = bkﬂ(p,iﬁ) @ () = P (@)p ()
— b (o ()P () = o @)p ()
— (@ ) = i @7 ().

Now, summing from k& = 1 to k = n and dividing by (z — y), we get equation (3.24).

For the limit  — y in (3.24), we get the equation

23 Zp )pi? ()
k=1
:bn+1(p;ﬁﬁ’> @0 (@) =P @pe @), (3.29)

Further, we have the well known Christoffel-Darboux formula [10, Theorem 4.6]

Sor @) = b (A @D @) e @ @) (3.29)
=0
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3.1. Optimally space localized polynomials for Jacobi expansions

Differentiating both sides of (3.29) twice with respect to x, we get

23 p 7 (@)pi™ (@) = b (i) (@)D (@) = p? (@)pls) ()

23 (o™ (@)pf™” (@) + o (2)2) = baa (] ()00 () — O (2)p5) ()
=1

+p,(ff£) (2)pl@? () —p,(f’m”@)l?gla-ﬁf) (x))

Then, the first equation above gives (3.25) and the second equation in combination with
formula (3.28) implies the equations (3.26) and (3.27). 0

With the help of the Christoffel-Darboux type formulas in Lemma 3.12, it is possible
to compute the frequency variance of the optimally space localized polynomials P
explicitly. To this end, we need also the second-order differential operator L,z and
the respective differential equation of the Jacobi polynomials (see equations (1.66) and

(1.67)), ie.,
Lagp®? = —n(n+a+ B+ 1)pl*?, (3.30)

where the differential operator L,g is given in the variable z = cost as

2

Lagz(1—x2)d—+(ﬁ—a—(a+ﬁ+2)x) d

—. 3.31
dx? dx ( )

Proposition 3.13.
The frequency variance Var'féﬁ of the optimal polynomial P\*? has the explicit form

n+a++3)  (a—F+ Ao+ 5)? —4(Mg)?

o ey _ U
vary (P7) 3 6(1— Coers)?)

(3.32)

Proof. By Corollary 3.10 and Theorem 3.6, the optimal polynomial P(*# has the repre-
sentations

(a,8) (o, 3)

o Dy, cost)py An " (a a,
7)7(1 ’ﬁ)(t) = ’ilanrl +1 ( ) ( +1) =K1 Zpl( ﬁ)()‘nJrl)pl( g (COS t)
cost — A\pt1 o

Without loss of generality we can assume that P(*%(0) > 0. Then, the constant k; is
given by

1
2

k1= 1PN, = (X Onn)?)
=0

By formula (1.70) and the equations (3.31) and (3.30), we get for the frequency variance
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of P

(1.70)

ar%ﬁ(Péa,ﬂ)) <_Laﬂp(aﬁ) P(aﬂ)>waa

) 12 230+ a+ B4 D) A )?
=0

-k Z ocﬂpz n+1)pz(a )()\n+1)
I=

—(1—=(A -‘1-1)2)2[:0 2" )Pt ™ i)
>0 Pz(aﬁ)(/\nﬂ)Q
2o pl(aﬂ) (>\n+1)pl(aﬂ)()\n+1)

>0 101(0476)()\%1)2

(3.31)

+(a =B+ pi(a+5+2)

)

Now, using Lemma 3.12 and the fact that A, is the largest zero of p,, f; we get
L= Qa0 ) | 0= B+ A+ 8+ 2) pit (Ansa)
Var%ﬁ('])(o"ﬁ)) _ n+1)” Pnii n+1 + n+1 Pn+y1 n+1 '
3 pgj—[i-l) ()‘n—l-l) 2 Pgla-ﬁ) (/\n+1)

The derivative P9 is related to the Jacobi polynomial Pe+15+1) by (cf. [83, (4.21.7)])

a,3)’ 1
p75+vlﬂ) (z) = WP,EO‘H’BH)(:C). (3.33)

Hence, using (3.33) and the formula (3.31) for the operator L,g, we get for the frequency
variance

2 a+1,8+1)" - (a+1,8+1)
var2? (PR — (Ans1)” = 1pf (Ant1) L B+ Ansi(a+B8+2)py (Ant1)

n 3 pgla+1,ﬁ+1)()\n+1) 2 p(a—s—l,ﬁ-q-l)(/\nH)
_n(n+a+ﬁ+3)+a—ﬁ+)\n+1(a+6 2) pir Y (M)
3 6 p%““ T Ai1)
_nn+a+B+3) o= B+ (@ +B8-2) (1 - M) Catn)
3 6(1 — (An41)?) P )
_n+atB+3) (0= B+ hn(a+B)P = 40w’
3 6(1 — (Ant1)?) '
O

Finally, we can show that the uncertainty product vare’(P@#) . var®’(P) for the
optimal polynomials P{*# is uniformly bounded for all n € N. In the case that |a| =
|B| = 5, we even get explicit results.
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3.1. Optimally space localized polynomials for Jacobi expansions

Theorem 3.14.
There exists a constant Cyg, independent of n, such that the uncertainty product of the
optimal polynomial P\ is bounded by

vard” (PL?) - varg’ (PL?)) < Cog.

n

Further, if —% <a,f< %, then

) N N o N (a+ B +2)%(n? + 2a% — 2)
71113010 Valrsﬁ(P?(1 ’ﬁ)) -VarFﬁ(P( ’6)) < 2(0 + 172 )

In the case that |a| = |B| = 3, we get

11 11y 11 (11 2 1
Jingovarsz’ 2(Pn? ) -varg 2(Pn??) = 33 ~ 0.3225 > —,
11 (11 11 (11 2 1 9
JLH(}OVar§72(P75272)) . Varf,’Q(Pff’Q)) = % — 5 ~ 2.7899 > Z’
1.1 (11 11 11 4 /72 1
Tim varg (P2 ) - varg 2 (P2 ) = 9(7; . 2) ~ 1.2399 > 1,
L1 Ly 1111y 2
nlirglovarSQ’Q(Pn 220 ovar2 2 (P 2?) = 3T 2~ 1,2899 > 1.

Proof. By [83, Theorem 8.9.1], there exists a constant ¢,z > —, independent of n, such
that

T+ Ca5>

An >cos(
= n—+1

Then, we get by Proposition 3.13

vary’ (Pl . vary (pled))
1— (Aug1)? <”(” +a+8+3) n (@ =B+ Api(a+0))* - 4()‘n+1)2)

() 50 )
(m+cap)? nn+a+8+3) (a+8+2)*(a—0+  si(a+5-2)
T (Bt ) S ELP 60— 6+ Aa(a +5+2))

Both terms on the right hand side of the above inequality can be bounded uniformly
by a constant independent of n. Hence also the product vary’ (P9 . vary? (Peh) i
uniformly bounded by a constant C,g3.

If —% <, 3 < 3, then by [83, Theorem 6.3.2], the largest zero of p,(f_‘;?) (x) is bounded by

\ - ( 2T )
" cos )
1 n+a+G+3
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Hence,

lim var’ (PD) - vary? (P9)

oy Qe)? (n(n tatf+3) (a=f+dmlatf)? - 4<An+1)2)
e ? 3 6(1 — (Ant1)?
(a+ﬁ+2 _'_ )\n+1) ( ( +1) )
< fim 4 nn+a+p+3)  (a+B+2)%(a— B+ (a+5-2)
— n—oo (MM I AnH) 32n+a+ [+ 3)? 6(c = B+ Mg+ B +2))
_(a+B+2)%(n* +20% - 2)
B 12(a + 1)2 ‘
Finally, if « = 3 = —1, 04 =f=3 a=—-0=—-1 a=—3 =1 the extremal zeros of
the Jacobi polynomials p’ f (x) can be computed as (see [83, (6.3.5)])

T
)\n - ) ATL =
! COS<2n+2> . Cos(n+1>

2
)\n — ) )\n =
+ COS(2n+1> +1 COS(2n+1>

respectively. Therefore, we get

_ 1111y 11 (11 o 1—()?nn+4) 1 1
1 272 7’L2 2 . 272 7’L2 2 — 1 _ = -,
lim varg (P ) - vary2 (P ) Lim Do)’ 3 5 5 3
A1 11 111 1 =()?’n(n+2) 1 7% 1
1 27 2 " 27 2 . 27 2 " 27 2 — 1 - = =,
lim varg”? (P ) - varg"? (P ) = lim D12 3 57 19 2
_ 11 (11 A1 (11 1— (A1) n(n+3) 2241 +1
lim vard’?(Pn2’%") -var2 2 (Pn?'?’) = lim —
n—60 S ( ) F ( ) n—oo ()\n+1 _ %)2 3 3(4)\n+1 _ 2)
2
_T 9,
3
1111y 11 (11 o I—=(g)?’nn+3)  2(1—2\41))
lim var2’ ?(Pp? 27) -varz 2(Pp? ?") = lim +
n—00 S ( ) F ( ) n—oo (% _|_ )\n+1)2 3 3(1 + 2)\n+1))
o 4(71’2 1)
9\ 3 2

3.1.3. Space-frequency localization of the Christoffel-Darboux kernel

We are now going to compare the space-frequency localization of the space optimal
polynomials P{*# with the space-frequency behavior of other well-known families of
polynomials. As a first example, we consider the Christoffel-Darboux kernels K(*# of
degree n which are defined on [0, 7] as

Kl Z ) A (cost), (3.34)
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3.1. Optimally space localized polynomials for Jacobi expansions

and have the explicit form (cf. [83, (4.5.3)])

[(n+a+03+2) platip)

K(av/B) t — 2_a_ﬂ_2
w ) Fa+1I'(n+p6+1) "

(cost). (3.35)

In the case that « = 3 = —%, i.e., for the Chebyshev polynomials of first kind, the
Christoffel-Darboux kernel corresponds to the Dirichlet kernel D,, given by
11 1 sin(2rtly

D)1= K4 gy = LG )
7 sin(s)
For the Dirichlet kernel it is known that the uncertainty product is far from being optimal.
More precisely, in [68] it was shown that for the normalized Dirichlet kernel D, :=
D,./||Dy,]| the following formula holds:

VarS(Dn) ~VarF(Dn) = (47 +112)£Ln + 1>.

So, the uncertainty product tends linearly to infinity as the degree n of the Dirichlet kernel
D,, tends to infinity. A similar result can be shown also for the normalized Christoffel-
Darboux kernel K(*# defined by

- (c.6) KPP (cost)  PlttP(cost)
O T T = o
n Wap n

s

Theorem 3.15. 3
For the normalized Christoffel-Darbouz kernel K% | the following formulas hold:

- 2+ 1)

N K@B)) =1 —

gﬁ(" ) 2n+a+ 42

B [ (o a+1

vary’ (Ki07) = ——=n(n+a+5+2),
2
oB (o)) . ypaB (frlap)) _ (@ B+2° Cnt+B+1)n+atf+2)

varg (Kn ) vary (Kn )— ) in .

Proof. For the norm || P9, .. ., we know from formula (1.64) that

[P, L = [Pt (cos g ()t
0

Wa 41,8
202 (a + n 4+ 2)T(B+n+ 1)
nT(a+f+n+2)(a+B+2n+2)

To compute the norm || P2, . we use first of all the coordinate transform = cost.
Then, [|[PI+EA2  reads as

Wa,pB

1
IBE O, = [P @) = 2)°(1 4+ ) da
-1
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3. Optimally space localized polynomials

Now, using the definition (1.63) of the polynomial P14 e,

@itg o Tn+a+2) I(m\T(n+jt+a+pf+2) (x—1\
plotl (SC)_n!F(n—i—oz—i—ﬁ+2)jz:;J j T(j+a-+2) ( 5 >, (3.36)

and the orthogonality relation (1.64) of the Jacobi polynomials, we can derive

C(n+a+2)

p(a+1,ﬁ _
R

Pa+15 )1 —2)*(1 + 2)Pd.

Next, applying the Rodriguez formula (see [83, 4.3.1]) of the Jacobi polynomial
Ple+1.0)(7) and integrating by parts n times, yields the equation

(a+1,8) _ (_1)n1"(n +a+ 2) ! i " _ o\nta B+n 1
||P +1 ||wa,6 (n')zznl—\(a + 2) / dr [(]— .’L') + +1(1 + {L’) + ] 1 xdl‘
Fn+a+2) ! a n
= T ) Lm0
_Tlntat2)4nllet VI(B+n+1)
(o +2) [(a+p+n+2)
_ 2Dt o+ AT(F k1) (3.37)

a+1l  T(a+B+n+2)n!

where in the penultimate equality we used the integral formula (1.61). In total, we get
for the mean value €,3 of the normalized Christoffel-Darboux kernel:

(1 = cos ) POHLD) (cos 1)? o5(t)dt
e (R =1 S0P (0= cost) P eos 1w (1)
« n - (a+1, - a+1,
1P ﬁ)llwaﬁ |12 ﬂllwaﬁ

PR et
|PET e, e+ 2

Next, using the representation (3.36) for the polynomial Pff{?’ﬁ ) and the orthogonality
relation (1.64), we can deduce the following identity

[ @+ 0PI @ P @) (1 - )1+ a)

-1

I'(n+a+2 1 o N
- <nf e +>3>/ (1+2) PO (@) (1 — 2)°(1 + 2)° da
I'(n+a+2) o
(n - DIT(a13) P O (2)(1 — 2)*(1 + ) d.
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3.1. Optimally space localized polynomials for Jacobi expansions

Now, with the same procedure as in (3.37), we get the equation

1
[0+ 2 PP (@) PO (@) (1 - 2)° (14 2) da

-1
 TI'n+a+2) a+ﬁ+2F(a+1)F(ﬁ+n+1)
 (n—=DI'(a+3) o+ B+n+2)
204842 D(a+n+2)L(B+n+1)

T - (a+2)(a+ ) (a+B+n+2) (3:38)

Using the formula (3.31) for the operator L,z and formula (3.33) for the derivative of
the Jacobi polynomials, we get for the frequency variance of the normalized Christoffel-
Darboux kernel:

Wa g

<_Laﬁpéa+1,5)7 P7§04+17ﬂ)>
)=

Wa g

(=Las1,3P10) — (1 4 cost)PlethA) | platlp))
CM—‘—l,IB
| P2

Wa g

Var%ﬂ (f((o"ﬁ)

n

Wa B

<_La+1 ﬁpéa—kl,ﬁ), Pr(La—Hﬂ))w )

: ERRT

Wa g

~nta+F+2{(1+cos t)PTEﬁZ’ﬁH), PRy,
2 1P |

Wa g

Now, using formula (3.30) and equation (3.38), we get

o 1
VarFﬂ(K}La,ﬁ)):n(n+@+ﬂ+2)—a+2n(n+a+ﬂ+2)
1
zziQn(n—l—Oﬁ*ﬁ‘f’Q)

Finally, for the uncertainty product, we get

1-— €ap (I}}(Laﬂ))2

335 o (K]

(a4 B8+2?2n+ 4+ 1)(n+a+3+2)
a o+ 2 4n

Vargﬁ (Kff"’ﬁ)) -var%ﬁ (KT(La,ﬁ)) — ~ -Var?,ﬁ ([’“(12&”3))

O

Theorem 3.15 states that also in the more general Jacobi setting the uncertainty product
of the normalized Christoffel-Darboux kernel f(,(f’ﬁ) tends linearly to infinity as n — oc.
The Christoffel-Darboux kernel has therefore a much worse space-frequency behavior
than the space optimal polynomial P,(LO‘”B) (see Theorem 3.14).
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3. Optimally space localized polynomials

Dg(t). Diy(t). Day(t).
/\ ) (\ JAWAN
v V [
F-(0.42,0.42 F-(0.42,0.42 F-(0.42,0.42
R0 (1), i (O S0 1),
\V4 \/\
A .

Figure 15: Dirichlet kernel and Christoffel-Darboux kernel for Jacobi expansions with
parameters o = = 0.42 on [0, 7].

3.1.4. Space-frequency localization of the de La Vallée Poussin kernel

As a second example, we consider a family of polynomial functions V,, for which the
uncertainty product of position and frequency variance tends to the optimal constant
W as n — oo. In this way, we get also an alternative proof for the asymptotic
sharpness of the uncertainty principle (1.72) for Jacobi expansions.

The trigonometric polynomial V,, of degree n, known as de La Vallée Poussin kernel (cf.
(31, p. 88]), is defined as

Va(t) := (1 +cost)”, neN. (3.39)

As in the last section, we denote by V,, the normalized variant of the de La Vallée Poussin
kernel, i.e., V,,(t) = V(t)/||Vallw,s- The following Theorem is a slight generalization of
(27, Theorem 2.2] proven by Goh and Goodman for ultraspherical expansions.

Theorem 3.16. ~
For the normalized de La Vallée Poussin kernel V,,, the following identities hold:

200 + 2

« Vn =1- )
cas(Vn) on+a+3+2
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3.1. Optimally space localized polynomials for Jacobi expansions

) = [Vl :M

nllwqg 2 +B ?

1—5a5(1~/)2 i (a+ 3+ 2)? 71 1
e R = ()

oz+ﬁ+2

Proof. Using the integral formula (1.61), we get the identities

||Vn||12u _ o2ntatf+l / %) sin?0 1 (L) cos?H (L) dt
— 92ntatftl Tla+1D)I(2n + 5 +1)
MNa+pB+2n+2)

s
VA, , = 25t [ cosi™ () sin®(5) cost ! ()

_ 22n+a+ﬁ+1n2F(O‘ +2)I'(2n + B3)
Lla+pF+2n+2)

T
HVnH?UaB —eap(Vy) = 22n+a+ﬁ+2/0 sin2(%) Cos4n(%) sinzo‘“(%) C082ﬂ+1(%)dt

_ 22n+a+ﬁ+2r(0‘ +2)I2n+6+1)
Ma+08+2n+3)

Hence, the formulas for q5(V,) and varf’(V,) follow immediately. Moreover, insert-

ing the obtained values for £,45(V,,) and vary’ (V,,) in the uncertainty product, a short

calculation gives

1 —ea(Vy)? B/ (04—|—B—|—2)2<1+ 1 )

—— vary (V) = :
ot Heas()P " 4 2n+p

Hence, although the polynomial V,, is not localized in space as well as the space optimal
polynomial P(*# the de La Vallée Poussin kernel V,, shows a better space-frequency
behavior as n tends to infinity. In particular, the frequency variance of V,, increases only

linearly in n, whereas Var?f (Péa’ﬁ)) increases quadratically.
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3. Optimally space localized polynomials

Vi(t). Via(t). Vau(t).

Figure 16: The de La Vallée Poussin kernel normalized in the Chebyshev norm ||

where o = (§ = —%.

’ Hwaﬂ7

3.2. Monotonicity of extremal zeros of orthogonal polynomials

To carry the results of Theorem 3.6 over to the setting of a compact two-point homoge-
neous space, we need an intermediate result concerning the behavior of the extremal zeros
of orthogonal polynomials P,(x,7) in terms of a parameter 7. An interesting result in
this direction based on the Hellmann-Feynman theorem is due to Ismail [41]. A slightly
modified variant of the results in [41] is given by the next theorem.

Theorem 3.17.
Let Qn(x,7), n > 0, be a family of monic orthogonal polynomials on [a,b] (—oo < a <
b < 00) depending on the parameter T and fulfilling the three-term recursion formula

2Qn(z,7) = Qni1(z, 7) + an(7)Qn(x, 7) 4+ bp(T)Qr—1(x,7), n >0, (3.40)
Q_1(x,7) =0, Qo(x,7)=1.

Assume that the coefficients a,(t) (n > 0) and b,(7) > 0 (n > 1) are differentiable
monotone decreasing (increasing) functions of the parameter . Then the largest zero of
the polynomial Q,,(x,T) is also a differentiable monotone decreasing (increasing) function
of the parameter T.

On the other hand, if the coefficients b, (T) are monotone decreasing (increasing) and the
coefficients a, () are monotone increasing (decreasing) functions, then the smallest zero
of Qn(x,7) is differentiable monotone increasing (decreasing). If one of the coefficients
ax(T) or bp(7T), k < n, is strictly monotone decreasing or increasing, then, in the above
statement, the smallest and the largest zero of Q,(x,T) are also strictly monotone.

Proof. Let A(7) be the largest zero of @, (x, 7). Clearly, all zeros of @, (x,7) are differ-
entiable functions of 7. Then, the Hellmann-Feynman theorem (see Theorem 7.3.1 and,
in particular, equation (7.3.8) in [42]) combined with the three-term recurrence formula
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3.2. Monotonicity of extremal zeros of orthogonal polynomials

(3.40) of the polynomials @, (z,7) implies the formula

(”f QRO 7)> Ar) _ 2 Q) (M@ )+ H(TQuaN 7)) (341)

iz Gk dr iz Gk

where aj, and b, denote differentiation with respect to 7 and (, = [I%, bi(7). Since
k

the polynomials Q(z,7) are monic, we have Qx(z,7) = [1i_,(x — x;(7)), where z¥(7),
i = 1,...,k denote the k distinct real zeros of Qx(z,7) in (a,b). Hence, Qx(b,7) >
0. Moreover, since A(7) is the largest zero of @,(x,7), we have due to the interlacing
property of the polynomials Qg(x,7) (see [83, Theorem 3.3.2])) that Qx(A,7) > 0 for
k =0,...,n — 1. Therefore, if ax(7) and by(7) are decreasing (increasing) functions of
the parameter 7, then the right hand side of equation (3.41) is negative (positive) and
the first statement of the Theorem is shown. A similar argumentation for the smallest
zero (keeping in mind that sign(Qg(a, 7)) = (—1)%) implies the second statement. The

statement for the strict monotonicity follows directly from formula (3.41). O

Now, we will use Theorem 3.17 to prove that the largest zero of the associated Jacobi
and ultraspherical polynomials is decreasing if certain parameters are increased.

Corollary 3.18.

Let ¢ > 0 (if ¢ > 0, assume that 2c+a+5 >0), « >0, > —1/2 and § < max{%,Qa} )
Then, the largest zero () of the associated Jacobi polynomial p{®® (x, c) is a decreasing
function of the parameter c.

Proof. We consider the monic associated Jacobi polynomials Q" (z,c) as orthogonal
polynomials depending on the parameter a.. The polynomials Q% (x, c) are defined by
the three-term recurrence relation

2Q (z,¢) = QLN (2, ¢) + tpse(@)QD (x,¢) + 2, (a)Q (x,¢), n>0, (3.42)
QY (x,c) =0, QY V(x,¢) =1,

where the coefficients a,.(a) and b2 («) are given by (see Table 1.1 in [25] for the
coefficients of the Jacobi polynomials)

3 —ao?
4n+c)(nt+cta)(nt+c+B)(n+c+a+p)
(2n+20+a+6>2(2n+20+a+ﬂ+1)(2n+20+a+ﬂ_1),

Unye() = ( )

n>1.

bi+c(a> -

Now, we have to check that the assumptions of Theorem 3.17 hold. In particular, we
show that a,.(a) and b2 («) are decreasing functions of the variable a.
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3. Optimally space localized polynomials

First, we consider the derivative a/,, .. For n > 0, ¢ > 0, we have

(—2a — 32—a? _ B%2—a? )

@nt2ctatp)  (2nt2ct2tatp)
2n+2c+a+p)(2n+2c+2+a+ )
(40 (n+ 0 200+ )20+ (a4 B7) + (1+ B)(a + 5)

2n+2c+a+6)2n+2c+2+a+6)

a;1+c (Oé) =

Since we assumed that o > 0 and § > —1/2, the term on the right hand side is always
negative. It remains to check the case n = 0, ¢ = 0. In this case, we get

2(1+0)

R

ap(@) = —

Thus, a,4.(«) is a monotone decreasing function of the parameter « if « > 0, 5 > —%
and n > 0.

Next, we examine the derivative (b2, .)'(«v). For n > 1, we get

1 1 2
62 / :bQ _
<n+c)(a> n+c(a><n+c+a+n+c+a+5 2n+20—|—a—|—ﬁ

1 1
_2n+2c+a+6+1_2n+2c+a+ﬁ—1>'

< B < 2a. Here, we get the upper bound

We consider first the case when o > % and —%

1 1 4
b2 !/ <b2 I
(nJrc)(a)—n+c<a)<n+c+a+n+c+a+ﬁ 2n+20—|—a+ﬁ>

_2 (o) —2(n+c)a+ (B+ a)(f — 2a)

(n+c+a)n+c+a+p8)2n+2c+a+ ) =0

< B <2a,¢c>0andn > 1. Next, we consider

N[

Hence (b2,.) («) is negative if o« > £, —
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3.2. Monotonicity of extremal zeros of orthogonal polynomials

the case 0 < a < % % <p< % and n > 1. In this case, we get the estimate
2
(0p0) (@) = b7 o(@) 2
(n+c+a+5)~ pratmrs
2 2
2%4—26—1—&4—[3 (2%+2C+C¥+ﬁ)—m
2
= b?’b—l—c(a) ( 2
(n+tc+ta+t g) - 4n+4c€-4o¢+2,@
2
(2n+2c+a+ﬁ— 1 )+ 1
4n+4c+2a+20 dn+4dc+2a+20
2
(2n+26+a+ﬁ— 1 )— 1
An+4c+2a+203 dn+4c+2a+206
2 2
< (a) ( — ) :
>0h4c 2 o B8 1
n+ct+a+ g - 4n+4ci404+25 n+tc+ 35435 = Sniscrdatds
Since (n+c+a+2)>(n+c+2+2)an 4n+4£24a+25 < Swrscriatig We can see that

also in this case the derivative (bfL +C) () <0 is negative.
In total, we can conclude that (b,.)'(a) < 0 and that b7, () is a monotone decay-
ing function of the parameter a if n > 1, ¢ > 0, @ > 0 and —% < p < max{%,Qa}.
By Theorem 3.17, the largest zero A(a) of Q9 (x,c) is therefore a decreasing func-
tion of the parameter a. Since the polynomials p{®?(z,c) are given by p{®?(z,c) =
biye  bp QP (x,c) (compare the recurrence relations (3.42) and (3.12)), the same

statement holds also for the polynomials p{®? (x, c). O

Corollary 3.19.
If a > 0, then the largest zero A(a) of the associated ultraspherical polynomials p{®® (z, c),
c > 0, is a decreasing function of the parameter c.

Proof. By (3.42), the monic associated ultraspherical polynomials Q(*®)(z, c) satisfy the
three-term recurrence relation

2Q\(z,0) = QY (2,0) + Uy ()Q Y (@,0), m 20,
anfa) (ZL’, C) = 0, (()aja)(l'a C) = 1a

with the coefficients

anic(@) =0, n >0,

bi+c(a) = (n+c)n+c+2a) , n>1.

d(n+ctati)(nteta-1)
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3. Optimally space localized polynomials

Thus, we have a,, (o) = 0, and for (b2, .) (e), @ > 0, we get

2 1
n+c~|—2a_n—|—c+oz+f n+c+a—>

—2a(n+c—1) = 2(a+ 3)?
(n+c+2a)(n+c+a+%)(n+c+a—7)

<@%ww=waxw<

<0.

= bzﬂrc( )

Thus, b7 («) is a decreasing function of the parameter o if @ > 0. Due to Theorem
3.17, the largest zero of Q(a o (a: ¢) is a decreasing function of the parameter «, and so
is the largest zero A\(a) of pl®®(z,¢) = biye- - by Q@ (7, ). 0

Also for the next result, we can use Theorem 3.17.

Corollary 3.20.

Leta>p,a+>0,¢>0,2c+a+>0and 0 <7 <c. Then, the largest zero \(T)
of the associated Jacobi polynomial pT™P+)(x c — 1), ¢ > 0, is a strictly decreasing
function of the parameter 7. Similarly, if « >0, > —1 and 0 < o < ¢, then the largest
zero M(o) of the associated Jacobi polynomial pl®+2P)(x ¢ — o) is a strictly decreasing
function of the parameter o.

Proof. First, we consider the monic associated Jacobi polynomials Q@ ™5+7)(x ¢ — 1)
as a family of orthogonal polynomials depending on the parameter 7. In this case, the
coefficients a,(7) and b?(7) in the three-term recurrence formula (3.42) are given by

B*—a?+27(8 — «)

n\) = ; = 0, A4
an(T) 2n+2c+a+0)2n+2c+2+a+f) n >0 (3.43)
b2 (r) = dn+c—71)(n+c+a)(n+c+p)(n+c+a+pB+71) .

" 2n+2c+a+06)@2n+2c+a+p+1)2n+2c+a+5-1)

(3.44)
For the derivatives, we get
2(8 - a) .
n(7) = <0 ifa> A
1 1
W)(T) =1, - <0 if > 0. 4
B0 =80 (g ) S0 ka0 (@)

Further, inequality (3.46) is strict if 7 > 0. Thus, by Theorem 3.17, the largest zero
of Qe+me+7)(x ¢ — 7), and therefore also the largest zero of the normalized polynomial

plotmetT) (x ¢ — 1), is a strictly decreasing function of the parameter 0 < 7 < c.

Now, we consider the monic associated polynomials Q (a+20,0) (x,c— o) depending on the
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3.2. Monotonicity of extremal zeros of orthogonal polynomials

parameter o. The coefficients of the three-term recurrence formula are given by

ﬁ2—(a—|—20)2 n >0
2n+2c+a+08)2n+2c+2+a+ () -
dn+c—o)(n+c+ta+o)(n+c—o+pf)(n+c+a+o+pf)

b2 (o) = 5 , n>1
2n+2c+a+06) " 2n+2c+a++1)2n+2c+a+5-1)

an(0) =

In this case, we get for the derivatives

Vo —4(a + 20)
@) = 2n+2c+a+p)2n+2c+2+a+3)’

wwwwﬂm®<— L, L 1 )

n+c—o n4+c+a+to n+c+f—-0c n+ct+a+f+o

——62()< a+ 20 n a+ 20 )
T N\ it ntetato)  (mtctratBro)ntetB—o)

Both, @, (o) and (b2)'(c) are negative if @ > 0 and strictly negative if 7 > 0. Thus,
the largest zero of the polynomial Q(®*+27%)(x ¢ — ¢) and of the normalized polynomial

(@+208) (3 ¢ — ) is a strictly decreasing function of the parameter 0 < o < c. O

If o« =0 and g < 0, it is not possible to use Corollary 3.20 to prove that the largest
zero A(7) of the polynomial p{™#*7)(x, ¢ — 7) is a decreasing function of the parameter 7.
Nevertheless, we can show the following result.

Theorem 3.21.

Let « >0, -1 < <0, a <|B| and 2c+ a+ 3 > 0. Then all the zeros of the associ-
ated Jacobi polynomial p{®® (z,c) are larger than the respective zeros of the polynomial
)

Proof. As in Corollary 3.20, we consider the associated Jacobi polynomials P, 1 (7)(x) =

p,(f:{ﬂﬁﬂ) (x,c — 7) with the Jacobi matrix
ao(t) bi(7) 0 0
bl (7') aj (T) bQ(T) 0 0
Jn(7'> _ 0 b2 (T) asg (T) b3 (T) :
0 0 bua(7) ana(7) bnoa(T)
0 0 bn1(7)  a,(T)
and the coefficients a,(7) and b,(7) = /b2(7) given in (3.43) and (3.44). Then,

P,1(0)(z) = pﬁfﬁ)(x, c)and P, 1 (—a—fF)(z) = pv(;fl’*a) (x,c+a+ ). Now, the zeros of
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3. Optimally space localized polynomials

the polynomials P,1(0) and P,1(—a — ) correspond to the eigenvalues of the Jacobi
matrices J,,(0) and J,(—a — (), respectively. Since

Jn(—ar = 3) = 3(0) = diag(ag(—a — ) — ag(0), -+, an(—a = B) — a,(0))
is a diagonal matrix with the negative entries
a2 _ ﬁQ
(2k +2c+a+B)(2k+2c+a+3+2)

the eigenvalues of J,(0) are larger than the eigenvalues of J,,(—a — ). Thus, the same

ap(—a = ) — ax(0) = 2
holds for the zeros of the polynomials pfﬁ‘;?) (x,c) and pi;rﬁl’_a)(x, c+a+f). O

3.3. Optimally space localized spherical polynomials on
compact two-point homogeneous spaces

3.3.1. Compact two-point homogeneous spaces

A connected Riemannian manifold M is called two-point homogeneous if for any two
pairs of points py, ps and g1, ¢ on M with d(py,p2) = d(q1, g2) there exists an isometry
I on M carrying p; to ¢; and ps to ¢o. According to Wang [84], the compact two-
point homogeneous spaces are precisely the spheres and the projective spaces introduced
in Section 2.6.1 and 2.6.2, and can be listed as follows (see also [1, Section 3|, [24, p.
176-177] and [35, p. 170]):

(i) The sphere S¢, r >0,d=1,2,3,...
(ii) The real projective space RP?, r > 0, d = 2,3,4, ...
(iii) The complex projective space CP? r > 0, d = 4,6,8, ...
(iv) The quaternionic projective space HPY, r > 0, d = 8,12, 16, . ..
(v) The Cayley plane Ca,,

where the superscripts d denote the real dimension of the respective manifold. In the
literature, these spaces are also known as the compact symmetric spaces of rank one
(see [34, Section IX.5]). From now on, the symbol M will denote a compact two-point
homogeneous space and p a point on M.

The compact two-point homogeneous spaces are very similar in their geometry. In partic-
ular, these spaces have the remarkable property that all their geodesics are closed curves
of length 2rm (see [36, VII, Proposition 10.2]). Further, the diameter of M is given by

diam(M) = sup{d(q1,42) : q1,92 € M} =rm
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3.3. Optimally space localized spherical polynomials

and the cut locus C), of p, with the Riemannian structure induced by M, is itself a
compact two-point homogeneous space (see [36, VII, Proposition 10.4]). For the details on
isometry groups, symmetric spaces and, in particular, compact two-point homogeneous
spaces, we refer to the classics [34], [36] and [37].

If G denotes the maximal connected group of isometries of M and K = {I € G : Ip = p},
then M corresponds to the homogeneous space G/K. The isometry groups G and K of
each two-point homogeneous space M are well-known and are listed, for instance, in [24,
p. 177].

The Hilbert space L?(M) of square integrable functions on M can be decomposed into
a direct orthogonal sum of finite-dimensional G-invariant, G-irreducible subspaces HM,
such that (see [37, Chapter V, Theorem 4.3, and Chapter II, Proposition 4.11] )

— PHM
=0

The G-invariant subspace HM corresponds to the eigenspace of the Laplace-Beltrami
operator Ay with respect to the eigenvalue (I + 4 + By), i.e

M={feC®(M): Ayf=101+%48u)f}, (3.47)

where the parameter 3, is given as By = % in the case that M is the sphere S? and as
Oy = —%, 0,1,3 in the case that M is one of the projective spaces RP¢, CP?, HP? and
Ca,., respectively. The dimensions dim H:¥ of the spaces HM can be computed explicitly

and are collected in Table 1.

Table 1: The dimension of the subspaces HM ([80], p. 90).

Space dim H}

» 20 +d—1)(1+d—2)

r (d—1)!

(4l +d—1)(2l+d—2)!

RE (20)!(d —1)!

Ll @EHI+E-DI+ S -1
o @i

LR+ DI+ D+ E -1
S Y T SR
C (20 +11)(I + 10)!(1 + 7)!3!
o 111(7 + 3)!7!
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3. Optimally space localized polynomials

In geodesic polar coordinates (¢,£) at a point p, the weight functions ©,, are given as
(see equations (2.148) and (2.160) or [35, p. 169])

On(t, &) = (2r)* ' sin™ (L) cos?Pu (L), (3.48)
and the radial part A . of the Laplace-Beltrami operator Ay, reads as

0? “(LE) + d—2—20p + (d+26a) cos(%) 0
or? 2rsin(1) ot

(Aptf) (t,€) = f(t8). (3.49)
Moreover, each subspace HM contains only one radial function PM that depends solely
on the distance ¢ = d(q,p) to the point p and that is normalized such that ||PM| = 1,
PM(p) > 0. In terms of Jacobi polynomials, the radial functions P can be written as
(see [1, p. 131-132], [24, p. 178] and [37, V, Theorem 4.5])

1 a=2 g
PMe(t) = py 7 P (cos(L)), teloral, (3.50)

1 d—2-2Bp 4 1

|6 |2 — 1  ra
where |S,| denotes the volume of the (d — 1)-dimensional unit sphere &,,.

Next, we are giving an orthonormal basis for the subspaces HM. To this end, we need
an orthonormal basis for the subspaces H,?” C L*(6,) on the unit sphere &,. Such a

basis is given by the orthonormal spherical harmonics chfjfl, 1 <75 <dim Hlep, of order
k in d — 1 dimensions (for the details, see [60]) For d = 2, the spherical harmonics Yy},

j € {1,2}, are identified with the characters f ek L e N, on [—n, nr] and the space
H» with span {ﬁeikt, \/% _““t}. In the following, we use the symbol N(d —1,k) as an
abbreviation for the dimension of the spaces HE”.

Proposition 3.22.
d
If M =S¢, d > 2, an orthonormal basis for the space HZST is given in geodesic polar
coordinates at p € S? by the functions
Sdx a . , +k) —
Plkj(t §=rz s1nk(%)p 3 2 (COS(%))Y]gjl(f), (3.51)

0<k<l, 1<j<N(d-1k).

If M =RP?, d > 2, an orthonormal basis for H?M s given by

d S % _d =21k, 9224k _
PR (1,€) = 2Py (t,€) = 2(2r) % sin® (£ )py 2, N(cos(£)) i51(€),  (3.52)
_ d—2 _1
o= HFE —4 sink(i)pl(_% A 2)(COS($)) Y,;f;l(g), k even,
= _ d=2 ;1
2= S sin (L) cos(L)p, G2 (cos(L)) YH(E), K odd,

0<k<2l, 0<j<N(d—1k).
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3.3. Optimally space localized spherical polynomials

Finally, if M is one of the projective spaces CP, d > 4, or HP?, d > 8, or Ca,, then an
explicit orthonormal basis for HM is given by the functzons

Pt €) =

—d+2+28 7 +4k d (
1

P2 sin?(L)pt 7 T (cos (L) Vi (€), (3.53)

0<k<l, 0<j<N(d-1k).

Proof. We will give no explicit proofs at this place, but refer to the literature. The
proof that the spherical harmonics PISZ“; (t,€) and Yk‘fj_l(ﬁ) form an orthonormal basis of

HE" and ‘H,”, respectively, can be found in the books [60] and [14]. The assertion for
an arbitrary sphere S¢ follows by scaling with r. The assertion for the real projective
space is an immediate consequence of the fact that RP? is the quotient of S¢ under the

antipodal map A : © — —x and that H]ZRIFDg can be identified with Hi%ir. The second
identity in (3.52) follows from [83, Theorem 4.1]. The proof for the remaining projective
spaces can be found in [80]. Hereby, the formula in (3.53) follows from [80, Theorem
4.22] with the coordinate change ¢ — sin(3-)?. A related proof can also be found in the

article [46]. O

In Proposition 3.22, the functions Pz],\g,1 correspond to the radial functions PM defined
n (3.50). Now, as in (2.91), we introduce the generalized mean value of a function
f € L*(M) at a point p € M by

/ | cos(4)1 (. &) PO (t)dtdp(c). (3.54)

Then, by Corollary 2.60 and Corollary 2.61, we know that the following uncertainty

inequality holds for all normalized functions f € L?(M) ND(2 51, M) satisfying 511)” (f) #
2Bm+2—d.

2Bp+2+d”

varg (f) - varp,(f) > Cf, (3.55)
where
1—)(f)?
varg,,(f) =r? (d i s (3.56)
vari (f) = Ha*f (3.57)

Moreover, we know that the constant Z- on the right hand side of (3.55) is optimal.

3.3.2. Optimally space localized spherical polynomials

According to the polynomial subspaces of L?([0, 7], wap) introduced in Definition 3.1, we
define now finite-dimensional subspaces of the Hilbert space L*(M) spanned by the basis
functions of the spaces H.
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3. Optimally space localized polynomials

Definition 3.23. As subspaces of L?(M), we consider:

(1) The space spanned by the basis functions of HM, 0 <1 < n:

n 1 N(d-1k)
Hn {P P* t f Z Z Z Cl,k,jpl{\];[;(ty f), Clk,j S (C} . (358)
I=0k=0 j=1

(2) The space spanned by the basis functions of HM, m <1 < n:

Hr]\r/z{n = {P . P*(t, f) = Z Z Z Cl7k,jpl{\g;(t,f), Clk,j € C} . (359)
l=m k=0 j=1

m—1
(3) The space spanned by a radial function R given by R*(t) = Po" (t)+ Y e, M (1)
1=0
and the basis functions of HM, m <1 < n:

n I N(d—1,k)
H%[,n = {P P*(t f) = Cpp— 1R —|— Z Z Z Cl,k,jﬂ%j}(t,ﬁ), Clk,j € C}
l=m k=0 j=1

(3.60)

The functions in the space IIM are referred to as spherical polynomials of degree less
than n and the functions in H%n as spherical wavelets. The unit spheres in the spaces
1LY, ) and 117, are defined as

syt ={pPen): ||P|y =1},
Sh,={P el [Py =1},
SK,={PeTl,: |[P|u=1}.

Further, we define the subsets

)t ={pes): &(P)> N},
LMm . {PESM : 524(13)>>\1},
iR ={pPesy,: e!(P)> M}

28y —d+2
where \; = ng\‘j v

d—2
corresponds to the sole root of the Jacobi polynomial pg 2 ’ﬁM)(m).

Similar as in Section 3.1, we want to use the generalized mean value 524 (P) and the
position variance vargf[p(P) as auxiliary tools to determine whether a spherical polynomial
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3.3. Optimally space localized spherical polynomials

P € S}/ is localized at the point p € M or not. If || P||y; = 1, then £}/ (P) is a real value
between —1 and 1, and the more the mass of P is concentrated at the point p the closer
the value 51{,‘4 (P) gets to 1. Hence, we call a spherical polynomial P € SM localized at
pe M if 5;)” (P) approaches the value 1. Similar as in the case of the Jacobi polynomials,

we want to find the following optimally space localized spherical polynomials on M:

M . _ M
P, = arg ]ranezénﬁ e, (P), (3.61)

M M
= P 3.62
P 1= arg uax &, (P), (3.62)
Py = M(P). 3.63
R i AT8 IMAX € (P) (3.63)

In terms of the position variance varé{p the latter optimization problems can be reformu-
lated as follows:

Proposition 3.24.
Assume that the sets LM L2™ and LMR are nonempty, then

PM — arg max £ (P) = arg min var¥ (P
n gPeEL” p ( ) gPGE% S,p( )7

P}, =arg max e)(P)=arg min varg (P),
’ peLy™ peLy™ ’
Pr =arg max e (P)=arg min_vary (P).
) MR P MR \D
peLh! pech

Proof. The proof of Proposition 3.24 is identical to the proof of Proposition 3.7 with e,
and Vargﬁ replaced by &?If‘f and Var%p. O

Hence, by Proposition 3.24, minimizing the position variance varg,(P) with respect to
a polynomial P € LM (or P € £Mm™ LMR respectively) is equivalent to maximize the
mean value €' (P). Similar as in Proposition 3.24, the non-emptiness of the sets £/

and LM7R can not be guaranteed in general. Since the radial functions on M have an

d—2
expansion in terms of the Jacobi polynomials p7(1 20 the non-emptiness of the set £

n > 1, follows as in Remark 3.8 from the interlacing property of the zeros of the Jacobi
polynomials.

To compute the optimally space localized spherical polynomials PM P%n and P%n, we
need, similarly as in the case of the Jacobi setting (see Lemma 3.5), a characterization
of the mean value 51])” (P) in terms of the expansion coefficients ¢; ;. Since this charac-
terization will depend on the type of the compact two-point homogeneous space M, we

will split the statement into three lemmas.
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3. Optimally space localized polynomials

Lemma 3.25.
Let M be one of the projective spaces CPL, d > 4, or HPY, d > 8, or Ca,, and P a

spherical polynomial given by P*(t,&) = Y- Ozk OZ] (@~ L) i BI5 (L, €). Then,

(P =Y ol [3(452 + 2k, 1), Jons if Pett
k=0 j=1
y m N@-LR)
Py =% c,”.[J( + 2k, Bur) }cm
k=0 j=1
n N(d—1k)
+ Yy cgj{J(d;QqLZk,ﬁM)n }ckﬂ, if PemM
k=m+1 7j=1
SM(P) = Cé{l [J %’ﬁM)n }Co,l + (51]0\4(7%) — am_1)|cm_1|
m N(d—1k)
H d—2 m—k
+3 of [ 3(232 + 26, Br) " e
k=1 j=1
n N(d—1k)
+ Y el {J(d;? 1 2k, ﬁM)n_J Ch if et
k=m+1 7j=1
with the coefficient vectors
Crj = (Cmegs Cma kg - > Cuej) > 0 < k <'m,
Crj = (Chjs Chiteg - - ), m+1<k<n,
€01 = (Cm1,Cm0.1, Crt 1,01 - Cn01) s

and the matrices J(d_2 + 2k BM)m corresponding to the Jacobi matrices J)"' of the asso-

=2 ok, ,BM)(

ctated Jacobi polynomials pl x,m).

Proof. We start with the spherical wavelets P € H%{ ,, having an expansion of the form

Po=323 > anhito)

Taking the definition (3.53) of the spherical polynomials P/\,{ ;» we get for the value 524 (P):

P)= [ [ cos()P*(t.€)P(2r) sint () o () dtdp(€)
n I N(d—1,k)

:/6 /( 2 X ang?sint(g) cos(y W “’“’BM)<cos<i>>Yk‘?;1<5>)
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3.3. Optimally space localized spherical polynomials

Now, we use the orthonormality of the spherical harmonics kaJ«_I and rearrange the order
of summation. Then, we get

m N(d—1,k) ( 2k, Bar)
->x e (z cost i E o))
<Z C“” QkﬂM)(COS<£))>22k+ +6Mlsm4k+d 1(2 )COSQﬂMJrl(%)dt

n  N(d—1k)

3 S [ (S s eos T o)

k=m+1 j=1

d—
x (Z anpd ﬁM’(eosu,»)z”f+ 300 L gin =1 (L) oIt (L),

Finally, using the three-term recurrence relation (3.9) and the orthonormality of the

=2 49k Br)

Jacobi polynomials p; , we conclude

m N(d—1,k)

Z Z / <Z czkj(bz kpl ’EM)(cos(f)) + alpl(d E MM)(cos(f))

=2 4ok, =2 4o,
b e eos(2) ) (3 sk E T cos(4)

l=m

% 92k+g+06n L sin4k+d_1(2i) cosPm+1 (5)dt

(Zcm(bl s cos(2)) + il F T (cos()

d=2 o 3 +2k,6
+b— k—i—lpl( h+ + M) ))(Z Clk,jP M)(COS(:))>

x 92k+§+5n 1 8111(2 )4k+d 1 cos(; )2,3]\/I+ldt
A
m N(d—1,k)

—Z Z Chij

J(% + 2]6, ﬁM)nm__:] Ck,j

n N(d-1k)
+ Z ij [ ( ;2 + 21{3, ﬁM)nk] Ck.j-

k=m+1 1
Thus, the statement for the spherical wavelets P € II) s shown. If m = 0, the
statement for P € II) follows as a special case. Finally, the statement for P € I,
follows, if we set m = 0 and consider coefficient sets {c¢; ;} of the form

Jj=

Clkj € C, if | > m,
Clkj = 0, if | < m, k 7é 0,
Clk,j = €1Cm—1, if I < m, k= 0,
where e; denote the expansion coefficients of the radial function R. O
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3. Optimally space localized polynomials

Lemma 3.26. .,
Let M =S¢ and P be given by P*(t,&) = S0 oS4 _ OZ] @=Lk l,kijﬁ,g;(t,f). Then,

d — — . d
SHP) =3 et [J(df +h 2 k;)nk] Ch if Pell,

+ Z Z cfj[.](df—l—k,dj—k@nk]cw, if PEHmn,

s 3 f(Ren 2R Jes 7 Pen,

with the coefficient vectors

T
Crj = (Comkjr Cmd1 kg -+ > Cnj) » 0 <k <m,
T
Crj = (ChkjsChr1 - Cnkj) , m+1<k<mn,
—— T
Co,1 = (Cm—lu Cm, 0,1 Cm+1,01 - - - 7cn,0,1) )

and the matrices J(452 + k, 52 + k)7 corresponding to the Jacobi matrices J)' of the

d—2 d—
associated ultraspherical polynommls pl( thGHHE) (x,m).

Proof. Up to an adaption of the underlying basis, the proof of Lemma 3.26 is the same
as the proof of Lemma 3.25. The details are therefore omitted. O

Lemma 3.27.
If M = RP? is the real projective space and P is a spherical polynomial on RP? defined

* N(d—1,k)
by P*(t,&) = X Ozk 02— ( ' kg By lk] (t §), we get

n N(d_lvk)

SHP) =Y X e[t k=) Jews g PeT,
RPY P) — o NS Hy(d=2 4 (—1)k M~k

e (P) =2 Ck.j (2""’_2),61671

k=0 j=1

n N(d_17k)

o3 ) o ren
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3.3. Optimally space localized spherical polynomials

L3 elfa(s e n - e,
k=1 j=1 n-k
DD ckJ[J(df—i—k,— ! )n_k]ckm if Pely

with the coefficient vectors ¢o1 and ci; as defined in Lemma 3.26 and the matrices

J(% 71)1“)? corresponding to the Jacobi matrices J)" of the associated Jacobi
(-
polynomials pl( =5 )(x,m).

Proof. Using the orthonormal spherical polynomials (3.52) of the real projective space
RP? instead of the orthonormal spherical polynomials in Lemma 3.25, the proof of Lemma,
3.27 is up to a minor change in the notion the same as the proof of Lemma 3.25. So, the
details are omitted also at this place. O

Now, for the optimization problems (3.61), (3.62) and (3.63), we can conclude:

Theorem 3.28.

Let P € S%,S%H,SRW respectively. Then, the maximum of 5;)”(1:’) is attained for the
radial spherical polynomials

PM) = k1 S0 (Agn) PM (), (3.64)
=0

PRl (t) = ko Z Py m) PM (), (3.65)

Pyvn*(t) = k3 < + Z (azrg-i-l )\TLR m42: T — 1777?,7 5R)PIM(t)> ) (366)

where the values Api1, A, .1 and \¥_ . denote the largest zero of the polynomials

(452 ,8) (452 ,8) (452 ,8u) . .

il (@), pp iy (x,m) and pn o (z,m — 1,9r, 0r) in [—1,1], respectively. The
parameters of the scaled co-recursive associated polynomials pl( m)ﬂ(x, m—1,vg,d0r) are
given as yr = €)' (R) — am-1 and dg = |R||3;. The constants k1, Ky and k3 are nor-
malization factors which ensure that |PY \a = Pyl = (PRIl = 1 is satisfied.

The constants k1, ko and k3 are uniquely determined up to multiplication with a complex
scalar of absolute value one. Finally, the mazimum values of e,3(P) are given as

MY := max )/ (P) =
n PE%M €p( ) )\n+1,

M}, = max )/ (P) =\

- 1
pesit, P noml

M M _ R
MR,n T PISS%%{ gp (P) - >‘nfm+2'
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3. Optimally space localized polynomials

Proof. We consider first the case when M is one the projective spaces CP?¢, d > 4,
or HPY, d > 8, or Ca,, and P € SM is a spherical wavelet given by P*(t,£) =

m,n

DRHIND Zj f Lk) ki Pl (t,€). Then, by Lemma 3.25, we can write the mean value
e (P) as
m N(d—1,k) .
H _
-y o, [3(452 + 20, ur) " e
k=0 j=1
n N(d-1k)
+ Y o lJ(d;2 + 2k,ﬁM)n_kl Chss (3.67)
k=m+1 7j=1
with the coefficient vectors
Cka] = (Cm7k7j’ Cerl,k‘,j) e 7Cn7k’j)T7 O S k S m7
Chj = (Chgs Chrigs - > Cakg) s, m+1<k<n,
and the matrices J ( 2 4 2k ﬁM) -7 corresponding to the Jacobi matrices of the asso-

ciated Jacobi polynomials pl( 2 Hk’ﬂM)(x, m — k).

Now, maximizing €}/ (P) with respect to P € S}/, is equivalent to maximize the quadratic

functional (3.67) subject to >_, Z Md=Lk) |ck,jl2 = 1. Hence, we get

m N(d—1.k) -
Z Z ck][ (452 +k, 4532 "l‘k)nk]ck,j (3.68)

n N(d—L1k) n N(d—1,k)

+ > CkH,j{J(szﬂLk’dzerk)n_kl ki < maxZ Z |Ck,s13,

k=m+1 j=1

where )\max corresponds to the largest eigenvalue taken over all the symmetric matri-
ces J( + 2k 6M) . and J( + 2k, HM) - in (3.68), and where equality holds

for an eigenvector correspondlng to Amax. Moreover, the eigenvalues of the matrices

J(%52 + 2k, Bar)n—k correspond to the roots of the Jacobl polynomials pi k+2k ﬁM)(x)

and the eigenvalues of the matrices J ( 2 4+ 2k, Bar)™F to the zeros of the associated

polynomials p; mﬁk BM)(Z', m — k).

Now, the results of Section 3.2 on the monotonicity of the largest zero of associated
Jacobi polynomials come into play. Due to the interlacing property of the zeros of the
Jacobi polynomials (see [83, Theorem 3.3.2]) and Corollary 3.18 (alternatively, one could
also use the results in [13] and [44]), the matrix J( 2 42k, Bat)nr, m < k < n, with
the largest eigenvalue is precisely the matrlx J(L2 —|— 2m BM)n m. Further, by Corol-
lary 3.20, the matnx J(52 4 2k, Bu) ok, 0 < k < m, with the largest eigenvalue is
the matrix J(42, 3))™ which appears only one time as a submatrix in (3.67). Hence,
the unique overall submatrix in (3.67) with the largest eigenvalue is precisely the ma-
trix J (%, B )y and Amax = A7, corresponds to the largest zero of the associated
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3.3. Optimally space localized spherical polynomials

Jacobi polynomlal Dy, Zm’ff{)(:v,m). Due to the three-term recurrence relation (3.12) of

the polynomial p,, %ff”)(:r, m), the coefficients of the corresponding eigenvector can be

determined as

(452.8m) .
Cl,Ol pl fn M ( n— m+17m)7 lf m S l S n?

ar; =0, if 0<I<m—1 or k#O.

Next, we have to normalize the coefficients ¢, ; such that Y7, ]p( 2 BM)(AZ[mH, m)|? =
1. This is done by an appropriately defined constant k. The uniqueness (up to a complex
scalar with absolute value 1) of the optimal polynomial P%n follows from the fact that

d—2
the largest zero of p,(lfm’ff[)(x, m) is simple and that the largest eigenvalue of the matrix

J (%, Bar) is strictly larger than the largest eigenvalues of all other submatrices in
3.67) (see Corollary 3.20). The formula for M, M follows directly from the estimate
( y y

(3.68). Moreover, if we set m = 0, we get the formula for PM as a special case.

Next, we will show the formula for P%/,,. Lemma 3.25 states that the mean value e)'(P) of

a polynomial P € IIY,, given by P*(£,€) = ¢t R(E)+ 310 Tho T 1, P (1,€)
can be written as

() =l [J 2 6y,) }co,l + (€M(R) = amr)lemo|? (3.69)
m N(d—1,k) .
+Y X eIt 2k o) e,
k=1 j=1
n  N(d—1,k)

with the coefficient vectors

T
Ck7] (Cm ka]’ Cerl k?]’ tet 7cn7k’j) Y 1 S k S m7
T
Crj = (Chkjr Cht1hgr- -+ Cnkj) s m+1<k<n,
& T
Co,1 = (Cm—170m0176m+101,"' >Cn01) .

Maximizing €, M(P) with respect to a polynomial P € S¥ % 18 therefore equivalent to
maximize the quadratic functional in (3.69) subject to (HRHM — Dlem-|* + |€oal* +
Dby ZN(d L) |c k;|?> = 1. Using a Lagrange multiplier A and differentiating the Lagrange
functlon with respect to the coefficients ¢; 1, ;, we obtain a block matrix equation with the
linear subsystems of equations

[ m—1 T T
( 7ﬁM> €1 +r(Cm-1,0,...,0)" = )\(5R0m71, Cm,0,15 Cm+1,0,15 - - - ,Cn,0,1) ;

3(%52 + 2k,ﬁM):‘_ﬂ s =Aery, 1<k<m, 1<j<N(d-1k), (3.70)

J(% + 2k7ﬁM)nk]ck’j = /\Ckﬂ‘, m + 1 S k S n, 1 S] S N(d - 1’k>7
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3. Optimally space localized polynomials

as necessary conditions for the maximum, where vz = &)/(R) — a,n—1 and oz = | R|[3;.
In (3.70), the first system of equations is equivalent to the symmetric eigenvalue problem

j(%, Br) €01 = Ao, (3.71)
with the symmetric matrix
am—11+7TR bfm .
V| Vo 0 0
F(d—2 1 Vor d—2

and the coefficient vector

- T
Co,1 = (\/ ORCm—1, Cm,0,15 Cm+1,0,15 - - - ;Cn,O,l) .

From the argumentation after equation (3 67) we know that from the matrices
J(d_2+2k Ba)™F k=0,...,m, and J( 2 1+ 2k, Bar)n—i, K =m+1,...,n, the matrix
with the largest eigenvalue is J ( 5 2 Bu)™. Moreover because of the elgenvalue interlac-
ing theorem for bordered matrices (see [39, Theorem 4.3.8]), the largest elgenvalue of the
matrix J ( =2 Ba)™L s strictly larger than the largest eigenvalue of J ( 2 By)™. Since
the elgenvalue equatlon (3.71) is equivalent to the first system of equatlons in (3.70), the
eigenvalues of j ( > )m=1 correspond to the zeros of the co-recursive associated Jacobi

polynomials p,, me§4)(:r, m — 1,7g, 6r) (cf. the three-term recursion formula (3.13)).

In total, the largest eigenvalue of all matrices in (3.70) corresponds precisely to the largest

zero A} o of the polynomial p,, 2m’f;”)(x, m—1,9r,0r). The corresponding eigenvector

can be computed from the three-term recurrence relation (3.13) as

Cm—1 = 1

( 7ﬂ
ClOl =D- 'in-i—lM (Af m+2’ _1777?,’67?,)7 for mﬁlgn,

ar; =0, if m<I<n, k#O0.

The coefficients are normalized by the constant 3 and the uniqueness (up to multipli-

cation with a complex scalar of absolute value 1) follows from the fact that the largest

d—2
eigenvalue of the orthogonal polynomials pﬁfmfgj)(:r, m—1,7vg, dr) is simple and the fact

that the largest eigenvalue of the matrix J (d;22, Bar)™~1 is strictly larger than the largest
eigenvalues of all the submatrices in (3.70) (see again Corollary 3.20). Finally, the value
for Mz, follows also from (3.70) and the formula (3.69) for €}/

If M is the sphere S¢ or the real projective space RP¢, the proof of Theorem 3.28 is
almost identical to the preceding proof. The only difference lies in the fact that in the
formulas for the basis polynomials P} ; (see (3.51) and (3.52)) and in the formulas for
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3.3. Optimally space localized spherical polynomials

the mean value )’ (P) (see Lemma 3.26 and 3.27) one uses the ultraspherical polynomials
for the sphere and particular Jacobi polynomials for the real projective spaces instead of
the Jacobi polynomials in the above argumentation. Since otherwise the proof remains
conceptually the same, the details are omitted at this place. For M = RP? one has to

use Theorem 3.21 in addition to Corollary 3.20. O

Since the polynomials PM, P%n and P%n are radial functions on M and have an ex-
d—2

pansion in terms of the Jacobi polynomials pl( 2 ’ﬂM), we can use Corollary 3.10 to get

explicit formulas for the optimally space localized polynomials on M.

Corollary 3.29.
The optimally space localized spherical polynomials PM, P%n
have the explicit representation

d—2
PM(t)ph 7 P (A)
P (1) = piyby g L2t it
n (8) = kb cos(L) — At
bt PM (0)pS 2, (O b P (1
oo 20t n+1( )Pn ( n—m+17m)+ m P (1)
’ COS(%) — At

% (452.8um)
7)7]:/[,73*(0 = ks bn+1PnAil<t)pn—2m+l (A§7m+27 m — 17 TR 673)

cos(£) = AR 40

P (0)((0r — D)AR 0 — YR) + b1 Py (cos(1))

+ 7 R )
COS(;) — A2

and Pg!,, of Theorem 3.28

Y

P(E) =

Y

where the constants k1, Ko, k3 and the Toots Npi1, NI 1, AKX are given as in
Theorem 3.28.

Remark 3.30. The Christoffel-Darboux kernel and the de La Vallée Poussin kernel intro-
duced in Section 3.1.3 and Section 3.1.4 for the Jacobi polynomials can be considered

also as radial spherical polynomials on the compact two-point homogeneous spaces. For
this, we define the kernels K™ and VM on M by
1

Kéw t) = =
() ‘6p‘%2d 242B]wrg

VM () =V, (b).

r

K;L%“BAJ)(E)’

r

In particular, the Christoffel-Darboux kernel K plays an important role in the theory
of polynomial approximation on M. One of its remarkable properties is the so called
reproducing property for spherical polynomials P € I i.e., the kernel KM satisfies
(see [57])

Plo) = [ P& (dls.q)dun(s), qe M, P eI,

Moreover, the operator S, on L?(M) given by S, f(q) = [iy f(s)KM*(d(s,q))dur(s) is
the orthogonal projection of the function f € L*(M) onto the subspace IIM (see [53]).
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3. Optimally space localized polynomials

3.4. Remarks and References

Associated and scaled co-recursive associated polynomials.  Associated polynomials
P(z,c) can be defined quite generally for orthogonal polynomials P;(x) by shifting the
coefficients in the three-term recurrence relation, similar as in (3.12) for the Jacobi poly-
nomials.

For ¢ = 1, the associated polynomials P,(z, 1) are sometimes also called numerator poly-
nomials (see [10, Definition 4.1]). Particular results for some families of associated poly-
nomials like the associated Laguerre, Hermite and Jacobi polynomials concerning orthog-
onality measures, explicit forms and differential equations can be found in [42, Sections
5.6, 5.7, 15.9], [87] and in further references therein.

Co-recursive associated polynomials were introduced for special cases by J. Letessier in
[51], [52]. The polynomials pl(a’ﬂ ) (x,m,7,0) coincide with a slightly different notation
with the scaled co-recursive associated Jacobi polynomials considered in [40].

Optimally space localized Jacobi polynomials. Optimally space localized trigonometric
polynomials and wavelets that minimize the angular variance of the Breitenberger un-
certainty principle (1.18), and, in particular, Example 3.11, were firstly considered by
Rauhut in [70] and [71]. In [71], also the limit n — oo for the uncertainty product of the
optimally space localized trigonometric polynomials (corresponding to the statement of
Theorem 3.14 with o = 3 = —%) was computed.

For the more general Jacobi case, Theorem 3.6 is a novel result. In particular, the polyno-

mial spaces Hgg’ f) that play an important role in the theory of polynomial approximation

and the respective optimally space localized polynomials 737(55 nﬁ ) are considered for the
first time. New are also the Christoffel-Darboux-type formulas in Lemma 3.9 and the
explicit formulas for the optimally space localized polynomials in Corollary 3.10.

Beside the theory discussed in Section 3.1, there exist also other concepts of localiza-
tion of polynomials in the literature. In particular, in [17], Filbir, Mhaskar and Prestin
constructed exponentially localized polynomial kernels ¢,, for Jacobi expansions on [0, 7]
that satisfy the property

P (2)] < Cn2medei+2 oxp(—cnt?).
Similar results can be also found in the article [66] of Petrushev and Xu.

Space-frequency localization of the Christoffel-Darbouz kernel. For the general Jacobi case
a, 3 > —1, Theorem 3.15 constitutes a new result. For the Chebyshev case a = 3 = —%,
the formulas of Theorem 3.15 are shown in [68]. Similar results for the frequency variance
and the uncertainty product of various trigonometric polynomials and wavelets generating

a multiresolution analysis on the unit circle can be found in [63], [67], [69], [70] and [78].

Space-frequency localization of the de La Vallée Poussin kernel. Theorem 3.16 on the
space-frequency localization of the de La Vallée Poussin kernel is a slightly more general
version of [27, Theorem 2.2 in which the ultraspherical case was shown.
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3.4. Remarks and References

Monotonicity of the extremal zeros of orthogonal polynomials. The monotonicity re-
sult of Theorem 3.17 is based on the Hellmann-Feynman Theorem and is a variant of
the monotonicity results proven by Ismail in [41]. Many similar results based on the
Hellmann-Feynman approach, including extremal zeros of Laguerre and of birth and
death process polynomials, can be found in [42, Sections 7.3,7.4], [61] and the references
therein. The results on the monotonicity of the extremal zeros of the Jacobi polynomials,
i.e., Corollary 3.18, Corollary 3.20 and Theorem 3.21 have evolved from joint work with
Ferenc Todkos and are novel in this thesis. Corollary 3.19 is due to [81].

Compact two-point homogeneous spaces. For a good introduction into Lie groups, sym-
metric spaces, two-point homogeneous spaces and the harmonic analysis on these spaces,
we refer to the books [34], [36] and [37] of Helgason. Many technical details of compact
two-point homogeneous spaces in Section 3.3.1 are also taken from the books [3], [4] and
the articles [1], [24], [35] and [84]. Further, a good introduction into spherical harmonics
on the unit sphere is the book [60] of Miiller. The basis system for the L*-space on the
projective spaces in Proposition 3.22 is taken from the article [80] of Sherman. Related
basis systems can be also found in the article [46] and in the book [14].

Optimally space localized spherical polynomials. Optimally space localized spherical poly-
nomials and wavelets on the unit sphere S?, d > 2, in combination with associated ul-
traspherical polynomials were intensively studied by Lain Fernidndez, in [48] and [47].
In particular, the part of Theorem 3.28 concerning optimally space localized spherical
polynomials and wavelets on the unit sphere S? was firstly proven in [48].

New in Section 3.3 is the method of the proof based on the monotonicity results of Sec-
tion 3.2 and the formulas for the optimally space localized polynomials on the projective
spaces. Furthermore, the interesting polynomial spaces H%‘{ ,, and the respective optimally
space localized polynomials 737]‘{{” are discussed here for the first time.
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3. Optimally space localized polynomials

P55 (9). PSi(q). P2 (q).

K%, (). K354 (q). Kis ().

V5 (). Vii (q). VE(q).

Figure 17: The kernels P$°, K and V¥ on the unit sphere S? centered at the north
pole p and normalized such that 73§2 (p) = Pf’rin(p) = 7?%27 L(p) = 1.
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"A map is not the territory it represents, but, if correct,
it has a similar structure to the territory, which accounts
for its usefulness. If the map could be ideally correct, it
would include, in a reduced scale, the map of the map;
the map of the map, of the map; and so on, endlessly"

A. Korzybski, Science and Sanity, Institute of General
Semantics, 5. edition, 1994, p. 58

A brief introduction to Riemannian
manifolds

In this short appendix, we summarize some basic facts about Riemannian manifolds and
introduce the necessary notation for Chapter 2. The details can be found among other
standard references in [2], [3], [5], [9], [12], [23], [30] and [36].

A.1. Basic definitions

A differentiable manifold M of dimension d is a Hausdorff topological space (with a
countable basis) together with a family of injective mappings x; : U; C RY — M (U;
open) such that:

(1) U;xi(Us) = M.

(2) For any pair i, j with x;(U;) Nx;(U;) = W # 0, the sets x; (W) and x; ' (W) are
open sets in R? and xj_lxi e C.

(3) The family {(U;,x;)} is maximal with respect to (1) and (2).

The pair (U;, x;) with p € x;(U;) is called a parametrization (or a system of coordinates)
of the manifold M at p, the set x;(U;) is called a coordinate neighborhood at the point
p. A family {(U;,x;)} satisfying (1) and (2) is called a differentiable structure on M.

139



A. A brief introduction to Riemannian manifolds

On a differentiable manifold M, we consider now differentiable curves v : R > I — M
such that 0 € I and v(0) = p € M. The tangent vector at p to the curve v at t =0 is a
function 7/(0) that associates to every differentiable function f the value

d(fo7)

Y(0)f = T

If we choose a parametrization x : U — M at the point p = x(0), the function f and the
curve vy can be written as

fox(q) = f(x1,...,2q), q=(x1,...,2q) €U,

and
xto fy(t) = (C(Zl(t), R ,md(t)),

respectively. So, restricting f to the curve v, we obtain

0r =X A0(50) = (Lo, (A1)

k=1 8:ck

where B%k corresponds to the tangent vector of the coordinate curve

xp — x(0,...,0,24,0,...,0).

Equation (A.1) shows that the tangent vector to the curve v at p depends only on the
derivative of v in a coordinate system and that the set T,,M of all tangent vectors forms

0 _0
Ox1’ """ Oxg

tangent space of M at p and the set TM = {(p,v) : p € M,{ € T,M} the tangent bundle
of M.

a d-dimensional vector space with basis { } The vector space T, M is called

Now, let M and N be differentiable manifolds and ¢ : M — N a differentiable mapping.
For every p € M and { € T,M, one can choose a differentiable curve v on M with
7(0) = p and +/(0) = £. Then, the mapping

dipy : TyM — To) N, dipy(§) = (9 ©7)'(0) (A.2)

is a linear mapping that does not depend on the choice of v (see [12], Chapter 0, Propo-
sition 1.2.7). The linear mapping dyp, is called the differential of ¢ at p. If U C M and
V' C N are open subsets of the differentiable manifolds M and N, respectively, a map-
ping ¢ : U — V is called a diffeomorphism if it is differentiable, bijective, and its inverse
o~ ! is also differentiable. The Inverse Function Theorem implies that if the differential
dp, is an isomorphism from T,M to T, N, then ¢ is a diffeomorphism from an open

neighborhood of p onto an open neighborhood of (p).

A wector field X on a differentiable manifold M is a mapping of M into the tangent
bundle 7'M such that, for any p € M, X(p) € T,M. The field is called differentiable if
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A.1. Basic definitions

the mapping X : M — T'M is of class C*°. The set of all differentiable vector fields on M
is denoted by I'(T'M). A vector field V along a curve v : I C R — M is a differentiable
curve V : I — T'M such that V (t) € T)4)M for all t € I. The vector field 7/(t) := dy (%)
along v is called the velocity field (or tangent vector field) of ~.

A Riemannian metric on a differentiable manifold M is a correspondence which asso-
ciates to each point p € M an inner product (-,-), on the tangent space T,M which
varies differentiably in the following sense: If x : U C R? — M is a chart around p,
with x(x1,...,24) = q € x(U) and the differential %(q) = dx,(0,...,1,...,0), then
Gik(T1, ..., xq) = (%(q), a%k(q»q are differentiable functions on U. A differentiable
manifold endowed with a Riemannian metric is called a Riemannian manifold. For the
functions g, 5, we define the matrix

Guo= [ator o] = [(Gr@ ) | (A3)

J,k=1 J,k=1

The inverse of Gy« and its matrix entries are denoted by

d
Gux = l:ngc(xlv - ,Id)] (A4)

jk=1

If M and N are Riemannian manifolds, a diffeomorphism ¢ : M — N is called an
isometry if

(€1, &2)p = (dpp(&1), dop(&2))op) - Tor allp € M, &1,& € T)M. (A.5)

Let ¢ : M — N be an immersion, i.e. ¢ is differentiable and dy, : T,M — T, N is
injective for all p € M. If N has a Riemannian structure, then ¢ induces a Riemannian
structure on M by

(1,82)p = (dpp(&1), d@p(&»«p(p)'

Since dyp, is injective, (-,-), is positive definite. This metric on M is called the metric
induced by ¢.

A differentiable map ¢ : M — N is called a Riemannian covering map if (M) covers
N and ¢ satisfies the isometry condition (A.5) locally. If G is a discrete, free and
proper group of isometries on M, then the quotient manifold N = M /G can be endowed
with a unique Riemannian metric such that the canonical projection ¢ : M — N is a
Riemannian covering map (see [23, Proposition 2.20]).

On the other hand, if G is a Lie group of isometries on M acting smoothly, properly
and freely on M, then the quotient manifold N = M /G can be endowed with a unique
Riemannian metric such that the projection map ¢ : M — N is a submersion, i.e., ¢
is differentiable and dy, : T,M — T, N is an epimorphism for all p € M (see [23,
Proposition 2.28]). Moreover, in this case the map ¢ : M — N is a smooth fibration
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A. A brief introduction to Riemannian manifolds

with fiber G (see [23, Theorem 1.95]), i.e., ¢ is surjective and there exists an open cover
{Ui}ier of N and diffeomorphisms

hi : 90_1(Uz) — Uz x G

such that h; (¢~ (p) = {p} x G for p € U;.

A.2. Connections and the covariant derivative

Whereas the differentiation of functions is well defined for differentiable manifolds, there
is no natural concept of differentiation of vector fields on a manifold M. Therefore, one
considers all possibilities of such a differentiation, the so called connections.

A connection V on a differentiable manifold M is a mapping V : I'(T'M) x I'(T'M) —
I(TM) denoted by (X,Y) -5 Vy(Y) which satisfies the properties

(1) fo+gyZ = fVXZ =+ ngZ,
(2) Vx(Y+2)=VxY +VxZ,
(3) Vx(fY) = fVxY + X(f)Y,

for X,Y,Z € T(TM) and f,g € C°°(M). For any connection V, there exists a unique

differentiation operator % (cf. [12, Proposition 2.2.2]) defined on the vector space of

vector fields along a differentiable curve 7 such that:
Z(V 4+ W) =2V 4 ZW for vector fields V, W along 7,
(2) Z(fV) = f'V + f2V for a differentiable function f,
(3) If V is induced by a vector field Y, i.e. V(t) =Y (v(t)), then 2V =V, Y.

%V is called the covariant derivative of V along the curve . A vector field V' along a
curve v : I — M is called parallel if %V =0, foralltel.

On a general differentiable manifold, there exists no connection with distinguished prop-
erties. However, if M is a Riemannian manifold with Riemannian metric (-, -),, then
there exists a unique connection V on M (cf. [12, Theorem 3.6]) satisfying the following
conditions:

(a) V is symmetric, i.e. VxY — Vy X = [X,Y] for all vector fields X,Y € I'(T'M).

(b) V is compatible with the Riemannian metric, i.e. for any smooth curve v and any
pair of parallel vector fields V' and W along v, we have (V, W)y = constant.
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A.3. Geodesics and the metric space structure

This canonical connection V of a Riemannian manifold is called Levi-Civita connection.
If two vector fields X and Y have the representations

d
8
X_;&%;Y ZY%

in a local chart x : U C R? — M around p € M, then the Levi-Civita connection V can
be written in local coordinates as [23, Proposition 2.54],

d , d
0
VXY:Z(Z ]7_{_ Z I kaYk)(,M, (A.6)
i=1 *j=1 L %
where the Christoffel symbols sz are defined by the relation V 2 a%k =4 ; k@m
Further, we have ’
‘ 1 & /70 0 0
r =526 o k) AT
kT ;9 (%cjgkl + 02,99 9t (A7)

A.3. Geodesics and the metric space structure

In what follows, we will always assume that M is a Riemannian manifold endowed with
the Levi-Civita connection V and that (?t is the covariant derivative associated to the
Levi-Civita connection.

A parametrized curve v : I — M is called a geodesic if the acceleration vector field £ g
is zero for every t € I. Due to equation (A.6), in a local chart x : U C R* — M, the
geodesics are the solutions of the differential equation

d’z; d dxy, dz;
. I (x(t =0, 1<i<d A8
dt2 +j§::1 ],k‘(x< )) dt dt ) >t > aq, ( )

where x(t) = (21(t),...,za(t)). If ¥(t) is a geodesic with initial conditions v(0) = p
and 7/(0) = &, then there exists a neighborhood U around p in which () is uniquely
determined and depends smoothly on the parameters t and & (see [23, Corollary 2.85]).
If I is the maximal interval on which () is defined, then for any o € R\ {0}, we have

1
Tog = — 1, Yae(t) = Ye(at).

If we denote by 7,M the subset

T,M:={{ecT,M: 1€l}CT,M, (A.9)
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A. A brief introduction to Riemannian manifolds

of the tangent space and by 7 M the respective subset of the tangent bundle T'M, then
we can define the so called exponential map

exp, : T,M — M, exp,(§) :=7(1). (A.10)
Applied to the whole bundle 7 M, we denote the exponential map by exp.

By the Riemannian metric structure of M, the length of an element ¢ in the tangent
space 1, M is given by
€] = (£, €),”.

Moreover, we can define the length of a piecewise differentiable curve v : I — M as

() = [ 17 (®)at. (A.11)
In particular, if v is a geodesic, then

d D
=) = 2<£v’,7’> = 0.

Thus, the length of the tangent vector 4’ is constant. If the geodesic v is starting at
7(0) = p, the length of v from p to (¢) is given by

1) = [ 1 @)l = et

where ¢ denotes the constant length |y/| of 4/. Therefore, the parameter of a geodesic is
proportional to the arc length {(7).

With help of the arc length (A.11) of curves, a distance metric d(p, ¢) between two points
p and ¢ can be introduced on M by

Ap,a) = nf [0l (A12)

where v ranges over all piecewise differentiable paths v : [a,b] — M satisfying v(a) = p
and y(b) = q. For p € M and 0 > 0, the open ball and the sphere with center p on M
are defined as
B(p,d) :={x € M, d(x,p) <}, (A.13)
S(p,0) :={x € M, d(z,p) = 6}. (A.14)

By the same token, we define on the tangent space 1), M

B(p,0) == {£ € T,M, |¢| <}, (A.15)
S(p,d) :={{ € T, M, [¢| = 0}, (A.16)
G, = G(p,1). (A.17)
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A.3. Geodesics and the metric space structure

The distance metric d : M x M — R given in equation (A.12) turns M into a metric
space (cf. [9, Corollary 1.6.1]). Moreover, for p € M and § > 0 small enough, we have

exp, B(p,d) = B(p,d),
exp, &(p,0) = S(p,9),

diffeomorphically. Thus, the topology induced by the distance metric d(-,-) coincides
with the original topology of M. Moreover, the following local result holds (cf. [23,
Theorem 2.92)):

Theorem A.1.

For each p € M, there exists a neighborhood U of p and € > 0 such that any two points
q1 and g of U are joined by a unique geodesic v in M of length less than €. Moreover,
the geodesic v depends differentiably on its endpoints q1 and qs and its length is given by

() = d(q1, G2)-

A curve 7 connecting two points y(a) and y(b) in M is called minimal if 1(7v|jap) =
d(vy(a),v(b)). Thus, by Theorem A.l, a geodesic 7 is locally minimal. On the other
hand, if a curve v is parameterized proportional to arc length and v is locally minimal,
then v is a geodesic (see [23, Corollary 2.94]).

We say that a Riemannian manifold M is geodesically complete if for every p € M and
¢ € T,M, the geodesic ¢(t) is defined for all values ¢ € R, that is, if the exponential
map exp, is defined on the whole tangent space T, M. The connection between geodesic
completeness and completeness as a metric space is established in the Theorem of Hopf

and Rinow (cf. [12, Chapter 7, Theorem 2.8]).

Theorem A.2 (Hopf and Rinow).
Let M be a Riemannian manifold. For p € M, the following assertions are equivalent:

(a) exp, is defined on all of T,M, in particular T,M = T,M.
(b) The closed and bounded sets of M are compact.

(¢) M is complete as a metric space.

(d) M is geodesically complete.

(e) There ezists a sequence of compact subsets K, C M, K,, C K41 and U2, K,, =
M, such that if q, ¢ K, then d(p,qn) — oc.

In addition, any of the statements above implies that

(f) For any point ¢ € M, there exists a geodesic y joining p to q with minimal length
l(y) = d(p, q).

Note that the geodesic in part (f) of Theorem A.2 is in general not unique.
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A. A brief introduction to Riemannian manifolds

A.4. The cut locus

For p € M and a unit vector £ € &, C T,,M, we define the distance R(&) to the cut point
of p along the geodesic y¢(t) by

R(&) = sup {t6 € T,M : d(p,7e(t)) =t} (A.18)

In other words, R(§) is the maximal distance in direction £ for which the exponential map
exp,, is isometric. The point ¢(R(§)) is called the cut point of p along the geodesic ¢ (t).
The geodesic 7¢(t) minimizes the distance between p and exp,(t§) for all ¢ € [0, R()),
and fails to minimize the distance for all ¢ > R(&). Indeed, if there exists a t € [0, R(§))
such that d(p, exp,(t§)) <t , then the triangle inequality implies

d(p, R(§)) < d(p, exp,(tS)) + d(exp,(t€), R(€)) < t + (R(&) —t) = R(S),

a contradiction. If t < R(€), then 7¢ is the only minimal geodesic between p and 7¢(t).
Moreover, if R(§) is finite and R(§)§ € 7,M, then ¢ minimizes also the distance between

p and exp, (R(£)).

We consider now R as a function on the unit sphere &,. The following theorem collects
some information on the smoothness of R.

Theorem A.3.
Forp € M, the function R : &, — (0,00] has the following properties:

(a) R is upper semicontinuous on &, [9, Theorem II1.2.1].
(b) If M is geodesically complete, then R is continuous on &, [9, Theorem II1.2.1].

(c) If M is a compact real analytic Riemannian manifold of dimension d, then the
surface £ € &, — R(&)€ is a (d — 1)-dimensional simplicial complez [7].

(d) If M is compact, then the distance function R is a Lipschitz continuous function

on S, [43].

For p € M, we define the tangential cut locus €, in the tangent space T,M by
¢, = {RE)E: R(E) <00, £ €S} NTM, (A.19)

and the cut locus C, of p in M, by

Cp :=exp, €, (A.20)
Moreover, we set
D, ={t{: 0<t<R(),E€6,}, (A.21)
and
D, = exp, D,. (A.22)
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A.5. Integration on Riemannian manifolds

If M is complete, we get the following decomposition (cf. [23, Proposition 2.113 and
Corollary 3.77))

Theorem A .4.
Let M be a complete Riemannian manifold. Then, for any p € M we have the disjoint
decomposition

M = D, U C,. (A.23)

Moreover, ®,, is the largest star-shaped open domain in T,M (with respect to the origin)
for which the exponential map is a diffeomorphism with D, = exp,(D,) = M \ C,.

For p € M, we define the injectivity radius inj p of p by

injp 1= inf {R(E)} (A.24)

and the injectivity radius of M by

inj M := pig]\f/[{inj P} (A.25)

A.5. Integration on Riemannian manifolds

Let x : U C RY — M be a chart on M. For each ¢ € x(U), we consider the matrices
Gux defined in (A.3). Then, the determinant det Gy is positive and, on U, we can
define the positive measure |/det Gyxdzry - - - dxy. Thus, by x(y/det Guxdzy - - - dxg) we
get a positive measure on x(U) C M that is independent from the particular choice of
the chart x (see [9, Section II1.3]). By a partition of unity argument we construct now a
global Riemannian measure. We take an atlas

{Xi:UZ’CRdHM,Z'EI}

on M, a subordinate partition of unity {¢; : i € I}, and define the global Riemannian

measure fiy; by
dun ==Y ¢ x;(y/det Gy, x,da - - - daly). (A.26)

iel
The measure iy, is positive and well-defined (cf. [77, Chapter IV, Theorem 17]), i.e.
independent of the choice of atlas and the subordinate partition of unity. Further, a
function f is measurable with respect to du,, if and only if f o x; is measurable on U;
for any chart x; : U; C RY — M. The measure juy; is called the canonical measure or the
Riemannian measure on M.

Now, we consider the measure on M induced by the exponential map. Let therefore
p € M and V and U be open neighborhoods of 0 € T,M and of p in M, respectively,
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such that the exponential exp, |y is a diffeomorphism from V' onto U. We identify the
tangent space at £ € T, M with T, M itself and consider the differential

(dexpy)e : TeT,M — Toxy ) M. (A.27)

The differential (dexp,)s is a linear mapping and can therefore be considered as an
isomorphism from the Euclidean space 7,M onto the Euclidean space T exp, (€)M . We
define

0(§) := det((dexp,)e). (A.28)

and denote by d¢ the standard Lebesgue measure on the Euclidean space T,M. Then,
for any integrable function f on U, we have (cf. [3, Proposition C.I11.2])

[, fadmila) = [ Flexp,(©)p(e)de. (A-29)

From Theorem A.4, we know that D, is the largest open subset of M for which the
exponential map is a diffeomorphism. If M is a complete Riemannian manifold, then the
cut locus C, = M \ D, is a set of Riemannian measure zero [9, Proposition 1I1.3.1], and
we can deduce the formula

|, F@duasta) = [ Flexp, (€)6(6)de (A-30)

p

for the integral of a function f over the whole manifold M.

A.6. Curvature

The curvature R of a Riemannian manifold M is a correspondence that associates to
every pair X, Y € I'(T'M) of vector fields a mapping R(X,Y) : I'(TM) — I'(TM) given
by

R(X,Y)Z :=VyVxZ -VxVyZ +Vixy)Z, Zecl(I'M), (A.31)
where V is the usual Levi-Civita-connection on M. The curvature tensor R has the
following properties (cf. [12], Chapter 4, Proposition 2.2 and 2.4)

(i) R is bilinear in I'(T'M) x I'(T'M), i.e.,

R(fX:1+9X5, Y1) = fR(X1, Y1) + gR(X, Y1),
R(X1, fY1+ gY2) = fR(X1, Y1) + gR(X1, Y2),
f,g€ COO(M), X1, X0, Y1, Y5 € F(TM).

(ii) For X,Y € I'(T M), the curvature operator R(X,Y) : I'(TM) — I'(TM) is linear,

i.e.,

R(X,Y)(Z + W) =R(X,Y)Z + R(X, Y)W,
R(X,Y)(fZ) = fR(X,Y)Z, feC®(M), Z,W e T(TM).
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(iii) R(X,Y)Z +R(Y,2)X + R(Z,X)Y = 0 (Bianchi identity).

For p € M, we consider a two-dimensional subspace of 1),M spanned by the vectors
&1,& € T,M. Then, the real value

K(£1, 52) — <R(£17 62)617 £2>P (A32)

—JEPIER — (6L &),

is known as the sectional curvature of the space spanned by the vectors &;,& € T,M at
p. The value K(&;, &) does not depend on the particular choice of the vectors & and
&, see [12, chapter 4, Proposition 3.1]. Certain averages of the sectional curvature
are known as Ricci curvature and scalar curvature. In particular, if {ej,es, - eq}
denotes an orthonormal basis of the tangent space 7),M, then the Ricci curvature tensor
Ric : T,M x T,M — R is defined as

d
Ric(fb 52) = Z<R(§1> ei)&, ei>p7 (A-33)
i=1
and the scalar curvature as
d
K:= Y (Reiej)ei e (A.34)
ij=1,i#]

The Ricci and the scalar curvature are independent of the particular choice of the or-
thonormal basis.

A.7. The Laplace-Beltrami operator

For any differentiable function f on the Riemannian manifold M, the gradient grad f of
f is the vector field defined by

(grad f(p), €)p := dfp(§), forallp e M, & € T,M. (A.35)

Further, for a differentiable vector field X on M, the divergence of X, divX : M — R,
is defined by

div X (p) = tr(§ — VX)), (A.36)

where ¢ ranges over all tangent vectors in 7, M and V denotes as usual the Levi-Civita
connection on M. If x : U C RY — M is a chart on M, then grad f can be written in
local coordinates as

L (fox) 4 O
rad f = ik :

k=1

(A.37)
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Moreover, one has for differentiable functions f and g,

grad(f + g) = grad f + grad g,
grad(fg) = ggrad f + fgradg.

If the vector field X has the representation X = Zle Xi%, then the divergence div X
can be written in the local coordinates as

d_9(X;\/det G
divf= -ty ( vx) (A.38)
/det Gy i=1 O

Further, for a differentiable function f and differentiable vector fields X and Y, the
following properties hold:

div(X +Y) =divX +divY,
div(fX)(p) = f(p) div X (p) + (grad f, X),.
For a C?-function f on M, we define the Laplacian of f by
Ay f = divgrad f. (A.39)

The operator A, is referred to as the Laplace-Beltrami operator. In a local chart x :
U c RY — M, we have

A f:ézdji Jaet Gt 24 0% (A.40)
T et G 571 0, U ) '

et Gux jik=1
Moreover, the Laplace-Beltrami operator A,; satisfies the properties

Ay(f+9)=Auf+ Aung,
div(fgradg)(p) = f(p)Awmg(p) + (grad f, grad g),,

where f and ¢ are C?-functions on M.
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"I propose we leave math to the machines and
go play outside."

Calvin, Calvin and Hobbes by Bill
Watterson, 1992

Basics on function spaces and
operators on Hilbert spaces

B.1. Function spaces

First of all, we summarize some basic facts about general LP-spaces. A detailed elabora-
tion of this topic can be found in the classical monograph [38, Section 13].

Let 1 < p < oo and (X, A, p) be an arbitrary measure space. Then, we define the spaces

LP(X):

{f : X — C: f A-measurable, / |f(z)Pdu(x) < oo}7 1 <p<oo,
b

L2(X) = {f : X — C: f A-measurable, esssup |f(x)| < oo}.

zeX

On LP(X), we define the functional | - ||, by

171 = ([ W @Pdn@)" . 1<p <o,
Il = esssup | (@)

For f € LP(X), the function f — || f||, satisfies all axioms of a norm except for the
positivity condition, i.e. || f||, > 0 if f # 0. Therefore, let

N ={fell(X): f=0 pael}.
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Then, N is a closed linear subset of £P(X) and we can define the quotient space
LP(X):=LP(X)/N, 1<p<oo. (B.1)

Now it is straightforward to show that LP(X) with the norm || - ||, is a linear normed
vector spaces, where f = g means that f(z) = g(x) for p-a.e. z € Xjie., forall x € X
except a set of y-measure zero. Moreover, LP(X) with the metric d(f,g) = || f —gl|, is a
complete metric space and, hence, a Banach space.

The special case p = 2 is particularly interesting. In this case, one can define the inner
product

() PO X LX) = € (fg) = [ f@)g(@)du(e), (B.2)
that turns L*(X) into a Hilbert space. Further, the norm on L?*(X) can be expressed as
1fll2 = /<, f)-

If the measure space (X, A, 1) consists of a Riemannian manifold M endowed with the
Borel o-algebra and the Riemannian measure p;, we denote the LP-spaces in (B.1) as
LP(M) and the scalar product in (B.2) as (-, ).

Next, we consider absolutely continuous functions on an interval [a,b] and on the real
line R. For a detailed introduction, we refer to [38, Section 18]. A function f : [a,b] — C
is called absolutely continuous if f admits the representation

fla) = fl@) = [ folt)at (B.3)

for a function fy € L'([a,b]). The function fy is called the Radon-Nikodym derivative of
/. An absolutely continuous function f is uniformly continuous on [a, b] and differentiable
for almost all ¢t € (a,b). Further, for the pointwise derivative f’ we have f'(t) = fo(t) for
a.e. t € [a,b]. Hence, f' = fy in L'([a,b]) and we can from now on use the symbol f’
also for the Radon-Nikodym derivative of f.

The space of all absolutely continuous functions on [a,b] is denoted by AC([a,b]). If
f,g € AC([a,b]), then also fg is absolutely continuous and for the Radon-Nikodym
derivative the usual product formula holds, i.e.

(f9)'(8) = f'(t)g(t) + (1) f (1)

for a.e. t € [a,b]. Moreover, integration by parts for two functions f, g € AC([a, b]) reads
as follows (cf. [38, Corollary 18.20]):

[ 7wt = f@ygta) - s0)90) ~ [ F0)9 0t (B.4)

If the underlying set is the real line R, we define the space of locally absolutely continuous
functions AC),.(R) as

ACioe(R) = {f : R > C: fluy € AC([a,b]), for all [a,b] C R}, (B.5)
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and the space of absolutely continuous functions on R as
AC(R) :={f € ACle(R) : f' € L'(R)}. (B.6)

So, every absolutely continuous function f € AC(R) can be written as f(x) =
[ fo(t)dt, where fo € LY(R) and f'(t) = fo(t) for a.e. t € R. Further, if f,g € AC(R),
then the following formula holds (cf. [38, Corollary 18.21]):

[~ rwett+ [ peg 0t = lim 1) im o) (B.7)

Tr—00

Let (X, dx) and (Y, dy) be two metric spaces with metric dx and dy, respectively. Then,
a function f : X — Y is called Lipschitz continuous on X if there exists a constant
K > 0 such that for all x1, 25 € X the following inequality holds:

dy (f(x1), f(22)) < Kdx (1, 72).

Finally, we list some classical function spaces that are used within the text.

C(la,b]) :=={f : [a,b] — C: f continuous on [a,b]}, (B.8)
Cor = {f € C[=m,7]) : f(=m) = f(m)}, (B.9)
ACy, :={f € AC([-m,7]): f(—m) = f(m)}, (B.10)
C'([a,b]) := {f € C([a,b]) differentiable on (a,b) : f' € C([a,b])}, (B.11)
C*([a,b]) := {f € C*Y([a, b]) differentiable on (a,b) : f® e C’([a,b])}. (B.12)

B.2. The Stone-Weierstrass Theorem

There exist various versions of the Stone-Weierstrass Theorem. In the following, we will
present two of them that are needed within the text.

First, let X denote a nonvoid compact Hausdorff space and C(X) the space of all con-
tinuous complex-valued functions on X. Endowed with the norm

[f1loe = sup [f(@)l, felX), (B.13)

the space C'(X) is a Banach space. Further, if we define an involution operator ~ on C'(X)

by f(z) := f(z), the space C'(X) with addition and multiplication defined pointwise, and
endowed with the involution ~ is a commutative C*-algebra.

We say that a subset A C C(X) is a separating family of functions on X if for every
x,y € X, x # y, there exists a function f € A such that f(x) # f(y). We say that A is
closed under complex conjugation if for every f € A, also the involution f € A. Then,
the following result holds (cf. [38, Theorem 7.34)):
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Theorem B.1 (Stone-Weierstrass Theorem).

Let A be a separating subalgebra of C(X) that contains the constant functions and that
is closed under complex conjugation. Then, the functions from A are dense in C(X) in
the topology induced by the norm || - |-

There exists also a noncompact version of the Stone-Weierstrass theorem in the case that
X is a locally compact Hausdorff space. In this case, we consider the closed subalgebra
Co(X) C C(X) of continuous functions f on X with the property that for every e > 0
there exists a compact set K (¢, f) C X such that |f(z)| < eforallz € X \ K(¢, f). A
family of functions A C Cy(X) is said to vanish nowhere if for every z € X there exists
a function f € A such that f(z) # 0. Now, we get the following result (see [38, Exercise
7.37]):

Theorem B.2 (Stone-Weierstrass Theorem - locally compact version).
Let X be a locally compact Hausdorff space. Let A be a separating subalgebra of Co(X)
that vanishes nowhere and that is closed under complex conjugation. Then, the functions
from A are dense in Co(X) in the topology induced by the norm || - ||oo-

B.3. Operators on Hilbert spaces

In this last part, we give some basic facts about operators on Hilbert spaces. A detailed
introduction can be found in the monographs [76] and [85].

Let H be a Hilbert space with scalar product (-,-). An operator A : H D D(A) — H is
a linear mapping whose domain of definition D(A) is a subspace of H.

The operator A is called densely defined if D(A) is a dense subset of H. The operator
A is called bounded if D(A) = H and [[A|| = sup,es, o1 [[Av]| < oo. The value [|Al
is then called operator norm of A. The operator A is called closed if the graph G(A) =
{(v,Av) : v € D(A)} is a closed subset of H x H.

An operator B : ' H D D(B) — H is called an extension of A if D(A) C D(B) and
Bv = Av for all v € D(A).

To introduce the Hilbert space adjoint A* of A, we consider the domain
D(A*) :=={w e H: v — (Av,w) continuous on D(A)}.

If w € D(A*), the functional v — (Av,w) can be extended to a continuous linear func-
tional on H by the Hahn-Banach theorem. Therefore, if D(A) is dense in H, there exists
an unique element A*w € H satisfying

(Av,w) = (v, A"w), v € D(A).

In this way, we introduce the well-defined adjoint operator A* : D(A*) — H.
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The product AB of two operators A and B is naturally defined by ABv = A(Bv) with
the domain
D(AB) :={veD(B): BveD(A)}.

Further, if A, B and AB are densely defined operators on H, then (AB)* is an extension
of B*A*.

The operator A is called symmetric if
(Av,w) = (v, Aw)

for all v,w € D(A). In this case the adjoint A* is an extension of A. If moreover
D(A) = D(A") is satisfied, then A is said to be self-adjoint.

A densely defined closed operator A is called normal if A*A = AA* holds. If A is normal,
then D(A) = D(A*) and ||Av|| = ||A*v|| for all v € H. Clearly, every self-adjoint operator
Ais also normal. A further important subclass of normal operators is the class of unitary
operators. An operator B is called unitary if it is bounded on H and satisfies the property
B*B = BB* = I. In this case, one has the identity

(Bv, Bv) = (B*Bv,v) = (v,v)

and the adjoint B* corresponds to the inverse operator B~
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Nomenclature

Chapter 1

locally absolutely continuous functions on R, p. 12, 153
absolutely continuous 27-periodic functions on [—7, 7], p. 14, 152
space of weighted square integrable functions on [0, 7], p. 17
symmetric extension of the weight function w, p. 18, 27

space of even, weighted L2-functions on [—m, 7], p. 18

even extension operator, p. 18, 27, 40, 49

reduction operator, p. 18, 27, 40, 49

Dunkl operator, p. 19, 27

mean value of the function f € L*([0, 7], w), p. 23

integral term on the right hand side of inequality (1.37), p. 23
position variance of f € L*([0, 7], w), p. 23

frequency variance of f € L*([0, 7], w), p. 23

weight function of the Jacobi polynomials, p. 30

Jacobi polynomial of degree n, p. 30

second order differential operator of the Jacobi polynomials, p. 31
mean value of the function f € L*([0, 7], wags), p- 31

Chapter 2

d-dimensional cylinder of length 7, p. 38

(d — 1)-dimensional unit sphere in R?, p. 38

standard Riemannian measure on S¢~! and &, p. 38, 56
space of continuous functions on Z¢, p. 38

Hilbert space of weighted L2-functions on Z2, p. 39
doubled d-dimensional cylinder of length 27, p. 39
symmetric extension of the weight function W, p. 39
reflection operator, p. 39

space of even, weighted L2-functions on X%, p. 39

Dunkl operator on the Hilbert space L2(X<, W), p. 40
space of continuously differentiable functions on X% in ¢, p. 41
d-dimensional one-sided tube, p. 48

d-dimensional two-sided tube, p. 49

Riemannian manifold, compact in Section 2.2, p. 52, 141
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158

tangential space at the point p € M, p. 52, 140

canonical Riemannian measure on M, p. 52, 147

space of square integrable functions on M, p. 53

distance metric between two points p,q € M, p. 53, 144

open ball with center p and radius 6 on M, p. 53, 144

sphere with center p and radius § on M, p. 53, 144

open ball centered at 0 with radius 0 in T, M, p. 53, 144
sphere centered at 0 with radius 0 in T,M, p. 53, 144

unit sphere in the tangential space T, M, p. 53, 144

geodesic with initial conditions 7(0) = p and ~;(0) = &, p. 53, 143
the exponential map from 7, M to M, p. 53, 144

maximal set in T),M for which exp, is diffeomorphic, p. 54, 146
tangential cut locus of p, p. 54, 146

image of ©,, under exp,,, p. 54, 146

cut locus of p, p. 54, 146

Jacobian determinant of exp, at £ € T,M, p. 54

Polar transform, p. 55

geodesic distance to the cut locus C), in direction &, p. 55, 146
cylinder with right boundary given by the function R, p. 55
pull back of the function f by exp,, p. 56

pull back of the function f by P and exp,, p. 56

Jacobian determinant of exp, in geodesic polar coordinates, p. 56
lipeomorphism determined by the distance function R, p. 57
pull back of the function f by the mapping exp, PLg, p. 57
Jacobian determinant of the mapping exp, PLr on Z4 p. 57
radial differential operator for functions on M, p. 62

radial frequency variance of the function f on M, p. 63
Dunkl operator on the Hilbert space L?(X¢, WM@), p. 63
mean value of the function f with respect to p € M, p. 64
integral term on the right hand side of inequality (2.90), p. 64
position variance of the function f on M, p. 64
Laplace-Beltrami operator on the manifold M, p. 66, 149
radial part of the Laplace-Beltrami operator on M, p. 66
compact star-shaped subdomain of M, p. 67

boundary of €2, p. 67

geodesic length from p to 52 in direction £ € &,, p. 67
Riemannian manifold diffeomorphic to R¢, p. 71

sphere with radius r in R*!, p. 80

real projective space with diameter rm, p. 81

complex projective space with diameter rm, p. 82
quaternionic projective space with diameter rm, p. 82

Cayley plane with diameter rm, p. 83

flat torus with diameter /2r, p. 85



Nomenclature

H
K(gl» 62)
Ric

(c,8)

n

e 18 18

n m,

59, 5(e), S50

P, P, P

a, bl
pgzaﬁ) ('7 C)
p%a’ﬁ)('a ¢, 5)
Jo
Lo, L7, LR
K{eP)

Vo
Q) (x,¢)

M M M
oy s
ol i
?m b
ETL Y En ? ‘Cn

PY P PR,

m,n’

hyperbolic space with negative curvature —%2, p. 86
sectional curvature of the space span{¢{, &}, p. 87, 149
Ricci curvature tensor on T,M x T,M, p. 83, 149

Chapter 3

orthonormal Jacobi polynomials, p. 94
polynomial subspaces of L*([0, 7], wags), p. 94
unit spheres in the polynomial spaces, p. 94

optimally space localized polynomials, p. 96

coefficients of the three-term recurrence relation of p(®# p. 96
associated Jacobi polynomials, p. 97

scaled co-recursive associated Jacobi polynomials, p. 97

Jacobi matrix corresponding to the polynomial p(®® (-, m), p. 97
subsets of the unit spheres S(*#), Sg{i’ff), S%, ’f), p. 101
Christoffel-Darboux kernel, p. 110

de La Vallée Poussin kernel, p. 114

monic associated Jacobi polynomials, p. 117

radial spherical polynomial of order [ on M, p. 124

general spherical polynomial of order [ on M, p. 125

spaces of spherical polynomials, p. 126

unit spheres in the spaces of spherical polynomials, p. 126
subsets of the unit spheres SM, SM S% n s D. 126

n ) Mm,n

optimally space localized spherical polynomials, p. 127
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