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Abstract— The performance of MIMO systems and the use-
fulness of dedicated signal processing and channel coding tech-
niques is strongly affected by presence of fading correlation.
For instance, space-time block coding is favored by low fading
correlation, while beam-forming techniques are advantageous at
high amounts of correlation. In this paper we propose an easy
to compute quantitative measure of fading correlation and a
measure of diversity present in a MIMO channel. It turns out
that channels with the same amount of diversity or correlation
behave essentially the same with respect to channel capacity
and throughput. On the other hand, channels which differ
considerably in diversity and correlation measure, behave fairly
different with respect to channel capacity or throughput. In this
way it becomes possible to perform a classification of MIMO
channels.

I. INTRODUCTION

It is known, that fading correlation has significant impact on
the performance of MIMO systems. Depending on how much
the transmitter is aware of the fading correlation, the effect
can be capacity decreasing [2], [3] or even capacity increasing
[9]. Fading correlation is directly connected to the diversity
gain of a MIMO system. It is also strongly related to MIMO
antenna gain [10] and multiplexing gain. The close relation of
fading correlation with these three elementary gains provided
by a MIMO system, suggests to search for a quantitative
description of fading correlation. Such an attempt has already
been made in [8] for the SIMO case, which provides a
generalized definition of receive diversity order. The authors of
[8] compute the ratio of variance of SNR after maximum ratio
combining of all received signals and the variance of SNR of
a single received signal. In this paper we define a measure of
diversity and a measure of correlation for a MIMO channel,
which 1) does not depend on maximum ratio combining, 2) is
able to separate receive and transmit diversity, and 3) is also
applicable in some non-Gaussian fading cases. Interestingly,
it turns out that the result from [8] is a special case of the
proposed measure of diversity.

Applications of the two proposed measures include: 1)
Quantification of the amount of correlation and diversity
present in the MIMO channel. This allows for instance to
decide which of two MIMO channels has stronger correlation
or provides more diversity. This method is compatible to the
use of majorization [4] proposed in [6], [7]. 2) Construction
of equivalence classes of MIMO channels which offer the
same amount of diversity or correlation. It turns out, that chan-
nels having the same correlation measure perform essentially
equivalently with respect to channel capacity or throughput.
This result may have impact on simulation aspects, as the
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simulation results obtained for one channel can essentially
be used for the whole equivalence class. 3) Classification
of channel types. Since different transmit and receive signal
processing may be used for different amount of correlation, the
classification may decide upon the proper signal processing
or its parameters (e.g. number of transmitted data streams,
modulation schemes, selection between space-time coding and
beamforming).

II. CHANNEL MODEL

In the following we will assume a frequency flat fading
MIMO channel, with N transmit and M receive antennas,
described by its channel matrix H < CM*N which is
composed of complex, circularly symmetric random variables,
which exhibit certain correlations. Let us stack all columns
of the channel matrix H into one K = MN dimensional
channel vector h = vec[H| € CX*1, where we have used
vec[.] as the column stacking operation. We can describe
the correlations between the random entries of H by the
correlation matrix R = E[hhH]. The channel vector h can
then be written as )

h = R2g. (1)

where g € CK*! is a random vector with idependent and

identically distributed (i.i.d.) random entries which have zero
mean and unity variance. We make the following

Definition 1: A fading distribution is called proper if the
random entries g, = (i, + jnx of the vector g in (1) have
the following properties: the (j, and ny, are i.i.d. real random
variables and:

E [gk] =0
E[lgx]’] = 2)
E ng|4] = 2

Note that a zero-mean complex circularly symmetric complex
Gaussian distribution of the g, (Rayleigh fading) leads to
a proper fading distribution by this definition. Even though
other proper fading distributions exist, we will concentrate on
Rayleigh fading in the following.

III. DIVERSITY MEASURE

Definition 2:  Given a MIMO channel matrix H with
correlation matrix R = E [vec[H|vec[H|"|. The diversity
measure U(R) is defined as:
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Here the symbol tr is used for the trace operator, while ||.||g
denotes the Frobenius norm.

Theorem 1: If the fading distribution of the MIMO channel
matrix is proper in sense of Definition 1, the diversity measure
U(R) has the following property:

2

U(R) = —(E ) , where 4
var []

v = [hl3 = |IH]lg- Q)

The proof can be found in [11]. Since v is the sum of
the squared magnitudes of channel coefficients, it represents
the (random) channel energy. The diversity measure U (R)
therefore quantifies the relative fluctuation in channel energy.
The diversity measure has several further properties, including

e 1< U(R) <rank(R) < K, where R € CK*K,

o Let the first L eigenvalues of R be positive and identical
(flat eigenvalue profile) and the remaining eigenvalues
vanish, i.e. \y = Ao = -+ = A, > Ay = -+ =
0. Then the diversity measure becomes ¥ = L, which
is also the rank of R. In case the eigenvalue profile
is not flat, then ¥(R) < L might be interpreted as a
”soft-rank” of R (number of dominant eigenvalues).

o« For an exponential eigenvalue profile given by
M = A-afF"tfork=1,2,...,K, with 0 < a<1,it
can be shown that for K — oo the diversity measure
becomes ¥ = (14 a)/(1 — a).

« The diversity measure ¥(R) can also be written in terms
of the eigenvalues \; of R:

2

(Zz Ai)
DA
In case R can be decomposed into the tensor product of the
transmit correlation matrix Ry, = E[H"H] € CN*N and

U(R) = ©)

the receive correlation matrix Rg, = E[HH"] ¢ ¢M*xM
1 T
R = R Rgy, 7
tr RTx Tx ©hrR ( )
it can be shown [11] that ¥(R) decomposes into the product
\I](R) = \P(RTX) ! \II(RRX)7 3

of a transmit diversity measure U (R ) and a receive diversity
measure U (Rgy). The decomposition of (7) holds if a random
realization of the channel matrix can be written as:
1 1/2 ~pl/2
H=—R; GR 9
\/m Rx Tx
where G € CM*N is a complex random matrix with all
elements being i.i.d. random variables with proper distribution
in the sense of definition 1. This describes a situation where
the random fading processes at the receiver are uncorrelated
to those at the transmitter.

IV. CORRELATION MEASURE

The measure for diversity in Rayleigh fading MIMO sys-
tems, that has been defined in Chapter III is based on correla-
tion matrices, and therefore directly related to the correlation
properties of a MIMO channel. In this section, based on
the defined diversity measure, we provide a definition of
correlation measure.

Definition 3: The Correlation Measure ®(R) of a L x L
correlation matrix R is given by

d(R) = ,/—1 _1LZ\I;(R) :

This generic definition of the correlation measure ®(R) can
be applied to measure receive, transmit or the total correlation
depending on the choice of R. The motivation stems from
the following observation. Let us have a look at a specific
correlation matrix R € CY>*1:

(10)

L p »p p

pto1p P
R=| . .

propt Pt 1

Since in this case, the correlation properties are essentially
captured by the single parameter p, we want our proposed
correlation measure to yield the same result. Since the diversity
measure in this situation is

L

B e R

by substituting into (10), we obtain ®(R) = |p| , as desired.

There are two special cases, we want to bring to the reader’s
attention. They are characterized by their eigenvalue profile.

1) Rank one situation: the correlation matrix has only
one non-zero eigenvalue. This represents the strongest
possible correlation. The correlation measure from (10)
yields

d=1,

2) Uncorrelated and equal power situation: all eigenval-
ues of the L x L correlation matrix are identical and
positive. The correlation measure this time yields

® =0.

Note, that we always have 0 < ® < 1. Therefore, by virtue
of Definition 3, we have a way to quantify the amount
of correlation, from & = 0 representing the uncorrelated
case, up to & = 1 representing maximum correlation. The
larger the correlation measure, the stronger is the correlation
between channel coefficients of the MIMO channel and the
less diversity is available. The correlation measure has some
interesting properties:
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1. Left: Four different azimuthal transmit power spectra with two different correlation measures. Right: Eigenvalue profile of corresponding transmit
correlation matrix. A uniform linear array (half wave-length spacing) with /N = 8 antennas is assumed

o For a correlation matrix

1 P1,2 P1,3 PLK
Pl,2 1 p2,3 p2,K
R= .
PT,K PT,K71> pT,K72 e 1

the correlation measure computes to

b =

Hence, the correlation measure is the root mean square
of the magnitudes of all correlation coefficients.

In the general case, where the main diagonal of R con-
tains different values, the situation is more complicated.
The correlation measure provides a way to asses such
situations. Let us look at the following example:

e[t ]
- * ]
[AVATI]
where > 0 and p with |p| < 1 is the correlation
coefficient. The correlation measure now computes to

M (o2 - 1).

P T

1+
We have ®(R) > |p|, where equality holds only when
n = 1 or when |p| = 1. This behaviour makes sense,
since having one random variable dominate the other in
variance (either n > 1 or 0 < n < 1) will intuitively
increase average correlation. In the extreme cases of
n = 0 or n — oo the correlation measure reports the
value of & = 1, which makes perfect sense, as the
correlation matrix then has a rank of one and the random

variables become coherent.

In the case of independent transmit and receive corre-
lation the total correlation measure can be computed di-
rectly from the receive and transmit correlation measures:

1—-MN

=

b)
(11)
where M is the number of receive and N the number of
transmit antennas, while ®r, and &1, are the correlation
measures of the receive and the transmit correlation
matrices, respectively.

For large numbers of both receive and transmit antennas
there is the asymptotic property lim W¥.®% = 1.
N,M— oo

V. APPLICATIONS

There are several applications of the diversity and corre-

lation measures defined in Chapters III and IV, respectively.
They include the following:

Establishment of equivalence classes:

By grouping together different correlation matrices which
have the same diversity or correlation measure, a so called
equivalence class is obtained. It turns out that MIMO
channels from one such equivalence class offer similar
performance in terms of ergodic capacity and throughput.
One element out of the equivalence class can then be used
as a representative for the whole class. This has impact
for physical layer simulation of mobile communication
systems, as only a small number of representative channel
types have to be simulated.

Build an order relation of MIMO channels:

The diversity and correlation measures are functions
which map a correlation matrix onto a non-negative real
number. They can be used to define an order relation
according to which correlation matrices can be sorted by
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mutual information for the same transmit correlation matrices.

their amount of correlation. Note that the correlation mea-
sure can be directly applied also to compare correlation
matrices of different dimensions.

e Statistical analysis of correlation matrices:
Sometimes the correlation matrices are modeled as ran-
dom variables themselves. The diversity and correlation
measures can be used to analyze the statistical properties
of diversity and correlation associated with these random
correlation matrices. This is especially useful for analysis
of data obtained through field measurement.

o Classification of channel types:
The amount of diversity or correlation can be used to
classify a MIMO channel. For instance one could define
three classes, which collect channels of low, medium
and high correlation, respectively. Since different transmit
and receive signal processing may be used for different
amount of correlation, the classification may decide upon
the proper signal processing or its parameters. This may
include selection of number of transmitted data streams,
associated modulation schemes and distribution of trans-
mit power, as well as selection between transmit process-
ing algorithms which are built on diversity (like space-
time block coding) or beam-forming oriented schemes,
which profit from higher correlation. Since the diversity
and the correlation measures can be computed with both
very low and constant complexity, a decision based on
this criterion is attractive for real-time applications.

Let us discuss the first application in more detail. The correla-
tion (or diversity ) measure allows the definition of equivalence
classes Sp of correlation matrices, which all have the same

correlation measure ®, that is
Se = {R]| ®(R) = ®}. (12)

These equivalence classes have one important feature: the
performance of MIMO systems with respect to channel capac-
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Left: Ergodic mutual information with eigenbeamforming for transmit correlation matrices from azimuthal power spectra from Figure 1. Right Outage

ity and throughput is essentially equivalent for all correlation
matrices out of the equivalence class. In order to demonstrate
this property let us first have a look at an example. We
assume that the receive and the transmit fading processes are
uncorrelated, such that the channel matrix is given by (9),
where we let the entries of G become i.i.d. zero-mean, unity-
variance Gaussian distributed (Rayleigh fading). A transmit
fading correlation matrix, can be specified by

Ry, = Za(@n)P(QOn)aH((Pn)a

n

13)

where a(p,) is the array steering vector of the transmit
antenna array corresponding to a azimuthal angle of departure
©n, While P(p,,) is proportional to the so-called azimuthal
power density at the angle ,,. The power spectrum P(p,,)
therefore describes the azimuthal scatterer distribution as seen
by the transmitter. We look at four different transmit cor-
relation matices which are obtained from the four different
azimuthal power densities given on the left hand side of Figure
1. The two power spectra in the upper part lead to correlation
matrices with correlation measure equal to & = 0.35 (low
correlation). In the lower part two different power spectra are
given which lead to a considerably higher correlation with a
correlation measure of ® = 0.75. Assuming a uniform linear
antenna array with half-wavelength spacing, the right hand
side of Figure 1 displays the eigenvalue profiles of the transmit
fading correlation matrices corresponding to the power spectra
from the left hand side. The transmitter knows the channel on
average, i.e. it is aware of the transmit correlation matrices.
This enables the application of MIMO eigenbeamforming [9].
For the computation of mutual information we assume that
the receiver is also equipped with N = 8 antennas, which
do not experience fading correlations (rich local scattering
around the receiver). Such a channel is called semi-correlated
(only transmit-side fading correlation) [10] . The left hand
side of Figure 2 shows the ergodic mutual information (assum-
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Fig. 3. Left: Ergodic mutual information vs. transmit power for transmit correlation matrices from the sets So.25, So.5 and Sg.75. Right: Same for throughput.
For each of the sets two lines are shown, which represent the range of +1 standard deviation around the average. MIMO-Eigenbeamforming is applied at the

transmitter. The number of receive and transmit antennas equals 8 each.

ing eigenbeamforming) which results from the four different
transmit correlation matrices. It can be seen that channels with
transmit correlation matrices which have the same correlation
measure perform essentially the same with respect to ergodic
mutual information. Moreover, the performance is fairly dif-
ferent when the transmit correlation matrices have a different
correlation measure. The right hand side of Figure 2 shows that
this property also holds true for the outage mutual information.
The qualitative results from Figure 2 can be generalized to
arbitrary transmit correlation matrices. This is shown on the
left hand side of Figure 3, which displays the ergodic mutual
information (with eigenbeamforming) of MIMO channels with
different transmit correlation matrices, which are grouped into
three sets Spos, So.5 and Sp.75. Each set consists of 250
transmit correlation matrices which have the same correlation
measure (0.25, 0.5 and 0.75, respectively) but are otherwise
chosen randomly. For each of the sets Figure 3 shows two
lines, which represent the range of +1 standard deviation
around the average over the 250 correlation matrices from each
set. The right hand side of Figure 3 shows the corresponding
results in terms of throughput 7" which is defined as:

{R for I > R

T = max 0 else

a : (14)

where [ is the mutual information. As can be seen, the transmit
correlation matrices out of the same equivalence class lead
to highly similar performance with respect to both ergodic
capacity and throughput.

VI. CONCLUSION

In this paper a measure for diversity and correlation present
in a wireless MIMO communication system is shown. With
this definition it is not only possible to quantify the amount
of correlation and diversity present in the channel, but also
to classify channel types by their amount of diversity or
correlation. Thereupon equivalence classes of channels can
be defined, which offer the same amount of diversity or

correlation. It is demonstrated, that channels with the same
correlation measure, i.e. from the same equivalence class
perform essentially equivalent with respect to both ergodic
capacity and throughput. The correlation measure may also
be used for other applications, like ranking the suitability of
different signal processing and coding techniques, for instance
space-time block-coding or beam-forming in correlated fading.
Both the correlation and diversity measure can be computed
from the correlation matrix without knowing its eigenvalues.
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