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Abstract—In this paper, we present a new method
called setvectors to predict cache contention intro-
duced by co-scheduled applications on a multicore
processor system. Additionally, we propose a new
metric to compare cache contention prediction meth-
ods. Applying this metric, we demonstrate that
our setvector method predicts cache contention with
about the same accuracy as the most accurate state-
of-the-art method. However, our method executes
nearly 4000 times as fast.
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1 Introduction

With multicore processors, chip manufacturers try to sat-
isfy the ever increasing demand for computational power
by parallelization on thread or process basis, making per-
formance of computer systems more and more indepen-
dent from the saturated processor clock speed. However,
one important limitation that does not rely on proces-
sor clock speed, but on the computational power of the
processor, is the ever increasing processor memory gap:
Although both, processor and DRAM performance, grow
exponentially over time, the performance difference be-
tween processor and DRAM grows exponentially, too.
This happens due to the fact that“the exponent for pro-
cessors is substantially larger than that for DRAMs” [7]
and “the difference between diverging exponentials also
grows exponentially” [7].

A way to deal with the exponentially diverging mem-
ory gap is to transform computational performance into
memory hierarchy performance, making memory perfor-
mance not only benefit from improvements of the mem-
ory hierarchy system, but also from better (and in a much
higher rate evolving) processor technology. One possibil-
ity therefore is to spend computational power to find good
application co-schedules that minimize overall cache con-
tention. Reducing DRAM accesses by optimizing cache
performance is a key issue in todays and tomorrows com-
puter architectures.

L2 cache performance has been identified as a most cru-
cial factor regarding overall performance degradation in
multicore processors [2]. Figure 1 shows the effect of L2
cache contention on the SPEC2006 benchmark milc, run-
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Figure 1: L2 cache hitrate degradation for the milc
SPEC2006 benchmark when co-scheduled with different
applications.

nig on core c0 of a dual core processor, when co-scheduled
with applications astar, gcc, bzip2, gobmk and lbm on core
c1. It can easily be seen that the performance of milc
heavily degrades when co-scheduled with the lbm bench-
mark; other co-schedules however, have a much lower per-
formance burden.

A requirement in order to optimize co-schedules for cache
contention is a good metric to predict cache contention of
application co-schedules from specific application charac-
teristics. Although a number of methods have been in-
vestigated that predict L2 cache performance from some
application characteristics for single core processors, so
far only little effort has been spent to predict L2 cache
performance of co-scheduled applications in a multicore
scenario.

In this paper, we propose a new method called setvectors
to predict cache contention in multicore processors. We
compare our method to the activity vectors proposed by
Settle et al. [6] and the circular sequence based prob
model presented by Chandra et al. [1]. We show that
our setvector method predicts optimal co-schedules with
about the same accuracy of the best performing circular
sequence based method, but, on average, executes about
4000 times faster.



The remainder of this paper is organized as follows:
Section 2 presents state-of-the-art techniques to pre-
dict cache contention; section 3 introduces our setvector
method. In section 4, we propose a new metric called
MRD (mean ranking difference) to compare cache con-
tention prediction techniques and discuss the parameters
applied to our simulation. In section 5, we present our
results. Section 6 concludes this paper.

2 State-of-the-art Cache Contention
Prediction Techniques

In this section, we describe state-of-the-art techniques
to predict cache contention in multiprocessor systems,
namly Alex Settle et al.’s activity vectors [6] and Dhruba
Chandra et al.’s stack distance based FOA (frequency
of access) and SDC (stack distance competition) model
[1] and their circular sequence based Prob (probability)
model [1].

2.1 Settle et al.’s Activity Vectors

Alex Settle et al. studied processor cache activity and ob-
served that “program behavior changes not only tempo-
rally, but also spatially with some regions hosting the ma-
jority of the overall cache activity.”[6] To exploit spatial
behavior of cache activity to estimate cache contention,
they divide the cache address space into groups of 32 so-
called super-sets and count the number of accesses to each
such super set. If, in a given time interval, the accesses to
a super set exceed a predefined threshold, a correspond-
ing bit in the so-called activity vector is set to mark that
super set as active.

To predict the optimal co-schedule B, C or D for a thread
A, every bit in the activity vector of A is logically AND-
ed with the corresponding bit in each B, C and D. The
bits resulting from that operation are summed up for each
thread combination A ↔ B, A ↔ C and A ↔ D. As a
co-schedule for A, that thread in {B, C, D} is chosen that
yields the least resulting sum. [6]

2.2 Chandra et al.’s Stack Distance Based
FOA and SDC Methods

In [1], Dhruba Chandra et al. propose to use stack dis-
tances to predict cache contention of co-scheduled tasks.
Stack distances have originally been introduced by Matt-
son et al. [5] in 1970 to assist in the design of efficient
storage hierarchies in virtual memory systems. In [3],
Mark D. Hill and Allan J. Smith showed that they can
also be easily applied to evaluate cache memory systems.

The method assumes a cache with LRU (least recently
used) replacement policy and works as follows: Given a
cache with associativity α, the number of α+ 1 counters
C1, . . . Cα+1 have to be provided for each cache set to

track the reuse behavior of cache lines. If, on a cache
access, the cache line resides on position p of the LRU
stack, counter Cp of the corresponding cache set is in-
creased by one. If the cache access results in a miss, i.e.
if the cache line has no corresponding entry on the LRU
stack (and therefore the cache line does not reside in the
cache), then counter Cα+1 is increased. This procedure
leads to a so-called stack distance profile, as it is depicted
in figure 2. The stack distance profile characterizes the
positions of cache lines on the LRU stack when accessing
cache data.
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Figure 2: Stack distance histogram.

Given a stack distance profile, the total number of ac-
cesses to a specific cache set can simply be determined
by summing up all Ci according to

accesses =
α+1∑
i=1

Ci (1)

and the cache miss rate can be calculated by

Pmiss =
Cα+1∑α+1
i=1 Ci

. (2)

For a smaller cache with lower associativity α′, the miss
rate can be computed as

Pmiss(α′) =
Cα+1 +

∑α
i=α′ Ci∑α+1

i=1 Ci
. (3)

Chandra et al. exploit this equation to predict the cache
miss rate under cache sharing. They estimate the effec-
tive associativity α′ of a task when sharing the cache with
another task according to

α′ =
effCacheSizex
numCacheSets

, (4)

where numCacheSets denotes the number of sets the
cache is composed of and effCacheSizex the effective
cache size that is available for thread x.

Within their FOA model, they calculate the effective
cache size according to

effCacheSizex =
∑α+1
i=1 Ci,x∑N

y=1

∑α+1
i=1 Ci,y

· CacheSize. (5)



Within their SDC model, they create a new stack dis-
tance profile by merging individual stack distance profiles
to one profile and determine the effective cache space for
each thread “proportionally to the number of stack dis-
tance counters that are included in the merged profile.”[1]

The shaded region in figure 2 shows how the effective
cache size is reduced by cache sharing.

While the FOA and the SDC model both are heuristic
models, Chandra et al. also developed an inductive prob-
ability model that is based on circular sequences rather
than on stack distances.

2.3 Chandra et al.’s Circular Sequence
Based Prob Method

Circular sequences are an extension to stack distances in
that they do not only take into account the number of
accesses to the different positions on the LRU stack, but
also the number of cache accesses between accesses to
equal positions on the LRU stack.

Therefore, Chandra et al. define a sequence seqx(dx, nx)
as “a series of nx cache accesses to dx distinct line ad-
dresses by thread x, where all the accesses map to the
same cache set” [1] and a circular sequence cseq(dx, nx)
as a sequence seqx(dx, nx) “where the first and the last
accesses are to the same line and there are no other ac-
cesses to that address” [1]. Circular sequences can be
regarded as stack distances that have each counter C aug-
mented with an additional vector n to hold a histogram
of accesses for each distance. Figure 3 illustrates the rela-
tionship between sequences and circular sequences when
accessing cache lines A, B, C and D.

A B C A D D C

cseq(1,2)cseq(3,4)

cseq(3,5)

seq(4,7)

Figure 3: Relationship between sequences and circular
sequences. A, B, C and D depict different cache lines.

For their circular sequence based Prob model, Chandra
et al. compute the number of cache misses for a thread
x when sharing the cache with an additional thread y
by adding to the stand-alone cache misses Cα+1 the val-
ues of the other counters C1 . . . Cα, each multiplied with
the probability that the corresponding circular sequences
cseq(dx, nx) will become a miss, where nx corresponds to
the estimated mean n for a specific d:

missx = Cα+1 +
α∑

dx=1

Pmiss(cseqx(dx, nx))× Cdx
(6)

Chandra et al. calculate the probability that the circular
sequence cseq(dx, nx)) will become a miss by summing up
the probabilities that there are sequences seqy(dy, E(ny))
in thread y with α− dx + 1 ≤ dy ≤ E(ny), where E(ny)
represents the expected value of n in the thread y:

Pmiss(cseqx(dx, nx)) =
E(ny)∑

dy=α−dx+1

P (seqy(dy, E(ny)))

(7)
E(ny) is estimated by scaling nx proportionally to the
ratio of accesses of y and x:

E(ny) =
∑α+1
i=1 Ciy∑α+1
i=1 Cix

· nx (8)

The probability of sequences P (seqy(dy, E(ny))), in short
P (seq(d, n)), is calculated recursively according to

6. Repeat Step 1-5 for each co-scheduled thread (e.g.,
thread ).

We will now describe how each step is performed.

2.5.1. Step 1: Computing

is computed by taking its average over all possible val-
ues of :

(4)

To obtain , an off-line profiling or sim-
ulation can be used. An on-line profiling is also possible,
using simple hardware support where a counter is added to
each cache line to track and a small table is added to keep
track of . We found that each counter
only needs to be 7 bits because there are very few val-
ues that are larger than 128.

2.5.2. Step 2 and 3: Computing and

To compute the expected time interval duration for a circu-
lar sequence, we simply divide it with the access frequency
per set of thread ( ):

(5)

To estimate how many accesses by are expected to hap-
pen during the time interval , we sim-
ply multiply it with the access frequency per set of thread

:
(6)

2.5.3. Step 4: Computing

The problem can be stated as finding the probability that
given accesses from thread , there are distinct
addresses, where is a random variable. For simplicity of
Step 4’s discussion, we will just write to rep-
resent . The following theorem uses
inductive probability function to compute .

Theorem 1 For a sequence of accesses from a given
thread, the probability of the sequence to have distinct
addresses can be computed with a recursive relation, i.e.

if
if
if

if

where and
.

Proof: The proof will start from the more complex term to
the least complex term.

Case 1 ( ): Let the sequence repre-
sents an access sequence . The se-
quence just prior to this one is . There
are two possible subcases. The first subcase is when the
address accessed by also appears in the prior sequence,
i.e. ,
hence the prior sequence is . Furthermore,
adding to the prior sequence creates a new circular se-
quence with ranging from to , with a prob-
ability of , denoted as . The
second subcase is when the address accessed by has
not appeared in the prior sequence, i.e.

hence the prior
sequence is . Furthermore, adding to
the prior sequence does not create a new circular sequence
at all (i.e. ), or creates a circular sequence
that is not within the sequence (i.e. where

). Therefore, the probability of the second subcase is
, denoted

as ) . Therefore,
.

Case 2 ( ): since is impos-
sible to occur, . Therefore,

follows from
Case 1.

Case 3 ( ): since is impossi-
ble (there are more distinct addresses than accesses),

. Therefore,
follows from Case 1.

Case 4 ( ): is true because the
first address is always considered distinct.
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Figure 6. Example probability distribution func-
tion that shows and . The function
is computed by using the formula in Corollary 2.

Corollary 2 and Figure 6 illustrates how and
can be computed from the stack distance profile. The figure
shows that we already have three distinct addresses in a
sequence. The probability that the next address will be one
already seen is , otherwise it is .

Computation-wise, .
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where P (d−) =
∑d
i=1 P (cseq(i, ∗)) and P (d+) = 1 −

P (d−) (cgf. [1]) and the asterisk (∗) in cseq(i, ∗) denotes
all possible values.

3 Setvector Based Cache Contention
Prediction

In this section, we describe our setvector method. First,
we present the algorithm to obtain setvectors. Second,
we show how setvectors can be used to predict cache con-
tention.

3.1 Generating Setvectors

Setvectors are composed of cache set access frequencies
a and the number of different cache lines d referenced
within a specific amount of time, typically about an op-
erating system’s timeslice. Within this paper, we collect
one setvector for every interval at 220 instructions. Ac-
cording to our proposal in [9] where we presented setvec-
tors to predict L2 cache performance of stand-alone ap-
plications, we assume an L2 cache with 32 bit address
length that uses b bits to code the byte offset, s bits to
code the selection of the cache set and k = 32 − s − b
bits to code the key that has to be compared to the tags
stored in the tag RAM. The setvectors are gathered as
follows:

For every interval i of 220 instructions do:

• First, set the 1× 2s sized vectors a and d to 0.

• Second, for every memory reference in the current
interval, do:



– Extract the set number from the address, e.g.
by shifting the address k bits to the left and
then unsigned-shifting the result k + b bits to
the right.

– Extract the key from the address, e.g. by un-
signed shifting the address s+b bits to the right.

– Increase a[set number].

– In the list of the given set, determine whether
the given key is already present.

– If the key is already present, do nothing and
proceed with the next address.

– If the key is not in the list yet, add the key and
increase d[set number].

We end up with two 1×2s dimensional vectors a and
d. At index j, a holds the number of references to
set j and d holds the number of memory references
that map to set j, but provide a different key.

• In a third step, subtract the cache associativity α
from each element in d and store the result in d′. If
the result gets negative, store 0 instead.

• In a forth step, multiply each element of a with the
corresponding element in d′ and store the result in
the 1× 2s dimensional setvector si.

• Finally, add si as the ith column of matrix S that
holds in each column i the setvector for interval i.

Process next interval.

3.2 Predicting Cache Contention with
Setvectors

The compatibility of two threads for a time interval i can
easily be predicted by just extracting six from Sx and siy
from Sy and calculating the dot product six · siy of the
setvectors in order to obtain a single value. A low valued
dotproduct implies a good match of the applications, a
high dotproduct value suggests a bad match, i.e. a high
level of cache interference resulting in many cache misses.

The dotproducts do not have any specific meaning like
number of additional cache misses, as it is the case with
Chandra’s circular sequence based method. However,
comparing the dotproducts of several thread combina-
tions in relation to each other has been proven to be
an effective way to predict which threads make a better
match and which threads do not.

4 Evaluating Cache Contention Predic-
tion Techniques – Simulation Setup

In order to prove the effectiveness of the setvector method
with its relative comparison of dotproducts, we com-
pared it to Settle’s activity vector method and to Chan-
dra’s circular sequence based method. We refrained from

additionally comparing the setvector method to Chan-
dra’s stack distance based method, as Chandra already
reported that the circular sequence based method out-
performed the stack distance based methods – and our
setvector method showed nearly the same accuracy as
the circular sequence based method.

To compare and evaluate the cache contention prediction
techniques, we generated tracefiles with memory accesses
representing 512 million instructions for each of the ten
SPEC2006 benchmark programs astar, bzip2, gcc, gobmk,
h264ref, hmmer, lbm, mcf, milc and povray applying the
Pin toolkit [4]. Of these ten programs, we executed ev-
ery 45 pairwise combinations on our MCCCSim multicore
cache contention simulator [8] that had been parameter-
ized as follows:

Parameter private L1 cache shared L2 cache

Size 32 k 2 MB
Line size 128 Byte 128 Byte

Associativity 2 8
Hit time 1.0 ns 10.0 ns

Miss time depends on L2 100.0 ns
Replacement LRU LRU

For each program of each combination, we calculated
the difference between the stand-alone memory access
time and the memory access time when executed in co-
schedule with the other application. From this difference,
we calculated the additional penalty in picoseconds per
instruction, that is shown for every combination in table
3a). Additionally, we sorted the results according to 1st)
this penalty and 2nd) the application’s name.

Then, we calculated the predictions for the activity vector
method, Chandra’s circular sequence based method and
our setvector method and sorted them accordingly, as can
be seen from table 3b) - 3d).

To evaluate the prediction methods, we introduce a
method we call mean ranking difference (MRD): We com-
pare the rows of table 3a) that represent values gath-
ered from MCCCSim with those of the predictions, ex-
emplarily shown in table 3b) - 3d). Figure 4 shows that
we calculate the absolute difference between the position
(ranking) determined by MCCCSim and the position de-
termined by the prediction for each combination. The
results are summed up and divided by the total num-
ber of co-scheduled applications (9) to yield the average
mean ranking distance (MRD), i.e. the mean number of
positions, a co-schedule’s prediction differs from the real
values obtained from MCCCSim.

We evaluated several variations of all three methods.

With Chandra et al.’s method, we were interested in com-
paring the predictions for the following variations:



1st task co-scheduled 2nd task
Penalty in picoseconds per instruction for 1st task as simulated by MCCCSim

astar hmmer povray h264ref gcc bzip2 mcf gobmk milc lbm
2.3 2.4 2.7 23.0 33.9 65.3 95.2 101.6 134.7

bzip2 h264ref hmmer povray astar gcc mcf gobmk milc lbm
9.5 10.2 15.2 37.3 84.5 162.4 165.4 193.3 311.3

gcc hmmer h264ref povray astar bzip2 mcf gobmk milc lbm
2.3 5.2 5.7 28.1 88.1 113.9 119.6 128.8 196.5

gobmk hmmer h264ref povray astar gcc bzip2 milc mcf lbm
0.8 1.1 1.4 3.0 4.6 7.2 11.7 12.1 21.0

h264ref hmmer povray astar gcc bzip2 mcf milc gobmk lbm
0.0 0.6 1.2 2.4 4.0 10.5 10.7 19.0 20.4

hmmer h264ref povray gcc astar bzip2 milc mcf gobmk lbm
0.0 0.1 0.3 0.3 1.9 10.1 13.0 21.0 48.0

lbm h264ref hmmer povray gcc astar mcf bzip2 milc gobmk
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

mcf h264ref povray hmmer astar gcc bzip2 gobmk milc lbm
13.1 16.6 17.8 45.5 58.8 98.6 160.0 194.8 275.0

milc h264ref povray hmmer astar gcc bzip2 mcf gobmk lbm
31.1 36.3 45.2 148.3 151.5 270.1 387.4 403.0 570.7

povray hmmer h264ref astar gcc bzip2 mcf milc gobmk lbm
0.2 0.3 1.2 3.2 8.3 10.0 11.0 13.5 27.6

1st task co-scheduled 2nd task
Prediction with activityvectors – 32 super sets

astar bzip2 milc gcc gobmk hmmer h264ref lbm mcf povray
202 252 300 623 652 662 808 1054 1071

bzip2 astar hmmer gcc mcf lbm gobmk h264ref milc povray
202 561 588 644 695 878 926 1097 1176

gcc astar mcf hmmer bzip2 milc lbm h264ref gobmk povray
300 396 572 588 860 973 1170 1238 1660

gobmk astar bzip2 hmmer gcc mcf milc lbm h264ref povray
623 878 1175 1238 1360 1383 1509 1804 2417

h264ref astar bzip2 mcf gcc milc hmmer lbm gobmk povray
662 926 1079 1170 1270 1488 1593 1804 2478

hmmer milc bzip2 gcc mcf astar gobmk povray h264ref lbm
343 561 572 611 652 1175 1341 1488 1536

lbm bzip2 astar milc gcc mcf gobmk hmmer h264ref povray
695 808 891 973 1148 1509 1536 1593 1646

mcf gcc hmmer bzip2 milc astar h264ref lbm gobmk povray
396 611 644 936 1054 1079 1148 1360 1768

milc astar hmmer gcc lbm mcf bzip2 h264ref gobmk povray
252 343 860 891 936 1097 1270 1383 1562

povray astar bzip2 hmmer milc lbm gcc mcf gobmk h264ref
1071 1176 1341 1562 1646 1660 1768 2417 2478

Memory access  
time penalty:

Prediction with  
activity vectors:

Ranking: 1 2 3 4 5 6 7 8 9

|1
 - 5| =

 4

|2
 - 9| =

 7

|3
 - 6| =

 3

...

4 + 7 + 3 + ...

9
... = 3.56 mean ranking difference for astar

Figure 4: Determination of the mean ranking difference (MRD) for astar.

• Chandra cseq chunkset : Prediction while applying
only one circular sequence stack to a chunkset (i.e.
interval of 220 instructions).

• Chandra cseq Af(set): Prediction while applying a
circular sequence stack to every cache set within an
interval and measuring the memory access frequency
on a per cache set basis.

• Chandra cseq Af(chunkset): Prediction while ap-
plying a circular sequence stack to every cache set
within an interval without partitioning the memory
access frequency on the cache sets, i.e. providing
only one memory access frequency value per inter-
val.

Settle et al. stated that “the low order bits of the cache
set component of a memory address are used to index the
activity counter associated with each cache super set.”
[6] However, we expected that the method would achieve
better results when using the high order bits to index the
activity counters since addresses with equal high order
bits are mapped to equal cache sets. Therefore, we eval-
uated the activity vector method for these two variants
naming them high respectively low (cf. table 1).

With the setvector method, we were interested in analyz-
ing the following variations (cf. table 1):

• diff. x access: The setvector method as it had been
presented in chapter 3.

• access: Utilizing only the access frequency. This
way, the performance of the activity vector method
can be estimated for the case that the number of su-
persets reaches its maximum (i.e. the over all num-
ber of sets) and the activity expresses the number
of accesses to a set and not just the one-bit infor-
mation, whether or not a specific threshold has been
reached.

• diff : Utilizing only the number of different cache

lines that are mapped to the same cache set, i.e.
ignoring any access frequency.

• add, mul : Combining the vectors of two threads by
applying either elementwise addition or multiplica-
tion and calculating the average of the elements af-
terwards, rather than by applying the dot product.

5 Results

Table 1 shows the accuracy of the evaluated methods and
variations, table 2 shows the execution time of the meth-
ods, subdivided into time that has to be spend offline
(row cseq profiling and vector creation), and the time that
has to be spend online (row prediction) when calculating
the prediction for a specific combination. Table 1 shows
that Chandra’s circular sequence based method that uti-
lizes the access frequency on a per set basis performs with
the highest accuracy (MRD = 0.58). However, 676.83
picoseconds have to be spent per instruction (ps/instr.)
on average to calculate the predictions, i.e. prediction
takes about 6768 times longer than for the activity vec-
tor method (0.10 ps/instr.) and about 3981 times longer
as for the setvector method.

Although the activity vector method performs quite fast,
it shows a high error rate (MRD = 3.07 and MRD =
2.38 respectively). However, selecting the higher part of
the set bits had been a good idea. Increasing the number
of super sets to the number of sets and applying natu-
ral numbers to count the number of accesses to each set
instead of using only a single bit per set significantly im-
proves accuracy (MRD = 0.64, as seen from Setvector –
access, add), but also increases prediction time (0.16).

The setvector method that utilizes both access frequency
and number of accesses from different keys shows about
the same prediction time (0.17 ps/instr.), but a slightly
better accuracy (MRD = 0.60), that nearly matches that
of the about 3981 times slower circular sequence based
method.



Chandra cseq
chunkset

Chandra cseq
Af(set)

Chandra cseq
Af(chunkset)

Activityvector
low

Activityvector
high

astar 1.56 0.89 0.89 3.56 2.00
bzip2 0.89 0.44 0.89 2.67 1.33
gcc 0.89 0.67 0.89 3.11 2.00

gobmk 0.67 0.67 0.44 3.11 3.33
h264ref 0.67 0.67 0.89 2.67 2.44
hmmer 0.89 0.67 1.11 2.89 2.44

lbm 1.11 0.67 1.33 4.00 2.22
mcf 0.44 0.22 1.33 3.11 2.22
milc 0.67 0.00 0.44 2.89 3.11

povray 2.00 0.89 0.89 2.67 2.67
average 0.98 0.58 0.91 3.07 2.38

Setvector
diff. x access

Setvector
access, add

Setvector
access, mul

Setvector
diff., add

Setvector
diff., mul

astar 0.67 0.67 0.44 0.89 0.89
bzip2 0.67 0.67 0.22 0.44 0.89
gcc 0.89 0.89 0.67 0.67 0.67

gobmk 1.11 1.33 1.56 0.89 0.67
h264ref 0.44 0.44 0.44 1.11 1.11
hmmer 0.22 0.22 0.67 0.89 0.89

lbm 1.33 1.33 1.56 0.89 0.44
mcf 0.00 0.00 0.89 0.22 0.22
milc 0.22 0.44 0.89 0.22 0.44

povray 0.44 0.44 0.22 1.11 1.11
average 0.60 0.64 0.76 0.73 0.73

Table 1: Mean ranking difference (MRD) for each benchmark and method.

6 Conclusion

In this paper, we presented state-of-the art methods to
predict cache contention and proposed a new predic-
tion method based on the calculation of so-called setvec-
tors. We simulated the additional memory access time
introduced by cache contention during application co-
scheduling and compared those values to the prediction
methods by applying a new metric called MRD (mean
ranking distance) that calculates the mean difference be-
tween the predicted and the simulated ranking.

Our results showed that the method introduced by Chan-
dra et al. [1] might be the most accurate one, but it
is nearly 4000 times slower than the proposed setvec-
tor method, that achieves nearly the same accuracy
(MRD = 0.60 instead of MRD = 0.58).
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go
bm

k
lb

m
53

29
3

24
65

96
76

43
29

1
18

53
86

22
31

67
30

25
04

20
68

45
3

go
bm

k
po

vr
ay

h2
64

re
f

as
ta

r
gc

c
hm

m
er

bz
ip

2
m

cf
m

ilc
lb

m
27

40
80

28
12

87
29

99
71

30
25

04
30

29
58

36
66

61
54

92
99

67
56

90
23

69
17

6

h2
64

re
f

hm
m

er
po

vr
ay

gc
c

as
ta

r
bz

ip
2

m
ilc

m
cf

go
bm

k
lb

m
0

8
29

3
80

0
95

44
89

44
8

12
63

45
28

12
87

18
39

29
6

hm
m

er
h2

64
re

f
po

vr
ay

as
ta

r
gc

c
bz

ip
2

m
ilc

m
cf

go
bm

k
lb

m
0

0
67

2
24

65
10

76
4

11
29

92
15

34
25

30
29

58
18

79
46

5

lb
m

po
vr

ay
h2

64
re

f
hm

m
er

as
ta

r
gc

c
bz

ip
2

go
bm

k
m

cf
m

ilc
18

33
24

4
18

39
29

6
18

79
46

5
18

96
60

7
20

68
45

3
22

27
39

6
23

69
17

6
27

13
67

5
28

64
02

9

m
cf

h2
64

re
f

po
vr

ay
hm

m
er

as
ta

r
gc

c
bz

ip
2

go
bm

k
m

ilc
lb

m
12

63
45

13
09

10
15

34
25

17
99

80
22

31
67

29
82

88
54

92
99

70
97

19
27

13
67

5

m
ilc

h2
64

re
f

po
vr

ay
hm

m
er

as
ta

r
gc

c
bz

ip
2

go
bm

k
m

cf
lb

m
89

44
8

90
12

7
11

29
92

16
27

87
18

53
86

32
31

93
67

56
90

70
97

19
28

64
02

9

po
vr

ay
hm

m
er

h2
64

re
f

gc
c

as
ta

r
bz

ip
2

m
ilc

m
cf

go
bm

k
lb

m
0

8
53

19
4

92
27

90
12

7
13

09
10

27
40

80
18

33
24

4

a)
b
)

c)
d
)

Table 3: Co-scheduling penalty and its prediction.


