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Abstract

Various open-source toolkits exist for speech recognition
and speech processing. These toolkits have brought a great
benefit to the research community, i.e. speeding up research.
Yet, no such freely available toolkit exists for automatic af-
fect recognition from speech. We herein introduce a novel
open-source affect and emotion recognition engine, which
integrates all necessary components in one highly efficient
software package. The components include audio recording
and audio file reading, state-of-the-art paralinguistic fea-
ture extraction and plugable classification modules. In this
paper we introduce the engine and extensive baseline re-
sults. Pre-trained models for four affect recognition tasks
are included in the openEAR distribution. The engine is tai-
lored for multi-threaded, incremental on-line processing of
live input in real-time, however it can also be used for batch
processing of databases.

1. Introduction

Affective Computing has become a popular area of re-
search in recent times [17]. Many achievements have been
made towards making machines detect and understand hu-
man affective states, such as emotion, interest or dialogue
role. Yet, in contrast to the field of speech recognition, only
very few software toolkits exist, which are tailored specif-
ically for affect recognition from audio or video. In this
paper, we introduce and describe the Munich open Affect
Recognition Toolkit (openEAR), the first such tool, which
runs on multiple platforms and is publicly available'.

OpenEAR in it’s initial version is introduced as an affect
and emotion recognition toolkit for audio and speech affect
recognition. However, openEAR’s architecture is modular
and by principle modality independent. Thus, also vision
features such as facial points or optical flow measures can
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be added and fused with audio features. Moreover, phys-
iological features such as heart rate, ECG, or EEG signals
from devices such as the Neural Impulse Actuator (NIA),
can be analysed using the same methods and algorithms
as for speech signals and thus can also be processed us-
ing openEAR - provided suitable capture interfaces and
databases.

2. Existing work

A few free toolkits exist, that provide various compo-
nents usable for emotion recognition. Most toolkits that in-
clude feature extraction algorithms are targeted at speech
recognition and speech processing, such as the Hidden
Markov Toolkit (HTK) [16], the PRAAT Software [1], the
Speech Filling System (SFS) from UCL, and the SNACK
package for the Tcl scripting language. These can all be
used to extract state-of-the-art features for emotion recog-
nition. However, only PRAAT and HTK include certain
classifiers. For further classifiers WEKA and RapidMiner,
for example, can be used. Moreover, only few of the listed
toolkits are available under a permissive Open-Source li-
cense, e. g. WEKA, PRAAT, and RapidMiner.

The most complete and task specific framework for
Emotion Recognition currently is EmoVoice [13]. How-
ever, the main design objective is to provide an emotion
recognition system for the non-expert. Thus it is a great
framework for demonstrator applications and making emo-
tion recognition available to the non-expert. openEAR, in
contrast, aims at being a stable and efficient set of tools
for researchers and those developing emotional aware ap-
plications, providing the elementary functionality for emo-
tion recognition, i. e. the Swiss Army Knife for research and
development of affect aware applications. openEAR com-
bines everything from audio recording, feature extraction,
and classification to evaluation of results, and pre-trained
models while being very fast and highly efficient. All fea-
ture extractor components are written in C++ and can be
used as a library, facilitating integration into custom appli-



cations. Also, openEAR can be used as an out-of-the-box
emotion live affect recogniser for various domains, using
pre-trained models which are included in the distribution.
Moreover, openEAR is Open-Source software, freely avail-
able to anybody under the terms of the GNU General Public
License.

3. openEAR’s Architecture

The openEAR toolkit consists of three major compo-
nents: the core component is the SMILE (Speech and Mu-
sic Interpretation by Large-Space Extraction) signal pro-
cessing and feature extraction tool, which is capable gen-
erating > 500k features in real-time (Real-Time Factor
(RTF) < 0.1), either from live audio input or from off-
line media. Next, there is support for classification mod-
ules via a plug-in interface to the feature extractor. More-
over, supporting scripts and tools are provided, which fa-
cilitate training of own models on arbitrary data sets. Fi-
nally, four ready-to-use model-sets are provided for recog-
nition of six basic emotion categories (trained on the Berlin
Speech Emotion Database (EMO-DB) [2] and the eNTER-
FACE database), for recognition of emotion in a continu-
ous three-dimensional feature space spanned by activation,
valence, and dominance (trained on the Belfast naturalistic
(SAL) and Vera-am-Mittag (VAM) [4] corpora), for recog-
nition of interest using three discrete classes taken from the
Audio Visual Interest Corpus (AVIC) [9], and for recogni-
tion of affective states such as drunkenness trained on the
Airplane Behaviour Corpus (ABC).

Signal input can either be read off-line from audio files or
recorded on-line from a capture device in real-time. Since
data processing is incremental (concerning signal process-
ing and feature extraction), there is no difference between
handling live input and off-line media. Independent of the
input method, the feature output can either be classified di-
rectly via built in classifiers, classifier plug-ins, or the fea-
tures (or even wave data) can be exported to various file
formats used by other popular toolkits. Currently imple-
mented export file formats are: WEKA Arff [14], LibSVM
format [3], Comma Separated Value (CSV) File, and Hid-
den Markov Toolkit (HTK) [16] feature files.

The following sub-sections describe the feature extrac-
tor’s modular architecture, the features currently imple-
mented, and the classifier interface. The model-sets will be
detailed along with baseline benchmark results in section 4.

3.1. Modular and Efficient Implementation

During specification of openEAR’s feature extractor ar-
chitecture, three main objectives were followed: speed and
efficiency, incremental processing of data (i.e. frame by
frame with minimum delay), and flexibility and modular-
ity. Adding new features is possible via an easy plug-in

interface.

The SMILE feature extractor is implemented from
scratch in C++, without crucial third party dependencies.
Thus, it is easy to compile, and basically platform inde-
pendent. It is currently known to run on Mac OS, vari-
ous Linux distributions, and Windows platforms. Feature
extraction code is optimised to avoid double computations
of shared values, e. g. Fast Fourier Transform (FFT) coeffi-
cients, which are only computed once and used for multiple
algorithms such as computation of energy, spectral features,
and cepstral features.
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Data Processor
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Data Processor
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Figure 1. Concept and components of openEAR’s SMILE (Speech
and Music Interpretation by Large-Space Extraction) feature ex-
tractor.

Figure 1 shows a rough sketch of the data flow and sig-
nal processing architecture. The central component is the
Data Memory, which enables memory efficient incremen-
tal processing by managing ring-buffer storage of feature
data. Input data (wave files, other features, etc.) is fed to the
Data Memory by Data Source components, which contain
a Data Writer sub-component that handles the data mem-
ory interface. Data Processor components read data frames
or contours from one location of the Data Memory, pro-
cess the data and write new frames to a different location in
the Data Memory. They contain both a Data Reader and a
Data Writer sub-component, which handle the Data Mem-
ory interface. Finally, the Data Sink components read data
from the Data Memory and feed it to the classifier compo-
nents or write data to files. Each component can be run in a
separate thread, speeding up processing on multiple proces-
sors/cores.

The individual components can be freely instantiated,
configured, and connected to the Data Memory via a central
configuration file. To facilitate configuration file creation
example files are provided and configuration file conversion



scripts are included.

3.2. Features

The SMILE feature extraction tool is capable of ex-
tracting low-level audio features (Low-Level Descriptors
(LLD)) and applying various statistical functionals and
transformations to those features. The Low-Level Descrip-
tors currently implemented are listed in table 1. We hope to
extend this list by numerous advanced and state-of-the-art
features in the near future, such as Voice Quality Parameters
(e.g. [6]), alternative pitch detection algorithms, e. g. pitch
by Harmonic Product Spectrum, combination of Average
Magnitude Difference with Autocorrelation, and smooth-
ing of pitch contours via a Viterbi algorithm or ESPS pitch
tracker. Moreover, features such as TEAGER energy or fur-
ther Auditory Features are considered for integration.

Feature Group
Signal energy

Features in Group
Root mean-square & logarithmic

FFT-Spectrum Bins 0-Ny ¢,

Mel-Spectrum Bins 0-NV,,¢;

Cepstral MFCC 0-Ny, fee

Pitch Fundamental frequency F{ via
ACF, in Hz, Bark and closest
semitone.
Probability of voicing (% An )

Voice Quality Harmonics-to-noise ratio

LPC LPC Coefficients

PLP Perceptual Linear Predictive Coef-
ficients

Formants Formants and Bandwidth computed
from LPC analysis

Time Signal Zero-crossing-rate, maximum

value, minimum value, DC

Energy in bands 0-250Hz, 0-
650Hz, 250-650Hz, 1 -4kHz, and
custom

N % roll-off point, centroid, flux,
and rel. pos. of spectrum max. and
min.

CHROMA (warped semitone filter-
bank), CENS

Comb-filter bank

Spectral

Musical

Table 1. Low-Level Descriptors implemented in openEAR’s
SMILE feature extractor.

The Mel frequency features, Mel-Spectrum and Mel-
Frequency Cepstral Coefficients (MFCCs) are computed
exactly as described in [16], thus providing compatibility
to the Hidden Markov Toolkit and existing models trained
on HTK MFCCs. Harmonics-To-Noise Ratio computation

is based on equation 1, where Tj is the pitch period.
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Spectral centroid (C) at time ¢ is computed via equation 2.
X*(f) is the spectral magnitude at time ¢ in bin f.
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Spectral Flux F§ for N FFT bins is computed via equa-
tion 3, whereby E? is the energy of the frame at time .
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The p percent Spectral Roll-Off is determined as the fre-
quency (or FFT bin) below which p percent of the total
signal energy fall. All frequencies, i.e. for Centroid and
Roll-Offs are normalised to 1000 Hz.

Delta regression coefficients d* of arbitrary order can be
computed from any LLD contour (z') using equation 4,
where W specifies half the size of the window to be used
for computation of the regression coefficients. The default
is W = 2. In order to provide HTK compatibility, equa-
tion 4 was implemented as described in [16]. Typically only
the first and second order d-coefficients are used, which is
also the default setting in openEAR.
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Table 2 lists the statistical functionals, regression coef-
ficients and transformations currently implemented. They
can be applied to the LLD to map a time sequence of vari-
able length to a static feature vector. This procedure is
the common technique in related emotion and affect recog-
nition work (cf. [7]). Moreover, hierarchical functionals
can be computed as “functionals of functionals” (cf. [11]),
which helps improve robustness against single outliers, for
example. Thereby there is no limit as to how many hierar-
chies can be computed, except by computing resources such
as memory and processing time.

As with the LLD we aim at implementing even more
functionals which can be applied to LLD contours or func-
tional contours, in order to facilitate systematic feature gen-
eration. Due to the modular architecture of the feature ex-
tractor, it will also be possible to apply any implemented
processing algorithm to any time series, i.e. the Mel-band
filter-bank could be applied as a functional to any LLD con-
tour. This gives researchers an efficient and customisable
tool to generate millions of features in order to find optimal
feature sets which represent affective information.
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Functionals, etc.

Max./min. val. and respective rel. position

Range (max.-min.)

Arithmetic, quadratic, and geometric mean

Arth. mean of absand non-zero val.

9-age of non-zero val. wrt. tot. # of val. in contour
Max. and min. value - arithmetic mean

Quartiles and inter-quartile ranges

N % percentiles N)
Std. deviation, variance, kurtosis, skewness
Centroid of LLD contour

Zero-crossing and mean-crossing rate

25% Down-Level Time, 75% Up-Level Time,
Rise-Time, Fall-Time

# of peaks, mean dist. btwn. peaks, arth. mean of
peaks, arth. mean of peaks - overall arth. mean
Number of segments based on §-thresholding
Linear reg. coefficients and corresp. approx. err.
Quadratic reg. coefficients and corresp. approx. err.
Discrete Cosine Transf. (DCT) coefficients 0-N (6)
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Table 2. Statistical functionals, regression coefficients and trans-
formations currently implemented in openEAR’s feature extractor.

3.3. Classification and Data Output

As mentioned in section 3.1, multiple Data Sinks can
be present in the feature extractor, feeding data to different
classifiers. There exists an implementation of a K-Nearest
Neighbour classifier, a Bayes classifier, and a module for
Support-Vector classification and regression using the effi-
cient and freely available LibSVM [3]. We further plan to
implement Discriminant Multinomial Naive Bayes [12] and
Long Short-Term Memory Recurrent Neural Networks [5].

Supporting scripts written in Perl (in order to be plat-
form independent) facilitate batch processing of data-sets.
As features can be saved in various data-formats, custom
experiments can easily be conducted using e. g. WEKA [14]
or HTK [16]. Calling of various WEKA functions from the
command-line, e. g. for feature selection or classification, is
also included among openEAR’s Perl scripts.

A benefit of openEAR’s modular feature extractor archi-
tecture is that practically any internal data can be accessed
and output to various formats simply by connecting a data
sink to the specific location in the data memory. The ex-
ported data can be used for visualisation purposes, for ex-
ample. This is helpful in finding extractor parametrisation
problems, or for common sense checks to see if everything
is working as expected. Visualising the internal data can
also be a helpful means for teaching and understanding the
process of extracting various feature types. Exemplary plots
of some selected LLD can be found in figure 3.3.

laughing if I take my mind off
T T T

waveform
T T
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RMS energy
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time/s
Figure 2. Plots of selected LLD for the spoken utterance: “laugh-
ing, if I take my mind off ...” (SAL database, male speaker). Top
to bottom: original wave (3s), norm. RMS energy, probability of
voicing, norm. zero-crossing rate, rel. freq. of spec. max.

4. Benchmarks

We now show benchmark results obtained on popu-
lar databases for speech emotion and interest recognition.
Freely available models for all databases used for bench-
marking are distributed with openEAR. Moreover, compu-
tation time performance of openEAR’s SMILE feature ex-
tractor is evaluated. The results show, that openEAR yields
state-of-the-art recognition results with very low computa-
tional demand.

The following sub-section briefly describes the
databases, before the results are discussed in section 4.2.

4.1. Databases

Six databases as listed in table 3 are used for benchmark-
ing openEAR and for which freely available model sets are
distributed with openEAR: the first three contain discrete
class labels for emotion, namely the Berlin Speech Emo-
tion Database (EMO-DB) [2], containing seven classes of
basic emotions (Anger, Fear, Happiness, Disgust, Boredom,
Sadness, Neutral), the eNTERFACE corpus with six emo-
tion categories (Anger, Disgust, Fear, Happiness, Sadness,
and Surprise), the ABC corpus with the classes (Aggres-
sive, Cheerful, Intoxicated, Nervous, Neutral, Tired), and
the Audio Visual Interest Corpus (AVIC) [9] with labels for
three levels of interest (-1: disinterest, O: normal, and 1:
high interest). The last two databases contain continuous
dimensional labels for valence and activation in the range
from -1 to +1. These are the SAL corpus and the VAM
corpus [4]. The latter also has labels for the potency di-



mension. However, we found this dimension to be highly
correlated to activation (Corr. Coeff. 0.9). Thus, we did not
consider it in the evaluations. When viewing the results in

Database #turns discrete continuous
ABC 431 v

AVIC 996 v

EMO-DB 494 v

eNTERFACE 1170 v

SAL 1692 v
VAM 947 v

Table 3. Six databases for benchmarking openEAR and generation
of model sets included in the openEAR distribution.

the following section it has to be considered that ABC, eN-
TERFACE, and EMO-DB contain acted and prototypical
emotions, while AVIC, SAL, and VAM contain natural and
spontaneous data. Due to the dimensional annotation for
SAL and VAM all recorded turns are left in the database,
not only prototypical turns.

4.2. Recognition Results

Table 4 shows results obtained for discrete class emo-
tion and interest (on AVIC) recognition. For all bench-
marks the feature set 5,967 tF as described in table 6 was
extracted. A correlation based feature subset (CFS) selec-
tion was performed in order to find relevant feature sets for
each database. However, better results with the full feature
set were achieved on EMO-DB, eNTERFACE, and ABC.
Thus, the best results without feature selection are shown
there. All the benchmark results are well in line with or
even above the current state-of-the-art.

Recall [%] WA UA
ABC (6 emo. rel. states) 71.9 66.5
AVIC (3 levels of interest) | 74.5 70.4
EMO-DB (7 emotions) 89.5 88.8
eNTERFACE (6 emotions) | 75.2 75.1

Table 4. Results obtained for discrete class emotion recognition
using Support-Vector Machines with polynomial kernel function
of degree 1. 10-fold Stratified Cross-Validation. Weighted average
(WA) and unweighted average (UA) of class-wise recall rates as
demanded in [10].

Finally, table 5 shows the results for the two most chal-
lenging tasks, the dimensional estimation of naturalistic
emotions. Results obtained for VAM are slightly better
than those reported for polynomial kernel SVM in [4]. Re-
sults for SAL are obtained on the same data-set partitions
as in [15].

Database cc, MLE, | CC, MLE,
SAL (train/test) 0.24 0.28 0.15 0.38
VAM (10-f. SCV) | 0.83 0.15 0.42 0.14

Table 5. Results obtained for continuous emotion recognition for
two dimensions (activation and valence) using Support-Vector Re-
gression (polynomial kernel function, degree 1). Results reported
are Correlation Coefficient (CC) and Mean absolute (linear) error
(MLE) for activation (a) and valence (v). VAM: 10-fold Strat-
ified Cross-Validation (SCV) after CFS feature selection. SAL.:
pre-defined train/test sets, CFS feature selection on training set.

Feature Set ~ Description

36 MFCCde MFCC 0-12, first and second order &

102 LLD LLD pitch, time, spectral, mfcc, and en-
ergy + first and second order §

5,031 tF 43 functionals (applied to complete in-
put) of 39 LLD + first and second order
0. (No percentile functionals)

5,967 tF 51 functionals (applied to complete in-
put) of 39 LLD + first and second order
)

5,031 2sF 43 functionals (applied to 2s windows
w. 50% overlap) of 39 LLD + first and
second order 4. (No percentile function-
als)

5,967 2sF 51 functionals (applied to 2s windows
w. 50% overlap) of 39 LLD + first and
second order &

216k tHRF 43 functionals applied to set 5,031 2sF

304k tHRF 51 functionals applied to set 5,967 2sF

Table 6. Feature-sets for openEAR feature extractor computation
time evaluation and benchmark results.

4.3. Computation Time

Since one objective of openEAR is efficiency and real-
time operation, we now provide run-time benchmarks for
various feature sets, which are summarised in table 6. Com-
putation time is evaluated under Ubuntu Linux on a AMD
Phenom 64 bit CPU at 2.2GHz. All components are run in
a single thread for benchmarking.

Table 7 shows the computation time and the Real-Time
Factor (RTF) for extraction of various feature sets.

5. Conclusion and Outlook

We introduced openEAR, an efficient, open-source,
multi-threaded, real-time emotion recognition framework
providing an extensible, platform independent feature ex-
tractor implemented in C++, pre-trained models on six
databases which are ready-to-use for on-line emotion and
affect recognition, and supporting scripts for model build-
ing, evaluation, and visualisation. The framework is com-



Feature Set ~ Comp. time [s] RTF
36 MFCCde 1.3 0.003
102 LLD 4.4 0.009
5,031 tF 6.1 0.012
5,031 2sF 7.2 0.014
216k tHRF 9.2 0.018

Table 7. openEAR’s computation time and real-time factor (RTF)
for feature extraction of 8§ minutes and 27 seconds 16-bit mono
audio sampled at 16 kHz. LLD for all above feature sets computed
for 25 ms frames at a rate of 10 ms. CPU: AMD Phenom, 2.2 GHz.
Single thread processing.

patible with related tool-kits, such as HTK and WEKA by
supporting their data-formats. The current implementation
was successfully evaluated on six affective speech corpora,
showing state-of-the-art performance. Moreover, features
for the Interspeech 2009 Emotion Challenge [10] were ex-
tracted with openEAR.

Development of openEAR is still in progress and more
features will be added soon. Due to it’s modular architec-
ture and the public source code, rapid addition of new, ad-
vanced features by the community is hopefully encouraged.

Although openEAR already is a fully featured emo-
tion and affect recognition toolkit, it can also be used for
other tasks such as classification of non-linguistic vocali-
sations [8]. In the future, decoders for continuous speech
recognition and linguistic features will be integrated into
openEAR, resulting in a highly efficient and comprehensive
affect recognition engine.
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