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ABSTRACT
Using discrete Hidden-Markov-Models (HMMs) for recognition re-
quires the quantization of the continuous feature vectors. In hand-
written whiteboard note recognition it turns out that the pen-pressure
information, which is important for recognition, is not adequately
quantized and looses significance. In this paper, the implicit modeling
of the pressure information presented in previous work which uses the
deterministic knowledge on the actual pressure is generalized using a
Graphical Model (GM) representation based on statistical inference.
The results of two state-of-the-art toolboxes implementing HMMs
and GMs are compared. It can be seen that the statistical inference
approach based on GMs is inferior to the implicit modeling of the
pressure information. It is shown that a direct implementation of
HMMs outperforms the mathematic identical GM representation.

Index Terms— GMs, handwriting recognition, VQ

1. INTRODUCTION

Hidden-Markov-Models (HMMs, see [1]) have proven their power
for modeling time-dynamic sequences of variable lengths. HMMs
also compensate statistical variations in those sequences. Due to
this property they have become quite popular in automatic speech
recognition (ASR). The field of ASR and on-line handwriting recog-
nition (HWR) are closely related: using a speech recognizer based
on HMMs for on-line HWR has been introduced in [2] for the first
time — on the ICASSP 1986. Since then, the use of HMMs in on-line
HWR has been deeply investigated.

In a common HWR system, each symbol (i. e. character) is repre-
sented by one HMM. Words are recognized by combining character-
HMMs using a dictionary. While high recognition rates are reported
for isolated word recognition systems [3], performance considerably
drops when it comes to recognition of whole unconstrained handwrit-
ten text lines [4]: the lack of previous word segmentation introduces
new variability and therefore requires more sophisticated character
recognizers. An even more demanding task is the HWR of whiteboard
notes as introduced in [4], which plays an important role in so-called
“smart meeting room” scenarios (see e. g. [5]): when writing on a
whiteboard, the writer stands rather than sits and the writing arm does
not rest. Therefore, additional variation is introduced. It also has been
observed that size and width of characters and words vary on a higher
degree on whiteboards than on tablets. These conditions contribute
to the characterization of the problem of on-line whiteboard note
recognition as “difficult”.

One distinguishes between continuous and discrete HMMs . In
case of continuous HMMs, the observation probability is modeled by
mixtures of Gaussians [1], whereas for discrete HMMs the probabil-
ity computation is a simple table look-up. In the latter case vector

quantization (VQ, see [6]) is performed to transform the continuous
data to discrete symbols.

In [7] we showed that the important pen pressure information
(the importance of this feature has been proven in [8]) gets lost when
VQ is performed. This observation has been confirmed for a number
of different VQ approaches in [9]. In [7; 9], we introduced a novel
VQ scheme incapable of modeling the pressure information without
loss and respecting the statistical dependencies between the features.

Graphical Models (GMs, see [10]) are a natural enhancement of
HMMs. Hereby following [10], GMs are a combination of probability
theory and graph theory, providing a visual graphical language and
efficient algorithms for probability calculations and decision mak-
ing. In this paper, we use the GM notation to model the statistical
dependencies as hypothesized in [7; 9]. In contrast to our previous
work, in case of GM the statistical dependencies between the pressure
information and the remaining features are derived from the data
rather by statistical inference than by deterministic knowledge. In a
series of experiments, we show that the statistical inference approach
is inferior to our previously published approach where the pressure
information is modeled implicitly by deterministic knowledge. In
addition, in this paper we compare two toolboxes for building HMM-
based and GM-based recognition systems, either of handwriting or
speech recognition, namely the “Hidden-Markov-Toolkit” [11] and
the “Graphical Models Toolkit” [12]. While the experiments and the
used features are native to HWR, the toolboxes are not. Hence, the
general results may be of interest even for the signal processing and
speech community.

The next section gives an overview of the HWR system for white-
board notes, reviews VQ, and introduces discrete HMMs in a GM
notation. The statistical bindings between the pressure information
and the remaining features are hypothesized and expressed in GM
notation in Sec. 3. An evaluation and comparison of the proposed
model to previous results is given in the experimental section (Sec. 4).
Finally, conclusion and discussion are presented in Sec. 5.

2. SYSTEM OVERVIEW

In this section, we summarize our HWR system. Then a short review
on VQ and discrete HMMs is given.

2.1. Preprocessing and Feature extraction

The x- and y-coordinates as well as the pen’s “pressure” p of
the handwritten, heuristically line-segmented whiteboard notes
are recorded using the E B E A M-System as explained in [4].
Hence, the handwritten script is described by the sample vectors
s(t) = (x(t), y(t), p(t))T. Afterwards a resampling of the data is
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performed followed by a correction of the skew and the slant of
the script trajectory, using a histogram-based approach as explained
in [13]. Finally, all text lines are normalized to meet a distance of
“one” between the corpus and the base line.

Following the preprocessing, 24 state-of-the-art on-line and off-
line features are extracted. The extracted on-line features are: the
pen’s “pressure”, indicating whether the pen touches the whiteboard
surface (f1); a velocity equivalent, which is computed before re-
sampling (f2); the x- and y-coordinate after resampling (f3,4); the
“writing direction”, i. e. the angle α of the strokes, coded as sinα and
cosα (f5,6); and the “curvature”, i. e. the difference of consecutive
angles Δα = α(t) − α(t − 1), coded as sinΔα and cosΔα (f7,8);
a logarithmic transformation of the “vicinity aspect” v, sign(v) ⋅
log(1 + ∣v∣) (f9); the “vicinity slope”, i. e. the angle ϕ between the
line [s(t − τ), s(t)], whereby τ < t denotes the τ th sample point
before s(t), and the bottom line, coded as sinϕ and cosϕ (f10,11);
and the “vicinity curliness”, the length of the trajectory normalized by
max(∣Δx∣; ∣Δy∣) (f12). Finally the average square distance to each
point in the trajectory and the line [s(t − τ), s(t)] is given (f13).

The off-line features are: a 3 × 3 “context map” to incorporate
a 30 × 30 partition of the currently written letter’s image (f14−22);
and “ascenders” and “descenders” (i. e. the number of pixels above
respectively beneath the current sample point) (f23,24).

2.2. Vector Quantization

Quantization is the mapping of a continuous, D-dimensional se-
quence O = (f1, . . . , fT ), ft ∈ R

D to a discrete, one dimensional

sequence of codebook indices ô = (f̂1, . . . , f̂T ), f̂t ∈ N provided
by a codebook C = (c1, . . . ,cNcdb

), ck ∈ R
D containing ∣C∣ = Ncdb

centroids ci [6]. For D = 1 this mapping is called scalar, and in all
other cases (D ≥ 2) vector quantization (VQ).

Once a codebook C is generated, the assignment of the continu-
ous sequence to the codebook entries is a minimum distance search

f̂t = argmin
1≤k≤Ncdb

d(ft,ck), (1)

where d(ft,ck) is commonly the squared Euclidean distance, i. e.

d(ft,ck) = (ft − ck)T ⋅ (ft − ck). (2)

The codebook C and its entries ci are derived from a training
set St containing ∣St∣ = Nt training samples Oi by partitioning the
D-dimensional feature space defined by St into Ncdb cells. This is
performed by the k-Means algorithm as described in e. g. [6]. As
stated in [6], the centroids of a codebook capture the distribution of
the underlying feature vectors p(f) in the training data. As the values
of the features described in Sec. 2.1 are neither mean nor variance
normalized each feature fj is normalized to the mean μj = 0 and
standard derivation σj = 1, yielding the normalized feature vector

f̃t = (f̃1,t, . . . , f̃D,t).
2.3. Discrete Hidden-Markov-Model

The Graphical Model (GM, see [10]) of a discrete HMM λ with
the variable parameters λ = (A,B, π) and hidden states s1, . . . , sN

is shown in Fig. 1 where qt denotes the state si which is occupied
at time instance t. The matrix A consisting of the entries aij =
p(qt = sj ∣qt−1 = si), describes the time-invariant probability of a
state transition qt−1 → qt, B, with entries bsi(ot) = p(ot∣si) the
discrete emission-probability of state si for the symbol ot, and π =(πi, . . . , πN) the initial state distribution πi = p(q1 = si) [1]. Given

Fig. 1. GM of a discrete HMM.

a certain parameter set λ, the joint probability of the observation
o = (o1, . . . , oT ) and the state sequence q = (q1, . . . , qT ) yields

p(o,q∣λ) = p(q1) ⋅ p(o1∣q1) ⋅ T∏
t=2

p(qt∣qt−1) ⋅ p(ot∣qt). (3)

By marginalizing, i. e. summing Eq. 3 over all possible state se-
quences q ∈ Q, and using the above substitutions aij , bsi(ot) and
πi, the production probability,

p(o∣λ) = ∑
q∈Q

πq1bq1(o1) T∏
t=2

aqt−1qtbqt(ot), (4)

is derived, and can be computed efficiently using the forward-
algorithm [1]. The parameters λ of a HMM are trained using the
Baum-Welch-algorithm [14]. Combined recognition and segmenta-
tion is enabled by the Viterbi-algorithm [1].

3. VARIANTS OF PRESSURE MODELING

In this section, we address the problem of adequately modeling the
pressure information: as pointed out in [8], the pressure is an impor-
tant feature in on-line HWR of whiteboard notes. However, in [7; 9]
we showed that this feature looses its significance during quantiza-
tion. Hence, review the method of modeling the pressure without loss
while respecting its statistical dependencies to the remaining features,
the switching codebook, and give two possible GM representations.

3.1. Switching Codebook

As pointed out in [7; 9], the statistical bindings between the pres-
sure information and the remaining features are important when VQ
is performed. Applying Bayes’ rule, the joint probability p(f̃) =
p(f̃1, . . . , f̃24) of the features can be written as

p(f̃) = p(f̃1, . . . , f̃24) = p(f̃2, . . . , f̃24∣f̃1) ⋅ p(f̃1) =
= {p(f̃2, . . . , f̃24∣f̃1 < 0) ⋅ p(f̃1 < 0) if f1 = 0

p(f̃2, . . . , f̃24∣f̃1 > 0) ⋅ p(f̃1 > 0) if f1 = 1.
(5)

As pointed out in Sec. 2 the feature f1 is binary. Hence, as indicated in
Eq. 5, p(f̃) can be represented by two arbitrary codebooks Cs and Cg

depending on the value of f1. To adequately model p(f̃2, . . . , f̃24∣f̃1),
the normalized training set S̃t, which consists of Tt feature vectors(f̃1, . . . , f̃Tt), is divided into two sets Fs and Fg where

Fs = {f̃t∣f1,t = 0}, Fg = {f̃t∣f1,t = 1}, 1 ≤ t ≤ Tt. (6)

As this separation is done depending on the actual value of the pres-
sure feature, the modeling of the pressure is deterministic. Then, the
assigned feature vectors are reduced by f1, yet the pressure infor-
mation can be inferred from the assignment of Eq. 6. Ns centroids
rs,i, i = 1, . . . ,Ns are derived from the set Fs and Ng centroids rg,j ,
j = 1, . . . ,Ng from set Fg forming two independent codebooks Rs
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Fig. 2. GM for modeling the pressure feature without loss and respect-
ing its statistical relation to the remaining features by deterministic
knowledge (⇢) and statistical inference (→).

and Rg holding Ncdb = Ns +Ng centroids for the whole system. Ns

and Ng may differ and their values are chosen according to [7].

In order to keep the exact pressure information after VQ for each
normalized feature vector f̃t of the data set, the value of the feature
f̃1,t is handed to the quantizer. This deterministic knowledge enables
the quantizer to choose the proper codebook C for quantization.

3.2. Graphical Model representation

The modeling of the pressure feature as described in Eqs. 5 and 6 us-
ing GM notation is shown in Fig. 2, accounting for the dashed arrows
(⇢): the statistical dependency between the pressure information and
the remaining features is modeled by a switching codebook which is
determined by the actual value of the pressure feature. Hence, deter-
ministic knowledge is used for modeling the pressure information.

Modeling the features depending on the pressure information is
also deductible from the GM shown in Fig. 2. The statistical depen-
dency between the pressure information and the remaining features
can be gained by statistical inference [10]. Therefore, the reduced

feature vector f̃r = (f̃2, . . . , f̃24) is quantized to the symbol f̂r. The
statistical dependency between the pressure information and the re-
maining features is learned during training. This is expressed by
exchanging the dashed arrows (⇢) by solid arrows (→) in Fig. 2. In
contrast to the previous approach, no deterministic switching is per-
formed. The joint probability of the observation O = (o1, . . . ,oT )
and the state sequence q = (q1, . . . , qT ) is derived to

p(O,q∣λ) =p(q1)p(f̂r,1∣q1, f̃1,1)p(f̃1,1)⋅
⋅ T∏
t=2

p(qt∣qt−1)p(f̂r,t∣qt, f̃1,t)p(f̃1,t) (7)

and, again by marginalizing and using the abbreviations as introduced
in 2.3, the joint probability p(O∣λ) yields

p(O∣λ) = ∑
q∈Q

πq1 p(f̂r,1∣f̃1,1)p(f̃1,1)�
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The marking (∗∗) in Eq. 8 shows the joint modeling of the statistical
dependencies between the pressure f̃1,t and the jointly quantized
remaining features: the value of the pressure, directly influences the
remaining features. Parameter estimation in the GMs is performed
by the Junction Tree (JT) algorithm [15]. As for HMMs, recognition
and segmentation is performed using the Viterbi algorithm.

Fig. 3. Evaluation of different systems’ character accuracy with
respect to the codebook size Ncdb.

4. EXPERIMENTAL RESULTS

Our experiments are conducted on the IAM-onDB-t1 benchmark
of the IAM-OnDB, a database containing handwritten whiteboard
notes. For further information on the IAM-OnDB see [16]. The
writer-independent IAM-onDB-t1 benchmark consists of 56 different
characters, and provides writer-disjunct sets (one for training, two
for validation, and one for testing). For our experiments, the same
HMM topology as in [4] is used. While the experiments in our
previous work [7; 9] are conducted using the Hidden-Markov-Toolkit
(HTK, see [11]), the experiments in this paper are performed with
the Graphical Models Toolkit (GMTK, see [12]), realizing statistical
inference [15].

The following four experiments are conducted on the combination
of both validation sets, each with seven different codebook sizes
(Ncdb = 10, 100, 500, 1000, 2000, 5000, 7500). For training the
vector quantizer, the parameters λi of the discrete HMMs, and the
parameters of the GM, the IAM-onDB-t1 training set is used. The
results with respect to the actual codebook size Ncdb are depicted as
character accuracies (ACC) in Fig. 3. The first three experiments
are a repetition of the experiments presented in [7; 9], while the last
experiment evaluates the GM depicted in Fig. 2 (solid arrows).

Experiment 1 (Exp. 1): In the first experiment all components
of the feature vectors (f̃1, . . . , f̃24) are quantized jointly by one code-
book. The results shown in Fig. 3 form the baseline for the follow-
ing experiments. The maximum character ACC of ab = 58.7% is
achieved for a codebook size of Ncdb = 2000. The drop in recogni-
tion performance when raising the codebook size to Ncdb = 5000 and
Ncdb = 7500 is due to sparse data [1].

Experiment 2 (Exp. 2): To prove that the binary pressure feature
f̃1 is not adequately quantized by standard VQ all features except the
pressure information (f̃2, . . . , f̃24) are quantized jointly for the second
experiment. As Fig. 3 shows, only little degradation in recognition
performance compared to the baseline can be observed. The peak rate
of ar = 58.7% is again reached at a codebook size of Ncdb = 2000.
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system Exp. 1 Exp. 2 Exp. 3 Exp. 4

GMTK 58.7 % 58.7 % 58.9 % 55.2 %
HTK 62.6 % 62.5 % 63.7 % —

Δr -6.6 % -6.5 % -8.1 % —

Table 1. Summary of the results of the experiments Exp1,. . ., Exp4
and the results presented in [7; 9].

Experiment 3 (Exp. 3): In order to model the pressure informa-
tion without loss and respecting the statistical dependencies to the
remaining features, the switching codebook approach as explained
in [7; 9] and summarized in GM notation in Fig. 2 (dashed arrows)
is used in this experiment. The result is a slight improvement of
Δr = 0.3%, and a peak character ACC of am1 = 58.9% is achieved.
This confirms the findings of our previous work.

Experiment 4 (Exp. 4): While in the previous experiment the
pressure information is modeled by deterministic knowledge, i. e.
the pressure information determines which codebook is used for
quantization, in this experiment the GM shown in Fig. 2 (solid arrows)
is evaluated: the statistical bindings between the pressure information
and the remaining features are found by statistical inference during
training. Therefore the quantized, reduced feature vector of Exp. 2
is used and combined with the pressure information. The results
are shown in Fig. 3. The peak character ACC of am2 = 55.2% is
reached for Ncdb = 2000 which denotes a relative change of 6.3%.
This reveals the superiority of the utilization of the deterministic
knowledge as proposed in [7; 9].

The result of the experiments Exp. 1, . . . ,Exp. 4 and the results
presented in [7] are summarized in Tab. 1. When comparing these
results, a relative reduction of the character ACC of Δr = −6.6%,
Δr = −6.5%, and Δr = −8.1%, respectively can be observed. The
direct implementation of the HMMs and the codebook switching
design performs significantly better then the more general but less
optimized GM approach.

5. CONCLUSION AND DISCUSSION

In this paper, the experiments presented in our previous work [7; 9]
using discrete HMMs for HWR of whiteboard notes have been re-
peated, confirming an interesting observation: while in continuous
HMM-based HWR of whiteboard notes the pressure information is a
vital feature [8], the significance of this feature gets lost when VQ is
performed. We therefore reviewed a recently published method for
implicitly modeling the pressure information while accounting for
the statistical dependencies to the remaining features, utilizing the
pressure information as deterministic knowledge. In this paper, this
method has been generalized such that the statistical dependencies be-
tween the pressure information and the remaining features is learned
from the training set.

A series of experiments delivered three major outcomes. First,
the observation that the pressure information looses significance
if quantized ([7; 9]) is confirmed even when using a GM based
toolbox instead of a toolbox optimized for HMMs. Second, a GM-
implementation (realized in the GMTK) of the HMM-based HWR
system is outperformed by the optimized HMM implementation in the
HTK. In addition, it has been shown that the dependency between the
pressure information and the remaining features can be estimated by
statistical inference. However this approach is clearly outperformed,

when the deterministic knowledge about the pressure information is
utilized and directly used for recognition. While the recognition sys-
tems, features and the distinct outcome of the experiments presented
in this paper are native to HWR, the general observation, due to the
toolboxes used is not. The results therefore can be of interest even
for the speech community.

Although outperformed, the GM representation of our HWR
system offers a more flexible and hence, expandable platform for
recognition. In future work we therefore plan further investigations
of the use of GMs in handwritten whiteboard note recognition. Espe-
cially the deterministic binding between the observations in the GMs
will be issued in future work.
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