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Abstract

When selecting features with the sequential forward float-
ing selection (SFFS), the “nesting effect” is avoided, which
is a common phenomenon if the computationally less expen-
sive sequential forward selection (SFS) is used instead. In
this paper, we answer the key question, if the more complex
and sophisticated SFFS should be used in on-line HMM-
based recognition of handwritten whiteboard notes. In ad-
dition, an efficient method of displaying the selected feature
set, the “feature map”, is introduced.

In an experimental section, both selection approaches
are evaluated, the derived feature sets are compared, and a
discussion on the selected features is given.

1. Introduction

In on-line handwriting recognition (HWR), amongst other
tasks in pattern recognition, Hidden Markov Models (HMMs,
see [1]) have been used for over 25 years, as they offer
a combined segmentation and recognition, avoiding error-
prone pre-segmentation [2]. More recently, the new task
of on-line HMM-based HWR of whiteboard notes has been
introduced [3], which plays an important role in so-called
“smart meeting room” scenarios (see e. g. [4]). In [5] features
were selected for HMM-based HWR of whiteboard notes
using the sequential forward selection (SFS, see [6]).

In this paper, we first perform feature selection on the
features used in our on-line HWR system for whiteboard
notes [7, 8] with the SFS, confirming the findings presented
in [5] and introduce a compact notation for the selected fea-
tures. However, a known drawback of the SFS is the “nesting”
effect: once a feature has been added to the final feature set,
it cannot be removed [9]. We therefore extend the feature
selection by applying the sequential forward floating selec-
tion (SFFS, see [9]) which overcomes the nesting effect, and

answer the key question, whether the feature sets derived by
the computationally more expensive but also more sophisti-
cated SFFS outperforms the feature sets found by the simple
SFS approach.

The next section gives a brief summary of our recognition
system. Then, the SFS and the SFFS are reviewed. In Sec. 4,
the experimental section, features are selected using the for-
mer introduced SFS and SFFS, and results are presented.
Finally, conclusions and an outlook are drawn in Sec. 5.

2. Recognition System

In this section, we sketch our recognition system, includ-
ing the preprocessing, feature extraction, and the HMM-
based recognizer. A more in-depth discussion on the recog-
nition system can be found in [7, 8].
Preprocessing The x- and y-coordinates as well as the
pen’s “pressure” p of the handwritten, heuristically line-
segmented whiteboard notes are recorded using the E B E A M-
System as explained in [3]. Hence, the handwritten script is
described by the sample vectors s(t) = (x(t), y(t), p(t))T.
Afterwards a resampling of the data is performed, followed
by a correction of the skew and the slant of the script trajec-
tory, using a histogram-based approach as explained in [10].
Finally, all text lines are normalized to meet a distance of
“one” between the corpus and the base line.
Feature Extraction Following the preprocessing, 24
state-of-the-art on-line and off-line features are extracted and
form the complete feature set F .

The extracted on-line features are: the pen’s “pressure”,
indicating whether the pen touches the whiteboard surface
(f1); a velocity equivalent, which is computed before re-
sampling (f2) and later interpolated according to the resam-
pling factors; the x- and y-coordinate after resampling (f3,4),
whereby the y-coordinate is smoothed by the moving aver-
age; the “writing direction”, i. e. the angle α of the strokes,
coded as sinα and cosα (f5,6); and the “curvature”, i. e. the
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difference of consecutive angles ∆α = α(t) − α(t − 1),
coded as sin ∆α and cos ∆α (f7,8); a logarithmic trans-
formation of the “vicinity aspect” v, sign(v) · log(1 + |v|)
(f9); the “vicinity slope”, i. e. the angle ϕ between the line
[s(t− τ), s(t)], whereby τ < t denotes the τ th sample point
before s(t), and the bottom line, coded as sinϕ and cosϕ
(f10,11); and the “vicinity curliness”, the length of the tra-
jectory normalized by max(|∆x|; |∆y|) (f12). Finally, the
average square distance to each point in the trajectory and
the line [s(t− τ), s(t)] is given (f13).

The off-line features are: a 3×3 “context map” to incorpo-
rate a 30×30 partition of the currently written letter’s image
(f14−22); and “ascenders” and “descenders” (i. e. the num-
ber of pixels above respectively beneath the current sample
point) (f23,24).
Recognizer Each of the N = 56 characters is repre-
sented by one linear continuous HMM with S = 10 emitting
states and the output probability for each state is estimated
by mixtures of M = 32 Gaussians. The parameters of
the HMMs are trained using the Baum-Welch-algorithm;
combined recognition and segmentation is enabled by the
Viterbi-algorithm [1].

3. Feature Selection

Two standard procedures, namely the sequential forward
selection (SFS, see [6]) and the sequential forward floating
selection (SFFS, see [9]) are presented in this section, and a
common notation is introduced.

Given a set F = {f1, . . . , fD} of D features fi the
main idea behind features selection is to derive a new set
Xk = {x1, . . . , xk} containing k ≤ D features out of F in a
way such that the performance of the underlying recognition
system stays the same or even rises [9] while k declines. All
feature selection algorithms use the value of some cost func-
tion J(Xi), where J(Xi) > J(Xj) is true if feature set Xi
performs “better” than feature set Xj . In this paper, J(Xi)
denotes the recognition accuracy [5]. The significance (i. e.
the importance, see [9, 11]) S of each feature fi (or even
feature set Xi) is given as individual significance

S0(fi) = J(fi) (1)

and joint significance S(yi,Y), i. e. the significance of a
feature yi in conjunction with other features in the set Y .
There are two types of joint significance:

S−(xi,Xk) = J(Xk)− J(Xk \ xi), xi ∈ Xk (2)

S+(fi,Xk) = J(Xk ∪ fi)− J(Xk), fi ∈ F \ X , (3)

where Y \ y denotes that the feature set Y does not contain
the feature y. It shall be noted that Eq. 2 captures the change
in significance when removing the feature xi from the set

Xk, and in Eq. 3 the change in significance is given, when
the feature fi is added to the set Xk.

Following [11], the “worst” feature xw within the set Xk
is derived to

xw = argmin
xi∈Xk

S−(xi,Xk)⇒ J(X \ xw). (4)

Accordingly, the “best” feature fb out of the set of remaining
features F \ Xk regarding to the feature set Xk is given by

fb = argmax
xi∈Xk

S+(fi,X )⇒ J(Xk ∪ fb). (5)

SFS The sequential forward selection (SFS, see [6])
starts with a feature set X1 containing only one feature x1

which has the highest individual significance S0(xi = fi)
out of the complete set of features F , i. e.

x1 = argmax
fi∈F

J(fi). (6)

Then the initial feature set X1 is recursively augmented ac-
cording to

xk+1 = argmin
fi∈F\Xk

S+(fi,Xk),

Xk+1 = Xk ∪ xk+1,
(7)

i. e. the feature fi = xk is added which leads to the maxi-
mum joint significance. The augmentation is repeated until
k features are selected. A pseudo code description of the
SFS method is given in Alg. 1. The SFS algorithm has been

Algorithm: SFS
Data: F , k
Result: Xk
Initialization: x1 = argmax

fi∈F
J(fi) ; X = {x1}, κ = 1 ;

while κ < k do
xκ+1 = argmax

fi∈F\Xκ
S+(fi,Xκ);

Xκ+1 = Xκ ∪ xκ+1 ; κ = κ+ 1;
Algorithm 1: Pseudo code description of SFS(k)

applied for on-line handwriting recognition in [5], however
on a different feature-set and with a different preprocessing
than in our work.
SFFS A known issue with the SFS is its monotonic
growing feature set, i. e. once a feature is added to the final
set of features, it cannot be removed. A feature selection
method that allows for removing once selected features is
the sequential forward floating selection (SFFS, see [11])
which uses the SFS in order to derive an initial feature set
of cardinality of two (i. e. X2). The feature set is augmented
by features similar to the SFS; however, in each iteration the
feature set can be reduced by the least significant feature xw.
The SFFS selection algorithm is summarized by the pseudo
code description shown in Alg. 2.
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Algorithm: SFFS
Data: F , k
Result: Xk
Initialization: X2 =SFS(2) ; κ = 2;
while κ < k do

xκ+1 = argmax
fi∈F\Xκ

S+(fi,Xκ) ; X̂κ+1 = Xκ ∪ xκ+1

;
xw = argmin

xi∈X̂κ+1

S−(xi, X̂κ+1);

if xw 6= xκ+1 then
X̂κ = X̂κ+1 \ xw ; xw = argmin

xi∈X̂κ
S−(xi, X̂κ);

while (J(Xκ \ xw) > J(Xκ−1)) ∧ κ > 2 do
X̂κ−1 = X̂κ \ xw ; xw =
argmin
xi∈X̂κ

S−(xi, X̂κ);

κ = κ− 1;
Xκ = X̂κ;

else
Xκ+1 = X̂κ+1;
κ = κ+ 1;

Algorithm 2: Pseudo code description of SFFS(k)

4. Experiments

The experiments presented in this section are conducted
on the IAM-OnDB database, containing handwritten, heuris-
tically line-segmented whiteboard notes [12]. Comparability
of the results is provided by using the settings of the writer-
independent IAM-onDB-t1 benchmark, which consists of
56 different letters and provides writer-disjunct sets (one
for training, two for validation, and one for testing). Statis-
tical significance of the results is proved by the one-sided
t-test, giving the probability pN of rejecting the hypothe-
sis “both approaches perform equally.” Two experiments are
conducted in which the SFS and the SFFS are used to select
features in HWR of whiteboard notes. The selected features
set are depicted as feature map: the features are placed in
a 4× 6 “matrix,” where the feature number rises from left
to right and top to bottom beginning with the feature f1 in
the upper left corner. A solid square (�) indicates that the
current feature is part of the feature set (see Fig. 1).

In the first experiment (Exp. 1), features are selected with
the SFS as described in Sec. 3 and summarized in Alg. 1.
The results are shown in Fig. 1 ( ), where the character-
ACC estimated on the validation set is plotted against the
number k of used features in the feature set X SFS

k . The
selected features in each feature set are shown as feature
map. The peak character-ACC of av,SFS is reached for the
feature setX SFS

14 , which contains k = 14 features. Compared
to a baseline system ([8], see also line in Fig. 1) that
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Figure 1: Character-ACC for varying sizes of the feature set
Xk estimated on the validation set. The feature sets are
derived using either the SFS or the SFFS. In addition, for
each feature set the feature map is given.

uses all D = 24 features (the complete feature set F) a
relative, statistically significant improvement of ∆r = 3.6 %
(pN > 0.99) to aSFSv = 63.5 % in character-ACC can be
observed on the validation set.

For the second experiment (Exp. 2), the computationally
more expensive SFFS is used for feature selection. Unlike
the SFS, the feature sets found by the SFFS are nesting effect
immune, as once selected features can be removed from the
feature set. However, as the results of this experiments in
Fig. 1 ( ) show, only the feature sets X SFFS

4 , X SFFS
17 , and

X SFFS
18 differ from the corresponding feature sets found by

the SFS, delivering slightly better recognition results. In case
of X SFFS

4 , instead of the ascender (f23) the x-coordinate (f4)
is selected (see corresponding feature maps in Fig. 1). A rea-
sonable explanation for the choice of f3 instead of f23 is the
redundancy introduced by the feature f4 (the y-coordinate),
which is added as fourth feature: sample points represent-
ing ascenders also show high values in their y-coordinate.
Given the later added feature describing the y-position (f4),
the former added ascenders (f23) loose significance and are
replaced by the feature f3, which describes the x-coordinate.
This exchange is not possible when using the SFS due to the
nesting effect. The most intriguing observation is that the
best performing feature set, X SFFS

14 , which consists of k = 14
features, is the same feature set as has been found by the
SFS. Hence, the same relative, statistically significant im-
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method SFS SFFS [8]

ak,SFS
t /ak,SFFS

t 69.2 %
66.8 %

∆r 3.5 %, pN > 0.99

feature map X SFS
14 ≡ X SFFS

14 : F

Table 1: Character-ACC estimated on the test set using either
k = 14 or all features [8].

provement of ∆r = 3.6 % compared to the baseline system
as for the SFS can be observed.

In a final test, the parameters and the features contained
in the feature set X SFS

14 ≡ X SFFS
14 , which delivered the best

performance on the validation set are used for a final test on
the test set. The results are shown in Tab. 1.

As can be seen from the feature map of the feature sets
X SFS

14 ≡ X SFFS
14 (see Fig. 1 and Tab. 1), the “writing direc-

tion” (f5,6) and the pressure information f1 are one of the
most important features. This result confirms the findings
presented in [5]. These features are also known to be vital
for pen-based HWR, e. g. on tablets [13]. In contrast to [5],
in our system the feature f23, the ascender, is significant.
This is due to a different preprocessing, while in [5] a text
line is split up into subparts and each sub part is individually
normalized in size, in our system the whole text line is size
normalized in a holistic manner (see Sec. 2). Hence, in our
system f23 contains important information on the size of the
text line. Besides the ascenders, in our system, the off-line
features f15, f16, f18 and f21, which belong to the context
map proved to be significant. Feature f18 describes the
center of the context map and equals the weighted pressure
information. The left side and the right side of the context
map are described by the features f15 and f21, respectively.
These features help to distinguish between characters like
“t” and “l” and “i” and “e”. The fact that both the SFS and
the SFFS deliver the same feature set with best performance
shows that the selected features are stable and well suited for
the task of HWR of whiteboard notes.

5. Conclusion and Outlook

In this paper we investigated feature selection in on-line
continuous HMM-based HWR of whiteboard notes. First,
results already presented in [5], where features are selected
using the SFS, have been confirmed. Taking the nesting
effect as example, a known issue with SFS, the use of the
computationally more expensive SFFS has been motivated
for feature selection. A major outcome of our experiments is
that both the SFS and SFFS deliver the same optimal feature
set. With those features, a baseline system, which uses all
features could be outperformed. A peak character-ACC of

av = 63.5 % estimated on the validation set and at = 69.2 %
estimated on the test set can be reported. This translates to
a relative, statistically significant improvement of ∆r =
3.6 % and ∆r = 3.5 %, respectively, compared to a baseline
system, which uses all D = 24 features. Significance of the
results was proved by the one-sided t-test. In this paper we
showed that using the SFFS for feature selection in on-line
HWR of whiteboard notes does not lead to better feature
sets.

In [7] we presented a recognition system based on dis-
crete HMMs. In future work, we plan to extend the fea-
ture selection approach presented here for use with discrete
HMM-based recognition systems.
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