
Line-Members – a Novel Feature in
On-Line Whiteboard Note Recognition

Joachim Schenk and Johannes Lenz and Gerhard Rigoll
Institute for Human-Machine Communication

Technische Universität München
Theresienstraße 90, 80333 München
{schenk, lej, rigoll}@mmk.ei.tum.de

Abstract

Confusion-matrices show that character mix-ups
between similar looking letters differing in size rather
than in shape (like “s” and “S” or “e” and “l”), as
well as between tall letters (such as “M” and “t”) and
small case letters (such as “s” and “a”) and vice versa
can occur in on-line whiteboard note recognition. This
paper introduces a novel feature called “line-member”
feature that adds discriminance to the feature vector.
Thereby, for certain sample points the script line as-
sociation is estimated using the Viterbi algorithm and
taken as a feature.

As our experiments indicate, a relative improve-
ment of r = 3.3 % in character level and r = 3.4 %
in word level accuracy compared to a baseline sys-
tem without the novel “line-member” feature can be
achieved. In addition, the character confusion as de-
scribed above can be reduced.

Keywords: On-line handwriting recognition, con-
tinuous HMM, line-member, feature extraction, pre-
processing

1. Introduction

In Hidden-Markov-Model (HMM, [10]) based
handwriting recognition systems, each symbol (com-
monly each character) is represented by a single HMM
(either discrete or continuous). Words are recog-
nized by combining character-HMMs using a dictio-
nary. While high recognition rates are reported for
isolated word recognition systems [4], performance
considerably drops when it comes to unconstrained
handwritten sentence recognition [8]: the lack of pre-
vious word segmentation introduces new variability
and therefore requires more sophisticated character
recognizers. An even more demanding task is the
recognition of handwritten whiteboard notes as intro-
duced in [8]. The conditions described in [8] may

characterize the problem of on-line whiteboard note
recognition as “difficult”.

As mentioned above, the smallest entity usually
recognized in handwriting recognition is the character.
It is therefore reasonable to assume that increasing
the performance of character recognition accuracy re-
sults in an improvement in word recognition accuracy.
Investigations of character confusion show1 that char-
acters which differ in size rather than in shape (like

“s” and “S” or “e”’ and “l”) can be confused, see 1 left.

 e
 l

?
 s
 S

?
 e

 l

 S

 s

Figure 1. Illustration of character confusion without

script lines (left) and relative size description with script

lines (right). Small characters are typeset italic.

Handwritten text can be separated into certain
script lines (see e. g. [1; 5]), as shown in Fig. 2. The
top line, the corpus line, the base line and the bottom
line are (ideally) defined by the top of tall letters (such
as “M” and “t”), the top of lower case letters (such as

“s” and “a”), the base line points, and the bottom of
characters such as “p”, respectively [1].

 base line 
 bottom line 

 corpus line 
 top line 

Figure 2. Script lines as e. g. defined in [1; 5]. Script

sample taken from IAM-onDB [7].

1These investigations were performed on the baseline sys-
tem presented in this paper.

gue
Textfeld
From:  Proc. ICFHR 2008, Montreal, Canada
ISBN 1-895193-03-6



As illustrated in Fig. 1 left, even for a human ob-
server, without any context, it is impossible to distin-
guish between “s” and “S” or “e” and “l”. However, if
the script lines limiting the characters are given, the
relative size is known and these characters are distin-
guishable from each other. Following this reasoning,
in this paper we introduce a novel feature describing
the script line association of certain sample points of
a character. This aims to reduce the confusion be-
tween characters of similar shape and different size.
In order to decide whether a sample point lies on a
script line, and if so on which script line, the position
and characteristics of each script line must be known.
However, as mentioned above, the script lines are de-
fined by the associated sample points of the character.
In other words: to find the exact characteristics of the
script lines it must be known which sample points be-
long to which line. One way to cope with this problem
is to assume straight script lines or simple polynomial
curves of low order [1; 8].

In this paper we contribute to the resolution of the
above paradox by first finding sample points that are
potential candidates for defining the script lines. Af-
terwards a trellis is built holding all script line associa-
tion hypotheses of these points. The least costly path
through that trellis is found by applying the Viterbi-
algorithm [11]. Finally we iteratively refine the script
line association and obtain script lines which may
have any characteristic (i. e. they may have any bend).
Subsequently, each sample point’s script line associa-
tion is used as a “line-member” feature.

The rest of this paper is structured as follows: the
next section gives a brief overview of the baseline sys-
tem we used as well as a set of standard features
which are used for on-line handwritten whiteboard
note recognition. In Sec. 3 the novel “line-member”
feature is described and discussed in detail. In an ex-
perimental section (Sec. 4) the influence of the novel
feature on the word level accuracy is examined. Fi-
nally, conclusions are drawn and an outlook for fur-
ther work is given in Sec. 5.

2. System Overview

The handwritten whiteboard data is recorded us-
ing the eBeam-System and heuristically segmented
into lines [8]. Due to the recording system’s limita-
tions the sampling is neither space nor time equidis-
tant. In fact, the sample rate fs differs in the range
of fs = 30 Hz, . . . , 70 Hz. Resampling is therefore per-
formed as a first preprocessing step in order to achieve
a space-equidistant sampling of the handwritten data.
Following this, a histogram-based skew- and slant-
correction is performed as described in [6]. Finally
all text lines are normalized to meet a distance of

“one” between the corpus and the base line. For this
initial estimate the corpus and base line are assumed
to be parallel and horizontal. The position of both
lines is estimated using a histogram-based projection
approach similar to [2].

Following the preprocessing, features are ex-
tracted from the three-dimensional sample vector
st = (x(t), y(t), p(t))T in order to derive a 25-
dimensional feature vector ft = (f1(t), . . . , f25(t)).
The 25th feature (f25), describing the “line member-
ship” of certain sample points, is explained in Sec. 3.
The remaining 24 state-of-the-art on-line and off-line
features for handwriting recognition [5; 8] used in this
paper are briefly explained below.

The extracted on-line features are: The pen’s
“pressure” (f1), indicating whether or not the pen
touches the whiteboard surface. A velocity equivalent
(f2) which is computed before resampling and is later
interpolated according to the resampling factors. The
x- and y-coordinate (f3,4) after resampling, whereby
the y-coordinate is highpass filtered by subtraction of
the moving average. The “writing direction” (f5,6),
i. e. the angle α of spatially resampled and normal-
ized strokes, coded as sinα and cosα and the “curva-
ture” (f7,8), i. e. the difference of consecutive angles
∆α = αt − αt−1, coded as sin ∆α and cos ∆α.

On-line features describing the relation of the cur-
rent sample point st to its neighbors as described
in [5; 8], and altered if needed, are: a logarithmic
transformation of the “vicinity aspect” v (the aspect
of the trajectory between the points st−τ and st,
whereby τ < t denotes the τ th sample point before st),
f9 = sign(v) · log(1 + |v|), the “vicinity slope” (f10,11),
i. e. the angle ϕ between the line [st−τ , st] and the bot-
tom line, coded as sinϕ and cosϕ; the “vicinity curli-
ness” (f12), the length of the trajectory normalized
by max(|∆x|; |∆y|); and the average square distance
to each point in the trajectory and the line [st−τ , st].

The so-called off-line features form the second
class. We extracted: a 3 × 3 “context map” (f14−22),
i. e. a subsampled bitmap slid along the pen’s trajec-
tory to incorporate a 30×30 partition of the currently
written letter’s actual image and the “ascenders” and
“descenders” (f23,24), i. e. the number of pixels above
respectively beneath the current sample point s(t).

The handwritten data is recognized by a classifier
based on continuous character Hidden Markov Mod-
els (HMMs, see [10]) trained on these features.

3. Line Members

In this section the novel “line-member” feature is
introduced and the choice of potential sample points
affected by this feature is explained. Then a trellis
representation of all line-assignment hypotheses and



the estimation of the best line-assignment via the
Viterbi algorithm [11] is derived. Finally, a further
enhancement of the basic line-assignment algorithm
is given.

3.1. Feature Definition and
Candidate Reduction

As explained in the introduction, characters which
differ in size rather than in shape can be confused. To
overcome this problem, a feature characterizing the
line-assignment of each of the T sample points s(t)
of a text line S = [s(1), . . . , s(T )] is defined. This

“line-member” feature (f25) is given by

f25 =



0 if s(t) lies on no line
1 if s(t) lies on top line
2 if s(t) lies on corpus line
3 if s(t) lies on base line
4 if s(t) lies on bottom line,

(1)

assuming Nl = 4 lines. The assignment of the T sam-
ple points to the Nl script lines involves something of
a paradox: while the position and characteristics of
each script line must be known in order to assign the
sample points to the lines, the sample point assign-
ment defines the characteristics of the script lines.

Each sample point s(t) may be assigned either to
any of the Nl script lines or to no line, leading to
Ntot = (Nl + 1)T different mappings. In case of T ≈
100, which is the average number of sample points per
line of text in the database (see Sec. 4), this results
in Ntot ≈ 7.9 · 1069 mappings to be investigated. To
lower the number of possible mappings the number of
potential line-member candidates is reduced. Meeting
the script line definitions given in the introduction we
use spacial extreme points2 sext(n) ∈ Sext. For the
extreme points, local minima and local maxima are
extracted from the text line S according to

Smin ={s(t) |y(t)<y(t− 1) ∧ y(t)<y(t+ 1)}
Smax ={s(t) |y(t)>y(t− 1) ∧ y(t)>y(t+ 1)}, (2)

with 2 ≤ t ≤ T − 1. The extreme points then are
Sext = Smin ∪ Smax, with

smin(n) ∈Smin, 1 ≤n≤Nmin =|Smin|,
smax(n) ∈Smax, 1≤n≤Nmax =|Smax|,

(3)

with Next = Nmin +Nmax extreme points.

2Some authors recommend estimation of extreme points in
the velocity domain rather than in the spacial domain. How-
ever as mentioned in Sec. 2 the sample rate of the recording
system differs in a wide range, inhibiting a robust estimation
of extreme points in the velocity domain.

3.2. Line-Assignment

After the candidate reduction, the question arises
as to how the extreme points shall be assigned to
the lines. For each script line l an initial y-position
cm(0), 1 ≤ m ≤ Nl where each cm(0) belongs to
c(0) = (c1(0), . . . , cNl(0)) is defined:

c(0) =
(

max
1≤n≤Next

yext,n, 1, 0, min
1≤n≤Next

yext,n

)T
, (4)

as the line of text is normalized to a corpus-base line
distance of “one” during preprocessing (see Sec. 2).
The absolute distance between the current sample
point sext(n) and the script line l is

m(l, n) = |y(n)− cl(0)|. (5)

In case of horizontal script lines the assignment is a
simple nearest neighbor search leading to

f̂25(n) = argmin
1≤l≤Nl

m(l, n). (6)

However, the simple assignment described in Eq. 6
is not valid for handwritten whiteboard notes: as
pointed out in [8], the script lines cannot be approx-
imated by a polynomial of degree up to two, i. e.
the possibility exists that they are not straight lines.
Each sample point assigned to a specific script line al-
ters its characteristics. In addition, more than one
script line can be a reasonable assignment for the
current sample point, whereas the following sample
points may decide whether or not this assignment is
valid. In the next section we therefore introduce a
trellis-based script line-assignment using so-called hy-
potheses.

3.3. Trellis representation

For each extreme point sext(n), sext(n) ∈ Sext,
1 ≤ n ≤ Next an association (hypotheses) to every
script line k (1 ≤ k ≤ Nl) is assumed and represented
in the nodes c(k, n) = (c1(k, n), . . . , cNl(k, n))T, 1 ≤
k ≤ Nl, 1 ≤ n ≤ Next of a Nl × Next trellis, where
cl(k, n) holds the current absolute y-position of script
line l if sext(n) is assigned to the script line k. The
variation in the characteristics of the script line k
(expressed as the absolute value of the change in its
y-position) introduced by the association of the cur-
rent sample point sext(n) is captured by some metric
Mn(k) (which is more formally defined in Eqs. 7 and
8). A high value of Mn(k) indicates a high variation
of the text lines whereas a small value describes hori-
zontally running script lines.

Transitions in the trellis are made with respect to
the assignment of the previous extreme point, e. g. if
c(1, n−1) is followed by c(2, n), sext(n−1) is assigned
to the top line and sext(n) is assigned to the corpus



line. Therefore the current line-assignment is depends
directly one the preceding sample point’s assignment.
The transitions are made with respect to minimizing
the metric Mn(k) for each trellis node c(k, n) which
describes the accumulated absolute variation of each
script line. The final script line-assignment is derived
from the path through the trellis yielding the smallest
metric MNext(k). Therefore a path variable ψn(k)
is used to store the preceding trellis node. Hence,
the metric Mn(k), the path variable ψn(k) and the
trellis nodes c(k, n) are derived as follows: first the
metric M(k, 1), the path variable ψ(k, n), and the
trellis nodes c(k, 1) corresponding to the first extreme
point sext(1) are initialized using Eq. 4:

M1(k) = |ck(0)− y1|
ψ1(k) = 0

ci(k, 1) =

{
yext,1 if k = i

ci(0) otherwise

,
1 ≤ k ≤ Nl

1 ≤ i ≤ Nl.
(7)

The metric Mn(k), the path variable ψn(k), and the
trellis nodes c(k, n) of the successive extreme points
sext(n), 1 ≤ n ≤ Next are recursively defined by:

Mn(k) = min
1≤j≤Nl

(Mn−1(j) + |ck(j, n− 1)− yext(n)|)

ψn(k) = argmin
1≤j≤Nl

(Mn−1(j) + |ck(j, n− 1)− yext(n)|)

ci(k, n) =

{
yext(n) if k = i

ci(ψn(k), n− 1) otherwise,
(8)

with 2 ≤ n ≤ Next and 1 ≤ i, k ≤ Nl. The updating
defined by Eq. 8 is illustrated in Fig. 3 for an exem-
plary transition from c(4, n−1) to c(2, n) resulting in
a minimum weight. The final script line-assignment

l1

l 2

l 3

l 4

⋯ n−1 n ⋯

sn+1

sn−1=x n−1y n−1

sn=x ny n

N l×N ext trellis

c 2,n=c14,n−1yn
c34,n−1
c44,n−1


c 4,n−1= .........y n−1Mn−14

Mn−1 2

c 2,n−1= ...yn−1...
...


Mn2 = Mn−14+
+ ∣c24,n−1−yn∣

n2=4

Figure 3. The current trellis node c(k, n) of each script

line k is iteratively updated by the current extreme point

sext(n) and the preceding trellis node v(k, n− 1).

f25(n) is found via backtracking:

f25(Next) = argmin
1≤l≤Nl

MNext(l) (9)

f25(n) = ψn+1 (f25(n+ 1)) , n = Next − 1, . . . , 1.

This implements the Viterbi algorithm [10; 11].
The script line-assignment as performed by ade-

quately applying Eqs. 7, 8, and 9 also allows the in-
corporation of constraints on the characteristics of the
script lines. One reasonable constraint is that script
lines may not cross or lie on each other. This is ex-
pressed by the condition

c1(k, n) > . . . > cNl(k, n),
1 ≤ k≤ Nl,
1 ≤n≤Next.

(10)

Trellis paths violating Eq. 10 are omitted.

3.4. System refinement
The basic trellis approach as introduced in the

above section and explicitly expressed by Eqs. 7, 8,
and 9 performs a script line-assignment for each ex-
treme point sext(n), whether or not the current point
lies on any script line. This leads to mis-characterized
script lines. Furthermore, due to this wrong charac-
terization succeeding points may be assigned to wrong
lines, perpetuating the wrong characterization, and a

“burst error” occurs as shown in Fig. 4.

wrong assignment error burst

Figure 4. Burst error of successive extreme points af-

ter previous assignment of one false candidate (circle).

Script sample taken from IAM-onDB [7].

To avoid the forced assignment of each extreme
point, the following assumptions are made:

1. the sample points contained in Smin belong to
the bottom and base line, whereas Smax consists of
sample points on the corpus and top line and

2. for each tuple of lines (bottom and base line;
corpus and top line) a main line exists which holds
most of the sample points. The base line and the
corpus line are assumed to be the main line for Smin

and Smax, respectively.
The first assumption is motivated by the definition

of the script lines as given in the introduction and is
commonly used, see [1; 5; 8]. The second assumption
is based on the fact that most characters contain the



base and corpus line, whereas the bottom and top line
are shared by fewer characters.

With these common-sense refinements the line-
assignment as explained above is performed on the
two separate sets Smin and Smax as defined in Eq. 3,
still taking all script line hypotheses for each mini-
mum or maximum into account. Thereby minima
which belong to the top of tall letters (e. g. “J”) are
absorbed by either the corpus or top line and not as-
signed to the relevant bottom or base line.

For both sets the number of sample points as-
signed to the main line is counted. After this first
assignment, both sets are iteratively reduced by one
sample point and the assignment is repeated on the
reduced sets. In cases where the number of sample
points assigned to the main lines is higher than for
the initial assignment, the omitted sample point leads
to an improvement and the sets are further reduced.
Otherwise the initial line-assignment is used. The
following listing describes the extended algorithm for
the script line-assignment in further detail:

Algorithm: Extended script line-assignment
Data: Smin,Smax

Result: script line-assignment
forall the S ∈ {Smin,Smin} do
Sproc = S = {s(1), . . . , s(|Sproc|)}, imp = 1;
while imp = 1 do

Nmain(0) = LineAssignment
Eqs. 7, 8, and 9

(Sproc);

forall the i ∈ {1, . . . , |Sproc|} do
Nmain(i) =
LineAssignment

Eqs. 7, 8, and 9
({Sproc \ s(i)});

if î = argmax
0≤i≤|Sproc|

Nmain(i) == 0 then

imp = 0
else

Sproc =
{
Sproc \ s(̂i)

}
Figure 5 shows the exemplary trellis that results

if the basic algorithm presented in Sec. 3.3 as well
as the refinement from this section are applied on
(a fraction of) a text line. Note the parallel paths:
when two parallel paths merge for the current sample
point, a final decision on the script line-assignment of
all preceding sample points is made.

4. Experimental Results

The experiments presented in this section are con-
ducted on a database of handwritten heuristically line-
segmented whiteboard notes (IAM-OnDB, [7]). Com-
parability of the results is provided by using the set-
tings of the writer-independent IAM-onDB-t1 bench-
mark, consisting of 56 different characters and a 11 k

Table 1. Character level and word level accuracies for

three systems: without/with novel line-member feature

and a continuous system [9]).

Ab: without Alm: with [9]
novel feature

char. ACC 61.2 % 63.3 % —
word ACC 62.6 % 64.8 % 65.2 %

Table 2. Absolute count of character confusions of se-

lected character pairs without/with novel feature.

System e↔ l s↔ S a↔ d

without
novel feature

388 392 156
with 139 193 90

dictionary which also provides well defined writer-
disjunct sets (one for training, two for validation, and
one for test). For our experiments the same HMM
topology as in [8] is used. However, in contrast to [8],
just 32 Gaussians were used in both systems discussed
here. The parameters of the recognition systems are
optimized by evaluating the combination of both val-
idation sets. The character level accuracy on the val-
idation sets is shown in Tab. 1. The final tests are
conducted on the test set of the IAM-onDB-t1 bench-
mark. Again, the results are shown in Tab. 1.

The first system, our baseline system, uses the 24
features introduced in Sec. 2. On the character level
we achieve ab = 61.2 % accuracy, and Ab = 62.6 %
accuracy on the word level, see Tab. 1. Addition-
ally we conduct a character confusion analysis on the
character level (performed on the combination of both
validation sets). The absolute counts of mutual confu-
sions of selected character pairs are shown in Tab. 2.

We next evaluate the second system using the 24
standard features and the novel line-member feature
as explained in Sec. 3. Again a confusion analysis is
performed on the character level (see Tab. 2). As in-
tended, the absolute count of mutual character confu-
sions drops. However, there are still some confusions.
This is due to improper feature extraction: in some
cases the sample points are not assigned to the cor-
rect script lines. Still, a peak character level accuracy
of alm = 63.3 % (a relative improvement of r = 3.3 %
compared to the baseline system) and a word level
accuracy of Alm = 64.8 % (a relative improvement of
r = 3.4 %) can be reported (see Tab. 1).

When comparing our results with a different, re-
cently published system [9], using different features
and more Gaussians for the continuous HMM based
recognition system, both of our systems are outper-



1

2

34
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 3132

33

34

35

36

37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
n

4 

1 

2 

3 

l 

best Viterbi path

parallel paths

valid node

invalid node

valid maximum

valid maximum

 top
 corpus
 base

 bottom

line invalid 
max/min

Figure 5. Line membership of a fraction of a text line ([7]) applying the algorithms presented in Secs. 3.3 and 3.4.

formed (see Tab. 1). There may be several reasons
for this. First, a slightly altered feature set is used.
Second, as stated in [3], the performance of continu-
ous HMM based on-line handwriting recognition sys-
tems is influenced by the number of both Gaussian
mixtures and training iterations. The exact training
process of the system in [9] could not be completely
duplicated and is probably mainly responsible for the
difference in performance.

5. Conclusions and Outlook

In this paper we introduced a novel feature de-
scribing the line membership of certain sample points,
wherein the best script line association for selected
sample points is found by the Viterbi algorithm and
used as the feature. Our experiments show that
the absolute count of confusions between characters
which differ in size rather than in shape can be re-
duced. A baseline system which does not use the
novel feature was outperformed by r = 3.3 % relative
in character level and r = 3.4 % relative in word level
accuracy. However, while producing better results
than the baseline system, the best results of a state-
of-the-art system could not be reached (r = −0.6 %
relative). This is mainly due to the different num-
ber of Gaussians which have been used for the con-
tinuous HMM recognition system. Nevertheless, due
to the improvement between our comparable systems,
we encourage the consideration of this feature.

In future work, different metrics (such as the as-
cending slope rather than the absolute y-position of
the script lines) will be investigated. Also we plan to
give a baseline with hand annotated script line asso-
ciations for certain sample points.

Acknowledgments
The authors thank M. Liwicki for providing the final
benchmark’s lattice and G. Weinberg for comments.
References
[1] Y. Bengio and Y. Cun, ”Word Normalization for On-

Line Handwritten Word Recognition”, Proc. of the
IC Pattern Rec., pp 409–413, 1994.

[2] R. Bozinovic and S. Srihari, ”Off-Line Cursive Script
Word Recognition”, IEEE Trans. on Pattern Analy-
sis and Machine Intelligence, 11(1):68–83, 1989.

[3] S. Günter and H. Bunke, ”HMM-based handwritten
word recognition: on the optimization of the num-
ber of states, training iterations and Gaussian com-
ponents”, Pattern Rec., 37:2069–2079, 2004.

[4] J. Schenk and G. Rigoll, ”Novel Hybrid NN/HMM
Modelling Techniques for On-Line Handwriting
Recognition”, Proc. of the Int. Workshop on Frontiers
in Handwriting Rec., pp 619–623, 2006.

[5] S. Jaeger, S. Manke, J. Reichert and A. Waibel, ”The
NPen++ Recognizer”, Int. J. on Document Analysis
and Rec., 3:169–180, 2001.

[6] E. Kavallieratou, N. Fakotakis and G. Kokkinakis,
”New Algorithms for Skewing Correction and Slant
Removal on Word-Level”, Proc. of the Int. Conf. ECS,
2:1159–1162, 1999.

[7] M. Liwicki and H. Bunke, ”IAM-OnDB - an On-Line
English Sentence Database Acquired from Handwrit-
ten Text on a Whiteboard”, Proc. of the Int. Conf.
on Document Analysis and Rec., 2:1159–1162, 2005.

[8] M. Liwicki and H. Bunke, ”HMM-Based On-Line
Recognition of Handwritten Whiteboard Notes”,
Proc. of the Int. Workshop on Frontiers in Handwrit-
ing Rec., pp 595–599, 2006.

[9] M. Liwicki and H. Bunke, ”Combining On-Line and
Off-Line Systems for Handwriting Recognition”, Proc.
of the Int. Conf. on Document Analysis and Rec.,
pp 372–376, 2007.

[10] L. Rabiner, ”A Tutorial on Hidden Markov Mod-
els and Selected Applications in Speech Recognition”,
Proc. of the IEEE, 77(2):257–285, February 1989.

[11] A. Viterbi, ”Error Bounds for Convolutional Codes
and an Asymptotically Optimum Decoding Algo-
rithm”, IEEE Transactions on Information Theory,
13:260–267, 1967.


	Index
	ICFHR 2008 Home
	Conference Info
	Conference Committees
	Program Committee Members & Reviewers
	Welcome from the Conference Chair & Co-Chair
	Message from the Technical Program Chairs
	ICFHR08 Keynotes
	ICFHR08 Sponsors

	Sessions
	Tuesday, 19 August 2008
	S1.1-Offline Recognition
	S1.2-Classification / Decision Theory
	PS.1-Poster Session I
	S1.3-Historical Document Processing
	S1.4-Forensics

	Wednesday, 20 August 2008
	S2.1-Segmentation
	S2.2-Arabic Related
	S2.3-Multilingual Recognition
	PS.2-Poster Session II
	S2.4-Applications

	Thursday, 21 August 2008
	S3.1-Writer Identification
	S3.2-Online Recognition
	S3.3-Classification / Decision Theory
	PS.3-Poster Session III


	Authors
	All authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z

	Papers
	All papers
	Papers by Sessions

	Topics
	Handwriting Recognition Techniques
	Preprocessing and Segmentation Techniques
	Classifiers and their Combinations
	Multiple Sources and Multiple Experts
	Innovative Approaches in Handwriting Recognition
	Soft Computing for Handwriting Processing and Understan ...
	Systems and Architectures
	Error Reduction and Performance Enhancement
	Writer Verification and Identification
	Motor Models for Writing and Drawing
	Human Reading Models and Psychological Aspects
	Document and Image Retrieval Techniques
	Handwritten Annotations in Documents
	Forensic Studies and Security Issues
	Multimedia Systems
	WWW Applications
	PDA and Remote Applications

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using the Acrobat Reader
	Configuration and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Joachim Schenk
	Johannes Lenz
	Gerhard Rigoll





