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Abstract

In this work we evaluate a recently published vec-
tor quantization scheme, which has been developed to
handle binary features like the pressure feature occur-
ring in on-line handwriting recognition using discrete
Hidden-Markov-Models (HMMs) with two neural net
based vector quantizers (VQs). One of these uses a
“Winner-Take-All” (WTA) update rule and the other im-
plements the “Neural Gas” (NG) approach. Both ap-
proaches are believed to be more efficient VQs than the
standard k-means VQ used in our earlier publication. In
an experimental section we prove that both the WTA and
NG neural net VQ significantly (significance is measured
by the one-sided t-test) outperform our previously used
k-means VQ by ryy = 0.9% and ry = 0.8 %, respec-
tively, referring to word-level accuracy. In addition, no
significant difference in recognition accuracy between
the WTA-VQ and the NG-VQ could be observed.

1. Introduction

Adopted from automatic speech recognition (ASR)
Hidden-Markov-Models (HMMs, [1]) are becoming
quite popular for on-line handwriting recognition, [2].
More recently, HMMs have also been introduced for on-
line handwritten whiteboard note recognition, [3]. One
distinguishes between continuous and discrete HMM:s.
In case of continuous HMMs, the observation probability
is modeled by mixtures of Gaussians [1], whereas in the
discrete case the probability computation is a simple ta-
ble look-up. A vector quantizer (VQ) is used to map the
continuous data to discrete symbols. While in ASR con-
tinuous HMMs are widely accepted, it remains unclear
whether discrete or continuous HMM:s should be used in
on-line handwritingand whiteboard note recognition.

In our previous work (see [4]), the use of discrete
HMMs in on-line handwriting recognition is further in-
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vestigated using a standard k-means algorithm (see [5])
as VQ. Thereby it has been observed that the pressure
information of the trajectory gets lost due to quantiza-
tion error. To overcome this effect, in [4] we present a
novel VQ scheme using switching codebooks, wherein
the pressure information is kept without any loss and the
statistical dependencies between the pressure and the re-
maining features are modeled. However one might argue
that there are more sophisticated VQs than the k-means
based. In this paper we therefore evaluate and confirm
the findings of [4] by using two neural net based VQs,
implementing the “Winner-Take-All” (WTA) update rule
and the “Neural Gas” (NG) approach, respectively. One
major outcome is that while both neural net VQs perform
better than the k-means VQ, their performance can still
be improved by the codebook switching approach.

The next section gives a short overview on the recog-
nition system used. Section 3 summarizes vector quan-
tization in general and the WTA and NG approaches in
particular. Then, codebook switching as presented in [4]
is reviewed. In an experimental section, both neural net
VQs compete against each other and against a standard k-
means VQ. Finally we give a conclusion and discussion
of future work.

2. System Overview

This section briefly summarizes the recognition sys-
tem used for the final experiments. The handwritten
whiteboard data is recorded using the EB EAM-System
as described in [3] and resampled space-equidistantly.
Then, a histogram based skew- and slant-correction
is performed according to [6] and the script is size-
normalized. After preprocessing, 24 features are ex-
tracted from the recorded data and form the feature vec-
tor £(t) = (f1(¢),. .., f24(t)), [3; 7]. The extracted on-
line features are: the binary “pen-pressure” fi, f1 = 1if
the pen’s tip is on the whiteboard and f; = —1 otherwise,



an interpolated velocity equivalent (f2) computed before
resampling, the high pass filtered x- and y-coordinate
(f3,4), the “writing direction” (f5 ), and the “curvature”
(f7,8)- In addition, on-line features describing the rela-
tion between the sample point s(¢) to its neighbors are
used: a logarithmic transformation of the “vicinity as-
pect” (fo). The “vicinity slope” (f10,11), the “vicinity
curliness” (f12), and the average square distance to each
point of the trajectory and the line [s;_, s¢] (f13). As off-
line features we extracted a 3 x 3 “context map” (f14—22)
and the “ascenders” and “descenders” (f23 24), i. €. the
number of pixels above and beneath the current sample
point. All features are mean and variance normalized.

Finally, the handwritten data is recognized by a dis-
crete Hidden Markov Model based classifier. In order to
map the continuous feature vectors to a discrete observa-
tion sequence, vector quantization is performed which is
described in the next section.

3. Vector Quantization

In this section we briefly explain vector quantiz-
ers (VQs), review the codebook switching as presented
in [4], and describe the notations.

Vector quantization describes the joint mapping
of a sequence of N-dimensional, continuous features
0O = (f(1),...,f(1)), f(t) € RY to a discrete,
one dimensional sequence of codebook indices 6 =
(f(1),..., f(T)), f(t) € N provided by a codebook
C = [c1,...,¢Ny)s €1 € RY containing |C| = Neg
centroids c;, [S]. Once a codebook C is generated, the
assignment of the continuous sequence to the codebook
entries is a minimum distance search

f(t) = argmin d(f(¢),ck), (1)
1<k<Ncap
where d(f(t),cg) is e. g. the Euclidean distance. The
quality of the VQ quantizing the continuous sequence
O is measured by the signal to quantization noise ratio
(SNR, see [5])

YT S IE@I3
Y e =g 113

In this paper we investigate two approaches for vector
quantization based on neural nets (see e. g. [8]), realizing
“competitive learning.” From a neural net’s point of view
each prototype of a codebook ¢; € R¥ is represented
by a neuron ¢ which is associated with a weight vector
w; € RY. All weight vectors w; are summarized in
W = [w1,..., Wng,]. This is illustrated in Fig. 1. The
mapping between the continuous input vectors and the
corresponding codebook indices (neurons) is performed
according to Eq. 1, replacing c;, by w;, [9]. Different
codebooks are generated by various training approaches

SNR = 10 - log;,

@

of the underlying neural net in a “competitive learning”
manner. All competitive learning approaches have the
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Figure 1: Neural net interpretation of vector quantization.

first stage in common, in which each neuron’s extent
of weight-adaptation to a new stimulus f(¢) is deter-
mined, [10]. The approaches differ in the learning stage.
Two common approaches, both realizing the above men-
tioned “competitive learning,” are the “Winner-Take-All”
(see [11]) and the “neural gas” (see [9]) strategies. They
are described in the next sections.

3.1. Winner-Take-All (WTA)

The “Winner-Take-All” strategy [11] updates the neu-
ron ¢ which best fits the input stimulus f(¢), i. e the pro-
totype c;(t — 1) (the weight vector w; (¢ — 1)) which lies
next to the continuous vector f(¢):

w;(t) = wi(t — 1) +e(t) - [f(t — 1) —w;(t — 1)]
wi(t) =wi(t —1),1<i < Nea, i # 1, 3)

with ¢, the time variable, indicating the time depen-
dency of the weights during training and €(¢) denoting
a time-dependent step size, [10; 12]. The WTA-update
rule as described in Eq. 3 with well-chosen step size
€(t) comprises the on-line version of the k-means algo-
rithm, [5; 9].

3.2. Neural Gas (NG)

In contrast to the WTA, in the Neural Gas VQ the
weights of the neurons are updated according to their
“proximity” to the input vector f(¢) [9]:

wi(t) = wi(t — 1)+ 4)
+e(t) - ha(k(W,£(1)) - [£(t— 1) — wi(t — 1)),

whereby the proximity is expressed by

MW (1) = exp (- SOLEON) )

with k;(Wy,f(t)) the number of neurons j, with
[|w;(t)—£(t)||2 < ||w; —£(t)||2. For A — 0 the update
rule as presented in Eq. 4 becomes the WTA, and for
A # 0 not only the “winner” neuron’s weights w; but
also those of its neighbors are updated.



3.3. Codebook Switching

Standard k-means VQ cannot adequately model the
pen-pressure information (see [4]), while it is shown
in [13] that the pressure information is a vital feature in
on-line whiteboard note recognition. Our results indicate
(see Sec. 4) that the pressure information also gets lost
when using neural net based VQs (which are known to
reduce quantization noise, [9]). By switching between
two neural nets during training and quantization depend-
ing on the pen’s pressure, the statistical dependencies
between the pressure and the remaining features are mod-
eled while keeping the exact pressure information, [4].
The number of output neurons of the first neural net IV
(for feature vectors with f; < 0) and N, the number of
neurons in the output layer of the second neural net (for
feature vectors with f; > 1) can be chosen arbitrarily
and form the ratio R = %

4. Experiments and Results

We conduct experiments on the IAM-onDB-t1 bench-
mark of the TAM-OnDB, a database containing handwrit-
ten whiteboard notes, [14]. Comparability of the results
is provided by using the same settings as in [4]. The
training set of the IAM-onDB-t1 is used to train both
the parameters of the discrete HMMs and the weights
of the neural nets. The optimal number of output neu-
rons (Neap), the step-size €(t) of Egs. 3 and 4, and the
neighbor factor A are chosen by evaluating the character-
level accuracy on both IAM-onDB-t1’s validation sets.
With these parameters the test set is recognized on the
word-level. Significance of the results is proven by the
one-sided t-test, giving the probability py of rejecting
the hypothesis “both approaches perform equally.”

In the first experiment (Exp. 1) we use the WTA-VQ
and the NG-VQ as described in Sec. 3.1 and Sec. 3.2
to quantize the whole feature vector f. The results are
shown in Fig. 2: the highest character accuracies are
apw = 63.3% for the WTA-VQ (Neep, = 5000) and
apN = 63.1% for the NG-VQ (Neg, = 7500). Com-
pared to the results presented in [4] and also listed in
Tab. 1. This is a relative improvement of r,w = 1.1%
and TobN = 0.8 %

In the second experiment (Exp. 2) the pressure infor-
mation f; is left out for both the WTA-VQ and the NG-
VQ. As can be seen from Fig. 2, performance only drops
slightly, although the pressure information is considered
a crucial feature in [13]: for Ngg, = 7500 the WTA-VQ
achieves a character accuracy of a,w = 63.0 % (a rela-
tive change of r,w = —0.5 % compared to the baseline
drawn in Exp. I), and a,n = 63.0% for the NG-VQ
approach (a relative drop of 7,y = —0.2 %).
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Figure 2: Evaluation of different systems’ character ac-
curacies with respect to the codebook size Ngg, and, in
case of codebook-switching, the used ratio R = %

k-means [4] WTA NG
char, word <char, word char word

Exp.1 62.6% 635% 633% 651% 63.1% 64.9%
Exp.2 625% 633% 63.0% 648% 63.0% 64.7%
Exp.3 637% 655% 642% 662% 64.1% 66.1%

Table 1: Results of the experiments.

In the last experiment (Exp. 3), the pressure informa-
tion is modeled separately (though statistically depen-
dently on the remaining features) by a switching code-
book (see Sec. 3.3). Thereby, the ratio R = % is chosen
according to the best performing values found in [4]
and is also given in Fig. 2, as well as the character ac-
curacies: for the WTA-VQ we achieve ag,w = 64.2 %
(reww = 1.4 % relative improvement, Neg, = 5000),
and agyn = 64.1% (rewn = 1.6 % relative improve-
ment, Ngg, = 7500) for the NG-VQ.

For the final task, we use the best-performing configu-
rations from the above experiments and conduct a word-
level evaluation on the IAM-onDB-t1’s test set. The
results of our experiments are shown in Tab. 1. For the
WTA-VQ a word-level accuracy of Ay w = 65.1 %, and
Apn = 64.9% for the NG-VQ is achieved. The slight
drop in character accuracy when leaving out the pressure
information also decreases the word-level accuracy (how-
ever, for the NG-VQ the relative drop of 7.y = —0.3 %,
is not significant as py = 93.8 %). Finally, a significant
improvement for both the WTA-VQ and the NG-VQ
can be reported when the switching codebook approach
is used: Agyw = 66.2% (a relative improvement of
reww = 1.7%, pny > 99.9%) and Agwn = 66.1% (a
relative improvement of 74N = 1.8 %, py > 99.9 %).



Compared to our result for the k-means VQ (see Tab. 1),
a significant relative improvement of rw = 0.9 % and
rn = 0.8 % for both neural net VQs can be observed
(pv > 99.9%). When comparing the best results of
the WTA-VQ and the NG-VQ the WTA-VQ performs
slightly better by r = 0.2 % relatively, which is nor sig-
nificant (py = 71.6 %).

5. Conclusion

In this paper we, investigated two neural net-based
vector quantizers (VQs), namely the “Winner-Take-All”
(WTA)-VQ and the “Neural Gas” (NG)-VQ for quantiz-
ing the features used in on-line handwriting recognition
with discrete HMMs. We successfully applied the novel
VQ design presented in [4] to preserve the pen’s pressure
information that would otherwise be lost due to quanti-
zation error. Significance of the result has been proven
by the one-sided ¢-test.

Our experiments delivered three major results: First,
by using the codebook switching approach a significant
relative improvement of 7y, w = 1.7 % (WTA-VQ) and
rswN = 1.8 % (NG-VQ), both measured in word-level
accuracy, compared to a baseline system where all fea-
tures are quantized jointly, can be observed. The sec-
ond observation is that, compared to standard k-means
quantization, both neural VQs perform better: a peak
word accuracy of Agyw = 66.2% for the WTA-VQ
and Agun = 66.1% for the NG-VQ is reached — a
significant relative improvement of rw = 0.9% and
rn = 0.8 %, respectively. Finally, the relative change
of r = 0.2 % between the WTA-VQ and NG-VQ was
proven to be not significant. However the NG-VQ uses
more output neurons compared to the WTA-VQ in order
to achieve competitive results.

As shown in Fig. 2, no improvement can be ob-
served if raising the number of output neurons from
Negp = 2000 to Negpy = 5000 in case of NG-VQ and
codebook switching. This indicates that the ratio R has
not been chosen properly. The computationally expen-
sive optimization of the ratio R will be done in future
work. The WTA-neural net VQ delivers a higher SNR (as
defined in Eq. 2) than the k-means VQ for Nyq, = 10 and
Negp = 1000. This is illustrated in Fig. 3 (left). However,
the higher SNR does not translate to a higher recognition
accuracy in all cases: while a relative improvement of
r = 0.5 % is achieved for N.g, = 1000 centroids, a rela-
tive drop of r = —5.9 % can be observed for a codebook
size of Ngp, = 10. One explanation might be the change
in the per feature SNR distribution illustrated in Fig. 3
(right) for selected features. In future work we will inves-
tigate the influence of the per feature SNR distribution
on the recognition accuracy.
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