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Abstract
In this work we evaluate a recently published vec-

tor quantization scheme, which has been developed to
handle binary features like the pressure feature occur-
ring in on-line handwriting recognition using discrete
Hidden-Markov-Models (HMMs) with two neural net
based vector quantizers (VQs). One of these uses a

“Winner-Take-All” (WTA) update rule and the other im-
plements the “Neural Gas” (NG) approach. Both ap-
proaches are believed to be more efficient VQs than the
standard k-means VQ used in our earlier publication. In
an experimental section we prove that both the WTA and
NG neural net VQ significantly (significance is measured
by the one-sided t-test) outperform our previously used
k-means VQ by rW = 0.9 % and rN = 0.8 %, respec-
tively, referring to word-level accuracy. In addition, no
significant difference in recognition accuracy between
the WTA-VQ and the NG-VQ could be observed.

1. Introduction

Adopted from automatic speech recognition (ASR)
Hidden-Markov-Models (HMMs, [1]) are becoming
quite popular for on-line handwriting recognition, [2].
More recently, HMMs have also been introduced for on-
line handwritten whiteboard note recognition, [3]. One
distinguishes between continuous and discrete HMMs.
In case of continuous HMMs, the observation probability
is modeled by mixtures of Gaussians [1], whereas in the
discrete case the probability computation is a simple ta-
ble look-up. A vector quantizer (VQ) is used to map the
continuous data to discrete symbols. While in ASR con-
tinuous HMMs are widely accepted, it remains unclear
whether discrete or continuous HMMs should be used in
on-line handwritingand whiteboard note recognition.

In our previous work (see [4]), the use of discrete
HMMs in on-line handwriting recognition is further in-

vestigated using a standard k-means algorithm (see [5])
as VQ. Thereby it has been observed that the pressure
information of the trajectory gets lost due to quantiza-
tion error. To overcome this effect, in [4] we present a
novel VQ scheme using switching codebooks, wherein
the pressure information is kept without any loss and the
statistical dependencies between the pressure and the re-
maining features are modeled. However one might argue
that there are more sophisticated VQs than the k-means
based. In this paper we therefore evaluate and confirm
the findings of [4] by using two neural net based VQs,
implementing the “Winner-Take-All” (WTA) update rule
and the “Neural Gas” (NG) approach, respectively. One
major outcome is that while both neural net VQs perform
better than the k-means VQ, their performance can still
be improved by the codebook switching approach.

The next section gives a short overview on the recog-
nition system used. Section 3 summarizes vector quan-
tization in general and the WTA and NG approaches in
particular. Then, codebook switching as presented in [4]
is reviewed. In an experimental section, both neural net
VQs compete against each other and against a standard k-
means VQ. Finally we give a conclusion and discussion
of future work.

2. System Overview

This section briefly summarizes the recognition sys-
tem used for the final experiments. The handwritten
whiteboard data is recorded using the E B E A M-System
as described in [3] and resampled space-equidistantly.
Then, a histogram based skew- and slant-correction
is performed according to [6] and the script is size-
normalized. After preprocessing, 24 features are ex-
tracted from the recorded data and form the feature vec-
tor f(t) = (f1(t), . . . , f24(t)), [3; 7]. The extracted on-
line features are: the binary “pen-pressure” f1, f1 = 1 if
the pen’s tip is on the whiteboard and f1 = −1 otherwise,
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an interpolated velocity equivalent (f2) computed before
resampling, the high pass filtered x- and y-coordinate
(f3,4), the “writing direction” (f5,6), and the “curvature”
(f7,8). In addition, on-line features describing the rela-
tion between the sample point s(t) to its neighbors are
used: a logarithmic transformation of the “vicinity as-
pect” (f9). The “vicinity slope” (f10,11), the “vicinity
curliness” (f12), and the average square distance to each
point of the trajectory and the line [st−τ , st] (f13). As off-
line features we extracted a 3×3 “context map” (f14−22)
and the “ascenders” and “descenders” (f23,24), i. e. the
number of pixels above and beneath the current sample
point. All features are mean and variance normalized.

Finally, the handwritten data is recognized by a dis-
crete Hidden Markov Model based classifier. In order to
map the continuous feature vectors to a discrete observa-
tion sequence, vector quantization is performed which is
described in the next section.

3. Vector Quantization

In this section we briefly explain vector quantiz-
ers (VQs), review the codebook switching as presented
in [4], and describe the notations.

Vector quantization describes the joint mapping
of a sequence of N -dimensional, continuous features
O = (f(1), . . . , f(T )), f(t) ∈ RN to a discrete,
one dimensional sequence of codebook indices ô =
(f̂(1), . . . , f̂(T )), f̂(t) ∈ N provided by a codebook
C = [c1, . . . , cNcdb ], ck ∈ RN containing |C| = Ncdb
centroids ci, [5]. Once a codebook C is generated, the
assignment of the continuous sequence to the codebook
entries is a minimum distance search

f̂(t) = argmin
1≤k≤NCdb

d(f(t), ck), (1)

where d(f(t), ck) is e. g. the Euclidean distance. The
quality of the VQ quantizing the continuous sequence
O is measured by the signal to quantization noise ratio
(SNR, see [5])

SNR = 10 · log10

1/T
∑T
t=1 ||f(t)||

2
2

1/T
∑T
t=1 ||ft − cf̂t

||22
. (2)

In this paper we investigate two approaches for vector
quantization based on neural nets (see e. g. [8]), realizing
“competitive learning.” From a neural net’s point of view
each prototype of a codebook ci ∈ RN is represented
by a neuron i which is associated with a weight vector
wi ∈ RN . All weight vectors wi are summarized in
W = [w1, . . . ,wNCdb ]. This is illustrated in Fig. 1. The
mapping between the continuous input vectors and the
corresponding codebook indices (neurons) is performed
according to Eq. 1, replacing ck by wi, [9]. Different
codebooks are generated by various training approaches

of the underlying neural net in a “competitive learning”
manner. All competitive learning approaches have the
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Figure 1: Neural net interpretation of vector quantization.

first stage in common, in which each neuron’s extent
of weight-adaptation to a new stimulus f(t) is deter-
mined, [10]. The approaches differ in the learning stage.
Two common approaches, both realizing the above men-
tioned “competitive learning,” are the “Winner-Take-All”
(see [11]) and the “neural gas” (see [9]) strategies. They
are described in the next sections.

3.1. Winner-Take-All (WTA)

The “Winner-Take-All” strategy [11] updates the neu-
ron î which best fits the input stimulus f(t), i. e the pro-
totype cî(t− 1) (the weight vector ~wî(t− 1)) which lies
next to the continuous vector f(t):

wî(t) = wî(t− 1) + ε(t) · [f(t− 1)−wî(t− 1)]

wi(t) = wi(t− 1), 1 ≤ i ≤ NCdb, i 6= î, (3)

with t, the time variable, indicating the time depen-
dency of the weights during training and ε(t) denoting
a time-dependent step size, [10; 12]. The WTA-update
rule as described in Eq. 3 with well-chosen step size
ε(t) comprises the on-line version of the k-means algo-
rithm, [5; 9].

3.2. Neural Gas (NG)

In contrast to the WTA, in the Neural Gas VQ the
weights of the neurons are updated according to their
“proximity” to the input vector f(t) [9]:

wi(t) = wi(t− 1)+ (4)

+ ε(t) · hλ( ki(W, f(t)) ) · [f(t− 1)−wi(t− 1)],

whereby the proximity is expressed by

hλ( ki(W, f(t)) ) = exp

(
−ki(W, f(t))

λ

)
, (5)

with ki(Wt, f(t)) the number of neurons j, with
||wj(t)− f(t)||2 ≤ ||wi− f(t)||2. For λ→ 0 the update
rule as presented in Eq. 4 becomes the WTA, and for
λ 6= 0 not only the “winner” neuron’s weights wî but
also those of its neighbors are updated.



3.3. Codebook Switching

Standard k-means VQ cannot adequately model the
pen-pressure information (see [4]), while it is shown
in [13] that the pressure information is a vital feature in
on-line whiteboard note recognition. Our results indicate
(see Sec. 4) that the pressure information also gets lost
when using neural net based VQs (which are known to
reduce quantization noise, [9]). By switching between
two neural nets during training and quantization depend-
ing on the pen’s pressure, the statistical dependencies
between the pressure and the remaining features are mod-
eled while keeping the exact pressure information, [4].
The number of output neurons of the first neural net Ns
(for feature vectors with f1 < 0) and Ng, the number of
neurons in the output layer of the second neural net (for
feature vectors with f1 > 1) can be chosen arbitrarily
and form the ratio R = Ng

Ns
.

4. Experiments and Results

We conduct experiments on the IAM-onDB-t1 bench-
mark of the IAM-OnDB, a database containing handwrit-
ten whiteboard notes, [14]. Comparability of the results
is provided by using the same settings as in [4]. The
training set of the IAM-onDB-t1 is used to train both
the parameters of the discrete HMMs and the weights
of the neural nets. The optimal number of output neu-
rons (Ncdb), the step-size ε(t) of Eqs. 3 and 4, and the
neighbor factor λ are chosen by evaluating the character-
level accuracy on both IAM-onDB-t1’s validation sets.
With these parameters the test set is recognized on the
word-level. Significance of the results is proven by the
one-sided t-test, giving the probability pN of rejecting
the hypothesis “both approaches perform equally.”

In the first experiment (Exp. 1) we use the WTA-VQ
and the NG-VQ as described in Sec. 3.1 and Sec. 3.2
to quantize the whole feature vector f . The results are
shown in Fig. 2: the highest character accuracies are
ab,W = 63.3 % for the WTA-VQ (Nceb = 5000) and
ab,N = 63.1 % for the NG-VQ (Ncdb = 7500). Com-
pared to the results presented in [4] and also listed in
Tab. 1. This is a relative improvement of rb,W = 1.1 %
and rb,N = 0.8 %.

In the second experiment (Exp. 2) the pressure infor-
mation f1 is left out for both the WTA-VQ and the NG-
VQ. As can be seen from Fig. 2, performance only drops
slightly, although the pressure information is considered
a crucial feature in [13]: for Ncdb = 7500 the WTA-VQ
achieves a character accuracy of ar,W = 63.0 % (a rela-
tive change of rr,W = −0.5 % compared to the baseline
drawn in Exp. 1), and ar,N = 63.0 % for the NG-VQ
approach (a relative drop of rr,N = −0.2 %).
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Figure 2: Evaluation of different systems’ character ac-
curacies with respect to the codebook size Ncdb and, in
case of codebook-switching, the used ratio R =

Ng
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.

k-means [4] WTA NG
char. word char. word char word

Exp. 1 62.6 % 63.5 % 63.3 % 65.1 % 63.1 % 64.9 %
Exp. 2 62.5 % 63.3 % 63.0 % 64.8 % 63.0 % 64.7 %
Exp. 3 63.7 % 65.5 % 64.2 % 66.2 % 64.1 % 66.1 %

Table 1: Results of the experiments.

In the last experiment (Exp. 3), the pressure informa-
tion is modeled separately (though statistically depen-
dently on the remaining features) by a switching code-
book (see Sec. 3.3). Thereby, the ratio R = Ng

Ns
is chosen

according to the best performing values found in [4]
and is also given in Fig. 2, as well as the character ac-
curacies: for the WTA-VQ we achieve asw,W = 64.2 %
(rsw,W = 1.4 % relative improvement, Ncdb = 5000),
and asw,N = 64.1 % (rsw,N = 1.6 % relative improve-
ment, Ncdb = 7500) for the NG-VQ.

For the final task, we use the best-performing configu-
rations from the above experiments and conduct a word-
level evaluation on the IAM-onDB-t1’s test set. The
results of our experiments are shown in Tab. 1. For the
WTA-VQ a word-level accuracy of Ab,W = 65.1 %, and
Ab,N = 64.9 % for the NG-VQ is achieved. The slight
drop in character accuracy when leaving out the pressure
information also decreases the word-level accuracy (how-
ever, for the NG-VQ the relative drop of rr,N = −0.3 %,
is not significant as pN = 93.8 %). Finally, a significant
improvement for both the WTA-VQ and the NG-VQ
can be reported when the switching codebook approach
is used: Asw,W = 66.2 % (a relative improvement of
rsw,W = 1.7 %, pN ≥ 99.9 %) and Asw,N = 66.1 % (a
relative improvement of rsw,N = 1.8 %, pN ≥ 99.9 %).



Compared to our result for the k-means VQ (see Tab. 1),
a significant relative improvement of rW = 0.9 % and
rN = 0.8 % for both neural net VQs can be observed
(pN ≥ 99.9 %). When comparing the best results of
the WTA-VQ and the NG-VQ the WTA-VQ performs
slightly better by r = 0.2 % relatively, which is not sig-
nificant (pN = 71.6 %).

5. Conclusion

In this paper we, investigated two neural net-based
vector quantizers (VQs), namely the “Winner-Take-All”
(WTA)-VQ and the “Neural Gas” (NG)-VQ for quantiz-
ing the features used in on-line handwriting recognition
with discrete HMMs. We successfully applied the novel
VQ design presented in [4] to preserve the pen’s pressure
information that would otherwise be lost due to quanti-
zation error. Significance of the result has been proven
by the one-sided t-test.

Our experiments delivered three major results: First,
by using the codebook switching approach a significant
relative improvement of rsw,W = 1.7 % (WTA-VQ) and
rsw,N = 1.8 % (NG-VQ), both measured in word-level
accuracy, compared to a baseline system where all fea-
tures are quantized jointly, can be observed. The sec-
ond observation is that, compared to standard k-means
quantization, both neural VQs perform better: a peak
word accuracy of Asw,W = 66.2 % for the WTA-VQ
and Asw,N = 66.1 % for the NG-VQ is reached — a
significant relative improvement of rW = 0.9 % and
rN = 0.8 %, respectively. Finally, the relative change
of r = 0.2 % between the WTA-VQ and NG-VQ was
proven to be not significant. However the NG-VQ uses
more output neurons compared to the WTA-VQ in order
to achieve competitive results.

As shown in Fig. 2, no improvement can be ob-
served if raising the number of output neurons from
Ncdb = 2000 to Ncdb = 5000 in case of NG-VQ and
codebook switching. This indicates that the ratio R has
not been chosen properly. The computationally expen-
sive optimization of the ratio R will be done in future
work. The WTA-neural net VQ delivers a higher SNR (as
defined in Eq. 2) than the k-means VQ forNcdb = 10 and
Ncdb = 1000. This is illustrated in Fig. 3 (left). However,
the higher SNR does not translate to a higher recognition
accuracy in all cases: while a relative improvement of
r = 0.5 % is achieved for Ncdb = 1000 centroids, a rela-
tive drop of r = −5.9 % can be observed for a codebook
size of Ncdb = 10. One explanation might be the change
in the per feature SNR distribution illustrated in Fig. 3
(right) for selected features. In future work we will inves-
tigate the influence of the per feature SNR distribution
on the recognition accuracy.
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Figure 3: Overall (left) and per feature SNR (right).
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