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Abstract

The minimal-flavour-violating (MFV) hypothesis considers the Standard Model (SM) Yukawa
matrices as the only source of flavour violation. In this work, we promote their entries to
dynamical scalar spurion fields, using an effective field theory approach, such that the maximal
flavour symmetry (FS) of the SM gauge sector is formally restored at high energy scales. The
non-vanishing vacuum expectation values of the spurions induce a sequence of FS breaking
and generate the observed hierarchy in the SM quark masses and mixings. The fact that there
exists no explanation for it in the SM is known as the flavour puzzle. Gauging the non-abelian
subgroup of the spontaneously broken FS, we interpret the associated Goldstone bosons as
the longitudinal degrees of freedom of the corresponding massive gauge bosons. Integrating
out the heavy Higgs modes in the Yukawa spurions leads directly to flavour-changing neutral
currents (FCNCs) at tree level. The coefficients of the effective four-quark operators, resulting
from the exchange of heavy flavoured gauge bosons, strictly follow the MFV principle. On the
other hand, the Goldstone bosons associated with the global abelian symmetry group behave
as weakly coupled axions which can be used to solve the strong CP problem within a modified
Peccei—Quinn formalism.

Models with a warped fifth dimension contain five-dimensional (5D) fermion bulk mass
matrices in addition to their 5D Yukawa matrices, which thus represent an additional source
of flavour violation beyond MFV. They can address the flavour puzzle since their eigenvalues
allow for a different localisation of the fermion zero mode profiles along the extra dimension
which leads to a hierarchy in the effective four-dimensional (4D) Yukawa matrices. At the
same time, the fermion splitting introduces non-universal fermion couplings to Kaluza—Klein
(KK) gauge boson modes, inducing tree-level FCNCs. Within a Randall-Sundrum model with
custodial protection (RSc model) we carefully work out the flavour and electroweak (EW)
sector, including a derivation of Feynman rules. Moreover, we determine the contributions
to the effective Hamiltonian for meson-antimeson mixing due to KK gluon and KK photon

exchange.






Kurzfassung

Die Hypothese der minimalen Flavourverletzung (MFV) geht davon aus, dass die Yukawa-
Matrizen die einzige Quelle der Flavourverletzung darstellen. Im Rahmen einer effektiven The-
orie betrachten wir in dieser Arbeit die Eintridge der Yukawa-Matrizen als dynamische skalare
Spurionfelder, so dass die maximale Flavoursymmetrie des Standardmodell-(SM)-Eichsektors
formal an einer hohen Skala wiederhergestellt wird. Die nicht verschwindenden Vakuumer-
wartungswerte der Spurionen bewirken eine Sequenz von Flavoursymmetriebrechungen und
erzeugen die beobachtbare Hierarchie der SM Quarkmassen und Mischungswinkel. Da es im
SM keine Erklarung fiir diese gibt, spricht man von einem Flavourpuzzle. Wir interpretieren
die Goldstonebosonen, die aus der geeichten nicht abelschen Untergruppe der spontan ge-
brochenen Flavoursymmetrie hervorgehen, als longitudinale Freiheitsgrade der zugehorigen
massiven Eichbosonen. Integriert man die schweren Higgsmoden in den Yukawa-Spurionen
aus, erhalt man direkt flavour-andernde neutrale Strome (FCNCs) auf Baumgraphenniveau.
Die Koeffizienten der effektiven Vier-Quark-Operatoren, die von dem Austausch eines schweren
Flavoureichbosons herriihren, folgen dabei strikt dem MFV-Prinzip. Andererseits verhalten
sich die Goldstonebosonen der globalen abelschen Symmetriegruppe wie schwach wechsel-
wirkende Axionen, die benutzt werden konnen um das starke CP-Problem innerhalb eines
modifizierten Peccei-Quinn-Formalismus zu l6sen.

Modelle mit einer gekriimmten fiinften Raumdimension enthalten neben den fiinf-dimen-
sionalen (5D) Yukawa-Matrizen auch 5D Fermionmassenmatrizen. Diese stellen eine weitere
Quelle der Flavourverletzung entgegen der MFV-Annahme dar und ermoglichen eine Erkl&-
rung des Flavourpuzzles, da ihre Eigenwerte eine unterschliedliche Lokalisation der Fermion-
nullmoden zulassen, was wiederum zu einer Hierarchie in den effektiven vier-dimensionalen
(4D) Yukawa-Matrizen fiithrt. Gleichzeitig bringt das Aufspalten der Fermionen nicht-uni-
verselle Fermionkopplungen zu Kaluza—Klein-(KK)-Eichbosonmoden mit sich, die FCNCs auf
Baumgraphenniveau verursachen. Wir arbeiten ausfiihrlich den flavour- und elektroschwachen
Teil eines Randall-Sundrum-Modells aus, welches eine erweiterte Symmetriegruppe enthalt um
den elektroschwachen Sektor zu schiitzen. Dabei leiten wir Feynmandiagramme ab und be-
stimmen die Beitriage zum effektiven Hamiltonian fiir Meson-Antimesonmischung, der durch

den Austausch von KK-Gluonen oder KK-Photonen zustande kommt.
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Chapter 1

Introduction and Motivation

Following Occam’s razor “entia non sunt multiplicanda praeter necessitatem” — the principle
that “entities must not be multiplied beyond necessity” and the conclusion thereof, that the
simplest explanation or strategy tends to be the best one — elementary particle physicists
created the Standard Model (SM) which describes in a satisfactory way the observed strong
and electroweak (EW) interactions of the smallest constituents of matter — the elementary
particles. The beauty and simplicity of the SM lies in the fact that the SM can be formulated
as a consistent quantum field theory based on the gauge group SU(3). x SU(2)r, x U(1)y.

However, the SM becomes more sophisticated when one tries to explain the existence
of gauge boson and fermion masses. A scalar Higgs boson with non-trivial transformation
behaviour under the electroweak gauge group is introduced, whose non-vanishing vacuum
expectation value (VEV) breaks the symmetry spontaneously down to a residual U(1)g sym-
metry. This so-called Higgs mechanism gives rise to gauge boson masses corresponding to
the broken symmetry generators and, being a doublet under SU(2)r, allows in addition for
gauge-invariant fermion mass terms via chiral Yukawa couplings. In order to obtain the phys-
ical masses belonging to the single fermion flavours, the Yukawa coupling matrices are diag-
onalised by means of biunitary transformations. The only observable relic of these rotation
matrices in the SM takes the form of a single unitary matrix known as Cabbibo—Kobayashi—
Maskawa matriz (CKM) matrix, which can be parameterised by three real angles and one
CP-violating phase.

Despite its success in providing particle masses, the Higgs sector is the origin of two
outstanding problems within the SM. The fermion mixings and masses have to be put in
by hand and, being hierarchical and not at all of O(1), they are neither in line with the
naturalness principle [1| nor with the aesthetic philosophy of Occam — causing the so-called
flavour puzzle. The second problem, the gauge hierarchy problem, is also related to a particle’s
mass, namely the Higgs mass itself. It receives radiative mass contributions from the SM
particles that are quadratically divergent such that the Higgs mass is sensitive to the ultimate

cutoff scale of the theory. Since the SM does not include a theory of gravity, the highest
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possible scale to which the SM is valid is the Planck scale. But assuming that the SM is valid
up to the Planck scale would relate the bare Higgs mass of order of the electroweak scale to
the Planck scale unless the electroweak scale is saved through an “unnatural” fine-tuning of
the bare mass and the quantum-loop corrections. Therefore, it is widely believed that there
is some kind of new physics (NP) phenomenon becoming relevant already near the EW scale,

and in consequence the SM should be interpreted as a low-energy effective field theory (EFT).
Interestingly, the Higgs boson is at the same time the only unobserved particle of the SM.

Thus, there is much activity in creating NP models concerning this segment of the SM to
overcome the above mentioned problems. This has led to the development of many kinds of
Higgs models like models with an extended Higgs sector as in two Higgs doublet models |2, 3],
where an additional fundamental Higgs doublet is added to the particle spectrum. Another
possibility is to consider the Higgs as a pseudo-Goldstone boson arising in a spontaneous
breakdown of an approximate global symmetry [4,5] — for example in little Higgs models [6—
10]. One also tries to live without a fundamental Higgs particle and breaks the EW symmetry
dynamically through the VEV of a scalar condensate resulting from a strongly interacting
sector as for instance in technicolour models [11-17|. An interesting variation of the strong
symmetry breaking paradigm that interpolates between simple technicolour theories and the
standard Higgs model come to prominence: in composite Higgs models a light Higgs boson
could emerge as the bound state of a strongly interacting sector. Moreover, if the Higgs arises
as a pseudo-Goldstone boson of an enlarged global symmetry of the strong dynamics, it can
be naturally light [18-22].

However, as the SM is in extremely good accordance with the high-precision measurements
accessible at particle accelerators, the elaboration of NP models is limited. In this context
electroweak precision tests (EWPTs) [23-25] should be mentioned and high-precision tests
of the CKM matrix coming in particular from B meson and kaon observables (for recent
overviews, see for instance [26-29]). Since the SM agrees very well with the flavour observables,
NP at the TeV scale requires a highly non-generic flavour sector in order not to be in conflict
with present data on rare and CP-violating K and B decays. One efficient possibility to
constrain the flavour sector is to impose the concept of minimal flavour violation (MFV)
[30-34] on the NP models, where the sources of flavour and CP violation are entirely described
by the CKM matrix. Restoring the approximate maximal global U(3)® flavour symmetry
(FS) present in the SM via promoting the Yukawa matrices to auxiliary spurion fields, the
low-energy EFT has to formally respect the flavour symmetry which completely determines
its flavour structure.

Flavour symmetries are widely used in various aspects of particle physics. For instance,
the QCD Lagrangian has an accidental global flavour symmetry in the limit of vanishing
quark masses which is known as the chiral limit. It should be approximately realised for
the quarks (m,, mgq, ms) since they are much lighter than the QCD scale. However, while

hadrons in SU(3)y representations are observed in the hadronic spectrum according to the
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eightfold way |35, 36|, the corresponding degenerate multiplets with opposite parity do not
exist. Moreover, the fact that the octet of pseudoscalar particles (mw, K, n) is very light
compared to the other multiplets, suggests to consider them as the pseudo-Goldstone bosons
arising from the spontaneous symmetry breakdown SU(3)r, x SU(3)r — SU(3)y. The mass
gap in the hadronic spectrum can be used to build an effective field theory which contains
only the Goldstone bosons as its dynamical degrees of freedom. Combining the effective
theory with the non-linearly realised QCD flavour symmetry [37,38], leads to a powerful tool of
studying the low-energy interactions of the pseudoscalar-meson octet called chiral perturbation
theory [39-45].

Furthermore, flavour or family symmetries, which act horizontally across the three SM
generations, provide one path to explain the flavour puzzle. The hierarchical structure of the
Yukawa couplings is generated after this new symmetry is spontaneously broken by the VEVs
of some set of scalar flavon fields, which transform non-trivially under the F'S but are singlets
with respect to the SM gauge group. In supersymmetric (SUSY) theories [46-50], which
are perhaps the most famous candidates for solving the gauge hierarchy problem, they can
further be used to align the sfermion mass matrices with the mass matrices of their fermion
superpartners in order to ameliorate the problem of large flavour violation [51-53]. Since
SUSY enables gauge coupling unification, it goes mostly hand in hand with grand unified
theories (GUTS), where the SM gauge group is embedded into a larger gauge group with
one universal gauge coupling constant. In particular SO(10) models have become attractive,
since the 16 fermions of one generation, including right-handed singlet neutrinos, can be
embedded into a single spinor representation. Thereby, family symmetries offer an elegant
solution to point out the special role of the third generation with respect to the lighter two
generations [54,55]. SUSY GUT models with implemented FS, such as the one proposed by
Dermisek and Raby [56-58|, allow to give a satisfactory description of all quark and lepton
masses as well as of the lepton mixing matrix or Pontecorvo-Maki—-Nakagawa—Sakata (PMNS)
matrix [59,60] and CKM matrix. However, at the same time, it can be challenging to fulfil all
constraints coming from flavour-changing neutral currents (FCNCs) simultaneously [61, 62].
Altogether, many different models incorporating some sort of F'S to explain the fermion masses
and mixings exist in the literature, in particular in the context of supersymmetric and/or
unified scenarios [63]. While [64-68| also use a global abelian flavour symmetry U(1)p as in
the original Froggatt—Nielsen setup [69], there exist models using a non-abelian U (2) flavour
symmetry [51,52,70-75] and SU(3)r flavour symmetries [76-81], but also models with discrete
flavour symmetry groups [82-87|.

Inspired by the MFV ansatz, one can promote the Yukawa coupling matrices to dynamical
scalar spurion fields [88] that transform non-trivially under the maximal SM quark F'S, present
in the limit of vanishing Yukawa couplings, and are singlets with respect to the SM gauge

group. In the following we will refer to this approach as the dynamical minimal flavour
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violation (AMFV) model in comparison to the original MFV, where the Yukawa spurion fields

are considered as auxiliary fields.

Due to the canonical mass dimension of the spurions, the Yukawa coupling terms have
to be interpreted as dimension-5 operators suppressed by a high-scale A, which indicates the
F'S breaking scale of the EFT. The flavour puzzle can be traced back by giving appropriate
VEVs to the scalar spurion fields that break the FS spontaneously in a sequential fashion.
Goldstone bosons for every broken symmetry generator are introduced and the remaining
spurions transform under the residual unbroken part of the non-linearly realised FS [88]|. The
special role of the top quark Yukawa coupling, being of O(1), is taken into account by giving
the associated spurion a VEV of O(A). Thus it is effectively created by a dimension-4 operator

whereas the other fermion Yukawa couplings are suppressed by the ratios of two distinct scales.

There is another reason for the dMFV model to be necessarily understood as an EFT. In-
troducing local flavour symmetries of chiral nature while keeping the SM fermion content, one
encounters chiral gauge anomalies. Within an effective theory framework one can formulate a
consistent and at least formally gauge-invariant theory, arguing that the existing underlying

fundamental is anomaly free [89].

In this work we leave the U(1) groups of the maximal flavour group as global symme-
tries [90]. First, the global U(1) factor corresponding to baryon number conservation is an
accidental global symmetry of the SM since it is respected by the Yukawa interactions. Second,
the global U(1),, x U(1)g, symmetry can be used to resolve the strong CP problem [91,92]
by a modified Peccei—-Quinn mechanism [93-96]. The almost massless Goldstone bosons can
then be identified as axions that are very weakly coupled to the SM fermions in the context of
invisible-azion scenarios [97,98|. Gauging the SU(3)q, x SU(3)y, x SU(3)p,, flavour symme-
try allows us to interpret the Goldstone bosons, arising after its breaking, as the longitudinal
modes of the massive gauge bosons in the unitary gauge. Integrating out the heavy scalar
fields and heavy gauge fields at tree level, generally gives rise to FCNCs. According to our
setup, the coefficients of the effective 4-quark operators follow the MF'V principle. While the
dMFV model proposes an explanation for the flavour puzzle, it does not address the gauge

hierarchy problem.

An appealing solution to elucidate both of the two mentioned outstanding questions within
the SM is given in Randall-Sundrum (RS) models [99]. Augmenting the 3 + 1 space-time
coordinates of daily life by an additional warped spatial coordinate, they are also known as
warped extra dimension (WED) models. The non-factorisable metric of an anti-de-Sitter space
(AdSs) implies an exponential warp factor, which relates the mass scale of the fundamental
five-dimensional (5D) theory to the physical four-dimensional (4D) mass scale. Localising the
Higgs boson on or near the IR brane, the warp factor mediates quite naturally between the
Planck scale and the EW scale and thus supplies a geometrical solution to the gauge hierarchy
problem [99].
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Since we do not have any indication for the existence of extra dimensions (EDIMs) up
to now, we consider the extra dimension to be compactified via an orbifolding procedure in
order to make it finite and small. Denoting the single extra dimension by the coordinate y, the
fundamental domain can be represented by an interval y € [0, L]. Its boundaries correspond to
4D subspaces or branes called ultraviolet (UV) brane (y = 0) and infrared (IR) brane (y = L)
respectively, while the 5D space in between is referred to as the bulk. Introducing Dirichlet or
Neumann boundary conditions (BCs) for the fields propagating in the 5D bulk, chirality can
be implemented in the original non-chiral 5D theory. In addition, compactification allows for
an expansion of the 5D fields into Fourier modes or Kaluza—Klein (KK) modes [100,101]. This
KK decomposition expresses the 5D fields as a sum of products of functions depending on the
4D coordinate and on the fifth coordinate, and thus enables us to derive an effective 4D theory
from the 5D fundamental theory by performing an integration over the extra dimension. To
first approximation, the zero KK modes correspond to the SM fields while the higher KK
modes represent new heavy fields with masses depending on the compactification scale.

New ingredients in the 5D theory are the 5D Dirac bulk mass matrices whose eigenvalues
determine the localisation of the fermion zero mode profiles along the extra dimension. Since
the SM quark masses arise from overlap integrals of the zero quark profiles with the Higgs
boson shape function after electroweak symmetry breaking (EWSB), they can account for the
observed hierarchy in the SM quark masses and mixing angles by inducing different quark
localisations [102,103] (split fermion mechanism [104,105]). Furthermore, assuming anarchic
5D Yukawa couplings with O(1) entries, the flavour puzzle can be solved without fine-tuning
in the fundamental parameters as the quark profiles depend exponentially on the slightly
different but O(1) bulk mass parameters.

Despite this appealing picture, the 5D fermion bulk masses reintroduce a number of flavour
violating parameters that renders the WED models far from being minimal flavour violating.
The fermion splitting causes non-universal fermion couplings to the KK gauge bosons and
hence produces new effective operators, contributing to FCNCs already at tree level. While the
built-in RS-GIM mechanism [106,107| can at least curtail the excess of these FCNCs, the new
chirality flip operator QX% gives nevertheless sizeable contributions via KK gluon exchange
to the CP-violating parameter g, the parameter which measures indirect CP violation in
the KO — K" mixing. Phenomenological analyses show that it is much more challenging for
WED models to fulfil the ex bound (RS flavour problem) than the experimental constraints
coming from EWPTs [108-115], in particular from the oblique parameter 7' and the well-
measured Zbrbr, coupling [116,117]. In this work we consider a RS model, in which the latter

contributions are protected by a simultaneous enlargement of the bulk symmetry group to
Gruk = SU(3)e x SU(2)p, x SU(2)r x U(1)x X Prr (1.1)

and of the corresponding fermion symmetry multiplets (see also [118]). Since the protection

originates from an unbroken custodial symmetry [108,119] in the Higgs sector, the model
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is denoted as custodially protected Randall-Sundrum (RSc) model. We work out the basic
features of the RSc model [120] in order to obtain its Feynman rules, which were used in two
detailed phenomenological analyses of AF = 2 FCNC processes in the quark sector [121] and
those rare K and B decays in which NP contributions enter at tree level [122|. Throughout
our analysis we concentrate on the quark sector and truncate the KK expansion already after
the first KK mode.

The remainder of the thesis is organised as follows. After having given a brief review of
the general aspects of gauge theories in Chapter 2, we adopt the methods in displaying the
gauge group and particle content of the SM in Chapter 3. In explaining the flavour puzzle
arising in the SM, we promote the Yukawa matrices to dynamical fields in Chapter 4 and
design an effective minimal flavour violating theory which includes a partly gauged flavour
symmetry in addition to the SM gauge group. Breaking the latter by the development of
Yukawa spurion VEVs, renders the corresponding scalars and gauge bosons massive. We
integrate out the heavy degrees of freedom and show that the coefficients of the effective
operators are in accordance with the MFV assumption. In Chapter 5 we examine the breaking
of the RSc gauge group and analytically diagonalise the corresponding gauge boson mass
matrices. Subsequently, we introduce the specific fermion content and construct the fermion
mass matrices after EWSB. Working out the gauge-fermion couplings, we comment on the two
different effects of flavour violation that are characteristic in this model. Finally, in Chapter 6
we give a short summary and outlook. The calculational details to Chapter 4 and Chapter 5
can be found in the two addenda, e.g. the diagonalisation procedure which includes a derivation

of the formulae of the Rayleigh—Schrédinger algorithm for the non-degenerate case.



Chapter 2
General Aspects of Gauge Theories

This chapter is dedicated to the general concepts of abelian and non-abelian gauge theo-
ries. Thereby, we emphasise the necessity of adding gauge-fixing terms in non-abelian gauge
theories in order to remove redundant degrees of freedom. We introduce the enlarged Becchi—
Rouet-Stora—Tyutin (BRST) transformation under which the new gauge-fixed Lagrangian is
invariant. With regard to the arising topic of chiral gauge anomalies in the course of Chapter

4, we introduce the formalism of chiral fields and give the relevant formulae.

2.1 Abelian Gauge Symmetry

The Lagrangian of a free fermion field, which is characterised by the Dirac spinor ¢ (x),

Lo = (@) ("0 — m)y(x), (2.1)

is invariant under the global U(1) symmetry with the corresponding transformation matrix
U() = e

V() =Ug(z) and P (z) = P(a)U". (2.2)
In promoting the global symmetry to a local one, 6 is replaced by 6(z) and the transformation
matrix U(6(z)) depends on z. Obviously, the derivative in (2.1) is the reason why Lo spoils
gauge invariance, as it produces an extra term proportional to 3M0(x). However, gauge invari-
ance can be restored, if one finds a gauge-covariant derivative D,,, such that D) transforms
as 1 itself, i.e.

(Dyb(w)) = UD(a). (2:3)

This can be achieved by a minimal coupling with the U(1) coupling constant g of the spinor
to a new vector field A,(x), the so-called gauge field,

D;ﬂ/}(x) = (8u - igAu(x)) ¢(9€)
A:L(x) = AM(QL’) + éa,ﬁ(m) . (2.4)

7
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In order to make the gauge field dynamical, we also add the following gauge-invariant and

renormalisable kinetic term to the Lagrangian

1

Lo = 1

F,F* (2.5)
where the abelian field strength tensor is defined by
Fuo=0,A,—0,A,. (2.6)

Putting these two parts £y and £, together, the Lagrangian for a U(1) gauge-invariant La-

grangian can be summarised as

L = piy"(8, —ig Ay )Y — mapnp — iFWF‘“’ ) (2.7)

In 1954, Yang and Mills extended the gauge principle to non-abelian symmetry groups [123],

which will be discussed in the following.

2.2 Non-Abelian Gauge Symmetry

The main features of a non-abelian gauge symmetry are encoded in its non-trivial generators.
In the case of the special unitary group SU(N), these generators can be represented by n? — 1

traceless and hermitian matrices 7'%, which fulfil the group algebra
[T, T = ifebe e, (2.8)

with f%¢ denoting the totally antisymmetric structure constants. The normalisation condi-

tion, which involves the fundamental representation matrices, is specified by
arpb 1 ab
Tr [T°T°] = 55 . (2.9)
In analogy to the abelian case, the covariant derivative
Dyp(z) = (0, —igALT?) P(x) (2.10)

ensures the gauge invariance of the kinetic fermion term. However, in contrast to the abelian

case, the field strength tensor
Ff, = 0,A% — 0,A% + gf ™ AL AL (2.11)

contains a non-linear term, which is responsible for the self-interactions of the gauge fields.

While the spinor fields transform according to the fundamental representation,

V@) w() = @O () = (1+i0°(2) T*) ().
(@) U (O() = P(a) e @O = P(a) (1 - i0°(2) T7),

wi(x) =

U (@)
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the gauge fields show the transformation behaviour of the adjoint representation
T A (x) = U(0(x)T*Ap(2)UT (0(2)) + éU(9($))(5uUT(9(€U)))
a a 1 ac aoc (& a a 1 acpnc a
~ Aj(x)T" + p (Ou0* +gf b AZ(x))H (z)T* = (A} (x) + ;Du 0°(z))T*. (2.12)

In the above equations, we also added the infinitesimal versions of the transformations. More-
over, we introduce the abbreviation Dj¢ in (2.12) for the covariant derivative, which acts on
a field transforming in the adjoint representation. With the above ingredients, the complete
Lagrangian

L= —iFgVFW +P(ip— m) (2.13)

is by construction invariant under the considered non-abelian gauge transformation.

2.3 Gauge-Fixing Terms and BRST Transformation

In quantising gauge theories, one has to get rid of the redundant degrees of freedom, which
are present due to the condition of gauge invariance. To do so it is convenient to impose the

generalised Lorentz gauge-fixing condition within the path-integral quantisation formalism
G*[A] = 0" A} (7) + w(z), (2.14)

where w®(x) is an arbitrary scalar function which is independent of the gauge field. Following

Faddeev and Popov (FP) [124], we introduce this constraint by incorporating the identity

1= / DO(x) §(G*[A] — w®(x)) Det (z‘éi[g”) (2.15)

into the generating functional

Z = / DA, Det (z 562[;4/]> 5(GA] — w(x))e Al (2.16)

In (2.16), the gauge-transformed gauge field A’ is given by equation (2.4) for abelian gauge
theories, and by (2.12) for non-abelian gauge theories. By inserting a constant proportional to
[Dwexp[—i/(2€) [ d*zw?(x)], the generating functional (2.16) changes only by an immate-
rial normalisation factor, and effectively adds the gauge-fixing term Lgs, = —1/(2€) (G*[A])?
after having integrated over w®(x).

The functional determinant can be represented as a functional integral over anticommuting

scalar fields belonging to the adjoint representation of the gauge group

Det (ﬁ@;{f]) = / Dv DT exp [—i / dtz T <5Gg;[;4 ’]) vb} , (2.17)

and contributes the term Lpp = —v® (6G*[A']/56°) v* to the Lagrangian. As the above re-
formulation was proposed by Faddeev and Popov, the new fields v = v®(x)T? (v = v%(x)T?)
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are called Faddeev—Popov (anti-)ghosts. In summary, the restriction of the functional inte-
gral to “physically different” gauge field configurations, i.e. those which are not connected by
gauge transformations, effectively adds a FP ghost term and a gauge-fixing contribution to

the Lagrangian:

1 o _q [(O0GYA]N
ﬁeﬂszﬁ—EG“[A] —Ua< o v’ =L+ Lasix + Lrp . (2.18)
For example, the effective Lagrangian for a non-abelian gauge theory with the Lorentz
gauge condition G* = 9" A is explicitly given by
1 a rapy s 1 moAa 2 1—a um acy ,.c
E:—ZFWF +¢(zzp—m)w—ﬁ(a A%) +§u (0" D) ve. (2.19)
Obviously, gauge invariance of the total Lagrangian is lost due to the presence of the
gauge-fixing terms. However, Becchi, Rouet, Stora and Tyutin found a generalised gauge
transformation of the gauge-fixed Lagrangian — the BRST transformation [125,126] — which
involves also the ghost fields. For this purpose a ghost number (GN) is assigned to each field.
While the (anti-)ghost fields carry a GN of +1 (—1), all gauge and fermion fields have a GN
of 0. Additionally, a BRST operator 9, is defined, which acts on the fields with zero GN
like the usual infinitesimal gauge transformation with gauge parameter v while it acts on the
fields with a non-zero GN such that &, is nilpotent, i.e. §2 = 0. In summary, the BRST

transformations read

1 1
0pA, = —Dyv = ga,w —i[Ay, ],

9
1. . 9
dpv = 51[1},2}] =~
op = wip, (2.20)

where the BRST operator 4, increases the GN by one unit. !
One can easily verify that the above definitions are in accordance with the nilpotency of
the BRST operator,

624, = 5v<§3;ﬂ) —1 [Aﬂ,v]) = é 0% — [é@uv,v} - [[Au,v],v] + [Au,’UZ]

= —(A0* +vA v —vAw — v A,) + Ap? —0PA, =0,
62v = 6,(iv?) = i(iv?)v — iv(iv?) = 0,
62p = 6, (ivep) = i(iv?) — iv(ivh) = 0, (2.21)
where we used the property of the BRST operator to anticommute with the ghost field. In

Appendix A.3, the formulae analogous to (2.20), using the language of differential forms, are

given.

'In analogy one can construct an anti-BRST operator 67 which decreases the GN by one unit.
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2.4 Chiral Fields and Chiral Gauge Symmetry

In this section, we consider fermion couplings both to vector gauge fields V, = ViT and
to axial-vector gauge fields A, = AJT“. Focussing on chiral non-abelian gauge theories, the

covariant derivative (2.10) of the Lagrangian (2.13) can then be generalised to
L =iy (8, — iV — iAuy5)1), (2.22)

where the coupling constants have been set to unity.
To simplify the notation in the following, we will use the antihermitian group generators

T, which are related to the hermitian generators T via the rescaling
T¢ = —iT®. (2.23)

The group algebra and normalisation condition with respect to the new basis are then modified
to
. e ~ - 1
[T, 7% = foT¢ and Tr[T°T%] = —55“*’ . (2.24)

Defining f}u = Vﬁfm and ./Zlu = AZT“, the factors ¢ disappear in the rewritten Lagrangian
(2.22)
L =iy" (0 + Vi + Auys)b . (2.25)

As the gauge bosons couple chirally to the Dirac fermions, we introduce the left-handed (L-)
and right-handed (R-) projection operators P, g,

Prr= s vPLr=FPLR, (2.26)
with the usual relations of idempotence, orthogonality and completeness:
Pg,R:PL,R7 Pr,Pr = PrPr, =0, P, +Pr=1. (227)

The chiral projectors allow to define chiral spinor fields according to

X 0
Y =PLY+Pri=9r+y¢p= ( O>+<i02§* >,

U=y = W+ vr) =+t = (0 X )+ (—igT? 0).  (228)

Thereby, the two Weyl spinors (x, &) correspond to two-dimensional building blocks of the
four-component Dirac spinor 1 = (x,ic2¢*)”. Using the projector properties (2.27) and the
usual commutator rules for gamma matrices, the Lagrangian (2.22) can finally be reformulated

as

Lr="0i (p+ P+ Avs) (P + PR = p i+ Ao + 0pip+ Ao, (2:20)
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where we used the following definitions of the R- and L-gauge fields

Asz\%—i—fiw Aﬁ:f}u_“zl’u7
~. 1, - ~ . 1 - -
V, = §(A5+Aff), A, = 5(,45—,45). (2.30)

Having expressed the Lagrangian in terms of chiral fields (2.29), its invariance under a lo-
cal SU(N)r x SU(N)g symmetry transformation with associated transformation matrices
U(0rr(x)) = exp [i0% 5(x) T = exp [~0% 5(x) T = U(—0z r(x)) can easily be observed.

2.5 Chiral Gauge Anomaly

Unless a specific fermion content is chosen, the chiral gauge symmetry SU(N)r x SU(N)r
at the level of the classical Lagrangian is spoilt by quantum effects which leads to the so-
called gauge anomaly. Consequently, the classical conservation laws for the non-abelian L-
and R-currents,

DPALR] 1% = D ALE) ($p py" T rR) =0, (2.31)

are no longer valid, but have to be replaced by anomalous conservation laws as given below.

The chiral gauge anomaly can be derived for example by using Fujikawa’s path integral
method [127,128| or by the algebraic approach of Zumino and Stora [129,130]. A comprehen-
sive discussion of anomalies in quantum field theories can also be found in [131]. The result

of the anomaly contribution to the L- and R-currents is calculated in [132,133] to be

abr A . ar A 1 vpo Al A A 15 A A
Dy LALR] il = GUAL @) = F 5 e Tr[T°0, (AL RO, A" + S ALRALRALT),
(2.32)

where 9123 = 1.

Since the fermion loop contributions to the anomaly arise from the effective action
I’[Aﬁ’R(az)], which is defined by the sourceless generating functional for one-particle irreducible

Green functions

Z[A] = &AM = / d@dwexp[i / dhe L, 9, A)} = / d@dwexp[z‘ / Az pi(P+ M|,
(2.33)

the anomaly G [zzlﬁ’R(x)] originates from the gauge-transformed effective action
5 T[ALR) = — / a0 (2) GO AL R (2)] = —G(v, ALFY. (2.34)

Applying the BRST operator to both sides of the above equation, yields the Wess—Zumino
consistency condition (WZCC) [134]

5,G(v, AV = =5, (6, T[A R (2)]) =0, (2.35)

which is a direct consequence of the nilpotency of the BRST operator.
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The anomaly given in (2.32) represents a non-trivial solution to the WZCC, i.e. it cannot
be written as a gauge variation of some local function in the basic fields, for which reason it is
called consistent form. The freedom of adding trivial anomaly solutions reflects the ambiguity
in the regularisation prescriptions of the UV-divergent portion of the fermion loops [135,136].

The significance of the WZCC results from the non-linearity of the BRST operator. Know-
ing the first term of the anomaly (2.32), which can be calculated from the triangle diagrams,
the WZCC completely determines the second term of the anomaly as explicitly demonstrated

in Appendix A.3.

Anomaly Cancellation

In vector-like gauge theories with vanishing axial-vector gauge field A, the fermions couple
symmetrically to the chiral gauge fields [lﬁ = flf = ‘Zlu such that the L-gauge anomalies
exactly cancel the R-gauge ones.

Anomaly cancellation may also occur by a specific choice of the fermion content as the
trace in the anomaly contribution (2.32) has to be taken over the fermion representations. In
the search of an anomaly it is enough to consider only the first part of the anomaly, because
if the triangle result vanishes, the higher-loop contributions are automatically absent [137].
Thus the trace

Tr [T*{T°, T¢}] (2.36)

serves as an indicator to explore the bare existence of an anomaly. The anticommutator in the
above trace is a result of the summation of the two triangle diagrams in which the fermions
circle in opposite direction.

Another possibility to cancel an anomaly is to add local counterterms with additional fields
which transform under the gauge variation such that the anomaly contribution is cancelled.

This method will be of importance in Subsection 4.6.1.
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Chapter 3

Brief Review of the Standard Model

In the present chapter we recapitulate the basic concepts of the Standard Model (SM), which
successfully describes the electroweak and strong interactions of quarks and leptons at energies
up to a few hundred GeV. As it is in nearly perfect agreement with all existing experimental
data at the moment, every new physics (NP) model should feature a structure similar to the
SM in the low-energy limit.

We use the knowledge about abelian and non-abelian gauge theories of the last chapter
to construct the SM quantum field theory, which is based on the local gauge group SU(3). X
SU(2)r, x U(1)y. While the colour group SU(3). remains unbroken in the SM, the non-
vanishing Higgs VEV breaks the electroweak gauge symmetry SU(2)r, x U(1)y spontaneously
down to the abelian subgroup U(1)q. Simultaneously, the gauge bosons of the broken gauge
symmetry acquire masses through the Higgs mechanism, and fermion masses are generated

by their Yukawa couplings to the Higgs boson.

3.1 Quantum Chromodynamics

The SU(3). gauge theory is able to describe the strong interactions between the quark fields
and the gauge fields called gluons [138-142]. Each quark has three different colour degrees of
freedom and is represented by a SU(3).. triplet. The Greek translation of colour — “chroma” —
of the internal quantum number gave the theory its name Quantum Chromodynamics (QCD).

It is straightforward to adapt the generic non-abelian Lagrangian (2.13) as well as the FP
ghost and gauge-fixing terms (2.19) to the case of QCD,

1 —
[rQCD = —§Tr [GMVG‘W] + ZlDdJ + Egﬁx + Lpp . (3.1)
In the QCD Lagrangian (3.1), G stands for GZVT“ with the gluon field strength tensor
G4, = 0,GY — 0,G% + go f* G G, (3.2)

15
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which contains the strong coupling constant gs. The quadratic terms in the field strength
tensor lead to gluon self-interactions that are responsible for the asymptotic freedom in QCD
[143-145].

With the eight Gell-Mann matrices A\*/2, representing the generators of the fundamental
representation, the covariant derivative, which contains interaction terms between gluons and

quarks, reads
a

, A
Dy = (a“ —igs G37)¢. (3.3)
We will argue later in Subsection 4.10 that the QCD Lagrangian should be augmented by
a CP-violating term which we also refer to as the 0-term,
0 g - 092 a0 A
T . 2 - 5 Q0 G 4
Torz GG = 355G G (34)

The kinetic term of the gluon in (3.4) is reformulated with the help of the normalisation

Lcp =

condition of the colour group generators 7%, and the dual field strength tensor G* is defined
by

1
G = G G (35)

Since the f-term is neither forbidden by gauge invariance nor by renormalisability, it should be
mentioned already here. At first glance one may argue that the term has no physical impact,
as it can be written as a total derivative. However, it turns out that this statement is wrong

due to the non-trivial topology of the gauge field sector (see Section 4.10).

3.2 Electroweak Sector

The standard theory of the electroweak interactions [106,146,147] comprises the gauge group
SU(2)p xU(1)y. To take into account the experimental observation that only the left-handed
components of the quark and lepton fields couple to the W boson, v, and ¥ are assigned
to different representations of the chiral SU(2);, gauge group. While the left-handed fields
transform as doublets under SU(2)1, and couple to the three SU(2)., gauge bosons W}, the
right-handed ones are singlets. Both types of fields have a non-trivial hypercharge quantum
number Y, and thus both couple to the U(1)y gauge boson B,,.
In summary, the complete SU(2)z, x U(1)y invariant Lagrangian takes the form

—i . .o .Y ; —i . .Y ;
Lrw = Z 1/13; ~Hq (8M — 19, EWEM —igy 53“) v+ Zw% ~Hq (8M —igy 5BM) (A
v Vi
1 a T1a,uv 1 1%
_ZL‘“’L s — ZBWB , (3.6)
with the corresponding field strength tensors
L = OuWE, = O,WE, + g1 WL WE,
B,, = 0,B, - 0,B,,. (3.7)
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Lepton TE’ Y Q@ Quark TE Y Q@
; 1 ; 1 1 2
Ei -1 -1 -1 py, -1 1 -1
] 4 2
Up 0 3 3
Ey, 0 -2 -1 Dy, 0 -3 -3

Table 3.1: EW quantum numbers of SM quarks and leptons

As usual, g7, denotes the SU(2)r coupling constant and gy the U(1)y coupling constant.
We also used the fact that the SU(2) generators of the fundamental representation are given
by the three Pauli matrices T% — 7% = 0%/2, a = 1,2,3, and the corresponding structure
constants are expressed by the Levi-Civita symbol or epsilon tensor €*¢. The sum in (3.6)
includes all left-handed fermion doublets ¢¢ = Q% , L% with Q% = (U, DY), Lt = (v, E")L,
and all right-handed fermion fields ¢}, = Up, D}, E,. The generation index i takes into
account that the SM contains three generations of fermions which share the same gauge
quantum numbers. Taking into account the full replication of fermions, the SM fermion content
consists of neutrinos v’ = (Ve, vy, 1), leptons E = (e, p, 7), up-type quarks U’ = (u, ¢, t) and
down-type quarks D' = (d, s,b). In Table 3.1, we display the quantum numbers of fermions
under SU(2);, and U(1)y as well as the electric charge @ (3.20) of the electromagnetic U(1)q
symmetry to which the EW gauge group is spontaneously broken.

Anomaly Cancellation within the Standard Model

According to our general remarks made in Section 2.5, the triangle diagram involving three
gluons is anomaly free with respect to the SM fermion content since the gluons couple identi-

cally to the left- and right-handed quarks.

Remembering that the trace (2.36) tests the presence of an anomaly, the analogue pure

SU(2)1, contribution is also anomaly free because {o?, %} = 259

For possible mixed anomalies of the EW gauge group, we find that they vanish for each
generation separately

Tr[AAY] = 20%Tr [Y] =0, Tr[o%°Y]=20"Tr[Y] =0, Tr[Y?] =0, (3.8)

and conclude that the SM is free of gauge anomalies.
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3.3 Spontaneous Electroweak Symmetry Breaking

Experimentally we know that there are at least three massive gauge bosons Z, W*. However,
a bare gauge boson mass term m?XijX @1 ig forbidden by gauge invariance and one has to find
another possibility to render the gauge bosons massive. In the SM, the masses are generated by
the Higgs mechanism, which relies on the phenomenon of spontaneous electroweak symmetry
breaking (EWSB). For this purpose, an elementary scalar field — the Higgs field H(x) —
is introduced which transforms non-trivially under the EW gauge group. After the Higgs
field has received a non-vanishing VEV, the EW gauge symmetry is spontaneously broken
to the residual U(1)g gauge symmetry of the vacuum state. Being a doublet under SU(2)y,
the Higgs doublet also allows for chiral couplings to the fermions fields. These are known as
Yukawa couplings and lead to fermion mass terms of the form muy1) = m (EL#JR + ER#JL)
after EWSB (see Section 3.8).

At first sight, one may suppose that two Higgs doublets are necessary to account for
the conservation of hypercharge quantum number, because the up-type quark mass terms
(Y(ULUR) = 1) require a Higgs with hypercharge Y (H) = —1, whereas the down-type quark
mass terms and electron mass terms (Y (DpDg) = —1, Y(ELER) = —1) call for a Higgs with
hypercharge Y (H) = 1. The reason for the fact that there is no need to double the scalar
sector relies on the property of the SU(2) group whose representations are real, i.e. there

exists a non-singular fixed matrix S for each representation with
ST*S™1 = 17" (3.9)

For the defining representation 7% = ¢%/2, the above condition can be fulfilled for all a by
the choice S = o2 and the relation (3.9) reads

a *Q
o o
o?—o? = —

2 2

(3.10)

Using the infinitesimal transformation behaviour of the complex conjugated Higgs doublet
H'™*(x) ~ (1 —i0%**/2)H* (), the object H(z) = ic?H*(x) with

*Qa

)H(2) (3.10) (i0® - ea(’—aﬁ)H*(;ﬂ) =(1 +¢9a%a)ﬁ1, (3.11)

rr/ _ s 2 _-aa
H'(x) =io (1 i 5

2

has the same (infinitesimal) transformation behaviour as the Higgs doublet H (z) itself, but
with opposite hypercharge. Thus only one complex Higgs doublet with Y (H) = 1 has to be

added within the SM, whose four real components H;, i = 1,2,3,4, can be parametrised by
Hl(fl')+ZH2(:L')
Hy () HlektiHal)
Hiz) = ( Hy(z) ) - < _HS(J»’)\*{;HAL(J»‘) : (3.12)
0 V2

As we will see later, the subscripts “+, 0” in (3.12) denote the electric charges after EWSB.
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Corresponding to the chosen quantum numbers under the SU(2)7, x U(1)y local symmetry
group, the Higgs is coupled to the EW gauge fields through the covariant derivative

.o .Y
D,H(x) = <8M —igr EWE“ —igy §BM)H(m) , (3.13)
which enters the scalar Higgs Lagrangian
Litiggs = (D, H) (D" H) = V(H) . (3.14)

The most general renormalisable potential V(H) for a complex scalar field with mass dimen-
sion [H] =1 can be described by

Nt
V(H) = —2H H + NH'H)? = A(HTH - ﬁ) -5 (3.15)

In the following we suppose that p? and A are real and positive parameters, such that the
Higgs potential has the shape of a Mexican hat which allows for a stable, non-vanishing ground
state. Inserting the Higgs as parametrised by (3.12), the Higgs potential exhibits a whole set

of degenerate minima, when

1 2
H'H = 5 (H} + H3 + H; + H}) = ’;—A (3.16)

Without loss of generality, we can choose the minimum corresponding to the VEVs

(H) =0, i=1,24, (Hs)=+p2/A=v. (3.17)

Inserting the VEVs of the various real Higgs components into the Higgs doublet (3.12), its

VEV is given by
(H(z)) = —— ( 0 ) . (3.18)

To explore the remaining symmetry of the vacuum, we impose the condition

e

(H'(2)) = ¢ @OF POF () ~ (H) + z'(e%x)%a + ﬂ(w%) (H)=(H).  (3.19)

The fact that c?(H) # 0 and Y (H) # 0 for the Higgs VEV given in (3.18) demonstrates
that SU(2)r and U(1)y are indeed broken separately. Only a gauge transformation with

0 () = 6%(x) = 0 and 63(x) = B(x) leaves the vacuum invariant. This particular combination

oY Y 10
- =T34 = 3.20

of generators,

corresponds to the generator of the unbroken residual electromagnetic U(1)g symmetry.
Alternatively, the most general complex-valued two-component scalar field can be formu-
lated by

1% (x)o®

jx(@)e? 0 v+h(z g Co) Lt
H(z) =€ ( vth(z) >7 H'(z) = < 0 +T§) )e v (3.21)
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This special form suggests to “gauge away” the three scalar fields 7%(x) by means of a SU(2)y,

gauge transformation with the specific choice of the gauge parameter agﬁx(x) = n%x)/v,

H,(.’E) = UgﬁX(x)H(x) = e_i@UaH(x) = < v+2(x) ) : (3'22)
V2

Since they disappear from the Lagrangian, these scalar fields are called would-be-Goldstone
bosons. The gauge, in which those unphysical scalar degrees of freedom are absent and the
particle content of the theory is obvious, is called physical or unitary gauge. Actually, the
Goldstone degrees of freedom become the longitudinal polarisation states of the new massive
gauge bosons. In Section 3.6, we will discuss another class of gauge choices where the Goldstone
bosons are not eliminated explicitly. According to the Goldstone theorem [148|, the number
of Goldstone bosons is equal to the number of symmetry generators that are spontaneously
broken. Thus, by extracting the broken symmetry generators in the parameterisation (3.21),
the effects of spontaneous symmetry breaking can be made more transparent. In the case of a
continuous global symmetry, such an elimination mechanism of the massless Goldstone bosons
is not possible.

The real fluctuation h(z) around the non-trivial vacuum v then represents the only physical
scalar degree of freedom — the famous scalar Higgs boson. In the unitary gauge, the scalar

potential takes the form

v+ h(z))? v+ h(x))*
which contains a mass term for the Higgs field
2
. 1
V(h(z)) >~ h(w)? CL) \oh(z)? = —Smih?. (3.24)

In the next section, we show that three gauge bosons Z, W become massive through the
Higgs mechanism, while one gauge boson A, corresponding to the unbroken U(1)q symmetry,

remains massless.

3.4 Gauge Boson Masses

After the Higgs has received a non-vanishing VEV, the masses for the gauge bosons arise from

the Higgs kinetic term

O.a

.o Y . .Y
(D, H) (DMH) > <H>T< —igL W, - zgy53“> <sz?W£7H + zgYEBu) (H)
1 2 1 _
= 5’1)2 (gLWS,,u, — gYBM) + ZU29%WJW H
1 1
= MW, W™+ S MZZ5 + S MAAT, (3.25)
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where the electrically charged gauge bosons

1
wWE = Wi T2
wo V2 ( LpF1 L,u) (3.26)

are given with respect to the basis

£ (ol +io?)
ot = 5 (3.27)

The analytic diagonalisation of the real and symmetric mass matrix Meuiral for the neutral

states by means of the orthogonal transformation matrix G,

2 r_ v 9i —9L9y \ -1 : 2 772
Gz Mneutral Gz = z Gz 9 Gz = Diag (MZ’ MA) > (328)
—9gLgy 9y
yields the mass eigenvalues
20,2 2
M2 — W and M2 =0. (3.29)

Introducing the usual definition of the weak mizing angle or Weinberg angle Oy, the explicit

expression of the transformation matrix is found to be

1 L —gy cos By —sinOy
Gy — <9 g >:< o ) . (3.30)
A /g% + g% gy gL s by cosUw
It rotates the gauge bosons from the gauge eigenstate basis (Wiu, B,,) into the normalised

neutral mass eigenstates (Z,, A,),
Z,, = cos QWWE’M —sinfwB,, A,=sin HWWE’M +cosOw B, . (3.31)
In summary, the spectrum of EW gauge bosons contains three different mass eigenvalues

1 1 1/2
My = v, MZ:EU(g%—i—g%)/, My=0, (3.32)

where v = 246 GeV, and only one gauge boson — the photon — remains massless due to the
residual U(1)g symmetry. The other gauge bosons become massive with a mass relation that

is captured by the so-called p-parameter,

M2
W —1. (3.33)

P M2 cos? Oy N

The fact that the p-parameter is equal to one in the SM at tree level is a consequence of an
accidental global SO(4) symmetry of the Higgs sector, which is called the custodial symmetry
[119].
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3.5 Custodial Symmetry

As it can be seen from the expression of HHT given in (3.16), the Higgs potential has an
accidental global SO(4) symmetry, which is isomorphic to the simple product group SU(2)z, X
SU(2)g. Besides the global symmetry SU(2)r, which is gauged in the SM, the global SU(2)g
symmetry can be interpreted as a symmetry that mixes H and H = io2H* as the two doublets
are equivalent with respect to the SU(2), transformation.

Intuitively, we may then represent the Higgs as a 2 x 2 matrix

H; H
H = (icoH* H) = R (3.34)
—H: H,

which transforms as a bidoublet under the global SU(2);, x SU(2)r symmetry
H— U, HU. (3.35)

While the SU(2), symmetry group acts vertically from the left, the global SU(2)g group acts
horizontally on this matrix from the right. The invariance of the Higgs potential under global

SU(2)r x SU(2)g transformations can again be made explicit by noting that
Tr[HIH) = T [UpH U] UL HUS) = Te [HIH] = HTH T [1) = 2HTH . (3.36)

Rewriting the Higgs Lagrangian in terms of the Higgs matrix field (3.34),

1 2 A
Litigs = 5 Tr (D M) D'H] - %Tr [HIH) + (T 1), (3.37)
one has to introduce the Pauli matrix ¢3 in the hypercharge coupling,
. ol " . 0.3
D,H = 0,H —igr, EWL,MH - zgyBMHE ; (3.38)

in order to ensure opposite hypercharges for H and ioco H*. While Tr [(D, )" D*H] is invariant
under a global SU(2)r, it is not under a global SU(2)g rotation. The SU(2)r symmetry is
only exact in the limit of a vanishing hypercharge coupling. During EWSB the Higgs VEV
(H) = 1/4/2Diag (v, v) breaks the global approximate SU(2)r, x SU(2)g symmetry down to
the diagonal subgroup SU(2)y with transformation matrices U, = Ug. This left-over SU(2)y
symmetry is called custodial symmetry [119] and is crucial for the understanding of the EW
sector.

Especially, the above global symmetry breaking pattern can also be formulated by a non-
linear o-model, and thus the custodial symmetry can be considered in a more general — Higgs
independent — framework. Therefore, we replace the Higgs matrix field H by a Goldstone-

boson matrix field X,

H%%g, Y= (3.39)
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which contains the three Goldstone bosons arising in the breakdown of the global symmetry
according to SU(2)r, x SU(2)r — SU(2)y. In the unitary gauge, ¥ = 1, the effective
operator v?/4Tr [(D,X)TD#Y] produces the masses for the gauged subgroup, analogous to

those in (3.25), and predicts the p-parameter to be one at tree level.

3.6 R-Gauge Fixing Terms within the Standard Model

When not working in the unitary gauge, the Higgs kinetic term induces mixings between vector
bosons and scalar fields which makes the interpretation of the mass terms given in (3.32) less
clear. Hence in spontaneously broken gauge theories it is convenient to cancel these mixings,
which can be achieved by adding R¢-gauge fixing terms [149], as discussed in the following.
Splitting the Higgs into its VEV and fluctuations around the VEV,

H(z)= (H(x))+ 6H(x), (3.40)
the following mixing terms of the SM EW gauge group arise:
(D, H) (D"H) > —z'nggMaﬂ((aH)T%a (H) - h.c.) —igy%@“((&H)T (H) — h.c.). (3.41)
Inserting the Higgs representation of (3.21), the mixing terms have the form
(D.H)(D'H) > v (gy B, 0"7* — gp (W}, 0"n' + W}, 0'n® + W}, 0'7%)),  (3.42)

from which we can observe that the scalar fields that mix with the SM EW gauge bosons
correspond exactly to the three Goldstone bosons 7%(z). Moreover, the Goldstone boson
73(x) will become the longitudinal degree of freedom of the linear combination of neutral
gauge boson fields proportional to (gy B, — gLWg u)' The latter corresponds to the Z boson
after normalisation which is massive after EWSB. Choosing the gauge-fixing function G for
SU(2)p, .

Gy = MW, + ing(aﬂ*%<H> - h.c.), (3.43)

and the gauge-fixing function Go for U(1)y,
_ AK € T
Go = 0"B, + igy 5 0H"(H) —h.c.), (3.44)

the gauge-fixing terms
1
2€

Lane =~ (0#WE, +igne (501 T-(H) ~c)) - 2%(‘9”5# vigy S (sm1(H) —ne))’
(3.45)
cancel the mixing terms in (3.41) without transforming away the 7(z)s. Apart from the
¢-independent mixing terms, the £-dependent term 1/ ((9“AZ)2 ensures a good high-energy
behaviour of the gauge boson propagator for finite £, and makes the renormalisability of the
theory more transparent [150,151]. Moreover, Goldstone mass terms proportional to & arise.
The gauge parameter £ can vary continuously from 0 to co. In the limit £ — oo one obtains

the unitary gauge since the unphysical particles decouple from the theory.
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3.7 Neutral and Charged Currents

In order to make the residual unbroken U(1l)g gauge symmetry manifest, we restate the
covariant derivative (3.6) of the fermions in terms of the physical gauge boson fields W*, Z
and A:

+ - 3
o _ g_L U_ + U_ -\ gL U_ w2 o
D,yr, = ((% Z\/§< 5 W, + 5 Wu) lcos9W< 5 —sin HWQ>ZM zeQAu> U,
Dyr = (au i ((sin 0w Q) 2, - z‘eQAM) Un. (3.46)
cos Oy

In deriving the above result, we have identified the coefficient of the electromagnetic interaction

with the electron charge e

e = _9r9y (3i0) gr, sin Oy = gy cos Oy . (3.47)

\/ 9% + 9%

Inserting the quantum numbers of the various fermions, as given in Table 3.1, we obtain the

EW Lagrangian
Low = Y QuiD)Qy + 1 (ip) By + Un(ip)Uk + Diylip) Dy + En(id) Ey
4 H

_ 1 1
on (Wi T + Wity + 2,74 ) + eAudl = 7 Li L™ = 1B B | (3.48)

where we have found for the weak currents

1 /. _ _ _
Kt = =5 (Ui"Dy, + 740 EL)
_ 1 /—i e ,
W = (Bt s Bt
V2
1 (= (1 2. R 2 :
7 = cos Oy <UZLWM (5 3 sin’ 9W> Ui+ T <_§ sin’ 9W> Un

— 1 1 A 1 )
+DA* <—§ + 3 sin? 9W> Dt + Dipy* <§ sin? 9W> Dy
_ 1N\ . 1 o A
+U" <§> v+ Ep At (—5 + sin? 9W> Ej} + Epy* (sin Ow) E};z) ,
b T (2N T (2N e (Y i i (L) pi
JQ—UL’Y 3 UL+UR’}/ 3 UR_{_DLIY 3 DL+DR’}/ 3 DR
+Ey" (1) B} + Egy* (1) Eg. (3.49)

The fermions are still given in their gauge eigenstate basis. The origin of their masses, as well
as the transformation from the gauge eigenstate basis into the mass eigenstate basis, will be

the subject of the next section.
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3.8 Yukawa Interactions — Fermion Mass Terms

We have indicated in Section 3.3 that the introduction of the Higgs boson allows for the
construction of fermion-Higgs coupling terms, which are known as Yukawa couplings. The
most general renormalisable and gauge-invariant Yukawa Lagrangian, coupling the quark fields
to the scalar doublets H, H reads

Ly =Qy HYJ UL+ Q) HY D}, + he.. (3.50)

The SM Yukawa couplings Yy and Yp are generic complex 3x 3 matrices and thus are described
by 18 real parameters (R) and 18 complex phases (P). After EWSB the VEV of the Higgs
boson gives rise to the fermion mass terms

v v

Linass = — 7% U YU, — 7 DY D} +he., (3.51)
where M(ZJJ = v/V2 Yéj contains the masses for the up-type quarks, and M Y= v/vV2 Y[i)j
supplies the masses for the down-type quarks.

By means of biunitary transformations the Yukawa matrices can be diagonalised,

v

£mass =
V2

where the rotation matrices VJ ,
L,R

mass eigenstates, which we indicate by a prime

v

U Vy, Diag (Yu)Vi} U — 7

DLVp,Diag (Yp)V}, Dr+he.,  (3.52)

VgL n transform the quark gauge eigenstates into their

UL,R = VJLyRULvR’ D/L,R = VT

Dr r

Drr. (3.53)
Rewriting the above Lagrangian (3.52) in terms of quark mass eigenstates, we obtain
Lonass = Uy MyUl, — Dy MpD’y + h.c. (3.54)

where My = v/v/2Diag (Yy7) and Mp = v/v/2 Diag (Yp) are the diagonal quark mass matri-
ces.

Transforming the quarks into their mass eigenbases, we recognise that the rotation matrices
only occur in the charged weak currents Jf; i, e.g.

1 — 1
JhE S 507Dy = — UV 4"V, D} . (3.55)

V2 V2
This is due to the mismatch of the left-handed rotation matrices V7, and Vp,, which is
described by the unitary quark mixing matrix or Cabbibo—Kobayashi-Maskawa (CKM) matrix
[152,153],

Vexm = Vi Vo, - (3.56)
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Parameterisation of Unitary Matrices

A generic unitary 3 x 3 matrix can be expressed by three real parameters and six complex
phases. Amongst all mathematically equivalent parameterisation possibilities, it is convenient
to express the matrix by a product of a matrix R (with 3 rotational angles and 3 complex
phases) and a diagonal phase matrix Fy = Diag (€791, ¢'92 ¢i93). The diagonal phase matrix
corresponds to an exponentiated linear combination of the diagonal Gell-Mann matrices As, Ag
with the unit matrix 1. The matrix R originates from a product of three complex rotation

matrices ]:212, ng, ]:223, where 1:212 is specified by

cos 012 sin 612 0
N = ) 1 5 ) ) 3 2 3
R12 _ 61912 _ 61912(51116)\ +cosOA?) _ _sin 9126715 cos 912 0 _ 625/2)\ 61912)\ e 0/2 N 7
0 0 1

(3.57)
and the others are defined in full analogy. According to a possible classification of the param-
eterisation of the orthogonal 3 x 3 matrices R;; in [154], which equal }?ij with = 0, there are
six different forms of the type R = R;; R R;; and another six of the type R = R;; Ry Rpp.

Parameterisation of the CKM Matrix

By describing the unitary CKM matrix, not all of the 3R+6P parameters are physically
relevant. As one can see from (3.54), there is still the freedom to redefine the mass eigenstates
by a diagonal phase matrix according to U/L — U/LF% and Up, — F (;UIU B = F;U Uy, and
analogously in the down sector with the phase matrix Fy . For the special case of Fy,6 =
Fy4,, and all the phases are identical, the diagonal phase matrices are proportional to the
unit matrix and thus commute with the CKM matrix in (3.55) (this case corresponds to an
accidental unbroken global baryon number symmetry U(1)p). Thus in summary, five of the
six phases in the CKM matrix can be removed by field redefinitions. Of the many possible
parameterisations, the following has become the “standard parameterisation” [155]

C12 €13 €13 812 size "
i C13 S23 y (3.58)

—is —is
—C23C12 813 + 823 812€ 0 —C23 813512 — C12823€ °  C23C13

_ — —is
VokMm = | —ci12823813 — Caz sz e —593 513 812 + Ca3Cl2€ "

where c;; = cos0;;, s;; = sinf);;. The phase ¢ is the only CP-violating source in the SM.
In terms of the rotation matrices introduced above, the standard parameterisation can be

presented by
Dlag (15 eié’ 6i5) R23 R?)l R12 Dlag (1’ 15 eii(s) ) (359)

where R3; equals R3; with the replacement 1 — e~ on the diagonal element.
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3.9 Global Flavour Symmetry of the Standard Model

While the Higgs sector itself incorporates a global custodial symmetry, the Higgs couplings to
the fermions via the Yukawa interactions destroy another global symmetry present in the SM
Lagrangian. The maximal global SM flavour symmetry group is the largest group of unitary

field transformations that commutes with the SM gauge group. It is given by
UB)’ =UB)g, x UB)us x UB)py x UB)L, x U3y, - (3.60)

Decomposing the unitary groups U(N) into a semidirect product of a special unitary group
SU(N) and an abelian group U(1), the chiral quark flavour symmetry group can be rewritten
as

GP*™ = SU3)g, x SUB)u, x SUB)p, x U)o, x UML)y, x U(1)py, - (3.61)

The quark fields transform as fundamentals
QrL~3,1,1), Ur~ (13,1, Dgr~(1,13) (3.62)

under the special unitary groups.

In the SM, the Higgs field is a singlet under the flavour group and the Yukawa coupling
matrices are constant parameters. It is then evident that the Yukawa Lagrangian (3.50) is in
general not invariant under the global quark transformations (3.62) with the exception of a
global U(1)p symmetry which corresponds to the limit of equal rotation matrices. It will be
useful to define the quark flavour group as exactly that part which is broken by the Yukawas
(see also [156,157])

Gr=U(3)*/U1)g = SU(3)q, x SUB)us x SUB)pr x UL)yy x U1)pp (3.63)

where we chose to leave the abelian subgroup of the right-handed quark rotations as indepen-

dent linear combinations besides U(1)p.
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Chapter 4

Dynamical Minimal Flavour Violation

4.1 Basic Concepts of Minimal Flavour Violation

Although the SM is a very successful model, there are several open questions, which are
related to the — so far — undiscovered scalar Higgs particle. At higher energy scales, the
SM Higgs boson mass receives large UV-sensitive loop corrections from the SM particles,
especially from the top quark, and only a precise adjustment of parameters can keep the
Higgs VEV around the weak scale. This, however, is quite unnatural and is the origin of
the so-called fine-tuning problem. For this reason, it is widely believed that there exist new
physics contributions which stabilise the weak scale and resolve this hierarchy problem. In
consequence, the SM should be interpreted as a low-energy effective field theory with an
unspecified cutoff scale A, in which the NP particles with masses heavier than the EW scale
appear through higher-dimensional operators. Assuming that the new interactions/particles
arise already at the TeV scale, the flavour sector of the NP models is highly constrained and
non-generic, because all present data on rare and CP-violating K and B decays are in very
good accordance with the SM predictions [26-29|. In order to mimic the SM flavour sector
and its phenomenological outcomes, one may assume that the NP models follow the concept of
minimal flavour violation (MFV). It postulates that flavour transitions and CP violation are
solely induced by the Yukawa matrices in such a way that the low-scale effective field theory
(EFT) is completely determined by their structure [30-32]. Pushing the NP scale well above
the TeV scale, the hypothesis of ME'V can be softened and more generic flavour transitions in
higher-dimensional NP operators are allowed to appear. Settled in between these two scenarios
lie the models that are referred to as models with next-to-minimal flavour violation [158,159].
Focusing on models incorporating the MFV assumption, one can further distinguish between
a linear representation of the FS [30,32] and a non-linear one [88,157,160|, as discussed in

more detail below. A nice overview of this topic can also be found in [161].

The common idea of all MF'V models is to promote the Yukawa matrices to dimensionless

29
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auxiliary spurion fields,
Yo~ (3,3,1) and Yp~(3,1,3), (4.1)

which are bifundamentals under the maximal global quark F'S group U(3)q, xU (3)u, xU(3)py
present in the SM (3.61). Having a formally restored flavour symmetry at scales above A, it
is always possible to rotate the background values of the spurions to a basis, so that either
(Yur) or (Yp) is diagonal. Moreover, if there are no other fields transforming under the F'S, the
background values of the Yukawa spurions are the only sources responsible for the breakdown

of the FS as shown in Figure 4.1.

Gr;ax = U(?% Ui?))DR
(3,3

Yy~ (3,3,1) Yp~(3,1,3)

Figure 4.1: The breaking of the SM FS by the background values of the Yukawa matrices.

Linear Realisation of Minimal Flavour Violation

In the linear realisation of the MFV approach it is assumed that the full FS is broken at
a single scale A [30], where the Yukawa couplings are “frozen” to their background values.
Promoting the Yukawas to non-trivially transforming objects under the flavour group, the
counting of parameters can be based on symmetrical grounds rather than on redefining the
fields as done in Section 3.8. According to the number of broken flavour group generators,
3 x 84+ 2 = 26 out of the 36 real spurion fields play the role of Goldstone fields. The residual
36 — 26 = 10 parameters are physically relevant, representing the six quark masses and the
four CKM parameters. Below the scale A, the effective MFV theory contains all higher-
dimensional operators, constructed from SM and Yukawa fields, which are invariant under CP
and formally under the global flavour symmetry [30]. There exist the trivial operators with

no spurion insertion

Q1Qr, UgrUr, DgDg, (4.2)

followed by the formally invariant left-right coupling operators with a single insertion of spu-

rions

Q. YyUr+hec., Q,YpDgr+hec.. (4.3)

At the level of two spurion insertions the possible operators

QYUY Qr+he., QLYpY} QL +he. (4.4)
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may arise, where the first one is dominant due to the enhancement of the top-quark Yukawa
coupling y;. Bringing the various MFV NP operators into the quark mass eigenbasis according

to (3.53), the list of operators is given by

ULU, =U,U,, D.D,=D.D}, (4.5)
U.Dy, = UpVexuDY, (4.6)

UL Yy Ugr = Uy Diag (Yo)Uk (4.7)
Dy Yy Ug = Dy ViyDiag (Yo )Uk (4.8)
UL Yp D = Uy VexuDiag (Yp) Dy (4.9)
DL Yp Dy = D' Diag (Yp) Dl (4.10)
ULYyY U, = Uy (Diag (Yo))?Us, (4.11)
DYuY,Dp = Dy Vi (Diag (Yi)?Vexm Dy, (4.12)
ULYpY U = UpVexwm(Diag (Yn)) ViUl (4.13)
DYpY},Dy, = Dy (Diag (Yp))* Dy, (4.14)

where the expressions for the corresponding hermitian conjugate operators can be obtained
analogously. Apart from the flavour diagonal operators ((4.5), (4.7), (4.10), (4.11), (4.14)),
we observe that the operators which involve at least one CKM element contain the flavour
structures which induce flavour transitions ((4.6), (4.8), (4.9), (4.12), (4.13)). By construction,
only the CKM matrix and the diagonal Yukawa coupling elements, which correspond to the
quark masses up to the proportionality factor v/v/2, appear in the NP operators. To complete
the list of flavour changing operators with a minimal number of spurion insertions [158], we
use the replacements in Table 4.1 in order to be able to deduce the effective operators involving

right-handed quarks out of the purely left-handed basic bilinear operators.

D), — Diag (Yp) D}, || D}, — Dy Diag (Yp)

U; — Diag (Yy) Uy, || Uy — Uy Diag (Yir)

Table 4.1: Replacement rules for obtaining the corresponding right-handed effective operators.

Note that for left-handed FCNCs at least two spurion insertions are needed, while for right-
handed FCNCs even four have to be included due to the additional chiral mass suppression
factors given in Table 4.1. With the exception of the charged ¢ — b transitions, involving
the O(1) CKM element |Vj| and/or Diag (Yp)s3 = y: = v/2my /v, the coefficients of operators
arising from higher number of spurion insertions become smaller and allow for a systematic

power expansion.
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Non-Linear Realisation of Minimal Flavour Violation

As indicated, the large top quark mass makes the convenient power-counting argument less
transparent in the linear MFV formulation. An attempt to take the special role of the top
Yukawa coupling into account is to represent the breaking of the flavour group non-linearly
via giving it a large F'S breaking VEV at the UV scale A [88]. The breakdown of the F'S group
GF to the subgroup Gg) can then be realised by a non-linear o-model-like parameterisation
of the Yukawas [160]. The Goldstone fields, living in the coset space Gp/ Gg), are factored
out of the matrix which still contains the spurion fields transforming under the residual Gg)
symmetry [37,38]. After initialising the breaking of the FS through the top-quark Yukawa
coupling, one can proceed further and break the FS in a step-wise fashion until all Yukawa
coupling entries have been generated.

In Section 4.2 we will promote the auxiliary Yukawa spurions to dynamical scalar fields
and demonstrate in Section 4.3 that a sequential breaking of the F'S via appropriate chosen
spurion VEVs can account for a hierarchy in the Yukawa matrices and thus for a hierarchy in
the quark masses and mixings. In Subsection 4.3.1 we will take the F'S even more seriously

and consider a part of the FS as a local symmetry.

4.2 Towards Dynamical Minimal Flavour Violation

Besides the fact that the Yukawa matrices are objects transforming non-trivially under the
flavour symmetry, we want to “revive” them in supplying the auxiliary spurions with a mass
dimension and thus allow for kinetic terms.

This “Higgsing” of the Yukawa matrices resembles the model proposed in [162]|, where the

Yukawa couplings have a Higgs-dependent structure of the form

u,d
HIH\"™
yud =l ( ) , (4.15)

v] v

where i, j are generation indices. The hierarchy in fermion masses is generated by the integer
numbers ngj’d, which count the number of Higgs insertions HTH. The NP scale M is around
1—2 TeV — a scale which is also favoured by hierarchy problem considerations. The coefficients
cij’d of O(1) cause a non-hermitian structure of the Yukawas.

In contrast to the above ansatz (4.15), where no additional scalar fields besides the SM
Higgs field are introduced, we follow [88,157] and treat the Yukawa matrices as independent
new scalar degrees of freedom. Taking a multi-Higgs ansatz with an appropriate potential
that supplies non-vanishing VEVs for the spurion fields, the hierarchical masses and mixing
angles arise “naturally” according to the different breaking scales A > A®) > A@) > . of
the spontaneously broken flavour symmetry. The explicit form of the potential can be worked
out by constructing several invariants under the flavour group, which consist of monomials of

Y (x) and Yp(z) with a definite canonical dimension (see [157] for further details).
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4.3 Sequential Breaking of the Flavour Symmetry

In our setup the canonical dimension of the Yukawa matrices requires that the SM Yukawa

couplings appear as dimension-five operators of an effective theory
1 — - 1
—Lvuk = K(QLH)YUUR + K(QLH)YDDR + h.c.. (4.16)

Only the spurion generating the top quark Yukawa coupling with y; ~ O(1), which initialises
the breaking chain at the UV scale A, gets a VEV of the same order of magnitude:

00 O
Yoy~ 00 0 |. (4.17)
0 0 ytA

Hence, the top quark Yukawa coupling effectively originates from a dimension-four operator.
The VEVs of the other spurion fields occur at scales A < A and thus, stemming effectively
from dimension-five operators in (4.16), can naturally reproduce the smallness of the residual
quark masses [88].

As we only have accessible information about the eigenvalues of the Yukawa matrices and
the CKM matrix elements, one has to make further assumptions to be able to implement a
hierarchical ranking of the Yukawa matrix entries. Since the right-handed rotation matrices
are unobservable, we choose a basis in which they are equal to the unit matrix. Knowing also
that there exists a basis in which the up-type Yukawa matrix is diagonal and one in which the
down-type Yukawa matrix is diagonal, the CKM matrix then rotates between these two bases.
Restricting ourselves to left-handed rotations matrices which scale in the same manner as the

standard power counting for the CKM matrix with the Wolfenstein parameter A ~ 0.2 < 1,

DD
Vekm~ | A 1 A2 |, (4.18)
A2 1

we obtain the following hierarchy in the Yukawa matrices,

A\ )\1+nc )\3
(Yu) ~ Vekm Diag (Yy) A ~ [ AAme \ne X2 A
A3tnu \24ne |
A\ )\1+ns )\3+nb

(YD> ~ Vokwm Diag (YD) A~ ALtnd A'ts panc’ A (4.19)
)\3+nd )\2+ns A\

Thereby, the diagonal matrices Diag (Y77,p) contain the quark masses expressed in powers of
the Wolfenstein parameter y, ~ A"¢. The scaling can be constrained from the phenomenolog-

ical information on the quark masses.
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4.3.1 Partly Gauged Flavour Symmetry

In the following, we will take the global FS group Gr even more seriously and will consider a

specific scenario where the three SU(3) factors are promoted to local symmetries
GF = [SU(?))QL X SU(3)UR X SU(?))DR] X U(l)UR X U(l)DR . (4.20)

To distinguish the global from the local parts of the flavour symmetry, we indicate the gauged
ones by squared brackets.

In the course of systematically breaking the gauged F'S group, the gauge bosons will become
massive and the Goldstone modes of the broken symmetry generators can be identified as the
longitudinal modes of the gauge bosons in the unitary gauge. Our choice to leave the two
U(1) factors in G as global symmetries is motivated two-fold. On the one hand, the U(1)p
symmetry which is respected by the Yukawa coupling terms is considered as global anyway.
On the other hand, as the U(1) Goldstone modes have anomalous couplings to the SM gauge
fields, we expect that they will contribute to the effective #-parameter in QCD. Identifying
at least one linear combination of them as an axion with a finite mass, that is generated by
anomalous couplings to QCD instantons, a potential solution to the strong CP problem is
provided (see Section 4.10).

In the course of spontaneous FS breaking the scalar spurions contained in the Yukawa
matrices Yy and Yp acquire a VEV. Without loss of generality we work in the basis where
the VEV of the up-type Yukawa matrix is diagonal. In the following, we choose a possible
scenario of sequential flavour symmetry breaking, where ny =0 <np ~2 <n.~3 <np+2 >~
4<np+3~5<ng~6<n,q~8as proposed in [157]. This implies an uniform separation
of the breaking scales A = AX("TDA for n greater than one. Corresponding to the specific
sequence, the spurion VEVs arising in the (¢)-th breaking step can be illustrated by

0 0 0

Yy~ 0 (3 0 |, (4.21)
0 0 (1)
0 0 (5 (5) 0 0

(Yp)~| 0 (6) 4) [Zexp|—i| 0 0 @) ||-[0 (6) 0 |. (422
0 0 (2 (5) (4) 0 0 0 (2

After the last breaking step (6), in which the strange quark Yukawa coupling is produced,
only the global flavour symmetry Gg?) = U(1)y, x U(1)g4y, is left. In the discussion below,
the VEVs of the Yukawa matrices (Y77, p) have to be understood as the ones already produced
in the (i)-th breaking step of (4.21) and (4.22). We represent the breaking steps, which are
shown in Figure 4.2, in detail in the following because in contrast to [157], we are not allowed

to consider linear combinations with the remaining global symmetry generators.
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Energy Scale

y

| G =[5U@)a, x SU)us x SUE)pa] x UMug x U)oy
Ye A T
Gy = [SU@)q, x SUR)u, x U)r x SUB)pg] x UL)ye x UL) g
WA
A G = [SU©2)g, x SUQ2)y, x U(1)s x SU(2)p,] % UL)yer x U(1) pe
Ye X
M Gy = [SU@)py x U)s x UL)a] x ULug x U(L)
Yb T
o Gy = [SU@)py x U)x] x U(Dup x UL)
Yb T
L | CF = 1SU@D] X U)ur x UM
Ys &
6)
ys)\A | G(F — (1)uR X U( ) R
Yua - FS completely broken
v 4

Figure 4.2: The considered FS breaking pattern.

First Breaking Step (1):

To determine the residual symmetry which is unbroken by the VEV (4.17), we consider the
infinitesimal transformation behaviour of the up-type Yukawa matrix concerning the local part

of Gp,
Yy, = et @1 yy, e R Ton ~ Yy 4 iaf (z) T Yy —iag, (v) Yu T, - (4.23)

To simplify the notation we replace Qr by L, as the quark flavour symmetry acting on the
left-handed fermion doublets does not differentiate between the up and the down sector. The

unbroken generators, that leave the VEV (Y7) invariant, can be derived from the condition

a4 () T (Yur) — afy, (2) (Yo) T, =0, (4.24)

which leads to two possibilities. First, if both terms vanish separately for the generators
a = 1,2,3, the first summand implies an unbroken SU(2)g, symmetry while the second
summand corresponds to an unbroken SU(2)y, symmetry. Second, for the special case of

b (z) = a8UR(:U) = ar(x), an extra abelian group U(1)r remains

U1)p = e or@TE+TE,) (4.25)

Further, the symmetry generator of a possible residual global symmetry follows from the
condition
!
o T (Yu) — afy, (Yu) T, — (Yo b1 2 0. (4.26)
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In addition to the global version of the local SU(2)qg, x SU(2)y, symmetry, an appropriate

adjustment of the coefficients of , a%R with 6, leads to a conservation of a global U(1)

U@
symmetry. It acts on the two-dimensional flavour subspace, where the original right—handgd
triplet Ur = (ug, cr,tr) is restricted to the flavour doublet Ug) = (ug,CcR).

Finally, the flavour symmetry is broken by the first scalar spurion VEV to
G = [SU2)q, x SUQ2)u, x UL)r x SU(3)p,] x U)o % U - (4.27)

and the number of broken generators (16 — 7 = 9) equals the number of Goldstone bosons.

Second Breaking Step (2):

The next spurion receiving a non-vanishing VEV is the one which generates the bottom quark
Yukawa coupling y;,. Taking into account that the term af (z) T* (Yp) vanishes independently

for a = 1, 2,3 with respect to the infinitesimal gauge transformation
(Yp)' = (Yp) +iar(2)TL(Yp) +iaf (¢) TE(Yp) —i(Yp)ah, () Th, , (4.28)

the SU(2)q, symmetry is not affected and still remains intact after the breaking. Furthermore,
the SU(3)p,, symmetry is broken down to a SU(2)p, symmetry and for ar(x) = ostR (z) =

a®(z) the former U(1)7 gauge symmetry changes into the new local abelian symmetry
Ul)s = eiaS(x)(TE-i-TgR-i-T[S)R). (4.29)
In analogy to the previous breaking step in the up-sector, the global U(1)p, is reduced to a

U(1) P symmetry of the two-dimensional subspace.

In summary, the development of the bottom Yukawa coupling breaks the flavour symmetry

group Gg) down to

G2 = [SU(2)q, x SUQ2)u, x U(1)g x SU(2)p,] x U@ x U1)pe (4.30)

corresponding to five new Goldstone fields.

Third Breaking Step (3):

The third VEV produces the charm Yukawa coupling. Since diagonal matrices commute
with themselves (in this case T} and Ty} commute with (Yr)), the U(1)g symmetry remains

unbroken and the condition for the unbroken generators simplifies to
. . . !
iaf (z) TE (Yu) — i(Yu)ag, (z) T, —i(Yu)fup1 = 0. (4.31)

For o () = O‘?l)JR (r) = o®(z) an additional local abelian group arises

U(1)s = emS(x)(TLSJrTgR) ’ (4.32)
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which involves the diagonal generators T2 of SU(3)g, and SU(3)y,.
The corresponding orthogonal component with o (z) = —aj;

new Goldstone boson ¢3(z). The global residual symmetry of U(1

U(1)y,. The FS valid at scales below y A is found to be

() is broken and produces a

)U}{z) is reduced to U(l)Ug) =

G = [SU2)py x U(L)s x U(1)3] x U(L)yy x U(1) (4.33)

DE?Q) )
and altogether five Goldstone degrees of freedom are added to the theory. Thus there are 19
Goldstone and 14 spurion degrees of freedom, combining with the three real VEVs to the 36

degrees of freedom of the two Yukawa matrices.

Fourth Breaking Step (4):

The first non-diagonal spurion VEV arises at the energy scale E ~ y,A*> A and produces the
CKM rotation angle o3 ~ A\? (see the linear representation of the CKM matrix in (4.63)). The
physical scalar fluctuation 7,3(x) around the angle 623 induces FCNCs at tree level through
effective 4-quark operators. Note that the VEV breaks the abelian product group U(1)gxU(1)3

down to one residual local U(1) group
Ul)x = eiex(w)(%(T5L+T5R+TgR)+(TC%L +T5R)> , (4.34)
such that at the end of the day

GW = [SU©@)p, x U(1)x] x U(1)u, x U)o (4.35)
and only one additional Goldstone boson arises in the breaking Gg’) — G%).

Fifth Breaking Step (5):

The spurion fluctuation 713(z) around the VEV of the second non-diagonal spurion field of
Yp are related to fluctuations around the CKM angle 13 ~ A3. In Subsection 4.7.1 we will
show explicitly that integrating out the heavy spurion 7;3(z) results in the effective 4-fermion
interactions (4.116). As the VEV spontaneously breaks the U(1)x symmetry, we have to deal

with one more Goldstone boson and
GY = [SU(2)py] X U(1)uy % U() e (4.36)

represents the remaining flavour symmetry after the fourth breaking step.

Sixth Breaking Step (6):

Finally, with the creation of the strange-quark Yukawa coupling ys according to (4.22), also the
local flavour symmetry of the right-handed down-type quarks SU(2)p,, gets broken, creating

three more Goldstone bosons.
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In Section 4.10 we will use the residual global symmetry
G;?) =U(Dup X U(L)dg (4.37)

acting on the right-handed up quark ugr and down quark dg, to propose a possible solution
to the strong CP problem.

A counting of the Goldstone fields arising in the above discussed breaking steps yields
94+5+5+1+1+ 3 = 24, which is obviously in accordance with the number of generators
corresponding to the broken local flavour group SU(3)3.

It is important to notice that the last non-diagonal spurion field x'2? is a singlet under the
flavour symmetry. Its complex VEV generates the CKM angle 015 and in addition the CP-
violating phase . Again the off-diagonal fluctuation 7;2(x) will supply a tree-level contribution
to FCNCs.

4.4 Parametrisation of the Yukawa Matrices and Unitary Gauge

The aim of this section is to parameterise the Yukawa matrices in such a way that the physical
scalar fluctuations are separated from the Goldstone degrees of freedom. The Goldstone
bosons, corresponding to the broken generators of the local F'S group, become the longitudinal
modes of the massive gauge bosons and disappear in the unitary gauge. The discussion of the
Goldstone bosons of the global F'S is postponed to Section 4.10.

According to the breaking scenario shown in (4.21) and (4.22), with the CP-violating phase
6 appearing in the mixing between the first and second generation, we will parameterise the
CKM matrix as

. 7 o; 5 3 o 2 o3
VCKM 2621923T 621913T 62(5T 621912T e 10T . (438)

Apart from a redefinition of the CP phase, this representation corresponds to the standard
parametrisation of the CKM matrix (see (3.57)—(3.59)) and the power counting of the CKM
angles is given by 019 ~ X, 63 ~ A? and ;3 ~ \3.

Having fixed the Yukawa VEVs which are responsible for the spontaneous breakdown of

the local flavour symmetry

(Yy) = Diag (yue ™ ye, ),  (Yp) = Vorm Diag (yae ™, ys, v) , (4.39)

where we have made the phases related to the two remaining global symmetries explicit, the
next goal is to find a proper parameterisation of the Yukawa matrices. Generally for n quark
generations, the 3(n?—1) independent generators of the broken local flavour symmetry SU (n)3
are identified with the Goldstone bosons PG, Ur. DR(JU), a=1,..n%—1. Apart from the two
explicit phases for the global U(1),, x U(1)4, symmetry, the remaining degrees of freedom
of the 4n? fluctuations of the two complex n x n Yukawa matrices correspond to the (n? 4 1)

fluctuations 7;(x) of the physical masses and mixing parameters.
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Inspired by a singular value decomposition of the Yukawa matrices
Yi(x) = Vo, (2) Dy (@) Vi, (2) . Yp(2) = Vp, (2) Dp(2) Vp, (x),  (440)
we make an ansatz which actually contains more parameters than scalar degrees of freedom:

Yu(2) = o, (x) - Zu, (z) Dy(2) Ef; (2) - Sy, (),
Yp(x) = S, (2) - Vekm - Ep, (¢) Dp(2) Ep (2) - Spg(x) - (4.41)

However, it is consistent with the standard parameterisation proposed in [37, 38| since the

broken symmetry generators, representing the Goldstone bosons of SU(3)3,
Yx(x) =explidk(x) T, (X =Qr,Ur,Dg), (4.42)

are “factored” out of the residual matrix products Zy, Dy EJ{]R and Zp, Dp E}BR which are
supposed to contain the physically relevant scalar fields or Higgs modes.
The fluctuations around the VEVs of the quark Yukawa couplings y,(z) = y, + 14(x)/Vv/2

are contained in the diagonal matrices

Dy (z) = Diag (yu(z) e ™) y.(z), y()),
Dp(z) = Diag (ya(z) e ™", y (), yy(x)), (4.43)

where the normalisation factor is chosen such that the spurion kinetic terms of the 74s will
come out canonically in (4.45). The non-diagonal physical scalar fluctuations around the
VEVs of the CKM angles and phases arise from the matrix field

EX(:U) = exp [Z 5?(($) Ta] ) (X =UL,DL,UR, Dpg; a 75 3, 8) : (444)

We exclude the diagonal generators T and T® in the CKM fluctuations (4.44), as they would
reintroduce a complex phase into the spurion fields y.(z), y:(z), ys(x), yp(z) in (4.43). Thus,
the fluctuations along their direction in group space have to be identified as Goldstone-like
degrees of freedom, which we have already parameterised by the matrix fields ¥ x ().

To further disentangle the degrees of freedom introduced in the ansatz (4.41), we search
for a guideline that tells us which fluctuations have to be assigned to the Goldstone matrix
field ¥ x(x) and which ones to the matrix field of the physically fluctuations in Ex(z) and
Dy p(x), respectively. As pointed out in Section 3.6, the scalar degrees of freedom that have
mixings with the gauge fields have to be interpreted as Goldstone fields which will disappear
when the physical or unitary gauge ¥ x(x) — 1 is chosen. Equivalently, the scalar fluctuations
which do not mix with the SU(3)3 flavour gauge fields A% ,,(z) in the gauge-invariant kinetic

terms

A2 T [(D, Y1) (D*Yy)] + A2 T (DY) (D"Yp)), (4.45)
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where the covariant derivatives stand for

DYy (z) = 0,Yu(x) —igo, A%L#(x)Ta Yu(x) +igu, A?JR’M(.%') Yu(z) T,
D,Yp(z) = 0,Yp(x) —igg, A%L’u(x)Ta Yp(z) + igp, A%Rw(x) Yp(x)T*, (4.46)
are the physical ones. Thus, the ambiguity can be resolved by requiring that our ansatz does

not generate any mixing terms between scalar fields and gauge fields if we work in the unitary

gauge. Separating the Yukawa matrices into their VEVs and fluctuations around the latter

i
N
I

(Yu) + oYy (=),
YD(.%') = <YD> + 5YD(.%'), (4.47)

the mixing terms with the SU(3)q, gauge fields get contributions from the kinetic terms both

of the up-type Yukawa matrix and of the down-type Yukawa matrix
Liin D A%igg, AG, ,0"Tr [T(0Yy (2)(Y{) + 6Yp(z)(Y]) — h.c.)]. (4.48)

The mixing terms involving the SU(3)y, gauge bosons are solely devoted to the up-Yukawa
matrix

N2igy, Afy, 0" Tr [T (8Y () (V) — (V) oYy ()], (4.49)

while the SU(3)p,, mixing terms only get contributions from the kinetic term of the down-
Yukawa matrix
A%igp, AS,, 0" Tx [T°(6Y (2)(YD) — (Y})6Yp(2))]. (4.50)

Inserting our Yukawa parameterisation ansatz (4.41), we identify the fluctuations according

to (4.47),
0¥y (x) = Yu(x) = (Yv) = Zu, (¢) Du () 5, (x) = (Do),
0Yp(x) = Yp(z) — (Yp) = Vokm - Ep, (#) Dp(2) E, () — Vekm(Dp) . (4.51)

In the following it is enough to concentrate only on the linear fluctuations which are given by

0Yy(z) = (Du(z) = (Dv)) + g, (2)T*(Du) — {Du )&, ()T

6Yp(z) = Vexm(Dp(z) — (Dp)) + Vexm(i€h, (2)T*(Dp) — i{Dp)&p, (2)T7) . (4.52)
Moreover, we can focus on the mixing terms between the scalar fluctuations &;(x) and the
gauge fields, as the fluctuations around the quark Yukawa couplings

1

Dy(w) = (D) = —=Diag (1(2). ne(@). m(a).
Dp() — (Dp) = %Diag (na(z), 1a(2), (). (4.53)

do not mix with the SU(3)? gauge bosons.



4.4 PARAMETRISATION OF THE YUKAWA MATRICES AND UNITARY GAUGE 41

In the linear approximation, the requirement that the mixing terms (4.48)—(4.50) should
vanish is implemented by imposing
!
Al T [T((DY)eR, T*(Du) — (| Dy *)eg, T + hee.)] =0,
!
Al + Tr [T(D L) V&, T*(Dp) = (Dp)Vn(Dp)éh, T +hie.)] = 0,
A, + Tr[T(&5, T D) — (Du)éh, T*(Dp) + he.)
!
T (€5, TYDp )Wy — (Dp)eh, THD LWV +he)] =0, (4.54)
For demonstration, we will first give the solution to the above conditions (4.54) in the simpler
2-generation case, as there is only one physical spurion 712(z), which describes the fluctuation

around the Cabibbo angle. In the 3-generation case three physical spurions according to the

three CKM angles are involved, which will have kinetic mixings amongst themselves.

4.4.1 Solution of the 2-Generation Case

In the case of two generations, the above conditions (4.54) can be easily solved for the various

¢ x-fields

2 2 2
Yu+Ye - FY,y .
&, (x) = 0, &, (x) » —Fh W22 53— yzc)z Tha(z) ~ ——y122 (),
U C C
2 2 2
vty F2,
p,(x) = 0, &b, (x) = —Ffy S5 iha(e) = ——Z fia(),
(yd ys) Ys

2yuYesinmy, _ 9 o 2Yule COS Ty _
& (z) = —FL =2 Y io(z) ~0, &5 (z) - —F% "2 Y i5(z) ~0,
UR( ) 12 (yg _yg)Q ( ) UR( ) 12 (yg_yg)z ( )
2yqyssinmg _ 2YqYs COSTq _
Epp(®) = F (ygs_in)Q Ma(x) ~0, &py(x) = Fh an(?ﬁ) ~0. (4.55)
d S d s

To simplify the notation we have introduced the factor F%,

I 2(ys — ¥2)*(yg — v3)? (4.56)
12 — ’ :
(v — v2)* (g +v3) + (v — v (va + )
which enters the kinetic term of 7;2(z),
~ 1
L = 5 Fio A (9"pa ()" (4.57)

The normalised spurion n12(z) is then given by n12(x) = Fia Ami2(x). Note, that we use the
tilde to distinguish the unnormalised spurion fields from the normalised ones.
It is important to notice that the fluctuation 7;2(x) occurs symmetrically in the up- and

down-quark sector (4.55), despite the fact that our original ansatz assigned the CKM matrix
F122 2 () in
V2

the parameterisation of the CKM matrix (4.38) would have induced spurion couplings solely

solely to the down-quark Yukawa matrix. Thus the naive replacement 615 — 012+

to the down-type quarks (4.39), and would have led to an incorrect result. In particular this
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ansatz would have induced FCNCs only in the down-quark sector — and vice versa only in
the up-quark sector, if we had chosen a basis in which the down-type Yukawa is diagonal and
the up-type one contains the CKM matrix. Obviously a contradiction would have emerged
as the physical observables should not depend on an arbitrarily chosen parametrisation of the
Yukawa VEVs. Still, as one can see from the limit y,, ¢ < ys < y., which is added to the exact
solutions in (4.55), the coupling of 7;2(x) to d, and si will dominate. One can further observe

that this limit would have also been obtained by making the rather minimalistic ansatz

Yu(e) = 0@ Dy (a),
Yp(z) = Vorn - €017 (2) Dp(x). (4.58)

This corresponds to the case in which the matrices VJR (x), V[T)R (z) in the singular decompo-
sition ansatz (4.40) are identified — from the early beginning — with the Goldstone degrees
of freedom. These Goldstones can then be gauged away independently by the right-handed
flavour symmetry group SU(3)y, x SU(3)p,. Note again that, besides this “decoupling” of
the right-handed flavour symmetry, one cannot use the left-handed SU(3)g, symmetry to
interpret either Vi, (z) or Vp, (z) as pure Goldstone fields, but has to carefully work out the
linear combinations that mix with the gauge fields.

Restricting ourselves to the linear order in the fluctuation 712(z) (and omitting the diagonal

fluctuations), the Yukawa couplings in the unitary gauge for the 2-generation case read

| 0 — e
Y, ® (x) = Diag (yue'™, yc) + ( _ 2(?’37%2*) ) Ffy o (),
C2(y2-v)
0 Ys
" . in 22— _
Yp®(x) = Vekw - | Diag (yae'™, ys) + |, ping R ) P () p . (4.59)
2(y2-v3)

The coupling matrices of the 7;2(x) field can be expressed entirely in terms of the VEVs of
the Yukawa matrices, e.g. for the up-type Yukawa,

2 0 _2(y2yiy2)
5YU’7‘7‘12 = F12 _ yuei”u 6 u
2(y2—yz)

__F {_yfyi tan b1 + Y2y cot b1 — iy cotbr — yiygtanty -,
2 —y2 2(y2 — v2)(y3 — y2)
cot 2019 t csc 2012 t
+ y2 — y2 <YUYUYU> — y2 — y?l <YDYDYU>
C u S
2 2
tan 01 2y cot 2019 2 csc 2019
~ ?/872 (Yu) + ?/874 (YoYivy) - —5 (YpY Vi), (4.60)
C C C

and an analogous relation for 6Yp|s,,. Here, the first identity in (4.60) holds in the basis where
(Yu) is diagonal and (Yp) = VexmDp, while the second and third line are basis independent.
Obviously, when inserted into Qp, ...Ug, the three different structures (Yy/), <YUYJYU> and
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(YDYZ];YU> of spurion insertions correspond to gauge-invariant combinations of the flavour
symmetry group. We have already encountered the first operator with one spurion insertion
n (4.3). At the level of two spurion insertions there is no possible left-right coupling, so that
the three spurion operators in (4.60) are really the next-to-minimal ones. From the MFV
perspective, we thus expect the coefficients in front of the three individual flavour structures
to be of O(1) or smaller. Taking into account that 7;2(x) scales as 012, we obtain in the

approximation y. ~ O(1), ye > ys > Yu.d

2 2
ystan 0o 2yZ cot 2019 _ 2c¢sc 201
s 2 2 yalbio <1, g 2 ys <1, T 2 1,  (4.61)
(& (& (&

and find that the third coefficient in the above expansion is the dominant one. It is interesting
to note that
Te (V) 6Yul5,] = Tr (VYY) 6Yl,] = 0, (4.62)

which shows that our construction for 7;2(x) indeed involves a variation that is orthogonal to
the VEV of Y. An analogous statement holds for §Yp and (Yp).

4.4.2 Solution of the 3-Generation Case

In the 3-family case, the situation is more complicated since the generators for the 3 CKM
rotations do not commute anymore, and the kinetic terms for the related spurion fields 7;2(x),
M3(z) and 7e3(x) will also mix. This mixing is controlled by the CKM matrix and the ratios
of quark Yukawa couplings. We can identify the leading effects by expanding (4.38) to first
order in the off-diagonal CKM elements V;;

1 012 013
Vekm = | =612 1 a3 |. (4.63)
—b13 —b3 1

If we further set y, = yq = 0 and neglect the CP phase, the ansatz reduces to
Ex(z)=exp|i&& ()T, a=2,5,7, X=Up, Dy, Ur, Dp. (4.64)

With these approximations, the conditions (4.54) lead to the following fluctuations around
the CKM angles

0 _  0mp? 0 -lmwo
C C t
wg. 1 0 (;/ 913%?% ~ 1 0 0 0123yt -
5YU (:C) D) 5 Byl 7712(56) + 5 (yffyg) 7713(55)
O13ey? 0 0 b2y 0
v2—y? (v2—v?)
0 013(y2—y2)” 02 (13-12)°
. ye(y2+y2) vt (y2+y2
2 2
i 0 _welvpE)” o3 () 4.65
3 . (v2+v2) (v2-v?) s () (4.65)
ye(yi—y2) 0

(v2+v2) (v2—v3)
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and
0 % 0 00 %
Vin0YsE@) > | 0 0 0 |de@+| 0 0 0 |
0 0 O 0 0 O
0 0
yb ys
+ 10 0 yb+ys e (4.66)

ys (vi—v?)
(yb+ys

For simplicity we again omit the diagonal spurion fluctuations and restrict ourselves to the
linear contributions. As already mentioned in the beginning, inserting the spurion fluctuations
(4.65)—(4.66) into the spurion kinetic terms (4.45) induces mixings in the kinetic terms of the

various spurions which will be the topic of the next subsection.

Diagonalisation of the Spurion Kinetic Terms

In order to obtain the usual field normalisation and basis, we will diagonalise and rescale the
fields such that they are canonically normalised afterwards and the full information about the
flavour structure is encoded in the Yukawa matrices [163].

As we do not specify the spurion potential, we can use the freedom to carry out a unitary

transformation U on an already normalised and diagonalised kinetic term

M2 OH'm2
<3;ﬂ7127 Oz s Oulls > L o'ms | = < Outhzs Ouinsz, Ouis > Utu | o
0123 OM1jo3

(4.67)

to diagonalise Tr [(8MYU)(3“YJ)] and Tr [(BMYD)(B“YIJS)] simultaneously.

Therefore, one can start with a diagonalisation of the spurion mixing terms stemming from
Tr [(QLYU)((?“YJ)], followed by an appropriate normalisation of the new states. The above
mentioned freedom then ensures that diagonalising the mixing terms from the down-Yukawa
spurion matrix Tr [(8MYD)(8“YZ;)] will not reintroduce mixing terms in the up sector. The
calculational details about how to obtain the symmetric distribution of the kinetic terms from

the up- and down-quark sector,

2 .2\2
T [(0,Y0) (0" ¥)] = - @uiina(@))? + 5 @iina())? + L8] (5 (a))?

y2 Y7 (y2 +y?)
+ 1 - 9 1 - s Wi—yd)? - 2
Tr [(0,YD)(0"YD)] = ) (Opia(z))” + 2 (Ops(w))” + m (Outios(x))”, (4.68)

can be found in the Appendix A.4. In (4.68) we reintroduced the tilde-notation after the

various field redefinitions as a reminder that the spurion kinetic terms are accompanied by
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the normalisation factors F;;, which are defined as before,

YW = v ) W uh) + Wh — v 2 (W ygy)
Finally, the Yukawa matrices in the new basis change into
1 - O23y2 s
Ye yz?y?gyiy? 1
.g. . 0 2 ~
Yj®(z) ~ Diag (0,ye,90) + | 0 0 iy | o Fiyia(e)
013 Ypye 0
Y22 —y2y?
9239133/6 1 0 — 913y§yc _ elzygyt
Y2 —y2y; ve 1 yzy2—y2y? vive—wdvi | 4
012y5yt ZF2 fia(x 1 = FZ fos(x
+10 0 gl |27 ms(x) + [ 0 0 m 5 1'33 23 () ,
0 0 0 0 0 0
(4.70)
and
0 1 O23ypy7
Ys ygy?;—y?y; 1
g . 0 -
V(T?KM Ygg (z) ~ Diag (0,ys,95) + | 0 0 —% b F122 ha ()
o 013 ysyg
0 yry2—y2y; 0
0 — 023y y? 1 013ysy7 9129py2
Yoy2—yiyi vo 1 T T T WY
+ _ 012ypyz — F2 n x) + _ 1 — F2 n ),
0 0 i | 211 s () 0 0 m 5 123 723 ()
0 0 0 0 0 0
(4.71)

where we have assumed ys < yp and y. < 3¢, and have omitted the fluctuations around the
quark Yukawa couplings.
As in the 2-family case, in this special limit the same result can be obtained with the

minimalistic ansatz
Se2 2 ;¢5 5 ;&7 7
Yu(x) = e'Cu, (T i, @)T7 ik, (2)T Dy (z)

)

Yp(x) = Voku - o, T (x)eigsDL (@)T? i€h, (@)T7 Dp(x), (4.72)

which implies that the linear combinations of the physical fluctuations consist only of left-
handed fields

—y3&h, (x) — Oy &), () + 0135 €D, (x)

&, () — 2 :
& (2) — —yptd, (x) + 23 92 Z%L(x) — 0129 €D, () ,
t
€ (2) > —yph, (x) — 01393 &5, (x) + b12 43 €D, (2) . (4.73)

y?
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With the identification

&b, (@) =Ma(e),  Ep,(2) =Ms(z), &), (2) =iha(2), (4.74)

we are able to reproduce the “asymmetric result” given in (4.65)—(4.66) in the limit ys < yp
and y. < y¢.
Again, the fluctuations are orthogonal to the Yukawa VEVs

Te[(V) 0Yy] = Te (VoY) ovy) = Tr (VYo Y v ) ovy] =0, (4.75)

and accordingly for the down Yukawa fields. Furthermore, the contributions to the invariants
Tr [(YJYU)"] as well as Tr [(Y[T)YD)"], appearing in the spurion potential [157], are diagonal in
the spurion fields 7j;;(z).

In addition to the subleading terms in the kinetic mixing terms, further corrections would
be induced by radiative corrections involving the Yukawa couplings. By construction, we
expect these effects to follow the MFV principle, in a similar way as we have discussed for the

2-family example. A precise calculation of these terms is beyond the scope of this work.

4.5 Simplified Scenario

To keep the following discussion transparent, we will actually consider the smaller flavour
symmetry group which appears in the fourth intermediate breaking step in the sequence of

flavour symmetry breaking, already derived in Section 4.3

G = [SU@)py x U(1)x] x U(L)uy x U(1) (4.76)

2) .
D

Since the masses of the scalar and gauge fields are closely related to the breaking scale,
the higher-dimensional operators originating from the highest breaking scales will be more
suppressed as the ones arising from the lower breaking steps. Hence this approximation still
comprehends the most severe bounds to FCNCs for a future phenomenological analysis.

In G;il) the two U(1) factors are global and while Dg) = (dR, sR) is restricted to a right-
handed flavour doublet of down-type quarks, the U(1)
handed up-quark. At this stage, the VEVs of the Yukawa matrices contain the three eigen-

symmetry acts solely on the right-

UR

values y¢, yp, ye and the mixing angle between the 2"% and 3"¢ generation

000 000 000 000
(Yu)~ 10 o 0|, (Yp)~|[0 0 o|Zexp|—i[0 O 00 0. (477
0 0O e 0 0 e 0 e 0 0 e

Apart from an intact local SU(2)p,, symmetry, these vacua respect the local abelian U(1)x

symmetry (4.34), whose generator is closely related to the previous breaking cascade of the
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. 2 1 1 2 1 1 1 1

Table 4.2: qx quantum numbers of quarks

flavour group — in detail it is given in terms of the diagonal symmetry generators of the

original FS group Gr by

1
Qx = —= (15, + 15, + Th,) + (15, +Ti1,,) - (4.78)

V3

In this context, we want to emphasise that the asymmetric treatment of the up- and down-
type quark sector in the definition of the charge operator ) x is correlated with the particular
choice for the parameterisation of the Yukawa matrices, where (Yy) is diagonal, while (Yp)

contains the CKM rotations.

In the next section we will identify the gauge anomalies of the Gg‘) FS group under the

SM fermion content in order to construct an effective theory in Section 4.6 that is at least

) FS group. We will proceed in Section 4.7 to derive the

, and in Section 4.8 the corresponding one of ng) =U1)y,xU(1)4,, via

formally gauge invariant under the G;il
effective theory of G(;)
integrating out the spurions and gauge fields that receive masses from the Higgs mechanisms

at the breaking steps.

4.5.1 Anomalies of the Local Flavour Symmetry Group SU(2)p, x U(1)x

In Section 2.5 we gave a short introduction into the comprehensive topic of chiral gauge anoma-
lies and showed in Section 3.2 that the SM fermion content is non-anomalous with respect
to the SM gauge group Ggy. In our simplified setup we augment the SM gauge group with
a partly gauged flavour symmetry group, such that the total local gauge group corresponds
to the direct product group Gg})hocal x Gsm. Keeping in mind that all representations of the
SU(2) group are real and anomaly free, we thus have to check whether we encounter U(1)x
gauge anomalies or mixed anomalies with the hypercharge and colour group. To do so, we
summarise the various U(1)x charges ¢x in Table 4.2, which denote the eigenvalues of the
charge operator (Qx concerning the left-handed fermions . Note that the fermions that

)

transform as irreducible representations of Gg X Ggy are the same as in the SM.

It turns out that the representation v, of U(1)x is anomalous,

Tr [Q%] = % #0. (4.79)

Due to the fact that the generator Qx is a linear combination of SU(3)? generators, its

trace Tr [Q x| vanishes individually for every SM gauge multiplet, and therefore we will not
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encounter mixed anomalies with SU(N) generators, where
Tr[{T% T°}Qx] < 6 Tr[Qx] = 0. (4.80)

While the triangle diagram contributions involving two hypercharge gauge fields and one
U(1)x gauge field vanish as well, there is a mixed anomaly with the SM hypercharge group

from triangle diagrams involving two U(1)x gauge fields and one hypercharge gauge field,
Tr Q% Y] =—-1#0. (4.81)

The assignment of hypercharge quantum numbers has already been given in Table 3.1, but for
the sake of completeness let us repeat that they are normalised according to Y (Qr) = 1/3,
Y (Ur) =4/3 and Y(Dpr) = —2/3.

4.6 Effective Lagrangian of the Gauged Flavour Subgroup

In deriving a consistent formulation of an effective field theory including an anomalous gauge
symmetry, we will closely follow the formalism given in [89]. The usual requirement that
chiral gauge anomalies must cancel in order to avoid a breakdown of gauge invariance at the
quantum level, severely restricts the representation content of the fermions transforming under
the gauge group.

However, from an effective field theory point of view, it is legitimate to assume that
there exists an underlying fundamental theory which is anomaly free because it contains new
fermions that contribute to the anomaly coefficient. When the gauge symmetry is sponta-
neously broken by a Higgs mechanism, these fermions, as well as the Higgs boson that induces
the breaking, become heavy and thus are “integrated out” of the theory. It is then quite nat-
ural that they leave an uncancelled anomaly contribution of the remaining light fermions in
the effective theory. It is possible that the gauge bosons receive only small masses from the
Higgs mechanism, if the corresponding gauge coupling is weak. The fact that the gauge bosons
nevertheless acquire a small mass ensures unitarity and Lorentz invariance of the theory.

Thus we deal with a consistent non-renormalisable effective field theory of massive gauge
fields coupled to fermions in an anomalous representation. It is convenient to make the theory
at least formally gauge invariant by introducing so-called Wess—Zumino counterterms. They
couple pure-gauge dynamical scalar fields to the gauge fields in order to compensate the

fermion anomaly contributions.

4.6.1 Anomalous U(l)y Symmetry

The above mentioned procedure is now applied to the case of the anomalous U (1) x symmetry
whose generator Q) x (4.78) acts on the chiral SM fermion representations. We showed already

that there is also a mixed anomaly with the gauged U(1)y symmetry. The classical part of
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the Lagrangian involving the U(1)x gauge field reads

1
Lx = ~1 X () XM (x),

£¢ = EL (1’) lepr (.%') and £spurion > (482)

where the covariant derivative D, = 0, —igxqx X, + ... contains the couplings of the various
fermion species to the U(1)x gauge boson. While the classical Lagrangian is invariant under

the U(1)x gauge transformation
1 .
X (x) = Xy(x) + oy Juox (@), Y (@) = XWXy (), (4.83)

the quantum effective action changes since the fermion representation is anomalous with the
non-vanishing anomaly coefficients (4.79) and (4.81) presented in the previous section.

The general formula of the abelian anomaly can be derived from the formula of the non-
abelian anomaly given in (2.32) by replacing the generator T% — @, and by taking into account

that the second contribution disappears due to the commutativity of the abelian gauge fields

2 ~
O = AL = —5 T @0, L0, = — L T QU™ . (4

2472

In the last step we made the coupling constants explicit and introduced the abelian dual
field-strength tensor

~ 1

P = 3 "P7 Flg . (4.85)

Under the abelian gauge transformation
1 4
Al (z) = Ay(x) + a@,ﬂ(m) ;o () = DL P (a), (4.86)

the effective action I' changes according to (2.34)

2 ~
&,F[Aﬁ(x)] = —/d4:c v(ﬂ:)G[Aﬁ(x)] = 45712 Tr [Q°] /d4x v(x)E,, F*. (4.87)

Adapting the above formula to local U(1)x and U(1)y gauge transformations, implies the

following total change of the effective action

2
S I = Tr[Q3] -2X / Az wy X, XM

4872
gy gx >
41 Tr[Q% Y] Pr /d4x wyx X Y,
2
by T = (1= 1) Tr [Q% Y] 125, / oy X X (4.88)
Y

The coefficient ¢; arises from the freedom to add an appropriate local counterterm [89],

2
Ty = 1 Tr[Q% Y] 92)2 i’; / 447 €ng YIXVOPXT (4.89)



50 CHAPTER 4: DYNAMICAL MINIMAL FLAVOUR VIOLATION

which will allow to attach the mixed anomaly completely to the U(1)x gauge transformation,

as discussed below. Using the infinitesimal form of the abelian gauge transformation (2.20),

1 1
5UJXXM = g—X 8MWX s 5UJYYM = g—Y nwy , (490)

the local counterterm changes according to

5wy I\c.t.

2
TRk V) 125 [ dle ' (Bv) X, 0,%,

2
= —c; Tr [Q% Y] 4?3?; /d4x wy (x) X, XM
buxler. =  aTr[Q%Y] 94); g

1 Tr[Q% Y] ggg /d4mwx(x) X, VI (4.91)

/d4x eP7Y, (Opwx) 0p X o

(IBP, ps>v)

Choosing the renormalisation condition ¢; = 1, one is able to obtain a manifestly non-
anomalous U(1)y gauge symmetry with d,, I' = 0. Thus only the U(1)x gauge symmetry is
spoilt by anomalous contributions to the effective action

B 1
4872

0,

wx

r /d4x wx (Tr Q%] gg(XWXW + Tr[Q% Y] ngyXWY/W> . (4.92)

It is essential to keep the U(1)y gauge symmetry exact until it is spontaneously broken by
the usual Higgs mechanism at the electroweak scale since otherwise the U(1)y gauge boson
would get anomaly contributions to its mass and no light SM Z boson would emerge.

Still, the local gauge invariance of the anomalous U(1) x symmetry can be formally restored

by exploiting the behaviour of the Goldstone field 7x (x) under a gauge transformation,
T (x) = 7x(2) + wx(2) . (4.93)
Adding the following term to the effective Lagrangian,

X (.%')
4872

obviously compensates the change in I' from the fermion measure in (4.92). On the quantum

ALy =—

<T1" [Q?))(] gg(XLW(:C)X’W(x) +Tr [Qg( Y] ngYX,ul/(x)?uy(x)) ) (4'94)

level, loop corrections involving the anomalous couplings of the Goldstone mode 7y to the
gauge fields in (4.94) will lead to a mass term for the U(1)x gauge boson. In addition, the
latter will also receive a mass contribution (4.107) from the spurion VEVs, originating from

the “Higgsing” of the Yukawa matrices. Defining the total mass of the U(1)x gauge boson as

Mx =gxFx, (4.95)
the diagrams from the anomaly contributions to the mass are quadratically divergent and
contribute to F'x as

F
Sy ’ 6473 ’

respectively. (4.96)
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Fx is a dimensional constant such that (Fxmy) in the quadratic term of the effective La-
grangian
F% 2
Lr= > (Oumx (z) — gx Xpu(z)) (4.97)
has canonical dimensions and a correctly normalised kinetic term.

Covariant gauges can be introduced via the gauge-fixing term

1

s (uX" () = Ex gx Fmx (@) (4.98)

Egﬁx = -

which removes the mixing term between X#(z) and wx(z) in L.

In summary we are left with the quadratic terms

M? 1 M2 1
TX (X,)? — Sx (0, XM)? — &x TX (Fxmx)* + 5 (FxOumx)?. (4.99)

In the 't Hooft-Landau gauge the gauge parameter £x vanishes and the 7wx field is massless.
In unitary gauge, corresponding to £x — oo, the Goldstone field decouples and disappears

from the theory.

4.6.2 Local SU(2)p, Flavour Symmetry

Up to now, we focused on the contributions to the effective Lagrangian due to the local abelian
anomalous U(1)x symmetry. Since the SU(2)p, symmetry group is not anomalous, the
discussion is somewhat simpler than in the previous case. The effective Lagrangian contains

a kinetic term for the SU(2)p,, gauge fields

1 v
EADR = _Z FI%R,W(QJ)F&;: (x) ) FZ%R,;W(x) = a,uA%R,u - aVA%R,u + 9Dg 6abc All))R,,u %R,y )
(4.100)

as well as couplings to the SM fermions
Ly =01 (2)iPv1() D gppAD, . [DrA'T Dr] = 9ppAD (T4, ) (4.101)
In analogy to (4.95) we define the mass of the gauge bosons by
My, =90, Fby (4.102)

where this time the value of Fpp, is solely determined by the couplings of the gauge bosons
to the spurion Yukawas. As in the previous case, after spontaneous breaking of the flavour
symmetry, appropriate gauge-fixing terms for the SU(2)p,, gauge fields can be added to cancel

the arising mixing terms with the Goldstone fields.
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4.6.3 Yukawa Spurion Lagrangian

Apart from the new interactions to the flavour gauge bosons, the fermion couplings to the SM
gauge fields maintain their standard form. The SM Lagrangian remains unchanged except
for the Yukawa sector where the Yukawa coupling matrices have to be replaced by dynamical
fields. Starting from the general discussion in Section 4.4, we can drop all Goldstone modes

)

and spurion fields related to the breaking Gp — el , and obtain

Yo = Yy(z) = einx(x)(T3+T8/\/§) . Y[}l'g' (z) - e—iwx(a:)(T?’—f—TS/\/ﬁ) 7
3

Y = Yp(a) = emx@@T V8 yue gy~ ST cin@r Ve (4103

where Y, () are given by (4.70) and (4.71) with 7j23(x) set to zero.
(4)

The Lagrangian is supplemented by spurion kinetic terms and a G,’-invariant potential
term V (Y, YD)

Lopurion = A2Tr [(DPY)(D,Y)] + A2 Te [(DPY ) (D, YD) — V (Yur, Yi) (4.104)

with the adopted covariant derivatives containing only the flavour gauge fields of the residual

flavour symmetry group Ggl),

D, Yu(a) = 0.Yu(x) — igx Xu(a) [T + T5/V3, Yu ()],
3

DyYp(x) = 0.Yp(x) +igps Y Ab, (@) Yo (2) Th,

a=1

—igx X, (z) (T* + T%/V3) Yp () + igx X, (z) Yp(z) T®/V3.  (4.105)

Inserting the above expressions (4.103), expanding in the gauge and spurion fields, and using
again the approximations in terms of small Yukawa couplings and CKM angles, we identify
the kinetic terms of the spurion fields, as well as the mass terms of the SU(2)p, x U(1)x
gauge bosons induced by the VEVs 613, 012 and y; as:

A? ~ A2 ~
Lign = A? (8uys(x))2 + 5 Fg, ((%7712(::3))2 + > FZ ((%7713(:6))2 , (4.106)
£mass ~ A2y§6%3 (8M7TX - gXXu)Q
A2
o (s(@)? [RATAY + (9umx — gx X, - A7), (4.107)

Here we have introduced the gauge-invariant combinations

Al = =2Tr [e7""Pr (0 + gD ADg.p) € ™28 T] = Oy, — gD Ab, (4.108)

and

ar =L

b= (A Eid). (4.109)
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4.7 Effective Theories for the Energy Scales y,013A < E < y,A

In the standard scenario for the sequence of flavour symmetry breaking discussed in Section
4.3, the next spurion to get a VEV is mi3(x) = AFi3m13(z) which is related to fluctuations
around the CKM angle 613 ~ A3. The spurion VEV induces the spontaneous symmetry
breakdown of the FS group Gg}) to

G = [SU@)pg] ¥ Uy x U)o (4.110)
and produces a U(1)x gauge boson mass via contributing to F'x according to Lyass (4.107),
F3% D 2y203,A%. (4.111)

We assume that the spurion potential will generate a mass term for 7,3 with a generic size of

order
mis ~ yr0is A% . (4.112)

Assuming further that the spurion contribution to Fx in (4.111) is dominating over the

anomaly contributions (4.96), such that
M3 = g% FX ~ 295301507, (4.113)
the following relation of scales holds
A>miz~ Fx > Mx . (4.114)
Otherwise we would have to integrate out the gauge boson X, before integrating out the scalar

field nm13(x) (see Figure 4.3 for the order of integrating out the various particles).

Energy Scale F/| Integrated out Particle, Flavour Symmetry Group

b \ \

| |

| G = [SU©@)p, x U(L)x] x U(1)y, x U() e
ypOisA —— - L - —mg(@)- - - - - - - - - - - - - - - - -

1 ! Xpu(z ! )

| G = [SU@)pr] x ULup x UML) o2
T I

| |

| |
ysbah —— - L = —pp@a) - - LG = U, x U1,

| |

Figure 4.3: Particles that are integrated out at the different energy scales.
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4.7.1 Integrating out the Heavy Spurion Field 73

To obtain the higher-dimensional operators of the effective theory which is valid below the
energy scale of the order F'x, we will restrict ourselves to the leading tree-level effects by solving
the equations of motion (EOM) for 7;3. Using the approximate form of the Yukawa spurion

couplings to the fermions in (4.70) and (4.71), the relevant effective Lagrangian involving 73

reads L 1
—13 —13
Li3 = 3 (0"m3)” — B misnis — (Ji' +Jy +J5 +Jp)ms, (4.115)
with
0233 ye 1
~ 2,2 ,,2,2
F13 — — H ybyc Ysi yt2
g~ 2B D v il O12y5ye U
v 2 (UL, DrVexw) Al Y 0 vZy2—y2y? o
0 0 0
0 — 023ysy2 1
Fis —, " y2y2—y2y? uw
g~ 28 T v D= _Yvwye | Dp. 4.116
D 2 (UL Vekm, D) Al 0 Y2y2—y2y? " ( )
0 0 0

In (4.116) we used a symbolic notation concerning the SM Higgs field. Its VEV selects
U/L in the current J(1]3 and E/L in J 1173, respectively, where the primed fields denote the mass

eigenstates of the quarks. In the limit mq3 — oo, one obtains the effective 4-quark interactions
1
2m%3

_ _ 2
<J(1]3 YT+ TS+ J}f’) (4.117)

that induce flavour transitions with an overall suppression factor v?/A? when the SM Higgs
field H has developed its VEV. The individual coefficients of the specific flavour transitions
follow from the matrix structure in J(1]3 and J 1173. However, we observe that the 73 spurion
predominantly induces transitions between left-handed quarks from the first generation and
right-handed quarks from the second or third generation. Of course, more operators — which
may also include additional gauge fields — will be in general generated by radiative corrections

and higher-dimensional operators from Lgpurion in (4.104).

4.7.2 Integrating out the U(1)x Gauge Field

Below the scale Mx = gxFx, we may integrate out the heavy gauge boson of the U(1)x
flavour symmetry. Focusing on the leading terms in (4.107), and considering unitary gauge

(mx = 0), we may again solve the classical EOM following from
Lx % Linass +9x X Ty, I =[09" Qxvr], (4.118)

in the limit Fx — 0o, where L5 is defined in (4.107) and Fy in (4.113). Again, this induces
effective 4-quark operators of the form

—%WL%QXM]WM“Q)(M], (4.119)
X
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where 17, denotes the set of left-handed fermion fields which are illustrated in Table 4.2
together with the corresponding U(1)x charges of the diagonal charge operator Qx. As
the up-type Yukawa matrix is already diagonal, the above operator does not induce FCNCs
between up-type quarks. On the other hand, rotating the down-type quarks into the mass

eigenbasis, one obtains

d,
K| = (@) v Xp, | s, |
b
5o 1 1 2 b b3
XbL:VgKMDiag <§7—§,—§> Vekm =~ | 612 -1 O1 —i—(’)(@%), (4.120)
b5 0 —1

containing FCNCs between dy, and sy, or by, which are suppressed by the SM CKM angles.
The phenomenology induced by these subleading effects is qualitatively similar to Z’ models
with non-universal flavour couplings [164], where interesting new flavour effects have been
identified in the context of present puzzles in flavour observables (see e.g. [165-169] for recent
applications). However, compared to the commonly favoured Z’ scenarios, our case displays

a number of important modifications:

e Typical Z’ scenarios are motivated by electroweak physics and consider Z’ masses in
the TeV range. In this case, precision flavour observables in the kaon sector already
disfavour non-universal flavour couplings of the first and second generation. In our case,
the U(1)x gauge boson is naturally allowed to be much heavier. At the same time, the
non-universal effects are precisely between the first and second (or third) generation,

and therefore kaon observables essentially will provide a lower bound on the scale Fx.

e The U(1)x gauge boson does not couple to leptons, and thus constraints from lepton-

flavour violating observables do not apply to our case.

Taking into account the subleading effects proportional to 2 in (4.107), the mixing between
the gauge boson X, with the SU(2)p,, gauge field .Ai induces an additional effective operator,
such that finally

m ygAQ + qn 332 1
Lomass + 9x X T 2 RATAL + ()] =
X

2
JE12 s e g3 1121
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4.8 Effective Theories for the Energy Scales y,A < F < y,012A

Again, we assume that through an appropriate spurion potential, the spurion field ys(z) =
ys + 1s(w)/V/2 obtains a non-vanishing VEV at a scale of the order of its mass m,, ~ ysA.
According to Lyass in (4.107), the VEV supplies also a mass term for the SU(2)p, gauge

bosons,

L o w_ Lo o (4.107) A?
ﬁmass D §mADR CZL)R,,LLA?)% = §gDRFDR Dp, ,u,AaM = 4 gDRys DR ;LAGM (4122)
We are now going to integrate out the heavy spurion and the gauge fields corresponding to the
symmetry breakdown Gg) — G;@ in order to extract the leading effective higher-dimensional

operators.

4.8.1 Integrating out the Spurion Field 7,

Integrating out the spurion fluctuation 7,(z), the Yukawa coupling to the down-type quarks

induces an effective 4-quark operator,

1 1
yo J2, T = 1 (@], Vius + €, Ves, 31) H sp +hc], (4.123)
UE

where we have expressed the quarks in the mass eigenbasis. As expected, the fluctuation
ns(x) around the Yukawa eigenvalue y; do not induce flavour transitions, once the SM Higgs
is replaced by its VEV.

4.8.2 Integrating out the Gauge Fields Af,

Summarising the terms involving the SU(2)p, gauge fields A“DR uo Le the kinetic terms
(4.100), the couplings to the fermions (4.101), the mass terms as given in (4.122), and the
leading term from the mixing between X, and .Ai (4.121) yields

1 1 gDRyS

_Z FBR,MV(x)FgZZV('I) + gDRA%R7M (J,/ZDR )a + 592DRF%R DR ;,LAa H 402 J; ADR,;,L
(4.124)
Using the EOMs, we integrate out the SU(2)p, gauge fields A%, . and obtain the effective
4-quark operators
1 y2
~g (1050, 7+ sl P 1)) (4.125)
Dr 13Y
Inserting the Fierz identity for the Pauli matrices
O'%O'gl = 26il5jk - 6ij5kl 5 (4126)

the operator [(J) | )?)% can be rewritten as
R

1

1(2 [(Dr)iY" (Dr)k] [(DR)kvu (Dr)] — [(Dr)e " (Dr)k] [(DR)i Y4 (Dr)i] > (4.127)
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Utilising the Fierz identity (B.142) to rearrange the right-handed fermion bilinears, we finally
find that only flavour-diagonal currents (drvy,dgr) and (Sryusg), but with different colour

structure are involved

(T4, )T = 3(2 (DR " (DR)]] (DR)E A (PR = [(Dr)E v (DR [(Dr)] 3 (PR)Y).

(4.128)
In the second term in (4.125), flavour transitions appear as before, as soon as the current Jx

is written in the mass eigenbasis (4.120).

4.9 Effective Theory below the Energy Scale E < y,01oA

We mentioned in Section 4.3.1 that the residual non-diagonal spurion yi2(x) is a singlet under
the residual F'S group ¢ =u (1)yp xU(1)4, such that its VEV accounts for the CP-violating
phase § in addition to the creation of the CKM angle #15. However, we will neglect the effects
coming from the fluctuations around ¢ in the following discussion, in accordance with our

derivation of the Yukawa matrix parameterisations in (4.70) and (4.71).

4.9.1 Integrating out the Spurion Field 7

Finally, we may integrate out the field 112 which we assume to have a generic mass of order
miy ~ Y205, A2 . (4.129)

Notice that the corresponding contributions to the SU(2)p,, gauge boson masses are sublead-

ing, and have been neglected in the above analysis. !

In complete analogy to the case of 713 (4.117), we obtain the effective 4-quark operators

—12 —12\2
5 (J + T +J}72+JD) : (4.130)
12
with the currents given by
0 L levin
~ Ye YpYc—YsYi
F12 H 013y}
Jif ~ (Uu DLVCKM) A 0 0 ylgy?% Ur,
013 Y2ye 0
viyZ—y2y?
0 1 023ypy7
” o Ys y?y?fyiy;
12 £12 __bizypyp
JD 2 (ULVCKM7 DL) A 0 0 i 7y§yg_ygyg DR (4131)
0 — 013 ysy; 0

yiy2—y2y7

They lead however to small mass splittings between A,f and A,
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4.9.2 Global U(1),, x U(1),, Flavour Symmetry

R

Having integrated out the spurion fluctuations and gauge fields according to the spontaneous

symmetry breaking Gp — G;?) =U(1)y, x U(1)4,,, the Yukawa matrices

uR
Yu() e—imu(®) ya(x) e~imalr) o
Yy (z) = 0 ye 0 |, Yp(z)=Vexku 0 ys 0 |,
0 0 0 0 w
(4.132)

contain the two leftover complex spurion fields
Yél)(x) _ yu(:v) . e*iﬂ'u(x) ’ Ygl)(x) _ yd(ﬁﬂ) . B*iﬁd(m) ) (4.133)

Their VEVs will spontaneously break the U(1)
AO) = Yu,all ~ A8A, and will give rise to the masses of the lightest quarks m, and mg. The

x U(1)q, symmetry group at the scale

UR

global U(1),, x U(1)g, flavour symmetry in the effective theory below the scale ys012A acts
on the right-handed quarks of the first generation,

UR — ¢'0u UR , dr — ¢'fa dr, (4.134)
and transforms the Goldstone fields in the exponentials of Yél)(x) and Y[()l)(x) as
T, =T+ 0y, Ty =74+0q4. (4.135)

Due to the above shift symmetry of the Goldstone modes, the (classical) scalar potential only

depends on y,(z) and y4(z),
Vo = Vo(Yu, Yd) - (4.136)

4.10 The Strong CP Problem

Global Flavour Symmetry of the QCD Lagrangian

The QCD Lagrangian in the limit of vanishing quark masses, as given in (3.1), possesses a
large global symmetry. To display the full symmetry, we rewrite the Lagrangian in terms of

chiral quark fields

. _ . 1 v
Lqocp =G itPqr +qrilDqr — §Tr (G G" ] + Lgfix 5 (4.137)

where g g = (ur,r,cL,R, tL,R, AL, R, SL,R, bL,R) contains all the six different quark flavours, i.e.
the number of flavours Ny = 6. Obviously, the above Lagrangian is invariant under the chiral

unitary group transformations

qr = Urqr, qr — Ugrgr, (4.138)
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corresponding to two independent rotations of ¢qr, and ¢g in the 6-dimensional flavour space.
Thus, there exists a U(Ny)r x U(Ny)r global flavour symmetry in the chiral limit mq — 0 of
the QCD Lagrangian.

However, as the quarks are not massless, this symmetry can only be an approximate
symmetry for quark masses m, that are much lower than the hadronic mass scale Aqcp.
Hence the symmetry is almost exact for the up and down quark and more approximate for
the strange quark. For this reason we will work with Ny = 3. Combining the corresponding
Noether currents of the approximate U(3)y, x U(3)g chiral symmetry into vector- and axial-
vector currents, we obtain

a_ - A _
SURW x Uy = Jp =T d:  Ju =74, (4.139)

a - A _
SUBaxUWa s Jsu =554 Jop =T34 - (4.140)

This form of the currents is convenient, as the SU(3)y symmetry has its manifestion in the
hadronic spectrum, which contains flavour multiplets that are approximately degenerate in
mass, e.g. a baryon decuplet and baryon octet (see the eightfold way [35,36]). The U(1)y
symmetry corresponds to the baryon number symmetry restricted to the Ny-flavour case. As
the axial symmetries have not a similar pendant in the particle spectrum, it is assumed that
they are not only broken explicitly by the non-zero quark masses, but also spontaneously
by the QCD vacuum. This breaking can be realised by gq scalar condensates which acquire
non-zero VEVs, (0[gq|0) # 0. The existence of the light pseudoscalar octet further confirms
this assumption, as they can be interpreted as the Goldstone bosons corresponding to the
broken generators of the spontaneously broken SU(3)4. However, the absence of a light
ninth isoscalar, pseudoscalar Goldstone boson in the particle spectrum — the 1’ seems to be
too heavy (mfz, > m2) to be a suitable candidate — evokes the so-called U(1)4 problem
(originally considered in [170] for the two-flavour symmetry case corresponding to the chiral

limit m,, = my = 0) which will be discussed in the following subsection.

The Resolution to the U(1), Problem

In Section 3.1 we argued that the colour group SU(3). is free of chiral gauge anomalies,
as the vector gauge fields couple equally to left-handed and right-handed quarks and their
contributions to the triangle diagrams cancel properly.

However, there exists a second kind of anomaly, which is related to global chiral transfor-
mations [171]. The fermion path-integral measure changes under an axial transformation and
thus the corresponding axial U(1)4 fermion current is not conserved. Its non-zero divergence
is given by the Adler—Bell-Jackiw (ABJ) anomaly [172,173], resulting from the triangle graphs

which connect the axial current J5, to two gluon fields

- 1 % 1 a  va,pr
3“J5M = 8M(¢’yu’)/51/}) = NfWTr [GMVGM ] = NfWGMVG L (4.141)
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At first sight, the presence of the anomaly seems to solve the U(1)4 problem as the chiral
anomaly affects the action 0T ~ [ d*z 0" Js,,. However, the right-hand side of (4.141) can be
reformulated as a total divergence Gzyéa’“” = 0, K" |174] so that 0T is proportional to a pure
surface integral [ do, K*. Using the naive boundary condition that the gluon gauge fields Gy,
vanish at spatial infinity, the integral vanishes and U(1)4 appears again to be an unbroken
symmetry of QCD.

The final resolution of the U(1)4 problem was given by ’t Hooft [175,176], who realised
that the QCD vacuum has a non-trivial structure and the correct boundary condition is to
require that G, are pure gauge fields at spatial infinity. Apart from setting Gj; = 0, one has
to include also the gauge-transformed version of the condition Gy, =0, i.e.

e =vawt+ tuaut| = tuaut, (4.142)

g Gi=0 g

It turns out that with the choice of these boundary conditions there is indeed an anomaly con-
tribution and U(1) 4 is not a true symmetry of QCD, even though it is an apparent symmetry
of the QCD Lagrangian in the limit of vanishing quark masses. The non-trivial topological
properties of the QCD gauge configurations imply a more complicated QCD vacuum state
beyond perturbation theory. The true vacuum or #-vacuum consists of a suitable superposi-
tion of distinct degenerate QCD vacuum states that are labelled by their topological quantum
number or winding number n. Quantum tunnelling can occur between different vacua which

can be expressed by the vacuum-to-vacuum transition amplitude in the #-vacuum

(0[0)5 = i / (DA / D exp [in 0] exp [z / o L(A, ¢)}, (4.143)

n=—00
with ¢ denoting generic matter fields. For a given toplogical sector n, the functional integration

is restricted to the QCD gauge-potential® configurations (DA,),, which satisfy

2
g ~
n= W / d'z G5, G (4.144)
Thus the complicated structure of the QCD vacuum effectively adds the #-term (see (3.4))
2 ~
Lacp — Lo = Lacp + Lep = Lacp + 0 3ng2 o, G (4.145)

to the QCD Lagrangian. However, while solving the U(1) 4 problem, this term violates CP for
non-vanishing . Since the strong interactions are found to respect CP to very high accuracy,
as required from the strong bound on the neutron electric dipole moment, the problem turns
into a new problem called strong CP problem. Formulated differently one can ask why is CP
not badly broken in QCD, or analogously, why is the angle 6 so small? Unless there is a
symmetry that can explain why 6 approximately vanishes, this outcome is in conflict with the

naturalness argument and produces a fine-tuning problem.

2In the following, we concentrate on the strong-interaction gauge sector, and suppress the weak-interaction

effects in the notation.
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The Resolution to the Strong CP Problem

Including also the weak interactions, the complex generic mass matrices of the up-type and
down-type quarks have to be diagonalised in order to transform the quarks into their mass
eigenbases. This is achieved by performing a global chiral transformation under the assumption
that the QCD Lagrangian is invariant except for the axial U(1) transformation which, owing

to the anomaly, changes the value of 6 to
0 =0+ 0w . (4.146)

From this point of view, the strong CP problem can be formulated as the question: why should
the values of those unrelated contributions to @ be such tuned that they cancel so accurately?

An explanation has been proposed by Peccei and Quinn [91-93|. Clearly the mass term
in the Lagrangian of the form ¢ Hv is not invariant under axial rotations involving only the
fermion fields. However, invariance can be restored if the theory obeys an enlarged axial
symmetry U(1)pq that includes also the Higgs field. While this transformation does not
influence the already diagonalised mass terms nor the other terms in the classical Lagrangian,
it has an effect on the QCD vacuum and can be used to rotate 6 to zero. In the standard
Peccei-Quinn (PQ) mechanism two different Higgs doublets are necessary to ensure U(1)pq
invariance. The Goldstone boson of the spontaneously broken U(1)pg symmetry is called

axion.

4.10.1 Peccei-Quinn Mechanism for U(1),, x U(1)q,

In our setup, the two residual Yukawa spurions Yél)(x) and Yl(jl)(x) ensure that the Yukawa

coupling terms
~Lyu = Up(z) HYy(z) Ur(z) + Dp(x) H Yp(z) Dr(x) + h.c. (4.147)

respect the global symmetry when transforming the fermions under the chiral global U(1),,, x

UR

U(1)q, flavour symmetry, and thus they inherit the task of the two Higgs doublets within the
standard Peccei-Quinn mechanism. 3 Here we recall that the effective action (in the QCD

gauge sector) changes under chiral rotations as
I =>T+n(0,+6), (4.148)
which is equivalent to a change in the QCD #-parameter,

0—60—0,—0,. (4.149)

3The connection between flavour symmetries and PQ symmetries has been discussed before, see e.g. [177-
179
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Assuming (y,) > 0, the fermion mass terms get their canonical form, after a chiral transfor-
mation of ur and dr with the corresponding phases set by (m,(z)) and (mg(x)), respectively.
To avoid the strong CP problem, one thus has to require that

(But) = 0 — (mu(2) + ma(x)) = 0. (4.150)

This can be achieved by examining the effective potential in the non-trivial QCD 6-vacuum
which can be obtained from an expansion in small Yukawa couplings, with the leading term

coming from the n = £1 sectors (see appendices in [90] and [93]), leading to
Vp = Vo — K v® Re[DetYy DetYp e ] + ..., (4.151)
where K > 0 is a positive constant. Using the explicit form of the Yukawa matrices (4.132),
Det (Yir) = yu(@)yeyee ™, Det (Yp) = ya(x)ysype ™, (4.152)
the potential can then be rewritten as
Vo = Vo — Kv®yeyysypyu(x)ya() cos [m,(x) + mq(z) — 0] + ... . (4.153)

Thus the potential (4.153) breaks the original shift symmetry for the Goldstone fields. Its
minimum is given by (m, + 74) = 6, and therefore (f.g) = 0, as required. Notice that the
potential only depends on the combination m,(z) 4+ 74(z), such that we identify the PQ axion

field as the linear combination

alw) = fo (Tu(@) + ma(a) (4.154)

where the dimensional normalisation constant f, ensures a canonical axion mass dimension.

The corresponding PQ symmetry is defined such that the axion transforms as
a(z) = a(z) + fabrq, (4.155)
where
HPQ =0,+04. (4.156)

In order to determine the normalisation constant f, and to find the linear combination of
7y (z) and my4(z) orthogonal to a(x), denoted by b(x), we consider the flavour-invariant kinetic

terms and require

Ao,y Nory DT 4 a2o, v Mory Ut < % (Opa())? + % (Oub(z))?.  (4.157)

yu,d_><yu,d>
Making the ansatz b(x) = bym,(z) — bamg(x), this condition reduces to

!

A2 ((yu)*(0uma)? + (ya)* (Ouma)®) = %(ff +01)(Ouma)® + %(ff +03)(9uma)”
+(f2 = bib) () (0" 7a) - (4.158)
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Comparing the coefficient of the third term yields f? = bybg, such that we obtain

!

A () (0pma)” + (a)* (Ouma)®) = (b1b2+b%)(am)2+%(blbﬁb;)(aﬂd)? (4.159)

N | —

which can be finally solved by

b= VP VoA (4.160)

(Ya)? + (Yu)? (ya)* + (yu)?

Here we restrict ourselves to the positive solution (doing otherwise would only result in an

overall change of sign), as we also do in the case of f,

fo=VIA <%> @ =5 () mw - (M) ma) . oy
T2

We also define the corresponding linear combination of U(1) charge,

Oaier = <y—“> 0 — <@> O , (4.162)
Yd Yu

such that the orthogonal combination of Goldstone bosons transforms as
b(x) = b(z) + fobair - (4.163)

In terms of a(x) and b(x), the up- and down-quark Yukawa couplings can be expressed as

o1 () 2]l () 2]
Y V(z) = exp [—z< U >a<x)}exp [+i <M> b(x)}yd(x). (4.164)

yq%_{_y?l fa y3+y§ fa

Note that b(z) remains massless, apart from anomalous contributions from the electroweak

vacuum. We may or may not remove b(x) by gauging the remaining U(1)qig symmetry and
subsequently integrating out the corresponding massive gauge boson.

The axion field a(z) remains in the physical spectrum of the theory. However, compared
to the original Peccei-Quinn axion, its couplings are now determined by the scale A of the
Yukawa fields and not by the electroweak VEV of the two Higgs fields. In particular, the scale
A has to be chosen well above the electroweak scale, in which case the axion couplings become
very small, since they scale as 1/ f,. Thus the phenomenology of this model will be similar to

the phenomenology of invisible axion models [97,98|.
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4.11 Summary of Chapter 4

In this chapter, we have discussed a MFV scenario, where the entries of the Yukawa matrices
are promoted to scalar fields. They become dynamical at high scales and are subject to
an appropriately chosen scalar potential. Transforming as bifundamentals under the partly
gauged SM FS, which is broken by the fermion Yukawa couplings, a cascade of scalar VEVs
generates the hierarchy in the fermion masses and mixing angles in the SM. While the gauge
bosons, corresponding to the local part of the FS group, become massive by “eating” the
Goldstone bosons within the usual Higgs mechanism, the global chiral U(1) factors can serve
as a Peccei-Quinn symmetry for a possible resolution of the strong CP problem.*

Our scenario necessarily has to be understood in the context of an effective theory approx-
imation of a more fundamental underlying theory. The canonical dimension of the Yukawa
spurions implies that the Yukawa interactions are described by dimension-5 operators. More-
over, considering the usual SM fermion representations, we encounter gauge anomalies due to
the chiral nature of the SM FS group. Appropriate higher-dimensional operators involving
the Goldstone fields have to be added to formally restore the local symmetry. In this way,
we have constructed a consistent non-renormalisable effective theory of a smaller FS group,
which arises at an intermediate step in the sequential F'S breaking.

According to the chosen breaking pattern, the masses of the new heavy gauge bosons
as well as of the new physical Higgs modes are hierarchically ordered. They determine the
sequence of integrating out the heavy degrees of freedom by using the equations of motion,
and thus specify the validity scales of the series of effective field theories.

Though we have not included a detailed phenomenological analysis, a few remarks about
the general structure of the obtained effective 4-quark operators could be made. In order to be
in line with the experimental constraints from precision measurements in the K and B sector,
the induced flavour transitions of the new states have to be suppressed by sufficiently large
masses. Thus the most stringent constraint will be set from the the spurion field 712(2) which

receives the lightest mass out of the spontaneous breakdown of the local flavour symmetry.

“If the concept of MFV is applied to discrete subgroups of the F'S as discussed in [180], no Goldstone bosons

arise from its breaking.



Chapter 5

Warped Extra Dimensions

5.1 The Randall-Sundrum Model with Custodial Protection

As motivated in the introduction, we consider a Randall-Sundrum (RS) model in which the
usual infinite space-time coordinates x# = x are augmented by a single warped extra dimension
restricted to an interval y € [0, L]. At the same time we implement a custodial protection for
the RS model (RSc model) due to the choice of a SU(3), x SU(2)r, x SU(2)r x U(1)x X Prr
symmetry group in the 5D bulk. The 5D bulk is limited by two four-dimensional branes that
are called UV brane (y = 0) and IR brane (y = L). While the SM gauge and fermion fields are
allowed to propagate in the bulk, we will show below that the Higgs field has to be localised

on or near the IR brane in order to solve the hierarchy problem.

The RS Metric

The basic ingredient of the model under consideration is the RS metric [99] defined by the

line element

ds* = Gyur(z,y)de™N da™ = eV, datda” — dy? (5.1)

which corresponds to a slice of 5D anti-de-Sitter spacetime (AdSs) and preserves 4D Poincaré
invariance. Due to the AdS/CFT correspondence [181], the 5D AdS space is related to a 4D
conformal field theory (CFT). This dual description, linking a 5D weakly coupled theory with
a 4D strongly interacting one, offers the possibility to determine certain quantities, e.g. the
Higgs potential, in composite Higgs models [111,112,182].

The exponential factor, multiplying the 4D Minkowski metric tensor, indicates a non-
factorisable metric and is known as the warp factor. This factor depends explicitly on the
fifth-dimensional coordinate and on the parameter k, which is assumed to be of order of the
Planck scale Mp; ~ 109 GeV. Using the following signature of the 5D Minkowski metric

tensor of the flat space

nap = Diag (15_15_15_15_1)5 (52)

65
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the metric tensors of the warped metric Gy (,y) and its inverse GV (z, ) are specified by

-1 forN=M=5, -1 forN=M=5,
Gym(r,y) = e 2 forN =M =p, GNM(z,y) =L ek forN = M =, (5.3)

0 otherwise 0 otherwise .

Generally we are using A, B, ... for the indices of the tangent space and M, N, ... for the curved

space. The warped metric tensors fulfil the condition
GyuGMP =65, (5.4)

such that Gy vGMY is equal to the dimensionality D = 5 of the space-time manifold. For

convenience we introduce abbreviations for the determinants

G =Det (Gun)=e and G ! =Det(GMN) =, (5.5)

The Hierarchy Problem

In order to demonstrate that the non-factorisable metric supplies a solution to the hierarchy
problem [99], we consider a fundamental 5D Higgs field located at the IR brane which is
described by the action

Stliess — [ '3, /G <G§‘R”DMHTD,,H ~ANHH - 08)2) . (5.6)

Inserting the metric factors

Gin =G lymr ™ e and Gl = G (e g, (57)

the action can be reformulated as
Silees _ / d'e (e D D, H = A (HTH — 03)?) (5.8)
To obtain a canonically normalised Higgs, the rescaling of the Higgs according to H — eV H
gilises / d*z (n“”DuHT DyH — NH'H - 6*2’%3)2> , (5.9)

induces the relation v = e *Fvy between the physically relevant 4D effective mass scale v and
the breaking scale vy of the fundamental 5D theory. Assuming that the 5D fundamental scale
is of order of the Planck scale, the warp factor generates an effective energy scale Mpj e ¥~ on
the IR brane. In the following we will choose e * ~ 10716, which corresponds to kL ~ 36,
such that the effective mass scale on the IR brane is of order of the TeV scale. Indicating
the two effective energy scales, the UV brane is also called Planck brane and the IR brane is

referred to as the TeV brane (see also Figure 5.1).
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Variation of the 5D Action

The aim of the next chapters will be to shed some light on the various components of the 5D

fundamental action

L L
S = /d%/ dy L = /d4x/ dy (Lgauge + Ltermion + LHiges + Lvuk) - (5.10)
0 0

Starting point for the derivation of the equations of motion for the fields ® living in the bulk

is the variation principle of the five-dimensional action

58 = /d4 / dy< a(gﬁq))a(am)) = 0. (5.11)

Performing an integration by parts over the ordinary 4D coordinates, we require that the fields

vanish at infinity. Thus the boundary terms disappear and (5.11) can be rewritten as

L ror oL oL ,
= 4 —0P — d d)) =0. 12
5S /d x/o dy <a<1>5 R + 50005 )> 0 (5.12)

However, in order to produce a generalised 5D version of the 4D equations of motion, we have

to perform an integration by parts with respect to the extra dimension as well. In this case

one has to keep the finite boundary terms and (5.12) splits into two pieces

68 = /d4 / dy[ (a(gﬂf@)ﬂéq”[/d% (%)5@}2'0. (5.13)

Thus, in addition to the equations of motions corresponding to the first term in (5.13), the

full action is only minimised if the second term, which is evaluated at the two boundaries, also
vanishes. From this requirement a set of consistent boundary conditions (BCs) results, which
can be of Neumann (95®|o,;, = 0) or Dirichlet (®] ;, = 0) kind, or a mixture of both.

5.2 Gauge Sector of the RSc Model

To begin with, we focus on the gauge sector of the 5D action (5.10). We discuss the various

constituents of the bulk symmetry group
Gbulk = SU(?))C X SU(Q)L X SU(Q)R X U(l)X X PLR7 (5.14)

and give a very brief overview of gauge-fixing terms in 5D theories. Furthermore, we illustrate
the breaking of the bulk gauge group on the UV brane through an appropriate choice of
BCs. In Section 5.3 we will continue with the discussion of the bulk gauge-group breaking via

EWSB.
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Gauge Boson Content of the RSc Model

Corresponding to the local part of the bulk symmetry group, the Lagrangian consists of four

different field strength tensors

1 1
~ RS, N ROMN ZXMNXMN), (5.15)

1 1
['gauge = \/a( — ZGﬁNGA’MN _ Z ?MNLG,MN - ;

where the factor of v/G ensures an invariant integration measure. In detail, the SU(3), field

strength tensor with 5D strong coupling constant g, reads
Gy = OGN — OnGiy — g f*POGRGR  (A=1,....8), (5.16)

where the SU(3). indices are denoted by capital Latin letters A, B, ..., but are usually made
implicit in order to simplify the notation.!

The discrete symmetry Prg, joining the bulk gauge group, describes the interchange be-
tween the two SU(2) groups of the electroweak sector. It implies the equality of the 5D gauge
couplings (g1, = gr = g), such that the SU(2)z, and SU(2)r non-abelian field strength tensors

are given by

Ly = OuWi n — ONWi y — ge™™ WP Wiy (a,b,c=1,2,3),
RS = OuWi N — ONWh A — 9™ Wi Wi v (a, 8,7 =1,2,3). (5.17)

In order to distinguish between the two SU(2) groups, we denote the SU(2), indices by lower-
case Latin letters a,b,... and the SU(2)g indices by lower-case Greek letters a, 3,.... The
abelian U(1)x gauge boson with the corresponding field strength tensor

Xun =0 Xy — OnXr (5.18)

couples with the 5D coupling constant gx. Note that the sign of the 5D gauge coupling
constants throughout this chapter are opposite to the definition in (2.11). Moreover, the
coupling constants have mass dimension —1/2, reflecting the non-renormalisability of the 5D
theory.

As already mentioned in the introduction, the KK decomposition allows to separate the 5D
bulk fields into KK modes or KK excitations ¢™ (x), which depend only on the 4D coordinate
z, and the KK profiles or shape functions ) (y), depending only on the extra-dimensional

coordinate y
Bz.y) = 2= > 6@ ). (519)
n=0

The KK decomposition is an essential ingredient in deriving an effective 4D theory from the

5D one, since it enables to perform the integration over the fifth dimension fOL dy L — E‘elﬁD .

!Without the colour indices, the distinction between the metric tensor and the field strength tensor has to

be derived from the context.
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Gauge-Fixing Terms

In general, a 5D gauge field consists of a 4D gauge field V,, and a 4D scalar V5 which corresponds
to its fifth component. Thus, the 4D gauge field does not only mix with the usual scalar Higgs
modes, but also with V5 through the pure gauge kinetic terms. In order to eliminate those
mixing terms one has to add appropriate Re¢-gauge fixing terms. As indicated in [183], it is not
advantageous to add a covariant 5D gauge-fixing term of the form ng]i)x = —1/(28) (0 VM)2,
which one would naively suggest in an SO(1,4) invariant 5D theory. Instead — as compact-
ification in general breaks SO(1,4) invariance anyway — one can choose a non-covariant 5D
generalised gauge-fixing condition of the form Eggx = —1/(28)(0, V" — £05V5)?. After per-
forming the KK decomposition, one obtains the usual propagators for the 4D gauge fields
within the covariant 4D Re-gauges. Following [184], additional boundary gauge-fixing terms
have to be introduced in order to eliminate the mixing terms arising at the boundaries as well.

However, one can follow a different strategy and carry out the KK expansion first, then
apply the integral over the fifth dimension and add the generalised 4D R¢-gauge fixing La-
grangian E‘glfli)x in the effective 4D theory [185]. The Goldstone bosons then correspond to linear
combinations of the KK modes from the former 5D scalar and the non-physical fluctuations
around the Higgs VEV. This method is convenient within the so-called perturbative approach
of EWSB, which is widely used in the literature [103,183,186-188|. It means that one first
ignores all effects from EWSB and then treats the Higgs coupling as a perturbation after the
KK expansion has been performed.? As a consequence of the perturbative approach, the bulk
equations of motion as well as the boundary conditions follow from the free 5D action and are
not affected by the Higgs VEV. The approach is particularly convenient as the effects from
EWSB can be treated as small perturbations to the mass matrices arising from the EDIM
setup. We will also use this approach in the following, and choose to work in the gauge V5 = 0
together with the constraint d,V* = 0.

Gauge Symmetry Breaking on the UV brane

As already mentioned in Section 5.1, the variation of the full 5D action separates into two
pieces (5.13). From the first part the bulk equation of motions can be deduced while the
second one requires boundary conditions which are consistent with the action principle. The

natural BCs for pure gauge theories on an interval read

osWr 0 (NeumannBC) and Wg75|0 ; =0  (Dirichlet BC). (5.20)

7M‘O,L -

However, the introduction of boundary scalar fields on both branes which develop an infinitely
large VEV allow for the opposite choice of BCs (see [184, 193] for further details)

WLa,N‘O,L =0  (Dirichlet BC)  and 65W£,5‘07L =0 (NeumannBC). (5.21)

2The complementary approach, solving the equations of motion already in the presence of EWSB, has been
followed e.g. in [184,189-192].
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Analogously a mixture of the above BCs for the different boundaries may be obtained if the
decoupling scalar is added on only one boundary of the extra dimension. In the following we
use the abbreviations + (—) for a Neumann (Dirichlet) BC and assign them to the bracket
(UV IR).

With the general KK decomposition ansatz (5.19), we explicitly solved the EOM in the
Appendix B, and found that the gauge KK profiles are given by

fgauge( ) 1 and

Meey) = % |:J1 (WIL" ’“y) +b1(mn)Y1< e ’“y)} (n=1,2,...).  (5.22)

A zero mode profile fégl)lge(y) exists only for (++) BCs, Ji(z) (Yi(x)) denote the Bessel
functions of first (second) kind, and the normalisation factor N, (B.52) follows from the
normalisation condition. While the zero mode profile is flat, the specific form of fégage(y) in
(5.22) implies that the excited gauge KK profiles are localised near the IR brane. The explicit
expressions for by (m,,) and the mass m,, of the n-th KK mode, defined by (9,0"+m?2) (") = 0,
depend on the specific choice of BCs on the branes.

For fields with (++) boundary conditions, the profiles have to fulfil

Oy g )| _,, =0 (5:23)

and one obtains the relation [103]

Ji(mp/k) +my /K Ji(mn /k)
Yi(mp/k) + my, / kY] (m,/k)

bi(my) = — = by (mpeft). (5.24)

This can only be solved numerically with the following solution
myE (4 +) = 2.45f = M, (5.25)

where we have introduced the effective new physics scale f = ke ™*L ~ O(1TeV).
Similarly for (—+) fields, which have to fulfil

fgauge( ) y=0 =0 fgauge( ) y=1I, = 07 (526)

one finds

Ji(mn/k) (mne®t k) + mp bt Jk T (mpert [k)
Yi(mn/k)  Yi(mueFL/k) + myekl kY] (mpekL /k)

by (mn) = — (5.27)

with the numerical result
m§*E (—+) ~2.40f = M_ . (5.28)

Thus, the ~ 2% suppression of the numerical solution in the latter case is a direct consequence
of the different BCs on the UV brane [186]. Note that the KK masses for the gauge bosons
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neither depend on the gauge group nor on the size of the gauge coupling, but are universal
for all gauge bosons with the same BCs. Whereas fields with (++) BCs have zero modes in
addition to their massive KK modes, fields with mixed BCs only contain massive KK modes.
In order to avoid non-observed light gauge bosons apart from the SM content, we require the

following set of BCs

Wi, (++),  Bu(++),
Wha(=4+),  Zxu(—+), (5.29)

where a = 1,2,3, and b = 1,2. Remember that the BCs for the 4D gauge field automatically
imply opposite BCs for its fifth component (5.20)—(5.21). The fact that the RSc gauge content
does not include any 4D gauge fields with Dirichlet BC on the IR brane (5.29) then confirms
our choice of the V5 = 0 gauge.

The above given BCs (5.29) can be realised by adding a scalar on the UV brane which
transforms as a doublet under SU(2)r and carries a non-trivial U(1)x charge Qx = 1/2.
In developing an infinite VEV, the scalar decouples from the theory. The BCs induce the

symmetry breakdown

UV brane
—_—

SU(Q)L XSU(?)RXPLRXU(l)X SU(Q)L XU(l)y (530)

on the UV brane, where the quantum numbers are related by

Y
3= B+ Qx . (5.31)

The new linear combinations of the fields are given by
Zx = Cos ¢ W%M —sing X,, B,=sing Wl?é,u +cosp X, (5.32)

where
g ax

VI + 9k VI + 9k

At this stage, the zero modes of the gauge bosons Wi u and B, are massless, but in the course

cos ¢ = sin ¢ = (5.33)

of EWSB they will receive small mass contributions of O(v?). After the diagonalisation of

the mass matrices, the zero modes get small admixtures of higher KK modes and lead to the

gauge mass eigenstates which can be identified with the SM gauge bosons Wf, Z, and A,.
Anticipating the effects of EWSB, it will be useful to follow [186] and define the fields

1 T2 1 Y12
WLW F ZWL’M + _ WRM F ZWR#
V2 R vz

as well as the electrically neutral linear combinations

Wi, = (5.34)

Zy :COS¢WE,ﬂ—sin1/)BH, A, =siny Wgu—l—combBu, (5.35)
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where again sin 1 is given in terms of the gauge couplings (see (5.33) for the definition of ¢)
1 .
COsY = ———— | sinw:%:sin(bcosw. (5.36)
1+sin?¢ 1+sin?¢
Due to the above mentioned mixing between the gauge boson zero and KK modes, sin 1 differs
from sin Oy (3.30) by corrections of O(v?/f?).

5.3 Higgs Sector and Electroweak Symmetry Breaking

In the previous section, we discussed the breaking of the EW bulk gauge symmetry to the
SM gauge group through an appropriate choice of boundary conditions of the gauge bosons
on the UV brane. To mimic the standard EWSB, SU(2);, x U(1)y — U(1)qg, we introduce a
Higgs field which transforms as a singlet under the U(1)x bulk symmetry (Qx(H) = 0) and
as a bidoublet under SU(2)r x SU(2)g. In contrast to the global transformation behaviour
of the Higgs bidoublet in (3.35), we choose U (z) instead of U;(x) as transformation matrix,

H — UL(CC) HU]%:(x) _ eia‘i(m)Tg Heia%(:v)(T}bz)T _ eia‘i(m)Tg H@ia%(m)(le%)* ’ (537)

such that the various components of the Higgs bidoublet have the following assignments of

)> . (5.38)

Since the conjugated Higgs H = 02H*0? has the same transformation behaviour as H one

SU(2) 1, isospin quantum numbers (T3, T5)

g (Hun He) (+3,4+3) (+3.—3
Hy1  Hao (-3,4+3)  (-3.—3

[y

can impose the self-duality condition H L A. This requirement implies the two independent
conditions
H11 = H;Q and H12 = —H;l, (539)

such that the degrees of freedom are reduced from eight to four real parameters and H can

H H
H= ( - 12) = Haq . (5.40)
_H12 Hll

be represented by

By construction, the Higgs Lagrangian
Lhiggs = VG <(DMH)IW(DMH)M - V(H)) , (5.41)
with the covariant derivative
(DarH)ao = O Hao + i9(7)as Wi ar Hoo +i9(77)aW i 3 Hap (5.42)

is gauge invariant under local SU(2);, x SU(2)g transformations. Thus, if the Higgs VEV

induces the breaking

SU(Q)L X SU(Q)R X PLR — SU(Q)V X PLR, (5.43)
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an unbroken custodial SU(2)y symmetry is preserved, which protects the p-parameter from
radiative corrections as discussed in Section 3.5. However, here the custodial symmetry needs
to be gauged to protect the Higgs sector since a global symmetry in the CEF'T corresponds to
a gauge symmetry in the 5D theory [194].

As the scalar KK modes turn out to be much heavier than the gauge and fermionic res-
onances [103|, we neglect them in what follows and truncate the KK expansion already after

the zero mode according to

H(z,y) = % S HO @) £ (y) = %H@(:ﬂ) OV () 4= H@)h(y) + ., (5.44)
n=0

where the Higgs potential V(H) generates a non-vanishing VEV only for the Higgs zero
mode. As we do not specify the Higgs potential, we cannot solve the bulk equations of motion

explicitly, but merely assume the zero mode profile

h(y) = \/2kL(3 — 1) ek ePFy=L) (5.45)

This form corresponds to the general solution for a zero mode in the limit 5 > 1 for a Higgs
field localised near the IR brane (B.66), and fulfils the normalisation condition (B.51)

1 L
—/ dye *nh(y)? =1. (5.46)
L Jo

The VEV of the Higgs zero mode respects a residual SU(2)y symmetry (see Section 3.5),
if and only if it is invariant under the (infinitesimal) transformation of (5.37) with af%(z) =

a4 (z) = a®(x) and T4 = T¢
(H(2)) = (H(x)) +ia®(2)T¢ (H(z)) + (H(x)) i (2)TE* = (H(x)). (5.47)

For the self-dual Higgs field (5.40) this condition is fulfilled for

B 0 —v/2
<H<ac>>—<v/2 ' ) (5.49

where v denotes the 4D VEV with the value v = 246 GeV. Parameterising the Higgs bidoublet

in a linear manner
/2 —(h? —in%)/2
Ha)=( T /f (W7 —im)/2} (5.49)
(R0 4 i7%) /2 /2
hY(zx) represents the neutral real scalar Higgs field that develops the non-vanishing VEV v,

0 are the Goldstone fluctuations according to the three broken generators. In

and 7,77, 7
(5.49), the upper index indicates the electric charges of the fields and the factors of two are
chosen such that all scalar fields are canonically normalised.

Combining the two symmetry breaking steps, we see that the low-energy effective theory

is described by the spontaneous breaking

SU(Q)L X U(l)y — U(l)Q s (5.50)
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UV Brane IR Brane

Figure 5.1: EW symmetry breaking pattern of the RSc model.

as required by phenomenology. Moreover, the hypercharge operator Y/2 = T%—{—Q x is modified

to v
5.31
Q:TerE(:)

The EW symmetry breaking pattern of the model is displayed in Figure 5.1.

TP+ T3+ Qx . (5.51)

5.4 Gauge Boson Masses

In this chapter we determine the contribution to the gauge boson masses originating from the
Higgs mechanism, where we concentrate only on the zeroth and first KK gauge boson modes.
Including the KK masses from the extra-dimensional setup, we collect the mass contributions
for the neutral and charged gauge bosons and place them in 3 x 3 mass matrices. The explicit

diagonalisation of the latter will be subject of the following section.

QED and QCD Gauge Boson Masses

Due to the unbroken gauge invariance of QED and QCD, the gluon and photon fields including
their KK modes do not couple to the Higgs boson at leading order in perturbation theory.

Their masses are solely given by the extra-dimensional setup

My =0, My =m§P" (++) = My,
Mg =0, Mga =my™" (++) = My, (5.52)
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and neither mixings with each other nor with the neutral EW gauge bosons Z and Zx arise.

EW Gauge Boson Masses

The EW gauge bosons (Wéo’l)i, Wg)i, AUDS Zg(l)) get O(v?) masses from their couplings

to the Higgs boson, which are contained in the Higgs kinetic term

2
9~ - eype f
EHiggs o e 2k [(T WL“u)ab <H(x)>ba + <H(x)>a6 (TPYWIZL,;L)%—‘(X]

L
(Wi o (H (@) + (H (@) g5 (T Wi Ea| )Py, (5:53)

where we used the explicit expressions for the RS metric. Inserting the Higgs VEV (5.48) and
switching into the basis of I/VLi R

Wi+ W Whp—W;r
Wl LR LE g2 LR LR 5.54
L,R \/5 L,R \/5 ( )
we obtain the mass contributions to the charged EW gauge bosons
gV o 2
Lrtiggs O Zp—eh(y)” (WW, + WEWg = WiWe = WEW), (5.55)
and the neutral EW gauge bosons
g*v° 2k 2 31173 31173 37173
EHiggs D) 8—L€_ yh(y) (WLWL + WRWR -2 WRWL) . (556)

Charged EW Gauge Boson Masses

Expanding also the gauge boson fields in (5.55) up to their first KK modes, the Lagrangian
can be reformulated by
g2 —2ky 2 (0)+15,(0)—
ﬁHiggs 2 m € h(y) WL WL
+ g WL W+ wTWOT) — ) W+ w0

+ 9w W W W - gwgm W wi )|

(5.57)
where we have introduced the short-hand notation
9W) = fiahge s (1)) (5.58)
for the bulk shape function of Z(), W]-El)i, and
3(¥) = flahge(ys (=) (5.59)

for the bulk shape function of Zﬁ(l), W}(%l)i. In order to obtain the masses in the effective 4D

theory, we perform the integral over the extra dimension. The first term in (5.57) with the
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two left-handed flat zero mode profiles simplifies due to the normalisation condition of the
Higgs zero mode profile (5.46). For the other terms, we define the overlap integrals containing

one KK mode

I O
I} = f/o dye *g(y) y)*, Iy = f/o dy e *g(y) h(y)?, (5.60)

corresponding to integrals arising from the second line in (5.57), or two KK modes

R R R
I = Z/ dyeMg(y)?h(y)®, I, = Z/ dy e ?5(y)*h(y)?,
0 0
_ I _
L' =1 /0 dy e *Mg(y)g(y)h(y)?, (5.61)

from the third line. Including the heavy KK masses for the gauge fields according to (5.25)
and (5.28) in addition to the Higgs-induced mass terms, one finds that the complete mass

matrix for the charged gauge bosons contained in

wO-
L
harged 0 1 1 1)—
ﬁfn:sge = < Wé i W[(, o+ W}({ o > Mzharged Wé ) 9 (562)
Wi~
reads explicitly
2,2 2,2 1 2.2
2 ey ~Ly;
Mcharged = %If_ M<2F+ + 942 Z;+ —942 1.2_+ . (563)
2,2 22 9 22
T —4r L M=, + 4T

As the mass dimension of g2/L is zero, the entries of the squared 4D mass matrix indeed have
the right dimension. The off-diagonal elements in (5.63) induce mixings between the various

modes which will be determined in the next section.

Neutral EW Gauge Boson Masses

The same procedure leads to the Higgs contribution for the neutral EW gauge boson masses.

Expressing WE r in terms of the physical fields Z, Zx, A with the help of

W3 = cos) Z +siny A,
sin® ¢

cos Y

the terms in (5.56) lead to the following mass terms of Z and Zx

W3 = Zx cos ¢ —

Z +siny A, (5.64)

2’02 COS
ﬁHiggs D g—e_Qkyh(y)Q (—2 4 L7 +

1
zZ? 29 7% ). 5.65
8L cos 1 cos? ) +cos™o X) (5.65)
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Applying the KK expansion and integrating over the extra dimension, the masses of the neutral

electroweak gauge bosons, including the heavy KK masses, reads

7(0)
1
neutral __ 0 1 (1) 2 1
‘Cmass - 5 ( Z( ) Z( ) ZX Mneutral Z( ) ’ (566)
(1)
ZX
where
g*v? g*v? IfL g2%v? cos oL,
4L CosQiﬂ 4L cos? . " 4Lcos?y N
2 _ g2v? ] 2 g2v? 7, 9202 cos ey
Mieutral = Loy Mit T iLesty T ML : (5.67)
g%v2 cos ¢If g%v2 cos ¢I2_+ M2 9202 cos? oL,
" 4Lcosvy " 4Lcos —+ + 4L

Again, mixing of the modes with same electric charge are induced by EWSB.

5.5 Analytic Diagonalisation of the EW Gauge Boson Mass Ma-

trices

and M? have

In order to find the physical mass eigenstates, the mass matrices M feutral

2

charged
to be diagonalised. Being real and symmetric, this can be achieved by a rotation with the
orthogonal transformation matrices Gy and Gz. The gauge eigenstates are then related to

the mass eigenstates (W*, Wi, W'*) and (Z, Zy, Z') according to

Wéo)i Wt 7(0) 7
wihE | =gh [ Wi |, 70| =¢L | z4 |- (5.68)
W= W A% A

The hierarchy between the O(v?) mass contributions from EWSB and the heavy KK masses
MJQr L~ M? L~ M 2 ~ f? from the extra-dimensional setup, allows for a perturbative diago-

nalisation with respect to the expansion parameter

2,,2 2
g v v

As the two EW gauge boson mass matrices (5.63) and (5.67) have the same hierarchical

structure, we can conduct the diagonalisation procedure for both cases simultaneously by

considering the symmetric matrix

A11 € A12 € A13 €
A=M?| Ajpe 14 Ape Ase . (5.70)
Aqze Aoz e 1+ Asz¢

The coefficients A;; (i,j = 1,2, 3) are arbitrary, but of O(1) in order not to spoil the hierarchy.
In the Appendix B.6, we calculate the corresponding eigenvalues up to O(e?) and the eigen-
vectors up to O(e), with the help of two different approaches. In the “direct” one, in which
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we have in principle the exact formulae for determining the eigenvalues and eigenvectors at
hand and we use the e expansion to avoid the increasing complexity order by order. The
second method is based on the algorithm of Rayleigh—Schrodinger, where, due to the nature
of a perturbation theory, the expansion is implemented from the early beginning. The three
real eigenvalues of the matrix A in terms of the general elements A;; in both approaches are
found to be

A = ApM?e — (A2, 4 A2) M2 (5.71)
M2
)\273 = M? + T (A22 + Ass iB)E
M2 2 2 2
+55 (£4A12A13403 + A (B F) + Al3(BF F)) €. (5.72)

The auxiliary quantities B and F' used in (5.72) stand for

F = Ay — Azs, B=\/4A3,+F2, with B*>F?, (5.73)

from which we receive the relation

1
A23 = Sgn [A23]§ V B% - F?, (574)

Obviously, the eigenvalues A9 3 are degenerate at zeroth order in perturbation theory. However,
if B # 0, the degeneracy is lifted at O(e). The corresponding normalised eigenvectors to O(e)

accuracy are summarised by

T
UXx1,norm = (17 —Agz €, _A136> s

. ((2A12A23 + (B~ F)Aiz)e, 2A23 — (B;?Xe, (B—F)+ ZAB?%XG)
U - )

A2,norm QB(B — F)

T’ ((—2A13A23 +(B-F)An)e, (B—F)+2258e 2453+ %75“6)
/U)\37norm = ’ (575)

2B(B - F)
where we have introduced the short-hand notation
X = FAp Az + Ags(Al; — AL). (5.76)

To zeroth order in perturbation theory, the eigenvectors vy, norm and vy, norm span the 2-
dimensional degenerate subspace. Since its columns represent an orthogonal rotation matrix,

we define the corresponding rotation angle & by

. 2 ‘Agg‘ (5.74) 1 F (B - F) 1 F
sin i= ——=—— "= —+—, cosl{i=——L— =/ — —. 5.77
*T BB T 2 2B “=smom V2 e O

Introducing in addition the definitions

X X
sin y := —sgn [Ags] sin € + je2) cos€e, cosy:=cos&+ ik [Ags]siné e, (5.78)
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and utilising sgn [Aaz]siné = sin [££] for Asz = 0, (5.75) can be brought into the compact

form
Ugl,norm = ( 1, —Aje, —Ajze ) s
vz\;,norm = ( (A12 sin [ig] + A13 COS 5) € - sin X, COSX ) )

vfgmorm = ( (—Ajgsin [+€] + Ajpcos€) e, cosy, siny > (5.79)

Explicit Expressions for Charged EW Gauge Bosons

Being equipped with the formulae of the previous subsection, it is straightforward to give the
explicit expressions for the charged and neutral gauge boson mass eigenvalues as well as the

corresponding mass eigenstates. Introducing the parametrisation we used in [120],
MI, =M?+av*, M?, =M?*-a?, (5.80)

one can identify the elements of the charged gauge boson mass matrix with

— _ 4La ++ _ _4La ——
An =1, Ay =2 +13, Az =" +1, 7, (5.81)
Ap =1, Az =-1I, Agy = -1, 7,

where sgn [A23] = —1 and numerically the parameter a ~ O(1) for f ~ O(1TeV).

Instead of putting the entries into the general formulae, we will give for simplicity only the
expressions in the limit we took in [120]. According to the approximation to calculate O(v?/f?)
corrections to the couplings of W* and Z but to include only O(1) couplings involving heavy

gauge boson mass eigenstates, we set the coefficients 67 in the ansatz

U2 7)2
I, =D, L,"=1I (1 +5_+F> , Lt=D (1 +5++P> ; (5.82)

to zero and thus a universal Zy will show up in the expressions. To this approximation, we

receive the auxiliary quantities for the charged gauge boson masses

8L 2
F~ 9_2“ B [g*T2 + 16 L%a2, (5.83)

which enter the expressions for the mass eigenvalues

2,2 4,4
2 _gv gv +\2 —\2
MW - 4T 16L2M2((Il) +(Zl) )7

2
MSV/7WH = M?+ Z_L <92 Iy +4/g* I3 + 16L2a2> . (5.84)

The corresponding eigenvectors span the orthogonal transformation matrix

1 € (IlJr cosé — 1, sinf) —€ (Ifr sin{ +Z; cos f)
Gl = —eI cos& —sin& , (5.85)
el; sin& cos &
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where

1 2L 1 2L
sin€ ~ = + - ,  cos&n~ |- — a . (5.86)
2 /g T2 +16L2%a? 2 /g T2 +16L2a?

According to equation (5.68), GT;, relates the mass eigenstates (W*, Wi, W'¥) to the gauge
eigenstates (Wéo)i, W]El)i, W}(%l)i).
Explicit Expressions for Neutral EW Gauge Bosons

For the neutral EW gauge bosons, we identify the following elements corresponding to the

neutral gauge boson mass matrix in (5.67)

++
_ 1 _ 4La 7, _ _4La —— a2
All—m, A22_g_2+0082w’ A33——g—2 +1, " cos® ¢, (5.87)
Ay — If Ain — Iy cos¢ Aom — IQ_+ cos ¢ :
12 — cosZ ) 13 — — cosyp 23 — — cos

Using the above mentioned approximation and the relation (5.36) of the angle ¢, the auxiliary
quantities can be expressed as 1-dependent functions with a universal Zs integral:

8La 2T, sin® B 2

g2 cos2yp g2 cos 1)

Again we omit the O(e?) corrections to the mass eigenvalues of the neutral EW gauge bosons,

F o~

\/(94 T2 + 16L2a?) cos? ¢ + 8Lag? Iy sin® . (5.88)

which are then given by
922}2 B 942}4 (Iii—)Q
4L cos?v  16L2M?2 cos?p \ cos? 1)
\/(94 T3 + 16L2a?) cos? ¢ + 8Lag? I sin®
cos

Mz =

+ (Il_)2 cos? (b) ,

2 2 v?
MZ/,ZH == M +—

2
Ty +
4L92

(5.89)

The eigenvectors vz, norms Uz norms UAgnorm correspond to the columns of Gg
1 Iy cos¢ . + Ifr . Ifr . + I, cos¢
o5 siné + b 7 cosé |e o7 sin& s cos€ e
GL=| _ 4 .
cos2

IEOZ(ZZ “e sin § cos&

cos& —siné )

(5.90)
with the explicit expressions for sin & and cos &

1/2
. 1 4La cos? ) + g% Tp sin? )
sin ~ | =+ )
2 cos 1/)\/(94 72 + 16L2a?) cos? 1 + 8Lag? T sin® 1

1/2

1 4La cos® 2T, sin®
cosé ~ | - a cos“ 1 + g* 1y sin” ) . (5.91)

2 cos 1/)\/(94 72 + 16L2a2) cos? ¢ + 8Lag? Ty sin® 1

As can be guessed from the assignment of the entries in (5.81) and (5.87), the results for the

neutral gauge bosons reduce to the ones for the charged gauge bosons in the limit ¥ = ¢ — 0.
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5.6 Fermions in Warped Extra Dimensions

This section is devoted to fermions living in warped extra dimensions. After a short summary
of basic concepts, e.g. the construction of the fermionic action, we focus on the specific particle
content of the RSc model. For simplicity, we restrict ourselves to the quark sector.

As is well known, fermions are described by spinor fields belonging to the spin-1/2 repre-
sentation of the Lorentz group. In extending the Lorentz group to the special orthogonal group
SO(1,n — 1) for theories with n — 4 extra dimensions, a problem arises for odd-dimensional
space-times. In those, the generalised chirality operator is one of the Lorentz generators itself
and does not commute with the other Lorentz generators any more. Thus, the spinor represen-
tation is in an irreducible representation of the Lorentz group and an analogue decomposition
into two chiral Weyl spinors does not exist. However, chirality can be reintroduced through
compactification, i.e. in our setup by imposing certain BCs within the interval approach.
Since the BCs allow either for a right- or left-handed fermion zero mode, one has to double
the fermion spectrum in order to obtain a chiral 4D effective theory that contains the SM

fermion content.

5.6.1 Construction of the Warped Fermionic Action

The fermionic action has to be invariant under local frame rotations (Lorentz transformations
SO(1,n — 1)) as well as under general coordinate transformations (diffeomorphism group
GL(n,R)). Due to the equivalence principle we can find at every point z( a set of coordinates

53%, which are locally inertial at xyg. Then the metric in any non-inertial system is given by

GMN(x,y) = TAB ef/[(ﬂ:,y) eﬁ(:c,y), (592)

with the wvielbein e, (z,y) = 8M§:fo(x,y). The vielbein relates the tangent frame, where

the metric and the Dirac matrices are constants in space-time and which is the appropriate
framework for the spinor formalism, with the coordinate space, in which the metric and Dirac
matrices explicitly depend on the space-time coordinates. The vielbein in five dimensions can
be represented for the RS metric (5.1) by

1 forA=M =5,
en(@y) = e forA=M=p. (5.93)

0 otherwise .

For the inverse vielbein defined through

EN(x,y) = nap GMN(2,y) X (2,y), (5.94)



82 CHAPTER 5: WARPED EXTRA DIMENSIONS

an analogous expression exists

1 forA=M =5,
EN(z,y) =< etV forA=M =y, (5.95)

0 otherwise .

The relation between the coordinate-dependent gamma matrices I'M (, ) in curved space and

the space-time independent gamma matrices v of the tangent space is given by
M (z,y) = EY (z,y)7". (5.96)
With the above definitions, the usual Clifford algebra in flat space
{v*,+5} =298 (5.97)
can easily be translated into the curved space, where the gamma matrices fulfil
{FM(:C, ), IV (z,y)} =2GMN (2,y). (5.98)

Taking into account that the Clifford algebra (5.97) implies (72p)? = —1 in contrast to the

1.2,3

usual 4D definition of VZTD = i79v19243 with (WZD)Q = +1, we include a factor of 7 into the

definition, such that the 5D gamma matrices are related to the 4D gamma matrices as follows
b = {7, —ivib} = {7 ° ) (5.99)

In order to construct a covariant derivative that ensures the invariance of the Lagrangian
under Lorentz and general coordinate transformation, the so-called spin connection wj; has

to be added to the gauge-covariant derivative Dy, according to
Vu=Dy+wy. (5.100)
With the help of the Christoffel symbols
iy = %GNR (0pGrR + OMGpr — ORGMP) (5.101)
the explicit expression for the spin connection can be written as

B
)&

wy = ey (O ES + T pEL , (5.102)

where we introduced also the definition o45 = i [v4,7B]. For the RS metric (5.1) a straight-
forward calculation, which can be found in the Appendix B.1, yields
%ke*ky'yufyiD for M = p,

WM = (5.103)
0 for M =5.
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Starting with the requirement that the action should be real, or equivalently, that the
corresponding Hamiltonian should be hermitian, one would make the following ansatz for the

fermionic 4D Lagrangian coupled to the non-abelian gauge fields V'
Sup = /d4x % (U (9 —igViT*) ¥ +hec.) . (5.104)

In 4D one usually performs an integration by parts in the hermitian conjugate part. Neglecting
the arising boundary terms due to the assumptions of vanishing field configurations in the limit
x — £00, the Lagrangian coincides with the one given in (2.13).

Remember that this approximation is not justified if an extra dimension of finite size
is involved. Thus, we proceed as proposed in [195] and take the symmetric and hermitian

Hamiltonian as a convenient starting point for the construction of the 5D fermionic Lagrangian
1 —
S:/d5x\/5<§\lf(iI‘MVM—ck)\If+h.c.), (5.105)

with ¢ denoting the 5D bulk Dirac mass of the fermion field in units of k. We will focus on this
mass parameter ¢ in the next subsection as it determines the localisation of the fermion zero
mode profile along the extra dimension. As shown in the Appendix B.1, the action (5.105)

can be brought into the form
5= /df’x\/E(E% %@yA (DM _ ﬁM) v 4 EM %E{VA,WM} v ck@p), (5.106)

whereupon the spin connection term drops out for the specific case of the RS metric. By

convention, the derivatives in (5.106) act only on spinor fields, but not on metric factors like

EX (z,y) or v (z,y).

5.6.2 KK Decomposition and Localisation of Fermionic Modes

In the first main part of this thesis, we already encountered the possibility to explain the wide
range of quark masses through a dynamical spurion potential, which gives rise to a flavour
symmetry breaking cascade via generating non-zero VEVs of the various spurion components
within the Yukawa matrices. Also extra-dimensional models provide an explanation for the
vast differences in quark masses, especially the hierarchy between the heavy third generation
and the lighter first and second generation. The key point is the localisation freedom of the

fermionic zero mode profiles f éoj)!%(y) which arise in the KK decomposition

Vi r(z,y) = < i W@ F R () - (5.107)
\/z n=0 7 7

Under the assumption that the 5D Yukawa matrices are anarchic with complex O(1) entries,
the hierarchy in the SM flavour parameters is directly related to the different localisation of

the zero mode profiles [102,103|. The reason is, that the effective 4D Yukawa couplings emerge
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from overlap integrals of the Higgs shape function with the fermionic zero mode profiles along
the extra dimension. In Subsection 5.7.2 we will explicitly demonstrate this statement via
deriving the effective 4D Yukawa coupling matrices for the specific fermion content of the RSc
model (see equation (5.125)). The larger the overlap of the fermion profiles with the IR brane
localised Higgs, the larger the generated coupling and mass after EWSB will be. The method
of solving the flavour hierarchy problem solely through geometry in EDIM models is known

as split fermion mechanism [104,105].

Localisation of Fermion Zero Mode Profiles — Solution to the Flavour Puzzle

In order to make the localisation feature more transparent, we absorb the factor of ¥, oc-

curring in the orthonormality condition for the fermion zero mode profiles,

1 L
7 | e i = 1. (5.108)

into the shape functions along the extra dimension. Thus, with respect to the flat metric,

their profiles change into

0 (IF20)kL . A0 (1F20)kL (1.,
Fintv ) =\ = ¢ e =\ G o T (5109

The specific form of féoz%(y,c) suggests to differentiate between the two cases with ¢ > 1/2
and ¢ < 1/2, respectively.

e For ¢ > 1/2 the normalisation factor in (5.109) is O(1) and féo)(y,c) is peaked around
y =0, i.e. the UV brane. As the overlap with the Higgs boson profile on or near the IR
brane is small, so are the masses of the fermionic zero modes 1/1207)1%(.%') which correspond
to the SM fermions up to small admixtures with higher KK modes of O(v?/f?). This is

the appropriate scenario for the lighter first two generations of quarks.

e For ¢ < 1/2 the second term in the denominator of (5.109) can be neglected and the

FOhw.€) = T F 2L 70D (5:110)

is strongly peaked towards y = L, i.e. the IR brane. The overlap with the Higgs profile

shape function

is enormous and after EWSB a heavy mass is produced. Thus, this setup is favoured for

the description of the third quark generation and especially for the heavy top quark.

The localisation of the fermionic zero mode profiles corresponding to the above two cases,
as well as that of the flat fermion profile with ¢ = 1/2, is visualised in Figure 5.2. Note
that the chosen BCs (see Appendix B.4) determine whether there exists a left-handed or a
right-handed zero mode for a specific 5D fermion representation. Correspondingly, the mass

parameters cy, r can generally differ from each other. This freedom can help to satisfy certain
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y
0.2 04 0.6 0.8 10 L

Figure 5.2: Localisation of fermion zero mode profiles for ¢ = 0.6, 0.5, 0.4.

features in EW precision studies [112-114,117] as well as in flavour physics [107, 188|, while
keeping the fermion masses of their natural size. This is in particular relevant for the third

quark generation.

Localisation of Fermion KK Modes

The shape functions of the fermionic KK modes are given in (B.49) with s = 1,
ky
2
£y, e, BC) = S (Jy<%eky> + by (mn)Y, (%eky» , (5.111)
; N, k k

where v = |c£1/2] for left- (right-)handed modes, and explicit expressions for N,, and b, (m,,)
can be found in [103|. The form of (5.111) implies that all KK modes are localised near the
IR brane and there is no localisation freedom as it was the case for the zero mode profiles.
In summary [103,196|, the bulk mass parameter ¢ is universal for all KK modes of a given
fermion field, including the zero mode if one exists. The value of ¢ controls the localisation of
the zero mode along the extra dimension, which in turn can lead to a mass hierarchy of the
SM quarks after EWSB. Despite the fact that the split fermion mechanism supplies a solution

to the flavour puzzle, it gives rise to a flavour problem (see discussion in Subsection 5.8.6).

5.6.3 Fermion Content of the RSc Model

The specific fermion content of the RSc model has been motivated by the introduction of
a custodial protection symmetry of the T parameter and the measured value of the Zbrby,
coupling which is in nearly perfect agreement with the SM prediction [108,110,112-114, 116,
117,197]. To this end, the left-handed bottom quark with 7% = —1/2 has to satisfy the
condition T}% = TE. This can be achieved by placing it in the lower right corner of a bidoublet
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(2,2)9/3 under the SU(2) x SU(2)g symmetry. Being in the same doublet of SU(2)y, the
quantum number assignment of the left-handed top quark, (1/2,—1/2), follows immediately.
In order not to break explicitly the global U(3)? bulk flavour symmetry of the quarks for
vanishing Yukawa matrices and bulk mass matrices, we also embed the residual two left-handed
quark doublets into bidoublets. To reproduce the proper hypercharge Y /2 = T]% + Qx (5.31)
of the quarks, one then needs to set Qx = 2/3. In consequence, the right-handed quarks must
have the same U(1)x quantum number in order to allow for non-vanishing Yukawa couplings
that will produce SM masses of O(v?) after EWSB. Using again the above relation, the SM
hypercharges of the up-type quarks U},'% (down-type quarks D%) can be created by choosing
T3 = 0 (T3 = —1). Hence, we need three O(4) multiplets per generation (i = 1,2,3) to
reproduce the SM quark content. According to the relation Q = T g + TI?% + Qx (5.51), we
indicate the electric charge () as a subscript of each field
(g i (XL ()5 0’ (+4)2/3
(2,2)2/3  (§iL)aa =1L (Xdﬁ(—+)2/3 Qii(++)1/3> )
(1,1)a3 : &g = Up(++),

A N B Vi (—+)s/3 V(=453
(3, 1)ay3® (1,3)yy3 : Gp=Tar & Tip = | Up(—+)a3 |®| Up(—+)asz |- (6.112)

D%(_‘F)—l/?) DiR(++)—1/3

Obviously, the triplets with total isospin (T} + T3 = +1,0,—1) are given in the basis (14 =
(11 +i7m9)/V/2,73). With respect to the usual Pauli matrix basis, which we will use later on,

the components read

7 Wk + D) 7 Wi + Dp)
(T3p)" = | 5Wk—DE) |+ (Tir)" = | ZWE — DR) |- (5.113)
U/i U//i
R R

such that
Up/2 Ph/V2
pavE  -Uf)

v WV
DV -Uff2)

(Tip)ab = (T3p)“(7%)ab := Tip = (

(Tir)ap = (Tig)" (T )ap := Tip = ( (5.114)

where we introduced a matrix notation as also done in (5.112). Reversing the BCs in (5.112),
one obtains the corresponding states of opposite chirality. Remember that this doubling of the
fermion spectrum is needed for the construction of a chiral 4D theory. The fields with (4+)
BCs have massless zero modes and correspond to the SM quarks after EWSB. The remaining

fields only have massive KK modes and thus we have to deal with the following additional



5.6 FERMIONS IN WARPED EXTRA DIMENSIONS 87

heavy fermionic states in this model

Q= 5/3 . Xui(n)7 w/z’(n)7w//i(n) 7
Q= 2/3 . qui(n)’ Uz(n)’ U/i(n), U”i(n), Xdi(n) ,

where n = 1,2,... . Remember that the bulk mass parameter is equal for all components
of a given fermion representation &, where m = 1,2,3 indicates the three different O(4)
multiplets and ¢ stands for the flavour index. In general, ¢, are arbitrary hermitian 3 x 3
matrices in flavour space, but in the following we choose to work in the “special basis” in which
they are real and diagonal. 3 To this end, we parameterise them by three real parameters

2 .3

¢ =Diag(cl 2, c

s Cony € ) for each multiplet m.

Fermion Lagrangian of the RSc Model

Adapting the covariant derivatives of the RSc model, contained in the general 5D action
(5.105), to the gauge transformation behaviour of the various quark fields, we are able to

formulate the fermionic Lagrangian

3
1 i , i o
Lfermion = 5\/52 {(fll)aaZFM(D%d)ab,aﬁ(ﬁ)bﬁ + (fll)aa(lrMWM —c1k)(&1)aa
=1
+E(TM D3, + T wyy — chk)El
H(T3)aiT (D3 an(T3)s + (T3)a (T wrr — k) (T3)a
FTailY (Dd)ap(Th)s + T)aliT Mg — GR)(TDa] + he., (5.116)
where summation over repeated indices is understood. Explicitly, the covariant derivatives
D%M are given by
D} — (o + Lgarad + Xur ) Gap
(Dar)abap = | Om + 295)\ u+19x QxXnr | dap 6ap
+i g (7)WL prdap +ig (TV)QBWg,M Oab »

7 .
D3, = Oy + ggsAAGﬁHgXQXXM,

7 .
(D3)ab = <3M +59s MGy +igx QXXM> Sab + g WF )y,

i .

(Dif)ag = (31\4 + 5 9s MG +igx QXXM> dap + geamW%,M ; (5.117)
with the generators —ic®¢ and —ie® of the adjoint triplet representations of SU(2); and
SU(2)rR, respectively. Recall that despite having the same matrix structure, the SU(2)z and
SU(2)r generators act on different internal spaces. Writing out the “+h.c.” term in (5.116)

3This can always be achieved by appropriate field redefinitions of the £ multiplets.
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explicitly, the two terms including the spin connection wj; cancel each other in a general RS
setup. Under the hermitian conjugation we understand to transpose the whole matrix, e.g.
the bidoublet in (5.112), first, and then apply the usual hermitian conjugation (¥ = Wi~g)

separately to each entry that represents a four-dimensional Dirac vector.

5.7 Flavour Structure

5.7.1 Constructing Gauge-Invariant Yukawa Couplings

This section is dedicated to the construction of the 5D Yukawa couplings of the fermions to the
Higgs boson and the determination of the quark mass matrices after EWSB. Corresponding
to the specific bulk symmetry group, the Yukawa coupling terms have to preserve the full
O(4) ~ SU((2)r, x SU(2)r x Prr symmetry. Utilising the transformation behaviour of the
Higgs bidoublet and the fermion multiplets

UL HUE, (&) =UL(e)UE, (T3 =U,(THUL, (T3 =Ur(TH UL, (5.118)

the most general Yukawa Lagrangian is given by

Ly = —V2VG Z “NSTY [y - HIED p + V2N (Te (€1 - Tdg - H] +Tx [Ey, - H - Tig)) + hec.).
=1
" (5.119)

While the first coupling proportional to )\ contributes, after EWSB, only to the mass matrix
of the +2/3 charge quarks, the second term proportional to )‘ij contributes to all +5/3,
+2/3 and —1/3 mass matrices. This is a direct consequence of T§ and T being placed in the
adjoint representations of SU(2)r, and SU(2)g, respectively. The two factors of v/2 in equation
(5.119) are chosen such that the zero mode fermions, which can identified after EWSB — up
to O(v?/f?) mixings — with the SM fermions, have Yukawa couplings with the same scaling
factor v/v/2 as in the SM. To see this explicitly, we first insert the KK decomposition of the
Higgs field and project out the neutral Higgs component h”(z) which develops a 4D effective
VEV (h%(z)) = v after EWSB,

£ > by [ Y VB St St - Lol s o

1—dz d 1_ id 1—d, d yr! 1_ ind 77!
+2 L)\UU +2 %)\ UR 2 L)\UUJ 2 %)\ U']

1 —di yu 1 —Uj \Uu 0
F SN UL = ST AU+ b)) h(y) (5.120)

While the first v/2-factor in (5.119) determines the scaling factor of the up-quark mass terms,
the second one is responsible for the factor of the down-quark mass terms. Note that there is

also the correct overall minus sign for the SM fermion mass terms (to compare with (3.51)).
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5.7.2 4D Effective Yukawa Coupling Matrices

In order to obtain the 4D effective Yukawa couplings, we have to KK expand also the fermion
modes in (5.120) to be able to apply the integration over the extra dimension. Again we
restrict ourselves to the zero modes and first-excited KK modes. We assign a superscript (0)
to the zero modes in order to distinguish them from the excited KK modes, for which we will
make the index n = 1 implicit. According to their electric charges Q = +5/3, +2/3 and —1/3,
we will group the fermion modes into the following vectors.

The +5/3 charge vectors have only excited KK states

WY = (=), W (), i ()
O = (x5 (=), Wi (—), Wi (=) (5.121)

where the flavour index ¢ = 1,2, 3 runs over the three quark generations. Thus we deal with
9-dimensional vectors.
The 18-dimensional vectors, corresponding to the charge +2/3 mass matrix, contain zero

modes in their first components

W = (O (), g} (), U (), U ) (). UR ()

Wil? = (UR(+4), 45 (=) UR(=+), UK (- )x%H_%Uﬂ++DT- (5.122)

Equivalently, this is the case for the 12-dimensional charge —1/3 vectors

— 3 i Z’ Z’ T
0 = (6O (), qff (+4), DE(+-), DL(=-))

\11;%1/3 _ <D;§O)(++),q%’(_—),D%(—+),D%(+—|—))T . (5.123)

The shape functions, corresponding to the r-th and s-th component of \I’%2 and \Ifg in (5.121)—
(5.123), are denoted by fﬁr(y,cfn) and fgs(y, ), respectively.

Inserting the KK decomposition of the fermions (5.107) into the Yukawa Lagrangian
(5.120), the factor ¢**¥/I combines with \/G/L to an overall prefactor 1/L%2. Absorb-

ing this factor together with the prefactors of 2 and /2 into the definition of the 4D effective
(5/3)]
TS

Yukawa matrices, here schematically shown for [ p

o3 1 d 5/3 5/3 —5/3 5/3
i = vt [ [ )| e + e -

/

V&

one obtains the whole set of relations between the 4D effective Yukawa matrices and the
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original 5D Yukawa matrices

V5], = st [ b ),

1
V9,0 = s [ W W),
~ 1 L
V™, = m/ dy N 17 ) Frts ()h(y)
_ 1 _
Y5, = / ay X 17 ) £ (k) (5.125)

The goal is now to construct and diagonalise the quark mass matrices. Thereby, an analytic

diagonalisation is impossible due to the large dimension of the mass matrices. Hence we will
only sketch the notation for the rotation matrices, whose actual values have to be determined

numerically.

5.7.3 Quark Mass Matrices

In addition to the mass contributions resulting from the 4D effective Yukawa couplings after
EWSB, fermionic KK masses from the extra-dimensional setup contribute to the fermion mass
matrices. They can be obtained from solving the bulk equations of motion. In what follows
we will use the 3 x 3 KK fermion mass matrices MX¥(BC-L), where m = 1,2, 3 again labels
the different multiplet representations in (5.112), and (BC-L) are the BCs for the left-handed
modes. Actually, these matrices depend on the bulk mass parameter and on the BCs. In

terms of the mode vectors (5.121)-(5.123), the mass matrices are contained in

Lonnss = 07> MAB G 4 e,
LT 2/3 the
g, M—l/?’ ,}1/3 +he.. (5.126)

The quark mass matrix for the +5/3 charge fermions

5/3 5/3
uEC) o[V, o
M3 — | Zg g ;]21 MEK(4 ) 0 (5.127)
_U[Yig‘ / )]31 0 My (+-)

is diagonalised by a biunitary transformation, which defines the rotation into the mass eigen-

state basis

CoE = —%x, xf My &L e -
R,—/ —_——— H/—/ .
=5/3 5/3 5/3 ( )
\IIL ,;nass Mdiag \I]R,mass

Obviously, the mass eigenstates of charge 5/3 are all heavy.
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The mass matrix of the charge +2/3 fermions reads

M2 = (5.129)
o[FE) 0 o[V [y 0 o[FE]
o[V, MER(h) o[V, WP 0 oY),

0 _U[Yigz/s)];l M§(K(+_) 0 _U[Yigz/s)];l 0

| T B O 1 P I
v[l?i§2/3)]40 0 —U[Yif/g)]zm U[Yi?/g)hg MEK(—+) _v[yig?/&]%

R 0 TP, MR-

where the index 0 reminds us that a zero mode fermion is involved. Again, the diagonalisation,
involving the unitary 18 x 18 matrices Uy, r

M2 =ul M*PUg, (5.130)

has to be performed numerically and thus we do not give the explicit expressions. Nevertheless
one can imagine that the off-diagonal entries in the first column and row mix the light zero
modes with the heavy KK modes. However, due to the hierarchy between the KK masses and
the relatively small masses from EWSB effects, this mixing will be suppressed by O(v?/f?).

The same argument holds for the mass matrix of the fermions with charge —1/3

(=1/3) (=1/3) (=1/3)
U[Yz'j loo 0 _”[Yij Joo ”[Yz’j los
(=1/3) KK (=1/3) (=1/3)
M3 — v[Viy "l MR oY U, oY
~1/3)71 ’
0 _U[Yig / )]21 M3 (+-) 0
—-1/3)71
0 U[ng / )]31 0 M§<K(_—)
(5.131)
which is diagonalised by 12 x 12 unitary matrices according to
-1/3 _
Mgl =D M3 Dy, (5.132)
with the corresponding rotation of the \Ilelég vector
—~1/3 -1/3
\I]L,Ié,mass = DE,R \IIL,Ié . (5133)

As the quark mass matrices cannot be diagonalised analytically, we present the following

expressions with the fermions still given in their flavour eigenstate basis.
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5.8 Flavour Violation within the RSc Model

In this section we elucidate the origin of flavour violation (FV) in the RSc model and consider
some implications coming from phenomenology. As already mentioned previously, the model
contains two different sources of flavour violation — the 5D Yukawa matrices and the 5D

fermion bulk mass matrices.*

Counting of Parameters

Besides the 18 real parameters (R) and 18 complex phases (P) of the two 5D Yukawa matrices
)\gj’d, the three hermitian bulk mass matrices 037273 of each quark representation add 18R and
9P to the theory. In the limit of vanishing )\;‘j’d and c§72’3, the maximal quark flavour symmetry
of the 5D theory U(3)? is identical to the SM one. As the non-vanishing matrices still leave
an unbroken U(1)p baryon number symmetry, 3 x 9 — 1 = 26 parameters can be eliminated
corresponding to the generators of the broken flavour symmetry U(3)3/U(1)p. Subtracting
the 9R and 17P, we are left with 27R and 10P. Thus, compared to the 9R and 1P in the SM, the
theory contains 18 additional real parameters and 9 new complex phases, which can evidently
be identified with the parameters of the three bulk mass matrices. As we will illustrate in
the following, these new parameters represent an additional source of flavour violation with
respect to models incorporating the MFV assumption. In particular, corresponding to the
above counting of parameters, new CP-violating phases are present. Moreover, new flavour
changing effective 4-quark operators arise at tree level that are either absent or strongly
suppressed within the SM. Fortunately, the built-in RS-GIM mechanism [106] can suppress
the FCNC interactions and prevent this NP model from leading to disastrous phenomenological

predictions.

5.8.1 Fermion-Gauge Boson Interactions

The 5D interactions between fermions and gauge bosons stem from the covariant derivatives
(5.117), which are contained in the kinetic terms of the fermion Lagrangian (5.116). Similar
to the derivation of the 4D effective Yukawa couplings, we start with the fundamental 5D
interactions and perform the KK decomposition up to the first KK modes. The effective 4D
couplings result from the overlap integrals of the gauge boson profiles with the fermion shape

functions .
. g n i i
gg]lgl (Z’ m) = m /0 dy ekyf( )(ya Cm)f(k) (ya Cm)fg(é)uge (y) ) (5134)

where (n,k,l = 0,1,...) denote the different KK levels. Note that the covariant derivatives
only couple fermions within the same gauge multiplet, so that their bulk mass parameters are

necessarily equal.

“We do not include kinetic mixing terms on the branes which would represent another source of FV.
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Couplings to Gauge Boson Zero Modes

Following the perturbative approach of EWSB, we first neglect the effects coming from EWSB
and consider a flat gauge boson zero mode profile fégl)lge(y) = 1. In this case, the overlap
integral in (5.134) simplifies due to the orthonormality condition of the fermion fields (5.108).
As only couplings between equal fermion KK levels n = k are allowed, (5.134) reduces to the
simple tree-level matching condition of the 5D coupling constant with the flavour universal

4D effective gauge coupling

g
Jeko = L (5.135)

Couplings to Higher Gauge Boson Modes

Since the integration over the extra dimension cannot be carried out explicitly, the couplings
to excited KK gauge boson modes do not simplify significantly and the right-hand side of
(5.134) retains its form. Note that the bulk mass parameter is the same for all fermions of
one gauge multiplet (¢!, &3, 5%), but depends on the flavour index ¢ = 1,2,3. This property
was already used in Subsection 5.6.2 to locate the fermion zero modes profiles of different
flavours at different positions along the extra dimension and thus provides an explanation
for the hierarchies of the quark masses and mixings. Here, in an analogue manner they are
responsible for the fact that the effective 4D couplings of fermionic zero modes to KK gauge
bosons are non-universal in flavour space. Since the KK gauge profiles are localised towards
the IR brane, their overlap intervals with the light quarks are similar in magnitude and much
smaller than the overlap integral with the heavy third generation.

According to the perturbative approach, we then treat the Higgs VEV as a small pertur-
bation that induces mixings among the various modes. Rotating the gauge bosons as well as
the fermions into their physical mass eigenstates, causes the following two different effects of

flavour violation:

e As can be seen from the rotation matrices (5.85) and (5.90), the SM gauge bosons cor-
respond to the gauge boson zero modes up to a small admixture of higher-excited KK
modes with identical electric charge. According to the above discussion, the SM weak
gauge bosons have non-universal couplings to the fermion zero modes. As the diagonal
but non-universal coupling matrix does not commute with the rotation matrices, which
transform the fermions to their mass eigenstate basis, flavour violation arises already
at tree level (FV1). However, the strength of these flavour-violating contributions are
controlled by the RS—-GIM mechanism: While the non-universality of the first and sec-
ond generation is small due to the small splitting along the extra dimension, the third
generation is protected from large flavour transitions due to very small mixing angles

with the first two generations.
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e The previous source of F'V has its origin in the gauge boson mixing and is also present in
the limit of vanishing heavy fermion KK modes, which are given in (5.115). There is a
second FV source (FV2) which is based on the mixings of the SM-like zero modes with the
heavy KK quarks of same electric charge that are induced by the diagonalisation of the
quark mass matrices. The impact of these KK fermions on the SM fermion couplings
in the RSc model has been considered in [198] within an effective theory framework,
where the heavy fermions have been integrated out at tree level by using their EOMs.
In general, the contribution from KK fermions tends to be numerically smaller than the

one from gauge boson mixing [190, 198].

5.8.2 Neutral Currents

To illustrate the above general statements, we consider the neutral current involving the SM
neutral gauge boson Z with the quarks being still in their flavour eigenstate basis
1.(2) = \115/3 Ai/:s( )\1,5/3 n \115/3 A%:S(Z) \I,EI}/?;

10, AP (2) 9P LW, A (2w (5.136)

mz”?’ Ay (2w + wR” PR (2)w
The matrices AgR(Z) with Q = 2/3, —1/3, 5/3 have the dimensions 18 x 18, 12x 12 and 9x 9,
respectively. They are flavour-diagonal, i.e. all 3 x 3 submatrices [A%2 (Z)]rs, consisting of the
elements [A%,R; ii(Z)]rs, 1,7 = 1,2,3, are diagonal in the flavour space ([AgR; ii(Z)]rs = 0 for
i # j). We denote the position of the submatrices corresponding to the entries of the mode
vectors with 7, s. For instance r, s = 0, ..., 5 in the case of [Ai/%(Z)]m, which is in full analogy
to the subscripts of the Yukawa matrices used in the mass matrix M?2/3.

The small admixtures of higher KK modes, forming the SM Z boson,

I+ 70 4 eI cos @
cos2 1 cos

make the diagonal 3 x 3 coupling submatrices to quark zero modes flavour non-universal at

7 =270 _ z{ (5.137)

order O(e). In the Appendix B.8, we give a detailed derivation of the Feynman rule for the

740 u'(O)Z , which corresponds to the coupling submatrix i[Ai/ 3(Z )]oo. Together with

vertex ¢
the other quark zero mode couplings to the Z boson, we display the results in Table 5.1.
The non-universality effects of O(e) are caused by the flavour dependence of the overlap

integrals R} and P!, which involve a higher KK gauge mode as follows. While we define
00 00

er'n(BC)L,R = %/ dy ekny R(y, m?BC)f( ) (ya maBC) ( ) (5138)
nk 0

for the overlap integrals including the KK mode Z(!) or Wél)i, we use the short-hand notation
for the ones involving the Zg(l) KK mode

A 1 L n ;
GAUCINES /O dy M ", € BC) f1 Ry, € BC) (y) (5.139)
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Zero mode couplings to the Z boson

Q@ = 2/3 quarks

61["/1( )quz (0) 7

—m“[gz(qui)—egz(qui)coslwzfm(**h+€§3§wz AP+ | |00

UR'UR"Z | —int |92(U%) = cor(U) g T RA(+-4)m + €681 n37>2<++>] (0,0)

cos?

Q@ = —1/3 quarks

—d;(0) d;(0 . ) ) i
7 Va7 |~ |92(a") — cor@) TR H + ST m P | (00)

D" D2 | —in#|g2(D") = eg2(D) g T RA ) + €S28T0 msPh(++)n | (0.0)

cos?

Table 5.1: Couplings involving zero modes and the Z boson. These zero modes correspond to

the SM quark fields when the rotation to fermion mass eigenstates is performed.

The shape functions g(y) # g(y) were defined in (5.58) and (5.59), and depend weakly on
their respective BCs. After the rotation into the quark mass eigenstate basis, the small non-
universality in the couplings induce FCNC transitions already at tree level (FV1).

Due to the presence of heavy KK fermions, the coupling matrices Ai/ }D’%(Z ) a d AZ%B( Z)
contain off-diagonal submatrices in their first row and column ([Ag r(Drs, Q=31 1 #s,

= 0 or s = 0) corresponding to couplings between the SM-like zero modes with their
KK partners (e.g. qu‘( )qzi Z in Table 5.2). In addition there are 3 x 3 building blocks on
the diagonal axis of AgR(Z), devoted to the submatrices [AgR(Z)]m, r = s # 0, which
induce couplings of the heavy KK fermions to the Z boson (e.g. UZUEZ in Table 5.3). While
the coupling matrices Ag r(Z) are diagonal in the limit of vanishing gauge boson mixing
(Z—=Z (O)), they are nevertheless not proportional to a 18 x 18, 12 x 12 and 9 x 9 unit matrix.
Rotating the fermions to their mass eigenstates, non-diagonal mixings in flavour space occur
and FCNC transitions are mediated (FV2).

The explicit expression for the A 2/ 3( Z) matrix can be read off from the Feynman rules
given in the Tables 5.1-5.3. Thereby, the brackets in the right column denote the placements
rs of the submatrices within the 18 x 18 matrix. The ones for the other coupling matrices
follow from the Feynman rules we have given in the appendix of [61].

The current given in the gauge and quark mass eigenstate basis

=5/3 5/3 5/3 =5/3 5/3
JM(Z) = \I/L ,mass VMB / (Z) \I[L/,mass +\I/R mass VMB / (Z)\I[
—2/3

5/3
R,mass

2/3 2/3 —2/3 2/3 2/3
+\I/L ,mass VMB / (Z) v / + \I/R mass PYMBR/ (Z) \I/R/,mass

L,mass
1/3 —1/3 —1/3 1/3 —1/3 —1/3
+\IIL mass ,LLBL / (Z) v { + \IIR mass ,}/HB { (Z) v /

L,mass R,mass ’

(5.140)



96 CHAPTER 5: WARPED EXTRA DIMENSIONS

Off-diagonal couplings to the Z boson

Q@ = 2/3 quarks

v Oguiz —iy“{—egz(qui)@IfRﬁ(%-%-)L +e22T mPl(++) } (0,1)
01

gz —W[—egz(q“i)cosl2w11+7lzé(++)L + eS0T mPi(+)e | { o

Table 5.2: Couplings involving the Z boson and a single left-handed zero mode of electric
charge Q = 2/3.

Heavy fermion couplings to the Z boson

@ = 2/3 quarks

cos

747z | —it [g (¢") —egz(q ul)coszwIJ“Rl (4L + 227~ mPl ++ L} (1,1)

cos 1

Uivtiz —mu[gz(U’i)—egZ(U’Z)COSQwﬁRZ( )+ €S TT 163733 L] (2,2)

TR+ | (3

€cos 1/1

UZZUZZZ _Z',Yu [QZ(U/”) o egz(Um) — wZ+RZ ( )

Xiixhz | iy [gz(xdi)_egz(x )COSQ¢I+R’( )L+e§g:1‘§z @Pl( +)r ] (4,4)

U ULZ | —iy* [gZ(Ui) _egz(UZ)COSQwZ‘FRZ( )L+e%zl—n37i§(——)L] (5,5)

Table 5.3: Couplings involving the Z boson and the heavy left-handed fermions of electric
charge Q = 2/3.
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defines the new coupling matrices
5/3 5/3 2/3 2/3
BYW(Z) = X} n AVNZ) Xor,  BYj(Z) =Ul g AV Z)Up k.,
B (2) = D} p AL, (Z) Drr. (5.141)

Similar expressions for the currents J,(Zg ), J,(Z") follow for the gauge boson mass eigenstates
Z and Z'. Note that flavour-violating couplings of Z and Z’ to left-handed down quarks are
protected by the custodial symmetry of the model (see [121,122,198| for further details).

5.8.3 Charged Currents

After rotating the gauge eigenstates Wéo)i, Wél)i, Wél)i into their mass eigenstates W*,
Wﬁ, W'#, the charged current for the SM gauge bosons W¥ has the following structure

2/3 —=2/3 -
T (W) = 0 7, G (W WP 4 T (W) wy
457 7, G ) B L, GrW ) W 4 e (5.142)
Corresponding to the size of the vectors \IIL/;S%, \112’1};/53, \Ifi{?%, the matrix G g (GL,R) is a

18 x 12 (9 x 18) matrix in the model under consideration. Explicit expressions can again be
obtained from the Feynman rules in the appendix of [61]. The line of argument is the same as
in the neutral case: There are two effects of flavour violation — one from KK fermion mixing
and the other from gauge boson mixing. Schematically, the charged current in the fermion

mass eigenstate basis can be noted as

5,2/3 —=2/3

~1/3 —-1/3
J, (W:t) = Uy ,mass VMHL(WJF) \IIL,rr/lass + \IIR mass WALHR(WJF) \I]RJ{lass
5/3 5/3

AU s W HL WD WY LW A HrRWH) WA he., (5.143)

L,mass R,mass

where the currents J, (W) and J,(W'*) can be derived analogously, and where
HL7R(W+) :Z/{LRGL,R(W-F)’DL,R and FIL7R(W+) = X[T/,RGL,R(W-F)UL,R- (5.144)

In analogy to the SM, we define the CKM matrix to be the 3 x 3 submatrix placed in the upper
left corner of the final mixing matrix [HL(W™)]gp. The matrix G(W™) deviates from the
unit matrix due to the two different flavour-violating effects and thus does not commute with
the rotation matrices which implies a non-unitary CKM matrix. However, the non-unitarity
effects are small, as both contributions are of O(e). With respect to the SM and all other MFV
models, where the CKM matrix is the only relic of the rotation matrices, the latter explicitly
appear in this model in the charged and neutral currents (5.140)—(5.141) and (5.143)—(5.144).

As flavour violation in charged currents in the SM arises also at tree level, the additional
contributions seem, at first glance, not to be so restricting as the constraints coming from the
FCNCs. Nevertheless, the W boson mediates right-handed weak interactions such that there
are new operators compared to the SM contribution. In addition the new heavy gauge bosons

W'* and Wf; may give sizeable contributions as well.
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5.8.4 Photonic and Gluonic Currents

Due to the unbroken gauge invariance of QCD and QED, the various photonic and gluonic
modes do not mix with each other. Thus, according to our general remarks in Subsection
5.8.1, only the flavour non-universal couplings to massive KK modes induce FCNC processes.
Restricting ourselves to the first KK mode, the coupling matrices of the massive photonic
current

Ju(AV) = TF gy, AL (AD) 0 E (5.145)

and the one occurring in the massive gluonic current
JUGW) =T 5, T A GV WG (5.146)

are related by

A7 R(G) AT p(A)
9s Qe

As can be seen from the generic coupling overlap integral in (5.134), from which the coupling

(5.147)

matrices are constructed, ALQ R(GW) and Ag (A1) depend on the flavour index i and on
the fermion chirality L, R. Explicit expressions for the A% R(GW) and ALQ r(AM)) matrices
can be obtained from the Feynman rules given in the appendix of [61]. After rotation into the

fermion mass eigenbasis, the currents are given by

JM(A(D) = Wg,R,mass ’WLBiQ/,R(A(l)) \I]gR,mass ’ (5148)
and
a T4 a
JM (G(l)) = \IIL,R,mass Tu T BiQ,,R(G(l)) \I]%,R,mass ’ (5149)

where the proportionality of A%R(A(l)), ACLQR(G(I)) in (5.147) remains valid for the matrices
Bg R(A(l)) and Bg R(G(l)). The Bg  are non-diagonal in flavour space and mediate tree-level
FCNC processes, which we will focus on in the next subsections.

5.8.5 Tree-Level Contribution of KK Gluons to AF = 2 Transitions

In this subsection, we will discuss the main new features of tree-level KK gluon contributions
to the particle-antiparticle mixings K° — K and BY, — Egd [199]. In the SM the off-diagonal
element MY, in the neutral K (p = K) and B; 4 (p = s,d) meson mass matrices has its origin

from one-loop box diagrams. The contributions stem from the single operator

(sd)v_a(5d)y—a = [57,(1 — 35)d] [57"(1 — 75)d] (5.150)

. =0 . .
in case of KY — K~ mixing, and

(bq)v—a(bq)v—a = [bv.(1 —5)q] [0"(1 —5)q],  with ¢=s,d, (5.151)
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correspondingly for the Bg 4= Eg,d mixing. Detailed formulae for (M%,)sy may be found
in [121]. The relevant piece of the Lagrangian which contains the coupling of the lightest KK
gluons Gf})a (a =1,...,8) to the down-type quarks (D?, i = 1,2,3) can be read off from the
gluonic current (5.149)

£A% — _ %™ D'APT* (e1,(i) Py + er(i)Pr) D' G (5.152)

)

With e, r(i) we denote the diagonal elements of the 3 x 3 matrices

ér.r = Diag (e, r(1),er,r(2),eL,R(3)), (5.153)

which correspond to the flavour submatrices in the upper left corner of the left- and right-
handed coupling matrices [A, 1143(6’(1))]00. Identifying g(y) with the shape function of the first
KK gluon modes G,(})

(5.134)

“ the explicit expressions for ¢ ,r(i) follow from the overlap integral

L aD L

nl) = 755 | v (b)) o) O57 S [Ty (10w cb)) o).
(5.154)
where we used the tree-level matching relation for the strong coupling constant in the ab-
sence of brane kinetic terms. Furthermore f g,]%%(y, ) has to be taken from (5.109) and g(y)
from (5.22). Since the bulk mass parameters and in consequence also the shape functions
gg%(y, cl,) are chirality dependent, £1,(i) is not equal to eg(i) and parity is broken by QCD-
like interactions in this model. Remember that the couplings €7, r(7) are in addition flavour
non-universal and a rotation into the fermion mass eigenstates through the rotation matrices

Dy, r produces the non-diagonal matrices
Apr= DTL,R EL,rRDLR- (5.155)

Their non-diagonal complex elements AZLj > © # J, introduce new flavour and CP-violating
interactions with respect to the SM. Rewriting the Lagrangian (5.152) into the fermion mass

eigenstate basis yields
£9%P = — | £8P 4 £, (5.156)

where
£8P = (AP FA T L) + AR By Tody) + A (b7 T?s1) ) GD?,
LD = <A§’g(§RyﬂT“dR) + AY(bpy Tdg) + A’,’;(BRWT%R)) a0e. (5.157)

The KK gluon contributions to K° — e mixing in Figure 5.3 arise at second-order in the

S-matrix expansion, keeping the following relevant terms in the interaction Lagrangian

Ling(2) = — (Azd (Sp(@) T dr () GV + AR (Sr(2x)V" T dr(w)) Gf})“> . (5.158)
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Figure 5.3: Tree-level contribution of KK gluons to K° — e mizing.

Due to the heavy KK mass of the gluon, we take the approximation pgluon < MI%){ such that
the gluon propagator shrinks to a pointlike four-quark coupling, known as effective vertex.

The corresponding effective Hamiltonian for this AS = 2 transition is then given by

_ 1 2 2
HEG =2 = 5 <<A8Ld) 5Ly, T%dr) ey Tdr) + (Aféi) BrY T dR) GrRY"T"dR)

2 (M)

+ 203N (507, T%dL) (Spy" T dR) > : (5.159)

with analogous expressions for the Bg — ES,S effective Hamiltonians. In Appendix B.7 we

carry out the transformation of the operator basis in (5.159) into the one used in [200]:

OV = (syuPrd) (37#Prd), Q™ = (57, Prd) (57" Prd) ,
Q1 = (s, Prd) (59" Prd), Q3" = (sPpd) (SPrd) . (5.160)

We also calculate the Wilson coefficients at the scale p ~ O(Mxgxk) for the effective Hamilto-

nian, depending on the new basis

_ 1
%?1{572 = (CYLLQYLL + CYRRQYRR + ClLRQ%R + CQLRQ%R)’ (5161)
+ (M)

which are found to be
2/ )\ 2/ 2
oY) = 3 (A1) OV O = 5 (%)
2
CER(Mgk) = —gASLd At CER(Mgk) = —4 A3 A3 (5.162)

The result (5.162) is valid for three colour degrees of freedom and confirms the results of [201].
Note that we suppressed all colour indices in the above expressions, however, they are given
in full detail in Appendix B.7. In the new basis one can directly take the formulae for the
anomalous dimension matrices from [200], which state the renormalisation group evolution of
the Hamiltonian valid at the KK scale down to low energies. The above example illustrates that
in the RSc model the new operators Qf #f*, 9t and QL are involved in FCNC transitions

— with respect to the single operator Q%% present in the SM.
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5.8.6 Tree-Level Contribution of the KK Photon to A = 2 Transitions

The KK photon contribution follows from the formulae of the KK gluon contributions through
the replacements G() — A 2P — e and T — 1. Thus, the sum of the left- and right-
handed components of £FP

LOED — _ [c%ED n ﬁ%ED] , (5.163)

are given by
L3 = (AFHAD) (510%dy) + AFAD) By + A (AD)Brysr)) AL
£8P = (AF(AD) R dr) + AR(AD) Byt dr) + AR (AD) Brysp)) AD . (5.164)

Since this result is already given in the basis of (5.160), the corrections to the Wilson coeffi-

cients in (5.162) from the KK photon follow immediately
(ACVLL M) ¥ = (Asd(A(l))> 7
NP =2 (agam))’,
(A ) - (Asd<A<l>>) (83a0)).
)

(AC R(Myck) QED _

-}

v

(5.165)

Implications from Numerical Studies

As has been found in various numerical studies, the fully anarchic approach in which the
hierarchy of fermion masses and weak mixings is assumed to originate solely from geometry is
challenging. Particularly, in case of an IR-brane localised Higgs, the excessive contribution of
the chirality flip operators Q5 QI to the CP-violating parameter e in the K meson system
implies a lower bound on the lightest KK gluon mass around 20 TeV [121,201|. However, as
was also demonstrated in [121], if a modest hierarchy and some fine-tuning is reintroduced
into the fundamental 5D Yukawa matrices, regions in parameter space exist in which the
constraints coming from e, the off-diagonal mixing amplitudes AM{S, AM{,, AM;, and the
mixing-induced CP asymmetry Sy g, can be fulfilled simultaneously for KK masses as low as
Mgk ~ (2 — 3) TeV. Moreover, as was also stated there, the KK gluons give the dominant
contribution to £x and AM 15 while the EW tree-level contributions of Zy, Z' can compete
with the KK gluons in the case of By s physics observables. The contribution of the KK photon
can be safely neglected in both cases. Also the one from the Z boson, which is controlled by
the custodial symmetry, is found to be negligible. Within the same framework also rare K and
B meson decays were studied [122] as well as contributions to £ from Higgs FCNCs [202,203].
Recent reviews can also be found in [204] and [205].

Instead of deviating from the fully anarchic approach, the KK scale can be lowered down

to O(5) TeV if the Higgs is in the bulk and one-loop matching of the strong gauge coupling is
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included [206]. Important ingredient in this analysis is the ability to raise the overall size of the
5D down-type Yukawa coupling that suppresses the contributions to ex but simultaneously
let the contribution to B — Xy grow. Incorporating also the bound on €'/e, the flavour
problem becomes even more serious and the KK scale is again pushed up to O(8) TeV [207],
beyond the LHC reach [186,208|.

To prevent the theory from large FCNCs, [209] introduces bulk and brane flavour sym-
metries. Flavour violation occurs via kinetic mixing terms of the right-handed fields on the
UV brane. It is shown that this approach incorporates the GIM mechanism [106] and the SM
CKM picture can be reproduced. However, the natural explanation of the flavour puzzle has
to be abandoned in this setup.

Keeping this feature, another alternative for suppressing dangerous down-type FCNCs in
WED models was proposed in [210] and [211], where the MFV paradigm is transferred to the
5D bulk. In the so-called “6D MFV” model, the 5D anarchic Yukawa matrices are assumed
to be the only sources which break the 5D bulk FS U(3)2. In consequence, the 5D vector-like

3 x 3 mass matrices are expressed in terms of Y77 p according to

cQ = Qg - 1+ ’I“u,BQYUYJ + ’I“d’}/QYDYng
cy = ay -1+ ’}/UYJYU
ap -1+ B4Y}Yp . (5.166)

CD

In the limit of vanishing r,, the down sector is completely aligned and one can choose a basis
in which Yp and the bulk mass matrices cg and cp are simultaneously diagonal. Thus the 4D
down-quark mass matrix is diagonal in the basis where the couplings to the bulk gauge fields
are diagonal (but non-universal) and hence there are no tree-level FCNCs involving down-type
quarks. This special limit can be realised for example with the requirement that there is a
bulk F'S SU(3)q, x SU(3)p, which is broken only by the VEV of a bifundamental down-type
scalar field (y4) ~ Yp. It was pointed out in [211] that the alignment assumption allows for a

KK mass scale as low as 2 — 3 TeV.



Chapter 6

Summary and Outlook

In this work we presented two possible answers to the question: “Why are the quark masses
and mixing angles in the SM so much different?” This quark flavour puzzle is connected to
the “obscure” part of the SM — the so far unobserved Higgs boson, which is supposed to be
an elementary field of scalar nature.

We gave a brief summary of the basic features of gauge theories, including the formalism
of chiral gauge anomalies, and continued having a closer look at the SM where we focused on
the Higgs sector. Being a doublet under SU(2)r, the Higgs also allows for gauge-invariant
fermion mass terms via chiral Yukawa couplings. The only relic of the two 3 x 3 complex SM
Yukawa matrices after the diagonalisation are six real quark masses and four CKM parameters
that are physically observable.

In the dMFV model we tried to “revive” the static SM Yukawa coupling matrices, in
promoting them to dynamical scalar spurion fields. While retaining the SM fermion content,
we dealt with new flavour gauge bosons since we augmented the SM gauge group with the local
flavour symmetry group SU(3)q, x SU(3)y, x SU(3)p,. The Yukawa matrices transform
as bifundamental objects to restore the FS in the Yukawa interactions. Hence there is less
arbitrariness than in the SM where they have been introduced to ensure the most generic
renormalisable and gauge-invariant Yukawa Lagrangian. To account for the observed hierarchy
in the quark masses and mixing angles, the F'S was broken in a sequential fashion by the VEVs
of the two Yukawa matrix spurion fields [157]. Being a singlet under the flavour gauge group,
the SM Higgs boson did not participate in this breaking and its VEV did not contribute to
the masses of the new scalars and flavour gauge bosons either. Corresponding to the different
breaking scales the masses of the new heavy gauge bosons and Higgs modes are hierarchically
ordered, which becomes relevant when integrating out the new heavy degrees of freedom to
obtain an effective theory.

Before doing so, we had to find an appropriate parameterisation of the Yukawa spurions
in which the physically relevant scalar fluctuations around the physical masses and mixing

parameters are disentangled from the Goldstone modes [90]. The Goldstone bosons, corre-
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sponding to the broken symmetry generators of the local part of the FS, disappear from the
particle spectrum in the unitary gauge. Requiring that there are no linear mixing terms of
scalar fields with gauge boson fields in the spurion kinetic terms when working in the unitary
gauge, we were able to give the parameterisation for the two- and three-family case. We
pointed out that the physical scalar fluctuations around the CKM angles, that directly lead
to FCNCs in the effective low-energy theory, appear in both Yukawa matrices regardless to
the choice of basis of the Yukawa VEVs. In the three-family case kinetic mixings between the
spurion fluctuations around the three CKM angles occurred which we diagonalised in order

to assign the non-trivial flavour structure solely to the Yukawa sector.

As already mentioned in the introduction, our setup necessarily has to be understood
in the context of an effective field theory framework for two reasons. First, the Yukawa
interactions are described by dimension-5 operators due to the canonical dimension of the
Yukawa matrices. Second, a quantum theory involving anomalies of the chiral FS itself or
mixed anomalies with the SM gauge group can be consistently formulated only if the theory
originates from a more fundamental anomaly-free theory [89]. We restricted ourselves to
construct the effective Lagrangian for a subgroup of the local symmetry, which arises as an
intermediate step in the breaking sequence. By adding higher-dimensional operators involving
the Goldstone fields, we showed that they can cancel the anomalous fermion contributions and
thus can formally restore the gauge invariance. While the mixed anomalies are removed by
choosing the counterterms appropriately, the effect of the anomalies can be absorbed into the

masses of the heavy gauge bosons of the broken flavour symmetry.

Integrating out the heavy gauge bosons and scalar fields at tree level by means of the
equations of motion, we derived the 4-quark operators that share — according to our ansatz
— the basic features of MFV. While the heavy SU(2)p, gauge bosons involve only flavour-
diagonal currents with non-trivial colour structure, the U(1)x gauge boson has non-universal
flavour couplings to left-handed down quarks, leading to FCNCs after rotation into their mass
eigenbases. The scalar fluctuations around the CKM angles directly lead to FCNCs in the
effective low-energy theory, which may be checked experimentally. The lightest scalar particle
— and therefore the last to be integrated out in the sequence — corresponds to the fluctuation
around the Cabibbo angle. Its mass has to be sufficiently large in order to guarantee that
the induced flavour-changing transitions are in line with the experimental constraints from
precision measurements in the K and B meson system and thus will set a lower bound on
the F'S breaking scale A. The smallness of the first-generation Yukawa couplings implies that
the global chiral U(1),, x U(1)4, symmetry is broken at the very last step of the breaking
sequence. We motivated to leave the chiral U(1) factors as global symmetries in order to
allow for a modified Peccei-Quinn mechanism in which the Goldstone modes dynamically
lead to a vanishing effective f-parameter in QCD and thus resolve the strong CP problem.
The couplings of physical axion fields in such a scenario are strongly suppressed by the UV

scale of the effective theory. The phenomenological implications of this scenario for flavour
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observables accessible by future experiments at the LHC or at Super-B factories has still to
be worked out. Moreover, this picture could also be adopted in the lepton sector, where a
non-linear representation of the lepton flavour symmetry group was already presented in [212].

The second main part of this thesis is devoted to the RSc model with fermions allowed to
propagate in the 5D bulk and a Higgs boson localised on or near the IR brane [99]. Originally
motivated by a resolution of the gauge hierarchy problem, RS models can simultaneously
address the flavour puzzle.

We presented the gauge boson content of the RSc model with its enlarged electroweak bulk
gauge group SU(2)r x SU(2)g x U(1) x and discussed its breakdown by an appropriate choice
of BCs on the UV brane as well as by the usual Higgs mechanism. The hierarchy between
the gauge boson mass contributions coming from the extra-dimensional setup and from the
Higgs mechanism offered us the possibility of an analytic perturbative diagonalisation of the
mass matrices and is reflected in the expansion parameter e = g?v?/(4LM?) ~ O(v?/f?). For
this purpose, we introduced the general formalism of the Rayleigh—Schrodinger perturbation
theory for the degenerate case. We consistently determined the gauge boson mass eigenvalues
up to O(e?) and the mass eigenstates up to O(¢), which poses a higher accuracy than we
displayed in [120].

Having summarised the general aspects about fermions living in EDIMs like the localisation
freedom of their zero mode profiles, we introduced a specific fermion content which ensures —
together with the enlarged gauge group — a custodial protection of the T" parameter and the
Zbrby, coupling. Restricting ourselves to the zero and first-excited KK modes, we constructed
the 4D effective Yukawa matrices that arise from the most general gauge-invariant 5D Yukawa
Lagrangian and thereby observed that the hierarchical structure can emerge from an overlap
integral over non-uniform localised zero mode quark profiles along the extra dimension. Since
the quark mass matrices after EWSB have to be diagonalised numerically, we derived the 4D
effective Feynman rules involving gauge boson mass eigenstates while the fermions are still
given in their gauge eigenstates [120)].

Due to the new flavour-violating source in form of the 5D bulk masses, the RSc model has
a rich flavour structure far beyond models with MFV. While the distortion of the quark zero
profiles allows for a solution to the flavour puzzle, it also implies flavour-dependent couplings
to the KK gauge bosons which induce tree-level FCNCs after the rotation to the fermion mass
eigenbasis. A further contribution, even if negligible with regard to the gauge boson mixing,
comes from the mixing of the SM quarks with the heavy KK fermions. After having studied
the structure of the neutral and charged weak currents, we introduced the quark couplings
to the massive KK gluon and KK photon. This is followed by a discussion of tree-level KK
gluon and KK photon contributions to the particle-antiparticle mixings in the K and B meson
sector, where we demonstrated that new operators are present in the effective Hamiltonian —
in particular the dangerous flavour-changing LR-4-fermion operators.

We commented that RSc models which satisfy all existing AF = 2 and electroweak pre-
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cision constraints with KK masses Mk ~ 2 — 3TeV reachable at the LHC exist if a modest
hierarchy in the 5D Yukawas [121,122] is reintroduced or some sort of alignment in the down-
type sector [210,211] is assumed. As also mentioned in [211], it would be interesting to consider
a 5D MFV model with fully gauged SU(3)? bulk FS group without alignment and to care-
fully work out its dynamics. Having in mind the 4D dMFV model, one may argue that it is
then quite “natural” to allow for a hierarchy in the 5D Yukawa matrices resulting from the
breakdown of the 5D bulk symmetry group.

Anyway, the very different approaches in solving the flavour puzzle have in common that
the hierarchy in the 4D Yukawa matrices is generated dynamically. While in the RSc model
the latter is generated by an overlap integral over “dynamical” fermion wave functions, the
hierarchy in the dMFV is generated by dynamical scalar fields that obtain non-vanishing VEVs
through an appropriately chosen spurion potential.

Which road to take in building models beyond the SM will hopefully be shown by the
upcoming experiments at the LHC and/or in the interplay of a future linear collider [213].
The extensive LHC program [214,215] covers EW, flavour and QCD precision measurements
which allow a deeper understanding of the SM and of possible deviations indicating new
physics. In particular a more accurate determination of the W boson and the top quark mass
can be performed, as well as a precise measurement of the strong coupling constant, parton
distribution functions, a detailed study of rare decays, CKM elements and CP violation —
especially in the B meson sector.

A highlight would be the direct detection of supersymmetric particles which provide the
proper framework for grand unified theories and a deeper insight of space-time symmetries.
Furthermore, the LHC allows for the approval of additional spatial dimensions by the ex-
ploration of heavy KK modes or of theories containing heavy gauge bosons like Z’ models.
However, of utmost importance for the LHC is to proof the (non-)existence of the last miss-
ing particle of the SM, the famous Higgs boson, and with it to test the very mechanism of

spontaneous electroweak symmetry breaking.



Appendix A

Addendum to Chapter 4

In this appendix we demonstrate that the coefficient of the second term in the anomaly
contribution follows from the first one by the usage of the Wess—Zumino consistency condition
(see Section 2.5). The first term can be obtained via a direct calculation of the triangle
diagrams. To simplify the notation, we begin with a summary of the formalism of differential

forms, as given in [131].

A.1 Differential Forms

A general p-form is constructed from an antisymmetric tensor with p indices via
1
Q) =, 4, () <]7!dx“1 AdxH? A LA dw“l’> , (A.1)
where the wedge product is defined as
dzt Nda¥ = dot @ do¥ — doz¥ @ dat = —dx¥ A dxt . (A.2)

In the following the wedge-product symbol is omitted and dz* is treated as an anticommuting
Grassmann object. If the rank p exceeds the dimension m of the manifold M the wedge

product vanishes. The commutation law for a p-form with a g-form is given by
apfy = (=1)"fgap, (A.3)

as each dxti (g¢; = 1,...,q) has to be commuted p times with dz#?»: (p; = 1,...,p), giving in

total ¢ factors of (—1)?. In particular, odd forms with odd ranks always anticommute.

An exterior derivative d = 62” dx¥ acting on a p-form like

1
d®, = 0, Py, (T) (de”dx“ldxm...dxw> , (A.4)

transforms it into a (p + 1)-form. The fact that the derivatives are symmetric while the

wedge product is antisymmetric leads to the important property that the exterior derivative

107



108 APPENDIX A: ADDENDUM TO CHAPTER 4

is nilpotent

d’®, =0. (A.5)

The exterior derivative further obeys the antiderivation rule

d(apBy) = (day) By + (—)Pap(dBy) - (A.6)
The dual p-form is defined by the so-called Hodge * operation which transforms p-forms into
(m — p)-forms,

1

1
*Pp = (I)m.““pﬁ*(dx‘“...dxﬂp) - ¢M1~~~MPH (Em.“% pt1eobm 'dxup+1.‘_dxﬂm> - (AT)

m—p)!
In Minkowski space the following relations hold

1

W&tmmumdx“l...dx“m = da¥. . da™ (A.8)

dztt .. datm = —ghretmdy0 | dpmt (A.9)
where the second follows from the first one with the identity
Eptpm € = —ml. (A.10)

Non-Abelian Gauge Anomaly within Differential Form

We now give a few examples for the usage of differential forms. In Yang-Mills theory, the

gauge field can be described by the 1-form
A= Audat  with A, = AT = —iAMT" . (A.11)
The field strength tensor
Fuy = F3,T% = 0,A, — 0,A, +[Ay, A)], (A.12)
can be rewritten as a 2-form:

1 - - - -
F = §F,wdx“dx” = - (0uA, — 0, A, + Ay, A)))datda” = dA+

% (A, 4] = dA+ A%, (A.13)

DO | —

With the introduction of the covariant derivative
D = D,dx" = (DZT“) dzt = (0, + [fl“, |)dat =d+ [/Nl, l, (A.14)

the field strength tensor can be reformulated by the compact form F = DA.

Finally, we want to rewrite the non-abelian anomaly for L- and R-fields

A 1 - vpo Ta 1 1 L5 1 A
GUAL ()] = DRI, = F o5y e Te [(T0, (AL RO, AT + S ALRARRATR).

(A.15)

2472
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Therefore we use the definition of the non-abelian L- and R-currents as a 1-form
jrr =i gT" = jt g Tda" (A.16)
to define the corresponding dual currents (3-forms)

. 1 }
*JL,R = mjgﬂ €uvpodr’ dzPdz’ . (A.17)

The anomaly arises from the exterior derivative acting on the dual L- and R-currents:
1

(D= jpR)* = ngij?Rawpg dx®dz” dzPdx”
(A.9) 1

= o1 1)'ngijR€Wpa(—€a”pg)dxo...dx3
m —1)! ’

1 b
= o DL = D15)da’ . da
= ngjgf)R dmodxldede
! N T
= T T (T0 (A0, Ag T + S APRADRAZ ) dalda’ da?da’®
m
1

2472
1

2472

= =+

Al A A 1 A A v o
Tr [T°0,(ALTo,ALR 4 §A5’RA£’RA§’R)] dztdz da’ dx

= =+

Tr [Ted(APRAALR 1 L ARRALRALE) (A.18)

Hence, the non-abelian gauge anomaly within differential forms reads

1
2472

- - _ _ 1 -
GUIAPR) = (D x ju,p)" = o Tr [T (AR FAAR 4 Z(ARR)3)], (A.19)

and correspondingly

G(v, AL’R) = /dx v“(x)G“[[lL’R](x) =4 /dx Tr [vd(AL’RdAL’R + %(AL’R)?’)] .

(A.20)

2472

A.2 Graded Algebra

We have seen in Section 2.3 that the BRST operator §, increases the ghost number by one
unit and in the previous Section A.l that the exterior differential d raises the form degree
by one unit. Combining the form and ghost degree through a sum of both degrees to a total
degree,

Degyotal (X) = Degtorm (X) + Deggnost (X) , (A.21)

defines the graded algebra [131]. Both operators act as antiderivations (62 = d? = 0) on this

v

algebra and they are required to satisfy

Sod +ds, = 0. (A.22)
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For the graded algebra the commutator is defined by
[P.Q] = PQ = (-1)Pton Pt @QPp, (A.23)

for example,
[A 0] = Av+0A,  [v,0] = 202, (A.24)
Using differential forms, the first two BRST transformations in (2.20) can be rewritten as

6yA = —Dv = —dv—[A,1] A2 gy~ dv— vA, = —v?, (A.25)

which is constructed in such a way that the nilpotency of the BRST operator is fulfilled, e.g.

62A = 6,(—Dv) = 6,(—dv — [A,v]) = +d(6,v) — 6,(Av + vA)
= —d(v?) — (=Dv)v + A(—v?) + v2A 4+ v(—Dv)
= —(dv)v + v(dv) + (dv)v + Av? + vAv — Av? + v? A — v(dv) — vAv — v A = 0.
(A.26)

A.3 Usage of the Wess—Zumino Consistency Condition

The aim of this section is to show that the WZCC §,G (v, A) = 0 introduced in (2.35) uniquely

determines the constants cy, ..., ¢4 of the most general form of the left-handed anomaly

G(v,A) = / Tr[vdAdA + ¢; v(dA)A? + co vA(dA)A + c3vA%(dA) + e, vAY] . (A.27)

247T2 M
In the following we let the generalised gauge operator act on the different terms in the above

sum, where all expressions have to be understood as arguments of the trace:

o 0,(vdAdA) = vAdvdA — vdAdAv — vdvAdA + v(dA)Adv — vdAdvA ,

(v
o 0,(v(dA)A?%) = vdA(dv)A — v(dA)Adv 4 vA(dv)A? — v(dv) A3 — v(dA) A%
U(UA( ) ) = vdv(dA)A — vfi(d[l)dv — vfp(dv)fi + v[l(dv)fp — vfl(dfl)/lv,
(
(

)
o 0,(vA%(dA)) = v(dv)A(dA) — vA(dv)(dA) — vA?(dA)v + vA3dv — vA%(dv)A,
)

A2
o vAY) = 02 A% — v A(dv)A? + vA%(dv)A — vA3do. (A.28)

v

Since there are no other terms proportional to A% that could probably cancel the term arising
in the last line of (A.28), we conclude that the coefficient ¢4 has to be zero. Actually we do not
need to require that the various terms all add up to zero, but only that they can be written
as a derivative of some local function, so that its integral over the manifold vanishes. Having
started with the single term containing no derivative, we continue with a proper rearrangement

of the contributions which contain exactly one derivative, namely

o (14 c)(dv)A%vA — (co + e3)vA%(dv)A (A.29)
o c3(dv)vA® — ¢y v(dv) A% 4 ¢ v*(dA) A% 4 e 2 A(dA)A + 302 A%(dA).  (A.30)
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As the ghost fields do not simply commute with the gauge fields, we differentiate between the
terms with ghosts alternating with the gauge fields in (A.29) from the ones in which they are
separated from each other as in (A.30). The terms of the first line could probably form a total
derivative d(vfpvfl), but, as a term involving a derivative acting on a gauge field is missing,
the coefficients have to be chosen such that all terms vanish. Thus, we impose the condition
¢1 = —c9 = ¢3 = ¢, which in turn implies that the remaining terms in (A.30) add up to the
total derivative

cd(v?A?). (A.31)
For the terms containing two derivatives we proceed in the same manner. First, we collect all

terms in which the gauge fields are sandwiched between two ghost fields
(1 — c)vA(dv)(dA) + (1 — ¢)Av(dA)(dv). (A.32)

Realising that the “missing” third term, needed for a completion of the total derivative, would

vanish under the trace anyway
v(dA)v(dA) = —(dA)v(dA)w = —v(dA)v(dA) =0, (A.33)
we can summarise the above two terms according to

(1 —c)d(vAvdA). (A.34)

The remaining terms in (A.28), where the gauge fields and ghosts are not mixed up, contain

at least one derivative acting on the gauge field
v2(dA)(dA) + (c—1)v(dv)A(dA) + (1 —¢)(dv)v(dA) A — cv(dv) (dA) A+ c(dv)vA(dA) . (A.35)

As in addition a term with two dv’s is missing, one may guess that these terms arise from a

total derivative of the following structure

d(v?AdA 4 v*(dA)A) = (dv)vAdA — v(dv)AdA 4 20*°dAdA + (dv)v(dA)A — v(dv)(dA)A.

(A.36)
Indeed, if one imposes c L1 /2, the terms in (A.35) can be brought into the form
1 - L
§d(v2A(dA) +v2(dA)A). (A.37)
Thus, we have shown that the WZCC uniquely fixes the coefficients to
1
a=-c=cg=c=;. (A.38)
Using this condition, the anomaly can be reformulated as
~ 1 -~ 1 PO N SO T BN
G(v,A) = Sy /M Tr [vdAdA + §v(dA)A — gvA(dA)A + §UA (dA)]
1 ~ o~ 1~
= Tr[vd(AdA + - A® A.39
247r2/M rod( *3 Ik ( )

which confirms the result given in (2.32) and in (A.20).
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A.4 Diagonalisation of the Spurion Kinetic Terms

As mentioned in Subsection 4.4.2, one has the freedom to diagonalise the spurion kinetic terms
contained in the kinetic term of the up-type Yukawa matrix Tr [(8MYU)(3“YJ)] separately from
that in the down-type one, and vice versa. Actually, we will proceed with the diagonalisation
and normalisation of Tr [(OHYD)((?“YZJ;)], because it accidentally does not contain any mixings.
Thus we can leave out the first step and normalise the terms in

2 1 (yb2 - y52)2

T [(0uYD)(@YH)] = 102> (Buina () + 101 By () + 7 (0s(x))? . (A.40)

4 4 be + y52
by using the following redefinitions
2 2 2
~ 2 o - 2 o - yb +ys o
ha(r) = —ih2(x), Ths(@) = — (@), 7s(r) > —5—5—7s(z). (A.41)
Ys Yo yb —Ys

The next step is to diagonalise the kinetic mixing terms induced by Tr [(OHYU)((WYJ)]. To

this end we introduce the matrix notation

M2 ()
(Buia@), Buins(@), Ouiba(e) ) A | Oins(w) |- (A.42)
Mifaz(x)

Observing that the off-diagonal elements of the real matrix A are small compared to the
diagonal entries, we are going to use this hierarchy to diagonalise the matrix perturbatively.
As motivated in the description of the Rayleigh—Schrédinger method in the Appendix B.5, we

divide A into an “unperturbed” matrix Ay and a “perturbed” matrix A;

A11 0 0 0 A12 A13
A=Ay +e€A = 0 Ay 0 +el| A 0 Ay |, (A.43)
0 0 Asz Az Ao 0

where we made the smallness of the off-diagonal CKM matrix elements (as given in the linear
representation in (4.63)) more transparent by redefining 6;; — €6;;, 7,7 = 1,2,3.

The explicit values of the diagonal elements of A are given by

2 2 2\2(,,2 2
s — Is c+
Ap=Y A= Ay— (yp — v5)"(ye + i) (A4d)

2
2 33 2 N2 _ . 2\2"
Y2 Y (v +v2) Wz —v;)

Obviously, an appropriate orthonormal basis of zeroth eigenvectors of the unperturbed matrix

Ap is represented by
|10>T:(1, 0, 0), |2°>T:<0, 1, 0), |3°>T:<0, 0, 1), (A.45)

with corresponding zeroth-order eigenvalues EY = Ajj, EY = Ay and Eg = Asz3. As Ass
equals Ay in the limit ys < y, and y. < 3, we will not use this approximation already at
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this stage to avoid having to deal with the formulae for the degenerate case (see also Appendix
B.5). There are no first-order corrections to these eigenvalues due to the fact that A; has no
diagonal entries, which implies that (k| A4;|k?) = 0 for the above basis with k = 1,2,3 (see
also formula (B.96)).

However, the explicit expressions for the off-diagonal elements of Aq,

2 2
- b
Arp = —ba3ypys ch Qyt ~ 0332 22/8 ;
ycyt Ye
o ysyr (= v (=3y2 + P) Yb Ys
A1z = O3 ~ —bi3 =5,
2 \Jy + 2 (2 — u})? Ve
20,2 2 2 2
- -3
Agy — 0y Po¥e W —¥s) e = 3y0) 5, v yc 7 (A.46)

yEJuE +u2 (2 — vP)? i

enter the formula given in (B.100) for the calculation of the first-order corrections to the

eigenvectors. In the case of non-degeneracy the formula simplifies to

3
k/OA kO
=y B ), (A7)
k'#£k, k'=1 (Ek; - Ek;’)

with the explicit first-order corrections to the eigenvectors given by

|1h7T = ( 0. Yous(yi—yi)bos ysyi (vp ys)\/yb+ys —3y24y2)013 >
) )

vev—v2y; 0 (pv—v2ud) (v2 (=32 +yP) g (v2+ui))

|21y = ( _wys(e—y)bas ybye (Yp — ys)\/berys(yc 3y7 )01z >
7

vivi—viyi 0 0 (W2 —v2ud) (Wi (W2 —3vP)+u2(v2+yi))

(W2 —v2v?) (w2 (=3u2+vd)+ui (W2+v?) ° (wivi—v2vd)(yi (v2—3u?)+y2 (Y2 +vi))

1317 = (_ ysy; (s —y2)\/ s +y2 (—3y2+y7)01s yvYe (v —y2) /Yy T3 (Y2 —3y7)012 0>. (A.48)

Together with the zeroth eigenvectors they form the orthogonal transformation matrix

| 10>T T | 11>T
G=1| |29 +¢| 20T |, (A.49)
1397 +¢|31)7T

which diagonalises A up to O(€?) corrections
G(Ag + €A1)GT = Diag(A) = Diag (Ay1 , Az, Azz) + O(e?). (A.50)

Simultaneously, the spurion fields are transformed into the new basis

T T
( Mz, s, 723 ) = G< Mz, M3, 723 > ; (A.51)
in which then also the spurion kinetic terms arising from the up-type Yukawas are diagonal,
y? 2 2 N20,2 | 2
A Yi o - o Wy =) We i) 5 2
T [(9,Y0) (V)] = =5 (Opuina(2))” + =5 (Dpuins(2))” + (Oputi23(x))” -
y? ! vi " (y5 +y2)(y2 —v)? "

(A.52)
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Remember that the latter unitary transformation does not influence the form of the normalised

contributions from the kinetic term of the down-type Yukawa spurion matrix
Tr [(9,YD)(9"Y))] = (Quina(2)) + (Fuina(x))” + (urins(2))*

Without loss of generality, we choose to rescale the fields according to

1 1 Vi tYE

na(x) = ——n2(x),  iz(x) = ——Ni3(x),  Hez(x) = — m23(z) ,
Ys b (s —v2)

which leads to the symmetric form of the spurion kinetic terms presented in (4.68).

(A.53)

(A.54)



Appendix B

Addendum to Chapter 5

B.1 Fermionic Action and RS Spin Connection Term

In this section we show that the action given in (5.105)
1_
S:/d5:c\/5(§\lf(iI‘MVM—ck)\I'+h.c.>, (B.1)
with V; = Dy + wpr, can be brought into the shape

S = /df’x\/E(E% %ﬁy“ (D = DY,) w+EY %T{VA,WM} U ckTV).  (B2)

%}L\/[ = yM +1igV;T* denotes the hermitian conjugate covariant derivative for the specific
case of the non-abelian gauge fields V}}, whereas the partial derivative acts again solely on the
spinor fields. With the definition v2, = —iyg (see (5.99)), the hermicity conditions, which

are usually imposed on the 4D gamma matrices,

()= a=123, (M) =9" 0NN =9, (B.3)
can be combined into
(=" M=ot A=1235, (B.4)
where (7°)F = 4% and (7°)2 = 1. These relations are needed for the calculation of the various
hermitian conjugate terms in (B.1), e.g.

7 — T 7 B4) 1 —
(GEN T ouw) = =L BN (1013 0410w X L@y rte,  (B5)

and of the term which contains the coupling to the non-abelian gauge fields

_ T
(%E%@fyA(—z‘gvA‘}TQ)\p) (]3:4)—%\11(igV]\“4T“)FM\IJ. (B.6)
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For the calculation of the term involving the spin connection
i — T i i —
(gE% ‘I’VAWM‘I’) = —5 BNV 0] 0y 00 = BN w0 e, (B.)

we need to know ,Yow;rw,yo_ Concentrating on the Dirac algebra and neglecting all metric factors

of the spin connection, it follows independently of the chosen metric:

(5.102) t o (B.A4)
Pul?® T~ A AP TET A (8 = 429 P) 0 = — [44,4F] ~ —wn. (B)
Thus, (B.7) can be rewritten according to
_— _—
<%E%\IWAWM\I:) - %xprerp. (B.9)

Inserting (—1/2W ck ¥)T = —1/2W ck ¥ into (B.1) and using the above results, yields
S = /d%x/@(%ﬁrM(DM = D)W+ STy} ¥ -k TY), (B.10)

which is equivalent to (B.2) (with EAfy4 = T'M).
The next aim of this section is to confirm the result of the RS spin connection given in
(5.103),
)UAB rs | ske Mgy for M =y,
0 forM =5.

wy = en (O EY + 1Y pEE (B.11)
To this end, we have to evaluate all metric factors for the specific case of the RS metric.
According to formula (5.95) the derivative 65Eg contained in the fifth component of the spin
connection

2
is non-zero only for the case of B = N # 5. Moreover, (5.93) implies that A = N for eﬁ #0
and thus the whole first term of (B.12) vanishes because onx" = 0.

Concerning the second term of (B.12), the Christoffel symbol simplifies to
1
Iep = —GNR (0pGsg + 05Gpr — OrGsp) = §GNR35GPR, (B.13)

as Gsp = Gsp =1for R=5,P =5, and Gsgr = Gsp = 0 otherwise. We finally obtain

1 UAB v —
ws = fﬁGNR(as)GPR)EgT = eNGNY (Bse M) Bl ——
_ A 2ky fyu(a e 2kynu )ekyUAM _ (856*2]?3/)0_”1/
v 4

= =o0. (B.14)

Recognising that the first term of w,, in (B.11) gives no contribution

B
OA
NOuER)—5— =0, (B.15)
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we are left with the calculation of the following term
AN wpoa” 4l g poa”

As the metric tensors are z-independent, only derivatives involving the fifth component are

relevant for the calculation, which then yields

1 o481 o8
w“ = 56%GNR(85GHR)E%T — 56%GN5(65G“,P)E§T
5 B
= —keA G (e, T — (e, ) B T
5 v
A o g5
— —k@AA;UWVU“VT — k:(e 2kynuy)€ky7
5 o° k .
= —ke_ky% + ke_k;y# = —§€_ky’yu’y5 = %k‘e_ky’}/“’}/i’]) . (Bl?)

Finally we demonstrate that the spin connection term cancels in the fermionic Lagrangian

(B.10) for the special case of a RS metric

7 _ 7 Yy =4
EY {yt wp} = et {7“7 ke kvaiD} = 5k (@9ip + i) = 0. (B.18)

B.2 Bulk Equations of Motion

Bulk Equations of Motion — Fermions
Setting all gauge interaction terms in (B.10) to zero, the fermionic action is given by
_ 5 U= M i —y M =
Stermion = /d VG (5(\1/1“ (03D)) = 5 (TOu)TM W — ck xw) : (B.19)
Performing an integration by parts over the 4D space in the second term, then leads to
— 1— 1— —
Stermion = / dBe= kY <z’eky\1w“(6“\11) + 5T ds ¥ — 5\115572]3\1/ — ck quIz) (B.20)

where we used the relation (5.99) to transfer the 5D gamma matrices into the 4D ones.
With 72D = —ngD and the introduction of the projection operators (2.26), the action can be

reexpressed through
_ _ 1 _
Stermion = /d59€€_4ky <i€ky\I’L’Y“(3u‘I’L) + i gy (9, U R) — 5(‘1’L35‘I’R — WRoOsV )
1 — _ _ _
+5(¢IL551IR—¢1355\11L) —ck(\I’L\I'R+\I'R\I'L)). (B.21)

In Section 5.1 we derived the 5D analogue of the 4D equations of motion (following from the
first term of equation (5.13)). Applying it to the right-handed fermion fields, the EOM is

given by
oL oL —
— =0 _ oWp=0. B.22

[3\111% M (3(3M‘I’R)>] f ( )
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Inserting the various components

% — (iekywau\yR — %85\% — ck:\I’L> , a“ﬁ =0,

65% = 05 <e4ky%\1@> = —2ke MV, 4 6*4’“@/%85\1@, (B.23)

into the EOM, we receive the condition
e_gkym“@u\IIR — e YU + 2ke VT — che VT 0. (B.24)

Multiplying the equation with e?*¥ and then using the identity

O5(e VW) = —2ke MV 4 e VD50 (B.25)

the above equation (B.24) simplifies to
iy, Wy — 05y — ckWy, =0, (B.26)

where we have rescaled the fermions according to T LR = e 2ky L.R-
In full analogy, the EOM of the left-handed fermion fields can be obtained:

iek%“ﬁu@L + (35\/1}1% — Ck‘\/I\fR =0. (B.27)

In order to decouple the two first-order differential equations, we first multiply (B.26) with
(iek¥479,) and then insert (B.27):

(—e* Y19, + M5 (e D) — c(c — DE)UR=0. (B.28)
Analogously, we derive the second-order differential equation for the left-handed fields

(—e2RY 1D, + D5 (e D5) — c(c + 1)k} T = 0. (B.29)
Obviously, both results can be combined into the final result

M 9,0, — 05 (e 5) + (c(c £ 1)k2)] Uy p=0. (B.30)

Bulk Equations of Motion — Scalars

Based on the scalar action of the form

Sscalar = /d5$\/§ [(DM ¢)T(DM gb) B méqﬂg&] ) (B31)
the following terms
ok _va (GMNong + GPMopg) = VG GMN oy e 9L _ o/Gm? ¢, (B.32)
8(8M¢) N P N@ a¢ o .
contribute to the equations of motion
1
ﬁaM(\/EGMNaNQb) +mié=0. (B.33)

Inserting the RS metric factors, finally yields
(€M 0,0, — e d5(e” M D5) + m3) ¢ = 0. (B.34)
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Bulk Equations of Motion — Gauge Bosons
For the gauge fields the free action is given by
Syauge = — / PaVG iFMNFMN = / P2VG %FMNFLSGLMGSN, (B.35)
where the interaction term in the field strength tensor is neglected so that
Fyn =0V — OnVar . (B.36)

Varying the action Sgauge With respect to Vg, we obtain the EOM for the gauge fields:

oL
_ r LP~SR\ _ ) B.
O S = 0 (VG FLsGHPast) =0 (B.37)

In the special case of a RS metric, the EOM can be reformulated as
op ( 4ky(EL EP AB)(ES ER CD)FLS)

= dp (674ky(€2ky5Lu5Pu77“ Y+ 00505177 (€2 5,0 pan" + 55551%57755)) Frs
= Oy (" SR ™) 0, Ve — 05 (e Y8 R ™) 05V (B.38)

where we used the gauge-fixing condition V5 = 0 and 9,V* = 0 in the last step. Finally, we
multiply the last equation by e**¥ and obtain

e2ky77;wauay _ €2ky85(€72ky85) VY=0. (B.39)

B.3 KK Decomposition — Bulk Profiles of Wave Functions
The EOM of all fields can be combined into a single second-order differential equation
2ky we 9 — skya —skya 2 0 _
e n nwOy — € 5(6 5) + M<I> (I)(CC ’y) =0, (B4O)
where
O={e MUy, ¢V}, s={1,4,2}, Mz={c(ct1)k*, m},0}. (B.41)

The different sign of the first term in (B.40) with respect to the result given in equation (11)
of [103] is due to the different sign convention of the metric tensor. Substituting z = e*¥ in
the general EOM (B.40) gives

— 22 9,0, + (1 — 8)2k%0, + k207 — M3 |® = 0. (B.42)

After expanding ® into its KK modes ¢(™ and profiles (™ (y)

o0

Z ) f™(y) (B.43)
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and introducing the masses m, (n = 1,---) of the KK excitation #") | corresponding to
(8,0" +m2) ¢ = 0, the above differential equation reads

[zZmi F(1— 8)k220, + k22202 — ME|F™(y) = 0. (B.44)

Dividing by k? and using the short-hand notation 9, f™ (y) = £/, 92f™(y) = ") the

equation can be rewritten according to
1
270 4 (1= 8)zf' ™) 4 = (szi - M%)f(") =0. (B.45)

The general differential equation of type z2y” + azxy’ + (bx™ + ¢)y = 0 with m # 0 and b # 0
is solved by [216]

y=a2 [ClJy(%x/Eﬁ) + Cﬂ@(%\/&c%)} , (B.46)

where Ji(x) (Yi(x)) denote the Bessel functions of first (second) kind and

1
= —+/(1—a)?—4c. B.47
vim = l—af —dc (B.47)
Together with the identifications
m3 M}
r=z; y=f", a=01-5s); b:k—;; m=2; c:—k—f, (B.48)

we thus get the result

n n € 2 mn mn
10w = e [enn(Fret) + Can (et )| = T [ (Fret) + bulma e (Fret) .
(B.49)
with
M2
v = () + 2 (B.50)
Requiring f(™(y) in (B.49) to fulfil the orthonormality condition,
1 L
L / dy B(Q_S)kyf(n) (y)f(m) (y) = bnm., (B.51)
0
determines the normalisation constant N,
1 m 2
2 _ 2ky n ky Tt ky
N? L/Odye [J(k ) + by (m ),,(ke>]. (B.52)

The coefficient b, (m,) as well as the KK masses m,, are specified by the chosen boundary

conditions and have to be solved numerically.
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B.4 Zero Mode Profiles

Fermionic Zero Mode Profile

The most obvious solution to enforce the vanishing of the boundary terms in (5.13), arising

from the variation of the action (B.21)
8 Shound = % /d4x [6—4’@ (0,60, — UpoWy, + Upoly, — ) 5\113)}(? : (B.53)
is to set one of the two spinors to zero on the endpoints, for example the right-handed one:
Vg lor=0. (B.54)

With this condition also dWr|p 1, = 0 is valid and the full boundary variation term vanishes.
However, as the bulk EOM (B.26) has to be satisfied on the endpoints of the interval as well,
Uy, does not remain arbitrary [195]. With Wg |o.,= 0, the condition from the bulk EOM

simplifies to:
(85 +ck)Uplor =0. (B.55)
Analogously, if we choose the left-handed spinor to vanish at the boundaries
Vo= 0, (B.56)
the condition for the right-handed field reads
(85 — ck) URlor = 0. (B.57)

Separating the variables with the help of the KK decomposition
1 ~
V() Zw ) = Z=E @ W) + o =V play) £ (B

and using in“”yuﬁyiﬁLnR(x) = mn¢LnR(x) with mg = 0 for the zero mode Q,Z)E-JO)R(:U), the bulk
EOMs (B.26) and (B.27) also decouple:
~ 1 0
(0 k) W, p(, ) = =0 (@) (05 % k) FO) = 0. (B.59)
Moreover, there will always exist a zero mode since the boundary conditions (B.55) and (B.57)

are trivially the same as the EOMs (B.59). The general solution is given by

0 eTcky
P = N (B.60)
with the normalisation constant following from the orthonormal condition
[t 1
(ND.R)? = E/o eIF2MHv gy = e (e(“FQC)kL - 1) . (B.61)

Thus the left- and right-handed fermion zero mode profiles are given by

0 (1 F QC)ICL ¢
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Scalar Zero Mode Profile:

Assuming a bulk scalar mass mi = ak?, the bulk EOM of the scalar field (B.40) with s = 4
is specified by
(02 — 4k0s — ak®) ¢ = 0. (B.63)

Using the KK decomposition ¢(z,y) = % Yoo o™ (z)f (n) (y), this equation is solved by

scalar

the zero mode profile (mg = 0)

f(O) (y) = 1 e@—VAtalky o o1 o(2+VA+a)ky (B.64)

scalar

A non-vanishing solution (C; # 0, Cy # 0) only exists if a boundary mass term my =
2Bk (6(y) — 6(y — L)) with § = 2 + /4 + a is introduced [196], which implies the modified
Neumann condition

(a5¢<0> — Bk ¢<0>) ‘ —0. (B.65)

0,L

For g = 2 — /4 + a the coefficient C5 vanishes while for g = 2 + /4 + «a this is the case for

C1. Consequently, the two solutions can be summarised by

0 2EL(B —1)
Frcaias ¥) = \/em(ﬁ:n_1 . (B.66)

Gauge Boson Zero Mode Profile

After KK decomposition, the EOM of the gauge boson zero mode (B.39) can be written as

(ag - 2k85) fg(gzlge(y) =0, (B67)
which has the general solution
0) 62ky
fgauge(y) = Clﬁ +Cs. (B68)

It is easy to see that zero modes only exist for Neumann boundary conditions on both bound-
aries. In this case it turns out that C; = 0 and the correctly normalised zero mode for the
gauge boson is flat:

0 (y)=1. (B.69)

gauge

B.5 Derivation of the Rayleigh—Schrodinger Formulae

The formulae for the non-degenerate Rayleigh—Schrodinger perturbation theory can be found
in many textbooks about quantum mechanics, e.g. [217,218]. In deriving the formulae for
the Rayleigh—Schrodinger perturbation theory in the degenerate case, we follow closely [219]

wherein the general case of a hermitian operator is considered. For our specific problem, we
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restrict ourselves to a symmetric D x D matrix A, which is linear in e. Thus, it can be

decomposed into the sum of an unperturbed matrix Ay and a small perturbation matrix A;:
A= Ag+ €A (B.70)
Expanding the exact eigenvectors |n;) and exact eigenvalues E,, of the eigenvalue problem
(Ag + €Ar)|ny) = Ey,nyg) (B.71)
in powers of the expansion parameter e, we obtain
) = i) +elnf)+..., En =E) +An =E) +eAl +.... (B.72)

While the index n denotes different eigenvalues, [ counts the number of eigenvectors sharing
the same eigenvalue in the case of degeneracy. Inserting the ansatz (B.72) into (B.71), and

comparing the coefficients of m-th order in €, one gets the result
m
(En, = Ao)lnf") = (A1 = AL )Ing™ ™) = > A Inf" ™) . (B.73)
i=2

We suppose that the unperturbed eigenvalue problem
Aolni) = Ep Inf) (B.74)

has only one degenerate subspace Ly of dimension x. Then the index n takes the values

n=1,... D —x+1, where the z-fold eigenvalue belongs to the fixed index n = p according to
EyoE)=E), l=1,.x. (B.75)
The corresponding eigenvectors |p?> of Eg , which fulfil the equation
Aolp))y = EQIp}),  1=1,...=, (B.76)

span the z-dimensional subspace L£y. We define a projector onto this subspace by
xT
Py=>Y_ 190 (B.77)
r=1
The complementary non-degenerate subspace L{, incorporates the D — x different eigenvalues

E)SE, k#p, k=1..,D-z. (B.78)

Due to the non-degeneracy we will omit the additional index [, so that the eigenvectors are

given by the relation

Alk%) = EQIR?), (B.79)
and the analogue projector reads
D—zx
Pp=Y_ [KO)(K"]. (B.80)
k'=1

The projectors Py, P} fulfil the usual relations as given in (2.27) for the chiral projectors Py, g.
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Normalisation of the Eigenvectors

The eigenvectors of a symmetric matrix are orthogonal for different eigenvalues. Supposing

that the degeneracy of Ly is lifted at some order in perturbation theory, the following equation
holds
(nyn)) =0, for n#n" andfor [#1. (B.81)

Expanding the eigenvectors into powers of € and taking the limit ¢ — 0, we require that the

orthogonality has to remain
(nfndy =0, for n#n" andfor 1#1. (B.82)
For convenience, we normalise the unperturbed eigenvectors ]n?> according to

<n2’0|nlo> = Op/nOyy - (B.83)

!
Furthermore, we impose the condition (n{|n;) = 1

(B.72)

(ng'|ma)

from which we conclude that

<n?] (\n?> + e\nll> + 62\n12> + ) =1+ e(n?]nb + ez(n?ln%> + ..., (B.84)

(nf|nj) = o; - (B.85)

This means that the higher-order corrections are orthogonal to the associated unperturbed
eigenvector. The normalisation conditions (B.83) and (B.85), involving the eigenvectors of the

non-degenerate subspace, can be rewritten as
(1K) = Spi,  (KOIK") = b0 - (B.86)
The corresponding relations for the eigenvectors spanning the degenerate subspace read

@) = 6w, (PIp}) = doi- (B.87)

A}, and Contributions to |k') and [p]) within the Non-Degenerate Subspace

Applying the projector Pj onto (B.73), we receive the following eigenvalue equation to the

first-order in perturbation theory (m = 1)

Py(Ey, — BQ)lm) = Po(Ay = Ay Ing) - (B.88)

ny

For the case of Egl = EY, (n; = k'), the first-order corrections A}, to the eigenvalues EY, can

then be calculated as

AL = (KA [K). (B.89)
For the inequality Egl # EY,, there are two different possibilities for the equation

D—x D—x

> (Ep, = BOIKC) K ng) = D KK (A1 = Ay)Ind) (B.90)
k'=1 k=1
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to be true. FEither Egl = Eg #+ Eg, is an eigenvalue of the non-degenerate subspace or
Egl #* E,g, is an eigenvalue of the degenerate subspace.
For the first case E) = E} # Ej, it follows the contribution to the first-order correction

of the eigenvector k£ within the non-degenerate subspace
D—zx D—zx D—zx 10 0
10y /70071y (B.86) 10\ .01 72.1\ _ 0y (K7 AL[E)
S EOEEY =T DY RO EEY = > |k >m- (B.91)
KAk k=1 k=1 k'#£k k'=1 k k

For Egl = Egl one obtains the first-order correction to the eigenvector p? with respect to

the non-degenerate subspace

D—x
k A
S ) = 3 o) A lpr) (B.92)

(10 _ 170
k=1 k/=1 pl Ek:/ )

A} and Contributions to |k') and |p}) within the Degenerate Subspace

Applying in an analogous manner the projector Py onto (B.73), the corresponding equation
for m = 1 reads
Py(Ep, — B, )Ini) = Po(Ar = A ) - (B.93)

Assuming EY = EY (= E}) ) and using the normalisation condition (B.87), one can conclude
that

> I @AES, = E)Ipt) =0="Y_ [p){(polAslpf) = > 1) Ay, 6 - (B.94)
r=1 r=1 r=1
Comparing the above coefficients, the following equation has to hold
Azl;lfsrl = (pY|A1]p}) . (B.95)

The Kronecker-Delta on the left-hand side of (B.95) indicates that one has to find a basis
of eigenvectors spanning the degenerate subspace, in which the elements of A; are diagonal.
Within this new basis, whereby we make the change of the notation implicit, the first-order

corrections are given by the diagonal elements of A;:
Ay, = (A lpY) - (B.96)
For Egl = EY(# Egr) equation (B.93) reads
Z ’pr pr (Ek EO ’k Z ’pr pr (Al Ak ’ko Z ’pr pr’Al‘kO> (B97)
r=1 r=1

which yields the first-order contributions to |k') from the degenerate subspace

S 0 YY) Z| 0) pr’ L (B.98)
r=1
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As the unperturbed eigenvectors |[k’°), [p!) span a complete orthonormal system of the D-

dimensional space, we can interpret |k') as the basis-transformed vector

D—x

|K"0) (K|k") +Z\pr Ik, (B.99)
k=1 r=1

where we will again make the change of notation implicit and neglect the tilde in the following.
With the help of the latter formula we can summarise the two contributions to |k') obtained
n (B.91) and (B.98):

D—x "
IAR) (0141 1)

]Cl — <7 ]C/O APrlA1RT) | o . 5100

Ly k,#g/zl (B0 —E0) " T ; R (B.100)

In (B.94) we have seen that the operator (E) — Ag) acting on the degenerate subspace (p |
is singular. Thus, we cannot invert it in order to get the contributions to |p}) from the
eigenvectors which span the degenerate subspace [p!), r # [. However, one can define a

“pseudo’-projector according to

k/O k/O |

5 |
P = o Eg/ Z ) (B.101)
and apply it onto (B.73) for m = 1:
EY — EY . . .
éﬂ’ ny) = Py(Ar = Ay )np) = FpAi|ny) . (B.102)
pr — P

For E) = EJ) (= E) = E) ) and using P§ =1—Y"_, [p%)(p?| , it follows

i) = 3271 ) oilpl) +Fg A lp?)
——

unknown coeflicients

(B.103)

These unknown coefficients will appear in the calculation of the second-order corrections to
the eigenvalues as we will see in the next subsection.
A7, and A2

The second-order corrections to the eigenvalues of the non-degenerate subspace follow from
(B.73) with m = 2,
(En, — Ao)lnf) = (A1 = Ap)|nj) — A7 7)), (B.104)

by applying the projector P} on both sides for the case Egl = Eg/:

A% = (KO ALK . (B.105)
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Inserting the contribution to |k'), which was derived for the eigenvalues of the non-degenerate
subspace Egl = EY, yields for k = k'

xT
kOl A |p0 Ol A+ | k0 kOl A Py A4 KO
AZ/:Z< | 1\10?7~><PTL 1|7 (B alit B\ ) (B.106)
— Ey, — B By — Ep,
Analogously, applying the projector Py on (B.104) leads to
Po(Ep, — By )Inf) = Po(A1 — Ap))Ing) — RAL [nf) - (B.107)
For the degenerate eigenvalues Egl = Egl it follows, that
x x
AL I (pPpl) + A Z PO ) = > Ip2) (PP Avlp)) - (B.108)
Using the normalisation conditions, the coefficients of [p!) for each r have to fulfil
(B.103) — .
Ay ph) + 8% 60 = @ ApD) =D 0 A o pt) + (1AL Py ALRY)
r'=1
(B.95) _
Z Ay, O (pprlpr) + (PR A1 Py Au [p7)
= A, (Rlph) + WAL P A lp]) (B.109)
Concerning (B.109), we distinguish between the following three cases
A2 (P} A1 Py A |py)
l=r:A = (pY| AL PLAL|pY)) = B -, (B.110)
L#r, AL =AL A2 5, = (p)|A1P{A1|p]) (B.111)
(Y] A1 By Au|pf)
! 7& Ty AII)I 7£ Al (pr| l> TA}) OA}) l : (B112)
1 s

(B.110) gives us the second-order corrections to the eigenvalues. In (B.111) the degeneracy
is not lifted at first-order perturbation theory and A1]50’A1 has to be diagonalised in the
degenerate subspace according to the argument given above for the first-order correction of the
eigenvectors. The unknown coefficients drop out of the last equation (B.112), corresponding
to the case in which the degeneracy has removed. Thus we finally receive the first-order

corrections to the eigenvectors of the degenerate subspace:

- (P AL Py A [p) (K| AqlpD)
= > ) T ) (B.113)
r#l,r=1 p1 Pr k! Dr k'

We will give an explicit example of the usage of the above formulae in the next section.
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B.6 Analytic Diagonalisation of the Hierarchical Matrix

The aim of this section is to diagonalise the symmetric matrix given in (5.70) by taking
advantage of its hierarchical structure. We discuss two different perturbative approaches and

demonstrate that both supply the same result.

Analytic Diagonalisation I: “Direct” Calculation

The characteristic polynomial P(\), following from the characteristic equation
P(\) =Det (A— A1) =0, (B.114)

can be solved analytically up to the fourth power, e.g. with the solutions proposed by Cardano
[220]. In particular, for a 3 x 3 matrix A, the characteristic equation is given by the cubic
form

PO =X+ 2+ X +¢=0. (B.115)

As we are only interested in the solution with real eigenvalues, we follow the procedure pro-
posed in [221] and give a short summary of the relevant formulae therein.

The solutions of (B.115), which correspond to the eigenvalues of A, can be calculated by

1
A\ = gxi — g0, i=123 with  p=c2 -3¢, (B.116)
where the explicit expressions x; depend on the sign of the parameter ¢ = —2—2760 -3+ %CQCl.

In our case, with the entries (5.81) and (5.87), ¢ is negative (¢ = —1 4 O(e)) and
1= —2c0s¢, o=cosd—\3sing, x3=-cos¢d+3sing, (B.117)

with

1 1 1 27
b= 3 arctan [5\/27 <Z Ap—c1)+eolg+ Zco)> ] . (B.118)
Inserting the entries of A and expanding up to O(e?), the eigenvalues are found to be

A= A11M2€ — (A%Z + A%3)M262 R
2 M2
)\273:M —I—T(Agg—i—Aggﬂ:B)E

M2
+55 (£4A12A13403 + A3 (BE F) + Al3(BF F)) . (B.119)

The abbreviations introduced in (B.119) stand for

F=Agp — Az3, B=\/4A3;+F2, with B?>F?, (B.120)

L e
A23 = Sgn [A23]§ B2 - F2, (B121)

which implies
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In the 3-dimensional space, the associated eigenvectors vy, can be calculated efficiently by
using cross products [221]. With A7 denoting the j-th column of A and e; the j-th unit

vector, the real eigenvectors result from the formula
Uy, = (Al — )\z 61) X (A2 — )\z 62) . (B122)

In order to build up the orthogonal transformation matrix GZ; = (U, ,norms VA, norms UAs,norm )
the eigenvectors in (B.122) still have to be normalised (vx, norm = Na,vy;). For the con-
crete matrix A, all normalisation factors Ny, are proportional to 1/¢ and thus, knowing the
eigenvectors v, norm Up to O(e€), requires to calculate the eigenvalues up to O(e?).

Finally, the normalised eigenvectors can be summarised by

T
U\i,norm — <_17 Aroe, A13€)7

<(2A12A23 +(B—F)Ap)e, 240~ B0 e (B-F)+ —2A23X6>

’UT o B? B?
Ag,norm QB(B — F) )
. ( (—2A13403 + (B — F)App)e, (B—F)+ 248X 94,5 ¢ (B;Z)Xe>
v = ,
A3,norm 2B(B — F)
(B.123)
where we have used the short-hand notation
X = FAjp Az + Agz(A3; — Ad). (B.124)

Analytic Diagonalisation II: Rayleigh—Schrédinger Perturbation Theory

Due to the implemented hierarchy between the various entries, we may also use the algorithm
of Rayleigh—Schrodinger, introduced in Section B.5, to calculate the eigenvalues and eigenvec-
tors. As discussed there, the first step is to define the basis of the unperturbed eigenvectors

corresponding to the unperturbed eigenvalue problem
Aolnl) = E,[nf) (B.125)

In our example Ay is already diagonal and the eigenvalues can be read off. One can identify
a two-fold (x = 2) degeneracy at zeroth order in perturbation theory, i.e. the two different
eigenvalues EY = 0 and ESI = ESQ = EY = M? belong to three different eigenvectors |1°),
12) and |29). While the eigenvector, corresponding to the projector onto the non-degenerate
subspace (see (B.80) with & = 1)

P =191, (B.126)

is given by [1°) = (1,0,0)7, the basis of eigenvectors, which define the projector onto the

two-dimensional degenerate subspace (see (B.77) with p =2 and r =1,2)

Py = |29)(2}] + [29)(23)]. (B.127)
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has to be found by diagonalising the 2-dimensional submatrix of A; (see also [219] for details).

Normalising the set of unperturbed eigenvectors
19" = (1,0 0),
( Oa 2A23, (B _F) )

2)7" = 7
2B(B - F)
(0. (B-F), —243 )
29)7 = , (B.128)
2B(B - F)
according to
(nl/ |nl> = (Snn/(sul s (B129)

implies that all higher-order corrections ]n§> with ¢ = 1,2, ... are orthogonal to the unperturbed
eigenvectors ((nY|nf) = 0). As the eigenvectors |27}, |23) form the columns of an orthogonal
rotation matrix in the 2-dimensional subspace, it is convenient to define the corresponding

rotation angle &

sin¢ := M (B.121) 1 + £l cos & 1= M - 1 r , (B.130)

V2B(B - F) 2 2B’ V2B(B - F) 2 2B
where ¢ lies in the first quadrant as |B| > |F|. Using the basis of zeroth-order eigenvectors
(B.128), the O(e) contributions to the eigenvalues (B.89), (B.96) are given by

A% - <10‘A1’10> = M2A117
1
A3, 0, = (202141120 5) = §M2(A22 + A3z + B). (B.131)

Obviously, if B # 0 the degeneracy of the eigenvalues is removed at first-order perturbation
theory. As mentioned in the previous subsection as well as in the Section B.5, one has to
know the eigenvalues up to second order to be able to calculate the first-order corrections to

the unperturbed eigenvectors consistently. Including the second-order corrections

A% (B.;OG) _ M2 (A%2 + A%B.) ’

(B.110) M?

A21,22 QB

(:|:4A23A12A13 + (B + F)A12 + (B F F)Aig) , (B132)

the eigenvalues up to O(e?) are equal to the formulae given in (B.119). Using the expression
for Agg in terms of B and F' (B.121), the second-order contributions A%Lb to the eigenvalues

can then be rewritten as

M2
A21722 5B (\/B + FA12 sgn [Azg] +vB F FA13)2 . (B133)

The first-order correction to the eigenvector [1°) can be calculated via the formula

2
B.100) 20 A 10
T( E ’ 1‘ |20> ( 0, —A, —Ais ) : (B.134)

r:l
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Note that there is no further contribution within the non-degenerate subspace itself, as it is
only 1-dimensional. However, there are two different contributions to the first-order corrections
of the unperturbed eigenvectors belonging to the degenerate subspace. One comes from the

complementary space spanned by |1°) according to

10|A1|20> (2A12A23 + A13(B — F))
oyt o LA oy 1, 0, 0),
121) ESI—E?| ) °B(B - F) ( ’ )
10’A1‘20> (—214131423 —+ Alg(B — F))
oW > (U141 23) 197 = 1, 0, 0 ), B.135

which is naturally orthogonal with respect to the unperturbed eigenvector. The second con-
tribution stems from corrections within the degenerate subspace

W e @A 1000 42y (0 —(B- D)X 24nX)
121)" D | 23) =

(A3, — AL,)(E3, — EY) B2\ 2B(B-F)
o o B A0 a2 O MxX B-RX)
(Aj, — A} )(E3, — EY) B2/2B(B - F)

Note that the above contributions are indeed orthogonal to the corresponding unperturbed

eigenvectors |2(f,2>, as they should due to the normalisation condition (B.129).
Summarising all contributions within the Rayleigh—Schrodinger perturbation theory, the

eigenvectors up to O(e) are represented by

7= (1 s ). )

1207 (2412405 + A13(B — F))e, 2405 — C X e, (B F) + 23X )

v 2B(B - F) ;

oy = ((TPAudnt A8 Fe, (B F)+ Mgt —2an+ Ciie)
2B(B - F)

which coincide with (B.123). Introducing the definitions
. . X X .
sin y := —sgn [Ags] sin§ + 52 cose, cosy:=cos&+ 53 sen [Agg]sin e, (B.138)
and sgn [Aaz] sin & = sin [+£] for Aoz 2 0, (B.137) can be brought into the compact form
" = ( 1, —Ape, —Aze )7
12,)7 ( (Ajgsin [££] + Ajzcos)e, —siny, cosy ) ,

120)T = ( (—Ajgsin [+€] + Ajpcos€) e, cosy, siny > (B.139)

We showed that both methods provide the same results up to the given order in the ¢ expansion.
However, as the second one uses the expansion in the small parameter already from the

beginning, the calculation is much more transparent.
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B.7 Basis Transformation of the Effective Hamiltonian HAS 2

In this section we bring the effective Hamiltonian ’HASZ2 (5.159) into the basis where the

operators are diagonal in colour space. Writing out the colour indices explicitly, ’HAS 2 reads
AS=2 1 sd 2 a = wpa
He' = W[@L) (S Tasdrs) (r.o7 Thodie)
2 (M)

2
+ (Afzd> (nga'YuTgBdR,ﬁ) (ngp'YMTgadRﬂ)

+ 208 A (510w Tesdns) (5rp7 " Thndno) | (B.140)

Using the Fierz identities for the Gell-Mann matrices, which are given in terms of the SU(3).

generators Tis = AQ 5 /2
1 1
aaﬁ ga = 5 <5a055p - N5a55p0> ) (B.141)

as well as the Fierz identities for rearranging products of fermion bilinears [222]

* (3avuPrLdp) (3p7" Prda) = (SavuPrLda) (557" Prdg) = (37,P1d) (574" Prd),
* (3avuPrds) (557" Prda) = (3avuPrda) (357" Prdg) = (37, Prd) (57" Prd) ,
° (EQ’VHPLdﬁ) (Eﬁw“PRda) = -2 (EQPLda) (Eﬁdeﬁ) =-2 (EPLd) (EPRd) , (B.142)

the various terms in (B.140) can be reformulated:

-1

o (a5 Prds) (5,7 o Pudy) = =5 (5%, PLd) (57" Pod)
N -1

o (ar T Prds) (3,7 TS Prdy) = =5 (59uPrd) (57 Prd),

1
(S’V,uPLd)(S'YMPRd)

o (5 TEsPrds) (5,7 T Prds) = — (57, Prd) (57" Prd) — 5
(B.143)

Inserting (B.143) into (B.140), the effective Hamiltonian in the new basis is given by

1 SNZN -1 _
Ha' T = ——— | (A1) 53— GwPrd) (59" Prd)
9 < VA ))
KK
N -1
<A8d) —~— (59 Prd) (37" Prd)
205 AR ( = (5PLd) (5Pd) — 5 (37, Pud) (59 Prd) )|
(B.144)

2N

Using the abbreviations already introduced in (5.160),

OYEE = (3y,Prd) (34" Prd) , QYR = (5v,Prd) (37" Prd)

O = (57, Prd) (57" Prd), Q5" = (sPpd) (3Prd), (B.145)
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the effective Hamiltonian (B.144) is reexpressed by

1 N —1 N —1
HET? = — [P e+ () = ef

2
Thus, the Wilson coefficients of

1
HE=? = -——= [CYFFQVEE 4 CY QYRR 4 O QI + O QL] (B.147)
1 (ar))
with respect to the new basis are specified by
N - (N=3) 2
VLL _ sd sd
1 (Mkx) = —— (A ) (A )
N — (N=3) 2
VRR _ sd sd
ctonag = Y (s) 0203 ()
CY T (Mik) = %AidAst = —gAsLdA%l
CIR(Myxk) = —4 A58 A (B.148)

where we also give the results for three colour degrees of freedom (N = 3).

B.8 Effective 4D Feynman Rules: Two Examples

For demonstration we will calculate the 4D Feynman rules for the couplings of the fermion
zero modes to the Z boson as well as the triple-gauge vertices involving the Z boson. After
expanding the S-matrix, decomposing the field operators into Fourier series, carrying out all
possible Wick contractions, the Feynman amplitude for the vertex is equal to the prefactor of
the interaction Lagrangian of the involved particles up to a factor of i. The KK decomposition

allows to obtain a 4D effective theory from the 5-dimensional full theory.

Zero Mode Fermion Couplings to the Z Boson

L . . . . : . 2/3
We begin with the calculation of the 3-dimensional diagonal coupling submatrix [A L/ (Z)]oo
(upper left corner of A 2/ 3( 7)), which determines the coupling of the SM Z gauge boson to the
SM up-type quarks corresponding to the vertex g, '(0) (O)Z . Being aware that the Z boson
appears in X, WL, WR and that ¢;* is embedded in the bidoublet fi 1, the relevant terms in

Lfermion Stemming from the covariant derivative Db look like

L
Lin > - /0 dy \/56’“@’<6%“(ngqu)<1? +TEA(GTEWE ) + Ty (gT%Wi,M)Q%")-
(B.149)
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With the help of the formulae in (5.64) which give WE’ r in terms of the physical fields, and

the analogue relation for X
X =cospcostpA — cos psinpZ —sinpZx , (B.150)

we can rewrite the equation (B.149), where we omit the terms including couplings to the

photon:
L k
Emt D) /0 dy e 3~y q7r' v (gX Qx (cos psinp Z" + sin gng()) q

3ky uZ o Sky —uZ m SIHQTZJ m
q; (gTL cosZ ) q; (g TR cos ¢Z'y p— —7 >
(B.151)

As discussed in Subsection 5.8.1, the integration over the extra dimension after the KK de-
composition can be carried out explicitly for the couplings to gauge boson zero mode profiles.

Thus, the couplings to the Z(©) mode in (B.151) simplify to the flavour-universal 4D effective

couplings:
gx o 9 43 g 3 . 92 _u;(0) (0) wi(0)
. cosopsiny — ——=T57 cos) + ——T» sin > rz . B.152
<\/EQX gsiny VL L v \/Ecosw R V)i po L ( )

Reexpressing Qx by means of equation (5.51), the contributions can be summarised as

m (TL — sin ¢Q) “ZHQUZ(O) (B153)

where we also used the fact that Z(©) corresponds to the SM Z boson up to small admixtures
with Zg and Z’ after EWSB.

The couplings to the first KK mode Z() can be derived analogously by remembering
that the appropriate overlap integral R?,, which involves the shape function g(y) of (5.58), is

nk
defined in (5.138):

g i 2 —u;(0) (1 ) u,(O)
——RU(++ T — sin (;2 “Z . B.154
\/ZCOS?/) 00 ( ) ( L s w ) ( )

After EWSB, the KK mode Z() is rotated into its mass eigenstate and given as a linear
combination of physical fields. Concentrating on the contribution Z(1) 3 —eIf' /cos? ) 7,
(B.154) contains the following couplings to the SM Z boson

9 1 T+ R T3 ui(0)
R ++ — Q “Z B.155
\/fcombCOSzT/) = ( )L( L sm ¢ ) miL ( )

(1)

Finally, the two contributions involving Z%.’, which contains the SM Z boson according to

2 5 I7 £29¢7 after EWSB, lead to

cos 10}

coq/)

1y 731(++) (gTRcos¢ gXQXsuru;S) “Zuq () (B.156)
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where the corresponding overlap integral P!, was introduced in (5.139) with the shape function
nk

g(y) of Z gfl) given in (5.59). Utilising gx = giif;f;, the equation can be rewritten by
- Ta = (T in® ¢) “Zup©. B.157
cos 1) cos ¢ ( (Tk + Q@x) sin ¢) 1 703()1(++)L qr "7 4pdr, ( )

In summary, the couplings of the left-handed up-type zero mode quarks to the SM Z boson
(corresponding to i[Ai/ 3(Z )]oo) read

i iy _ Z+Rz CosP 7o ui)pi B.158
iy [gz(q ) —€9z(q" )COS% () + e = 1 97x (4 )70’01(++)L oo )
where the coupling constants are given by
Wi g 3/ u; i .2 Ui
i) = ——— (T i) — sin ),
9z(q"") \/ECOW( (") ¥ Q(q"))
U; g 3 U 3 ui U; 2
= —— (T O — (T O+ ) sin , B.159
9zx(q") \/fcosqs( #(0") — (Tr(¢") + Qx(g")) sin® ¢) ( )

and the quantum numbers of ¢“ can be taken from (5.112). Adapting the formula (B.158)
to the quantum numbers and representation index m of the other quarks, we reproduce the

expressions as given in Table 5.1.

Effective 4D Feynman Rules for Triple-Gauge Vertices

In non-abelian gauge theories the presence of the gauge boson self-interaction term g f ach;’ | %%
generates vertices with three gauge bosons — called triple-gauge vertices. For instance, the
relevant terms for the SU(2); gauge bosons are contained in the gauge kinetic term
L L 4 ,
Lotge D — /0 dy L“ Lok > — /0 dy5 0,V O,Wi ) (—ge™WpH W), (B.160)

where €23 = 1. Using the formulae (5.54) and (5.64), the Lagrangian (B.160) can be rewritten
in terms of WfR, Z and A:

L
ig /0 dy [(~@, W7, — DWW+ @, — AW

#)W;’”) (cosyp Z¥ +sinyp AY)

oS Y02 — Dy Z )W WP+ sin(9u Ay — 0, AW WH] L (B.161)

Inserting the relations 8MW£FV = —ikMWZrV, oW, =—ip,W; , and 0,7, = —iq,Z,, where
k,p,q denote the incoming momenta of WZF , W, , Z, the contribution involving the Z boson

is given by

L
o gCOSi/J/O dy [WW(k - p)p + va(p - q)u + Wpu(q — k)] WZF7MWL_7VZP ) (B.162)
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and the analogue coupling to the photon by

L
. gsimb/o Ay v (k= D)p + Mop(p — @) + nppu(q — k)] W,HW, VAP (B.163)

Hence, the Dirac structure (DS) of all effective 4D Feynman diagrams, obtained after KK
decomposition and integration over the fifth dimension, will be the same so that we introduce

the following abbreviation

(DS, = (k= p)p +00p(p — O + Npu(q — k)] - (B.164)

For illustration, we only deduce the triple vertex involving the SM Z boson. Furthermore,
we will neglect all O(e) contributions. In this limit, the SM Z boson equals the zero mode

Z©) and the 5D overlap integral reduces to the orthonormality condition of the gauge boson
profiles ((B.51) for s = 2)

g cos Y

VL

According to our chosen approximation, the follwing relations hold

DS],,,, (W W™ 20w Wi D ze). (B.165)

pp
Wéo)i ~W*, Wél)i ~ cos W5 — sin y W'*. (B.166)
Inserting them into (B.165), yields

geosy [DS],.,,, (WHW ™27 4 cos® x W W 27 + sin® x W W'~ 27

VL

— cosxsiang’“W’_’”Zp — cos x sin XW”““WE”Z”) . (B.167)

In addition, the SU(2)r gauge bosons have the following couplings to the Z boson:

L
ig/o dy [(—@Wgy — QW W+ (0, W, — aywlg,ﬂ)wg’“) (— sin e sin ¢ Z°)

—sinsing (0,2, — 0,2, W Wi "

L
= —gsinysing /0 dy[DS],,, WhHWerZP. (B.168)
With Wg)i ~ sin XW; + cos x W'#, the above contribution, after performing the integration
over the extra dimension, is given by
gsin sin ¢ . ST P _
T DS],,,,, (sm2 XW i HW P ZP + cos® YW/ TR W= 2P (B.169)
+sin x cos YW W'Y ZP 4 sin y cos XW’J““WI;’"Z”) ) (B.170)

Summarising all terms contributing to a given vertex, we collect the respective couplings
involving the Z boson in Table B.1 and illustrate the Feynman diagrams for the various

by

triple-gauge vertices with Dirac structure [DS] Jp
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0
Vo
)
k D
VMJF / \ V-

v

, where V7 = W, WE " WiV, =W, Wy, W, V) = Z, and k, p, q are their incoming

momenta.

Couplings to the Z boson

WHWw-2Z i% cos i + O(€?)
WiW-Z O(e)
WHW -7 O(e)

WiWy,Z i% (cos ¢ cos® xy — sin ¢sin ¢ sin? y)

WtW,Z —i% sin y cos x (cos ) + sin ¢ sin 1))

Table B.1: Triple-gauge boson couplings to the Z boson. The coupling of WTW 5 Z is equal
to Wt W= Z, the same is valid for WTW'=Z and W'*TW~Z as well as WiW'~Z and
WHHW, Z.
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