Jörg Völkel (Hrsg.)

Bodenkunde Landschaftsökologie Quartärforschung

ZUL

Monitoring zur Standortvariabilität von Radiocäsium in Böden

Jörg VÖLKEL, Kerstin HÜRKAMP, Matthias LEOPOLD, Jennifer WINKELBAUER

2009

Band **15** ISSN - 2190-7382

ABSCHLUSSBERICHT IM FORSCHUNGSVORHABEN

Monitoring zur Standortvariabilität von Radiocäsium in Böden

im Auftrag des Bayerischen Staatsministeriums für Umwelt und Gesundheit StMUG München

gemäß Bewilligungsschreiben vom 23.06.2006 unter Az. 96f-U8803.03-2005/1-5 durchgeführt vom 01.07.2006 bis 31.10.2009

von Univ.-Prof. Dr.rer.nat. Jörg Völkel Extraordinariat für Geomorphologie und Bodenkunde Wissenschaftszentrum Weihenstephan Technische Universität München 85350 Freising-Weihenstephan Tel. 08161 71-2500, 2502 (Fax) Email: jvoelkel@wzw.tum.de

Inhaltsverzeichnis

Ab	kürzungsverzeichnis	2
Ab	bildungsverzeichnis	3
Та	bellenverzeichnis	4
1.	Aufgabenstellung	8
2.	Stand der Forschung	8
3.	Methodik	10
4.	Ergebnisse	14
5.	Zusammenfassung	65
6.	Ausblick	66
7.	Literaturverzeichnis	67
8.	Anhangsverzeichnis	70
9.	Anhang	71

Abkürzungsverzeichnis

BIS	Bodeninformationssystem Bayern
BOKART	Software LfU - digitale Erhebung bodenkundlicher Daten im Gelände
DCB	Dithionit-Citrat-Bicarbonat-Extraktionsmethode nach MEHRA & JACKSON (1960)
Fe _p /Al _p /Mn _p	pyrophosphatlösliche Fraktion an Fe/Al/Mn
Fe _o /Al _o /Mn _o	oxalatlösliche Fraktion an Fe/Al/Mn
Fe _d /Al _d /Mn _d	dithionitlösliche Fraktion an Fe/Al/Mn
GIS	Geographisches Informationssystem
GPS	Global Positioning System
GRABEN	Projekt des LfU "Wissenschaftliche Grundlagen für den Vollzug der
	Bodenschutzgesetze"
IMIS	Integriertes Mess- und Informationssystem für die Überwachung der
	Radioaktivität in der Umwelt
KAKeff.	Effektive Kationenaustauschkapazität
LfU	Bayerisches Landesamt für Umwelt
MSGW	Messnetz Stoffeintrag-Grundwasser des LfU
n.b.	nicht bestimmt
n.n.	nicht nachweisbar
n.v.	nicht vorhanden
org.S.	organische Substanz
RF	Referenzfläche
StMUG	Bayerisches Staatsministerium für Umwelt und Gesundheit

Abbildungsverzeichnis

Abb. 1: Standortkundliche Einheiten und Umrisse der Naturräumlichen Landschaftseinheiten Bayerns sowie Lage der 48 Monitoringflächen.	10
Abb. 2: Skizzierung der Messflächenaufteilung und der Beprobungspunkte (Profil, Monolithen, IMIS).	11
Abb. 3: Markierung der Flächeneckpunkte durch Pfosten und Metallstangen.	12
Abb. 4: Entnahme von Bodenmonolithen.	12
Abb. 5: Stechsonde zur Entnahme der IMIS-Mischproben für organische Auflagen und Mineralböden.	12
Abb. 6: Überblick über die vorliegenden Bodentypen und Humusformen aller 48 Referenzflächen.	14
Abb. 7: Gemittelte und gewichtete Cs-137-Aktivitäten in Monolithen (links) und IMIS-Proben (rechts), jeweils für die organischen Auflagen (grün) und die Mineralböden (rot).	16
Abb. 8: Profil RF 1, schwach podsolierte Braunerde über Terra fusca.	17
Abb. 9: Profil RF 2, Norm-Braunerde aus Solifluktionsschutt über fossilem Bt-Horizont.	18
Abb. 10: Profil RF 3, mäßig podsolige Braunerde.	19
Abb. 11: Profil RF 4, schwach podsolige Parabraunerde.	20
Abb. 12: Profil RF 5, Braunerde-Terra fusca.	21
Abb. 13: Profil RF 6, Eisenpodsol mit Ortstein.	22
Abb. 14: Profil RF 7, schwach pseudovergleyte Braunerde.	23
Abb. 15: Profil RF 8, Eisenpodsol.	24
Abb. 16: Profil RF 9, Norm-Rendzina.	25
Abb. 17: Profil RF 10, Norm-Braunerde.	26
Abb. 18: Profil RF 11, Norm-Braunerde.	27
Abb. 19: Profil RF 12, Norm-Braunerde.	28
Abb. 20: Profil RF 13, Braunerde aus Lößlehmfließerde.	29
Abb. 21: Profil RF 14, Podsol-Pseudogley.	30
Abb. 22: Profil RF 15, Pararendzina in Terrassenschottern.	31
Abb. 23: Profil RF 16, Braunerde in Schottern über fossilem Ah-Horizont.	32
Abb. 24: Profil RF 17, Braunerde aus Dolomitgrus.	33
Abb. 25: Profil RF 18, Hochmoortorf mit Weiß- und Schwarztorf über kiesigen Grundmoränenlehmen.	34
Abb. 26: Profil RF 19, Hangpseudogley-Braunerde.	35
Abb. 27: Profil RF 20, Parabraunerde in Schottern.	36
Abb. 28: Profil RF 21, Parabraunerde.	37
Abb. 29: Profil RF 22, podsolige Braunerde.	38
Abb. 30: Profil RF 23, Norm-Braunerde.	39
Abb. 31: Profil RF 24, Braunerde-Terra fusca.	40

Abb. 32: Profil RF 25, schwach humose Braunerde.	41
Abb. 33: Profil RF 26, Gley-Podsol.	42
Abb. 34: Profil RF 27, Gley über Moränenschotter.	43
Abb. 35: Profil RF 28, mäßig podsolige Braunerde.	44
Abb. 36: Profil RF 29, Norm-Braunerde.	45
Abb. 37: Profil RF 30, Norm-Braunerde.	46
Abb. 38: Profil RF 31, Rendzina-Braunerde in lehmiger Albüberdeckung.	47
Abb. 39: Profil RF 32, Norm-Skeletthumusboden.	48
Abb. 40: Profil RF 33, Braunerde-Ranker.	49
Abb. 41: Profil RF 34, Norm-Braunerde.	50
Abb. 42: Profil RF 35, Norm-Braunerde.	51
Abb. 43: Profil RF 36, schwach podsolige Braunerde.	52
Abb. 44: Profil RF 37, Norm-Braunerde.	53
Abb. 45: Profil RF 38, Norm-Braunerde.	54
Abb. 46: Profil RF 39, Regosol über Braunerde-Pseudogley.	55
Abb. 47: Profil RF 40, Braunerde-Pseudogley.	56
Abb. 48: Profil RF 41, degradierter Pseudogley-Tschernosem.	57
Abb. 49: Profil RF 42, Braunerde-Pseudogley.	58
Abb. 50: Profil RF 43, Braunerde.	59
Abb. 51: Profil RF 44, pseudovergleyte Parabraunerde aus Lößlehm über (Pseudo-) Gley.	60
Abb. 52: Profil RF 45, Braunerde-Pseudogley.	61
Abb. 53: Profil RF 46, Niedermoortorf über Anmoorgley.	62
Abb. 54: Profil RF 47, mäßig podsolige Braunerde.	63
Abb. 55: Profil RF 48, Norm-Pararendzina.	64

Tabellenverzeichnis

Tab. 1: Cs-137-Aktivitäten unbearbeiteter Böden Bayerns.	15
Tab. 2: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 1.	17
Tab. 3: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 2.	18
Tab. 4: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 3.	19
Tab. 5: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 4.	20

Tab. 6: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 5.	21
Tab. 7: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 6.	22
Tab. 8: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 7.	23
Tab. 9: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 8.	24
Tab. 10: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 9.	25
Tab. 11: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 10.	26
Tab. 12: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 11.	27
Tab. 13: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 12.	28
Tab. 14: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 13.	29
Tab. 15: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 14.	30
Tab. 16: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 15.	31
Tab. 17: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 16.	32
Tab. 18: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 17.	33
Tab. 19: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 18.	34
Tab. 20: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 19.	35
Tab. 21: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 20.	36

Tab. 22:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 21.	37
Tab. 23:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 22.	38
Tab. 24:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 23.	39
Tab. 25:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 24.	40
Tab. 26:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 25.	41
Tab. 27:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 26.	42
Tab. 28:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 27.	43
Tab. 29:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 28.	44
Tab. 30:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 29.	45
Tab. 31:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 30.	46
Tab. 32:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 31.	47
Tab. 33:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 32.	48
Tab. 34:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 33.	49
Tab. 35:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 34.	50
Tab. 36:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 35.	51
Tab. 37:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 36.	52

Tab. 38:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 37.	53
Tab. 39:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 38.	54
Tab. 40:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 39.	55
Tab. 41:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 40.	56
Tab. 42:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 41.	57
Tab. 43:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 42.	58
Tab. 44:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 43.	59
Tab. 45:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 44.	60
Tab. 46:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 45.	61
Tab. 47:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 46.	62
Tab. 48:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 47.	63
Tab. 49:	Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 48.	64

1. Aufgabenstellung

Im Forschungsvorhaben zum Monitoring zur Standortvariabilität von Radiocäsium in Böden (Laufzeit 01.07.2006-31.10.2009) ist die Erstellung eines Netzes von Monitoringflächen zur Beprobung organischer Auflagen und Mineralböden in Wald- und Forstökosystemen des Bayerischen Staatsgebietes im Hinblick auf eine potentielle zukünftige Kontamination mit radioaktiven Substanzen zu erarbeiten.

Jeder Monitoringstandort wird in eine Referenzfläche und in eine benachbarte Nullfläche unterteilt. Auf den jeweiligen Referenzflächen ist der boden- und radioökologische Ist-Zustand anhand geeigneter Parameter zu erfassen, die Beprobungsfläche präzise zu markieren und einzumessen und parallel zur bereits beprobten Fläche eine genau definierte und vermessene Nullfläche als zukünftige Beprobungsfläche auszuweisen. Auf dieser so genannten Nullfläche soll im Ereignisfall die radioökologische Beprobung bzw. Messung der Gebietskontamination zur Charakterisierung der flächenhaften Gegebenheiten im Bayerischen Staatsgebiet erfolgen.

Vorgängerprojekte und internationale Vergleichsstudien, nicht zuletzt österreichischer Radioökologen und Forstwissenschaftler aus dem direkt benachbarten Staatsgebiet, haben gezeigt, dass naturräumliche Faktoren und deren Differenzierung in Form von Relief, Boden und Ökosystem einen entscheidenden Einfluss auf die Erfassung und die Ermittlung der potentiellen Bioverfügbarkeit des Radiocäsiums haben. Daher steht die Erarbeitung gebietsrepräsentativer Monitoringflächen auf Basis der naturräumlichen Heterogenität des Bayerischen Staatsgebietes und unter Bezug auf die bei Behörden und in der Literatur hinterlegten Naturräumlichen Einheiten Bayerns im Fokus des Projektes. Die Definition und Charakterisierung dieser Monitoringflächen ist der Schlüssel für die effiziente, den naturräumlichen Varianzen und besonderen Heterogenitäten Bayerns angepasste Erfassung einer potentiellen Kontamination mit Radionukliden im Ereignisfall. Diese Monitoringflächen stehen ab sofort bayernweit zur Verfügung.

Die ursprüngliche Vorgehensweise und Konzeption des Projektes, wie sie Grundlage der Erstbewilligung war, hat in Abstimmungsgesprächen zwischen dem Auftraggeber StMUG, dem Landesamt für Umwelt (LfU) und dem Auftragnehmer eine Modifikation in der Art erfahren, als dass die ursprüngliche Anzahl von 250 Beprobungsstandorten, die an den Naturräumlichen Landschaftseinheiten orientiert waren (VÖLKEL & LEOPOLD 2006b), auf 48 an standortkundlichen Einheiten nach WITTMANN (1983) orientierten Flächen zurückgefahren wurde. Zugleich wurde der Bearbeitungsaufwand pro Beprobungsstandort wegen der erforderlichen Integration der Ergebnisse in die bereits bestehende Bodendatenbank beim LfU erheblich erweitert (vgl. Kap. 3).

2. Stand der Forschung

VÖLKEL & LEOPOLD (2006a) geben einen umfassenden Überblick zum Forschungsstand von Radiocäsium in Waldböden. Auf diesen Bericht wird an dieser Stelle ausdrücklich verwiesen, ohne die Darstellungen hier nochmals zu doppeln. Der Umfang an Arbeiten über das Verhalten von Radiocäsium in Böden ist auch seit dem Jahr 2007 ungebrochen hoch, sodass untenstehende Zusammenfassung lediglich einen Ausschnitt aus diesen Arbeiten darstellt.

Weltweit beschäftigen sich bis heute wissenschaftliche Einrichtungen und Landesbehörden mit den Auswirkungen des Tschernobyl-Unfalls. So werden jüngst die Verteilungsmuster von Radiocäsium in Böden aus den unterschiedlichsten Ländern beschrieben, wie beispielsweise aus dem Libanon (EL SAMAD et al. 2007). Aus Bulgarien stellen ZHIYANSKI et al. (2008) ihre Ergebnisse zur Radiocäsiumverteilung in Waldböden und ihren organischen Auflagen vor. Analog hierzu stellen KARADENIZ & YAPRAK (2008) die Ergebnisse zur Radiocäsiumverteilung aus Waldböden in Izmir, Türkei vor. Aus Taiwan berichten CHIU et al. (2008) ihre Ergebnisse

in Waldböden zur Mobilisierung und Immobilisierung von Radiocäsium aus dem Kernwaffenfallout. Neue Ergebnisse zur Verteilung von Radiocäsium in der 30 km Umgebung von Tschernobyl werden von TSVETNOVA & SHCHEGLOV (2009) dargelegt (vgl. hierzu auch KVASNIKOVA et al. (2009)). Aus Griechenland berichten GIANNAKOPOULOU et al. (2007) den Einfluss des pH-Milieus auf das Sorptionsverhalten von Radiocäsium. Eine österreichische Studie beschäftigt sich mit dem Transfer von Radiocäsium aus den Böden in das hydrologische System eines Voralpensees (ERLINGER et al. 2009). Analog dazu stellen PUTYRSKAYA et al. (2009) die Ergebnisse zum Verhalten von Radiocäsium in einigen italienischen und schweizerischen Voralpenseen und deren Sedimente vor. Im Rahmen einer britischen Studie wird die Bedeutung der Mikrobodenorganismen, insbesondere der Pilze, für die Bindung von Radiocäsium in organischen Böden hervorgehoben (PAREK et al. 2008), ein Umstand, der sich auch in zahlreichen unserer Vorgängerstudien bemerkbar macht (VÖLKEL 2002, VÖLKEL & LEOPOLD 2006a). Neue Erkenntnisse zum Analogieverhalten u.a. von Radiocäsium und Kalium in Böden, welches maßgeblich die potentielle Bioverfügbarkeit aus den Böden in die Nahrungskette steuert, werden von VARGA et al. (2009) aufgezeigt. WAEGENEERS et al. (2009) stellen Arbeiten zur Aufnahme von Radiocäsium aus typischen europäischen Böden in landwirtschaftliche Nutzpflanzen unter Angaben von Transferraten vor. Den Einfluss von Stammablauf und Nadel- bzw. Blattfall auf die horizontale Verteilung von Radiocäsium in Waldböden von Laub und Nadelwäldern stellen FÖRSTER et al. (2008) vor. Einen guten Überblick über die Arbeiten zum Transferverhalten von Radiocäsium in Waldökosystemen wird in einem Review-Artikel von CALMON et al. (2009) bereitgestellt (vgl. hierzu auch KONOPLEVA et al. 2009).

Auch wurden neuere Studien über Sorptions- und Desorptionsmodelle (CHEMFAST, BIORUR) von Radiocäsium in Böden erarbeitet, welche das Prozessverständnis zur Bioverfügbarkeit dieses Isotops erheblich verbessern (TAMPONNET et. al. 2008). In Modellen wird zunehmend auch berücksichtigt, dass das heutige Verteilungsmuster des Radiocäsiums in Böden auch von der Art der damaligen Deposition (nass oder trocken) auf die Vegetation beeinflusst wird. Dieser Umstand fließt auch in die heutigen Simulationsmodelle mit ein (PRÖHL 2009). Verbesserte Modelle zur Migration von Cs-137 wurden an einem alten agrarwirtschaftlich genutzten Areal erprobt und weiterentwickelt (MONNA et al. 2009). ZIEMBIK et al. (2009) stellen ein multiples Regressionsmodell vor, um damit den Einfluss von Bodeneigenschaften auf die Akkumulation von Cs-137 zu beschreiben. KIRCHNER et al. (2009) plädieren in ihrer neuesten Arbeit, auch auf Basis der längjährigen Untersuchungen zum Verhalten von Radiocäsium in Österreich, für die Beschreibung der Migration von Radiocäsium ausschließlich prozessbasierte physikalische Modelle zu verwenden.

Eine ganz andere, überaus aktuelle Thematik greifen DOWDALL et al. (2008) auf. Sie diskutieren, inwieweit sich der globale Temperaturanstieg auf die Bioverfügbarkeit von Radiocäsium auswirkt. Die Arbeit von DOWDALL et al. (2008) ist bewusst spekulativ aufgebaut, stellt aber wichtige Bausteine für eine befruchtende Diskussion auf diesem Gebiet zur Verfügung.

Schließlich stellen BELLI et al. (2009) unterschiedliche Beprobungsarten für radionuklid- belastete Böden im Rahmen des ALMERA Netzwerkes (*Analytical Laboratories for the Measurement of Environmental Radioactivity*) vor und vergleichen diese untereinander.

Obige Zusammenstellung zu neueren Forschungsarbeiten und -ergebnissen stellt lediglich einen kleinen Ausschnitt aktueller Forschungen und Forschungsrichtungen dar. Es soll damit aber aufgezeigt werden, dass die Verteilung, die Bindung und Migration sowie die potentielle Bioverfügbarkeit von Cs-137 bis heute trotz intensiver Arbeiten in den vergangenen Jahrzehnten an Aktualität nichts eingebüßt hat. Aus diesen Gründen erscheint die vorsorgliche Errichtung eines Netzwerkes an Monitoringflächen für zukünftige Ereignisse im Bayerischen Staatsgebiet, wie dies im hier berichtspflichtigen Forschungsvorhaben durchgeführt wurde, nur folgerichtig.

3. Methodik

Unter Modifikation der im ursprünglichen Antrag dargelegten Vorgehensweise auf Basis von Projektbesprechungen am StMUG in München und am LfU in Hof werden die Beschreibungen der Bodenprofile auf Grundlage der im so genannten GRABEN-Projekt des LfU definierten und niedergelegten Vorgaben erstellt. Ziel ist die vollständige Integration der im Vorhaben erhobenen Daten in die entsprechenden Datenbanken des LfU, insbesondere in das Bayerische Bodeninformationssystem BIS.

Abb. 1: Standortkundliche Einheiten und Umrisse der Naturräumlichen Landschaftseinheiten Bayerns sowie Lage der 48 Monitoringflächen (nach StMUGV 2000).

Die Auswahl der Standorte erfolgte auf Basis der Gliederung der naturräumlichen Großeinheiten Bayerns, wie sie auch am LfU verwendet wird. Die Auswahl war Teil der Projektarbeiten aus Phase 1 des vorliegenden Forschungsvorhabens, dargelegt im entsprechenden Endbericht vom 21.12.2006 (Az. 96f-U8803.03-2005/1-5, VÖLKEL & LEOPOLD 2006b), und richtet sich nach folgenden Auswahlkriterien absteigender Reihenfolge:

- 1. Standortkundliche Einheit,
- 2. Höhenlage,
- 3. Staatsforstgebiet,
- 4. bestehende Bodendauerbeobachtungsmessnetze des LfU,
- 5. IMIS-Depositionsmessnetz des Bundes,
- 6. MSGW-Messflächen des LfU (Grundwasser),
- 7. Standortwahl möglichst nahe an bestehenden Messpunkten des GRABEN-Projektes des LfU.

Der Reduzierung der Flächenanzahl von 250 auf 48 liegt die Überlegung zugrunde, größeren Landschaftseinheiten mehr Flächen, kleineren entsprechend weniger Monitoringflächen zuzuordnen, wobei insgesamt jedoch ein homogenes, möglichst repräsentatives Verteilungsmuster über Bayern gewährleistet sein soll (Abb. 1). Die entsprechenden naturräumlichen Einheiten werden dabei vereinfachend zu so genannten standortkundlichen Landschaftseinheiten nach WITTMANN (1983) zusammengefasst.

Abb. 2: Skizzierung der Messflächenaufteilung und der Beprobungspunkte (Profil, Monolithen, IMIS).

Die Messflächen liegen in der Regel im Staatsforst und wurden jeweils in Form einer Referenz- und einer Nullfläche (s. Anhang 9.1) ausgewiesen. Entsprechend der Ergebnisse von VÖLKEL & LEOPOLD (2006) unter Berücksichtigung der Mächtigkeitsvarianzen der organischen Auflagen variiert die Flächengröße in Abhängigkeit des Reliefs. Sie beträgt im ebenen oder schwach geneigten Gelände 100 x 50 m. In Gebieten mit hoher Reliefenergie wird sie auf 60 x 30 m verkleinert. Die Eckpunkte der Null- und Referenzflächen werden mit Holzpflöcken markiert. Zusätzlich werden Vierkanteisenstäbe von 3 x 3 x 20 cm (B, L, H) an den vier Eckpunkten der Gesamtfläche 30 cm tief in den Boden eingeschlagen (Abb. 2 und 3). So ist im Falle des Verlustes der hölzernen Markierungspflöcke eine nachträgliche Verortung der Flächen mit Hilfe eines Metalldetektors möglich. In aller Regel wird zur Wiederauffindung der potentiellen Beprobungsfläche im Ereignisfall die Verortung im Gauß-Krüger-Koordinatensystem sowie der Verschneidung mit Topographischen Karten im Geographischen Informationssystem (GIS) ausreichen. Zudem werden Flächeneckpunkte mit Hilfe eines *Global Positioning Systems* (GPS) eingemessen und auf der Kartengrundlage der Topographischen Karten 1:25.000 (BUNDESAMT FÜR KARTOGRAPHIE UND GEODÄSIE 2006) verortet. Ein Verlust der zukünftigen Monitoringpunkte bzw. Referenzflächen ist somit ausgeschlossen.

Abb. 3: Markierung der Flächeneckpunkte durch Pfosten und Metallstangen.

Abb. 4: Entnahme von Bodenmonolithen.

Auf den Referenzflächen wurden die zur Erfassung der Bodenradioaktivität erforderlichen bodenkundlichen Untersuchungen durchgeführt. Auf jeder Einzelfläche befindet sich ein Bodenprofil in Form einer Schürfgrube; zusätzlich werden Bodenbeprobungen an zwei weiteren Bodenmonolithen im direkten Umfeld ausgeführt (Abb. 4). Das Bodenprofil hat in der Regel eine Tiefe von 1 m, die Monolithen reichen bis etwa 30 cm Tiefe. Die bodenkundliche Aufnahme im Gelände erfolgte einheitlich nach Vorgaben des LfU mit Hilfe eines Profildatenblattes aus dem GRABEN-Projekt, das an die Bodenkundliche Kartieranleitung (AD-HOC AG BO-DEN 2005) angelehnt ist. Diese detaillierte und gegenüber der ursprünglichen Antragstellung aufwendigere Aufnahme im Gelände dient der Einbindung der Daten in das Bayerische Bodeninformationssystem (BIS). Die feldbodenkundlich erhobenen Daten werden dafür mit der Software BOKART im Rahmen des Forschungsvorhabens digitalisiert und dem LfU zur Verfügung gestellt (Anhang 9.2).

Abb. 5: Stechsonde zur Entnahme der IMIS-Mischproben für organische Auflagen und Mineralböden gemäß den Vorgaben des BMU (2006).

Das Verfahren zur Beprobung wurde deshalb entsprechend der Richtlinien im GRABEN Projekt des LfU erweitert. Neben einer horizontbezogenen Beprobung des Profils und der Bodenmonolithen für gammaspektrometrische Vermessungen analog zu VÖLKEL & LEOPOLD (2006: 69f.) wird jede Referenzfläche zusätzlich nach den IMIS-Vorgaben beprobt und vermessen (Abb. 5, BMU 2006). Das gewährleistet die Vergleichbarkeit der hier erhobenen radioökologischen Daten der zukünftigen Monitoringflächen mit bestehenden Datensätzen des Bundes und der Länder. Zudem ergeben sich wichtige Informationen zur Heterogenität der Verteilung der Cs-Kontamination innerhalb der Referenzflächen.

Für die IMIS-Beprobung wurden entsprechend der Vorgaben des BMU (2006) 30 Einschläge einer 30 cm langen Stechsonde mit 55 mm Durchmesser entlang einer virtuellen, entsprechend Abb. 2 über die Referenzfläche gezogenen Zick-Zack-Linie durchgeführt und die daraus gewonnenen Proben in organische Auflagen (nur Of- und Oh-Horizonte) und Mineralböden aufgetrennt. Aus beiden Fraktionen wird je eine Mischprobe gewonnen. Die Mächtigkeiten der jeweils zusammengefassten Boden- bzw. Auflagenhorizonte ist in Anhang 9.3 festgehalten und gemittelt für jede Referenzfläche angegeben.

- Im Labor werden die Bodenproben und organischen Auflagen bei 40°C im Trockenschrank getrocknet. Die mineralischen Proben werden gemörsert und von der Fraktion mit Korngrössen > 2 mm abgetrennt. Für die weiteren Analysen findet lediglich die Feinkornfraktion < 2 mm Verwendung. Die humosen Proben aus den organischen Auflagehorizonten der Böden werden gehäckselt und homogenisiert.
- Ferner erfolgt die Bestimmung der physikochemischen Parameter wie Korngröße, Karbonatgehalt, pH-Wert, effektive Kationenaustauschkapazität und die Gehalte an Kohlenstoff sowie Stickstoff und Schwefel an allen Bodenproben (Anhang 9.4).
- Die Korngrößenanalysen werden mittels des kombinierten Pipett- und Siebverfahrens nach Köhn & Köttgen durchgeführt. Auf eine vorhergehende Humus- und Karbonatzerstörung wird verzichtet.

Die Ermittlung des Karbonatgehaltes mit der Apparatur nach SCHEIBLER & FINKENER erfolgt nur an den Proben, die zuvor im Karbonatschnelltest eine Reaktion aufwiesen.

Die pH-Werte aller horizontbezogenen Bodenproben werden potentiometrisch mittels einer Glaselektrode InLab 412 der Fa. Mettler Toledo an einem pH-Messgerät der Fa. WTW (pH 521) bestimmt. Dazu werden die Bodenproben im Verhältnis 1:2,5 mit 0,01 M CaCl₂ versetzt. Für Proben, die reich an organischer Substanz sind (= organische Auflagen) beträgt das Verhältnis 1:5. Die Messung erfolgt nach einer Reaktionszeit von 30 min sowie zur Ermittlung eines Kontrollwertes erneut nach 24 h. In die Tabellen der Bodenanalytischen Standardparameter im Anhang 6.4 wurde der Messwert nach einer Reaktionszeit von 30 min eingetragen.

Die Gesamtgehalte an Kohlenstoff, Stickstoff und Schwefel resultieren aus der Messung nach dem Prinzip der katalytischen Rohrverbrennung unter Sauerstoffzufuhr und hohen Temperaturen mit einem Vario EL III der Fa. Elementar. Die Proben werden zuvor in Achatbechern in einer Kugelmühle (Pulverisette 5, Fa. Fritsch) gemahlen. 10-30 mg der Probe (je nach Gehalt an organischer Substanz) werden in Zinnschiffchen zur Doppelbestimmung zweifach eingewogen. Die Verbrennung der Proben erfolgt in reinem Sauerstoff bei 1.150°C. Die dabei entstehenden Gase N₂, SO₂ und CO₂ werden in speziellen Adsorptionssäulen fixiert. Ein Wärmeleitfähigkeitsdetektor erfasst die Wärme des Trägergases Helium und integriert daraus die Elementgehalte. Für die Richtigkeit der Daten werden Messungen an Sulfanilsäure vorgeschaltet, aus denen der Tagesfaktor als Korrekturfaktor berechnet wird.

Für die effektive Kationenaustauschkapazität (KAKeff, Anhang 9.5) wird der Feinboden mit NH₄CI im Verhältnis 1:10 geschüttelt. Die Gehalte an Natrium, Kalium, Calcium, Magnesium, Eisen, Mangan und Aluminium werden in den Eluaten an einem Flammen-Atomabsorptions-

spektrometer (AAS, Firma ATI UNICAM, Typ Solaar 939) gemessen. Die detaillierte Beschreibung der Methoden kann den Arbeiten von VÖLKEL (1995), MAHR (1998) und HÜRKAMP (2006) entnommen werden, ist aber auch in den Berichten der Vorgängerprojekte (Z.B. VÖLKEL 1997, 1999, 2002, VÖLKEL & LEOPOLD 2006a) hinterlegt.

An den Referenzflächen 5, 17, 24 und 27 erfolgte zusätzlich eine Ermittlung der Gehalte pedogener Oxide in nichtsilikatischer Bindung, die zuvor sequentiell über ein dreistufiges Extraktionsverfahren an derselben Probe extrahiert werden. Die Einzelfraktionen beruhen auf der Dithionit-Citrat-Bicarbonat-Methode (DCB) nach MEHRA & JACKSON (1960) für die kristalline Fraktion, der Ammoniumoxalat-Methode nach SCHWERTMANN (1964) für die amorphe Fraktion und der Natriumpyrophosphat-Methode nach VON ZEZSCHWITZ et al. (1973) für die organisch gebundene Fraktion. In atomabsorptionsspektrometrischer Bestimmung werden dithionitlösliche, oxalatlösliche und pyrophosphatlösliche Gehalte der Elemente Eisen (Fe_d, Fe_o, Fe_p), Aluminium (Al_d, Al_o, Al_p) und Mangan (Mn_d, Mn_o, Mn_p) ermittelt (Anhang 9.6).

4. Ergebnisse

In den folgenden Teilkapiteln werden die 48 ausgewählten Referenzflächen kurz vorgestellt und charakterisiert. Einen Überblick über die vorgefundenen Bodentypen und auflagernden Humusformen auf den Referenzflächen gibt Abb. 6. Für jede Fläche werden die Cäsium-Aktivitäten in einer kurzen Statistik zusammengefasst und in Abb. 7 graphisch dargestellt, um die Ergebnisse der IMIS-Proben und der Monolithen auf einen Blick bewerten zu können.

Abb. 6: Überblick über die vorliegenden Bodentypen und Humusformen (entsprechend der Richtlinien im GRABEN-Projekt des LfU) aller 48 Referenzflächen.

Der Vergleich der zwischen 2006 und 2009 ermittelten Cs-137-Aktivitäten (s. Anhang 9.7) mit den aktuellen vom LfU erhobenen Bodenbelastungen unbearbeiteter Böden (Weideböden) Bayerns (Tab. 1) liefert für die einzelnen Messflächen eine grobe Bewertung der heutigen Kontamination bayerischer Böden. Mehr als eine grobe Einschätzung ist in diesem Fall auch nicht möglich, da Cs-Aktivitäten in Waldböden mit unbehandelten Weideböden aufgrund unterschiedlicher Mächtigkeiten oder fehlender organischer Auflagen nicht direkt verglichen werden können. Der Vergleich vermittelt einen Eindruck, inwiefern die gewählten Referenzflächen im Bezug auf die Cäsiumaktivitäten repräsentativ für die standortkundliche Einheit gewählt wurden. Er wurde anhand der Messergebnisse der Cs-Aktivitäten der IMIS-Proben und der gewichteten Mittelwerte der Profile und Monolithen bis 30 cm Tiefe *nur für die* Messflächen angestellt, die im selben Landkreis wie die im Internet verfügbaren aktuellen Messpunkte des LfU der letzten zwei Jahre für unbearbeitete Böden gelegen sind. Zusätzlich wurde für die Auswertung die Aktivität der jeweiligen Ah-Horizonte gegenübergestellt.

Messdatum	lessdatum Regierungsbezirk Landkreis		Bodenart	Cs 137	Einheit
14.05.2009	Oberbayern	Rosenheim	Lt	114,0	Bq/kg(TM)
12.05.2009	Schwaben	Ostallgäu	Lt	91,1	Bq/kg(TM)
23.04.2009	Schwaben	Kempten (Allgäu), Stadt	Lt	102,0	Bq/kg(TM)
23.04.2009	Schwaben	Unterallgäu	SI	108,0	Bq/kg(TM)
08.04.2009	Oberfranken	Hof, Stadt	Ls	43,5	Bq/kg(TM)
01.04.2009	Mittelfranken	Roth	Ls	25,8	Bq/kg(TM)
31.03.2009	Oberfranken	Bayreuth	Lt	17,6	Bq/kg(TM)
19.03.2009	Unterfranken	Main-Spessart	Ut	8,0	Bq/kg(TM)
16.03.2009	Oberpfalz	Cham	Us	42,3	Bq/kg(TM)
16.03.2009	Oberpfalz	Regensburg	Us	51,8	Bq/kg(TM)
18.09.2008	Oberbayern	Berchtesgadener Land	Lt	378,0	Bq/kg(TM)
18.09.2008	Oberbayern	Miesbach	Ls	88,3	Bq/kg(TM)
18.09.2008	Oberbayern	Traunstein		195,0	Bq/kg(TM)
11.09.2008	Niederbayern Passau, Stadt Ls		Ls	25,6	Bq/kg(TM)
10.09.2008	008 Niederbayern Freyung-Grafenau		Ls	44,2	Bq/kg(TM)
10.09.2008	Niederbayern	iederbayern Regen		52,9	Bq/kg(TM)
27.08.2008	Oberbayern	Freising		26,6	Bq/kg(TM)
24.08.2008	2008 Oberbayern Rosenheim Lt		Lt	57,2	Bq/kg(TM)
29.07.2008	008 Schwaben Kempten (Allgäu), Stadt L		Lt	108,0	Bq/kg(TM)
29.07.2008	Schwaben	Unterallgäu	SI	118,0	Bq/kg(TM)
23.07.2008	Oberbayern	Garmisch-Partenkirchen	Lt	204,0	Bq/kg(TM)
23.07.2008	Oberbayern	Weilheim-Schongau		148,0	Bq/kg(TM)
11.06.2008	06.2008 Oberbayern München H		Н	80,4	Bq/kg(TM)
29.05.2008	Schwaben	chwaben Ostallgäu Lt		99,5	Bq/kg(TM)
17.04.2008	Oberfranken	oerfranken Hof, Stadt Ls		39,9	Bq/kg(TM)
10.04.2008	Mittelfranken	Roth Ls		24,7	Bq/kg(TM)
09.04.2008	Oberpfalz	Oberpfalz Cham Us		57,7	Bq/kg(TM)
09.04.2008	Oberpfalz	berpfalz Regensburg		52,8	Bq/kg(TM)
31.03.2008	Oberfranken	Bayreuth	Lt	19,2	Bq/kg(TM)
31.03.2008	Unterfranken	Main-Spessart	Ut	10,1	Bq/kg(TM)

Tab. 1: Cs-137-Aktivitäten unbearbeiteter Böden Bayerns (Quelle: http://inters.bayern.de/umweltproben/php/formular.php, Stand Oktober 2009).

Um einen besseren Vergleich der Belastungen der Punktbefunde in den Profilen und Monolithen mit der gemittelten Flächenkontamination, erhalten aus den Messwerten der IMIS-Mischproben, herzustellen, wurden für die Monolithen und Profile, letztere im Folgenden auch als Monolith 1 bezeichnet, gewichtete Mittelwerte berechnet. Dazu diente die jeweilige Mächtigkeit der Of- und Oh-Horizonte als Multiplikationsfaktor bei der Berechnung der Mittelwerte für die organischen Auflagen und entsprechend die Mächtigkeiten der Mineralbodenhorizonte als Faktor für das gewichtete Mittel der Mineralbodenfraktion, die in einer Tabelle für jede Referenzfläche gegenübergestellt, verglichen und in wenigen kurzen Sätzen kritisch bewertet werden. Die L-Horizonte blieben sowohl bei der IMIS-Beprobung als auch bei der Berechnung der gewichteten Mittelwerte der Monolithen unberücksichtigt wie es auch die Beprobungsvorgabe für IMIS (BMU 2006) vorsieht. Die Gewichtung erscheint notwendig, da die höchsten Cs-137-Aktivitäten häufig in den Oh-Horizonten liegen, diese aber aufgrund ihrer geringen Mächtigkeit in den IMIS-Proben unterrepräsentiert sind. Aus den gewichteten Mittelwerten der drei Monolithen wurde wiederum ein Mittelwert gebildet, der zum Vergleich mit den IMIS-Werten in den Tabellenspalten "Monolithen gesamt" bereitgestellt wird.

In jedem Fall ist festzuhalten, dass die gemessenen Aktivitäten in den IMIS-Proben (Anhang 9.7) für die Mineralböden einen Mischwert widergeben, der starke Sprünge der Cs-Aktivitäten z.B. an Horizontgrenzen relativiert.

Die organischen Auflagen weisen in den Monolithen meist höhere Cs-137-Aktivitäten auf als in den IMIS-Mischproben (Abb. 7). Dies muss hauptsächlich auf die unsaubere Trennung von organischen Auflagen und Mineralbodenhorizonten zurückgeführt werden, die in der Praxis im Gelände bei der IMIS-Beprobung aufgrund der Entnahme aus der Stechsonde erschwert ist.

Abb. 7: Gemittelte und gewichtete Cs-137-Aktivitäten in Monolithen (links) und IMIS-Proben (rechts), jeweils für die organischen Auflagen (grün) und die Mineralböden (rot).

RF 1 – 7037 Kelheim

Referenzfläche 1 liegt auf der Topographischen Karte 1:25.000 Blatt 7037 Kelheim in der Gemeinde Sinzing, Landkreis Regensburg. Sie liegt auf einer Höhe von 496 m NN in einem hängigen Kulminationsbereich unter Mischwald und repräsentiert die Naturräumliche Landschaftseinheit der Südlichen Frankenalb sowie die Standortkundliche Einheit der Fränkischen und Schwäbischen Alb. Im Profil (Abb. 8) ist eine schwach podsolierte Braunerde über einer Terra fusca aufgeschlossen, die in einer Solifluktionsdecke entwickelt ist und Kreidetripel sowie Lößlehmbeimengungen enthält. Als Humusform ist ein typischer Moder entwickelt.

Abb. 8: Profil RF 1, schwach podsolierte Braunerde über Terra fusca.

Tab. 2: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 1.

PE1 7037 Kelheim	gewichtete Mittelwerte der Aktivitäten [Bq kg ⁻¹]				Aktivität [Bq kg ⁻¹]
Ki 17037 Keineini	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	376,13	269,70	154,45	266,76	148,00
Mineralboden (A+B-Horizonte)	17,08	13,65	21,26	17,33	19,60

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 2) zeigt, dass die Aktivitäten für die Mineralböden durchaus vergleichbar sind. Bei den Auflagen sind zwei der drei Monolithen stärker belastet als die Mischprobe der IMIS-Beprobung, d.h. die Cs-Kontamination auf der Fläche ist entsprechend heterogen und daher durch die IMIS-Beprobung nicht exakt zu erfassen.

Die vom LfU ermittelten Aktivitäten für einen unbearbeiteten Boden (sandiger Schluff) im Landkreis Regensburg lagen am 09.04.2008 und 16.03.2009 bei ca. 52 Bq kg⁻¹ (Tab. 1). Die gewichteten gemittelten Aktivitäten für die Mineralböden der Monolithen und IMIS-Proben weisen geringere Werte auf. Der Mittelwert der Cs-Aktivität des Ah-Horizontes der drei Monolithen liegt mit 83,44 Bq kg⁻¹ darüber.

Daten zum physikochemischen Ist-Zustand der RF 1 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 2 – 6840 Reichenbach

Referenzfläche 2 liegt auf der Topographischen Karte 1:25.000 Blatt 6840 Reichenbach in der Gemeinde Wald, Landkreis Cham. Sie liegt auf einer Höhe von 631 m NN an einer Hangverflachung im Mittelhang unter Buchenwald und repräsentiert die Naturräumliche Landschaftseinheit des Falkensteiner Vorwaldes sowie die Standortkundliche Einheit des Bayerischen Waldes. Im Profil (Abb. 9) ist eine Norm-Braunerde aus Solifluktionsschutt über einem fossilen Bt-Horizont aufgeschlossen. Als Humusform ist ein feinhumusarmer Moder entwickelt.

Abb. 9: Profil RF 2, Norm-Braunerde aus Solifluktionsschutt über fossilem Bt-Horizont.

Tab. 3: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 2.

PE2 6840 Peichenbach	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
Ri 2 0040 Reichenbach	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	185,79	140,80	287,20	204,60	116,80
Mineralboden (A+B-Horizonte)	39,29	19,98	61,77	40,35	16,51

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 3) zeigt, dass die Aktivitäten in den Auflagen und Mineralböden der Monolithen höher liegen als in den IMIS-Mischproben. Lediglich Monolith 2 hat vergleichbar hohe Werte.

Die vom LfU ermittelten Aktivitäten für einen unbearbeiteten Boden (sandiger Schluff) im Landkreis Cham lagen am 09.04.2008 und 16.03.2009 bei ca. 58 Bq kg⁻¹ bzw. 42 Bq kg⁻¹ (Tab. 1). Die gewichteten gemittelten Aktivitäten für die Mineralböden der Monolithen liegen mit 40 Bq kg⁻¹ im Bereich der vom LfU ermittelten Werte. Die IMIS-Proben weisen mit weist einen geringeren Wert auf. Der Mittelwert der Cs-Aktivität des Ah-Horizontes der drei Monolithen liegt mit 211,47 Bq kg⁻¹ darüber.

Daten zum physikochemischen Ist-Zustand der RF 2 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 3 – 7236 Münchsmünster

Referenzfläche 3 liegt auf der Topographischen Karte 1:25.000 Blatt 7236 Münchsmünster in der Gemeinde Dürnbucher Forst, Landkreis Kelheim. Sie liegt auf einer Höhe von 388 m NN in einem ebenen Kulminationsbereich unter Nadelwald und repräsentiert die Naturräumliche Landschaftseinheit des Donaulsar-Hügellandes sowie die Standortkundliche Einheit des Tertiärhügellandes. Im Profil (Abb. 10) ist eine mäßig podsolige Braunerde aufgeschlossen. Als Humusform ist ein feinhumusarmer Moder entwickelt.

Abb. 10: Profil RF 3, mäßig podsolige Braunerde.

Tab. 4: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 3.

DE3 7236 Münchsmünster	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
RT 3 7230 Wunchsmunster	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	576,17	676,18	606,80	619,72	301,10
Mineralboden (A+B-Horizonte)	38,05	40,52	37,90	38,82	26,78

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 4) zeigt, dass die Aktivitäten in den Auflagen der Monolithen mehr als doppelt so hoch sind wie in den IMIS-Proben. Das Maximum liegt hier in den Of-Horizonten. Die Mineralböden der Monolithe sind geringfügig höher belastet, verursacht nicht nur durch die hohen Gehalte im Aeh-Horizont, sondern auch der darunter liegende Bh weist in zwei der drei Monolithen höhere Cs-Kontaminationen auf als die IMIS-Mischprobe.

Daten zum physikochemischen Ist-Zustand der RF 3 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 4 – 7440 Aham

Referenzfläche 4 liegt auf der Topographischen Karte 1:25.000 Blatt 7440 Aham in der Gemeinde Niederviehbach, Landkreis Dingolfing-Landau. Sie liegt auf einer Höhe von 405 m NN unter Fichtenmonokultur und repräsentiert die Naturräumliche Landschaftseinheit des Isar-Inn-Hügellandes sowie die Standortkundliche Einheit des Tertiärhügellandes. Im Profil (Abb. 11) ist eine schwach podsolige Parabraunerde aufgeschlossen. Als Humusform ist ein feinhumusarmer Moder entwickelt.

Abb. 11: Profil RF 4, schwach podsolige Parabraunerde.

Tab. 5: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 4.

RF4 7440 Aham	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	733,42	1177,10	759,00	889,84	667,30
Mineralboden (A+B-Horizonte)	2,38	3,18	4,34	3,30	54,88

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 5) zeigt, dass die Aktivitäten in den Auflagen der Monolithen höher sind als in den IMIS-Proben. Die Mineralböden hingegen sind im Vergleich zu den IMIS-Proben nahezu unkontaminiert. Die Ergebnisse deuten auf eine Durchmischung der Proben bei der IMIS-Probennahme hin. In der Stechsonde ist die saubere Trennung zwischen organischen Auflagen und Mineralböden nicht immer möglich, so dass es, wie vermutlich auch hier passiert, zu einer Vermischung der Proben kommen kann.

Daten zum physikochemischen Ist-Zustand der RF 4 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 5 - 6636 Kastl

Referenzfläche 5 liegt auf der Topographischen Karte 1:25.000 Blatt 6636 Kastl in der Gemeinde Ursensollen, Landkreis Amberg-Sulzbach. Sie liegt auf einer Höhe von 520 m NN am unteren Mittelhang unter Mischwald und repräsentiert die Naturräumliche Landschaftseinheit der Mittleren Frankenalb sowie die Standortkundliche Einheit der Fränkischen und Schwäbischen Alb. Im Profil (Abb. 12) ist eine Braunerde-Terra fusca aufgeschlossen. Als Humusform ist ein typischer Moder entwickelt.

Abb. 12: Profil RF 5, Braunerde-Terra fusca.

Tab. 6: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 5.

RF5 6636 Kastl	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	203,70	133,93	96,88	144,84	139,80
Mineralboden (A+B-Horizonte)	15,50	21,94	29,30	22,25	19,34

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 6) zeigt, dass die Aktivitäten der IMIS-Proben im Bereich derer der drei Monolithen liegen. In diesem Fall sind die drei Punktbefunde der Monolithen repräsentativ für die Fläche und umgekehrt lässt sich sagen, dass sich auch die Informationsreduzierung in der IMIS-Mischbeprobung nicht auf stark abweichende Ergebnisse der Cs-Aktivitätsmessungen gegenüber den Monolithen ausgewirkt hat. Wird aber die Tiefenverteilung des Cs-137 detaillierter betrachtet, so zeigt sich, dass die Oh- und Ah-Horizonte wie bei fast allen anderen Flächen am stärksten belastet sind. Diese Information geht bei der Mittelwertbildung und bei der Mischbeprobung nach Vorgaben des BMU (2006) verloren.

Daten zum physikochemischen Ist-Zustand der RF 5 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000), effektiven Kationenaustauschkapazitäten sowie sequentiellen Extraktionen der pedogenen Oxide erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte), 9.5 (KAKeff.) sowie 9.6 (pedogene Oxide) zu entnehmen.

RF 6 – 6740 Neukirchen-Balbini

Referenzfläche 6 liegt auf der Topographischen Karte 1:25.000 Blatt 6740 Neukirchen-Balbini in der gleichnamigen Gemeinde, Landkreis Schwandorf. Sie liegt auf einer Höhe von 411 m NN in einem ebenen Kulminationsbereich unter Kiefernforst und repräsentiert die Naturräumliche Landschaftseinheit des Oberpfälzischen Hügellandes sowie die Standortkundliche Einheit des Oberpfälzer Becken- und Hügellandes. Im Profil (Abb. 13) ist ein Eisenpodsol mit Ortstein aufgeschlossen. Als Humusform ist ein feinhumusarmer Moder entwikkelt.

Abb. 13: Profil RF 6, Eisenpodsol mit Ortstein.

Tab. 7: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 6.

RF6 6740 Neukirchen-Balbini	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	295,83	486,59	294,00	358,81	169,00
Mineralboden (A+B-Horizonte)	4,00	20,81	7,50	10,77	10,25

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 7) zeigt, dass die Aktivitäten der Auflagen in den Monolithen ungefähr doppelt so hoch sind wie in den IMIS-Proben. Die Werte für die Mineralböden sind für beide Beprobungstypen im Mittel identisch. Auf RF6 liegen die höchsten Cäsium-Aktivitäten in den L- und Of-Horizonten.

Daten zum physikochemischen Ist-Zustand der RF 6 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 7 – 7144 Lalling

Referenzfläche 7 liegt auf der Topographischen Karte 1:25.000 Blatt 7144 Lalling in der Gemeinde Auerbach, Landkreis Deggendorf. Sie liegt auf einer Höhe von 412 m NN in einem ebenen Kulminationsbereich unter Nadelwald und repräsentiert die Naturräumliche Landschaftseinheit des Lallinger Winkels sowie die Standortkundliche Einheit des Bayerischen Waldes. Im Profil (Abb. 14) ist eine schwach pseudovergleyte Braunerde aufgeschlossen. Als Humusform ist ein feinhumusarmer Moder entwickelt.

Abb. 14: Profil RF 7, schwach pseudovergleyte Braunerde.

Tab. 8: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 7.

RF7 7144 Lalling	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	975,20	634,17	923,00	844,12	324,70
Mineralboden (A+B-Horizonte)	10,07	23,35	57,42	30,28	57,79

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 8) zeigt, dass die Aktivitäten der Auflagen in den Monolithen mehr als doppelt so hoch sind wie in den IMIS-Proben. Im Fall des Profils 1 liegen sie sogar um das Dreifache höher. Die Kontamination des Oh-Horizontes schwankt dabei sehr stark innerhalb der Fläche. Der Wert für die Mineralböden liegt in den IMIS-Proben etwa im Bereich dessen des höchstbelasteten Monolithen 3.

Daten zum physikochemischen Ist-Zustand der RF 7 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 8 – 6237 Grafenwöhr

Referenzfläche 8 liegt auf der Topographischen Karte 1:25.000 Blatt 6237 Grafenwöhr in der Gemeinde Pressath, Landkreis Neustadt a.d. Waldnaab. Sie liegt auf einer Ebene in Höhe von 409 m NN unter Kiefernwald und repräsentiert die Naturräumliche Landschaftseinheit des Oberpfälzischen Hügellandes sowie die Standortkundliche Einheit des Oberpfälzischen Becken- und Hügellandes. Im Profil (Abb. 15) ist ein Eisenpodsol aufgeschlossen. Als Humusform ist ein feinhumusarmer Moder entwickelt.

Abb. 15: Profil RF 8, Eisenpodsol.

Tab. 9: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 8.

RF8 6237 Grafenwöhr	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	191,88	379,67	460,68	344,08	194,40
Mineralboden (A+B-Horizonte)	2,61	12,85	8,20	7,89	18,53

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 9) zeigt, dass die Aktivitäten der Auflagen in den IMIS-Proben innerhalb der Schwankungsbreite derer der Monolithen liegen. Die Of-Horizonte sind stärker kontaminiert als die Oh-Horizonte. Auch die Mineralböden weisen ähnliche Gehalte in den IMIS-Proben und den Monolithen auf.

Daten zum physikochemischen Ist-Zustand der RF 8 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 9 – 6335 Auerbach

Referenzfläche 9 liegt auf der Topographischen Karte 1:25.000 Blatt 6335 Auerbach in der Gemeinde Ober- und Unterwald, Landkreis Amberg-Sulzbach. Sie liegt auf einer Höhe von 508 m NN am Hangfuß unter Buchenwald und repräsentiert die Naturräumliche Landschaftseinheit der Nördlichen Frankenalb sowie die Standortkundliche Einheit der Fränkischen und Schwäbischen Alb. Im Profil (Abb. 16) ist eine Norm-Rendzina aufgeschlossen. Als Humusform ist ein F-Mull entwickelt.

Abb. 16: Profil RF 9, Norm-Rendzina.

Tab. 10: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 9.

RF9 6335 Auerbach	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	93,71	46,89	449,30	196,63	31,78
Mineralboden (A+B-Horizonte)	21,68	49,20	36,90	35,93	68,46

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 10) zeigt, dass die Aktivitäten der Auflagen in den Monolithen sehr stark schwanken innerhalb der Referenzfläche. Der hohe Mittelwert wird lediglich durch die starke Kontamination des Of-Horizontes von Monolith 3 hervorgerufen und ist daher nicht repräsentativ. Somit liegt die ermittelte Cs-Aktivität der Auflagen der IMIS-Proben durchaus im Bereich der durchschnittlichen Belastung der Fläche.

Daten zum physikochemischen Ist-Zustand der RF 9 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 10 – 6642 Waldmünchen

Referenzfläche 10 liegt auf der Topographischen Karte 1:25.000 Blatt 6642 Waldmünchen in der gleichnamigen Gemeinde, Landkreis Cham. Sie liegt auf einer Höhe von 760 m NN am Mittelhang unter Buchenwald und repräsentiert die Naturräumliche Landschaftseinheit des Hinteren Oberpfälzer Waldes sowie die Standortkundliche Einheit des Oberpfälzer Waldes. Im Profil (Abb. 17) ist eine Norm-Braunerde aufgeschlossen. Als Humusform ist ein typischer Moder entwickelt.

Abb. 17: Profil RF 10, Norm-Braunerde.

Tab. 11: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 10.

RF10 6642 Waldmünchen	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	115,50	193,95	177,40	162,28	167,70
Mineralboden (A+B-Horizonte)	12,96	12,17	15,17	13,43	21,11

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 11) zeigt, dass die Aktivitäten der Auflagen in den IMIS-Proben im Bereich derer der Monolithen liegen (Oh- > Of-Horizonte). Auch die Aktivitäten der Mineralböden sind in den IMIS-Proben nur geringfügig höher.

Die vom LfU ermittelten Aktivitäten für einen unbearbeiteten Boden (sandiger Schluff) im Landkreis Cham lagen am 09.04.2008 und 16.03.2009 bei ca. 58 Bq kg⁻¹ bzw. 42 Bq kg⁻¹ (Tab. 1). Die gewichteten gemittelten Aktivitäten für die Mineralböden der Monolithen und IMIS-Proben weisen geringere Werte auf. Der Mittelwert der Cs-Aktivität des Ah-Horizontes der drei Monolithen liegt mit 35,70 Bq kg⁻¹ ebenfalls darunter.

Daten zum physikochemischen Ist-Zustand der RF 10 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 11 - 6844 Lam

Referenzfläche 11 liegt auf der Topographischen Karte 1:25.000 Blatt 6844 Lam in der Gemeinde Bodenmais. Landkreis Regen. Sie liegt auf einer Höhe von 1.127 m NN am Mittelhang unter Mischwald und repräsentiert die Naturräumliche Landschaftseinheit des Hinteren Baverischen Waldes sowie die Standortkundliche Einheit des Bayerischen Waldes. Im Profil (Abb. 18) ist eine Norm-Braunerde aufgeschlossen. Als Humusform ist ein feinhumusreicher, rohhumusartiger Moder entwikkelt.

Abb. 18: Profil RF 11, Norm-Braunerde.

Tab. 1	12: Vergleich	der gewicl	hteten Mitte	elwerte de	r Cs-137-A	ktivitäten ir	n den Auflage	en und
Miner	albodenhoriz	onten der l	Monolithen	und den i	IMIS-Misch	proben für	Referenzfläc	he 11.

RF11 6844 Lam	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	1105,94	969,35	545,42	873,57	954,30
Mineralboden (A+B-Horizonte)	19,65	103,08	51,71	58,15	131,40

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 12) zeigt, dass die Aktivitäten der Auflagen in den IMIS-Proben im Bereich derer der Monolithen liegen (Of- > Oh-Horizonte). Die Belastungen der Mineralböden sind in den IMIS-Proben höher und schwanken deutlich innerhalb der Fläche, zurückzuführen lediglich auf die Kontamination des Ah-Horizontes, denn unterhalb dessen gehen die Aktivitäten auf Werte unterhalb 10 Bq kg⁻¹ zurück (s. Anhang 9.7).

Die vom LfU ermittelten Aktivitäten für einen unbearbeiteten Boden (schluffiger Sand) im Landkreis Regen lagen am 10.09.2008 bei 52,9 Bq kg⁻¹ (Tab. 1). Die gewichtete gemittelte Aktivität für die Mineralböden der Monolithen liegt mit 58,15 Bq kg⁻¹ in einem ähnlichen Wertebereich. Die IMIS-Proben sind mehr als doppelt so hoch. Der Mittelwert der Cs-Aktivität des Ah-Horizontes der drei Monolithen liegt mit 93,77 Bq kg⁻¹ darüber.

Daten zum physikochemischen Ist-Zustand der RF 11 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 12 - 7248 Jandelsbrunn

Referenzfläche 12 liegt auf der Topographischen Karte 1:25.000 Blatt 7248 Jandelsbrunn in der Gemeinde Pleckensteiner Wald, Landkreis Freyung-Grafenau. Sie liegt auf einer Höhe von 1.194 m NN an einer Hangversteilung des oberen Mittelhanges unter Nadelwald und repräsentiert die Naturräumliche Landschaftseinheit des Hinteren Bayerischen Waldes sowie die Standortkundliche Einheit des Bayerischen Waldes. Im Profil (Abb. 19) ist eine Norm-Braunerde aufgeschlossen. Als Humusform ist ein feinhumusreicher, rohhumusartiger Moder entwickelt.

Abb. 19: Profil RF 12, Norm-Braunerde.

Tab. 13: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 12.

RF12 7248 Jandelsbrunn	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	149,87	47,07	115,86	104,27	154,70
Mineralboden (A+B-Horizonte)	16,16	49,60	14,60	26,79	57,03

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 13) zeigt, dass die Aktivitäten der Auflagen und Mineralböden in den IMIS-Proben nur unwesentlich höher sind als in den Monolithen. Auffallend, ungewöhnlich und schwer zu erklären sind einheitliche Aktivitäten in Monolith 2 von ca. 45 Bq kg⁻¹ über die gesamte Tiefe von 30 cm, unabhängig von der Horizontabfolge (s. Anhang 9.7). Möglich ist eine bioturbate Durchmischung des Bodens.

Die vom LfU ermittelten Aktivitäten für einen unbearbeiteten Boden (sandiger Lehm) im Landkreis Freyung-Grafenau lagen am 10.09.2008 bei 44,2 Bq kg⁻¹ (Tab. 1). Die gewichteten gemittelten Aktivitäten für die Mineralböden der Monolithen und IMIS-Proben weisen mit Ausnahme von Monolith 2 geringere Werte auf. Der Mittelwert der Cs-Aktivität des Ah-Horizontes der drei Monolithen liegt mit 31,28 Bq kg⁻¹ darunter.

Daten zum physikochemischen Ist-Zustand der RF 12 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 13 – 7348 Wegscheid

Referenzfläche 13 liegt auf der Topographischen Karte 1:25.000 Blatt 7348 Wegscheid in der Gemeinde Untergriesbach, Landkreis Passau. Sie liegt auf einer Höhe von 675 m NN am Mittelhang unter Mischwald und repräsentiert die Naturräumliche Landschaftseinheit der Wegscheider Hochfläche sowie die Standortkundliche Einheit des Bayerischen Waldes. Im Profil (Abb. 20) ist eine Braunerde in einer Lößlehmfließerde aufgeschlossen. Als Humusform ist ein rohhumusartiger Moder entwickelt.

Abb. 20: Profil RF 13, Braunerde aus Lößlehmfließerde.

Tab. 14: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 13.

RF13 7348 Wegscheid	gewichtete Mi	Aktivität [Bq kg⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	153,03	143,03	281,90	192,65	171,70
Mineralboden (A+B-Horizonte)	22,44	21,39	106,23	50,02	19,30

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 14) zeigt, dass die Aktivitäten der Auflagen in den IMIS-Proben im Bereich der Belastungen der Monolithen liegen (Oh > Of). Die Aktivitäten der Mineralböden beider Beprobungstypen sind ebenfalls vergleichbar, jedoch wird der Mittelwert der Monolithen durch eine starke Kontamination des Ah-Horizontes des Monolithen 3 hinaufgesetzt.

Die vom LfU ermittelten Aktivitäten für einen unbearbeiteten Boden (sandiger Lehm) in der Stadt Passau lagen am 11.09.2008 bei 25,6 Bq kg⁻¹ (Tab. 1). Die gewichteten gemittelten Aktivitäten für die Mineralböden der Monolithen und IMIS-Proben liegen mit Ausnahme von Monolith 3 in diesem Bereich. Der Mittelwert der Cs-Aktivität des Ah-Horizontes der drei Monolithen liegt mit 80,04 Bq kg⁻¹ darüber.

Daten zum physikochemischen Ist-Zustand der RF 13 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 14 – 7446 Passau

Referenzfläche 14 liegt auf der Topographischen Karte 1:25.000 Blatt 7446 Passau in der Gemeinde Neuburg a. Inn, Landkreis Passau. Sie liegt auf einer Höhe von 397 m NN in einem hängigen Kulminationsbereich unter Fichtenforst und repräsentiert die Naturräumliche Landschaftseinheit des Passauer Abteilandes und des Neuburger Waldes sowie die Standortkundliche Einheit des Donautals. Im Profil (Abb. 21) ist ein Podsol-Pseudogley aufgeschlossen. Als Humusform ist ein feinhumusarmer Moder entwickelt.

Abb. 21: Profil RF 14, Podsol-Pseudogley.

Tab. 15: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und	
Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 14.	

RF14 7446 Passau	gewichtete Mittelwerte der Aktivitäten [Bq kg ⁻¹]				Aktivität [Bq kg-1]
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	244,17	299,83	216,70	253,57	264,00
Mineralboden (A+B-Horizonte)	15,25	11,13	43,34	23,24	25,00

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 15) zeigt, dass die Aktivitäten der Auflagen in den IMIS-Proben im Größenbereich der Kontamination der Monolithen liegen (Oh > Of). Die Aktivitäten der Mineralböden beider Beprobungstypen liegen ebenfalls in ähnlichen Größenordnungen vor.

Die vom LfU ermittelten Aktivitäten für einen unbearbeiteten Boden (sandiger Lehm) in der Stadt Passau lagen am 11.09.2008 bei 25,6 Bq kg⁻¹ (Tab. 1). Die gewichteten gemittelten Aktivitäten für die Mineralböden der Monolithen und IMIS-Proben liegen auf gleichem Niveau. Der Mittelwert der Cs-Aktivität des Ah-Horizontes der drei Monolithen liegt mit 100,87 Bq kg⁻¹ deutlich darüber.

Daten zum physikochemischen Ist-Zustand der RF 14 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 15 – 7742 Altötting

Referenzfläche 15 liegt auf der Topographischen Karte 1:25.000 Blatt 7742 Altötting in der Gemeinde Holzfelder Forst, Landkreis Altötting. Sie liegt auf einer Höhe von 384 m NN in einer Verebnung unter Laubwald und repräsentiert die Naturräumliche Landschaftseinheit des Unteren Inntals sowie die Standortkundliche Einheit der Schwäbisch-Bayerischen Schotterplatten- und Altmoränenlandschaft. Im Profil (Abb. 22) ist eine Pararendzina in Terrassenschottern aufgeschlossen. Als Humusform ist ein F-Mull entwickelt.

Abb. 22: Profil RF 15, Pararendzina in Terrassenschottern.

Tab. 16: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 15.

RF15 7742 Altötting	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	83,20	n.b.	57,56	70,38	169,30
Mineralboden (A+B-Horizonte)	118,20	157,00	141,00	138,73	183,60

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 16) zeigt, dass die Aktivitäten der Auflagen und Mineralböden in den IMIS-Proben deutlich höher als die der Monolithen liegen. Die Auflagen auf der Referenzfläche bestehen ausschließlich aus einem Of-Horizont. Aufgrund seiner geringen Mächtigkeit befindet sich ein Großteil des Cäsiums bereits in den Oberböden, in die die ehemaligen Auflagen der vergangenen Jahrzehnte bereits eingearbeitet sind. Möglicherweise liegen auch Beprobungsfehler vor, bedingt durch die geringe Mächtigkeit der Of-Horizonte und der daraus resultierenden schlechten Trennbarkeit von Auflagen und Mineralböden, insbesondere bei der IMIS-Beprobung.

Daten zum physikochemischen Ist-Zustand der RF 15 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 16 – 8143 Freilassing

Referenzfläche 16 liegt auf der Topographischen Karte 1:25.000 Blatt 8143 Freilassing in der gleichnamigen Gemeinde, Landkreis Berchtesgadener Land. Sie liegt auf einer Höhe von 419 m NN in einer Verebnung unter Mischwald und repräsentiert die Naturräumliche Landschaftseinheit des Salzach-Hügellandes sowie die Standortkundliche Einheit der Schwäbisch-Bayerischen Jungmoränen und Molassevorberge. Im Profil (Abb. 23) ist eine Braunerde in Schottern über einem fossilen Ah-Horizont aufgeschlossen. Als Humusform ist ein L-Mull entwickelt.

Abb. 23: Profil RF 16, Braunerde in Schottern über fossilem Ah-Horizont.

Tab. 17: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 16.

RF16 8143 Freilassing	gewichtete Mittelwerte der Aktivitäten [Bq kg ⁻¹]				Aktivität [Bq kg ⁻¹]
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	n.v.	n.v.	n.v.	n.v.	n.v.
Mineralboden (A+B-Horizonte)	145,22	240,43	158,95	181,53	150,30

Für Referenzfläche 16 existieren keine Messwerte für die O-Horizonte, da sie nicht entwikkelt sind. Die Cs-137-Aktivitäten für die Mineralböden sind jedoch in den IMIS-Proben wie auch in den Monolithen in etwa in vergleichbarer Höhe enthalten (Tab. 17). Die L-Horizonte sind sehr gering belastet. Ein sehr hoher Anteil des Radiocäsiums ist aufgrund des Fehlens weiterer organischer Auflagen in den Ah-Horizonten gespeichert (s. Anhang 9.7).

Die vom LfU ermittelten Aktivitäten für einen unbearbeiteten Boden (toniger Lehm) im Landkreis Berchtesgadener Land lagen am 18.09.2008 bei 378,0 Bq kg⁻¹ (Tab. 1). Die gewichteten gemittelten Aktivitäten für die Mineralböden der Monolithen und IMIS-Proben liegen darunter. Der Mittelwert der Cs-Aktivität des Ah-Horizontes der drei Monolithen liegt mit 475,67 Bq kg⁻¹ deutlich höher.

Daten zum physikochemischen Ist-Zustand der RF 16 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 17 – 8241 Ruhpolding

Referenzfläche 17 liegt auf der Topographischen Karte 1:25.000 Blatt 8241 Ruhpolding in der gleichnamigen Gemeinde, Landkreis Traunstein. Sie liegt auf einer Höhe von 967 m NN am Mittelhang unter Mischwald und repräsentiert die Naturräumliche Landschaftseinheit der Chiemgauer Alpen sowie die Standortkundliche Einheit der Bayerischen Alpen. Im Profil (Abb. 24) ist eine Braunerde in Dolomitgrus aufgeschlossen. Als Humusform ist ein F-Mull entwickelt.

Abb. 24: Profil RF 17, Braunerde aus Dolomitgrus.

Tab. 18: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 17.

RF17 8241 Ruhpolding	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	56,85	424,10	111,60	197,52	416,20
Mineralboden (A+B-Horizonte)	90,88	188,10	230,60	169,86	179,50

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 18) zeigt, dass die Aktivitäten der Auflagen und Mineralböden in den IMIS-Proben innerhalb der Wertebereiche der Monolithen liegen. Sie schwanken jedoch auf der Fläche sehr stark und sind in zwei Fällen sogar in den Mineralbodenhorizonten höher als in den organischen Auflagen, möglicherweise erklärbar durch Turbationsprozesse. Außerdem liegt es an einer großen Mächtigkeit des Ah-Horizontes über 10 cm, sodass in die Berechnung der Mittelwerte der Horizonte bis 30 cm Tiefe lediglich der Ah- als Mineralbodenhorizont eingeflossen ist und dieser, wie häufig auch auf anderen Flächen, sehr hohe Cs-Aktivitäten aufweist. Des Weiteren können geringmächtige Of- und fehlende Oh-Horizonte eine Rolle spielen.

Die vom LfU ermittelten Aktivitäten für einen unbearbeiteten Boden im Landkreis Traunstein lagen am 18.09.2008 bei 195,0 Bq kg⁻¹ (Tab. 1). Die gewichteten gemittelten Aktivitäten für die Mineralböden der Monolithen und IMIS-Proben liegen auf ähnlicher Höhe. Der Mittelwert der Cs-Aktivität des Ah-Horizontes der drei Monolithen liegt mit 202,37 Bq kg⁻¹ ebenfalls in diesem Bereich.

Daten zum physikochemischen Ist-Zustand der RF 17 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000), effektiven Kationenaustauschkapazitäten sowie sequentiellen Extraktionen der pedogenen Oxide erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte), 9.5 (KAKeff.) sowie 9.6 (pedogene Oxide) zu entnehmen.

RF 18 – 8040 Eggstätt

Referenzfläche 18 liegt auf der Topographischen Karte 1:25.000 Blatt 8040 Eggstätt in der gleichnamigen Gemeinde, Landkreis Rosenheim. Sie liegt auf einer Höhe von 530 m NN in einer Verebnung unter Mischwald und repräsentiert die Naturräumliche Landschaftseinheit des Inn-Chiemsee-Hügellandes sowie die Standortkundliche Einheit der Schwäbisch-Bayerischen Jungmoränen und Molassevorberge. Im Profil (Abb. 25) ist ein Hochmoortorf mit Weiß- und Schwarztorf über kiesigen Grundmoränenlehmen aufgeschlossen. Als Humusform ist ein feinhumusarmer Moder entwickelt.

Abb. 25: Profil RF 18, Hochmoortorf mit Weiß- und Schwarztorf über kiesigen Grundmoränenlehmen.

Tab. 19: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 18.

RF18 8040 Eggstätt	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	605,03	318,41	568,47	497,30	515,40
Mineralboden (A+B-Horizonte)	70,55	n.b.	83,90	77,23	95,82

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 19) zeigt, dass die Aktivitäten der Auflagen in den IMIS-Proben innerhalb der Wertebereiche der Monolithen liegen. Die Mineralbodenhorizonte der IMIS-Proben, die in diesem Fall durch einen Hochmoortorf ersetzt sind, weisen geringfügig höhere Kontaminationen mit Cs auf als die Monolithen.

Die vom LfU ermittelten Aktivitäten für einen unbearbeiteten Boden (toniger Lehm) im Landkreis Rosenheim lagen am 24.08.2008 und 14.05.2009 bei 57,2 Bq kg⁻¹ bzw. 114,0 Bq kg⁻¹ (Tab. 1). Die gewichteten gemittelten Aktivitäten für die Hochmoortorfe in den Monolithen und IMIS-Proben liegen zwischen beiden Werten. Ein direkter Vergleich ist aber aufgrund der unterschiedlichen Substrate nicht zulässig.

Daten zum physikochemischen Ist-Zustand der RF 18 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 19 – 8236 Tegernsee

Referenzfläche 19 liegt auf der Topographischen Karte 1:25.000 Blatt 8236 Tegernsee in der Gemeinde Bad Wiessee, Landkreis Miesbach. Sie liegt auf einer Höhe von 1.338 m NN in einem hängigen Kulminationsbereich am oberen Oberhang unter Fichtenmonokultur und repräsentiert die Naturräumliche Landschaftseinheit des Mangfallgebirges sowie die Standortkundliche Einheit der Bayerischen Alpen. Im Profil (Abb. 26) ist eine Hangpseudogley-Braunerde aufgeschlossen. Als Humusform ist ein typischer Moder entwickelt.

Abb. 26: Profil RF 19, Hangpseudogley-Braunerde.

Tab. 20: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 19.

RF19 8236 Tegernsee	gewichtete Mittelwerte der Aktivitäten [Bq kg ⁻¹]				Aktivität [Bq kg⁻¹]
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	908,05	1226,25	2030,00	1388,10	1214,00
Mineralboden (A+B-Horizonte)	56,97	105,44	25,26	62,56	54,59

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 20) zeigt, dass die Aktivitäten der Auflagen und Mineralböden in den IMIS-Proben innerhalb der Wertebereiche der Monolithen liegen (Oh > Of). Insgesamt ist die Belastung auf dieser Referenzfläche in den organischen Auflagen vergleichbar hoch, entspricht aber der ermittelten Verteilung des Radicäsiums von 1986 (LfU 2006), als eine Wolke starker Cäsiumkontamination an der Alpennordseite niederging. Auch VÖLKEL & LEOPOLD (2006a) belegen für die Bayerischen Voralpen eine noch immer erhöhte Aktivität von Radiocäsium.

Die vom LfU ermittelten Aktivitäten für einen unbearbeiteten Boden (sandiger Lehm) im Landkreis Miesbach lagen am 18.09.2008 bei 88,3 Bq kg⁻¹ (Tab. 1). Die gewichteten gemittelten Aktivitäten für die Mineralböden der Monolithen und IMIS-Proben liegen mit Ausnahme von Monolith 2 darunter. Der Mittelwert der Cs-Aktivität des Ah-Horizontes der drei Monolithen liegt mit 229,0 Bq kg⁻¹ deutlich höher.

Daten zum physikochemischen Ist-Zustand der RF 19 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.
RF 20 – 7837 Markt Schwaben

Referenzfläche 20 liegt auf der Topographischen Karte 1:25.000 Blatt 7837 Markt Schwaben in der Gemeinde Eglhartinger Forst, Landkreis Ebersberg. Sie liegt auf einer Höhe von 538 m NN in einer Verebnung unter Mischwald und repräsentiert die Naturräumliche Landschaftseinheit der Münchener Ebene sowie die Standortkundliche Einheit der Schwäbisch-Bayerischen Schotterplatten- und Altmoränenlandschaft. Im Profil (Abb. 27) ist eine Parabraunerde in Schottern aufgeschlossen. Als Humusform ist ein L-Mull entwickelt.

Abb. 27: Profil RF 20, Parabraunerde in Schottern.

Tab. 21: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 20.

RF20 7837 Markt Schwaben	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	505,00	373,00	685,00	521,00	429,00
Mineralboden (A+B-Horizonte)	79,58	113,20	104,73	99,17	31,87

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 21) zeigt, dass die Aktivitäten der Auflagen (nur Of-Horizonte) in den IMIS-Proben innerhalb der Wertebereiche der Monolithen liegen. Die Belastung der Mineralböden in den Monolithen ist mehr als doppelt so hoch wie im Mittelwert auf der gesamten Fläche.

Daten zum physikochemischen Ist-Zustand der RF 20 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 21 – 6025 Arnstein

Referenzfläche 21 liegt auf der Topographischen Karte 1:25.000 Blatt 6025 Arnstein in der Gemeinde Gramschatzer Wald, Landkreis Würzburg. Sie liegt auf einer Höhe von 340 m NN in einer Verebnung unter Mischwald und repräsentiert die Naturräumliche Landschaftseinheit der Wern-Lauer-Platte sowie die Standortkundliche Einheit der Fränkischen Platten. Im Profil (Abb. 28) ist eine Parabraunerde aufgeschlossen. Als Humusform ist ein F-Mull entwickelt.

Abb. 28: Profil RF 21, Parabraunerde.

Tab. 22: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 21.

RF21 6025 Arnstein	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	18,10	n.v.	n.v.	18,10	64,99
Mineralboden (A+B-Horizonte)	15,78	18,01	14,61	16,13	5,68

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten für die Auflagen in den drei Monolithen (Tab. 22) ist schwierig, da lediglich in der Schürfgrube (Monolith 1) ein sehr geringmächtiger Of-Horizont vorhanden war und beprobt wurde. Der Wert von 18 Bq kg⁻¹ ist daher keinesfalls repräsentativ für die Fläche. Die Mineralbodenhorizonte weisen sowohl in den Monolithen als auch in den IMIS-Proben geringe Cs-Aktivitäten auf, die in den IMIS-Proben im Mittel nochmals geringer sind als in den Monolithen.

Daten zum physikochemischen Ist-Zustand der RF 21 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 22 – 5626 Sandberg

Referenzfläche 22 liegt auf der Topographischen Karte 1:25.000 Blatt 5626 Sandberg in der Gemeinde Burgwallbacher Forst, Landkreis Rhön-Grabfeld. Sie liegt auf einer Höhe von 570 m NN unter Mischwald und repräsentiert die Naturräumliche Landschaftseinheit der Südrhön sowie die Standortkundliche Einheit der Rhön. Im Profil (Abb. 29) ist eine podsolige Braunerde aufgeschlossen. Als Humusform ist ein typischer Moder entwickelt.

Abb. 29: Profil RF 22, podsolige Braunerde.

Tab. 23: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und	
Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 22.	

RF22 5626 Sandberg	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	50,35	163,17	139,10	117,54	88,02
Mineralboden (A+B-Horizonte)	1,78	4,13	11,07	5,66	6,03

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 23) zeigt, dass die Aktivitäten der Auflagen und Mineralböden in den IMIS-Proben innerhalb der Wertebereiche der Monolithen liegen. Dabei sind die Of- höher belastet als die Oh-Horizonte.

Daten zum physikochemischen Ist-Zustand der RF 22 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 23 – 5728 Oberlauringen

Referenzfläche 23 liegt auf der Topographischen Karte 1:25.000 Blatt 5728 Oberlauringen in der Gemeinde Bundorfer Forst, Landkreis Rhön-Grabfeld. Sie liegt auf einer Höhe von 396 m NN im Kulminationsbereich des Oberhanges unter Laubwald und repräsentiert die Naturräumliche Landschaftseinheit der Haßberge sowie die Standortkundliche Einheit des Fränkischen und Schwäbischen Keuper-Lias-Landes. Im Profil (Abb. 30) ist eine Norm-Braunerde aufgeschlossen. Als Humusform ist ein F-Mull entwickelt.

Abb. 30: Profil RF 23, Norm-Braunerde.

Tab. 24: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 23.

RF23 5728 Oberlauringen	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	54,67	13,92	54,93	41,17	113,10
Mineralboden (A+B-Horizonte)	24,67	27,76	12,50	21,64	12,84

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 24) zeigt, dass die Aktivitäten der Auflagen (nur Of-Horizonte) in den IMIS-Proben deutlich über den Werten der Monolithen liegen. Die Mittelwerte der Mineralböden in der IMIS-Beprobung liegen etwa auf dem Niveau der Belastung von Monolith 3 und resultieren lediglich aus einer Kontamination des Ah-Horizontes, unterhalb dessen die Cs-Aktivitäten auf Werte nahe Null zurückgehen (Anhang 9.7).

Daten zum physikochemischen Ist-Zustand der RF 23 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 24 – 7132 Dollnstein

Referenzfläche 24 liegt auf der Topographischen Karte 1:25.000 Blatt 7132 Dollnstein in der gleichnamigen Gemeinde, Landkreis Eichstätt. Sie liegt auf einer Höhe von 440 m NN an einer Hangversteilung des zentralen Mittelhanges unter Buchenwald und repräsentiert die Naturräumliche Landschaftseinheit der Südlichen Frankenalb sowie die Standortkundliche Einheit der Fränkischen und Schwäbischen Alb. Im Profil (Abb. 31) ist eine Braunerde-Terra fusca aufgeschlossen. Als Humusform ist ein F-Mull entwickelt.

Abb. 31: Profil RF 24, Braunerde-Terra fusca.

Tab. 25: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 24.

RF24 7132 Dollnstein	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	100,50	18,02	30,92	49,81	116,00
Mineralboden (A+B-Horizonte)	28,16	80,04	34,51	47,57	91,83

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 25) zeigt, dass die Aktivitäten der Auflagen (nur Of-Horizonte) und Mineralböden in den IMIS-Proben höher als die Werte der Monolithen liegen. In den Monolithen 2 und 3 sind jeweils die Kontaminationen in den Mineralböden höher als in den organischen Auflagen, wie bei RF17 verursacht durch fehlende Oh-Horizonte, vergleichsweise mächtige Ah-Horizonte, aber auch durch die fortgeschrittene Einarbeitung der ehemals (z.B. beim Reaktorunfall in Tschernobyl 1986) stark kontaminierten organischen Auflagen in die Oberböden.

Daten zum physikochemischen Ist-Zustand der RF 24 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000), effektiven Kationenaustauschkapazitäten sowie sequentiellen Extraktionen der pedogenen Oxide erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte), 9.5 (KAKeff.) sowie 9.6 (pedogene Oxide) zu entnehmen.

RF 25 – 7831 Egling a.d. Paar

Referenzfläche 25 liegt auf der Topographischen Karte 1:25.000 Blatt 7831 Egling a.d. Paar in der Gemeinde Scheuring, Landkreis Landsberg a. Lech. Sie liegt auf einer Höhe von 583 m NN in einer Verebnung unter Laubwald und repräsentiert die Naturräumliche Landschaftseinheit des Fürstenfeldbrucker Hügellandes sowie die Standortkundliche Einheit der Schwäbisch-Bayerischen Schotterplattenund Altmoränenlandschaft. Im Profil (Abb. 32) ist eine schwach humose Braunerde aufgeschlossen. Als Humusform ist ein F-Mull entwickelt.

Abb. 32: Profil RF 25, schwach humose Braunerde.

Tab. 26: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 25.

RF25 7831 Egling a.d. Paar	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	348,80	448,80	471,60	423,07	640,10
Mineralboden (A+B-Horizonte)	276,48	167,53	76,03	173,35	79,80

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 26) zeigt, dass die Aktivitäten der Auflagen (nur Of-Horizonte) in den IMIS-Proben höher als die Werte der Monolithen liegen. Die Mineralböden der IMIS-Proben liegen im Aktivitätswertebereich von Monolith 3, aber unterhalb der Belastungen der anderen beiden Monolithen.

Daten zum physikochemischen Ist-Zustand der RF 25 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 26 – 7433 Schrobenhausen

Referenzfläche 26 liegt auf der Topographischen Karte 1:25.000 Blatt 7433 Schrobenhausen in der gleichnamigen Gemeinde, Landkreis Neuburg-Schrobenhausen. Sie liegt auf einer Höhe von 430 m NN in einer Verebnung unter Nadelwald und repräsentiert die Naturräumliche Landschaftseinheit des Donau-Isar-Hügellandes sowie die Standortkundliche Einheit des Tertiärhügellandes. Im Profil (Abb. 33) ist ein Gley-Podsol aufgeschlossen. Als Humusform ist ein feinhumusreicher Rohhumus entwickelt.

Abb. 33: Profil RF 26, Gley-Podsol.

Tab. 27: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 26.

RF26 7433 Schrobenhausen	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	416,14	212,96	439,29	356,13	271,00
Mineralboden (A+B-Horizonte)	3,31	32,50	46,33	27,38	24,70

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 27) zeigt, dass die Aktivitäten der Auflagen und Mineralböden in den IMIS-Proben innerhalb der Minima und Maxima der Monolithen liegen. Die Schwankungen innerhalb der Fläche sind hoch, sowohl die Belastungen der Auflagen als auch die der Mineralböden betreffend.

Daten zum physikochemischen Ist-Zustand der RF 26 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 27 – 8032 Dießen a. Ammersee

Referenzfläche 27 liegt auf der Topographischen Karte 1:25.000 Blatt 8032 Dießen a. Ammersee in der gleichnamigen Gemeinde, Landkreis Landsberg a. Lech. Sie liegt auf einer Höhe von 601 m NN in einem ebenen Kulminationsbereich in Sattelpunktslage unter Mischwald und repräsentiert die Naturräumliche Landschaftseinheit des Ammer-Loisach-Hügellandes sowie die Standortkundliche Einheit der Schwäbisch-Bayerischen Jungmoränen und Molassevorberge. Im Profil (Abb. 34) ist ein Gley über Moränenschottern aufgeschlossen. Als Humusform ist ein feinhumusreicher Rohhumus entwickelt.

Abb. 34: Profil RF 27, Gley über Moränenschotter.

Tab. 28: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 27.

RF27	gewichtete Mittelwerte der Aktivitäten [Bq kg ⁻¹]				Aktivität [Bq kg ⁻¹]
8032 Dießen a. Ammersee	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	158,53	205,36	124,60	162,83	248,40
Mineralboden (A+B-Horizonte)	3,21	5,25	41,00	16,49	40,53

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 28) zeigt, dass die Aktivitäten der Auflagen und Mineralböden in den IMIS-Proben höher sind als in den Monolithen (Of > Oh). Lediglich Monolith 3 zeigt in den Mineralbodenfraktionen einen ähnlichen Wert, der aber deutlich über denen der anderen beiden Monolithen liegt.

Daten zum physikochemischen Ist-Zustand der RF 27 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000), effektiven Kationenaustauschkapazitäten sowie sequentiellen Extraktionen der pedogenen Oxide erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte), 9.5 (KAKeff.) sowie 9.6 (pedogene Oxide) zu entnehmen.

RF 28 – 5939 Waldsassen

Referenzfläche 28 liegt auf der Topographischen Karte 1:25.000 Blatt 5939 Waldsassen in der Gemeinde Schirnding, Landkreis Wunsiedel i. Fichtelgebirge. Sie liegt auf einer Höhe von 526 m NN in einem ebenen Kulminationsbereich unter Nadelwald und repräsentiert die Naturräumliche Landschaftseinheit des Hohen Fichtelgebirges sowie die Standortkundliche Einheit des Oberpfälzer Waldes. Im Profil (Abb. 35) ist eine mäßig podsolige Braunerde aufgeschlossen. Als Humusform ist ein feinhumusarmer Rohhumus entwickelt.

Abb. 35: Profil RF 28, mäßig podsolige Braunerde.

Tab. 29: Vergleich der gewichteten Mittelwerte der ¹³⁷Cs-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 28.

RF28 5939 Waldsassen	gewichtete Mi	Aktivität [Bq kg⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	136,09	140,00	122,50	132,86	112,20
Mineralboden (A+B-Horizonte)	0,87	2,25	6,85	3,32	11,84

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 29) zeigt, dass die Aktivitäten der Auflagen in den Monolithen höher liegen als in den IMIS-Proben. Umgekehrt verhält es sich bei den Cs-Aktivitäten der Mineralböden. Die mächtigen Humusauflagen verhindern bis heute eine aktive Verlagerung des Cäsiums in die Tiefe.

Daten zum physikochemischen Ist-Zustand der RF 28 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 29 – 6440 Moosbach

Abb. 36: Profil RF 29, Norm-Braunerde

Referenzfläche 29 liegt auf Topographischen Karte der 1:25.000 Blatt 6440 Moosbach in der gleichnamigen Gemeinde, Landkreis Neustadt a.d. Waldnaab. Sie liegt auf einer Höhe von 757 m NN in einem ebenen Kulminationsbereich am Oberhang unter Buchenwald und repräsentiert die Naturräumliche Landschaftseinheit des Vorderen Oberpfälzer Waldes sowie die Standortkundliche Einheit des Oberpfälzer Waldes. Im Profil (Abb. 36) ist eine Norm-Braunerde aufgeschlossen. Als Humusform ist ein feinhumusarmer Moder entwickelt.

Tab. 30: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 29.

RF29 6440 Moosbach	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	85,20	170,90	136,30	130,80	105,60
Mineralboden (A+B-Horizonte)	37,86	86,00	31,39	51,75	16,91

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 30) zeigt, dass die Aktivitäten der Auflagen wie auch der Mineralböden in den Monolithen höher liegen als in den IMIS-Proben. Dabei sind die Oh-Horizonte deutlich höher belastet als die Of-Horizonte und auch die Ah-Horizonte weisen höhere Kontaminationen auf als die Of-Horizonte.

Daten zum physikochemischen Ist-Zustand der RF 29 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 30 – 6240 Flossenbürg

Referenzfläche 30 liegt auf der Topographischen Karte 1:25.000 Blatt 6240 Flossenbürg in der gleichnamigen Gemeinde, Landkreis Neustadt a.d. Waldnaab. Sie liegt auf einer Höhe von 763 m NN am zentralen Oberhang unter Fichtenmonokultur und repräsentiert die Naturräumliche Landschaftseinheit des Hinteren Oberpfälzer Waldes sowie die Standortkundliche Einheit des Oberpfälzer Waldes. Im Profil (Abb. 37) ist eine Norm-Braunerde aufgeschlossen. Als Humusform ist ein feinhumusarmer Moder entwickelt.

Abb. 37: Profil RF 30, Norm-Braunerde.

Tab. 31: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 30.

RF30 6240 Flossenbürg	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	115,67	161,56	140,00	139,08	169,00
Mineralboden (A+B-Horizonte)	27,97	86,29	68,50	60,92	53,30

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 31) zeigt, dass die Aktivitäten der Auflagen in den IMIS-Proben geringfügig höher liegen als in den Monolithen. Die Mineralböden der IMIS-Proben weisen Werte auf, die innerhalb des Minimums und Maximums der Monolithen liegen.

Daten zum physikochemischen Ist-Zustand der RF 30 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 31 – 6132 Buttenheim

Abb. 38: Profil RF 31, Rendzina-Braunerde in lehmiger Albüberdeckung.

Referenzfläche 31 liegt auf der Topographischen Karte 1:25.000 Blatt 6132 Buttenheim in der Gemeinde Geisberger Forst, Landkreis Bamberg. Sie liegt auf einer Höhe von 554 m NN an einer Hangverflachung im oberen Oberhang unter Laubwald und repräsentiert die Naturräumliche Landschaftseinheit der Nördlichen Frankenalb sowie die Standortkundliche Einheit der Fränkischen und Schwäbischen Alb. Im Profil (Abb. 38) ist eine Rendzina-Braunerde in lehmiger Albüberdeckung aufgeschlossen. Als Humusform ist ein L-Mull entwikkelt.

Tab. 32: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 31.

RF31 6132 Buttenheim	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	n.v.	n.v.	n.v.	n.v.	n.v.
Mineralboden (A+B-Horizonte)	33,43	36,41	47,45	39,10	50,69

Für Referenzfläche 31 existieren keine Daten für die organischen Auflagen, da lediglich L-Horizonte vorhanden sind. Die Cs-137-Aktivitäten für die Mineralböden sind in den IMIS-Proben geringfügig höher als in den Monolithen (Tab. 32). Die L-Horizonte sind geringer belastet als die Mineralböden (s. Anhang 9.7).

Daten zum physikochemischen Ist-Zustand der RF 31 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 32 – 5936 Bad Berneck i. Fichtelgebirge

Referenzfläche 32 liegt auf der Topographischen Karte 1:25.000 Blatt 5936 Bad Berneck i. Fichtelgebirge in der Gemeinde Warmensteinacher Forst-Nord, Landkreis Bayreuth. Sie liegt auf einer Höhe von 891 m NN an einer Hangversteilung am zentralen Oberhang unter Mischwald und repräsentiert die Naturräumliche Landschaftseinheit des Hohen Fichtelgebirges sowie die Standortkundliche Einheit des Frankenwaldes, Fichtelgebirges und Vogtlandes. Im Profil (Abb. 39) ist ein Norm-Skeletthumusboden aufgeschlossen. Als Humusform ist ein feinhumusreicher Rohhumus entwickelt.

Abb. 39: Profil RF 32, Norm-Skeletthumusboden.

Tab. 33: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 32.

RF32 5936 Bad Berneck	gewichtete Mittelwerte der Aktivitäten [Bq kg ⁻¹]				Aktivität [Bq kg⁻¹]
i. Fichtelgebirge	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	66,54	200,50	290,30	185,78	247,20
Mineralboden (A+B-Horizonte)	n.v.	n.v.	n.v.	n.v.	n.v.

Für Referenzfläche 32 existieren keine Daten für Mineralbodenhorizonte, da lediglich ein O-C-Boden vorliegt. Die Cs-137-Aktivitäten für die organischen Auflagen liegen in den IMIS-Proben im Bereich derer der den Monolithen (Tab. 33). Die L-Horizonte sind ebenfalls belastet. Mit zunehmender Tiefe nimmt jedoch die Cs-Aktivität auch im Oh-Horizont wie auf anderen Flächen im tieferen Mineralboden sehr schnell ab (s. Anhang 9.7). In den Monolithen 2 und 3 wurden aufgrund der großen Mächtigkeiten die Of- die Oh-Horizonte mit Hilfe eines Spatens nicht mehr erreicht.

Daten zum physikochemischen Ist-Zustand der RF 32 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 33 – 6023 Lohr a. Main

Referenzfläche 33 liegt auf der Topographischen Karte 1:25.000 Blatt 6023 Lohr a. Main in der Gemeinde Rothenberg, Landkreis Main-Spessart. Sie liegt auf einer Höhe von 336 m NN in einem ebenen Kulminationsbereich unter Buchenwald und repräsentiert die Naturräumliche Landschaftseinheit des Sandsteinspessarts sowie die Standortkundliche Einheit des Spessart-Odenwaldes. Im Profil (Abb. 40) ist ein Braunerde-Ranker aufgeschlossen. Als Humusform ist ein F-Mull entwickelt.

Abb. 40: Profil RF 33, Braunerde-Ranker.

Tab. 34: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und
Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 33.

RF33 6023 Lohr a. Main	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	45,93	28,78	78,11	50,94	56,78
Mineralboden (A+B-Horizonte)	12,66	29,88	22,80	21,78	13,74

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 34) zeigt, dass die Aktivitäten der Auflagen und Mineralböden beider Beprobungstypen in ähnlichen Wertebereichen liegen. Die Gesamtbelastung mit Cs-137 ist eher gering und bei zwei der drei Monolithen im Ah-Horizont am höchsten, zurückführbar auf die geringe Mächtigkeit der organischen Auflage, die lediglich aus einem Of-Horizont besteht.

Die vom LfU ermittelten Aktivitäten für einen unbearbeiteten Boden (toniger Schluff) im Landkreis Main-Spessart lagen am 31.03.2008 und 19.03.2009 bei ca. 9 Bq kg⁻¹ (Tab. 1). Die gewichteten gemittelten Aktivitäten für die Mineralböden der Monolithen und IMIS-Proben liegen etwas höher. Der Mittelwert der Cs-Aktivität des Ah-Horizontes der drei Monolithen liegt mit 62,0 Bq kg⁻¹ höher.

Daten zum physikochemischen Ist-Zustand der RF 33 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 34 – 6122 Bischbrunn

Referenzfläche 34 liegt auf der Topographischen Karte 1:25.000 Blatt 6122 Bischbrunn in der Gemeinde Altenbucher Forst, Landkreis Miltenberg. Sie liegt auf einer Höhe von 430 m NN am oberen Oberhang unter Mischwald und repräsentiert die Naturräumliche Landschaftseinheit des Sandsteinspessarts sowie die Standortkundliche Einheit des Spessart-Odenwaldes. Im Profil (Abb. 41) ist eine Norm-Braunerde aufgeschlossen. Als Humusform ist ein F-Mull entwickelt.

Abb. 41: Profil RF 34, Norm-Braunerde.

Tab. 35: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 34.

RF34 6122 Bischbrunn	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	123,00	26,10	23,70	57,60	160,00
Mineralboden (A+B-Horizonte)	40,32	54,33	27,80	40,82	16,62

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 35) zeigt, dass die Aktivitäten der Auflagen in den IMIS-Proben höher sind als in den Monolithen. Auch die Heterogenität der Werte innerhalb der Fläche ist sehr groß. Die Gesamtbelastung mit Cs-137 ist eher gering und bei zwei der drei Monolithen im Ah-Horizont am höchsten, zurückführbar auf die geringe Mächtigkeit der organischen Auflage, die lediglich aus einem 1 cm mächtigen Of-Horizont besteht. Die IMIS-Mischproben weisen geringere Cs-Aktivitäten in den Mineralbodenhorizonten auf als die Monolithen.

Daten zum physikochemischen Ist-Zustand der RF 34 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 35 – 5824 Gräfendorf

Referenzfläche 35 liegt auf der Topographischen Karte 1:25.000 Blatt 5824 Gräfendorf in der Gemeinde Neuwirtshauser Forst, Landkreis Bad Kissingen. Sie liegt auf einer Höhe von 293 m NN am unteren Mittelhang unter Mischwald und repräsentiert die Naturräumliche Landschaftseinheit der Südrhön sowie die Standortkundliche Einheit der Rhön. Im Profil (Abb. 42) ist eine Norm-Braunerde aufgeschlossen. Als Humusform ist ein L-Mull entwickelt.

Abb. 42: Profil RF 35, Norm-Braunerde.

Tab. 36: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 35.

RF35 5824 Gräfendorf	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	n.v.	n.v.	n.v.	n.v.	n.v.
Mineralboden (A+B-Horizonte)	7,75	16,21	17,36	13,77	17,60

Für Referenzfläche 35 existieren keine Daten für O-Horizonte, da lediglich L-Horizonte vorhanden sind. Die Cs-137-Aktivitäten für die Mineralböden liegen in den IMIS-Proben wie auch in den Monolithen in ähnlichen Bereichen (Tab. 36). Die L-Horizonte sind teilweise höher, in einem Fall auch geringer belastet als die Mineralböden bzw. unbelastet (s. Anhang 9.7).

Daten zum physikochemischen Ist-Zustand der RF 35 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 36 – 5632 Neustadt bei Coburg

Referenzfläche 36 liegt auf der Topographischen Karte 1:25.000 Blatt 5632 Neustadt bei Coburg in der gleichnamigen Gemeinde, Landkreis Coburg. Sie liegt auf einer Höhe von 467 m NN in einer Verebnung unter Mischwald und repräsentiert die Naturräumliche Landschaftseinheit des Südlichen Vorlandes des Thüringer Waldes sowie die Standortkundliche Einheit des Obermain-Schollenlandes. Im Profil (Abb. 43) ist eine schwach podsolige Braunerde aufgeschlossen. Als Humusform ist ein feinhumusreicher Moder entwickelt.

Abb. 43: Profil RF 36, schwach podsolige Braunerde.

Tab. 37: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 36.

RF36	gewichtete Mittelwerte der Aktivitäten [Bq kg-1]				Aktivität [Bq kg ⁻¹]
5632 Neustadt bei Coburg	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	179,54	193,40	152,25	175,06	186,00
Mineralboden (A+B-Horizonte)	39,26	20,59	7,90	22,58	11,20

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 37) zeigt, dass die Aktivitäten der Auflagen und Mineralböden der IMIS-Proben und Monolithen ähnlich hoch sind.

Daten zum physikochemischen Ist-Zustand der RF 36 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 37 – 5634 Teuschnitz

Referenzfläche 37 liegt auf der Topographischen Karte 1:25.000 Blatt 5634 Teuschnitz in der Gemeinde Birnbaum, Landkreis Kronach. Sie liegt auf einer Höhe von 637 m NN in einer Verebnung unter Mischwald und repräsentiert die Naturräumliche Landschaftseinheit des Nordwestlichen Frankenwaldes sowie die Standortkundliche Einheit des Frankenwaldes, Fichtelgebirges und Vogtlandes. Im Profil (Abb. 44) ist eine Norm-Braunerde aufgeschlossen. Als Humusform ist ein feinhumusreicher Moder entwickelt.

Abb. 44: Profil RF 37, Norm-Braunerde.

Tab. 38: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 37.

RF37 5634 Teuschnitz	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	209,50	181,30	237,90	209,57	244,00
Mineralboden (A+B-Horizonte)	19,34	13,25	12,95	15,18	16,86

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 38) zeigt, dass die Aktivitäten der Mineralböden der IMIS-Proben und Monolithen in ähnlichen Wertebereichen liegen und lediglich in den organischen Auflagen der IMIS-Proben geringfügig erhöht vorliegen. Die Oh-Horizonte der Monolithen sind höher belastet als die Of-Horizonte.

Daten zum physikochemischen Ist-Zustand der RF 37 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 38 – 5735 Schwarzenbach a. Wald

Referenzfläche 38 liegt auf der Topographischen Karte 1:25.000 Blatt 5735 Schwarzenbach a. Wald in der Gemeinde Grafengehaig, Landkreis Kulmbach. Sie liegt auf einer Höhe von 574 m NN am oberen Unterhang unter Mischwald und repräsentiert die Naturräumliche Landschaftseinheit des Nordwestlichen Frankenwaldes sowie die Standortkundliche Einheit des Frankenwaldes, Fichtelgebirges und Vogtlandes. Im Profil (Abb. 45) ist eine Norm-Braunerde aufgeschlossen. Als Humusform ist ein feinhumusarmer, rohhumusartiger Moder entwickelt.

Abb. 45: Profil RF 38, Norm-Braunerde.

Tab. 39: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 38.

RF38	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
5734 Schwarzenbach a. Wald	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	197,40	337,00	443,92	326,11	291,90
Mineralboden (A+B-Horizonte)	15,14	17,31	10,94	14,46	34,04

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 39) zeigt, dass sich die Aktivitäten der organischen Auflagen in den IMIS-Proben und Monolithen auf einem ähnlichen Niveau befinden (Oh > Of). Die Mineralböden in den IMIS-Proben hingegen sind doppelt so hoch belastet wie in den Monolithen. Die Kontaminationen werden wieder einmal lediglich durch die erhöhten Aktivitäten im Ah-Horizont hervorgerufen, die unterhalb sehr schnell auf Werte < 5 Bq kg⁻¹ abnehmen.

Daten zum physikochemischen Ist-Zustand der RF 38 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 39 – 6532 Nürnberg

Referenzfläche 39 liegt auf der Topographischen Karte 1:25.000 Blatt 6532 Nürnberg in Gemeinde und Landkreis gleichen Namens. Sie liegt auf einer Höhe von 324 m NN in einer Verebnung unter Mischwald und repräsentiert die Naturräumliche Landschaftseinheit des Mittelfränkischen Beckens sowie die Standortkundliche Einheit des Fränkischen und Schwäbischen Keuper-Lias-Landes. Im Profil (Abb. 46) ist ein Regosol über Braunerde-Pseudogley aufgeschlossen. Als Humusform ist ein feinhumusreicher Rohhumus entwickelt.

Abb. 46: Profil RF 39, Regosol über Braunerde-Pseudogley.

Tab. 40: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 39.

PE30 6532 Nürnborg	gewichtete Mi	Aktivität [Bq kg⁻¹]			
Ri 39 0352 Numberg	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	98,80	78,16	133,48	103,48	122,00
Mineralboden (A+B-Horizonte)	15,83	10,58	11,13	12,51	14,50

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 40) zeigt, dass sich die Aktivitäten der organischen Auflagen wie auch die der Mineralböden in den IMIS-Proben innerhalb des Wertebereichs der drei Monolithen befinden.

Daten zum physikochemischen Ist-Zustand der RF 39 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 40 – 6829 Ornbau

Referenzfläche 40 liegt auf der Topographischen Karte 1:25.000 Blatt 6829 Ornbau in der Gemeinde Arberg, Landkreis Ansbach. Sie liegt auf einer Höhe von 484 m NN an einer Hangverflachung des Mittelhangs unter Nadelwald und repräsentiert die Naturräumliche Landschaftseinheit des Vorlandes der südlichen Frankenalb sowie die Standortkundliche Einheit des Fränkischen und Schwäbischen Keuper-Lias-Landes. Im Profil (Abb. 47) ist ein Braunerde-Pseudogley aufgeschlossen. Als Humusform ist ein F-Mull entwickelt.

Abb. 47: Profil RF 40, Braunerde-Pseudogley.

Tab. 41: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und	
Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 40.	

RF40 6829 Ornbau	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	304,00	448,57	158,00	303,52	263,00
Mineralboden (A+B-Horizonte)	79,13	20,36	11,93	37,14	26,80

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 41) zeigt, dass sich die Aktivitäten der organischen Auflagen wie auch die der Mineralböden in den IMIS-Proben innerhalb des Wertebereichs der drei Monolithen befinden. Lediglich im Monolith 2 existiert ein Oh-Horizont, der deutlich höher belastet ist als der darüber liegende Of-Horizont (s. Anhang 9.7). In den anderen beiden Monolithen ist jeweils der Ah-Horizont am stärksten kontaminiert und verursacht somit den erhöhten gewichteten Mittelwert von Monolith 1. Der niedrige Wert von Monolith 3 wird durch eine sehr geringe Belastung im Unterboden herabgesetzt.

Daten zum physikochemischen Ist-Zustand der RF 40 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 41 – 6427 Uffenheim

Referenzfläche 41 liegt auf der Topographischen Karte 1:25.000 Blatt 6427 Uffenheim in der gleichnamigen Gemeinde, Landkreis Neustadt a.d. Aisch-Bad Windsheim. Sie liegt auf einer Höhe von 387 m NN in einer Verebnung in Kulminationslage unter Laubwald und repräsentiert die Naturräumliche Landschaftseinheit des Ochsenfurter und Gollachgau sowie die Standortkundliche Einheit der Fränkischen Platten. Im Profil (Abb. 48) ist ein degradierter Pseudogley-Tschernosem aufgeschlossen. Als Humusform ist ein L-Mull entwickelt.

Abb. 48: Profil RF 41, degradierter Pseudogley-Tschernosem.

Tab. 42: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 41.

DE41 6427 Liffenbeim	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
N 41 0427 Offentient	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	n.v.	5,69	8,47	7,08	50,60
Mineralboden (A+B-Horizonte)	27,54	22,53	11,91	20,66	13,10

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 42) zeigt, dass sich die Aktivitäten der organischen Auflagen in den IMIS-Proben gegenüber den Monolithen deutlich erhöht sind. In der Schürfgrube liegen außer dem L-Horizont keine organischen Auflagen vor. Die Aktivitäten der Of-Horizonte der beiden weiteren Monolithen sind sehr gering, die Horizonte sehr geringmächtig und daher findet die Hauptanreicherung des Cäsiums im Ah-Horizont statt. Auch eine unsaubere Trennung zwischen Auflagen und Mineralböden kann Ursache für diese Verteilung sein. Die Cs-Aktivitäten in den IMIS-Proben liegen im Wertebereich derer der Monolithen.

Daten zum physikochemischen Ist-Zustand der RF 41 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 42 – 6129 Burgwindheim

Referenzfläche 42 liegt auf der Topographischen Karte 1:25.000 Blatt 6129 Burgwindheim in der Gemeinde Ebrach, Landkreis Bamberg. Sie liegt auf einer Höhe von 416 m NN im hängigen Kulminationsbereich des oberen Oberhanges unter Mischwald und repräsentiert die Naturräumliche Landschaftseinheit des Steigerwaldes sowie die Standortkundliche Einheit des Fränkischen und Schwäbischen Keuper-Lias-Landes. Im Profil (Abb. 49) ist ein Braunerde-Pseudogley aufgeschlossen. Als Humusform ist ein F-Mull entwickelt.

Abb. 49: Profil RF 42, Braunerde-Pseudogley.

Tab. 43: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 42.

PE42 6120 Purcharphoim	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
Ki 42 0129 Bulgbernnein	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	58,50	133,02	66,59	86,04	105,60
Mineralboden (A+B-Horizonte)	39,68	39,69	35,42	38,26	9,23

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 43) zeigt, dass die Aktivitäten der organischen Auflagen in den IMIS-Proben im Wertebereich derer der Monolithen liegen. Die Oh-Horizonte, sofern sie auf der Fläche ausgebildet sind, sind am stärksten belastet. In der Schürfgrube fehlt ein Oh- und auch der Of-Horizont ist nur sehr geringmächtig, was zur Folge hat, dass die Hauptkontamination im Oberboden (Ah-Horizont) zu finden ist. Die Cs-Aktivität der Mineralböden ist in den IMIS-Proben geringer als in den Monolithen.

Daten zum physikochemischen Ist-Zustand der RF 42 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 43 – 7429 Dillingen a.d. Donau

Referenzfläche 43 liegt auf der Topographischen Karte 1:25.000 Blatt 7429 Dillingen a.d. Donau in Gemeinde und Landkreis gleichen Namens. Sie liegt auf einer Höhe von 418 m NN im ebenen Tiefenbereich des unteren Unterhanges unter Laubwald und repräsentiert die Naturräumliche Landschaftseinheit des Donaurieds sowie die Standortkundliche Einheit des Donautals. Im Profil (Abb. 50) ist eine Braunerde aufgeschlossen. Als Humusform ist ein L-Mull entwickelt.

Abb. 50: Profil RF 43, Braunerde.

Tab. 44: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 43.

RF43	gewichtete Mittelwerte der Aktivitäten [Bq kg ⁻¹]				Aktivität [Bq kg ⁻¹]
7429 Dillingen a.d. Donau	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	n.v.	n.v.	n.v.	n.v.	n.v.
Mineralboden (A+B-Horizonte)	32,75	35,33	37,36	35,15	33,33

Auf Referenzfläche 43 sind lediglich L-Horizonte entwickelt. Die Cs-137-Aktivitäten für die Mineralböden liegen in den IMIS-Proben wie auch in den Monolithen in ähnlichen Bereichen (Tab. 44). Die L-Horizonte sind unbelastet (s. Anhang 9.7).

Daten zum physikochemischen Ist-Zustand der RF 43 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 44 – 7727 Buch

Referenzfläche 44 liegt auf der Topographischen Karte 1:25.000 Blatt 7727 Buch in der gleichnamigen Gemeinde, Landkreis Neu-Ulm. Sie liegt auf einer Höhe von 584 m NN in einer Verebnung in Kulminationslage unter Mischwald und repräsentiert die Naturräumliche Landschaftseinheit der Iller-Lech-Schotterplatte sowie die Standortkundliche Einheit der Iller-Lechplatte. Im Profil (Abb. 51) ist eine pseudovergleyte Parabraunerde aus Lößlehm über (Pseudo-) Gley aufgeschlossen. Als Humusform ist ein feinhumusreicher Moder entwickelt.

Abb. 51: Profil RF 44, pseudovergleyte Parabraunerde aus Lößlehm über (Pseudo-) Gley.

Tab. 45: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 44.

DE44 7727 Puob	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	922,36	461,31	637,00	673,56	679,00
Mineralboden (A+B-Horizonte)	16,55	209,32	77,04	100,97	37,60

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 45) zeigt, dass die Aktivitäten der organischen Auflagen wie auch der Mineralböden in den IMIS-Proben im Wertebereich derer der Monolithen liegen. Die Oh-Horizonte, sofern sie auf der Fläche ausgebildet sind, sind am stärksten belastet. In den Monolithen 2 und 3 sind die Ah-Horizonte sehr stark kontaminiert, wodurch auch der Wert für die Mineralbodenfraktion sehr stark ansteigt. Im Gegensatz dazu ist der nimmt die Cs-Aktivität in der Schürfgrube mit der Tiefe deutlich schneller ab.

Daten zum physikochemischen Ist-Zustand der RF 44 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 45 – 8027 Memmingen

Referenzfläche 45 liegt auf der Topographischen Karte 1:25.000 Blatt 8027 Memmingen in der Gemeinde Woringen, Landkreis Unterallgäu. Sie liegt auf einer Höhe von 635 m NN an einer Hangverflachung im Mittelhang unter Nadelwald und repräsentiert die Naturräumliche Landschaftseinheit des Unteren Illertals sowie die Standortkundliche Einheit der Schwäbisch-Bayerischen Schotterplatten- und Altmoränenlandschaft. Im Profil (Abb. 52) ist ein Braunerde-Pseudogley aufgeschlossen. Als Humusform ist ein feinhumusreicher Moder entwickelt.

Abb. 52: Profil RF 45, Braunerde-Pseudogley.

Tab. 46: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 45.

DE45 9027 Mommingon	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
Ni 43 8027 Merinningen	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	561,85	619,95	517,63	566,48	430,00
Mineralboden (A+B-Horizonte)	35,83	156,67	63,22	85,24	69,40

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 46) zeigt, dass die Aktivitäten der organischen Auflagen wie auch der Mineralböden in den IMIS-Proben im Wertebereich derer der Monolithen liegen. Auch liegt eine recht hohe Belastung der Ah-Horizonte in den Monolithen 2 und 3 vor.

Die vom LfU ermittelten Aktivitäten für einen unbearbeiteten Boden (lehmiger Sand) im Landkreis Unterallgäu lagen am 29.07.2008 und 23.04.2009 bei ca. 110 Bq kg⁻¹ (Tab. 1). Die gewichteten gemittelten Aktivitäten für die Mineralböden der Monolithen und IMIS-Proben liegen mit Ausnahme von Monolith 2 darunter. Der Mittelwert der Cs-Aktivität des Ah-Horizontes der drei Monolithen liegt mit 441,33 Bq kg⁻¹ deutlich höher.

Daten zum physikochemischen Ist-Zustand der RF 45 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 46 – 8228 Wildpoldsried

Referenzfläche 46 liegt auf der Topographischen Karte 1:25.000 Blatt 8228 Wildpoldsried in der Gemeinde Betzigau, Landkreis Oberallgäu. Sie liegt auf einer Höhe von 896 m NN in einem ebenen Tiefenbereich unter Nadelwald und repräsentiert die Naturräumliche Landschaftseinheit der Unteren Iller-Vorberge sowie die Standortkundliche Einheit der Schwäbisch-Bayerischen Jungmoränen und Molassevorberge. Im Profil (Abb. 53) ist ein Niedermoortorf über Anmoorgley aufgeschlossen. Als Humusform ist ein Anmoor entwickelt

Abb. 53: Profil RF 46, Niedermoortorf über Anmoorgley.

Tab. 47: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 46.

PE46 9229 Wildpoldprind	gewichtete Mi	Aktivität [Bq kg⁻¹]			
N 40 8228 Wildpoldshed	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	442,60	553,90	699,40	565,30	693,00
Mineralboden (A+B-Horizonte)	70,37	113,85	271,66	151,96	178,00

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 47) zeigt, dass die Aktivitäten der organischen Auflagen wie auch der Mineralböden in den IMIS-Proben im Wertebereich derer der Monolithen liegen. Es sind lediglich Of-Horizonte ausgebildet. Die Aktivitäten nehmen mit der Tiefe nur langsam ab. Grund ist ein aufgewachsener Niedermoortorf, der sehr stark mit Cäsium angereichert ist (s. Anhang 9.7).

Daten zum physikochemischen Ist-Zustand der RF 46 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 47 – 8526 Balderschwang

Referenzfläche 47 liegt auf der Topographischen Karte 1:25.000 Blatt 8526 Balderschwang in der Gemeinde Blaichach, Landkreis Oberallgäu. Sie liegt auf einer Höhe von 1.283 m NN am Oberhang unter Nadelwald und repräsentiert die Naturräumliche Landschaftseinheit des Hinteren Bregenzer Waldes sowie die Standortkundliche Einheit der Bayerischen Alpen. Im Profil (Abb. 54) ist eine mäßig podsolige Braunerde aufgeschlossen. Als Humusform ist ein feinhumusreicher Rohhumus entwickelt.

Abb. 54: Profil RF 47, mäßig podsolige Braunerde.

Tab. 48: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 47.

DE47 9526 Paldaraabwang	gewichtete Mi	Aktivität [Bq kg ⁻¹]			
Ri 47 0520 Balderschwang	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	487,80	553,24	605,50	548,85	842,70
Mineralboden (A+B-Horizonte)	2,05	16,64	53,84	24,18	43,16

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 48) zeigt, dass die Aktivitäten der organischen Auflagen wie auch der Mineralböden in den IMIS-Proben höher sind als in den Monolithen. Auch die L-Horizonte der RF 47 sind relativ hoch belastet (s. Anhang 9.7).

Daten zum physikochemischen Ist-Zustand der RF 47 wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

RF 48 – 8532 Garmisch-Partenkirchen

Referenzfläche 48 liegt auf der Topographischen Karte 1:25.000 Blatt 8532 Garmisch-Partenkirchen in Gemeinde und Landkreis gleichen Namens. Sie liegt auf einer Höhe von 795 m NN am Mittelhang unter Nadelwald und repräsentiert die Naturräumliche Landschaftseinheit des Ammerseegebirges sowie die Standortkundliche Einheit der Bayerischen Alpen. Im Profil (Abb. 55) ist eine Norm-Pararendzina aufgeschlossen. Als Humusform ist ein Tangelhumus entwickelt.

Abb. 55: Profil RF 48, Norm-Pararendzina.

Tab. 49: Vergleich der gewichteten Mittelwerte der Cs-137-Aktivitäten in den Auflagen und Mineralbodenhorizonten der Monolithen und den IMIS-Mischproben für Referenzfläche 48.

RF48	gewichtete Mittelwerte der Aktivitäten [Bq kg-1]				Aktivität [Bq kg ⁻¹]
8532 Garmisch-Partenkirchen	Monolith 1 (Schürfgrube)	Monolith 2	Monolith 3	Monolithen gesamt	IMIS
Auflagen (O-Horizonte)	630,20	872,65	773,27	758,71	939,20
Mineralboden (A+B-Horizonte)	21,29	223,83	117,27	120,80	232,00

Der Vergleich der Cs-137-Aktivitäten in den IMIS-Mischproben mit den gewichteten gemittelten Werten der drei Monolithen (Tab. 49) zeigt, dass die Aktivitäten der organischen Auflagen wie auch der Mineralböden in den IMIS-Proben höher sind als in den Monolithen. Die Of-Horizonte sind mehr als doppelt so hoch belastet wie die Oh-Horizonte. Bei der Tangelhumusauflage sind sie aber auch sehr mächtig (s. Anhang 9.7). Vergleichbare Cs-Aktivitäten findet auch VÖLKEL (2002: 60) bei Untersuchungen auf gleichem Höhenniveau im Raum Garmisch-Partenkirchen.

Die vom LfU ermittelten Aktivitäten für einen unbearbeiteten Boden (toniger Lehm) im Landkreis Garmisch-Partenkirchen lagen am 23.07.2008 bei 204,0 Bq kg⁻¹ (Tab. 1). Die gewichteten gemittelten Aktivitäten für die Mineralböden der Monolithen und IMIS-Proben liegen mit Ausnahme der Monolithen 1 und 3 in diesem Bereich. Der Mittelwert der Cs-Aktivität des Ah-Horizontes der drei Monolithen liegt mit 162,63 Bq kg⁻¹ darunter.

Daten zum physikochemischen Ist-Zustand der RF 48

wurden in Form von Korngrößenverteilungen, pH-Werten, Gehalten an Gesamt-Kohlenstoff, Gesamt-Stickstoff und Gesamt-Schwefel, organischer Substanz, Karbonatgehalten, Bodenfarben nach MUNSELL (MUNSELL Color 2000) sowie effektiven Kationenaustauschkapazitäten erhoben und sind den Tabellen im Anhang 9.4 (Bodenanalytische Standardwerte) sowie 9.5 (KAKeff.) zu entnehmen.

5. Zusammenfassung

Ziel des Vorhabens ist die Erstellung eines Netzes von Monitoringflächen zur Bodenbeprobung in Forsten des Bayerischen Staatsgebietes, die insbesondere als Referenzflächen zur Erfassung potentieller zukünftiger Kontaminationen mit radioaktiven Substanzen dienen. Ausgewählt wurden 48 Referenzflächen, deren Lage sich an der standortkundlichen Landschaftsgliederung Bayerns nach WITTMANN (1983) orientiert und der diesbezüglichen Heterogenität des Bayerischen Staatsgebietes Rechnung trägt. Zu erarbeiten war physikochemische und radioökologische Ist-Zustand der ausgewählten Referenzflächen. An jedem Standort wurde für zukünftige Beprobungen zudem eine so genannte Nullfläche ausgewiesen. In Absprache mit dem Landesamt für Umwelt (LfU) liegen jedem Standort folgende Auswahlkriterien in absteigender Reihenfolge zugrunde und über eine GIS-Analyse vorab ausgewählt.

- 1. Standortkundliche Einheit,
- 2. Höhenlage,
- 3. Staatsforstgebiet,
- 4. bestehende Bodendauerbeobachtungsmessnetze des LfU,
- 5. IMIS-Depositionsmessnetz des Bundes,
- 6. MSGW-Messflächen des LfU (Grundwasser),
- 7. Standortwahl möglichst nahe an bestehenden Messpunkten des GRABEN-Projektes des LfU.

Im Anschluss daran wurden die im GIS als potentiell verwendbar ausgewählten Standorte im Gelände auf ihre Tauglichkeit hin überprüft. Alle Standorte wurden nach entsprechender Festlegung vermarkt, ihre Lage präzise vermessen und jeweils eine Referenz- sowie eine Nullfläche ausgewiesen. Auf den Referenzflächen erfolgte die bodenkundliche Beprobung zur Standortcharakterisierung. Zugrunde gelegt wurden die entsprechenden Vorgaben nach IMIS (BMU 2006) sowie nach GRABEN (Bay. GLA 2000, 2004). Die Bodenproben wurden gammaspektrometrisch vermessen und physikochemisch charakterisiert. Die im Gelände erhobenen Profilbeschreibungen wurden ins BOKART-Probennahmeprotokoll des LfU eingegeben, um ihre Aufnahme in das Bodeninformationssystem BIS des Freistaates Bayern zu ermöglichen. Die radioökologischen Daten sind in diesem Bericht niedergelegt (Anhang 9.7). Für jede Einzelfläche wird eine Kurzcharakterisierung des radioökologischen Ist-Zustandes geleistet (Kap. 4).

6. Ausblick

Im renommierten *Journal of Environmental Radioactivity* erschien jüngst ein Beitrag von DOWDALL et al. (2008), welcher mit folgender Überlegung einleitet (vom Englischen ins Deutsche übersetzt):

Aktuelle Prognosen bezüglich des globalen Klima- und Umweltwandels kommen zu dem einhelligen Schluss, dass ein globaler Wandel des Klimas unumstritten stattfindet. Allerdings gibt es beträchtliche Unsicherheiten hinsichtlich des Ausmaßes und der Auswirkungen dieses Wandels. Es besteht nur wenig Zweifel daran, dass alle Umweltbereiche in irgendeiner Weise davon betroffen sein werden. Der Transfer von Radionukliden vom Boden zur Pflanze stellt seit langer Zeit ein bedeutendes Forschungsfeld der Radioökologie dar, sowohl zum Schutz der Bevölkerung als auch zum Schutz der Umwelt bzw. von Ökosystemen vor den Auswirkungen ionisierender Strahlung. Selbst nach fünf Jahrzehnten Forschung besteht noch erhebliche Ungewissheit über das Zusammenspiel der wichtigsten ökologischen Prozesse, welche den Transfer vom Boden zur Pflanze regeln. Da viele dieser Prozesse mehr oder weniger stark von klimatischen Faktoren abhängen, liegt die Vermutung nahe, dass sich der globale Klima-/Umweltwandel auf den Transfer von Radionukliden vom Boden zur Pflanze und auf damit verbundene Transferpfade innerhalb der Ökosysteme niederschlägt. Diese Diskussion unternimmt den Versuch, die Rolle/Bedeutung von klimatischen und klimaabhängigen Faktoren innerhalb des Transferprozesses Boden-Pflanze aufzuzeigen und in Zusammenhang mit den allgemeinen Prognosen zum globalen Wandel zu stellen. Die Arbeit ist spekulativ und dazu gedacht, die Debatte über ein Thema anzuregen, dass von der Radioökologie in den letzten Jahren entweder ignoriert oder vermieden wurde. (siehe Norwegian Radiation Protection Authority, Environmental Unit, Polar Environmental Centre, Hjalmer Johansens Gt., 9296 Tromsø, Norway, DOWDALL et al. 2008)

Die Technische Universität München (TUM) verfügt über zahlreiche forst- und landwirtschaftliche Versuchsgüter und –flächen, auf denen seit vielen Jahren intensiv über ökosystemare Folgen des globalen Temperaturanstiegs geforscht wird. Dazu zählen auch experimentelle Einrichtungen wie aktive CO₂-Begasung in Forsten (Kranzberger Forst) und simulierte Temperaturerhöhungen in Ackerböden (Versuchsgut Scheyern). Für Experimente aller Art steht zudem der Universitätswald in Unterlippach bei Landshut/Ndb. zur Verfügung. Somit liegen umfangreiche Datenpools vor, die für Forschungen zur potentiellen Erhöhung der Transferraten von Radiocäsium in die Lebewelt und auch in die Hydrosphäre herangezogen werden können. Insbesondere am Wissenschaftszentrum Weihenstephan (WZW) für Landnutzung, Ernährung und Umwelt sind die erforderlichen Kompetenzen zur Durchführung eines wie oben skizzierten Forschungsvorhabens in exzellenter Form gebündelt. Wir regen an, in Abstimmung mit dem StMUG (Bodenschutz) und dem LfU (u.a. Projektschwerpunkt Klimawandel/Anpassungsstrategien) und unter Nutzung der vorgenannten Ressourcen und Einrichtungen eine Folgestudie zur Erfassung möglicher Folgen des Klimawandels auf die radioökologische Situation in der Bayerischen Kulturlandschaft auszuarbeiten.

Unabhängig davon bieten wir als direkte Folgemaßnahme des hier berichtspflichtigen Vorhabens eine nur vergleichsweise geringe Kosten verursachende jährliche Beprobung und Vermessung der in diesem Projekt ausgewiesenen Referenzflächen an.

7. Literaturverzeichnis

- AD-HOC-ARBEITSGRUPPE BODEN/AG BODEN (Hrsg.) (2005): Bodenkundliche Kartieranleitung. Hannover.
- BAYERISCHES GEOLOGISCHES LANDESAMT/Bay GLA (Hrsg.) (2000): Bodenkundliche Profilaufnahme. Anleitung und Schlüssellisten zur Aufnahme von Bodenprofilen und deren Erfassung in der Zentralen Datenbank (ZDB). – Stand: 16. Juni 2000.
- BAYERISCHES GEOLOGISCHES LANDESAMT/Bay GLA (Hrsg.) (2004): Bodenprobenahme im vorsorgenden Bodenschutz im Projekt "Wissenschaftliche Grundlagen für den Vollzug der Bodenschutzgesetze". – Stand: September 2004.
- BAYERISCHES LANDESAMT FÜR UMWELT/LfU (Hrsg.) (2006): Bericht über die Veränderungen der Radioaktivität in Böden seit dem Reaktorunfall von Tschernobyl vor 20 Jahren. 66 S., Augsburg.
- BAYERISCHES LANDESAMT FÜR UMWELT/LfU (2009): URL: http://inters.bayern.de/umweltproben/php/formular.php, Stand Oktober 2009.
- BAYERISCHES STAATSMINISTERIUM FÜR UMWELT, GESUNDHEIT UND VERBRAUCHERSCHUTZ /StMUGV (2000): URL: http://www.stmugv.bayern.de/de/boden/allgem/pic/karte2.pdf, Stand Juli 2006.
- BUNDESAMT FÜR KARTOGRAPHIE UND GEODÄSIE (2006): Bayern 3D. Das interaktive Kartenwerk. Version 2.0. 2 DVDs, Pliezhausen.
- BUNDESMINISTERIUM FÜR UMWELT, NATURSCHUTZ UND REAKTORSICHERHEIT (BMU) (Hrsg.) (2006): Messanleitung für die Überwachung der Radioaktivität in der Umwelt und zur Erfassung radioaktiver Emissionen aus kerntechnischen Anlagen. F-γ-SPEKT-BODEN-01-01. Verfahren zur gammaspektometrischen Bestimmung von Radionukliden in Bodenproben, München.
- CHIU, C.-Y., WANG, C.-J. & C.-C. HUANG (2008): Availability and immobilization of ¹³⁷Cs in subtropical high mountain forest and grassland soils. Journal of Environmental Radioactivity 99/6: 882-889.
- CALMON, P., THIRY, Y., ZIBOLD, G., RANTAVAARA, A. & S. FESENKO (2009): Transfer parameter values in temperate forest ecosystems: A Review. Journal of Environmental Radio-activity 100: 757-766.
- DOWDALL, M., STANDRING, W., SHAW, G. & P. STRAND (2008): Will global warming affect soilto-plant transfer of radionuclides? – Journal of Environmental Radioactivity 99/11: 1736-1745.
- EL SAMAD, O., ZAHRAMAN K., BAYDOUN, R. & M. NASREDDINE (2007): Analysis of radiocaesium in the Lebanese soil one decade after the Chernobyl accident. – Journal of Environmental Radioactivity 92/2: 72-79.
- ERLINGER, CH., LETTNER, H., HUBMER, A., HOFMANN, W. & F. STEINHÄUSLER (2009): Determination of ¹³⁷Cs in the water system of a pre-Alpine lake. Journal of Environmental Radioactivity 100/4: 354-360.

- FÖRSTER, H., SCHIMMACK, W. & K.-E. KREUTZER (2008): Die horizontale Verteilung von Radiocäsium im Waldboden unter Fichte und Buche. Zeitschrift für Pflanzenernährung und Bodenkunde 154/2: 87-92.
- GIANNAKOPOULOU, F., HAIDOUTI, C., CHRONOPOULOU, A. & D. GASPARATOS (2007): Sorption behavior of cesium on various soils under different pH levels. – Journal of Hazardous Materials 149/3: 553-556.
- HÜRKAMP, K. (2006): Bewertung der potentiellen Gefährdung von Grund- und Oberflächenwässern infolge Mobilisierung von Schwermetallen aus bergbaubedingt kontaminierten Auensedimenten im nördlichen Vilstal/Opf. - Regensburger Beiträge zur Bodenkunde, Landschaftsökologie und Quartärforschung (BOLAQ), 9, 443 S., Regensburg. URL: http://www.opus-bayern.de/uni-regensburg/volltexte/2006/684/, Stand Oktober 2009.
- KARADENIZ, Ö. & G. YAPRAK (2007): Geographical and vertical distribution of radiocesium levels in coniferous forest soils in Izmir. – Journal of Radioanalytical and Nuclear Chemistry 277/3: 567-577.
- KIRCHNER, G., STREBL, F., BOSSEW, P., EHLKEN, S. & M.H. GERZABEK (2009): Vertical migration of radionuclides in undisturbed grassland soils. – Journal of Environmental Radioactivity 100/9: 716-720.
- KONOPLEVA, I., KLEMT, E., KONOPLEV, A. & G. ZIBOLD (2009): Migration and Bioavailability of ¹³⁷Cs in Forest Soil of Southern Germany. Journal of Environmental Radioactivity 100: 308-314.
- KVASNIKOVA, E.V., VAKULOVSKII, S.M., GORDEEV, S.K., ZHUKOVA, O.M., KONSTANTINOV, S.V., MANZON, D.A. & V.N. YAKHRYUSHIN (2007): Radiation monitoring in Bryansk Polesie twenty-one years after the Chernobyl NPP accident. – Russian Meteorology and Hydrology 34/7: 454-463.
- MAHR, A. (1998): Lockerparabraunerden und periglaziale Hangsedimente im Bayerischen Wald. Untersuchungen zu Paläoumwelt und Geodynamik im Spätglazial und ihrem Einfluss auf Pedogenese. – Regensburger Geographische Schriften, Bd. 30, Regensburg.
- MEHRA, O.P. & M.L. JACKSON (1960): Iron Oxide Removal from Soils and Clays by a Dithionite-Citrate System buffered with Sodium Bicarbonate. – Clay and Clay Minerals, 7: 317-327.
- MONNA, F., VAN OORT, F., HUBERT, P., DOMINIK, J., BOLTE, J., LOIZEAU, J.-L., LABANOWSKI, J., LAMRI, J., PETIT, C., LE ROUX, G. & C. CHATEAU (2009): Modeling of ¹³⁷Cs migration in soils using an 80-year soil archive: role of fertilizers and agricultural amendments. – Journal of Environmental Radioactivity100/1: 9-16.
- MUNSELL Color (2000): Munsell Soil Color Charts. Grand Rapids, X-rite.
- PAREKH, N.R., POSKITT, J.M., DODD, B.A., POTTER, E.D. & A. SANCHEZ (2008): Soil microorganisms determine the sorption of radionuclides within organic soil systems. – Journal of Environmental Radioactivity, 99/5 841-852.
- PRÖHL, G. (2009): Interception of dry and wet deposited radionuclides by vegetation. Journal of Environmental Radioactivity 100/9: 675-682.

- SCHWERTMANN, U. (1964): Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. – Zeitschrift für Pflanzenernährung, Düngung und Bodenkunde, 105: 194-202.
- TAMPONNET, C., MARTIN-GARIN, A., GONZE, M.-A., PAREKH, N., VALLEJO, R., SAURAS-YERA, T., CASADESUS, J., PLASSARD, C., STAUNTON, S., NORDEN, M., AVILA, R. & G. SHAW (2008): An overview of BORIS: Bioavailability of Radionuclides in Soils. – Journal of Environmental Radioactivity, 99/5: 820-830.
- TSVETNOVA, O.B. & A.I. SHCHEGLOV (2009): ¹³⁷Cs in natural ecosystem components within the 30-km impact zone of the Smolensk nuclear power plant. Moscow University Soil Science Bulletin 64/3: 99-104.
- VARGA, B., LECLERC, E. & P. ZAGYVAI (2009): The role of analogues in radioecology. Journal of Environmental Radioactivity 100/9: 802-805.
- PUTYRSKAYA, V., KLEMT, E. & S. RÖLLIN (2009): Migration of ¹³⁷Cs in tributaries, lake water and sediment of Lago Maggiore (Italy, Switzerland) – analysis and comparison with Lago di Lugano and other lakes. – Journal of Environmental Radioactivity 100/9:35-48.
- VÖLKEL, J. (1995): Periglaziale Deckschichten und Böden im Bayerischen Wald und seinen Randgebieten als geogene Grundlage landschaftsökologischer Forschung im Bereich naturnaher Waldstandorte. – Zeitschrift für Geomorphologie, Suppl. Vol. 96, Berlin.
- VÖLKEL, J. (1997): Modelle zur Cäsiumfixierung in Böden radioaktiv hoch kontaminierter Gebiete Ost-Bayerns. – Abschlußbericht im Auftrag des Bayerischen Staatsministeriums für Landesentwicklung und Umweltfragen (StMLU) München, Universität Regensburg. [unpubl.]
- VÖLKEL, J. (1999): Untersuchung zur Bioverfügbarkeit mineralischer Streumittel in Abhängigkeit unterschiedlicher Applikationsformen zur Reduktion der Radiocäsiumaufnahme durch Pflanzen in Forstökosystemen im Falle von Ereignissen mit möglichen, nicht unerheblichen radiologischen Auswirkungen. – Abschlußbericht im Auftrag des Bayerischen Staatsministeriums für Landesentwicklung und Umweltfragen (StMLU) München, Universität Regensburg. [unpubl.]
- VÖLKEL, J. (2002): Bioverfügbarkeit von Radiocäsium in unterschiedlichen naturräumlichen Einheiten Bayerns. - Regensburger Beiträge zur Bodenkunde, Landschaftsökologie und Quartärforschung (BOLAQ), 1, 132 S., Regensburg.
 URL: http://www.opus-bayern.de/uni-regensburg/volltexte/2004/335/, Stand Oktober 2009.
- VÖLKEL, J. & M. LEOPOLD (2006a): Standortvariabilität von Radiocäsium. Abschlussbericht im Forschungsvorhaben. Regensburger Beiträge zur Bodenkunde, Landschaftsökologie und Quartärforschung (BOLAQ), 10, 260 S., Regensburg. URL: http://www.opus-bayern.de/uni-regensburg/volltexte/2006/694/, Stand Oktober 2009.
- VÖLKEL, J. & M. LEOPOLD (2006b): Monitoring zur Standortvariabilität von Radiocäsium in Böden. Endbericht im Forschungsvorhaben, 1. Phase im Auftrag des Bayerischen Staatsministeriums für Umwelt, Gesundheit und Verbraucherschutz (StMUGV) München, Universität Regensburg. [unpubl.]

- WAEGENEERS, N., SAURAS-YEAR, T., THIRY, Y., VALLEJO, V.R., SMOLDERS, E., MADOZ-ESCANDE, C. & F. BRÉCHIGNAC (2009): Plant uptake of radiocaesium from artificially contaminated soil monoliths covering major European soil types. – Journal of Environmental Radioactivity 100/6: 439-444.
- WITTMANN, O. (1983): Standortkundliche Landschaftsgliederung von Bayern. BStmLU, Materialien 21, 30 S.
- ZEZSCHWITZ, E. VON, SCHWERTMANN, U. & B. ULRICH (1973): Die Podsolierungsstadien von Braunerden aus Schieferschutt. – Zeitschrift für Pflanzenernährung und Bodenkunde, 136: 40-52.
- ZIEMBIK, Z., DOŁHAŃCZUK-ŚRÓDKA, A. & M. WACŁAWEK (2009): Multiple Regression Model Application for Assessment of Soil Properties Influence on ¹³⁷Cs Accumulation in Forest Soils. – Water, Air, & Soil Pollution 198/1-4: 219-232.
- ZHIYANSKI, M., BECH, J., SOKOLOVSKA, M., LUCOT, E., BECH, J. & P.-M. BADOT (2008): Cs-137 distribution in forest floor and surface soil layers from two mountainous regions in Bulgaria. Journal of Geochemical Exploration 96/2-3: 256-266.

8. Anhangsverzeichnis

9. Anhang

9.1	Lage der Referenz- und Nullflächen	71
9.2	Profilbeschreibungen	119
9.3	Mächtigkeiten [cm] der 30 IMIS-Mischproben pro Referenzfläche	167
9.4	Bodenanalytische Standardwerte	179
9.5	Effektive Kationenaustauschkapazität	203
9.6	Sequentielle Extraktion der pedogenen Oxide	251
9.7	Cs-137-Aktivitäten	255

9. Anhang

9.1 Lage der Referenz- und Nullflächen

Profil RF 1 – 7037 Kelheim

Legende s. Abb. 1

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4495290 5425252 4495306 5425304 4495315 5425256 4495329 5425292

Nullfläche: 4495271 5425264 4495279 5425298 4495290 5425252 4495306 5425304

Profil 1: 4495312 5425274

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4527519 5442709 4527491 5442723

4527531 5442738 4527501 5442742

Nullfläche: 4527515 5442679 4527484 5442695 4527519 5442709 4527491 5442723

Profil 1: 4527498 5442726

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4481407 5400527 4481402 5400485 4481371 5400540

4481358 5400486

Nullfläche: 4481464 5400492 4481450 5400469 4481407 5400527 4481402 5400485

Profil 1: 4481367 5400493

Legende s. Abb. 1

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4528282 5384373

4528241 5384363 4528247 5384431 4528211 5384423

Nullfläche: 4528309 5384332 4528270 5384318 4528282 5384373 4528241 5384363

Profil 1: 4528239 5384410

Profil RF 5 – 6636 Kastl

Legende s. Abb. 1

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4481210 5473185 4481227 5473191 4481228 5473151 4481251 5473163

Nullfläche: 4481182 5473195 4481210 5473217 4481210 5473185 4481227 5473191

Profil 1: 4481222 5473172

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4528847 5459608 4528853 5459578

4528822 5459615 4528824 5459581

Nullfläche: 4528877 5459596 4528881 5459574 4528847 5459608 4528853 5459578

Profil 1: 4528840 5459602

Legende s. Abb. 1

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4582272 5409459 4582241 5409493

4582298 5409485 4582269 5409519

Nullfläche: 4582255 5409409 4582206 5409446 4582272 5409459 4582241 5409493

Profil 1: 4582276 5409484

Legende s. Abb. 1

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4498222 5508217 4498253 5508194

4498202 5508166 4498249 5508147

Nullfläche: 4498237 5508263 4498274 5508241 4498222 5508217 4498253 5508194

Profil 1: 4498218 5508172

Legende s. Abb. 1

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4472740 5499146 4472756 5499160

4472754 5499125 4472771 5499134

Nullfläche: 4472721 5499164 4472743 5499175 4472740 5499146 4472756 5499160

Profil 1: 4472758 5499138

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4554992 5470351 4554982 5470319 4554960 5470366 4554956 5470323

Nullfläche: 4555020 5470341 4555003 5470315 4554992 5470351 4554982 5470319

Profil 1: 4554967 5470354

Profil RF 11 – 6844 Lam

Legende s. Abb. 1

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4581615 5441064 4581643 5441096 4581646 5441055 4581664 5441093

Nullfläche: 4581594 5441076 4581613 5441108 4581615 5441064 4581643 5441096

Profil 1: 4581650 5441074

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4632415 5406190 4632422 5406165 4632390 5406177 4632401 5406157

Nullfläche: 4632433 5406204 4632449 5406191 4632415 5406190 4632422 5406165

Profil 1: 4632410 5406178

Profil RF 13 – 7348 Wegscheid

5405700

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4626776 5390051

4626757 5390072 4626799 5390077 4626775 5390094

Nullfläche: 4626750 5390035 4626735 5390056 4626776 5390051 4626757 5390072

Profil 1: 4626784 5390062

Legende s. Abb. 1

Legende s. Abb. 1

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4602609 5379443 4602662 5379442

4602593 5379398 4602652 5379383

Nullfläche: 4602621 5379495 4602665 5379486 4602609 5379443 4602662 5379442

Profil 1: 4602616 5379419

Legende s. Abb. 1

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche:

4559568 5342251 4559605 5342219 4559543 5342205 4559599 5342165

Nullfläche: 4559600 5342287 4559640 5342237 4559568 5342251 4559605 5342219

Profil 1: 4559564 5342217

Legende s. Abb. 1

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche:

4572339 5303109 4572296 5303110 4572326 5303139 4572294 5303131

Nullfläche: 4572333 5303079 4572303 5303086 4572339 5303109 4572296 5303110

Profil 1: 4572301 5303127

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4548018 5288763 4547996 5288751 4548023 5288792

4547995 5288780

Nullfläche: 4548043 5288734 4548007 5288721 4548018 5288763 4547996 5288751

Profil 1: 4548011 5288778

Profil RF 18 – 8040 Eggstätt

Legende s. Abb. 1

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4530426 5309882

4530406 5309825 4530369 5309889 4530354 5309838

Nullfläche: 4530465 5309874 4530456 5309827 4530426 5309882 4530406 5309825

Profil 1: 4530091 5309860

Profil RF 19 – 8236 Tegernsee

Legende s. Abb. 1

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche:

4475151 5286345 4475149 5286369 4475182 5286354 4475173 5286380

Nullfläche: 4475120 5286333 4475115 5286351 4475151 5286345 4475149 5286369

Profil 1: 4475157 5286365

Profil RF 20 – 7837 Markt Schwaben

Legende s. Abb. 1

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4490676 5330810 4490738 5330773 4490649 5330729 4490707 5330700

Nullfläche: 4490696 5330856 4490762 5330825 4490676 5330810 4490738 5330773

Profil 1: 4490693 5330752

Legende s. Abb. 1

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 3570868 5531806 3570847 5531856 3570933 5531823 3570895 5531869

Nullfläche: 3570821 5531791 3570807 5531837 3570868 5531806 3570847 5531856

Profil 1: 3570900 5531841

Legende s. Abb. 1

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 3574039 5581572 3573999 5581544 3573990 5581599

3573965 5581594

Nullfläche: 3574065 5581531 3574016 5581493 3574039 5581572 3573999 5581544

Profil 1: 3574002 5581579

Profil RF 23 – 5728 Oberlauringen

Legende s. Abb. 1

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 3605719 5565611 3605727 5565550 3605662 5565595 3605696 5565532

Nullfläche: 3605765 5565624 3605780 5565588 3605719 5565611 3605727 5565550

Profil 1: 3605717 5565583

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4430714 5412408 4430750 5412433 4430729 5412398 4430759 5412415

Nullfläche: 4430697 5412424 4430737 5412454 4430714 5412408 4430750 5412433

Profil 1: 4430745 5412413

Legende s. Abb. 1

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4417317 5334248

4417328 5334240 4417262 5334198 4417262 5334256 4417281 5334198

Nullfläche:

4417383 5334246 4417374 5334199 4417317 5334248 4417328 5334198

Profil 1: 4417312 5334245

Profil RF 26 – 7433 Schrobenhausen

Legende s. Abb. 1

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4442586 5380656

4442588 5380598 4442532 5380660 4442523 5380622

Nullfläche: 4442641 5380657 4442646 5380608 4442586 5380656 4442588 5380598

Profil 1: 4442540 5380633

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4430446 5307542 4430435 5307577

4430480 5307572 4430464 5307593

Nullfläche: 4430425 5307524 4430406 5307569 4430446 5307542 4430435 5307577

Profil 1: 4430456 5307576

Profil RF 28 – 5939 Waldsassen

Legende s. Abb. 1

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4517488 5548225 4517533 5548276

4517510 5548193 4517571 5548251

Nullfläche: 4517445 5548257 4517493 5548310 4517488 5548225 4517533 5548276

Profil 1: 4517550 5548255

Legende s. Abb. 1

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4529539 5489251

4529508 5489195 4529505 5489298 4529456 5489220

Nullfläche: 4529578 5489223 4529552 5489169 4529539 5489251 4529508 5489195

Profil 1: 4529492 5489270

Legende s. Abb. 1

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4526903 5514162 4526932 5514158 4526895 5514142 4526919 5514134

Nullfläche: 4526910 5514196 4526941 5514185 4526903 5514162 4526932 5514158

Profil 1: 4526914 5514147

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche:

4432387 5529092 4432441 5529094 4432380 5529045 4432430 5529043

Nullfläche: 4432394 5529147 4432442 5529132 4432387 5529092 4432441 5529094

Profil 1: 4432429 5529052

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4485723 5543932 4485714 5543906 4485705 5543951

4485691 5543936

Nullfläche: 4485744 5543907 4485724 5543891 4485723 5543932 4485714 5543906

Profil 1: 4485714 5543928

Referenzfläche

D Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 3538827 5538958 3538839 5538989

3538849 5538938 3538865 5538970

Nullfläche: 3538807 5538976 3538812 5539002 3538827 5538958 3538839 5538989

Profil 1: 3538849 5538943

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 3531807 5521699 3531777 5521667 3531762 5521712 3531741 5521681

Nullfläche: 3531847 5521673 3531824 5521627 3531807 5521699 3531777 5521667

Profil 1: 3531748 5521684

Legende s. Abb. 1

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 3556576 5562443 3556583 5562476 3556594 5562443

3556600 5562471

Nullfläche: 3556535 5562451 3556544 5562487 3556576 5562443 3556583 5562476

Profil 1: 3556590 5562455

Legende s. Abb. 1

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4433188 5577912 4433230 5577944 4433205 5577867

4433260 5577883

Nullfläche: 4433168 5577977 4433220 5577989 4433188 5577912 4433230 5577944

Profil 1: 4433214 5577916

Legende s. Abb. 1

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4461380 5581040 4461358 5581095 4461429 5581068 4461408 5581115

Nullfläche: 4461340 5581040 4461313 5581076 4461380 5581040 4461358 5581095

Profil 1: 4461408 5581081

Legende s. Abb. 1

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4468737 5565379

4468754 5565407 4468774 5565366 4468792 5565386

Nullfläche: 4468724 5565388 4468733 5565420 4468737 5565379 4468754 5565407

Profil 1: 4468763 5565390

Legende s. Abb. 1

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4438739 5483780

4438688 5483766 4438738 5483823 4438686 5483814

Nullfläche: 4438753 5483720 4438706 5483721 4438739 5483780 4438688 5483766

Profil 1: 4438698 5483814

Legende s. Abb. 1

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4400032 5445051 4400000 5445083 4400077 5445100 4400033 5445110

Nullfläche: 4400019 5445012 4399989 5445028 4400032 5445051 4400000 5445083

Profil 1: 4400021 5445086

Profil RF 41 – 6427 Uffenheim

Legende s. Abb. 1

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 3587633 5485098 3587624 5485041 3587583 5485091 3587581 5485048

Nullfläche: 3587685 5485091 3587685 5485044 3587633 5485098 3587624 5485041

Profil 1: 3587626 5485070

Legende s. Abb. 1

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4392991 5525750

4393024 5525712 4392940 5525716 4392987 5525681

Nullfläche: 4393035 5525776 4393063 5525739 4392991 5525750 4393024 5525712 Profil 1: 4392988 5525730

Legende s. Abb. 1

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 4390893 5383515

4390950 5383526 4390914 5383468 4390970 5383480

Nullfläche: 4390883 5383548 4390934 5383567 4390893 5383515 4390950 5383526

Profil 1: 4390952 5383486

Legende s. Abb. 1

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 3591131 5340821 3591141 5340874 3591191 5340871

3591181 5340819

Nullfläche: 3591092 5340827 3591107 5340872 3591131 5340821 3591141 5340874

Profil 1: 3591173 5340843

Legende s. Abb. 1

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 3588440 5312166 3588473 5312211 3588480 5312146 3588510 5312184

Nullfläche: 3588393 5312196 3588428 5312235 3588440 5312166 3588473 5312211

Profil 1: 3588494 5312157

Profil RF 46 – 8228 Wildpoldsried

Legende s. Abb. 1

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 3606636 5287948 3606639 5287894 3606585 5287946 3606590 5287898

Nullfläche: 3606683 5287947 3606687 5287886 3606636 5287948 3606639 5287894

Profil 1: 3606615 5287903

Legende s. Abb. 1

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche: 3587233 5261520 3587256 5261499

3587228 5261508 3587229 5261475

Nullfläche:

3587247 5261546 3587273 5261532 3587233 5261520 3587256 5261499

Profil 1: 3587226 5261504

Legende s. Abb. 1

Referenzfläche

Nullfläche

Koordinaten Flächeneckpunkte: Referenzfläche:

4429897 5262272 4429881 5262286 4429910 5262288 4429886 5262309

Nullfläche: 4429872 5262253 4429858 5262264 4429897 5262272 4429881 5262286

Profil 1: 4429916 5262288

9.2 Profilbeschreibungen

Profil RF 1 – 7037 Kelheim

		1	Profilken	nung		1	Proje	ktkenn	ung	1	Lage					Z	uordn	ung			1	_	Aufn	ahn	ne	
ObjId				Blatt-Nr TK25	. Aufn Serie	Profil- Nr.	S	RRA02		R 4495	5312	Höhe m ü. N	N Pin	eg,	_	0.00	narrosan	- Iu	andso	chEinhe	Name	e ł Ch	Hoppe (ristophe	Uni F	() 11 R)	Aufschl Art
Blattnar TK25	me	Kelf	neim	7037	96	1 -	Frem	dkennu CS-RF1	ing	H 5425	5274	496	Lkr Gd	e.	Sina	Rege zing [R	nsburg egensbu	irg]	6	5.23	Datur extern Aufn.	m ne	24.05. UNI	2007 -R	7	GS
In	tensitä	it		KI	ima	··			Nu	utzung			T.	-						Relief				_	-	
Aufnahr	jid Ittname 25 Keil Intensität fnahme Av probung 30 bstraterg. NO odensyst. E. p2BBICF Horiz Proben-Nr.		Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.	. Baumar	rten	Best Zust.	Inklinatio	- E	Expo- sition	v	Reliefwo ert.	lbung horiz	r. F	ormtyp	Länge		Lage	Mil	lief	Entf. z. Hankok.
Beprobu Substra	ung iterg.	30 NO	7	750	35		FM			KI4, BU	2, FI1, BI1,	SU	0,5		KE	9	31	G1		кн .	Breite H/T		к			
Bode	ensyst.	E.	<u> </u>	Bo	denform		<u> </u>	Subst	ratsys	t. E.	Legend	len-	Humu	isfo	orm	Во	denab	/ G	W-St	and	Boder	nsch	ätzun	g	Be	emerk.
p2	BB\CF		schwach	n podsolige	Braunerde	entwicke	lt in	P	-In/p-t		zuordni	ung				- a	uftrag	G	OK S	Status					1	
	b)-Id attname (25 Intensität Inte		Lößlehr	nbeimengu	ingen, über	Terra Fus	ca			T	Nr. hema		m	not		Vorg. Grad	-	-		k G	Acker rünland			\neg		
	1	Horiz	ontkenn	zeichnu	ing		Bo	denfarb	e	Skelett	B	odenar	t		П	Hy	rdom.	Merk	male	•	Gef	üge	Ê	1.		E m
lfd. Pr Nr.	P2BB\CF Horiz		Symbol	Ober Grenz [cm	- bzw. Unte ze Form]	rgrenze Schärfe	Munse	subje	ektiv	Anteil von-bis (Vol%)	Grob- boden	Feinb bzw. zers.	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe Ko Ant.	/ Mn nkret. Gr.	Ausfäll.	Form	Größe	Rohdichte	Durchwurz	Schicht-Nr	Schicht-Sy Bemerkun
1		Ì	L	-4 -3	w	di					1			7	0									Ē	1	F
2		T	Of	-3 -1	w	di	1	0YR 2/2			•	1		7	0					T			T	T	1	F
3		T	Oh	-1 0	w	de	1	0YR 2/3				1		7	0								T	t	1	F
4		İ	I Ahe	0	t	de .	1	0YR 5/3	_	1 2	r6	Uls		4	0	3	8		×.	-	sub	3		T	2	н
5		Ī	l Aeh	1 4	w	de	1	0YR 5/4		1 2	r6	Uls		2	0	2		~	14	-	sub	3		Ĺ	2	н
6			l Bv	4 40	w	di	3	2,5Y 6/6		50 75	x6	Ls2		0	0		-	2	-	-	sub	3			2	н
7			I Bv-Cv	40 50	w	di	3	2,5Y 6/6		40 50	r3g4	Lt2		0	0		•	1		-	sub	3			2	н
8			II Sd-T	50 60 -			1	0YR 6/8		1 2	r6	Tt		0	0	1	3	2	2	мн	pol	3		Γ	3	v

			Profilk	enn	ung			Projek	tkenn	ung	T		Lage	61			Zuordnu	ing			Aufna	hme		_
Obj.	-Id				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SF	RRA02		R	4495	5312	Höhe m ü. NN	Pireg	1		- 20	LandschEinhe	Name	Hoppe (U Christophel	Jni R) (Uni R)	Aufsch Art	
Blatt	name		Kelheim	1	7097	0.0		Fremd	kennu	ung	н				Lkr.		Regensburg		6.00	Datum	24.05.2	007		
	1625				1031	50	· [C	S-RF1		11	0423	5274	496	Gde.	Sinzi	ng (Regensbur	a 1	0.23	Aufn.	UNI-	R	03	
ht-Nr.	-Sym.	enese	Gesamt- skelett	Bod	lenarten- uppen	Symb.	T	t-Bez.	Sk	elett	tigung	erkung		Kompone	nten d	er Grob	fraktion		K	omponente	n der Feinfr	raktion		_
Schic	Schicht	Geog	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substar	Verteil.	Einreg.	Verfes	Beme	Bodenkdl Geolog. Begriff	- Petrogra Bezeichn	ph. iung v (Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl F Geolog. B Begriff	Petrograph. Iezeichnun	Anteil von - bis (Vol%)	Stratig	raphie	Verwitt.
1	F	og	0 0	•		og-(O)	Str																
_		-	44		+ +	-	-		†	1	一	t	† – – – – – – – – – – – – – – – – – – –	ls	10	00 - 100	KR		<u> </u>	I/KA	50 - 50	к	R	-
2 H		pfi	64	nn	н	p-nl								_						I/KA	50 - 50	0		_
3 V		s	1	zz	It	s-t	1			<u> </u>	F	T	<u> </u>	ls	10	00 - 100	kr			i/KA	100 - 100	k	r	-
			2						1			1			-				++-		-		-	Ē

A Bemerkungen B

E	Blatt-Nr. TK25	Aufr	-																							
		Seri	- Pi	rofil- Nr.	S	RRA01		R	45274	98	Höhe m ü. Ni	N PI	ireg.					andsci	Einhe	Nam	e F Chr	loppe	(Uni l el (Ui	R) ni R)	Aufsch	hl
	6840	96		2	Frem	dkennu :S-RF2	ng	н	54427	26	631	G	kr. de,	-	C Wald	ham [Cham]	-	11	.12	Datu exter Aufn	m ne	31.05 UN	.2007 I-R	_	GS	5
Ì	Klir	ma					N	utz	ung			T						F	Relief		_					_
i H	ieder- T chlag	Trocken Index	h. O	kolog. euchte	aktuelle N.	Zusatz N.	ehem N.	B	aumarte	en	Best Zust.	Ink nati	ii- I	Expo		Reliefwö vert.	lbung horiz	Fo	rmtyp	Länge		Lage	Mi	kro- lief	Entf Han	f. z. kok.
7	750	45	T		FL				BU	U6,	н	11,	5	SW		G0	V4		HF	Breite H/T	_	м				
ie	Bod erde aus	Solifluk	n	decke ül	ber	Substr	atsys	st. I		Legend	en- ung	Hum	usfo	orm	Bo - a	denab	G	W-Sta	atus	Bode	nschi	ätzun	ıg	Be	mer	rk.
	foss	silem Bt				,			N The	lr. ema	_	1	mot		Vorg Grac		Ŧ		k (Acker Grünland	-	_				
e	eichnur	ng			Boo	denfarb	е	S	celett	Bo	odenar	t	Т		Ну	rdom.	Merk	male	Τ.	Gef	üge	ŝ	Τ.		É	
	Ober- Grenze [cm]	bzw. Ur	tergn	renze chärfe	Munse	subje	ktiv	A vo (V	nteil on-bis 'ol%)	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe Kor Ant.	/ Mn hkret. Gr.	Ausfäll.	Form	Größe	Rohdichte(Durchwurz	Schicht-Nr.	Schicht-Syi	Bemerkung
	-7 -5	w		di	1	0YR 4/6							7	0									T	1	F	T
	-5 -2	w		di	2.	5YR 3/3		Ī		•			7	0					T			t	t	1	F	t
	-2 0	w		di	Ę	5YR 3/1				•			7	0					1				T	1	F	T
	0 5	z		de	7,	5YR 4/3			0	-	SI4		3	0	•	-	-			kru	1	İ	T	2	н	T
	5 30	w		de	1	0YR 4/6			2 5	x2r5	Ls3		0	0	-		-		-	sub- pol	3		T	2	н	Ī
	30 117	w		de	1	0YR 4/6			15 20	x3r4	Ls4		0	0	÷	<i>.</i>	÷	879		sub- pol	3			3	в	Γ
	117 125 +		İ	•	7,	5YR 4/4			0	-	Lts		0	0	2		-	141		pol	3		Ť	3	в	Ť
	eichnur Ober-I Grenze [cm] -7 -5 -2 -2 -2 -2 -2 0 0 5 5 30 117 117 125 +	ng bzw. Urf bzw. Urf w w w w z z w w w		renze charfe di _ di _ de _ de _ de _	Boo Munsee 1. 2. 7, 7, 1. 1. 7,	denfarb III subje 0YR 4/6 5YR 3/3 5YR 3/3 5YR 3/1 5YR 4/3 0YR 4/6 0YR 4/6 5YR 4/4	e ektiv		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ir. ema Grob- boden - - - - x2r5 x3r4	Ddenar Feinb bzw. zers. Sl4 Ls3 Ls4	t oden Torf- Stufe	snunH 7 7 7 7 3 0 0	0 0 Cathonat	Vorg Grac Hy Rost fl.	rdom. Bleich fl.	Merk Fe Kor Ant.	male / Mn nkret. Gr.	k (Acker Srünlar Forr kru sub pol	nd ef	n Größe	rid pfüge m Größe 1 1 3 3	Ind Image: Constraint of the second sec	Image: state	Image: state

Profil RF 2 – 6840 Reichenbach

			Profile	enn	ung			Proje	ktkenn	ung	Т		Lage	2			Zuordnu	ng	6		Aufna	ahme	
Obj	-ld				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	S	RRA01		R	452	7498	Höhe m ü. NN	Pireg	1		-	LandschEinhe	Name	Hoppe (I Christophe	Jni R) I (Uni R	Aufsch
Blat T	Slattname TK25 ž É		eichenbach	1	6840	96	2	Frem	dkenn	ung	н	544	2726	631	Lkr. Gde.	-	Cham Vald [Cham]	1	11.12	Datum	31.05.2 UNI-	2007 R	GS
Blattname TK25 'whore the state		nese	Gesamt- skelett	Bod	enarten- uppen	ymb.		Bez	S-RF2	elett	Bunb	rkung		Kompone	enten de	er Grob	fraktion		Ko	Aufn. mponente	en der Feinf	raktion	
Schicht-Nr. Schicht-Sym.		Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Bemei	Bodenkdl. Geolog. Begriff	 Petrogra Bezeichn 	iph. iung vi	Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl P Geolog. B Begriff	atrograph. Ezeichnun	g von - bis (Vol%)	Stratig	raphie
1	F	og	0	•		og-(O))	Str				Ī											
2	н	р	2	zz	I	p-l	Ť					T		Gr	10	00 - 100	pz			U S	30 - 30 70 - 70	P	Vh >z
3	в	р	14	nz	н	p-(z)l	1		1	1		t		Gr	10	00 - 100	pz			U S	25 - 25 75 - 75	d d	ip iz

A Bemerkungen В

С

			Profilken	nung	ALCONTROL D		Proje	ktkennu	ung	Г		Lage						Zuordn	ung			1		Aufn	ahn	ne		
Obj	d			Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	44813	67	Höhe m ü. Ni		reg.	3				Landsch	1Einhe	Name	B H	oppe (lydlo (Uni F		Aufsc Art	hl
Blattr TK25	ame	Münch	smünster	7236	96	3 -	Frem	dkennu CS-RF3	ing	н	54004	93	388	Lk Go	r. Je.	D	Ke Jürnbu [Ke	lheim cher Fors lheim]	t	12	.81	Datur exter Aufn.	m ne	14.06. UNI	2007 -R	-	G	5
	intensi	ität		Kli	ma				Nu	itz	ung		-02.0	Τ.						F	Relief					_		_
Aufna	hme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	E	Baumarte	en	Best Zust.	Inki	i- on	Expo	n	Reliefwö vert.	lbung hori	Fo	rmtyp	Länge		Lage	Mil	ief	Ent	f. z. ikok.
Bepression	bung traterg.	30 NO	7	650	30		FN			T	FI3,	KI3,	s	0,5		EE		G1	G)	KS	Breite H/T	_	NB				
Bo	p3BBn	st. E.		Bod mäßig pods	lenform olige Brau	nerde		Subst	atsys s-s	t. I	E. L	Legend	en- ung	Hum	usfo	orm	B0 - 6	denab	G G	W-Sta	and atus	Bode	nschä	itzun	g	Be	eme	rk.
											N The	ir. ema	_	r	not		Vorg		-		k c	Acker Grünland			7			
		Hori	zontkenn	zeichnu	ng		Bo	denfarb	e	S	kelett	Bo	denar	t			Ну	rdom.	Meri	kmale	T,	Gef	üge	(tr)	N	4	'n.	B
lfd. Nr.	Proben-N	Nr.	Symbol	Grenz [cm]	e Form	Schärfe	Munse	subje	ektiv	A VC	Inteil on-bis /ol%)	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	fl.	fl.	Ant.	e / Mn onkret. Gr.	Ausfäll.	Form	Größe	Rohdichte	Durchwur	Schicht-N	Schicht-S	Bemerkur
1			L	-4 -3	w	di .						•			7	0									Г	1	F	T
2			Of	-3 -1	w	di .			_						7	0					T				T	1	F	T
3			Oh	-1 0	w	di .	3	5YR 2/3	-		İ	•			7	0					T				Ť	1	F	T
4			l Aeh	0 7	w	de .	1	0YR 2/1			0	-	Su3		3	0	-	-	2	1		ein	•		Γ	2	V1	Ī
5			l Bh	7 10	z	de .	1	0YR 3/4	-		0		Su3		2	0	-	-	-		-	ein	•		Γ	2	V1	T
6			I Bhv	10 22	u	di	7	,5YR 4/4	_		0	•	Su2		1	0	-	-	•			ein	·		Γ	2	V1	
7			II Bv	22 82 +	2		1	0YR 5/8			0	•	Su2		0	0			×			ein	•		Γ	3	V2	Γ

Profil RF 3 – 7236 Münchsmünster

			Profilk	enn	nung			Projek	tkenn	ung	Т		Lage	8			Zuordnu	ng			Aufna	hme	
Obj	-Id				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SF	RRA02		R	448	1367	Höhe m ü. NN	Pirea.		2013 <u>2</u> -1332 LD2853		LandschEinhe	Name	Hoppe (U Mydlo (U	ni R) ni R)	Aufschl.
Blat	tname	Mür	nchsmünster	+				Fremo	kenn	ung	н	-	-		Lkr.		Kelheim			Datum	14.06.20	007	
Т	K25				7236	96	3	C	S-RF3		1	5400	0493	388	Gde.	Dür	[Kelheim]		12.81	externe Aufn.	UNI-F	2	GS
nt-Nr.	Sym.	nese	Gesamt- skelett	Bod	denarten- ruppen	ymb.	Τ.	-Bez.	Sk	elett	Bungi	rkung		Kompone	nten de	r Grob	fraktion		Ko	mponente	n der Feinfr	aktion	
Schict	Schicht-	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Bemei	Bodenkd Geolog. Begriff	I Petrogra Bezeichn	ph. / ung vo (\	Anteil on - bis /ol%)	Stratigraphie	Verwitt.	Bodenkdi P Geolog. B Begriff	etrograph. Ezeichnung	Anteil von - bis (Vol%)	Stratig	raphie
1	F	og	0			og-(O)	Str										_					
2	V1	1	0		Is	f-s						T			+					Qz-fS	100 - 100	05	SM
3	V2	f	0		ls	f-s						Ī								Qz-fS	100 - 100	08	SM

А Bemerkungen B

Profil RF 4 – 7440 Aham

	_		Profilker	nung			Projek	ktkenni	ung	1		Lage					Z	uordn	ung					Auf	nah	me		
ObjI	d			Blatt-Nr TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	452823	39	Höhe m ü. NN	Pire	g,					Land	schEinhe	Name	e c	Hoppe	e (Un hel (I	i R) Jni R)	Aufso Art	:hl
Blattr	ame	1	Nham	7440	06		Frem	dkennu	ing	н				Lkr.	1	Dir	ngolfir	ig-Landa	u		12.02	Datu	m	22.0	6.200	17	-	
1625				7440	90	1 *	С	S-RF4		1	538441	10	405	Gde		[Dir	ieder. Igolfir	iehbach Ig-Landa	iu]		12.92	exter Aufn.	ne	U	NI-R		G	5
	Intensität Intensität Ihme AV Sbung 30 Iraterg NO Iensyst. E. P2LLn Hori Proben-Nr.		KI	ima				N	itzu	ing	-		T.		-					Relief			111021		_		_	
Aufna	hme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.	Ba	umarte	≥n	Best Zust.	Inkli- nation	E s	xpo- sition	v	Reliefwo ert.	hor	iz.	Formtyp	Länge		Lag	e N	fikro- relief	En	lf. z. nkok.
Bepro	bung traterg.	30 NO	7	750	40		FN			T	F	16,	SU		Τ							Breite H/T	_	-				
Boo	lensy	st. E.		Bo	denform			Subst	atsys	t. E	. 1	Legende	en-	Humu	sfo	rm	Во	denab	10	W-S	Stand	Bode	nsc	hätzu	ng	В	eme	rk.
	p2LLn	0	sch	wach pods	olige Parab	raunrede			p-o		2	zuordnu	ng			_	- a	uttrag	0	SOK	Status	Asher	_			-		
											The	ema	_	mo	ta	ł	Grad	-			k (Grünland	+			1		
	5 A.M1	Hor	izontkenn	nzeichnu	ing		Boo	denfarb	e	Sk	elett	Bo	denar	t I			Hy	rdom.	Mer	kma	le	Gef	üge	E		1.	É	6
lfd. Nr.	Proben	·Nr.	Symbol	Ober Gren: [cm	- bzw. Unte te Form	rgrenze Schärfe	Munse	ll subje	ektiv	Ar vor (Vo	iteil n-bis xl%)	Grob- boden	Feinbi bzw. zers	oden Torf- Stufe	Humus	Carbonat	fl.	Bleich fl.	F Ki Ant	e / Mr onkret	Ausfall.	Form	Grö	Rohdichte	Durchwurz	Schicht-Nr	Schicht-Sy	Bemerkun
1			L	-4 -3	w	de .								Ì	7	0				Ī				Ī	Ť	1	F	T
Ifd. Proben- 1 2			Of	-3 -0,5	w	de .	7,	5YR 3/4							7	0				Ī				T	Ť	1	F	T
3			Oh	-0,5 0	w	de .	1	0YR 2/2							7	0				Ì	Ť			T	Ť	1	F	Ť
4			l Aeh	0	∵w:	de .	1	0YR 3/3		1	0	2	Uu		3	0	×	×	÷			kru	2		Ť	2	V1	Ī
5			I AI	1 35	w	di .	1	0YR 5/6			0 1	g6	Ut2		1	0	÷		-		· 1:*	pol	3	T	Ť	2	V1	T
6		Ť	II Bt	35			-1	0YR 4/4		1	0		Tu4		2	0		-			. т	sub	4	T	Ť	3	V2	Ť

			Profill	kenn	ung			Proje	ktkenn	nung			Lage	S			Zuordni	ung	1		Aufn	ahme		
Obj	-Id				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	s	RRA02		R	452	8239	Höhe m ü, NN	Pireg.			- 1	LandschEinf	Name	Hoppe (Christophe	Uni R) I (Uni R	Aufsci Art	hl
Blat	tname K25		Aham		7440	96	4	Frem	dkenn CS-RF4	ung	H	538	4410	405	Lkr. Gde.	Din Nie [Din	golfing-Landau ederviehbach golfing-Landau	ı 1]	12.92	Datum externe Aufn.	22.06.2 UNI-	2007 R	GS	5
ht-Nr.	-Sym.	enese	Gesamt- skelett	Boo	lenarten- ruppen	Symb.		t-Bez.	Sk	elett	tigung	erkung		Kompone	nten de	er Grob	fraktion		۲ ۲	omponente	en der Feint	fraktion	(
Schic	Schicht	Geog	Anteil von - bis (Vol%)	grob	fein	Substart-		Substar	Verteil.	Einreg.	Verfes	Beme	Bodenkdl Geolog. Begriff	- Petrograg Bezeichn	ph. ung vi (Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdi Geolog, Begriff	Petrograph. Bezeichnun	g von - bis (Vol%)	Stratig	raphie	Verwitt.
1	F	og	0			og-(O)	Str		İ		ĺ												
2	V1	а	0	kk	lu	p-ol					T	T	Gq			0 - 1	qh		+,Lol		99 - 100	q	pj	
3	V2	a	0	с. С.	ut	p-ol					T								+,Lol		100 - 100) q	pj	
Bemerkungen	A Horizont Nr. 6: auf den Bt folgt ein clCv bei 1,05m (I B							fo durch Pü	ùrckhaue	r erhalt	en)		1					1	1			1		ļ

Profil RF 5 – 6636 Kastl

		1	Profilker	nnung			Projek	ktkennu	ung			Lage	1.1244.1				2	Zuordn	ung					Aufn	ahr	ne	
Obj.•	ld			Blatt-Nr TK25	Aufn Serie	Profil- Nr.	SI	RRA02		R	44812	222	Höhe m ü. Ni	V P	ireg.	5			1	Lands	chEinhe	Name	c	Hoppe (hristophe	Uni I I (Ur	R) ni R)	Aufschl Art
Blatt	name	K	astl	1	1000		Frem	dkennu	ing	н		- 1	1125-827	L	kr.	A	mberg	-Sulzbaci	h	1	0.20-8	Datum	n	30.06.2	2007		2 2/8/5
TK2	5			6636	96	5	с	S-RF5			54731	72	520	G	ide.	Urs	ensoll Sula	en [Ambe bach]	rg-		5.13	extern Aufn.	e	UNI	-R		GS
	Intens	sität		KI	ima				Nu	itz	ung			T					_		Relief						
Aufn	ahme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	В	aumarte	'n	Best Zust.	Ini nat	di- ion	Expo	5 ,	Reliefwö ert.	lbung hori	z. F	ormtyp	Länge		Lage	Mi	kro- lief	Entf. z. Hankok
Bepr	obung straterg.	30 NO	7	750	40		FM			T	FI4, f	BU2,	м	1	8	EE		GO	GO		н	Breite H/T		MU			
Во	densy	st. E.		Bo	denform	ŝ.	<u> </u>	Substr	ratsys	t. E	E. L	egend	len-	Hun	nusfo	orm	Bo	denab	G	W-St	and	Boden	sch	hätzun	g	Be	emerk.
В	B-CF		Brau	nerde-Terra	a fusca			P	-(n)t		Z	r.	ung		mot		- a Vorg	uttrag	G	OK 1	Status	Acker			_		
											The	ma					Grad	1	1		K G	Grünland	-		-		
		Hori	zontkeni	nzeichnu	ing		Boo	denfarb	e	S	kelett	Bo	odenar	t		Т	Hy	rdom.	Merl	kmale	•	Gefi	ige	£	Γ.	Ι.	E m
lfd. Nr.	Proben	-Nr.	Symbol	Ober Grenz [cm]	- bzw. Unti te Form	srgrenze Schärfe	Munse	subje	ektiv	A vo (V	.nteil on-bis /ol%)	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe Ko Ant.	e / Mn onkret. Gr	Ausfall.	Form	Größ	Rohdichte	Durchwurz	Schicht-Nr	Schicht-Sy Bemerkun
1	jId tthame 25 Intensität frahme Av probung 30 probung 30 pstraterg. NC odensyst. E. BB-CF Ho Proben-Nr.		L	-7 -5	w	de									7	0				Ē					T	1	F
2			Of	-5 -2	w	di			_			•			7	0							5 3		T	1	F
3			Oh	-2 0	w	de .	7,	5YR 1/1							7	0				İ					Ť	1	F
4			l Ah	0 12	w	di	10	0YR 3/4	_		20 30	r2x5	Tu3		4	0	-	-	-		-	pol	2		Ī	2	н
5			I T-Bv	12 28	w	di	7,	5YR 4/4			5 10	r6	Tu2		3	0	•	-	•		-	sub	3		Ī	2	н
6			II T-Bv	28 44	w	di	5	5YR 4/6			0 5	r6	ті		2	0		*	÷			sub	3		Γ	3	B1
7			III Cv	44		•	7,	5YR 4/6			40 60	r1x6	Lt2		1	c1	•	•	-			pol	3		Ē	4	B2

			Profilk	ennu	ng	Noteso - N		Projek	tkenn	ung	T		Lage	S			Zuordnu	ıng	2		Aufna	hme		
Obj.	-Id			E	Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SF	RA02		R	448	1222	Höhe m ü. NN	Pireg	1			LandschEinhe	Name	Hoppe (L Christophel	Jni R) (Uni R)	Aufsch Art	il
Blat	iname K25		Kasti		6636	96	5	Fremo	kenni	ung	H	547	3172	520	Lkr. Gde.	Am	berg-Sulzbach nsollen [Amber	g-	6.13	Datum externe	30.06.2 UNI-	007 R	GS	
it-Nr.	K25 E Gesamt- skelett y to b it of tof to b it of to b it of to b it of to b it of it it of it of it of it of it of it of it of i		Bode gru	narten- ppen	ymb.		-Bez.	Sk	elett	Bunb	rkung		Kompone	nten d	er Grob	Sulzbach] fraktion		Ко	Aufn. mponente	n der Feinf	raktion	L		
Schicl	U Contraction of the second se		grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkdl Geolog. Begriff	 Petrogra Bezeichn 	ph. ung v (Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl F Geolog. B Begriff	etrograph. ezeichnunç	Anteil von - bis (Vol%)	Stratig	raphie	Verwitt.	
1	F	B B B Gesamt-skelett Anteil von - bis Von - bis Von - bis F og 0 0 0			•	og-(O)				Γ	Ī								Hu	100 - 100			
2	н	pfi	11 19	zn	It	p-(z)t					Ī	Ī		Sstk	10	00 - 100	kro			VKA	100 - 100	t		
Figure Stress Stre Stre Stre		0 5	zz	It	p-(z)t						Ē		Sstk	10	00 - 100	kro			1/KA	100 - 100	t	1		
4	B2	pfl	40 60	nn	н	p-nl					Γ			Sstk	10	00 - 100	kro			t/KA	100 - 100	t		

A Bemerkungen B

c

		Profilker	nnung	11		Projel	ktkenni	ung		Lage			-		z	uordn	ung			1		Aufn	ahn	ne	
ObjId			Blatt-Nr TK25	Aufn Serie	Profil- Nr.	S	RRA02		R 4528	840	Höhe m ü. Ni	N Pire	g.	2			1	Lands	chEinhei	Name	Ch	Hoppe (ristophe	Uni l el (Ur	R) NiR)	Aufschl. Art
Blattname TK25	Neukirch	ien-Balbini	6740	96	6 -	Frem	dkennu S-RF6	ing	H 5459	502	411	Lkr. Gde	2.	Ne	Schw ukirche [Schw	andorf en-Balbi andorf]	ni	1	9.11	Datun extern Aufn.	n ne	17.07. UNI	2007 -R	7	GS
Inter	pjId attname AV probung 30 bstraterg. NO Odensyst. E. PPe Horic Proben-Nr.		K	ima				Nu	itzung		Post a	T.							Relief		_			-	
Aufnahme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	Baumar	ten	Best Zust.	Inkli- natio	n E	Expo- sition	v	Reliefwö ert.	lbung hori:	z. F	Formtyp	Länge		Lage	Mi	kro-	Entf. z Hanko
Beprobung Substraterg	30 . NO	7	750	40		FN				KI,	SU	2,5	3	NW	,	(1	X1		KS .	Breite H / T		к			
Bodens	yst. E.		Во	denform		-	Subst	ratsys	t. E.	Legend	len-	Humu	sfo	orm	Bo	denab	G	W-S	tand	Boder	isch	ätzun	g	Be	emerk
PPe	•		Eisenpoo	isol mit Orts	stein			c-ns	T	Nr.	ung	ma	ota	-	- a Vorg. Grad		G	OK	k Gi	Acker rünland			_		
	Hori	zontkenr	nzeichnu	ing		Boo	denfarb	e	Skelett	B	odenar	t			Hyr	dom.	Merk	mal	e	Gefi	üge	Ê	Т		É.
lfd. Probe Nr.	Attname Neukirch 425 Intensität Ufnahme AV aprobung 30 ubstraterg. NO Bodensyst. E. PPe Horiz G. Proben-Nr. C. Bodensyst. B. Bod		Ober Gren [cm	- bzw. Unte ze Form]	ergrenze Schärfe	Munse	subje	ektiv	Anteil von-bis (Vol%)	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe Ko Ant	e / Mn onkret. Gr	Ausfäll.	Form	Größe	a Rohdichte(Durchwurz	Schicht-Nr	Schicht-Sy
1	Intensität Neukirche Intensität AV finahme AV jobung 30 bstraterg. NO odensyst. E. Proben-Nr. Proben-Nr. Intensität Intensität Intensität		-8 -5,5	w	di					10			7	0								İ	T	1	F
2			-5,5 -0,5	w	di			_			1		7	0	_							T	t	1	F
3		Oh	-0,5	w	de .					•			7	0									Ť	1	F
4		l Aeh	0	w	di	1	0YR 2/2		0	•	Su3		3	0	•	*	×			ein	÷			2	V1
5		I Ahe	1 11	w	di	1	0YR 4/3		1 2	g1x6	Su2		2	0	•	2	-	-	-	ein	5			2	V1
6			11 25	w	di .	7.	5YR 5/6		5 10	g1x6	Su3		0	0	•	3		10		ein	•		İ	3	V2
7		III Bbs	25 53	e	de .	1	0YR 6/6	_	40 60	g1x6	Su4		0	0	6	2	•			ein			Γ	4	∨3
8	25 Intensität fnahme Av probung 30 ostraterg. NO odensyst. E. PPe Horiz Proben-Nr.		53 79 -		-	10YR 7/	6 ba 10Y	R 6/8	5 10	g6	SI2		0	0	6	6		1.	os	ein			Ť	5	V4

Profil RF 6 – 6740 Neukirchen-Balbini

		5.7	Profilk	enn	ung	ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL		Projel	ktkenn	ung			Lage	61	1.		Zuordnu	ing			e 12	Aufna	ahme	Second and	
Obj	-ld				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	s	RRA02		R	452	8840	Höhe m ü. NN	Pireç	9.		1	LandschEinl	heit	lame	Hoppe (L Christophe	Jni R) I (Uni R)	Aufschl Art	
Blat T	Iname K25	Neuk	irchen-Balbi	ni	6740	96	6	Freme	dkennu S-RF6	ing	Н	545	9602	411	Lkr. Gde	Neu	Schwandorf ukirchen-Balbini [Schwandorf]		9.11	Di e) A	atum xterne ufn.	17.07.2 UNI-	.007 R	GS	
ht-Nr.	t-Sym.	Line of the second seco		Bod	enarten- uppen	Symb.	T	t-Bez.	Ske	elett	tigung	erkung		Kompone	enten o	der Grob	fraktion		,	Compo	onenter	a der Feinf	raktion		
Schio	Schich	Best Model Gesamt- skelett Bodenarten- gruppen 000000000000000000000000000000000000		Substart-		Substar	Verteil.	Einreg.	Vertes	Beme	Bodenkdl Geolog. Begriff	Petrogra Bezeichr	iph. iung	Anteil von - bis (Vol%)	Stratigraphie	Verwitt.	Bodenkdl Geolog. Begriff	Petrog Bezeio	graph. chnung	Anteil von - bis (Vol%)	Stratig	aphie to the second			
1	F	og	0			og-(O)	Str				Ì			-									+	-
2	V1	cc	1 2	nn	ls	C-S					Ī		Min-Grus	s Gst	1	100 - 100	qKr	_	,L,V	Qz	z-S	100 - 100	kr	0	-
3	V2	cc	5 10	nn	us	c-(k)s							Min-Grus	s Gst	1	100 - 100	qKr	_	,L,v	Qz	z-S	100 - 100	kr	•	-
4	V3 cc		40 60	nn	us	c-ks					Ī		Min-Grus	5 Gst		100 - 100	qKr	_	.L,v	Qz	z-S	100 - 100	kr	•	-
5	V4	cc	5 10	kk	Is	c-(k)s							Min-Grus	s Gst	1	100 - 100	qKr		,L,v	Qz	z-S	100 - 100	kr	•	

A Bemerkungen B

Horizont Nr. 8: IIIBbs mit hellem, gebleichtem Band über einem dunkleren, rötlichen Band

Profil RF 7 – 7144 Lalling

			Profilker	nnung			Projel	ktkenn	ung	Г		Lage	-	-E	_		Z	uordn	ung	1		Т	_	1	Aufn	ahm	ie	
Obj	ld			Blatt-Nr TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	45822	276	Höhe m ü. NN	I Pir	eg.		0.5			Land	schEint	neit N	Name	Ho	oppe (stophe	Uni R	() /	Aufschl Art
Blatt	name	L	alling	7444	00	-	Frem	dkennu	ing	н				Lkr	f.		Degg	endorf	1			D	Datum	0	06.07.2	2007		00
16.23	<u>'</u>			/144	90	' F	C	S-RF7		1	54094	184	412	Gd	le.	Aue	rbach [Deggen	dorf]		11,21	e A	Aufn.		UNI	R		GS
	Intensität ufnahme AV Tempe- ratur eprobung 30 ubstraterg. NO 7		KI	ima	<u> </u>		2211 22	N	utz	ung			<u> </u>				25.11.1.11.1.4			Relie	f							
Aufn			Tempe- ratur	Nieder- schlag	Trockenh. Index	Ökolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.	E	saumarte	an	Best Zust.	Inklinatio	i- in	Expo	i v	Reliefwo ert.	hor	iz.	Formtyp	Län	nge		Lage	Mik	ro- ief	Entf. z. Hankok
Av ratu Beprobung 30 Substraterg. NO Bodensyst. E.		7	850	60		FN			T	F16,	BU1,	s	1	T	NE	(30	G	0	KS	Bre H/	ite T	-	к				
Во	Intensität Aufnahme AV Tempe- ratur Beprobung 30 7 Bodensyst. E. s2BBn schw Horizontkenn fd. Proben-Nr. Symbol Vr.		Bo	denform	-	<u> </u>	Subst	atsys	it.	E. I	Legend	en-	Humu	usf	orm	Bo	denab	10	W-S	Stand	Bo	dens	chä	tzun	g T	Be	emerk.	
	sprobung 30 7 Jobstraterg. NO 7 Sodensyst. E. s2BBn schwi Horizontkenn I. Proben-Nr. Symbol		vach pseud	overgleyte	Braunerde	10 I		p-o		2	zuordnu	ing				- a	uftrag	0	SOK	Status	ĺ							
										N	lr,		п	not		Vorg.		_		k .	Ack	ker						
		Her	izentkon	maiahay			Ba	lonforb		e	Ine	ema Po	danar		-	-	Grad	-	Mar	kum a		Gruni	Cofile			⊣	-	
lfd. Nr.	Horizo Proben-Nr. S		Symbol	Ober Grenz [cm	- bzw. Unte ze Form	rgrenze Schärfe	Munse	subje	ektiv	A V (nteil on-bis /ol%)	Grob- boden	Feinbe bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	F Ki Ant.	e / Mr onkret	Ausfall.	Fo	orm G	röße	Rohdichte(tr	Durchwurz.	Schicht-Nr.	Schicht-Sym Bemerkung
1			L	-3,5 -3	w	de .						*			7	0										Γ	1	F
2			Of	-3 -1	w	di									7	0				Ī						Γ	1	F
3			Oh	-1 0	w	de .						•			7	0			1							Γ	1	F
4			l Ah	0 7	е	de .	7,	5YR 3/4			0		Uls		4	0		•				k	ru	2		Γ	2	V1
5			I Bv	7 43	w	di	1	0YR 5/6			0		Lt2		2	0		•			· .	p	ol	3		Γ	2	V1
6			II Sw-Bv	43 96 -		-	1	0YR 6/6			0		Lt3		1	0	4	4	•	1	- MF	i p	ol	3		Ē	3	V2

			Profilk	cenn	ung	60 <u>-</u>		Proje	ktkenn	ung	T		Lage	2			Zuordni	ung	1		Aufna	ahme	-	_
Obj	-ld			Τ	Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	s	RRA02		R	4582	276	Höhe m ü. NN	Pireg.				LandschEinh	Name	Hoppe (U Christophe	Jni R) I (Uni R)	Aufsch Art	l
Blat	tname K25	ne Lalling 7144 96					7	Frem	dkennu	ung	н	5406	ARA	412	Lkr. Gde.	Auerb	Deggendorf ach (Deggend	orf)	11.21	Datum	06.07.2 UNI-	:007 R	GS	
ht-Nr.	-Sym.	Lalling 7144 96						-Bez.	S-RF7	elett	Bung	rkung		Komponen	ten de	er Grob	fraktion		к	Aufn.	an der Feinf	raktion		
Schio	Schicht	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Vertest	Beme	Bodenkdl. Geolog Begriff	 Petrograp Bezeichnu 	h. J ing vo	Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl I Geolog. E Begriff	³ etrograph. Jezeichnun	g von - bis (Vol%)	Stratig	raphie	Verwitt.
1	F	og	0	-		og-(O)	Str				T									+			
2	V1	а	0		I	a-u													+,Lol	I/KA	100 - 100	q	p	
3	V2	a	0		ut	a-t													+,Lol	I/KA	100 - 100	q	p	

А

Bernerkungen B

Profil R	F 8 – 62	37 Grat	fenwöhr
----------	----------	---------	---------

		1	Profilker	nnung			Projek	tkennu	ing			Lage		Т	_		2	Zuordr	nung	6		1		Aufn	ahr	ne	
ObjId	Т			Blatt-N TK25	r. Aufn Serie	Profil- Nr.	S	RRA02	-	R	449821	18	Höhe m ü. NN	Pir	eg.	6			-	Landsch	Einhe	Name	e ch	Hoppe (nristophe	Uni l el (Ur	R) hi R)	Aufschl Art
Blattnar TK25	ne	Grafe	nwöhr	6237	96	8	Frem	dkennu S-RF8	ing	н	550817	72	409	Lkr Gd	r. le.	Pres Wal	Neusti sath (N dnaab,	adt a. d. leustadt . Lkr. (St	a. d. adt)]	9.1	11	Datur extern Aufn.	m ne	07.07. UNI	2007 -R	_	GS
In	tensit	ät		ĸ	lima				Nu	tz	ung									F	Relief					_	-
Aufnahr	me	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	B	Baumarte	en.	Best Zust.	Inkli natio	- n	Expo	i v	Reliefwo ert.	blbung hori	Fo	rmtyp	Länge		Lage	Mi	kro- lief	Entf. z. Hankok
Beprobi Substra	ung terg.	30 NO	7	650	40		FN			T	к	16,	SU	1		SE		G0	G)	v	Breite H/T		z			
Bode	nsyst PPe	. E.		Bo	denform	i i		Substr	atsys s/f-k	t. I	E. L	.egende zuordnu	en- H Ing	lumu	lsf	orm	Bo - a	denab uftrag	G	W-Sta	atus	Boder	nsch	lätzun	g	Be	emerk.
											N The	ir. Ima	_	n	not		Vorg. Grad	-	Ŧ		k G	Acker rünland	-				
	-	Horiz	ontken	nzeichn	ung		Boo	lenfarb	e	SI	kelett	Bo	denart		Γ	Т	Hy	rdom.	Mer	kmale	T	Gef	üge	Æ		1.	E m
lfd. Pr Nr.	oben-Nr	r.	Symbol	Obe Gren [cn	r- bzw. Unt nze Form n]	ergrenze Schärfe	Munse	ll subje	ektiv	A vo	inteil on-bis /ol%)	Grob- boden	Feinbo bzw. 1 zersS	iden Forf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fi Ka Ant.	e / Mn onkret. Gr.	Ausfäll.	Form	Größ	Rohdichte	Durchwurz	Schicht-Nr	Schicht-Sy Bemerkun
1			L	-8 -6	w	di			_			100			7	0										1	F
2			Of	-6	w	di	7,	5YR 2/2				:•:			7	0									T	1	F
3		T	Oh	-1	w	di .	7,	5YR 1/1	_	1					7	0								T	Ť	1	F
4			I Aeh	0	e	de .	7,	5YR 3/2			1 2	g6	Su2		4	0	-	8	-		•	ein	•			2	V1
5			ll Bsh	1 14	w	di .	7,	5YR 3/4		3	2 5	g6	Su2		3	0	-	×.		-	•	ein	-			3	V2
6		Γ	ll Bhs	14 55	w	di .	5	YR 4/6			5 7	g6	Ss		2	0	÷	6	•	-	•	ein	•		Γ	3	V2
7			II Bs	55 73	w	de	5	YR 4/8			5 15	g6	Ss		1	0	4	1	×	·		ein	•			3	V2
8		Τ	ll Bbs	73	3 e	de	5	YR 4/6			1 5	g6	Ss		0	0	5	6	-	· • •		ein	•	Γ	T	3	V2
9			III ilCv	11	3 -		7,	5YR 6/4			60 80	o1g6	Ss		0	0						ein	-	Í	Ť	4	A

			Profilk	ennu	ing			Proje	ktkenn	ung	Т		Lage				Zuordnu	ıng			Aufna	hme		
Obj	Id				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	4498	218	Höhe m ü. NN	Pireg	1.		_	LandschEinhei	Name	Hoppe (L Christophel	Ini R) (Uni R)	Aufsch Art	11
Blat	tname	G	rafenwöhr	-				Frem	dkennu	ung	H				Lkr.	N	leustadt a. d.			Datum	07.07.2	007		_
T	K25				6237	96	8	c	S-RF8			5508	172	409	Gde.	Pressa Waldr	ath [Neustadt a. naab, Lkr. (Stad	d. it)]	9.11	externe Aufn.	UNI-I	R	GS	ŝ
ht-Nr.	-Sym.	eseue	Gesamt- skelett	Bode	enarten- ppen	Symb.		t-Bez.	Sk	elett	pung	rkung		Kompone	nten d	ler Grob	fraktion		Ko	mponente	n der Feinfi	raktion	1	Ĩ
Schic	Schicht	Geog	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substarr	Verteil.	Einreg.	Verfes	Beme	Bodenkdl. Geolog. Begriff	- Petrogra Bezeichn	ph. ung v	Anteil ron - bis (Vol%)	Stratigraphie	Verwitt.	Bodenkdl Pi Geolog. Be Begriff	atrograph. zeichnung	Anteil von - bis (Vol%)	Stratig	raphie	Verwitt.
1	F	og	0		2	og-(O)	Str			ĺ	Ī			+	Y								
2	V1	n	1 2	kk	ls	f-s	Ť				Ī	T		QzfG	1	00 - 100	qp			Qz-S	100 - 100	q	p	
3	V2	ff	3 7	kk	SS	f-(k)s					Ī	Ť		QzG	1	00 - 100	qp	_		Qz-S	100 - 100	q	p	
4	A	ff	60 80	kk	SS	f-sk	Ť				Ī	Ī		QzG	1	00 - 100	qp			Qz-S	100 - 100	q	ρ	

- Bemerkungen B
 - С

Profil RF 9 – 6335 Auerbach

			Profilke	nung			Projek	ktkenni	ung	Т		Lage					2	Zuordr	nung	ž.				A	ufna	ahm	е		-
Objl	d			Blatt-Nr TK25	. Aufn Serie	Profil- Nr.	SI	RRA02		R	44727	58	Höhe m ü. Ni	N Pir	eg.	1			_	Lands	chEinh	Nan	ne	Hoj Christ	ppe (l tophe	Jni R I (Uni) / R)/	Aufschl Art	-
Blattn	ame	Auerba	ch i.d.OPf.		-		Freme	dkennu	ing	H			12.12	Lk	r.	A	mberg	-Sulzbac	:h			Dat	um	08	8.07.2	2008			
1625				6335	90	9	С	S-RF9		1	54991	38	508	Gd	le.	0 [A	ber- u. mberg	Unterwal -Sulzbac	ld :h]		5.13	exte Aufr	erne n.		UNI-	R		GS	
	Intens	sität		KI	ima				N	utz	zung			Τ.							Relie	f				_			-
Aufna	hme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.	-	Baumart	en	Best Zust.	Inklinatio	i- on	Expo		Reliefwo rert.	blbung hori	Z.F	ormtyp	Länge		ľ	.age	Mik	ro- ef	Entf. z Hankol	k.
Bepro Subst	bung traterg.	30 NO	6	850	40		FL			1	В	U6,	HU	25		SS		V1	X1		н	Breite H/T	-	_	F				
Boo	iensy	st. E.	r <u> </u>	Bo	denform		<u> </u>	Subst	ratsys	st.	E.	Legend	en-	Hum	usfe	orm	Bo	denab	/ G	W-St	and	Bode	enso	chät	zung	3	Be	merk.	
	RRn	8		(Norm	1-)Rendzina	а		p-	nl/n-k			zuordnu	ing	-			- a	uftrag	G	OK 3	Status		- 60						
											N	۹r.		n	nuf		Vorg	_	_		k	Acker	_			_			
											In	ema			_	_	Grad			_		Grunian	٥	-		1	_		_
164 1	Drohon	Hor	zontken	nzeichnu	ing		Boo	denfarb	be	s	kelett	Bo	denar	t	4		Hy	rdom.	Mer	cmale	9	Ge	fug	e	e(tr)	N	4	m, m	2
Nr.	RRn Horizon d. Proben-Nr. Syn		Symbol	Gren: [cm	ze Form	Schärfe	Munse	subje	ektiv	v c	von-bis Vol%)	boden	bzw. zers	Torf- Stufe	Humus	Carbonat	fl.	fl.	Ant.	onkret.	Ausfäll.	Form	G	oise	Rohdicht	Durchwu	Schicht-N	Schicht-S Bemerku	DUININ
1			L	-9 -4	w	di						· • •			7	0							T	T			1	F	-
2			Of	-4	w	di						(-)	1		7	0							Ì	Ť			1	F	Ī
3	3		l Axh	0	w	di .	1	0YR 2/3		Ī	0		Lt2		5	0	1920	з .		123		kru	1	3			2	V1	
4			II Cv	13 45 -			1	0YR 3/4			60 80	r2x5	Lts		3	0			÷	1973	•	kru	1	2			3	V2	

			Profilk	enn	ung	1-01		Projek	tkenn	ung	T		Lage	9 			Zuordnu	ing			Aufna	hme		_
Obj	-ld				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SI	RRA02		R	4472	758	Höhe m ü. NN	Pireg.	1		-	LandschEinhe	Name	Hoppe (L Christophel	Jni R) (Uni R)	Aufsch Art	ıl
Blat	tname	Auer	bach i.d.OP	f.	12222			Fremo	ikennu	ing	н			1.113892	Lkr.	Am	berg-Sulzbach		NUMBER	Datum	08.07.2	008		
1	K25	6335 96				9	С	S-RF9			5499	138	508	Gde.	Obe [Am	er- u.Unterwald iberg-Sulzbach	1	6.13	externe Aufn.	UNI-	R	GS	ŝ.	
nt-Nr.	E S Gesamt- skelett gruppen E					<u> </u>	-Bez.	Sk	elett	Bunbo	rkung		Kompone	nten de	r Grob	fraktion		Ko	mponente	en der Feinf	raktion			
Schict	Schicht-	generation Gesamt- skelett Bodenarten- gruppen generation 00 00 00 00 Anteil von - bis (Vol%) generation generation						Substart	Verteil.	Einreg.	Vertest	Beme	Bodenkdl Geolog. Begriff	- Petrograp Bezeichn	ung vo	Anteil on - bis √ol%)	Stratigraphie	Verwitt.	Bodenkdl P Geolog. B Begriff	etrograph. ezeichnun	g Von - bis (Vol%)	Stratig	raphie	Verwitt.
1	F	og	0 0			og-(O)	Str				Ī						_						
2	V1	cc	0 0	1.21		c-l					Ī				-			_		I/KA	100 - 100	, v	<u></u>	
3	V2	cc	60 80	nn	t	c-In								Kst	10	0 - 100	w	_		I/KA	100 - 100	v	<u></u>	

Bemerkungen B А

		Profilke	nnung			Projek	ktkennu	ung			Lage			_		Z	uordn	ung	6			_	Au	fna	hme	9	
ObjId			Blatt-Nr TK25	Aufn Serie	Profil- Nr.	SI	RRA02		R	45549	67	Höhe m ü, NN	Pin	eg.				_	Lands	schEinh	Nam	he	Hopp Christop	e (U phel	ni R) (Uni	R) A	ufschl
Blattname	Wal	dmünchen				Frem	dkennu	ing	H				Lkr	t.		Cł	nam				Datu	ım	21.0	07.20	007	+	
TK25			6642	96	10	C	S-RF10		11	54703	354	760	Gd	e.	Wal	dmünc	hen [Cha	am]		10.4	exte Aufr	rne 1.	U	INI-F	ł	1	GS
Inter	Intensität Ifnahme AV Tempe- M ratur probung 30 bbstraterg. NO bodensyst E		KI	ima	1.			Nu	itzi	ung			L.	_				_		Relief				_		-	
Aufnahme			Nieder- schlag	Trockenh. Index	Ökolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	B	aumarte	ən	Best Zust.	Inklinatio	- n	Expo	· v	Reliefwö ert.	lbung hori	z.	Formtyp	Länge		La	ge	Mikro	o- f	Entf. z. Hankok.
Beprobung	30				-		-	-	+			-		+							Breite	\vdash	<u> </u>	+		+	
Substrater	. NC	5	950	80		FL				BI	J6,	SU	15		NW		×2	X1		н	H/T			8			
Bodens	yst. E.		Bo	denform	2		Subst	ratsys	t. E		Legende	en- I	Humu	isfe	orm	Bo	denab	G	W-S	stand	Bode	enso	chätzu	ing		Be	merk.
BB	1		Norm	-Braunerde	1			p-n		7.	zuordnu	ing				- a	uftrag	G	OK	Status							
										N	it.		m	ou		Vorg.				k	Acker						
										The	ema					Grad				(Grünland	d					
	Ho	rizontken	nzeichnu	ing		Boo	denfarb	e	Sk	telett	Bo	denart	L			Hy	rdom.	Mer	kma	le	Ge	füg	e	1.11	N	20	E B
Nr.	n-Nr.	Symbol	Ober Gren: [cm	- bzw. Unte ze Form	Schärfe	Munse	subje	ektiv	VO (VO	nteil n-bis ol%)	Grob- boden	Feinbo bzw. zers	oden Torf- Stufe	Humus	Carbonat	fl.	fl.	Ant.	e / Mn onkret G	Ausfall.	Form	Gn	olse allo	UNIMA	Durchwur	Schicht-N	Schicht-S Bemerkur
1		L	-7 -5	e	di .				2		-	Ì		7	0							Ī		Ī	Ť	1	F
2		Of	-5 -2	w	de .				2		-			7	0				Γ			T		Ť	T	1	F
3		Oh	-2 0	· w	di				8		•			7	0				Ī					Ť	Ť	1	F
4		l Ah	0	w	di .	10	0YR 3/3			2 5	r6	Us		3	0	-		•	•	-	kru	1	2	Ť	Ī	2	м
5		I Bv	11 61	w	di	1	0YR 4/6		1	10 30	g1x3r3	Su3		1	0		-	-			kru	1	2	Ť	Ť	2	м
6		II Bv	61 70 -			10	0YR 4/4		1 53	10 30	x2r5	Su2		0	0		•	•			kru	1	2	Ť	Ť	3	в

Profil RF 10 – 6642 Waldmünchen

			Profilk	enr	nung			Projek	tkenn	ung	Τ		Lage	9			Zuordnu	ing	6		Aufna	ahme		
Obj.	ld				Blatt-Nr. TK25	Aufn,- Serie	Profil- Nr.	SI	RRA02		R	4554	967	Hõhe m ü. NN	Pireg.				LandschEinhe	Name	Hoppe (L Christophel	Jni R) I (Uni R)	Aufsch Art	il
Blat	name	Waldmünchen 6642 96			1.1.1		Fremo	ikennu	ung	н				Lkr.	1.000	Cham		6 82.5	Datum	21.07.2	007		_	
1	(25	6642 96					10	CS	S-RF10			5470	354	760	Gde.	Wald	münchen [Char	m]	10.4	externe Aufn.	UNI-	R	GS	:
ht-Nr.	-Sym.	enese	Gesamt- skelett	Boo	denarten- ruppen	ymb.	<u> </u>	I-Bez.	Sk	elett	gungi	rkung		Komponer	nten de	er Grob	fraktion		K	mponente	en der Feinf	raktion		_
Schic	Schicht	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfes	Beme	Bodenkdl Geolog. Begriff	 Petrograp Bezeichni 	ng vo	Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl F Geolog. B Begriff	etrograph. ezeichnun	g Von - bis (Vol%)	Stratig	raphie	Verwitt.
1	F	og	0			og-(O)	Str										_						
2	м	pfi	9 25	nz	us	p-(n)u	,							KrGY	10	0 - 100	pc			u/KA	100 - 100	db	Ŋ	
3	В	pfi	10 30	zz	ls	p-(z)s	,							KrGY	10	0 - 100	pc			u/KA	100 - 100	qp	4	

A Bemerkungen B

Profil RF 11 – 6844 Lam

		1	Profilker	nnung			Projek	ktkenn	ung	Т		Lage	2				Z	uordn	ung	9					Aufn	ahn	ne		_
ObjI	d			Blatt-N TK25	r. Aufn Serie	Profil- Nr.	S	RRA02		R	45816	50	Höhe m ü. Ni	N Pir	eg.	0				Land	schE	inheit	Name	Chr	loppe (istophe	Uni F	() /	Aufsch Art	nl
Blattn TK25	name Lam 6i Intensität ahme AV Tempe Niede obung 30 3 1300			6844	96	11	Frem	dkennu S-RF11	ing	н	54410	74	1127	Lkr Gd	r. Ie.	Bo	Re odenma	igen iis [Rege	n]		11.3		Datum externe Aufn.	8	22.07. UNI	2007 -R	7	GS	1
	Intens	ität	6844 96 tat Klima AV Tempe- ratur Nieder- schlag Trockenh. Index 30 3 1300 150 NO 3 Bodenform				1		N	utz	ung		-	Τ'-	_						Rel	ief		-					
Aufna	S 0844 Intensität Klima Iahme AV Traur robung 30 3 straterg. NO 3 densyst. E. Boden BB Braune				Trockenh. Index	Ökolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.	. 6	ŝaumarte	en	Best Zust.	Inkli	n	Expo	r v	Reliefwö ert.	hori	z.	Formt	yp L	änge		Lage	Mik	iro-	Entf	z. kok.
Bepro Subst	Intensität mahme AV Tempe-Nieder probung 30 3 1300 odensyst. E. E BB		1300	150		FM			T	BU5,	TA1,	s	12		EE	(G0	X2	ž į	н	B	reite H/T		м					
Boo			Bo	denform			Subst	ratsys	st.	E.	Legend	en-	Humu	usfo	orm	Bo	denab	G	W-S	Stand		Boden	scha	ätzun	9	Be	emer	k.	
	вв			в	raunerde				c-z		N	Ir. ema		m	orr		Vorg. Grad			4	a	A	cker						
-	Profilker -Id Iname 5 Intensität		nzeichn	ung		Boo	denfarb	e	S	kelett	Bo	odenar	t	Г	Г	Hy	rdom.	Meri	kma	le	+	Gefü	ge	Ê	<u> </u>		É	-	
lfd. Nr.	tname 15 Lam Lam Intensität Lam Intensität AV Temperratur robung 30 3 straterg. NO densyst. E. BB Horizontken Proben-Nr. Symbol L L Of Oh		Obe Gren [cn	r- bzw. Unte ze Form	ergrenze Schärfe	Munse	subje	ektiv	× 0	Anteil on-bis Vol%)	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe Ko Ant.	e / Mr onkrei G	n t. Sir.	Ausfäll.	Form 0	Größe	Rohdichte(t	Durchwurz.	Schicht-Nr.	Schicht-Syr	Bemerkung	
1			L	-1: -9	3 w	di .					0	1.41	1		7	0				Ī							1	F	
2			Of	-9 -5	w	di				Ī	0 0	- 52.0			7	0				Ī						Ī	1	F	
3			Oh	-5	w	di .					0 0	•			7	0				İ							1	F	
4			I Ah	0	w	di	1	0YR 3/4			0 10	r6	Uls		4	0	-		•	8.	- 1	-	kru- sub	2			2	в	
5		Ť	l Bv	13 40			7,	5YR 3/4			10 30	r1g2o4	Us		1	0					-	-	kru- sub	2		Ì	2	в	

			Profilk	ennu	ung			Projel	ktkenn	ung	Т		Lage	6			Zuordnu	ng	8		Aufna	hme	
Obj.	-ld			1	Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	458	1650	Höhe m ü. NN	Pireg.				LandschEinhe	Name	Hoppe (L Christophel	Uni R) (Uni R)	Aufschl Art
Blat	name	-	Lam		10.0993			Frem	dkennu	ing	н			312205	Lkr,		Regen		1 1950 24	Datum	22.07.2	007	1.000
т	K25				6844	96	11	C	S-RF11			544	1074	1127	Gde.	Bod	enmais [Regen]		11.3	externe Aufn.	UNI-	R	GS
ht-Nr.	-Sym.	enese	Gesamt- skelett	Bode	enarten- Ippen	Symb.	Τ.	t-Bez.	Sk	elett	tigung	erkung		Kompone	nten de	er Grob	fraktion		Ко	mponente	en der Feinf	raktion	
Schic	Schicht	Geog	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substar	Verteil.	Einreg.	Verfes	Beme	Bodenkdl Geolog. Begriff	Petrograp Bezeichn	ph. i ung ve (Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl P Geolog. Be Begriff	etrograph ezeichnun	g Von - bis (Vol%)	Stratig	raphie
1	F	og	(Vol76))	Str				İ						_							
2	F og 0 0 B p 7 24		kw	su	p-(w)u	,				Ī			Gr	10	10 - 100	pc			u/KA	100 - 100	W	(

Bemerkungen B А

		3	Profilker	nnung			Proje	ktkennu	ing	Г		Lage	2				Z	uordn	ung					Au	Ifna	hm	e		
Obj.	ld			Blatt-Nr TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	46324	\$10	Höhe m û. Nh	N P	Ireg.	1		0.00001.008	L	ands	chEinl	Nam	1e	Hopp Christo	pe (U ophel	Jni R (Uni	R)A	Aufschl. Art	-
Blatt	name	Jandel	lsbrunn	70.00			Frem	dkennu	ng	H				L	kr.	Fr	reyung	-Grafena	J			Datu	ım	23.	.07.2	007	-		_
TK2	, I			7248	96	12	С	S-RF12		1	5406	178	1194	G	ide.	Ple [Fr	ckenst reyung-	einer Wa -Grafena	b]		11.3	exte Aufr	rne 1.	1	UNI-F	R		GS	
	Intensi	tät		ĸ	ima			_	N	utz	zung		_	Τ.					<u>.</u>		Relie	f	_		_				_
Aufn	ahme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Ökolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.	1	Baumart	en	Best Zust.	Ink	di- ion	Expo	v	Reliefwöl ert.	bung horiz	F	Formtyp	Länge		La	age	Mikr	o- ef	Entf. 2 Hanko	t. ok.
Bepr	obung traterg.	30 NO	3	1300	100		FN			T	F13,	TA3,	м	1	7	sw	(30	G0		HS	Breite H/T		M	0				
Bo	densys	t. E.		Bo	denform		<u> </u>	Substr	atsys	it.	E.	Legend	en-	Hum	nusf	orm	Во	denab/	G	N-S	tand	Bode	enso	chätz	ung	1	Be	merk	
	BB			Br	raunerde				c-z			zuordnu	ing				- a	uftrag	GC	OK	Status								
											1	Nr.		1	morr		Vorg.		_		k	Acker			_	_			
		Hari						dentert		6	In	ema			_	_	Grad				_	Gruniand			_	4	_		_
lfd. Nr.	Proben-N	4r.	Symbol	Ober Gren [cm	r- bzw. Unte ze Form	rgrenze Schärfe	Munse	subje	ektiv	S V V C	Anteil on-bis Vol%)	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe Kor Ant.	/ Mn hkret. Gr	Ausfäll.	Form	Gri	oße	Rohdichte(tr	Durchwurz,	Schicht-Nr.	Schicht-Sym	Remerkung
1			L	-12	w	di					0	150			7	0							Ī			Π	1	F	
2			Of	-10	w	de					0	-			7	0					T		T	T	1	Π	1	F	
3			Oh	-4 0	w	di					0	1993			7	0					Ť		T	Ť		Π	1	F	
4			I Ah	0	w	di	1	0YR 2/2			20 40	r6	Uls		3	0	-	•	-	۰.		kru	2	2		Π	2	V1	
5			l Bv	9 32	w	di	1	0YR 3/3			30 50	x2r5	Su3		2	0		·	•	-		kru	3	3	٦	Π	2	V1	
6			II ICv	32 45	w	di	1	0YR 4/6			30 50	x3r4	Su3		0	0			÷	•	-	kit		-			3	V2	
7			II mCv	45 56			1	0YR 5/6			0	F			0	0	•	а. Г							Τ	Π	3	V2	

Profil RF 12 - 7248 Jandelsbrunn

			Profilk	enn	nung			Projek	tkenn	ung	Т		Lage	i			Zuordnu	ing	8		Aufna	hme		
Obj.	-ld			Т	Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SI	RRA02		R	463	2410	Höhe m ü. NN	Pireg	1		_	LandschEinhe	Name	Hoppe (I Christophei	(Uni R)	Aufsch	1
Blat	name	Jai	ndelsbrunn	+				Fremo	kenn	ung	н				Lkr.	Fre	yung-Grafenau	8		Datum	23.07.2	007		_
т	K25				7248	96	12	CS	S-RF12			540	5178	1194	Gde.	Pleck [Fre	kensteiner Wak yung-Grafenau	1 1	11.3	externe Aufn.	UNI-	R	GS	
nt-Nr.	Sym.	nese	Gesamt- skelett	Boo	denarten- ruppen	ymb.	Τ.	-Bez.	Sk	elett	gungi	rkung		Kompone	nten d	er Grob	fraktion		Ko	mponente	en der Feinf	raktion	0	
Schict	Schicht	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Bodenkdl Pe Geolog. Begriff		- Petrogra Bezeichn	iph. hung v (Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdi P Geolog. Bi Begriff	etrograph. zeichnun	g von - bis (Vol%)	Stratig	raphie	Verwitt.
1	F	og	0	-	2	og-(O)	Str					Bodenkdi Petrograph. Geolog. Bezeichnun Begriff											
			27		1		<u> </u>		†	†	Ť	T		Gr	10	00 - 100	pc			u/KA	100 - 100	v	N	_
2	V1	c	47	zz	us	C-ZS								-										
_		_	52	-	+		_		+	+	⊢	+	-	Gr	10	00 - 100	w	-		u/KA	100 - 100	v	N	-
3	V2	с		kk	us	c-ns			1															-
			73																					

А Bemerkungen B

			Profilker	nnung			Projek	tkennu	ing	Г		Lage			_		Z	uordn	ung	t.					Aufna	ahm	e	
ObjI	d			Blatt-Nr TK25	Aufn Serie	Profil- Nr.	SI	RRA02		R	462678	84	Höhe m ü, Nř	Pire	eg.					Land	schEin	heit	Name	Chr	ioppe (l istophe	Uni R	() /	Aufschl Art
Blattr	name	We	gscheid				Fremo	dkennu	ng	н		-+		Lkr			Pa	sau					Datum		28.07.2	2007		
TK25				7348	96	13	CS	S-RF13		1	539006	52	675	Gd	e.	Unte	rgriesb	ach [Pas	sau]		11,3	- 1	externe Aufn.	e	UNI-	R		GS
	Intens	ität		K	lima				N	itz	ung			<u> </u>	_					_	Relie	ef						
Aufna	ahme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.	E	Baumarte	en	Best Zust.	Inkli- natio	- 1	Expo	i v	Reliefwö ert.	lbung hori	iz.	Formty	p La	ange		Lage	Mik ref	ro- ief	Entf. z. Hankok
Bepro	obung	30	5	1100	90		FM			t	FI6,	BI1,	s	18	+	NE	,	(2	G)	н	B	reite		м		-	
Subst	traterg.	NO	1.0	0.0000															_			н	I/T					
Boo	densys	st. E.	Br	Bo	denform	fiellerde	-	Substr	atsys	t.	E. L	Legend	en-	Humu	isfo	orm	Bo - a	denab uftrag	G	W-S	Stand	В	oden	schà	itzung	9	Be	merk.
	BD		Bi	aunerue au	15 LOISIENIN	meiserue		þ	(11)01		N	Ir.		m	or		Vorg.		-	-	- inites	A	cker	-		-		
											The	ema	-				Grad	-	1		k	Grü	nland	-		-		
		Hor	zontken	nzeichnu	ung		Boo	lenfarb	е	s	kelett	Bo	odenar	t			Hy	rdom.	Mer	kma	le	T	Gefü	ge	Ê			Ë
lfd. Nr.	Horiz		Symbol	Ober Gren [cm	r- bzw. Unte ze Form	ergrenze Schärfe	Munse	ll subje	ektiv	× 0	Anteil on-bis Vol%)	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe Ke Ant	e / Mr onkre G	Ausfall		Form	Größe	Rohdichte	Durchwurz	Schicht-N	Schicht-Sy Bemerkun
1			L	-12 -9	w	di .					0 0				7	0				Ī							1	F
2			Of	-9 -3	w	di					0	-			7	0											1	F
3			Oh	-3 0	w	di .					0	•			7	0										Γ	1	F
4		I Ah	0	w	di	7,	5YR 2/3			5 10	r6	Uls		3	0	-	-	2				kru	3		Γ	2	н	
5		T	I Bv	8 59	w	di .	10	0YR 5/6			5 15	x2r5	Lu		2	0	-	-	÷				pol	3			2	н
6			ll Bv	59 93		-	1(0YR 5/6			10 30	r3x4	Lt2		1	0	3	ŝ	8	1	- 1-		pol	3		Γ	3	м

			Profilk	enn	ung			Projek	tkenn	ung	T		Lage	G			Zuordnu	ung	S.		Aufna	hme		
Obj.	-Id				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SF	RA02		R	462€	784	Höhe m ü, NN	Pireg.	1			LandschEinhe	Name	Hoppe (L Christophel	Ini R) (Uni R)	Aufsch Art	
Blatt	name K25	W	Vegscheid	1	7348	96	13	Fremd	kennu	ing	н	620	0000	675	Lkr.	Untere	Passau	- aul	11.3	Datum	28.07.2	007	GS	
					1012		10	CS	-RF13		\square	5390	062	010	GGe.	Unterg	nespach (Fass	saul	1.1.7	Aufn.	UNI-	s		4
ht-Nr.	-Sym.	enese	Gesamt- skelett	Bod	ienarten- uppen	Symb.		t-Bez.	Ske	lett	tigung	erkung		Komponer	nten de	er Grob	fraktion		Ko	mponente	en der Feinf	raktion		
Schic	Schicht	Geog	Anteil von - bis (Vol%)	grob	fein	Substart-		Substar	Verteil.	Einreg.	Verfes	Beme	Bodenkdl Geolog. Begriff	Petrograp Bezeichn	oh ung vo	Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl F Geolog. B Begriff	etrograph. ezeichnun	g Von - bis (Vol%)	Stratigr	raphie	Verwitt.
1	F	og	0 0			og-(O)	Str							-						-			
		-	5		<u>i</u>	- (7)v						Ť		Gn	10	0 - 100	pc			u/KA	100 - 100	W	(
2	<u> </u>	ри	14	22	iu	p-(z)u								-								_	_	-
		-0	10			- (-)	T		Ī			Ť		Gn	10	0 - 100	pc			u/KA	100 - 100	W	<i>(</i>	
3	м	рп	30	zn		p-(n)i									+			-				_	_	-

Bemerkungen B

Profil RF 14 – 7446 Passau

		P	rofilker	nung			Projek	ktkennu	ing		Lage	3				Z	uordn	ung	8				Aufn	ahn	ne		
ObjId				Blatt-Ni TK25	r. Aufn Serie	Profil- Nr.	SI	RRA02		R 460	2616	Höhe m ü. Ni	N Pin	eg.					Lands	chEinhe	Name	c	Hoppe (Uni F al (Ur	() (i R)	Aufschl Art	e .
Blattna	me	Pass	au	100000	-		Frem	dkennu	ng	н		100002	Lkr			Pa	sau				Datur	n	25.07.	2007	+		_
TK25				7446	96	14	C	S-RF14		53	79419	397	Gd	e.	Neut	burg a.	Inn [Pas	sau]		12.94	extern Aufn.	ne	UNI	-R		GS	
In	tensität	t		ĸ	lima				Nu	itzung			T -					_	-	Relief	-	_					_
Aufnah	tensität me AV Tempi ratur ung 30 7 terg NO 7 msyst. E. PP-SS	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	Baum	arten	Best Zust	Inkli	-	Expo- sition		Reliefwö ert.	lbung hori	z. li	Formtyp	Länge		Lage	Mil	tro-	Entf.	z. ok.	
Beprob	ung :	30 NO	7	750	50		FN			F	FI6, BI1,	s	3		NW	(30	GC)	кн	Breite		к				
Bode	ensyst	F		Bo	denform		L	Substr	atsvs	TEL	Legend	en.	Humi	IST	orm	Bo	denab		W-S	tand	Boder	nscl	hätzun		Br	emerk	_
F	PP-SS			Podso	I-Pseudogle	ev.	-	oubsu	p-ol		zuordnu	ing	inume	1914		- a	uftrag	G	OK	Status	Douel	1301	naczun	9		intern	
						•				ŀ	Nr.	-	m	ota		Vorg.		+	+		Acker	<u> </u>		-			
											Thema	1				Grad	1			Ŷ G	Grünland						
	H	lorizo	ontkenr	zeichn	ung		Boo	denfarb	е	Skele	tt Bo	odenar	t			Hy	rdom.	Merl	kmal	e	Gef	üge	(E)	N	-	É	
lfd. Pr Nr.	roben-Nr.		Symbol	Gren	r- bzw. Unte	schärfe	Munse	subje	ktiv	Anteil von-bis (Vol9	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	fl.	Bleich fl.	Fe Ko Ant.	e / Mn onkret.	Ausfäll.	Form	Gröf	Rohdichte	Durchwur	Schicht-N	Schicht-S	Semerkur
1			L	-3	w	di				0				7	0									T	1	F	
2			Of	-2	w	di				0				7	0			-			-		+	t	1	F	-
3			Oh	-1	w	di				0	-			7	0			_	F				\top	t	1	F	-
4			I Ahe	0	w	di	1	0YR 3/2		0 0	-	Su4		3	0			•		•	kru	1		Ť	2	V1	
5			I Ae	2	w	di	2	2,5Y 4/6	_	1 5	g6	Us		1	0	120	<u>.</u>		- 62	-	pol	3			2	V1	
6		6	ll Bhs	8 50	w	di	1	0YR 5/6		2 10	g6	Uls		2	0	3 .	29	•		•	pol	3		Ē	3	V2	
7		11	Bhs-Sw	50 64	w	di	10YR 5/	6 mr 7,5Y	R 4/4	2 10	g6	Lu		1	0	5	3	2	2	мн	pol	3		Ť	3	V2	
8			II Sd	64 95		•	2,5YR 7/	4 mr 7,5Y	'R 4/4	2 5	g6	Lt2		1	0	6	5	4	4	мн	pol	3		Ī	3	V2	

			Profilk	enn	ung	-		Proje	ktkenn	ung		12	Lage	E			Zuordni	ung			Aufna	ahme		_
Obj	-Id			Τ	Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	4603	2616	Höhe m ü. NN F	Pireg.				LandschEinhe	Name	Hoppe (I Christophe	Jni R) I (Uni R)	Aufschi Art	-
Blat	tname K25		Passau		7446	96	14	Frem	dkennu S-RF14	ung	н	5379	9419	397 C	.kr. 3de.	Neubi	Passau urg a.Inn [Pass	au)	12.94	Datum externe Aufn.	25.07.2 UNI-	2007 R	GS	
ht-Nr.	-Sym.	Gesamt skelett O O O O O O O O O		Boo	ienarten- ruppen	symb.	Τ	-Bez.	Sk	elett	gungi	rkung		Komponent	en de	r Grob	fraktion		Ко	mponente	en der Feinf	raktion		
Schic	Schicht	Gesar skele 00 00 00 00 00 00 00 00		grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkdl Geolog. Begriff	Petrograph Bezeichnur	ig vo	Anteil on - bis /ol%)	Stratigraphie	Verwitt.	Bodenkdl P Geolog. Be Begriff	etrograph. ezeichnun	g von - bis (Vol%)	Stratigra	aphie	Verwitt.
1	F	og 0 0 0		-		og-(O)	Str			Ī													
2	V1 a 1 4		1	kk	su	a-(k)u					T			QzG	10	0 - 100	q			u/KA	100 - 100	w		
3	V2	a	2 8	kk	tu	a-(k)u					T	T		QzG	10	0 - 100	q			u/KA	100 - 100	w		_

A

Bemerkungen B

Profil RF 15 – 7742 Altötting

			Profilker	nung			Proje	ktkenn	ung	Г		Lage			_		Z	uordn	ung	1				Aufn	ahr	ne	
Objl	d			Blatt-Nr TK25	Aufn Serie	Profil- Nr.	s	RRA02		R	45595	64	Höhe m ü. NM	N Pire	eg.					Land	schEinhe	Name	CH	Hoppe (hristophe	(Uni I el (Ur	R) ni R)	Aufschl Art
Blattn	ame	Alt	ötting				Frem	dkennu	ing	н				Lkr			Alto	Stting	- 8		0.152	Datun	n	26.07	2007		1.223
TK25				7742	96	15 -	С	S-RF15		1	53422	17	384	Gd	e,	н	loizfeld [Alto	der Forst otting]			13.3	extern Aufn.	e	UNI	-R		GS
1	ntens	ität		KI	ima				N	utz	ung										Relief	_	_			_	
Aufna	hme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.	. E	aumarte	n	Best Zust.	Inkli- natio	n	Expo- sition	v	Reliefwö ert.	hor	iz.	Formtyp	Länge		Lage	Mi	kro- lief	Entf. z. Hankok
Bepro Subst	bung raterg.	30 NO	7	850	50		FL			T	AB3,	PA4,	SU	0	T	NW	0	3 0	G	0	v	Breite H/T		NB			
Boo	lensy	st. E.		Bo	denform	6	<u> </u>	Subst	ratsys	it. I	E. I	egende	en-	Humu	IST	orm	Во	denab	1	SW-S	Stand	Boder	isch	ätzun	g	Be	emerk.
	RZ		Para	arendzina a	uf Terrasse	enschotter		<u></u>	p-ks		2	uoranu	ing		-		- a	untrag	1	SOK	Status						
	Horiz										The	ir. ema		m	uf	. 8	Grad	-	+		k c	Acker	-		_		
	AV eprobung 30 ubstraterg. NO Bodensyst. E. RZ Horize d. Proben-Nr. 1 2		zontkenr	nzeichnu	ing	1	Bo	denfarb	e	S	kelett	Bo	denar	t	—	П	Hy	rdom.	Mer	kma	le	Gefi	ìge	Ê	T.	1	É
lfd. I Nr.	Horiz		Symbol	Ober Gren: [cm	- bzw. Unte ze Form	ergrenze Schärfe	Munse	subje	ektiv	A VC (V	nteil on-bis /ol%)	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	F K Ant.	e / Mr onkrei	Ausfall.	Form	Größ	Rohdichte	Durchwurz	Schicht-Nr	Schicht-Sy Bemerkun
1		T	L	-3 -1	w	di					0	•	İ		7	0				İ					T	1	F
2			Of	-1 0	w	di .					0 0				7	0				Ť					Ť	1	F
3	3		l Ah	0	z	di	1	0YR 2/1			20 40	o1g6	Su3		3	c1				-		kru	2	T	Ť	2	V1
4		l elCv	15 71	e	de	2,5Y 4/	3 ba 10Yi	R 2/1		50 70	o2g5	Ss		2	c5	*			1		ein	32	Τ	Ť	2	V1	
5		Ť	II fBcv	71 74	е	di	1	0YR 4/6			50 70	g6	Su2		2	c4	×	•	•			ein			Ť	3	V2
6		Ť	II elCv	74 99 -	-	•	2	,5YR 5/4			50 70	o3g4	Ss		1	c5	4	-	3			ein	2		Ť	3	V2

			Profile	enn	ung			Projel	tkenn	ung	Т		Lage	15. 			Zuordnu	ing			Aufna	hme		_
Obj.	-Id			Τ	Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SI	RRA02		R	455	9564	Höhe m ü. NN	Pireg				LandschEinh	Name	Hoppe (L Christophel	(Uni R)	Aufsch Art	íl
Blat	iname	2	Altötting	+				Fremo	lkennu	ung	н			1.1.1.1.1.1.1.1	Lkr.		Altötting			Datum	26.07.2	007		_
Т	K25				7742	96	15	C	S-RF15	-		534	2217	384	Gde.	Ho	[Altötting]		13.3	externe Aufn.	UNI-I	R	GS	
M-Nr.	Sym.	nese	Gesamt- skelett	Bod	enarten- uppen	ymb.	Ξ.	-Bez.	Sk	elett	Bunß	tkung	<u> </u>	Kompone	nten d	ler Grob	fraktion		ĸ	omponente	en der Feinf	raktion		
Schict	Schicht-	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Bemer	Bodenkd Geolog Begriff	Petrogra Bezeichr	ph. iung v	Anteil on - bis (Vol%)	Stratigraphie	Verwitt.	Bodenkdl I Geolog. E Begriff	Petrograph. Bezeichnung	Anteil von - bis (Vol%)	Stratig	raphie	Verwitt.
1	F	og	0 0	•	•	og-(O)	Str							-									
_	-	-	44	-	+ +		+		+	t	t	÷	<u> </u>	rG	17	50 - 60	w	-		KS	100 - 100	v	v	-
2	V1	ff		kk	ls	f-sk								Gc		40 - 50	w	-		10.20				
			64						1					QzG		5 - 15	w	-						-
_		_	50	<u> </u>	+ +		-		+	t	t	1	1	rG	17	50 - 60	w	_		KS	100 - 100	٧	v	-
3	V2	ff		wk	55	f-sk			1					Gc		40 - 50	w	-						
			70						1					QzG		5 - 15	w	_				-		

А

A Horizont Nr. 3: alle Horizonte mit gestörter Entwicklung B Horizont Nr. 4: alle Horizonte mit gestörter Entwicklung elCv mit humosen Taschen Horizont Nr. 5: alle Horizonte mit gestörter Entwicklung

Profil	RF 16	- 8143	Freilassing
--------	-------	--------	-------------

			Profilke	nnung		0.0	Projek	tkenn	ung	Т		Lage					Z	uordn	ung					4	Aufna	ahm	e	
Objl	d			Blatt-Nr TK25	Aufn Serie	Profil- Nr.	SF	RRA02		R	45723	01	Höhe m ü. NN	Pire	g.	-			_	Lands	schEin!	neit N	lame	Ho	oppe (l stophe	Jni R I (Un) /	Aufschl Art
Blattr TK25	ame	Fre	lassing	8143	96	16	Fremo	lkennu	ing	H	53031	27	419	Lkr. Gde		Berc	htesga Freila	dener La	and		14.43	D	Datum	2	27.07.2 UNI-	2007 R	1	GS
							CS	5-RF16			00001	- C	200.6			[Berc	htesga	dener La	and]			A	lufn.		0.000			
	ntens	ität	-	ĸ	ima		-	2	N	utz	zung		20	_							Relie	t				_	_	
Aufna	hme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.		Baumarte	en	Best Zust.	Inkli- nation	,	Expo- sition	v	Reliefwö ert.	hori	z.	Formtyp	Län	ige		Lage	Mik reli	ro- ef	Entf. z. Hankok
Bepro	bung	30	7	1100	70		FM			T	PA5, AE	32, LA2,	SU	0	T	NN	0	60	G)	v	Bre	ite		NB			
Subs	traterg.	NO					L	0.1.1		_					_			1								_	_	
Bod	BB	St. E.	Braun	erde aus S	chotter übe	r fossilem A	Ah	Substi	p-lk	st.	E.	uordnu	ing	Humu	SIC	orm	- ai	uftrag	G	OK	Status	во	dens	cna	tzung	3 -	Be	merk.
	вв							14		N	ir.	-	m	ut	-	Vorg.		+		L	Ack	er			-			
	Horiz										The	ema					Grad		1			Grüni	land					
			zontken	nzeichn	ung		Bod	lenfarb	e	s	kelett	Bo	denar	t i			Нуг	dom.	Mer	kma	le		Gefüg	je	(i)			É m
lfd. Nr.	Proben-	Nr.	Symbol	Obe Gren [cm	r- bzw. Unte ze Form	ergrenze Schärfe	Munse	ll subje	ektiv	v c	Anteil Ion-bis Vol%)	Grob- boden	Feinbe bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fi Ko Ant.	e / Mn onkret G	Ausfall.	Fo	orm G	röße	Rohdichte	Durchwurz	Schicht-Nr	Schicht-Sy Bemerkun
1			L	-1 0	w	di					0	·	İ		7	0											1	F
2		Ť	l Ah	0	w	di	10	0YR 3/2		Ī	2 10	g6	Lt2		3	0	×.	-				kı	ru	2			2	V1
3			I Bv	8 27	w	di	10	0YR 4/4		Ī	5 15	g6	SI2		2	0			•			SL	du	3			2	V1
4		I Bv-Cv	27 63	w	di	10	0YR 3/3		Ī	20 40	01g6	Ls3		1	0		-				SL	ub	3			2	V1	
5		T	ll fAh	63 74	w	di	10	0YR 2/3			10 30	g6	Lt2		2	0	*		•	-		SL	ub	3		Π	3	V2
6		Ť	II Cv	74			10	0YR 3/4			50 70	g3o4	St2		1	0	×	-	2			u	gl	2			3	V2

			Profilk	enn	ung	er a		Projek	ktkenn	ung			Lage	li,			Zuordnu	ing	E.		Aufna	hme		
Obj.	ld				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SI	RRA02		R	4572	2301	Höhe m ü. NN	Pireg.	<u> </u>			LandschEinhe	Name	Hoppe (U Christophel	Jni R) (Uni R)	Aufsch Art	
Blat	name	F	reilassing	-	Sec. 19 1	1.000		Fremo	dkennu	ing	н				Lkr.	Berch	tesgadener La	nd	a ana ana	Datum	27.07.2	007	-	-
Т	(25				8143	96	16	CS	S-RF16		1	530	3127	419	Gde.	[Berch	Freilassing tesgadener La	nd]	14.43	externe Aufn.	UNI-	R	GS	
nt-Nr.	Sym.	Gesamt- skelett		Bod	enarten- Jppen	ymb.	Τ.	-Bez.	Ske	elett	gungi	rkung		Kompone	nten de	er Grob	fraktion		К	mponente	en der Feinf	raktion	2	
Schict	Schicht-	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkdl Geolog. Begriff	Petrograp Bezeichn	ph ung vo ('	Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl F Geolog. B Begriff	etrograph. ezeichnun	g Anteil von - bis (Vol%)	Stratig	raphie	Verwitt.
1	F	og	0		•	og-(O))	Str				Ī												
_		_	42	-	+		- +		+	 	1	÷	 	QzG	2	0 - 30	w	-		I/KA	100 - 100	0	=	-
2	V1	f	f 13 29		н	f-(k)s								rG	7	0 - 80	w	_						
3	V2	Ŧ	34	kw		f-sw	+		+	┢	F	t		rG	10	10 - 100	w			I/KA	100 - 100	9		=
100			54		1000								<u> </u>		-			-					\rightarrow	-

A Horizont Nr. 2: Kiesel und Steine mit Carbonatüberzügen Horizont Nr. 3: Kiesel und Steine mit Carbonatüberzügen Horizont Nr. 4: Kiesel und Steine mit Carbonatüberzügen

		1	Profilken	nung			Projek	tkennu	ing			Lage					2	Zuordn	ung						Aufn	ahn	ne		
ObjId				Blatt-Nr TK25	Aufn Serie	Profil- Nr.	SI	RRA02		R	45480	011	Höhe m ü. NN	Pir	eg.	_				Land	sch	Einheit	Name	Ch	Hoppe (ristophe	Uni F	() 11 R)	Aufscl Art	hl
Blattnan	me	Ruhp	olding				Fremo	dkennu	ng	н	<u> </u>	-+	2012-11-12	Lkr	1		Trau	instein					Datur	n	28.07.	2007	-		_
TK25				8241	96	17	CS	S-RF17			5288	778	967	Gd	e.	Ruh	oolding	(Trauns	tein]		15.6	5	extern Aufn.	ne	UNI	-R	٦	GS	5
In	tensi	tät	1	KI	ima				Nu	itz	ung		2	<u> </u>						-	Re	lief		_					-
Aufnahr	me	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	E	saumarte	an	Best Zust.	Inkli natio	- I	Expo	i v	Reliefwo ert.	hori	z.	Form	ntyp L	ange		Lage	Mil	lief	Ent Han	. z. kok.
Beprobu	ung	30 NO	4	1500	120		FM			t	F14,	BU3,	su	30	T	NW		G0	X4	6	н	4	Breite		м				_
Bode	nsys	t. E.		Bo	denform	1	-	Substr	atsys	t. I	E. I	Legende	en- H	lumu	isfo	orm	Bo	denab	/ G	w-s	Stan	d	Boder	nsch	ätzun	g	Be	emer	rk.
Intensität Temperature Aufnahme AV Temperature Beprobung 30 4 Substraterg. NO 4 Bodensyst. E. BB BB Ifd. Proben-Nr. Symbol Nr. L L		1	Braunerde	aus Dolom	nitgrus		c-:	z(Dst)		1.	zuordnu	ing				- a	uftrag	G	IOK	Stati	us	lakar		A. 91 M. 1. 44	_				
Beprobung 30 4 Substraterg. NO 4 Bodensyst. E. BB Horizontke Ifd. [Proben-Nr.] Symbol										The	ema	-	п	nuf		Grad	-	+		k	Gr	ünland	-		-				
		Horiz	ontkenn	zeichnu	ing		Boo	lenfarb	e	S	kelett	Bo	denart			\square	Hy	rdom.	Merl	kma	le	- 1	Gefi	ige	ŝ	Τ.		É	
lfd, Pro Nr.	oben-N	Ruhpoldir sität Tr 30 NO rst. E. Horizon -Nr. Sy 0 0 0 1 1	Symbol	Ober Gren: [cm	- bzw. Unte ze Form]	ergrenze Schärfe	Munse	ll subje	ektiv	A VC	inteil on-bis /ol%)	Grob- boden	Feinbo bzw. 1 zers\$	oden Forf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe Ko Ant.	e / Mr onkrei G	n t. Gr.	Ausfäll.	Form	Größe	Rohdichte(Durchwurz	Schicht-Nr	Schicht-Sy	Bemerkung
1			L	-2	w	di			_		0	•	İ		7	0				Ī					İ	Ť	1	F	
2		T	Of	-1 0	w	di			_		0		1		7	0				ĺ	1				Ī	Ì	1	F	
3		Ť	l Ah	0	w	de	10	0YR 2/3	_		5 10	r6	Us		4	d1	•	2			•	1	kru	2	İ	Ī	2	v	
4			l Bv	12 35	w	di	10	0YR 5/6	_		20 40	r6	Ls3		2	d3	•	92	•	2		-	koh	1	Ī	İ	2	v	
5			I Cv	35			10	0YR 6/6	_	1	30 50	x2r5	Lts		1	d4			•		-		koh		İ	Ť	2	V	Π

Profil RF 17 – 8241 Ruhpolding

			Profilk	enn	ung			Projel	ktkenn	ung			Lage	S			Zuordnu	ing	6		Aufna	hme	
Obj.	-Id				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	454	3011	Höhe m ü. NN	Pireg.	1		_	LandschEinh	Name	Hoppe (L Christophel	(Uni R) Au	fschl
Blat T	tname K25	R	Ruhpolding	+	8241	96	17	Frem	dkenni	ung	н	528	3778	967	Lkr. Gde.	Ruhpo	Traunstein olding [Traunste	in]	15.6	Datum	28.07.2 UNI-	007 R	GS
ht-Nr.	-Sym.	enese	Gesamt- skelett	Bod	enarten- Ippen	Symb.		t-Bez.	S-RF17	elett	tigung	rkung		Kompone	nten de	er Grob	fraktion		ĸ	Aufn. Componente	n der Feinf	raktion	
Schic	Schicht	Geog	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Vertes	Beme	Bodenkdl Geolog. Begriff	- Petrogra Bezeichn	ph. ung vi	Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl Geolog. Begriff	Petrograph. Bezeichnung	Anteil von - bis (Vol%)	Stratigraph	Verwitt
1	F	og	0	÷		og-(O)	,	Str															+
2	v	c	21	zz	п	c-zl					T	T		DeG	10	0 - 100	q			I/KA	100 - 100	q	Ŧ

Bemerkungen B A

Profil RF 18 – 8040 Eggstätt

		Profilkennung Blatt-Nr. Aufn TK25 Serie					Projel	ktkennu	ing	Г		Lage					Z	uordn	ung						Aufn	ahm	e	
Obj	ld		Blatt-Nr. Aufn,- TK25 Serie Eggstätt				S	RRA02		R	45300	91	Höhe m ü. NM	I Pir	reg.				_	Land	schEinl	neit	Name	Chris	oppe (i stophe	Uni R	() A	Aufschl Art
Blatt	name	E	ggstätt		Frem	dkennu	ng	н			990.3	Lk	r.	. l.,	Rose	nheim					Datum	ः	29.07.3	2007				
TK2:				18	C	S-RF18		1	53098	60	530	Go	le.	Egg	gstätt [l	Rosenhe	im]		14.43		externe Aufn.		UNI	R		GS		
	Intens	sität		KI	ima				Nu	itz	ung			T -							Relie	f						
Aufn	ahme	AV Tempe- ratur schlag Index Fr				Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	E	aumarte	en	Best Zust.	Inkl	i- on	Expo	i v	Reliefwo ert.	hor	iz.	Formtyp	Lä	nge		Lage	Mik rel	ro- ief	Entf. z. Hankok.
Bepr	obung traterg.	ratur schlag Index Fe 30 7 1100 80					FM			t	F16,	BI1,	s	0	T	ww		30	G	D	v	Br	eite / T	_	NB			
Во	densy	st. E.		7 1100 80 Bodenform Hochmoor mit Weiß- und Schwarz kiesigen Grundmoränenlehm				Substr	atsys	t. 1	E. I	Legend	en-	Hum	usf	orm	Во	denab		w-s	Stand	Bo	odens	chä	tzun	9 [Be	merk.
	нн		Hochmo	oor mit We	iß- und Sch	warztorf ü	ber	og-	(H)/g-kl		2	zuordnu	ung				- a	uftrag	G	SOK	Status					_		
				7 1100 80 Bodenform Hochmoor mit Weiß- und Schwarkiesigen Grundmoranenieh Symbol Ober- bzw. Untergre Symbol Ober- bzw. Untergre							The	Ir.		п	nuf		Vorg.	-	4	1	k	AC	Ker			_		
		Но	rizontkenr	zeichnu	100		Bo	denfarh	•	S	kelett	B	denar		-	-	Hy	rdom	Mor	kma			Gofür	10	~	┯┷	_	
lfd. Nr.	Proben	-Nr.	Symbol	Ober Gren. [cm	- bzw. Unte ze Form	ergrenze Schärfe	Munse	subje	ktiv	A ve	nteil on-bis /ol%)	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fi Ka Ant.	e / Mr onkret	Ausfall.	F	orm G	röße	Rohdichte(tr	Durchwurz.	Schicht-Nr.	Schicht-Sym Bemerkung
1			L	-6 -4	w	di					0	1			7	0				Ī						Ē	1	F
2			Of	-4 -1	w	di					0	•			7	0				T						Γ	1	F
3			Oh	-1 0	w	di .					0 0	а. С			7	0				Γ						Γ	1	F
4			I hHw	w	de .	7,	5YR 2/3			0	34		4	7	0				Ĺ		Ì	j.			Ē	2	т	
5	l hHr			59 74	e	de .	1	0YR 2/1		ĺ	0 0			5	7	0				Γ						Γ	2	т
6		I hHr 74			• •	- C. C. (1	0YR 4/2			10 30	r3g4	Lts		1	0		•	4	0		k	koh			Γ	3	v

_		Profilkennung Blatt-Nr. Aut TK25 Se					Projek	tkenn	ung	1		Lage	1			Zuordnu	ing			Aufna	ahme	
-ld				Blatt-Nr. TK25	Profil- Nr.	SF	RRA02		R	453	0091	Höhe m ü, NN	Pireg.	-	4. (171) (94 million		LandschEinhe	Name	Hoppe (L Christophel	Jni R) I (Uni R)	Aufschl	
Iname K25		Eggstätt		8040	96	18	Fremo	kenn S-RF18	ung	н	530	9860	530	Lkr. Gde.	Eggs	Rosenheim tätt [Rosenhein	n]	14.43	Datum externe Aufn.	29.07.2 UNI-	2007 R	GS
Sym.	enese	Gesamt- skelett	Bod	enarten- uppen	symb.		-Bez.	Sk	elett	Bung	rkung		Kompone	nten de	er Grobi	fraktion		Ko	mponente	n der Feinf	raktion	
Schicht	Geog	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substar	Verteil.	Einreg.	Verfes	Beme	Bodenkdl Geolog. Begriff	 Petrograp Bezeichni 	oh. ung vo	Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl F Geolog, B Begriff	etrograph. ezeichnun	Anteil von - bis (Vol%)	Stratig	raphie
F	og	0		ŀ	og-(O)	Str			T	T			-			_		Hu	100 - 100		
т	og	0		•	og-(H)				T	T				_				Hx	100 - 100	q	h
v	gm	10	zk	ti	g-(k)l					T	t		rG eG	5	50 - 75 25 - 50	q	_		I/KA	100 - 100	q	1
A B	Horizor	nt Nr. 6: Go	l mit het	erogenem	Gesteins	sbestand	1					1										
	-Id iname K25 F F T V A B	F og T og V gm A Horizor B	Id Profil Iname Eggstatt (25) Eggstatt (25) Eggstatt (25) Eggstatt (27) Skelett Anteil (vol%) F og 0 T og 0 V gm 10 V gm 30	Profilkenni iname Idd Eggstatt (25) Eggstatt (25) Eggstatt (25) Eggstatt (25) Eggstatt (25) Eggstatt (25) Eggstatt (26) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (27) Eggstatt (Profilkennung Id Blatt-Nr. TK25 Eggstatt 8040 Eggstatt 8040 Eggstatt 8040 Eggstatt 8040 Eggstatt 8040 F og 0 - T og 0 - - T og 0 - - T og 0 - - V gm 10 zk ti A Horizont Nr. 6: Go mit heterogenem B B	Profilkennung Id Bilst-Nr. TK25 Aufn Serie rame Eggstätt 8040 96 Eggstätt 8040 96 96 Eggstätt 8040 96 96 Eggstätt 8040 96 96 Eggstätt 8040 96 96 Anteil von - bis gruppen 0 0 10 F og 0 - og-(0 T og 0 - og-(0 V gm 10 zk ti g-(k) A Horizont Nr. 6: Go mit heterogenem Gestein B B	Profilkennung Id Itt:N: Aufn Profil- Serie Itt:N: Serie Nr. R25 Eggstätt 8040 96 18 Eggstätt Bodenarten- gruppen Gesamt- ge Bodenarten- ge Gesamt- ge Bodenarten- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge Gesamt- ge	Profilkennung Projek Id Blatt-Nr. Aufn Profil- Si Inname Eggstätt 8040 96 18 Fremo K25 Eggstätt 8040 96 18 Fremo K25 Eggstätt 8040 96 18 Fremo K25 Eggstätt Bodenarten- gruppen Eggstätt Sig Eggstätt Sig K Anteil von - bis (Vol.%6) B Eggstätt Sig Eggstätt Sig Eggstätt Sig Eggstätt Sig Eggstätt Sig Eggstätt Sig Eggstätt Sig Eggstätt Sig Eggstätt Sig Eggstätt Sig Eggstätt Sig Eggstätt Sig Eggstätt Sig Eggstätt Sig Eggstätt Sig Eggstätt Sig Eggstätt Sig Eggstätt Sig Eggstätt Sig Eggstätt Sig Eggstätt Sig Eggstätt Sig Eggstätt Sig <td< td=""><td>Profilkennung Projektkenn Id Istatt-Nr. TK25 Aufn Serie Profilkennung SRRA02 Iname (25) Eggstatt 8040 96 18 Fremdkenn CS-RF18 It Biltt-Nr. TK25 Aufn Serie Nr. Nr. SRRA02 Is Biltt-Nr. Serie Nr. Nr. Sredent Serie Nr. Serie Fremdkenn CS-RF18 It Gesamt- Vol%bi Bodenarten- B It Statt Serie Nr. Serie Statt Serie F og 0 - og-(O) Str Str T og 0 - og-(H) It g-(k)I V gm 10 zk ti g-(k)I It A Horizont Nr. 6: Go mit heterogenem Gesteinsbestand B B It It</td><td>Profilkennung Projektkennung Id Blatt-Nr. Aufn Profil- Serie SRRA02 Iname Eggstätt 8040 96 18 Fremdkennung K25 Eggstätt 8040 96 18 Fremdkennung K25 Eggstätt 8040 96 18 Fremdkennung Katelt gruppen Eggstätt Skelett Skelett Skelett Anteil von - bis (vol.%6) B Egg Egg Skelett Skelett F og 0 - og-(O) Str IIII T og 0 - og-(H) IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td><td>Profilkennung Projektkennung Id Blatt-Nr. Aufn Profil- Serie SRRA02 R name Eggstätt 8040 96 18 Fremdkennung H Li Skelett Bodenarten- gruppen giv 18 Fremdkennung H Li Antell von - bis (Vol%6) giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv</td><td>Profilkennung Projektkennung Id Imame Blatt-Nr. Aufn Profil- SRRA02 R 453 Iname Eggstätt 8040 96 18 Fremdkennung H 530 Imame Sedett Bodenarten- gruppen Image Skelett Image Skelett Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image</td><td>Profilkennung Projektkennung Lage Idd Blatt-Nr. TK25 Serie Nr. Serie SRRA02 R 4530091 name (25) Eggstätt 8040 96 18 Fremdkennung H 5309860 Ligg Skelett Bodenarten- gruppen Gesamt- b Bodenarten- gruppen Gesamt- b Gesamt- gruppen Gesamt- gruppen Skelett Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen Gruppen gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen</td></td<> <td>Profilkennung Lage Idd Blätt-Nr. Aufn Profilk SRRA02 R 4530091 Hohe name Eggstätt 8040 96 18 Fremdkennung CS-RF18 5309860 530 Eigestätt 8040 96 18 Fremdkennung H 5309860 530 Eigestätt Bodenarten- gruppen eigestätt Gesamt- big gruppen Bodenarten- gruppen eigestätt Skelett Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt eigestä</td> <td>Profilkennung Projektkennung Lage Idd Imame Blatt-Nr. Aufn Profil- SRRA02 R 4530091 Höhe, mi.NN Pireg. name Eggstätt 8040 96 18 Fremdkennung H 5309860 530 Lkr. Eugstätt 8040 96 18 Fremdkennung H 5309860 530 Lkr. Eugstätt Bodenarten- gruppen Gesamt- gruppen Gesamt- Geolog. Bodenkil Perograph. V gr 0 - og-(O) Str Image: Geolog. Bezeichnung V Geolog. Bezeichnung V Geolog. Bezeichnung V Geolog. Bezeichnung V Geolog. Bezeichnung V Geolog. Bezeichnung V Geolog. Bezeichnung V Geolog. Bezeichnung V Geolog. Bezeichnung V Geolog. Bezeichnung V Geolog. Geolog. Geolog.</td> <td>Profilkennung Lage Idd Idd Blätt-Mr. Aufn Profilk SRRA02 R 4530091 Höhe Preg. name Eggstätt 8040 96 18 Fremdkennung Höhe S309860 530 Idd Preg. Lkr. Skelett Bodenarten- gruppen Eggstätt Skelett Skelett Bodenarten- Idd Eggstätt Komponenten der Grobi Skelett Bodenarten- Idd Eggstätt Komponenten der Grobi Skelett Bodenarten- Idd Eggstätt Komponenten der Grobi Skelett Bodenarten- Idd F Idd Perograph. Anteil Skelett Bodenarten- Idd F Idd Perograph. Anteil Skelett Sig Skelett Bodenarten- Idd F Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd</td> <td>Profilkennung Lage Zuordnu Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd</td> <td>Profilkennung Projektkennung Lage Zuordnung Idd Imame Blatt-Nr. TK25 Aufn Eggstätt Frofil- 8040 SRRA02 R Fremdkennung Höhe 5309860 Höhe 5309860 Pireg. Ima.NN Imame Eggstätt 8040 96 18 Fremdkennung CS-RF18 Höhe 5309860 Image: Source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the s</td> <td>Profilkennung Lage Zuordnung Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd</td> <td>Profilkennung Projektkennung Lage Zuordnung Name Name Idd Imame Blätt-Nr. Aufn Profil- SRRA02 R 4530091 Höhe Pirg. LandschEinheit Name Iname Eggstätt 8040 96 18 Fremdkennung Höhe IV.N Vir. R desamt- Status Bodenarten- Variation Id.Astricture Variation Id.Astricture Variation Id.Astricture Name V gr 0 - - og-(0) Str Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image</td> <td>Profilkennung Projektkennung Lage Zuordnung Name Aufn. Idd Itz25 Biat-Nr. Aufn. Projektkennung R 4530091 Möhe Preg. Landsch. Einheit Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Ho</td> <td>Profilkennung Projektkennung Lage Zuordnung Name Name Aufnahme -id </td>	Profilkennung Projektkenn Id Istatt-Nr. TK25 Aufn Serie Profilkennung SRRA02 Iname (25) Eggstatt 8040 96 18 Fremdkenn CS-RF18 It Biltt-Nr. TK25 Aufn Serie Nr. Nr. SRRA02 Is Biltt-Nr. Serie Nr. Nr. Sredent Serie Nr. Serie Fremdkenn CS-RF18 It Gesamt- Vol%bi Bodenarten- B It Statt Serie Nr. Serie Statt Serie F og 0 - og-(O) Str Str T og 0 - og-(H) It g-(k)I V gm 10 zk ti g-(k)I It A Horizont Nr. 6: Go mit heterogenem Gesteinsbestand B B It It	Profilkennung Projektkennung Id Blatt-Nr. Aufn Profil- Serie SRRA02 Iname Eggstätt 8040 96 18 Fremdkennung K25 Eggstätt 8040 96 18 Fremdkennung K25 Eggstätt 8040 96 18 Fremdkennung Katelt gruppen Eggstätt Skelett Skelett Skelett Anteil von - bis (vol.%6) B Egg Egg Skelett Skelett F og 0 - og-(O) Str IIII T og 0 - og-(H) IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Profilkennung Projektkennung Id Blatt-Nr. Aufn Profil- Serie SRRA02 R name Eggstätt 8040 96 18 Fremdkennung H Li Skelett Bodenarten- gruppen giv 18 Fremdkennung H Li Antell von - bis (Vol%6) giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv giv	Profilkennung Projektkennung Id Imame Blatt-Nr. Aufn Profil- SRRA02 R 453 Iname Eggstätt 8040 96 18 Fremdkennung H 530 Imame Sedett Bodenarten- gruppen Image Skelett Image Skelett Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image	Profilkennung Projektkennung Lage Idd Blatt-Nr. TK25 Serie Nr. Serie SRRA02 R 4530091 name (25) Eggstätt 8040 96 18 Fremdkennung H 5309860 Ligg Skelett Bodenarten- gruppen Gesamt- b Bodenarten- gruppen Gesamt- b Gesamt- gruppen Gesamt- gruppen Skelett Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen gruppen Gruppen Gruppen gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen Gruppen	Profilkennung Lage Idd Blätt-Nr. Aufn Profilk SRRA02 R 4530091 Hohe name Eggstätt 8040 96 18 Fremdkennung CS-RF18 5309860 530 Eigestätt 8040 96 18 Fremdkennung H 5309860 530 Eigestätt Bodenarten- gruppen eigestätt Gesamt- big gruppen Bodenarten- gruppen eigestätt Skelett Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt Bodenarten- gruppen eigestätt eigestä	Profilkennung Projektkennung Lage Idd Imame Blatt-Nr. Aufn Profil- SRRA02 R 4530091 Höhe, mi.NN Pireg. name Eggstätt 8040 96 18 Fremdkennung H 5309860 530 Lkr. Eugstätt 8040 96 18 Fremdkennung H 5309860 530 Lkr. Eugstätt Bodenarten- gruppen Gesamt- gruppen Gesamt- Geolog. Bodenkil Perograph. V gr 0 - og-(O) Str Image: Geolog. Bezeichnung V Geolog. Bezeichnung V Geolog. Bezeichnung V Geolog. Bezeichnung V Geolog. Bezeichnung V Geolog. Bezeichnung V Geolog. Bezeichnung V Geolog. Bezeichnung V Geolog. Bezeichnung V Geolog. Bezeichnung V Geolog. Geolog. Geolog.	Profilkennung Lage Idd Idd Blätt-Mr. Aufn Profilk SRRA02 R 4530091 Höhe Preg. name Eggstätt 8040 96 18 Fremdkennung Höhe S309860 530 Idd Preg. Lkr. Skelett Bodenarten- gruppen Eggstätt Skelett Skelett Bodenarten- Idd Eggstätt Komponenten der Grobi Skelett Bodenarten- Idd Eggstätt Komponenten der Grobi Skelett Bodenarten- Idd Eggstätt Komponenten der Grobi Skelett Bodenarten- Idd F Idd Perograph. Anteil Skelett Bodenarten- Idd F Idd Perograph. Anteil Skelett Sig Skelett Bodenarten- Idd F Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd	Profilkennung Lage Zuordnu Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd	Profilkennung Projektkennung Lage Zuordnung Idd Imame Blatt-Nr. TK25 Aufn Eggstätt Frofil- 8040 SRRA02 R Fremdkennung Höhe 5309860 Höhe 5309860 Pireg. Ima.NN Imame Eggstätt 8040 96 18 Fremdkennung CS-RF18 Höhe 5309860 Image: Source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the source of the s	Profilkennung Lage Zuordnung Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd Idd	Profilkennung Projektkennung Lage Zuordnung Name Name Idd Imame Blätt-Nr. Aufn Profil- SRRA02 R 4530091 Höhe Pirg. LandschEinheit Name Iname Eggstätt 8040 96 18 Fremdkennung Höhe IV.N Vir. R desamt- Status Bodenarten- Variation Id.Astricture Variation Id.Astricture Variation Id.Astricture Name V gr 0 - - og-(0) Str Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image	Profilkennung Projektkennung Lage Zuordnung Name Aufn. Idd Itz25 Biat-Nr. Aufn. Projektkennung R 4530091 Möhe Preg. Landsch. Einheit Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Hope (Lindsch. Einheit) Name Ho	Profilkennung Projektkennung Lage Zuordnung Name Name Aufnahme -id

Profil RF 19 – 8236 Tegernsee

	Profilker			ung			Proje	ktkennu	ing			Lage		Т	_		Z	uordn	ung	8		1		Auf	nah	me		
ObjId				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	44751	57	Höhe m ü. NN	Pire	g.	8				Landsch	-Einhei	Name	e ci	Hoppe	e (Uni hel (L	IR) Jni R)	Aufs Art	chl
Blattname	Т	egernsee		8236	06	10	Frem	dkennu	ng	н			1338	Lkr			Mies	sbach		15	42	Datur	n	29.0	7.200)7		20
11420				0230	50	13	С	S-RF19			52863	65	1000	Gđi	B.	Bad V	Miesse	e (Miest	achj	15.	42	Aufn.	ne	Ur	I-R			15
Inter	sität			Klii	ma				Nu	itzui	ng									R	lelief							
Aufnahme	A	/ Temp ratur	e- N	schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	Bau	umarte	n	Best Zust.	Inkli- natio	n E	Expo- sition	v	Reliefwö ert.	lbung hori	z. For	rmtyp I	Länge		Lag	e M	likro- elief	Er Ha	itf. z. inkok.
Beprobung	bung 30 4 aterg. NO 4 ensyst. E. SS-BB			1500	150		FN				FI	6,	S	13	Т	SE	5	K3	X1		кн	Breite		00				
Substraterg	. N			Bad			L	Cubat		1								damak		14 644		H/I						
Bodens	yst. E	•	На	Bod	entorm	nerde		Substr	atsys	t. E.		egenae	na l	lumu	STO	orm	- a	uftrag	G	OK ISt	atus	Boder	iscr	iatzu	ng	F	eme	erk.
00%				ngpaedde	gie)-bide	iner de		0.	c(i ai)		N	r.		m	ot	-	Vorg.	<u> </u>	+			Acker	ř –		_	-		
											The	ma					Grad			1	G	rünland			_	1		
	He	orizontke	nnz	eichnur	ng		Bo	denfarb	е	Ske	lett	Во	denart				Hy	rdom.	Mer	kmale		Gef	üge	(E		0 33	Ē	0
lfd. Probe Nr.	n-Nr.	Symbo	bl	Ober- Grenze	bzw. Unte	rgrenze Schärfe	Munse	subje	ktiv	Ant von- (Vol	eil -bis %)	Grob- boden	Feinbo bzw. zers	oden Forf- Stufe	snun	arbonat	Rost fl.	Bleich fl.	Fr Ko	e / Mn onkret.	usfall.	Form	Größ	ohdichte	urchwurz	chicht-N	chicht-S)	emerkun
	-			fcuil	+				_	-	_				Τ	0	_		/un.		4		_	~	-	S	0	8
1		L		-0	w	di				0					7	0										1	F	
2	T	Of		-4 -2	w	di				0					7	0								Τ	T	1	F	
3		Oh		-2 0	k	de				0		-			7	0								T	Ť	1	F	T
4	Ť	l Ah		0	w	di	1	0YR 3/4	_	5 10	,	r6	Ls3		2	0		-			•	kru	3	Ť	Ť	2	V1	T
5		l Bv		5 72	w	di	1	0YR 5/6		10)	x2r5	Lts		1	0	1	2		1. A.S.	•	sub	4	T	Ť	2	V1	T
6		II Swd		72 90	e	de	7.	,5YR 3/3	_	0 5		r6	TI		1	0	5	5			•	sub	4	T	Ť	3	V2	T
7			2	90 95	e	de	10YR (6/8 fl 2,5Y	2/6	50 80	}	r6	Ts3		0	0	5	6		1.00	-	koh		T	T	4	V3	1
8	Ť	IV Sd		95 107	e	de	7	,5YR 4/3	_	0 5		r6	Tt		0	0	1	1	i u	- 82	•	pol	4	T	Ť	5	V4	
9		V Cv		107 112 +	•		1	0YR 4/4		80	0	r3o4	SI4		0	0			÷	2253	•			T	Ť	6	V5	T

			Profilk	ennu	ng			Projek	tkenn	ung	Т		Lage	St.			Zuordnu	ing			Aufna	ahme	
Obj.	-Id			E	Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SF	RRA02		R	447	5157	Höhe m ü. NN	Pireg				LandschEinhe	Name	Hoppe (U Christophe	Jni R) I (Uni R)	Aufschl Art
Blatt	name K25	T	egernsee		8236	96	19	Fremd	lkennu	ung	н	528	6365	1338	Lkr. Gde.	Bad W	Miesbach /iessee (Miesba	ich]	15.42	Datum	29.07.2 UNI-	007 R	GS
			Ground	Dede			LЦ	CS	S-RF19		Ц			Kenneg		0				Aufn.			-
ht-Nr.	t-Sym.	enese	skelett	gru	ppen	Symb.		t-Bez.	SK	elett	stigung	erkung		Kompone	nten d	er Grob	rakuon			mponente	n der Feini	raktion	
Schic	Schicht	Geog	Anteil von - bis (Vol%)	grob	fein	Substart-		Substar	Verteil.	Einreg.	Verfes	Bem	Bodenkdi Geolog. Begriff	- Petrogra Bezeichn	iung v	Anteil on - bis (Vol%)	Stratigraphie	Verwitt.	Bodenkdl F Geolog. B Begriff	etrograph. ezeichnung	Anteil von - bis (Vol%)	Stratign	Verwitt.
1	F	og	0			og-(O)	Str							+								
2	V1	c	10 29	zz	ป	c-(z)								Tst	1	00 - 100	tr			I/KA	100 - 100	q	
3	V2	c	0 5	zz	It	c-t					Ī	T		Tst	1	00 - 100	tr			1/KA	100 - 100	q	
4	V3	c	50 80	zz	ti	c-lz								Tst	1	00 - 100	tr			I/KA	100 - 100	q	
5	∨4	c	0 5	zz	It	c-t								Tst	1	00 - 100	tr			1/KA	100 - 100	q	
6	V5	c	80 100	zw	sl	c-l								Sst	1	00 - 100	tr			I/KA	100 - 100	q	

A

С

A Horizont Nr. 5: Flecken zwischen 40 und 60 cm B Horizont Nr. 9: Saprolith

			Profilker	ofilkennung Blatt-Nr. Aufn Pro TK25 Serie Nr			Proje	ktkenni	ung			Lage					2	uordn	ung	8				Aufn	ahn	ne	
ObjI	ld			Blatt-Nr TK25	Aufn Serie	Profil- Nr.	s	RRA02		R	4490	0693	Höhe m ü. Ni	N PI	reg.					Lands	schEinhe	Name	Chi	loppe (ristophe	Uni F	() / ni R)/	Aufschl Art
Blattr TK25	name	Markt	Schwaben	1k25 Serie 1waben 7837 96			Frem	dkennu	ing	н	5330	752	538	U	de	F	Eber	rsberg	_	1 0	13.21	Datun	n	31.07.	2007	-	GS
0004338 2	÷			10.36.20			С	S-RF20					000	ľ	ue.		[Eber	sberg]	`		0.01557.01	Aufn.	~	UN			87975
	Intens	sität		KI	ima				N	ıtzu	ng	164 (1975)				сн 1997 г					Relief		- CO				
Aufna	ahme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.	Ba	umarte	en	Best Zust.	Ink	li- on	Expo	i v	Reliefwö ert.	lbung hori	z.	Formtyp	Länge		Lage	Mil	lief	Entf. z. Hankok
Bepro	obung traterg.	30 NO	6	950	50		FM			FIS	, LA1,	BU1, KI1,	s	0		SS		G0	G)5	v	Breite H/T	_	z			
Boo	densy	st. E.		Во			Subst	ratsys	t. E		Legende	en-	Hum	usf	orm	Во	denab	G	w-s	tand	Boder	sch	ätzun	9	Be	emerk.	
	LL		2	Parabraun	erde auf Sc	hotter			f-k		1	zuordnu	ing				- a	uftrag	G	OK	Status						
				Bodenform Parabraunerde auf Schotte Ontkennzeichnung Symbol Ober- bzw. Untergre Grenze I Form I Sch							The	ir. ema		а	mot		Grad	-	-		K G	Acker			-		
		Hor	izontkeni	nzeichnu		Bo	denfarb	e	Sk	elett	Во	denar	t	Т	Т	Hy	rdom.	Meri	kmal	e	Gefi	ige	Ê	Π.		É	
lfd. Nr.	Proben	-Nr.	Symbol	Ober Gren. [cm	r- bzw. Unte ze Form]	ergrenze Schärfe	Munse	subje	ektiv	An vor (Vo	teil I-bis I%)	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe Ko Ant.	e / Mn onkret Gi	Ausfall.	Form	Größe	Rohdichte(Durchwurz	Schicht-Nr	Schicht-Sy Bemerkuni
1			L	-5 -4	w	di				0		1.675	1		7	0									Γ	1	F
2			Of	-4	w	di				0					7	0									Г	1	F
3			I Ah	0	w	di .	1	0YR 2/3		1	D	g6	Uls		4	0	-		•		•	kru	2	T	T	2	v
4			I AI	11	w	di	1	0YR 4/6		1	0	o2g5	Lt2		1	0	-	6	•	-	·	sub	3		Ť	2	v
5			I Bt	33 55	w	de	7	5YR 4/6		2	0	g3o4	Ts2		1	0	-	<u>а</u>	<u>.</u>		•	pol	3		Ĺ	2	v
6			I Cv	1 Bt 33 55 33 55 w I Cv 55 80 + -			3	2,5Y 5/4		5 8	0	g2o5	St2		0	c1	-			ा	•	ein			T	2	v

Profil RF 20 – 7837 Markt Schwaben

			Profill	kenn	ung			Proje	ktkennu	ung	T		Lage				Zuordni	ung	6		Aufna	ahme		
Obj.	iId tiname Markt Schwaben		Τ	Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	44	90693	Höhe m ü. NN	Pireg			-	LandschEinhe	Name	Hoppe (L Christophe	Jni R) I (Uni R	Aufsch Art	il	
Blat	ttname Markt Schwaben		n	2000			Frem	dkennu	ng	H		10000		Lkr.	-	Ebersberg		7.6.6.5	Datum	31.07.2	2007		-	
т	K25			_	7837	96	20	С	S-RF20			53	30752	538	Gde.	Egi	hartinger Forst [Ebersberg]		13.21	externe Aufn.	UNI-	R	GS	
N-Nr.	Sym.	enese	Gesamt- skelett	Boo	ienarten- uppen	ymb.	Т	-Bez.	Ske	lett	Bunbi	rkung		Kompone	nten d	ler Grob	fraktion		Ko	mponente	en der Feinf	raktion		
Schict	Schicht-	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkdl. Geolog. Begriff	Petrogra Bezeichn	ph. iung v	Anteil on - bis (Vol%)	Stratigraphie	Verwitt.	Bodenkdl F Geolog. B Begriff	etrograph. ezeichnun	g Anteil von - bis (Vol,-%)	Stratig	graphie	Verwitt.
1	F	og	0	-	-	og-(O)	Str																
F		24				-		1	_	t	t		rGY	1	00 - 100	q			I/KA	60 - 80	q	IP .	_	
2	v	f	46	kw	ť	f-kt												-		S	20 - 30	9	1P	

Bemerkungen B

Profil RF 21 – 6025 Arnstein

		Profilkennung Blatt-Nr. Aufn				Projek	tkennu	ing	Г		Lage	t				Z	uordn	ung	6					Aufn	ahn	ne		_
ObjId			Blatt-Nr TK25	Profil- Nr.	SI	RRA01		R	3570900		Höhe m ü. NN	V Pire	g.				1	Land	schE	Einheit	Name	Ch	Hoppe (ristophe	Uni F	() /	Aufsch	nl	
Blattname TK25	AI	nstein	6025	96	21	Frem	dkennu S-RF21	ng	н	5531841		340	Lkr. Gde	3.	Gra	Wür Imscha IWür	zburg atzer Wa zburg1	ld		4.21		Datum extern Aufn.	e	18.03. UNI	2008 -R	-	GS	;
Inte	nsität		ĸ	lima		1		Nu	ıtz	ung			T-	_					-	Re	lief		_			_	_	-
Aufnahme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	E	aumarten		Best Zust.	Inkli- natio		Expo- sition	v	Reliefwö ert.	lbung hori	z.	Form	typ L	.änge		Lage	Mik	ief	Entf Han	. z. kok.
Beprobun Substrate	g 30 rg. NO	7	650	30		F			T	EI3, BU3	3, FI1,	SU		T	NE	(G0	G)	v	E	Breite H / T		z				
Boden	syst. E.		Bo	denform			Substr	atsys	t.	E. Le	egend	en-	Humu	sfo	orm	Bo - a	denab	G	W-S	Stan	dE	Boden	sch	ätzun	g	Be	emer	k.
	L		Para	abraunerde				р-оі		Nr.	na		m	uf	-	Vorg. Grad		-		otate	A	Acker ünland						
	Hor	izontkeni	nzeichn	una	1	Boo	lenfarb	e	S	kelett	Bo	odenar	t		\neg	Hv	rdom.	Mer	kma	le	1	Gefi	iae	Ē	-		c.	
lfd. Prob Nr.	en-Nr.	Symbol	Ober Gren [orr	r- bzw. Unte ze Form	ergrenze Schärfe	Munse	ll subje	ektiv	v ()	nteil on-bis /ol%)	Grob- boden	Feinbe bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fi Ko Ant.	e / Mr onkret	t. Ar.	Ausfäll.	Form	Größ	® Rohdichte(t	Durchwurz.	Schicht-Nr.	Schicht-Syn	Bemerkung
1		L	2 0,5	5										7	0										Γ			
2		Of	0,5 0					_						7	0				İ						T			
3		l Ah	de	1	0YR 3/3	_		0		Ut3		4	0				Ĺ			kru	1	T	Ĺ	Ĺ				
4	I AJ -7 -47 w				di	1	0YR 5/6	_		0		Ls3		2	0			1	1			pol	2		T	Γ		
5		I AI -7 -47 W I Bt -47 -96				1	0YR 5/6	_		0		Tu4		0	0			4	2	2	м	pol	3	İ	Ť	Ĺ		

			Profill	enn	ung			Projek	tkenn	ung			Lage	S			Zuordnu	ng	50		Aufna	ahme	
Obj.	ld			1	Blatt-Nr.	Aufn	Profil-	SI	RRA01		R	357	0900	Höhe	Direc			_	Londooh Einho	Name	Hoppe (I	Jni R)	Aufschl.
Blatt	name	-	Arnstein		Nr.	Fremo	lkenni	ina	н			III U. ININ	Lkr.	-	Würzburg	-	LanuschEinne	Datum	18.03.2	008	An		
T	(25				6025	96	21	C	5-RF21	ing		553	1841	340	Gde.	Gran	nschatzer Wald [Würzburg]		4.21	externe Aufn.	UNI	R	GS
ht-Nr.	Sym.	enese	Gesamt- skelett	Bode	enarten- uppen	ymb.	Т	-Bez.	Ske	elett	Bungi	rkung		Kompone	nten de	r Grob	fraktion		Ko	mponente	n der Feinf	raktion	
Schicl	Schicht	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkdl Geolog. Begriff	- Petrogra Bezeichr	ph. ung ve (Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl P Geolog. Be Begriff	etrograph. ezeichnun	Anteil von - bis (Vol%)	Stratig	raphie
1	F	og	0	•	•									-									
2	v	cc	0	•	U	p-ol	Ť			ĺ		T							W,Lol	I/KA	- 100	v	v

А Bemerkungen B

Profil RF 22 – 5626 Sandberg

		F	Profilker		Projel	ktkennu	ıng	Г		Lage	5. 				Z	uordn	ung	1					Aufn	ahr	ne	t bornett		
ObjId				Blatt-Nr TK25	Profil- Nr.	S	RRA02		R	357400	02	Höhe m ü. NN	I Pli	reg.	3			10	Land	schEin	heit	Name	Chi	loppe (l istophe	Uni F	() ni R)	Aufschl Art	
Blattnam	e	Sand	lberg			Frem	dkennu	ng	н			122220	Lk	r.	5	Rhön-	Grabfeld	- 8		121112		Datum		19.03.	2008			
TK25				5626	22 -	C	S-RF22		1	55815	79	570	Go	le.	Bur	gwallb Rhön-	acher Fo Grabfeld	rst		3.13		externe Aufn.	2	UNI	-R		GS	
Inte	ensitä	t		Klima Tempe-I Nieder- I Trockenh, I Ok					Nu	itz	ung			Ľ	_						Relie	ef		-				
Aufnahm	e /	AV	Tempe- Nieder- Trockenh. Okol ratur schlag Index Feuc				aktuelle N.	Zusatz N.	ehem. N.	1	Baumarte	en .	Best Zust.	Inkl	i- on	Expo	i v	Reliefwö ert.	lbung hor	iz.	Formtyp	Li	änge		Lage	Mil	kro- lief	Entf. z. Hankok
Beprobur Substrate	ng l	30 NO	ratur schlag Index Feud 6 850 50				F			T	E13, BL	J3, FI1,		0,5		SE						B	Ireite		z			
Boden	isvst.	E.		ratur schlag Index Fei 6 850 50 Bodenform mittel podsolige Braunerde ntkennzeichnung				Subst	atsvs	it.	E. I	Legend	en-	Hum	usf	orm	Bo	denab		W-S	Stand	В	Bodens	schi	ätzun		Be	merk.
p3	BBn			6 850 50 Bodenform mittel podsolige Braunerde					c-z		- 2	zuordnu	ing				- a	uftrag	G	OK	Status	-						
											N	Ir.		n	not		Vorg.					A	cker					
											The	ema					Grad					Grü	inland					
	ŀ	loriz	ontkenr	zeichnu	ing		Boo	denfarb	e	S	kelett	Bo	denart	!			Hy	rdom.	Mer	kma	le		Gefü	ge	(tr)	N	2	.my
Nr.	Den-INF.		Symbol	Schärfe	Munse	subje	ktiv	ve	on-bis Vol%)	boden	bzw. zers	Torf- Stufe	Humus	Carbonat	fl.	fl.	Ant.	onkret	Ausfall.	ľ	Form	sroise	Rohdichte	Durchwu	Schicht-h	Schicht-S Bemerku		
1			L	7											7											Ē	Γ	
2			Of	4					_						7	Γ				Ì						Ĺ	Ī	
3			Oh	3					_						7	Ī				Ī						Ĺ	Γ	
4			I Ahe 0 e de				7,	5YR 5/3			2 5	g2r5	Su2		3	0				Ī			kru	2		Ē	Ī	
5			I Ane -19 I Bv -19 -31			di	7,	5YR 6/6			5 15	g2r5	SI2		1	0							kru	3	Ē	Ē	Ē	
6			l ICn	I Bv -19 -31 w d IICn -31 -50			2,	5YR 4/6			20 40	r2x5	Ts2		0	0				T			pol	3	Γ	T	T	

		Profilkennung Blatt-Nr. Aufn TK25 Serie		A.A.+ (Proje	ktkenn	ung	Г		Lage	ŝ			Zuordnu	ıng	8			Aufna	hme		-		
Obj.	-Id				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	3574	4002	Höhe m ü. NN	Pireg.	1			LandschEinh	Nan	me	Hoppe (U Christophel	Jni R) (Uni R)	Aufschi Art	1
Blatt	iname	ame Sandberg 25 5626 96			1	Frem	dkennu	ing	н		10402 E	000000	Lkr.	R	hön-Grabfeld			Dat	tum	19.03.2	800	1.000	_		
П	K25				5626	96	22	C	S-RF22		1	558	1479	570	Gde.	Burg [R	wallbacher For hön-Grabfeld]	st	3.13	Auf	erne fn.	UNI-I	R	GS	8
ht-Nr.	-Sym.	enese	Gesamt- skelett	Boo	Jenarten- Tuppen	Symb.	Τ	t-Bez.	Ske	elett	tigung	rkung		Kompone	nten de	er Grob	fraktion		K	ompon	enter	n der Feinfr	raktion		
Schic	Schicht	Geog	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substar	Verteil.	Einreg.	Verfes	Beme	Bodenkdl. Geolog. Begriff	 Petrogra Bezeichn 	ph iung vo	Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl I Geolog. E Begriff	Petrogra Bezeich	aph. Inung	Anteil von - bis (Vol%)	Stratig	raphie	Verwitt.
1	F	og	0	-	-		T																		
2	v	nb 10 kz ls c-z		Ť				F	T		s/KA	1	0 - 30	S	_		s/KA	4	50 - 70	W					
Ĩ			30												+								-	-	-

А

Bemerkungen B

10R 4/3

		Profilkennung Blatt-Nr. Aufn Pr TK25 Serie 1 suringen 5728 96 : Klima				Proje	ktkennu	ing			Lage			_		Z	uordr	nung	8			. 10	Aufn	ahm	ie		Ì
ObjId			Blatt-Nr TK25	Aufn. Serie	Profil- Nr.	s	RRA02		R	3605	5717	Höhe m ü. Ni	N Pire	3.					Lands	chEinheit	Name	H	oppe (stophe	Uni R I (Un	iR)A	ufsch	i
Blattname TK25	Oberla	auringen	5728	96	23	Frem	dkennu S-RF23	ng	Н	5565	5583	396	Lkr. Gde		Bund	Rhön-C lorfer F Grai	Grabfeld Forst [Ri bfeld]	hön-		5.1	Datum externe Aufn.	1	20.03.: UNI	2008 -R	-	GS	
Inter	sität					N	itzi	ung			T							Relief					-		1		
Aufnahme	AV	Tempe- ratur	Nieder- schlag	Trockenh Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.	B	auma	rten	Best Zust.	Inkli- nation	E	Expo- sition	v	Reliefwa ert.	hori	z. F	ormtyp	.änge		Lage	Mik	ro- ief	Entf. Hank	3
Beprobung Substraterg	30 . NO	ratur schlag index P 7 750 35 Bodenform (Norm-)Braunerde				F			T	EI	4, BU2,		3	T	EE	>	(2	2	ŝ.	к	Breite H / T	_	0				
Bodens	yst. E.		Bo	denform	1		Substr	atsys	it. E	Ξ.	Legende	en- na	Humu	sfo	orm	Boi - ai	denab	G	W-S	tand I Status	Bodens	schä	tzun	g	Be	merl	
50			(Nom				~~		т	Nr. hema		mu	f		Vorg. Grad		-		Gr	Acker ünland			_				
	Hori	zontken	nzeichn	ung		Bo	denfarb	е	Sk	kelet	t Bo	denar	t			Hyr	rdom.	Mer	kmale	9	Gefü	ge	E			έ	ĺ
fd. Probe Nr.	n-Nr.	Symbol	Obe Gren [crr	r- bzw. Unt ze Form 1]	ergrenze Schärfe	Munse	subje	ektiv	Ai vo (V	nteil on-bis 'ol%)	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fi Ko Ant.	e / Mn onkret. Gr.	Ausfall.	Form G	iröße	Rohdichtei	Durchwurz	Schicht-Nr	Schicht-Sy	
1		L	3								1			7	\square									Ì			ĺ
2		Of	1											7	Π	5											
3		l Ah	0	k	de .	1	0YR 2/2			0 5	r6	Su3		4	Π	_					kru	2		İ			-
4		1 By	-4	w	di	7	,5YR 4/6		1	20	r2x5	SI3	Ť	2	Ħ	_		İ	İ		pol	2	<u> </u>	Ť	Ħ		ř

Profil RF 23 – 5728 Oberlauringen

-47 -70

I Cv

			Profilk	enn	ung	on		Proje	ktkenn	ung	T		Lage	ē			Zuordnu	ıg		Aufna	ahme		_
Obj	-Id				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	3605	5717	Höhe m ü. NN	Pireg.	<u> </u>		LandschEinh	Name	Hoppe (I Christophe	Uni R) I (Uni R)	Aufsch Art	l
Blat	tname	Ob	erlauringen	+	10000000	1.000	1000	Frem	dkennu	ing	н	1	-	2.000	Lkr.	R	hön-Grabfeld		Datum	20.03.2	2008	1 22000	-
Т	K25				5728	96	23	С	S-RF23			5565	5583	396	Gde.	Bunde	orfer Forst [Rhör Grabfeld]	. 5.1	externe Aufn.	UNI-	R	GS	
ht-Nr.	-Sym.	enese	Gesamt- skelett	Bod	enarten- uppen	symb.	T	t-Bez.	Ske	elett	gung	rkung		Kompone	nten de	er Grob	fraktion	к	omponente	en der Feinf	raktion		
Schic	Schicht	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfes	Beme	Bodenkdl Geolog. Begriff	- Petrogra Bezeichn	ph. / iung vo (\	Anteil on - bis /ol%)	Stratigraphie	Bodenkdl Geolog. Begriff	Petrograph. Sezeichnun	g von - bis (Vol%)	Stratigr	aphie	Verwitt.
1	F	og	0		-						Ī	T								-	-		
	i		20		11				1	<u> </u>	Ť	T	1	t/KA	2	0 - 50	ko		s/KA	20 - 50	w	/	
2	v	nb	50	zn	Is	c-z								s/KA	2	0 - 50	ko						

А

Bemerkungen в

5

С

Entf. z. Hankok

Bemerk.

Profil RF 24 – 7132 Dollnstein

			Profilker	nung	-		Projel	ktkenni	ung			Lage					Z	uordn	ung	2				2.50	Aufna	ahm	e	
ObjI	d			Blatt-Nr TK25	. Aufn Serie	Profil- Nr.	S	RRA02		R	4430	745	Höhe m ü, NM	N Pire	g.	_				Lands	schEi	nheit	Name	Ch	Hoppe (I ristophe	Uni R) / iR)/	Aufschl Art
Blattn TK25	ame	Doll	nstein	7132	96	24	Frem	dkennu S-RF24	ing	н	54124	413	440	Lkr. Gde		Do	Eich	stätt [Eichstä	tt]		6.22		Datum externe Aufn.	e	10.04.2 UNI-	2008 -R	-	GS
	ntens	ität	1	ĸ	lima				N	utzu	ng			T -	-	_	_		- '	-	Reli	ief		-			-	
Aufna	hme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.	Ba	umarte	in	Best Zust.	Inkli- nation		Expo- sition	v	Reliefwö ert.	lbung hori	z.	Formty	yp L	änge		Lage	Mik	ro- ief	Entf. z. Hankok.
Bepro	bung traterg.	30 NO	7	650	40		FL			Τ	BU	J6,	HU	8	T	EE	13	×	4		HS	B	Breite H / T		MZ			
Boo	BB/CF	st. E.		Braunero	denform	usca	-	Subst	n (Kst)	t. E	. L	egend	en- ing	Humu	sfo	orm	Bo - a	denab	G	W-S	Stand Status		Boden	sch	ätzung	9	Be	merk.
	bbron			Didditore				p.			Ni The	r. ma	_	m	uf		Vorg. Grad	-	t		k	A	cker Inland			4		
		Horia	zontkenr	nzeichn	ung		Boo	denfarb	e	Ske	elett	Bo	denar	t			Hy	dom.	Merl	mal	le	T	Gefü	ge	Ē		12	É o
lfd. Nr.	Proben-	Nr.	Symbol	Obe Gren [cm	r- bzw. Unte ze Form ۱]	ergrenze Schärfe	Munse	subje	ektiv	An von (Vo	teil 1-bis 1%)	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe Ko Ant	e / Mn inkret G	i ii	Austall,	Form 0	Größ	8 Rohdichte	Durchwurz	Schicht-Nr	Schicht-Sy Bemerkum
1			L	6 3	w	di				2			İ		7	0										Γ	2	F1
2			Of	3	w	di				2					7	0	-										2	F1
3			l Ah	0	w	di	7,	5YR 3/2		11	0		Lu		4	0				F			pol	3	\top	Γ	2	V1
4			I Bhv	12 49	w	di	7,	5YR 3/4		21	0		Lt2		3	c2							pol	3	İ	Ī	2	V1
5			II Bv-T	49 85	w	di	7,	5YR 4/6		31	0		п		1	c3					Ť		sub- pol	2	İ	Ē	3	V2

	Profilkennung IbjId Blatt-Nr. Aufn F TK25 Serie					Projek	tkenn	ung			Lage	6			Zuordnu	ing	E.		Aufna	ahme			
Obj	-ld				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SR	RA02		R	44	30745	Höhe m ü. NN	Pireg	-	0.000-000000		LandschEinh	Name	Hoppe (I Christophe	Jni R) I (Uni R)	Aufsch Art
Blat	tname K25	1	Dollnstein		7132	96	24	Fremd	kenn	ung	н	54	12413	440	Lkr.	Della	Eichstätt		6.22	Datum	10.04.2	8008	GS
	TCE O				1102		-4	CS	-RF24	1			12410	440	Gde.	Doll	nstein [Eichstat	ŋ	0.22	Aufn.	e UNI-	ĸ	00
ht-Nr.	-Sym.	enese	Gesamt- skelett Anteil	Bod	lenarten- uppen	Symb.		t-Bez.	Sk	kelett unpit		erkung		nten d	er Grob	fraktion		к	omponen	ponenten der Feinfraktion			
Schic	Schicht	Geog	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substar	Verteil.	Einreg.	Verfes	Beme	Bodenkd Geolog. Begriff	Petrogra Bezeichr	ph. iung v (Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl Geolog. Begriff	Petrograpi Bezeichnu	n. Anteil ng von - bis (Vol%)	Stratig	raphie
1	F1	og	0 0		÷										_								
2	V1	cc	20 30	nz	н	p-(n)l-(K	ist)				Γ			Kst	10	00 - 100	ju			u/KA	100 - 100	q	h
3	V2	cc	30 50	zn	It	p-ln(Ks	t)				Ī			Kst	1	00 - 100	ju			I/KA	100 - 100		t

		P	rofilker	nung			Projek	ktkenni	ung	Г		Lage	5				Z	uordr	ung	12					Aufn	ahm	e	
ObjId				Blatt-Nr TK25	Aufn Serie	Profil- Nr.	SI	RRA02		R	4417	312	Höhe m ü. NN	Pir	eg.					Land	schEinf	neit	Name	Chri	oppe (I stophe	Uni R) A	kufschl
Blattnan TK25	ne E	gling a.	d.Paar	7831	96		Frem	dkennu S-RF25	ing	н	5334	245	583	Lkr Gd	e.	Li Sch	andsbe euring	rg a.Leo [Landsb ech]	:h erg		13.51	e	Datum externe Aufn	F	29.04.2 UNI-	2008 R	7	GS
Int	tensitä	it	-	ĸ	lima		1		N	utz	ung				_				_		Relie	f		-		_		
Aufnahr	ne	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.	. E	Baumarte	n	Best Zust.	Inkli	- 1	Expo	v	Reliefwo ert.	hori	iz.	Formtyp	Lar	nge		Lage	Mik rel	ro- ief	Entf. z. Hankok
Beprobu Substra	ing terg.	30 NO	7	950	50		FL			T	EI, E	BU3,	н			NE		G	0	i I	v	Bre	eite / T	_	z			
Bode	nsyst.	E.		Bo	denform	marda	-	Subst	atsys	it.	E. L	egend	en- H	lumu	isfo	orm	Bo - a	denab	/ G	W-S	Status	Bo	odens	chä	tzun	9	Be	merk.
32	DDII			CIWDCI II	uniose brai	merce			p-i		N	r. ma		n	uf		Vorg. Grad		+		- dias	Ack	ker			=		
	I	Horizo	ontkenn	zeichn	ung		Boo	lenfarb	e	S	kelett	Bo	denart			1	Ну	dom.	Mer	kma	le	1	Gefüg	je	£	1		É n
lfd, Pro Nr,	oben-Nr.		Symbol	Obe Gren [cm	r- bzw. Unte ze Form	ergrenze Schärfe	Munse	ll subje	ektiv	A VC	on-bis /ol%)	Grob- boden	Feinbo bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fi Ko Ant.	e / Mr onkret G	Ausfall.	Fo	orm G	röße	Rohdichte(Durchwurz	Schicht-Nr	Schicht-Sy Bemerkung
1		1	L	3 1									İ		7			_		T						Γ		
2			Of	1											7	Ĺ				T								
3			l Ah	0	w	de .	1	0YR 3/3					Ut2		3	Ē				T		k	สาม	2		Γ		
4			I Bhv	-4 -51	w	di	1	0YR 5/6					Lu		2	T				T	1	p	loc	3		Γ	3	v
5		T	II Bv	-51			1	0YR 5/8			0 5		Lt3		1	T				T		p	loc	3		Γ	3	v

Profil RF 25 – 7831 Egling a.d. Paar

	DbjId Blatt-Nr. Aufn Pro							Projek	tkenn	ung	Т		Lage				Zuordnu	ing	uli -		Aufna	hme	
Obj	-Id				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SF	RA02		R	44	17312	Höhe m ü. NN	Pireg.		6.59 (0.001903)		LandschEinhe	Name	Hoppe (U Christophel	Ini R) (Uni R)	Aufschl Art
Blat	tname	Egl	ing a.d.Paar		100000			Fremd	kenn	ung	н	2	ana ana an	1000	Lkr.	Lar	dsberg a.Lech		in a state of the	Datum	29.04.2	800	i and
Т	K25				7831	96	l t	CS	-RF25		11	53	34245	583	Gde.	Schei	uring [Landsber a.Lech]	g	13.51	externe Aufn.	UNI-I	R	GS
nt-Nr.	Sym.	eseu	Gesamt- skelett	Bod	enarten- uppen	ymb.	Τ.	-Bez.	Sk	Skelett		rkung		Kompone	nten de	r Grob	fraktion		Ko	mponente	en der Feinfr	aktion	
Schict	Schicht-	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkd Geolog Begriff	Petrogra Bezeichn	ph. / ung vo	Anteil on - bis /ol%)	Stratigraphie	Verwitt.	Bodenkdl P Geolog. B Begriff	etrograph. ezeichnun	Anteil von - bis (Vol%)	Stratig	raphie #
1	F	og	0 0	٠	•										+			_					
2	v	а	0		tu	p-ol								-						u/KA	- 100	q	p
3	v	pfi	0	wk	tu	p-l										- 100	qp			I/KA	- 100	q	p

	13	Profilker	nung			Projek	tkennu	ing		Lag	9		_		Z	uordn	ung			1		Aufna	ahm	ne		-
ObjId			Blatt-Nr TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	4442540	Höhe m ü. N	N Pir	eg.	-	0.15			Landso	hEinhe	Name	CH	Hoppe (I	Jni F	() /	Aufschl Art	
Blattname	Schrobe	enhausen		-		Frem	dkennu	na	н	an second as		Lkr		-	Neu	iburg-	-			Datum		30.04.2	2008	-	0.000	_
TK25			7433	96	26	C	S-RF26			5380633	430	Gd	e.	S	chrobe [Neu	enhausen uburg-		1;	2.81	extern Aufn.	e	UNI-	R		GS	
Inten	sität		KI	ima				Nu	tzun	9		T -	_	-	•				Relief							-
Aufnahme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Ökolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	Baur	narten	Best Zust.	Inkli natio	- E	Expo- sition	v	Reliefwö ert.	lbung hori	z. F	ormtyp	Länge		Lage	Mik	iro-	Entf. z. Hankol	k.
Beprobung	probung 30 bstraterg. NO odensyst. E. GG-PP		070	25					+		-	-			1			-		Breite				_		-
Substraterg	NO	- 1	000	35		FN				FI5, KI1,	5			INVY					× I	H/T	_					
Bodens	probung 30 ibstraterg. NO iodensyst. E. GG-PP		Bo	denform	1	<u> </u>	Substr	atsys	t. E.	Legen	den-	Humu	isfo	orm	Bo	denab	G	W-St	and	Boden	sch	nätzung	3	Be	merk.	-
GG-P	P		Gle	y-Podsol				p-s	2.	zuord	nung				- a	uftrag	G	OKS	Status				1			
	AV probung 30 dobtraterg. NO todensyst. E. GG-PP Horize									Nr.		ro	otr		Vorg.			5		Acker	5		-			
										Thema	1				Grad		1		G	rünland						
	Hori	zontkenr	nzeichnu	ing		Boo	lenfarb	e	Skel	ett E	Bodenar	t		Π	Hy	rdom.	Mer	kmale	1	Gefü	ige	(tr)		1	É e	20
lfd. Prober Nr.	n-Nr.	Symbol	Ober Grenz [cm	- bzw. Unte ze Form]	ergrenze Schärfe	Munse	ll subje	ktiv	Antei von-b (Vol	I Grob is bode %)	Feinb bzw. zers.	oden Torf- -Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe Ko Ant.	e / Mn onkret. Gr.	Ausfall.	Form	Größ	Rohdichte	Durchwurz	Schicht-Ni	Schicht-Sy Remerkun	Denterum
1		L	15 14					_					7	Π							į		Γ			
2		Of	14 9							İ	Ī		7	Ħ				ĺ					Γ	Γ		Ī
3		Oh	9										7	Π								İ	Ĺ	Γ		
4		I Aeh	0 -8	w	di .	1	0YR 3/3				Su3		4	0						ein	ĺ		Γ	Ī		
5		1 Ae	-8 -20	w	di	2,	5YR 5/2	_			Su2		2	0						ein			Γ			-
6		l Bh	-20 -32	w	di	2,	5YR 4/2				Su2		2	0						ein			Γ	Γ		-
7		l Go	-32			1	0YR 5/8	_			Ss		1	0	5	2				ein		T	Γ	Γ		-

Profil RF 26 – 7433 Schrobenhausen

ĺ.,			Profile	ennu	ung			Projek	tkenn	ung			Lage	(S			Zuordnu	ing			Aufna	ahme	
Obj.	-ld				Blatt-Nr.	Aufn	Profil-	SI	RRA02		R	44	42540	Höhe m ü, NN	Pirea	-			Landsch -Finheit	Name	Hoppe (I	Jni R) /Uni R	Aufschl.
Blatt	name	Schr	robenhause	n	11120	Conto	141.	Fremo	Ikennu	ing	н		neterine i		Lkr.		Neuburg-			Datum	30.04.2	2008	
Т	K25	211000			7433	96	26	CS	6-RF26	-		53	80633	430	Gde.	Sch	hrobenhausen [Neuburg-		12.81	externe Aufn.	UNI-	R	GS
nt-Nr.	hicht-Sym.	eseue	Gesamt- skelett	Bode	enarten- ippen	ymb.		-Bez.	Ske	elett	gungi	rkung		Kompone	nten de	er Grob	fraktion		Kor	nponente	n der Feinf	raktion	
Schicht-Nr. Schicht-Sym. Geogenese	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkdi Geolog. Begriff	- Petrogra Bezeichn	iph. iung vo	Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl Pe Geolog. Be Begriff	etrograph. zeichnung	Anteil von - bis (Vol%)	Stratig	raphie		
1 F 0		og	0	÷														_					
2 V :	s	0		us	\$-\$					Ī	T						_		s/KA	- 100		9	

A Bemerkungen B

			Profilken	nung			Projek	tkennu	ing	Т		Lage			_		Z	uordn	ung			T		1	\ufn:	ahm	e	
ObjI	d			Blatt-Nr TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	443045	56	Höhe m ü. NM	I Pire	eg.	3			-	Land	schEint	neit N	lame	Ho	stophe	Jni R) A	Aufschl Art
Blattr	ame	Dießen a	Ammersee		-		Fremo	dkennu	ng	н	1	-		Lkr		La	andsbe	rg a.Lec	h	-		D	atum	C	8.05.2	2008		
1625				8032	96	21	CS	S-RF27		1	530757	76	601	Gde	e.	Die [La	Gen a.	Ammerserg a.Lec	ee h]		14.41	e. A	xterne ufn.		UNI-	R		GS
1	nten	sität		ĸ	ima				N	utz	zung			T	-				-		Relie	f		<u> </u>			-	
Aufna	hme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.	-	Baumarter	n	Best Zust.	Inkli- nation	n	Expo	· v	Reliefwö ert.	blbung hori	z.	Formtyp	Län	ige	0	Lage	Mik rel	ro- ef	Entf. z. Hankok
Bepro	bung	30 NO	7	1100	70		FM			1	F14, F	B12,	SU	0	t	KE	\top				KS	Bre	ite T	1	s		7	
Boo	odensyst. E.			Во	denform	-	<u> </u>	Substr	atsys	st.	E. L	egend	en-	Humu	sfo	orm	Bo	denab	/ G	W-S	Stand	Bo	dens	chät	zun	a	Be	merk.
	GG			Gley über	Moranensc	hotter			g-t		z	uordnu	ung				- a	uftrag	G	OK	Status							
											Nr	(a)		ro	otr		Vorg.					Ack	er					
										_	The	ma			_	_	Grad					Grünl	and				_	
164	GG GG Horiz	zontkenn	zeichnu	ing		Boo	lenfarb	e	s	kelett	Bo	denar	t			Hy	rdom.	Mer	kma	le	0	Sefüg	e	e(tr)	N	4	E E	
Nr.	rober	PINE.	Symbol	Gren. [cm	ze Form	Schärfe	Munse	subje	ktiv	č	von-bis Vol%)	boden	bzw. zers	Torf- Stufe	Humus	Carbonat	fl.	fl.	Ant.	onkret	Ausfall.	PO		oise	Rohdicht	Durchwu	Schicht-h	Schicht-S Bemerku
1			L	26 24						Ī	Ť				7	0				Ī				Ť				
2			Of	24 16	w	di									7	0				Ī				Ť			Π	
3			Oh	16 0	w	di									7	0												
4			l Ghr	0	w	di	1	5Y 3/1		Ī	0 5		Tt		2	0		9		Ī		ko	oh	İ			Π	
5			I Gor	-20	w	di		5Y 5/1		Ī	0 10		Tt		0	0	2	9				ko	bh	Ť				
6			II Gor	-32 -52	w	di	5Y 5/1	1 10YR	5/6	Ī	5 20		Ts2		0	c4	5	7	2	3	,	ko	bh			Γ	Π	

			Profilk	enr	nung			Projel	ktkenn	ung			Lage	E			Zuordnu	ıng	1		Aufna	ahme		
Obj.	-ld			Т	Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	443	0456	Höhe m ü. NN F	Pireg.				LandschEinhe	Name	Hoppe (U Christophel	Jni R) I (Uni R)	Aufsch Art	ıl
Blat	tname K25	Dieße	n a Ammers	ee	8032	96	27	Fremo	dkennu	ung	н	620	7576	601 L	.kr. Sde	Lan	idsberg a.Lech	0	14.41	Datum	08.05.2	2008 R	GS	
_	acos:		_		110.030	-		C	S-RF27			550	15/10		Juc.	[Lan	dsberg a.Lech	ĩ	1.1210.000	Aufn.	011			е -
ht-Nr.	-Sym.	enese	Gesamt- skelett	Bo	denarten- ruppen	Symb.		t-Bez.	Sk	elett	tigung	erkung		Komponent	en der	Grob	fraktion		Ko	mponente	n der Feinf	raktion		
Schic	Schicht	Geog	Anteil von - bis (Vol%)	grob	fein	Substart-		Substar	Verteil.	Einreg.	Verfes	Beme	Bodenkdl. Geolog. Begriff	 Petrograph Bezeichnur 	. Ai ig vor (Vo	nteil n - bis ol%)	Stratigraphie	Verwitt.	Bodenkdl F Geolog. B Begriff	etrograph. ezeichnun	Anteil von - bis (Vol%)	Stratig	raphie	Verwitt.
1	F	og	0		•						Ī				-									
			0						1	İ	†	t	i —	Gc	1.	- 90	qpj			t/KA	1 .	q	h	_
2	v	fg	10	wk	It	p-t								QzG	•	10	qpj	-						_
			5				-		1	1	t	t		Gc	1	- 90	qpj			1/KA		q	h	
3	V	fg	20	wk	It	p-l								QzG		10	qpj	_		Sc		q	h	_

A Bemerkungen B

Profil RF 28 – 5939 Waldsassen

		Profilke	nnung			Projel	ktkenn	ung	Γ		Lage	6					Zuordr	nung	1				Aufr	nah	me		_
ObjId			Blatt-Nr TK25	r. Aufn Serie	Profil- Nr.	s	RRA02		R	4517	550	Höhe m ü. Ni	N Pir	eg.				-	Land	schEinh	Nam	e	Hoppe Christoph	(Uni el (L	R) Jni R)	Aufs Art	chl
Blattname	Wa	dsassen	2	-		Frem	dkennu	ing	н	1		1516410	Lkr	t.	Wur	nsiede	I i.Fichtel	geb.		10.06.00001	Datu	m	13.05	200	8		-
TK25			5939	96	28	C	S-RF28			5548	255	526	Gd	le.	Sch	indin i.Ficl	g [Wunsie hteigeb.]	edel	1	10.21	exte Aufr	rne	UN	I-R		G	S
Inte	nsität		ĸ	lima				N	itz	ung			Τ.							Relief				_	_		_
Aufnahme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.	E	Baumarte	en.	Best Zust.	Inkli	- n	Expo	-	Reliefwi vert.	blbun; hor	g riz.	Formtyp	Länge		Lage	M	likro- elief	En Ha	tf. z. nkok
Beprobun Substrate	g 30	6	750	35		FN			t	F15,	TA1,	SU		T	ww	T	G0	G	0	ĸs	Breite	_	z	T		Γ	
Poden	auct E	- <u>-</u>	Bo	donform		<u> </u>	Subst	(atovo	+		agand		Hum	f	0.000		donah			Stand	Pode	-	hätaur	1		0.000	rk
Boden	SYSL E.		BU	demon			Subsu	atsys	i. 1		Legend	ung	numu	ISIO	orm		auftrag	" H	SOK	Statue	Bode	1150	Inatzur	g	⊢≞	eme	TK.
por			miller poo	songe brau	nerue			C-2		N	r I	ang		ato		Vor		+		Ciaido	Acker	-		_	-		
										The	ma		re	Jua		Grad	-	-			Grünland	+		_	+		
	Но	izontkon	nzeichn	100		Bor	lonfarh	10	C	kolott	B	denar			-	ш	rdom	Mor	kma		L Go	füg		-	-	1.2	Т
Ifd. Prob	en-Nr.	Symbol	Obe	r- bzw. Unte	ergrenze	Munse		-	A	Inteil	Grob-	Feinb	oden	1	-	Rost	Bleich	F	e / Mr		Form	TGr	oße 9	Ľ	ž	Syn	B
Nr.			Gren [cm	ze Form	Schärfe	/	subje	ektiv	VC (V	on-bis /ol%)	boden	bzw. zers	Torf- Stufe	Humus	Carbona	fl,	fl.	K Ant	onkre	t. Husfäll.	1946.199		Rohdich	Durchw	Schicht-	Schicht-	Bemerk
1		L	13											7	T				Ī					Ť	T	T	Ť
			11		i t				-			1		1.	t	t –	1	t—	+	-t-	-	t	-	t	t	t	t
2		Of	4											7													
3		Oh	4	е	de .									7										T	Τ	Τ	T
4		I Ahe	0	, w	di	1	0YR 7/2		1	0 5	r6	Uls		2	T				T		pol		2	Ť	T	T	Ť
5		l Bv	-10) 5 w	di .	1	0YR 6/8			5 10	r6	Lu		0	t				t		pol		2	t	t	t	t
6		II Bv	-65 -70	b w	di	1	5YR 5/8		ŝ	5 10	r6	Tu3		0	t		\square	F	t		pol	1	2	t	T	t	t
7		II Bv	-70)		1	0YR 6/8			5 10	r6	Tu3		0	t				T		pol		2	t	T	T	T

			Profile	kenn	ung			Projel	ktkenn	ung			Lage	8			Zuordnu	ing	5		Aufna	ahme	
Obj	-Id			Τ	Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	44	42540	Höhe m ü. NN	Pireg				LandschEinhe	Name	Hoppe (I Christophe	Jni R) I (Uni R	Aufschl Art
Blat	tname	Schr	robenhause	n				Frem	dkennu	ung	н				Lkr.		Neuburg-		112012-011	Datum	30.04.2	2008	
Т	K25				7433	96	26	C	S-RF26		11	53	80633	526	Gde.	Sci	hrobenhausen [Neuburg-		12.81	externe Aufn.	UNI	R	GS
ht-Nr.	icht-Sym.		Gesamt- skelett	Boo	lenarten- uppen	symb.	T	t-Bez.	Sk	elett	bung	rkung		Kompone	nten d	er Grob	fraktion		Ко	mponente	en der Feinf	raktion	
Schicht-Nr. Schicht-Sym. Geogenese	Geog	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil,	Einreg.	Verfest	Beme	Bodenkd Geolog. Begriff	- Petrogra Bezeichr	iph. nung v (Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl P Geolog. Be Begriff	etrograph. ezeichnun	g Von - bis (Vol%)	Stratig	raphie	
1	F	og	0	-	1.00																		
2	v	s	0	-	us	\$-\$														s/KA	- 100	0	1

osbach
osbach

		1	Profilker	nung			Projek	ktkennu	ung	Г		Lage	£				Z	uordn	ung	2					Aufn	ahn	ne	
ObjId				Blatt-Nr TK25	Aufn Serie	Profil- Nr.	SI	RRA02		R	4529	492	Höhe m ü. NN	Pire	eg.				_	Land	schEir	nheit	Name	Chi	loppe (istophe	Uni F	() / 11 R)/	Aufschl Art
Blattnam	ne	Moo	sbach				Frem	dkennu	ing	н	1.000000		80987-9	Lkr			Neusta	dta.d.		-	saure -	-	Datum	+	14.05.	2008	1	1. 1. No. 1.
TK25				6440	96	29	C	S-RF29		1	54893	270	757	Gd	e.	Moo: d.	sbach Waldr	Neustad	ta.		10.4		externe Aufn.	e	UNI	R		GS
Int	tensit	tät		KI	ima				N	utz	ung		1		_						Reli	ef						
Aufnahm	ne	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.	E	Baumarte	n	Best Zust.	Inkli- natio	- I	Expo	i v	Reliefwö ert.	lbung hori	z.	Formty	p Li	änge		Lage	Mik	ief	Entf. z. Hankok.
Beprobu	ing	30	5	050	50		=		<u> </u>	$^{+}$	DI	ie.			+			20	_		v	В	reite	-			-	
Substrate	terg.	NO		900	50		, ru				ВО	ю,				INE		30				F	H/T		ľ			
Boder	nsyst	t. E.		Bo	denform	1	Ċ.	Substr	ratsys	it. I	E. L	egend	en- H	lumu	isfo	orm	Bo	denab	G	W-S	stand	В	Boden	sch	ätzun	g	Be	emerk.
1	BB			Br	aunerde			p-	l (Gn)		z	uordnu	ing				- a	uttrag	G	OK	Status	1						
		- 1									N	·-		m	ota		Vorg.	_	4			A	cker			-		
		Hori	ontkone	roichnu			Bar	lonforb		C	kolott	Bo	donart	_	_	_	Grad	dom	Mort	(ma		Giu	Cofil			ᆛ	_	
lfd. Pro Nr.	oben-N	r.	Symbol	Ober Gren: [cm	- bzw. Unte ze Form	rgrenze Schärfe	Munse	subje	ektiv	Ave	Inteil on-bis /ol%)	Grob- boden	Feinbo bzw. T zersS	den forf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fi Ko Ant.	e / Mn onkret	Aucfall	Unsidit.	Form C	Größe	Rohdichte(tr	Durchwurz.	Schicht-Nr.	Schicht-Sym Bemerkung
1		T	L	5 4											7											Ī	Γ	
2		T	Of	4											7	Ī										Ì		
3		T	Oh	1											7					Ī							Γ	
4		T	l Ah	0	w	de	1	0YR 3/3			10 20	r6	Ls2		4	0							kru			Γ		
5			l Bv	-12 -24	w	di	7,	5YR 5/8			15 30	x2r5	Slu		2	0							ein			Γ		
6		T	I Bv-Cv	-24 -63			1	0YR 5/6			20 40	x2r5	SI3		1	0							ein			Γ	Ē	

			Profile	enn	ung	w		Proje	ktkenn	ung			Lage	ŝ			Zuordnu	ing	Ē.		Aufna	ahme	
Obj.	ld				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	s	RRA02		R	45	29492	Höhe m ü. NN	Pireg.	1			LandschEinhe	Name	Hoppe (I Christophe	Jni R) I (Uni R)	Aufschl Art
Blatt	name	N	Moosbach	-		1000		Frem	dkennu	ing	н	100		102222	Lkr,	N	eustadt a. d.		10000	Datum	14.05.2	2008	
TI	K25				6440	96	29	с	S-RF29		11	54	89270	757	Gde.	Moosi d. V	bach [Neustadt Valdnaab, Lkr.	a.	10.4	externe Aufn.	UNI	R	GS
nt-Nr.	Sym.	enese	Gesamt- skelett	Bod	lenarten- uppen	ymb.		-Bez.	Ske	elett	Bungi	rkung		Kompone	enten de	er Grob	fraktion		K	mponente	en der Feinf	raktion	
Schict	Schicht-	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkdl. Geolog. Begriff	 Petrogra Bezeichr 	iph. nung vi	Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl F Geolog. E Begriff	etrograph. ezeichnung	Anteil von - bis (Vol%)	Stratig	raphie
1	F	og	0	•	3																		-
2	н	р	15 40	nz	sl									sieG		- 100	pz			u/KA	- 100	q	1

A Bemerkungen B

		- 8	Profilken	nung			Projel	ktkennu	ing			Lage	5				Z	uordn	ung	š.				A	ufna	ahm	е	
Objlo	1			Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	4526	5914	Höhe m ü. NN	Pire	g.	_				Land	schEinh	Nam eit	e	Hop Christo	ope (L ophel	Ini R (Uni	R) A	ufschl
Blattn	ame	Floss	enbürg				Frem	dkennu	na	H	-			Lkr.	+	1	Neusta	dt a. d.				Datu	m	15	.05.2	800	-	
TK25				6240	96	30	C	S-RF30		11	5514	147	763	Gde		Floss a. d	senbür I. Wald	g [Neust Inaab, Li	adt tr.		10.4	exter Aufn	rne		UNI-	R		GS
1	ntensi	tät		KI	ima				Nu	itzu	ing			<u> </u>	-	· · · ·			-	10	Relief	F						
Aufna	hme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	Ba	aumarte	en	Best Zust.	Inkli- nation		Expo- sition	v	Reliefwö ert.	lbung hori	z.	Formtyp	Länge		L	age	Mikr	o- ef	Entf. z. Hankok.
Bepro	bung	30				-		<u> </u>		+					+							Breite			-	_	-	
Subst	raterg.	NO	- 5	850	50		FN				F	16,	s	7		SS	1	K3	X3	2	н	H/T	_		DZ			
Bod	ensys	t.E.	· · · ·	Boo	denform		·	Substr	atsys	t. E	. 1	Legend	en- H	lumu	sfc	orm	Во	denab	G	W-S	Stand	Bode	nso	chätz	ung	1	Be	merk.
Aumannie AV le r Beprobung 30 Substraterg. NO Bodensyst. E. BBn Horizoni Ifd. Proben-Nr. Syr			(Norm	-)Braunerd	е		P-	z(Gr)		7 2	zuordnu	ing				- a	uftrag	G	OK	Status								
										N	Ir.		mo	ta		Vorg.					Acker	Т						
	Intensität T Aufnahme AV T Beprobung 30 Substraterg. NO Bodensyst. E. BBn Horizor Intensität Froben-Nr. State 1 2 3										The	ema					Grad					Grünland	1					
			zontkenn	nzeichnu	ing		Boo	denfarb	е	Sk	elett	Bo	denart				Hy	rdom.	Merl	ĸma	le	Get	füg	e	£			Ém
lfd. F Nr.	Horizo		Symbol	Ober Grenz [cm]	- bzw. Unte re Form	rgrenze Schärfe	Munse	subje	ktiv	An vor (Vo	iteil n-bis pl%)	Grob- boden	Feinbo bzw. zers	oden Forf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe Ko Ant.	e / Mr onkret	Ausfäll.	Form	Gr	öße	Rohdichte	Durchwurz	Schicht-Nr	Schicht-Sy Bemerkun
1			L	10 9		-																						
2			Of	9 3						8																		
3			Oh	3 0		-																						
4			l Ah	0	w	di	1	0YR 3/4		1	5 10	r6	Su3		4	0						kru	1	2				
5			I Bv	-12 -40	z	di	1	0YR 5/8		1	0	x2r5	Su4		2	0						pol	1	2				
6			I ICv	-40 -73			1	0YR 6/6		2	10 10	x3r4	Su2		0	0						ein				Π		

Profil RF 30 – 6240 Flossenbürg

			Profile	ennu	ung			Proje	ktkenn	ung			Lage	8			Zuordnu	ing	5		Aufna	ahme		_
Obj.	-Id			1	Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	s	RRA02		R	45	26914	Höhe m ü. NN	Pireg	1			LandschEinhe	Name	Hoppe (L Christophel	Jni R) I (Uni R)	Aufsch Art	il
Blat	iname	FI	ossenbürg		122130	Cogas C	1000	Frem	dkennu	ing	н	í	anene 1	61292/01	Lkr.	N	leustadt a. d.		0.000000	Datum	15.05.2	800		_
Т	K25				6240	96	30	С	S-RF30			55	14147	763	Gde.	Floss a. d.	enbürg [Neusta Waldnaab, Lkr	dt	10.4	externe Aufn.	UNI-	R	GS	
ht-Nr.	-Sym.	enese	Gesamt- skelett	Bode	enarten- Ippen	Symb.		-Bez.	Ske	elett	bungt	rkung		Kompone	nten d	er Grob	fraktion		Ko	mponente	in der Feinfi	raktion		
Schic	Schicht	Geog	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substar	Verteil,	Einreg.	Verfes	Beme	Bodenkdl. Geolog. Begriff	- Petrogra Bezeichn	ph. iung v (Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl F Geolog. B Begriff	'etrograph. ezeichnun	g Anteil von - bis (Vol%)	Stratig	raphie	Verwitt.
1	F	og	0 0	8																				_
2	н	p	5 40	nz	us	p-z (Gł	र)				1			sieG		- 100	pza			u/KA	- 100			

А

Bemerkungen B

Profil RF 31 – 6132 Buttenheim

			Profilke	nnung			Projel	ktkenni	ung	Г		Lage	_		_		Z	uordn	ung					Au	fna	hme	•	
Objlo	d			Blatt-N TK25	r. Aufn. Serie	Profil- Nr.	S	RRA02		R	4432	429	Höhe m ü. NM	N Pire	eg.					Lands	chEinh	Nan	ne	Hopp Christo	e (U phel	ni R) (Uni	R) A	ufschl rt
Blattna	ame	But	tenheim	6400			Frem	dkennu	ing	н		050		Lkr		1	Ban	nberg				Dat	um	26.	05.20	800		
1625				6132	90	31	C	S-RF31		1	5529	052	554	Gd	e.	G	eisber [Ban	ger Forst nberg]	°		5.11	Aufr	arne n.		JNI-F	\$		GS
h	ntensi	ität		ĸ	lima				N	utz	ung			Γ.							Relie	F	_		_	_		
Aufnai	hme	AV	Tempe- ratur	Nieder- schlag	Trockent Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.	. E	Baumarte	'n	Best Zust.	Inkli- natio	n	Expo- sition		Reliefwöi ert.	bung hori	z. F	ormtyp	Länge	Γ	La	ge	Mikro	1	Entf. z. Hankok
Bepro	bung raterg	30 NO	6	850	40		FL			T	BU5, EE	E1, AF1,	SU	3	T	SS		G	G		HF	Breite H/T	F	_ 0	5		1	
Bod	lensys	st. E.		Bo	denform	1	<u> </u>	Subst	ratsys	it. I	E. I	egend	en-	Humu	sfo	orm	Во	denab/	G	W-S	and	Bode	ense	chätz	ung	Т	Bei	nerk.
	BB-RR		Rendzina-	Braunerde	in lehmige	r Albüberde	eckung	p-	ln/n^k		Z	uordnu	ing			_	- a	uttrag	G	OK	Status	Asher	_		_	_		
											The	ema		m	ut		Grad		-		ł	Grünlan	d			-		
-		Hor	izontken	nzeichn	una		Boo	denfarb	e	S	kelett	Bo	denar	t			Hv	rdom, I	Mer	male		Ge	füq	e		+		e l
lfd. F Nr.	^o roben-N	Nr.	Symbol	Obe Grer [cn	nze Form	Schärfe	Munse	subje	ektiv	A v (V	unteil on-bis /ol%)	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe Ko Ant	/ Mn nkret. Gr	Ausfäll.	Form	i Gr	öße öße	Numuna	Durchwurz.	Schicht-Nr.	Schicht-Syn Bemerkung
1			L	1	е	de			_	-						T							Ť		T	Ť	T	
2		Ť	I Ah	0	z	di	1	0YR 2/3			0 5	r3x4	Lu		3	0					T	kru		2	Ť	Ť	1	1
3			I Cv-Bv	-5	, w	di	1	0YR 3/3			10 20	r3x4	Lt2		2	c1	_				1	pol		3	1	Ť	1	1
4			I Bv-Cv	-11	9		1	0YR 3/3			50 70	r3x4	Lt2		2	c3			-			pol	1	3	1	Ť	1	1

			Profile	enni	ung			Projekt	tkenn	ung	T		Lage	Ð			Zuordnu	ing	8		Aufna	ahme	
Obj	-Id				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SR	RA02		R	44	32429	Höhe m ü. NN	Pireg.			- 275	LandschEinhei	Name	Hoppe (I Christophei	Jni R) I (Uni R)	Aufschl Art
Blat	tname	В	uttenheim	+	10.0253		1000	Fremd	kennu	ing	н	9 - 177.5	1	6439340	Lkr.		Bamberg		Nonard Street	Datum	26.05.2	800	
T	K25				6132	96	31	CS	-RF31			55	29052	554	Gde.	Ge	isberger Forst [Bamberg]		6.11	externe Aufn.	UNI-	R	GS
ht-Nr.	-Sym.	enese	Gesamt- skelett	Bode	enarten- ippen	Symb.	T	-Bez.	Ske	elett	gung	rkung		Kompone	nten de	er Grob	fraktion		Ko	nponente	en der Feinf	raktion	
Schic	Schicht	Geog	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Vertes	Beme	Bodenkd Geolog. Begriff	I Petrogra Bezeichn	ph iung vo (1	Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl Pe Geolog. Be Begriff	etrograph. zeichnun	g Anteil von - bis (Vol%)	Stratigr	Aphie Vervitt
1	F	og	0																				
2	v	с	5 70	zz	1	nl								Kst		- 100	w			I/KA	- 100	q	

А Bemerkungen B

Profil RF 32 – 5936 Bad Berneck i. Fichtelgebirge

			Profilker	nnung				Projek	ktkennu	ung	Г		Lage	S				Z	uordn	ung					Auf	nah	ime		
ObjId				Blatt-N TK2	lr. /	Aufn Serie	Profil- Nr.	SI	RRA02		R	448	5714	Höhe m ü. N	N PI	reg.					Landso	chEinhe	Name	e	Hoppe Christoph	(Un hel (i R) Uni R	Aufs Art	chl
Blattnar	me	Bad E	Berneck	6000				Frem	dkennu	ing	н			222	Lk	ur.		Bay	reuth		1		Datu	m	27.05	5.20	08		
18.25		I.FIC	itelgeb.	5930		90	32	C	S-RF32		1	5543	3928	891	G	de.	For	/armens	teinach Bayrei	ar uth]		8.3	exter Aufn.	ne	UN	√I-R		G	5
In	tensi	tät			lima	1				Nu	itz	ung			Τ.					_		Relief	-	_		_	_	_	_
Aufnah	me	AV	Tempe- ratur	Nieder- schlag	Troc	ckenh. ndex	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	E	saumarte	en	Best Zust.	Ink	li- on	Expo	n v	Reliefwo ert.	hori	z. F	ormtyp	Länge		Lag	e M	vlikro- relief	En	tf. z. nkok.
Beprob	ung	30	5	1100		70		EN	-	<u> </u>	t	EIS BI	11 EE1	м	-	-	SW		12	G	-	HS	Breite		07	t		+	
Substra	iterg.	NO	۱ ° ۱	1100	1	10		1.00				110, 00	J1, EE1,	m			311		~	0		no	H/T		7 %				
Bode	nsys	t.E.		B	oden	form			Subst	ratsys	t.	E.	Legend	len-	Hum	usf	orm	Bo	denab	/ G	W-St	tand	Bode	nsc	hätzu	ng	E	Beme	erk.
1.1	FSn			Norm-Sk	eletthu	umusb	oden			p-n		그그	zuordni	ung				- a	uftrag	G	OK S	Status							
												N	Nr.		1	rotr		Vorg.				L	Acker						
												The	ema			_	_	Grad				6	Srünland		_	_		_	_
		Hori	zontkeni	nzeichr	ung			Boo	denfarb	e	S	kelett	B	odenar	t			Hy	rdom.	Meri	cmale	•	Gef	üg	e (E	Ι,	4 L	E,	p
Nr. Pr	oben-N	vr.	Symbol	Ob	er- bzv	w. Unte	rgrenze	Munse			, A	inteil on-bis	Grob- boden	Feint bzw.	Torf-	22	nat	Rost fl.	Bleich fl.	Fe	e / Mn nkret.	=	Form	Gre	Sige all	100	ht-N	ht-S	rkur
				Gre [C	mze m]	Form	Schärfe	/	subje	ektiv	(\	/ol%)		zers.	-Stufe	Hum	Carbo			Ant.	Gr.	Ausfä			Rohd	Circ	Schio	Schic	Beme
1			L	6		w	de									7	0									Τ			Τ
2			of	6		w	de			_		_		1		7	0							Ī	\top	Ť	Ť	T	Ť
3		T	I xC-C)h (3			1	0YR 2/2	_		80	r2x5			7	0					T			Ť	t	Ť	T	T

			Profill	kennu	ng			Projek	tkenn	ung			Lage	2			Zuordnu	ng	Di la companya di seconda di se Seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di se		Aufna	ahme	
Obj	-ld			E	Blatt-Nr.	Aufn	Profil-	SI	RRA02		R	44	85714	Höhe	Direc	-		_	Londonh Einhol	Name	Hoppe (U	Uni R)	Aufschl.
Bla	tname	Ba	d Berneck	-	1625	Serie	Nr.	Fremo	ikenni	ina	н	1.028	10100.0V	III U. INN	Lkr.	-	Bayreuth	_	LandschEinnei	Datum	27.05.2	2008	An
1	K25	i,F	ichtelgeb.		5936	96	32	CS	S-RF32	ing		55	43928	891	Gde.	War Forst	mensteinacher -Nord [Bayreut	h]	8.3	externe Aufn.	UNI-	R	GS
ht-Nr.	-Sym.	enese	Gesamt- skelett	Bode gru	narten- ppen	ymb.	T	-Bez.	Sk	elett	gung	rkung		Kompone	nten de	r Grob	fraktion		Ko	mponente	en der Feinf	raktion	
Schiel	Schicht-	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkdl Geolog. Begriff	- Petrogra Bezeichn	ph. A ung vo (\	Anteil on - bis /ol%)	Stratigraphie	Verwitt.	Bodenkdi P Geolog. Be Begriff	etrograph. zeichnun	g Von - bis (Vol%)	Stratig	raphie
1	F	og	0	•	8	og-(o)												_					
2	v		0	zn		og(o)			1	\square	t	t		Gr		- 100	pz				-		-

A Bemerkungen B

			Profilker	nnung			Projel	ktkennu	ing	Г		Lage					Z	uordr	ung						Aufn	ahm	e	
Objlo	d			Blatt-Nr TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	35388	49	Höhe m ü. NM	I Pir	eg.					Lands	schEini	heit	Name	H	oppe (I stophe	Uni R	() /	Aufschl Art
Blattna TK25	ame	Lohr	ra.Main	6023	96	33	Frem	dkennu S-RF33	ing	н	55389	43	336	Lki Gd	r. le.	R	Main-S othenbe Sper	pessart erg [Mai ssart]	n-		2.23	0	Datum externe Aufn.	-	11.06.2 UNI-	2008 -R	-	GS
I	ntens	ität		KI	ima		1		Nu	itz	ung			Γ.							Relie	f		-				
Aufnai	hme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	E	Baumart	en	Best Zust.	Inkli	- n	Expo sitior	v	Reliefwo ert.	hor	z.	Formtyp	Läi	nge		Lage	Mik rel	ro- ief	Entf. z. Hankok
Bepro Substr	bung raterg.	30 NO	7	750	40		FL			T	B	U6,	s	28		EE	0	32			HS	Bre	eite / T	-	z			
Bod	lensy	st. E.		Bo	denform		-	Substr	atsys	t.	E.	Legend	en-	Humu	usfo	orm	Bo	denab	/ G	W-S	Statue	Bo	odens	chä	tzun	9	Be	merk.
	BB-KN			Braun	erde-Ranke	f			p-ni		Th	Ir. ema		п	nuf		Vorg. Grad		-		Status	Aci	ker			1		
-		Hor	izontkenr	zeichnu	ing	1	Boo	denfarb	e	S	kelett	B	odenar	E	Г	1	Нуг	dom.	Mer	kmal	le		Gefüg	e	£	1.		É n
lfd. F Nr.	Proben-	Nr.	Symbol	Ober Grenz [cm	- bzw. Unte ze Form	rgrenze Schärfe	Munse	ell subje	ktiv	N × ()	Anteil on-bis /ol%)	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fi Ka Ant.	e / Mn onkret G	Ausfall.	F	orm G	röße	Rohdichte(Durchwurz	Schicht-Nr.	Schicht-Syl Bemerkung
1			L	6		-									7	Γ										Γ		
2			Of	1											7	T		0		Ī						Γ		
3			l Ah	0 -8	z	di .	1	0YR 2/3			0 5	r6	SI3		4	0				Ī		k	ru	3		Ē		
4			I Bv-iCv	-8 -34	e	de .	ŧ	5YR 4/6			20 40	r2x5	Su2		1	0				Ī		F	loc	2		Ē	3	U
5		T	II imCn	-34							100 100	F			Ť	0				Ī						Ē	3	U

		_	Profilk	enr	nung			Projek	tkenn	ung	Т		Lage				Zuordnu	ing	Ri -		Aufna	hme	
Obj.	-Id				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SR	RA02		R	3538	3849	Höhe m ü. NN	Pireg				LandschEinhei	Name	Hoppe (I Christophe	Uni R) (Uni R)	Aufschl. Art
Blat	name	Lo	ohr a.Main	+				Fremd	kenn	ung	н		-	000	Lkr.	N	lain-Spessart			Datum	11.06.2	800	
	625				6023	90	33	CS	-RF33		1	5538	8943	336	Gde.	Rot	henberg [Main- Spessart]		2.23	externe Aufn.	UNI-	R	GS
ht-Nr.	Sym.	enese	Gesamt- skelett	Bo	denarten- ruppen	ymb.	<u> </u>	-Bez.	Sk	elett	gungi	rkung		Kompone	nten d	ler Grob	fraktion		Kor	nponente	en der Feinf	raktion	
Schicl	Schicht	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkdl Geolog. Begriff	- Petrogra Bezeichn	ph. ung v	Anteil on - bis (Vol%)	Stratigraphie	Verwitt.	Bodenkdl Pe Geolog. Be Begriff	etrograph. zeichnun	g Anteil von - bis (Vol%)	Stratig	raphie
1	F	og	0 0	•														_					
2	н	pfi	10 30	zn	ls	ns (Ss	t)							SieGY		- 100	dbo			s/KA	•	đ	00
3	U	nd	100 100	F	-	- (Sst								Sstqz/F	J	- 100	trs						

		-	Profilker	nnung			Proje	ktkennu	ung	Γ		Lage					Z	uordn	ung					Aufr	nahr	ne		_
Objle	1			Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	353174	48	Höhe m ü. NN	Pin	eg.	1	2.20			Lands	chEinhe	Name	e ch	Hoppe	(Uni el (U	R) ni R)	Aufsch Art	11
Blattn	ame	Bisch	hbrunn	6400	00		Frem	dkennu	ing	н			400	Lkr	r	8	Milte	nberg		1		Datur	n	12.06	.200	3		_
1625				6122	90	34	С	S-RF34		1	552168	34	430	Gd	e.	A	Itenbuc [Milte	her Fors nberg]	st		2.21	Aufn.	ne	UN	I-R		GS	÷
1	ntensi	tät		KI	ima			0.55 a 2	Nu	itz	ung					1					Relief	Ś	-				-	_
Aufna	hme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.	E	saumarte	in .	Best Zust.	Inkli natio	- n	Expo	h v	Reliefwo ert.	hori	z.	Formtyp	Länge		Lage	M	ikro- elief	Entf. Hank	z. kok.
Bepro	bung	30	7	850	40		EM		-	t	PLIE	1.4.1	e	2	+	NE	,	41		-	ч	Breite		00	+			
Subst	raterg.	NO	1 ′	030	40		FM				B00,	LAI.	3	3		NE	1	``			"	H/T		- 00				
Bod	ensys	it. E.		Bo	denform	É .		Substr	atsys	t. I	E. L	egende	en- I	lumu	usfe	orm	Bo	denab	/ G	W-S	tand	Boder	nsch	nätzur	ıg	Be	mer	k.
	BB			Br	aunerde		1	5	p-sn		Z	uordnu	ing				- a	untrag	G	OK	Status							
											N	r.		n	nuf		Vorg.		4			Acker			_			
										-	The	ma			-	_	Grad		_		19	sruniand		-	-	<u> </u>	-	_
He Is	Prohen.	Hori	Sumbol	Izeichnu	ng	000070	Boo	dentarb	e	S	kelett	Grob	Eeinbo	den	-		Rost	Bleich	Mer	(Ma	e	Gen	uge	e(tr)	N	÷	ym.	B
Nr.	- COLLEGE		- Cymbol	Grenz [cm]	e Form	Schärfe	/	subje	ektiv	W (V	on-bis /ol%)	boden	bzw. zers\$	Torf- Stufe	Humus	Carbona	fl.	fl.	Ko Ant.	onkret.	Ausfall.			Rohdicht	Durchwu	Schicht-	Schicht-	Bemerk
1			L	3 1					- [7										T	T		
2			Of	1 0											7	Γ									Т	Γ		
3			l Ah	0 -6	w	de .	7.	,5YR 3/3			0 5	r6	Us		Ì	0				Ī	Τ	kru	2	Ì	Ť	Ť		
4			I Bv	-6 -18	w	di	7.	,5YR 5/4		1	5 10	r6	Su4		İ	0						ein- sub	2		Ť	3	U	
5			I Bv	-18 -40	e	de	7	,5YR 4/6		2	10 20	x2r5	Su4		İ	0				Ī	T	ein- sub	2		Ť	3	U	
6		+	II imCn	-40							0	F			T	0					+				t	3	U	Γ

Profil RF 34 – 6122 Bischbrunn

			Profile	enn	nung			Projekt	tkenn	ung	T		Lage				Zuordnu	ing	1.5			Aufna	hme		
Obj.	-Id			Т	Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SR	RA02		R	353	1748	Höhe m ü. NN	Pireg				LandschEinh	Na	me	Hoppe (U Christophel	(Uni R)	Aufsch Art	l
Blat	name	В	ischbrunn		100000			Fremd	kenni	ung	н			10.000	Lkr.		Miltenberg		1 12220	Da	tum	12.06.2	008		_
T	K25				6122	96	34	CS	RF34			5521	684	430	Gde.	Alte	enbucher Forst [Miltenberg]		2.21	ext Aut	erne fn.	UNI-F	2	GS	
ht-Nr.	-Sym.	enese	Gesamt- skelett	Boo	denarten- ruppen	symb.		I-Bez.	Sk	elett	bigung	rkung		Kompone	nten d	er Grob	fraktion		к	ompor	nente	n der Feinfr	aktion		
Schio	Schicht	Geogr	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkd Geolog. Begriff	Petrogra Bezeichn	ph. iung v	Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl,- Geolog, Begriff	Petrogr Bezeich	raph. nnung	Anteil von - bis (Vol%)	Stratig	raphie	Verwitt.
1	F	og	0	•	-																				
2	н	pfi	5 20	nz	su	p-ko (S	st)							sieGY	11	00 - 100	dbo			u/K/	A	-	qp	0	
3	U	nd	100 100	F		- (Sst)							Sstqz/F	U 11	00 - 100	trs								

А Bemerkungen B

		Profilke	nnung			Proje	ktkennu	ing			Lage	2				Z	uordn	ung	6				ŀ	\ufna	ahm	e		-
ObjId			Blatt-Nr TK25	Aufn Serie	Profil- Nr.	S	RRA02		R 3	355659	90	Höhe m ü. Ni	N Pir	eg.	0		0.1 19-12		Land	schEin	heit Na	ame	Ho	ippe (L stophe	Jni R I (Uni	R)A	ufschl.	2
Blattname TK25	Gr	äfendorf	5824	96	35	Frem	dkennu S-RF35	ing	H 5	556245	55	293	Lkr Gd	r. le.	Neu	Bad Ki wirtsha Bad Ki	ssingen user Fo ssingen]	orst		3.11	Di ex Ai	atum terne ufn.	1	3.06.2 UNI-	008 R	-	GS	_
Inte	nsität		KI	ima				Nu	itzui	ng			Τ.							Relie	ef		· · ·		_	<u> </u>		-
Aufnahme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	Bau	umarte	'n	Best Zust.	Inkli natio	n i	Expo	v	Reliefwö ert.	bung	z.	Formtyp	Lāng	je		Lage	Mikr	ro- ef	Entf. 2 Hanko	z, ok.
Beprobung Substrater	30 g. NO	7	750	40		FM			E	3U5, KI	I1, FI1,	s	23	T	SS)	(2	X2	2	н	Brei H7	te T	_	MU				_
Bodens	syst. E.		Bo	denform			Substr	atsys	t. E.	Ŀ	egend	en-	Humu	usfo	orm	Bo	denab	/ G	W-S	Statue	Bo	dens	chät	zung	1	Be	merk	
ы	3		ВГ	aunerde			р-к	0/(551)		Nr	r. ma	ing	n	nut		Vorg. Grad	l	-	UK	Status	Acke	and		_	_			
	Ho	rizontken	nzeichnu	ing		Bo	denfarb	e	Ske	lett	Bo	denar	t	1		Ну	dom.	Mer	kma	le	G	efüg	je	(j)			ε	_
lfd. Prob Nr.	an-Nr.	Symbol	Ober Gren: [cm	- bzw. Unte ze Form	ergrenze Schärfe	Munse	subje	ektiv	Ant von- (Vol	eil -bis I%)	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe Ko Ant.	e / Mr onkret	Ausfall.	For	m Gr	röße	Rohdichte()	Durchwurz	Schicht-Nr.	Schicht-Syr	Bemerkung
1		L	3 0					_	8					7	0										Π			
2		l Ah	0 -8	w	de .	1	0YR 3/4	_	0			Su3		3	0						kri	-	1		Π			
3		l Bv	-8 -58	w	di	1	0YR 4/6		10 20	3	x2r5	Su2		0	0				İ		eit	ľ	3		Π	3	υ	
4		ll ilCv	-58 -92	w	di	7	5YR 4/6		10	3	r3x4	Ss		0	0				Ī		pc	4	3		Π	3	U	
5		II imCn	-92						10 10	0				0	0				Ī	1	Ĩ				Π			

			Profilk	enn	nung			Projek	tkenn	ung			Lage	8			Zuordnu	ing	Ri -		Aufna	ahme	
Obj	Id			Τ	Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SR	RA02		R	355	6590	Höhe m ü. NN	Pireg	1			LandschEinhe	Name	Hoppe (I Christophe	Uni R) I (Uni R)	Aufsch
Blat	tname	0	Gräfendorf	+				Fremd	kenn	ung	н	-		10000	Lkr.	В	ad Kissingen			Datum	13.06.2	2008	
	K25				5824	96	35	CS	-RF35			556	2455	293	Gde.	Neuw [B	rirtshauser Fon ad Kissingen]	st	3.11	externe Aufn.	UNI	R	GS
nt-Nr.	Sym.	enese	Gesamt- skelett	Boo	denarten- ruppen	ymb.	<u> </u>	-Bez.	Sk	elett	gungi	rkung		Kompone	nten d	er Grob	fraktion		Ко	mponent	en der Feinf	raktion	
Schict	Schicht-	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkd Geolog. Begriff	Petrogra Bezeichr	ph. iung v (Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl P Geolog. Be Begriff	etrograph ezeichnun	g Von - bis (Vol%)	Stratig	raphie
1	F	og	0		•									-									
2	н	pky	10 20	nz	us	p-ko (S	st)							sieGY	10	00 - 100	dbo	_		u/KA	·	dt	00
3	υ	nd	10 100	nz	55	(Sst)								Sstqz/F	U 10	00 - 100							

в

		Profilken	nung			Projel	ktkenni	ung	Г		Lage						Zuordr	nung	1				A	Aufna	ahm	e	
ObjId			Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	44332	14	Höhe m ü. Ni	V Pir	eg.			0.0121103		Land	schEin	heit	ame	Ho	ppe (l	Jni R I (Un) /	Aufschl. Art
Blattname	Neustad	b.Coburg				Frem	dkennu	ina	н				Lk	r.	-	Co	burg		-		D	atum	1	8.06.2	2008	+	2011
TK25			5632	96	36	C	S-RF36	ing		55779	16	467	Gd	le.	Ne	eustad	t b.Cobu	rg		7.1	e) A	terne ufn		UNI-	R	٦	GS
Inten	sität		Kli	ma				N	utz	ung			T.	_			0.			Relie	ef		_			_	
Aufnahme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.	. 8	Baumarte	n	Best Zust.	Inklinatio	i- on	Expo	-	Reliefwo vert.	blbung	j iz.	Formtyp	p Läng	ge	Т	Lage	Mik	ro- ief	Entf. z Hanko
Beprobung	30					C14			1.				1	+	00	-				v	Brei	te	-			-	
Substraterg	NO	1				FM	1		E	302, EI1,	, FI1, KI3,	SU	2		55					v	H/	т					
Bodens	yst. E.		Boo	lenform	1	· · ·	Subst	atsys	st. I	E. L	egend	en-	Hum	usf	orm	Bo	denab	10	SW-S	stand	Bo	dens	chät	zung	3	Be	merk
p2BB	in	S	chwach poc	Isolige Bra	unerde		p	-(n)s		Z	uordnu	ing				- a	uftrag	0	SOK	Status	1						
										N	r.		m	otr		Vorg				ан с С	Acke	at					
										The	ma					Grad					Grünla	and					
	Hori	zontkenn	nzeichnu	ng		Boo	denfarb	е	S	kelett	Bo	denar	t			Hy	rdom.	Mer	kma	le	G	efüg	je	(£)			Ë,
Ifd. Probei Nr.	n-Nr.	Symbol	Ober- Grenz [cm]	e Form	Schärfe	Munse	subje	ektiv	A vo (V	nteil on-bis /ol%)	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	F K Ant.	e / Mr onkret	Ausfäll.	Fo	rm G	röße	Rohdichte	Durchwurz	Schicht-N	Schicht-Sy
1		L	75	1										7	T				T								
2		Of	5							Ì		Ì		7	Ì				Ì				Ì		Γ		
3		Oh	3	e	de .				Ī					7	İ				Í	T							
4		l Aeh	0 -4	w	di .	1	0YR 3/2			0 5	r6	Su3		4	0				Ì		ein-l	kru	1				
5		I Bv	-4 -35	w	de .	1	0YR 5/6			10 20	x2r5	Su3		1	0						ei	n	1		Γ	3	U
6		I ICv	-35 -71	w	de .	1	0YR 6/6			30 40	x3r4	Su2		0	0				İ		ei	n	1		Γ	3	U
7		ll mCn	-71	T						100	F			0	0	İ	İ		T				1		Γ	3	U

Profil RF 36 – 5632 Neustadt bei Coburg

			Profilk	enn	ung			Projek	tkenn	ung	Т		Lage		1		Zuordnu	ing			Aufna	hme		
Obj.	-ld				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SR	RA02		R	443	3214	Höhe m ü. NN	Pireg.			-	LandschEinh	Name	Hoppe (L Christophel	(Uni R)	Aufsch Art	ıl
Blat	Iname	Neus	tadt b.Cobur	g	11523	222		Fremd	kenn	ung	н			10220	Lkr.		Coburg	- 13	1000	Datum	18.06.2	800	1	_
T	K25				5632	96	36	CS	RF36		1	557	7916	467	Gde.	Neu	Istadt b.Coburg [Coburg]		7.1	externe Aufn.	UNI-	R	GS	
nt-Nr.	Sym.	enese	Gesamt- skelett	Bod	ienarten- ruppen	ymb.		-Bez.	Sk	elett	gung	rkung		Kompone	enten de	er Grob	fraktion		ĸ	omponente	en der Feinf	raktion		
Schiol	Schicht-	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkd Geolog. Begriff	I Petrogra Bezeichr	ind the second s	Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdi I Geolog. E Begriff	Petrograph. Bezeichnun	g Von - bis (Vol%)	Stratigr	raphie	Verwitt.
1	F	og	0 0	•	-							Ì												
2	н	pky	0 40	nz	us	p-ns					Ī			sieGY	10	00 - 100	W			u/KA	100 - 100	W	V	
3	U	nd	0	F		Sst						Ť		Sst	10	00 - 100	trs						_	

A

Bemerkungen Horizont Nr. 4: Holzkohleflitter B Horizont Nr. 5: Holzkohleflitter

Profil RF 37 – 5634 Teuschnitz

			Profilke	nnung			Projek	tkennu	ing	Г		Lage	8				2	uordn	ung	i P		1		Aufna	ahm	ne		_
ObjI	d			Blatt-Nr TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	4461	408	Höhe m û. Ni	N PI	reg.			01946323031		Landso	:hEinhe	Name	c	Hoppe (I hristophe	Uni F	R)	Aufsc Art	hl
Blattr	name	Teus	schnitz	1.000	10000	1000	Frem	dkennu	ng	н	(constant)	1999.1	1993310	Lk	ir.		Kro	nach		1	\$850).	Datur	n	19.06.2	2008		1.000	
TK25				5634	96	37	C	S-RF37	-	1	5581	081	637	G	de.	Bit	rnbaun	f [Kronacl	h]	. 3	8.1	extern Aufn.	ne	UNI	R		G	ż.
	Intens	ität		KI	ima				Nu	itzi	ung			Τ.					_	-	Relief				_	_		_
Aufna	ahme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Ökolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	В	aumarte	en .	Best Zust.	Ink	li- on	Expo	h v	Reliefwöl ert.	bung hori	z. F	ormtyp	Länge		Lage	Mik	ief	Ent Han	.z. kok.
Bepro	obung	30	6	850	50		EM			+	RUM	E12	e	1		CIM		T			V	Breite		7				
Subs	traterg.	NO	1 °	000	00		0.00				004		Ĭ	1.		0					ें ।	H/T		7 ~				
Boo	densy	st. E.	rin	Bo	denform			Substr	atsys	t. E	. I	Legend	len-	Hum	usf	orm	Bo	denab/	G	W-St	and	Boder	isch	hätzung	3	Be	eme	ĸ.
	DDn			(NOTITI	-)braunero	e		P	⊷(n)i		N	r I	ung		mot		Vora	1	Ť		June	Acker	_		-			
											The	ema	-		not		Grad		1	_	G	Grünland	-		-			
		Hori	zontken	nzeichnu	ing	1	Boo	lenfarb	e	S	elett	B	odenar	t			Hy	rdom. I	Merl	cmale	•	Gefi	ige	Ê		16	É	
lfd. Nr.	Proben-	Nr.	Symbol	Ober Grenz [cm	- bzw. Unte ze Form]	ergrenze Schärfe	Munse	ll subje	ktiv	A vo (V	nteil n-bis ol%)	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe Ko Ant.	e / Mn onkret. Gr.	Ausfall.	Form	Größ	Rohdichtei	Durchwurz	Schicht-Nr	Schicht-Sy	Bemerkun
1	9		L	10 8	e	de .									7									2 - 2		Ī		
2			Of	8 5	w	de .			_	2					7	T					T					T	Ī	T
3			Oh	5 0	w	di									7	Ī							l					
4			1 Ah	0 -3	z	de .	1	0YR 3/3			0 5	r6	Uls		5	0						kru	2					
5			l Bv	-3 -33	e	de	1	0YR 5/8			5 10	r6	Uls		1	0						sub- pol	3					
6			II ICv	-33 -44	е	di .	2	,5Y 6/6			10 20	x1r6	Lu		1	0	2		1	1		pol	3					
7			II Cv-Sw	-44 -64			2,5Y 6	/3 10YR	6/8		10 20	x1r6	Tu3		o	0	6	7	1	4	мн	pol	3			Ī		

			Profilk	enn	nung	0.000		Projek	tkenn	ung	T		Lage	i	1		Zuordnu	ing			Aufna	ahme		
Obj.	-Id			Τ	Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SF	RRA02		R	44	61408	Höhe m ü. NN	Pireg.	1		- 21	LandschEinhe	Name	Hoppe (I Christophe	Jni R) I (Uni R)	Aufsch Art	1l,-
Blat	name	Т	euschnitz	-	10.8192			Fremd	Ikennu	ung	H	6 960	unango A	394525-1	Lkr.	1	Kronach	1	1	Datum	19.06.2	2008	1 494	_
Т	K25				5634	96	37	CS	-RF37		11	55	81081	637	Gde.	Birn	baum [Kronach	1	8.1	externe Aufn.	UNI	R	GS	6
M-Nr.	Sym.	nese	Gesamt- skelett	Bod	denarten- ruppen	ymb.	T	-Bez.	Sk	elett	Bunb	rkung		Kompone	nten d	er Grob	fraktion		K	mponente	en der Feinf	raktion		_
Schict	Schicht-	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Bemer	Bodenkdi Geolog. Begriff	- Petrogra Bezeichr	ph. lung vi (Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl F Geolog. E Begriff	etrograph. ezeichnun	g Von - bis (Vol%)	Stratig	raphie	Verwitt.
1	F	og	0	÷	-										-									
2	н	pky	5 10	zz	lu	p-ki								SieGY	(0 - 100	pza			u/KA	0 - 100		V	
3	м	pky	10 20	nz	tu	p-kl					Ē	Ī		SieGY	() - 100	pza			u/KA	0 - 100		V	

А

Bemerkungen Horizont Nr. 4: große Holzkohlestücke

Profil RF 38 – 5735 Schwarzenbach a. Wald

			Profilker	nung			Projek	tkennu	ing	Г		Lage					Z	uordn	ung					1	Aufn	ahn	ne	
ObjI	d			Blatt-Nr TK25	Aufn Serie	Profil- Nr.	SF	RRA02		R	446876	33	Höhe m ü. Ni	N Pire	eg.	_	14.00			Lands	schEin	heit	Name	Chri	oppe (I stophe	Uni F	() /	Aufschl
Blattr	ame	Schwa	rzenbach				Fremo	dkennu	ng	н		-	2102122	Lkr			Kulm	nbach			in an an an an an an an an an an an an an	1	Datum	1	20.06.2	2008	1	
TK25		а	Wald	5735	96	38 -	CS	S-RF38		1	55653	90	574	Gd	e.		Grafen [Kulm	gehaig hbach]			8.2	e A	externe Aufn.		UNI	R		GS
. 1	Intens	ität	1	KI	ima		1		N	itz	ung	_		T	_						Relie	f		<u> </u>			-	
Aufna	hme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.	. 1	Baumarte	n	Best Zust.	Inklinatio	n I	Expo	v	Reliefwö ert.	lbung hor	z.	Formtyp	Lär	nge		Lage	Mik	tro- lief	Entf. z. Hankok
Bepro	obung	30	6	850	50		FM			t	BU3	F13,	s	24	T	SE	,	(3	X4		н	Bre	eite		UO			
Subs	traterg.	NO					L		L	1					_		_					н	/1			L	_	L
Boo	lensys	st. E.		Bo	denform		_	Substr	atsys	it.	E. I	egend	en-	Humu	IST	orm	Bo	denab		W-S	Status	Bo	odens	chä	tzung	9	Be	merk.
	BBN			(Norm	-)braunerd	e		P	-(n)u		N	r.	ang	m	07	-	Vora.	I	+		olulus	Act	ker			-		
											The	ma					Grad	-	1			Grün	land			-		
		Hor	izontkenr	nzeichnu	ing		Bod	lenfarb	е	S	kelett	Bo	odenar	t	Г	Т	Ну	dom.	Mer	kma	le		Gefü	ge	Ê	1		É D
lfd. Nr.	Proben-	Nr.	Symbol	Ober Gren: [cm	- bzw. Unte ze Form]	ergrenze Schärfe	Munse	ll subje	ektiv	ve	Anteil on-bis √ol%)	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fi Ki Ant.	e / Mn onkret	Ausfall.	F	orm G	röße	Rohdichte(Durchwurz	Schicht-Nr	Schicht-Sy Bemerkung
1			L	11 9	e	de .									7	0				Ī						F	Г	
2			Of	9	e	de .									7	0				T	1					F	F	
3			Oh	3	w	de .									7	0					T					Ē	Γ	
4			l Ah	0	z	di	7,	5YR 2/3	_		0	r6	Us		3	0				Ĺ	T	k	ru	3		Ĺ	Γ	
5			l Bv	-3 -57	e	di	10	0YR 5/8			10 20	x2r5	Us		1	0				Ī	T	k s	ru- ub	2		Ē	Γ	
6			II Bv-Cv	-57 -100			10	0YR 4/6			30 40	x3r4	Uls		0	0				T	1	es	in- ub	1		T	Г	

			Profilk	enn	ung	a		Projek	tkenn	ung	Т		Lage				Zuordni	ung	6		Aufna	ahme		_
Obj	-ld				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SI	RRA02		R	4468	3763	Höhe m ü. NN	Pireg	3.			LandschEinhe	Name	Hoppe (I Christophe	Jni R) I (Uni R)	Aufsch Art	
Blat	Iname	Sch	warzenbach		100000			Fremo	ikennu	ing	н	1		N12233	Lkr.		Kulmbach		-	Datum	20.06.2	2008		-
1	K25		a.Wald		5735	96	38	CS	S-RF38			5565	407	574	Gde.		Frafengehaig [Kulmbach]		8.2	externe Aufn.	UNI	R	GS	
ht-Nr.	Sym.	eseue	Gesamt- skelett	Bod	enarten- uppen	ymb.	T	-Bez.	Sk	elett	Bungi	rkung		Kompone	nten d	ler Grob	fraktion		Ko	mponent	en der Feinf	raktion	Ū.	
Schict	Schicht-	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkdl Geolog. Begriff	- Petrogra Bezeichn	ph. iung v	Anteil von - bis (Vol%)	Stratigraphie	Verwitt.	Bodenkdl F Geolog. B Begriff	etrograph ezeichnun	g von - bis (Vol%)	Stratig	raphie	Verwitt.
1	F	og	0 0		•							Ī												
2	н	pky	0 20	nz	su	p-zu						Ī		fusi		0 - 100	pza			u/KA	0 - 100	W	V	
3	мв	p	30 40	nz	lu	p-zl								fusi		0 - 100	pza			u/KA	0 - 100	W	/	

A Bemerkungen B

Profil RF 39 – 6532 Nürnberg

		F	Profilker	nung			Proje	ktkennu	ung			Lage		Т			Z	uordn	ung			T		Aufn	ahn	ne		_
ObjI	d			Blatt-Nr TK25	r. Aufn Serie	Profil- Nr.	S	RRA02		R	44386	98	Höhe m ü. Ni	N PI	reg.				T	ands	chEinhei	Nam	e F	lürkam Münc	p (Tu hen)	1	Aufsch Art	nl
Blattn TK25	ame	Nürr	nberg	6532	96	39 -	Frem	dkennu S-RF39	ing	H t	54838	14	324	Lk	de.	Nü	lürnber mberg (Sta	g (Stadt [Nürnbe adt)]) rg	ţ	5.522	Datu exter Aufn	m ne	02.07. UNI	2008 -R	7	GS	1
1	ntensit	tät		ĸ	lima			202	Nu	itzur	ng			T							Relief		_		_	-		_
Aufna	hme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	Bau	umarte	en	Best Zust.	Ink	li- on	Expo	v	Reliefwö ert.	lbung horiz	F	Formtyp	Länge		Lage	Mil	kro- lief	Entf Han	. z. kok.
Bepro Subst	bung raterg.	30 NO	7	650	35		FM			KI5,	BI1, I	ES1, ER1	, su	1		SS					v	Breite H / T						
Boo	lensyst	t. E.		Bo	denform		<u> </u>	Subst	atsys	t. E.		Legend	en-	Hum	usf	orm	Bo	denab	G	W-S	tand	Bode	nscha	itzun	g	Be	emer	ĸ.
	RQ		Rego	osol über B	Braunerde-P	seudogley	· · · ·		ps		7 2	zuordnu	ing				- a	uftrag	G	DK	Status							
											The	ir. ema			rotr		Vorg. Grad		-		G	Acker rünland			_			
		Horiz	ontkenr	zeichn	ung		Bo	denfarb	e	Ske	lett	Bo	odenar	t	Τ	Τ	Ну	dom.	Merk	mal	e	Gef	üge	(ii)			Ë	
lfd. I Nr.	Proben-N	r.	Symbol	Obe Gren [cm	r- bzw. Unte ze Form 1]	rgrenze Schärfe	Munse	subje	ektiv	Ant von- (Vol	eil -bis %)	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe Kor Ant.	/ Mn nkret. Gr	Ausfäll.	Form	Größe	Rohdichte	Durchwurz	Schicht-Nr	Schicht-Sy	Bemerkun
1			L	19 12	e	de			_						7	0									T	T	Γ	
2		Ť	Of	12 8	w	de			_				İ		7	0									Ť	ħ	Ē	
3			Oh	8	w	de							İ		7	0									Ť	Ē	Ē	
4		T	l Ah	0	, w	di	1	0YR 2/2	_	0			Su3		5	0						ein-kru	3		Ť	T	Ē	
5		1	I ICv	-10) 2 e	sc	1	0YR 5/3	_	0			Ss		1	0						ein			Ĺ	Ĺ	Γ	
6			ll fBv-Sw	-42 -47	2, w	di	1	0YR 5/4		0			Ss		2	0	4	1				ein			Ť	T	Ē	
7		1	II Sw-Bh	-47 -77	е	de	10YR 6	3/2 10YF	8 6/3	0			SI3		2	0	2	3				ein			Ť	Ĺ		
8			II Cv-Sw	-77 -89	1		10YR 6	3/2 10YF	R 5/4	0			SI2		1	0	2	3				ein			Ť	T	Ē	

			Profile	enn	ung			Projel	ktkenn	ung	Т		Lage	ļ.			Zuordn	ung			Aufna	ahme		
Obj.	-Id			Т	Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SI	RRA02		R	4438	8698	Höhe m ü. NN	Pireg	-			LandschEinhei	Name	Hürkamp Münch	en)	Aufsch Art	11
Blat	name K25		Nürnberg	T	6532	96	39	Fremo	kennu	ung	н	5483	3814	324	Lkr. Gde.	Nürr	ürnberg (Stadt) nberg [Nürnber	g	5.522	Datum externe	02.07.2 UNI-	2008 R	GS	
ht-Nr.	-Sym.	enese	Gesamt- skelett	Bod	lenarten- uppen	Symb.		t-Bez.	Sk	elett	tigung	rkung		Kompone	nten d	er Grob	(Stadt)] fraktion		Ko	Aufn. mponente	n der Feinf	raktion		
Schio	Schicht	Geog	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substar	Verteil.	Einreg.	Verfes	Beme	Bodenkdl. Geolog. Begriff	- Petrograp Bezeichn	oh. ung v	Anteil /on - bis (Vol%)	Stratigraphie	Verwitt.	Bodenkdl Pr Geolog. Be Begriff	etrograph. ezeichnung	Anteil von - bis (Vol%)	Stratigr	raphie	Verwitt.
1	F	og	0 0	-	•						Ī	Ť												
2	v	a	0		us	a-s	Ť			Ī	T	Ī								mS	100 - 100	1p	h	
3	v	a	0 0	-	ls	a-s					T				-					mS	100 - 100	db.	h	

Bemerkungen B А

Profil RF 40 – 6829 Ornbau

			Profilke	nnung			Proje	ktkennu	ing	Г		Lage					2	uordn	ung			1		Aufn	ahn	ne		
ObjI	d			Blatt-Nr TK25	Aufn Serie	Profil- Nr.	s	RRA02		R	44000	21	Höhe m ü. NM	N Pir	eg.	2			-	andscl	hEinhe	Name	•	Dötterl Münci	(TU hen)		Aufsci Art	nl
Blattn	ame	0	nbau		100000		Frem	dkennu	ng	н			Sec. 2	Lki	r.	÷	Ans	bach			1.52	Datu	n	09.07.	2008		1 0.00	_
TK25				6829	96	40	С	s-RF40		1	54450	86	484	Gd	e.	A	rberg	Ansbach	1	5.	.62	exter Aufn.	ne	UNI	-R		GS	ł
1	Intens	ität		KI	ima				Nu	itzi	ung			Γ.						I	Relief		-			_		
Aufna	ihme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	В	Baumarte	n	Best Zust.	Inklinatio	n	Expo	- v	Reliefwöl ert.	lbung hori:	F.	ormtyp	Länge		Lage	Mil	kro- lief	Entf	. z. kok.
Bepro	bung	30	7	650	35		EN			1	EI5	BUIT		2		SW		×1	G1		HE	Breite		м		-		
Subst	traterg.	NO	1 ′	050	55		1.0	1			FIJ,	801,		-		944			01		rir-	H/T		IVI				
Boo	lensy	st. E.		Brauper	denform	alev		Substr	atsys	t. E	E. L	Legend	en- una	Humu	usfo	orm	Bo - a	denab/ uftrag	G	W-Sta	and	Bode	nschä	itzun	g	Be	emer	k.
	00.00			Diadricit		arcy		P	Inter		N	ir.	5	n	nuf		Vorg.	-	+	-	-	Acker			-			
											The	ema		2			Grad		1		G	rünland			-			
		Hor	izontken	nzeichnu	ing		Bo	denfarb	e	Sł	kelett	Bo	odenar	t	Γ	Τ	Hy	rdom. I	Merk	male	1	Gef	üge	£	1.	1.7	É	
lfd. Nr.	Proben	Nr.	Symbol	Ober Gren: [cm	- bzw. Unt ze Form]	ergrenze Schärfe	Munse	subje	ektiv	A vo (V	inteil on-bis /ol%)	Grob- boden	Feinb bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe Ko Ant.	/ Mn nkret. Gr.	Ausfäll.	Form	Größe	Rohdichte	Durchwurz	Schicht-Nr	Schicht-Sy	Bemerkun
1			L	2	e	de .									7	0			-						T	T	T	Γ
2			of	1	e	de .									7	0					T				T	T	Γ	
3			l Ah	0	e	di .	1	0YR 3/4	_				Uls		3	0						kru	2		T	T	T	
4			l Bv	-1 -9	z	de .	1	0YR 4/4					Ut2		1	0						pol	3		Ī	Ì	Ē	
5			II Sw-Bv	-9 -20	w	de .	10YR 4	1/3 fl 10YF fl	R 6/4				Lu		1	0	3	1	4	3		sub- pol	4					
6			II Sw	-20 -65	e	di	7,5YR	6/8 fl 5Y fl	7/1				Tt		1	0	6	5	3	3		ugl				Ī		
7			II Sd	-65 -90			5YR 4	4/8 mr 5Y mr	3/1		10 20	g6	Tt		2	c4		2			ск	ugi			Ī	Ī		

			Profilk	enn	ung			Projek	tkenn	ung	Т		Lage	1			Zuordnu	ıng	8		Aufna	hme		_
Obj.	-Id				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SF	RA02		R	4400	0021	Höhe m ü. NN	Pireg.			63	LandschEinh	Name	Dötteri Münch	(TU en)	Aufsch Art	ıl
Blatt	name		Ornbau	-	100000	1.12	10.00	Fremd	kenn	ung	н		-	3354761	Lkr,		Ansbach		1 19728	Datum	09.07.2	008	1.00	_
	K25				6829	96	40	Cs	-RF40		1	544	5086	484	Gde.	Art	perg [Ansbach]		5.62	externe Aufn.	UNI-	R	GS	1
st-Nr.	Sym.	enese	Gesamt- skelett	Bod	lenarten- uppen	ymb.	Τ.	-Bez.	Sk	elett	gungi	rkung		Kompone	nten de	er Grob	fraktion		к	omponente	n der Feinf	raktion		_
Schict	Schicht	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkd Geolog Begriff	I Petrogra Bezeichr	ph. / iung vo (1	Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl Geolog. I Begriff	Petrograph. Bezeichnung	Anteil von - bis (Vol%)	Stratigr	raphie	Verwitt.
1	F	og	0		-	og-o						İ		-										
2	н	а	0		lu	p-(k)l						T								t/KA	0 - 100	qp	3	
3	v	s	0 5	kk	lt	c	Ì							Tc	0	- 100				t/KA	0 - 100	tri	k	

А Bemerkungen

Horizont Nr. 7: alte Wurzel, Konkretionen, Sekundärfarbe entlang von Wurzeln \ensuremath{B}

Profil RF 41 – 6427 Uffenheim

		S.	Profilken	nung			Projek	ktkennu	ung	Г		Lage					Z	uordn	ung			_			Aufn	ahn	ne		
Objlo	1			Blatt-Nr TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	35876	26	Höhe m ü. NN	I Pire	eg.					Lands	schEir	nheit	Name		Dötterl Münch	(TU hen)	1	Aufsch Art	I
Blattni TK25	ame	Uffe	nheim	6427	96	41	Frem	dkennu s-RF41	ing	н	54850	70	387	Lkr. Gde	e.	Neus Uff	stadt a. enheim a.d.Ais	d.Aisch-l Neusta ch-Bad	Bad		4.25		Datun extern Aufn.	n 1e	10.07.: UNI	2008 -R	7	GS	1282
I	ntens	ität		KI	ima				Nu	ıtz	ung			T'	- 20					-	Reli	ef							_
Aufnal	hme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	E	Baumarte	en	Best Zust.	Inkli- natio	n	Expo	i v	Reliefwö ert.	lbung hori	z.	Formty	/p La	ange		Lage	Mik	kro- lief	Entf. Hank	Z.
Bepro Substr	bung raterg.	30 NO	7	650	35		FL			E	EI2, BU2,	LI2, EE1,	M	0,5	T	NN		0	0		v	B	reite		к				
Bod	ensy:	st. E.	degra	Bo dierter Pse	denform	chernoser	n	Substr	atsys	t.	E. l	Legend zuordni	en- H ung	Humu	isfo	orm	Bo - a	denab uftrag	G	W-S	Stand Status	В	oder	nschä	tzun	9	Be	emer	k.
											N The	lr. ema	_	m	ut	6	Vorg. Grad		Ŧ			A. Grü	cker inland			4			
		Hori	zontkenn	zeichnu	ing		Boo	denfarb	e	S	kelett	Bo	denart	t			Hy	rdom.	Mer	kma	le	T	Gefi	üge	Ê	1	1.	E	
lfd. F Nr.	Proben-	Nr.	Symbol	Ober Grenz [cm	- bzw. Unte ze Form]	rgrenze Schärfe	Munse	subje	ektiv	1 2 0	Anteil on-bis /ol%)	Grob- boden	Feinbo bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fi Ko Ant.	e / Mn onkret G	T. C.	Austall.	Form	Größe	Rohdichte	Durchwurz	Schicht-Nr	Schicht-Sy	Bemerkun
1			L	0,5	е	de .									7	0				İ						Ē	Ē		
2			l Ah	0	е	di	1	0YR 2/3					Lu		3	0					Ť		kru	2		T	T		
3			l Bht	-2 -20	w	de .	1	0YR 3/2	_				Lt2		2	0				T	1	n	kru- sub	3		Ť	T		
4			I Sw-Bt	-20 -41	w	de .	10Y 5/	1 10YR	3/2				Tu2		0	0	3	2	3	3		и	sub	3		T	T		
5			II Sd	-41 -56			10Y 5/	1 10YR	4/6		5 10	g6	Tt		0	c4	3	5	1	1	c	ж	ugi			Ť	T		

			Profilk	enn	nung			Projek	tkenn	ung	Т		Lage	8			Zuordnu	ing	Ē.		Aufna	ahme	
Obj.	ld				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SR	RA02		R	358	7626	Höhe m ü. NN	Pireg.		A and the product		LandschEinh	Name eit	Dötteri Münch	(TU ien)	Aufschl. Art
Blat	name	L	Uffenheim					Fremd	kenn	ung	н	-		(22.23)	Lkr.	Neust	adt a.d.Aisch-B	ad	1.222	Datum	10.07.2	800	
1	(25				6427	96	41	Cs	RF41			548	5070	387	Gde.	Uffer	nheim [Neustad .d.Aisch-Bad	it	4.25	externe Aufn.	UNI	R	GS
nt-Nr.	Sym.	enese	Gesamt- skelett	Boo	denarten- ruppen	ymb.		-Bez.	Sk	elett	gungi	rkung	<u> </u>	Kompone	nten de	er Grob	fraktion		к	omponente	n der Feinf	raktion	
Schict	Schicht	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkd Geolog Begriff	- Petrogra Bezeichn	ph. iung vi (Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl Geolog. Begriff	Petrograph. Bezeichnung	Anteil von - bis (Vol%)	Stratig	raphie :
1	F	og	0																				
2	N	6	0																				
3	v		5 10	kk	It													_					

			Profilker	nung			Projek	ktkennu	ing		Lage					Z	uordn	ung	-				Aufn	ahn	ne		
ObjI	d			Blatt-Nr TK25	Aufn Serie	Profil- Nr.	SI	RRA02		R 439	2988	Höhe m ü. NN	I Pire	g.					Lands	chEinh	Nam eit	e	Dötteri Münci	(TU hen)	ľ	Aufschl. Art	e i
Blattr	ame	Burgw	indheim				Frem	dkennu	ng	н		100000	Lkr.			Ban	nberg		-	25.2.80	Datu	m	11.07.	2008			-
TK25				6129	96	42	C	s-RF42		552	5730	416	Gde	ð	Eb	orach [Bamberg	1		5.21	exter Aufn	ne	UNI	-R		GS	
	ntens	ität		KI	ima		1		Nu	tzung			Γ'							Relief				_	_		
Aufna	ihme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Ökolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	Baumar	ten	Best Zust.	Inkli- nation	E	Expo- sition	v	Reliefwö ert.	bung hori	z.	Formtyp	Länge		Lage	Mil	kro- lief	Entf. 2 Hanko	z. ok.
Bepro	bung	30	-			<u> </u>	222	<u> </u>	<u> </u>		1.12		1000	+				1.2			Breite				-		-
Subst	raterg.	NO		750	35		FM			FI3	, BU3,	s	2		NW		G1	G1	0	кн	H/T		00				
Boo	lensy	st. E.		Bo	denform		<u> </u>	Substr	atsys	t. E.	Legende	en-	Humu	sfo	orm	Во	denab/	G	W-S	tand	Bode	nsch	ätzun	9	Be	merk	
	BB-SS			Brauner	de-Pseudog	ley		p-	ol/s-t		zuordnu	ing				- a	uftrag	G	OK	Status							
											Nr.		m	uf		Vorg.	1	+			Acker						
										T	nema					Grad		1		3	Grünland						
		Hori	zontkenr	zeichnu	ing		Boo	denfarb	e	Skelett	Bo	denar	t i			Hy	rdom. I	Merl	kmal	e	Gef	üge	£			É	
lfd. Nr.	Proben-	Nr.	Symbol	Ober Gren: [cm	- bzw. Unte ze Form	rgrenze Schärfe	Munse	ll subje	ektiv	Anteil von-bis (Vol%)	Grob- boden	Feinbe bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe Ko Ant.	e / Mn onkret Gi	Ausfall.	Form	Größe	Rohdichte	Durchwurz	Schicht-N	Schicht-Sy	Bemerkun
1			L	2	e	de .			_					7	0									Ē	Γ	Π	
2		Ì	Of	1	e	de .			_			Ì		7	0								T	Γ	Ē	Π	
3			l Axh	0	w	de	1	0YR 3/3	_			Uls		5	0				İ		kru	1		Ť	T		_
4			I Bv	-7 -19	w	de	1	0YR 4/3	_	20 30	g6	Lu		3	0			5	5	м	kru- sub	2		Ť	Ē	Π	
5			II Sw	-19 -26	е	di	10YR 4	/6 7,5G	Y 6/1	5 10	g6	Tt		0	0	5	2	4	5	м	ugl			Ť	Γ		
6			II Sd	-26 -77			7,5GY 6	1 7,5G	Y 5/1	5 10	g6	Tt		0	0	2	2	2	5	м	ugl			T	T		

Profil RF 42 – 6129 Burgwindheim

			Profilk	enn	nung			Projel	ktkenn	ung			Lage	L			Zuordnu	ing			Aufn	ahme		
Obj.	-Id			Т	Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	s	RRA02		R	43	92988	Höhe m ü. NN	Pireg	1			LandschEinh	Name	Dötteri Münch	(TU ten)	Aufsch Art	1l
Blat	name	Bu	rgwindheim					Freme	dkennu	ung	н			10.222	Lkr.		Bamberg			Datum	11.07.3	2008		_
'	K25				6129	96	42	C	s-RF42		1	55	25730	416	Gde.	Ebr	rach [Bamberg]		5.21	extern Aufn.	UNI	R	GS	
ht-Nr.	-Sym.	enese	Gesamt- skelett	Boo	denarten- ruppen	ymb.	Ī	-Bez.	Sk	elett	gung	rkung		Kompone	nten d	er Grob	fraktion		к	omponen	en der Fein	raktion		
Schiel	Schicht	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkd Geolog Begriff	I Petrogra Bezeichn	ph. iung v (Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl Geolog. I Begriff	Petrograph Bezeichnu	. Anteil Ig von - bis (Vol%)	Stratig	raphie	Verwitt.
1	F	og	0				Ť																	
2	н	pky	20 30	kk	tu	p-ol							FE			•				u/KA	0 - 100			
3	v	s	5 10	kk	It	s-t							FE			0 - 100				t/KA	0 - 100			

A

Bemerkungen B

		P	rofilken	nung			Projel	ktkennu	ung	Г	Li	age			_		Z	uordn	ung	8		1		Aufn	ahr	ne	
ObjId				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	4390952		Höhe m ü. NN	Pire	g.			0000403200		Land	schEinhe	Nam	e	Dötter Münc	(TU hen)	Ţ,	Aufschl Art
Blattname	Dillin	ngen a	.d.Donau	0.000	10000		Frem	dkennu	ing	н		+	59025	Lkr.		Dill	lingen	a.d.Dona	au		12/22/2	Datu	m	22.07.	2008		0202
1K25		0	st	7429	96	43	С	s-RF43		1	5383486		418	Gde		Dill [Dill	ingen i lingen	a.d.Dona a.d.Dona	u au]		6.32	exter Aufn	ne	UN	-R		GS
Inte	nsitä	t		Kli	ma				Nu	itz	ung										Relief					_	
Aufnahme	1	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	E	Baumarten		Best Zust.	Inkli- nation		Expo- sition	v	Reliefwö ert.	lbung hori	z.	Formtyp	Länge		Lage	Mil	kro- lief	Entf. z. Hankok
Beprobung		30 NO	8	650	30		FL			t	UL2, EI2, A	F1,	м	0	T	ww		0	0		TS .	Breite		υυ	Γ		
Bodens	svst.	E.		Bod	lenform		<u> </u>	Subst	atsvs	t. I	E. Lea	end	en- H	lumu	sfo	orm	Bo	denab	G	W-S	Stand	Bode	nscha	itzun		Be	emerk.
B	В			Bra	aunerde	-		t	-1/f-s		zuor	rdnu	ing				- a	uftrag	G	OK	Status						
											Nr.			mu	Jt		Vorg.					Acker	I.				
										_	Thema				_	_	Grad				G	rünland			_		
lfd. Probe Nr.	en-Nr.		Symbol	Ober- Grenz [cm]	bzw. Unte	ergrenze Schärfe	Munse	subje	ektiv	S A V ()	vnteil Gr on-bis bo /ol%)	rob- oden	Feinbo bzw. T zersS	den forf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe Ko	e / Mr onkret	Ausfall.	Form	Größe	Rohdichte(tr)	Durchwurz.	Schicht-Nr.	Schicht-Sym Bemerkung
1	Ĵ		L	1 0	е	sc .									7	0									Γ	Γ	
2			l eAh	0 -15	w	de .	1	0YR 3/3					Lu		4	c2				İ		kru	3		Ť	Г	
3			I Bhv	-15 -33	e	di	1	0YR 4/3	_				Lu		3	c3				T		kru	3		T	T	
4			l Bv	-33 -63	e	di	1	0YR 5/3					Ls2		2	c3				T		pol	3		Ť	T	
5			l Bv-eCv	-63 -81	k	de .	2	2,5Y 5/3					Su3		0	c3				T		pol	3		Ť	T	
6		1	aGo-eCv	-81	Ť		2	2,5Y 6/3				_	Ss		0	c2			-	t		ein	4	1	t	T	Ħ

Profil RF 43 – 7429 Dillingen a.d. Donau

			Profile	enn	ung			Projek	tkenn	ung	Τ		Lage	S			Zuordnu	ing	2		Aufna	ahme		
Obj	-ld				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SF	RA02		R	439	0952	Höhe m ü. NN	Pireg.			-	LandschEinhe	Name	Dötteri Münch	(TU en)	Aufschl Art	
Blat	tname	Dilling	en a.d.Dona	au				Fremd	kennu	ing	н				Lkr.	Dilli	ngen a.d.Donai	L L		Datum	22.07.2	800		Ī
Ľ	K25		Ost		7429	96	43	Cs	-RF43		11	538	3486	418	Gde.	Dillir [Dillir	ngen a.d.Donau ngen a.d.Donau	n] 1	6.32	externe Aufn.	UNI-	R	GS	
ht-Nr.	-Sym.	eseue	Gesamt- skelett	Bod	enarten- uppen	symb.		-Bez.	Ske	elett	gungi	rkung		Kompone	nten de	er Grob	fraktion		K	omponenter	n der Feinf	raktion		
Schic	Schicht	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkdl. Geolog. Begriff	- Petrogra Bezeichn	ph. iung vi (Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl F Geolog. E Begriff	Petrograph. Bezeichnung	Anteil von - bis (Vol%)	Stratig	raphie tive	WHAT ISA
1	F	og	0																					-
			0	1							<u> </u>		1			8			qh,S	s/KA	0 - 50	dp (nj 🔤	
2	V	fo	0	•	lu	fi/fs													qh,S	I/KA	0 - 50	tp (1j	_

А

Horizont Nr. 6: Durchwurzelung bis in unteren Horizont

Bemerkungen в

Profil RF 44 – 7727 Buch

			Profilke	nnung			Proje	ktkennu	ung		Lage	8	T			Z	uordn	ung			1		Aufn	ahm	ie		_
ObjId				Blatt-Nr TK25	. Aufn Serie	Profil- Nr.	s	RRA02		R 436	8135	Höhe m ü. NN	I Pire	g.			A DESCRIPTION OF		Landsch	hEinhei	Nam	e	Dötteri Münci	(TU hen)	1	Aufsci Art	nl
Blattna TK25	me	B	luch	7727	96	44	Frem	dkennu s-RF44	ing	H 534;	2060	584	Lkr. Gde		8	Neu luch [N	I-Ulm Neu-Ulm	-	12	2.74	Datur	m ne	23.07. UNI	2008 -R	Ŧ	GS	
I	ntensi	ität	1	ĸ	ima				N	utzung								_	F	Relief	France				_		
Aufnał	nme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem N,	. Baumart	en	Best Zust.	Inkli- nation	E s	xpo-	v	Reliefwö ert.	hori	Fc	ormtyp	Länge		Lage	Mik rel	ro- ief	Entf Han	. z. kok.
Beprot Substr	oung aterg.	30 NO	7	850	40		FM			BUS	8, F13,	SU	0		SE	(30	G)	v	Breite H/T	_	к				_
Bod	ensys	st. E.		Bo	denform	-	-	Substr	atsys	it. E.	Legend	en-	Humu	sfo	rm	Bo	denab	/ G	W-Sta	and	Bode	nschä	itzun	g	Be	mer	k.
3	SS-LL		pseudov	ergleyte Pa über (I	rabraunerd Pseudo-)gle	le aus Löß av	lehm	P	-o/f-s		zuordnu	ung				- a	uftrag	G	OK S	tatus	Acker			_			
					/3					Th	ema		ma	otr		Grad	-	-		G	rünland						
-	_	Hori	zontken	nzeichnu	ing		Во	denfarb	e	Skelett	B	odenar	1			Hy	rdom.	Mer	kmale		Gef	üge	£	<u> </u>		É	-
lfd. P Nr.	roben-l	Nr.	Symbol	Ober Gren. [cm	- bzw. Unte ze Form	ergrenze Schärfe	Munse	ell subje	ektiv	Anteil von bis (Vol%)	Grob- boden	Feinbe bzw. zers	oden Torf Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fi Ko Ant.	e / Mn onkret. Gr.	Ausfall.	Form	Größe	Rohdichte(Durchwurz	Schicht-Nr.	Schicht-Syr	Bemerkung
1			L	7,5 5,5	е	sc .						1		7	0										2	v	
2			Of	5,5 2,5	e	sc								7	0									Γ	2	v	
3			Oh	2.5 0	e	de				2		1		7	0									T	2	v	
4			l Ah	0	z	de	1	10YR 3/4				Uls		3	c1						kru- sub	2		T	2	v	
5			I AI	2 20	e	di	1	10YR 6/6		8		Us		0	0						ein- sub	2		Γ	2	v	
6			I Bv-Al	20 31	z	di	10YR	6/6 10YF	R 5/6			Lu		0	c1						ein- sub	3		T	2	v	
7			I Al-Bv	31 41	z	di	10YR	6/6 10YF	R 5/6			Lu		0	c1						sub- pol	3		Г	2	v	
8			I Sd-Bt	41 68	e	de .	10YR -	4/6 10YF	R 5/8	s		Lt2		0	c2	2	1	4	1	м	pol	4		Ī	2	v	
9			II Go-Sw	68 92			10YR	5/8 2,5Y	6/3	0 5	g6	Ss	_	0	c1	3	2	3	1	м	ein- sub	3		Ē	3	v	

			Profile	enn	nung			Projek	tkenn	ung	T		Lage)			Zuordnu	ung	í .		Aufna	ahme		_
Obj.	-ld			Τ	Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SI	RRA02		R	43	68135	Höhe m ü. NN	Pireg		1999/1999/1999		LandschEinh	Name	Dötteri Münch	(TU ien)	Aufschi Art	
Blat	iname		Buch		2004/201	areas?		Fremo	lkenn	ung	H	1. 		762226	Lkr.		Neu-Ulm			Datum	23.07.2	2008		
Т	K25				7727	96	44	C	-RF44		1	53	42060	584	Gde.	B	uch [Neu-Ulm]		12.74	externe Aufn.	UNI-	R	GS	
tt-Nr.	Sym.	enese	Gesamt- skelett	Boo	denarten- ruppen	ymb.	Ξ.	-Bez.	Sk	elett	Bunß	rkung	<u> </u>	Kompone	enten c	ler Grob	fraktion		к	omponente	n der Feinf	raktion		_
Schict	Schicht-	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkd Geolog Begriff	I Petrogra Bezeichr	iph. hung v	Anteil /on - bis (Vol%)	Stratigraphie	Verwitt.	Bodenkdl Geolog. Begriff	Petrograph. Bezeichnung	Anteil von - bis (Vol%)	Stratig	raphie	Verwitt.
1	F	og	0		. 192									-	-									_
F		-	0	-	+ +		-		1	† 	⊢	十	 	+	-	_	1	-	 	u/KA	0 - 75	q	pj	-
2	v	а	0	•	u	p-o								-	-					I/KA	0 - 25	qr	N	_
3	v	ff	0	kk	ss	f-s				1		T		sifG		0 - 100	qpm			s/KA	0 - 100	qp	m	=
			5						1				<u> </u>	-	-	_	-	-	++		-	-	\rightarrow	-

А Bemerkungen B

		F	rofilker	nung			Projel	ktkennu	ung		Lage	8				Z	uordn	ung	ŝ.				Aufn	ahr	ne		_
ObjId				Blatt-N TK25	r. Aufn Serie	Profil- Nr.	S	RRA02		R 3588	494	Höhe m ü. N	N Pire	g.					Lands	schEinhe	Nam	e	Dötter Münc	(TU hen)	ľ	Aufsc Art	:hl
Blattna TK25	me	Memm	lingen	8027	96	45	Frem	dkennu s-RF45	ing	H 5312	157	635	Lkr. Gde		Wori	Unter ingen [raligău Unteralig	jāu]		13.42	Datu	m ne	24.07. UNI	2008 -R	7	G	s
In	tensitä	t	<u> </u>	ĸ	lima		<u> </u>		Ni	Itzung			┯┷			100			_	Relief	Auth					_	_
Aufnah	me	AV	Tempe-	Nieder-	Trockenh.	Okolog.	aktuelle	Zusatz	ehem.	Bauma	rten	Best.	- Inkli-	E	xpo-	1	Reliefwö	Ibung		Formtyp	Länge		Lage	Mi	kro-	Ent	f. z.
Beprob	ung	30	ratur 7	schlag	70	Feuchte	N. EN	N.	N.	-	IR KI	Zust.	nation		ww		ert.	nori	z.	HE	Breite		м	re	het	Har	ткок.
Substra	aterg.	NO	1 °	1100			5.00				10, 14,					1	~	00	З		H/T						
Bode	ensyst.	E.	· · · ·	Bo	denform			Subst	ratsys	t.E.	Legend	len-	Humu	sfo	orm	Bo	denab/	G	W-S	Stand	Bode	nschä	itzun	g	Be	eme	rk.
E	3B-SS			Brauner	de-Pseudog	gley			f-(k)l	H	Nr	ung		de .	_	Vora	l	6		Status	Acker			_			
										-	hema	-	1115			Grad	-	-		G	rünland	-		\neg			
	I	Horiz	ontkenr	zeichn	ung		Boo	denfarb	e	Skelet	t B	odenar	t			Hy	rdom.	Merk	cma	le	Gef	üge	(j)	Ľ		ε	1
lfd. Pr Nr.	oben-Nr.		Symbol	Obe Gren [cn	r- bzw. Unte ize Form n]	ergrenze Schärfe	Munse	subje	ektiv	Anteil von-bis (Vol%)	Grob- boden	Feint bzw. zers.	Torf- -Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe Ko Ant.	e / Mn onkret G	Ausfäll.	Form	Größe	Rohdichte(Durchwuiz	Schicht-Nr	Schicht-Sy	Bemerkung
1	6		L	4	е	-								7	0			1						Г	Γ		
2	2		Of	4	w	de .								7	0	_			F					t	t	t	t
3			Oh	3	w.	de						İ		7	0									Ē	Γ	T	T
4			l Ah	0 -6	w	de	1	0YR 3/4		5 10	g6	Uls		4	0				Ī		kru- sub	3	İ	Ť	Ē	T	Ť
5			I Sw-Bv	-6 -1!	5 W	di	1	0YR 5/4		5 10	g6	Lu		1	0	1		1	1	м	sub- pol	3		Ī	Γ	Γ	Ì
6		İ	I Bv-Sw	-15 -31	5 1 W	di	10YR	6/4 7,5Y	7/1	10 20	g6	Lt2		0	0	2	1	2	5	м	sub- pol	4	İ	Ť	Ē	Ť	Ì
7			I Sw	-3 -7	1 e	di	7,5Y 7	/1 10YR	6/8	10 20	o1g6	Lt3		0	c1	4	4	3	5	м	sub- pol	4		Ī	Γ	Ī	Ť
8			I Sdw	-7 -81	1	-	7,5Y 7	/1 10YR	: 6/8	10 20	g6	TI		0	c1	3	4	2	3	м	sub- pol			T	T	T	T

Profil RF 45 – 8027 Memmingen

í			Profill	ennu	ing			Proje	ktkenn	ung			Lage				Zuordnu	ing			Aufna	ahme	
Obj.	-ld				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	S	RRA02		R	358	8494	Höhe m ü. NN	Pireg.	_		_	LandschEinhe	Name	Dötteri Münch	(TU Au en) Ar	ufschl.
Blatt	name	M	lemmingen	-		1	0.000	Frem	dkennu	ing	н				Lkr.	and l	Unterallgäu		1000.00	Datum	24.07.2	8008	170 170321-201
Т	K25				8027	96	45	С	s-RF45			531	2157	635	Gde.	Worin	igen [Unteraliga	iu]	13.42	externe Aufn.	UNI-	R	GS
ht-Nr.	-Sym.	enese	Gesamt- skelett	Bode	enarten- ippen	Symb.	Τ.	-Bez.	Ske	elett	tigung	rkung		Kompone	nten de	er Grob	fraktion		Ko	mponenter	n der Feinf	raktion	
Schic	Schicht	Geog	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Vertes	Beme	Bodenkdi. Geolog. Begriff	- Petrogra Bezeichn	ph. / iung vo (1	Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl P Geolog. B Begriff	etrograph. ezeichnung	Anteil von - bis (Vol%)	Stratigrap	phie
1	F	og	0								Ī							_					
			5						+	t -	t	t		siGY		0 - 20	jpl	_		u/KA	•	jpl	
2	v	S	20	wk	ut	f-(k)l								siGY		0 - 80	jpl			t/KA	-	jpl	
			20		1 1						1									I/KA	-	jpl	

А Bemerkungen

Horizont Nr. 1: <0,5cm, sehr sporadi B Horizont Nr. 6: kaum mehr Wurzeln sch, nicht ausreichend Probe

nge

		Profilken	nung	2011 C		Projek	tkennu	ıng	Γ		Lage	6					Zuordr	nung	10					Aufn	ahn	ne		
ObjId			Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SI	RRA02		R	36066	15	Höhe m ü. NN	I Pla	reg.	3				Land	schEin	heit	Name		Dötteri Münci	(TU hen)		Aufschl. Art	-
Blattname	Wildp	oldsried				Fremo	dkennu	ng	н	- 			Lk	r.	1	Obe	eraligāu	0.00	1			Datur	n	29.07.	2008			-
TK25			8228	96	46	CS	S-RF46		1	52879	03	896	Go	de.	Bet	Izigau	[Oberallg	jäu]		14.3		extern Aufn.	ne	UNI	-R		GS	
Inte	nsität	1	KI	ima				Nu	itz	ung			Γ.							Relie	ef				_	-		-
Aufnahme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	E	laumarte	en	Best Zust.	Inki	i- I on	Expo	-	Reliefwa vert.	hor	iz.	Formtyp	p Lä	änge		Lage	Mil	kro- lief	Entf. z Hanko	ĸ.
Beprobung Substrater	g 30 'g. NO	5	1500	90		FN			T	F15,	EE1,	su	1		ww		X1	x	í.	TS	Br	reite 1/T	_	т				
Bodens	syst. E.		Boo	denform		<u> </u>	Substr	atsys	t,	E. 1	Legend	en-	Hum	usfo	orm	Bo	denab	1 0	-W-	Stand	в	oder	nschä	itzun	g	Be	emerk.	-
GI	м	Nied	dermoorto	rf über Ann	noorgley		\$	g-t-a		-	zuordnu	ung				- 8	auftrag	0	OK	Status				2000.3018				
										N	lr.		8	am		Vorg	1.		7	а	Ad	cker						
									-	The	ema			_	_	Grad	1				Grü	inland			_	_		_
Ifd Prob	Hor en-Nr	Symbol	Ober	- bzw. Unte	rarenze	Boo	lenfarb	e	SI	kelett	Grob-	Feinb	den	-	-	Rost	Bleich	Mer	kma	le	H	Get	uge Größe	te(tr)	N	ž	aym a	2
Nr.		ey.neer	Grenz [cm]	te Form	Schärfe	/	subje	ktiv	ve (V	on-bis /ol%)	boden	bzw. zers	Torf- Stufe	Humus	Carbona	fl.	fl.	Ki Ant.	onkre	Ausfall.			0.000	Rohdicht	Durchwu	Schicht-	Schicht-	
1		L	4	. w	de									7	0				Ī						Ī	2	т	
2		Of	3	w	di									7	0				Ī						Γ	2	т	
3		InH	0 44	w	de	7,	5YR 2/2					İ	5	7	0	Ī			T		Ì				Ì	2	т	
4		ll Aa	44 74	e	sc	1(0YR 3/2	_		2 5	rб	TI		6	0		2		Ī			koh			Ť	3	v	
5		ll Gr	74 83	1		1	IOY 5/2			5 10	r6	П		1	0	2	9		Ť		T	koh			Ĺ	3	v	

Profil RF 46 – 8228 Wildpoldsried

			Profile	cenr	nung			Projek	tkenn	ung	Т		Lage	2			Zuordnu	ng	E.		Aufna	ahme		
Obj.	-ld				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SI	RRA02		R	360	5615	Höhe m ü. NN	Pireg	1			LandschEinhe	Name	Dötteri Münch	(TU en)	Aufsch Art	I
Blatt	name	Wi	Idpoldsried	+	0000			Fremo	lkenn	ung	н	-			Lkr.		Oberallgäu			Datum	29.07.2	008		
	K25				8228	90	40	C	8-RF46		1	528	7903	896	Gde.	Betzi	gau (Oberaligā	וו	14.3	externe Aufn.	UNI-	R	GS	
ht-Nr.	-Sym.	enese	Gesamt- skelett	Bog	denarten- ruppen	symb.	Π.	-Bez.	Sk	elett	gungi	rkung		Kompone	nten d	er Grob	fraktion		Ко	mponente	n der Feinf	raktion		
Schicl	Schicht	Geoge	Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkdl. Geolog. Begriff	 Petrogra Bezeichn 	ph. ung v (Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl P Geolog. Be Begriff	etrograph. ezeichnung	Anteil von - bis (Vol%)	Stratigr	aphie	Verwitt.
1	F	og	0			og(O)								ONa		-								
2	т	og	0	-		og(H)						Ì									•	qh	1	
3	v	gm	2	zz	It	g-zi								feG	1	00 - 100				t/KA	100 - 100	W	i	_
			10												-									-

		Profilke	nnung		1	Proje	ktkenn	ung			Lage					0	Zuordn	ung	8		T		Aufn	ahn	ne		_
ObjId			Blatt-Nr TK25	Aufn.	Profil-	S	RRA02		R 3	5872	26	Höhe m ü. NM	I Pin	ea				_	andsch	-Finhe	Name	e	Dötter	(TU		Aufsch	1l
Blattname TK25	Bald	erschwang	8526	96	47	Frem	dkennu S-RF47	ing	Н 5	2615	04	1283	Lkr	r. ie.	Blai	Obe	raligău [Oberalig	jäu]	15	5.3	Datu exter Aufn	m ne	30.07. UNI	2008 -R	ť	GS	
Inter	sität	1	KI	ima		<u> </u>		N	itzun	q				_				_	F	Relief							_
Aufnahme	AV	Tempe- ratur	Nieder- schlag	Trockenh Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem N.	Bau	imarte	en	Best Zust.	Inklinatio	- n	Expo		Reliefwc vert.	hori	z. Fo	rmtyp	Länge		Lage	Mil	kro-	Entf. Hank	z. kok.
Beprobung Substraterg	30 I. NC	4	2000	180		FN				F16,	EE1,	s	13		NW		X1	X1		н	Breite H/T		0				
Bodens	yst. E.	1	Bo	denform	1		Subst	ratsys	t. E.		Legende	en-	Humu	usf	orm	Bo	denab	/ G	W-Sta	nd	Bode	nschä	tzun	g	Be	mer	k.
p3BE	Зn		mäßig pod	solige Brau	unerde			pfl		1 2	zuordnu	ing				- 8	uftrag	G	OK St	atus							_
										N	lr.		n	otr		Vorg		_			Acker			_			
	Ча	rizontkon	nzoichnu			Bo	donfark		Ska	lott	ema Ro	donar		1	-	Grad	rdom	Mort	malo	19	Cof	üaa	-	-	-		-
Ifd. Probe	n-Nr.	Symbol	Ober	- bzw. Unt	ergrenze	Munse		/	Ante	eil	Grob-	Feinb	oden	1	t	Rost	Bleich	F	≥ / Mn	-	Form	Größe	ite(tr	ZIN.	Å.	Sym	Bun
Nr.			Grenz [cm	te Form	Schärfe	/	subj	ektiv	von- (Vol.	bis -%)	boden	bzw. zers	Torf- Stufe	Humus	Carbon	fi.	fi.	Ko Ant.	onkret. Gr.	Ausfäll.			Rohdict	Durchw	Schicht	Schicht	Bemerk
1		L	11 10	е	de									7	0									T	2	v	
2		of	10	e	de			_						7	0					T				Ť	2	v	
3		Oh	4	w	de									7	0					T				Ť	2	v	
4		l Aeh	0 7	w	di	1	0YR 5/3		0 5	1	g6	Uls		3	0	2	2			Π	kru- sub	3		Ť	2	v	
5		l Ahe	7	z	de .	1	0YR 5/2		0 5		g6	Uls		1	0	2	4				kru- sub	3		Ť	2	v	
6		l Bs	11 16	k	di	1	0YR 5/8		5 10		o1g6	Lu		1	0	6	2			OE	sub	4		Ť	2	v	
7		I Bhv	16 24	z	di .	1	0YR 5/6		5 10		o1g6	Lu		2	0	4	2			HU	sub	4		Ī	2	v	
8		I Bv	24 54	e	di	10YR :	5/8 10YF	R 5/6	5 10	Į.	o1g6	Lt2		1	0	3	2				sub	4		Ī	2	v	
9		l Bv-eCv	54 84	e	di	1	0YR 4/6		10 20		o2g5	Ls2		1	0					T	sub	2		Ť	2	v	
10	1	l Bv-eCv	84 89			1	0YR 4/6		10 20		o2g5	Ls2		1	c4					T	sub	2		İ	2	v	

Profil RF 47 – 8526 Balderschwang

			Profilk	enr	nung			Projek	tkenn	ung	Т		Lage	£	1		Zuordnu	ing	11 I		Aufna	ahme	
Obj	-ld				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SF	RRA02		R	358	7226	Höhe m ü. NN	Pireg.	1			LandschEinhe	Name	Dötteri Münch	(TU en)	Aufschl Art
Blat	tname	Bal	derschwang		100000	1.222.0		Fremd	kennu	ing	н			02225	Lkr.	S	Oberallgäu		i come	Datum	30.07.2	800	1. 1.1.1
1	K25				8526	96	47	CS	-RF47			5261	504	1283	Gde.	Blaich	hach [Oberaliga	iu]	15.3	externe Aufn.	UNI-	R	GS
ht-Nr.	-Sym.	enese	Gesamt- skelett	Bo	denarten- jruppen	Symb.	T	t-Bez.	Ske	elett	tigung	rkung		Kompone	nten de	er Grob	fraktion		Ko	mponenter	n der Feinf	raktion	
Schio	Schicht	Geog	Anteil von - bis (Vol%)	grob	fein	Substart-5		Substar	Verteil.	Einreg.	Vertes	Beme	Bodenkdl. Geolog. Begriff	 Petrogra Bezeichn 	ph. iung vi (Anteil on - bis Vol%)	Stratigraphie	Verwitt.	Bodenkdl P Geolog. B Begriff	etrograph. ezeichnung	Anteil von - bis (Vol%)	Stratig	Vervitt.
1	F	og	0																				
2	v	s	2	kk	c lu	s-l (pkl	0		1		Γ	Ī		fSst Ust	-	- 30 - 70	tj tj	-		u/KA	- 70	qr	pj
			20																				

A Horizont Nr. 5: Ahe und Bs linsenförmig wechselnd Substrat nr. 2: periglaziale Hangdynamik

			Profilker	nnung			Projek	tkennu	ung			Lage	5				Z	uordn	ung					Aufn	ał
Obj.	-ld			Blatt-Nr TK25	. Aufn Serie	Profil- Nr.	S	RRA02		R	44299	16	Höhe m ü. NN	Pire	g. I	_			La	ndsch.	-Einhe	Name	• 1	Dötteri Münci	(T he
Blat	name	Gan	misch-				Frem	lkennu	ing	н	i.		10107	Lkr.	-	Garn	nisch-P	artenkir	chen			Datu	n :	31.07.	20
TK2	5	Parter	nkirchen	8532	96	48	C	5-RF48		1	52622	88	795	Gde	2.	Garm	IGarr	artenkiro nisch-	hen	15.	5	exter Aufn.	ne	UNI	-R
	Intens	ität		ĸ	lima				Nu	itzi	ung				_					R	elief	_			
Aufr	ahme	AV	Tempe- ratur	Nieder- schlag	Trockenh. Index	Okolog. Feuchte	aktuelle N.	Zusatz N.	ehem. N.	В	aumart	en	Best Zust.	Inkli- nation	,	Expo	n v	Reliefwö ert.	horiz.	For	mtyp	Länge		Lage	Γ
Bep	robung	30	6	1500	00	1	ENI		<u> </u>	+	EIA	KI3	511	16	t	SE		4	¥1			Breite		M	t
Sub	straterg.	NO	٦ ° ۱	1000	50		100				1.14	, ras,	30	10		JE.		×	~			H/T		IVI	
RRn RRn		st. E.		Bo Norm-	denform Pararendzir	na	-	Substr	atsys	t. E		Legend	en- I	lumu	sfo	orm	Bo - a	denab	GOI	Star	nd	Bode	nschä	tzun	g
RKN				5.000.00					12.75		N	Nr.	-	ti	1	-	Vorg.		-	+	+	Acker			-
											The	ema	_				Grad		-		0	Grünland			_
		Hori	zontken	nzeichn	ung		Boo	lenfarb	e	SI	kelett	B	denart			Г	Hy	dom.	Merkn	nale	Γ.	Gef	üge	Ê	Τ
Ifd. Proben-Nr. Nr.		Nr.	Symbol	Obe Gren [cm	r- bzw. Unte ze Form	ergrenze Schärfe	Munse	ll subje	ektīv	A v0 (V	nteil on-bis 'ol%)	Grob- boden	Feinbo bzw. zers	oden Torf- Stufe	Humus	Carbonat	Rost fl.	Bleich fl.	Fe / Koni Ant.	Mn ret. Gr.	Ausfäll.	Form	Größe	Rohdichte(Description
1		L	13	e	de									7	0									Ť	

20 30

70 80

10YR 2/3

10YR 6/4

Profil RF 48 – 8532 Garmisch-Partenkirchen

w de

e di

w

de

12 8

8 0

0 14

14 34

	Profilk			kenn	ung			Projel	tkenn	ung			Lage	£			Zuordnu	ng			Aufna	hme	
Obj	-ld				Blatt-Nr. TK25	Aufn Serie	Profil- Nr.	SI	RRA02		R	442	9916	Höhe m ü. NN	Pireg.	_			LandschEinh	Name	Dötterl Münch	(TU / en) /	Aufschl Art
Blat	Iname	G	Sarmisch-	+				Fremo	ikennu	ing	н			1000	Lkr.	Garmi	sch-Partenkirch	en	1022	Datum	31.07.2	800	
1	K25	Pa	rtenkirchen		8532	96	48	C	S-RF48		11	526	2288	795	Gde.	Garmis	sch-Partenkirch [Garmisch-	en	15.5	externe Aufn.	UNI-	R	GS
nt-Nr.	a Schicht-Nr. Schicht-Sym. Geogenese		Gesamt- skelett	Bod	enarten- uppen	ymb.	T	-Bez.	Ski	elett	gung	rkung		Kompone	nten de	r Grob	fraktion		ĸ	omponentei	n der Feinf	raktion	
Schicl			Anteil von - bis (Vol%)	grob	fein	Substart-S		Substart	Verteil.	Einreg.	Verfest	Beme	Bodenkdl Geolog Begriff	Petrogra Bezeichn	ph. / ung vo	Anteil on - bis /ol%)	Stratigraphie	Verwitt.	Bodenkdl I Geolog. E Begriff	Petrograph. 3ezeichnung	Anteil von - bis (Vol%)	Stratigra	Verwitt.
1			0		÷													_					
2 V c		20	nz	н	In(Dst)					T		DeG	10	0 - 100	tr			I/KA	100 - 100	qh		

x2r5

x2r5

Ls2

Ls2

7 0

7 c2

4 c3

1 c5

A в

Bemerkungen

2

3

4

5

Of

Oh

I Axh

I clCv

С

Aufschl.-Art GS

Bemerk.

Schicht-Nr. Schicht-Sym.

2 v

2 v

2 v

2

2 ٧

v

Bemerkung

Aufnahme Dötteri (TU München) 31.07.2008

Rohdichte(tr) Durchwurz.

kru

ugl

3

Mikro-relief Entf. z. Hankok

flagen Mineralproben	6 18	7 18	6 15	4 14	6 20	3 19	5 20	7 21	7 18	4 17	6 19	2 16	5 22	6 21	6 23	4 19	8 15	6 17	7 19	5 20	5 18	6 21	3 17	4 20	6 22	7 19	6 18	5 23	6 19	-
Auflagen Mine	9	7	9	4	9	e	5	7	7	4	9	2	5	9	9	4	8	9	7	5	5	9	ъ	4	9	7	9	5	9	
Probe	RF4/1	RF4/2	RF4/3	RF4/4	RF4/5	RF4/6	RF4/7	RF4/8	RF4/9	RF4/10	RF4/11	RF4/12	RF4/13	RF4/14	RF4/15	RF4/16	RF4/17	RF4/18	RF4/19	RF4/20	RF4/21	RF4/22	RF4/23	RF4/24	RF4/25	RF4/26	RF4/27	RF4/28	RF4/29	

9.3 Mächtigkeiten [cm] der 30 IMIS-Mischproben pro Referenzfläche

Probe	Auflagen	Mineralproben
RF3/1	4	21
RF3/2	5	19
RF3/3	5	20
RF3/4	5	21
RF3/5	8	18
RF3/6	9	18
RF3/7	5	18
RF3/8	9	21
RF3/9	5	20
RF3/10	5	17
RF3/11	5	22
RF3/12	4	18
RF3/13	с	23
RF3/14	4	24
RF3/15	З	25
RF3/16	7	18
RF3/17	9	20
RF3/18	9	18
RF3/19	7	19
RF3/20	7	15
RF3/21	5	20
RF3/22	9	18
RF3/23	4	17
RF3/24	З	19
RF3/25	4	21
RF3/26	5	20
RF3/27	9	19
RF3/28	4	24
RF3/29	З	21
RF3/30	4	22
Mittelwert	5	20

Mineralproben	24	20	20	22	20	20	23	21	23	18	22	24	16	18	20	20	22	20	16	13	24	14	15	15	22	25	23	20	19	13	00
Auflagen	4	4	4	ю	ი	2	ი	9	5	5	5	с	9	9	4	9	5	5	4	9	9	ი	5	5	S	2	4	ი	2	4	r
Probe	RF2/1	RF2/2	RF2/3	RF2/4	RF2/5	RF2/6	RF2/7	RF2/8	RF2/9	RF2/10	RF2/11	RF2/12	RF2/13	RF2/14	RF2/15	RF2/16	RF2/17	RF2/18	RF2/19	RF2/20	RF2/21	RF2/22	RF2/23	RF2/24	RF2/25	RF2/26	RF2/27	RF2/28	RF2/29	RF2/30	Mittelwert

Probe	Auflagen	Mineralproben
RF1/1	4	22
RF1/2	4	25
RF1/3	4	25
RF1/4	5	30
RF1/5	с	23
RF1/6	4	21
RF1/7	4	20
RF1/8	5	27
RF1/9	5	24
RF1/10	2	27
RF1/11	5	26
RF1/12	S	24
RF1/13	9	26
RF1/14	5	25
RF1/15	2	27
RF1/16	4	25
RF1/17	2	26
RF1/18	4	27
RF1/19	4	28
RF1/20	ю	26
RF1/21	с	25
RF1/22	2	23
RF1/23	4	24
RF1/24	с	27
RF1/25	5	25
RF1/26	2	23
RF1/27	ю	22
RF1/28	с	23
RF1/29	4	24
RF1/30	З	27
Mittelwert	4	25

Mineralproben	13	17	18	20	20	18	15	17	11	17	17	14	15	12	15	18	14	14	16	6	20	14	17	17	14	16	14	17	17	15	16
Auflagen	7	7	9	9	7	7	8	7	6	7	7	7	8	8	9	7	7	7	7	8	8	8	5	5	7	9	9	5	7	5	7
Probe	RF8/1	RF8/2	RF8/3	RF8/4	RF8/5	RF8/6	RF8/7	RF8/8	RF8/9	RF8/10	RF8/11	RF8/12	RF8/13	RF8/14	RF8/15	RF8/16	RF8/17	RF8/18	RF8/19	RF8/20	RF8/21	RF8/22	RF8/23	RF8/24	RF8/25	RF8/26	RF8/27	RF8/28	RF8/29	RF8/30	Mittolwort

Mineralproben	21	17	14	21	17	19	15	19	16	19	20	19	19	17	18	16	16	17	17	18	14	17	20	19	16	14	17	16	17	15	17
Auflagen	3	9	7	2	з	5	5	2	4	З	з	4	5	9	3	9	9	7	5	4	9	4	4	9	8	7	9	8	7	5	5
Probe	RF7/1	RF7/2	RF7/3	RF7/4	RF7/5	RF7/6	RF7/7	RF7/8	RF7/9	RF7/10	RF7/11	RF7/12	RF7/13	RF7/14	RF7/15	RF7/16	RF7/17	RF7/18	RF7/19	RF7/20	RF7/21	RF7/22	RF7/23	RF7/24	RF7/25	RF7/26	RF7/27	RF7/28	RF7/29	RF7/30	Mittelwert

Probe	Auflagen	Mineralproben
RF6/1	9	16
RF6/2	10	13
RF6/3	10	14
RF6/4	6	13
RF6/5	6	13
RF6/6	9	14
RF6/7	9	19
RF6/8	4	21
RF6/9	4	20
RF6/10	4	19
RF6/11	9	23
RF6/12	5	18
RF6/13	9	19
RF6/14	5	15
RF6/15	5	12
RF6/16	5	17
RF6/17	7	16
RF6/18	7	17
RF6/19	4	19
RF6/20	9	19
RF6/21	7	17
RF6/22	14	10
RF6/23	5	19
RF6/24	5	19
RF6/25	4	20
RF6/26	8	14
RF6/27	7	18
RF6/28	5	16
RF6/29	9	13
RF6/30	4	20
Mittelwert	9	17

Probe	Auflagen	Mineralproben
RF5/1	10	10
RF5/2	14	6
RF5/3	12	9
RF5/4	10	10
RF5/5	7	14
RF5/6	11	10
RF5/7	14	6
RF5/8	6	12
RF5/9	9	11
RF5/10	7	5
RF5/11	5	11
RF5/12	7	15
RF5/13	7	5
RF5/14	5	13
RF5/15	10	13
RF5/16	9	15
RF5/17	5	14
RF5/18	4	10
RF5/19	80	14
RF5/20	8	12
RF5/21	6	15
RF5/22	8	13
RF5/23	5	12
RF5/24	4	13
RF5/25	4	10
RF5/26	4	10
RF5/27	9	13
RF5/28	4	12
RF5/29	9	13
RF5/30	7	12
Mittelwert	7	11

Monitoring zur Standortvariabilität von Radiocäsium – Abschlussbericht

Mineralproben	œ	9	7	5	12	5	7	10	10	11	16	13	5	13	5	14	6	5	14	14	16	14	10	8	6	12	8	12	11	6	10
Auflagen	12	6	10	14	13	12	14	6	12	11	11	ø	13	12	15	10	11	13	13	12	7	8	7	10	9	6	13	10	7	8	11
Probe	RF12/1	RF12/2	RF12/3	RF12/4	RF12/5	RF12/6	RF12/7	RF12/8	RF12/9	RF12/10	RF12/11	RF12/12	RF12/13	RF12/14	RF12/15	RF12/16	RF12/17	RF12/18	RF12/19	RF12/20	RF12/21	RF12/22	RF12/23	RF12/24	RF12/25	RF12/26	RF12/27	RF12/28	RF12/29	RF12/30	Mittelwert

Mineralproben	15	16	20	11	13	8	14	14	13	7	14	12	17	14	16	16	20	15	15	20	11	13	14	11	16	16	7	12	14	15	14
Auflagen	8	8	5	10	7	11	6	7	6	7	9	7	4	8	7	9	9	10	7	9	6	8	6	6	9	8	12	6	8	7	ω
Probe	RF11/1	RF11/2	RF11/3	RF11/4	RF11/5	RF11/6	RF11/7	RF11/8	RF11/9	RF11/10	RF11/11	RF11/12	RF11/13	RF11/14	RF11/15	RF11/16	RF11/17	RF11/18	RF11/19	RF11/20	RF11/21	RF11/22	RF11/23	RF11/24	RF11/25	RF11/26	RF11/27	RF11/28	RF11/29	RF11/30	Mittelwert

Droho	Auflanan	Mineralnrohen
	1060101	
KF10/1	x	.50
RF10/2	5	15
RF10/3	9	17
RF10/4	с	17
RF10/5	8	8
RF10/6	8	7
RF10/7	6	13
RF10/8	9	18
RF10/9	6	8
RF10/10	4	18
RF10/11	7	11
RF10/12	5	15
RF10/13	5	10
RF10/14	9	12
RF10/15	З	15
RF10/16	7	13
RF10/17	ი	12
RF10/18	8	17
RF10/19	4	20
RF10/20	7	15
RF10/21	4	15
RF10/22	10	80
RF10/23	9	15
RF10/24	9	14
RF10/25	ი	12
RF10/26	5	17
RF10/27	5	10
RF10/28	7	13
RF10/29	9	15
RF10/30	5	14
Mittelwert	9	14

Mineralproben	13	10	9	8	12	10	7	6	9	7	7	9	9	5	7	9	9	7	11	5	11	5	10	5	13	6	10	8	7	10	<
Auflagen	2	2	2	2	-	2	с	2	2	2	2	2	4	с	S	с	ი	e	2	2	e	2	2	2	2	4	4	2	2	2	ç
Probe	RF9/1	RF9/2	RF9/3	RF9/4	RF9/5	RF9/6	RF9/7	RF9/8	RF9/9	RF9/10	RF9/11	RF9/12	RF9/13	RF9/14	RF9/15	RF9/16	RF9/17	RF9/18	RF9/19	RF9/20	RF9/21	RF9/22	RF9/23	RF9/24	RF9/25	RF9/26	RF9/27	RF9/28	RF9/29	RF9/30	Alittohuort

Probe	Auflagen	Mineralproben
RF16/1	n.v.	18
RF16/2	n.v.	19
RF16/3	n.v.	17
RF16/4	n.v.	20
RF16/5	n.v.	16
RF16/6	n.v.	17
RF16/7	n.v.	18
RF16/8	n.v.	16
RF16/9	n.v.	17
RF16/10	n.v.	14
RF16/11	n.v.	18
RF16/12	n.v.	13
RF16/13	n.v.	14
RF16/14	n.v.	23
RF16/15	n.v.	17
RF16/16	n.v.	13
RF16/17	n.v.	15
RF16/18	n.v.	12
RF16/19	n.v.	20
RF16/20	n.v.	23
RF16/21	n.v.	21
RF16/22	n.v.	18
RF16/23	n.v.	15
RF16/24	n.v.	17
RF16/25	n.v.	15
RF16/26	n.v.	20
RF16/27	n.v.	22
RF16/28	n.v.	24
RF16/29	n.v.	16
RF16/30	n.v.	18
Mittelwert	n.v.	18

Mineralproben	ę	2	ę	5	e	9	с	-	2	ю	2	2	-	ი	2	e	ю	5	ი	4	-	4	4	-	က	e	e	2	3	2	e
Auflagen	4	3	1	2	1	1	2	с	2	-	З	с	2	2	1	-	-	2	4	З	с	2	-	2	2	-	2	2	-	3	2
Probe	RF15/1	RF15/2	RF15/3	RF15/4	RF15/5	RF15/6	RF15/7	RF15/8	RF15/9	RF15/10	RF15/11	RF15/12	RF15/13	RF15/14	RF15/15	RF15/16	RF15/17	RF15/18	RF15/19	RF15/20	RF15/21	RF15/22	RF15/23	RF15/24	RF15/25	RF15/26	RF15/27	RF15/28	RF15/29	RF15/30	Mittelwert

Mineralproben	23	13	16	15	22	16	23	22	17	19	24	16	21	18	23	23	20	23	21	22	17	17	19	17	18	23	20	21	18	16	19
Auflagen	2	5	5	9	ი	4	с	с	5	5	2	5	ო	4	2	2	9	5	e	4	5	5	4	9	с	2	9	4	5	5	4
Probe	RF14/1	RF14/2	RF14/3	RF14/4	RF14/5	RF14/6	RF14/7	RF14/8	RF14/9	RF14/10	RF14/11	RF14/12	RF14/13	RF14/14	RF14/15	RF14/16	RF14/17	RF14/18	RF14/19	RF14/20	RF14/21	RF14/22	RF14/23	RF14/24	RF14/25	RF14/26	RF14/27	RF14/28	RF14/29	RF14/30	Mittelwert

Probe	Auflagen	Mineralproben
RF13/1	8	15
RF13/2	5	20
RF13/3	9	16
RF13/4	8	15
RF13/5	6	13
RF13/6	9	12
RF13/7	8	14
RF13/8	5	17
RF13/9	5	16
RF13/10	7	16
RF13/11	8	14
RF13/12	7	13
RF13/13	7	12
RF13/14	9	17
RF13/15	5	13
RF13/16	10	14
RF13/17	11	15
RF13/18	9	17
RF13/19	13	14
RF13/20	10	13
RF13/21	8	12
RF13/22	6	13
RF13/23	5	14
RF13/24	9	16
RF13/25	8	14
RF13/26	11	13
RF13/27	6	17
RF13/28	8	17
RF13/29	8	15
RF13/30	7	16
Mittelwert	8	15

Mineralproben	20	17	19	20	18	17	16	13	16	16	19	16	19	18	16	18	15	13	19	16	16	11	18	17	16	17	17	19	15	16	17
Auflagen	5	9	e	4	9	7	4	8	5	4	5	5	4	7	7	9	4	6	5	8	5	5	4	4	4	9	5	9	4	9	5
Probe	RF20/1	RF20/2	RF20/3	RF20/4	RF20/5	RF20/6	RF20/7	RF20/8	RF20/9	RF20/10	RF20/11	RF20/12	RF20/13	RF20/14	RF20/15	RF20/16	RF20/17	RF20/18	RF20/19	RF20/20	RF20/21	RF20/22	RF20/23	RF20/24	RF20/25	RF20/26	RF20/27	RF20/28	RF20/29	RF20/30	Mittelwert

Mineralproben	18	20	21	17	16	16	18	20	17	16	22	19	22	21	23	17	19	21	19	22	20	21	18	19	18	17	18	24	18	21	19
Auflagen	8	5	5	7	9	5	9	5	5	9	4	с	4	4	2	с	4	З	4	4	7	7	4	с	5	5	9	e	2	33	5
Probe	RF19/1	RF19/2	RF19/3	RF19/4	RF19/5	RF19/6	RF19/7	RF19/8	RF19/9	RF19/10	RF19/11	RF19/12	RF19/13	RF19/14	RF19/15	RF19/16	RF19/17	RF19/18	RF19/19	RF19/20	RF19/21	RF19/22	RF19/23	RF19/24	RF19/25	RF19/26	RF19/27	RF19/28	RF19/29	RF19/30	Mittelwert

en Mineralproben	16	13	15	10	15	13	12	17	23	18	21	20	18	19	22	17	9	16	18	15	19	16	16	17	18	25	18	13	18	8	
Auflage	5	ø	10	12	4	2	9	e	2	4	5	ო	5	ი	4	7	11	∞	7	10	4	9	5	ო	4	9	ო	12	e	8	9
Probe	RF18/1	RF18/2	RF18/3	RF18/4	RF18/5	RF18/6	RF18/7	RF18/8	RF18/9	RF18/10	RF18/11	RF18/12	RF18/13	RF18/14	RF18/15	RF18/16	RF18/17	RF18/18	RF18/19	RF18/20	RF18/21	RF18/22	RF18/23	RF18/24	RF18/25	RF18/26	RF18/27	RF18/28	RF18/29	RF18/30	A Altholication A

Probe	Auflagen	Mineralproben
RF17/1	3	22
RF17/2	4	17
RF17/3	4	19
RF17/4	5	17
RF17/5	с	16
RF17/6	2	22
RF17/7	З	20
RF17/8	с	20
RF17/9	2	15
RF17/10	4	17
RF17/11	4	17
RF17/12	ი	19
RF17/13	4	16
RF17/14	с	17
RF17/15	4	20
RF17/16	4	22
RF17/17	5	20
RF17/18	5	15
RF17/19	с	21
RF17/20	4	14
RF17/21	с	19
RF17/22	S	16
RF17/23	2	18
RF17/24	с	17
RF17/25	4	12
RF17/26	с	19
RF17/27	с	17
RF17/28	2	23
RF17/29	9	12
RF17/30	З	21
Mittelwert	3	18

Mineralproben	11	15	16	18	17	10	15	14	10	15	8	13	12	15	11	6	12	10	13	11	10	13	17	16	14	18	14	11	6	12	13
Auflagen	2	2	З	2	з	2	3	з	5	2	2	з	4	2	3	2	2	2	2	3	4	з	з	2	4	з	S	2	2	2	ო
Probe	RF24/1	RF24/2	RF24/3	RF24/4	RF24/5	RF24/6	RF24/7	RF24/8	RF24/9	RF24/10	RF24/11	RF24/12	RF24/13	RF24/14	RF24/15	RF24/16	RF24/17	RF24/18	RF24/19	RF24/20	RF24/21	RF24/22	RF24/23	RF24/24	RF24/25	RF24/26	RF24/27	RF24/28	RF24/29	RF24/30	Mittelwert

Mineralproben	24	20	16	18	22	20	18	19	20	18	22	18	20	20	18	19	21	20	22	23	18	20	19	20	22	19	17	19	20	22	20
Auflagen	1	0,5	-	2	З	З	4	2	2	2	4	-	4	З	-	З	2	4	-	-	2	2	с	2	-	З	-	4	2	-	2
Probe	RF23/1	RF23/2	RF23/3	RF23/4	RF23/5	RF23/6	RF23/7	RF23/8	RF23/9	RF23/10	RF23/11	RF23/12	RF23/13	RF23/14	RF23/15	RF23/16	RF23/17	RF23/18	RF23/19	RF23/20	RF23/21	RF23/22	RF23/23	RF23/24	RF23/25	RF23/26	RF23/27	RF23/28	RF23/29	RF23/30	Mittelwert

Probe	Auflagen	Mineralproben
(F22/1	ωư	22
F22/3	20	18
(F22/4	с	21
RF22/5	с	16
RF22/6	2	22
RF22/7	5	23
RF22/8	ო	26
RF22/9	-	20
F22/10	4	18
F22/11	4	19
F22/12	8	23
F22/13	7	25
F22/14	7	25
F22/15	8	28
F22/16	4	24
F22/17	2	24
F22/18	2	20
F22/19	7	22
F22/20	7	25
F22/21	З	22
F22/22	5	21
F22/23	4	24
F22/24	4	23
F22/25	2	23
F22/26	4	20
F22/27	2	22
F22/28	5	21
F22/29	4	23
F22/30	4	20
ittelwert	4	22

In Mineralprobe	22	20	20	24	26	18	24	22	22	20	22	22	22	18	22	22	22	20	25	22	26	20	26	22	21	22	23	20	20	22	
Auflage	0,2	0,4	0	0	0,2	0,2	0	0	0,2	0,2	0	0,2	0,2	0,2	0	0	0	0,2	-	0,4	0,2	0,4	-	0,2	0	0,2	0,4	0	0	0.2	
Probe	RF21/1	RF21/2	RF21/3	RF21/4	RF21/5	RF21/6	RF21/7	RF21/8	RF21/9	RF21/10	RF21/11	RF21/12	RF21/13	RF21/14	RF21/15	RF21/16	RF21/17	RF21/18	RF21/19	RF21/20	RF21/21	RF21/22	RF21/23	RF21/24	RF21/25	RF21/26	RF21/27	RF21/28	RF21/29	RF21/30	

Mineralproben	15	10	18	13	12	18	14	16	16	10	15	12	17	10	12	10	14	18	8	12	10	12	7	13	17	12	13	10	14	19	13
Auflagen	10	10	7	10	12	7	7	8	7	6	8	13	10	7	7	6	10	7	10	13	12	12	13	8	9	12	12	11	8	12	10
Probe	RF28/1	RF28/2	RF28/3	RF28/4	RF28/5	RF28/6	RF28/7	RF28/8	RF28/9	RF28/10	RF28/11	RF28/12	RF28/13	RF28/14	RF28/15	RF28/16	RF28/17	RF28/18	RF28/19	RF28/20	RF28/21	RF28/22	RF28/23	RF28/24	RF28/25	RF28/26	RF28/27	RF28/28	RF28/29	RF28/30	Mittelwert

Mineralproben	9	0	8	7	19	18	16	16	20	18	16	18	22	16	2	-	0	7	5	9	16	18	15	17	19	15	19	18	12	2	12
Auflagen	17	21	8	8	2	3	0	2	-	2	5	4	5	8	18	21	15	15	14	13	2	З	с	4	2	5	с	2	5	19	00
Probe	RF27/1	RF27/2	RF27/3	RF27/4	RF27/5	RF27/6	RF27/7	RF27/8	RF27/9	RF27/10	RF27/11	RF27/12	RF27/13	RF27/14	RF27/15	RF27/16	RF27/17	RF27/18	RF27/19	RF27/20	RF27/21	RF27/22	RF27/23	RF27/24	RF27/25	RF27/26	RF27/27	RF27/28	RF27/29	RF27/30	Mittelwert

Mineralproben	23	20	23	25	23	25	27	18	24	22	24	20	25	25	26	25	20	22	30	28	24	22	23	22	20	25	22	20	18	20	
Auflagen	13	6	15	15	13	16	10	12	12	13	11	10	10	10	8	6	7	10	12	10	13	6	11	12	13	10	11	12	12	11	
Probe	RF26/1	RF26/2	RF26/3	RF26/4	RF26/5	RF26/6	RF26/7	RF26/8	RF26/9	RF26/10	RF26/11	RF26/12	RF26/13	RF26/14	RF26/15	RF26/16	RF26/17	RF26/18	RF26/19	RF26/20	RF26/21	RF26/22	RF26/23	RF26/24	RF26/25	RF26/26	RF26/27	RF26/28	RF26/29	RF26/30	A 144 - 1 - 1 - 1 - 1 - 1

Probe	Auflagen	Mineralproben
RF25/1	4	18
RF25/2	5	19
RF25/3	З	17
RF25/4	ი	14
RF25/5	0	21
RF25/6	1	20
RF25/7	2	19
RF25/8	0	20
RF25/9	1	19
RF25/10	0	19
RF25/11	0	16
RF25/12	0	22
RF25/13	0	18
RF25/14	2	14
RF25/15	0	19
RF25/16	0	21
RF25/17	-	18
RF25/18	1	20
RF25/19	0	16
RF25/20	1	19
RF25/21	1	18
RF25/22	2	19
RF25/23	2	20
RF25/24	0	17
RF25/25	0	17
RF25/26	2	18
RF25/27	0	19
RF25/28	1	19
RF25/29	0	18
RF25/30	0	20
Mittelwert	1	18

0 5 5

Mineralproben	18	25	18	21	17	13	18	15	13	16	13	15	14	16	12	18	17	19	19	18	20	24	25	25	18	17	14	16	21	21	18
Auflagen	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.
Probe	RF31/1	RF31/2	RF31/3	RF31/4	RF31/5	RF31/6	RF31/7	RF31/8	RF31/9	RF31/10	RF31/11	RF31/12	RF31/13	RF31/14	RF31/15	RF31/16	RF31/17	RF31/18	RF31/19	RF31/20	RF31/21	RF31/22	RF31/23	RF31/24	RF31/25	RF31/26	RF31/27	RF31/28	RF31/29	RF31/30	Mittelwert

n Mineralprober	11	5	15	20	19	12	16	10	17	ω	17	13	12	œ	16	18	14	16	13	15	ω	15	10	12	13	14	11	18	11	13	
Auflager	6	15	2	2	4	8	4	9	6	7	8	∞	10	14	5	11	7	12	∞	10	14	5	10	7	6	ø	10	с	6	6	•
Probe	RF30/1	RF30/2	RF30/3	RF30/4	RF30/5	RF30/6	RF30/7	RF30/8	RF30/9	RF30/10	RF30/11	RF30/12	RF30/13	RF30/14	RF30/15	RF30/16	RF30/17	RF30/18	RF30/19	RF30/20	RF30/21	RF30/22	RF30/23	RF30/24	RF30/25	RF30/26	RF30/27	RF30/28	RF30/29	RF30/30	1

Probe	Auflagen	Mineralproben
RF29/1	∞	13
RF29/2	7	13
RF29/3	7	14
RF29/4	5	17
RF29/5	7	16
RF29/6	5	16
RF29/7	4	10
RF29/8	7	9
RF29/9	9	8
RF29/10	8	9
RF29/11	9	20
RF29/12	5	20
RF29/13	7	18
RF29/14	8	18
RF29/15	80	17
RF29/16	6	15
RF29/17	80	15
RF29/18	80	18
RF29/19	9	16
RF29/20	4	19
RF29/21	5	18
RF29/22	7	14
RF29/23	9	17
RF29/24	80	19
RF29/25	9	19
RF29/26	7	14
RF29/27	4	20
RF29/28	7	17
RF29/29	80	19
RF29/30	10	14
Mittelwert	7	16

Mineralproben	19	20	22	25	20	19	22	21	18	15	20	23	23	19	26	20	20	21	22	18	19	22	21	24	20	19	20	15	18	20	20
Auflagen	3	ი	9	5	5	4	7	4	9	4	4	ი	4	9	5	5	2	5	4	5	5	9	4	S	ი	5	9	5	7	8	LC.
Probe	RF36/1	RF36/2	RF36/3	RF36/4	RF36/5	RF36/6	RF36/7	RF36/8	RF36/9	RF36/10	RF36/11	RF36/12	RF36/13	RF36/14	RF36/15	RF36/16	RF36/17	RF36/18	RF36/19	RF36/20	RF36/21	RF36/22	RF36/23	RF36/24	RF36/25	RF36/26	RF36/27	RF36/28	RF36/29	RF36/30	Mittelwert

Mineralproben	20	18	20	18	24	19	15	21	23	10	15	22	12	13	20	18	24	19	24	15	19	22	16	14	22	21	26	14	20	24	19
Auflagen	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.
Probe	RF35/1	RF35/2	RF35/3	RF35/4	RF35/5	RF35/6	RF35/7	RF35/8	RF35/9	RF35/10	RF35/11	RF35/12	RF35/13	RF35/14	RF35/15	RF35/16	RF35/17	RF35/18	RF35/19	RF35/20	RF35/21	RF35/22	RF35/23	RF35/24	RF35/25	RF35/26	RF35/27	RF35/28	RF35/29	RF35/30	Mittelwert

Mineralproben	19	15	8	24	16	18	12	17	24	15	25	18	20	20	18	18	17	27	14	25	18	15	12	10	15	17	19	ω	19	14	14
Auflagen	0,5	e	4	5	6	7	4	0,5	4	2	e	4	0	5	5	5	5	4	4	-	2	9	4	4	9	5	4	9	4	2	V
Probe	RF34/1	RF34/2	RF34/3	RF34/4	RF34/5	RF34/6	RF34/7	RF34/8	RF34/9	RF34/10	RF34/11	RF34/12	RF34/13	RF34/14	RF34/15	RF34/16	RF34/17	RF34/18	RF34/19	RF34/20	RF34/21	RF34/22	RF34/23	RF34/24	RF34/25	RF34/26	RF34/27	RF34/28	RF34/29	RF34/30	Alittoluciont

Mineralproben	18	15	17	24	18	20	12	16	20	18	23	19	21	17	16	12	27	21	23	30	16	28	23	14	18	26	21	22	26	28	00
Auflager	0	0,5	-	0,5	-	0,5	0,5	0	-	0,5	0,5	0	-	0,5	0	0	0,5	0	0,5	-	0	0	0,5	0,5	-	-	0	0,5	-	0,5	20
Probe	RF33/1	RF33/2	RF33/3	RF33/4	RF33/5	RF33/6	RF33/7	RF33/8	RF33/9	RF33/10	RF33/11	RF33/12	RF33/13	RF33/14	RF33/15	RF33/16	RF33/17	RF33/18	RF33/19	RF33/20	RF33/21	RF33/22	RF33/23	RF33/24	RF33/25	RF33/26	RF33/27	RF33/28	RF33/29	RF33/30	Mittalwort

Mineralproben	23	23	23	22	26	18	20	17	19	24	23	20	20	19	25	20	21	23	23	21	23	22	24	20	20	22	20	24	23	24	22
Auflagen	8	7	9	9	4	4	З	4	4	5	3	З	4	з	2	4	4	2	з	З	4	5	2	4	4	4	с	с	4	2	4
Probe	RF40/1	RF40/2	RF40/3	RF40/4	RF40/5	RF40/6	RF40/7	RF40/8	RF40/9	RF40/10	RF40/11	RF40/12	RF40/13	RF40/14	RF40/15	RF40/16	RF40/17	RF40/18	RF40/19	RF40/20	RF40/21	RF40/22	RF40/23	RF40/24	RF40/25	RF40/26	RF40/27	RF40/28	RF40/29	RF40/30	Mittelwert

	2000 - U	a choucher of the second second second second second second second second second second second second second se
гире	Auliagen	иллегаргорел
RF39/1	12	8
RF39/2	з	31
RF39/3	9	17
RF39/4	7	22
RF39/5	4	19
RF39/6	12	11
RF39/7	7	14
RF39/8	7	13,5
RF39/9	6	15,5
RF39/10	5	14,75
RF39/11	7	18
RF39/12	7	10,5
RF39/13	6	16,5
RF39/14	7	14
RF39/15	8	13
RF39/16	9,5	13
RF39/17	10,5	17
RF39/18	10	10,5
RF39/19	10	13
RF39/20	з	14
RF39/21	з	19
RF39/22	12,5	11
RF39/23	6	19
RF39/24	7	17
RF39/25	6,5	21
RF39/26	5	16
RF39/27	7	24
RF39/28	5	19
RF39/29	5	24
RF39/30	4,5	17
Mittelwert	7	16

Mineralproben	11	10	12	15	23	16	13	16	19	17	19	17	15	13	20	8	13	11	13	16	10	14	12	21	11	14	14	18	18	16	15
Auflagen	8	4	7	9	S	12	6	ω	2	8	2	9	10	9	4	19	10	6	6	7	11	14	15	10	11	10	7	8	7	8	8
Probe	RF38/1	RF38/2	RF38/3	RF38/4	RF38/5	RF38/6	RF38/7	RF38/8	RF38/9	RF38/10	RF38/11	RF38/12	RF38/13	RF38/14	RF38/15	RF38/16	RF38/17	RF38/18	RF38/19	RF38/20	RF38/21	RF38/22	RF38/23	RF38/24	RF38/25	RF38/26	RF38/27	RF38/28	RF38/29	RF38/30	Mittelwert

Mineralproben	10	19	17	20	10	17	20	19	20	18	16	20	24	19	10	12	17	19	16	11	15	16	17	15	18	13	19	12	17	11	16
Auflagen	6	9	6	8	7	9	4	4	5	9	7	5	9	5	4	6	9	7	6	10	11	6	9	10	e	8	5	14	7	12	2
Probe	RF37/1	RF37/2	RF37/3	RF37/4	RF37/5	RF37/6	RF37/7	RF37/8	RF37/9	RF37/10	RF37/11	RF37/12	RF37/13	RF37/14	RF37/15	RF37/16	RF37/17	RF37/18	RF37/19	RF37/20	RF37/21	RF37/22	RF37/23	RF37/24	RF37/25	RF37/26	RF37/27	RF37/28	RF37/29	RF37/30	Mittelwert

Mineralproben	26	20	16	22	24	22	21	19	16	19	22	18	18	21	23	19	18	20	23	19	15	26	23	18	25	18	28	19	19	26	21
Auflagen	5	S	4	5	5	8	9	4	8	7	9	5	6	4	9	5	4	10	8	4	4	9	5	9	7	8	9	з	5	7	9
Probe	RF44/1	RF44/2	RF44/3	RF44/4	RF44/5	RF44/6	RF44/7	RF44/8	RF44/9	RF44/10	RF44/11	RF44/12	RF44/13	RF44/14	RF44/15	RF44/16	RF44/17	RF44/18	RF44/19	RF44/20	RF44/21	RF44/22	RF44/23	RF44/24	RF44/25	RF44/26	RF44/27	RF44/28	RF44/29	RF44/30	Mittelwert

Mineralproben	23	25	24	18	22	18	19	20	22	25	22	24	22	25	23	21	23	22	25	20	18	19	24	20	25	22	24	24	23	27	22
Auflagen	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.	n.v.
Probe	RF43/1	RF43/2	RF43/3	RF43/4	RF43/5	RF43/6	RF43/7	RF43/8	RF43/9	RF43/10	RF43/11	RF43/12	RF43/13	RF43/14	RF43/15	RF43/16	RF43/17	RF43/18	RF43/19	RF43/20	RF43/21	RF43/22	RF43/23	RF43/24	RF43/25	RF43/26	RF43/27	RF43/28	RF43/29	RF43/30	Mittelwert

Mineralproben	23	22	18	18	17	25	22	20	23	25	23	15	16	14	25	20	26	26	24	17	24	22	16	22	17	23	15	26	26	21	21
Auflagen	5	4	4	4	5	5	4	9	4	2	4	5	5	7	4	5	9	5	4	4	4	-	9	4	S	2	8	8	5	5	5
Probe	RF42/1	RF42/2	RF42/3	RF42/4	RF42/5	RF42/6	RF42/7	RF42/8	RF42/9	RF42/10	RF42/11	RF42/12	RF42/13	RF42/14	RF42/15	RF42/16	RF42/17	RF42/18	RF42/19	RF42/20	RF42/21	RF42/22	RF42/23	RF42/24	RF42/25	RF42/26	RF42/27	RF42/28	RF42/29	RF42/30	Mittelwert

Probe	Auflagen	Mineralproben
RF41/1	0,5	21,5
RF41/2	0	18
RF41/3	0,5	17
RF41/4	0	20
RF41/5	0	19
RF41/6	0	17
RF41/7	2	20
RF41/8	-	19
RF41/9	2	19
RF41/10	0,5	20
RF41/11	0,5	21
RF41/12	-	20
RF41/13	0,5	19
RF41/14	2	20
RF41/15	-	19
RF41/16	0	24
RF41/17	ო	18
RF41/18	-	20
RF41/19	-	18
RF41/20	2	19
RF41/21	0	22
RF41/22	0	23
RF41/23	-	22
RF41/24	0	19
RF41/25	с	24
RF41/26	-	21
RF41/27	0	19
RF41/28	0,5	16
RF41/29	0	21
RF41/30	0	23
Mittelwert	0,8	20

Mineralproben	0	4	0	ი	9	4	4	0	10	0	2	ი	2	4	-	8	0	4	2	5	0	10	4	-	2	0	0	2	5	0	3
Auflagen	6	18	15	14	12	11	14	13	11	22	17	20	8	8	10	15	15	13	12	13	21	10	7	13	12	12	16	14	14	15	13
Probe	RF48/1	RF48/2	RF48/3	RF48/4	RF48/5	RF48/6	RF48/7	RF48/8	RF48/9	RF48/10	RF48/11	RF48/12	RF48/13	RF48/14	RF48/15	RF48/16	RF48/17	RF48/18	RF48/19	RF48/20	RF48/21	RF48/22	RF48/23	RF48/24	RF48/25	RF48/26	RF48/27	RF48/28	RF48/29	RF48/30	Mittelwert

Mineralproben	ω	16	16	15	7	16	17	15	16	11	18	80	17	18	18	15	12	14	15	18	10	11	16	18	17	20	17	16	16	12	15
Auflagen	14	9	8	9	6	9	5	7	5	8	4	10	5	8	4	10	6	12	8	10	13	12	8	11	11	10	13	6	10	10	6
Probe	RF47/1	RF47/2	RF47/3	RF47/4	RF47/5	RF47/6	RF47/7	RF47/8	RF47/9	RF47/10	RF47/11	RF47/12	RF47/13	RF47/14	RF47/15	RF47/16	RF47/17	RF47/18	RF47/19	RF47/20	RF47/21	RF47/22	RF47/23	RF47/24	RF47/25	RF47/26	RF47/27	RF47/28	RF47/29	RF47/30	Mittelwert

Probe	Auflagen	Mineralproben
RF46/1	с	20
RF46/2	7	12
RF46/3	8	18
RF46/4	∞	80
RF46/5	10	18
RF46/6	с	24
RF46/7	7	26
RF46/8	12	22
RF46/9	9	15
RF46/10	1	18
RF46/11	4	20
RF46/12	2	26
RF46/13	10	24
RF46/14	8	24
RF46/15	7	27
RF46/16	10	19
RF46/17	6	20
RF46/18	13	18
RF46/19	7	21
RF46/20	6	18
RF46/21	6	22
RF46/22	11	10
RF46/23	4	26
RF46/24	15	12
RF46/25	14	17
RF46/26	5	14
RF46/27	7	21
RF46/28	80	13
RF46/29	5	14
RF46/30	16	10
Mittelwert	ω	19

Mineralproben	26	18	16	24	14	25	22	15	23	16	24	16	25	18	26	27	14	24	17	23	15	18	26	17	28	27	20	21	27	17	21
Auflagen	8	9	4	4	9	9	4	8	9	7	4	e	9	7	4	e	9	7	9	5	9	e	2	4	4	9	5	4	5	3	5
Probe	RF45/1	RF45/2	RF45/3	RF45/4	RF45/5	RF45/6	RF45/7	RF45/8	RF45/9	RF45/10	RF45/11	RF45/12	RF45/13	RF45/14	RF45/15	RF45/16	RF45/17	RF45/18	RF45/19	RF45/20	RF45/21	RF45/22	RF45/23	RF45/24	RF45/25	RF45/26	RF45/27	RF45/28	RF45/29	RF45/30	Mittelwert

9.4 Bodenanalytische Standardwerte

Profil RF 1 – 7037 Kelheim

Probe	Horizont	Proben- iefe (cm)	Skelett (Gew.%)			K	orn (G	gr ew.	öß %)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-	- I		gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+4-3												4,37	n.b.	n.n.	44,51	89,0	0,965	46	0,191
1/Of	Of	+3-1												3,29	n.b.	n.n.	29,63	59,3	1,238	24	0,150
1/Oh	Oh	+1-0												3,24	n.b.	n.n.	30,20	60,4	1,264	24	0,140
1/1	Ahe	0-1	2,3	7,9	17,0	24,9	49,8	13,6	19,0	9,4	42,0	8,2	Slu	3,43	10YR 5/3	n.n.	3,89	6,7	0,166	23	0,015
1/2	Aeh	1-4	5,0	6,5	12,1	25,8	44,4	13,0	19,6	11,1	43,7	11,8	Slu	3,26	10YR 5/4	n.n.	1,72	3,0	0,048	36	0,008
1/3	Bv	4-14	35,2	6,6	10,7	23,4	40,7	15,6	18,8	9,3	43,6	15,7	Slu	3,73	2,5Y 6/6	n.n.	0,91	1,6	0,034	27	0,006
1/4	Bv	14-24	44,7	7,8	10,5	23,4	41,6	14,6	18,6	10,6	43,8	14,6	Slu	4,02	2,5Y 6/6	n.n.	0,90	1,5	0,034	26	0,005
1/5	Bv	24-34	52,1	6,4	8,9	23,8	39,1	11,0	15,3	10,0	36,2	24,7	Ls3	4,08	2,5Y 6/6	n.n.	0,72	1,2	0,025	29	0,004
1/6	Bv	34-40	36,7	4,0	8,9	26,0	39,0	14,4	18,4	11,9	44,7	16,3	Slu	4,00	2,5Y 6/6	n.n.	0,35	0,6	0,013	27	0,003
1/7	Bv-Cv	40-50	40,6	4,6	9,0	24,3	38,0	11,2	15,5	10,1	36,9	25,2	Lt2	3,88	2,5Y 6/6	n.n.	0,22	0,4	0,010	22	0,005
1/8	II Sd-T	50+	1,8	2,3	5,3	12,2	19,8	5,4	5,1	3,8	14,2	65,9	Τt	3,69	10YR 6/8	n.n.	0,11	0,2	0,011	10	0,003
2/L	L	+4-2												4,11	n.b.	n.n.	55,79	100,0	1,743	32	0,134
2/Of	Of	+2-1												3,30	n.b.	n.n.	37,33	74,7	1,770	21	0,166
2/Oh	Oh	+1-0												3,14	n.b.	n.n.	39,01	78,0	2,047	19	0,231
2/1	Ah	0-1	7,0	10,0	25,8	24,9	60,7	12,1	12,4	6,4	30,9	8,4	SI3	3,00	n.b.	n.n.	10,33	17,8	0,456	23	0,049
2/2	Ae	1-4	16,5	9,3	28,1	23,4	60,7	10,1	11,7	7,6	29,4	9,9	SI3	2,75	n.b.	n.n.	1,54	2,7	0,047	33	0,004
2/3	Bv	4-16+	26,7	11,5	25,4	23,0	60,0	8,9	12,5	6,8	28,2	11,8	SI3	2,89	n.b.	n.n.	1,34	2,3	0,035	38	0,005
3/L	L	+4-3												4,11	n.b.	n.n.	49,46	98,9	1,012	49	0,086
3/Of	Of	+3-1												3,24	n.b.	n.n.	44,49	89,0	1,531	29	0,139
3/Oh	Oh	+1-0												3,07	n.b.	n.n.	31,70	63,4	1,176	27	0,113
3/1	Ah	0-1	1,5	8,8	15,1	28,3	52,3	15,2	1,8	22,0	39,0	8,7	SI3	2,88	n.b.	n.n.	4,77	8,2	0,167	29	0,014
3/2	Ae	1-3	3,1	6,4	14,9	31,3	52,6	13,4	15,6	9,1	38,1	9,3	SI3	2,68	n.b.	n.n.	2,35	4,0	0,065	36	0,006
3/3	Bv	3-17+	31,5	7,8	12,3	27,5	47,7	13,1	14,6	9,5	37,2	15,1	SI4	3,13	n.b.	n.n.	1,19	2,0	0,038	31	0,006

Profil RF 2 – 6840 Reichenbach

Probe	łorizont	Proben- efe (cm)	Skelett Gew.%)			K	orn (G	gr ew.	öß %)	e n			Boden- art	pН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-			gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+7-5												4,74	n.b.	n.n.	45,76	91,5	1,777	26	0,110
1/Of	Of	+5-2												4,10	n.b.	n.n.	43,62	87,2	2,233	20	0,178
1/Oh	Oh	+2-0												3,43	n.b.	n.n.	29,69	59,4	1,693	18	0,159
1/1	Ah	0-5	21,6	17,6	11,3	8,6	37,4	17,6	19,6	9,8	46,9	15,7	Slu	2,94	7,5YR 4/3	n.n.	11,08	19,1	0,688	16	0,125
1/2	Bv	6-18	31,7	19,4	11,5	7,4	38,3	15,0	18,9	10,1	44,0	17,7	Ls2	3,81	10YR 4/6	n.n.	1,18	2,0	0,072	16	0,020
1/3	Bv	18-29	23,5	18,8	11,4	7,5	37,6	14,9	19,5	10,7	45,1	17,3	Ls2	4,01	10YR 4/6	n.n.	0,74	1,3	0,050	15	0,015
1/4	Bv-Cv	29-40	22,1	19,2	11,1	7,7	38,0	15,5	18,8	10,5	44,8	17,3	Ls2	3,98	10YR 4/6	n.n.	0,41	0,7	0,034	12	0,012
1/5	Bv-Cv	40-50	29,3	17,7	11,3	6,5	35,5	19,0	17,6	10,9	47,5	17,0	Slu	3,92	10YR 4/6	n.n.	0,37	0,6	0,033	11	0,013
1/6	Bv-Cv	50-60	22,4	19,4	9,9	6,5	35,7	16,0	19,2	10,2	45,4	18,8	Ls2	3,97	10YR 4/6	n.n.	0,36	0,6	0,031	12	0,015
1/7	II Btv	117-125+	22,5	17,7	12,9	9,9	40,5	14,8	16,9	8,5	40,2	19,3	Ls2	3,90	10YR 4/6	n.n.	0,15	0,3	0,016	9	0,006
2/L	L	+6-4												4,53	n.b.	n.n.	46,63	93,3	1,396	33	0,093
2/Of	Of	+4-2												3,55	n.b.	n.n.	45,70	91,4	1,986	23	0,167
2/Oh	Oh	+2-0												3,33	n.b.	n.n.	22,83	45,7	1,283	18	0,136
2/1	Ah	0-5	18,8	18,9	10,6	6,5	36,1	12,5	20,7	13,2	46,4	17,5	Ls2	3,18	n.b.	n.n.	10,52	18,1	0,576	18	0,064
2/2	Bv	5-15	21,8	15,9	10,8	7,1	33,8	14,7	18,0	11,5	44,2	22,1	Ls2	3,17	n.b.	n.n.	2,10	3,6	0,104	20	0,013
2/3	Bv	15-30+	32,3	17,7	12,9	9,9	40,5	14,8	16,9	8,5	40,2	19,3	Ls2	3,99	n.b.	n.n.	1,77	3,1	0,096	18	0,013
3/L	L	+7-4												4,49	n.b.	n.n.	45,27	90,5	1,556	29	0,100
3/Of	Of	+4-2												4,51	n.b.	n.n.	42,85	85,7	2,526	17	0,201
3/Oh	Oh	+2-0												3,43	n.b.	n.n.	13,99	28,0	0,831	17	0,083
3/1	Ah	0-5	19,3	19,7	12,0	12,6	44,4	12,2	18,2	8,8	39,3	16,3	SI4	3,50	n.b.	n.n.	11,80	20,3	0,727	16	0,079
3/2	Bv	5-15	52,5	20,1	14,4	10,5	45,0	11,4	13,8	10,2	35,4	19,6	Ls3	3,54	n.b.	n.n.	3,39	5,8	0,169	20	0,018
3/3	Bv	15+	60,0	15,4	14,8	11,9	42,1	14,6	14,3	8,7	37,6	20,4	Ls3	3,61	n.b.	n.n.	5,62	9,7	0,215	26	0,021
Probe	lorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß .%)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
-------	----------	---------------------	-------------------	-----	------	------	-----------	-----------	-----------	-----	-----	-----	---------------	----------------------	-------------------	-------------------	-------	-------	-------	-----	-------
	-		Ŭ	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+4-3												3,90	n.b.	n.n.	48,27	96,5	1,645	29	0,270
1/Of	Of	+3-2												3,20	n.b.	n.n.	38,37	76,7	1,617	24	0,169
1/Oh	Oh	+2-0												3,14	n.b.	n.n.	26,43	52,9	1,190	22	0,118
1/1	Aeh	0-7	0,4	0,5	43,5	44,0	88,1	2,2	2,2	1,6	5,9	6,0	St2	3,19	10YR 2/1	n.n.	2,91	5,0	0,121	24	0,011
1/2	Bh	7-10	0,5	0,6	41,8	47,6	90,0	1,2	0,9	1,9	4,1	5,9	St2	3,53	10YR 3/4	n.n.	2,41	4,1	0,099	24	0,008
1/3	Bhv	10-22	0,1	0,4	47,7	43,2	91,3	1,4	1,2	1,1	3,7	5,1	St2	4,29	7,5YR 4/4	n.n.	1,04	1,8	0,048	22	0,005
1/4	Bv	25-38	0,1	0,3	40,4	50,9	91,6	2,0	1,1	1,6	4,7	3,6	fSms	4,40	10YR 5/8	n.n.	0,47	0,8	0,022	21	0,004
1/5	Bv	40-70+	0,0	0,2	44,6	50,5	95,3	1,0	0,9	0,6	2,4	2,3	fSms	4,34	10YR 5/8	n.n.	0,18	0,3	0,012	15	0,004
2/L	L	+3,5-3												3,94	n.b.	n.n.	50,55	100,0	1,116	45	0,096
2/Of	Of	3-0,5												3,05	n.b.	n.n.	39,97	79,9	1,411	28	0,122
2/Oh	Oh	0,5-0												3,20	n.b.	n.n.	10,78	21,6	0,528	20	0,031
2/1	Aeh	0-2	0,3	0,5	46,0	44,2	90,6	2,8	1,5	1,6	6,0	3,3	mSfs	3,27	n.b.	n.n.	2,36	4,1	0,115	20	0,007
2/2	Bhv	2-22+	0,6	0,4	47,0	43,7	91,1	0,8	1,9	1,8	4,6	4,3	mSfs	3,84	n.b.	n.n.	2,02	3,5	0,096	21	0,008
3/L	L	+4-3												3,84	n.b.	n.n.	39,80	79,6	1,351	29	0,092
3/Of	Of	3-1												2,95	n.b.	n.n.	45,05	90,1	1,939	23	0,171
3/Oh	Oh	1-0												3,14	n.b.	n.n.	22,20	44,4	0,977	23	0,090
3/1	Aeh	0-2	0,8	1,2	54,9	34,1	90,2	1,2	2,3	1,3	4,8	4,9	mSfs	3,15	n.b.	n.n.	3,42	5,9	0,174	20	0,013
3/2	Bhv	2-21+	0,2	0,6	45,5	45,3	91,4	1,4	1,5	2,3	5,2	3,4	mSfs	4,06	n.b.	n.n.	1,26	2,2	0,061	21	0,005

Profil RF 3 – 7236 Münchsmünster

Profil RF 4 – 7440 Aham

Probe	lorizont	Proben- efe (cm)	Skelett Gew.%)			к	orı (G	ngr Gew	öß .%)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-	- ÷	· · · · ·	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+4-3												4,23	n.b.	n.n.	47,50	95,0	1,015	47	0,215
1/01	f Of	+3-0,5												3,57	7,5YR 3/4	n.n.	46,00	92,0	1,690	27	0,173
1/Oł	n Oh	+0,5-0												3,28	10YR 2/2	n.n.	24,33	48,7	1,087	22	0,108
1/1	Aeh	0-1	0,4	1,6	3,3	7,3	12,2	41,6	25,0	6,1	72,7	15,1	Ut3	3,13	10YR 3/3	n.n.	10,46	18,0	0,475	22	0,083
1/2	AI	1-11	0,3	0,5	1,8	5,1	7,4	45,2	24,9	8,2	78,3	14,3	Ut3	3,70	10YR 5/6	n.n.	0,77	1,3	0,038	20	0,005
1/3	AI	11-21	0,5	0,4	1,8	4,6	6,7	45,2	23,7	8,4	77,4	15,9	Ut3	3,80	10YR 5/6	n.n.	0,46	0,8	0,032	14	0,006
1/4	AI	21-35	0,2	0,3	1,7	4,9	6,9	44,3	24,0	7,9	76,1	17,0	Ut3	3,82	10YR 5/6	n.n.	0,29	0,5	0,026	11	0,009
1/5	Bt	35-45	0,1	0,2	1,3	3,9	5,5	43,2	23,1	8,3	74,6	20,0	Ut4	4,04	10YR 4/4	n.n.	0,25	0,4	0,025	10	0,008
1/6	Bt	45-55	0,0	0,2	1,0	3,9	5,1	37,0	20,9	7,4	65,2	29,7	Tu4	4,39	10YR 4/4	n.n.	0,38	0,7	0,039	10	0,006
1/7	Bt	55-65	0,0	0,1	0,7	3,4	4,2	34,8	19,8	6,9	61,5	34,3	Tu3	4,57	10YR 4/4	n.n.	0,38	0,6	0,042	9	0,004
1/8	Bt	65-79+	0,0	0,0	0,3	3,5	3,9	34,5	19,1	6,1	59,7	36,4	Tu3	4,85	10YR 4/4	n.n.	0,36	0,6	0,043	8	0,005
2/L	L	+6-4												3,69	n.b.	n.n.	45,03	90,1	1,545	29	0,135
2/01	f Of	+4-2												3,50	n.b.	n.n.	39,93	79,9	1,505	27	0,130
2/Oł	n Oh	+2-0												3,20	n.b.	n.n.	24,75	49,5	1,080	23	0,098
2/1	Aeh	0-1	0,8	0,6	2,2	6,0	8,7	45,8	24,2	7,3	77,4	13,8	Ut3	3,40	n.b.	n.n.	2,14	3,7	0,109	20	0,009
2/2	AI	1-12+	2,3	0,6	2,4	5,7	8,6	47,4	23,9	6,9	78,2	13,1	Ut3	3,76	n.b.	n.n.	0,60	1,0	0,039	15	0,004
3/L	L	+5-4												3,65	n.b.	n.n.	46,42	92,8	1,791	26	0,148
3/01	f Of	+4-2												3,32	n.b.	n.n.	41,79	83,6	1,589	26	0,133
3/Oł	n Oh	+2-0												3,28	n.b.	n.n.	15,45	30,9	0,642	24	0,055
3/1	Aeh	0-2	0,2	0,5	2,2	5,0	7,7	45,2	24,2	6,1	75,4	16,9	Ut3	3,43	n.b.	n.n.	1,62	2,8	0,076	21	0,005
3/2	AI	2-11+	0,4	0,6	2,0	5,3	7,9	46,4	22,4	7,8	76,6	15,5	Ut3	3,68	n.b.	n.n.	0,95	1,6	0,056	17	0,003
1		1			1	1		1	1	1							1			1	

	Probe	Horizont	Proben- efe (cm)	Skelett Gew.%)			K	orn (G	gr ew.	öß .%)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	N	s
		-	ti	Ŭ	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)
1.	/L	L	+7-5												4,16	n.b.	n.b.	40,71	1,687	0,25
1/	Of	Of	+5-2												4,13	n.b.	n.b.	38,35	1,593	0,18
1/0	Oh	Oh	+2-0												3,72	n.b.	n.b.	30,49	1,210	0,13
1	/1	Ah	0-12	1,5	1,6	4,1	8,5	14,2	17,7	15,8	9,9	43,4	42,4	Lt3	3,70	10YR 3/4	n.n.	3,56	0,172	0,02
1	/2	T-Bv	12-20	12,3	2,9	3,8	8,0	14,8	14,3	16,6	11,7	42,6	42,6	Lt3	6,69	7,5YR 4/4	2,16	2,02	0,141	0,01
1	/3	T-Bv	20-28	20,9	2,3	2,7	5,7	10,7	17,5	18,0	10,4	45,9	43,4	Lt3	6,75	7,5YR 4/4	2,22	1,29	0,096	0,00
1	/4	T-Bv	28-35	16,8	1,0	1,5	4,0	6,5	16,8	20,7	11,1	48,5	45,0	Lt3	6,74	5YR 4/6	1,95	0,84	0,065	0,00
1	/5	T-Bv	35-44	10,7	0,8	1,1	2,7	4,6	16,8	18,9	11,7	47,4	47,9	Tu2	6,83	5YR 4/6	2,43	0,81	0,056	0,00
1	/6	Cv	44-55	12,6	1,0	2,7	10,3	13,9	20,7	19,7	9,8	50,2	35,9	Tu3	7,15	7,5YR 4/6	16,00	2,51	0,048	0,00
1.	/7	Cv	55-66	23,7	1,1	4,3	13,9	19,3	22,0	21,4	9,6	53,1	27,6	Lu	7,24	7,5YR 4/6	21,47	3,21	0,030	0,00
1	/8	Cv	66-76+	17,3	2,7	7,0	20,1	29,8	22,4	19,5	7,3	49,3	20,9	Ls2	7,35	7,5YR 4/6	30,78	4,87	0,020	0,00
2	/L	L	+8-6												4,90	n.b.	n.b.	48,65	1,263	0,08
2/	Of	Of	+6-3												4,44	n.b.	n.b.	48,01	2,018	0,16
2/	Oh	Oh	+3-0												3,72	n.b.	n.b.	43,54	1,720	0,17
2	/1	Ah	0-10+	7,5	1,4	4,5	9,1	15,1	17,8	18,8	11,1	47,7	37,2	Lt3	3,43	n.b.	n.n.	3,55	0,198	0,01
3	/L	L	+7-6												4,51	n.b.	n.b.	49,16	1,285	0,08
3/	Of	Of	+6-3												4,24	n.b.	n.b.	47,53	1,720	0,13
3/	Oh	Oh	+3-0												3,37	n.b.	n.b.	42,90	1,687	0,17
3	/1	Ah	0-10+	0,9	2,2	10,6	20,2	33,0	12,6	12,6	9,3	34,5	32,5	Lt2	3,28	n.b.	n.n.	4,27	0,222	0,01

Profil RF 5 – 6636 Kastl

Profil RF 6 – 6740 Neukirchen-Balbini

Probe	łorizont	^{>} roben- efe (cm)	Skelett Gew.%)			K	orn (G	gr ew.	öß .%)	e n			Boden- art	pН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-	ŧ ‡	0	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+8-5,5												3,35	n.b.	n.n.	48,09	96,2	0,857	56	0,240
1/Of	Of	+5,5-0,5												2,85	n.b.	n.n.	47,80	95,6	1,212	39	0,174
1/Oh	Oh	+0,5-0												2,99	n.b.	n.n.	33,61	67,2	0,939	36	0,130
1/1	Aeh	0-1	0,6	18,5	41,9	25,4	85,9	5,1	3,6	1,9	10,6	3,6	Su2	2,95	10YR 2/2	n.n.	1,97	3,4	0,045	44	0,006
1/2	Ahe	1-11	n.b.	22,4	46,5	21,5	90,4	3,2	2,3	1,1	6,6	3,0	mSgs	3,38	10YR 4/3	n.n.	0,60	1,0	0,010	60	0,003
1/3	II Bs	11-25	n.b.	21,1	36,8	18,6	76,5	4,0	5,4	3,7	13,1	10,4	SI3	4,55	7,5YR 5/6	n.n.	0,81	1,4	0,018	45	0,038
1/4	Bbs	25-40	6,4	20,4	32,5	23,4	76,3	7,2	5,6	4,4	17,1	6,6	SI2	4,27	10YR 6/6	n.n.	0,17	0,3	0,004	43	0,005
1/5	Bbs	40-53	2,9	7,4	25,3	34,0	66,7	5,8	6,9	6,4	19,1	14,2	SI4	4,00	10YR 6/6	n.n.	0,21	0,4	0,012	17	0,006
1/6	Bbs	53-62	0,7	1,6	22,9	58,6	83,1	5,4	3,8	2,4	11,6	5,3	SI2	4,16	10YR 6/6	n.n.	0,08	0,1	0,003	26	0,003
1/7	III Bbs	62-79+	2,1	0,7	21,4	46,9	69,0	5,4	4,5	5,6	15,4	15,6	SI4	3,90	10YR 7/6 10YR 6/8	n.n.	0,10	0,2	0,007	15	0,007
2/L	L	+8-5												3,22	n.b.	n.n.	47,83	95,7	1,221	39	0,104
2/Of	Of	+5-0,5												2,84	n.b.	n.n.	46,85	93,7	1,089	43	0,112
2/Oh	Oh	+0,5-0												3,05	n.b.	n.n.	28,21	56,4	0,811	35	0,081
2/1	Aeh	0-1	1,5	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	2,99	n.b.	n.n.	3,76	6,5	0,103	36	0,010
2/2	Ahe	1-25	5,6	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,25	n.b.	n.n.	1,67	2,9	0,042	40	0,004
2/3	II Bs	25-30+	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,93	n.b.	n.n.	1,44	2,5	0,030	48	0,006
3/L	L	+7-5												3,51	n.b.	n.n.	46,25	92,5	0,590	78	0,060
3/Of	Of	+5-0												2,86	n.b.	n.n.	48,03	96,1	1,292	37	0,122
3/1	Aeh	0-2	3,9	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	2,98	n.b.	n.n.	1,69	2,9	0,035	48	0,002
3/2	Ahe	2-27	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,20	n.b.	n.n.	0,62	1,1	0,016	39	0,003
3/3	II Bs	27-32+	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4,37	n.b.	n.n.	1,96	3,4	0,056	35	0,023

Probe	Horizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß .%)	e n			Boden- art	pН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-)	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+3,5-3												3,95	n.b.	n.n.	44,28	88,6	1,244	36	3,221
1/Of	Of	+3-1												3,27	n.b.	n.n.	38,58	77,2	1,668	23	0,165
1/Oh	Oh	+1-0												3,23	n.b.	n.n.	21,13	42,3	1,029	21	0,106
1/1	Ah	0-7	0,6	1,2	2,4	2,7	6,3	35,1	33,1	10,5	78,7	15,0	Ut3	3,85	7,5YR 3/4	n.n.	3,15	5,4	0,153	21	0,014
1/2	Bv	7-20	0,2	1,1	1,8	2,8	5,7	35,5	32,0	10,3	77,8	16,5	Ut3	4,11	10YR 5/6	n.n.	0,93	1,6	0,052	18	0,007
1/3	Bv	20-30	0,1	0,7	1,6	2,6	4,9	33,6	31,5	11,9	76,9	18,2	Ut4	4,10	10YR 5/6	n.n.	0,53	0,9	0,036	15	0,010
1/4	Bv	30-45	0,0	0,7	1,5	2,5	4,7	35,7	29,8	10,6	76,1	19,2	Ut4	4,05	10YR 5/6	n.n.	0,30	0,5	0,031	10	0,010
1/5	Bv	45-60	0,0	0,5	1,6	2,1	4,2	33,6	29,8	10,6	74,0	21,8	Ut4	4,00	10YR 5/6	n.n.	0,29	0,5	0,025	11	0,009
1/6	II Sw-Bv	60-70	0,0	0,6	1,6	2,4	4,6	35,0	29,0	10,5	74,5	21,0	Ut4	3,93	10YR 6/6	n.n.	0,30	0,5	0,030	10	0,008
1/7	Sw-Bv	70-80	0,0	0,5	1,8	2,3	4,5	35,0	28,3	10,6	74,0	21,5	Ut4	3,96	10YR 6/6	n.n.	0,30	0,5	0,031	10	0,006
1/8	Sw-Bv	80-90+	0,0	0,5	1,4	2,1	4,1	34,7	26,6	11,2	72,6	23,3	Ut4	3,92	10YR 6/6	n.n.	0,20	0,3	0,022	9	0,005
2/L	L	+4-3												4,02	n.b.	n.n.	48,19	96,4	1,269	38	0,082
2/Of	Of	+3-1												3,11	n.b.	n.n.	43,26	86,5	2,113	20	0,185
2/Oh	Oh	+1-0												3,32	n.b.	n.n.	23,21	46,4	1,187	20	0,116
2/1	Ah	0-6	0,4	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,36	n.b.	n.n.	5,33	9,2	0,278	19	0,026
2/2	Bv	6-15	0,3	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4,06	n.b.	n.n.	1,53	2,6	0,078	20	0,006
2/3	Bv	15-30+	0,3	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4,19	n.b.	n.n.	0,96	1,6	0,057	17	0,007
3/L	L	+3-2												4,11	n.b.	n.n.	47,77	95,5	1,466	33	0,099
3/Of	Of	+2-1												3,29	n.b.	n.n.	38,50	77,0	1,803	21	0,160
3/Oh	Oh	+1-0												3,38	n.b.	n.n.	14,94	29,9	0,785	19	0,061
3/1	Ah	0-3	0,4	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,23	n.b.	n.n.	9,76	16,8	0,470	21	0,044
3/2	Bv	3-10	0,6	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,62	n.b.	n.n.	2,86	4,9	0,131	22	0,011
3/3	Bv	10-18+	0,3	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4,01	n.b.	n.n.	1,19	2,1	0,058	21	0,004

Profil RF 8 – 6237 Grafenwöhr

Probe	lorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß .%)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
-	-		<u> </u>	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+8-6												3,71	n.b.	n.n.	45,20	90,4	1,150	39	2,332
1/Of	Of	+6-1												2,83	7,5YR 2/2	n.n.	43,58	87,2	1,231	35	2,661
1/Oh	Oh	+1-0												2,94	7,5YR 1,7/1	n.n.	27,90	55,8	0,731	38	3,788
1/1	Aeh	0-1	3,0	18,4	52,4	12,6	83,3	4,1	4,4	2,8	11,3	5,4	SI2	2,98	7,5YR 3/2	n.n.	1,81	3,1	0,042	43	0,034
1/2	Bsh	1-14	n.b.	29,4	49,4	8,9	87,7	2,9	2,1	1,8	6,8	5,4	St2	4,28	7,5YR 3/4	n.n.	1,20	2,1	0,029	41	0,021
1/3	Bhs	14-24	n.b.	24,4	57,0	10,2	91,6	2,5	2,7	1,4	6,7	1,7	mSgs	4,46	5YR 4/6	n.n.	0,34	0,6	0,013	26	0,020
1/4	Bhs	24-34	n.b.	22,7	62,9	7,1	92,7	2,7	1,7	1,8	6,2	1,2	mSgs	4,31	5YR 4/6	n.n.	0,16	0,3	0,010	16	0,017
1/5	Bhs	34-44	2,3	22,2	57,3	13,6	93,1	2,9	1,9	1,5	6,3	0,6	mSgs	4,29	5YR 4/6	n.n.	0,10	0,2	0,007	14	0,019
1/6	Bhs	44-55	n.b.	23,9	56,6	13,1	93,6	2,6	2,0	1,1	5,7	0,6	mSgs	4,32	5YR 4/6	n.n.	0,07	0,1	0,010	7	0,019
1/7	Bs	55-73	8,7	38,8	47,3	9,2	95,4	1,7	1,2	1,4	4,4	0,3	mSgs	4,18	5YR 4/8	n.n.	0,07	0,1	0,008	9	0,023
1/8	Bbs	73-83	n.b.	47,1	45,5	4,3	96,9	0,4	0,3	0,2	0,9	2,3	mSgs	4,22	5YR 4/6 7.5YR 6/4	n.n.	0,07	0,1	0,009	7	0,024
1/9	Bbs	83-93	n.b.	16,1	60,5	15,9	92,5	3,3	2,4	1,6	7,3	0,3	mSfs	4,20	5YR 4/6 7,5YR 6/5	n.n.	0,07	0,1	0,007	10	0,028
1/10	Bbs	93-103	n.b.	29,2	57,7	7,7	94,6	2,9	2,1	1,1	6,2	0,0	mSgs	4,26	5YR 4/6 7,5YR 6/6	n.n.	0,05	0,1	0,008	6	0,032
1/11	Bbs	103-113	22,5	45,4	47,2	6,6	99,1	0,7	0,8	0,5	2,0	0,0	mSgs	4,34	5YR 4/6 7,5YR 6/7	n.n.	0,04	0,1	0,006	7	0,034
1/12	IC	113+	n.b.	54,8	41,0	3,0	98,9	0,5	1,3	0,4	2,2	0,0	gS	4,25	7,5Y 4/6	n.n.	0,08	0,1	0,006	14	0,039
2/L	L	+7-6												3,27	n.b.	n.n.	48,81	97,6	0,696	70	4,024
2/Of	Of	+6-2												3,22	n.b.	n.n.	43,01	86,0	1,290	33	4,923
2/Oh	Oh	+2-0												3,11	n.b.	n.n.	34,91	69,8	0,984	35	5,512
2/1	Aeh	0-3	5,6	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,29	n.b.	n.n.	1,21	2,1	0,038	32	0,047
2/2	Bsh	3-8	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,72	n.b.	n.n.	1,93	3,3	0,061	32	0,050
2/3	Bhs	8-20+	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4,36	n.b.	n.n.	1,23	2,1	0,033	37	0,055
3/L	L	+6-4												3,78	n.b.	n.n.	48,37	96,7	0,987	49	6,805
3/Of	Of	+4-1												3,14	n.b.	n.n.	42,39	84,8	1,284	33	7,375
3/Oh	Oh	+1-0												3,09	n.b.	n.n.	36,64	73,3	1,093	34	7,484
3/1	Aeh	0-2	2,3	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,09	n.b.	n.n.	1,83	3,1	0,060	31	0,065
3/2	Bsh	2-7	5,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,94	n.b.	n.n.	1,49	2,6	0,044	34	0,064
3/3	Bhs	7-20+	4,9	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4,33	n.b.	n.n.	0,81	1,4	0,027	30	0,327

Probe	Horizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß .%)	e n			Boden- art	pН	Munsell- farbe	CaCO ₃	с	N	S
	-	= =)	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)
1/L	L	+9-4												5,61	n.b.	n.n.	38,95	1,569	n.b.
1/Of	Of	+4-0												5,68	n.b.	n.n.	20,90	1,044	n.b.
1/1	Axh	0-13	n.b.	4,9	16,3	14,5	35,8	13,9	12,6	11,3	37,8	26,4	Lt2	5,56	10YR 2/3	1,17	4,68	0,336	n.b.
1/2	Cv	13-29	82,4	6,2	17,0	15,9	39,1	13,1	12,5	12,0	37,6	23,3	Ls3	6,81	10YR 3/4	5,27	4,25	0,298	n.b.
1/3	Cv	29-45+	n.b.	8,3	18,9	20,9	48,1	11,6	11,5	8,2	31,3	20,6	Ls3	7,05	10YR 3/4	9,73	4,92	0,165	n.b.
2/L	L	+6-4												5,44	n.b.	n.n.	41,33	1,520	n.b.
2/Of	Of	+4-0												6,35	n.b.	n.n.	22,25	1,112	n.b.
2/1	Axh	0-14+	45,6	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	6,96	n.b.	n.b.	11,95	0,681	n.b.
3/L	L	+5-2												5,07	n.b.	n.n.	44,22	1,522	n.b.
3/Of	Of	+2-0												5,67	n.b.	n.n.	16,70	0,825	n.b.
3/1	Axh	0-11+	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	6,59	n.b.	n.b.	5,56	0,375	n.b.

Profil RF 9 – 6335 Auerbach

Profil RF 10 – 6642 Waldmünchen

Probe	łorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß %)	e n			Boden- art	pН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-	т.÷		gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+7-5												4,73	n.b.	n.n.	42,93	85,9	1,086	40	0,097
1/Of	Of	+5-2												3,75	n.b.	n.n.	42,30	84,6	2,252	19	0,201
1/Oh	Oh	+2-0												3,67	n.b.	n.n.	29,49	59,0	1,223	24	0,117
1/1	Ah	0-11	19,5	8,2	18,2	17,7	44,1	14,5	14,1	9,0	37,6	18,3	Ls3	3,47	10YR 3/3	n.n.	7,22	12,4	0,448	16	0,049
1/2	Bv	11-21	19,2	11,5	19,9	19,2	50,6	8,4	9,9	10,4	28,7	20,7	Ls4	3,94	10YR 4/6	n.n.	3,71	6,4	0,260	14	0,031
1/3	Bv	21-31	16,1	12,8	19,8	17,7	50,3	11,4	8,4	9,2	29,0	20,7	Ls4	4,05	10YR 4/6	n.n.	2,97	5,1	0,190	16	0,025
1/4	Bv	31-41	21,1	14,1	21,6	19,7	55,4	11,9	9,2	7,4	28,4	16,2	SI4	4,15	10YR 4/6	n.n.	2,06	3,5	0,121	17	0,022
1/5	Bv	41-51	27,0	13,4	22,0	21,0	56,4	12,9	9,4	5,6	27,9	15,7	SI4	4,25	10YR 4/6	n.n.	1,83	3,1	0,106	17	0,023
1/6	Bv	51-61	29,0	13,1	23,4	20,9	57,3	11,9	9,1	6,8	27,8	14,8	SI4	4,30	10YR 4/6	n.n.	1,76	3,0	0,101	17	0,021
1/7	ll Bv	61-71	19,5	12,1	23,5	22,1	57,7	10,7	9,7	6,3	26,8	15,5	SI4	4,32	10YR 4/4	n.n.	1,74	3,0	0,099	18	0,022
1/8	Bv	71-86+	29,8	11,8	24,8	23,8	60,4	12,3	9,2	5,1	26,6	13,0	SI4	4,32	10YR 4/4	n.n.	1,41	2,4	0,080	18	0,019
2/L	L	+8-4												4,34	n.b.	n.n.	47,34	94,7	1,251	38	0,074
2/Of	Of	+4-2												3,68	n.b.	n.n.	38,73	77,5	1,877	21	0,153
2/Oh	Oh	+2-0												3,52	n.b.	n.n.	37,05	74,1	1,931	19	0,206
2/1	Ah	0-11	10,2	9,3	22,3	17,6	49,1	10,6	10,7	8,9	30,2	20,7	Ls3	4,01	n.b.	n.n.	3,84	6,6	0,258	15	0,025
2/2	Bv	11-15+	16,0	6,3	24,4	18,9	49,6	10,6	10,3	8,6	29,5	21,0	Ls4	4,19	n.b.	n.n.	3,30	5,7	0,211	16	0,024
3/L	L	+9-6												4,70	n.b.	n.n.	47,03	94,1	1,648	29	0,079
3/Of	Of	+6-2												3,74	n.b.	n.n.	45,13	90,3	1,509	30	0,113
3/Oh	Oh	+2-0												3,64	n.b.	n.n.	19,46	38,9	1,159	17	0,107
3/1	Ah	0-11	14,3	12,4	19,8	16,4	48,6	8,5	11,3	9,4	29,3	22,2	Ls4	3,62	n.b.	n.n.	5,25	9,0	0,375	14	0,039
3/2	Bv	11-18+	n.b.	10,0	20,2	16,7	46,9	9,0	11,0	8,5	28,5	24,5	Ls4	3,75	n.b.	n.n.	3,65	6,3	0,256	14	0,025

3,2 12,5 19,2 19,2 50,9 13,6 17,7 8,9 40,3 8,8

20,4 17,7 19,9 13,9 51,5 7,9 17,3 10,8 36,0 12,5

14,1 35,1 3,8 11,0 50,0 14,3 11,0 11,7

13,0 12,1 19,7 16,5 48,4

Probe	lorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß .%)	e n			Boden- art	pН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N
	-	- 5		gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)	
1/L	L	+13-9												4,21	n.b.	n.n.	48,57	97,1	1,456	33
1/Of	Of	+9-5												3,19	n.b.	n.n.	47,42	94,8	2,028	23
1/Oh	Oh	+5-0												3,23	n.b.	n.n.	40,49	81,0	1,826	22
1/1	Ah	0-13	10,9	16,0	21,9	14,7	52,6	7,2	11,6	12,2	31,0	16,4	SI4	3,74	10YR 3/4	n.n.	9,01	15,5	0,466	19
1/2	Bv	13-23	13,9	16,2	22,4	16,3	54,9	7,7	11,6	11,8	31,1	14,0	SI4	4,20	7,5YR 3/4	n.n.	7,47	12,8	0,329	23
1/3	Bv	23-33+	18,4	17,1	22,3	15,5	54,8	7,6	10,9	11,9	30,4	14,8	SI4	4,27	7,5YR 3/4	n.n.	6,21	10,7	0,274	23
2/L	L	+13-8												3,99	n.b.	n.n.	48,40	96,8	1,735	28
2/Of	Of	+8-4												3,51	n.b.	n.n.	44,99	90,0	2,753	16
2/Oh	Oh	+4-0												3,86	n.b.	n.n.	32,91	65,8	2,052	16

37,0 13,1

10,6 16,2 12,9 39,7 11,9

Slu

SI4

SI4

SI3

3,83

4,10

4,08

3,71

3,89

3,73

4,00

n.b.

n.b.

n.b.

n.b.

n.b.

n.b.

n.b.

11,70

8,49

49,43

41,91

29,25

13,47

10,32

n.n.

n.n.

n.n.

n.n.

n.n.

n.n.

n.n.

20,1

14,6

98,9

83,8

58,5

23,2

17,8 0,654 16 0,063

0,710 16 0,072

0,486 17 0,050

1,313 38 0,067

2,229 19 0,190 0,131

1,598 18

0,814 17

Profil RF 11 – 6844 Lam

0-9

9-15+

+13-10

+10-4

+4-0

0-8

8-15+

2/1

2/2

3/L

3/Of

3/Oh

3/1

3/2

Ah

Bv

L

Of

Oh

Ah

Βv

Profil RF 12 - 7248 Jandelsbrunn

Probe	lorizont	Proben- efe (cm)	Skelett Gew.%)			K	orn (G	gr ew.	öß .%)	e n			Boden- art	pН	Munsell- farbe	CaCO₃	с	org.S	N	C/N	s
	-	- 7	Ŭ	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+12-10												3,70	n.b.	n.n.	42,46	84,9	2,728	16	0,206
1/Of	Of	+10-4												3,25	n.b.	n.n.	37,83	75,7	2,096	18	0,109
1/Oh	Oh	+4-0												3,40	n.b.	n.n.	33,49	67,0	2,655	13	0,234
1/1	Ah	0-9	33,0	21,3	12,8	11,2	45,4	13,0	19,4	13,1	45,5	9,1	Slu	3,18	10YR 2/2	n.n.	5,85	10,1	0,578	10	0,029
1/2	Bv	9-20	52,9	24,1	15,4	12,2	51,6	10,7	13,5	9,4	33,6	14,7	SI4	3,51	10YR 3/3	n.n.	2,63	4,5	0,422	6	0,011
1/3	Bv	20-32	56,8	31,5	19,6	12,3	63,4	9,6	10,0	6,6	26,2	10,4	SI3	3,50	10YR 3/3	n.n.	1,47	2,5	0,385	4	0,003
1/4	ICv	32-45+	n.b.	32,5	14,3	12,4	59,2	9,7	11,2	6,6	27,5	13,3	SI4	3,67	10YR 4/6	n.n.	1,85	3,2	0,558	3	0,005
2/L	L	+11-10												4,32	n.b.	n.n.	47,49	95,0	3,721	13	0,075
2/Of	Of	+10-3												3,74	n.b.	n.n.	44,59	89,2	4,503	10	0,130
2/Oh	Oh	+3-0												3,61	n.b.	n.n.	40,14	80,3	4,850	8	0,204
2/1	Ah	0-10	n.b.	17,9	13,5	14,2	45,6	11,6	17,6	12,9	42,1	12,3	Slu	3,35	n.b.	n.n.	7,75	13,3	1,998	4	0,039
2/2	Bv	10-20+	n.b.	22,4	13,7	13,8	49,9	13,1	15,9	11,6	40,6	9,5	Slu	3,35	n.b.	n.n.	4,96	8,5	1,972	3	0,021
3/L	L	+11-10												4,14	n.b.	n.n.	43,54	87,1	1,828	24	0,234
3/Of	Of	+10-4												3,51	n.b.	n.n.	42,11	84,2	2,274	19	0,182
3/Oh	Oh	+4-0												3,67	n.b.	n.n.	28,27	56,5	1,701	17	0,115
3/1	Ah	0-8	n.b.	12,6	10,1	12,1	34,9	16,4	17,2	13,2	46,8	18,4	Ls2	3,38	n.b.	n.n.	4,44	7,6	0,226	20	0,002
3/2	Bv	8-20+	n.b.	17,1	12,7	12,4	42,1	11,3	14,3	12,4	38,1	19,8	Ls3	3,38	n.b.	n.n.	5,84	10,0	0,273	21	0,005

s

(%) 0,173 0,184 0,175 0,051 0,041 0,033 0,094 0,219 0,187

0,072

Probe	łorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß %)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-	Ξ		gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+12-9												4,63	n.b.	n.n.	47,26	94,5	2,225	21	0,132
1/Of	Of	+9-3												3,26	n.b.	n.n.	45,25	90,5	1,779	25	0,162
1/Oh	Oh	+3-0												3,46	n.b.	n.n.	21,64	43,3	1,088	20	0,109
1/1	Ah	0-8	18,9	11,4	11,5	11,4	34,3	13,2	15,5	13,7	42,5	23,3	Ls2	3,36	7,5YR 2/3	n.n.	10,16	17,5	0,491	21	0,056
1/2	Bv	8-18	15,4	15,0	13,4	12,0	40,4	11,9	11,8	13,8	37,6	22,0	Ls3	4,31	10YR 5/6	n.n.	4,45	7,7	0,189	24	0,041
1/3	Bv	18-28	20,7	15,1	13,6	12,8	41,6	12,8	14,4	12,9	40,1	18,4	Ls2	4,44	10YR 5/6	n.n.	2,96	5,1	0,125	24	0,059
1/4	Bv	28-38	28,8	13,8	13,7	13,0	40,5	12,1	13,5	11,9	37,4	22,1	Ls3	4,46	10YR 5/6	n.n.	2,53	4,3	0,123	21	0,050
1/5	Bv	38-48	23,8	11,1	14,6	14,2	39,9	13,9	13,9	11,2	39,1	21,0	Ls3	4,44	10YR 5/6	n.n.	2,12	3,6	0,103	21	0,048
1/6	Bv	48-59	23,2	10,7	15,8	14,9	41,3	15,4	13,1	11,0	39,6	19,1	Ls3	4,45	10YR 5/6	n.n.	1,80	3,1	0,087	21	0,047
1/7	ll Bv	59-69	55,2	14,6	16,1	16,0	46,7	13,0	13,8	8,4	35,2	18,1	Ls3	4,44	10YR 5/6	n.n.	1,29	2,2	0,062	21	0,029
1/8	Bv	69-79	52,5	18,6	16,8	14,7	50,1	12,9	13,3	8,1	34,3	15,5	SI4	4,43	10YR 5/6	n.n.	0,95	1,6	0,038	25	0,026
1/9	Bv	79-93+	42,8	11,8	19,4	18,9	50,0	14,7	13,8	6,7	35,1	14,8	SI4	4,38	10YR 5/6	n.n.	1,11	1,9	0,051	22	0,027
2/L	L	+13-12												3,87	n.b.	n.n.	47,16	94,3	1,879	25	0,101
2/Of	Of	+12-2												3,22	n.b.	n.n.	43,34	86,7	1,845	23	0,171
2/Oh	Oh	+2-0												3,38	n.b.	n.n.	28,58	57,2	1,364	21	0,124
2/1	Ah	0-9	15,7	12,7	10,9	11,5	35,0	10,5	18,0	15,9	44,4	20,5	Ls2	3,36	n.b.	n.n.	10,43	17,9	0,533	20	0,084
2/2	Bv	9-21+	27,9	11,5	11,5	12,2	35,2	12,9	14,7	13,9	41,5	23,3	Ls2	3,75	n.b.	n.n.	6,48	11,1	0,313	21	0,045
3/L	L	+13-10												4,04	n.b.	n.n.	45,45	90,9	2,175	21	0,144
3/Of	Of	+10-2												2,97	n.b.	n.n.	36,47	72,9	1,667	22	0,157
3/Oh	Oh	+2-0												3,03	n.b.	n.n.	33,12	66,2	1,503	22	0,121
3/1	Ah	0-8	27,7	11,6	11,7	11,7	35,1	13,5	21,2	11,6	46,3	18,7	Ls2	3,11	n.b.	n.n.	15,79	27,2	0,868	18	0,105
3/2	Bv	8-18+	39,5	12,3	12,1	10,9	35,2	12,0	18,1	14,6	44,7	20,1	Ls2	3,50	n.b.	n.n.	8,16	14,0	0,457	18	0,046

Profil RF 13 – 7348 Wegscheid

Profil RF 14 – 7446 Passau

Probe	łorizont	Proben- efe (cm)	Skelett Gew.%)			K	orn (G	gr ew.	öß %)	e n			Boden- art	pН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-	- =)	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+5-3												4,35	n.b.	n.n.	45,66	91,3	1,430	32	0,190
1/Of	Of	+3-1												3,47	n.b.	n.n.	40,50	81,0	1,648	25	0,151
1/Oh	Oh	+1-0												3,50	n.b.	n.n.	15,31	30,6	0,799	19	0,068
1/1	Ahe	0-2	2,2	5,9	10,3	9,5	25,6	25,7	24,2	8,8	58,7	15,6	Uls	3,03	10YR 3/2	n.n.	7,27	12,5	0,344	21	0,071
1/2	Ae	2-8	3,3	6,2	10,9	9,6	26,8	24,2	23,1	11,1	58,4	14,8	Uls	3,74	2,5Y 4/6	n.n.	1,15	2,0	0,067	17	0,016
1/3	Bhs	8-20	3,1	6,9	10,9	9,0	26,8	26,9	22,2	9,4	58,5	14,7	Uls	3,89	10YR 5/6	n.n.	0,80	1,4	0,056	14	0,011
1/4	Bhs	20-30	3,1	6,3	11,2	8,9	26,4	26,1	23,2	9,2	58,5	15,1	Uls	3,89	10YR 5/6	n.n.	0,71	1,2	0,041	17	0,011
1/5	Bhs	30-40	1,6	6,0	11,0	9,1	26,2	23,4	27,4	9,1	60,0	13,9	Uls	3,96	10YR 5/6	n.n.	0,57	1,0	0,038	15	0,011
1/6	Bhs	40-50	3,1	6,3	10,9	9,1	26,3	28,2	22,7	9,4	60,3	13,5	Uls	3,94	10YR 5/6	n.n.	0,51	0,9	0,036	14	0,014
1/7	Bhs-Sw	50-64	2,7	6,5	10,8	9,2	26,4	26,1	24,5	9,4	60,0	13,6	Uls	3,93	10YR 5/6 7,5YR 4/4	n.n.	0,32	0,6	0,029	11	0,017
1/8	Sd	64-75	2,0	5,5	10,9	9,4	25,8	28,5	22,9	8,5	59,9	14,2	Uls	3,93	2,5Y 7/4 7,5YR 4/4	n.n.	0,38	0,7	0,025	15	0,014
1/9	Sd	75-85	1,8	5,6	10,8	9,2	25,7	26,0	21,6	9,1	56,7	17,6	Lu	3,84	2,5Y 7/4 7,5YR 4/4	n.n.	0,21	0,4	0,022	10	0,013
1/10	Sd	85-95+	0,8	4,3	9,3	8,4	21,9	26,1	22,9	8,8	57,8	20,2	Lu	3,95	2,5Y 7/4 7,5YR 4/4	n.n.	0,20	0,3	0,020	10	0,006
2/L	L	+5-3												4,17	n.b.	n.n.	47,42	94,8	1,437	33	0,093
2/Of	Of	+3-1												3,53	n.b.	n.n.	43,82	87,6	1,579	28	0,122
2/Oh	Oh	+1-0												3,47	n.b.	n.n.	23,49	47,0	1,035	23	0,091
2/1	Ah	0-7	6,3	6,5	10,9	8,7	26,1	24,3	23,0	10,3	57,7	16,2	Uls	3,37	n.b.	n.n.	2,34	4,0	0,092	25	0,009
2/2	Bv	7-20+	3,9	6,7	10,7	8,3	25,6	25,7	23,5	9,6	58,8	15,5	Uls	3,77	n.b.	n.n.	1,29	2,2	0,055	23	0,007
3/L	L	+5-3												3,72	n.b.	n.n.	45,71	91,4	1,687	27	0,111
3/Of	Of	+3-1												3,29	n.b.	n.n.	44,13	88,3	1,856	24	0,140
3/Oh	Oh	+1-0												3,35	n.b.	n.n.	24,38	48,8	1,301	19	0,097
3/1	Aeh	0-3	3,3	7,7	11,4	9,0	28,2	23,4	26,7	9,1	59,2	12,6	Uls	3,39	n.b.	n.n.	9,11	15,7	0,473	19	0,045
3/2	Bsh	3-17+	4,3	8,5	11,5	8,5	28,5	23,9	22,3	9,6	55,8	15,7	Uls	3,47	n.b.	n.n.	2,91	5,0	0,117	25	0,012

Probe	lorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß %)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	N	s
	-		Ŭ	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)
1/L	L	+3-1												5,40	n.b.	n.b.	39,18	1,663	0,099
1/Of	Of	+1-0												5,33	n.b.	n.b.	32,53	1,509	0,084
1/1	Ah	0-15	63,8	8,6	32,5	21,5	62,5	12,9	8,4	7,8	29,1	8,3	SI3	7,01	10YR 2/1	3,90	6,50	0,497	0,071
1/2	elCv	15-25	53,7	13,6	62,8	15,8	92,2	5,1	2,2	1,2	8,6	0,0	mSfs	7,15	2,5Y 4/3 10YR 2/1	24,88	4,38	0,027	0,009
1/3	elCv	25-35	71,1	13,2	67,2	14,5	94,9	2,7	2,1	1,9	6,7	0,0	mSfs	7,21	2,5Y 4/3 10YR 2/1	32,16	4,26	0,026	0,009
1/4	elCv	35-45	75,6	20,1	62,0	12,5	94,5	3,1	3,2	0,1	6,4	0,0	mSfs	7,24	2,5Y 4/3 10YR 2/1	36,00	4,60	0,016	0,010
1/5	elCv	45-55	68,3	18,8	66,6	11,2	96,6	2,2	1,9	0,9	5,0	0,0	mSfs	7,27	2,5Y 4/3 10YR 2/1	27,74	4,43	0,020	0,009
1/6	elCv	55-71	66,0	15,0	67,6	14,7	97,3	1,7	1,6	0,7	3,9	0,0	mSfs	7,34	2,5Y 4/3 10YR 2/1	37,84	4,86	0,015	0,009
1/7	II fBcv	71-74	88,0	10,4	55,3	23,3	88,9	6,7	3,7	1,4	11,8	0,0	mSfs	7,26	10YR 4/6	35,86	4,74	0,032	0,012
1/8	elCv	74-84	66,2	14,2	48,2	21,5	83,9	9,6	4,0	2,1	15,7	0,0	Su2	7,24	2,5Y 5/4	38,45	5,11	0,044	0,013
1/9	elCv	84-99+	81,1	16,7	53,1	19,2	88,9	7,1	3,2	1,6	11,9	0,0	mSfs	7,29	2,5Y 5/4	35,94	5,19	0,033	0,010
2/L	L	+3-1												5,22	n.b.	n.b.	47,08	1,989	0,110
2/Of	Of	+1-0												4,76	n.b.	n.b.	42,60	1,685	0,090
2/1	Ah	0-6+	0,0	5,0	31,2	22,4	58,5	11,6	8,7	9,4	29,7	11,7	SI3	5,01	n.b.	n.n.	5,33	0,345	0,028
3/L	L	+3-1												4,86	n.b.	n.b.	46,01	2,177	0,159
3/Of	Of	+1-0												4,29	n.b.	n.b.	39,93	1,683	0,090
3/1	Ah	0-11+	18,3	7,9	28,1	16,5	52,4	10,5	9,9	11,6	32,0	15,5	SI4	5,78	n.b.	n.n.	4,63	0,337	0,023

Profil RF 15 – 7742 Altötting

Profil RF 16 – 8143 Freilassing

Probe	łorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß .%)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	N	s
	-	- ÷)	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)
1/L	L	+1-0												5,58	n.b.	n.b.	40,47	1,896	0,111
1/1	Ah	0-8	17,6	4,5	12,2	12,9	29,6	19,4	17,3	17,2	54,0	16,4	Uls	6,85	10YR 3/2	3,30	5,36	0,429	0,044
1/2	Bv	8-18	19,2	5,7	12,2	12,7	30,5	13,9	17,5	17,6	49,0	20,5	Ls2	6,77	10YR 4/4	1,42	2,76	0,241	0,027
1/3	Bv	18-27	35,4	6,5	12,6	11,2	30,2	13,3	12,7	15,7	41,8	28,0	Lt2	6,68	10YR 4/4	0,75	1,67	0,165	0,023
1/4	Bv-ICv	27-37	38,2	5,3	12,4	14,8	32,4	14,7	14,3	15,1	44,0	23,6	Ls2	7,28	10YR 3/3	8,85	3,06	0,159	0,025
1/5	Bv-ICv	37-47	25,5	5,3	12,0	15,0	32,3	20,6	13,6	12,8	47,1	20,5	Ls2	7,42	10YR 3/3	16,60	3,93	0,147	0,022
1/6	Bv-ICv	47-63	20,3	6,1	12,8	16,8	35,7	20,4	12,7	11,5	44,6	19,7	Ls2	7,47	10YR 3/3	22,22	4,70	0,216	0,021
1/7	ll fAh	63-74	22,7	6,7	11,1	16,7	34,5	20,1	13,7	11,7	45,6	19,9	Ls2	7,51	10YR 2/3	28,50	5,23	0,264	0,022
1/8	Cv	74-90+	74,4	29,8	35,0	11,6	76,5	6,1	4,6	4,8	15,6	8,0	SI2	7,58	10YR 3/4	66,71	8,93	0,257	0,010
2/L	L	+2-0												4,03	n.b.	n.b.	33,88	1,456	0,246
2/1	Ah	0-5	4,9	3,1	7,8	12,9	23,7	19,7	23,4	12,5	55,6	20,7	Lu	3,51	n.b.	n.b.	8,22	0,908	0,055
2/2	Bv	5-15	12,0	3,3	8,0	12,3	23,7	15,3	17,5	15,4	48,2	28,2	Lt2	3,78	n.b.	n.b.	1,79	0,403	0,014
2/3	Bv	15-21+	18,5	3,2	7,7	12,2	23,1	16,3	16,3	15,2	47,7	29,2	Lt2	3,91	n.b.	n.b.	1,05	0,462	0,011
3/L	L	+2-0												5,63	n.b.	n.b.	35,95	1,764	0,142
3/1	Ah	0-10	28,8	2,7	8,2	15,5	26,4	21,4	20,8	16,2	58,4	15,2	Uls	5,83	n.b.	n.b.	3,84	0,958	0,019
3/2	Bv	10-20+	9,0	2,4	7,2	12,1	21,8	15,3	20,1	18,6	53,9	24,3	Lu	5,42	n.b.	n.b.	1,50	0,809	0,006
1	1				1				1	1					1		1		1

Probe	lorizont	Proben- efe (cm)	Skelett Gew.%)			Кc	orn (G	gr ew.	öß %)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	N	s
	-	ц		gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)
1/L	L	+2-1												4,60	n.b.	n.b.	47,55	1,214	n.b.
1/Of	Of	+1-0												5,49	n.b.	n.b.	44,33	1,318	n.b.
1/1	Ah	0-12	39,4	2,3	3,2	15,7	21,2	34,6	25,3	11,1	71,0	7,8	Us	7,16	10YR 2/3	40,30	12,68	0,481	n.b.
1/2	Bv	12-25	70,3	15,2	4,3	8,4	27,9	27,1	23,5	8,0	58,6	13,4	Uls	6,98	10YR 5/6	76,50	10,45	0,121	n.b.
1/3	Bv	25-35	63,1	13,3	5,2	13,2	31,8	30,7	25,9	6,8	63,4	4,9	Us	7,04	10YR 5/6	74,03	10,13	0,136	n.b.
1/4	Cv	35-45	67,5	22,4	8,0	10,2	40,6	28,1	18,9	4,5	51,5	7,9	Us	7,00	10YR 6/6	86,07	11,02	0,026	n.b.
1/5	Cv	45-60+	72,4	22,1	9,6	14,4	46,2	26,3	17,9	3,9	48,2	5,6	Su4	7,03	10YR 6/6	92,86	11,20	0,027	n.b.
2/L	L	+6-3												5,26	n.b.	n.b.	46,29	1,497	n.b.
2/Of	Of	+3-0												4,54	n.b.	n.b.	39,52	1,681	n.b.
2/1	Ah	0-14+	23,9	10,8	6,6	6,3	23,7	15,9	21,9	18,5	56,3	19,9	Lu	7,01	n.b.	7,04	16,84	0,839	n.b.
3/L	L	+6-3												5,17	n.b.	n.b.	45,47	1,256	n.b.
3/Of	Of	+3-0												5,19	n.b.	n.b.	45,49	1,437	n.b.
3/1	Ah	0-14+	47,1	4,3	4,8	7,5	16,5	20,5	23,9	19,4	63,8	19,6	Lu	6,98	n.b.	12,30	13,67	0,695	n.b.
1																			

Profil RF 17 – 8241 Ruhpolding

Profil RF 18 – 8040 Eggstätt

Probe	łorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß .%)	e n			Boden- art	pН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-)	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+6-4												3,88	n.b.	n.n.	47,48	95,0	1,444	33	0,097
1/Of	Of	+4-1												3,14	n.b.	n.n.	47,08	94,2	2,227	21	0,194
1/Oh	Oh	+1-0												2,87	n.b.	n.n.	45,72	91,4	2,114	22	0,207
1/1	hHw	0-10	0,0											3,16	7,5YR 2/3	n.n.	49,13	98,3	2,229	22	0,196
1/2	hHw	10-20	0,0											3,13	7,5YR 2/3	n.n.	48,95	97,9	2,253	22	0,189
1/3	hHw	20-30	0,0											3,24	7,5YR 2/3	n.n.	50,43	100,0	2,492	20	0,201
1/4	hHw	30-40	0,0											3,34	7,5YR 2/3	n.n.	49,78	99,6	2,478	20	0,174
1/5	hHw	40-50	0,0											3,44	7,5YR 2/3	n.n.	49,91	99,8	2,762	18	0,193
1/6	hHw	50-59	0,0											3,58	7,5YR 2/3	n.n.	47,85	95,7	2,622	18	0,189
1/7	II Aa	59-74	2,9	4,1	12,2	14,1	30,4	20,0	20,0	14,5	54,5	15,2	Uls	4,18	10YR 2/1	n.n.	6,47	11,1	0,337	19	0,010
1/8	III Go	74-84	41,1	14,1	12,4	11,3	37,7	15,4	14,2	8,9	38,5	23,8	Ls3	4,89	10YR 4/2	n.n.	0,95	1,6	0,047	20	0,000
1/9	Go	84-94	33,6	18,8	15,0	8,5	42,3	8,5	8,6	7,2	24,4	33,3	Lts	4,74	10YR 4/2	n.n.	0,91	1,6	0,055	17	0,000
1/10	Go	94-109+	51,3	14,2	24,4	13,9	52,6	8,1	7,6	7,5	23,3	24,2	Ls4	5,61	10YR 4/2	n.n.	1,40	2,4	0,061	23	0,000
2/L	L	+8-7												4,59	n.b.	n.n.	46,61	93,2	1,755	27	0,072
2/Of	Of	+7-1												3,38	n.b.	n.n.	45,39	90,8	2,199	21	0,147
2/Oh	Oh	+1-0												3,23	n.b.	n.n.	36,31	72,6	2,037	18	0,160
2/1	hHw	0-12+	0,0											3,46	n.b.	n.n.	0,92	1,6	0,056	16	0,001
3/L	L	+11-9												3,81	n.b.	n.n.	47,78	95,6	1,684	28	0,074
3/Of	Of	+9-1												3,04	n.b.	n.n.	47,40	94,8	1,921	25	0,144
3/Oh	Oh	+1-0												2,89	n.b.	n.n.	45,41	90,8	2,021	22	0,219
3/1	hHw	0-8	0,0											2,92	n.b.	n.n.	46,99	94,0	2,285	21	0,155
3/2	hHw	8-15+	0,0											3,10	n.b.	n.n.	1,69	2,9	0,074	23	0,004

Probe	łorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß %)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-	- 2		gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+6-4												4,12	n.b.	n.n.	46,58	93,2	1,525	31	0,067
1/Of	Of	+4-2												3,21	n.b.	n.n.	45,77	91,5	1,657	28	0,101
1/Oh	Oh	+2-0												3,12	n.b.	n.n.	20,87	41,7	1,123	19	0,069
1/1	Ah	0-5	24,1	2,8	3,9	11,8	18,5	12,2	18,5	20,6	51,3	30,1	Tu3	3,15	10YR 3/4	n.n.	4,92	8,5	0,375	13	0,019
1/2	Bv	5-15	23,9	3,2	3,2	11,0	17,4	14,4	16,2	18,9	49,5	33,1	Lt2	3,60	10YR 5/6	n.n.	2,01	3,5	0,198	10	0,012
1/3	Bv	15-25	21,1	3,1	3,4	6,5	13,1	14,3	16,1	19,9	50,2	36,7	Tu3	3,70	10YR 5/6	n.n.	1,68	2,9	0,170	10	0,011
1/4	Bv	25-35	25,6	2,8	3,9	10,5	17,2	10,7	12,2	18,1	41,0	41,7	Lt3	3,76	10YR 5/6	n.n.	0,94	1,6	0,102	9	0,010
1/5	Bv	35-45	23,5	2,9	3,6	11,0	17,6	11,4	13,1	16,9	41,4	41,0	Lt3	3,76	10YR 5/6	n.n.	0,92	1,6	0,103	9	0,013
1/6	Bv	45-55	23,7	3,7	3,2	7,5	14,4	6,6	9,5	15,1	31,2	54,4	Tu2	3,74	10YR 5/6	n.n.	0,47	0,8	0,065	7	0,011
1/7	Bv	55-72	41,1	3,7	5,1	10,7	19,5	9,3	11,0	13,5	33,8	46,6	Tu2	3,77	10YR 5/6	n.n.	0,56	1,0	0,072	8	0,015
1/8	Bv	72-81	0,0	0,6	16,1	20,2	37,0	12,0	11,3	12,2	35,5	27,5	Lt2	3,93	10YR 5/6	n.n.	0,42	0,7	0,037	11	0,037
1/9	II Sw-Sd	81-90	2,2	1,3	18,2	18,6	38,2	9,9	10,8	12,2	32,8	29,0	Lt2	3,89	7,5YR 3/3	n.n.	0,36	0,6	0,036	10	0,033
1/10	III Sw-Sd	90-95	65,9	3,3	4,2	8,5	16,0	12,3	12,1	16,8	41,1	42,8	Lt3	3,83	10YR 6/8 2,5Y 2/6	n.n.	0,46	0,8	0,060	8	0,004
1/11	IV Sd	95-107	1,8	0,4	4,7	23,0	28,1	15,0	14,1	14,3	43,4	28,5	Lt2	3,95	7,5YR 4/3	n.n.	0,47	0,8	0,049	10	0,023
1/12	Cv	107-112+	60,1	13,3	17,8	16,2	47,2	8,6	10,2	10,3	29,1	23,7	Ls4	3,94	10YR 4/4	n.n.	0,33	0,6	0,026	13	0,009
2/L	L	+5-4												4,02	n.b.	n.n.	46,70	93,4	1,437	32	0,059
2/Of	Of	+4-1												3,45	n.b.	n.n.	43,48	87,0	1,934	22	0,116
2/Oh	Oh	+1-0												3,01	n.b.	n.n.	24,67	49,3	1,341	18	0,077
2/1	Aeh	0-7	42,9	3,7	2,6	3,1	9,4	6,6	18,6	28,2	53,4	37,2	Tu3	2,82	n.b.	n.n.	5,41	9,3	0,411	13	0,020
2/2	Ahe	7-14	47,8	4,3	2,4	3,3	10,0	4,5	16,1	26,8	47,3	42,6	Lt3	2,97	n.b.	n.n.	4,47	7,7	0,306	15	0,012
2/3	Bs	14-20+	38,0	4,3	2,4	3,1	9,7	5,4	14,9	26,2	46,6	43,7	Lt3	3,13	n.b.	n.n.	2,95	5,1	0,237	12	0,008
3/L	L	+5-3												4,37	n.b.	n.n.	46,77	93,5	1,430	33	0,055
3/Of	Of	+3-1												3,33	n.b.	n.n.	39,99	80,0	1,809	22	0,114
3/Oh	Oh	+1-0												3,21	n.b.	n.n.	30,84	61,7	1,556	20	0,094
3/1	Ah	0-1	13,2	3,4	3,2	13,2	19,8	15,2	20,2	21,0	56,5	23,7	Lu	3,07	n.b.	n.n.	5,50	9,5	0,435	13	0,026
3/2	Bv	1-11	11,8	2,2	2,2	12,5	16,9	14,3	17,8	23,0	55,1	28,0	Lu	3,43	n.b.	n.n.	2,67	4,6	0,246	11	0,012
3/3	Bv	11-17+	12,4	2,3	2,3	13,8	18,4	15,4	16,8	21,0	53,2	28,4	Lu	3,49	n.b.	n.n.	1,97	3,4	0,191	10	0,009

Profil RF 19 – 8236 Tegernsee

Profil RF 20 – 7837 Markt Schwaben

Probe	lorizont	Proben- efe (cm)	Skelett Gew.%)			K	orn (G	gr ew.	öß .%)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-		Ŭ	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+5-4												4,16	n.b.	n.n.	48,41	96,8	1,607	30	n.b.
1/Of	Of	+4-0												3,09	n.b.	n.n.	44,96	89,9	1,915	23	n.b.
1/1	Ah	0-11	22,0	8,9	16,2	8,9	34,1	14,8	20,4	12,8	48,0	18,0	Ls2	3,24	10YR 2/3	n.n.	7,19	12,4	0,393	18	0,042
1/2	AI	11-22	56,7	15,2	14,0	11,5	40,7	12,6	16,3	13,0	41,9	17,5	Ls2	4,14	10YR 4/6	n.n.	1,59	2,7	0,094	17	0,006
1/3	AI	22-33	69,0	7,6	17,4	7,6	32,5	16,4	16,8	10,3	43,4	24,1	Ls2	4,11	10YR 4/6	n.n.	0,66	1,1	0,049	14	0,004
1/4	Bt	33-44	52,0	14,3	16,7	10,3	41,3	5,8	6,9	4,5	17,3	41,5	Lts	3,87	7,5YR 4/6	n.n.	0,41	0,7	0,034	12	0,008
1/5	Bt	44-55	52,8	22,6	24,6	7,9	55,1	5,7	4,9	5,6	16,2	28,7	Lts	4,05	7,5YR 4/6	n.n.	0,36	0,6	0,025	14	0,004
1/6	Cv	55-80+	79,1	26,0	29,4	10,8	66,3	17,6	10,2	2,6	30,4	3,4	Su3	7,06	2,5Y 5/4	40,82	5,88	n.b.	0,013	n.b.	0,005
2/L	L	+4-3												4,39	n.b.	n.n.	47,42	94,8	1,486	32	0,066
2/Of	Of	+3-0												3,46	n.b.	n.n.	47,57	95,1	1,754	27	0,063
2/1	Ah	0-12	12,6	4,7	8,2	13,4	26,3	14,8	24,6	12,9	52,3	21,4	Lu	3,08	n.b.	n.n.	8,83	15,2	0,454	19	0,050
2/2	AI	12-24+	29,4	10,0	15,1	8,0	33,1	15,8	18,8	13,2	47,7	19,1	Ls2	3,96	n.b.	n.n.	2,17	3,7	0,109	20	0,010
3/L	L	+2-1												3,91	n.b.	n.n.	48,63	97,3	1,417	34	0,017
3/Of	Of	1-0												3,21	n.b.	n.n.	39,08	78,2	1,578	25	0,038
3/1	Ah	0-10	15,2	8,6	15,1	4,8	28,5	21,4	20,6	10,2	52,2	19,3	Lu	2,98	n.b.	n.n.	13,99	24,1	0,605	23	0,055
3/2	AI	10-24+	25,6	12,4	20,8	9,2	42,4	11,8	16,3	10,4	38,6	19,0	Ls3	3,90	n.b.	n.n.	2,11	3,6	0,097	22	0,005
1	1	1	1		1	1			1	1					1		1				

Probe	lorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß %)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-	т.÷		gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+2-0,5												5,18	n.b.	n.n.	39,52	79,0	1,004	39	0,060
1/Of	Of	+0,5-0												5,34	n.b.	n.n.	23,31	46,6	0,995	23	0,089
1/1	Ah	0-7	0,7	0,9	1,5	3,9	6,4	38,3	36,3	11,1	85,6	8,0	Ut2	4,28	10YR 3/3	n.n.	3,03	5,2	0,209	15	n.b.
1/2	AI	7-18	0,4	0,7	1,0	2,9	4,6	40,2	30,5	12,2	82,9	12,5	Ut3	3,90	10YR 5/6	n.n.	0,95	1,6	0,068	14	n.b.
1/3	AI	18-28	0,0	0,7	1,3	2,8	4,8	40,3	30,1	12,3	82,7	12,5	Ut3	3,88	10YR 5/6	n.n.	0,48	0,8	0,045	11	n.b.
1/4	AI	28-38	0,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,91	10YR 5/6	n.n.	0,28	0,5	0,035	8	n.b.
1/5	AI	38-47	0,5	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4,15	10YR 5/6	n.n.	0,46	0,8	0,052	9	n.b.
1/6	Bt	47-57	0,1	0,2	0,4	1,9	2,5	29,4	22,4	9,6	61,4	36,1	Tu3	4,30	10YR 5/6	n.n.	0,37	0,6	0,055	7	n.b.
1/7	Bt	57-67	0,0	0,2	0,6	2,2	3,0	30,4	22,9	8,8	62,1	34,9	Tu3	4,41	10YR 5/6	n.n.	0,25	0,4	0,040	6	n.b.
1/8	Bt	67-77	0,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4,50	10YR 5/6	n.n.	0,20	0,3	0,036	6	n.b.
1/9	Bt	77-96+	0,1	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4,54	10YR 5/6	n.n.	0,17	0,3	0,029	6	n.b.
2/L	L	+2-0												4,98	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ah	0-7	1,4	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,81	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	AI	7-17	0,1	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,71	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/3	AI	17-27+	0,1	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,78	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+2-0												5,38	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ah	0-5	1,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,62	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	AI	5-15	0,1	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,59	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/3	AI	15-25+	0,2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,74	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.

Profil RF 21 – 6025 Arnstein

Profil RF 22 – 5626 Sandberg

Probe	lorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß .%)	e n			Boden- art	pН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-		Ŭ	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+7-4												5,08	n.b.	n.n.	32,59	65,2	0,971	34	0,037
1/Of	Of	+4-3												4,81	n.b.	n.n.	19,86	39,7	0,676	29	0,022
1/Oh	Oh	+3-0												3,90	n.b.	n.n.	10,85	21,7	0,307	35	0,004
1/1	Ahe	0-10	9,2	9,5	35,5	31,2	76,2	7,9	7,6	5,7	21,2	2,6	Su2	3,26	7,5YR 5/3	n.n.	0,69	1,2	0,017	41	0,001
1/2	Ahe	10-19	10,4	11,8	32,5	28,6	73,0	9,7	6,7	6,9	23,2	3,8	Su2	3,39	7,5YR 5/3	n.n.	0,71	1,2	0,029	25	0,000
1/3	Bv	19-31	5,4	10,3	29,6	28,2	68,1	9,2	7,6	3,3	20,1	11,7	SI3	3,77	7,5YR 6/6	n.n.	0,68	1,2	0,031	22	0,003
1/4	ICv	31-50+	4,2	4,2	11,7	16,9	32,8	8,0	12,1	9,1	29,1	38,0	Lts	3,64	2,5YR 4/6	n.n.	0,35	0,6	0,030	12	0,003
2/L	L	+5-3												4,80	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+3-2												4,30	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Oh	Oh	+2-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ae	0-3	5,3	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,28	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	Ahe	3-11+	17,7	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,15	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+4-3												5,33	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+3-2												4,95	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Oh	Oh	+2-0												5,02	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ahe	0-10	12,7	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,28	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	Bv	10-22+	5,8	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,70	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.

Probe	łorizont	Proben- efe (cm)	Skelett Gew.%)			K	orn (G	gr ew.	öß %)	e n			Boden- art	pН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-)	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+3-1												4,63	n.b.	n.n.	29,14	58,3	1,036	28	0,007
1/Of	Of	+1-0												4,62	n.b.	n.n.	20,23	40,5	0,675	30	0,000
1/1	Ah	0-4	8,3	11,7	29,8	14,8	56,2	15,7	12,8	7,4	35,9	7,9	Su3	3,65	10YR 2/2	n.n.	3,20	5,5	0,155	21	0,014
1/2	Bv	4-15	5,6	14,4	30,3	13,3	58,0	13,7	13,0	7,0	33,8	8,2	SI3	3,93	7,5YR 4/6	n.n.	1,11	1,9	0,044	25	0,002
1/3	Bv	15-25	19,0	15,8	30,0	12,5	58,4	19,5	7,7	6,5	33,7	8,0	Su3	4,04	7,5YR 4/6	n.n.	0,63	1,1	0,027	23	0,004
1/4	Bv	25-35	11,2	19,1	28,2	12,3	59,5	13,9	13,0	6,7	33,6	6,9	Su3	4,09	7,5YR 4/6	n.n.	0,40	0,7	0,019	21	0,002
1/5	Bv	35-47	28,7	20,7	26,9	12,3	59,9	15,0	11,5	6,1	32,6	7,6	Su3	4,03	7,5YR 4/6	n.n.	0,23	0,4	0,014	17	0,003
1/6	Cv	47-70+	81,6	2,6	12,0	8,4	22,9	8,8	13,6	15,8	38,2	38,9	Lt3	3,87	10YR 4/3	n.n.	0,23	0,4	0,050	5	n.b.
2/L	L	+3-2												4,71	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+2-0												5,04	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ah	0-4	0,9	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,71	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	Bv	4-17+	14,5	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,92	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+4-2												4,82	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+2-1												4,61	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Oh	Oh	+1-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ah	0-3	0,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,62	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	Bv	3-18+	2,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,99	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.

Profil RF 23 – 5728 Oberlauringen

Profil RF 24 – 7132 Dollnstein

Probe	łorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß .%)	e n			Boden- art	pН	Munsell- farbe	CaCO ₃	с	N	S
	-		Ŭ	gS	mS	fS	s	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)
1/L	L	+6-3												6,06	n.b.	n.b.	43,55	1,284	0,363
1/Of	Of	+3-0												6,07	n.b.	n.b.	29,83	1,398	0,111
1/1	Ah	0-12	14,5	1,8	4,5	7,6	13,9	14,4	23,7	19,7	57,7	28,3	Lu	6,88	7,5YR 3/2	6,70	7,57	0,583	0,096
1/2	Bhv	12-25	27,4	3,2	5,8	9,5	18,5	14,2	20,6	18,4	53,3	28,2	Lu	6,87	7,5YR 3/4	9,76	6,58	0,422	0,047
1/3	Bhv	25-38	30,4	2,9	6,5	10,6	20,0	16,3	20,0	14,5	50,8	29,2	Lu	6,93	7,5YR 3/4	12,65	6,25	0,378	0,036
1/4	Bhv	38-49	49,1	3,6	8,8	11,8	24,2	11,5	17,8	14,1	43,4	32,4	Lt2	7,22	7,5YR 3/4	18,93	5,15	0,221	0,020
1/5	II Bv-T	49-60	70,1	2,5	6,6	9,7	18,8	14,1	18,3	12,4	44,9	36,3	Lt3	7,13	7,5YR 4/6	14,66	3,51	0,137	0,009
1/6	Bv-T	60-70	54,2	2,3	6,7	9,1	18,1	12,6	19,0	13,4	45,0	36,9	Lt3	7,15	7,5YR 4/6	11,55	3,22	0,133	0,012
1/7	Bv-T	70-80	27,9	2,5	4,5	8,0	14,9	14,7	17,8	12,7	45,3	39,8	Lt3	7,15	7,5YR 4/6	8,99	2,78	0,119	0,006
1/8	Bv-T	80-85+	27,2	2,9	3,9	6,9	13,6	15,0	19,3	12,3	46,5	39,8	Lt3	7,14	7,5YR 4/6	9,28	2,59	0,107	0,003
2/L	L	+4-2												6,25	n.b.	n.b.	44,40	1,434	0,056
2/Of	Of	+2-0												6,35	n.b.	n.b.	42,28	1,869	0,095
2/1	Ah	0-10	44,2	2,3	11,5	27,4	41,2	18,4	16,1	11,6	46,2	12,7	Slu	7,16	n.b.	37,41	16,04	0,904	0,074
2/2	Bhv	10-19+	21,1	3,3	16,2	26,0	45,4	18,7	13,8	12,2	44,7	9,8	Slu	7,12	n.b.	37,63	15,18	0,796	0,066
3/L	L	+6-3												6,03	n.b.	n.b.	43,98	1,354	0,049
3/Of	Of	+3-0												6,09	n.b.	n.b.	42,09	1,615	0,066
3/1	Ah	0-10	21,2	3,0	6,3	11,3	20,7	15,5	21,6	19,3	56,4	22,9	Lu	7,08	n.b.	6,63	12,51	0,894	0,057
3/2	Bhv	10-18+	15,8	3,4	6,6	12,3	22,3	16,4	22,0	18,6	57,0	20,7	Lu	7,16	n.b.	10,15	10,04	0,653	0,040

Probe	lorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß .%)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-	ŧ ÷)	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+3-1												4,94	n.b.	n.n.	45,66	91,3	1,111	41	0,000
1/Of	Of	+1-0												4,44	n.b.	n.n.	19,96	39,9	1,020	20	0,030
1/1	Ah	0-4	0,0	3,4	5,5	15,3	24,2	28,8	22,0	10,3	61,1	14,7	Uls	3,42	10YR 3/3	n.n.	7,48	12,9	0,469	16	0,026
1/2	Bhv	4-16	0,4	2,6	4,2	14,9	21,7	31,7	18,7	10,3	60,7	17,6	Lu	3,73	10YR 5/6	n.n.	1,13	1,9	0,091	12	0,000
1/3	Bhv	16-28	0,2	0,6	4,4	15,1	20,1	31,6	17,8	9,4	58,8	21,1	Lu	3,79	10YR 5/6	n.n.	0,80	1,4	0,064	13	0,000
1/4	Bhv	28-40	0,1	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,80	10YR 5/6	n.n.	0,61	1,0	0,049	12	0,000
1/5	Bhv	40-51	2,3	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,76	10YR 5/6	n.n.	0,50	0,9	0,042	12	0,000
1/6	ll Bv	51-60	11,7	2,0	3,6	9,6	15,1	25,2	18,3	8,6	52,1	32,8	Tu3	3,97	10YR 5/8	n.n.	0,35	0,6	0,033	11	0,000
1/7	Bv	60-70	3,3	1,6	3,3	8,9	13,8	21,8	19,8	9,6	51,3	34,9	Tu3	4,06	10YR 5/8	n.n.	0,30	0,5	0,027	11	0,000
1/8	Bv	70-80	4,8	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4,17	10YR 5/8	n.n.	0,28	0,5	0,024	12	0,000
1/9	Bv	80-90	18,8	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4,20	10YR 5/8	n.n.	0,31	0,5	0,028	11	0,000
1/10	Bv	90-100+	1,6	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4,26	10YR 5/8	n.n.	0,32	0,6	0,029	11	0,000
2/L	L	+3-1												4,74	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+1-0												4,16	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ah	0-4	0,2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,52	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	Bhv	4-16	0,1	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,71	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/3	Bhv	16-28+	0,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,85	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+3-1												5,16	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+1-0												4,67	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ah	0-4	0,2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,85	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	Bhv	4-16	0,1	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,71	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/3	Bhv	16-28+	0,1	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,85	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.

Profil RF 25 – 7831 Egling a.d. Paar

Profil RF 26 – 7433 Schrobenhausen

Probe	łorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß %)	e n			Boden- art	pН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-)	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+15-14												4,21	n.b.	n.n.	48,20	96,4	1,615	30	0,005
1/Of	Of	+14-9												3,45	n.b.	n.n.	44,37	88,7	1,422	31	0,013
1/Oh	Oh	+9-0												2,87	n.b.	n.n.	35,64	71,3	1,553	23	0,058
1/1	Aeh	0-8	0,1	0,3	34,6	49,1	83,9	3,6	3,2	2,8	9,5	6,6	St2	3,58	10YR 3/3	n.n.	2,11	3,6	0,056	38	0,001
1/2	Ae	8-20	0,3	0,3	36,0	48,3	84,7	4,4	2,8	2,4	9,5	5,8	St2	4,04	2,5Y 5/2	n.n.	1,18	2,0	0,028	42	0,001
1/3	Bh	20-32	0,5	0,3	37,3	49,3	86,8	3,2	3,5	2,8	9,5	3,7	fSms	4,28	2,5Y 4/2	n.n.	0,68	1,2	0,022	31	0,003
1/4	ll Go	32-44	0,0	0,1	33,4	52,8	86,4	4,6	1,6	4,6	10,8	2,8	Su2	4,09	10YR 5/8	n.n.	0,15	0,3	0,008	18	0,001
1/5	Go	44-58+	0,0	0,4	33,3	54,7	88,4	3,1	2,0	2,1	7,2	4,4	fSms	3,97	10YR 5/8	n.n.	0,14	0,2	0,010	14	0,001
2/L	L	+22-19												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+19-12												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Oh	Oh	+12-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ahe	0-9+	0,4	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+10-7												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+7-4												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Oh	Oh	+4-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ahe	0-5	0,1	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	Bsh	5-11+	0,2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
1/L L +26-24 V
1/Of Of +24-16 45,67 91,3 1,834 25 0 1/Oh Oh +16-0
1/Oh Oh +16-0 V
1/1 Ghr 0-10 2,5 0,7 1,9 7,1 9,7 11,3 10,7 13,1 35,2 55,1 Tu2 4,41 5Y 3/1 n.n. 2,91 5,0 0,161 18 0 1/2 Ghr 10-20 4,7 1,4 2,7 8,2 12,4 11,1 11,7 10,4 33,2 54,4 Tu2 5,30 5Y 3/1 n.n. 2,04 3,5 0,155 13 0 1/3 Gor 20-32 5,4 0,7 1,7 9,1 11,5 14,0 13,1 12,4 39,4 49,1 Tu2 6,63 5Y 5/1 0,63 0,64 n.b. 0,037 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 0,036 0,036 0,036 0
1/2 Ghr 10-20 4,7 1,4 2,7 8,2 12,4 11,1 11,7 10,4 33,2 54,4 Tu2 5,30 5Y 3/1 n.n. 2,04 3,5 0,155 13 0 1/3 Gor 20-32 5,4 0,7 1,7 9,1 11,5 14,0 13,1 12,4 39,4 49,1 Tu2 6,63 5Y 5/1 0,63 0,64 n.b. 0,037 n.b. 0 1/4 II Gor 32-42 10,0 1,1 1,9 8,9 11,9 15,6 18,4 12,0 46,1 42,1 Lt3 7,39 5Y 5/1 24,90 3,58 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 n.b. 0,036 0.b 0,036 0.b
1/3 Gor 20-32 5,4 0,7 1,7 9,1 11,5 14,0 13,1 12,4 39,4 49,1 Tu2 6,63 5Y 5/1 0,63 0,64 n.b. 0,037 n.b. 0 1/4 II Gor 32-42 10,0 1,1 1,9 8,9 11,9 15,6 18,4 12,0 46,1 42,1 Lt3 7,39 10/047.6/6 24,90 3,58 n.b. 0,036 n.b. 0,037 n.b.
1/4 II Gor 32-42 10,0 1,1 1,9 8,9 11,9 15,6 18,4 12,0 46,1 42,1 Lt3 7,39 5Y 5/1 10VR 5/6 24,90 3,58 n.b. 0,036 n.b. 0,036 n.b. 0,019 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1/5 Gor 42-52+ 10,8 2,7 2,7 9,3 14,8 17,2 19,5 13,6 50,3 34,9 Tu3 7,53 SY 5/1 10YR 5/6 28,23 4,54 n.b. 0,019 n.b. 0 2/L L +16-14 -
2/L L +16-14 2/Of Of +14-9 3,48 n.b. n.n. 48,06 96,1 1,260 38 0
2/Of Of +14-9 3,48 n.b. n.n. 47,45 94,9 1,674 28 0
2/Oh Oh +9-0 3,20 n.b. n.n. 31,75 63,5 1,281 25 0
2/1 Ghr 0-10+ 0.0 0,4 2,1 9,4 11,9 14,7 18,0 13,9 46,6 41,5 Lt3 4,22 n.b. n.n. 3,12 5,4 0,135 23 0.
3/Of Of +3-0 4,46 n.b. n.n. 34,90 69,8 1,668 21 0
3/1 Ghr 0-10 0,0 0,2 1,8 7,8 9,9 11,9 16,4 19,2 47,6 42,6 Lt3 4,45 n.b. n.n. 2,75 4,7 0,180 15 0.
3/2 Ghr 10-22+ 0,0 0,4 2,0 8,3 10,6 14,1 18,2 20,4 52,7 36,6 Tu3 4,59 n.b. n.n. 5,73 9,8 0,401 14 0.

Profil RF 27 – 8032 Dießen a. Ammersee

Profil RF 28 – 5939 Waldsassen

Probe	łorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß .%)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-		<u> </u>	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+13-11												3,75	n.b.	n.n.	47,62	95,2	0,796	60	0,001
1/Of	Of	+11-4												3,25	n.b.	n.n.	44,53	89,1	1,341	33	0,124
1/Oh	Oh	+4-0												2,96	n.b.	n.n.	38,86	77,7	1,265	31	0,110
1/1	Ahe	0-10	12,4	7,5	8,3	20,4	36,2	20,8	18,4	11,9	51,1	12,7	Uls	3,06	10YR 7/2	n.n.	0,97	1,7	0,038	26	0,000
1/2	Bv	10-20	26,3	12,1	6,9	14,0	33,1	17,1	21,9	12,5	51,5	15,4	Uls	3,45	10YR 6/8	n.n.	0,36	0,6	0,024	15	0,000
1/3	Bv	20-30	27,6	11,7	6,6	13,4	31,7	18,3	21,5	11,9	51,7	16,6	Uls	3,59	10YR 6/8	n.n.	0,42	0,7	0,027	16	0,000
1/4	Bv	30-40	20,9	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,77	10YR 6/8	n.n.	0,31	0,5	0,023	14	0,000
1/5	Bv	40-50	21,1	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,84	10YR 6/8	n.n.	0,22	0,4	0,018	12	0,000
1/6	Bv	50-65	11,9	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,92	10YR 6/8	n.n.	0,10	0,2	0,006	17	0,000
1/7	II Bv	65-70	32,0	30,9	12,7	21,9	65,5	14,9	9,4	4,3	28,5	6,0	Su3	3,98	5YR 5/8	n.n.	0,07	0,1	0,008	9	0,002
1/8	Bv	70-80+	42,4	15,5	15,0	19,9	50,4	19,1	18,0	6,6	43,7	5,9	Su4	3,93	10YR 6/8	n.n.	0,12	0,2	0,013	10	0,002
2/L	L	+5-4												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+4-2												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Oh	Oh	+2-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ahe	0-12	7,7	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	Bv	12-25+	9,3	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+7-6												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+6-3												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Oh	Oh	+3-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ahe	0-9	11,6	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	Bv	9-15+	10,3	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.

Probe	Horizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß %)	e n			Boden- art	pН	Munsell- farbe	CaCO₃	с	org.S	N	C/N	s
	-	- =	Ŭ	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+5-4												4,15	n.b.	n.n.	41,52	83,0	1,187	35	0,007
1/Of	Of	+4-1												3,57	n.b.	n.n.	32,30	64,6	1,448	22	0,029
1/Oh	Oh	+1-0												3,20	n.b.	n.n.	31,32	62,6	1,603	20	0,061
1/1	Ah	0-12	3,7	24,3	17,2	11,7	53,2	9,5	11,5	8,7	29,7	17,2	Ls4	2,89	10YR 3/3	n.n.	5,16	8,9	0,187	28	0,000
1/2	Bv	12-24	17,6	26,1	16,7	10,3	53,2	9,9	10,7	11,0	31,6	15,2	SI4	4,04	7,5YR 5/8	n.n.	2,85	4,9	0,107	27	0,000
1/3	Bv-Cv	24-40	23,2	35,6	17,6	12,9	66,0	9,8	8,9	7,6	26,2	7,7	Su3	4,29	10YR 5/6	n.n.	1,40	2,4	0,057	24	0,000
1/4	Bv-Cv	40-50	10,3	30,5	21,8	15,0	67,3	11,1	8,1	5,9	25,1	7,6	Su3	4,35	10YR 5/6	n.n.	0,73	1,3	0,030	24	0,000
1/5	Bv-Cv	50-63+	24,3	28,7	22,6	16,5	67,8	11,0	8,9	5,2	25,2	7,0	Su3	4,38	10YR 5/6	n.n.	0,63	1,1	0,035	18	0,000
2/L	L	+5-4												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+4-2												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Oh	Oh	+2-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ah	0-20+	5,3	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+5-4												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+4-2												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Oh	Oh	+2-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ah	0-10	2,8	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	Bv	10-25+	4,1	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.

Profil RF 29 – 6440 Moosbach

Profil RF 30 – 6240 Flossenbürg

Probe	lorizont	Proben- efe (cm)	Skelett Gew.%)			Кo	orn (G	gr ew.	öß %)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-	- ÷		gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+10-9												3,75	n.b.	n.n.	47,49	95,0	1,186	40	0,027
1/Of	Of	+9-3												3,28	n.b.	n.n.	44,57	89,1	1,710	26	0,116
1/Oh	Oh	+3-0												3,18	n.b.	n.n.	43,96	87,9	1,737	25	0,127
1/1	Ah	0-12	30,6	30,6	18,0	10,2	58,8	9,9	9,5	8,3	27,6	13,6	SI4	2,80	10YR 3/4	n.n.	3,81	6,6	0,140	27	0,000
1/2	Bv	12-25	64,9	22,3	14,2	8,5	45,1	7,0	13,0	9,6	29,7	25,2	Lts	3,76	10YR 5/8	n.n.	3,15	5,4	0,133	24	0,001
1/3	Bv	25-40	n.b.	23,1	14,4	8,4	45,9	7,5	13,7	10,5	31,7	22,5	Ls3	4,06	10YR 5/8	n.n.	2,36	4,1	0,116	20	0,000
1/4	ICv	40-50	71,4	35,1	23,0	16,0	74,1	9,8	7,3	3,3	20,4	5,4	SI2	4,31	10YR 6/6	n.n.	0,88	1,5	0,041	21	0,000
1/5	ICv	50-60	72,8	34,3	20,7	19,1	74,1	10,7	7,8	2,6	21,0	4,8	Su2	4,26	10YR 6/6	n.n.	0,89	1,5	0,048	19	0,000
1/6	ICv	60-73+	70,8	26,6	22,6	22,1	71,3	14,5	6,9	2,2	23,5	5,2	SI2	4,25	10YR 6/6	n.n.	0,78	1,3	0,043	18	0,000
2/L	L	+10-9												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+9-5												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Oh	Oh	+5-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ah	0-10	33,5	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	Bv	10-17+	35,5	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+12-10												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+10-3												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Oh	Oh	+3-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ah	0-18+	41,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.

Probe	łorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß %)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	N	s
	-	- ;)	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)
1/L	L	+1-0												5,60	n.b.	n.b.	18,46	0,513	0,087
1/1	Ah	0-5	5,7	1,2	1,8	4,3	7,3	10,6	19,5	17,2	47,3	45,4	Tu2	5,71	10YR 2/3	1,70	7,17	0,562	0,034
1/2	Cv-Bv	5-19	11,2	1,3	1,5	2,5	5,3	5,8	14,9	14,7	35,4	59,2	Tu2	6,40	10YR 3/3	1,46	2,89	0,292	0,007
1/3	Bv-Cv	19-35+	54,2	2,0	1,4	2,2	5,6	5,3	15,4	14,2	35,0	59,4	Tu2	6,66	10YR 3/3	4,06	2,88	0,309	0,019
2/L	L	+1-0												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ah	0-5	5,5	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	Bv-Cv	5-17+	7,9	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+1-0												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ah	0-6	6,2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	Bv-Cv	6-21+	25,4	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.

Profil RF 31 – 6132 Buttenheim

Profil RF 32 – 5936 Bad Berneck i. Fichtelgebirge

Probe	Horizont	Proben- efe (cm)	Skelett Gew.%)			K	orn (G	gr ew.	öß .%)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	_	- ₽	-	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+86-85											n.b.	3,77	n.b.	n.n.	46,68	93,4	1,348	35	0,066
1/Of	Of	+85-80											n.b.	3,29	n.b.	n.n.	45,81	91,6	1,906	24	0,466
1/Oh	xC-Oh	+80-50	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,34	10YR 2/2	n.n.	28,93	57,9	1,404	21	1,990
1/Oh2	xC-Oh	+50-0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,78	10YR 2/2	n.n.	18,51	37,0	0,788	23	0,008
2/L	L	+11-10											n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+10-0											n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+13-12											n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+12-0											n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
1						1	1	1	1					1			I				1

Profil RF 33 – 6023 Lohr a. Main

Probe	lorizont	Proben- lefe (cm)	Skelett Gew.%)			ĸ	orn (G	gr ew	öß .%)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-	- 5	Ŭ	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+6-1												4,79	n.b.	n.n.	43,47	86,9	1,393	31	0,034
1/Of	Of	+1-0												4,22	n.b.	n.n.	32,50	65,0	1,272	26	0,097
1/1	Ah	0-8	12,5	9,8	26,3	26,7	62,9	13,5	10,4	6,5	30,3	6,8	Su3	3,24	10YR 2/3	n.n.	4,19	7,2	0,181	23	0,011
1/2	ilCv-Bv	8-34	23,5	9,2	24,5	30,0	63,8	13,7	9,9	5,2	28,9	7,4	Su3	3,65	5YR 4/6	n.n.	1,08	1,9	0,041	26	0,004
1/3	II imC	34+	14,6	9,2	25,2	30,9	65,2	12,7	9,7	5,0	27,4	7,4	Su3	3,98	7,5YR 3/4	n.n.	0,66	1,1	0,033	20	0,007
2/L	L	+6-2												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+2-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ah	0-8	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	ilCv-Bv	8-22+	11,4	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+6-1												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+1-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ah	0-8	19,2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	ilCv-Bv	8-20+	4,4	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.

Probe	lorizont	Proben- efe (cm)	Skelett Gew.%)			K	orn (G	gr ew.	öß .%)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-	± =	Ŭ	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+3-1												4,16	n.b.	n.n.	40,17	80,3	1,044	38	0,007
1/Of	Of	+1-0												3,84	n.b.	n.n.	32,04	64,1	1,307	25	0,088
1/1	Ah	0-6	13,6	3,8	7,5	28,9	40,2	26,7	14,6	7,8	49,1	10,8	Slu	3,09	7,5YR 3/3	n.n.	5,84	10,0	0,299	20	0,009
1/2	Bv	6-18	18,9	3,4	6,0	30,2	39,7	24,4	13,7	9,0	47,1	13,1	Slu	3,76	7,5YR 5/4	n.n.	1,71	2,9	0,080	21	0,000
1/3	Bv	18-40	26,2	4,2	6,0	29,4	39,6	24,7	14,6	7,8	47,1	13,3	Slu	4,05	7,5YR 4/6	n.n.	0,78	1,3	0,042	19	0,002
1/4	imC	40+	21,7	3,8	5,5	32,8	42,1	24,1	12,4	8,4	44,9	13,0	Slu	4,02	7,5YR 4/4	n.n.	0,62	1,1	0,040	16	0,003
2/L	L	+3-1												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+1-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ah	0-8	21,2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	Bv	8-18	10,7	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/3	Bv	18-27+	14,4	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+3-1												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+1-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ah	0-5	9,8	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	Bv	5-15	13,9	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/3	Bv	15-26+	36,5	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
	1		I			1		1		1			I				1		1	1	I

Profil RF 34 – 6122 Bischbrunn

Profil RF 35 – 5824 Gräfendorf

Probe	lorizont	Proben- lefe (cm)	Skelett (Gew.%)			Ko	orn (G	gr ew.	öß %)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-	- 7		gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+3-0												4,66	n.b.	n.n.	37,80	75,6	1,025	37	0,003
1/1	Ah	0-8	11,4	4,8	34,9	28,7	68,5	10,7	9,0	5,7	25,4	6,1	Su3	4,53	10YR 3/4	n.n.	2,37	4,1	0,129	18	0,006
1/2	Bv	8-18	10,6	8,5	38,7	25,5	72,7	9,1	8,1	4,1	21,3	6,0	SI2	4,14	10YR 4/6	n.n.	0,59	1,0	0,042	14	0,004
1/3	Bv	18-28	13,7	9,4	37,4	28,0	74,8	8,4	8,6	3,0	20,0	5,2	SI2	4,11	10YR 4/6	n.n.	0,43	0,7	0,035	12	0,005
1/4	Bv	28-38	11,7	8,1	37,6	27,9	73,6	9,8	7,8	4,2	21,8	4,5	Su2	4,18	10YR 4/6	n.n.	0,36	0,6	0,031	12	0,005
1/5	Bv	38-48	10,6	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4,07	10YR 4/6	n.n.	0,37	0,6	0,031	12	n.b.
1/6	Bv	48-58	5,1	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4,17	10YR 4/6	n.n.	0,15	0,3	0,025	6	n.b.
1/7	II ilCv	58-69	11,1	10,9	36,1	25,6	72,6	7,2	8,3	4,7	20,3	7,1	SI2	4,07	7,5YR 4/6	n.n.	0,24	0,4	0,027	9	n.b.
1/8	ilCv	69-80	11,8	10,4	35,9	26,8	73,0	8,7	7,3	5,0	21,1	5,8	SI2	4,12	7,5YR 4/6	n.n.	0,13	0,2	0,021	6	n.b.
1/9	ilCv	80-92+	13,6	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4,24	7,5YR 4/6	n.n.	0,10	0,2	0,019	5	n.b.
2/L	L	+2-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ah	0-8	18,2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	Bv	8-18	7,1	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/3	Bv	18-27+	23,1	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+3-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ah	0-8	0,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	Bv	8-18	15,6	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/3	Bv	18-26+	7,2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.

Probe	lorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß %)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-	- =)	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+7-5												4,68	n.b.	n.n.	38,30	76,6	1,073	36	0,008
1/Of	Of	+5-3												4,21	n.b.	n.n.	38,90	77,8	1,652	24	0,032
1/Oh	Oh	+3-0												3,22	n.b.	n.n.	30,92	61,8	1,454	21	0,060
1/1	Aeh	0-4	13,1	4,7	26,2	34,2	65,1	11,7	10,1	4,9	26,6	8,3	SI3	3,10	10YR 3/2	n.n.	3,57	6,1	0,153	23	0,014
1/2	Bv	4-15	10,5	4,0	24,7	31,3	60,0	10,4	11,0	6,3	27,6	12,4	SI4	4,02	10YR 5/6	n.n.	1,31	2,2	0,053	25	0,001
1/3	Bv	15-25	8,8	3,7	23,7	32,0	59,4	12,1	10,8	5,8	28,7	11,9	SI3	4,25	10YR 5/6	n.n.	0,45	0,8	0,025	18	0,007
1/4	Bv	25-35	24,3	3,3	25,2	29,6	58,1	11,4	11,4	6,5	29,3	12,6	SI4	4,29	10YR 5/6	n.n.	0,39	0,7	0,026	15	0,017
1/5	ICv	35-47	41,6	4,3	22,9	33,2	60,4	11,8	11,3	6,4	29,6	10,1	SI3	4,26	10YR 6/6	n.n.	0,21	0,4	0,019	11	0,012
1/6	ICv	47-59	41,9	4,7	24,9	36,9	66,6	10,7	8,7	4,3	23,7	9,7	SI3	4,22	10YR 6/6	n.n.	0,17	0,3	0,017	10	0,009
1/7	ICv	59-71+	7,5	7,8	25,6	40,2	73,6	8,1	6,0	4,1	18,2	8,2	SI3	4,14	10YR 6/6	n.n.	0,14	0,2	0,020	7	n.b.
2/L	L	+9-6												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+6-4												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Oh	Oh	+4-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ahe	0-2	4,5	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	Bv	2-18+	7,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+7-4												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+4-2												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Oh	Oh	+2-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ahe	0-2	8,7	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	Bv	2-20+	9,7	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.

Profil RF 36 – 5632 Neustadt bei Coburg

Profil RF 37 – 5634 Teuschnitz

Probe	łorizont	Proben- efe (cm)	Skelett Gew.%)			K	orn (G	gr ew.	öß .%)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-		Ŭ	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+10-8												3,76	n.b.	n.n.	33,83	67,7	1,136	30	0,012
1/Of	Of	+8-5												3,17	n.b.	n.n.	36,63	73,3	1,589	23	0,057
1/Oh	Oh	+5-0												3,10	n.b.	n.n.	18,60	37,2	0,893	21	0,016
1/1	Ah	0-3	31,4	10,6	6,6	14,8	32,0	12,2	19,1	13,0	44,4	23,7	Ls2	2,82	10YR 3/3	n.n.	12,36	21,3	0,658	19	0,059
1/2	Bv	3-13	35,6	8,4	7,5	11,2	27,1	12,3	18,3	15,3	46,0	27,0	Lt2	3,45	10YR 5/8	n.n.	3,20	5,5	0,213	15	0,004
1/3	Bv	13-23	37,8	12,0	8,9	8,9	29,7	13,4	16,7	13,5	43,7	26,6	Lt2	3,85	10YR 5/8	n.n.	2,53	4,4	0,179	14	0,002
1/4	Bv	23-33	28,8	13,1	9,2	10,1	32,4	15,6	16,2	14,5	46,4	21,3	Ls2	4,10	10YR 5/8	n.n.	1,69	2,9	0,111	15	0,000
1/5	II xlCv	33-44	21,2	11,6	8,1	9,8	29,4	15,0	18,2	12,8	46,0	24,6	Ls2	3,98	2,5Y 6/6	n.n.	0,55	1,0	0,063	9	0,000
1/6	xlCv	44-54	22,3	10,7	7,2	9,2	27,1	15,7	13,4	13,2	42,3	30,6	Lt2	3,88	2,5Y 6/6	n.n.	0,57	1,0	0,073	8	0,000
1/7	III xlCv-Sw	54-64+	43,3	10,5	7,7	10,4	28,6	12,0	13,8	11,4	37,2	34,2	Lt2	3,79	2,5Y 6/3 10YR 6/8	n.n.	0,42	0,7	0,065	6	0,000
2/L	L	+10-7												3,69	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+7-4												2,99	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Oh	Oh	+4-0												2,94	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ah	0-6	10,3	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	2,96	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	Bv	6-18+	23,4	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,56	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+10-7												3,69	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+7-4												2,98	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Oh	Oh	+4-0												2,94	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ah	0-5	12,4	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	2,94	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	Bv	5-15+	24,1	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,45	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.

Probe	lorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß .%)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-	ti ti		gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+11-9												3,90	n.b.	n.n.	45,78	91,6	1,310	35	0,019
1/Of	Of	+9-3												3,17	n.b.	n.n.	44,87	89,7	1,672	27	0,061
1/Oh	Oh	+3-0												3,23	n.b.	n.n.	27,42	54,8	0,986	28	0,056
1/1	Ah	0-3	32,6	17,9	7,2	7,1	32,2	12,9	18,1	13,0	44,1	23,7	Ls2	2,80	7,5YR 2/3	n.n.	12,28	21,1	0,661	19	0,054
1/2	Bv	3-14	56,2	10,2	3,9	2,5	16,6	15,5	23,2	15,9	54,6	28,8	Lu	3,51	10YR 5/8	n.n.	3,25	5,6	0,174	19	n.b.
1/3	Bv	14-25	46,6	14,2	4,2	2,4	20,8	15,2	22,0	15,4	52,6	26,5	Lu	3,76	10YR 5/8	n.n.	2,10	3,6	0,113	19	0,007
1/4	Bv	25-36	40,7	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,91	10YR 5/8	n.n.	1,69	2,9	0,100	17	0,006
1/5	Bv	36-47	65,2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,90	10YR 5/8	n.n.	1,54	2,6	0,093	17	0,004
1/6	Bv	47-57	63,8	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,99	10YR 5/8	n.n.	0,87	1,5	0,076	11	0,008
1/7	II xCv-Bv	57-68	50,2	22,0	8,3	3,2	33,5	17,0	20,1	11,1	48,2	18,3	Ls2	3,98	10YR 4/6	n.n.	0,53	0,9	0,043	12	0,004
1/8	xCv-Bv	68-79	66,5	26,1	9,2	3,4	38,7	17,2	19,0	9,9	46,0	15,3	Slu	3,95	10YR 4/6	n.n.	0,41	0,7	0,056	7	0,001
1/9	xCv-Bv	79-90	73,6	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,94	10YR 4/6	n.n.	0,44	0,8	0,059	7	0,000
1/10	xCv-Bv	90-100+	70,4	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,87	10YR 4/6	n.n.	0,53	0,9	0,065	8	0,000
2/L	L	+6-5												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+5-3												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Oh	Oh	+3-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ah	0-1	36,8	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	Bv	1-8+	50,5	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+8-5												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+5-3												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Oh	Oh	+3-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ah	0-1	31,9	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	Bv	1-18+	50,1	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.

Profil RF 38 – 5735 Schwarzenbach a. Wald

Profil RF 39 – 6532 Nürnberg

Probe	łorizont	Proben- efe (cm)	Skelett Gew.%)			K	orn (G	gr ew.	öß .%)	e n			Boden- art	pН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-	ti		gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+19-12												3,61	n.b.	n.n.	30,62	61,2	0,555	55	0,000
1/Of	Of	+12-8												3,33	n.b.	n.n.	44,84	89,7	1,620	28	0,106
1/Oh	Oh	+8-0												3,33	n.b.	n.n.	22,56	45,1	0,915	25	n.b.
1/1	Ah	0-10	n.b.	22,0	34,6	6,8	63,4	1,7	4,3	8,2	14,2	22,4	St3	3,09	10YR 2/2	n.n.	5,19	8,9	0,195	27	n.b.
1/2	ICv	10-20	n.b.	41,7	39,8	6,0	87,5	1,3	1,5	2,9	5,8	6,7	St2	3,58	10YR 5/3	n.n.	0,55	0,9	0,017	32	n.b.
1/3	ICv	20-30	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,78	10YR 5/3	n.n.	0,20	0,3	0,007	28	0,000
1/4	ICv	30-42	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,79	10YR 5/3	n.n.	0,21	0,4	0,013	16	0,002
1/5	II Sw-Bv	42-47	n.b.	35,1	43,8	8,6	87,5	0,1	1,1	1,4	2,6	9,9	St2	3,80	10YR 5/4	n.n.	0,38	0,7	0,021	18	n.b.
1/6	Bhv-Sw	47-57	n.b.	33,3	48,7	5,2	87,2	0,2	0,4	3,0	3,6	9,2	St2	3,74	10YR 6/2 10YR 6/3	n.n.	0,22	0,4	0,021	11	n.b.
1/7	Bhv-Sw	57-67	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,73	10YR 6/2 10YR 6/3	n.n.	0,14	0,2	0,013	11	0,003
1/8	Bhv-Sw	67-77	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,75	10YR 6/2 10YR 6/3	n.n.	0,09	0,1	0,010	9	0,001
1/9	ICv-Sw	77-89+	n.b.	27,5	57,2	7,2	92,0	1,1	0,1	-0,2	1,1	6,9	St2	3,73	10YR 6/2 10YR 5/4	n.n.	0,09	0,2	0,013	7	n.b.
2/L	L	+12-10												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+10-2												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Oh	Oh	+2-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ah	0-10	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	ICv	10-16+	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+7-5												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+5-3												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Oh	Oh	+3-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ah	0-8	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	Sw-Bv	8-14+	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.

Probe	łorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß %)	e n			Boden- art	pН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-	ţi. F		gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+2-1												3,61	n.b.	n.n.	49,40	98,8	0,934	53	0,043
1/Of	Of	+1-0												3,33	n.b.	n.n.	39,69	79,4	1,495	27	0,024
1/1	Ah	0-1	0,0	10,2	16,0	12,8	39,0	20,7	13,5	9,0	43,2	17,8	Ls2	3,09	10YR 3/4	n.n.	6,95	12,0	0,356	20	n.b.
1/2	Bv	1-9	0,0	3,7	3,9	6,9	14,5	21,7	19,6	14,7	56,0	29,5	Lu	3,58	10YR 4/4	n.n.	1,86	3,2	0,090	21	n.b.
1/3	Bv+II Sw	9-20	0,0	1,8	1,8	3,6	7,3	14,9	14,3	11,6	40,9	51,9	Tu2	3,78	10YR 4/3 10YR 6/4	n.n.	1,13	1,9	0,082	14	n.b.
1/4	II Sw	20-30	0,0	0,1	0,3	2,5	2,9	13,1	7,7	9,6	30,3	66,8	Tt	3,79	10YR 4/3 10 YR 6/4	n.n.	0,65	1,1	0,048	13	0,021
1/5	Sw	30-40	0,0	0,1	0,4	0,3	0,8	12,7	9,1	8,3	30,1	69,1	Tt	3,80	10YR 4/3 10YR 6/4	n.n.	0,05	0,1	0,036	1	0,000
1/6	Sw	40-50	0,0	0,1	0,5	2,4	3,0	11,1	11,4	8,1	30,6	66,4	Tt	3,74	10YR 4/3 10YR 6/4	n.n.	0,33	0,6	0,029	11	0,000
1/7	Sw	50-65	0,0	0,0	0,4	3,2	3,6	12,7	10,5	8,0	31,3	65,1	Tt	3,73	7,5YR 6/8 5Y 7/1	n.n.	0,36	0,6	0,022	16	0,000
1/8	Sdc	65-75	0,1	0,2	0,7	4,0	4,9	12,9	10,6	8,0	31,5	63,6	Tu2	3,75	7,5YR 6/8 5Y 7/1	1,39	0,65	n.b.	0,032	n.b.	0,000
1/9	Sdc	75-90+	27,5	0,9	0,8	3,5	5,2	17,0	12,5	12,0	41,5	53,3	Tu2	3,73	5YR 4/8 5Y 3/1	5,31	0,74	n.b.	0,019	n.b.	0,000
2/L	L	+4-3,5												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+3,5-1												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Oh	Oh	+1-0												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ah	0-1	0,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	Bv-II Sw	1-7	0,2	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/3	II Sw	7-15	0,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/4	Sw	15-22	0,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/5	Sw	22-30+	0,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+2-1,5												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+1,5-0												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ah	0-0,5	0,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	Bv	0,5-12	0,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/3	II Sw	12-22+	0,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.

Profil RF 40 – 6829 Ornbau

Profil RF 41 – 6427 Uffenheim

Probe	lorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß .%)	e n			Boden- art	pН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-		<u> </u>	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+0,5-0												4,61	n.b.	n.n.	43,53	87,1	1,021	43	0,004
1/1	Ah	0-2	0,0	1,8	2,5	7,0	11,3	19,3	22,4	21,0	62,6	26,1	Lu	6,48	10YR 2/3	n.n.	6,95	11,9	0,456	15	0,011
1/2	rBht	2-10	0,0	1,4	1,7	6,4	9,6	18,7	23,6	18,9	61,3	29,1	Lu	6,86	10YR 3/2	n.n.	5,24	9,0	0,370	14	0,009
1/3	rBht	10-20	0,3	1,8	1,9	5,4	9,1	17,2	22,9	20,3	60,4	30,5	Tu3	6,92	10YR 3/2	n.n.	3,73	6,4	0,276	14	0,003
1/4	Sw+rBt	20-30	0,0	2,2	1,6	4,1	7,9	17,0	21,7	18,3	57,1	35,1	Tu3	6,72	10YR 5/1 10YR 3/2	n.n.	2,37	4,1	0,181	13	0,000
1/5	II Sw+rBt	30-41	0,0	2,8	1,7	2,4	6,9	11,0	16,4	12,7	40,2	52,9	Tu2	6,63	10YR 5/1 10YR 3/2	1,21	0,90	n.b.	0,073	n.b.	0,000
1/6	III Sdc	41-56+	0,0	1,9	2,2	2,6	6,7	9,8	11,5	9,8	31,0	62,3	Tu2	7,09	10YR 5/1 10YR 4/6	6,26	1,14	n.b.	0,056	n.b.	0,000
2/L	L	+1-0,5												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+0,5-0												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ah	0-12,5	0,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	Bht-Sw	12,5-20	3,8	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/3	Bht-Sw	20-27+	0,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+0,8-0,3												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+0,3-0												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ah	0-7	0,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	Bht-Sw	7-18	0,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/3	Sw	18+	0,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.

Probe	Horizont	Proben- iefe (cm)	Skelett (Gew.%)			Ko	orn (G	gr ew.	öß %)	e n			Boden- art	рН	Munsell-farbe	CaCO ₃	с	org.S	N	C/N	s
			-	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+2-1												4,09	n.b.	n.n.	48,45	96,9	0,962	50	0,001
1/Of	Of	+1-0												4,58	n.b.	n.n.	42,20	84,4	1,619	26	0,033
1/1	Axh	0-7	1,4	4,5	6,2	17,7	28,4	19,8	18,9	9,5	48,2	23,4	Ls2	3,80	10YR 3/3	n.n.	9,41	16,2	0,627	15	0,028
1/2	Bv	7-19	32,8	5,7	5,3	17,7	28,7	19,6	14,6	11,0	45,2	26,0	Lt2	3,81	10YR 4/3	n.n.	2,84	4,9	0,205	14	0,001
1/3	II Sw	19-26	26,8	3,3	2,8	9,4	15,6	10,2	8,4	11,0	29,5	54,9	TI	3,85	10YR 4/6 7,5GY 6/1	n.n.	0,52	0,9	0,039	13	0,000
1/4	Sd	26-36	4,1	1,9	1,7	4,6	8,2	6,0	12,1	18,9	37,0	54,8	Tu2	4,05	7,5GY 6/1 7,5GY 5/1	n.n.	0,31	0,5	0,027	11	0,000
1/5	Sd	36-46	0,0	4,6	3,1	6,8	14,4	6,3	10,2	15,7	32,2	53,3	Tu2	4,25	7,5GY 6/1 7,5GY 5/1	n.n.	0,21	0,4	0,016	13	0,000
1/6	Sd	46-56	0,0	5,0	3,4	6,5	14,9	7,5	8,2	16,3	32,0	53,1	Tu2	4,44	7,5GY 6/1 7.5GY 5/1	n.n.	0,17	0,3	0,014	12	0,000
1/7	Sd	56-66	0,0	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4,67	7,5GY 6/1 7.5GY 5/1	n.n.	0,14	0,2	0,014	10	0,000
1/8	Sd	66-77+	23,6	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4,99	7,5GY 6/1 7,5GY 5/1	n.n.	0,13	0,2	0,011	12	1,267
2/L	L	+4-2,5												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+2,5-1												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Oh	Oh	+1-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ah	0-5	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	Bv	5-15+	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+6,5-3,5												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+3,5-0,3												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Oh	Oh	+0,3-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ah	0-3,5	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	Bv-ICv	3,5-12+	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.

Profil RF 42 – 6129 Burgwindheim

Profil RF 43 – 7429 Dillingen a.d. Donau

Probe	lorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß .%)	e n			Boden- art	pН	Munsell- farbe	CaCO ₃	с	N	s
	–	± ‡	Ŭ	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)
1/L	L	+1-0												6,17	n.b.	n.b.	41,33	1,440	0,019
1/1	eAh	0-15	27,0	1,0	1,6	15,4	18,0	25,3	22,4	17,1	64,8	17,2	Lu	6,92	10YR 3/3	25,90	7,14	0,388	0,010
1/2	Bhv	15-25	28,7	0,5	1,0	15,9	17,3	24,9	20,8	15,8	61,5	21,2	Lu	7,19	10YR 4/3	32,36	5,37	0,182	0,002
1/3	Bhv	25-33	36,8	0,4	1,0	17,7	19,1	29,1	18,8	15,1	63,0	17,9	Lu	7,25	10YR 4/3	35,31	5,21	0,156	0,001
1/4	Bv	33-43	0,0	0,3	0,7	19,6	20,6	30,0	17,8	12,5	60,3	19,1	Lu	7,32	10YR 5/3	33,75	5,15	0,117	0,001
1/5	Bv	43-53	0,0	0,2	0,5	28,4	29,0	31,3	14,2	8,7	54,2	16,8	Uls	7,33	10YR 5/3	34,34	4,96	0,069	0,001
1/6	Bv	53-63	0,0	0,1	0,5	46,0	46,5	22,2	11,0	6,6	39,8	13,7	SI4	7,41	10YR 5/3	36,24	4,76	0,052	0,003
1/7	Bv-elCv	63-73	0,0	0,2	0,5	41,0	41,7	29,9	10,2	4,9	44,9	13,4	Slu	7,47	2,5Y 5/3	36,04	4,81	0,051	0,005
1/8	Bv-elCv	73-81	0,0	0,1	0,6	66,9	67,5	14,5	5,9	3,3	23,7	8,7	SI3	7,47	2,5Y 5/3	35,13	4,36	0,034	0,005
1/9	ll aGo-elCv	81-91	0,0	0,1	0,6	57,2	57,8	23,3	6,6	3,4	33,3	8,9	SI3	7,49	2,5Y 6/3	34,25	4,40	0,030	0,007
1/10	aGo-elCv	91-101+	0,0	0,0	1,0	91,4	92,4	2,1	1,8	1,5	5,4	2,3	fS	7,50	2,5Y 6/3	29,06	3,66	0,016	0,004
2/L	L	+1-0												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ah	0-10	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	Bhv	10-23+	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+2-0												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ah	0-10	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	Bhv	10-25+	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.

Probe	lorizont	⁹ roben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß .%)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-	ti ti	· _	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+7,5-5,5												4,24	n.b.	n.n.	47,81	95,6	1,220	39	3,776
1/Of	Of	+5,5-2,5												4,33	n.b.	n.n.	37,27	74,5	1,676	22	3,063
1/Oh	Oh	+2,5-0												3,40	n.b.	n.n.	14,96	29,9	0,726	21	3,034
1/1	Ah	0-2	0,0	0,7	13,8	19,5	34,0	20,6	18,7	8,9	48,2	17,8	Ls2	3,42	10YR 3/4	n.n.	2,93	5,0	0,150	20	1,244
1/2	AI	2-11	0,4	0,7	15,0	19,5	35,2	22,5	17,0	8,5	48,0	16,9	Slu	3,80	10YR 6/6	n.n.	1,01	1,7	0,056	18	1,297
1/3	AI	11-20	0,2	0,8	14,4	18,5	33,7	26,2	16,5	7,3	50,0	16,3	Slu	3,89	10YR 6/6	n.n.	0,66	1,1	0,049	13	1,486
1/4	Bt+Al	20-31	0,5	0,8	13,2	17,3	31,3	26,7	16,7	7,9	51,3	17,4	Lu	3,86	10YR 6/6 10YR 5/6	n.n.	0,48	0,8	0,040	12	1,410
1/5	Al+Bt	31-41	1,4	0,4	13,3	16,6	30,3	28,2	19,0	6,9	54,0	15,7	Uls	3,85	10YR 6/6 10YR 5/6	n.n.	0,31	0,5	0,026	12	1,493
1/6	Sd-Bt	41-50	0,0	0,4	11,8	16,2	28,4	29,6	17,8	7,7	55,0	16,6	Uls	3,80	10YR 4/6 10YR 5/8	n.n.	0,33	0,6	0,032	10	1,528
1/7	Sd-Bt	50-59	0,7	0,5	12,1	16,9	29,5	24,6	18,1	7,4	50,0	20,5	Lu	3,76	10YR 4/6 10YR 5/8	n.n.	0,28	0,5	0,027	10	1,549
1/8	Sd-Bt	59-68	0,6	0,4	13,5	18,1	32,1	25,2	14,1	6,6	45,9	22,0	Ls2	3,73	10YR 4/6 10YR 5/8	n.n.	0,23	0,4	0,023	10	1,545
1/9	II Go-Sw	68-78	0,8	0,9	23,2	28,2	52,3	18,6	7,6	3,5	29,7	18,0	Ls4	3,74	10YR 5/8 2,5Y 6/3	n.n.	0,17	0,3	0,019	9	1,550
1/10	Go-Sw	78-92+	0,2	0,7	22,6	34,4	57,6	16,5	5,7	2,9	25,1	17,3	Ls4	3,78	10YR 5/8 2,5Y 6/3	n.n.	0,13	0,2	0,017	8	1,623
2/L	L	+5-3,5												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+3,5-0,5												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Oh	Oh	+0,5-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ah	0-6	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	AI	6-14	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/3	Sd-Bt	14-30+	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+5-4												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+4-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ah	0-4	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	Bt+AI	4-15	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/3	Bt+AI	15-30+	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.

Profil RF 45 – 8027 Memmingen

Probe	lorizont	Proben- efe (cm)	Skelett Gew.%)			Ko	orn (G	gr ew.	öß .%)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-		<u>-</u>	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+4,5-4												4,81	n.b.	n.n.	48,36	96,7	1,453	33	n.b.
1/Of	Of	+4-3												3,65	n.b.	n.n.	34,68	69,4	1,644	21	4,244
1/Oh	Oh	+3-0												3,42	n.b.	n.n.	14,52	29,0	0,725	20	3,156
1/1	Ah	0-6	14,2	4,3	6,9	14,2	25,4	24,8	18,6	12,0	55,5	19,1	Lu	3,31	10YR 3/4	n.n.	3,51	6,0	0,203	17	1,211
1/2	(Sw)-Bv	6-15	9,4	5,7	7,1	13,0	25,8	25,4	18,2	10,1	53,7	20,5	Lu	3,64	10YR 5/4	n.n.	1,20	2,1	0,070	17	1,257
1/3	Bv-Sw	15-31	41,1	9,8	9,0	14,4	33,1	21,4	13,6	7,8	42,7	24,2	Ls2	3,80	10YR 6/4 7,5Y 7/1	n.n.	0,61	n.b.	0,040	n.b.	1,297
1/4	Sw	31-41	28,7	5,1	8,4	13,4	26,9	20,4	14,7	7,9	43,0	30,1	Lt2	3,82	7,5Y 7/1 10YR 6/8	n.n.	0,31	n.b.	0,023	n.b.	1,245
1/5	Sw	41-51	10,6	3,0	7,7	14,6	25,3	20,7	16,8	7,6	45,1	29,6	Lt2	3,91	7,5Y 7/1 10YR 6/8	n.n.	0,18	n.b.	0,023	n.b.	1,146
1/6	Sw	51-61	38,5	3,9	8,5	15,7	28,1	18,9	16,3	8,3	43,6	28,3	Lt2	3,94	7,5Y 7/1 10YR 6/8	n.n.	0,20	n.b.	0,018	n.b.	1,121
1/7	Sw	61-71	25,2	3,6	7,8	18,3	29,6	19,0	13,9	8,3	41,2	29,2	Lt2	3,97	7,5Y 7/1 10YR 6/8	n.n.	0,16	n.b.	0,014	n.b.	1,082
1/8	Sdw	71-81+	16,5	3,2	8,9	19,5	31,6	16,7	14,9	8,1	39,7	28,7	Lt2	4,04	7,5Y 7/1 10YR 6/8	n.n.	0,16	n.b.	0,016	n.b.	1,076
2/L	L	+15,-1												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+1-0,5												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Oh	Oh	+0,5-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Aeh	0-4	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	Bv	4-14	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/3	Sw-Bv	14-25+	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+2,5-2												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+2-0,5												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Oh	Oh	+0,5-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Aeh	0-3	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	Bv	3-11	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/3	Sw-Bv	11-21	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/4	Sw-Bv	21-30+	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.

Probe	Horizont	Proben- lefe (cm)	Skelett Gew.%)			K	orn (G	gr ew.	öß .%)	e n			Boden- art	pН	Munsell- farbe	CaCO ₃	с	org.S	N	C/N	s
	-	- =	Ŭ	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+4-3												3,99	n.b.	n.n.	47,53	95,1	1,937	25	3,197
1/Of	Of	+3-0												3,08	n.b.	n.n.	48,57	97,1	1,838	26	2,563
1/1	nH	0-14	0,0											2,52	7,5YR 2/2	n.n.	45,93	91,9	1,941	24	1,147
1/2	nH	14-24	0,0											2,51	7,5YR 2/3	n.n.	46,82	93,6	2,154	22	0,972
1/3	nH	24-34	0,0											2,57	7,5YR 2/4	n.n.	44,32	88,6	2,326	19	0,426
1/4	nH	34-44	0,0											3,11	7,5YR 2/5	n.n.	31,80	63,6	1,759	18	0,281
1/5	II Aa	44-54	0,0	16,1	4,5	3,0	23,6	3,8	6,1	11,9	21,8	54,6	ті	3,88	10YR 3/2	n.n.	18,83	32,4	1,045	18	0,259
1/6	Aa	54-64	0,0	0,6	2,2	4,7	7,4	5,8	11,3	15,1	32,2	60,4	Tu2	4,85	10YR 3/2	n.n.	10,76	18,5	0,723	15	0,186
1/7	Aa	64-74	1,4	1,1	3,2	6,1	10,5	11,6	15,2	15,3	42,1	47,4	Tu2	4,98	10YR 3/2	n.n.	8,39	14,4	0,574	15	0,176
1/8	Gr	74-83+	6,3	4,8	8,4	12,6	25,9	13,5	15,0	10,6	39,1	30,5	Lt2	6,05	10YR 5/2	n.n.	0,88	1,5	0,048	18	0,408
2/L	L	+4-3												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+3-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	nH	0-10	n.b.											n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	nH	10-24+	n.b.											n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+3-2												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+2-0												n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	nH	0-10	n.b.											n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	nH	10-23+	n.b.											n.b.	n.b.	n.n.	n.b.	n.b.	n.b.	n.b.	n.b.
		1	I				I				1						I				

Profil RF 46 – 8228 Wildpoldsried

Profil RF 47 – 8526 Balderschwang

Probe	łorizont	Proben- efe (cm)	Skelett Gew.%)			K	orn (G	gr ew.	öß .%)	e n			Boden- art	pН	Munsell- farbe	CaCO ₃	с	org.S	z	C/N	s
	-	- ÷	E	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)		(%)
1/L	L	+11-10												4,58	n.b.	n.n.	48,59	97,2	1,376	35	1,861
1/Of	Of	+10-4												3,05	n.b.	n.n.	38,80	77,6	1,221	32	1,023
1/Oh	Oh	+4-0												3,46	n.b.	n.n.	19,29	38,6	1,119	17	1,008
1/1	Aeh	0-7	13,8	8,5	16,0	26,8	51,3	15,2	12,5	8,9	36,6	12,2	SI4	3,64	10YR 5/3	n.n.	2,64	4,5	0,158	17	0,926
1/2	Ahe	7-11	13,2	8,0	14,1	23,9	46,0	16,1	13,5	9,2	38,9	15,1	SI4	3,57	10YR 5/2	n.n.	1,78	3,1	0,102	17	1,004
1/3	Bs	11-16	6,5	5,3	9,1	17,6	31,9	16,8	13,3	11,0	41,1	26,9	Lt2	3,68	10YR 5/8	n.n.	0,08	0,1	0,063	1	0,000
1/4	Bhv	16-24	7,5	5,2	6,6	17,1	28,9	17,0	14,2	11,6	42,7	28,3	Lt2	3,80	10YR 5/6	n.n.	0,63	1,1	0,040	16	0,000
1/5	Bv	24-34	7,7	3,8	6,8	17,3	27,9	18,4	14,1	11,7	44,2	27,9	Lt2	3,87	10YR 5/8 10YR 5/6	n.n.	0,38	0,7	0,024	16	0,000
1/6	Bv	34-44	11,9	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,93	10YR 5/8 10YR 5/6	n.n.	0,44	0,8	0,029	15	0,000
1/7	Bv	44-54	6,4	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	3,93	10YR 5/8 10YR 5/6	n.n.	0,32	0,6	0,024	13	0,000
1/8	ICv-Bv	54-64	34,8	7,8	9,5	18,2	35,5	10,7	14,8	14,0	39,5	25,0	Lt2	3,97	10YR 4/6	n.n.	0,39	0,7	0,031	13	0,000
1/9	ICv-Bv	64-74	29,1	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4,13	10YR 4/6	n.n.	0,47	0,8	0,028	17	0,001
1/10	ICv-Bv	74-84	18,6	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	4,20	10YR 4/6	n.n.	0,50	n.b.	0,030	n.b.	0,000
1/11	Bv-elCv	84-89+	8,5	8,4	16,5	24,5	49,3	8,9	10,7	13,1	32,8	17,9	Ls3	6,08	10YR 4/6	1,94	0,40	n.b.	0,030	n.b.	0,001
2/L	L	+7,5-7												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+7-3												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Oh	Oh	+3-0												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Aeh	0-4	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	Ae	4-16	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/3	Bsh-Ae	16-25+	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+9-8												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+8-5												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Oh	Oh	+5-0												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Aeh	0-1,5	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	Bsh-Ae	1,5-10	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/3	Bsh-Ae	10-20+	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.

Probe	łorizont	Proben- efe (cm)	Skelett Gew.%)			K	orn (G	gr ew.	öß .%)	e n			Boden- art	рН	Munsell- farbe	CaCO ₃	с	N	s
	-	± ‡	Ŭ	gS	mS	fS	S	gU	mU	fU	U	Т		(CaCl ₂)		(%)	(%)	(%)	(%)
1/L	L	+13-12												n.b.	n.b.	n.b.	49,25	0,692	n.b.
1/Of	Of	+12-8												4,38	n.b.	n.b.	44,41	1,723	0,113
1/Oh	Oh	+8-0												6,08	n.b.	n.b.	23,49	0,919	0,340
1/1	Axh	0-14	85,1	11,9	2,8	8,5	23,3	38,6	29,1	4,3	71,9	4,8	Us	7,14	10YR 2/3	> 80	14,86	0,261	0,008
1/2	clCv	14-34+	95,7	33,7	5,3	4,6	43,6	26,4	23,6	5,6	55,7	0,8	Us	7,20	10YR 6/4	> 80	12,96	0,081	0,007
2/L	L	+11-10												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Of	Of	+10-5												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/Oh	Oh	+5-0												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/1	Ah	0-1	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
2/2	ICv	1-4+	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/L	L	+14-13												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Of	Of	+13-2												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/Oh	Oh	+2-0												n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/1	Ah	0-4	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
3/2	ICv	4-6+	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.

Profil RF 48 – 8532 Garmisch-Partenkirchen

9.5 Effektive Kationenaustauschkapazität

Profil RF 1 – 7037 Kelheim

Probe	Horizont	Proben- tiefe	ł	<	N	а	м	g	с	а	А	I	F	e	м	n	КАК	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+4-3	3,41	11,05	0,64	2,09	5,75	18,64	17,13	55,55	0,03	0,08	0,04	0,13	3,84	12,46	30,84	87,33
1/Of	Of	+3-1	3,13	16,28	0,74	3,82	2,19	11,40	9,87	51,35	0,94	4,88	0,04	0,23	2,31	12,03	19,23	82,86
1/Oh	Oh	+1-0	1,19	9,66	0,35	2,84	0,99	8,02	4,46	36,11	4,35	35,22	0,34	2,74	0,67	5,41	12,35	56,63
1/1	Ahe	0-1	0,50	5,61	0,21	2,34	0,43	4,81	0,68	7,57	6,80	75,63	0,27	3,04	0,09	1,01	8,99	20,33
1/2	Aeh	1-4	0,07	1,56	0,14	3,00	0,07	1,40	0,04	0,76	4,30	92,61	0,02	0,33	0,02	0,33	4,64	6,73
1/3	Bv	4-14	0,10	2,56	0,31	7,91	0,04	1,03	0,10	2,62	3,36	85,04	0,02	0,47	0,01	0,36	3,95	14,13
1/4	Bv	14-24	0,08	2,68	0,28	9,28	0,04	1,38	0,12	4,20	2,43	81,61	0,01	0,46	0,01	0,40	2,98	17,53
1/5	Bv	24-34	0,07	2,00	0,17	4,97	0,03	1,01	0,07	2,06	3,08	89,39	0,01	0,43	0,00	0,14	3,44	10,04
1/6	Bv	34-40	0,07	1,90	0,15	3,99	0,03	0,69	0,08	2,13	3,42	91,12	0,00	0,01	0,01	0,17	3,76	8,70
1/7	Bv-Cv	40-50	0,18	3,10	0,20	3,48	0,64	11,04	1,19	20,37	3,59	61,70	0,00	0,08	0,01	0,23	5,82	37,99
1/8	II Sd-T	50+	2,87	9,93	0,79	2,72	4,60	15,94	16,54	57,24	0,45	1,55	0,02	0,06	3,63	12,56	28,89	85,82
2/L	L	+4-2	1,32	7,51	0,46	2,60	2,55	14,46	10,65	60,43	0,65	3,67	0,05	0,29	1,95	11,04	17,63	84,99
2/Of	Of	+2-1	0,74	6,96	0,32	3,01	0,79	7,46	2,49	23,39	5,76	54,03	0,35	3,25	0,20	1,91	10,66	40,81
2/Oh	Oh	+1-0	0,32	3,34	0,15	1,59	0,29	3,00	0,27	2,84	8,21	85,02	0,39	4,02	0,02	0,18	9,65	10,78
2/1	Ah	0-1	0,07	1,35	0,14	2,63	0,03	0,58	0,03	0,62	5,02	94,53	0,01	0,22	0,00	0,07	5,31	5,18
2/2	Ae	1-4	0,07	1,40	0,15	3,11	0,03	0,55	0,04	0,76	4,54	93,73	0,02	0,39	0,00	0,06	4,85	5,82
2/3	Bv	4-16+	2,71	9,57	0,56	1,98	5,03	17,78	16,17	57,13	0,15	0,54	0,01	0,03	3,67	12,97	28,31	86,46
3/L	L	+4-3	2,24	15,15	0,40	2,70	2,33	15,74	7,17	48,46	0,35	2,34	0,01	0,03	2,31	15,58	14,79	82,04
3/Of	Of	+3-1	1,00	9,75	0,30	2,89	0,77	7,55	0,91	8,93	6,63	64,69	0,48	4,68	0,15	1,50	10,25	29,12
3/Oh	Oh	+1-0	0,54	5,58	0,18	1,84	0,46	4,71	0,27	2,80	7,75	79,80	0,47	4,86	0,04	0,41	9,71	14,92
3/1	Ah	0-1	0,11	1,39	0,14	1,71	0,10	1,26	0,06	0,68	7,66	93,37	0,09	1,10	0,04	0,49	8,21	5,05
3/2	Ae	1-3	0,13	1,48	0,15	1,65	0,08	0,88	0,07	0,73	8,47	94,18	0,08	0,86	0,02	0,22	9,00	4,74
3/3	Bv	3-17+	0,04	1,76	0,03	1,23	0,02	0,78	0,05	2,04	2,16	87,21	0,15	6,02	0,02	0,97	2,47	5,80

Probe	Horizont	Proben- tiefe	I	۲	N	a	м	g	С	a	Α	I	F	e	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+7-5	3,41	11,05	0,64	2,09	5,75	18,64	17,13	55,55	0,03	0,08	0,04	0,13	3,84	12,46	30,84	87,33
1/Of	Of	+5-2	3,13	16,28	0,74	3,82	2,19	11,40	9,87	51,35	0,94	4,88	0,04	0,23	2,31	12,03	19,23	82,86
1/Oh	Oh	+2-0	1,19	9,66	0,35	2,84	0,99	8,02	4,46	36,11	4,35	35,22	0,34	2,74	0,67	5,41	12,35	56,63
1/1	Ah	0-5	0,50	5,61	0,21	2,34	0,43	4,81	0,68	7,57	6,80	75,63	0,27	3,04	0,09	1,01	8,99	20,33
1/2	Bv	6-18	0,07	1,56	0,14	3,00	0,07	1,40	0,04	0,76	4,30	92,61	0,02	0,33	0,02	0,33	4,64	6,73
1/3	Bv	18-29	0,10	2,56	0,31	7,91	0,04	1,03	0,10	2,62	3,36	85,04	0,02	0,47	0,01	0,36	3,95	14,13
1/4	Bv-Cv	29-40	0,08	2,68	0,28	9,28	0,04	1,38	0,12	4,20	2,43	81,61	0,01	0,46	0,01	0,40	2,98	17,53
1/5	Bv-Cv	40-50	0,07	2,00	0,17	4,97	0,03	1,01	0,07	2,06	3,08	89,39	0,01	0,43	0,00	0,14	3,44	10,04
1/6	Bv-Cv	50-60	0,07	1,90	0,15	3,99	0,03	0,69	0,08	2,13	3,42	91,12	0,00	0,01	0,01	0,17	3,76	8,70
1/7	II Btv	117-125+	0,18	3,10	0,20	3,48	0,64	11,04	1,19	20,37	3,59	61,70	0,00	0,08	0,01	0,23	5,82	37,99
2/L	L	+6-4	2,87	9,93	0,79	2,72	4,60	15,94	16,54	57,24	0,45	1,55	0,02	0,06	3,63	12,56	28,89	85,82
2/Of	Of	+4-2	1,32	7,51	0,46	2,60	2,55	14,46	10,65	60,43	0,65	3,67	0,05	0,29	1,95	11,04	17,63	84,99
2/Oh	Oh	+2-0	0,74	6,96	0,32	3,01	0,79	7,46	2,49	23,39	5,76	54,03	0,35	3,25	0,20	1,91	10,66	40,81
2/1	Ah	0-5	0,32	3,34	0,15	1,59	0,29	3,00	0,27	2,84	8,21	85,02	0,39	4,02	0,02	0,18	9,65	10,78
2/2	Bv	5-15	0,07	1,35	0,14	2,63	0,03	0,58	0,03	0,62	5,02	94,53	0,01	0,22	0,00	0,07	5,31	5,18
2/3	Bv	15-30+	0,07	1,40	0,15	3,11	0,03	0,55	0,04	0,76	4,54	93,73	0,02	0,39	0,00	0,06	4,85	5,82
3/L	L	+7-4	2,71	9,57	0,56	1,98	5,03	17,78	16,17	57,13	0,15	0,54	0,01	0,03	3,67	12,97	28,31	86,46
3/Of	Of	+4-2	2,24	15,15	0,40	2,70	2,33	15,74	7,17	48,46	0,35	2,34	0,01	0,03	2,31	15,58	14,79	82,04
3/Oh	Oh	+2-0	1,00	9,75	0,30	2,89	0,77	7,55	0,91	8,93	6,63	64,69	0,48	4,68	0,15	1,50	10,25	29,12
3/1	Ah	0-5	0,54	5,58	0,18	1,84	0,46	4,71	0,27	2,80	7,75	79,80	0,47	4,86	0,04	0,41	9,71	14,92
3/2	Bv	5-15	0,11	1,39	0,14	1,71	0,10	1,26	0,06	0,68	7,66	93,37	0,09	1,10	0,04	0,49	8,21	5,05
3/3	Bv	15+	0,13	1,48	0,15	1,65	0,08	0,88	0,07	0,73	8,47	94,18	0,08	0,86	0,02	0,22	9,00	4,74

Profil RF 2 – 6840 Reichenbach

Probe	Horizont	Proben- tiefe	I	‹	N	а	м	g	с	а	А	I	F	e	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+4-3	1,22	9,29	0,45	3,44	1,86	14,16	6,98	53,25	0,73	5,58	0,06	0,46	1,81	13,81	13,10	80,14
1/Of	Of	+3-2	0,58	4,84	0,30	2,51	1,79	14,99	5,53	46,20	2,74	22,88	0,16	1,37	0,86	7,21	11,96	68,54
1/Oh	Oh	+2-0	0,37	3,90	0,22	2,36	1,03	11,03	3,38	36,02	3,72	39,73	0,22	2,30	0,44	4,65	9,37	53,32
1/1	Aeh	0-7	0,03	1,01	0,09	2,73	0,05	1,38	0,21	6,05	2,85	83,36	0,18	5,14	0,01	0,33	3,42	11,17
1/2	Bh	7-10	0,02	0,52	0,08	2,40	0,08	2,39	0,11	3,41	2,89	87,00	0,13	3,97	0,01	0,31	3,32	8,72
1/3	Bhv	10-22	0,00	0,00	0,07	4,42	0,01	0,77	0,10	6,28	1,43	86,24	0,03	1,63	0,01	0,66	1,65	11,47
1/4	Bv	25-38	0,00	0,00	0,08	7,06	0,02	1,51	0,09	8,24	0,88	79,84	0,04	3,18	0,00	0,17	1,11	16,81
1/5	Bv	40-70+	0,00	0,00	0,08	7,63	0,06	5,78	0,12	11,66	0,73	73,69	0,01	0,55	0,01	0,69	0,99	25,07
2/L	L	+3,5-3	4,80	32,76	0,35	2,36	3,32	22,63	4,06	27,69	0,58	3,98	0,04	0,29	1,51	10,28	14,66	85,45
2/Of	Of	3-0,5	0,79	7,63	0,41	3,96	1,20	11,54	4,07	39,17	3,56	34,24	0,14	1,37	0,22	2,09	10,40	62,30
2/Oh	Oh	0,5-5	0,16	3,13	0,19	3,76	0,39	7,70	0,75	14,87	3,37	66,92	0,17	3,44	0,01	0,18	5,03	29,46
2/1	Aeh	0-2	0,04	1,42	0,06	2,41	0,10	3,98	0,17	6,81	2,01	79,12	0,14	5,64	0,02	0,63	2,55	14,61
2/2	Bhv	2-22+	0,01	0,35	0,02	0,86	0,02	1,00	0,19	7,57	2,15	86,73	0,03	1,28	0,05	2,22	2,48	9,77
3/L	L	+4-3	3,99	16,78	0,36	1,53	4,68	19,66	10,69	44,93	0,86	3,63	0,02	0,09	3,18	13,38	23,79	82,90
3/Of	Of	+3-1	0,57	5,43	0,22	2,06	1,42	13,58	3,94	37,72	3,49	33,39	0,18	1,76	0,63	6,06	10,45	58,79
3/Oh	Oh	+1-0	0,26	3,78	0,12	1,69	0,63	9,14	1,39	20,33	4,05	59,07	0,23	3,37	0,18	2,61	6,86	34,94
3/1	Aeh	0-2	0,05	1,59	0,04	1,24	0,05	1,76	0,15	4,91	2,46	82,32	0,23	7,58	0,02	0,59	2,98	9,50
3/2	Bhv	2-21+	0,00	0,23	0,06	3,18	0,08	3,78	0,09	4,24	1,73	86,05	0,02	1,07	0,03	1,45	2,01	11,43

Profil RF 3 – 7236 Münchsmünster

Probe	Horizont	Proben- tiefe	ŀ	٢	N	а	м	g	с	a	Α	I	F	e	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+4-3	2,30	8,64	0,58	2,19	5,28	19,83	14,49	54,46	0,73	2,73	0,03	0,11	3,20	12,04	26,60	85,12
1/Of	Of	+3-0,5	0,86	3,84	0,40	1,77	2,33	10,43	15,15	67,77	0,32	1,42	0,01	0,05	3,29	14,72	22,35	83,81
1/Oh	Oh	+0,5-0	0,42	2,89	0,31	2,12	1,74	11,95	6,95	47,76	4,24	29,09	0,34	2,36	0,56	3,83	14,56	64,72
1/1	Aeh	0-1	n.b	n.b	n.b	n.b	n.b	n.b	n.b	n.b	n.b	n.b	n.b	n.b	n.b	n.b	n.b	n.b
1/2	AI	1-11	0,05	1,06	0,10	2,02	0,11	2,09	0,21	4,24	4,49	89,00	0,05	0,91	0,03	0,69	5,05	9,41
1/3	AI	11-21	0,08	1,65	0,13	2,71	0,11	2,27	0,09	1,76	4,38	89,62	0,02	0,42	0,08	1,57	4,89	8,38
1/4	AI	21-35	0,13	2,35	0,15	2,83	0,19	3,54	0,19	3,41	4,58	84,35	0,10	1,79	0,09	1,72	5,43	12,13
1/5	Bt	35-45	0,13	2,21	0,17	2,79	1,23	20,36	1,62	26,91	2,74	45,47	0,02	0,28	0,12	1,98	6,02	52,27
1/6	Bt	45-55	0,28	2,34	0,20	1,71	3,93	32,89	5,99	50,13	1,46	12,21	0,05	0,44	0,03	0,28	11,95	87,07
1/7	Bt	55-65	0,31	2,15	0,19	1,30	4,99	34,26	8,06	55,37	0,94	6,45	0,04	0,25	0,03	0,23	14,56	93,08
1/8	Bt	65-79+	0,36	2,06	0,22	1,24	6,15	35,62	10,13	58,65	0,38	2,22	0,00	0,00	0,03	0,20	17,28	97,58
2/L	L	+6-4	1,07	4,45	0,55	2,31	3,03	12,63	15,88	66,30	0,59	2,48	0,01	0,05	2,82	11,78	23,95	85,69
2/Of	Of	+4-2	0,77	4,21	0,36	1,96	2,02	11,05	12,10	66,10	0,92	5,05	0,07	0,40	2,06	11,24	18,30	83,32
2/Oh	Oh	+2-0	0,41	3,27	0,30	2,38	1,35	10,72	5,73	45,46	3,90	30,94	0,42	3,34	0,49	3,90	12,61	61,82
2/1	Aeh	0-1	0,09	1,27	0,14	1,95	0,20	2,86	0,22	3,20	6,09	87,88	0,17	2,41	0,03	0,41	6,93	9,29
2/2	AI	1-12+	0,08	1,82	0,12	2,62	0,08	1,83	0,07	1,56	4,11	90,57	0,02	0,38	0,06	1,22	4,54	7,83
3/L	L	+5-4	1,52	6,13	0,58	2,35	3,79	15,33	14,48	58,51	0,74	3,00	0,00	0,00	3,63	14,68	24,75	82,32
3/Of	Of	+4-2	0,71	3,71	0,31	1,64	2,93	15,41	12,11	63,62	1,00	5,26	0,09	0,49	1,88	9,86	19,04	84,38
3/Oh	Oh	+2-0	0,36	2,88	0,26	2,04	1,30	10,42	5,01	40,02	4,58	36,56	0,41	3,28	0,60	4,79	12,51	55,37
3/1	Aeh	0-2	0,10	1,33	0,13	1,79	0,25	3,53	0,37	5,11	6,09	84,89	0,17	2,34	0,07	1,01	7,17	11,76
3/2	AI	2-11+	0,09	1,59	0,13	2,28	0,15	2,60	0,16	2,86	4,98	88,63	0,02	0,44	0,09	1,61	5,61	9,32

Profil RF	5 – 663	6 Kastl
-----------	---------	---------

Probe	Horizont	Proben- tiefe	I	۲	N	а	м	g	с	а	Α	I	F	e	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+7-5	2,14	5,59	1,04	2,73	8,98	23,47	22,52	58,86	0,86	2,25	0,09	0,23	2,63	6,88	38,27	90,64
1/Of	Of	+5-2	0,80	2,21	0,60	1,67	6,82	18,88	26,70	73,88	0,36	1,00	0,04	0,10	0,82	2,26	36,14	96,64
1/Oh	Oh	+2-0	0,59	1,87	0,53	1,68	6,09	19,37	21,50	68,34	2,46	7,81	0,21	0,66	0,09	0,27	31,46	91,25
1/1	Ah	0-12	0,35	1,81	0,19	0,96	3,76	19,37	5,55	28,56	9,27	47,71	0,08	0,43	0,22	1,15	19,42	50,70
1/2	T-Bv	12-20	0,39	1,57	0,16	0,67	10,08	40,76	13,79	55,80	0,25	1,02	0,00	0,01	0,04	0,17	24,72	98,80
1/3	T-Bv	20-28	0,39	1,69	0,16	0,70	9,97	42,57	12,80	54,65	0,07	0,31	0,00	0,00	0,02	0,08	23,41	99,61
1/4	T-Bv	28-35	0,39	1,76	0,19	0,83	9,76	43,86	11,85	53,27	0,06	0,25	0,00	0,00	0,00	0,02	22,24	99,73
1/5	T-Bv	35-44	0,47	2,03	0,18	0,80	10,11	43,85	12,21	52,97	0,07	0,31	0,00	0,01	0,01	0,03	23,06	99,65
1/6	Cv	44-55	0,37	1,73	0,13	0,59	9,03	41,80	12,07	55,86	0,00	0,01	0,00	0,00	0,00	0,00	21,61	99,99
1/7	Cv	55-66	0,30	1,74	0,11	0,65	7,42	42,51	9,61	55,05	0,01	0,04	0,00	0,00	0,00	0,01	17,45	99,96
1/8	Cv	66-76+	0,23	1,51	0,22	1,44	6,45	42,70	8,18	54,17	0,02	0,17	0,00	0,00	0,00	0,02	15,11	99,81
2/L	L	+8-6	1,71	6,98	0,55	2,23	5,94	24,22	15,42	62,85	0,13	0,51	0,00	0,00	0,79	3,20	24,54	96,28
2/Of	Of	+6-3	1,31	2,80	0,45	0,96	7,39	15,74	35,06	74,64	0,09	0,20	0,01	0,02	2,65	5,64	46,97	94,14
2/Oh	Oh	+3-0	0,71	2,37	0,39	1,31	5,74	19,28	21,17	71,06	1,41	4,75	0,12	0,39	0,25	0,83	29,79	94,03
2/1	Ah	0-10+	0,31	1,75	0,14	0,77	2,34	13,11	3,01	16,88	11,68	65,41	0,17	0,96	0,20	1,11	17,85	32,52
3/L	L	+7-6	1,78	8,35	0,62	2,90	4,89	22,92	12,37	57,99	0,81	3,77	0,00	0,00	0,87	4,07	21,33	92,16
3/Of	Of	+6-3	1,13	3,37	0,40	1,19	3,91	11,64	26,41	78,55	0,16	0,49	0,02	0,05	1,59	4,73	33,62	94,73
3/Oh	Oh	+3-0	0,63	3,02	0,37	1,76	3,89	18,72	13,42	64,64	2,11	10,18	0,23	1,11	0,12	0,56	20,76	88,14
3/1	Ah	0-10+	0,23	2,36	0,13	1,37	1,61	16,49	2,07	21,27	5,34	54,79	0,31	3,20	0,05	0,53	9,74	41,49

—

Probe	Horizont	Proben- tiefe	1	۲	N	a	м	g	С	а	А	I	F	e	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+8-5,5	1,53	9,87	0,77	4,97	1,73	11,16	10,71	68,93	0,58	3,75	0,03	0,17	0,18	1,14	15,53	94,93
1/Of	Of	+5,5-0,5	0,60	7,42	0,51	6,33	0,38	4,69	0,42	5,16	5,76	71,52	0,38	4,76	0,01	0,12	8,06	23,60
1/Oh	Oh	+0,5-0	0,60	5,38	0,37	3,32	0,26	2,31	0,37	3,27	9,00	80,25	0,61	5,45	0,00	0,02	11,21	14,28
1/1	Aeh	0-1	0,07	8,06	0,14	15,09	0,05	5,05	0,02	2,10	0,59	64,31	0,04	4,79	0,01	0,60	0,91	30,30
1/2	Ahe	1-11	0,07	7,74	0,19	22,63	0,02	2,02	0,02	1,76	0,49	56,86	0,07	8,74	0,00	0,25	0,85	34,15
1/3	ll Bs	11-25	0,06	4,31	0,26	17,74	0,12	7,95	0,20	13,40	0,79	53,93	0,03	2,34	0,01	0,34	1,47	43,39
1/4	Bbs	25-40	0,05	6,59	0,16	20,15	0,02	3,05	0,01	1,13	0,52	66,68	0,02	2,02	0,00	0,38	0,78	30,92
1/5	Bbs	40-53	0,05	4,62	0,16	15,13	0,00	0,00	0,01	1,21	0,86	78,89	0,00	0,00	0,00	0,15	1,09	20,96
1/6	Bbs	5-62	0,04	7,20	0,15	27,37	0,00	0,53	0,00	0,66	0,34	63,62	0,00	0,31	0,00	0,31	0,53	35,76
1/7	III Bbs	62-79+	0,07	4,79	0,23	16,65	0,02	1,17	0,03	2,36	1,03	74,53	0,00	0,20	0,00	0,30	1,38	24,96
2/L	L	+8-5	1,47	10,68	0,83	6,01	1,09	7,94	8,63	62,69	1,59	11,52	0,12	0,84	0,05	0,33	13,77	87,31
2/Of	Of	+5-0,5	0,93	8,12	0,49	4,27	0,61	5,31	3,07	26,81	6,05	52,72	0,31	2,70	0,01	0,08	11,47	44,50
2/Oh	Oh	+0,5-0	0,76	7,02	0,44	4,08	0,28	2,56	0,31	2,84	8,60	79,27	0,45	4,17	0,01	0,06	10,84	16,50
2/1	Aeh	0-1	0,05	2,63	0,13	6,25	0,03	1,26	0,05	2,38	1,69	80,94	0,13	6,29	0,01	0,24	2,09	12,53
2/2	Ahe	1-25	0,05	2,48	0,14	6,61	0,02	0,87	0,01	0,67	1,81	85,48	0,08	3,71	0,00	0,18	2,12	10,63
3/L	L	+7-5	1,47	11,99	0,53	4,35	1,47	11,94	8,13	66,23	0,56	4,59	0,00	0,02	0,11	0,88	12,27	94,51
3/Of	Of	+5-0	0,70	9,89	0,55	7,83	0,36	5,06	0,92	13,02	4,23	60,15	0,27	3,79	0,02	0,25	7,03	35,81
3/1	Aeh	0-2	0,05	6,54	0,13	17,02	0,02	2,76	0,03	3,36	0,51	65,86	0,03	4,19	0,00	0,27	0,77	29,68
3/2	Ahe	2-27	0,05	7,97	0,18	29,16	0,03	5,39	0,01	2,09	0,31	50,98	0,02	3,58	0,01	0,83	0,60	44,61
3/3	ll Bs	27-32	0,04	2,96	0,14	11,15	0,01	0,42	0,01	0,68	1,00	80,03	0,05	4,37	0,01	0,41	1,24	15,20

Profil RF 6 – 6740 Neukirchen-Balbini

—

Profil RF 7 – 7144 Lalling

Probe	Horizont	Proben- tiefe	I	۲	N	а	м	g	С	а	Α	I	F	e	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+3,5-3	1,74	7,10	0,57	2,33	3,96	16,18	14,44	58,97	0,00	0,00	0,04	0,16	3,73	15,25	24,48	84,59
1/Of	Of	+3-1	1,28	8,17	0,34	2,19	2,83	18,09	5,81	37,09	4,33	27,65	0,23	1,46	0,84	5,35	15,67	65,53
1/Oh	Oh	+1-0	0,65	4,64	0,30	2,10	1,25	8,87	1,72	12,19	9,45	66,90	0,57	4,02	0,18	1,28	14,12	27,81
1/1	Ah	0-7	0,09	1,14	0,12	1,54	0,10	1,23	0,05	0,68	7,56	94,13	0,03	0,33	0,08	0,95	8,03	4,59
1/2	Bv	7-20	0,06	1,14	0,12	2,13	0,04	0,77	0,00	0,00	5,18	93,14	0,01	0,14	0,15	2,68	5,56	4,04
1/3	Bv	20-30	0,07	1,06	0,13	2,00	0,04	0,64	0,01	0,20	6,08	93,76	0,01	0,08	0,15	2,27	6,48	3,89
1/4	Bv	30-45	0,08	1,19	0,17	2,72	0,04	0,58	0,09	1,41	5,97	92,81	0,00	0,00	0,08	1,30	6,44	5,89
1/5	Bv	45-60	0,08	1,19	0,13	1,86	0,06	0,87	0,04	0,58	6,53	94,50	0,00	0,00	0,07	1,01	6,91	4,49
1/6	ll Sw-Bv	60-70	0,08	1,04	0,13	1,79	0,11	1,46	0,04	0,49	6,82	94,37	0,00	0,06	0,06	0,78	7,23	4,78
1/7	Sw-Bv	70-80	0,08	0,99	0,13	1,54	0,14	1,63	0,09	1,04	7,98	94,05	0,00	0,00	0,06	0,74	8,49	5,20
1/8	Sw-Bv	80-90+	0,13	1,31	0,11	1,13	0,30	3,09	0,23	2,33	8,96	91,57	0,00	0,00	0,06	0,58	9,79	7,85
2/L	L	+4-3	1,90	9,71	0,54	2,77	3,96	20,26	9,34	47,81	0,04	0,23	0,01	0,06	3,74	19,16	19,53	80,56
2/Of	Of	+3-1	1,55	8,45	0,42	2,27	3,16	17,20	4,19	22,82	7,65	41,68	0,31	1,72	1,08	5,87	18,34	50,73
2/Oh	Oh	+1-0	0,65	4,23	0,41	2,63	0,77	4,99	0,28	1,84	12,94	83,83	0,29	1,90	0,09	0,58	15,44	13,69
2/1	Ah	0-6	0,10	0,78	0,12	0,92	0,15	1,19	0,00	0,00	12,14	93,82	0,42	3,23	0,01	0,07	12,95	2,89
2/2	Bv	6-15	0,04	0,62	0,11	1,73	0,03	0,51	0,01	0,22	6,23	95,25	0,02	0,38	0,08	1,29	6,54	3,08
2/3	Bv	15-30+	0,05	0,92	0,12	2,28	0,02	0,34	0,04	0,71	5,08	93,12	0,00	0,00	0,14	2,63	5,45	4,25
3/L	L	+3-2	1,35	7,33	0,44	2,37	3,27	17,76	10,61	57,61	0,00	0,00	0,01	0,08	2,74	14,86	18,42	85,06
3/Of	Of	+2-1	0,87	5,68	0,31	2,02	2,96	19,32	5,14	33,54	4,93	32,11	0,28	1,83	0,84	5,49	15,34	60,57
3/Oh	Oh	+1-0	0,35	3,33	0,23	2,22	1,02	9,71	0,80	7,63	7,43	71,05	0,51	4,90	0,12	1,16	10,46	22,89
3/1	Ah	0-3	0,15	1,38	0,16	1,51	0,33	3,10	0,09	0,82	9,54	88,49	0,50	4,60	0,01	0,09	10,79	6,81
3/2	Bv	3-10	0,04	0,42	0,13	1,24	0,10	0,94	0,01	0,12	10,20	95,90	0,11	1,07	0,03	0,31	10,63	2,73
3/3	Bv	10-18+	0,04	0,68	0,16	2,39	0,03	0,47	0,01	0,11	6,24	94,68	0,01	0,19	0,10	1,48	6,60	3,65

Probe	Horizont	Proben- tiefe		ĸ	N	а	м	g	с	а	А	I	F	е	м	n	КАК	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+8-6	2,69	13,45	0,82	4,10	2,66	13,30	12,73	63,65	0,40	2,00	0,08	0,40	0,62	3,10	20,00	94,50
1/Of	Of	+6-1	0,70	6,32	0,49	4,43	0,61	5,51	3,62	32,70	5,07	45,80	0,57	5,15	0,01	0,09	11,07	48,96
1/Oh	Oh	+1-0	0,68	8,55	0,37	4,65	0,52	6,54	1,78	22,39	4,17	52,45	0,43	5,41	0,00	0,00	7,95	42,14
1/1	Aeh	0-1	0,09	3,37	0,10	3,66	0,03	1,15	0,10	3,68	2,19	84,51	0,09	3,63	0,00	0,00	2,60	11,86
1/2	Bsh	1-14	0,02	1,25	0,09	4,96	0,00	0,00	0,04	2,06	1,71	90,02	0,03	1,71	0,00	0,00	1,90	8,27
1/3	Bhs	14-24	0,02	2,07	0,09	10,06	0,00	0,00	0,03	3,48	0,75	83,80	0,01	0,61	0,00	0,00	0,89	15,60
1/4	Bhs	24-34	0,02	2,13	0,09	9,89	0,00	0,00	0,04	4,18	0,73	81,61	0,02	2,19	0,00	0,00	0,89	16,20
1/5	Bhs	34-44	0,01	1,76	0,10	12,08	0,00	0,00	0,04	4,43	0,67	79,92	0,02	1,81	0,00	0,00	0,84	18,26
1/6	Bhs	44-55	0,02	2,29	0,09	10,45	0,00	0,00	0,03	3,81	0,69	79,97	0,03	3,47	0,00	0,00	0,86	16,56
1/7	Bs	55-73	0,02	2,08	0,11	11,14	0,00	0,00	0,04	3,76	0,80	81,84	0,01	0,84	0,00	0,34	0,98	16,98
1/8	Bbs	73-83	0,02	2,34	0,09	11,42	0,00	0,00	0,04	4,79	0,64	80,13	0,01	1,32	0,00	0,00	0,80	18,55
1/9	Bbs	83-93	0,02	2,17	0,11	11,34	0,00	0,00	0,04	4,02	0,77	80,67	0,02	1,80	0,00	0,00	0,95	17,53
1/10	Bbs	93-103	0,03	2,80	0,10	10,68	0,00	0,00	0,04	4,05	0,77	80,24	0,02	2,23	0,00	0,00	0,96	17,53
1/11	Bbs	103-113	0,01	2,04	0,09	13,87	0,00	0,00	0,04	6,02	0,49	76,47	0,01	1,38	0,00	0,22	0,64	21,93
1/12	IC	113+	0,01	1,75	0,08	13,59	0,00	0,11	0,04	6,01	0,47	77,42	0,01	1,05	0,00	0,08	0,61	21,46
2/L	L	+7-6	1,09	8,54	0,54	4,20	1,89	14,76	8,69	67,83	0,00	0,00	0,01	0,10	0,59	4,57	12,81	95,33
2/Of	Of	+6-2	0,98	5,78	0,43	2,51	2,00	11,78	11,71	68,85	1,45	8,54	0,10	0,59	0,33	1,94	17,01	88,93
2/Oh	Oh	+2-0	0,81	4,23	0,34	1,76	2,07	10,85	9,97	52,20	5,39	28,24	0,33	1,74	0,19	0,99	19,09	69,03
2/1	Aeh	0-3	0,05	1,94	0,08	2,96	0,06	2,27	0,30	11,41	1,99	76,90	0,12	4,48	0,00	0,04	2,59	18,58
2/2	Bsh	3-8	0,06	2,23	0,08	2,86	0,00	0,02	0,08	2,67	2,50	86,88	0,15	5,35	0,00	0,00	2,88	7,78
2/3	Bhs	8-20+	0,03	2,09	0,11	8,50	0,00	0,05	0,03	2,38	1,14	84,93	0,03	2,05	0,00	0,00	1,34	13,01
3/L	L	+6-4	1,36	9,48	0,48	3,35	2,06	14,33	9,21	64,12	0,51	3,54	0,03	0,18	0,72	5,00	14,37	91,28
3/Of	Of	+4-1	0,91	5,65	0,39	2,42	1,24	7,69	9,72	60,30	3,31	20,53	0,29	1,80	0,26	1,61	16,12	76,05
3/Oh	Oh	+1-0	0,78	4,20	0,34	1,86	1,11	6,02	9,42	50,92	6,34	34,27	0,38	2,06	0,12	0,67	18,51	63,00
3/1	Aeh	0-2	0,05	1,73	0,12	3,74	0,04	1,35	0,41	13,12	2,39	76,48	0,11	3,58	0,00	0,00	3,12	19,94
3/2	Bsh	2-7	0,03	1,19	0,11	3,98	0,00	0,00	0,11	3,74	2,47	87,78	0,09	3,31	0,00	0,00	2,82	8,91
3/3	Bhs	7-20+	0,01	1,30	0,11	9,58	0,00	0,00	0,04	3,30	0,93	83,99	0,02	1,83	0,00	0,00	1,11	14,18

Profil RF 8 – 6237 Grafenwöhr

25

Probe	Horizont	Proben- tiefe	י	۲	N	a	м	g	с	а	A	I	F	е	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+9-4	3,16	6,32	0,68	1,37	13,12	26,25	32,31	64,62	0,00	0,00	0,00	0,00	0,73	1,45	50,00	98,55
1/Of	Of	+4-0	1,55	3,96	0,34	0,88	9,51	24,34	26,88	68,80	0,03	0,09	0,05	0,13	0,70	1,79	39,06	97,99
1/1	Axh	0-13	0,37	1,71	0,17	0,77	6,76	31,60	13,66	63,84	0,09	0,44	0,01	0,06	0,33	1,56	21,40	97,93
1/2	Cv	13-29	0,31	1,38	0,15	0,65	6,63	29,90	15,02	67,74	0,04	0,18	0,00	0,02	0,03	0,13	22,18	99,66
1/3	Cv	29-45+	0,26	1,39	0,15	0,78	4,94	26,11	13,55	71,60	0,02	0,09	0,00	0,02	0,00	0,00	18,93	99,88
2/L	L	+6-4	2,86	5,92	1,09	2,25	13,16	27,21	30,75	63,60	0,00	0,00	0,00	0,00	0,49	1,02	48,36	98,98
2/Of	Of	+4-0	1,35	2,49	0,38	0,70	16,05	29,71	35,88	66,42	0,01	0,02	0,00	0,00	0,36	0,66	54,02	99,32
2/1	Axh	0-14+	0,30	0,89	0,18	0,53	12,35	36,58	20,81	61,66	0,05	0,16	0,02	0,05	0,05	0,14	33,75	99,65
3/L	L	+5-2	3,18	6,89	0,82	1,78	13,06	28,23	27,35	59,14	0,07	0,15	0,00	0,00	1,76	3,81	46,24	96,04
3/Of	Of	+2-0	1,10	2,88	0,36	0,95	10,71	27,91	25,58	66,64	0,00	0,00	0,00	0,00	0,62	1,61	38,38	98,39
3/1	Axh	0-11+	0,33	1,25	0,21	0,79	8,49	32,30	17,17	65,35	0,00	0,00	0,00	0,00	0,08	0,31	26,27	99,69

Profil RF 9 – 6335 Auerbach

Probe	Horizont	Proben- tiefe		۲	N	a	м	g	с	а	A	I	F	е	м	n	КАК	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+7-5	3,14	10,94	0,64	2,21	5,23	18,21	16,83	58,55	0,17	0,59	0,04	0,13	2,70	9,38	28,75	89,90
1/Of	Of	+5-2	1,68	7,42	0,47	2,08	3,32	14,65	14,08	62,07	0,71	3,11	0,08	0,36	2,34	10,31	22,68	86,22
1/Oh	Oh	+2-0	0,69	4,80	0,30	2,09	0,77	5,41	0,88	6,18	10,80	75,57	0,77	5,41	0,08	0,53	14,29	18,48
1/1	Ah	0-11	0,19	1,99	0,16	1,70	0,21	2,23	0,23	2,39	8,53	88,68	0,13	1,32	0,16	1,71	9,62	8,30
1/2	Bv	11-21	0,11	1,78	0,14	2,37	0,06	1,04	0,20	3,28	5,41	89,96	0,02	0,39	0,07	1,18	6,02	8,47
1/3	Bv	21-31	0,07	1,39	0,14	2,92	0,04	0,86	0,19	4,02	4,22	89,62	0,01	0,15	0,05	1,04	4,71	9,19
1/4	Bv	31-41	0,07	1,86	0,15	4,19	0,03	0,97	0,17	4,77	3,09	86,32	0,04	1,25	0,02	0,64	3,58	11,79
1/5	Bv	41-51	0,06	2,15	0,14	5,63	0,03	1,13	0,15	5,99	2,17	84,24	0,01	0,52	0,01	0,34	2,57	14,89
1/6	Bv	51-61	0,06	2,74	0,14	6,14	0,00	0,00	0,16	6,82	1,90	83,55	0,01	0,31	0,01	0,43	2,28	15,71
1/7	ll Bv	61-71	0,07	3,00	0,13	6,00	0,00	0,00	0,15	6,92	1,87	83,63	0,00	0,00	0,01	0,45	2,24	15,92
1/8	Bv	71-86+	0,06	3,58	0,15	8,65	0,00	0,00	0,15	8,38	1,40	79,18	0,00	0,00	0,00	0,21	1,77	20,61
2/L	L	+8-4	2,53	8,82	0,61	2,14	4,94	17,24	17,64	61,54	0,00	0,00	0,00	0,00	2,94	10,26	28,66	89,74
2/Of	Of	+4-2	1,21	5,45	0,37	1,68	2,97	13,40	12,81	57,80	2,43	10,96	0,27	1,22	2,10	9,50	22,17	78,33
2/Oh	Oh	+2-0	0,47	3,23	0,30	2,05	0,69	4,73	1,22	8,33	10,81	73,84	1,01	6,91	0,13	0,91	14,65	18,34
2/1	Ah	0-11	0,16	2,92	0,17	3,16	0,08	1,48	0,23	4,21	4,66	85,94	0,02	0,39	0,10	1,90	5,42	11,77
2/2	Bv	11-15+	0,15	3,64	0,17	4,30	0,05	1,34	0,28	6,87	3,35	82,70	0,01	0,18	0,04	0,98	4,05	16,14
3/L	L	+9-6	1,87	6,47	0,55	1,89	4,68	16,17	19,15	66,23	0,27	0,94	0,04	0,14	2,36	8,17	28,91	90,75
3/Of	Of	+6-2	1,24	6,15	0,29	1,42	2,52	12,44	13,14	64,87	0,73	3,59	0,14	0,71	2,19	10,83	20,25	84,88
3/Oh	Oh	+2-0	0,68	4,91	0,27	1,92	0,95	6,86	3,76	27,09	7,33	52,82	0,60	4,32	0,29	2,07	13,88	40,78
3/1	Ah	0-11	0,25	2,77	0,16	1,80	0,21	2,30	0,46	5,15	7,58	84,86	0,07	0,82	0,21	2,30	8,93	12,03
3/2	Bv	11-18+	0,14	2,18	0,14	2,13	0,10	1,51	0,26	3,93	5,91	88,83	0,03	0,38	0,07	1,04	6,65	9,75

Profil RF 10 – 6642 Waldmünchen

—

Probe	Horizont	Proben- tiefe	ŀ	۲	N	a	м	g	с	а	A	I	F	е	м	n	КАК	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+13-9	1,90	10,93	0,77	4,44	2,40	13,83	11,04	63,55	0,50	2,90	0,00	0,00	0,76	4,35	17,37	92,75
1/Of	Of	+9-5	0,95	8,54	0,49	4,40	1,83	16,51	5,11	46,19	2,35	21,23	0,20	1,83	0,14	1,30	11,07	75,64
1/Oh	Oh	+5-0	0,67	4,70	0,35	2,47	0,73	5,10	1,23	8,64	10,67	74,99	0,57	3,97	0,02	0,14	14,23	20,90
1/1	Ah	0-13	0,17	2,84	0,14	2,39	0,17	2,93	0,08	1,39	5,09	87,13	0,19	3,29	0,00	0,03	5,84	9,55
1/2	Bv	13-23	0,08	2,31	0,15	4,42	0,08	2,17	0,05	1,47	3,13	89,44	0,00	0,00	0,01	0,19	3,50	10,37
1/3	Bv	23-33+	0,09	2,69	0,18	5,52	0,05	1,53	0,04	1,39	2,86	88,58	0,00	0,00	0,01	0,29	3,23	11,12
2/L	L	+13-8	1,18	7,99	0,62	4,18	1,63	11,04	6,24	42,18	4,78	32,31	0,00	0,00	0,34	2,31	14,79	65,39
2/Of	Of	+8-4	0,97	4,76	0,55	2,68	1,01	4,96	0,95	4,63	16,79	82,14	0,15	0,74	0,02	0,09	20,44	17,03
2/Oh	Oh	+4-0	0,69	4,55	0,36	2,36	0,68	4,47	0,27	1,79	12,75	84,11	0,40	2,62	0,02	0,12	15,16	13,16
2/1	Ah	0-9	0,21	3,90	0,16	2,96	0,23	4,17	0,10	1,79	4,64	85,04	0,09	1,69	0,02	0,44	5,46	12,83
2/2	Bv	9-15+	0,09	2,66	0,13	3,65	0,10	2,67	0,06	1,73	3,15	88,19	0,02	0,59	0,02	0,51	3,57	10,71
3/L	L	+13-10	1,63	3,99	1,01	2,47	1,26	3,06	0,89	2,18	35,52	86,62	0,66	1,62	0,03	0,07	41,01	11,69
3/Of	Of	+10-4	0,57	3,41	0,38	2,26	0,53	3,17	0,24	1,45	14,40	86,78	0,48	2,92	0,00	0,00	16,59	10,30
3/Oh	Oh	+4-0	1,01	10,84	0,28	3,00	1,58	16,87	5,60	59,84	0,41	4,42	0,00	0,00	0,47	5,03	9,36	90,55
3/1	Ah	0-8	0,30	4,14	0,16	2,18	0,32	4,45	0,15	2,06	6,09	83,57	0,25	3,49	0,01	0,11	7,28	12,83
3/2	Bv	8-15+	0,15	3,13	0,15	3,16	0,19	4,03	0,07	1,55	4,04	86,86	0,03	0,65	0,03	0,63	4,65	11,86

Probe	Horizont	Proben- tiefe	•	‹	N	а	м	g	с	а	Α	I	F	е	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+12-10	0,42	2,89	0,31	2,12	1,74	11,95	6,95	47,76	4,24	29,09	0,34	2,36	0,56	3,83	14,56	64,72
1/Of	Of	+10-4	0,60	5,38	0,37	3,32	0,26	2,31	0,37	3,27	9,00	80,25	0,61	5,45	0,00	0,02	11,21	14,28
1/Oh	Oh	+4-0	0,76	7,02	0,44	4,08	0,28	2,56	0,31	2,84	8,60	79,27	0,45	4,17	0,01	0,06	10,84	16,50
1/1	Ah	0-9	2,53	8,82	0,61	2,14	4,94	17,24	17,64	61,54	0,00	0,00	0,00	0,00	2,94	10,26	28,66	89,74
1/2	Bv	9-20	1,24	6,15	0,29	1,42	2,52	12,44	13,14	64,87	0,73	3,59	0,14	0,71	2,19	10,83	20,25	84,88
1/3	Bv	20-32	0,35	2,53	0,31	2,20	0,54	3,88	0,34	2,41	11,21	80,17	1,17	8,37	0,06	0,44	13,98	11,02
1/4	ICv	32-45+	1,15	9,08	0,47	3,68	1,90	15,03	5,01	39,57	2,00	15,77	0,14	1,09	2,00	15,78	12,66	67,36
2/L	L	+11-10	0,05	1,63	0,12	3,98	0,00	0,00	0,03	0,92	2,83	92,98	0,00	0,05	0,01	0,43	3,04	6,54
2/Of	Of	+10-3	0,04	1,40	0,12	4,31	0,00	0,00	0,03	1,02	2,67	92,74	0,00	0,13	0,01	0,39	2,88	6,73
2/Oh	Oh	+3-0	0,05	1,75	0,13	4,61	0,00	0,00	0,02	0,60	2,60	92,53	0,00	0,17	0,01	0,34	2,81	6,96
2/1	Ah	0-10	0,05	1,66	0,13	4,66	0,00	0,00	0,02	0,90	2,56	92,59	0,00	0,09	0,00	0,10	2,77	7,22
2/2	Bv	10-20+	0,05	1,66	0,12	4,10	0,00	0,00	0,12	4,20	2,57	89,98	0,00	0,00	0,00	0,06	2,86	9,96
3/L	L	+11-10	1,68	12,49	0,48	3,61	3,99	29,70	5,53	41,20	1,19	8,90	0,08	0,61	0,47	3,50	13,43	86,99
3/Of	Of	+10-4	0,65	5,21	0,34	2,78	3,62	29,20	3,06	24,71	4,38	35,33	0,26	2,11	0,08	0,67	12,40	61,90
3/Oh	Oh	+4-0	0,48	3,98	0,28	2,37	1,00	8,35	0,57	4,71	8,81	73,39	0,85	7,09	0,01	0,12	12,00	19,40
3/1	Ah	0-8	0,18	1,40	0,17	1,28	0,28	2,13	0,07	0,51	11,65	89,99	0,61	4,68	0,00	0,01	12,95	5,32
3/2	Bv	8-20+	0,08	0,91	0,11	1,22	0,10	1,11	0,04	0,42	8,30	94,43	0,16	1,79	0,01	0,13	8,79	3,66

Profil RF 12 - 7248 Jandelsbrunn

Probe	Horizont	Proben- tiefe	к		Na		Мg		Са		AI		Fe		Mn		KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+12-9	0,42	2,89	0,31	2,12	1,74	11,95	6,95	47,76	4,24	29,09	0,34	2,36	0,56	3,83	14,56	64,72
1/Of	Of	+9-3	0,60	5,38	0,37	3,32	0,26	2,31	0,37	3,27	9,00	80,25	0,61	5,45	0,00	0,02	11,21	14,28
1/Oh	Oh	+3-0	0,76	7,02	0,44	4,08	0,28	2,56	0,31	2,84	8,60	79,27	0,45	4,17	0,01	0,06	10,84	16,50
1/1	Ah	0-8	2,53	8,82	0,61	2,14	4,94	17,24	17,64	61,54	0,00	0,00	0,00	0,00	2,94	10,26	28,66	89,74
1/2	Bv	8-18	1,24	6,15	0,29	1,42	2,52	12,44	13,14	64,87	0,73	3,59	0,14	0,71	2,19	10,83	20,25	84,88
1/3	Bv	18-28	0,35	2,53	0,31	2,20	0,54	3,88	0,34	2,41	11,21	80,17	1,17	8,37	0,06	0,44	13,98	11,02
1/4	Bv	28-38	1,15	9,08	0,47	3,68	1,90	15,03	5,01	39,57	2,00	15,77	0,14	1,09	2,00	15,78	12,66	67,36
1/5	Bv	38-48	0,05	1,63	0,12	3,98	0,00	0,00	0,03	0,92	2,83	92,98	0,00	0,05	0,01	0,43	3,04	6,54
1/6	Bv	48-59	0,04	1,40	0,12	4,31	0,00	0,00	0,03	1,02	2,67	92,74	0,00	0,13	0,01	0,39	2,88	6,73
1/7	ll Bv	59-69	0,05	1,75	0,13	4,61	0,00	0,00	0,02	0,60	2,60	92,53	0,00	0,17	0,01	0,34	2,81	6,96
1/8	Bv	69-79	0,05	1,66	0,13	4,66	0,00	0,00	0,02	0,90	2,56	92,59	0,00	0,09	0,00	0,10	2,77	7,22
1/9	Bv	79-93+	0,05	1,72	0,12	4,25	0,00	0,00	0,02	0,59	2,57	93,37	0,00	0,00	0,00	0,06	2,75	6,57
2/L	L	+13-12	1,68	12,49	0,48	3,61	3,99	29,70	5,53	41,20	1,19	8,90	0,08	0,61	0,47	3,50	13,43	86,99
2/Of	Of	+12-2	0,65	5,21	0,34	2,78	3,62	29,20	3,06	24,71	4,38	35,33	0,26	2,11	0,08	0,67	12,40	61,90
2/Oh	Oh	+2-0	0,48	3,98	0,28	2,37	1,00	8,35	0,57	4,71	8,81	73,39	0,85	7,09	0,01	0,12	12,00	19,40
2/1	Ah	0-9	0,18	1,40	0,17	1,28	0,28	2,13	0,07	0,51	11,65	89,99	0,61	4,68	0,00	0,01	12,95	5,32
2/2	Bv	9-21+	0,08	0,91	0,11	1,22	0,10	1,11	0,04	0,42	8,30	94,43	0,16	1,79	0,01	0,13	8,79	3,66
3/L	L	+13-10	2,01	11,20	0,48	2,69	3,32	18,54	9,99	55,69	1,49	8,33	0,04	0,20	0,60	3,36	17,93	88,11
3/Of	Of	+10-2	0,63	5,59	0,37	3,32	3,90	34,63	1,75	15,50	4,24	37,61	0,35	3,12	0,03	0,24	11,27	59,03
3/Oh	Oh	+2-0	0,63	4,59	0,41	3,00	1,17	8,54	0,60	4,40	9,96	72,69	0,93	6,78	0,00	0,00	13,70	20,53
3/1	Ah	0-8	0,35	2,53	0,31	2,20	0,54	3,88	0,34	2,41	11,21	80,17	1,17	8,37	0,06	0,44	13,98	11,02
3/2	Bv	8-18+	0,13	1,15	0,15	1,42	0,18	1,66	0,06	0,57	10,07	92,36	0,25	2,32	0,06	0,51	10,90	4,80

Profil RF 13 – 7348 Wegscheid

35

Profil RF 14 – 7446 Passau

Probe	Horizont	Proben- tiefe	ŀ	٢	N	а	м	g	с	a	Α	I	F	e	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+5-3	0,42	2,89	0,31	2,12	1,74	11,95	6,95	47,76	4,24	29,09	0,34	2,36	0,56	3,83	14,56	64,72
1/Of	Of	+3-1	0,60	5,38	0,37	3,32	0,26	2,31	0,37	3,27	9,00	80,25	0,61	5,45	0,00	0,02	11,21	14,28
1/Oh	Oh	+1-0	0,76	7,02	0,44	4,08	0,28	2,56	0,31	2,84	8,60	79,27	0,45	4,17	0,01	0,06	10,84	16,50
1/1	Ahe	0-2	2,53	8,82	0,61	2,14	4,94	17,24	17,64	61,54	0,00	0,00	0,00	0,00	2,94	10,26	28,66	89,74
1/2	Ae	2-8	1,24	6,15	0,29	1,42	2,52	12,44	13,14	64,87	0,73	3,59	0,14	0,71	2,19	10,83	20,25	84,88
1/3	Bhs	8-20	0,35	2,53	0,31	2,20	0,54	3,88	0,34	2,41	11,21	80,17	1,17	8,37	0,06	0,44	13,98	11,02
1/4	Bhs	20-30	1,15	9,08	0,47	3,68	1,90	15,03	5,01	39,57	2,00	15,77	0,14	1,09	2,00	15,78	12,66	67,36
1/5	Bhs	30-40	0,04	1,23	0,10	3,57	0,00	0,08	0,01	0,39	2,55	87,12	0,00	0,00	0,22	7,61	2,93	5,27
1/6	Bhs	40-50	0,04	1,44	0,12	4,09	0,02	0,70	0,02	0,79	2,50	85,07	0,00	0,00	0,23	7,91	2,94	7,02
1/7	Bhs-Sw	50-64	0,05	1,50	0,22	6,72	0,09	2,70	0,12	3,68	2,60	78,46	0,00	0,03	0,23	6,91	3,31	14,60
1/8	Sd	64-75	0,06	1,63	0,11	3,01	0,06	1,74	0,06	1,65	3,16	85,33	0,00	0,00	0,25	6,63	3,71	8,03
1/9	Sd	75-85	0,09	1,90	0,12	2,55	0,17	3,73	0,15	3,22	3,92	83,87	0,00	0,00	0,22	4,73	4,68	11,40
1/10	Sd	85-95+	0,11	1,70	0,13	2,06	1,59	24,95	1,26	19,79	3,17	49,78	0,00	0,00	0,11	1,73	6,36	48,49
2/L	L	+5-3	2,19	9,22	0,42	1,77	3,99	16,83	11,77	49,55	0,54	2,29	0,01	0,02	4,82	20,32	23,74	77,37
2/Of	Of	+3-1	0,78	3,93	0,38	1,94	2,15	10,86	9,98	50,41	0,56	2,83	0,03	0,15	5,91	29,88	19,79	67,14
2/Oh	Oh	+1-0	0,46	3,62	0,24	1,88	1,16	9,07	5,19	40,53	3,08	24,06	0,24	1,86	2,43	18,98	12,80	55,10
2/1	Ah	0-7	0,07	1,15	0,10	1,61	0,11	1,88	0,28	4,67	5,17	84,97	0,14	2,23	0,21	3,49	6,09	9,31
2/2	Bv	7-20+	0,03	0,77	0,14	3,17	0,06	1,27	0,06	1,40	3,91	89,23	0,01	0,19	0,17	3,97	4,38	6,61
3/L	L	+5-3	1,16	7,79	0,50	3,36	2,24	15,02	6,77	45,39	1,23	8,22	0,05	0,35	2,96	19,86	14,91	71,56
3/Of	Of	+3-1	1,15	9,08	0,47	3,68	1,90	15,03	5,01	39,57	2,00	15,77	0,14	1,09	2,00	15,78	12,66	67,36
3/Oh	Oh	+1-0	0,78	5,75	0,32	2,39	1,97	14,57	5,37	39,73	2,91	21,52	0,16	1,21	2,00	14,82	13,51	62,44
3/1	Aeh	0-3	0,19	2,55	0,15	2,02	0,35	4,67	0,28	3,68	6,03	79,46	0,48	6,31	0,10	1,30	7,58	12,92
3/2	Bsh	3-17+	0,06	0,89	0,13	2,13	0,10	1,56	0,05	0,76	5,63	90,83	0,17	2,70	0,07	1,13	6,19	5,34

Probe	Horizont	Proben- tiefe		<	N	а	м	g	с	а	A	I	F	е	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+3-1	1,58	3,61	0,39	0,89	10,20	23,32	30,91	70,65	0,13	0,31	0,05	0,11	0,49	1,11	43,76	98,47
1/Of	Of	+1-0	0,74	1,98	0,24	0,64	8,28	22,00	27,90	74,09	0,11	0,30	0,02	0,05	0,35	0,93	37,65	98,72
1/1	Ah	0-15	0,09	0,41	0,09	0,43	5,13	23,08	16,86	75,83	0,02	0,10	0,01	0,03	0,03	0,13	22,24	99,74
1/2	elCv	15-25	0,01	0,06	0,07	0,60	0,84	7,35	10,48	91,59	0,03	0,29	0,01	0,10	0,00	0,00	11,44	99,61
1/3	elCv	25-35	0,00	0,03	0,05	0,49	0,62	6,08	9,43	93,23	0,00	0,03	0,01	0,09	0,01	0,06	10,12	99,83
1/4	elCv	35-45	0,00	0,03	0,06	0,55	0,61	5,89	9,61	93,11	0,02	0,23	0,02	0,16	0,00	0,03	10,33	99,58
1/5	elCv	45-55	0,00	0,03	0,06	0,56	0,99	8,65	10,29	89,59	0,11	0,95	0,03	0,23	0,00	0,00	11,49	98,83
1/6	elCv	55-71	0,00	0,02	0,06	0,54	0,53	4,90	10,16	94,19	0,03	0,28	0,01	0,06	0,00	0,01	10,79	99,66
1/7	II fBcv	71-74	0,01	0,04	0,06	0,54	0,86	7,27	10,89	92,01	0,00	0,00	0,01	0,10	0,00	0,02	11,84	99,87
1/8	elCv	74-84	0,01	0,08	0,06	0,43	0,97	7,42	12,04	91,99	0,00	0,00	0,01	0,08	0,00	0,00	13,09	99,92
1/9	elCv	84-99+	0,01	0,06	0,06	0,43	0,96	7,16	12,38	92,10	0,03	0,20	0,00	0,03	0,00	0,02	13,44	99,75
2/L	L	+3-1	1,75	2,99	0,33	0,56	12,55	21,46	42,83	73,23	0,11	0,19	0,05	0,08	0,87	1,49	58,49	98,24
2/Of	Of	+1-0	0,85	1,98	0,33	0,77	7,71	18,09	33,18	77,84	0,07	0,17	0,04	0,10	0,45	1,04	42,62	98,69
2/1	Ah	0-6+	0,13	0,89	0,11	0,74	2,83	19,19	11,45	77,63	0,05	0,36	0,01	0,08	0,16	1,10	14,74	98,45
3/L	L	+3-1	2,12	4,24	0,40	0,81	12,87	25,65	33,75	67,28	0,08	0,15	0,06	0,12	0,88	1,76	50,16	97,97
3/Of	Of	+1-0	0,99	2,39	0,36	0,87	9,09	21,97	29,65	71,62	0,24	0,58	0,06	0,14	1,01	2,43	41,40	96,85
3/1	Ah	0-11+	0,10	0,58	0,12	0,66	3,51	19,96	13,74	78,11	0,02	0,11	0,01	0,04	0,09	0,54	17,59	99,31

Profil RF 15 – 7742 Altötting

Probe	Horizont	Proben- tiefe	ŀ	۲	N	a	м	g	С	a	Α	I	F	e	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+1-0	0,42	2,89	0,31	2,12	1,74	11,95	6,95	47,76	4,24	29,09	0,34	2,36	0,56	3,83	14,56	64,72
1/1	Ah	0-8	0,60	5,38	0,37	3,32	0,26	2,31	0,37	3,27	9,00	80,25	0,61	5,45	0,00	0,02	11,21	14,28
1/2	Bv	8-18	0,76	7,02	0,44	4,08	0,28	2,56	0,31	2,84	8,60	79,27	0,45	4,17	0,01	0,06	10,84	16,50
1/3	Bv	18-27	2,53	8,82	0,61	2,14	4,94	17,24	17,64	61,54	0,00	0,00	0,00	0,00	2,94	10,26	28,66	89,74
1/4	Bv-ICv	27-37	1,24	6,15	0,29	1,42	2,52	12,44	13,14	64,87	0,73	3,59	0,14	0,71	2,19	10,83	20,25	84,88
1/5	Bv-ICv	37-47	0,35	2,53	0,31	2,20	0,54	3,88	0,34	2,41	11,21	80,17	1,17	8,37	0,06	0,44	13,98	11,02
1/6	Bv-ICv	47-63	1,15	9,08	0,47	3,68	1,90	15,03	5,01	39,57	2,00	15,77	0,14	1,09	2,00	15,78	12,66	67,36
1/7	ll fAh	63-74	0,05	1,63	0,12	3,98	0,00	0,00	0,03	0,92	2,83	92,98	0,00	0,05	0,01	0,43	3,04	6,54
1/8	Cv	74-90+	0,04	1,40	0,12	4,31	0,00	0,00	0,03	1,02	2,67	92,74	0,00	0,13	0,01	0,39	2,88	6,73
2/L	L	+2-0	0,05	1,75	0,13	4,61	0,00	0,00	0,02	0,60	2,60	92,53	0,00	0,17	0,01	0,34	2,81	6,96
2/1	Ah	0-5	0,05	1,66	0,13	4,66	0,00	0,00	0,02	0,90	2,56	92,59	0,00	0,09	0,00	0,10	2,77	7,22
2/2	Bv	5-15	0,05	1,72	0,12	4,25	0,00	0,00	0,02	0,59	2,57	93,37	0,00	0,00	0,00	0,06	2,75	6,57
2/3	Bv	15-21+	1,68	12,49	0,48	3,61	3,99	29,70	5,53	41,20	1,19	8,90	0,08	0,61	0,47	3,50	13,43	86,99
3/L	L	+2-0	0,65	5,21	0,34	2,78	3,62	29,20	3,06	24,71	4,38	35,33	0,26	2,11	0,08	0,67	12,40	61,90
3/1	Ah	0-10	0,48	3,98	0,28	2,37	1,00	8,35	0,57	4,71	8,81	73,39	0,85	7,09	0,01	0,12	12,00	19,40
3/2	Bv	10-20+	0,18	1,40	0,17	1,28	0,28	2,13	0,07	0,51	11,65	89,99	0,61	4,68	0,00	0,01	12,95	5,32

Profil RF 16 – 8143 Freilassing

Probe	Horizont	Proben- tiefe	ŀ	‹	N	a	м	g	с	а	А	1	F	e	м	n	КАК	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+2-+1	0,42	2,89	0,31	2,12	1,74	11,95	6,95	47,76	4,24	29,09	0,34	2,36	0,56	3,83	14,56	64,72
1/Of	Of	+1-0	0,60	5,38	0,37	3,32	0,26	2,31	0,37	3,27	9,00	80,25	0,61	5,45	0,00	0,02	11,21	14,28
1/1	Ah	0-12	0,76	7,02	0,44	4,08	0,28	2,56	0,31	2,84	8,60	79,27	0,45	4,17	0,01	0,06	10,84	16,50
1/2	Bv	12-25	2,53	8,82	0,61	2,14	4,94	17,24	17,64	61,54	0,00	0,00	0,00	0,00	2,94	10,26	28,66	89,74
1/3	Bv	25-35	1,24	6,15	0,29	1,42	2,52	12,44	13,14	64,87	0,73	3,59	0,14	0,71	2,19	10,83	20,25	84,88
1/4	Cv	35-45	0,35	2,53	0,31	2,20	0,54	3,88	0,34	2,41	11,21	80,17	1,17	8,37	0,06	0,44	13,98	11,02
1/5	Cv	45-60+	0,07	0,58	0,12	0,99	5,15	42,46	6,79	55,98	0,00	0,00	0,00	0,00	0,00	0,00	12,13	100,00
2/L	L	+6-3	0,05	1,63	0,12	3,98	0,00	0,00	0,03	0,92	2,83	92,98	0,00	0,05	0,01	0,43	3,04	6,54
2/Of	Of	+3-0	0,04	1,40	0,12	4,31	0,00	0,00	0,03	1,02	2,67	92,74	0,00	0,13	0,01	0,39	2,88	6,73
2/1	Ah	0-14+	0,05	1,75	0,13	4,61	0,00	0,00	0,02	0,60	2,60	92,53	0,00	0,17	0,01	0,34	2,81	6,96
3/L	L	+6-3	0,05	1,66	0,13	4,66	0,00	0,00	0,02	0,90	2,56	92,59	0,00	0,09	0,00	0,10	2,77	7,22
3/Of	Of	+3-0	0,05	1,72	0,12	4,25	0,00	0,00	0,02	0,59	2,57	93,37	0,00	0,00	0,00	0,06	2,75	6,57
3/1	Ah	0-14+	1,68	12,49	0,48	3,61	3,99	29,70	5,53	41,20	1,19	8,90	0,08	0,61	0,47	3,50	13,43	86,99

Profil RF 17 – 8241 Ruhpolding

Profil	RF 1	8 –	8040	Eggstätt
--------	------	-----	------	----------

Probe	Horizont	Proben- tiefe	I	۲	N	а	м	g	с	а	А	I	F	e	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+6-4	0,42	2,89	0,31	2,12	1,74	11,95	6,95	47,76	4,24	29,09	0,34	2,36	0,56	3,83	14,56	64,72
1/Of	Of	+4-1	0,60	5,38	0,37	3,32	0,26	2,31	0,37	3,27	9,00	80,25	0,61	5,45	0,00	0,02	11,21	14,28
1/Oh	Oh	+1-0	0,76	7,02	0,44	4,08	0,28	2,56	0,31	2,84	8,60	79,27	0,45	4,17	0,01	0,06	10,84	16,50
1/1	hHw	0-10	2,53	8,82	0,61	2,14	4,94	17,24	17,64	61,54	0,00	0,00	0,00	0,00	2,94	10,26	28,66	89,74
1/2	hHw	10-20	1,24	6,15	0,29	1,42	2,52	12,44	13,14	64,87	0,73	3,59	0,14	0,71	2,19	10,83	20,25	84,88
1/3	hHw	20-30	0,35	2,53	0,31	2,20	0,54	3,88	0,34	2,41	11,21	80,17	1,17	8,37	0,06	0,44	13,98	11,02
1/4	hHw	30-40	1,15	9,08	0,47	3,68	1,90	15,03	5,01	39,57	2,00	15,77	0,14	1,09	2,00	15,78	12,66	67,36
1/5	hHw	40-50	0,05	1,63	0,12	3,98	0,00	0,00	0,03	0,92	2,83	92,98	0,00	0,05	0,01	0,43	3,04	6,54
1/6	hHw	50-59	0,04	1,40	0,12	4,31	0,00	0,00	0,03	1,02	2,67	92,74	0,00	0,13	0,01	0,39	2,88	6,73
1/7	II Aa	59-74	0,05	1,75	0,13	4,61	0,00	0,00	0,02	0,60	2,60	92,53	0,00	0,17	0,01	0,34	2,81	6,96
1/8	III Go	74-84	0,05	1,66	0,13	4,66	0,00	0,00	0,02	0,90	2,56	92,59	0,00	0,09	0,00	0,10	2,77	7,22
1/9	Go	84-94	0,05	1,72	0,12	4,25	0,00	0,00	0,02	0,59	2,57	93,37	0,00	0,00	0,00	0,06	2,75	6,57
1/10	Go	94-109+	1,68	12,49	0,48	3,61	3,99	29,70	5,53	41,20	1,19	8,90	0,08	0,61	0,47	3,50	13,43	86,99
2/L	L	+8-7	0,65	5,21	0,34	2,78	3,62	29,20	3,06	24,71	4,38	35,33	0,26	2,11	0,08	0,67	12,40	61,90
2/Of	Of	+1-7	0,48	3,98	0,28	2,37	1,00	8,35	0,57	4,71	8,81	73,39	0,85	7,09	0,01	0,12	12,00	19,40
2/Oh	Oh	+1-0	0,18	1,40	0,17	1,28	0,28	2,13	0,07	0,51	11,65	89,99	0,61	4,68	0,00	0,01	12,95	5,32
2/1	hHw	0-12+	0,08	0,91	0,11	1,22	0,10	1,11	0,04	0,42	8,30	94,43	0,16	1,79	0,01	0,13	8,79	3,66
3/L	L	+11-9	2,01	11,20	0,48	2,69	3,32	18,54	9,99	55,69	1,49	8,33	0,04	0,20	0,60	3,36	17,93	88,11
3/Of	Of	+9-1	0,63	5,59	0,37	3,32	3,90	34,63	1,75	15,50	4,24	37,61	0,35	3,12	0,03	0,24	11,27	59,03
3/Oh	Oh	+1-0	0,63	4,59	0,41	3,00	1,17	8,54	0,60	4,40	9,96	72,69	0,93	6,78	0,00	0,00	13,70	20,53
3/1	hHw	0-8	0,25	1,93	0,25	1,95	1,95	14,93	9,54	73,09	0,92	7,05	0,12	0,92	0,02	0,13	13,06	91,90
3/2	hHw	8-15+	0,13	1,15	0,15	1,42	0,18	1,66	0,06	0,57	10,07	92,36	0,25	2,32	0,06	0,51	10,90	4,80

Profil RF 19 – 8236 1	legernsee
-----------------------	-----------

Probe	Horizont	Proben- tiefe	1	٢	N	a	м	g	с	а	A	I	F	е	м	n	КАК	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+6-4	1,85	12,74	0,44	3,03	1,34	9,23	8,03	55,13	0,13	0,87	0,01	0,10	2,75	18,91	14,56	80,12
1/Of	Of	+4-2	1,82	11,98	0,25	1,62	1,60	10,49	8,27	54,34	1,48	9,71	0,10	0,63	1,71	11,23	15,22	78,43
1/Oh	Oh	+2-0	0,79	5,29	0,24	1,64	0,68	4,56	2,12	14,30	9,68	65,24	0,75	5,07	0,58	3,90	14,83	25,78
1/1	Ah	0-5	0,21	1,29	0,12	0,72	0,22	1,35	0,27	1,66	14,42	87,55	0,08	0,46	1,15	6,97	16,47	5,02
1/2	Bv	5-15	0,13	0,82	0,09	0,55	0,07	0,41	0,15	0,90	15,30	93,84	0,00	0,01	0,57	3,47	16,30	2,67
1/3	Bv	15-25	0,15	1,04	0,10	0,68	0,06	0,39	0,09	0,63	13,57	92,39	0,01	0,04	0,71	4,84	14,69	2,72
1/4	Bv	25-35	0,14	0,94	0,10	0,71	0,06	0,38	0,08	0,57	13,78	93,81	0,02	0,16	0,50	3,43	14,69	2,60
1/5	Bv	35-45	0,13	0,93	0,10	0,75	0,03	0,25	0,04	0,30	12,80	94,37	0,00	0,02	0,46	3,38	13,56	2,23
1/6	Bv	45-55	0,24	1,39	0,10	0,61	0,03	0,17	0,07	0,38	16,36	96,18	0,00	0,00	0,21	1,26	17,01	2,56
1/7	Bv	55-72	0,24	1,54	0,11	0,74	0,04	0,25	0,09	0,62	14,57	94,60	0,00	0,03	0,34	2,23	15,40	3,14
1/8	Bv	72-81	0,11	1,53	0,08	1,08	0,03	0,46	0,09	1,29	6,53	89,86	0,01	0,12	0,41	5,67	7,27	4,35
1/9	ll Sw-Sd	81-90	0,15	1,82	0,10	1,24	0,05	0,65	0,14	1,68	7,40	90,07	0,00	0,05	0,37	4,50	8,22	5,38
1/10	III Sw-Sd	90-95	0,23	1,61	0,11	0,78	0,18	1,29	0,56	3,91	13,05	91,37	0,00	0,01	0,15	1,03	14,28	7,59
1/11	IVSd	95-107	0,13	1,68	0,10	1,21	0,15	1,92	0,47	6,03	6,63	84,58	0,00	0,02	0,36	4,56	7,84	10,84
1/12	Cv	107-112+	0,13	1,86	0,09	1,29	0,39	5,70	1,06	15,44	5,08	73,81	0,00	0,03	0,13	1,86	6,88	24,30
2/L	L	+5-4	2,05	12,86	0,40	2,51	1,26	7,92	7,92	49,79	0,62	3,92	0,14	0,87	3,52	22,13	15,91	73,07
2/Of	Of	+4-1	2,03	12,96	0,30	1,94	1,76	11,24	8,64	55,16	0,68	4,31	0,13	0,85	2,12	13,54	15,67	81,30
2/Oh	Oh	+1-0	1,06	8,02	0,29	2,15	1,08	8,10	3,28	24,73	6,43	48,44	0,62	4,65	0,52	3,91	13,27	43,00
2/1	Aeh	0-7	0,24	2,03	0,11	0,91	0,30	2,50	0,42	3,49	9,93	83,24	0,37	3,10	0,56	4,72	11,93	8,94
2/2	Ahe	7-14	0,17	1,19	0,10	0,68	0,17	1,17	0,22	1,53	13,09	89,40	0,24	1,67	0,64	4,35	14,64	4,58
2/3	Bs	14-20+	0,15	0,99	0,09	0,58	0,12	0,81	0,20	1,34	13,13	88,58	0,09	0,64	1,05	7,07	14,83	3,72
3/L	L	+5-3	1,90	9,18	0,36	1,72	2,13	10,29	12,04	58,10	0,99	4,78	0,00	0,02	3,30	15,92	20,73	79,28
3/Of	Of	+3-1	1,61	9,33	0,25	1,46	1,62	9,37	9,47	54,84	2,18	12,64	0,33	1,91	1,81	10,46	17,27	74,99
3/Oh	Oh	+1-0	1,09	6,18	0,25	1,40	1,24	7,08	6,97	39,67	6,01	34,17	0,82	4,65	1,20	6,84	17,58	54,34
3/1	Ah	0-1	0,26	2,14	0,12	1,04	0,31	2,63	1,02	8,61	9,28	77,97	0,15	1,25	0,76	6,35	11,90	14,42
3/2	Bv	1-11	0,11	0,90	0,10	0,82	0,12	0,95	0,26	2,08	10,56	85,62	0,01	0,10	1,18	9,53	12,34	4,75
3/3	Bv	11-17+	0,08	0,68	0,10	0,81	0,09	0,75	0,15	1,24	11,16	89,87	0,00	0,03	0,82	6,63	12,41	3,47
2	5 -		1	1	1			1	1	1	1	1			1			

Probe	Horizont	Proben- tiefe	ŀ	۲	N	a	м	g	с	а	Α	I	F	e	м	n	КАК	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+5-4	1,84	11,55	0,62	3,89	2,62	16,46	8,65	54,38	0,43	2,70	0,02	0,11	1,74	10,92	15,90	86,27
1/Of	Of	+4-0	0,51	3,22	0,37	2,32	1,62	10,28	11,13	70,75	1,65	10,52	0,08	0,52	0,38	2,39	15,73	86,57
1/1	Ah	0-11	0,19	2,12	0,18	1,98	0,20	2,22	0,77	8,49	7,41	81,50	0,32	3,47	0,02	0,23	9,09	14,80
1/2	AI	11-22	0,07	1,97	0,15	4,32	0,02	0,62	0,18	5,17	3,04	85,37	0,00	0,08	0,09	2,47	3,56	12,07
1/3	AI	22-33	0,10	2,18	0,16	3,63	0,03	0,61	0,28	6,51	3,72	85,19	0,01	0,22	0,07	1,67	4,37	12,93
1/4	Bt	33-44	0,19	1,58	0,17	1,41	0,08	0,63	0,32	2,67	11,21	93,01	0,00	0,02	0,08	0,68	12,06	6,29
1/5	Bt	44-55	0,18	1,74	0,16	1,57	1,26	12,50	2,02	20,00	6,34	62,72	0,00	0,00	0,15	1,46	10,10	35,81
1/6	Cv	55-80+	0,06	0,57	0,13	1,20	0,70	6,27	10,12	90,46	0,16	1,47	0,00	0,00	0,00	0,02	11,19	98,51
2/L	L	+4-3	1,63	7,26	0,55	2,45	3,86	17,21	12,99	57,91	0,00	0,00	0,00	0,00	3,40	15,17	22,42	84,83
2/Of	Of	+3-0	0,71	3,67	0,28	1,43	3,27	16,97	12,89	66,80	0,28	1,46	0,01	0,07	1,85	9,61	19,29	88,87
2/1	Ah	0-12	0,21	2,00	0,16	1,53	0,55	5,27	1,03	9,81	7,95	75,60	0,54	5,14	0,07	0,64	10,51	18,61
2/2	AI	12-24+	0,06	1,43	0,14	3,24	0,07	1,63	0,16	3,66	3,86	87,03	0,01	0,32	0,12	2,69	4,44	9,96
3/L	L	+2-1	1,83	11,08	0,42	2,56	4,00	24,30	7,96	48,29	0,32	1,94	0,00	0,00	1,95	11,83	16,48	86,23
3/Of	Of	1-0	0,69	4,22	0,39	2,40	2,30	14,16	9,50	58,53	1,34	8,27	0,09	0,54	1,93	11,87	16,23	79,32
3/1	Ah	0-10	0,27	2,62	0,16	1,54	0,46	4,43	1,05	10,01	7,97	76,21	0,37	3,57	0,17	1,61	10,46	18,60
3/2	AI	10-24+	0,09	1,99	0,10	2,22	0,04	0,92	0,13	2,85	4,10	88,31	0,01	0,30	0,16	3,41	4,64	7,98

Profil RF 20 – 7837 Markt Schwaben

Probe	Horizont	Proben- tiefe	1	‹	N	a	м	g	С	a	A	I	F	e	м	n	КАК	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+2-0,5	1,14	5,63	0,32	1,59	3,65	18,10	13,17	65,28	0,31	1,54	0,01	0,06	1,58	7,80	20,18	90,59
1/Of	Of	+0,5-0	1,41	4,45	0,23	0,72	4,34	13,66	23,69	74,63	0,13	0,41	0,02	0,07	1,92	6,05	31,74	93,47
1/1	Ah	0-7	0,25	4,49	0,06	1,11	0,54	9,79	3,53	63,60	0,83	14,87	0,01	0,16	0,33	5,99	5,55	78,99
1/2	AI	7-18	0,12	2,92	0,06	1,59	0,14	3,52	0,87	22,06	2,65	67,10	0,01	0,27	0,10	2,55	3,96	30,08
1/3	AI	18-28	0,09	3,04	0,03	1,05	0,10	3,37	0,49	15,75	2,28	73,98	0,00	0,09	0,08	2,71	3,09	23,21
1/4	AI	28-38	0,13	3,50	0,05	1,29	0,21	5,78	1,07	29,06	2,16	58,49	0,01	0,15	0,06	1,73	3,68	39,63
1/5	AI	38-47	0,22	3,70	0,06	0,93	0,82	13,79	3,47	58,17	1,36	22,81	0,00	0,08	0,03	0,52	5,97	76,59
1/6	Bt	47-57	0,49	3,61	0,11	0,79	2,79	20,44	8,66	63,35	1,57	11,52	0,02	0,13	0,02	0,15	13,67	88,20
1/7	Bt	57-67	0,50	3,39	0,12	0,81	3,15	21,39	9,73	66,14	1,19	8,07	0,01	0,04	0,02	0,17	14,71	91,73
1/8	Bt	67-77	0,52	3,42	0,32	2,09	3,28	21,61	9,96	65,57	1,08	7,10	0,01	0,04	0,03	0,17	15,18	92,69
1/9	Bt	77-96+	0,44	3,07	0,13	0,92	3,18	22,14	9,68	67,44	0,89	6,18	0,01	0,04	0,03	0,20	14,35	93,57
2/L	L	+2-0	2,19	5,61	0,28	0,73	7,25	18,59	25,32	64,92	0,27	0,69	0,03	0,08	3,66	9,38	39,00	89,85
2/1	Ah	0-7	0,63	9,01	0,09	1,32	1,03	14,72	2,10	30,07	2,54	36,47	0,02	0,33	0,56	8,09	6,98	55,12
2/2	AI	7-17	0,10	1,96	0,04	0,79	0,24	4,88	0,44	8,91	4,03	81,87	0,01	0,17	0,07	1,42	4,92	16,54
2/3	AI	17-27+	0,10	2,12	0,08	1,68	0,16	3,48	0,45	9,73	3,73	81,04	0,01	0,12	0,08	1,83	4,61	17,00
3/L	L	+2-0	1,78	4,82	0,86	2,32	6,44	17,44	25,33	68,56	0,44	1,19	0,03	0,09	2,06	5,58	36,94	93,14
3/1	Ah	0-5	0,26	3,78	0,08	1,20	0,62	9,14	2,08	30,52	3,33	48,74	0,03	0,39	0,42	6,22	6,83	44,65
3/2	AI	5-15	0,06	1,16	0,04	0,75	0,11	2,16	0,23	4,30	4,78	90,15	0,05	0,98	0,03	0,50	5,30	8,38
3/3	AI	15-25+	0,06	1,40	0,05	1,18	0,01	0,16	0,21	4,50	4,24	91,54	0,01	0,16	0,05	1,06	4,63	7,23

Profil RF 21 – 6025 Arnstein

Probe	Horizont	Proben- tiefe		۲	N	a	м	g	с	а	A	I	F	е	м	n	КАК	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+7-4	1,02	4,80	0,67	3,14	2,48	11,66	14,80	69,70	0,14	0,68	0,06	0,29	2,07	9,74	21,23	89,29
1/Of	Of	+4-3	0,62	4,25	0,27	1,86	1,11	7,67	10,06	69,42	0,14	0,95	0,05	0,36	2,24	15,48	14,49	83,21
1/Oh	Oh	+3-0	0,23	5,01	0,16	3,50	0,13	2,77	3,15	67,76	0,56	12,01	0,10	2,22	0,31	6,74	4,65	79,04
1/1	Ahe	0-10	0,02	2,94	0,08	10,93	0,06	7,36	0,11	14,45	0,45	58,68	0,03	4,42	0,01	1,23	0,76	35,67
1/2	Ahe	10-19	0,03	1,72	0,10	6,39	0,04	2,87	0,07	4,54	1,21	79,38	0,07	4,44	0,01	0,65	1,53	15,53
1/3	Bv	19-31	0,07	2,46	0,22	8,14	0,03	1,25	0,12	4,48	2,11	77,56	0,13	4,73	0,04	1,38	2,73	16,33
1/4	ICv	31-50+	0,17	3,70	0,15	3,31	0,06	1,21	0,06	1,36	4,13	89,37	0,04	0,82	0,01	0,24	4,63	9,57
2/L	L	+5-3	0,37	4,63	0,45	5,68	0,82	10,31	4,55	57,17	0,52	6,58	0,08	0,99	1,17	14,64	7,96	77,79
2/Of	Of	+3-2	0,95	5,65	0,28	1,66	1,61	9,57	10,10	59,98	0,10	0,58	0,04	0,25	3,76	22,30	16,84	76,87
2/1	Ae	0-3	0,07	4,50	0,10	6,38	0,10	6,44	0,37	24,35	0,76	50,10	0,03	2,19	0,09	6,04	1,52	41,67
2/2	Ahe	3-11+	0,06	1,73	0,09	2,91	0,10	2,99	0,16	5,00	2,51	77,04	0,25	7,52	0,09	2,80	3,26	12,63
3/L	L	+4-3	0,95	3,95	0,49	2,02	2,19	9,09	18,59	77,20	0,20	0,85	0,06	0,25	1,60	6,64	24,08	92,27
3/Of	Of	+3-2	0,26	2,52	0,18	1,70	0,71	6,79	8,29	79,10	0,02	0,19	0,04	0,35	0,98	9,35	10,48	90,11
3/Oh	Oh	+2-0	0,20	2,53	0,16	2,02	0,43	5,39	5,87	73,79	0,16	2,03	0,01	0,14	1,12	14,11	7,95	83,72
3/1	Ahe	0-10	0,06	2,90	0,08	3,41	0,07	3,06	0,59	26,24	1,30	58,38	0,07	3,35	0,06	2,66	2,24	35,61
3/2	Bv	10-22+	0,03	0,87	0,09	2,61	0,02	0,61	0,08	2,14	3,11	87,73	0,07	1,92	0,15	4,13	3,55	6,22

Probe	Horizont	Proben- tiefe	•	‹	N	a	м	g	с	а	Α	I	F	е	м	n	КАК	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+3-1	2,79	7,72	0,98	2,72	5,57	15,42	20,72	57,37	0,36	1,00	0,08	0,22	5,61	15,54	36,11	83,24
1/Of	Of	+1-0	1,88	9,30	0,33	1,65	2,45	12,12	12,07	59,73	0,26	1,30	0,02	0,12	3,19	15,78	20,20	82,80
1/1	Ah	0-4	0,34	9,29	0,11	2,92	0,41	11,23	1,50	41,03	0,98	26,69	0,01	0,21	0,32	8,63	3,66	64,47
1/2	Bv	4-15	0,10	3,14	0,13	3,88	0,07	2,14	0,29	8,74	2,61	78,82	0,00	0,00	0,11	3,28	3,31	17,90
1/3	Bv	15-25	0,09	3,32	0,13	4,85	0,06	2,41	0,18	6,66	2,16	80,06	0,00	0,00	0,07	2,71	2,69	17,23
1/4	Bv	25-35	0,07	2,95	0,11	4,61	0,04	1,73	0,14	5,69	2,00	82,96	0,00	0,00	0,05	2,06	2,41	14,98
1/5	Bv	35-47	0,06	2,47	0,13	5,05	0,06	2,46	0,14	5,32	2,13	83,10	0,00	0,00	0,04	1,59	2,56	15,31
1/6	Cv	47-70+	0,69	5,96	0,16	1,38	3,62	31,49	2,94	25,53	4,01	34,84	0,00	0,00	0,09	0,80	11,51	64,36
2/L	L	+3-2	2,32	5,81	0,70	1,76	7,03	17,66	21,84	54,84	0,61	1,53	0,00	0,00	7,33	18,40	39,83	80,07
2/Of	Of	+2-0	1,50	5,75	0,40	1,52	4,20	16,05	16,76	63,97	0,32	1,23	0,01	0,05	2,99	11,43	26,19	87,29
2/1	Ah	0-4	0,28	6,37	0,13	2,95	0,47	10,85	1,30	30,03	1,78	41,04	0,00	0,00	0,38	8,75	4,33	50,21
2/2	Bv	4-17+	0,05	1,70	0,12	3,82	0,11	3,43	0,21	6,95	2,46	79,74	0,00	0,00	0,13	4,36	3,08	15,90
3/L	L	+4-2	5,92	17,12	0,62	1,81	6,24	18,03	16,05	46,38	0,37	1,06	0,00	0,00	5,40	15,60	34,61	83,34
3/Of	Of	+2-1	1,97	6,69	0,38	1,29	4,83	16,43	17,40	59,22	0,25	0,83	0,00	0,00	4,56	15,53	29,38	83,63
3/1	Ah	0-3	0,33	7,52	0,09	2,10	0,60	13,92	1,28	29,53	1,81	41,85	0,04	1,00	0,18	4,08	4,34	53,07
3/2	Bv	3-18+	0,07	2,22	0,11	3,34	0,06	1,70	0,16	4,93	2,90	86,68	0,00	0,00	0,04	1,13	3,34	12,19

Probe	Horizont	Proben- tiefe	ŀ	(N	а	м	g	с	a	Α	I	F	e	м	n	КАК	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+6-3	0,42	0,96	0,31	0,71	1,74	3,99	36,00	82,56	4,24	9,71	0,34	0,79	0,56	1,28	43,61	88,22
1/Of	Of	+3-0	0,60	0,96	0,37	0,59	0,26	0,41	51,95	82,73	9,00	14,33	0,61	0,97	0,00	0,00	62,80	84,69
1/1	Ah	0-12	0,76	2,01	0,44	1,16	0,28	0,73	27,44	72,26	8,60	22,63	0,45	1,19	0,01	0,02	37,98	76,16
1/2	Bhv	12-25	2,53	6,99	0,61	1,69	4,94	13,68	25,11	69,50	0,00	0,00	0,00	0,00	2,94	8,14	36,13	91,86
1/3	Bhv	25-38	1,24	3,88	0,29	0,90	2,52	7,85	24,95	77,82	0,73	2,27	0,14	0,45	2,19	6,84	32,06	90,45
1/4	ll Bv-T	38-49	0,35	0,97	0,31	0,84	0,54	1,48	22,95	62,72	11,21	30,63	1,17	3,20	0,06	0,17	36,59	66,01
1/5	Bv-T	49-60	1,15	3,86	0,47	1,57	1,90	6,38	22,15	74,33	2,00	6,70	0,14	0,46	2,00	6,70	29,80	86,13
1/6	Bv-T	60-70	0,05	0,20	0,12	0,48	0,00	0,00	22,03	87,97	2,83	11,29	0,00	0,01	0,01	0,05	25,04	88,65
1/7	Bv-T	70-80	0,04	0,16	0,12	0,50	0,00	0,00	21,78	88,42	2,67	10,85	0,00	0,02	0,01	0,05	24,63	89,09
1/8	Bv-T	80-85+	0,05	0,20	0,13	0,54	0,00	0,00	21,32	88,41	2,60	10,79	0,00	0,02	0,01	0,04	24,11	89,15
2/L	L	+4-2	0,05	0,09	0,13	0,25	0,00	0,00	48,30	94,63	2,56	5,02	0,00	0,00	0,00	0,01	51,04	94,97
2/Of	Of	+2-0	0,05	0,09	0,12	0,21	0,00	0,00	52,92	95,08	2,57	4,62	0,00	0,00	0,00	0,00	55,66	95,38
2/1	Ah	0-10	1,68	4,57	0,48	1,32	3,99	10,86	28,84	78,50	1,19	3,25	0,08	0,22	0,47	1,28	36,74	95,25
2/2	Bhv	10-19+	0,65	1,77	0,34	0,94	3,62	9,90	27,22	74,46	4,38	11,98	0,26	0,71	0,08	0,23	36,55	87,08
3/L	L	+6-3	0,48	0,98	0,28	0,59	1,00	2,06	37,17	76,47	8,81	18,12	0,85	1,75	0,01	0,03	48,61	80,10
3/Of	Of	+3-0	0,18	0,32	0,17	0,29	0,28	0,48	44,73	77,64	11,65	20,23	0,61	1,05	0,00	0,00	57,61	78,72
3/1	Ah	0-10	0,08	0,20	0,11	0,27	0,10	0,25	30,88	77,91	8,30	20,95	0,16	0,40	0,01	0,03	39,64	78,63
3/2	Bhv	10-18+	2,01	5,30	0,48	1,28	3,32	8,78	29,93	79,02	1,49	3,94	0,04	0,10	0,60	1,59	37,88	94,37

Profil RF 24 – 7132 Dollnstein

Probe	Horizont	Proben- tiefe	ŀ	(N	а	м	g	с	a	А	I	F	е	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+3-1	1,33	6,05	0,82	3,72	3,78	17,18	13,19	59,95	0,41	1,84	0,03	0,14	2,44	11,11	22,00	86,90
1/Of	Of	+1-0	0,96	4,40	0,53	2,45	2,70	12,38	13,92	63,85	0,43	1,97	0,04	0,19	3,22	14,76	21,80	83,07
1/1	Ah	0-4	0,38	4,77	0,22	2,71	0,48	5,98	2,33	28,89	3,93	48,75	0,08	0,95	0,64	7,94	8,07	42,35
1/2	Bhv	4-16	0,15	2,90	0,22	4,28	0,08	1,59	0,33	6,31	4,25	82,00	0,01	0,19	0,14	2,72	5,18	15,09
1/3	Bhv	16-28	0,12	2,20	0,19	3,58	0,06	1,07	0,22	4,02	4,73	87,14	0,01	0,17	0,10	1,83	5,43	10,87
1/4	Bhv	28-40	0,11	1,82	0,22	3,58	0,10	1,61	0,21	3,52	5,29	87,74	0,01	0,11	0,10	1,61	6,03	10,54
1/5	Bhv	140-51	0,17	2,11	0,21	2,68	0,14	1,79	0,34	4,26	7,00	87,63	0,00	0,05	0,12	1,48	7,99	10,84
1/6	ll Bv	51-60	0,18	1,57	0,22	1,92	1,40	11,92	3,13	26,65	6,68	56,98	0,01	0,07	0,10	0,89	11,73	42,06
1/7	Bv	60-70	0,21	1,67	0,25	2,01	2,31	18,27	4,36	34,53	5,43	43,02	0,01	0,07	0,06	0,44	12,63	56,48
1/8	Bv	170-80	0,16	1,21	0,22	1,63	3,34	24,93	5,09	37,97	4,54	33,87	0,00	0,04	0,05	0,36	13,40	65,74
1/9	Bv	80-90	0,19	1,44	0,22	1,67	3,64	28,13	5,43	41,90	3,42	26,37	0,01	0,07	0,05	0,41	12,95	73,15
1/10	Bv	90-100+	0,20	1,43	0,22	1,59	4,31	30,84	6,46	46,31	2,72	19,52	0,01	0,05	0,04	0,26	13,96	80,18

Probe	Horizont	Proben- tiefe	1	ĸ	N	а	м	g	с	а	Α	I	F	e	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+15-14	0,95	13,78	0,82	11,99	1,51	21,89	3,35	48,67	0,16	2,26	0,02	0,31	0,08	1,11	6,88	96,32
1/Of	Of	+14-9	1,34	11,73	0,74	6,49	1,90	16,62	6,82	59,48	0,46	4,04	0,07	0,58	0,12	1,08	11,46	94,31
1/Oh	Oh	+9-0	0,54	4,01	0,51	3,85	1,31	9,81	6,97	52,14	3,74	27,99	0,26	1,91	0,04	0,30	13,38	69,81
1/1	Aeh	0-8	0,01	0,14	0,17	4,46	0,01	0,34	0,07	1,89	3,30	87,51	0,21	5,67	0,00	0,00	3,77	6,82
1/2	Aeh	8-20	0,02	0,92	0,19	8,03	0,01	0,46	0,01	0,50	2,04	86,63	0,08	3,45	0,00	0,00	2,36	9,92
1/3	Bh	20-32	0,02	1,36	0,22	15,48	0,00	0,00	0,03	1,83	1,11	79,62	0,02	1,70	0,00	0,00	1,40	18,67
1/4	ll Go	32-44	0,02	1,48	0,20	14,29	0,00	0,33	0,03	2,16	1,12	80,28	0,02	1,46	0,00	0,00	1,40	18,27
1/5	Go	44-58+	0,03	1,55	0,17	9,44	0,13	7,30	0,20	10,80	1,29	69,82	0,02	1,09	0,00	0,00	1,84	29,08

Profil RF 26 – 7433 Schrobenhausen

_

Probe	Horizont	Proben- tiefe	ŀ	(N	а	м	g	с	а	Α	I	F	e	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+26-24	1,44	4,36	0,60	1,82	4,87	14,72	24,96	75,42	0,50	1,50	0,01	0,02	0,71	2,16	33,09	96,32
1/Of	Of	+24-16	0,54	2,15	0,36	1,45	3,34	13,32	19,33	77,18	1,20	4,81	0,15	0,62	0,12	0,47	25,04	94,10
1/Oh	Oh	+16-0	0,29	1,17	0,30	1,20	2,50	10,06	11,06	44,56	9,88	39,83	0,78	3,15	0,01	0,03	24,81	56,99
1/1	Ghr	0-10	0,34	1,35	0,19	0,77	5,02	20,03	19,32	77,16	0,11	0,46	0,05	0,21	0,01	0,02	25,04	99,32
1/2	Ghr	10-20	0,35	1,07	0,20	0,61	6,40	19,35	26,11	78,91	0,01	0,02	0,00	0,00	0,01	0,04	33,09	99,94
1/3	Gor	20-32	0,43	1,45	0,23	0,76	5,30	17,70	23,98	80,08	0,00	0,00	0,00	0,00	0,00	0,01	29,95	99,99
1/4	ll Gor	32-42	0,32	1,02	0,21	0,69	4,01	12,86	26,61	85,43	0,00	0,00	0,00	0,00	0,00	0,00	31,15	100,00
1/5	Gor	42-52+	0,26	0,99	0,20	0,77	3,01	11,59	22,53	86,64	0,00	0,00	0,00	0,00	0,00	0,00	26,00	100,00
2/L	L	+16-14	2,17	8,36	0,64	2,46	3,88	14,92	18,37	70,63	0,00	0,00	0,00	0,00	0,94	3,63	26,01	96,37
2/Of	Of	+14-9	0,85	2,64	0,33	1,04	3,82	11,91	26,64	82,99	0,05	0,15	0,00	0,00	0,41	1,27	32,10	98,58
2/Oh	Oh	+9-0	0,39	1,41	0,28	1,01	4,32	15,70	16,03	58,29	5,82	21,16	0,64	2,34	0,02	0,09	27,50	76,41
2/1	Ghr	0-10+	0,20	1,19	0,14	0,82	3,63	21,63	9,65	57,58	3,09	18,41	0,06	0,34	0,00	0,02	16,76	81,22
3/Of	Of	+3-0	1,56	4,90	0,47	1,48	5,86	18,48	22,56	71,09	0,43	1,36	0,00	0,00	0,85	2,69	31,74	95,96
3/1	Ghr	0-10	0,29	1,62	0,14	0,79	4,24	23,57	12,04	66,85	1,19	6,62	0,03	0,15	0,07	0,40	18,01	92,84
3/2	Ghr	10-22+	0,29	1,53	0,12	0,64	4,51	23,56	13,58	70,93	0,54	2,80	0,01	0,06	0,09	0,47	19,15	96,67

Profil RF 27 - 8032 Dießen a. Ammersee

Probe	Horizont	Proben- tiefe	1	‹	N	а	м	g	с	a	А	I	F	e	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+13-11	1,46	9,74	0,54	3,61	1,65	11,05	10,39	69,55	0,31	2,07	0,05	0,33	0,54	3,65	14,94	93,95
1/Of	Of	+11-4	1,19	7,47	0,32	2,00	1,21	7,64	11,93	75,16	0,76	4,79	0,10	0,66	0,36	2,29	15,87	92,27
1/Oh	Oh	+4-0	0,67	4,79	0,40	2,86	0,62	4,47	4,42	31,76	7,23	51,94	0,52	3,72	0,06	0,46	13,93	43,88
1/1	Ahe	0-10	0,07	0,97	0,09	1,36	0,01	0,16	0,14	2,15	6,16	91,32	0,27	4,05	0,00	0,00	6,74	4,63
1/2	Bv	10-20	0,09	2,21	0,11	2,59	0,04	1,04	0,05	1,12	3,77	91,35	0,07	1,68	0,00	0,00	4,13	6,97
1/3	Bv	20-30	0,14	3,41	0,24	5,87	0,04	1,03	0,12	2,91	3,53	85,49	0,05	1,23	0,00	0,07	4,13	13,21
1/4	Bv	30-40	0,11	3,11	0,11	3,10	0,02	0,70	0,05	1,35	3,12	91,16	0,02	0,56	0,00	0,04	3,42	8,25
1/5	Bv	40-50	0,09	3,21	0,11	4,00	0,01	0,36	0,04	1,58	2,57	90,45	0,01	0,41	0,00	0,00	2,84	9,15
1/6	Bv	50-65	0,07	3,67	0,09	4,95	0,02	1,24	0,03	1,31	1,69	88,15	0,01	0,68	0,00	0,00	1,91	11,17
1/7	ll Bv	65-70	0,06	3,89	0,10	6,98	0,00	0,00	0,03	1,68	1,30	87,10	0,01	0,34	0,00	0,00	1,50	12,55
1/8	Bv	70-80+	0,04	3,02	0,10	7,44	0,00	0,00	0,02	1,73	1,20	86,91	0,01	0,89	0,00	0,00	1,38	12,20

Profil RF 28 – 5939 Waldsassen

Profil RF 29 – 6440 Moosbach

Probe	Horizont	Proben- tiefe	1	ĸ	N	а	м	g	с	а	А	1	F	e	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+5-4	1,60	7,60	0,50	2,39	2,05	9,74	14,76	70,01	0,24	1,14	0,01	0,05	1,91	9,07	21,08	89,74
1/Of	Of	+4-1	1,43	8,62	0,36	2,16	1,10	6,64	11,72	70,52	0,70	4,24	0,07	0,40	1,23	7,42	16,61	87,94
1/Oh	Oh	+1-0	0,98	11,46	0,28	3,27	0,22	2,63	0,79	9,25	5,62	65,83	0,62	7,31	0,02	0,26	8,54	26,61
1/1	Ah	0-12	0,16	2,60	0,11	1,74	0,04	0,58	0,05	0,89	5,39	87,90	0,39	6,29	0,00	0,00	6,13	5,81
1/2	Bv	12-24	0,08	1,68	0,11	2,54	0,04	0,97	0,02	0,55	4,13	91,98	0,10	2,27	0,00	0,02	4,49	5,74
1/3	Bv-Cv	24-40	0,06	2,51	0,24	10,12	0,00	0,00	0,02	0,96	1,99	85,65	0,02	0,75	0,00	0,00	2,33	13,59
1/4	Bv-Cv	40-50	0,06	3,91	0,13	7,66	0,00	0,00	0,02	1,42	1,41	86,44	0,01	0,57	0,00	0,00	1,64	12,99
1/5	Bv-Cv	50-63+	0,08	4,82	0,15	9,22	0,02	1,36	0,03	1,95	1,35	82,08	0,01	0,57	0,00	0,00	1,65	17,36

231

Probe	Horizont	Proben- tiefe	1	ĸ	N	а	м	g	С	а	A	I	F	е	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+10-9	2,26	18,32	0,11	0,93	1,43	11,56	8,07	65,27	0,00	0,00	0,00	0,00	0,49	3,92	12,36	96,08
1/Of	Of	+9-3	0,75	5,74	0,21	1,61	1,14	8,76	9,18	70,31	1,23	9,43	0,15	1,14	0,39	3,00	13,06	86,43
1/Oh	Oh	+3-0	0,51	3,66	0,19	1,33	0,95	6,80	6,17	44,10	5,41	38,69	0,55	3,95	0,21	1,47	13,99	55,89
1/1	Ah	0-12	0,10	1,61	0,04	0,60	0,07	1,14	0,14	2,09	5,56	85,71	0,57	8,85	0,00	0,00	6,49	5,44
1/2	Bv	12-25	0,07	1,00	0,04	0,62	0,03	0,49	0,05	0,70	6,62	93,02	0,28	3,97	0,01	0,21	7,12	2,80
1/3	Bv	25-40	0,04	0,87	0,04	0,84	0,01	0,14	0,04	0,86	4,57	96,75	0,01	0,29	0,01	0,26	4,72	2,71
1/4	ICv	40-50	0,02	1,32	0,03	1,97	0,01	0,89	0,01	0,41	1,48	95,41	0,00	0,00	0,00	0,00	1,55	4,59
1/5	ICv	50-60	0,01	0,97	0,03	1,86	0,00	0,00	0,00	0,00	1,47	97,17	0,00	0,00	0,00	0,00	1,52	2,83
1/6	ICv	60-73+	0,02	1,13	0,01	0,72	0,01	0,49	0,00	0,00	1,34	97,66	0,00	0,00	0,00	0,00	1,38	2,34

Profil RF 30 – 6240 Flossenbürg

_

Probe	Horizont	Proben- tiefe	'	۲	N	a	м	g	с	а	Α	I	F	e	м	n	КАК	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+1-0	2,00	4,74	0,09	0,21	2,74	6,51	37,02	87,78	0,00	0,00	0,00	0,01	0,32	0,75	42,18	99,24
1/1	Ah	0-5	0,72	1,99	0,06	0,18	1,29	3,56	34,01	93,59	0,07	0,20	0,01	0,02	0,17	0,47	36,34	99,31
1/2	Cv-Bv	5-19	0,72	1,93	0,07	0,19	0,92	2,48	34,74	93,36	0,68	1,82	0,04	0,10	0,04	0,12	37,22	97,96
1/3	Bv-Cv	19-35+	0,73	1,82	0,07	0,16	1,01	2,49	38,52	95,49	0,00	0,00	0,00	0,00	0,02	0,04	40,34	99,96

Profil RF 31 – 6132 Buttenheim

Profil	RF	32 –	5936	Bad	Berneck	i.	Fichtelgebirge
							e

Probe	Horizont	Proben- tiefe	1	ĸ	N	а	м	g	с	a	А	I	F	е	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+86-85	2,58	12,81	0,09	0,46	2,94	14,55	13,73	68,04	0,00	0,00	0,00	0,00	0,83	4,13	20,18	95,87
1/Of	Of	+85-80	1,15	7,83	0,18	1,19	3,24	22,07	9,05	61,61	0,66	4,52	0,15	1,02	0,26	1,75	14,69	92,71
1/Oh	xC-Oh	+80-50	0,26	2,01	0,13	1,02	0,83	6,53	1,39	10,91	9,14	71,74	0,98	7,65	0,02	0,14	12,74	20,47
1/Oh2	xC-Oh	+50-0	0,12	0,99	0,10	0,81	0,33	2,73	0,29	2,35	10,77	88,69	0,52	4,30	0,02	0,14	12,15	6,88

_

Probe	Horizont	Proben- tiefe	I	۲	N	а	м	g	с	а	Α	I	F	е	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+6-1	2,53	6,77	0,11	0,29	5,72	15,28	25,46	68,01	0,00	0,00	0,01	0,02	3,61	9,64	37,43	90,34
1/Of	Of	+1-0	1,18	4,59	0,12	0,46	2,93	11,33	17,56	68,04	0,00	0,00	0,01	0,03	4,02	15,56	25,81	84,42
1/1	Ah	0-8	0,13	4,78	0,01	0,24	0,21	7,65	1,09	39,31	1,02	36,70	0,08	2,90	0,23	8,42	2,78	51,98
1/2	ilCv-Bv	8-34	0,06	3,01	0,00	0,00	0,02	0,80	0,13	6,66	1,61	82,28	0,00	0,03	0,14	7,21	1,96	10,48
1/3	ll imC	34+	0,08	4,95	0,03	1,88	0,02	1,25	0,16	9,96	1,04	65,58	0,00	0,00	0,26	16,38	1,59	18,04

Probe	Horizont	Proben- tiefe	'	ĸ	N	а	м	g	с	а	A	I	F	е	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+3-1	0,06	2,50	0,15	6,25	0,04	1,67	0,11	4,58	2,02	84,17	0,00	0,00	0,02	0,83	2,40	15,00
1/Of	Of	+1-0	1,20	5,74	0,42	2,04	2,27	10,89	12,29	58,99	0,29	1,41	0,03	0,14	4,33	20,79	20,83	77,66
1/1	Ah	0-6	0,22	4,06	0,13	2,30	0,20	3,67	0,71	13,02	3,79	69,32	0,21	3,78	0,21	3,85	5,47	23,05
1/2	Bv	6-18	0,07	2,22	0,09	2,87	0,02	0,63	0,09	2,79	2,81	89,96	0,00	0,00	0,05	1,53	3,12	8,51
1/3	Bv	18-40	0,09	3,74	0,19	7,58	0,05	2,03	0,09	3,63	2,07	81,64	0,00	0,14	0,03	1,25	2,54	16,97
1/4	imC	40+	0,06	2,65	0,15	6,28	0,04	1,50	0,11	4,42	2,02	84,32	0,00	0,00	0,02	0,83	2,39	14,85

Probe	Horizont	Proben- tiefe	•	(N	а	м	g	с	а	A	I	F	e	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+3-0	3,27	7,29	1,51	3,37	6,09	13,58	31,36	69,89	0,00	0,00	0,00	0,00	2,64	5,88	44,87	94,12
1/1	Ah	0-8	0,30	7,49	0,12	3,06	0,37	9,36	2,69	67,80	0,22	5,47	0,00	0,00	0,27	6,82	3,97	87,71
1/2	Bv	8-18	0,13	7,54	0,15	8,95	0,03	1,85	0,34	20,77	0,94	56,53	0,00	0,00	0,07	4,36	1,66	39,12
1/3	Bv	18-28	0,11	8,01	0,12	8,64	0,01	0,87	0,23	15,96	0,90	63,22	0,00	0,00	0,05	3,30	1,42	33,48
1/4	Bv	28-38	0,11	8,58	0,09	7,21	0,04	3,00	0,19	14,58	0,82	63,42	0,00	0,00	0,04	3,21	1,29	33,37
1/5	Bv	38-48	0,10	7,04	0,17	12,38	0,01	0,72	0,19	14,11	0,84	62,13	0,00	0,00	0,05	3,62	1,36	34,25
1/6	Bv	48-58	0,09	6,57	0,11	7,85	0,00	0,05	0,17	12,17	1,00	72,15	0,00	0,00	0,02	1,21	1,39	26,64
1/7	ll ilCv	58-69	0,10	6,87	0,12	7,87	0,03	2,18	0,28	19,31	0,93	63,41	0,00	0,00	0,01	0,37	1,47	36,22
1/8	ilCv	69-80	0,10	6,71	0,23	15,42	0,03	1,92	0,30	20,57	0,80	54,69	0,00	0,00	0,01	0,69	1,47	44,61
1/9	ilCv	80-92+	0,12	7,91	0,17	11,37	0,13	8,61	0,44	29,93	0,62	42,14	0,00	0,00	0,00	0,04	1,48	57,81

Profil RF 35 – 5824 Gräfendorf

Probe	Horizont	Proben- tiefe	•	۲	N	а	м	g	с	а	Α	I	F	е	м	n	КАК	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+7-5	2,81	7,38	0,75	1,97	4,05	10,65	24,42	64,23	0,22	0,58	0,00	0,00	5,77	15,19	38,02	84,23
1/Of	Of	+5-3	2,97	8,95	0,97	2,93	2,33	7,03	20,14	60,81	0,00	0,00	0,00	0,00	6,72	20,28	33,11	79,72
1/Oh	Oh	+3-0	2,06	18,25	0,45	4,02	0,84	7,40	2,76	24,38	3,70	32,67	0,25	2,18	1,26	11,11	11,31	54,04
1/1	Aeh	0-4	0,22	6,04	0,15	4,10	0,14	3,76	0,21	5,72	2,68	74,25	0,18	4,96	0,04	1,19	3,60	19,61
1/2	Bv	4-15	0,10	3,39	0,12	4,38	0,00	0,00	0,08	2,97	2,43	86,45	0,02	0,75	0,06	2,04	2,81	10,75
1/3	Bv	15-25	0,07	4,06	0,11	6,61	0,01	0,36	0,08	4,63	1,30	78,33	0,00	0,00	0,10	6,01	1,66	15,66
1/4	Bv	25-35	0,06	2,99	0,14	7,06	0,03	1,78	0,08	4,34	1,57	80,92	0,00	0,19	0,05	2,71	1,94	16,18
1/5	ICv	35-47	0,06	3,27	0,15	8,76	0,01	0,81	0,07	4,36	1,35	79,61	0,00	0,00	0,05	3,18	1,69	17,21
1/6	ICv	47-59	0,06	3,64	0,13	7,93	0,00	0,00	0,08	4,72	1,34	81,56	0,00	0,00	0,04	2,15	1,64	16,29
1/7	ICv	59-71+	0,06	3,42	0,14	7,64	0,00	0,00	0,08	4,28	1,51	83,43	0,00	0,00	0,02	1,22	1,81	15,34

Profil RF 36 – 5632 Neustadt bei Coburg

Probe	Horizont	Proben- tiefe		‹	N	а	м	g	с	а	Α	I	F	е	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+10-8	1,52	8,94	0,44	2,59	2,72	15,96	8,98	52,76	0,93	5,45	0,11	0,64	2,33	13,66	17,02	80,25
1/Of	Of	+8-5	1,26	9,80	0,32	2,46	2,14	16,65	5,66	44,08	1,94	15,08	0,54	4,18	0,99	7,75	12,83	72,99
1/Oh	Oh	+5-0	0,36	3,09	0,19	1,68	0,65	5,59	1,10	9,50	8,06	69,57	1,09	9,44	0,13	1,13	11,58	19,85
1/1	Ah	0-3	0,19	1,70	0,12	1,07	0,33	3,00	0,32	2,84	9,14	82,15	0,99	8,87	0,04	0,37	11,12	8,62
1/2	Bv	3-13	0,08	0,87	0,08	0,88	0,08	0,88	0,10	1,09	8,69	92,01	0,34	3,62	0,06	0,66	9,45	3,72
1/3	Bv	13-23	0,06	1,03	0,08	1,40	0,05	0,83	0,08	1,48	5,29	94,16	0,04	0,70	0,02	0,39	5,62	4,75
1/4	Bv	23-33	0,04	1,02	0,06	1,50	0,01	0,35	0,07	1,72	3,70	94,82	0,02	0,46	0,01	0,13	3,90	4,59
1/5	ll xICv	33-44	0,07	1,46	0,08	1,64	0,07	1,44	0,08	1,52	4,64	93,71	0,01	0,22	0,00	0,00	4,95	6,07
1/6	xlCv	44-54	0,14	2,12	0,09	1,37	0,03	0,41	0,07	1,08	6,10	94,73	0,02	0,29	0,00	0,00	6,44	4,98
1/7	III xICv-Sw	54-64+	0,13	1,82	0,09	1,26	0,04	0,60	0,07	1,00	6,57	95,02	0,02	0,30	0,00	0,00	6,91	4,68

Profil RF 37 – 5634 Teuschnitz

Probe	Horizont	Proben- tiefe	ŀ	۲	N	а	м	g	с	а	Α	I	F	e	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+11-9	2,05	7,94	0,46	1,78	4,30	16,67	15,11	58,65	0,51	1,98	0,01	0,05	3,33	12,93	25,77	85,03
1/Of	Of	+9-3	1,32	8,13	0,27	1,67	2,91	17,89	9,74	59,79	0,60	3,71	0,16	1,00	1,27	7,81	16,29	87,48
1/Oh	Oh	+3-0	0,56	3,66	0,24	1,56	1,25	8,23	1,90	12,54	10,06	66,33	1,05	6,89	0,12	0,79	15,17	25,99
1/1	Ah	0-3	0,21	1,28	0,12	0,73	0,50	3,00	0,53	3,19	13,77	82,95	1,44	8,65	0,03	0,20	16,60	8,20
1/2	Bv	3-14	0,09	0,93	0,08	0,85	0,12	1,21	0,09	0,90	9,28	93,27	0,26	2,58	0,03	0,26	9,95	3,89
1/3	Bv	14-25	0,07	1,13	0,08	1,20	0,06	0,90	0,07	1,01	6,15	94,25	0,06	0,99	0,03	0,53	6,52	4,24
1/4	Bv	25-36	0,07	1,48	0,08	1,58	0,04	0,81	0,06	1,19	4,71	93,29	0,04	0,74	0,05	0,91	5,05	5,06
1/5	Bv	36-47	0,07	1,59	0,09	1,84	0,04	0,87	0,06	1,31	4,30	92,94	0,03	0,58	0,04	0,87	4,63	5,60
1/6	Bv	47-57	0,08	2,17	0,08	2,03	0,05	1,35	0,06	1,46	3,50	91,83	0,02	0,50	0,03	0,66	3,81	7,01
1/7	ll xCv-Bv	57-68	0,07	2,02	0,08	2,11	0,13	3,55	0,05	1,52	3,24	89,77	0,01	0,35	0,02	0,68	3,61	9,20
1/8	xCv-Bv	68-79	0,07	2,17	0,08	2,25	0,14	4,02	0,06	1,61	3,04	88,76	0,02	0,45	0,03	0,73	3,42	10,05
1/9	xCv-Bv	79-90	0,08	2,22	0,08	2,16	0,00	0,00	0,05	1,46	3,31	93,03	0,01	0,40	0,03	0,73	3,56	5,84
1/10	xCv-Bv	90-100+	0,09	2,21	0,07	1,86	0,01	0,15	0,06	1,60	3,69	93,11	0,01	0,17	0,04	0,89	3,96	5,82

Profil RF 38 – 5735 Schwarzenbach a. Wald

Probe	Horizont	Proben- tiefe	ŀ	¢	N	a	м	g	с	а	A	I	F	е	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+19-12	0,98	7,96	0,80	6,52	1,58	12,80	7,43	60,23	1,06	8,59	0,08	0,65	0,40	3,26	12,34	87,50
1/Of	Of	+12-8	0,57	2,68	1,11	5,22	3,42	16,11	13,17	62,00	2,46	11,59	0,40	1,88	0,11	0,54	21,24	86,00
1/Oh	Oh	+8-0	0,29	2,22	0,61	4,68	1,43	11,04	4,95	38,15	5,13	39,52	0,55	4,25	0,02	0,15	12,97	56,08
1/1	Ah	0-10	0,13	1,94	0,09	1,25	0,37	5,37	0,57	8,16	5,58	80,23	0,21	2,96	0,01	0,11	6,96	16,71
1/2	ICv	10-20	0,04	2,02	0,12	5,55	0,07	3,58	0,00	0,09	1,79	85,37	0,07	3,38	0,00	0,00	2,09	11,25
1/3	ICv	20-30	0,01	1,21	0,15	14,18	0,03	2,59	0,00	0,00	0,85	79,57	0,03	2,46	0,00	0,00	1,06	17,97
1/4	ICv	30-42	0,03	2,84	0,10	9,81	0,04	4,12	0,00	0,11	0,83	79,54	0,04	3,58	0,00	0,00	1,05	16,88
1/5	ll Sw-Bv	42-47	0,08	2,23	0,13	3,63	0,03	0,75	0,02	0,71	3,11	88,68	0,14	4,00	0,00	0,00	3,51	7,32
1/6	Bhv-Sw	47-57	0,10	2,71	0,13	3,35	0,07	1,85	0,01	0,14	3,47	90,78	0,04	1,17	0,00	0,00	3,82	8,05
1/7	Bhv-Sw	57-67	0,11	3,23	0,11	3,17	0,01	0,31	0,00	0,00	3,10	92,55	0,02	0,74	0,00	0,00	3,35	6,72
1/8	Bhv-Sw	67-77	0,08	2,88	0,12	4,34	0,09	3,22	0,00	0,00	2,49	88,61	0,03	0,95	0,00	0,00	2,81	10,44
1/9	ICv-Sw	77-89+	0,10	3,31	0,11	3,81	0,03	0,87	0,00	0,00	2,69	89,95	0,06	2,05	0,00	0,00	2,99	8,00

Probe	Horizont	Proben- tiefe	'	ĸ	N	а	м	g	с	а	Α	I	F	е	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+2-1	7,81	43,79	0,65	3,66	6,09	34,17	2,60	14,60	0,06	0,34	0,04	0,22	0,57	3,21	17,83	96,23
1/Of	Of	+1-0	1,66	5,21	0,54	1,70	3,01	9,45	21,43	67,23	0,05	0,15	0,02	0,08	5,16	16,18	31,88	83,59
1/1	Ah	0-1	0,63	4,06	0,23	1,45	1,54	9,94	8,93	57,50	2,59	16,66	0,34	2,18	1,27	8,21	15,52	72,95
1/2	Bv	1-9	0,32	3,17	0,18	1,78	0,95	9,35	2,45	24,11	5,79	57,01	0,06	0,58	0,41	4,00	10,15	38,41
1/3	Bv+ll Sw	9-20	0,63	3,39	0,21	1,15	2,77	14,97	8,15	44,13	6,37	34,45	0,01	0,05	0,34	1,86	18,48	63,64
1/4	ll Sw	20-30	0,89	5,11	0,20	1,16	5,40	31,12	8,03	46,31	2,71	15,63	0,00	0,01	0,11	0,65	17,34	83,71
1/5	Sw	30-40	0,86	3,60	0,24	1,02	6,12	25,63	15,85	66,33	0,76	3,20	0,00	0,00	0,05	0,22	23,89	96,58
1/6	Sw	40-50	0,74	2,78	0,23	0,84	6,58	24,57	19,24	71,79	0,00	0,00	0,00	0,00	0,00	0,02	26,80	99,98
1/7	Sw	50-65	0,78	2,65	0,25	0,85	6,50	21,95	21,91	73,93	0,15	0,51	0,03	0,12	0,00	0,00	29,63	99,37
1/8	Sdc	65-75	0,76	2,47	0,26	0,86	6,54	21,33	23,11	75,35	0,00	0,00	0,00	0,00	0,00	0,00	30,67	100,00
1/9	Sdc	75-90+	0,72	3,78	0,23	1,22	5,46	28,89	12,49	66,03	0,00	0,00	0,00	0,00	0,01	0,07	18,91	99,93

Profil RF 40 – 6829 Ornbau

Probe	Horizont	Proben- tiefe	1	<	N	a	м	g	с	а	A	I	F	е	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+0,5-0	3,28	7,51	0,66	1,52	11,48	26,27	27,96	63,98	0,00	0,00	0,01	0,03	0,30	0,69	43,71	99,29
1/1	Ah	0-2	0,80	2,65	0,16	0,53	7,92	26,04	21,47	70,59	0,00	0,00	0,00	0,00	0,06	0,19	30,41	99,81
1/2	rBht	2-10	0,72	2,25	0,18	0,57	7,63	23,84	23,43	73,24	0,00	0,00	0,00	0,00	0,03	0,10	31,99	99,90
1/3	rBht	10-20	0,54	1,92	0,16	0,58	6,80	24,05	20,75	73,37	0,00	0,00	0,00	0,01	0,02	0,07	28,28	99,92
1/4	Sw+rBt	20-30	0,52	2,49	0,18	0,85	6,76	32,32	13,44	64,23	0,00	0,00	0,01	0,05	0,01	0,06	20,93	99,89
1/5	II Sw+rBt	30-41	0,66	3,14	0,22	1,03	8,52	40,55	11,61	55,27	0,00	0,00	0,00	0,01	0,00	0,00	21,01	99,99
1/6	III Sdc	41-56+	0,79	7,86	0,30	3,01	1,77	17,69	7,15	71,43	0,00	0,00	0,00	0,00	0,00	0,00	10,01	100,00

Probe	Horizont	Proben- tiefe	ŀ	‹	N	а	м	g	с	a	Α	I	F	е	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+2-1	4,12	14,78	1,03	3,69	5,55	19,91	14,14	50,76	0,11	0,39	0,00	0,00	2,92	10,47	27,86	89,14
1/Of	Of	+1-0	1,66	5,99	0,76	2,75	4,64	16,76	16,93	61,07	0,06	0,21	0,00	0,00	3,67	13,23	27,71	86,56
1/1	Axh	0-7	0,51	4,23	0,17	1,40	2,94	24,61	3,41	28,59	4,38	36,70	0,10	0,80	0,44	3,67	11,94	58,83
1/2	Bv	7-19	0,36	4,08	0,16	1,78	1,66	18,84	2,34	26,52	3,97	45,02	0,00	0,02	0,33	3,74	8,83	51,22
1/3	II Sw	19-26	0,68	4,68	0,15	1,01	4,31	29,76	4,58	31,63	4,56	31,51	0,00	0,00	0,20	1,40	14,48	67,09
1/4	Sd	26-36	0,76	4,99	0,17	1,09	7,85	51,44	4,26	27,95	2,17	14,22	0,00	0,00	0,05	0,30	15,26	85,47
1/5	Sd	36-46	0,74	4,58	0,19	1,17	9,28	57,73	4,67	29,03	1,19	7,43	0,00	0,02	0,01	0,05	16,08	92,51
1/6	Sd	46-56	0,77	3,99	0,23	1,19	10,29	53,32	7,23	37,49	0,77	4,01	0,00	0,00	0,00	0,00	19,29	95,99
1/7	Sd	56-66	0,78	4,72	0,23	1,39	10,28	62,06	4,97	29,99	0,30	1,84	0,00	0,01	0,00	0,00	16,57	98,15
1/8	Sd	66-77+	0,80	3,89	0,21	1,01	10,87	52,96	8,49	41,36	0,15	0,74	0,00	0,00	0,01	0,04	20,53	99,22

Profil RF 42 – 6129 Burgwindheim

Probe	Horizont	Proben- tiefe	•	<	N	а	м	g	с	a	Α	I	F	e	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+1-0	3,89	3,83	0,83	0,82	14,44	14,25	82,08	80,96	0,05	0,05	0,00	0,00	0,10	0,10	101,38	99,86
1/1	eAh	0-15	0,24	0,87	0,12	0,42	2,50	9,06	24,69	89,57	0,00	0,00	0,00	0,00	0,02	0,08	27,56	99,92
1/2	Bhv	15-25	0,17	0,79	0,14	0,66	1,94	9,26	18,70	89,24	0,00	0,00	0,00	0,02	0,01	0,03	20,95	99,95
1/3	Bhv	25-33	0,14	0,64	0,11	0,50	1,66	7,63	19,83	91,21	0,00	0,00	0,00	0,00	0,01	0,02	21,74	99,98
1/4	Bv	33-43	0,11	0,74	0,11	0,76	1,81	12,31	12,69	86,10	0,01	0,07	0,00	0,00	0,00	0,02	14,74	99,91
1/5	Bv	43-53	0,11	0,67	0,12	0,73	1,58	9,73	14,39	88,85	0,00	0,00	0,00	0,00	0,00	0,02	16,20	99,98
1/6	Bv	53-63	0,08	0,51	0,13	0,87	1,12	7,36	13,82	91,23	0,00	0,02	0,00	0,00	0,00	0,00	15,14	99,98
1/7	Bv-elCv	63-73	0,08	0,60	0,10	0,77	1,05	8,20	11,54	90,40	0,00	0,00	0,00	0,03	0,00	0,00	12,76	99,97
1/8	Bv-elCv	73-81	0,06	0,50	0,10	0,88	0,88	7,60	10,50	90,98	0,00	0,00	0,00	0,02	0,00	0,02	11,55	99,96
1/9	ll aGo-elCv	81-91	0,06	0,63	0,10	0,93	0,95	9,23	9,18	89,16	0,00	0,00	0,00	0,00	0,00	0,04	10,30	99,96
1/10	aGo-elCv	91-101+	0,04	0,66	0,09	1,39	0,54	8,35	5,79	89,60	0,00	0,00	0,00	0,00	0,00	0,01	6,46	99,99

Profil RF 43 – 7429 Dillingen a.d. Donau

Probe	Horizont	Proben- tiefe	۲	(N	a	м	g	с	a	A	1	F	е	м	n	КАК	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+7,5-5,5	2,82	8,13	0,60	1,73	7,39	21,34	18,62	53,76	0,00	0,00	0,00	0,00	5,21	15,04	34,64	84,96
1/Of	Of	+5,5-2,5	1,93	7,89	0,45	1,84	5,48	22,46	10,37	42,46	0,14	0,56	0,00	0,00	6,05	24,78	24,41	74,66
1/Oh	Oh	+2,5-0	0,40	3,99	0,24	2,43	0,84	8,37	2,46	24,59	5,07	50,68	0,39	3,91	0,60	6,05	10,00	39,37
1/1	Ah	0-2	0,08	1,27	0,11	1,70	0,21	3,22	0,27	4,11	5,61	84,59	0,20	3,03	0,14	2,09	6,64	10,29
1/2	AI	2-11	0,05	1,28	0,19	5,03	0,00	0,00	0,10	2,70	3,27	88,15	0,00	0,00	0,11	2,84	3,71	9,00
1/3	AI	11-20	0,05	1,48	0,11	3,12	0,03	0,78	0,05	1,58	3,08	90,14	0,00	0,00	0,10	2,89	3,42	6,97
1/4	Bt+Al	20-31	0,06	1,56	0,14	3,82	0,12	3,26	0,08	2,28	3,19	86,99	0,00	0,00	0,08	2,08	3,67	10,93
1/5	Al+Bt	31-41	0,06	1,68	0,17	4,73	0,08	2,28	0,09	2,47	3,17	87,59	0,00	0,00	0,05	1,25	3,62	11,16
1/6	Sd-Bt	41-50	0,07	1,70	0,12	2,93	0,13	3,16	0,10	2,47	3,55	89,10	0,00	0,00	0,03	0,64	3,98	10,26
1/7	Sd-Bt	50-59	0,08	1,48	0,16	2,97	0,15	2,73	0,17	3,09	4,78	89,38	0,00	0,00	0,02	0,36	5,35	10,26
1/8	Sd-Bt	59-68	0,13	2,20	0,10	1,71	0,20	3,33	0,23	3,89	5,25	88,34	0,00	0,00	0,03	0,52	5,94	11,14
1/9	II Go-Sw	68-78	0,14	2,39	0,23	3,99	0,46	7,95	0,47	8,20	4,40	76,75	0,00	0,00	0,04	0,73	5,73	22,52
1/10	Go-Sw	78-92+	0,12	2,46	0,14	2,85	0,52	10,63	0,65	13,42	3,40	70,02	0,00	0,00	0,03	0,63	4,85	29,36

Probe	Horizont	Proben- tiefe		<	N	a	м	g	с	а	A	1	F	е	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+4,5-4	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
1/Of	Of	+4-3	1,04	6,23	0,42	2,53	2,61	15,58	10,60	63,26	0,74	4,41	0,00	0,01	1,34	7,97	16,76	87,60
1/Oh	Oh	+3-0	0,40	3,18	0,34	2,71	1,26	9,95	3,54	28,08	6,59	52,18	0,38	3,01	0,11	0,88	12,62	43,93
1/1	Ah	0-6	0,09	1,17	0,15	1,89	0,15	2,00	0,19	2,51	7,01	90,65	0,13	1,75	0,00	0,03	7,73	7,57
1/2	(Sw)-Bv	6-15	0,05	0,97	0,10	2,06	0,15	3,13	0,27	5,64	4,24	88,12	0,00	0,09	0,00	0,00	4,81	11,79
1/3	Bv-Sw	15-31	0,07	1,11	0,12	1,93	0,38	6,31	0,60	9,82	4,91	80,82	0,00	0,00	0,00	0,00	6,08	19,18
1/4	Sw	31-41	0,17	1,64	0,17	1,63	0,95	9,43	1,67	16,50	7,16	70,74	0,00	0,00	0,01	0,05	10,12	29,21
1/5	Sw	41-51	0,18	1,63	0,17	1,60	1,49	13,72	2,55	23,54	6,44	59,46	0,00	0,00	0,01	0,06	10,84	40,48
1/6	Sw	51-61	0,17	1,84	0,15	1,63	1,73	18,94	2,72	29,71	4,38	47,86	0,00	0,00	0,00	0,02	9,16	52,12
1/7	Sw	61-71	0,22	2,20	0,18	1,74	2,25	22,21	3,01	29,79	4,45	43,97	0,00	0,00	0,01	0,10	10,11	55,94
1/8	Sdw	71-81+	0,19	1,56	0,14	1,15	2,59	20,84	5,10	41,02	4,40	35,38	0,00	0,00	0,01	0,04	12,43	64,57

Probe	Horizont	Proben- tiefe	ŀ	‹	N	а	м	g	С	а	Α	I	F	е	м	n	KAK	Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+4-3	1,54	7,32	0,65	3,10	4,28	20,37	13,52	64,39	0,15	0,73	0,00	0,00	0,86	4,09	21,00	95,18
1/Of	Of	+3-0	1,12	9,02	0,45	3,62	3,08	24,75	7,41	59,60	0,24	1,91	0,00	0,00	0,14	1,09	12,44	97,00
1/1	nH	0-14	0,04	2,25	0,10	5,49	0,16	8,84	0,82	45,42	0,65	36,01	0,04	1,99	0,00	0,00	1,82	62,00
1/2	nH	14-24	0,08	1,86	0,15	3,57	0,45	10,59	2,25	52,83	1,24	29,05	0,09	2,09	0,00	0,00	4,26	68,85
1/3	nH	24-34	0,05	1,36	0,13	3,29	0,16	4,00	0,81	20,95	2,65	68,21	0,09	2,20	0,00	0,00	3,88	29,59
1/4	nH	34-44	0,15	1,13	0,12	0,90	0,49	3,75	4,88	37,46	7,19	55,18	0,21	1,58	0,00	0,00	13,03	43,24
1/5	ll Aa	44-54	0,26	1,53	0,14	0,83	2,07	12,18	14,37	84,56	0,09	0,55	0,01	0,03	0,05	0,31	17,00	99,11
1/6	Aa	54-64	0,27	1,17	0,00	0,00	2,45	10,79	18,33	80,75	1,56	6,88	0,07	0,30	0,02	0,10	22,70	92,71
1/7	Aa	64-74	0,22	0,69	0,00	0,00	2,11	6,52	29,81	92,15	0,17	0,54	0,00	0,00	0,03	0,11	32,36	99,36
1/8	Gr	74-83+	0,07	0,45	0,00	0,00	1,36	8,74	14,14	90,56	0,04	0,23	0,00	0,02	0,00	0,00	15,61	99,74

Profil RF 46 – 8228 Wildpoldsried

Probe	e Horizont tiefe K		۲	Na		Мg		Ca		AI		Fe		Мп		KAK	Basen-	
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
1/L	L	+11-10	5,11	45,59	0,62	5,49	2,11	18,81	2,82	25,18	0,10	0,93	0,03	0,23	0,42	3,77	11,22	95,07
1/Of	Of	+10-4	0,48	12,07	0,17	4,33	0,16	3,98	0,25	6,45	2,43	61,54	0,46	11,62	0,00	0,00	3,95	26,83
1/Oh	Oh	+4-0	2,66	20,35	0,53	4,04	3,16	24,17	5,07	38,82	1,04	7,96	0,08	0,61	0,53	4,05	13,07	87,38
1/1	Aeh	0-7	0,07	1,16	0,13	2,01	0,38	5,84	0,41	6,39	5,23	81,16	0,22	3,45	0,00	0,00	6,44	15,39
1/2	Ahe	7-11	0,04	0,61	0,15	2,26	0,06	0,89	0,14	2,11	6,12	93,26	0,06	0,88	0,00	0,00	6,56	5,86
1/3	Bs	11-16	0,10	0,96	0,18	1,72	0,00	0,00	0,11	1,09	9,62	93,50	0,01	0,05	0,28	2,68	10,29	3,77
1/4	Bhv	16-24	0,06	0,67	0,14	1,48	0,01	0,05	0,09	0,94	9,26	95,96	0,00	0,04	0,08	0,86	9,65	3,14
1/5	Bv	24-34	0,10	0,92	0,16	1,44	0,11	0,97	0,10	0,87	10,56	95,34	0,00	0,04	0,05	0,42	11,08	4,20
1/6	Bv	34-44	0,07	0,69	0,12	1,11	0,00	0,00	0,09	0,81	10,42	96,90	0,01	0,05	0,05	0,44	10,76	2,60
1/7	Bv	44-54	0,09	0,97	0,14	1,57	0,00	0,00	0,10	1,11	8,80	95,65	0,01	0,07	0,06	0,64	9,20	3,65
1/8	ICv-Bv	54-64	0,08	1,08	0,16	2,08	0,00	0,00	0,10	1,32	7,07	94,13	0,00	0,04	0,10	1,34	7,52	4,49
1/9	ICv-Bv	64-74	0,04	1,48	0,12	4,10	0,00	0,00	0,08	2,70	2,58	88,78	0,00	0,15	0,08	2,79	2,91	8,28
1/10	ICv-Bv	74-84	0,05	1,20	0,15	3,95	0,00	0,08	0,60	15,85	2,84	75,60	0,00	0,02	0,12	3,30	3,76	21,08
1/11	Bv-elCv	84-89+	0,09	0,82	0,15	1,39	0,49	4,46	10,10	92,11	0,13	1,16	0,01	0,06	0,00	0,00	10,97	98,78

Profil RF 47 – 8526 Balderschwang

Profil RF 48 – 8532 Garmisch-Partenkirchen

Probe	Horizont	Proben- tiefe	1	‹	N	a	м	g	с	a	A	I	F	e	м	n	KAK	K Basen-
		(cm)	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	mmol	%	(mmol)	sättigung
RF 48 1/L	L	+13-12	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.	n.b.
RF48 1/Of	Of	+12-8	1,19	2,67	0,30	0,68	15,08	33,72	28,04	62,67	0,00	0,00	0,00	0,00	0,12	0,27	44,74	99,73
RF48 1/Oh	Oh	+8-0	0,20	0,50	0,20	0,51	13,52	34,19	25,63	64,80	0,00	0,00	0,00	0,00	0,00	0,00	39,55	100,00
RF48 1/1	Axh	0-14	0,06	0,33	0,09	0,51	5,87	32,76	11,89	66,40	0,00	0,00	0,00	0,00	0,00	0,00	17,91	100,00
RF48 1/2	clCv	14-34+	0,04	0,46	0,10	1,18	3,44	39,42	5,14	58,94	0,00	0,00	0,00	0,00	0,00	0,00	8,72	100,00

9.6 Sequentielle Extraktion der pedogenen Oxide

Profil RF 5 – 6636 Kastl

		Proben-	Sequentielle Extraktion von pedogenem Eisen, Aluminium und Mangan												
Probe	Horizont	tiefe	Py	rophosp	hat		Oxalat			Dithionit	t	G	esamtgeha	ılt	
		(cm)	% Fe _p	% Al _p	% Mn _p	% Fe _o	% Al _o	% Mn _o	% Fe _d	% Al _d	% Mn _d	% Fe	% AI	% Mn	
1/1	Ah	0-12	0,14	0,18	0,007	0,13	0,11	0,006	1,98	0,17	0,006	2,25	0,46	0,019	
1/2	T-Bv	12-20	0,03	0,04	0,024	0,15	0,15	0,054	2,04	0,17	0,006	2,22	0,36	0,084	
1/3	T-Bv	20-28	0,02	0,03	0,022	0,13	0,16	0,057	1,78	0,18	0,005	1,93	0,37	0,084	
1/4	T-Bv	28-35	0,02	0,04	0,019	0,12	0,15	0,055	1,76	0,19	0,006	1,90	0,38	0,080	
1/5	T-Bv	35-44	0,01	0,03	0,007	0,12	0,16	0,053	2,07	0,19	0,009	2,20	0,39	0,068	
1/6	Cv	44-55	0,02	0,03	0,004	0,09	0,12	0,037	1,87	0,15	0,005	1,97	0,30	0,046	
1/7	Cv	55-66	0,01	0,02	0,001	0,09	0,11	0,035	1,15	0,09	0,004	1,25	0,22	0,040	
1/8	Cv	66-76+	0,00	0,02	0,001	0,07	0,08	0,025	0,92	0,09	0,005	0,99	0,18	0,031	
2/1	Ah	0-10+	0,18	0,25	0,006	0,09	0,09	0,004	1,42	1,02	0,002	1,69	1,36	0,013	
3/1	Ah	0-10+	0,17	0,17	0,001	0,09	0,06	0,004	1,38	0,76	0,001	1,64	0,99	0,007	

Proben- Sequentielle Extraktion														
Probe	Probe Horizont tiefe Fe _o /Fe _d Prozentuale V					uale Ve	le Verteilung der Fraktionen							
		(cm)		Fe _p	Fe _o	\mathbf{Fe}_{d}	AI_p	Al _o	AI_d	Mn _p	Mn _o	Mn _d		
1/1	Ah	0-12	0,07	6	6	88	40	24	36	35	34	30		
1/2	T-Bv	12-20	0,07	1	7	92	11	43	47	28	64	7		
1/3	T-Bv	20-28	0,07	1	7	92	9	43	48	26	68	6		
1/4	T-Bv	28-35	0,07	1	6	93	10	41	50	24	69	7		
1/5	T-Bv	35-44	0,06	0	5	94	9	42	49	10	77	13		
1/6	Cv	44-55	0,05	1	4	95	10	41	49	9	81	11		
1/7	Cv	55-66	0,08	1	7	92	9	49	42	3	86	11		
1/8	Cv	66-76+	0,07	0	7	93	11	42	47	4	79	17		
2/1	Ah	0-10+	0,06	11	5	84	18	7	75	47	34	19		
3/1	Ah	0-10+	0,06	11	5	84	17	6	77	21	58	21		
		Proben- Sequentielle Extraktion von pedogenem Eisen, Aluminium und Mangan												
-------	----------	---	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	------	-----------	-------
Probe	Horizont	tiefe	Py	rophosp	hat		Oxalat			Dithionit	t	G	esamtgeha	alt
		(cm)	% Fe _p	% Al _p	% Mn _p	% Fe _o	% Al _o	% Mn _o	% Fe _d	% Al _d	% Mn _d	% Fe	% Al	% Mn
1/1	Ah	0-12	0,10	0,16	0,034	0,13	0,14	0,011	0,57	0,15	0,003	0,81	0,45	0,048
1/2	Bv	12-25	0,06	0,11	0,007	0,07	0,11	0,011	0,47	0,12	0,002	0,61	0,34	0,020
1/3	Bv	25-35	0,06	0,10	0,010	0,07	0,10	0,009	0,49	0,13	0,002	0,63	0,33	0,020
1/4	Cv	35-45	0,02	0,05	0,002	0,03	0,05	0,003	0,31	0,08	0,000	0,36	0,17	0,005
1/5	Cv	45-60+	0,01	0,03	0,004	0,02	0,03	0,000	0,27	0,06	0,001	0,31	0,12	0,005
2/1	Ah	0-14+	0,21	0,31	0,033	0,20	0,24	0,022	0,97	0,27	0,004	1,38	0,82	0,059
3/1	Ah	0-14+	0,23	0,28	0,015	0,23	0,25	0,014	1,09	0,28	0,003	1,55	0,81	0,032

Profil RF 17 – 8241 Ruhpolding

		Proben-	Sequentielle Extraktion									
Probe	Horizont	tiefe	Fe _o /Fe _d	Prozentuale Verteilung der Fraktionen								
		(cm)		Fe _p	Fe _o	Fe _d	Alp	Al _o	\mathbf{Al}_{d}	Mn _p	Mn _o	Mn _d
1/1	Ah	0-12	0,07	6	6	88	40	24	36	35	34	30
1/2	Bv	12-25	0,07	1	7	92	11	43	47	28	64	7
1/3	Bv	25-35	0,07	1	7	92	9	43	48	26	68	6
1/4	Cv	35-45	0,07	1	6	93	10	41	50	24	69	7
1/5	Cv	45-60+	0,06	0	5	94	9	42	49	10	77	13
2/1	Ah	0-14+	0,21	15	14	70	38	29	33	55	37	7
3/1	Ah	0-14+	0,21	15	15	70	35	31	34	47	44	10

		Proben-	Sequentielle Extraktion von pedogenem Eisen, Aluminium und Mangan											
Probe	Horizont	tiefe	Ру	rophosp	hat		Oxalat			Dithionit	t	G	esamtgeha	alt
		(cm)	% Fe _p	% Al _p	% Mn _p	% Fe _o	% Al _o	% Mn _o	% Fe _d	% Al _d	% Mn _d	% Fe	% Al	% Mn
1/1	Ah	0-12	0,08	0,14	0,054	0,20	0,25	0,041	1,66	0,22	0,007	1,94	0,61	0,102
1/2	Bhv	12-25	0,07	0,13	0,043	0,20	0,26	0,046	1,55	0,17	0,006	1,81	0,56	0,095
1/3	Bhv	25-38	0,05	0,12	0,036	0,19	0,26	0,055	1,40	0,16	0,006	1,65	0,55	0,097
1/4	Bhv	38-49	0,03	0,11	0,018	0,19	0,26	0,072	1,40	0,15	0,006	1,62	0,51	0,096
1/5	II Bv-T	49-60	0,03	0,08	0,011	0,20	0,25	0,076	1,68	0,16	0,007	1,90	0,50	0,094
1/6	Bv-T	60-70	0,03	0,08	0,010	0,19	0,23	0,079	1,36	0,16	0,008	1,58	0,47	0,097
1/7	Bv-T	70-80	0,02	0,06	0,009	0,22	0,28	0,085	1,60	0,16	0,007	1,84	0,50	0,100
1/8	Bv-T	80-85+	0,02	0,08	0,011	0,17	0,26	0,070	1,79	0,19	0,014	1,99	0,53	0,096
2/1	Ah	0-10	0,05	0,24	0,045	0,11	0,29	0,022	0,84	0,13	0,006	1,00	0,66	0,073
2/2	Bhv	10-19+	0,05	0,19	0,044	0,10	0,30	0,023	0,85	0,14	0,007	1,00	0,63	0,074
3/1	Ah	0-10	0,08	0,16	0,070	0,15	0,29	0,039	1,27	0,20	0,008	1,50	0,65	0,117
3/2	Bhv	10-18+	0,07	0,15	0,054	0,16	0,32	0,058	1,32	0,17	0,008	1,55	0,64	0,120

Profil RF 24 – 7132 Dollnstein

		Proben-	Sequentielle Extraktion									
Probe	Horizont	tiefe	Fe _o /Fe _d		Р	rozentu	uale Ve	rteilung	g der Fr	aktione	en	
		(cm)		Fe _p	Fe _o	Fe _d	Al_p	Al _o	Al _d	Mn _p	Mn _o	Mn _d
1/1	Ah	0-12	0,12	4	10	85	23	42	35	53	40	7
1/2	Bhv	12-25	0,13	4	11	86	23	46	30	45	49	6
1/3	Bhv	25-38	0,14	3	12	85	22	48	29	37	56	6
1/4	Bhv	38-49	0,14	2	12	86	21	51	29	19	75	6
1/5	ll Bv-T	49-60	0,12	2	10	88	17	51	32	12	81	7
1/6	Bv-T	60-70	0,14	2	12	86	16	49	35	10	81	8
1/7	Bv-T	70-80	0,14	1	12	87	13	56	32	9	84	7
1/8	Bv-T	80-85+	0,10	1	9	90	14	49	36	12	73	15
2/1	Ah	0-10	0,13	5	11	84	36	44	20	62	30	8
2/2	Bhv	1019+	0,12	5	10	85	31	47	22	59	31	10
3/1	Ah	0-10	0,12	5	10	85	25	44	30	60	33	7
3/2	Bhv	10-18+	0,12	4	10	86	24	50	27	45	49	6

Profil RF 27 – 8032 Dießen a. Ammersee

		Proben-	Den- Sequentielle Extraktion von pedogenem Eisen, Aluminium und Mang								Mangan			
Probe	Horizont	tiefe	Py	rophosp	hat		Oxalat			Dithionit	t	G	esamtgeha	lt
		(cm)	% Fe _p	% Al _p	% Mn _p	% Fe _o	% Al _o	% Mn _o	% Fe _d	% Al _d	% Mn _d	% Fe	% Al	% Mn
1/1	Ghr	0-10	0,10	0,18	0,001	0,10	0,12	0,000	0,47	0,11	0,001	0,67	0,41	0,002
1/2	Ghr	10-20	0,07	0,16	0,000	0,11	0,11	0,000	0,59	0,13	0,002	0,78	0,41	0,002
1/3	Gor	20-32	0,01	0,04	0,008	0,12	0,08	0,009	1,01	0,11	0,004	1,14	0,23	0,021
1/4	II Gor	32-42	0,01	0,01	0,007	0,13	0,06	0,041	1,52	0,09	0,014	1,66	0,16	0,062
1/5	Gor	42-52+	0,01	0,00	0,007	0,09	0,06	0,041	0,96	0,08	0,011	1,06	0,14	0,059
2/1	Ghr	0-10+	0,11	0,14	0,001	0,08	0,06	0,001	0,28	0,08	0,000	0,47	0,28	0,002
3/1	Ghr	0-10	0,12	0,10	0,000	0,16	0,06	0,001	0,55	0,09	0,002	0,83	0,25	0,003
3/2	Ghr	10-22+	0,13	0,10	0,005	0,07	0,05	0,002	0,28	0,09	0,001	0,48	0,24	0,008

	Probe	Hori	zont	Proben-	- Fe	/Fe .			Prozon	Seque	ntielle /ortoilu	Extrak	tion Fraktion	non
I														
	3/2	Ghr	10-22+	0,13	0,10	0,005	0,07	0,05	0,002	0,28	0,09	0,001	0,48	0,24
	3/1	Ghr	0-10	0,12	0,10	0,000	0,16	0,06	0,001	0,55	0,09	0,002	0,83	0,25
	2/1	Ghr	0-10+	0,11	0,14	0,001	0,08	0,06	0,001	0,28	0,08	0,000	0,47	0,28
	1/5	Gor	42-52+	0,01	0,00	0,007	0,09	0,06	0,041	0,96	0,08	0,011	1,06	0,14
	1/4	II Gor	32-42	0,01	0,01	0,007	0,13	0,06	0,041	1,52	0,09	0,014	1,66	0,16
	1/3	Gor	20-32	0,01	0,04	0,008	0,12	0,08	0,009	1,01	0,11	0,004	1,14	0,23

		Proben-	oben- Sequentielle Extraktion									
Probe	Horizont	tiefe	Fe _o /Fe _d	Prozentuale Verteilung der Fraktionen								
		(cm)		Fe _p	Fe _o	Fe _d	Al _p	Al _o	Al _d	Mn _p	Mn _o	Mn _d
1/1	Ghr	0-10	0,21	15	15	70	44	29	27	68	0	32
1/2	Ghr	10-20	0,19	10	15	76	40	27	33	0	6	94
1/3	Gor	20-32	0,12	1	11	88	16	34	49	38	42	19
1/4	ll Gor	32-42	0,09	0	8	92	7	38	55	12	66	23
1/5	Gor	42-52+	0,09	1	8	91	2	41	57	12	70	18
2/1	Ghr	0-10+	0,30	23	18	59	51	21	29	47	38	15
3/1	Ghr	0-10	0,29	14	19	66	40	23	37	6	40	54
3/2	Ghr	10-22+	0,26	27	15	58	42	20	38	66	25	9

9.7 Cs-137-Aktivitäten

Profil RF 1 – 7037 Kelheim

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	44,43	50	25,43	24.05.07	86400
Of	397,20	100	44,07	24.05.07	26986
Oh	334,00	20	9,68	24.05.07	63191
1/1	115,90	20	14,27	24.05.07	86400
1/2	57,50	50	62,84	24.05.07	86400
1/3	6,58	100	109,81	24.05.07	86400
1/4	5,58	100	107,04	24.05.07	86400
1/5	2,11	100	115,20	24.05.07	86400
1/6	1,67	100	135,69	24.05.07	86400
1/7	<0,87	100	135,35	24.05.07	86400
1/8	<1,43	50	56,13	24.05.07	86400
2/L	29,96	100	26,16	24.05.07	86400
2/Of	239,00	50	22,98	24.05.07	53574
2/Oh	300,40	50	21,02	24.05.07	48565
2/1	56,10	20	15,18	24.05.07	86400
2/2	27,60	50	56,89	24.05.07	86400
2/3	6,63	100	111,63	24.05.07	86400
3/L	35,84	50	21,10	24.05.07	86400
3/Of	91,57	20	5,43	24.05.07	86400
3/Oh	280,20	20	9,01	24.05.07	79201
3/1	78,33	20	27,56	24.05.07	86400
3/2	78,70	50	53,24	24.05.07	86400
3/3	8,98	100	111,50	24.05.07	86400
IMIS org.	148,00	50	20,57	24.05.07	86400
IMIS min.	19,60	100	99,34	24.05.07	86400

Profil RF 2 – 6840 Reichenbach

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	14,33	50	6,69	31.05.07	86400
Of	166,25	50	14,41	31.05.07	86400
Oh	215,10	20	8,80	31.05.07	86400
1/1	220,00	100	58,84	31.05.07	86400
1/2	<1,31	100	105,27	31.05.07	86400
1/3	<1,20	100	109,50	31.05.07	86400
1/4	<1,06	100	121,13	31.05.07	86400
1/5	<0,96	100	119,50	31.05.07	86400
1/6	<1,13	100	114,35	31.05.07	72000
1/7	1,19	20	22,51	31.05.07	86400
2/L	22,48	50	10,65	31.05.07	86400
2/Of	69,60	50	12,31	31.05.07	86400
2/Oh	212,00	50	22,00	31.05.07	65406
2/1	110,40	20	12,97	31.05.07	86400
2/2	1,50	100	93,85	31.05.07	86400
2/3	2,15	50	47,09	31.05.07	86400
3/L	13,02	50	15,21	31.05.07	86400
3/Of	316,80	50	7,18	31.05.07	86400
3/Oh	257,60	50	25,34	31.05.07	47963
3/1	304,00	50	28,53	31.05.07	86400
3/2	11,10	100	78,68	31.05.07	86400
3/3	14,80	100	81,41	31.05.07	86400
IMIS org.	116,80	100	64,90	31.05.07	63686
IMIS min.	16,51	100	70,80	31.05.07	86400

Probe	Aktivität Cs-137	Geometrie	Proben- menge	Probenahme (Datum)	Live-Time
	(Bq kg ⁻¹)	(111)	(g)	(Datum)	(3)
L	155,00	100	12,77	14.06.07	86400
Of	493,90	100	18,31	14.06.07	54597
Oh	617,30	50	16,21	14.06.07	29894
1/1	96,80	100	107,87	14.06.07	86400
1/2	45,70	100	116,88	14.06.07	86400
1/3	1,87	100	135,03	14.06.07	86400
1/4	0,86	100	142,39	14.06.07	86400
1/5	<0,60	100	144,37	14.06.07	86400
2/L	142,60	50	14,84	14.06.07	86400
2/Of	729,00	100	18,25	14.06.07	36422
2/Oh	412,10	20	15,81	14.06.07	32359
2/1	74,14	20	27,58	14.06.07	86400
2/2	33,80	100	124,55	14.06.07	86400
3/L	237,00	100	12,74	14.06.07	86400
3/Of	674,30	100	19,41	14.06.07	38433
3/Oh	471,80	50	16,27	14.06.07	40819
3/1	187,00	50	57,89	14.06.07	86400
3/2	22,20	100	125,33	14.06.07	86400
IMIS org.	301,10	100	66,30	14.06.07	24349
IMIS min.	26,78	100	123,30	14.06.07	86400

Profil RF 3 – 7236 Münchsmünster

Profil RF 4 – 7440 Aham

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	53,67	100	31,60	22.06.07	86400
Of	463,90	100	17,88	22.06.07	62141
Oh	2081,00	20	8,15	22.06.07	12790
1/1	n.b.				
1/2	2,81	100	120,04	22.06.07	86400
1/3	2,18	100	115,75	22.06.07	86400
1/4	0,91	100	125,28	22.06.07	86400
1/5	<0,90	100	135,52	22.06.07	86400
1/6	<0,80	100	125,08	22.06.07	86400
1/7	<0,79	100	128,69	22.06.07	86400
1/8	0,86	100	122,08	22.06.07	86400
2/L	305,30	100	20,25	22.06.07	74178
2/Of	603,20	50	10,99	22.06.07	45255
2/Oh	1751,00	50	16,34	22.06.07	10804
2/1	29,73	50	51,75	22.06.07	86400
2/2	0,77	100	127,40	22.06.07	86400
3/L	125,70	50	8,95	22.06.07	86400
3/Of	649,70	50	10,11	22.06.07	47837
3/Oh	868,30	50	29,51	22.06.07	12219
3/1	19,05	100	118,30	22.06.07	86400
3/2	1,07	100	130,90	22.06.07	86400
IMIS org.	667,30	100	39,36	22.06.07	18957
IMIS min.	54,88	100	96,63	22.06.07	86400

Profil RF 5 – 6636 Kastl

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	22,42	50	13,53	30.06.07	86400
Of	184,10	20	6,71	30.06.07	86400
Oh	233,10	20	7,49	30.06.07	86400
1/1	32,31	50	54,46	30.06.07	86000
1/2	4,49	50	62,13	30.06.07	86400
1/3	1,31	50	61,75	30.06.07	86000
1/4	0,21	50	65,63	30.06.07	86000
1/5	n.b.				
1/6	n.n.	50	64,42	30.06.07	86400
1/7	0,29	50	59,03	30.06.07	86400
1/8	0,00	50	66,77	30.06.07	86000
2/L	n.n.	50	3,24	30.06.07	86400
2/Of	52,95	50	8,53	30.06.07	86400
2/Oh	214,90	50	7,48	30.06.07	86400
2/1	21,94	100	91,70	30.06.07	86400
3/L	2,02	50	9,20	30.06.07	86400
3/Of	98,67	50	6,13	30.06.07	86400
3/Oh	95,09	50	13,96	30.06.07	86400
3/1	29,30	100	85,26	30.06.07	86400
IMIS org.	139,80	100	42,70	30.06.07	79837
IMIS min.	19,34	100	101,40	30.06.07	86400

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	195,80	50	2,47	01.07.07	86400
Of	312,30	50	8,67	01.07.07	86400
Oh	131,10	20	5,99	01.07.07	86400
1/1	14,09	50	71,73	01.07.07	86400
1/2	5,37	100	162,20	01.07.07	86400
1/3	2,31	100	128,40	01.07.07	86400
1/4	0,22	100	170,30	01.07.07	86400
1/5	0,18	100	168,40	01.07.07	86400
1/6	n.n.	50	83,86	01.07.07	86400
1/7	n.n.	100	159,50	01.07.07	86400
2/L	493,50	50	3,21	01.07.07	86400
2/Of	518,60	50	6,35	01.07.07	86400
2/Oh	198,50	20	6,31	01.07.07	86400
2/1	33,21	20	27,95	01.07.07	86400
2/2	22,93	50	70,30	01.07.07	86400
2/3	8,13	50	61,30	01.07.07	86400
3/L	903,20	50	1,70	01.07.07	86400
3/Of	294,00	50	8,82	01.07.07	86400
3/1	29,24	50	51,10	01.07.07	86400
3/2	5,70	20	38,83	01.07.07	86400
3/3	7,82	50	68,46	01.07.07	86400
IMIS org.	169,00	100	42,80	01.07.07	63181
IMIS min.	10,25	100	156,90	01.07.07	86400

Profil RF 6 – 6740 Neukirchen-Balbini

Profil RF 7 – 7144 Lalling

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	138,40	50	15,72	06.07.07	86400
Of	807,20	50	13,91	06.07.07	29003
Oh	1311,20	20	14,37	06.07.07	11807
1/1	26,35	100	87,39	06.07.07	86400
1/2	6,36	100	110,86	06.07.07	86400
1/3	3,50	100	112,68	06.07.07	86400
1/4	1,73	100	120,06	06.07.07	86400
1/5	0,93	100	118,75	06.07.07	86400
1/6	<0,79	100	117,33	06.07.07	86400
1/7	<0,87	100	120,32	06.07.07	86400
1/8	<0,80	100	132,80	06.07.07	86400
2/L	59,11	50	13,28	06.07.07	86400
2/Of	851,40	50	14,59	06.07.07	27057
2/Oh	199,70	50	23,29	06.07.07	68897
2/1	104,00	100	86,38	06.07.07	86400
2/2	5,05	100	98,97	06.07.07	86400
2/3	2,07	100	118,22	06.07.07	86400
3/L	82,74	50	14,93	06.07.07	86400
3/Of	918,00	50	15,04	06.07.07	24181
3/Oh	928,00	50	32,24	06.07.07	11050
3/1	288,00	50	31,74	06.07.07	86400
3/2	20,60	100	99,74	06.07.07	86400
3/3	3,18	100	123,84	06.07.07	86400
IMIS org.	324,70	100	35,69	06.07.07	43764
IMIS min.	57,79	100	88,68	06.07.07	86400

Profil RF 8 – 6237 Grafenwöhr

Probe	Aktivität Cs-137 (Bg kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	188,40	20	4,91	07.07.07	86400
Of	211,70	50	15,21	07.07.07	86400
Oh	92,77	20	8,09	07.07.07	86400
1/1	44,51	50	66,05	07.07.07	86400
1/2	1,40	100	152,80	07.07.07	86400
1/3	n.n.	100	167,30	07.07.07	86400
1/4	<0,64	100	157,76	07.07.07	86400
1/5	<0,58	100	157,36	07.07.07	86400
1/6	<0,73	100	164,21	07.07.07	86400
1/7	0,95	100	173,80	07.07.07	86400
1/8	0,14	100	176,40	07.07.07	86400
1/9	<0,64	100	155,80	07.07.07	86400
1/10	n.n.	100	181,50	07.07.07	86400
1/11	n.n.	100	140,40	07.07.07	86400
1/12	n.n.	100	175,30	07.07.07	86400
2/L	46,16	50	14,97	07.07.07	86400
2/Of	462,90	100	23,56	07.07.07	43497
2/Oh	213,20	50	20,27	07.07.07	69049
2/1	47,84	100	135,20	07.07.07	79517
2/2	22,70	100	123,65	07.07.07	86400
3/L	35,54	50	17,09	07.07.07	86400
3/Of	527,80	100	32,17	07.07.07	26569
3/Oh	259,30	50	17,05	07.07.07	66958
3/1	59,20	100	118,35	07.07.07	86400
3/2	4,10	100	137,10	07.07.07	86400
3/3	1,93	100	151,90	07.07.07	86400
IMIS org.	194,40	100	35,96	07.07.07	68444
IMIS min.	18,53	100	130,20	07.07.07	86400

Profil R	= 9 –	6335	Auerb	ach
----------	-------	------	-------	-----

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	19,15	100	30,23	08.07.07	86400
Of	93,71	50	28,55	08.07.07	86400
1/1	31,50	100	105,67	08.07.07	86400
1/2	13,70	100	106,43	08.07.07	86400
1/3	3,05	100	109,59	08.07.07	86400
2/L	96,27	50	25,76	08.07.07	86400
2/Of	46,89	100	63,33	08.07.07	86400
2/1	49,20	100	89,63	08.07.07	86400
3/L	12,74	100	26,17	08.07.07	86400
3/Of	449,30	50	3,62	08.07.07	86400
3/1	36,90	100	111,17	08.07.07	86400
IMIS org.	31,78	100	39,74	08.07.07	86400
IMIS min.	68,46	100	81,16	08.07.07	86400

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	16,98	100	12,55	21.07.07	86400
Of	67,57	100	22,82	21.07.07	86400
Oh	187,40	100	48,60	21.07.07	50375
1/1	33,50	100	75,77	21.07.07	86400
1/2	2,01	100	92,79	21.07.07	86400
1/3	1.33	100	98,19	21.07.07	86400

Profil RF 10 – 6642 Waldmünchen

Probe	(Bq kg ⁻¹)	(ml)	(g)	(Datum)	(s)
L	16,98	100	12,55	21.07.07	86400
Of	67,57	100	22,82	21.07.07	86400
Oh	187,40	100	48,60	21.07.07	50375
1/1	33,50	100	75,77	21.07.07	86400
1/2	2,01	100	92,79	21.07.07	86400
1/3	1,33	100	98,19	21.07.07	86400
1/4	<0,98	100	103,41	21.07.07	86400
1/5	<0,86	100	104,53	21.07.07	86400
1/6	<0,64	100	113,60	21.07.07	86400
1/7	<1,03	100	113,57	21.07.07	86400
1/8	<0,98	100	119,49	21.07.07	86400
2/L	31,21	100	9,62	21.07.07	86400
2/Of	147,70	50	14,45	21.07.07	86400
2/Oh	240,20	20	13,08	21.07.07	66385
2/1	14,00	50	48,38	21.07.07	86400
2/2	7,12	20	19,14	21.07.07	86400
3/L	20,47	50	7,61	21.07.07	86400
3/Of	108,10	100	23,56	21.07.07	86400
3/Oh	316,00	100	52,75	21.07.07	27483
3/1	23,90	50	45,80	21.07.07	86400
3/2	1,44	100	84,02	21.07.07	86400
IMIS org.	167,70	100	47,41	21.07.07	62055
IMIS min.	21,11	100	83,13	21.07.07	86400

Profil RF 11 – 6844 Lam

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	240,10	100	26,93	22.07.07	75795
Of	1657,00	100	33,99	22.07.07	9342
Oh	665,10	20	13,98	22.07.07	25536
1/1	29,10	100	64,85	22.07.07	86400
1/2	7,37	100	69,59	22.07.07	86400
1/3	2,29	100	68,48	22.07.07	86400
2/L	130,40	100	23,25	22.07.07	86400
2/Of	1392,00	50	19,27	22.07.07	12271
2/Oh	546,70	50	35,99	22.07.07	16367
2/1	164,00	100	64,15	22.07.07	86400
2/2	11,70	100	72,11	22.07.07	86400
3/L	130,50	100	31,32	22.07.07	86400
3/Of	698,10	50	23,94	22.07.07	19771
3/Oh	316,40	20	19,93	22.07.07	35293
3/1	88,20	100	65,43	22.07.07	
3/2	10,00	100	66,29	22.07.07	86400
IMIS org.	954,30	100	32,12	22.07.07	15244
IMIS min.	131,40	100	63,45	22.07.07	55962

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	32,38	20	6,48	23.07.07	86400
Of	184,30	20	7,65	23.07.07	86400
Oh	98,23	20	13,75	23.07.07	86400
1/1	30,50	100	76,23	23.07.07	86400
1/2	4,42	100	88,04	23.07.07	86400
2/L	20,76	20	7,91	23.07.07	86400
2/Of	46,16	20	5,76	23.07.07	86400
2/Oh	49,18	20	18,81	23.07.07	86400
2/1	55,80	100	80,39	23.07.07	86400
2/2	43,40	100	77,68	23.07.07	86400
3/L	17,80	20	10,36	23.07.07	86400
3/Of	107,70	20	7,77	23.07.07	86400
3/Oh	128,10	20	19,49	23.07.07	86400
3/1	7,54	100	79,47	23.07.07	86400
3/2	19,30	100	75,41	23.07.07	86400
IMIS org.	154,70	100	25,26	23.07.07	86400
IMIS min.	57,03	100	81,21	23.07.07	86400

Profil RF 12 - 7248 Jandelsbrunn

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	18,36	20	6,78	24.07.07	86400
Of	129,80	20	7,87	24.07.07	86400
Oh	199,50	20	17,35	24.07.07	66750
1/1	47,40	100	68,99	24.07.07	86400
1/2	2,48	100	83,29	24.07.07	86400
2/L	35,11	20	6,21	24.07.07	86400
2/Of	122,00	20	8,68	24.07.07	86400
2/Oh	248,20	20	14,10	24.07.07	63150
2/1	26,71	50	33,22	24.07.07	86000
2/2	6,75	50	37,76	24.07.07	86000
3/L	64,70	50	12,52	24.07.07	86400
3/Of	283,00	50	15,33	24.07.07	86400
3/Oh	279,70	20	11,24	24.07.07	67370
3/1	166,00	20	14,23	24.07.07	86000
3/2	12,31	50	33,50	24.07.07	86400
IMIS org.	171,70	100	36,26	24.07.07	75789
IMIS min.	19,30	100	72,32	24.07.07	86400

Profil RF 14 – 7446 Passau

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	17,70	50	13,94	25.07.07	86400
Of	196,00	100	28,81	25.07.07	86400
Oh	340,50	20	14,80	25.07.07	43741
1/1	103,00	100	73,40	25.07.07	86400
1/2	7,65	100	102,73	25.07.07	86400
1/3	4,42	100	105,44	25.07.07	86400
2/L	15,70	100	43,57	25.07.07	86400
2/Of	216,00	100	30,38	25.07.07	86400
2/Oh	467,50	20	12,42	25.07.07	39666
2/1	21,70	100	98,01	25.07.07	86400
2/2	5,44	100	103,02	25.07.07	86400
3/L	50,45	20	4,33	25.07.07	86400
3/Of	121,40	20	3,10	25.07.07	86400
3/Oh	407,30	20	4,90	25.07.07	86400
3/1	177,90	20	10,27	25.07.07	86400
3/2	14,50	100	90,90	25.07.07	86400
IMIS org.	264,00	100	28,62	25.07.07	63459
IMIS min.	25,00	100	110,79	25.07.07	86400

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	13,04	100	27,75	26.07.07	86400
Of	83,20	20	7,52	26.07.07	86400
1/1	197,00	100	89,97	26.07.07	86400
1/2	<1,00	50	74,16	26.07.07	86400
2/L	24,18	50	11,79	26.07.07	86400
2/Of	n.b.				
2/1	157,00	50	39,93	26.07.07	86400
3/L	12,64	50	12,23	26.07.07	86400
3/Of	57,56	20	4,09	26.07.07	86400
3/1	141,00	100	92,42	26.07.07	86400
IMIS org.	169,30	100	32,17	26.07.07	82755
IMIS min.	183,60	100	71,50	26.07.07	35380

Profil RF 15 – 7742 Altötting

Profil RF 16 – 8143 Freilassing

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	18,92	20	6,78	27.07.07	86400
1/1	241,00	100	90,87	27.07.07	86400
1/2	68,60	100	100,94	27.07.07	86400
2/L	171,40	100	36,57	27.07.07	81220
2/1	923,00	100	74,08	27.07.07	86400
2/2	35,30	100	102,86	27.07.07	86400
2/3	13,50	100	107,75	27.07.07	86400
3/L	38,50	100	45,74	27.07.07	86400
3/1	263,00	100	95,78	27.07.07	86400
3/2	54,90	100	105,71	27.07.07	86400
IMIS min.	150,30	100	103,00	27.07.07	32565

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	13,58	20	5,31	28.07.07	86400
Of	56,85	20	4,77	28.07.07	86400
1/1	188,40	50	54,19	28.07.07	30085
1/2	0,86	50	53,79	28.07.07	86400
1/3	1,14	50	58,06	28.07.07	86400
1/4	n.n.	50	63,19	28.07.07	86400
1/5	0,15	50	63,89	28.07.07	86400
2/L	30,80	100	26,21	28.07.07	86400
2/Of	424,10	100	25,33	28.07.07	43886
2/1	188,10	20	26,46	28.07.07	44075
3/L	25,30	50	10,74	28.07.07	86400
3/Of	111,60	50	8,02	28.07.07	86400
3/1	230,60	50	44,52	28.07.07	30111
IMIS min.	179,50	100	99,07	28.07.07	25605
IMIS org.	416,20	100	43,86	28.07.07	26122

Profil RF 17 – 8241 Ruhpolding

Profil RF 18 – 8040 Eggstätt

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	244,00	50	21,00	29.07.07	86400
Of	726,00	100	27,71	29.07.07	86400
Oh	242,10	20	13,03	29.07.07	70569
1/1	79,50	100	54,43	29.07.07	86400
1/2	61,60	100	50,18	29.07.07	86400
2/L	95,30	20	6,92	29.07.07	86400
2/Of	261,40	20	7,69	29.07.07	86400
2/Oh	660,50	20	10,82	29.07.07	32671
2/1	n.b.				
3/L	284,30	20	6,84	29.07.07	86400
3/Of	621,00	50	15,65	29.07.07	86400
3/Oh	148,20	20	5,97	29.07.07	86400
3/1	83,90	50	18,90	29.07.07	86400
3/2	n.b.				
IMIS org.	515,40	100	20,67	29.07.07	43316
IMIS min.	95,82	100	31,47	29.07.07	86400

Profil RF 19 – 8236 Tegernsee

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	59,01	50	5,81	30.07.07	86400
Of	505,10	50	10,08	30.07.07	56714
Oh	1311,00	50	29,52	30.07.07	7917
1/1	159,00	50	37,40	30.07.07	86400
1/2	5,95	50	45,64	30.07.07	86400
2/L	59,10	100	35,70	30.07.07	86400
2/Of	715,00	100	29,39	30.07.07	86400
2/Oh	2760,00	20	12,29	30.07.07	6879
2/1	223,00	50	42,53	30.07.07	86400
2/2	58,70	50	46,35	30.07.07	86400
2/3	22,80				
3/L	64,60	100	34,64	30.07.07	86400
3/Of	1610,00	100	43,78	30.07.07	86400
3/Oh	2870,00	50	32,16	30.07.07	86400
3/1	305,00	100	82,79	30.07.07	86400
3/2	9,28	100	90,63	30.07.07	86400
3/3	5,26	100	105,18	30.07.07	86400
IMIS org.	1214,00	100	34,44	30.07.07	11450
IMIS min.	54,59	100	88,18	30.07.07	86400

Probe	Aktivität Cs-137 (Bg kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	112,00	100	36,14	31.07.07	86400
Of	505,00	100	28,45	31.07.07	86400
1/1	150,00	100	76,56	31.07.07	86400
1/2	9,15	100	104,25	31.07.07	86400
2/L	114,00	50	17,30	31.07.07	86400
2/Of	373,00	100	25,25	31.07.07	86400
2/1	213,00	100	75,44	31.07.07	86400
2/2	13,40	100	102,25	31.07.07	86400
3/L	331,00	100	37,64	31.07.07	86400
3/Of	685,00	100	33,83	31.07.07	86400
3/1	233,00	50	60,56	31.07.07	86400
3/2	13,10	100	95,95	31.07.07	86400
IMIS min.	31,87	100	85,61	31.07.07	86400
IMIS org.	429,00	100	61,89	31.07.07	86400

Profil RF 20 – 7837 Markt Schwaben

Profil RF 21 – 6025 Arnstein

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	n.n.	50	8,43	18.03.08	86400
Of	18,10	50	9,49	18.03.08	86400
1/1	37,00	100	102,63	18.03.08	86400
1/2	2,27	100	128,69	18.03.08	86400
2/L	15,35	50	101,40	18.03.08	86400
2/1	66,70	100	96,05	18.03.08	86400
2/2	1,32	100	126,78	18.03.08	86400
2/3	0,62	100	136,69	18.03.08	86400
3/L	n.n.	50	8,37	18.03.08	86400
3/1	67,70	100	92,28	18.03.08	86400
3/2	1,17	100	130,82	18.03.08	86400
3/3	1,50	100	132,68	18.03.08	86400
IMIS min.	5,68	100	116,80	18.03.08	86400
IMIS org.	64,99	100	29,26	18.03.08	86400

Profil RF 22 – 5626 Sandberg

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	21,94	100	6,45	19.03.08	86400
Of	82,58	100	44,84	19.03.08	86400
Oh	39,61	100	51,22	19.03.08	86400
1/1	2,39	100	145,45	19.03.08	86400
1/2	1,11	100	145,66	19.03.08	86400
2/L	7,91	20	5,36	19.03.08	86400
2/Of	208,50	50	10,39	19.03.08	86400
2/Oh	140,50	20	14,06	19.03.08	86400
2/1	7,93	50	69,96	19.03.08	86400
2/2	2,70	50	64,90	19.03.08	86400
3/L	17,21	50	2,53	19.03.08	86400
3/Of	182,30	50	18,41	19.03.08	86400
3/Oh	117,50	100	71,89	19.03.08	56591
3/1	21,10	50	64,01	19.03.08	86400
3/2	2,71	50	60,88	19.03.08	86400
IMIS org.	88,02	100	67,53	19.03.08	80987
IMIS min.	6,03	100	121,60	19.03.08	86400

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	10,02	100	26,46	20.03.08	86400
Of	54,67	50	19,54	20.03.08	86400
1/1	84,00	100	111,85	20.03.08	86400
1/2	3,10	100	142,35	20.03.08	86400
2/L	0,67	20	6,06	20.03.08	86400
2/Of	13,92	20	19,54	20.03.08	86400
2/1	118,00	100	109,59	20.03.08	86400
2/2	<0,79	100	146,14	20.03.08	86400
3/L	17,87	20	5,70	20.03.08	86400
3/Of	54,93	20	9,40	20.03.08	86400
3/1	71,60	100	91,51	20.03.08	86400
3/2	0,68	100	148,14	20.03.08	86400
IMIS min.	12,84	100	111,70	20.03.08	86400
IMIS org.	113,10	100	89,01	20.03.08	50504

Profil RF 23 – 5728 Oberlauringen

Profil	RF 24	- 7132	Dolln	stein
--------	-------	--------	-------	-------

Probe	Aktivität Cs-137	Geometrie (ml)	Proben- menge	Probenahme (Datum)	Live-Time (s)
	(Bq kg⁻¹)	()	(g)	(2000)	(0)
L	2,00	50	13,04	10.04.08	86400
Of	100,50	50	25,61	10.04.08	86400
1/1	51,50	50	49,25	10.04.08	86400
1/2	6,62	100	100,92	10.04.08	86400
1/3	4,18	100	108,90	10.04.08	86400
1/4	n.n.	100	115,30	10.04.08	86400
1/5	0,04	100	112,80	10.04.08	86400
1/6	0,27	100	115,70	10.04.08	86400
1/7	n.n.	100	122,00	10.04.08	86400
1/8	n.n.	100	112,00	10.04.08	86400
2/L	3,14	20	6,15	10.04.08	86400
2/Of	18,02	50	16,39	10.04.08	86400
2/1	92,40	100	68,72	10.04.08	86400
2/2	66,30	50	77,26	10.04.08	86400
3/L	8,99	100	20,87	10.04.08	86400
3/Of	30,92	50	15,77	10.04.08	86400
3/1	51,40	100	75,68	10.04.08	86400
3/2	13,40	100	83,47	10.04.08	86400
IMIS min.	91,83	100	89,77	10.04.08	57206
IMIS org.	116,00	100	54,74	10.04.08	74136

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	20,43	50	12,10	29.04.08	86400
Of	348,80	20	10,18	29.04.08	62941
1/1	1060,00	100	96,16	29.04.08	86400
1/2	15,30	100	126,03	29.04.08	86400
2/L	58,34	20	7,52	29.04.08	86400
2/Of	448,80	20	9,20	29.04.08	53258
2/1	768,00	100	84,44	29.04.08	86400
2/2	95,40	100	117,92	29.04.08	86400
2/3	39,50	100	128,36	29.04.08	86400
3/L	147,00	20	7,72	29.04.08	86400
3/Of	471,60	20	11,84	29.04.08	40439
3/1	408,00	100	104,59	29.04.08	86400
3/2	23,50	100	120,63	29.04.08	86400
3/3	17,90	100	121,22	29.04.08	86400
IMIS min.	79,80	100	127,98	29.04.08	86400
IMIS org.	640,10	100	89,52	29.04.08	9132

Profil RF 25 – 7831 Egling a.d. Paar

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	122,00	50	11,97	30.04.08	86400
Of	222,00	50	7,17	30.04.08	86400
Oh	524,00	100	48,08	30.04.08	86400
1/1	6,66	100	125,98	30.04.08	86400
1/2	1,08	100	131,43	30.04.08	86400
2/L	235,00	50	11,97	30.04.08	86400
2/Of	481,00	100	27,11	30.04.08	86400
2/Oh	56,60	50	30,75	30.04.08	86400
2/1	32,50	100	109,96	30.04.08	86400
3/L	174,00	100	28,33	30.04.08	86400
3/Of	593,00	100	39,85	30.04.08	86400
3/Oh	324,00	50	27,74	30.04.08	86400
3/1	80,20	100	103,84	30.04.08	
3/2	18,10	100	114,94	30.04.08	86400
IMIS min.	24,70	100	119,31	30.04.08	86400
IMIS org.	271,00	100	63,53	30.04.08	86400

Profil RF 26 – 7433 Schrobenhausen

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	88,99	50	12,56	08.05.08	86400
Of	208,40	100	27,44	08.05.08	79124
Oh	133,60	100	65,74	08.05.08	52689
1/1	4,50	100	117,15	08.05.08	86400
1/2	5,78	100	125,98	08.05.08	86400
1/3	<0,70	100	129,94	08.05.08	86400
1/4	n.n.	50	92,20	08.05.08	86400
1/5	n.n.	50	64,24	08.05.08	86400
2/L	80,79	50	10,88	08.05.08	86400
2/Of	256,40	100	21,86	08.05.08	81553
2/Oh	177,00	50	32,98	08.05.08	51671
2/1	5,25	50	59,03	08.05.08	86400
3/Of	124,60	50	16,41	08.05.08	86400
3/1	16,03	20	35,65	08.05.08	86400
3/2	61,80	50	55,79	08.05.08	86400
IMIS min.	40,53	100	99,35	08.05.08	86400
IMIS org.	248,40	100	24,16	08.05.08	78752

Profil RF 27 – 8032 Dießen a. Ammersee

Profil RF	28 –	5939	Wald	sassen

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	15,75	100	32,15	13.05.08	86400
Of	115,00	100	33,63	13.05.08	86400
Oh	173,00	100	43,52	13.05.08	86400
1/1	1,73	100	134,19	13.05.08	86400
1/2	<0,67	100	118,78	13.05.08	86400
2/L	24,84	50	27,20	13.05.08	86400
2/Of	168,00	100	29,81	13.05.08	86400
2/Oh	112,00	100	56,54	13.05.08	86400
2/1	2,72	100	126,33	13.05.08	86400
2/2	1,81	100	116,49	13.05.08	86400
3/L	19,09	50	10,52	13.05.08	86400
3/Of	101,00	100	32,04	13.05.08	86400
3/Oh	144,00	100	71,20	13.05.08	86400
3/1	4,08	100	128,17	13.05.08	86400
3/2	11,00	100	119,24	13.05.08	86400
IMIS min.	11,84	100	90,71	13.05.08	86400
IMIS org.	112,20	100	33,42	13.05.08	86400

|--|

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	6,04	50	15,29	14.05.08	86400
Of	45,00	50	15,46	14.05.08	86400
Oh	205,80	50	22,89	14.05.08	64511
1/1	74,20	100	99,73	14.05.08	86400
1/2	1,51	100	97,86	14.05.08	86400
2/L	12,27	100	24,11	14.05.08	86400
2/Of	68,40	100	45,44	14.05.08	86400
2/Oh	273,40	100	47,49	14.05.08	37745
2/1	86,00	100	98,15	14.05.08	86400
3/L	9,47	50	13,51	14.05.08	86400
3/Of	51,60	100	27,11	14.05.08	86400
3/Oh	221,00	100	79,09	14.05.08	86400
3/1	70,70	100	85,34	14.05.08	86400
3/2	5,19	100	105,54	14.05.08	86400
IMIS min.	16,91	100	90,33	14.05.08	86400
IMIS org.	105,60	100	85,98	14.05.08	53618

Probe	Aktivität Cs-137 (Bg kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	7,84	20	4,90	15.05.08	86400
Of	120,00	50	15,58	15.05.08	86400
Oh	107,00	50	22,38	15.05.08	86400
1/1	54,70	100	88,61	15.05.08	86400
1/2	3,30	100	89,69	15.05.08	86400
2/L	43,10	100	23,22	15.05.08	86400
2/Of	131,00	100	37,84	15.05.08	86400
2/Oh	186,00	100	42,12	15.05.08	86400
2/1	114,00	100	82,91	15.05.08	86400
2/2	46,70	50	65,58	15.05.08	86400
3/L	72,90	100	21,36	15.05.08	86400
3/Of	131,00	100	58,49	15.05.08	86400
3/Oh	161,00	100	86,68	15.05.08	86400
3/1	68,50	100	97,16	15.05.08	86400
IMIS min.	53,30	100	96,36	15.05.08	86400
IMIS org.	169,00	100	73,46	15.05.08	86400

Profil RF 30 – 6240 Flossenbürg

Profil RF 31 – 6132 Buttenheim

Probe	Aktivität Cs-137	Geometrie (ml)	Proben- menge	Probenahme (Datum)	Live-Time (s)
			(9)		
	18,84	100	54,35	26.05.08	86400
1/1	82,80	100	111,84	26.05.08	86400
1/2	15,80	100	144,16	26.05.08	86400
1/3	6,46	100	139,51	26.05.08	86400
2/L	16,10	50	15,49	26.05.08	86400
2/1	67,40	100	119,48	26.05.08	86400
2/2	23,50	100	133,23	26.05.08	86400
3/L	15,34	100	36,25	26.05.08	86400
3/1	73,40	100	125,76	26.05.08	86400
3/2	16,30	100	141,30	26.05.08	86400
IMIS min.	50,69	50	38,82	26.05.08	86400

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	47,50	50	14,49	27.05.08	86400
Of	82,10	50	25,36	27.05.08	86400
Oh	112,60	100	61,37	27.05.08	67810
Oh2	37,34	100	80,37	27.05.08	86400
2/L	89,45	100	36,42	27.05.08	86400
2/Of	200,50	100	36,84	27.05.08	66918
3/L	146,00	100	40,55	27.05.08	82116
3/Of	290,30	100	31,85	27.05.08	52009
IMIS org.	247,20	100	26,29	27.05.08	74632

Profil RF 32 – 5936 Bad Berneck i. Fichtelgebirge

Profil RF 33 – 6023 Lohr a. Main

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	13,28	100	20,84	11.06.08	86400
Of	45,93	20	4,38	11.06.08	86400
1/1	50,90	100	104,42	11.06.08	86400
1/2	0,89	100	146,53	11.06.08	86400
1/3	<0,48	100	153,12	11.06.08	86400
2/L	26,26	50	9,33	11.06.08	86400
2/Of	28,78	50	12,77	11.06.08	86400
2/1	80,00	100	92,52	11.06.08	86400
2/2	1,24	100	128,93	11.06.08	86400
3/L	19,79	100	19,82	11.06.08	86400
3/Of	78,11	50	48,89	11.06.08	83794
3/1	55,10	100	105,60	11.06.08	86400
3/2	1,26	100	135,74	11.06.08	86400
IMIS min.	13,74	100	109,70	11.06.08	86400
IMIS org.	56,78	100	89,62	11.06.08	86400

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	13,10	100	26,09	12.06.08	86400
Of	123,00	50	17,71	12.06.08	86400
1/1	114,00	50	39,96	12.06.08	86400
1/2	3,48	50	54,78	12.06.08	86400
2/L	7,27	100	24,60	12.06.08	86400
2/Of	26,10	50	17,58	12.06.08	86400
2/1	119,00	50	37,81	12.06.08	86400
2/2	2,59	50	48,78	12.06.08	86400
2/3	<1,65	50	49,96	12.06.08	86400
3/L	3,21	100	16,77	12.06.08	86400
3/Of	23,70	50	12,45	12.06.08	86400
3/1	135,00	50	39,19	12.06.08	86400
3/2	3,09	50	50,96	12.06.08	86400
3/3	1,53	50	52,16	12.06.08	86400
IMIS min.	16,62	100	95,66	12.06.08	86400
IMIS org.	160,00	100	86,32	12.06.08	86400

Profil RF 34 – 6122 Bischbrunn

Profil RF 35 – 5824 Gräfendorf

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	6,37	100	23,80	13.06.08	86400
1/1	22,80	100	115,07	13.06.08	86400
1/2	2,55	100	142,47	13.06.08	86400
1/3	0,91	100	138,12	13.06.08	86400
2/L	14,80	100	26,43	13.06.08	86400
2/1	41,70	100	97,84	13.06.08	86400
2/2	5,89	100	135,20	13.06.08	86400
2/3	5,00	100	127,93	13.06.08	86400
3/L	0,35	50	10,09	13.06.08	86400
3/1	34,00	100	93,97	13.06.08	86400
3/2	14,30	100	130,26	13.06.08	86400
3/3	4,56	100	131,98	13.06.08	86400
IMIS min.	17,60	100	115,80	13.06.08	86400

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	4,21	100	12,79	18.06.08	86400
Of	101,00	100	19,58	18.06.08	86400
Oh	231,90	100	41,22	18.06.08	47356
1/1	128,00	50	49,53	18.06.08	86400
1/2	6,99	50	56,44	18.06.08	86400
2/L	12,10	100	18,95	18.06.08	86400
2/Of	106,00	100	30,74	18.06.08	86400
2/Oh	237,10	100	39,51	18.06.08	49654
2/1	163,00	50	52,22	18.06.08	86400
2/2	2,79	50	58,85	18.06.08	86400
3/L	9,09	100	16,72	18.06.08	86400
3/Of	88,40	100	26,68	18.06.08	86400
3/Oh	216,10	100	40,10	18.06.08	49229
3/1	50,80	50	55,49	18.06.08	86400
3/2	3,13	50	56,97	18.06.08	86400
IMIS min.	11,20	100	134,83	18.06.08	86400
IMIS org.	186,00	100	36,04	18.06.08	86400

Profil RF 36 – 5632 Neustadt bei Coburg

Profil RF	- 37 -	- 5634	Teus	chnitz
-----------	--------	--------	------	--------

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	12,00	100	34,05	19.06.08	86400
Of	187,00	50	19,15	19.06.08	86400
Oh	223,00	100	69,62	19.06.08	32447
1/1	137,50	100	64,50	19.06.08	54706
1/2	1,75	100	81,78	19.06.08	86400
1/3	1,49	100	92,07	19.06.08	86400
2/L	15,30	100	27,25	19.06.08	86400
2/Of	n.b.				
2/Oh	181,30	100	81,60	19.06.08	33329
2/1	33,30	100	82,16	19.06.08	86400
2/2	3,23	100	90,73	19.06.08	86400
3/L	19,60	50	12,51	19.06.08	86400
3/Of	144,30	100	39,45	19.06.08	86400
3/Oh	308,10	50	28,38	19.06.08	34766
3/1	31,40	100	80,10	19.06.08	86400
3/2	3,72	100	85,06	19.06.08	86400
IMIS min.	16,86	100	88,82	19.06.08	86400
IMIS org.	244,00	50	12,97	19.06.08	86400

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	6,71	100	15,18	20.06.08	86400
Of	166,00	100	23,87	20.06.08	86400
Oh	260,20	100	46,25	20.06.08	37330
1/1	98,70	100	62,93	20.06.08	72868
1/2	4,30	100	86,62	20.06.08	86400
1/3	3,19	100	90,19	20.06.08	86400
2/L	18,90	100	24,57	20.06.08	86400
2/Of	241,00	100	25,89	20.06.08	86400
2/Oh	401,00	100	51,80	20.06.08	21757
2/1	118,30	100	70,81	20.06.08	56630
2/2	2,88	100	92,14	20.06.08	86400
3/L	11,30	100	21,53	20.06.08	86400
3/Of	202,60	100	25,44	20.06.08	86191
3/Oh	604,80	100	56,22	20.06.08	14384
3/1	149,10	100	69,70	20.06.08	45598
3/2	2,81	100	93,44	20.06.08	86400
IMIS min.	34,04	100	89,53	20.06.08	86400
IMIS org.	291,90	100	42,61	20.06.08	39289

Profil RF 38 – 5735 Schwarzenbach a. Wald
Profil RF 39 – 6532 Nürnberg

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	11,36	20	6,03	02.07.08	86400
Of	175,00	100	23,24	02.07.08	86400
Oh	60,70	100	59,27	02.07.08	86400
1/1	29,20	50	46,93	02.07.08	86400
1/2	2,46	50	68,55	02.07.08	86400
2/L	105,00	50	10,98	02.07.08	86400
2/Of	72,70	50	21,49	02.07.08	86400
2/Oh	100,00	50	19,77	02.07.08	86400
2/1	15,20	50	60,88	02.07.08	86400
2/2	2,89	50	77,20	02.07.08	86400
3/L	101,00	50	9,29	02.07.08	86400
3/Of	231,10	100	34,46	02.07.08	59314
3/Oh	68,40	50	32,91	02.07.08	86400
3/1	14,20	50	48,66	02.07.08	86400
3/2	7,04	50	49,58	02.07.08	86400
IMIS min.	14,50	50	64,50	02.07.08	86400
IMIS org.	122,00	50	15,92	02.07.08	86400

Profil RF 40 – 6829 Ornbau

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	16,50	50	12,69	09.07.08	86400
Of	304,00	50	15,05	09.07.08	86400
1/1	489,00	50	26,24	09.07.08	86400
1/2	27,90	50	61,77	09.07.08	86400
2/L	13,50	50	12,87	09.07.08	86400
2/Of	370,00	50	16,27	09.07.08	86400
2/Oh	645,00	50	17,21	09.07.08	86400
2/1	220,00	50	46,85	09.07.08	86400
2/2	30,70	50	66,47	09.07.08	86400
2/3	20,10	50	67,58	09.07.08	86400
2/4	3,37	50	71,97	09.07.08	86400
2/5	2,76	50	69,79	09.07.08	86400
3/L	12,28	100	34,21	09.07.08	86400
3/Of	158,00	50	15,67	09.07.08	86400
3/1	177,00	50	41,92	09.07.08	86400
3/2	12,40	50	66,66	09.07.08	86400
3/3	3,13	50	69,94	09.07.08	86400
IMIS min.	26,80	50	66,86	09.07.08	86400
IMIS org.	263,00	50	32,22	09.07.08	86400

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	4,19	50	16,69	10.07.08	86400
1/1	27,30	50	50,66	10.07.08	86400
1/2	27,60	50	58,59	10.07.08	86400
2/L	2,97	100	25,35	10.07.08	86400
2/Of	5,69	100	20,38	10.07.08	86400
2/1	39,20	50	56,18	10.07.08	86400
2/2	10,80	50	62,69	10.07.08	86400
2/3	5,34	50	63,13	10.07.08	86400
3/L	n.n.	50	11,85	10.07.08	86400
3/Of	8,47	50	14,78	10.07.08	86400
3/1	31,70	50	45,47	10.07.08	86400
3/2	12,30	50	64,65	10.07.08	86400
3/3	<1,29	50	64,79	10.07.08	86400
IMIS min.	13,10	50	58,05	10.07.08	86400
IMIS org.	50,60	50	40,44	10.07.08	86400

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	3,04	100	35,94	11.07.08	86400
Of	58,50	50	13,78	11.07.08	86400
1/1	95,90	100	75,38	11.07.08	86400
1/2	6,89	100	105,74	11.07.08	86400
2/L	0,24	100	36,47	11.07.08	86400
2/Of	20,04	100	21,17	11.07.08	86400
2/Oh	302,50	50	18,91	11.07.08	56310
2/1	103,00	100	81,61	11.07.08	86400
2/2	8,04	100	107,99	11.07.08	86400
3/L	2,54	100	34,55	11.07.08	86400
3/Of	54,66	100	23,95	11.07.08	86400
3/Oh	193,90	50	22,78	11.07.08	72850
3/1	112,00	100	87,14	11.07.08	86400
3/2	3,89	100	116,68	11.07.08	86400
IMIS min.	9,23	100	116,70	11.07.08	86400
IMIS org.	105,60	100	45,45	11.07.08	86400

Profil RF 42 – 6129 Burgwindheim

Profil RF 43 – 7429 Dillingen a.d. Donau

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	0,68	50	12,73	22.07.08	86400
1/1	51,50	50	56,42	22.07.08	86400
1/2	4,63	50	63,52	22.07.08	86400
2/L	7,81	100	39,86	22.07.08	86400
2/1	61,90	100	91,88	22.07.08	86400
2/2	14,90	100	99,58	22.07.08	86400
3/L	3,00	100	34,35	22.07.08	86400
3/1	51,40	100	82,67	22.07.08	86400
3/2	28,00	100	105,74	22.07.08	86400
IMIS min.	33,33	100	97,23	22.07.08	86400

Profil RF 44 – 7727 Buch

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	87,90	50	13,31	23.07.08	86400
Of	566,00	50	12,30	23.07.08	86400
Oh	1350,00	50	37,23	23.07.08	86400
1/1	116,00	50	49,78	23.07.08	86400
1/2	6,11	50	55,19	23.07.08	86400
1/3	4,90	100	131,71	23.07.08	86400
2/L	179,00	50	17,02	23.07.08	86400
2/Of	253,20	100	35,09	23.07.08	53266
2/Oh	1710,00	50	31,43	23.07.08	86400
2/1	672,00	100	104,41	23.07.08	86400
2/2	14,40	100	96,31	23.07.08	86400
2/3	6,53	100	98,46	23.07.08	86400
3/L	59,60	50	9,78	23.07.08	86400
3/Of	637,00	50	14,50	23.07.08	86400
3/1	421,00	100	80,61	23.07.08	86400
3/2	39,30	100	98,13	23.07.08	86400
3/3	13,00	100	99,75	23.07.08	86400
IMIS min.	37,60	100	106,09	23.07.08	86400
IMIS org.	679,00	100	80,10	23.07.08	86400

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
Of	647,50	100	15,80	24.07.08	32025
Oh	533,30	50	35,20	24.07.08	17269
1/1	78,00	100	87,83	24.07.08	86400
1/2	7,71	100	10,67	24.07.08	86400
2/L	181,60	50	20,88	24.07.08	82872
2/Of	353,10	100	28,65	24.07.08	49387
2/Oh	886,80	50	20,14	24.07.08	18549
2/1	806,00	100	76,30	24.07.08	86400
2/2	44,30	100	84,93	24.07.08	86400
2/3	22,70	100	109,92	24.07.08	86400
3/L	129,70	100	36,37	24.07.08	86400
3/Of	289,50	100	28,11	24.07.08	58432
3/Oh	1202,00	50	19,34	24.07.08	13699
3/1	440,00	100	89,53	24.07.08	86400
3/2	53,90	100	96,27	24.07.08	86400
3/3	8,73	100	107,84	24.07.08	86400
3/4	6,47	100	91,90	24.07.08	86400
IMIS min.	69,40	100	86,09	24.07.08	86400
IMIS org.	430,00	100	79,98	24.07.08	86400

Profil RF 45 – 8027 Memmingen

Probe	Aktivität Cs-137	Geometrie (ml)	Proben- menge	Probenahme (Datum)	Live-Time (s)
	(Bq kg ⁻¹)	()	(g)	(2 at a)	(0)
L	181,00	100	29,87	29.07.08	86400
Of	442,60	100	31,17	29.07.08	35502
1/1	39,20	50	29,97	29.07.08	86400
1/2	114,00	50	28,18	29.07.08	86400
2/L	789,10	100	53,71	29.07.08	11342
2/Of	553,90	100	30,55	29.07.08	29944
2/1	206,00	50	30,74	29.07.08	48324
2/2	48,03	100	49,26	29.07.08	86400
3/L	368,00	50	13,44	29.07.08	86400
3/Of	699,40	100	31,44	29.07.08	23207
3/1	430,60	100	36,67	29.07.08	31353
3/2	149,40	100	64,42	29.07.08	53392
IMIS min.	178,00	50	22,15	29.07.08	86400
IMIS org.	693,00	100	35,44	29.07.08	86400

Profil RF 46 – 8228 Wildpoldsried

Probe	Aktivität Cs-137 (Bq kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	306,00	50	17,87	30.07.08	86400
Of	500,40	100	20,63	30.07.08	47984
Oh	468,90	20	17,30	30.07.08	28088
1/1	3,13	50	52,07	30.07.08	86400
1/2	1,57	50	56,93	30.07.08	86400
1/3	1,01	100	112,15	30.07.08	86400
2/L	230,30	100	53,48	30.07.08	41307
2/Of	595,50	100	22,61	30.07.08	37593
2/Oh	496,90	50	37,43	30.07.08	17197
2/1	89,60	100	103,35	30.07.08	86400
2/2	4,10	100	113,70	30.07.08	86400
2/3	0,93	100	108,70	30.07.08	86400
3/L	204,00	100	41,72	30.07.08	28933
3/Of	461,00	100	30,91	30.07.08	36389
3/Oh	692,20	50	16,04	30.07.08	28457
3/1	293,00	100	88,06	30.07.08	86400
3/2	53,10	100	84,91	30.07.08	86400
3/3	18,60	100	85,60	30.07.08	86400
IMIS min.	43,16	100	93,24	30.07.08	86400
IMIS org.	842,70	100	20,86	30.07.08	26481

Profil RF 47 – 8526 Balderschwang

Probe	Aktivität Cs-137 (Bg kg ⁻¹)	Geometrie (ml)	Proben- menge (g)	Probenahme (Datum)	Live-Time (s)
L	n.b.				
Of	1276,00	20	7,11	31.07.08	23911
Oh	307,30	100	95,35	31.07.08	17548
1/1	44,70	50	54,65	31.07.08	86400
1/2	4,91	50	76,35	31.07.08	86400
2/L	193,90	100	48,23	31.07.08	86400
2/Of	1250,00	50	24,27	31.07.08	86400
2/Oh	495,30	100	51,58	31.07.08	19950
2/1	283,60	20	15,97	31.07.08	45617
2/2	203,90	20	21,31	31.07.08	49310
3/L	183,00	100	45,87	31.07.08	86400
3/Of	834,50	100	39,95	31.07.08	14387
3/Oh	436,50	50	25,33	31.07.08	30656
3/1	159,60	20	30,87	31.07.08	42255
3/2	32,62	20	34,00	31.07.08	86400
IMIS min.	232,00	100	68,05	31.07.08	86400
IMIS org.	939,20	100	28,20	31.07.08	18021

Profil RF 48 – 8532 Garmisch-Partenkirchen