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ABSTRACT

Today’s complex production systems allow to si-
multaneously build different products following
individual production plans. Such plans may fail
due to component faults or unforeseen behavior,
resulting in flawed products. In this paper, we
propose a method to integrate diagnosis with plan
assessment to prevent plan failure, and to gain di-
agnostic information when needed. In our setting,
plans are generated from a planner before being
executed on the system. If the underlying sys-
tem drifts due to component faults or unforeseen
behavior, plans that are ready for execution or
already being executed are uncertain to succeed
or fail. Therefore, our approach tracks plan exe-
cution using probabilistic hierarchical constraint
automata (PHCA) models of the system. This
allows to explain past system behavior, such as
observed discrepancies, while at the same time it
can be used to predict a plan’s remaining chance
of success or failure. We propose a formulation
of this combined diagnosis/assessment problem
as a constraint optimization problem, and present
a fast solution algorithm that estimates success or
failure probabilities by considering only a limited
number k of system trajectories.

1 INTRODUCTION
As the market demands for customized and variant-
rich products, the industry struggles to implement pro-
duction systems that demonstrate the necessary flex-
ibility while maintaining cost efficiency comparable
to highly automated mass production. A main cost
driver in automated production is the human work-
force needed for setup steps, the development of pro-
cesses, and quality assurance. These high labor costs
can typically only be amortized by very large lot sizes.
For small lot sizes as found in prototype and highly
customized production, human workers are still un-
challenged in flexibility and cost by automated sys-
tems. Therefore, to facilitate the emergence of mass
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Figure 1: Model-based plan assessment.

customization, levels of flexibility similar to the flexi-
bility of human workers must be reached at prices only
highly automated systems can achieve.

The German research cluster ”Cognition for Tech-
nical Systems” (CoTeSys) (Beetz et al., 2007) was
founded to understand human cognition and make its
performance accessible for technical systems. Future
technical systems are expected to act robustly under
high uncertainty, reliably handle unexpected events,
quickly adapt to changing tasks and own capabilities.
A key technology for the realization of such systems is
automated planning combined with self-diagnosis and
self-assessment. These capabilities can allow the sys-
tem to plan its own actions, and also react to failures
and adapt the behavior to changing circumstances.

From the point of view of planning, production sys-
tems are a relatively rigid environment, where the nec-
essary steps to manufacture a product can be antici-
pated well ahead. However, from a diagnosis point
of view, production systems are typically equipped
with only few sensors, so it cannot be reliably ob-
served whether an individual manufacturing step went
indeed as planned; instead, this becomes only gradu-
ally more certain during execution of the production
plan. Therefore, in the presence of faults or other un-
foreseen events – which become more likely in indi-
vidualized production – the question arises whether
plans that are ready for execution or already being exe-
cuted will indeed succeed, and whether it is necessary
to revise a plan or even switch to another plan.

To address this problem, we propose in this pa-
per a model-based capability that estimates the suc-
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Figure 2: Effects of cutter deterioration until breakage
in machining. Image c© Prof. Shea TUM PE

cess probability of production plans in execution (fig-
ure 1). We assume that a planner provides plans given
a system model. A plan is a sequence of actions
where each action is executed at its corresponding start
time. Whenever the system produces an observation,
it is forwarded to a module that performs simultane-
ous plan tracking and plan prognostic using probabilis-
tic hierarchical constraint automata (PHCA) models
(Williams et al., 2001) of the system. We propose a
formulation of this problem as a soft constraint opti-
mization problem (Schiex et al., 1995) over a window
of N time steps that extends both into the past and
the future, and present a fast but approximate solution
method that enumerates only k most likely system tra-
jectories. The resulting success or failure prognosis
can then be used to autonomously react in different
ways depending on the probability estimate; for in-
stance, continue with plan execution, discard the plan,
or augment the plan by adding observation-gathering
actions to gain further information (Kuhn et al., 2008).

In the remainder of the paper, we first motivate the
approach informally with an example from an auto-
mated metal machining process, and then present our
algorithmic solution and experimental results.

2 METAL MACHINING AND ASSEMBLY
EXAMPLE

As part of the CoTeSys cognitive factory test-bed, we
set up a customized and extended Flexible Manufac-
turing System (FMS) based on the iCim3000 from
Festo AG (see figure 5). The system consists of a con-
veyor transport and three stations: storage, machining
(milling and turning), and assembly. We built a simpli-
fied model of this manufacturing system (see figure 4)
which consists only of the machining and the assem-
bly station and allows to track system behavior over
time, including unlikely component faults. In partic-
ular, the machining station can transition to a “cutter
blunt” composite location, where vibrations are caused
during operation due to a blunt cutter. A blunt cutter
is very likely to break, leading to flawed products (see
figure 2). The assembly station model contains a com-
posite location which models occasional vibrations. A
sensor at the assembly station can detect these vibra-
tions, yielding binary signals “vibration occurred” and
“no vibration occurred”. However, the signal is am-
biguous, since the sensor cannot differentiate between
the two possible causes.

Two products are produced using a single produc-
tion plan Pprod: a toy maze consisting of an alloy base

Figure 3: The robotic arm product. Image c© Prof.
Shea TUM PE

plate and an acrylic glass cover, and an alloy part of a
robotic arm (see figure 3). Pprod consists of these
steps: (1) cut maze into base plate (one time step),
(2) assemble base plate and cover (one time step),
(3,4,5,6) cut robot arm part (one to four time steps).
The plan takes two to six time steps (starting at t = 0).
The plan is considered successful if both products are
flawless. In our example, only a broken cutter causes
the machined product to be flawed, in all other cases
the production plan will succeed. Now consider the
following scenario: after the second plan step (assem-
bling the maze base plate and its cover at t = 2) a
vibration is observed. Due to sensor ambiguity it re-
mains unclear whether the plan is unaffected (vibration
within assembly) or whether it might fail in the future
due to a broken cutter (vibration caused by a blunt cut-
ter), and the question for the planner is: How likely is
it that the current plan will still succeed? Our new ca-
pability allows to compute this likelihood, taking into
account past observations and future plan steps.

3 MODELING SYSTEM BEHAVIOR WITH
PHCA

Probabilistic hierarchical constraint automata (PHCA)
were introduced in (Williams et al., 2001) as a
compact encoding of hidden markov models (HMMs).
These automata have the required expressivity to
uniformly model both probabilistic hardware behavior
(e.g., likelihood of component failures) and complex
software behavior (such as high level control pro-
grams).

Definition 1 (PHCA)
A PHCA is a tuple 〈Σ, PΞ,Π, O,Cmd, C, PT 〉, where:
• Σ is a set of locations, partitioned into primitive

locations Σp and composite locations Σc. Each
composite location denotes a hierarchical, con-
straint automaton. A location may be marked or
unmarked. A marked location represents an ac-
tive execution branch.
• PΞ(Ξi) denotes the probability that Ξi ⊆ Σ is the

set of start locations (initial state). Each compos-
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Figure 4: Simplified PHCA of the manufacturing system. The machining and assembly station are modeled
as parallel running composite locations (indicated by dashed borders). Variables appearing within a location
are local to this location, i.e. machining.cmd refers globally to the command variable cmd within composite
location machining. Note: “noop” means “no operation”.

ite location li ∈ Σc may have a set of start loca-
tions that are marked when li is marked.
• Π is a set of variables with finite domains. C[Π]

is the set of all finite domain constraints over Π.
• O ⊆ Π is the set of observable variables.
• Cmd ⊆ Π is the set of command variables.
• C : Σ→ C[Π] associates with each location li ∈

Σ a finite domain constraint C(li).
• PT (li), for each li ∈ Σp, is a probability distribu-

tion over a set of transition functions T (li) : Σ(t)
p

× C[Π](t) → 2Σ(t+1). Each transition function
maps a marked location into a set of locations to
be marked at the next time step, provided that the
transition’s guard constraint is entailed. We de-
note the set of all transitions as T , and the guard
of a transition τ ∈ T as G(τ), where function
G : T → C[Π] maps transitions to their guards.

Definition 2 (PHCA State) The state of a PHCA at
time t is a set of marked locations called a marking
m(t) ⊂ Σ.

The example PHCA shown in figure 4 illustrates
the PHCA definition. The main factory components

machining and assembly are encoded as top level
composite locations. A dashed border indicates that
locations may be marked at the same time, which
means they can run in parallel. There is a third top
level location at the bottom of figure 4 whose be-
havior constraint encodes that an observed vibration
is caused by one of the two components or both.
Primitive locations are for example machining.idle
and machining.cut, which encode the machining sta-
tion being in an idle state and working on a piece.
An example for an observable variable is V ibration,
which encodes whether a vibration has occurred or
not. The dependent variables machining.V ibration
and assembly.V ibration encode for each compo-
nent whether it caused a vibration. A command
variable is, e.g., machining.cmd. It occurs in the
guard constraint for transition idle → cut within
composite location machining: machining.cmd =
cut. Transition guards have the general form <guard
constraint>;<transition probability>. The guard
constraint is a logical constraint over PHCA variables,
usually an assignment to command variables. The
transition is non-deterministic: Given the guard is sat-
isfied, it is taken with probability 0.9. The remain-
ing possibility ( completing the conditional probability

3



Annual Conference of the Prognostics and Health Management Society, 2009

Figure 5: The hardware setup for experimentation,
showing storage, transport, robot and machining com-
ponents.

distribution) is the transition from idle to the compos-
ite location cutter blunt, which has the same guard
and is taken with probability 0.1.

4 PLAN ASSESSMENT AS CONSTRAINT
OPTIMIZATION OVER PHCA MODELS

Plan assessment requires tracking of the system’s plan-
induced evolution; in our case, it means tracking
the evolution of PHCA markings. Previous work
(Mikaelian et al., 2005) introduced an encoding of
PHCA as soft constraints (Schiex et al., 1995), and
casted the problem of tracking PHCA markings as
a soft constraint optimization problem whose solu-
tions are the most probable trajectories (sequences of
markings) within a window of an N time steps. In
the following, we recap this encoding and show how
the problem of tracking plans is formulated as con-
straint optimization problem based on an encoding of a
PHCA model, available observations, and the produc-
tion plan as soft constraints.

Encoding PHCA Models as Soft Constraints
The PHCA model is encoded as variables and con-
straints of a probabilistic variant of a constraint
optimization problem (COP), which is defined as
follows:

Definition 3 (Constraint Optimization Problem) A
Probabilistic Constraint Optimization Problem (COP)
R is a triple (X,D,C) where X = {X1, ..., Xn} is
a set of variables with corresponding set of finite do-
mains D = {D1, . . . , Dn}, and C = {C1, . . . , Cr}
is a set of constraints (Si, Fi) with scope Si =
{Xi1, . . . , Xim} ⊆ X and a constraint function Fi :
Di1 × . . . × Dim → [0, 1]. The constraint function
maps partial assignments of variables in Si to a prob-
ability value in [0, 1]. Given variables of interest (so-
lution variables) Y ⊆ X , a solution to the COP is an
assignment to Y that has an extension to all variables
X that maximizes the global probability value in terms
of the functions Fi.

The PHCA model encoding as a probabilistic COP
consists of:
• Set of variables X(t)

Σ ∪ Π(t) ∪ X(t)
Exec for t =

0..N , where X(t)
Σ = {L(t)

1 , ..., L
(t)
|Σ|} is a set of

variables that correspond to PHCA locations li ∈
Σ, Π(t) is the set of PHCA variables at time t,
andX(t)

Exec = {E(t)
1 , ..., E

(t)
n } is a set of auxiliary

variables used for encoding the execution seman-
tics of the PHCA within an N -step time window.
• Set of finite, discrete-valued domains
DXΣ ∪ DΠ ∪ DXExec

, where DXΣ =
{{Marked, Unmarked}} contains the sin-
gle domain for variables in XΣ, DΠ is the set of
domains for PHCA variables Π, and DExec is a
set of domains for variables XExec.
• Set of logical (hard) constraints R ⊆ C that in-

clude the behavioral constraints associated with
locations within the PHCA, as well as the encod-
ing of the PHCA execution semantics.
• Set of soft-constraints which encode all proba-

bilistic features, such as the probability distribu-
tion PΞ of PHCA start states and probabilities as-
sociated with PHCA transitions PT .

Hard constraints such as behavioral PHCA con-
straints are represented by a soft constraint function
F mapping (partial) variable assignments disallowed
by the constraint to 0.0 and allowed assignments, or
models, to 1.0. The optimal solutions to the COP are
assignments to solution variables X(t)

Σ for {t, . . . , t +
N}, representing the most probable PHCA state tra-
jectories. To avoid confusion, we refer to the behav-
ioral and guard constraints of a PHCA as PHCA con-
straints, and COP (soft and hard) constraints simply as
constraints.

Executing a PHCA, given a marking m(t), means
to identify possible target locations to be marked at
t + 1, probabilistically choose transitions and check
consistency of observations and commands with tran-
sition guards as well as behavior of the targets. Also,
it involves checking for interdependences encoded in
behavior PHCA constraints, e.g., that a vibration oc-
curs if and only if a vibration occurs in machining or
in assembly. Finally, targets have to be marked cor-
rectly regarding, among other things, the hierarchical
structure of a PHCA and initial marking.

These execution semantics are encoded as COP con-
straints for single time points, consisting of consis-
tency and marking constraints, and for transitions be-
tween time points. The COP consists of N copies of
these constraints, corresponding to theN time steps of
the time window. Variables belonging to time step t
are marked by superscript (t). Marking constraints are
less important here, therefore we focus on consistency
and transition constraints.

PHCA constraints are local to locations (behavior)
or transitions (guards), i.e., if inconsistent, they render
a specific location or transition impossible. In contrast,
COP constraints always globally refer to the complete
model. If inconsistent, no COP solution and therefore
no PHCA trajectory exists. This means PHCA con-
straints cannot be mapped directly to COP constraints.
The solution are consistency constraints: they explic-
itly encode consistency of behavior and guards by con-
necting the PHCA constraints with auxiliary variables
Behavior

(t)
L , Guard

(t)
τ ∈ XExec for locations L and

transitions τ at time t:
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Behavioral Consistency: (∀t ∈ {0..N},∀L ∈ Σ :
Behavior

(t)
L = Consistent⇔ C(L)(t))

Transition Guard Consistency: (∀ t ∈ {0..N − 1}, ∀
τ ∈ T : Guard(t)

τ = Consistent⇔ G(τ)(t))
Transition choice constraints encode, for a given lo-

cation, that a single outgoing transition may be prob-
abilistically enabled at time t. All transitions are as-
signed auxiliary variables {T (t)|t ∈ {0..N}} with do-
main {Enabled,Disabled}, encoding whether a tran-
sition T is possible in between t and t + 1, regardless
of guard satisfaction.
Probabilistic Transition Choice:1 (∀t ∈ {0..N −
1},∀P ∈ Σp : (∃τ ∈ {T |Source(T ) = P} ⇒
[P (t) = Marked ⇔ (∃T ∈ {T |Source(T ) =
P} : T (t) = Enabled ∧ (∀T ′ ∈ ({T |Source(T ) =
P} − {T}) : T ′(t) = Disabled ))]

∧
[P (t) =

Unmarked⇔ (∀T ∈ {T |Source(T ) = P} : T (t) =
Disabled)]))

The probability distribution over all possible tran-
sitions is represented by the following soft con-
straint function FT with scope ST = {P (t)} ∪
{T (t)

i |Source(Ti) = P}, mapping each model M of
the transition choice constraint to probability values:

FT (M ) =
{
Prob(Ti) if(∃T (t)

i : T (t)
i = Enabled)

1.0 otherwise

If a transition is enabled with some probability > 0,
it’s guard must be satisfied. This is encoded through
transition consistency constraints, which specify al-
lowed assignments to variables T (t) and Guard(t)

τ .
For a more in depth discussion of the COP encoding

of PHCAs we refer to (Mikaelian et al., 2005).

Encoding Plans as Constraints
We consider a plan P and its goal G. A plan
is a sequence of action and start time pairs P =
((a, 0), (a, 1), . . . , (a, n)). The starting times here
are simply represented by indices of time steps.
An action is an assignment to command variables
Cmd(t) ⊆ Π(t) for the corresponding start time t,
referred to by a(t). For example a(t)

cut and a(t)
assemble

are assignments machining.cmd(t) = cut ∧
assembly.cmd(t) = noop and assembly.cmd(t) =
assemble ∧ machining.cmd(t) = noop. P is then
mapped to the following logical constraint: ∀t ∈
{0..N} : a(t).

The plan’s goal G is to produce a flawless product.
We encode this informal description as a logical con-
straint G ≡ ∀PF (tend) ∈ RelevantFeatures(P) :
PF (tend) = OK over product feature variables
PF (t) ∈ {OK,FAULTY } at the end of the execu-
tion, tend. RelevantFeatures() is a function map-
ping a production plan to all product feature variables
which define the product. Each system component is
responsible for a product feature in the sense that if
it fails, the product feature is not present (PF (t) =

1Where {T |Source(T ) = P} is short for {T ∈
T |Source(T ) = P}.

FAULTY ). In our example, there is only a single
product featurePF , which is absent if the cutter is bro-
ken. The goal constraint for the above mentioned plan
(three time steps long) is accordingly PF (3) = OK.

Encoding Observations as Constraints
Observations made during the plan execution (such as
the occurred vibration at t = 2) are added as soft-
constraints over observable variables in the PHCA.
These constraints are very similar to soft-constraints
over command variables resulting from production
plans. An observation at time t is encoded as an
assignment to a corresponding observable variable:
obsV ar(t) = obsV alue. In our example, a vibra-
tion occurs at t = 2, resulting in the assignment
V ibration(2) = OCCURRED. These assignments
can be directly expressed as soft-constraint function.

4.1 Solving Constraints to Enumerate Most
Likely System Trajectories

The three described soft constraint encodings (PHCA
model, plan, observations) form a COP that captures
the probabilistic behavior of the system over a horizon
of N time steps. The model encoding can be done
offline, while the plan and the observations have to
be encoded and added to the COP online. The effect
of adding the plan and observations constraints is that
they render certain PHCA trajectories impossible (zero
probability). For example, the observation of a vibra-
tion renders impossible the trajectory which doesn’t
entail an observed vibration. The goal constraint, how-
ever, is not added to the COP, since adding this con-
straint would render all non-goal-achieving trajecto-
ries impossible (we need these failure trajectories for
normalization in computing the plan’s success proba-
bility, as shown in the next section).

For a given plan P and available observations,
we then enumerate the k best solutions to the COP.
These correspond to the system’s most likely execu-
tion trajectories, or diagnoses, within the N -step hori-
zon. An execution trajectory is a sequence of markings
for each time step, encoded as assignment to location
variables. These are the variables of interest for our
COP. For example, Table 1 shows the most likely exe-
cution trajectory of the example PHCA, given produc-
tion plan Pprod = (acut, aassemble, acut) and obser-
vation V ibration(2) = OCCURRED.

Technically, the k-best enumeration is done by
translating the generated COP (as part of the compila-
tion step) into the weighted CSP format as used by the
soft constraint solver toolbar (Bouveret et al., 2004).
In the online step, we used a modified version of tool-
bar that implements mini-bucket elimination to gener-
ate a search heuristic for the problem. The heuristic
is used by a subsequent A* search to enumerate the
k-best solutions. This approach is described in more
detail in (Kask and Dechter, 1999).

4.2 Combining Plan Tracking and Prognosis
In the previous section, we described a method to track
plan execution within an N -step time window based
on a system model and observations. To assess a plan’s
probability of success, we require not only to track
past system behavior, but also to predict its evolution
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Table 1: Most probable PHCA trajectory for produc-
tion plan Pprod = (acut, aassemble, acut), given a vi-
bration occurred at t = 2. A shown variable X(t)

L in-
dicates a marking of location L at time t.

time marking

0 assembly.vibration.idle
(0)
L ,

assembly.idle
(0)
L , machining.idle(0)

L

1 assembly.vibration.idle
(1)
L ,

assembly.idle
(1)
L , machining.cut(1)

L

2 assembly.vibration.vibration
(2)
L ,

assembly.assemble
(2)
L , machining.idle(2)

L

3 assembly.vibration.idle
(3)
L ,

assembly.idle
(3)
L , machining.cut(3)

L

in the future. In principle, this could be accomplished
in two separate steps: first, assess the system’s state
given the past behavior, and then predict its future be-
havior given this belief state and the plan. However,
this two-step approach leads to a problem. Computing
a belief state (complete set of diagnoses) is intractable,
thus it must be replaced by some approximation (such
as considering only k most likely diagnoses (Kurien
and Nayak, 2000)). But if a plan uses a certain compo-
nent intensely, then this component’s failure probabil-
ity is relevant for assessing this plan, even if it is very
low and therefore would not appear in the approxima-
tion. In other words, the plan to be assessed determines
which parts of the belief state (diagnoses) are relevant.

To address this mutual dependency, we propose a
method that performs diagnosis and plan assessment
simultaneously, by framing it as a single optimization
problem. The key idea is as follows: The optimiza-
tion problem formulation is independent of where the
present time point is within the N -step time window.
We therefore choose it such that the time window cov-
ers the remaining future plan actions as well as the past
behavior. Now solutions to the COP are system trajec-
tories which start in the past and end in the future. We
then compute a plan’s success probability by summing
over trajectories that achieve the goal. Again due to
complexity reasons, we approximate the success prob-
ability by generating only the k most probable trajec-
tories. But since we have only a single optimization
problem now, we don’t have to prematurely cut off un-
likely hypotheses and have only one source of error,
compared to approximating the belief state and pre-
dicting the plan’s evolution based on this estimate.

4.3 Approximating the Plan Success Probability
We denote the set of all trajectories as Θ and the set
of the k-best trajectories as Θ∗. A trajectory is consid-
ered successful if it entails the plan’s goal constraint.
We define SUCCESS := {θ ∈ Θ|∀s ∈ Rsol, s ↓Y =
θ : FG(s) = true}, where Rsol is the set of all solu-
tions to the probabilistic constraint optimization prob-
lem, s ↓Y their projection on marking variables, and
FG(s) is the goal constraint. SUCCESS∗ is the set
of successful trajectories among Θ∗. The exact suc-
cess probability is computed as

P (SUCCESS|Obs,P) =∑
θ∈SUCCESS

P (θ|Obs,P) =

∑
θ∈SUCCESS

P (θ,Obs,P)
P (Obs,P)

=

∑
θ∈SUCCESS

P (θ,Obs,P)∑
θ∈Θ P (θ,Obs,P)

=∑
θ∈SUCCESS P (θ,Obs,P)∑

θ∈Θ P (θ,Obs,P)

The approximate success probability
P ∗(SUCCESS∗|Obs,P) is computed the same
way, only SUCCESS is replaced with SUCCESS∗
and Θ with Θ∗. E(k) := |P (SUCCESS|Obs,P)
−P ∗(SUCCESS∗|Obs,P)| is the error of the above
k-best approximation. It converges to zero as k goes
to infinity. Also, E(k) = 0 if P (SUCCESS|Obs,P)
is 0 or 1. However, as the example in figure 6 shows,
E(k) does in general not decrease monotonically
with increasing k. Therefore, the question is if any
non-trivial bounds can be formulated for E(k). We
cannot yet answer this question. However, we suppose
that bounds derived for submodularity optimization
in (Krause and Guestrin, 2007) can be applied to our
case. In particular, we conjecture that the trajectory
enumeration for plan assessment has the property
of diminishing returns, that is, the more trajectories
are enumerated, the less is learned about the plan’s
success probability. Submodular objective functions
generalize the concept of diminishing returns; if a
submodular, non-decreasing objective function F (k)
can be derived from E(k), and our best-first A*
algorithm can be cast as an instance of the greedy
algorithmic scheme in (Krause and Guestrin, 2007),
then these bounds also hold for our algorithm.

4.4 Algorithm for Plan Evaluation
Plans are generated by the planner and then advanced
until they are finished or new observations are avail-
able. In the latter case the currently executed plan
is evaluated using Algorithm 1. It first computes the
k-best solutions to the COP using an external solver
(toolbar in our case). This results in the k most prob-
able trajectories. Then, using these trajectories, it ap-
proximates the success probability of plan P and fi-
nally compares the probability against the two thresh-
olds ωsuccess and ωfail. Now we have to address one
of three cases: (1) The probability is above ωsuccess,
i.e. the plan will probably succeed, (2) the probability
is below ωfail, i.e. the plan will probably fail or (3)
the probability is in between both thresholds, which
means the case cannot be decided. In the first case
we simply continue execution. In the second case we
have to adapt the plan to the new situation. This is
done by REPLAN(P , Θ∗), which modifies the future
actions of P taking into account the diagnostic in-
formation contained in Θ∗. The third case indicates
that not enough information about the system’s cur-
rent state is available. As a reaction, the procedure
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REPLANPERVASIVEDIAGNOSIS(P , Θ∗) implements
a recently developed method called pervasive diagno-
sis (Kuhn et al., 2008). It addresses this problem by
augmenting a plan with information gathering actions
(we do not detail the procedures REPLAN and RE-
PLANPERVASIVEDIAGNOSIS as they are beyond this
paper’s scope).

Algorithm 1
1: procedure EVALUATEPLAN(R = (X,D,C),
Obs, P)

2: R’← add constraints over Obs and P toR
3: Θ∗ ← k-best solutions ofR’ for Y
4: p← P ∗(SUCCESS∗|Obs,P)
5: if p > ωsuccess then return
6: else if p < ωfail then
7: stop execution of P
8: REPLAN (P , Θ∗)
9: else

10: stop execution of P
11: REPLANPERVASIVEDIAGNOSIS(P , Θ∗)
12: end if
13: end procedure

5 EXPERIMENTAL RESULTS
We ran experiments for five small variations of our
example scenario, where Pprod uses the machining
station zero to four times. The time window size
N accordingly ranges from 2 to 6, problem sizes
range from 240 to 640 variables and 240 to 670 con-
straints. Figure 6 shows the success probabilities
for different Pprod and k. Table 2 shows the run-
time in seconds and the peak memory consumption
in megabytes for computing success probabilities in
the planning scenarios, additionally ranging over dif-
ferent values for the mini-bucket parameter i. As ex-
pected, with increasing use of the machining station-
ing station, P ∗(SUCCESS∗|Obs,Pprod) decreases.
Also, runtime increases for larger time windows. The
effect of approximation (choosing lower k) is that
P ∗(SUCCESS∗|Obs,Pprod) increasingly deviates
from the exact solution. In our example, the approxi-
mation tends to be optimistic. In general, however, we
think that P ∗(SUCCESS∗|Obs,Pprod) can be pes-
simistic, if success trajectories are pruned first when
decreasing k. Increasing k hardly seems to affect the
runtime, especially if the mini-bucket search heuris-
tic is strong (bigger i-values). For weaker heuristics
the influence increases slightly. Memory consumption
is affected much stronger by k. Here also, a weaker
search heuristic means stronger influence of k.

6 RELATED WORK
In probabilistic verification of model-based programs
(Mahtab et al., 2004), the problem is to determine the
most likely circumstances under which a high-level
control program drives the system towards a goal vi-
olating state. A plan can be understood as such a high
level control program; so in general, this problem is
similar to the plan assessment problem. However, our
problem differs in that we are interested in the set of all
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Figure 6: Approximate success probability (y-axis) of
plan Pprod against varying usage of the machining
station (x-axis) after the observation of a vibration at
t = 2.

goal achieving system trajectories, from which we de-
rive the plan’s success probability, while for the verifi-
cation problem, only the single most probable goal vi-
olating trajectories are interesting. Therefore we have
to go one step further, not only enumerating the tra-
jectories, but also summing over them to compute the
success probability.

McDermott (McDermott, 1993) and Beetz’s (Beetz,
2000) Reactive Plan Language (RPL) chooses a dif-
ferent approach to deal with system failures and un-
certainty. It uses a hierarchical task decomposition,
breaking down top level goals to a finer granularity re-
cursively. The plan itself is not a sequence of actions
but executable code. The language allows reasoning
on and transformation of the plans. Heuristic routines
attain the subgoals and cope with failures and unex-
pected events during the execution. A goal for finding
a cup could e.g. look in the dishwasher after seeing
that no cups are left in the cupboard. This approach is
particularly promising in domains of high uncertainty,
where classical planning fails. However, the RPL ap-
proach currently neglects explicit diagnosis techniques
and relies on the observability of relevant environment
states.

7 CONCLUSION AND FUTURE WORK
We presented a model-based method that combines di-
agnosis of past execution steps with prognosis of fu-
ture execution steps of production plans, in order to
allow the production system to autonomously react
to failures and other unforeseen events. The method
makes use of probabilistic constraint optimization to
efficiently solve this combined diagnosis/prognosis
problem. Preliminary results for a real-world machin-
ing scenario show it can indeed be used to guide the
system away from plans that rely on suspect system
components. Future work will concern the integra-
tion of the method into our overall planning/execution
architecture, and its extension to multiple, simultane-
ously executed plans. We are also interested in ex-
ploiting the plan diagnosis/prognosis results in order
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Table 2: Runtime in seconds / peak memory consumption in megabytes. (e) indicates that the exact success
probability P (SUCCESS|Obs,Pprod) could be computed with this configuration. (mem) indicates that A* ran
out of memory (artificial cutoff at > 1 GB, experiments were run on a Linux computer with a recent dual core 2.2
Ghz CPU with 2 GB RAM).

No. times machining used in Pprod (window size N , #Variables, #Constraints)
k i 0 (2, 239, 242) 1 (3, 340, 349) 2 (4, 441, 456) 3 (5, 542, 563) 4 (6, 643, 670)
1 10 < 0.1 / 1.8 0.1 / 6.8 0.1 / 19.0 (mem) (mem)

15 0.1 / 1.9 0.3 / 4.2 0.5 / 7.8 0.5 / 16.6 0.8 / 32.0
20 0.1 / 1.9 0.5 / 5.2 3.7 / 20.1 6.5 / 34.5 9.5 / 50.7

2 10 < 0.1 / 2.1 0.1 / 11.9 0.2 / 38.5 (mem) (mem)
15 0.1 / 2.2 0.3 / 5.4 0.5 / 9.7 0.6 / 28.0 0.8 / 52.0
20 0.1 / 2.2 0.5 / 6.4 3.7 / 21.8 6.5 / 37.2 9.5 / 55.8

3 10 < 0.1 / 2.3 (e) 0.1 / 11.9 0.2 / 40.1 (mem) (mem)
15 0.1 / 2.4 (e) 0.3 / 5.4 0.5 / 11.4 0.6 / 29.9 0.9 / 55.5
20 0.1 / 2.4 (e) 0.5 / 6.4 3.7 / 23.5 6.6 / 38.3 9.5 / 57.4

4 10 (e) 0.1 12.5 0.2 / 40.1 (mem) (mem)
15 (e) 0.3 / 5.9 0.5 / 11.4 0.6 / 30.9 0.9 / 57.2
20 (e) 0.5 / 6.9 3.7 / 23.5 6.6 / 39.3 9.5 / 59.1

5 10 (e) 0.1 / 13.1 0.2 / 40.7 (mem) (mem)
15 (e) 0.3 / 6.6 0.5 / 12.0 0.6 / 33.6 0.9 / 59.5
20 (e) 0.5 / 7.6 3.7 / 24.0 6.6 / 42.8 9.5 / 63.9

10 10 (e) 0.1 / 14.0 (e) 0.2 / 43.4 (e) (mem) (mem)
15 (e) 0.3 / 6.7 (e) 0.5 / 14.7 (e) 0.6 / 36.2 0.9 / 64.8
20 (e) 0.6 / 7.7 (e) 3.8 / 26.6 (e) 6.6 / 45.8 9.6 / 68.9

to update the underlying system model, for instance,
to automatically adapt to parameter drifts or wear of
components.
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NOMENCLATURE
a(t) action to be executed at time t
COPR constraint optimization problemR
G a plan’s goal
k number of hypotheses/system trajectories
N size of time window in time steps
ωsuccess plan success threshold
ωfail plan failure threshold
P general production plan
Pprod example production plan
PHCA probabilistic hierarchical constraint automata
Θ set of all system trajectories
Θ∗ set of k best trajectories
Y COP solution variables
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