
MBT 2009

Computing Optimal Tests for

Non-deterministic Systems

Using DNNF Graphs

Anika Schumann
1

Institut für Informatik
Technische Universität München

85748 Garching, Germany

Martin Sachenbacher
2

Institut für Informatik
Technische Universität München

85748 Garching, Germany

Jinbo Huang
3

National ICT Australia and
The Australian National University

Canberra, ACT 0200 Australia

Abstract

The goal of testing is to distinguish between a number of hypotheses about a system—for example, dif-
ferent diagnoses of faults—by applying input patterns and verifying or falsifying the hypotheses from the
observed outputs. Optimal distinguishing tests (ODTs) are those input patterns that are most likely to
distinguish between hypotheses about non-deterministic systems. Finding ODTs is practically important,
but it amounts in general to determining a ratio of model counts and is therefore computationally very
expensive.
In this paper, we present a novel approach to this problem, which uses structural properties of the system
to limit the complexity of computing ODTs. We first construct a compact graphical representation of
the testing problem via compilation into decomposable negation normal form. Based on this compiled
representation, we show how one can evaluate distinguishing tests in linear time, which allows us to efficiently
determine an ODT. Experimental results from a real-world application show that our method can compute
ODTs for instances that were intractable for previous approaches.

Keywords: testing, DNNF graphs, model counting.

1 Email: anika.schumann@in.tum.de
2 Email: sachenba@in.tum.de
3 Email: jinbo.huang@nicta.com.au

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Martin Sachenbacher
- Preprint -

Martin Sachenbacher

Martin Sachenbacher

1 Introduction

Testing asks whether a system can be stimulated with input patterns such that
different hypotheses about the system can be verified or falsified from the observed
output patterns. Applications include model-based fault analysis of technical sys-
tems, autonomous control (acquiring sensor inputs to discriminate among competing
state estimates), and bioinformatics (designing experiments that help distinguish
between different possible explanations of biological phenomena).

In many real-world applications of testing, the underlying models are non-
deterministic; applying an input can lead to several possible outputs. Different
notions of testing with such non-deterministic models have been introduced. In
the area of diagnosis, [11] introduced definitely and possibly discriminating tests

(DDTs and PDTs) for systems modeled as constraints. For a DDT, the sets of pos-
sible outputs are disjoint and thus it will necessarily distinguish among hypotheses,
whereas for a PDT, the sets partially overlap and thus it may or may not distinguish
among hypotheses. In automata theory, [1] studied the analogous problem of gen-
erating strong and weak distinguishing sequences for non-deterministic finite state
machines; for sequences of length at most k ∈ N, this can be reduced to the problem
of finding DDTs and PDTs [6]. [7] introduced optimal distinguishing tests (ODTs),
which generalize DDTs and PDTs by maximizing the ratio of distinguishing over
non-distinguishing possible outcomes. Finding ODTs is important as it reduces the
number of tests to be executed and the overall costs of the testing process. [7] pro-
posed and analyzed a simple greedy-type algorithm to approximate ODTs, which
in some real-world applications produces test inputs whose distinguishing ratios are
close to those of ODTs.

In this paper, we present a novel search algorithm to compute ODTs (and thus
DDTs and PDTs), which exploits structural properties of the model to limit the
complexity of optimal test generation. Its main feature is a carefully constructed
graph—through manipulation of logical theories and compilation into decomposable

negation normal form (DNNF) [5]—that allows efficient computation of good upper
bounds on ratios of model counts. These upper bounds are used to prune the search
in a way motivated by a recent planning algorithm [8]. We show that our method
can compute ODTs for instances that were intractable for previous approaches.

2 Background

Following the framework in [7,10,11], we assume that the system can be modeled
as a constraint satisfaction problem (CSP), which is a triple M = (V,D, C), where
D = D(v1) × . . . ×D(vn) are the finite domains of finitely many variables vj ∈ V,
j = 1, . . . , n, and C = {C1, . . . , Cm} is a finite set of constraints with Ci ⊆ D,
i = 1, . . . ,m. We denote by X the set of all solutions, that is, assignments x ∈ D

to the variables such that all constraints are satisfied. That is, X = {x | x ∈

D, C(x)}, where C(x) denotes x ∈ Ci for all i = 1, . . . , m.
In addition, the system under investigation defines a set of controllable (input)

variables I and a set of observable (output) variables O. Formally, a hypothesis M
for a system is then a CSP whose variables are partitioned into V = I ∪ O ∪ L,

such that I and O are the input and output variables of the system, and for all
assignments to I, the CSP is satisfiable. The remaining variables L = V \ (I ∪ O)
are called internal state variables. We denote by D(I) and D(O) the cross product
of the domains of the input and output variables, respectively: D(I) =×v∈I D(v)
and D(O) =×v∈O D(v).

The goal of testing is then to find assignments of the input variables I that will
cause different assignments of output variables O for different hypotheses. In the
general case of non-deterministic systems, an input assignment can yield more than
one possible output assignments. This case is frequent in practice; one reason is
that in order to reduce the size of a model, it is common to aggregate the domains
of system variables into small sets of values such as ‘low’, ‘med’, and ‘high’; a side-
effect of this abstraction is that the resulting models can no longer be assumed to be
deterministic functions, even if the underlying system behavior was deterministic.
Another reason is the test situation itself: even in a rigid environment such as an
automotive test-bed, there are inevitably variables or parameters that cannot be
completely controlled while testing the device.

In order to capture sets of outputs, for a given hypothesis M and an assign-
ment t ∈ D(I) to the input variables, we define the output function X : D(I) →
2D(O) with t �→ {y | y ∈ D(O), ∃x ∈ X : x[I] = t ∧ x[O] = y}, where 2D(O) de-
notes the power set of D(O), and x[I], x[O] denote the restriction of the vector x
to the input variables I and the output variables O, respectively. Note that since
M will always yield an output, X (t) is non-empty.

2.1 Distinguishing tests

Non-deterministic models have given rise to the introduction of so-called possibly

and definitely distinguishing tests, for short PDT and DDT, respectively [11]. The
first type of test (PDT) might distinguish between hypotheses, as the sets of possible
outputs partially overlap, whereas the second type (DDT) will necessarily do so, as
the sets of possible outputs are disjunct:

Definition 2.1 (Distinguishing Tests) Consider k ∈ N hypotheses M1, . . . , Mk

with input variables I and output variables O. Let Xi be the output func-
tion of hypothesis Mi with i ∈ {1, . . . , k}. An assignment t ∈ D(I) to I is
a possibly distinguishing test (PDT), if there exists an i ∈ {1, . . . , k} such that
Xi(t) \

�
j �=i Xj(t) �= ∅. An assignment t ∈ D(I) is a definitely distinguishing

test (DDT), if for all i ∈ {1, . . . , k} it holds that Xi(t) \
�

j �=i Xj(t) = Xi(t).

For testing with non-deterministic automata models instead of logical theories
or CSPs, there exists the analogous notion of so-called weak and strong distinguish-

ing sequences [1,3]. Finding such sequences with a length bounded by some k ∈ N
can be reduced to the problem of finding PDTs and DDTs, by unrolling automata
into a constraint network using k copies of the automata’s transition and observa-
tion relation [6]. Therefore, in this paper we restrict ourselves to models given as
networks of finite-domain constraints.

A2H : i1 i2 o1 A�
2H

: i1 i2 o1

L L L L L L

L H L L H L

L H H H L H

H L H H H H

H H H

not: i1 u AUL: u o1 o2 A�
UL

: u o1 o2

L H L L L L L L

H L L H L L H L

H L L H L L

H L H H H L

H H H

Fig. 1. Circuit with two possibly faulty adders: A�
2H

and A�
UL

.

2.2 Optimal Distinguishing Tests

Due to limited observability or a high degree of non-determinism, it is not un-
common that a DDT for the hypotheses does not exist, and one can instead only
find PDTs. This motivates a quantitative measure for tests that refines and gener-
alizes the previous notions of PDTs and DDTs. The intuition is that if we assume
the possible outcomes (feasible assignments to the output variables) to be (roughly)
equally likely, a PDT will be more likely to distinguish among two given hypotheses
compared to another PDT, if the ratio of possible outcomes that are unique to a hy-
pothesis versus all possible outcomes is higher. The notion of optimal distinguishing
tests introduced in [7] formalizes this goal of finding tests that discriminate among
two hypotheses as good as possible:

Definition 2.2 (Distinguishing Ratio) Given a test input t ∈ D(I) for two
hypotheses M1, M2 with input variables I and output variables O, we define Γ(t)
to be the ratio of feasible outputs that distinguish among the hypotheses versus all
feasible outputs:

Γ(t) :=
|X1(t) ∪ X2(t)| − |X1(t) ∩ X2(t)|

|X1(t) ∪ X2(t)|

Γ is a measure for test quality that refines the notion of PDTs and DDTs: if Γ
is 0, then the test does not distinguish at all, as both hypotheses lead to the same
observations (output patterns). If the value is 1, then the test is a DDT, since the
hypotheses always lead to different observations. If the value is between 0 and 1,
then the test is a PDT (there is some non-overlap in the possible observations).
Note that Γ is well-defined since for any chosen t ∈ D(I), the sets X1(t) and X2(t)
are non-empty.

An optimal distinguishing test (ODT) is one that has the maximal distinguish-
ing ratio. Figure 1 shows an example consisting of three components: one not
component and the two adders: A2H and AUL. The former is high dominant upon
receiving input i2 = H and the latter is low dominant upon receiving input u = L.
Here we consider the hypotheses that either both adders function normally, i.e.
M1 = {not, A2H , AUL} or that both adders are faulty, i.e. M2 = {not, A�

2H , A�
UL}.

This example has the two PDTs: [−i1, i2] and [−i1,−i2] which have the following
distinguishing ratios:

Γ([−i1, i2]) = |{o1,o2},{o1,−o2},{−o1,o2}|

|{o1,o2},{o1,−o2},{−o1,o2},{−o1,−o2}|
= 3

4 and

Γ([−i1,−i2]) = |{−o1,o2}|

|{−o1,o2},{−o1,−o2}|
= 1

2 .

Therefore, the input [−i1, i2] is an ODT for this example.

2.3 Deterministic DNNF

We briefly review graph-based representations of propositional theories. A proposi-
tional theory f is in negation normal form (NNF) [5] if it only uses conjunction (and,
∧), disjunction (or, ∨), and negation (not, ¬), and negation only appears next to
variables. An NNF is decomposable (DNNF) if conjuncts of every conjunction share
no variables. A DNNF is deterministic (d-DNNF) if disjuncts of every disjunction
are pairwise logically inconsistent. A d-DNNF is smooth if disjuncts of every OR
node mention the same set of variables. In the rest of the paper we also assume that
every variable of the logical theory appears in a smooth d-DNNF graph (this can
always be ensured in polynomial time [5]). Figure 2 illustrates a smooth d-DNNF
graph representing the set of PDTs for the example shown in Figure 1.

d-DNNF graphs can be generated for propositional theories in conjunctive nor-
mal form (CNF) using the publicly available C2D compiler [4]. The complexity of
this operation is polynomial in the number of variables and exponential only in the
treewidth of the system in the worst case. Furthermore, given a DNNF graph G
one can compute its projection ΠΣ(G) on variable set Σ in linear time. Without
impact on the computation time we therefore assume that M1 and M2 are defined
over input and output variables only.

Based on a smooth d-DNNF graph G the number of models consistent with a
partial assignment X to the d-DNNF variables can be computed in linear time.
This follows from the fact that each model in G is represented by a subgraph Gs

that satisfies the properties: (i) every OR node in Gs has exactly one child, (ii)
every AND node in Gs has the same children as it has in G, and (iii) Gs has the
same root as G.

Fig. 2. Smooth d-DNNF graph representing ¬i1 ∧ (i2 ∨ ¬i2). “A” and “O” indicate an And and an Or
node, respectively. Numbers in non-leaf nodes are their identifiers.

For instance, for the graph in Figure 2 the model [−i1,−i2] is represented by the
subgraph with nodes A1, O2,−i1,−i2. Henceforth we will denote subgraphs with
these properties as m-subgraphs. Those that satisfy only the first two properies we
will denote as s-subgraphs. Further we say that a subgraph Gs is labeled by a literal
l if Gs has a leaf node l.

Model counting with respect to X then consists of computing the number of
m-subgraphs that are labeled by the literals in X. This is done by a bottom-up
traversal of the graph as shown in Algorithm 1. The Λ(N) value of each node N
represents the number of s-subgraphs rooted in N whose labels are consistent with

Algorithm 1 Model counting with respect to instantiation X

Λ(N) =






1 if N is a leaf node consistent with X

0 if N is a leaf node inconsistent with X
�

i
Λ(Ni) if N =

�
i
Ni

�
i
Λ(Ni) if N =

�
i
Ni

X. Hence, the Λ(N) value of the root of the graph denotes the total number of
consistent models.

3 ODT Computation Using DNNF

In this section we show how we can represent the ODT problem as a single DNNF
graph and thus obtain a representation that directly exploits the system structure
to achieve compactness. Furthermore we describe how we can modify the model
counting algorithm described in Section 2.3 to determine the precise distinguishing
ratio for any complete instantiation of a test vector (CITV) and an upper bound
for any partial instantiation of a test vector (PITV), both in linear time. The latter
allows an efficient search for an ODT without computing the Γ value for all test
vectors. For some cases, depending on the structure of the DNNF graph, an ODT
can be determined directly without a search.

3.1 Encoding the ODT problem as single DNNF

We now describe how we can represent the ODT problem as a single d-DNNF graph
G�. Since the size of that graph impacts the efficiency of the ODT computation
we will also show how we can reduce the size of G� by taking into account that
we are only interested in the model counts for the test vectors, not in the actual
observations. We will show that G� can be projected on its input variables only, if
we compute the number of models before they get lost through the projection.

A graph on whose basis one can compute the distinguishing ratio Γ needs to
represent both hypotheses M1 and M2. These two hypotheses could be encoded
by a graph of the form M1 ∨M2. However, in addition we need to distinguish the
models that belong to the numerator of Γ, i.e., that are consistent with fPDT Ō =
(M1 ∨ M2) ∧ ¬(M1 ∧ M2), and those that do not. We do this by introducing
an additional variable d and by labelling every m-subgraph representing a model
consistent with the numerator with the literal −d and by adding the literal d to the
remaining m-subgraphs. Thus G� is defined as follows:

G
� = (fPDT Ō ∧ ¬d) ∨ (M1 ∧M2 ∧ d)

As stated in Subsection 2.3 this d-DNNF graph can be generated based on the CNF
representations of M1 and M2 using the available C2D compiler. Figure 3 depicts
this graph G� for our example based on which we can compute the distinguishing
ratio for any CITV. For instance, to compute Γ([−i1,−i2]) we count the number
of m-subgraphs labeled by −i1, −i2 and −d to obtain the numerator of Γ. In this
example there is only one such m-subgraph that consists of the additional nodes:

A1, O2, A4, O6, A8,−o1, and o2. To obtain the denominator of Γ we need to count
the number of models consistent with M1 ∨ M2 (see Definition 2.2), that is, the
number of models consistent with fPDT Ō ∨ (M1 ∧M2). Hence we add the number
of m-subgraphs labeled by −i1, −i2 and −d and the number of those labeled by
−i1, −i2 and d. For our example there is only one subgraph labeled by the latter,
namely the one consisting of the additional nodes: A1, O2, A4, O6, A9,−o1, and
−o2. Hence we obtain Γ([−i1,−i2]) = 1

2 , as given in Subsection 2.2. Note that,
since the definition of graph G’ ensures that each of its m-subgraphs is labeled by
either d or −d, we can also determine the denominator of Γ by counting the number
of m-subgraphs labeled by −i1 and −i2.

Formally Γ(t) based on G’ is defined as follows:

Γ(t) :=
|G�(t ∧ ¬d)|

|G�(t ∧ ¬d)|+ |G�(t ∧ d)|
=
|G�(t ∧ ¬d)|
|G�(t)|

where |G�(X)| denotes the model count under the instantiation X. Hence we can
compute the distinguishing ratio for any CITV using Algorithm 1.

G�
G1

G2

Fig. 3. Graph G’ for the example shown in Figure 1. The bottom label of a node N refers to its local
counts: αN/βN . In graph G1 the bottom label denotes the test assessment values computed by Algorithm 2
when running it with t = [−i1,−i2] and in G2 these values present the results of running Algorithm 3 with
respect to instantiation true.

We now describe how we abstract the non-input variables from G� without losing
information relevant to the ODT problem. This is done by first computing the nodes
NI of the resulting graph G = ΠI(G�) and then by counting the s-subgraphs that are
in G� but not in G. The node set NI is composed of those nodes that have an input
variable as descendant. For the graph G’ in Figure 3 these nodes are the “white”
ones. Formally, a node N ∈ N is in NI iff:
• N is a leaf labeled by an input variable or
• N has a child in NI .

In order to count the s-subgraphs that are in G� but not in G we partition the
set of children for each OR and AND node in G� into those that belong to NI , i.e.,
NJ = {Ni | Ni ∈ NI} and those that do not, i.e., NH = {Ni | Ni /∈ NI}. For these
nodes the counting procedure of Algorithm 1 can be refined as follows:

Λ(N) =






�
h Λ(Nh) +

�
j Λ(Nj) if N =

�
i Ni

�
h Λ(Nh) ·

�
j Λ(Nj) if N =

�
i Ni

where for y = {h, j} and NY = ∅ we define
�

y Λ(Ny) = 1.

The point is that the local count value γN =
�

h Λ(Nh) (resp. γN =
�

h Λ(Nh))
does not change when computing the model count for a different t. This results
from the fact that the s-subgraph rooted in Nh is not labeled by any input variables
and hence is consistent with any test vector. Thus it is sufficient to compute these
values for each node only once. More precisely we label each non-leaf node N by αN

(resp. βN) representing the local count value of the numerator (resp. denominator)
of Γ(N). αN is obtained by running the refined version of Algorithm 1 with respect
to instantiation ¬d and for βN we count the models with respect to instantiation
true, i.e., Λ(N) = 1 for all leaves. Graph G’ in Figure 3 shows this labelling for our
example.

3.2 Computation of Γ(t) based on DNNF graph G

For computing the distinguishing ratio we use the fact that the αN and βN values
of OR nodes in G are necessarily 0. This follows from G� and hence G being smooth,
which means that all s-subgraphs rooted in N are labeled with the same variables.
Therefore, either one of these variables is an input variable in which case the local
counts are 0 for all children of N or none of these variables is an input variable in
which case the OR node itself is not in G. Therefore the distinguishing ratio can be
computed as presented in Algorithm 2. It is obtained from the value of the root as
stated formally in Theorem 3.1. The bottom label of G1 of Figure 3 shows the Λα

and Λβ values for t = [−i1,−i2].

Theorem 3.1 (Test Assessment) Let G be the root node of the smooth DNNF

graph G. Then Γ(t) = Γ(G, t) for any complete instantiation t of input variables.

3.3 Upper bounds for partial test vectors

While the computation of the distinguishing ratio could have also been done based
on two separate DNNF graphs, we now show how this single graph is essential to
our new method for computing upper bounds on the distinguishing ratio based on
a PITV tp. We start by pointing out that Algorithm 2 also retrieves exactly the
subgraph of G that is consistent with t. 4 The Γ(t) value can therefore also be seen
as the Γ value of that subgraph. We will now show how we can compute a subgraph

4 This graph is composed of the root and of all nodes N for which Λβ(N) > 0 and for which at least one
parent Np satisfies Λβ(Np) > 0.

Algorithm 2 Test assessment with respect to instantiation t
For a leaf N consistent with t we set

Λα(N) = Λβ(N) = 1

and for a leaf N inconsistent with t we set

Λα(N) = Λβ(N) = 0.

For remaining nodes we compute:

(Λα(N), Λβ(N)) =






(
�

i
Λα(Ni),

�
i
Λβ(Ni)) if N =

�
i
Ni

(αN ·
�

i
Λα(Ni),

βN ·
�

i
Λβ(Ni)) if N =

�
i
Ni

Then we compute the distinguishing ratio for each node:

Γ(N, t) =

�
0 if Λβ(N) = 0
Λα(N)
Λβ(N) otherwise

for a PITV tp whose Γ value will necessarily be an upper bound on that of every
completion of tp.

This subgraph GS is composed of a set of s-subgraphs and the question of which
of those should be included in GS translates into the question of which children of
an OR node should be included. The distinguishing ratio for such a node N with
children N1, . . . Nj is defined as:

Γ(N, tp) =
Λα(N1) + Λα(N2) · · ·+ Λα(Nj)
Λβ(N1) + Λβ(N2) · · ·+ Λβ(Nj)

.

Therefore, Γ(N, tp) cannot be larger than the Γ value of its “best” child, i.e., the
child with the highest distinguishing ratio. This results from the fact that for
x = a1+b1

a2+b2
and a1

a2
≤

b1
b2

and therefore a1 ≤
a2·b1

b2
we have

x ≤
a2·b1

b2
+ b1

a2 + b2
=

a2 · b1 + b1 · b2

b2 · (a2 + b2)
=

b1 · (a2 + b2)
b2 · (a2 + b2)

=
b1

b2
.

Since this reasoning also holds if the numerator and denominator of x have more
than two summands, we have

Γ(N, tp) ≤ max
i

Λα(Ni)
Λβ(Ni)

.

Hence, we can obtain an upper bound for Γ(N, tp) by setting the values of each OR
node to the values of its “best” child and by computing the values for the other
nodes as in Algorithm 2.

Naturally, the search for an ODT will be the more efficient the tighter the upper
bounds. To that end we include in the subgraph only the “best” child for those
OR nodes that have a leaf as descendant which is not set by tp; see Algorithm 3.
Formally, a node N is set by tp, i.e., set(N, tp) = 1, iff

• N is a leaf node whose variable is set by tp or
• N is an AND or OR node such that for all children Ni we have set(Ni, tp) = 1.

For instance for node O2 of graph G1 shown in Figure 3 we have set(O2, [−i2]) = 1
and set(O2, [−i1]) = 0. Every child of an OR node set by tp is necessarily either
consistent or inconsistent with a complete instantiation of tp regardless of how tp is
completed. Therefore we can compute the distinguishing ratio for these OR nodes
as in Algorithm 2 and are still guaranteed that Γ(N, tp) is an upper bound for every
node N .

Note that resulting from G being smooth all consistent children of an OR node
have necessarily the same set value and thus their Λα and Λβ values are either all
the result of a maximization or all the result of a summation.

Algorithm 3 Upper bound with respect to instantiation tp

For an OR node N =
�

i
Ni we compute:

(Λα(N), Λβ(N)) =






(
�

i
Λα(Ni),

�
i
Λβ(Ni)) if set(N, tp) = 1

(Λα(Nm), if set(N, tp) = 0 and

Λβ(Nm)) Γ(Nm, tp)= maxi Γ(Ni, tp)

For remaining nodes the computation is same as in Algorithm 2. The distinguishing ratio Γ(N, tp) is also

computed as in Algorithm 2.

Note further that we are using the same name for the value function as in
Algorithm 2. The reason is that Algorithm 2 can now be regarded as a special
case of Algorithm 3 where t is a complete instantiation of a test vector, and hence
for all OR nodes the set function returns true. It is precisely in this case that
the computed value is guaranteed to be exact as formally stated in the following
theorem:

Theorem 3.2 (Upper Bound) Let tp be a PITV and G the root node of the

smooth DNNF graph G. Then Γ(t) ≤ Γ(G, tp) for any complete instantiation t of

the free variables in tp.

3.4 ODT computation

With the DNNF graph G and the linear time algorithms to compute the precise
distinguishing ratio for a CITV and an upper bound for a PITV we have obtained the
basis for our ODT search method. This consists of a branch-and-bound search over
the input variables. Iteratively we set the input variables until either all variables
are set and the precise distinguishing ratio is obtained or until the upper bound of
the PITV is lower than the Γ value for a previously computed CITV.

Interestingly, if G has a certain structure we can obtain an ODT without a search
by making use of the facts (i) that we can compute an upper bound ΓUB for the
distinguishing ratio of the ODT by running Algorithm 3 with respect to instantiation
true, and (ii) that there is exactly one test vector t that is consistent with the
resulting subgraph GS . The latter results from graph G being decomposable. Now,

since we can compute Γ(t) using Algorithm 2 we could be able to determine an
ODT in linear time as stated in the following theorem:

Theorem 3.3 Let t be a test vector consistent with the subgraph GS that is obtained

from computing the distinguishing ratio with respect to instantiation true. t is an

ODT that can be computed in linear time if Γ(t) = Γ(GS).

For our example the condition of this theorem holds and hence we could obtain
the ODT t = [−i1, i2] without a search (see G2 of Figure 3). Note that the condition
of this Theorem always holds if G is deterministic. Unfortunately only graph G’ is
guaranteed to be deterministic and the projection operation applied to G’ to obtain
G, i.e., the abstraction from the observable variables, does not preserve determinism.
To ensure determinism we would need to recompile G, but this might alter its
structure completely. This would result in the loss of local count values and hence
our ability to compute the distinguishing ratio from that graph.

4 Experimental Evaluation

We evaluated our DNNF-based testing method on a model of an automotive engine
test-bed [9], which consists of three major components: engine, pipe, and throttle.
The goal is to find leaks in the pipe by assigning three to four controllable variables,
and observing three to four measurable variables. The problem has been turned into
sets of discrete instances of varying sizes by applying different abstractions to the
original mixed discrete-continuous model, and using a direct encoding from CSP to
SAT [12].

inst. #nodes time inst. #nodes time

1a 58 0.04 1b 66 0.06

2a 103 0.06 2b 124 0.07

3a 161 0.09 3b 191 0.10

4a 205 0.10 4b 4865 14.7

5a 329 0.20 5b 48238 396

6a 245 0.21 6b 102817 1566

7a 362 0.40 7b – –

8a 4766 5.41 8b – –

9a 2654 36.6 9b – –

10a 65063 414 10b – –
Table 1

Results of ODT (left) and DDT (right) computation.

Table 1 shows the experimental results for computing ODTs and DDTs. For
each instance, we report the size (number of nodes) of the DNNF graph computed,
and the computation time in seconds on a Linux Dual-Core PC with 1GB of RAM.

For instances that have DDTs, we compared our method with the most recent
specialized DDT approach [10] based on quantified Boolean formulas and the QBF
solver sKizzo [2]. That approach was able to solve instances 1b–3b and ran out
of memory for the rest. In contrast, our ODT approach could also solve instances
4b–6b.

Our method is the first that computes exact ODTs; hence we cannot compare
it directly with previous approaches. However, we used the greedy algorithm of [7]
to compute approximate solutions for the same problem instances. This algorithm
was only able to solve instances 1a–7a; that is, for instances 8a–10a we were able to
compute an optimal solution where the previous approach could not even compute
a suboptimal one.

5 Conclusion and Future Work

Optimal distinguishing tests generalize and refine the notion of possibly and defi-
nitely distinguishing and strong and weak tests for non-deterministic systems. Since
computing ODTs can be computationally very expensive, previous work has focused
on approximate solutions. We presented a new method to compute exact ODTs
based on innovative ways of compiling the ODT problem into DNNF and comput-
ing upper bounds to prune a systematic search. Experimental results show that
the method is able to compute both ODTs and DDTs for instances that were too
large for previous methods. Future work may include extensions of this method to
finding tests with minimal costs, or to situations where possible output patterns
cannot be assumed to be equally likely.

References

[1] R. Alur, C. Courcoubetis, and M. Yannakakis. Distinguishing tests for nondeterministic and
probabilistic machines. In Proc. ACM Symposium on Theory of Computing, pages 363–372, 1995.

[2] M. Benedetti. skizzo: A suite to evaluate and certify QBFs. In Proc. CADE-05, 2005.

[3] S. Boroday, A. Petrenko, and R. Groz. Can a model checker generate tests for non-deterministic
systems? Elec. Notes Theor. Comp. Sci., 190:3–19, 2007.

[4] A. Darwiche. The c2d compiler user manual. Technical report, Comp. Sci. UCLA, 2005.

[5] A. Darwiche and P. Marquis. A knowledge compilation map. Journal of Artificial Intelligence Research,
17:229–264, 2002.

[6] M. Esser and P. Struss. Fault-model-based test generation for embedded software. In Proc. IJCAI-07,
pages 342–347, 2007.

[7] S. Heinz and M. Sachenbacher. Using model counting to find optimal distinguishing tests. ZIB Report
08-32, Zuse Institute Berlin, 2008.

[8] J. Huang. Combining knowledge compilation and search for conformant probabilistic planning. In
Proc. ICAPS-06, pages 253–262, 2006.

[9] J. Luo, K. Pattipati, L. Qiao, and S. Chigusa. An integrated diagnostic development process for
automotive engine control systems. IEEE Trans. on Systems, Man, and Cybernetics, 37(6):1163–1173,
2007.

[10] M. Sachenbacher and S. Schwoon. Model-based testing using quantified CSPs. In ECAI-08 Workshop
on Model-based Systems, 2008.

[11] P. Struss. Testing physical systems. In Proc. AAAI-94, pages 251–256, 1994.

[12] T. Walsh. SAT vs. CSP. In Proc. of CP-00, pages 441–456, 2000.

