
Constraint-Based Optimal Testing
Using DNNF Graphs!

Anika Schumann1, Martin Sachenbacher2, and Jinbo Huang3

1 Cork Constraint Computation Centre, University College Cork, Ireland
2 Institut für Informatik, Technische Universität München, Germany

3 NICTA and Australian National University, Australia

Abstract. The goal of testing is to distinguish between a number of
hypotheses about a system—for example, different diagnoses of faults—
by applying input patterns and verifying or falsifying the hypotheses from
the observed outputs. Optimal distinguishing tests (ODTs) are those
input patterns that are most likely to distinguish between hypotheses
about non-deterministic systems. Finding ODTs is practically important,
but it amounts in general to determining a ratio of model counts and is
therefore computationally very expensive.

In this paper, we present a novel approach to constraint-based ODT
generation, which uses structural properties of the system to limit the
complexity of computation. We first construct a compact graphical repre-
sentation of the testing problem via compilation into decomposable nega-
tion normal form. Based on this compiled representation, we show how
one can evaluate distinguishing tests in linear time, which allows us to
efficiently determine an ODT. Experimental results from a real-world
application show that our method can compute ODTs for instances that
were intractable for previous approaches.

Keywords: Algorithms, applications, testing, DNNF graphs.

1 Introduction

Testing asks whether a system can be stimulated with input patterns, such
that different hypotheses about the system can be verified or falsified from the
observed output patterns. Applications include model-based fault analysis of
technical systems, autonomous control (acquiring sensor inputs to discriminate
among competing state estimates), and bioinformatics (designing experiments
that help distinguish between different possible explanations of biological phe-
nomena).

In many real-world applications of testing, the underlying models are non-
deterministic; applying an input can lead to several possible outputs. Different
! This work was supported by Deutsche Forschungsgemeinschaft under grant SA

1000/2-1, the Science Foundation Ireland under the ITOBO Grant No. 05/IN/I886,
and NICTA. The latter is funded by the Australian Government as represented by
the Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 731–745, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Martin Sachenbacher
Preprint submitted to LNCS

Martin Sachenbacher

732 A. Schumann, M. Sachenbacher, and J. Huang

notions of testing with such non-deterministic models have been introduced. In
the area of diagnosis, [13] introduced definitely and possibly discriminating tests
(DDTs and PDTs) for systems modeled as constraints. For a DDT, the sets of
possible outputs are disjoint and thus it will necessarily distinguish among hy-
potheses, whereas for a PDT, the sets partially overlap and thus it may or may
not distinguish among hypotheses. In automata theory, [1] studied the analo-
gous problem of generating strong and weak distinguishing sequences for non-
deterministic finite state machines; for sequences of length at most k ∈ N, this
can be reduced to the problem of finding DDTs and PDTs [7].

For example, consider the network shown in Figure 1, which consists of one
not component and two adders A2H and AUL. The former is high dominant
upon receiving input i2 = H and the latter is low dominant upon receiving
input u = L. Here we consider the two hypotheses M1, M2 that either both
adders function normally, i.e. M1 = {not, A2H , AUL} or that both adders are
faulty, i.e. M2 = {not, A′

2H , A′
UL}. Then there exists no DDT, but two PDTs:

[−i1, i2] and [−i1,−i2].
[8] introduced optimal distinguishing tests (ODTs), which generalize DDTs

and PDTs by maximizing the ratio of distinguishing over non-distinguishing
possible outcomes. In the example from Figure 1, the PDT [−i1, i2] has a better
distinguishing ratio than the PDT [−i1,−i2], and is therefore an ODT for this
example. Finding ODTs is important as it reduces the number of tests to be
executed and the overall costs of the testing process. [8] proposed and analyzed
a simple greedy-type algorithm to approximate ODTs, which in some real-world
applications produces test inputs whose distinguishing ratios are close to those
of ODTs.

In this paper, we present a novel search algorithm to compute ODTs (and thus
DDTs and PDTs), which exploits structural properties of the model to limit the
complexity of optimal test generation. Its main feature is a carefully constructed
graph—through manipulation of logical theories and compilation into decom-
posable negation normal form (DNNF) [6]—that allows efficient computation of
good upper bounds on ratios of model counts. These upper bounds are used

A2H : i1 i2 o1 A′
2H : i1 i2 o1

L L L L L L
L H L L H L
L H H H L H
H L H H H H
H H H

not: i1 u AUL: u o1 o2 A′
UL: u o1 o2

L H L L L L L L
H L L H L L H L

H L L H L L
H L H H H L
H H H

Fig. 1. Circuit with two possibly faulty adders: A′
2H and A′

UL

Constraint-Based Optimal Testing Using DNNF Graphs 733

to prune the search in a way motivated by a recent planning algorithm [9]. We
show that our method can compute ODTs for instances that were intractable
for previous approaches.

2 Background

Following the framework in [8,12,13], we assume that the system can be modeled
as a constraint satisfaction problem (CSP), which is a triple M = (V ,D, C), where
D = D(v1)× . . .×D(vn) are the finite domains of finitely many variables vj ∈ V ,
j = 1, . . . , n, and C = {C1, . . . , Cm} is a finite set of constraints with Ci ⊆ D,
i = 1, . . . , m. We denote by X the set of all solutions, that is, assignments x ∈ D
to the variables such that all constraints are satisfied. That is, X = {x | x ∈
D, C(x)}, where C(x) denotes x ∈ Ci for all i = 1, . . . , m.

In addition, the system under investigation defines a set of controllable (in-
put) variables I and a set of observable (output) variables O. Formally, a hy-
pothesis M for a system is then a CSP whose variables are partitioned into
V = I ∪ O ∪ L, such that I and O are the input and output variables of the
system, and for all assignments to I, the CSP is satisfiable. The remaining vari-
ables L = V \ (I ∪ O) are called internal state variables. We denote by D(I)
and D(O) the cross product of the domains of the input and output variables,
respectively: D(I) = ×v∈I D(v) and D(O) = ×v∈O D(v).

The goal of testing is then to find assignments of the input variables I that
will cause different assignments of output variables O for different hypotheses.
In the general case of non-deterministic systems, an input assignment can yield
more than one possible output assignments. This case is frequent in practice; one
reason is that in order to reduce the size of a model, it is common to aggregate
the domains of system variables into small sets of values such as ‘low’, ‘med’,
and ‘high’; a side-effect of this abstraction is that the resulting models can no
longer be assumed to be deterministic functions, even if the underlying system
behavior was deterministic. Another reason is the test situation itself: even in a
rigid environment such as an automotive test-bed, there are inevitably variables
or parameters that cannot be completely controlled while testing the device.

In order to capture sets of outputs, for a given hypothesis M and an assign-
ment t ∈ D(I) to the input variables, we define the output function X : D(I) →
2D(O) with t '→ {y | y ∈ D(O), ∃x ∈ X : x[I] = t ∧ x[O] = y}, where 2D(O)

denotes the power set of D(O), and x[I], x[O] denote the restriction of the vec-
tor x to the input variables I and the output variables O, respectively. Note
that since M will always yield an output, X (t) is non-empty.

2.1 Distinguishing Tests

Non-deterministic models have given rise to the introduction of so-called pos-
sibly and definitely distinguishing tests, for short PDT and DDT, respectively
[13]. The first type of test (PDT) might distinguish between hypotheses, as the
sets of possible outputs partially overlap, whereas the second type (DDT) will
necessarily do so, as the sets of possible outputs are disjunct:

734 A. Schumann, M. Sachenbacher, and J. Huang

Definition 1 (Distinguishing Tests). Consider k ∈ N hypotheses M1, . . . , Mk

with input variables I and output variables O. Let Xi be the output function of
hypothesis Mi with i ∈ {1, . . . , k}. An assignment t ∈ D(I) to I is a pos-
sibly distinguishing test (PDT), if there exists an i ∈ {1, . . . , k} such that
Xi(t) \

⋃
j $=i Xj(t) *= ∅. An assignment t ∈ D(I) is a definitely distinguish-

ing test (DDT), if for all i ∈ {1, . . . , k} it holds that Xi(t) \
⋃

j $=i Xj(t) = Xi(t).

For testing with non-deterministic automata models instead of logical theories
or CSPs, there exists the analogous notion of so-called weak and strong distin-
guishing sequences [1,3]. Finding such sequences with a length bounded by some
k ∈ N can be reduced to the problem of finding PDTs and DDTs, by unrolling
automata into a constraint network using k copies of the automata’s transition
and observation relation [7]. Therefore, in this paper we restrict ourselves to
models given as networks of finite-domain constraints.

2.2 Optimal Distinguishing Tests

Due to limited observability or a high degree of non-determinism, it is not un-
common that a DDT for the hypotheses does not exist, and one can instead
only find PDTs. This motivates a quantitative measure for tests that refines and
generalizes the previous notions of PDTs and DDTs. The intuition is that if we
assume the possible outcomes (feasible assignments to the output variables) to
be (roughly) equally likely, a PDT will be more likely to distinguish among two
given hypotheses compared to another PDT, if the ratio of possible outcomes
that are unique to a hypothesis versus all possible outcomes is higher. The notion
of optimal distinguishing tests introduced in [8] formalizes this goal of finding
tests that discriminate among two hypotheses as good as possible:

Definition 2 (Distinguishing Ratio). Given a test input t ∈ D(I) for two
hypotheses M1, M2 with input variables I and output variables O, we define Γ (t)
to be the ratio of feasible outputs that distinguish among the hypotheses versus
all feasible outputs:

Γ (t) :=
|X1(t) ∪ X2(t)|− |X1(t) ∩ X2(t)|

|X1(t) ∪ X2(t)|

Γ is a measure for test quality that refines the notion of PDTs and DDTs: if Γ
is 0, then the test does not distinguish at all, as both hypotheses lead to the same
observations (output patterns). If the value is 1, then the test is a DDT, since the
hypotheses always lead to different observations. If the value is between 0 and 1,
then the test is a PDT (there is some non-overlap in the possible observations).
Note that Γ is well-defined since for any chosen t ∈ D(I), the sets X1(t) and
X2(t) are non-empty.

An optimal distinguishing test (ODT) is one that has the maximal distinguish-
ing ratio. For the example in Figure 1, the two PDTs [−i1, i2] and [−i1,−i2] for
the hypotheses M1 = {not, A2H , AUL} and M2 = {not, A′

2H , A′
UL} have the

following distinguishing ratios:

Constraint-Based Optimal Testing Using DNNF Graphs 735

Γ ([−i1, i2]) = |{o1,o2},{−o1,o2}|
|{o1,o2},{−o1,o2},{−o1,−o2}| = 2

3 and

Γ ([−i1,−i2]) = |{−o1,o2}|
|{−o1,o2},{−o1,−o2}| = 1

2 .

Therefore, the input [−i1, i2] is an ODT for this example.

2.3 Deterministic DNNF

We briefly review graph-based representations of propositional theories. A propo-
sitional theory f is in negation normal form (NNF) [6] if it only uses conjunction
(and, ∧), disjunction (or, ∨), and negation (not, ¬), and negation only appears
next to variables. An NNF is decomposable (DNNF) if conjuncts of every con-
junction share no variables. A DNNF is deterministic (d-DNNF) if disjuncts
of every disjunction are pairwise logically inconsistent. A d-DNNF is smooth if
disjuncts of every OR node mention the same set of variables. In the rest of
the paper we also assume that every variable of the logical theory appears in
a smooth d-DNNF graph (this can always be ensured in polynomial time [6]).
Such graphs represent each of its models by a subgraph Gs that satisfies the
properties:

– every OR node in Gs has exactly one child,
– every AND node in Gs has the same children as it has in G, and
– Gs has the same root as G.

Henceforth we will denote subgraphs with these properties as m-subgraphs. Those
that satisfy only the first two properties we will denote as s-subgraphs. Further
we say that a subgraph is labeled by a literal l if it has a leaf node l, and that it
is consistent with a partial assignment X to the d-DNNF variables if its labels
are consistent with X .

d-DNNF graphs can be generated for propositional theories in conjunctive
normal form (CNF) using the publicly available C2D compiler [5]. The complex-
ity of this operation is polynomial in the number of variables and exponential
only in the treewidth of the system in the worst case. Furthermore, given a
DNNF graph G one can compute its projection ΠΣ(G) on variable set Σ in
linear time. Without impact on the computation time we therefore assume that
M1 and M2 are defined over input and output variables only.

The left graph of Figure 2 illustrates a smooth d-DNNF graph GN repre-
senting the models for the numerator of Γ for all test vectors for the example
illustrated in Figure 1, i.e. GN = (M1 ∨ M2) ∧ ¬(M1 ∧ M2). Thus it consists of
the three models below that are each represented by a m-subgraph:

Model Nodes of corresponding m-subgraph
{−i1, i2, o1, o2} A1, O2, A3, O5, A6, −i1, i2, o1, o2

{−i1, i2,−o1, o2} A1, O2, A3, O5, A7, −i1, i2, −o1, o2

{−i1,−i2,−o1, o2} A1, O2, A4, A7, −i1, −i2, −o1, o2

Based on a smooth d-DNNF graph G the number of models |G(X)| consistent
with a partial assignment X to the d-DNNF variables can be determined by

736 A. Schumann, M. Sachenbacher, and J. Huang

Algorithm 1. Model counting with respect to instantiation X

Λ(N) =

1 if N is a leaf node consistent with X
0 if N is a leaf node inconsistent with X
∑

i Λ(Ni) if N =
∨

i Ni
∏

i Λ(Ni) if N =
∧

i Ni

counting the number of consistent m-subgraphs in G. This is done by a bottom-
up traversal of the graph that computes for each node N the number of consistent
s-subgraphs Λ(N) rooted in N . Hence, the Λ(N) value of the root of the graph
denotes the total number of consistent models represented by G. Algorithm 1
describes this linear time procedure [4]. An example of it is shown on the right of
Figure 2. The numbers next to the nodes of that graph denote the Λ(N) values
computed by Algorithm 1 when running it with X = [−i1, i2]. Hence for the
numerator of Γ ([−i1, i2]) we get |X1([−i1, i2]) ∪ X2([−i1, i2])| − |X1([−i1, i2]) ∩
X2([−i1, i2])| = 2.

-i2 i2

O2

A3A4

A6 A7

O5

o2 -o1o11 1 1

10

11

2

2

20

-i1

A1 2

1

-i2 i2

O2

A3A4

A6 A7

O5

o2 -o1o1

-i1

A1

Fig. 2. Smooth d-DNNF graph GN representing (M1 ∨ M2) ∧ ¬(M1 ∩ M2) for the
example shown in Figure 1. “A" and “O" indicate an And and an Or node, respectively.
Numbers in non-leaf nodes are their identifiers. On the right, the numbers next to
the nodes denote the Λ(N) values computed by Algorithm 1 when running it with
X = [−i1, i2].

3 ODT Computation Using a d-DNNF Graph

The last section suggests that we can straightforwardly exploit the linear time
d-DNNF based model counting algorithm for our ODT search. Similarly to the
generation of a graph GN representing the models of the numerator of the dis-
tinguishing ratio Γ we could also generate a graph representing the models of
the denominator of Γ . Based on these two graphs we could then determine the
Γ value for any test vector in linear time. However, in order to obtain the test

Constraint-Based Optimal Testing Using DNNF Graphs 737

vector with maximal distinguishing ratio, i.e. the ODT, such an approach re-
quires the computation of the Γ values for every complete instantiation of a test
vector (CITV). Since the number of test cases is exponential in the number of
input variables this procedure would be infeasible for large applications.

This section presents a d-DNNF based branch-and-bound approach that does
not require the Γ computation for every test vector. Its main component is a
linear time algorithm that computes the upper Γ bound for any partial instanti-
ation of a test vector (PITV). Such a procedure requires the simultaneous count
of the models for the numerator and denominator of Γ based on d-DNNF graphs
with identical structure. Since it is computationally very expensive to ensure that
two independently generated d-DNNF graphs have the same structure we rep-
resent the whole ODT problem by a single d-DNNF graph that allows both: the
computation of the numerator and that of the denominator of Γ for every test
vector. The developed branch-and-bound approach then consists of the following
building blocks that are each detailed in the following subsections:

– representation of the ODT problem as single d-DNNF graph G,
– linear time algorithm that computes the Γ value for any CITV based on G,
– linear time algorithm that computes an upper bound for the Γ value for any

PITV based on G, and
– an exhaustive search algorithm that iteratively sets input variables until

either all variables are set and the Γ value for that CITV is computed or
until the upper Γ bound for the PITV is not higher than the Γ value for a
previously computed CITV.

3.1 Encoding the ODT Problem as Single d-DNNF Graph

We now describe how we can represent the ODT problem as a single d-DNNF
graph G that allows the distinction of its models into those that belong to the
numerator of Γ and those that do not. In order to achieve such a partitioning
of nodes we introduce an auxiliary variable d and label every m-subgraph rep-
resenting a model consistent with the numerator with the literal −d and add
the literal d to the remaining m-subgraphs. The latter comprises of the mod-
els GN̄ = M1 ∧ M2 as stated in Definition 2. Thus, the propositional formula
represented by G is defined as follows:

G = ((M1 ∨ M2) ∧ ¬(M1 ∧ M2) ∧ ¬d) ∨ (M1 ∧ M2 ∧ d)
= (GN ∧ ¬d) ∨ (GN̄ ∧ d)

For our example we generate a graph G that represents the following models:
{−d,−i1, i2, o1, o2}, {d,−i1, i2,−o1,−o2}, and
{−d,−i1, i2,−o1, o2}, {d,−i1,−i2,−o1,−o2}.
{−d,−i1,−i2,−o1, o2},

The models on the left correspond to the numerator models of Γ and the ones on
the right to the denominator models of Γ . The graph is illustrated in Figure 3.
Its definition ensures that the distinguishing ratio can be obtained as follows:

738 A. Schumann, M. Sachenbacher, and J. Huang

Γ (t) =
|X1(t) ∪ X2(t)|− |X1(t) ∩ X2(t)|

|X1(t) ∪ X2(t)|

=
|X1(t) ∪ X2(t)|− |X1(t) ∩ X2(t)|

(|X1(t) ∪ X2(t)|− |X1(t) ∩ X2(t)|) + |X1(t) ∩ X2(t)|

=
|GN (t)|

|GN (t)| + |GN̄ (t)| GN GN̄

=
|G(t ∧ ¬d)|

|G(t ∧ ¬d)| + |G(t ∧ d)| G

=
|G(t ∧ ¬d)|

|G(t)|
d ∨ ¬d

true

The computation of the distinguishing ratio based on the later fraction is the
subject of the next subsection.

3.2 Computation of Γ (t) Based on DNNF Graph G

We now show that we can compute the distinguishing ratio by resorting to the
single graph G = (GN ∧ ¬d) ∨ (GN̄ ∧ d). Although this algorithm has the same
complexity than the one based on graphs GN and GN̄ , which we described
earlier, we chose to present it since it will be the basis for the upper bound
algorithm detailed in the next subsection. The latter requires the simultaneous
computation of numerator Λα and denominator Λβ values of Γ . This can be
done by a single bottom-up traversal of the graph as described in Algorithm 2.
The model counting procedure itself is almost identical to the one shown in
Algorithm 1. The only difference is that we set the numerator value Λα for
the leaf node labeled d to 0. This results from the fact that Algorithm 2 is
executed with respect to the instantiation t only, but that the numerator of Γ ,
i.e. |G(t∧¬d)|, is defined with respect to instantiation t∧¬d. Hence we have to
explicitly add the constraint ¬d, i.e. set Λα(d) to 0.

The bottom node label of graph G shown on the left of Figure 3 denotes the
Λα and Λβ values for t = [−i1,−i2]. From its root label the distinguishing ratio
can be retrieved as formally stated in Theorem 1. Note that the distinguishing
ratio of a node is only guaranteed to be correct if it is obtained from the Λα and
Λβ values of its children. Resorting to their Γ values would not be sufficient,
since the numerator and denominator values for OR nodes need to be computed
separately (see also Algorithm 1). For instance, consider node O5 shown on the
left of Figure 3. Its Γ value of 2

3 cannot be obtained from the Γ values of its
children which are 0 (for node A9) and 1 (for nodes A7 and A8).

Theorem 1 (Test Assessment). Let G be the root node of a smooth d-DNNF
graph G representing the propositional formula ((M1∨M2)∧¬(M1 ∧M2)∧¬d)∨
(M1 ∧ M2 ∧ d). Then Γ (t) = Γ (G, t) for any complete instantiation t of input
variables.

Constraint-Based Optimal Testing Using DNNF Graphs 739

The correctness of this Theorem follows from the fact that Γ (t) = |G(t∧¬d)|
|G(t)| as

derived in the previous subsection and from the basic d-DNNF model counting
procedure shown in Algorithm 1.

Algorithm 2. Test assessment with respect to instantiation t
For a leaf N we set:

Λα(N) =

0 if N = d or
N is inconsistent with t

1 otherwise
Λβ(N) =

{
1 if N = d
Λα(N) otherwise

For remaining nodes we compute:

(Λα(N), Λβ(N)) =

(
∑

i Λα(Ni),
∑

i Λβ(Ni)) if N =
∨

i Ni

(
∏

i Λα(Ni),∏
i Λβ(Ni)) if N =

∧
i Ni

Then we compute the distinguishing ratio for each node:

Γ (N, t) =

{
0 if Λβ(N) = 0
Λα(N)
Λβ(N) otherwise

3.3 Upper Bounds for Partial Test Vectors

While the computation of the distinguishing ratio could have also been done
based on two separate d-DNNF graphs, we now show how this single graph is
essential to our new method for computing upper bounds on the distinguishing
ratio based on a PITV tp. These bounds Γ ′(N, tp) are also obtained for each
node N by a bottom-up traversal of graph G. We will show that for any CITV
t of tp we have Γ (N, t) ≤ Γ ′(N, tp) and that we can therefore retrieve an upper
bound of the distinguishing ratio from the Γ ′ value of the root of G.

Naturally, the search for an ODT will be the more efficient the tighter the
upper bounds. The tightest possible bound for a node N is Γ ′(N, tp) = Γ (N, t)
and indeed there is a well defined set of nodes for which we can obtain precisely
that bound. This node set Ns is comprised of all those nodes whose Γ value
does not depend on a free input variable, i.e. on a variable in If which is not set
by tp. This results from the fact that the Γ value for a node is obtained from a
bottom-up traversal of the graph. Hence it depends only on the truth value of its
descendant variables, but not on the remaining variables of the graph. Let Nf

denote the set of the remaining nodes, i.e. that are an ancestor of a free input
variable.1 Then resulting from G being smooth all children NchildN of an OR
node N belong to the same node set, i.e. either NchildN ⊆ Ns or NchildN ⊆ Nf .
For instance, let us consider the computation of the Γ (O2, [−i2]) value for our
1 Formally, N ∈ Nf , iff N is a leaf node of a variable v ∈ If , or N is an AND or OR

node that has at least one child Ni ∈ Nf .

740 A. Schumann, M. Sachenbacher, and J. Huang

A1
(1,2)

O2
(1,2)

A3
(0,0)

A4
(1,2)

A7
(1,1)

A8
(1,1)

A9
(0,1)

O5
(2,3)

O6
(1,2)

-i1
(1,1)

-i2
(1,1)

o1
(1,1)

o2
(1,1)

-o1
(1,1)

-o2
(1,1)

i2
(0,0)

d
(0,1)

-d
(1,1)

A1
(2,3)

O2
(2,3)

A3
(2,3)

A4
(1,2)

A7
(1,1)

A8
(1,1)

A9
(0,1)

O5
(2,3)

O6
(1,2)

-i1
(1,1)

-i2
(1,1)

o1
(1,1)

o2
(1,1)

-o1
(1,1)

-o2
(1,1)

i2
(0,0)

d
(0,1)

-d
(1,1)

Fig. 3. Graph G for the example shown in Figure 1. On the left, the bottom labels
(Λα(N), Λβ(N)) of the nodes refer to the test assessment values computed by Algo-
rithm 2 when running it with t = [−i1,−i2] and on the right they to the upper bound
values computed by Algorithm 3 when running it with tp = [−i1].

example (see left graph of Figure 3). Here we have If = {i1} and thus neither
one of the children A3 or A4 nor O2 itself is labeled by a free input variable.
This means that Γ (O2, [−i2]) is necessarily 1/2 regardless of how tp = [−i2] is
completed, i.e. regardless of whether the CITV is [−i1,−i2] or [i1,−i2].

Hence we can compute the Γ ′(N, tp) value for any node N ∈ Ns using Al-
gorithm 2. In addition, that algorithm can also be used to obtain the Γ ′(N, tp)
value for any leaf node N ∈ Nf . This results from the fact that the free variables
are not inconsistent with tp which implies that Λα(N) and Λβ(N) and therefore
the Γ (N, tp) value are set to the maximal value 1.

Moreover we show (see proof below) that also the Γ ′ value of an AND node
N ∈ Nf can be obtained in analogy to Algorithm 2. Only for OR nodes with
more than one child we need to apply a different procedure if the denominator
value is larger than 0. This results from the fact that the Γ value of an OR
node is retrieved from the separate summation of its children’s numerator and
denominator values, namely:

Γ (N, t) =
Λα(N1) + Λα(N2) · · · + Λα(Nj)
Λβ(N1) + Λβ(N2) · · · + Λβ(Nj)

.

This means that the way in which the Λα(Ni) and Λβ(Ni) values of a free child
Ni influence the Γ (N, t) value depends not only on whether a CITV t will turn
node Ni into a root of a consistent s-subgraph but also on the specific values of
Λα(Ni) and Λβ(Ni). For instance, suppose N has two children N1 and N2 with

Constraint-Based Optimal Testing Using DNNF Graphs 741

Λα(N1) = 1 and Λβ(N1) = 2. Depending on the values of N2 the Γ (N, t) value
could be lower, equal, or higher to the one of Γ (N1, t)=1/2:

Γ (N1, t) > Γ (N, t) = 1+1
2+4 = 1

3 if Λα(N2) = 1 and Λβ(N2) = 4

Γ (N1, t) = Γ (N, t) = 1+1
2+2 = 1

2 if Λα(N2) = 1 and Λβ(N2) = 2 and

Γ (N1, t) < Γ (N, t) = 1+3
2+4 = 2

3 if Λα(N2) = 3 and Λβ(N2) = 4.

Thus it is not possible to determine whether the Λα(Ni) and Λβ(Ni) values
of a particular child should be considered for the upper bound computation of
Γ ′ = (N, tp) without looking at the specific values of its other children. Only the
values of the child with maximal distinguishing ratio can be safely taken into
account for the upper bound computation (see proof below). The procedure is
described in Algorithm 3.

Algorithm 3. Upper bound with respect to instantiation tp

For a leaf N we have:
Λ′

α(N) = Λα(N) and Λ′
β(N) = Λβ(N).

For remaining nodes we compute:

(Λ′
α(N), Λ′

β(N)) =

(Λα(N), Λβ(N)) if N =
∨

i Ni and N ∈ Ns

(Λ′
α(Nm), if N =

∨
i Ni and N ∈ Nf and

Λ′
β(Nm)) Γ (Nm, tp)= maxi Γ (Ni, tp)

(
∏

i Λ′
α(Ni),∏

i Λ′
β(Ni)) if N =

∧
i Ni

Then we compute the distinguishing ratio for each node:

Γ ′(N, t) =

{
0 if Λ′

β(N) = 0
Λ′

α(N)
Λ′

β(N) otherwise

Note that Algorithm 2 can be regarded as a special case of Algorithm 3 where
t is a complete instantiation of a test vector. It is precisely in this case that
the computed value is guaranteed to be exact. Otherwise we certainly obtain an
upper bound as formally stated in the following theorem:

Theorem 2 (Upper Bound). Let tp be a PITV and G the root node of the
smooth d-DNNF graph G representing the propositional formula ((M1 ∨ M2) ∧
¬(M1 ∧ M2) ∧ ¬d) ∨ (M1 ∧ M2 ∧ d). Then Γ (t) ≤ Γ (G, tp) for any complete
instantiation t of the free variables in tp.

Proof
We prove this Theorem by showing that Γ (N, t) ≤ Γ ′(N, tp) for every CITV t
of tp and every node N . This is done by induction on the depth of graph G. The

742 A. Schumann, M. Sachenbacher, and J. Huang

base case is straightforward. The distinguishing ratio Γ (N, tp) of a leaf node N
can either be 0 or 1. In order to ensure that Γ ′(N, tp) is an upper bound for
Γ (N, tp) it is therefore sufficient to set the Γ ′(N, tp) value for all leaves labeled
by a free input variable to 1. This is precisely what Algorithm 3 does by setting
the Λα and Λβ values for these nodes to 1. Thus given a node N with children
N1, . . . , Nj we have the following induction hypothesis for the Λα and Λβ values
with respect to any CITV t of tp:

Λα(N1)
Λβ(N1)

≤ Λ′
α(N1)

Λ′
β(N1)

Λα(N2)
Λβ(N2)

≤ Λ′
α(N2)

Λ′
β(N2)

· · · Λα(Nj)
Λβ(Nj)

≤ Λ′
α(Nj)

Λ′
β(Nj)

(1)

In the induction step we show that for any node whose children satisfy above
hypothesis we also have Γ (N, t) ≤ Γ ′(N, tp). Here we distinguish two cases: (i)
N is an AND node and (ii) N is an OR node.
(i) For an AND node N Algorithm 2 gives us:2

Γ (N, t) =
Λα(N1) · Λα(N2) · · · · Λα(Nj)
Λβ(N1) · Λβ(N2) · · · · Λβ(Nj)

⇒ Γ (N, t) =
Λα(N1)
Λβ(N1)

· Λα(N2)
Λβ(N2)

· · · · Λα(Nj)
Λβ(Nj)

⇒ Γ (N, t) ≤ Λ′
α(N1)

Λ′
β(N1)

· Λ
′
α(N2)

Λ′
β(N2)

· · · · Λ
′
α(Nj)

Λ′
β(Nj)

see induction hypothesis

⇒ Γ (N, t) ≤ Γ ′(N, tp) see Algorithm 3

(ii) In case an OR node N is not labeled by a free variable we have Γ (N, t) =
Γ ′(N, tp) and therefore Γ (N, t) ≤ Γ ′(N, tp). To prove the other case we denote
with Λ′

αMax = Λα(Nmax) and Λ′
βMax = Λβ(Nmax) the corresponding values for

the node with the maximal distinguishing ratio, i.e. Γ ′(Nmax, tp) = Λ′
αMax

Λ′
βMax

=

maxi
Λ′

α(Ni)
Λ′

β(Ni)
. This gives us:

Λα(N1)
Λβ(N1)

≤ Λ′
αMax

Λ′
βMax

Λα(N2)
Λβ(N2)

≤ Λ′
αMax

Λ′
βMax

· · · Λα(Nj)
Λβ(Nj)

≤ Λ′
αMax

Λ′
βMax

see induction hypothesis

⇒ Λα(N1) · Λ′
βMax ≤ Λβ(N1) · Λ′

αMax

. . .
Λα(Nj) · Λ′

βMax ≤ Λβ(Nj) · Λ′
αMax

⇒ Λα(N1) ·Λ′
βMax · · ·+Λα(Nj) ·Λ′

βMax ≤ Λβ(N1) ·Λ′
αMax · · ·+Λβ(Nj) ·Λ′

αMax

⇒ (Λα(N1) · · · + Λα(Nj)) · Λ′
βMax ≤ Λ′

αMax · (Λβ(N1) · · · + Λβ(Nj))

2 In case the Λβ value of a child is 0 the Γ (N, t) value is 0 and hence necessarily less
or equal to Γ ′(N, tp).

Constraint-Based Optimal Testing Using DNNF Graphs 743

⇒ Λα(N1) · · · + Λα(Nj)
Λβ(N1) · · · + Λβ(Nj)

≤ Λ′
αMax

Λ′
βMax

⇒ Λα(N1) · · · + Λα(Nj)
Λβ(N1) · · · + Λβ(Nj)

≤ Γ ′(N, tp)

⇒ Γ (N, t) ≤ Γ ′(N, tp) see Algorithm 2 !

3.4 ODT Computation

With the d-DNNF graph G and the linear time algorithms to compute the precise
distinguishing ratio for a CITV and an upper bound for a PITV we have obtained
the basis for our ODT search method. This consists of a branch-and-bound
search over the input variables. Iteratively we set the input variables until either
all variables are set and the precise Γ value is obtained or until the upper bound
of the PITV is lower than the Γ value of a previously computed CITV.

Interestingly, if G has a certain structure (see below) we can obtain an ODT
without a search by making use of the facts (i) that we can compute an upper
bound ΓUB for the distinguishing ratio of the ODT by running Algorithm 3 with
respect to instantiation true, and (ii) that there is exactly one test vector t that
is consistent with the resulting subgraph GT . The latter consists of all nodes
from whose Λ′

α and Λ′
β values the upper bound ΓUB was derived.3

Note, since GT was obtained from running Algorithm 3 with respect to in-
stantiation true it means that all input variables belong to the set of free ones,
i.e. IF = I. Hence every OR node N ∈ NT with an input variable as descendant
belongs to the set Nf and has therefore only one child in GT . Therefore, the
labels of the input variables of GT form a unique CITV t which is exploited in
the following Theorem:

Theorem 3. Let G be the root node of a smooth d-DNNF graph G representing
the propositional theory ((M1 ∨ M2) ∧ ¬(M1 ∧ M2) ∧ ¬d) ∨ (M1 ∧ M2 ∧ d) and
satisfying the following condition: No two children of an OR node are labeled by
the same value of an input variable. Then the test vector t consistent with the
subgraph GT that is obtained from computing Γ ′(G, true) is an ODT.

Proof
We prove this Theorem by contradiction. Suppose Γ (G, t) *= Γ ′(G, true). Since
Algorithms 2 and 3 differ only in the Γ computation for an OR node in Nf

which has more than one child the assumption implies that there is an OR node
N ∈ Nf in graph G with at least two children that are both consistent with t.
This implies that N has at least two children labeled by the same value of an
input variable which contradicts the condition of the theorem. !
3 Formally, a node N ∈ NT is in GT , iff one of the following conditions is satisfied: (i)

N is the root, (ii) N is a child of an AND node in NT , (iii) N ∈ Ns is a child of an
OR node in NT , or (iv) N ∈ Nf is the child with the maximal Γ ′ value among the
children of an OR node in NT .

744 A. Schumann, M. Sachenbacher, and J. Huang

For our example the condition of above theorem holds. The right graph of
Figure 3 also shows the upper bound values computed by Algorithm 3 when run-
ning it with tp = true. Thus we obtained the ODT t = [−i1, i2] for our example
in linear time. Note that the condition is certainly satisfied if G is a constrained
d-DNNF graph [11]. Unfortunately, the compilation into constrained d-DNNF
graphs is more complex and will therefore only be possible for small graphs.

4 Experimental Evaluation

We evaluated our DNNF-based testing method on a model of an automotive en-
gine test-bed [10], which consists of three major components: engine, pipe, and
throttle. The goal is to find leaks in the pipe by assigning three to four control-
lable variables, and observing three to four measurable variables. The problem
has been turned into sets of discrete instances of varying sizes by applying dif-
ferent abstractions to the original mixed discrete-continuous model, and using a
direct encoding from CSP to SAT [14].

Table 1. Results of ODT (left) and DDT (right) computation

inst. #nodes time inst. #nodes time
1a 58 0.04 1b 66 0.06
2a 103 0.06 2b 124 0.07
3a 161 0.09 3b 191 0.10
4a 205 0.10 4b 4865 14.7
5a 329 0.20 5b 48238 396
6a 245 0.21 6b 102817 1566
7a 362 0.40 7b – –
8a 4766 5.41 8b – –
9a 2654 36.6 9b – –
10a 65063 414 10b – –

Table 1 shows the experimental results for computing ODTs and DDTs. For
each instance, we report the size (number of nodes) of the DNNF graph com-
puted, and the computation time in seconds on a Linux Dual-Core PC with 1GB
of RAM. For instances that have DDTs, we compared our method with the most
recent specialized DDT approach [12] based on quantified Boolean formulas and
the QBF solver sKizzo [2]. That approach was able to solve instances 1b–3b and
ran out of memory for the rest. In contrast, our ODT approach could also solve
instances 4b–6b.

Our method is the first that computes exact ODTs; hence we cannot compare
it directly with previous approaches. However, we used the greedy algorithm
of [8] to compute approximate solutions for the same problem instances. This
algorithm was only able to solve instances 1a–7a; that is, for instances 8a–10a
we were able to compute an optimal solution where the previous approach could
not even compute a suboptimal one.

Constraint-Based Optimal Testing Using DNNF Graphs 745

5 Conclusion and Future Work

Optimal distinguishing tests generalize and refine the notion of possibly and def-
initely distinguishing and strong and weak tests for non-deterministic systems.
Since computing ODTs can be computationally very expensive, previous work
has focused on approximate solutions. We presented a new method to compute
exact ODTs based on innovative ways of compiling the ODT problem into DNNF
and computing upper bounds to prune a systematic search. Experimental results
show that the method is able to compute both ODTs and DDTs for instances
that were too large for previous methods. Thus our approach provides a signifi-
cant improvement for many applications where output patterns can be assumed
to be equally likely or where probabilities are not given. Where probabilistic
models are available, our technique provides a baseline from which new tech-
niques can be developed. Note that both model counting and weighted model
counting can be done with the same linear complexity on d-DNNF. In fact, this
is the basis for the recent compilation based approach to probabilistic reasoning,
and will provide the basis also for extending our work to the probabilistic case.

References

1. Alur, R., Courcoubetis, C., Yannakakis, M.: Distinguishing tests for nondetermin-
istic and probabilistic machines. In: Proc. ACM Symposium on Theory of Com-
puting, pp. 363–372 (1995)

2. Benedetti, M.: skizzo: A suite to evaluate and certify QBFs. In: Proc. CADE 2005
(2005)

3. Boroday, S., Petrenko, A., Groz, R.: Can a model checker generate tests for non-
deterministic systems? Elec. Notes Theor. Comp. Sci. 190, 3–19 (2007)

4. Darwiche, A.: On the tractable counting of theory models and its application to
belief revision and truth maintenance. In: CoRR (2000)

5. Darwiche, A.: The c2d compiler user manual. Technical report, UCLA (2005)
6. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial

Intelligence Research 17, 229–264 (2002)
7. Esser, M., Struss, P.: Fault-model-based test generation for embedded software. In:

Proc. IJCAI 2007, pp. 342–347 (2007)
8. Heinz, S., Sachenbacher, M.: Using model counting to find optimal distinguishing

tests. In: Proc. of CPAIOR (2009)
9. Huang, J.: Combining knowledge compilation and search for conformant proba-

bilistic planning. In: Proc. ICAPS 2006, pp. 253–262 (2006)
10. Luo, J., Pattipati, K., Qiao, L., Chigusa, S.: An integrated diagnostic development

process for automotive engine control systems. IEEE Trans. on Systems, Man, and
Cybernetics 37(6), 1163–1173 (2007)

11. Pipatsrisawat, K., Darwiche, A.: A new d-dnnf-based bound computation algo-
rithm for functional EMAJSAT. In: Proc. of IJCAI 2009 (2009)

12. Sachenbacher, M., Schwoon, S.: Model-based testing using quantified CSPs. In:
ECAI 2008 Workshop on Model-based Systems (2008)

13. Struss, P.: Testing physical systems. In: Proc. AAAI 1994, pp. 251–256 (1994)
14. Walsh, T.: SAT vs. CSP. In: Proc. of CP 2000, pp. 441–456 (2000)

	Constraint-based Optimal Testing Using DNNF Graphs
	Introduction
	Background
	Distinguishing Tests
	Optimal Distinguishing Tests
	Deterministic DNNF

	ODT Computation Using a d-DNNF Graph
	Encoding the ODT Problem as Single d-DNNF Graph
	Computation of (t t t t) Based on DNNF Graph G
	Upper Bounds for Partial Test Vectors
	ODT Computation

	Experimental Evaluation
	Conclusion and Future Work

