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Abstract—We consider the problem of finding Pareto-optimal
(PO) operating points for the multiple-input single-output
(MISO) interference channel when the transmitters have statisti-
cal (covariance) channel knowledge. We devise a computationally
efficient algorithm, based on semidefinite relaxation, to compute
the PO rates and the enabling beamforming vectors. We illustrate
the effectiveness of our algorithm by a numerical example.

I. INTRODUCTION

The situation when two wireless links operate in the same

spectrum, and create mutual interference to one another, is well

modeled by a so-called interference channel (IFC). Associated

with any IFC there is an achievable rate region, consisting of

all pairs of transmission rates R1 (for link 1) and R2 (for link

2) that can be achieved, subject to constraints on the powers

used by the transmitters. The outer boundary of this region

is called the Pareto boundary, and it consists of rate points

where increasing R1 necessarily requires decreasing R2 and

vice versa. It is generally desirable to operate at a rate point

that lies on this boundary. In particular, the boundary contains

important points such as the maximum-sum-rate point and the

Nash bargaining solution [1].

We are specifically concerned with the achievable rate

region for a so-called multiple-input single-output (MISO)

IFC, consisting of links where the transmitters (called TX1,

TX2 here) have n antennas and the receivers RX1, RX2 have

a single antenna [2]. The transmitters can steer power in

arbitrary directions by using beamforming. We are especially

interested in the case when the transmitters have only partial

(statistical) channel state information (CSI), channel covari-

ance knowledge, more precisely.

This paper builds on our previous work [3]–[5], where

we provided a set of necessary conditions for beamforming

vectors to be Pareto optimal (we treated perfect CSI in [3] and

partial CSI in [4], [5]). In the current work, we focus on the

computation of the Pareto-optimal (PO) rates and the enabling

beamforming vectors for the partial-CSI case. Specifically, we

formulate the problem as constrained optimization and use
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semidefinite relaxation to solve it. The resulting algorithm is

computationally efficient and easy to implement.

Notation: Tr{⋅}, rank{⋅}, eig{⋅}, S{⋅}, and K{⋅} denote

the trace, rank, dominant eigenvector, span, and kernel, respec-

tively, of a matrix. ΠZ ≜ Z(ZHZ)−1ZH is the orthogonal

projection onto the column space of Z. dim{⋅} denotes the

dimension of a subspace and E{⋅} is the expectation operator.

II. PRELIMINARIES

A. System Model

We assume that transmission consists of scalar coding fol-

lowed by beamforming1 and that all propagation channels are

frequency-flat. The matched-filtered symbol-sampled complex

baseband data received by RXi is modeled as2

yi = hH
iiwisi + hH

jiwjsj + ei j ∕= i, i, j ∈ {1, 2}, (1)

where si ∼ CN (0, 1) and wi ∈ ℂn are the transmitted symbol

and the beamforming vector employed by TXi, respectively.

Also, ei ∼ CN (0, �2) models the receiver noise. The (con-

jugated) channel vector between TXi and RXj is modeled

as hij ∼ CN (0,Qij). TXi knows the channel covariance

matrices Qii and Qij . We denote rij ≜ rank
{

Qij

}

.

The transmission power is bounded due to regulatory and

hardware constraints. Without loss of generality we set this

bound to 1. Hence, the set of feasible beamforming vectors is

W ≜ {w ∈ ℂn ∣ ∥w∥2 ≤ 1}. (2)

Note that the set W is convex. In what follows, a specific

choice of wi ∈ W is denoted as a transmit strategy of TXi.

B. Ergodic Rate Region

For fixed channel vectors and a given pair of beamforming

vectors, the following instantaneous rate (in bits/channel use)

is achievable

Ii(wi,wj) = log
2

(

1 +
∣hH

iiwi∣2

∣hH
jiwj ∣2 + �2

)

. (3)

1This is not optimal, but it is a practical assumption that also simplifies the
analysis.

2Whenever an expression is valid for both systems, it is denoted once with
respect to system i, interpreting system j ∕= i as the interfering one.
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The corresponding ergodic rate is obtained by averaging over

the channels. From [4], we have

Ri(wi,wj) ≜ E{Ii(wi,wj)}

=
pii(wi)

ln 2

f(pii(wi))− f(pji(wj))

pii(wi)− pji(wj)
,

(4)

where

f(x) ≜ e�
2/x

∫ ∞

�2/x

e−t

t
dt. (5)

In (4), pji(wj) corresponds to the average power that RXi

receives from TXj , i.e.,

pji(wj) ≜ E
{

∣hH
jiwj∣

2

}

= wH
j Qjiwj . (6)

In [4], we showed that

Lemma 1. Ri(wi,wj) is monotonously increasing with

pii(wi) for fixed pji(wj) and monotonously decreasing with

pji(wj) for fixed pii(wi).

Lemma 1 reveals the conflict situation associated with the

choice of beamforming vectors. A beamforming vector wi

which increases the average signal power pii(wi) received at

RXi may also increase the average interference power pij(wi)
experienced at RXj . The question that naturally arises is which

rates (R1(w1,w2), R2(w2,w1)) are jointly achievable for

given channel covariance matrices {Qij}. The union of the

rate pairs that can be obtained by all feasible beamforming

vector pairs defines the achievable rate region

ℛ =
∪

w1,w2∈W

(R1(w1,w2), R2(w2,w1)). (7)

Note that for fixed {Qij} the region ℛ is compact,

since W is compact and the mapping of (w1,w2) to

(R1(w1,w2), R2(w2,w1)) is continuous. However, the re-

gion ℛ is in general nonconvex.

C. Pareto Boundary

Pareto-optimal rate points are rate pairs, for which it is not

possible to improve the rate of one link without decreasing

the rate of the other link. More precisely:

Definition 1. A rate pair (R★
1
, R★

2
) ∈ ℛ is PO if there is

no other pair (R1, R2) ∈ ℛ with (R1, R2) ≥ (R★
1
, R★

2
) and

(R1, R2) ∕= (R★
1
, R★

2
). (The inequality is componentwise.)

The union of all PO points defines the so-called Pareto

boundary of ℛ. We denote as Ri and Ri the minimum and

maximum, respectively, PO rate of link i. The Pareto boundary

consists of all PO points on the upper-right boundary of ℛ,

between (R
1
, R2) and (R1, R2

) (see Fig. 1).

As evidenced by Lemma 1, the maximum rate Ri is

achieved when TXi operates “selfishly”, so that the signal

power is maximized and TXj operates “altruistically”, so

that the interference power is zeroed. The selfish operation

corresponds to the maximum-ratio (MR) transmit strategy [5]

wMR
i = arg max

wi∈W
pii(wi) = eig{Qii} . (8)

Note that the computation of the MR beamforming vector

in (8) requires knowledge only of the covariance matrix

for the direct channel. That is, the MR strategy does not

take into account the interference that it causes to the other

communication link.

Contrarily, the altruistic operation maximizes the signal

power while avoids causing interference. This is possible only

when the channel covariance matrices are rank deficient and

the direct channel has a component that is orthogonal to the

coupling channel, i.e., when S{Qii} ⊈ S
{

Qij

}

. The so-

called zero-forcing (ZF) strategy is determined in [5] to be

wZF
i = eig

{

Π
K{Qij}

QiiΠK{Qij}

}

. (9)

When S{Qii} ⊆ S
{

Qij

}

, e.g., when the channel covariance

matrices are full-rank, the ZF strategy is to refrain from

transmission, i.e., wZF
i = 0.

Hence, the maximum rate depends on the aforementioned

selfish and altruistic transmit strategies as

Ri = Ri(w
MR
i ,wZF

j ). (10)

Correspondingly, the minimum PO rate is equal to

Ri = Ri(w
ZF
i ,wMR

j ). (11)

Note that Ri > 0 only when wZF
i ∕= 0.

III. PARETO-OPTIMAL BEAMFORMING

As discussed in Sec. II-C, we accurately know the endpoints

of the Pareto boundary and the transmit strategies that enable

them. In this section, we propose an optimization method to

find any PO rate pair (R★
i , R

★
j ), along with the corresponding

PO beamforming vector pair (w★
i ,w

★
j ) that achieves it.

By directly interpreting Pareto optimality (see Definition 1),

we note that every operating point on the Pareto boundary is

uniquely defined by the rate of one communication link. The

rate of the other link is implicity defined as the maximum

achievable rate. Hence, given the rate R★
j of link j, we can

find the rate R★
i of link i that corresponds to a PO pair by the

following optimization problem

max
wi,wj∈W

Ri(wi,wj) (12)

s.t. Rj(wj ,wi) = R★
j j ∕= i. (13)

Clearly, the optimization in (12)–(13) is always feasible when

the input parameter, i.e., the rate R★
j , is chosen in [Rj , Rj ].

The optimal value of the problem is the other coordinate, i.e.,

R★
i , of the sought point on the Pareto boundary. The optimal

solution is the pair (w★
i ,w

★
j ) of transmit strategies that the

transmitters have to employ in order to operate at (R★
i , R

★
j ).

Note that the equality constraint (13) can be equivalently

relaxed to a lower-bounded inequality. Due to the concept of

Pareto optimality, the bound will be tight at the optimum.

Unfortunately, the optimization problem (12)–(13) is diffi-

cult to solve directly. This is because the ergodic rates, which

are explicitly expressed by (4)–(6), are involved functions

comprising exponential integrals with quadratic terms in their
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limits. Hence, the constraint (13) cannot be written out in

closed form. Moreover, the rates are neither convex nor

concave functions of the optimization variables wi and wj .

Therefore, the optimization problem is nonconvex.

In the following, we solve the problem (12)–(13) indirectly,

assuming one beamforming vector known and optimizing with

respect to the other one. Depending on which beamforming

vector we assume known, we define two complementary

problems in Sec. III-A and III-B. Either of these problems can

be used to efficiently calculate the PO beamforming vectors

for each transmitter separately. A simple post-processing step

is then required to yield the beamforming vector pairs that

correspond to PO rate pairs.

A. Maximizing the Signal Power

Assume that the beamforming vector w★
j that corresponds

to the sought PO rate pair (R★
i , R

★
j ) is known, e.g., given by

a genie. Then, the problem (12)–(13) reduces to

max
wi∈W

Ri(wi,w
★
j ) (14)

s.t. Rj(w
★
j ,wi) = R★

j , (15)

where the optimization is now only with respect to wi. Since

w★
j is fixed, the terms pji(w

★
j ) and pjj(w

★
j ) are fixed too.

Hence, the rates in (14) and (15) are functions only of pii(wi)
and pij(wi), respectively. Since Ri(wi,w

★
j ) is monotonously

increasing with pii(wi), the latter term can be used in lieu

of the objective function (14) in the maximization problem.

Furthermore, since the rate Rj(w
★
j ,wi) is monotonously de-

creasing with pij(wi), there exists a unique value, say cij , of

the latter such that the equality (15) is satisfied. Thus, (14)–

(15) can be equivalently reformulated as

max
wi∈W

pii(wi) (16)

s.t. pij(wi) = cij . (17)

The interpretation of (16)–(17) is that knowing the PO in-

terfering beamforming vector w★
j , the corresponding PO direct

beamforming vector w★
i is obtained by maximizing the signal

power subject to a specific bound on the caused interference.

The input parameter cij corresponds to the (maximum) level

of interference that the sought beamforming vector is allowed

to cause in order to achieve a specific point on the Pareto

boundary. Every PO beamforming vector is a solution of (16)–

(17) for some choice of

cij ∈
[

0, pij
(

wMR
i

)]

. (18)

Note that the lower and the maximum value of cij yield the

ZF and MR transmit strategies, respectively. Hence, cij can

be interpreted as a measure of selfishness.

Elaborating (2) and (6), the optimization (16)–(17) is ex-

plicitly written as

max
wi∈ℂn

wH
i Qiiwi (19)

s.t. wH
i Qijwi = cij , (20)

wH
i wi ≤ 1. (21)

The problem (19)–(21) is a quadratically constrained

quadratic program (QCQP). All the quadratic terms are homo-

geneous and convex, since the parameter matrices are positive

semidefinite. The equality constraint (20) can be equivalently

relaxed to an upper-bounded inequality. Hence, the feasibility

set determined by (20)–(21) is convex. However, the objective

function (19) yields the optimization nonconvex. Nonconvex

QCQPs are in general NP-hard to solve. But, as we elaborate

in Sec. IV, the problem (19)–(21) is solved optimally and

efficiently with semidefinite relaxation. This is because (19)–

(21) belongs to a special class of QCQPs for which the

semidefinite relaxation is tight [6, Corollary 3.4].

B. Minimizing the Interference Power

Alternatively to (14)–(15), assuming now w★
i known, the

problem (12)–(13) reduces to

max
wj∈W

Ri(w
★
i ,wj) (22)

s.t. Rj(wj ,w
★
i ) = R★

j , (23)

where the optimization is only with respect to wj . Since

pii(w
★
i ) and pij(w

★
i ) are fixed, Ri(w

★
i ,wj) is monotonously

decreasing with pji(wj) and the objective function can be

replaced by minimization of pji(wj). Furthermore, since

Rj(wj ,w
★
i ) is monotonously increasing with pjj(wj), there

exists a unique value, say cjj , of the latter such that (23) is

satisfied. Thus, (22)–(23) can be equivalently written as

min
wj∈W

pji(wj) (24)

s.t. pjj(wj) = cjj . (25)

The interpretation of (24)–(25) is that knowing the PO direct

beamforming vector w★
i , the corresponding PO interfering

beamforming vector w★
j is obtained by minimizing the in-

terference power subject to a specific (lower) bound

cjj ∈
[

pjj(w
ZF
j ), pjj(w

MR
j )
]

(26)

on the signal power.

Optimization (24)–(25) is explicitly written as

min
wj∈ℂn

wH
j Qjiwj (27)

s.t. wH
j Qjjwj = cjj , (28)

wH
j wj ≤ 1. (29)

The problem (27)–(29) has a convex objective function, but

a nonconvex feasible set due to (28). The equality constraint

can be relaxed to a lower-bounded inequality, which however

is still nonconvex. However, as with (19)–(21), the semidefinite

relaxation of problem (27)–(29) is tight [6, Corollary 3.4].

IV. SEMIDEFINITE RELAXATION

In this section, we show how the semidefinite relaxation

technique can be used to efficiently find the optimal solutions

of the complementary optimization problems of maximizing

the signal power for fixed interference (19)–(21) and minimiz-

ing the interference for fixed signal power (27)–(29).
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First, we exploit the fact that for any PO beamforming

vector we have wi ∈ S
{

Qii,Qij

}

[4] and consider the

parametrization

wi = V ixi, (30)

where the columns of V i ∈ ℂn×ri denote an orthonormal

basis for S
{

Qii,Qij

}

and xi ∈ ℂri denotes the parameter

vector. Thus, the number of complex variables is

ri ≜ dim
{

S
{

Qii,Qij

}}

≤ rii + rij , (31)

where ri ≤ n. The power constraint now reads ∥xi∥
2 ≤ 1.

Next, we further change the optimization variables to Xi ≜

xix
H
i . Note that

Xi = xix
H
i ⇔ Xi ર 0 and rank{Xi} = 1. (32)

Using (30), (32), and the property that Tr{Y Z} = Tr{ZY }
for matrices Y , Z of compatible dimensions, we rewrite the

average power term (6) as

wH
j Qjiwj = xH

j V H
j QjiV jxj = xH

j Ajixj =

Tr
{

xH
j Ajixj

}

= Tr
{

Ajixjx
H
j

}

= Tr{AjiXj} , (33)

where we have defined Aji ≜ V H
j QjiV j ∈ ℂrj×rj .

Due to (30), (32), and (33), we equivalently recast the

maximization problem (19)–(21) as

max
Xi∈ℂri×ri

Tr{AiiXi} (34)

s.t. Tr{AijXi} = cij , (35)

Tr{Xi} ≤ 1, (36)

Xi ર 0, (37)

rank{Xi} = 1. (38)

The objective function (34), the equality constraint (35), and

the inequality constraint (36) are linear. The cone of positive

semidefinite matrices (37) is convex. Only the rank constraint

(38) is nonconvex. Dropping this constraint, the problem is

relaxed to (34)–(37), which is a semidefinite programming

(SDP) problem. Hence, it is solved by means of interior-

point methods (IPMs) with polynomial worst-case complexity.

Due to the rank relaxation, the IPMs may return a high-rank

optimal solution. According to [6], if this SDP problem is

feasible, there always exists a rank-1 optimal solution, which

can be efficiently found by a post-processing rank-reduction

algorithm. We experienced through extensive simulation stud-

ies that the IPMs do yield a rank-1 optimal solution.

Similarly, due to (30), (32), and (33), we equivalently recast

the minimization problem (27)–(29) as

min
Xj∈ℂ

rj×rj

Tr{AjiXj} (39)

s.t. Tr{AjjXj} = cjj , (40)

Tr{Xj} ≤ 1, (41)

Xj ર 0, (42)

rank{Xj} = 1. (43)

Dropping the nonconvex rank constraint (43), the problem

is relaxed to (39)–(42), which is an SDP problem. In our

simulations, the IPMs do yield a rank-1 optimal solution.
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Fig. 1. Example of the ergodic rate region for n = 8, {rij = 3}.

V. NUMERICAL RESULT AND CONCLUSION

The efficiency of the advocated optimization method is

illustrated in Fig. 1, which shows the computed ergodic rate

region when the transmitters have n = 8 antennas and all

covariance matrices have rank 3. For each transmitter, N

beamforming vectors are created, using the SDP optimizations

(34)–(37) or (39)–(42), by uniformly sampling the parameters

cij or cjj , respectively. Out of the N2 possible beamforming

vector pairs, the ones that yield rate pairs which are uppermost

(or rightmost) in the region are the PO. The corresponding rate

pairs are plotted to designate the Pareto boundary.

For comparison purposes, we also plot the resulting bound-

ary by the brute-force method, proposed in [4], of randomly

choosing the parameters in the characterization (30). It is seen

that the optimization method requires a far smaller number

of samples to create a sharper boundary. This is because the

characterization (30) is only a necessary but not a sufficient

condition for a beamforming vector to be PO. As the number

ri of complex parameters in (30) increases, the superiority of

the optimization method is even more prominent.
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