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Introduction and Objectives

1 INTRODUCTION AND OBJECTIVES

In recent years, a trend towards the development of pathway-based breeding
approaches can be observed, which aim at the understanding of metabolic
interaction, and its application to breeding driven metabolic engineering (Schauer
and Fernie, 2006). In this context, the investigation of metabolites is of particular
interest, as they are the end products of cellular processes, that can be considered as
the ultimate response of an organism to genetic and environmental influence factors
(Fiehn, 2002). To challenge the complex interplay of different impact factors, the
assessment of a broad spectrum of plant constituents is essential. Therefore,
metabolite profiling techniques have been developed for the parallel assessment of a
comprehensive set of metabolites (Allwood et al., 2008; Kopka et al., 2004),
complementing other untargeted approaches of molecular profiling, such as
transcriptomics (Saito et al., 2008) and proteomics (Alvarez et al., 2008). These so-
called omics-techniques aim at extracting, detecting, identifying and quantifying a
broad spectrum of plant molecules to provide a deeper insight into complex
biological systems (Fiehn, 2001).

In the field of plant metabolomics gas-chromatography coupled to mass-
spectrometry (GC/MS) has been perceived as the best understood and exemplary
profiling approach for the simultaneous and non-biased detection of metabolites
from biological samples (Steinhauser and Kopka, 2007) and has been proven to be a
powerful tool for the analysis of complex plant matrices (Castro and Manetti, 2007;
Fiehn et al., 2000; Lozovaya et al., 2006; Roessner et al., 2000). For example, GC/MS-
based profiling methods have been applied to the investigation of phenotypic
diversity in rice (Kusano et al., 2007), for the assessment of compositional variability
due to environmental impact (Semel et al., 2007), different input systems, e.g.
conventional vs. organic (Davies, 2007; Zorb et al.,, 2006), or due to genetic
background (Harrigan et al., 2007a), as well as to monitoring and investigation of
plant developmental systems (Fait et al., 2008; Mounet et al., 2007; Shu et al., 2008;
Tarpley et al., 2005).
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Objectives. Maize (Zea mays) is the most important cereal food and feed crop
worldwide (FAO, 2008). However, very few reports are available on the natural
variation among maize varieties based on metabolite profiling techniques (Hazebroek
et al., 2007; Zorb et al., 2006).

One objective of this work was the establishment and application of a GC/MS-based
metabolite profiling approach to the identification and the assessment of a broad
spectrum of maize constituents from different chemical classes. An increased
understanding of metabolic variation should be achieved by investigation of a
representative sample set considering potential impact factors on maize kernel
composition, such as cultivar, farming location, growing season, and fertilization
practice. The evaluation of results by sound statistics should help to demonstrate the
potential of untargeted metabolite profiling to evaluate the variations in maize grain
metabolite pools resulting from the interplay of environment, season and genotype,
and to put the results into the context of natural variability. This information will be
of relevance to our basic understanding of the regulation of crop composition, and
will be of assistance to breeders, farmers and downstream industries where
consistency in crop composition is important for product quality.

The second objective was the application of near infrared spectroscopy (NIRS)
profiling for the qualitative and quantitative screening of maize samples.
Substantiation of potential differences should be evaluated based on NIRS calibration
models developed by use of GC/MS-metabolite profiling data. The suitability of the
applied NIRS approach as tool for the pre-assessment of large sample-sets should be
tested, thus demonstrating that NIRS could complement existing GC/MS-metabolite
profiling methods to the investigation of complex crop sample sets with potential for

use in metabolomic studies and breeding programs.
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2 BACKGROUND

2.1 Maize (Zea mays)

2.1.1 Maize as an Agricultural Product

Field maize has been cultivated for 8000 years in Mexico and Central America and for
500 years in Europe. It is the most important cereal crop worldwide followed by
wheat and rice (FAO, 2008). The world’s production of maize is more than
800.000.000 tons, with the US and China accounting for 37% and 20%, respectively,
as the major producers. In the EU 11% of the total amount of field maize is grown
(FAO, 2008). Maize is used as a food and feed crop, as well as a source of energy. For
human nutrition maize and cornmeal is a staple food in many regions of the world.
The starchy grains are also the source of fermented products such as bourbon
whiskey or maize beer. However, the major part of maize is produced for feeding of
livestock (Pingali, 2001). In addition, maize is increasingly used as the basis for
biomass fuels, such as ethanol, and as feedstock for biomass gas-plants.

Maize is naturally cross-pollinated for reproduction, and until the 1920’s farmers
were growing only open-pollinated varieties. Today, mainly hybrid maize is cultivated,
owing to its more vigorous growth and higher yields (heterosis-effect). Hybrid seeds
are produced by crossing two homozygous parental lines in removing the tassels
from the plants before pollen shedding, so that only one sort of pollen will be
received by the silks (OECD, 2002). Hybridization and backcrossing are the integral
processes of breeding programs, where the genetic variation within species and
between related species is used as a major source for crop improvement.
Traditionally, researchers focused on a few number of single target traits with
importance for industrial or nutritive value. One of the longest continuous
experiments in this field is the Illinois long-term selection experiment for protein and
oil content, starting in 1896. With more than 100 cycles of selection, nine related
maize populations have evolved, that contain the known phenotypic extremes for
maize kernel composition (Moose et al., 2004). These single trait approaches were
greatly enhanced, when researchers began in the 1980s to develop molecular-marker

techniques, that both revolutionized plant breeding, and assisted basic research by
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facilitating the introgression of defined genes or genomic regions from wild species or

landraces (Fernie and Schauer, 2008).

2.1.2 Maize Composition

Maize kernels consist of endosperm (containing starch) and germ (containing oil),
wrapped in the pericarp, a cellulose layer. The major constituents of mature kernels
are starch (65-80%), protein (5-15%), moisture (5-20%), fat (3—9%) and dietary fiber
(5-15%). Minor constituents are minerals and vitamins (1-2%) (Kirchhoff, 2008;
OECD, 2002). Due to the balanced amino acid composition of its protein, maize has a
high nutritional value as a food and feed crop, except for the two limiting essential
amino acids lysine and tryptophan. Several maize variants have been developed with
specific improvements in composition, such as Quality Protein Maize (QPM) variants,
which exhibit improved levels of lysine and tryptophan. Other specialty types of
maize are characterized by higher oil content, higher amylose content or higher

amylopectin content (waxy maize) (Jugenheimer, 1976).

2.2 Metabolomics

2.2.1 Targeted Analysis vs. Unbiased Profiling

Targeted analysis of single compounds has been the analytical standard for a long
period owing to a number of advantages. Highly specialized analytical protocols allow
the accurate detection and quantification of constituents from different matrices
with an excellent methodological reproducibility (Matissek and Steiner, 2005). For
most of the analytes of interest in the food and feed industry accepted and approved
standard methods allow the equal measurement at different laboratories with the
same analytical quality. However, these methods reach their limits, if a high number
of analytes should be detected in parallel. In addition, a targeted approach will be
able to cover only analytes that were known a priori. These limitations have led to
the development of unbiased analytical approaches, the so-called fingerprinting and
profiling methods.

The unbiased assessment of a broad spectrum of analytes with a single method

enlarges the capabilities of analytical techniques. One example is the demonstration
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of substiantial equivalence in the course of the authorization procedure of novel
foods. The concept of substantial equivalence is a key element in the safety
assessment of novel foods and has been introduced by the OECD in the beginning of
the 1990s (OECD, 1993). The composition of a novel food is compared to a food that
is characterized by a history of safe use. If the novel food is found to be substantially
equivalent, it is considered as safe as the conventional counterpart. The OECD has
suggested a number of constituents to be investigated, which need several different
techniques for analysis. If these compounds, or at least a great part of them, could be
analyzed by a single approach, this would provide the possiblity to scan even more
samples to allow a truly comprehensive comparison of the novel food with its
conventional counterpart. Another aspect of the use of unbiased profiling methods is
the possibility to simultaneously investigate further compounds, that so far have not
been in the focus of the OECD, but may also impact the decision about substantial
equivalence. This could assist in the detection of potential unintended effects that
are one of the major concerns associated with crop modification based on genetic
engineering. The random integration of the transgene may cause gene disruptions
that can lead to sequence changes, production of new proteins or formation of either
new metabolites or altered levels of exisiting metabolites that could compromise
safety (Kuiper et al.,, 2001). Other unintended effects, related to the genetic
modification, may be secondary effects of the introduced sequences. However,
unintended effects are not limited to breeding techniques comprising genetic
engineering, but may also occur during conventional breeding as a result of
mutagenesis, as well as hybridization and backcrossing that are integral processes of
breeding programs where the genetic variation within species and between related
species is used as a major source for crop improvement. Unintended effects can be
subdivided into predictable and unpredictable unintended effects. A predictable
unintended effect goes beyond the the expected effect of the newly introduced trait,
but may be explained through the current knowledge of plant biology and metabolic
pathways. Unpredictable unintended effects cannot be explained by the present
knowledge, and therefore may not be present in the predefined set of target

analytes, whereas an unbiased molecular profiling may close this gap.
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2.2.2 Omics-Techniques

Fingerprinting is an uncomplex approach without a major pre-treatment of the raw
material that is sufficient for the detection of major effects (Fiehn, 2002). It is mainly
applied if the aim is to look for compositional similarities or the overall natural
variability should be explored in a large sample set, and if it might not be necessary to
determine the individual levels of all constituents. Exemplary techniques for
fingerprinting approaches are nuclear magnetic resonance (NMR), direct infusion
mass spectrometry (DI-MS) or near infrared spectroscopy (NIRS) (Davies, 2007;
Manetti et al., 2006; Osborne, 2008).

Based on the results of a rapid screening by fingerprinting techniques, pre-selected
samples could be subjected to further thorough analysis by a comprehensive
molecular profiling. Metabolite profiling techniques aim at the parallel assessment of
a comprehensive set of metabolites (Allwood et al., 2008; Kopka et al., 2004),
complementing other untargeted approaches of molecular profiling, such as
transcriptomics (Saito et al., 2008) and proteomics (Alvarez et al., 2008).

For example the impact of different amounts and forms (organic, inorganic) of
nitrogen supply on the gene expression level in the wheat endosperm have been
investigated (Lu et al., 2005). Many of the genes showing differential expression in
this study are known to participate in nitrogen metabolism and storage protein
synthesis. Another study employing a proteomics approach compared the protein
compositions of potato tubers subjected to organic and mineral-based fertility
management practices, respectively. The results suggested an increased stress
response in organic farming (Lehesranta et al., 2007). In wheat 16 “diagnostic”
proteins with potential to afford a signature to prove authenticity of organic wheat
were proposed (Zérb et al., 2009). In addition to transcriptomics and proteomics,
metabolomics-based approaches should also be suitable to reflect the impact of
different input systems on crops, as metabolites can be considered as the ultimate
response of organisms to processes regulating metabolism (Fiehn, 2002). The
combination of profiling approaches gives a comprehensive picture of the whole
organism. Systems biology aspires for the integration of information from genes,
transcripts, proteins and metabolites to illuminate the connections and

intercorrelations between different biochemical pathways. This combined approach
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may also help in establishing a molecular signature to prove authenticity of natural
products, which may for example be of importance for crops grown under distinct

agricultural practices, such as organic and conventional farming.

2.2.3 GC/MS-Metabolite Profiling

Metablomics can be described as the approach to assess the totality of all
metabolites—the metabolome. In the field of plant metabolomics gas-
chromatography coupled to mass-spectrometry (GC/MS) has been perceived as the
best understood and exemplary profiling approach for the simultaneous and non-
biased detection of metabolites from biological samples (Steinhauser and Kopka,
2007). GC/MS-based profiling methods can rely on well established GC
instrumentary, which is characterized by high resolution and reliability. The use of
different capillary materials allows the detection of compounds from various
chemical classes. Also non-volatile compounds can be captured after derivatization.
For identification of the metabolites different types of mass spectrometers can be
coupled to the GC instruments, e.g. Quadrupole or time-of-flight (TOF) mass
spectrometers are most commonly used for profiling purposes. Another great
advantage of GC/MS is the availability of still growing mass spectral libraries for
assignment of metabolites (Ausloos et al., 1999; Kopka et al., 2005).

GC/MS based profiling methods have been applied to the investigation of phenotypic
diversity in plants (Kusano et al., 2007) and to the assessment of compositional
variability due to environmental impact (Semel et al., 2007), different input systems,
e.g. conventional vs. organic, (Davies, 2007; Zorb et al., 2006) or due to genetic
background (Harrigan et al., 2007a). Metabolomics-based approaches have also been
suggested for the use in safety assessment, e.g. for the evaluation of substantial
equivalence and the detection of potential unintended effects (Cellini et al., 2004;
Kuiper et al., 2003), and demonstrated its application for breeding-driven metabolic
engineering (Schauer and Fernie, 2006), as well as in monitoring and investigation of
plant developmental systems (Fait et al., 2008; Mounet et al., 2007; Shu et al., 2008;
Tarpley et al., 2005). Recently, statistical assessment of the metabolite profiling data
from mung beans (Vigna radiata) via principal component analysis demonstrated

that the metabolic changes during the sprouting of mung beans are reflected by
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time-dependent shifts of the scores which were comparable for two sprouting
processes independently conducted under the same conditions (Na Jom et al., 2010).
In a similar study concerning malting barley, the capability of GC/MS profiling was
proven to reflect the dynamic changes of the metabolites in the course of the
different malting stages for compounds ranging from lipophilic to hydrophilic (Frank

etal., 2011).
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2.3 Analysis of Profiling Data—Chemometrics

2.3.1 Omics-Data

What is special about data obtained by a profiling approach in comparison to results
from targeted analysis? The peculiarity of profiling data originates from its unbiased
character. Targeted methods detect values for each analyte individually, whereas
unbiased approaches intend to measure everything in a single run. Of course, this is
an objective out of reach; however, profiling techniques still aim at capturing at least
everything they can. This approach has a number of implications on the type of data
obtained.

The most obvious consequence is the amount of data. A typical GC/MS-based
metabolite profiling technique has coverage of a few hundred metabolites. More
sophisticated methods, for example multidimensional methods, such as GC x GC-
TOFMS, are capable to detect up to 1400 peaks in one chromatogram (Pierce et al.,
2006). Microarray chips for maize transcriptomics with a few 10.000 genes are
available (Ma et al., 2006), and 2D gel electrophoresis-based proteomics covers
around 500-2000 different proteins per gel (Govorun and Archakov, 2002). Owing to
the high number of simultaneously detected compounds, metabolic crosslinks in an
organism will be reflected. This intercorrelation dependency is also called collinearity,
and represents another characteristic of Omics-data with importance for data

analysis.

2.3.2 Identifying the Major Sources of Variation (Multivariate)

Traditional data analysis will compare each analyte value by value. For assessment of
profiling data this is not a satisfactory approach. Where to look if there are a few
hundred or thousand values? In a first step multivariate statistics should be applied
for the investigation of the major sources of variation in a data set. This can be
achieved by Principal Component Analysis (PCA). PCA enables the rapid
differentiation of samples based on their whole profile by visualizing the data as dots
in a two-dimensional plot. For example, the metabolite profiles of two relatively
similar samples will result in a close grouping, whereas samples varying in their

composition will be differentiated (Figure 1). Owing to the use of a linear
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combination algorithm for calculation of the plot axes—the principal components—
redundancy in the dataset in terms of collinearity is eliminated, because constituents

exhibiting a similar variation will be recognized in the same principal components.

Metabolite Profiling Chromatograms Principal Component

Analysis (PCA)
n j l MJL“[ N 1];

signal

Identification of the major
sources of variation o
J.LL.
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n lth.LIIJ Al

|
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PC 2
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Figure 1: Differentiation of visually similar metabolite profiling chromatograms obtained
by GC/MS via Principal Component Analysis (PCA)
The principal components are determined by linear combination of the individual

peak signals s. The simplest way would be to summarize all values (Equation 1).
Sum=s;+S,+... +5, (1)

As a result, one principal component would represent the total content of each
sample as determined by the chosen analytical technique, and potential variation
within each profile would be lost in the total content parameter. As the aim of a PCA
is to determine the major sources of variation, different sums, i.e. principal
components (PC), are calculated by multiplying the signals s with an individual factor
f, which is determined according to the variance of each analyte (Equation 2).

PC1 =5:*f1pci* S2*f2pc1+ .o + Snpca
PC2 = s1*f1pc2* S2*f2pc2+ oo + Snpc2 (2)

PC(n-1) = s1*f1 pcin-1)*+ S2*f2,pcin-1) + - + Sn,pcin-1)

By definition, the first principal component (PC1) will include the greatest differences
in the data set. For calculation of PC1 the analytes with the strongest variation will

get the highest loading factors f. The next principal component explains as much as



11 Background Chemometrics

possible of the residual variation not covered in the first PC. Therefore, in case of PC2,
the highest loadings will be given to the compounds with the greatest variances,
which have not been highly weighted in PCl. The total number of principal
components is defined by the number of analyzed samples; for n samples, n-1
principal components can be calculated. However, usually the first 5 to 10

components will already explain 80—-90% of the total variation in a data set.

2.3.3 Substantiation and Quantification of Differences (Univariate)

The investigation of the major sources of variation is followed by a substantiation of
differences. A quick way for the identification of the drivers of variation is to examine
the factor loadings as determined by PCA. For example, if a clear separation of
samples is revealed on the first principal component, the main contributors to this
effect will exhibit high absolute loading factors in PC1 (Figure 2). In a next step, the
signals of these compounds can be statistically evaluated by univariate comparisons.
For investigation of two groups of samples, e.g. cultivar A and cultivar B, Student’s t-
test seems to be adequate. If a sample set contains more than two groups (e.g. 3
cultivars), or more than one factor (e.g. factor cultivar and factor year) an Analysis of
Variance (ANOVA) is more appropriate. In the Student’s t-test mean values are

compared, whereas in an ANOVA the

OO variance within a group is compared
O
~ OOO Qo O to the variance between groups.
O 05 o O ‘@ . :
o o Because the information about
% .O O&O ‘
£ 0ol ® 8@@ O@% @O '-_ different factors is incorporated into
3 O O ® the calculation, the results will be
- O O
% o © o more accurate.
8 -05F .
o © O As a small example, maize kernels
from three cultivars should have been
-1.0 | | |
-1.0 -0.5 0.0 0.5 1.0 collected from field trials in two
factor loadings PC1 different years. In the case of only a

Figure 2: Factor loading scores plot of a PCA of  Small influence of the growing
metabolite profiling data. The metabolites with | i1l diff inl
the 10 highest loadings on PC1 are highlighted €350, samples will differ mainly due

(green) to cultivar. If data from both seasons
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are analyzed by Student’s t-test, the standard deviation will become smaller due to a
higher number of degrees of freedom, because cultivar data from both years were
averaged. Therefore, the comparison of cultivars will result in more differences, than
compared to a single-year sample set. On the other hand, if the influence of the year
would be very strong, the standard deviation for each cultivar will become very large,
due to the big differences of samples from different years. The result will be no
observable difference as determined by Student’s t-test. In contrast, ANOVA knows
about the second factor year and will create sub-sets for each year before comparing
the variance within cultivars with the variance between cultivars. Therefore, in the
first case, ANOVA will not overinterprete differences between cultivars; in the second

case ANOVA will still find differences between cultivars, if there are any.

2.3.4 Visualizing Omics-Data

2.3.4.1 Box Plots

There are numerous possibilities for the visual comparison of the results obtained by
an analytical technique. In the following, two methods with use for interpretation of
complex omics-data will be explained, that were also applied in this work.

The comparison of mean values, as obtained by averaging the results of multiple
analyses for each individual sample, may be sufficiently performed by plotting the
means as a column diagram. If data are obtained from large studies, mean values will
usually include more than analytical replicates of a single sample, but rather include
samples combining a variety of impact factors, such as cultivar, location or growing
season. In this case more information about the density and the distribution of the
data around the mean value would be desirable. Box plots, or whisker plots, show
robust statistics (median, quartiles, etc.) rather than comparing sample values to the
normal distribution (mean, standard deviation, etc.). In a box plot, the center

horizontal line marks the median of the sample (Figure 3).
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Figure 3: Box plot. Values between the inner and outer fences are

plotted by asterisks. Far outside values are plotted by empty circles.
The difference between the top and the bottom of the box can be called the
interquartile or the midrange with the box edges at the first and third quartiles,
representing the central 50% of all values. Fences define outside and far outside

values that are defined as follows:
lower inner fence = bottom of box - (1.5 * midrange)
upper inner fence = top of box + (1.5 * midrange)
lower outer fence = bottom of box - (3 * midrange)
upper outer fence = top of box + (3 * midrange)

The whiskers show the range of observed values that fall within the inner fences. In
other words, they show the range of values that fall within 1.5 * range from bottom
to top of the box. Because the whiskers extend to observed values and the fences
need not correspond to observed values, the whiskers do not necessarily extend all
the way to the inner fences. Values beyond the outer fences are called far outside

values.

2.3.4.2 Histograms and Logit (p)

One of the most familiar displays for a distribution of values of a high number of
samples is the histogram. A histogram is a pictorial display of vertically standing bars.
It is a crude density estimator because the shape of a histogram depends upon the
choice of the number of bars. In addition to the description of sample properties,

histograms can also be used for visualization of statistical results. One application is
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the investigation of p-values obtained by ANOVA of profiling data. In addition to the
absolute p-values themselves, also their distribution among the constituents is of
interest. However, the p-values of an ANOVA based, for example, on a broad range of
metabolites are not Gaussian variables. Usually, the major part of p-values will exhibit
only small levels, and the decision on which treatment has the main impact (e.g.
factor 1 vs. factor 2) will be only weak (Figure 4A). Therefore, the data should be

transformed for enabling a better evaluation of the data.

ANOVA factor 1 ANOVA factor 2
100 . : : . 100 . . . .
A | — —
80 | 80 1
. 60 — . 60 .
40 40
20 N 20 |
0 e e 0 —l_h_l—»—y—m .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
p values p values
60 T T T 60 T T T
B
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20 20
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logit (p) logit (p)

Figure 4: Histograms of p-values obtained by a two-way ANOVA (factors 1 and 2) of

metabolite data for 152 compounds. (A) comparison of the original p-values distribution

and (B) distribution of p-values transformed by use of logit (p) = log (p) — log (1-p)
The Logit-function will modify the distribution of p-values from [0<p<1] to
[-oo < logit (p) < +x], e.g. logit (p=0.5)=0, logit(p=0.1)=-1, logit(p=0.01)=-2,
logit (p=0.001) ~ -3 (Ashton, 1972; Greiff et al., 2002; Ter Braak and Gremmen,
1987). Histograms showing logit (p) can be interpreted as follows: the more equal the
distribution of logit (p)-values, the more significant is a treatment; the more logit (p)-
values are around zero, the less significant is a treatment. In Figure 4B this will allow
the conclusion that factor 1 has a stronger effect on the variation between samples

than factor 2.
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2.4 Near Infrared Spectroscopy (NIRS)

NIR spectroscopy is the art and science of interactions of NIR energy with
matter. A spectroscopist is a person who studies spectroscopy. NIR
spectrometry, on the other hand is the art and science of building NIR
instrumentation that a spectroscopist would use to pursue spectroscopy. NIR
spectroscopy, requiring human interaction and interpretation, results in a
report or paper. NIR spectrometry, also requiring human interaction and
interpretation, culminates in an instrument—a spectrometer.

(McClure and Tsuchikawa, 2007)

2.4.1 Short History

The existence of near infrared light (800—-2500 nm) was discovered not until 1800,
when William Herschel put a thermometer beyond the red end of a light spectrum
generated by use of a prism (Herschel, 1800a). He noticed an increase in
temperature, which he explained by the existence of a so far unknown type of
invisible energy in this spectral range (Herschel, 1800b).

NIRS as a potential analytical tool was firstly described in the middle of the 20"
century by Gordy and others (Gordy and Martin, 1937; Plyler and Williams, 1936;
Williams, 1936), who replaced the thermometer by mica absorption layers (Williams
and Rogers, 1937). Further improvement of spectroscopic techniques was achieved
from the 1960s on by Goddu and Delker (1958), Kaye et al. (1951), Wheeler (1959),
Whetsel (1968), and especially Norris (1963), who was the first to demonstrate that
NIR spectrometry could be calibrated with multiple linear regression. It was already
at this time, that the potential of NIRS was recognized by the food industry. The
major efforts made in the years until now were the introduction of new detectors
and more compact in-line measuring NIRS units. The use of computers for calculation
of regression models and thus the ability to employ more sophisticated algorithms,
such as neural networks, introduced additional verve into the field of near infrared

spectroscopy (Wang and Paliwal, 2007).
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2.4.2 NIRS as Analytical Tool

The absorption of near infrared light corresponds to overtones and combinations
involving C-H, O-H or N-H chemical bonds, resulting in a characteristic spectral profile
for each sample based on its chemical composition. Near infrared spectroscopy, as an
instrumental method for acquiring spectra of foods and other materials, is widely
used for the determination of both qualitative and quantitative characteristics. The
popularity of NIRS methods is owed to five main advantages, which are (1) speed, (2)
little or no sample preparation, (3) multiple analyses from a single scan, and (4) a
non-destructive measurement process which is (5) highly reproducible. These come
along with three shortcomings: (1) NIRS is a technology that must be
trained/calibrated. (2) Determination of constituents at known levels often involves
expensive and complicated reference methods closely tied to wet chemistry that
demand the input of highly skilled personnel. (3) Modern-day calibration methods
rely on rather sophisticated chemometric techniques, thus calling into play the
assistance of personnel who are highly trained in chemometrics or statistics in

chemistry (McClure and Tsuchikawa, 2007).

2.4.3 Investigation of Food and Feed

Together with multivariate analysis, such as principal component or linear
discriminant analysis, NIRS showed great promise as a screening tool for monitoring
biochemical changes in crop developing systems, such as malting barley (Allison and
Maule, 1991), or for both discriminating between yeast strains and grouping strains
with deletions in genes that disturb similar metabolic pathways (Cozzolino et al.,
2006). NIRS is commonly used for targeted proximate analyses (Osborne, 2008;
Woodcock et al., 2008) and detection of physical properties, such as hardness or
solubility (Blanco et al., 2006; Miralbés, 2004). These applications are based on
calibration models for each analyte that have to be developed based on multivariate
statistics. By mathematically correlating spectral data with the data obtained by the
currently accepted laboratory procedures for reference analyses, the content of a
respective constituent can be predicted by NIRS (Shenk et al., 2008).

Also non-targeted qualitative applications of NIRS were reported. For example,

comparison of raw NIR spectra from GM maize and non-GM maize was used to



17 Background NIRS

differentiate between GM maize and its parental line (Bertrand et al., 1985). In a
similar experiment six cultivars were differentiated by Principal Component Analyses
of wavelengths selected from NIR spectra (Delwiche and Norris, 1993). In another
study, a combined approach of both qualitative and quantitative data evaluation was
applied. Classification of hard wheat was obtained by calibration/prediction of
protein content and degree of hardness, and in addition by Principal Component
Analysis of full spectrum data (Sandorfy et al., 2007).

Applications of NIRS in the food industry for routine analysis range from reception
inspection to process monitoring (Ferreira et al., 2005; Zhou et al., 2006) to quality
control of finished products (Esteban-Diez et al., 2007). Examples are the detection of
the ratio between Arabica and Robusta in coffee powder, that is the determining
factor for coffee quality (Quilitzsch et al., 2005); in agriculture NIRS is applied to the
assessment of a- and B-carotene in produce (Tian et al., 2007), and in pomiculture for
the analysis of the solid fraction (Miralbés, 2004). In the milling industry rheological
and chemical properties of flours are determined by use of NIRS (Baye et al., 2006).
Also proximate analyses in crop plants, such as protein, oil or starch in maize, are

performed based on NIRS methods (Emura et al., 2006).

2.4.4 Instrumentational Set Up

A spectrometer consists of an energy source, a dispersive element to enable the
measurement at different wavelengths, a cell where the interaction with matter will
take place, and a detector (Figure 5). In analytical NIR spectrometers usually a quartz
halogen bulb is used as source, owing to its broad band emission of NIR light (800—
2500 nm). Discrete wavelengths can be generated by monochromator systems or, as
in state of the art instruments, by Fourier-Transform-Elements. The core piece of
these so-called FT-NIR spectrometers is the interferometer, where the light is split
into two beams and subsequently reunited by use of a mirror. The distance between
the beam splitter and the mirror can be altered periodically to generate interference
patterns. Depending on the optical path length intensity maxima will be obtained for
discrete wavelengths, which can be used for the absorbance measurement at one
wavelength after another. These spectrometers exhibit an excellent signal/noise

ratio, short analysis time and a high resolution of less than 0.1 cm™. NIR light that is
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not absorbed by the sample, can be measured in reflectance or transmission mode
and results in a characteristic spectral profile for each sample based on its chemical
composition (Osborne, 2000). Owing to strong scattering of the not absorbed light,
an integration sphere can optionally be used (Figure 5) for forwarding to the
detector. Several types of NIR detectors, such as photoinductive or photovoltaic
elements, are in use, of which InGaAs or PbS detectors are mostly used for laboratory
equipment. Absorption of the sample is calculated from the reflected light, which is

measured by the detector.

light source
\ITl ] N fixed mirror
)4 |/— movable mirror > interferometer
s * I; beam splitter
' 7

optional filters/diaphragms

sample cup

integration sphere

L— detector

Figure 5: Principle of typical a NIR spectrometer using the example of a FT-NIR
spectrometer (Spectrum One NTS, Perkin Elmer, Rodgau-Jiigesheim, Germany)

2.4.5 Calibrating a NIR Spectrometer for Quantification

2.4.5.1  Principles of NIRS Calibrations

Absorption of near infrared light is based on overtone and combination vibrations
resulting in broad bands which overlap to a large extent. Each absorption band
contains the information of several constituents. Therefore, for quantification of an
analyte, it will be not sufficient to assess the absorption at one distinct wavelength.
This is the major difference between NIR spectral data and chromatographic data, in
which the peak signal at a distinct retention time will correspond quantitatively to the

analyte. For quantification based on NIR spectral data, the absorptions at different
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wavelengths are usually mathematically combined by linear combination algorithms.
The challenge is to locate the appropriate wavelengths and to define proper weighing
factors to reflect the proportion of the analyte’s absorption to the total absorption at
a distinct wavelength. This step is performed by correlation of quantitative data
obtained from reference samples by analysis with accepted methods and the
spectroscopic data of these samples. The correlation of NIR spectral data with
guantitative reference analytical data is defined as calibration resulting in a
calibration model, that can be used to predict the content of an analyte in unknown
samples based only on NIR spectral data (Perez-Marin et al., 2007).

Typically, so-called global calibration models are developed, that will be able to
properly predict the content of the target analyte in 90-95% of all samples of a given
matrix (e.g. maize kernels) (Shenk et al., 2001). These global calibrations are based on
the Lambert-Beer law, which follows the assumption that the relation between
absorption and concentration of an analyte is linear (Hruschka, 2001). To enable the
accurate prediction by a NIRS calibration model, the reference samples selected for
establishment of a global model have to reflect all potential variation in the samples
that may be investigated by NIRS. In addition, the content of the analyte itself plays
an important role for building a calibration model, and the reference samples should
equally cover all possible concentrations from low to high values, to ensure the
proper prediction by the model. Therefore, possible impact factors on absorption,
composition as well as technical influences such as water content or milling quality,
have to be considered.

To ensure the accurate prediction of contents, a NIRS calibration model has to be
validated by use of samples that exhibit the same characteristics as the reference
samples, but have not been incorporated for building the model. Validation means to
predict the content of the target compounds by use of the calibration model in
additional samples, and to compare these results with reference analytical values.
Two major strategies can be applied for selection of test-samples. One option is to
divide the reference sample into two groups; one group which is used for calibration,
and another group that is used as test-set for validation of the calibration equation.
This procedure is dependent on a large number of samples, which all have to be

analyzed by reference analytical methods. In addition, the half of the samples cannot
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be included in building the calibration model, and additional information of these
samples may be lost. Therefore, as a second possibility the test-sets will be replaced
by a cross-validation step. Cross-validation incorporates all available samples into the
calibration and simultaneously will perform a validation during calculation of the
model by use of a leave-one-out strategy. A leave-one-out strategy means to
successively remove each individual sample from the calibration set and to analyze
them on the basis of models build with the remaining samples. The great advantage
of this approach is the possibility to use all available samples for both calibration and
validation, and enables the establishment of calibration models also for small sets of

reference samples.

2.4.5.2 Calibration Algorithms for NIRS

Three multivariate, linear calibration algorithms are mainly used for the development
of NIRS calibration models: Multiple Linear Regression (MLR), Principal Component
Regression (PCR), and Partial Least Squares Regression (PLSR) (Wang and Paliwal,
2007).

MLR is based on the correlation of reference data with absorption values at a small
number of wavelengths that were selected by the user. This selection may be based
on literature data or on results from calibrations performed earlier (Perez-Marin et
al., 2007). In contrast, PCR and PLSR will not pre-select a number of wavelengths, but
will use the whole spectrum for calculation of the regression equation. As a typical
NIR spectrum contains redundant information, i.e. one constituent will cause
absorption at different wavelengths, this procedure would cause overfitting of the
model due to collinearity. Overfitting means, that the model will very precisely
describe the levels of an analyte for the samples that were included in the calibration
set, but the content in additional samples will be predicted very poorly, because the
model is too specialized to the reference samples. Therefore, PCR and PLSR will
reduce the number of variables/wavelengths (i.e. dimensions) to avoid collinearity.
PCR will calculate principal components as new variables that contain the greatest
proportion of variance between spectra. By nature, these principal components will
contain no collinearity (see 2.3.2). The values of the principal components will then

be analyzed for correlation with the reference data. However, the principal
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components selected by PCR may not primarily contain the absorption differences of
the target compound in the samples, but may be determined by other influences,
which yields in a bad calibration. Therefore, PLSR will calculate principal components
considering only wavelength bands, where a correlation between absorption
differences and differences in the content of the target compound is observed (Roggo
et al., 2007; Rosipal and Kramer, 2006).

There are also other approaches for establishing a correlation between NIR spectral
data and reference values, most notably neural networks (El-Sanhoty et al., 2006).
These methods follow an iterative process to create nested functions that describe
the absorption at different wavelengths in relation to the content of a target analyte.
The main advantage of these techniques is the incorporation of non-linear behavior,
that can be observed e.g. for very broad concentration ranges, that will extend the
range which is covered by the Lambert-Beer law, or for very low concentrations in
complex matrices. However, these techniques are very sophisticated in
implementation with benefits only in a few special cases, and have not been

commercially established yet.

2.4.5.3  Evaluation of NIRS Calibration Models

The quality of a calibration model depends on a number of factors. In general an
excellent calibration will be achieved considering the following factors: (a) good
reproducibility of the reference method, which should be less than 5% of the (b) wide
concentration range of reference samples, (c) an equal distribution of the reference
values, (d) a large number of reference samples, that (e) will comprehensively
represent the sample population, that will be analyzed by the model. A weak
reproducibility of the reference method can be partially compensated by increasing
the number of samples. However, too many reference samples that contain similar
information may also decrease the quality of a model. Several statistical parameters

can be considered for evaluation of a calibration model:

Coefficient of Correlation (r)

The coefficient of correlation is telling to which extent a statistical, linear coherence is

given between two characteristics. It will be calculated for both calibration (r.,) and
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validation (r,y). It is ranging from -1 to 1; the algebraic sign will correspond to
negative or positive correlation, respectively. The closer the value is to 1, the stronger
is the correlation (Figure 6C, D). In case of zero, both characteristics are either
independent from each other, or the correlation is non-linear, which will not be able
to detect by the coefficient of correlation (Figure 6A). The coefficient of correlation
can be used for determination of a linear relation, which is quantitatively, but not

qualitatively (Sachs and Hedderich, 2006).

Slope of Regression Line

Another quality criterion for the correlation of values predicted by the calibration
model and reference data is the slope of the regression line. In the best of cases its
value is m =1, representing the slope of the line through the origin (Figure 6B, D). A
successful calibration therefore will be determined by a value close to the line
through origin; the higher the deviation, the less accurate are the predicted values

(Figure 6A, C) (Sachs and Hedderich, 2006).

A A

%) %)
i i
zZ zZ
> >
o o]
e} ©
Q2 2
2 5
e} ©
o o
[oN [o%
52} 2]
0 x g
10 @

X
levels of reference
A 4
%) %)
i4 i%
zZ zZ
> >
o] Q0
e} ©
2 2
&S] &)
3 . 3
| & e ° 5
@ ° ©
g m: X g
o) @
r v
levels of reference levels of reference

Figure 6: lllustration of statistical parameters for the evaluation of NIRS calibration
models: m = slope, r = coefficient of correlation.
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Standard Error of Model (SEC und SECV)

Performance of a calibration model can be evaluated on the basis of the Root Mean
Squared Error of Calibration (SEC) and Root Mean Squared Error of Prediction (SECV)
as determined by crossvalidation (leave-one-out strategy). These parameters are
determined as the square root of the sum of the squared differences between
predicted values and reference values for calibration and validation, respectively.
They correspond to the standard error of the regression and serve as an indicator for

the error of the prediction model (Martens and Naes, 1992).

Performance Criteria

To enable the comparison of different calibration models, the statistical parameters
described above have to be standardized to remove the influence of units and
absolute scales. The following performance criteria are described in literature for

evaluation of NIRS calibration models:

Criterion 1 = (max — min) / SECV, minimum requirement > 10
max (maximum level observed in the calibration sample set)
min (minimum level observed in the calibration sample set)

(De la Roza et al., 1998; Fontaine et al., 2001)

Criterion 2 = s / SECV, minimum requirement > 3
s (standard deviation of levels in the calibration sample set)

(De la Roza et al., 1998; Williams and Sobering, 1996)

Criterion 3 = SECV / Sreference» Minimum requirement < 2
Sreference (Standard deviation of the reference method)

(Fontaine et al., 2001)

Criteria 1 and 2 describe the relation of the prediction error of the model to the
distribution (range and variance) of reference values. Criterion 1 takes into account
the concentration range of the reference data, i.e. the ratio of the range in reference
values (minimum to maximum) to the standard error of the calibration model (SECV);

criterion 2 will consider the standard deviation SD of the sample population in
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relation to the standard error of the prediction by the model SECV. The minimum
requirements of 10 and 3 for criterion 1 and 2, respectively, allow the differentiation
of samples low, medium and high in the target constituent (Williams and Sobering,
1996). Criterion 3 is deduced according to requirements described in literature
(Fontaine et al., 2001), that the SECV should not be higher than twice the standard

deviation of the reference method.
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3 MATERIALS AND METHODS

3.1 Maize Seed Materials
3.1.1 Sample Sets

Investigation of the Influence of Genetics and Environment (section 4.2)

Four maize (Zea mays) cultivars (Flavi, Caussade Semences, Caussade, France; Lukas,
Limagrain GmbH Edemissen, Germany; Pontos, Limagrain GmbH Edemissen,
Germany; ES Shorty, Euralis Semences, Lescar, France) were grown at one location
(Frankendorf) in Bavaria (Germany). One cultivar (Amadeo, KWS Mais GmbH,
Germany) was grown at four different locations (Mittich, Reith, Strassmoos, Thann) in
Bavaria (Germany). Samples were obtained from field trials in the growing seasons
2004, 2005 and 2006. Growing periods were as follows: Frankendorf: 21.04.—
19.10.2004, 03.05.-26.10.2005, 02.05.-12.10.2006; Mittich: 17.04.-05.10.2004,
14.04.-12.10.2005, 24.04.-11.10.2006; Reith: 19.04.-20.10.2004, 15.04.-18.10.2005,
24.04.-12.10.2006; Strassmoos: 21.04.-28.10.2004, 02.05.-20.10.2005, 24.04.-
10.10.2006; Thann: 21.04.-22.10.2004, 02.05.-25.10.2005, 21.04.-17.10.2006.

Investigation of the Influence of Input System (section 4.3)

Three maize (Zea mays) cultivars (Amadeo, KWS Mais GmbH, Germany; Lukas,
Limagrain GmbH, Edemissen, Germany; Flavi, Caussade Semences, Caussade, France)
were grown in the season 2004 at two locations with different input regimes. At
location Frankendorf (Bavaria, Germany) the crops were grown conventionally, at
location Schénbrunn (Bavaria, Germany) organic farming was employed (experiment
la). The same procedure was repeated in the season 2005 (experiment Ib). For
experiment |l samples from two plots with different input systems
(conventional/organic) were obtained from one location Scheyern (Bavaria,
Germany). The distance between the field plots was approximately 400 m. Growing
periods were as follows: Frankendorf: 21.04.-19.10.2004, 03.05.-26.10.2005;
Schonbrunn: 22.04.-19.09.2004, 12.05.—27.09.2005; Scheyern: 12.05.-25.10.2006.

Additional Metadata on agronomy are provided in Table 1.
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Table 1: Metadata on agronomy (2004-2006)

fertilization plant-protection
Sowing harvest temp. rain® soil® N° P,0s ¢ K,0 ¢ d - e herbizide/
date date [°C] [mm] index [kg/ha] [mg/kg] [mg/kg] pH fertilizer  [kg/ha]”  date treatment [V/ha] date
season 2004
Frankendorf ~ Apr21 Oct19 14.0 501 80 104 90 160 7.1 NK 30 Apr 21 Artett 2.8 May12
(conv) NK 80 Jun06  Spectrum 1.4 May12
Thann Apr21  Oct22 14.4 447 41 76 36 24 6.2 NP 30 Apr21 Gardo Gold 4.0 May 19
(conv) NK 70 May 19 Callisto 1.0 May19
NK 50 Jun 14
Reith Apr19 Oct20 14.6 471 42 78 10 19 6.3 NP 30 Apr17  Gardo Gold 3.0 May 19
(conv) NK 130 May 11 Callisto 0.75
Mittich Apr17  Oct 05 15.1 591 46 100 16 16 6.4 NP 30 Apr17 Gardo Gold 3.0 May 19
(conv) NK 130 May11 Callisto 0.75
Strassmoos Apr21 Oct28 142 336 41 59 23 24 6.4 NP 36 Apr21 Gardo Gold 3.0 May19
(conv) Alzon47N 150  Apr26 Callisto 0.75 May19
Gardo Gold 1.0 Jun 02
Callisto 0.25 Jun02
Callisto 1.0 Jun 17
Certrol B 0.3 Jun17
Schonbrunn  Apr22 Sep19 14.7 403 52 53 220 310 7.5 - - - currycomb May 13
(org) roller hoe May 25
season 2005
Frankendorf May03 Oct25 143 570 80 82 200 230 6.8 NK 30 May03 Artett 2.8 Jun 02
(conv) NK 100  Jun13 Spectrum 14 Jun 02
Thann May 02 Oct 25 14.6 570 47 50 33 25 6.4 NP 30 May 02 Gardo Gold 4.0 Jun 02
(conv) NK 70 May 30 Callisto 1.0
NK 50 Jun 20
Reith Aprl5 Octl18 14.8 583 70 66 22 21 - NP 40 Apr 14 Callisto 1.0 May 25
(conv) NK 115 May 19
Mittich Apr14 Octl12 155 535 46 93 28 19 - farmyard 120 Apr01 Gardo Gold 40 May?25
(conv) manure 40 Apr 14 Callisto 1.0
NP 35 May 19
NK
Strassmoos May02 Oct20 14.6 490 40 50 18 20 6.4 NPK 34 Apr12  Gardo Gold 3.0 May 25
(conv) NP 27 May 02 Callisto 0.75 May 25
Alzon 47 N 110 May12 Gardo Gold 1.0 Jun 06
Callisto 0.25 Jun06
Schonbrunn  May 12 Sep27 14.8 482 52 £ 170 190 7.6 - - - currycomb May 27
(org) currycomb Jun 01
roller hoe May 06
roller hoe Jun21
season 2006
Frankendorf May02 Octl12 15.3 420 80 73 23 27 7.2 NK 30 May 02 Artett 2.8 Jun 10
(conv) NK 100  Jun13 Spectrum 1.4
Thann Apr21 Oct1l7 15.7 438 60 40 31 44 6.7 NP 30 Apr21 Gardo Gold 40 May22
(conv) NK 70 May 15 Callisto 1.0
NK 50 Jun 12
Reith Apr24  Oct 12 15.8 444 65 82 33 18 7.1 NP 35 Apr 24  Gardo Gold 3.0 May 22
(conv) NK 60  May08 Callisto 0.75
NK 45 Jun 06
Mittich Apr24  Oct11l 16.4 387 73 65 9 6 6.8 NP 35 Apr24  Gardo Gold 3.0 May 22
(conv) NK 60 May 08 Callisto 0.75
NK 60 Jun 06
Strassmoos Apr24 Octl10 15.5 309 36 60 12 14 5.8 NPK 39 Apr20 Gardo Gold 2.0 May 15
(conv) NP 27 Apr 24 Callisto 0.5 May15
ENTEC 110 May04 Gardo Gold 2.0 Jun 08
Callisto 0.5 Jun 08
Scheyern May 12 Oct 25 15.2 387 63 79 110-200 110-200 6.1 NP 60 May 12 Motivell 0.9 Jun 12
(conv) N 130 May 15 Certrol 0.8 Jun 12
Scheyern May12 Oct25 152 387 64 70  110-200 110-200 6.0 £ £ £ roller hoe May 22
(org) roller hoe Jun 16
roller hoe Jul 01
hoe Jul 02

a Mean temperatures May—October; b Sum of precipitation May—October; ¢ Productivity indicator "Ackerzahl": Relative yield in comparison to the best
German site (Ackerzahl = 100) (BewRL, 1967); d Soil samples (0 to -90 cm) taken in spring before application of fertilizer; e Total amount of fertilizer;
No data available; g Mustard grown in autumn of the pre-season was ploughed in to the ground as green manure
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Investigation of the Influence of Genetic Engineering (section 4.4)

South African Maize. White maize samples were derived from the transgenic Bt
hybrid variety DKC78-15B (hybrid of event MON 810 from Monsanto), from the
transgenic glyphosate-tolerant Roundup Ready variety DKC78-35R (hybrid of event
NK603 from Monsanto), and the near-isogenic non-GM hybrid variety CRN 3505
(Monsanto). The plants were grown at two different sites, namely, Petit and
Lichtenburg (South Africa), under high-input system; the varieties were planted in
Petit over three growing seasons (2004, 2005 and 2006) and in Lichtenburg over one
growing season (2004). At planting, the plants were fertilized with 300 kg/Ha4:3:4
(33), topdressing 300 kg / Ha KAN (28) and treated with herbicide 1.8 L/ Ha Guardian
+ 200 mL / Ha Sumi Alpha. Two months after planting, the plants were treated with
herbicide, 2.2 L / Ha A-maizing + 1L / Ha Harness + 220 mL / Ha alphacypermytrin.
Three months after planting, the material was treated with pesticide, 750 mL / Ha
Endosulfan against stalkborer. The DKC78-15B and the control variety CRN3505 were
also grown in Potchefstroom (South Africa) under low-input system, which means
that no fertilizer, no fungicide and no herbicide were applied throughout the growth
of the plants. The plant material was harvested 8 months after planting.

For the field trial performed at location Petit in 2005, three replicate samples were
available and the results were averaged prior to further analysis for all techniques.
For all other field trials, one sample was analyzed.

German Maize. The transgenic Bt hybrid variety TXP 138-F (hybrid of event MON 810
from Monsanto), and its isogenic counterpart DKC3420 (Monsanto) were harvested
in season 2004. The samples were grown under conventional farming practice in
Bavaria (Germany). At location Neuhof four field replicates, at Pfaffenhofen three

field replicates were collected.

NIRS Screening of Maize (section 4.5)

Three maize (Zea mays) cultivars (Gomera EU, Euralis Saaten GmbH, Norderstedt,
Germany; Amadeo, KWS Mais GmbH, Germany; Lukas, Limagrain GmbH, Edemissen,
Germany) were grown at location Strassmoos (Bavaria, Germany) in three
consecutive seasons. Growing periods were as follows: 21.04.—-28.10.2004, 02.05.—

20.10.2005, 24.04.-10.10.2006. Metadata on agronomy are provided in Table 1.
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The samples for investigation of the influence of input system (experiment la, Ib and
II) were also included for analysis by both GC/MS and NIRS.

For the development of NIRS calibration models the sample sets described above
were extended to a total of 383 maize samples, that were collected over three
growing seasons (2004-2006) from 17 different locations in Bayern (Germany), and 3

locations in South Africa, covering 32 different genotypes.

3.1.2 Growing Parameters and Sampling

All samples were obtained from field trials with totally randomized field plot design.
For each cultivar/location/season three field replicates were available, if not
mentioned otherwise. Ten cobs were harvested from the two mid rows of each plot
and a sub-sample of 100 g kernels was taken for further processing. Dry matter was
determined by drying the kernels at 105°C to constant weight. Plant height was
measured after flowering from ground to top of tassel. Kernel yield was determined
for the two mid rows of each plot (9 m?) and extrapolated to one hectare. Calculation
of yield was based on dry matter standardized to a moisture content of 16%.

The locations employing organic farming had been managed for at least 3 years

according to the provisions laid down in Council Regulation (EEC) 2092/1991.

3.1.3 Sample Processing

Maize collected from the German sites was air-dried (30—-40°C) for 3 days. Samples
from South Africa were dried already in the field before harvest. The dried maize
kernels (10-15% moisture) were frozen in liquid nitrogen and immediately ground
with a cyclone mill (Cyclotec, Foss, Germany) equipped with a 500 um sieve. The flour
was freeze-dried (ALPHA 1-4 LSC, Christ, Osterode, Germany) for 48 hours. The
moisture content of the resulting material (<2%) was determined as loss of weight by
drying at 105 °C for 3 hours. Freeze-dried flour samples were stored at -18 °C in

tightly closed LDPE bottles (Kautex Textron, Bonn, Germany).
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3.1 GC/MS-Metabolite Profiling of Maize

3.1.1 Sample Extraction

Four hundred milligrams of freeze-dried maize flour were weighed into a 3 mL
cartridge (Merck, Darmstadt, Germany) which was sealed with PTFE frits at the
bottom and top of the flour layer. The cartridge was connected to a vacuum manifold
(Supelco, Taufkirchen, Germany). For disintegration of the matrix, the maize flour
was pre-soaked in 200 puL of methanol (Merck, Darmstadt, Germany) for 20 min at
ambient temperature with vents of the manifold closed (Frenzel et al., 2002). The
methanol was removed by application of vacuum (30-20 mbar max) on the top of the
cartridge for 30 min. Lipids were eluted with 4 mL of dichloromethane (Riedel de
Haén, Seelze, Germany) into 11 mL vials (lipid extract) by gravity flow. Residual
dichloromethane was removed from the flour by application of vacuum on the
bottom of the cartridge. Polar compounds were eluted with a total of 10 mL of
methanol/water (80+20, v+v) within 40 min into 11 mL-vials by application of weak

vacuum at the bottom.

3.1.2 Preparation of Standard Solutions

Reference compounds were obtained from Merck KgaA (Darmstadt, Germany), Fluka
(Buchs, Switzerland), Riedel de Haén (Seelze, Germany) and Oxeno (Marl, Germany).
Retention time standard mix I: Solutions of undecane (1.5 mL, 1 mg/mL), hexadecane
(2.5 mL, 1 mg/mL), tetracosane (4 mL, 1 mg/mL) and triacontane (4 mL, 1 mg/mL) in
n-hexane (Merck, Darmstadt, Germany) were added to 10 mg of octatriacontane.
Hydrocarbons were purchased from Fluka (Buchs, Switzerland).

Retention time standard mix Il: 1.5 mL of n-hexane (Merck, Darmstadt, Germany) and
solutions of hexadecane (2.5mL, 1 mg/mL), tetracosane (4 mL, 1 mg/mL) and
triacontane (4 mL, 1 mg/mL) in n-hexane were added to 10 mg of octatriacontane.
Hydrocarbons were purchased from Fluka (Buchs, Switzerland). Alanine was used as
retention time standard in place of undecane for fraction IV.

Internal standard solution for fraction I: Identical to Retention time standard mix I.

Tetracosane was used as internal standard for quantification of major lipids.
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Internal standard solution for fraction Il: 6 mg of 5a-cholestan-3B-ol (Fluka, Buchs,
Switzerland) were dissolved in 10 mL of dichloromethane (Riedel de Haén, Seelze,
Germany).

Internal standard solution for fraction Ill: 40 mg of phenyl-B-D-glucopyranoside
(Fluka, Buchs, Switzerland) were dissolved in 25 mL of distilled water.

Internal standard solution for fraction IV: 20 mg of p-chloro-L-phenylalanine (Fluka,

Buchs, Switzerland) were dissolved in 25 mL of distilled water.

3.1.3 Fractionation and Analysis of Lipids

100 pL of internal standard solution for fraction | and 100 uL of internal standard
solution for fraction Il were added to the lipid extract. The solution was evaporated in
4 mL vials to dryness by rotary evaporation (ACTEVap Evaporator, Activotec,
Cambridge, United Kingdom). Residual solvents were removed by application of
nitrogen. The lipids were re-dissolved in 500 pL of dry methyl tert-butyl ether (MTBE,
Oxeno, Marl, Germany) and 250 uL dry methanol 50 pL of sodium methylate, 5.4 M in
methanol (Fluka, Buchs, Switzerland) were added. After reaction for 90 min at room
temperature in the dark, 1 mL of dichloromethane and 2 mL of aqueous 0.35 M HCI
were added. The solution was shaken vigorously and the upper phase was discarded.
After re-extraction of the lower phase containing the transmethylated lipids with
another 2 mL of aqueous 0.35 M HCI the solution was evaporated to dryness by
rotary evaporation.

The dry transmethylated lipid extract was sub-fractionated by solid phase extraction
(SPE). After placing 200 - 300 mg of sodium sulfate on top of the cartridge one
column volume (CV, 2.5 mL) of n-hexane was used for conditioning the SPE column.
The n-hexane was removed by application of weak vacuum on the bottom.
Transmethylated lipids were re-dissolved in 250 uL of dichloromethane and
transferred to the SPE cartridge.

The methyl ester fraction (fraction |) was eluted with 3x2 mL of n-hexane and MTBE
(100:2, v+v). The eluate was evaporated to dryness by rotary evaporation (160 mbar
min) and re-dissolved in 300 pL of n-hexane and transferred into a TPX plastic auto-
sampler vial with an integrated 0.2 mL glass micro-insert and closed using a 6 mm

silicone/PTFE red screw cap. 1 pL was injected into to GC/MS.
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The minor polar lipid fraction (fraction Il) was eluted with 3x2 mL of n-hexane and
MTBE (70:30, v+v). After addition of 100 uL of retention time standard mix | the
eluate was evaporated to dryness by rotary evaporation (160 mbar min). Residual
solvents were removed by application of nitrogen. Fraction Il was re-dissolved in
250 uL of dry pyridine (Fluka, Buchs, Switzerland) and 50 uL of N-methyl-N-
trimethylsilyl-trifluoracetamide (MSTFA, Merck, Darmstadt, Germany). After flushing
with argon, the vial was tightly sealed with PTFE-sealings and silylated for 15 min at
70°C. After transfer into a TPX plastic auto-sampler vial with an integrated 0.2 mL
glass micro-insert and closed using a 6 mm silicone/PTFE red screw cap 1 pL was

injected into the GC/MS.

3.1.4 Fractionation of Polar Extract

150 pL of internal standard solution for fraction Il and 150 pL of internal standard
solution for fraction IV were added to the polar extract. 1 mL of this solution was
concentrated in 4 mL vials by rotary evaporation and dried over phosphorus
pentoxide. After re-dissolving in 200 uL of dry pyridine and 100 uL of dry
trimethylsilylimidazole (TMSIM, Fluka, Buchs, Switzerland) were added, the sample
was silylated for 20 min at 70°C in a tightly sealed vial. For differential hydrolysis of
the silylated derivatives, 200 uL of n-hexane and 400 pL of water were added. After
slightly shaking at room temperature and subsequent phase separation (5 min)
150 uL of the upper phase (fraction Ill) were transferred into a TPX plastic auto-
sampler vial with an integrated 0.2 mL glass micro-insert and 75 pL of retention time
standard mix | was added and closed using a 6 mm silicone/PTFE red screw cap. 1 plL
was injected into the GC/MS.

2 mL of polar extract were concentrated by rotary evaporation and dried over
phosphorus pentoxide. After re-dissolving in 250 uL of dry hydroxylammonium-
chloride (Merck, Darmstadt, Germany) the sample was oximated for 30 min at 70°C.
100 pL of MSTFA were added. After flushing with argon the tightly sealed vials were
allowed to stand for 20 min at 70°C. 500 pl of n-hexane and 300 uL of water were
added. After vortexing and phase separation the upper phase was removed and the
lower phase was re-extraced with 2 x 500uL of n-hexane. The lower phase, containing

acids, amino acids and amines (fraction IV) was concentrated to dryness by rotary
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evaporation and dried over phosphorus pentoxide. 100 pL of retention time standard
mix Il were added and the solvent was removed by application of nitrogen. The dry
extract was redissolved in 250 pL of dry acetonitrile (Merck, Darmstadt, Germany)
and 50 uL of MSTFA were added. After flushing with argon, the sample was
resilylated for 60 min at 70°C. After transfer into a TPX plastic auto-sampler vial with
an integrated 0.2 mL glass micro-insert and closed using a 6 mm silicone/PTFE red

screw cap 1 pL was injected into the GC/MS.

3.1.5 GC/MS Analysis

Gas chromatography was performed on a Finnigan TraceGC Ultra (Thermo Electron
Corp., Austin, TX) with split/splitless injector combined with a Finnigan Trace DSQ
mass spectrometer (Thermo Electron Corp., Austin, TX) with electron ionization (El)
ion source. The column used was a factorFOUR VF-1ms, 60 m x 0.32 mm internal
diameter (ID), coated with a 0.25 um film of 100% polydimethylsiloxane (Varian,
Darmstadt, Germany). Injection was performed in split mode (split flow 15 mL/min)
at an injection temperature of 280°C. Helium as carrier gas was used at a constant
flow of 1 mL/min. Column temperature was programmed from 100°C to 320°C
(10 min hold) at a 4°C/min. The MS interface temperature was set to 320°C. After a
solvent delay of 6 min full scan mass spectra were recorded within a scan range of
40-700 mu at an electron energy of 70 eV and a source temperature of 250°C.
Identification of maize constituents was achieved by comparison of retention times
and mass spectra with those of silylated and methylated reference compounds or by
comparing mass spectra of the NISTO2 MS database (Ausloos et al., 1999). Peak
heights were normalized by the heights of the internal standards in the respective

fraction.

3.1.6 Metabolite Identification

Metabolites were identified according to mass spectral data from custom (A: mass
spectral data and retention times of reference compounds), public (B: mass spectral
data and retention index of Golm Metabolome Database (Kopka et al., 2005)),

commercial (C: mass spectral data of NISTO2 mass spectral library (Ausloos et al.,
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1999)) mass spectral libraries and from literature (E: Xu and Godber (1999), F: Kamal-
Eldin et al. (1992), and G: Meyna (2005), Miller (1982)).

For A, B and C metabolites were denoted as identified if the similarity index was >750
on a scale of 0 to 1,000; in addition, for A a maximum relative retention time
deviation of 0.1% and for B a maximum relative retention index deviation of 1.0%

were required.

3.1.7 Validation of GC/MS Methodology

Repeatability

Repeatability was determined by triplicate analysis of a maize sample. Relative
standard deviations (RSD) of peak heights normalized to the internal standard of the

respective fraction were calculated.

Recovery

Recovery rates of selected compounds were determined by analyzing three aliquots
of both lipophilic and polar liquid extracts of the same maize flour in triplicate.
Extraction, fractionation, derivatization and GC/MS investigation were performed as
described above. The first aliquot of the extract was spiked with the standard
compounds at the beginning of the analytical procedure. The second aliquot was
spiked at the end of the work up prior to GC/MS investigation. The third aliquot of
the extract was analyzed to calculate peak heights of the standard compounds
naturally observed in the unspiked flour. Peak heights of the first extract aliquot were
compared to peak heights of the second sample, taking the peak heights of extract

aliguot three into account. Recoveries were calculated according equation 3:

H,, —H
W=-tL__P*100% (3)
HPZ _HP3

Equation 3: calculation of recovery rates: W recovery rate, Hp; peak height in the aliquot
of the extract spiked in the beginning of the analytical procedure, Hp, peak height in the
aliquot of the extract spiked prior to GC/MS investigation, Hp; peak height in the
unspiked aliquot of the extract
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Preparation of standard compounds for recovery rate

Fraction I: 20 uL of n-hexane solution containing 1.5 mg/mL triarachin, 8.5 mg/mL
tripalmitin, 7.5 mg/mL tristearin and 0.75 mg/mL squalene was added to the flour at
the start of analysis. 20 uL of n-hexane solution containing 1.5 mg/mL methyl
arachidate, 8.5 mg/mL methyl palmitate, 7.5 mg/mL methyl stearate and 0.75 mg/mL
squalene was added to the sample prior to GC/MS investigation.

Fraction II: 20 puL of dichloromethane solution containing 3.0 mg/mL 5a-cholestan-
3B-ol, 0.25 mg/mL 6-tocopherol, 0.5 mg/mL stigmasterol, 5.0 mg/mL B-sitosterol,
7.5 mg/mL palmitic acid, 5.0 mg/mL stearic acid and 0.25 mg/mL octadecanol was
added to the maize flour and to fraction Il prior to silylation, respectively.

Fraction Ill: 20 mg sucrose and 100 uL of hexane solution containing 5 mg/mL
fructose, 5 mg/mL glucose, 5 mg/mL galactose, 5 mg/mL raffinose, 5 mg/mL sorbitol
and 5 mg/mL inositol (standard compound mix for fraction Ill) were added to the
flour at the start of analysis. 15 pL of internal standard solution for fraction Ill was
added to 1 mL of polar extract. At the end of analysis 75 pL of a pyridine/TMSIM
(50425, v+v) solution of 6 mg sucrose, 4.5 puL dried internal standard solution for
fraction Ill and 3 pL dried standard compound mix for fraction Il was added to 150 pl
of upper phase of fraction Ill.

Fraction IV: 50 pL of an aqueous solutions containing 2.4 mg/mL p-chloro-L-
phenylalanine, 0.1 mg/mL alanine, 0.1 mg/mL glycine, 0.5 mg/mL malic acid, 0.5
mg/mL glutamine, 0.1 mg/mL lysine hydrochloride, 0.5 mg/mL aspartic acid,
0.5 mg/mL asparagine, 0.1 mg/mL lactic acid and 0.1 mg/mL fumaric acid was added

to 2 mL of polar extract and to fraction IV prior to silylation, respectively.

3.1.8 Pre-Processing of Chromatographic Data

Retention time matching of GC/MS data was performed by use of Chrompare, a self-
tailored MS Excel® tool, basically based on Student’s t-test (Frenzel et al. (2003);
www.chrompare.com). The tool is optimized for comparison of chromatographic
data, including automated retention time adjustment according to retention time
standards. Metabolites were quantified by relative peak levels according to the
respective internal standard. Data from triplicate analysis of each sample were

averaged for further statistical analyses.
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3.2 NIRS-Metabolite Profiling of Maize

3.2.1 NIRS analysis

The ground and freeze-dried maize samples were conditioned for 15 h in the freeze-
dryer before measurement in the NIR spectrometer to standardize the water content
of the samples. NIRS analysis was performed in diffuse reflection by means of a
commercial Fourier-transform (FT) NIR spectrometer, equipped with an integrating
sphere and an InGaAs detector (Spectrum One NTS, Perkin Elmer, Rodgau-Jigesheim,
Germany). A total of 10 g of flour was placed into a quartz petri dish and flattened by
a stamp. After closing the petri dish, it was subsequently mounted onto a
continuously rotating measurement unit (NIRA sample spinner, Perkin Elmer,
Rodgau-Jigesheim, Germany). Spectra were recorded at room temperature from
1000 nm to 2500 nm in 0.5 nm steps (resolution: 8 cm™). One hundred spectra were
averaged to obtain a mean NIR spectrum for each sample. Spectral data (background

subtracted) were stored as log (1/R) values at corresponding wavelength points.

3.2.1 Pre-Processing of Spectral Data

Smoothing (Savitzky Golay, 7 smoothing points) and multiple scatter correction (MSC)
were performed by means of commercially available software (Spectrum Quant,
Spectrum Quant+, Perkin Elmer, Rodgau-Jligesheim, Germany). For export, pre-
processed spectral data were saved as ASCII files. The wavelength ranges 1000-1081
nm and 2448-2500 nm were excluded for further data analysis due to increased

noise in the beginning and the end of the spectra.
3.3 NIRS Calibration

3.3.1 Sample Selection

Reference data for calculation of NIRS calibration models were obtained by GC/MS-
metabolite profiling. Out of a pool of 383 samples, for sugars and acids/amino acids a
total of 99 and 101, respectively, maize samples including various influence factors on
maize composition such as genotype (32 cultivars), location (20 farming sites) or
growing season (2004-2006) were selected. Also 20 samples from three field sites

located in South Africa were included.
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3.3.2 Establishment of Calibration Models

In order to establish a correlation between data obtained by NIRS and the total
contents of sugars and of acids/amino acids in the samples, sum parameters were
calculated for the respective fractions based on relative quantifications as
determined by GC/MS-metabolite profiling. The calibration datasets consisting of
pre-processed spectral data and reference GC/MS-metabolite profiling data were
imported into the Unscrambler® (CAMO Software ASA, Oslo, Norway) software for
statistical analysis. Calibration equations were calculated based on Partial Least
Squares Regression algorithms (PLSR) and stepwise Multiple Linear Regression (MLR).
For stepwise MLR the resolution of the spectral data was averaged to 5 nm segments

to reduce the number of variables.

3.3.3 Validation of NIRS Calibration Models

Performance of calibration models was evaluated on the basis of the Root Mean
Squared Error of Calibration (SEC) and Root Mean Squared Error of Prediction (SECV)
as determined by crossvalidation (leave-one-out strategy). A leave-one-out strategy
means to successively remove each individual sample from the calibration set and to
analyze them on the basis of models build with the remaining samples. Performance
criteria were calculated as follows: Criterion 1 = (max - min) / SECV, minimum
requirement > 10, max (maximum level observed in the calibration sample set), min
(minimum level observed in the calibration sample set) (De la Roza et al., 1998;
Fontaine et al., 2001); criterion 2 = s / SECV, minimum requirement > 3, s (standard
deviation of levels in the calibration sample set) (De la Roza et al., 1998; Williams and
Sobering, 1996); criterion 3 = SECV / Sreference» Minimum requirement < 2, Sreference
(standard deviation of the reference metabolite profiling method (10%) according to

section 4.1, (Fontaine et al., 2001)).

3.3.4 Application by NIRS Calibration Models

In order to determine the levels of sugars and acids/amino acids in maize by means of
NIRS, sample pre-treatment, acquisition of NIR spectra and pre-processing of spectral

data were performed in the same way as described for calibration and validation
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samples. Subsequently, sugar and acid/amino acid contents were predicted on the

basis of pre-processed spectral data by applying the respective calibration equations.
3.4 Statistical Analysis

3.4.1 Principal Component Analysis (PCA)

PCA was performed by use of Systat 11 (Systat Software Inc., CA). Profiling data were
auto-scaled by the standard deviation of each variable (correlation matrix, (Jackson,
1991)) to reduce the influence of metabolites with high abundance. For PCA of NIRS

data the water bond between 1858-2041 nm was excluded.

3.4.2 Peak-by-Peak Comparison (Chrompare)

Peak-by-peak comparison was performed by use of Chrompare, a self-tailored MS
Excel® tool, basically based on student’s t-test ((Frenzel et al., 2003);
www.chrompare.com). The tool is optimized for comparison of chromatographic
data, including automated retention time adjustment according to retention time
standards. Peaks below noise level were discarded on the basis of a threshold of 2%
relative peak height in fractions I/ll and 3% relative peak height in fractions IlI/IV.
Trace constituents for whom the confidence intervals (p < 0.05) were higher than

their mean levels were also not included for comparison.

3.4.3 Analysis of Variance (ANOVA)

ANOVA was performed by use of Systat 11 (Systat Software Inc., CA). The significance
level was set to p < 0.01 for all statistical comparisons. Differences were considered
to be statistically significant if no interaction effect was observed and the main effect
was significant by ANOVA and after post hoc testing by Tukey’s HSD.

For investigation of the influence of genetics and environment (section 4.2) the
ANOVA model described in equation 4 was used for each analyte:

VispU+ti+y+e; (4)

where v; is the response for the ith treatment (i.e. cultivar or location) and the jth
year; W is the overall mean, e; is the random error including error of field replicates

(n = 3). For investigation of the influence of input system (section 4.3) the model was
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modified according to equation 5 to include the interaction of location/input system
and genotype:

Vik = M+ Ci + i + (Ci)ix + e (5)
where vy is the response for the jth cultivar (n = 3) and the kth location/input system
(n =2); uis the overall mean, c; is the effect of the ith maize cultivar, iy is the effect of
the kth location/input system, (ci)i is the effect of the interaction between the ith
maize cultivar and the kth location/input system and ej is the random error including

error of field replicates.

Logit (p) transformation

The distribution of p-values was transformed by use of logit(p) = log(p) — log(1-p)
(Ashton, 1972; Greiff et al., 2002; Ter Braak and Gremmen, 1987). This will modify
the distribution of p-values from [0<p<1] to [-wo<logit (p)<+w]. E.g. logit
(p=0.5) =0, logit (p=0.1)~-1, logit(p=0.01) =~ -2, logit(p=0.001)~-3. Histograms
showing logit (p)-values can be interpreted as follows: the more equal the
distribution of logit (p)-values, the more significant is a treatment; the more logit (p)-

values are around zero, the less significant is a treatment.
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4 RESULTS AND DISCUSSION

4.1 Adaption of the Metabolite Profiling Methodology to Maize

The metabolite profiling methodology applied in this study is based on consecutive
extraction of freeze-dried flour resulting in a lipid and a polar extract (Figure 7). The
fractionation method is in accordance with the procedure described for the analysis
of rice grain (Frenzel et al., 2002). After transesterification the lipid extract is
separated by solid phase extraction (SPE) into a fraction (l) containing fatty acid
methyl esters and a fraction (llI) containing minor lipids such as free fatty acids and
sterols. The base-catalyzed transmethylation of the triglycerides and the subsequent
SPE on silica gel allow a separate analysis of the metabolically important free fatty

acids that are not methylated. This procedure has been shown to proceed without

f freeze dried maize flour T

lipid extract polar extract
| I I
transesterfication selective oximation/
silylation silylation
(TMSIM) (MSTFA)
| |
solid phase extraction selective hydrolysis selective hydrolysis
| |
silylation re-silylation
fraction | fraction Il fraction IlI fraction IV
FAME sugars organic acids
hydrocarbons minor lipids sugar alcohols amino acids

Figure 7 Fractionation scheme of the applied metabolite profiling method for maize

formation of artifacts (Frenzel et al., 2002). In the polar extract sugars and sugar
alcohols (fraction Ill) are separated from acids, amino acids and amines (fraction V)
by silylation and subsequent differential hydrolysis. This fractionation is based on the
relative stability of the R-Si(CHs); group of sugars/polyols and amino acids/organic

acids to aqueous hydrolysis (Frenzel et al., 2002). An additional oximation step is
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Figure 8: GC/MS total ion current chromatograms of metabolite profiling fractions (A) |
(major lipids), (B) Il (minor lipids), (C) lll (sugars and sugar alcohols), and (D) IV (acids
and amino acids). The peak numbers refer to the numbers in Tables 2 and 3.
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employed to protect a-ketoacids from enolization and decarboxylation before
trimethylsilylation.

The metabolite profiling methodology used in this study was originally developed for
rice (Frenzel et al. 2002; Frank et al. 2007). Only small changes of the protocol were
needed to adapt the metabolite profiling methodology from rice to the maize matrix.
Compositional differences between rice and maize, e.g. higher levels of
carbohydrates, free amino acids and lipids in maize kernels (Scherz and Senser, 2000),
were taken into account by changing the amounts of reagents and solvents used in
the derivatization steps or by reducing the aliquot of fraction IV employed for further
sub-fractionation of the polar extract.

The four fractions are analyzed by GC/MS; Figure 8 provides an example of the
respective total ion current chromatograms. A total of approximately 300 distinct
analytes were detected. Comparison of mass spectral data and retention times to
those of reference compounds or to literature data resulted in the identification of
167 compounds (Tables 2 and 3). The mean recovery determined for selected
compounds was 89%; it ranged from 72% (B-sitosterol) to 98% (stearic acid methyl
ester) for non-polar compounds and from 64% (fumaric acid) to 106% (sucrose) for
polar compounds (Table 4). For selected representatives from the different chemical
classes the intra-laboratory repeatability of the metabolite profiling approach was
less than 10% RSD (Table 4), thus being in accordance to the data reported for rice
(Frenzel et al., 2002).

In contrast to comparable metabolite profiling methodologies, additional
fractionation steps for both lipophilic and polar compounds have been implemented.
These sub-fractionations are time-consuming; the total work-up of a set of 12
samples required approximately 8 h. In particular, the sub-fractionation of the polar
extract enables the separation of free sugars present as major low molecular weight
compounds from minor constituents such as organic acids and amino acids. In
addition, the fractionation allows an appropriate choice of reagents to ensure
effective derivatization (Frenzel et al., 2002). In the present work the sub-
fractionation also facilitated the analysis of the contribution of metabolites from

different chemical classes to the observed PCA separations.
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Table 2: Compounds identified in fractions | (major lipids) and Il (minor lipids)
no. Compound ident® no. compound ident® no. compound ident®
fraction |
saturated FAME” unsaturated FAME hydrocarbons
1 10:.0 A 7 15:1(102) A 2 14 A
4 12:0 A 11 16:1 C 3 15 A
6 14:0 A 12 16:1(92) A 5 17 A
9 15:.0 A 13 16:1 (9E) A 8 18 A
15 16:0 A 17 17:1(92) A 14 19 A
19 17:0 A 22 18:1(92) A 18 20 A
23 18:0 A 24 19:1(102) C 25 22 A
26 19:0 A 28 20:1(112) A 29 23 A
30 20:0 A 33 22:1(112) A 34 25 A
31 21:0 A 38 24:1(152) A 36 26 A
35 22:0 A 10 16:2 C 39 27 A
37 23:.0 A 16 17:2 D 41 squalene A
40 24:0 A 21 18:2(9z,122) A 42 cholestane C
43 26:0 A 27 20:2(11z,142) A
44 28:0 A 32 22:2(13Z,162) A
20 18:3(97,12Z,152) A
fraction I
free fatty acids® fatty alcohols® sterols/stanols*
1 9:0 A 9 16:0 A 34 cholesterol A
2 12:0 A 14 18:0 A 35 campesterol A
3 13:.0 A 15 phytol A 36 campestanol A
6 14:0 A 21 20:0 A 37 stigmasterol A
8 15:0 A 24 22:0 A 38 A7-campestenol E
10 16:1 C 27 24:0 A 39 PB-sitosterol A
11 16:1(92) A 30 26:0 A 40 sitostanol A
12 16:0 A 32 28:0 A 41 A5-avenasterol A
13 17:0 A 47 32:0 D 42 gramisterol F
16 18:3(9Z,12Z,152) A 43 A7-stigmastenol F
17 18:2(9Z,122) A hydroxy FAME™® 44 cycloartenol A
18 18:1(92) A 49 12-OH 18:1 (92) A 45 A7-avenasterol F
19 18:.0 A 50 9,12-OH 18:0 G 46 24-methylene- A
20 19:0 A cycloartanol
22 20:1(112) A phenolic compounds® 48 citrostadienol F
23 20:0 A 4 methyl p-hydroxy- A
25 22:0 A cinnamate tocopherols®
26 23:0 A 5 methyl 3-methoxy- C 29 6-tocopherol A
28 24:0 A cinnamate 31 y-tocopherol B,C
7 methyl ferulate A 33 a-tocopherol A

®ldentification according to
A mass spectral data and retention times of reference compounds

B mass spectral data and retention index of Golm Metabolome Database (Kopka et al., 2005)

C mass spectral data of NIST02 mass spectral library (Ausloos et al., 1999)

D mass spectral data

E according to (Xu and Godber, 1999)
F according to (Kamal-Eldin et al., 1992)
G according to (Meyna, 2005; Miller, 1982)

® fatty acid methyl esters

° TMS derivatives of respective compound
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Table 3: TMS® derivatives of compounds identified in fractions Ill (sugars and sugar
alcohols) and IV (acids, amino acids and amines)

no. compound’ ident®  no. compound® ident”
fraction Il fraction IV
sugars and sugar alcohols amino acids and amines
1 glycerol A 3 alanine
2 erythritol A 4,18 glycine
3,4,5 arabinose A 5,26  B-alanine
6 ribitol A 6 valine
7,8,9 fructose A 7 norvaline
10,12 galactose A 10 leucine
11,15 glucose A 11 ethanolamine
13 mannitol A 13 alloisoleucine
14 sorbitol A 15 isoleucine
16 myo-inositol A 16 proline
17 sucrose A 23 serine
18 trehalose A 25 threonine
19 raffinose A 27 homoserine
31 pyroglutamic acid
fraction IV 32 methionine
Acids 33 aspartic acid
1 lactic acid 36 5-hydroxynorvaline

37 threonic acid
38 glutamic acid
39 phenylalanine
40 asparagine
43 putrescine
44 glutamine
46 citrulline

48 ornithine

50 histidine

52 lysine

53 tyrosine

54 tryptophan

2 hydroxyacetic acid

8 4-hydroxybutyric acid

9 phosphoric acid

12 maleic acid

14 4-aminobutyric acid

17 succinic acid

20 glyceric acid

21 fumaric acid

22 pyrrole-2-carboxylic acid
24 glutaric acid

28 2-piperidinecarboxylic acid
29 B-aminoisobutyric acid
30 malic acid

34 cinnamic acid

>r>r>rr>>r>r>r>r>0O>r>r>rr>r>r>r>r>r>>>>r>r>>

fraction IV

~

:>>>>>ﬁ>>>>>>>>ﬁ>>

35 y-aminobutyric acid others
41 a-aminoadipic acid 19 2,4-hydroxy-pyrimidine C
42 cis-aconitic acid 49 adenine A

45 3-glycerophosphoric acid B,C
47 citric acid A
51 p-cumaric acid A

® Metabolites identified as persilylated derivates

® |dentification according to
A mass spectral data and retention times of reference compound
B mass spectral data and retention index of Golm Metabolome Database (Kopka et al., 2005)
C NISTO2 mass spectral library (Ausloos et al., 1999)
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Table 4: Repeatability of the metabolite profiling methodology and mean recoveries
(n = 3) calculated for selected compounds

compound RSD [%]? mean [l;z]covery compound RSD [%]? rec:\]/Z?; (%]
triglycerides (fraction 1)° sugars (fraction Ill)
16:0 7 97 fructose 4 91
18:0 3 99 glucose 3 104
20:0 2 91 galactose 4 96
sucrose 3 106
hydrocarbons (fraction 1) raffinose 2 94
squalene 6 97
tricosane 5 - sugar alcohols (fraction I11)*
sorbitol 2 96
free fatty acids (fraction 1) inositol 2 97
16:0 6 94
18:0 9 85 amino acids (fraction IV)°
alanine 1 78
fatty alcohols (fraction I1) asparagine 11 85
octadecanol 11 82 aspartic acid 2 79
hexacosanol 5 - glutamine 10 81
glycine 7 79
sterols (fraction Il) lysine 5 77
campesterol 1 -
B-sitosterol 1 72 organic acids (fraction IV)°
stigmasterol 3 98 citric acid 2 -
fumaric acid 14 64
tocopherols (fraction I1) malic acid 6 80
a-tocopherol 8 - lactic acid 4 71
6-tocopherol 8 92
y-tocopherol 7 - internal standards
tetracosane - 89
5a-cholestan-3B-ol - 92
phenyl-B-D- - 106
p-chlorophenylalanine - 94

® RSD: relative standard deviation (n = 3)
® Metabolites detected as fatty acid methyl esters
“ Metabolites detected as persilylated derivatives
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4.2 Influence of Genetics and Environment

4.2.1 Introduction

When investigating the impact of genetic background, environmental conditions or
agronomic practices on maize seeds, a comparative analysis of metabolites is of
particular interest as their levels can be regarded as the final response of an organism
to all processes regulating metabolism (Fiehn, 2002). Recent studies on metabolic
changes during growth and development (Seebauer et al., 2004), the influence of
environment and farming practice (Harrigan et al., 2007b; Harrigan et al., 2007c), and
the impact of genetic background and growing seasons (Reynolds et al., 2005; Ridley
et al., 2002) have demonstrated the importance of these factors on maize metabolite
levels. In addition to these targeted approaches, unbiased metabolite profiling
techniques proved to be powerful tools for the analysis of complex plant matrices
(Castro and Manetti, 2007; Fiehn et al., 2000; Lozovaya et al., 2006; Roessner et al.,
2000). These techniques aim at extracting, detecting, identifying and quantifying a
broad spectrum of compounds to provide a deeper insight into complex biological
systems (Fiehn, 2001). Recently, investigation of low phytic acid mutants of rice and
maize by means of metabolite profiling contributed to the characterization and the
classification of different types of mutations (Frank et al., 2007; Hazebroek et al.,
2007).

The aim of this study was the application of a metabolite profiling approach to the
identification and the assessment of a broad spectrum of maize constituents from
different chemical classes. Four maize cultivars cultivated within three growing
seasons should be differentiated by comparison of metabolite profiles covering both
polar and lipophilic compounds. An increased understanding of metabolic variation
should be achieved by assessment of samples from four different growing locations
within three years. Evaluation of results should be performed by a series of statistical
approaches, including Principal Component Analysis (PCA), pairwise comparison and
analysis of variance (ANOVA). This should help to demonstrate the potential of
untargeted metabolite profiling to evaluate the impact of genetics and environment

on maize grain composition.
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4.2.2 Sample Sets

The study was based on two experimental set-ups to evaluate the impact of genetic
background, growing location and growing season on the metabolite profiles of maize
kernels. The first sample set comprised four cultivars which were grown at one
location (Frankendorf, Bavaria). On the basis of their maturity behavior, cultivars
belonging to early (ES Shorty), medium (Lukas) and late (Flavi, Pontos) maturity
groups were selected (Table 5). In general, early and medium cultivars mature within
a shorter period of time and are suitable for cultivation at farming sites with a short
growing season. In contrast, late cultivars result in higher yields but require rather

warm climatic conditions and longer growing periods to achieve this effect.

Table 5: Growing parameters® for maize cultivars (ES Shorty, Lukas, Flavi, Pontos) in
seasons 2004-2006 at location Frankendorf, Bavaria.

ES Shorty Lukas Flavi Pontos

Maturity index” 210 240 260 270
Dry matter (%)

2004 63.6 63.8 63.1 62.1

2005 65.8 62.6 61.8 61.5

2006 64.1 - - 63.9
Height (cm)

2004 253 283 305 257

2005 272 305 312 265

2006 252 256 - 248
Yield (dt/ha)

2004 138 156 146 141

2005 141 143 133 118

2006 116 125 - 122

® Average values calculated from single analyses of the field replicates. Accordingly, the
data were not sufficient for assessment of statistical significance of differences between
mean values.

® According to German maturity classification Reifezahl. A difference of 10
expressed as Reifezahl is equivalent to a difference of 1% expected dry matter. Lower
values mean higher dry matter.

‘ no data available

If cultivars differing in maturity behavior are cultivated under the same climatic
conditions—as performed in this study—their kernels will differ in dry matter

content, which is expected to be higher in early and lower in late cultivars

(Bundessortenamt, 2008). In addition to maturity type, the selected cultivars differed
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in expected plant heights: ES Shorty and Pontos are generally short, Lukas and Flavi
taller varieties.

The second sample set consisted of one cultivar (Amadeo, medium maturity index)
grown at four different locations in Bavaria, Germany (Table 6). When selecting the
growing sites, three locations (Thann, Reith, Mittich) with different types of loamy
soil (sandy loam, slicky loam, clay loam) and one location (Strassmoos) with very
sandy soil which exhibits a limited water-retaining capacity, were chosen. Regarding
the climatic conditions, the location Mittich was included as it is known to have
rather warm weather compared to the other three sites (IPS, 2009). Both sample sets

were investigated in three consecutive growing seasons.

Table 6: Growing parameters® for maize cultivar Amadeo® in seasons 2004-2006 at
four locations in Bavaria (Thann, Reith, Mittich, Strassmoos)

Thann Reith Mittich Strassmoos

Soil type* sandy loam silty loam clay loam loamy sand
Dry matter (%)

2004 68.2 67.6 70.9 65.8

2005 67.4 68.2 71.7 66.5

2006 71.9 69.3 72.4 69.9
Height (cm)

2004 303 300 300 275

2005 288 287 285 262

2006 290 276 315 295
Yield (dt/ha)

2004 127 136 99 158

2005 123 132 114 136

2006 124 131 133 110

® Average values calculated from single analyses of the field replicates. Accordingly the
data, were not sufficient for assessment of statistical significance of differences between
mean values.

® Reifezahl: 230

“ Soil types were defined according to (Wendland et al., 2007)
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4.2.3 Differentiation of Cultivars

Results. Metabolite profiling data obtained for the four cultivars grown at one
location in 2004 were subjected to statistical analysis via Principal Component
Analysis (PCA) to determine the major sources of variation within the dataset. On the
basis of the data from all four fractions, a clustering of the cultivars, with Pontos
being clearly separated on the first principal component score, was observed (Figure
9A). There was no obvious sub-clustering owing to field (n = 3) or analytical (n=3)
replicates.

PCAs on the basis of metabolite data from the individual fractions demonstrated that
both lipid fractions | and Il could be used to separate Pontos from the other cultivars
(Figures 9B and 9C). The mirroring of PC1 between fraction | and Il indicated that
overall levels of major lipids (i.e. triglycerides) are lower and levels of minor lipids are
higher in Pontos. The polar fractions Ill (sugars and sugar alcohols) and IV (acids,
amino acids and amines) showed no or only weak differentiation between Pontos
and the other cultivars (Figures 9D and 9E).

To identify the sources of variation between Pontos and the other cultivars, loading
scores of the first principal component were examined (Figure 10). Subsequently, in
each fraction the metabolites with the highest absolute loading scores were
quantified on the basis of relative signals (Figures 11 and 12).

Levels of fatty acid methyl esters in fraction | were decreased in Pontos compared to
the other three cultivars (Figure 11A). The levels of the methyl esters of palmitic,
stearic, oleic and linoleic acid, reflecting more than 95% of the oil content in maize,
were not among the ten highest loading scores (Figure 10A); however, they were also
significantly lower (58—-73%) in Pontos (p < 0.05). Similarly, the levels of the methyl
esters of ricinoleic acid and of the tentatively identified 9,12-dihydroxy linoleic acid
(which eluted in fraction Il owing to their increased polarity due to the additional
hydroxy group), were decreased in Pontos compared to the other cultivars (Figure
11B). In contrast, the free fatty acids detected in fraction Il showed higher levels in

cultivar Pontos (Figure 11B).
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Figure 9  Principal component analysis of metabolite profiling data from (A) combined
fractions I-IV (I: major lipids, II: minor lipids, Ill: sugars/sugar alcohols and
IV: acids/amino acids/amines) and (B) individual fractions I, (C) Il, (D) Ill and (E) IV.
Triplicate analysis of four cultivars (®: Flavi, @: Lukas, @®: Pontos, ©:ES Shorty),
growing season 2004.
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IV: acids/amino acids/amines. Black circles (®) representing compounds with 10 highest
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Differences in the levels of sugars and sugar alcohols (fraction Ill, Figure 5A) and
acids, amino acids and amines (fraction IV, Figure 12B) between Pontos and the other
cultivars were less pronounced than those observed for the lipids. In fraction Ill none
of the differences was statistically significant (p < 0.05); in fraction IV the amino acids
serine, threonine, glycine, leucine and methionine showed significantly higher levels
in Pontos.

The PCAs determined for the four cultivars in the years 2005 and 2006 (Figure 13A
and 13B) were different from the results obtained in 2004. The clustering patterns
varied from year to year and combining the data from all three growing seasons did
not allow a separation of cultivars (Figure 13C) but rather revealed a clear clustering

according to years (Figure 13D).
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Figure 11 Comparison of cultivar Pontos with cultivars Lukas, Flavi and ES Shorty by

semiquantified levels of (A) fatty acid methyl esters, fraction | and (B) free fatty acids and
hydroxy fatty acid methyl esters (*), fraction Il, in growing season 2004. Relative signals
calculated on the basis of the respective internal standard (fraction I: tetracosane, fraction Il: 5-
a-cholestane-3-3-ol).

The extent of differences between cultivars was further assessed by pairwise
comparisons. A total of 1958 statistical comparisons (6 pairwise cultivar comparisons
X 3 growing seasons x 103-120 analytes) were performed (Table 7). In the growing
season 2004 the number of statistically significant (p < 0.05) differences between
Pontos and the other three cultivars (20-29%) was higher than the number of
differences between these cultivars (12—17%). This is in agreement with the results
obtained by PCA, where Pontos showed a strong separation in 2004 (Figure 9A).
In the following season 2005, in which clustering of the cultivars by PCA was less
pronounced (Figure 13A), the numbers of differences are more equally distributed

between the comparisons with a mean value of only 15%.
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Figure 12 Comparison of cultivar Pontos with cultivars Lukas, Flavi and ES Shorty by

semiquantified levels of (A) sugars and sugar alcohols, fraction lll and (B) amino acids and
amines, fraction IV, in growing season 2004. Relative signals calculated on the basis of the
respective internal standard (fraction Ill: phenyl-B-D-glucopyranoside, fraction IV: p-chloro-L-
phenylalanine).

In 2006 the similarity of metabolite patterns of Pontos and Flavi (Figure 13B) is
reflected by a relatively small number of differences (14%), whereas the clear
differentiation from the other two cultivars results in high numbers of statistically
significant differences ranging from 24% to 31% (Table 7).

Pairwise comparisons on the basis of 1346 statistical comparisons (3 pairwise year
comparisons x 4 cultivars x 105-123 analytes) of growing seasons within the same
sample set revealed 37 % statistically significant differences between the seasons
2004 and 2006 but only 16 % differences between 2005 and 2006 (Table 7). These
results are in good agreement with the separation of years by PCA (Figure 13D),
where the years 2004 and 2006 could be separated on both PC1 and PC2, whereas
years 2005 and 2006 were separated only on the second PC.
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Figure 13 Principal component analysis of metabolite profiling data from fractions I-IV
in growing seasons 2005 (A), 2006 (B) and 2004-2006 (C,D) at farming location
Frankendorf, Bavaria. Triplicate analysis of four cultivars (A,B and C) @: Flavi, @: Lukas,
@: Pontos, ¢ : ES Shorty, (D) ®: 2004, @: 2005, ®@: 2006.

Discussion. Assessment of metabolite profiles of four different maize cultivars by PCA
revealed a strong separation of one cultivar (Pontos) in the first growing season,
which could be ascribed to different metabolite levels in the lipid fractions. A
negative correlation between the levels of triglycerides and free fatty acids suggests
an interplay between the metabolism of storage fats and their potential precursors
(Voelker and Kinney, 2001), indicating that cultivar Pontos was in a less mature state

at the date of harvest (Daftary and Pomeranz, 1965; Weber, 1969).
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Table 7: Pairwise comparisons between cultivars, farming locations and growing

seasons
comp.? differences® com differences
" total [%] total [%]
cultivars locations
2004 2004
Pontos vs. Lukas 109 31 28 Strassmoos vs. Thann 116 25 22
Pontos vs. Shorty 111 32 29 Strassmoos vs. Reith 115 22 19
Pontos vs. Flavi 105 21 20 Strassmoos vs. Mittich 116 35 30
Lukas vs. Shorty 106 16 15 Thann vs. Reith 107 3 3
Lukas vs. Flavi 103 12 12 Thann vs. Mittich 112 14 13
Shorty vs. Flavi 105 18 17 Reith vs. Mittich 109 13 12
total 639 130 20 total 675 112 17
2005 2005
Pontos vs. Shorty 104 18 17 Strassmoos vs. Thann 112 22 20
Pontos vs. Lukas 103 15 15 Strassmoos vs. Reith 105 12 11
Pontos vs. Flavi 109 14 13 Strassmoos vs. Mittich 107 16 15
Lukas vs. Shorty 106 16 15 Thann vs. Reith 107 15 14
Lukas vs. Flavi 111 16 14 Thann vs. Mittich 109 23 21
Shorty vs. Flavi 113 16 14 Reith vs. Mittich 104 7 7
total 646 95 15 total 644 95 15
2006 2006
Pontos vs. Lukas 111 27 24 Strassmoos vs. Thann 110 2 2
Pontos vs. Shorty 117 35 30 Strassmoos vs. Reith 110 9 8
Pontos vs. Flavi 102 14 14 Strassmoos vs. Mittich 113 3 3
Lukas vs. Shorty 120 27 23 Thann vs. Reith 112 13 12
Lukas vs. Flavi 108 32 30 Thann vs. Mittich 113 4 4
Shorty vs. Flavi 115 36 31 Reith vs. Mittich 110 4 4
total 673 171 25 total 668 35 5
total 1958 396 20 total 1987 242 12
growing seasons within cultivars growing seasons within locations
2004 vs. 2005 2004 vs. 2005
Shorty 107 11 10 Strassmoos 110 25 23
Lukas 112 27 24 Thann 111 18 16
Flavi 114 30 26 Reith 108 9 8
Pontos 109 29 27 Mittich 110 15 14
total 442 97 22 total 439 67 15
2004 vs. 2006 2004 vs. 2006
Shorty 123 46 37 Strassmoos 113 30 27
Lukas 115 44 38 Thann 116 14 12
Flavi 107 33 31 Reith 107 4 4
Pontos 116 47 41 Mittich 115 16 14
total 461 170 37 total 451 64 14
2005 vs. 2006 2005 vs. 2006
Shorty 116 12 10 Strassmoos 108 8 7
Lukas 110 17 16 Thann 117 25 21
Flavi 112 23 21 Reith 108 8 7
Pontos 105 17 16 Mittich 112 6 5
total 443 69 16 total 445 47 11
total 1346 336 25 total 1335 178 13

® Number of compounds/comparisons for each pair

® All statistical comparisons made by Student’s t-test at the 5% level of significance (p < 0.05)
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Levels of free amino acids in the endosperm of kernels have been reported to
decrease significantly by the end of the vegetation period (Arruda et al., 1978;
Duvick, 1952; Hirel et al., 2005; Miyanishi et al., 1991) resulting in programmed cell
death (Young and Gallie, 2000). Therefore, the higher levels of free amino acids
support the argument that, in 2004, kernels of Pontos were less mature than those of
the other cultivars at time of harvest. This is further supported by data on
conventional agronomic performance traits shown in Table 4. Cultivar Pontos, with
the highest maturity index, did not perform as well as the other cultivars due to sub-
optimal growing conditions for this genotype in this particular trial region. The Pontos
genotype is basically intended for farming locations with rather warm climate
conditions.

The strong separation of cultivar Pontos from the other cultivars observed in 2004
was not repeated in the other years tested. In 2004 the temperature in the first two
months of the growing season was 2-3 °C degrees lower than in the following
seasons and in August 2004 the weather was hot and dry (IPS, 2009). These weather
conditions would impact on the growth and development of cultivar Pontos in
particular and are likely to be an important factor distinguishing the metabolite
profile of Pontos in 2004. As Figure 6C shows, when data from all three growing
seasons were combined the impact of the growing season on the metabolite profile
of kernels is more pronounced than the influence of genetic background (cultivar).
This crucial phenomenon may also explain differences seen when moving crop
experiments from a lab environment to the field.

The number of statistically significant (p < 0.05) differences in metabolite levels
between the four cultivars (20% in 2004, 15% in 2005 and 25% in 2006) was in the
same order of magnitude as those determined for low phytic acid maize mutants.
Application of a GC/MS-metabolite profiling approach similar to the one employed in
the current study revealed 11-30% of the detected compounds (124 polar and
lipophilic analytes) to be statistical significantly different (p < 0.05) between wild-type
maize and low phytic acid maize mutants (Hazebroek et al., 2007). Another study
investigating the nutritional and metabolic profiles of different maize hybrids using
targeted analysis approaches comprising 47 analytes, determined statistically

significant differences ranging from 33% to 47% of total comparisons (Reynolds et al.,
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2005). The slightly higher percentages observed in this study might be explained by
the selection of maize hybrids, which were considered to be adapted to different

parts of Europe (southern France, northern France, Germany, ltaly).

4.2.4 Differentiation of Locations

Results. PCAs of metabolite data obtained for one maize variety (Amadeo, medium
maturity index) cultivated at four locations in Bavaria are shown in Figure 14. In the
growing season 2004 location Strassmoos showed a strong separation on the first
principal component and location Mittich could be differentiated on the second PC
(Figure 14A). In 2005 location Strassmoos showed again a clear separation on the first
PC, but the clustering of the other locations changed (Figure 14B). The differentiation
pattern observed in 2006 was less clear (Figure 14C). Combination of the data from
all three seasons resulted in an overlap of clusters and did not result in a clear
differentiation due to either location or growing season (Figure 14D). Investigations
of further principal components (up to PC5) did also not reveal any clear separation.
For evaluation of differences due to farming location, a total of 1987 statistical
comparisons (6 pairwise location comparisons x 3 growing seasons x 104-116
analytes) were performed. The amounts of statistically significant (p < 0.05)
differences for locations ranged from 17% in 2004 to 5% in 2006, with a mean of 12%
over three growing seasons (Table 7). The observed number of differences confirmed
the clustering obtained by PCA (Figure 14). For example, in 2004 for the clearly
separated location Strassmoos 19-30% statistically significant differences were
determined compared to the other three locations, whereas the comparison of the
locations Thann and Reith, for which the PCA clusters overlapped, resulted in only 3%
statistically significant differences.

Comparison of growing seasons within locations resulted in 13% significant
differences out of a total of 1335 comparisons (3 pairwise year comparisons x 4
locations x 107-117 analytes). The amounts of differences between growing seasons
are in the same range as differences between farming locations. This reflects results
obtained by PCA when data from all seasons were combined but no clear clustering

could be observed due to either growing season or farming location (Figure 14D).
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Figure 14 Principal Component Analysis of metabolite profiling data from fractions I-IV

in growing seasons 2004 (A), 2005 (B), 2006 (C) and 2004-2006 (D). Triplicate analysis of

cultivar Amadeo at four locations (@: Mittich, ®: Reith, ®: Strassmoos, © : Thann).
ANOVA. To qualify the extent and distribution of significant differences found
between cultivars and locations, probabilities (p-values) obtained by analysis of
variance (ANOVA) were examined (Figure 15). To allow a better comparison of p-
values of ANOVA for a large number of analytes the exponential distribution of p-
values was transformed by logit (p). The first ANOVA was performed with data from
the four cultivars grown in three consecutive seasons (2004-2006). Comparison of
histograms in Figure 15A (cultivars) and 15B (growing seasons) shows more highly
significant logit (p)-values < -3, i.e. p-values < 0.001 for the factor growing season,

which is also the more prominent impact factor on metabolite profiles when data are
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Figure 15 ANOVA of metabolite profiling data from fractions I-IV. First row: model
including treatment (A) cultivar (ES Shorty, Lukas, Flavi, Pontos at location Frankendorf)
and (B) growing season for cultivars; second row: model including treatments (C)
location (Amadeo at locations Thann, Reith, Mittich, Strassmoos) and (D) growing
season for farming locations. Histograms are showing frequency of logit (p) = log (p) -
log (1-p); e.g. logit (p=0.5) = 0, logit (p=0.1) ~ =1, logit (p=0.01) ~ -2, logit (p=0.001) ~ =3,
etc.
evaluated by PCA (Figure 13D). A second ANOVA comprising data of the samples from
four different locations (Figure 15C/D) revealed a more equal distribution for both
factors farming site and growing season. This is in accordance with the results
obtained by PCA where no clear separation was found if data from all three seasons
were combined. In general, the distribution of p-values demonstrated that the
differentiation due to farming locations (Figure 15C) was less significant than that due
to cultivars (Figure 15A). The differentiation due to growing season appeared to be

more pronounced within cultivars (Figure 15B).

Discussion. Metabolite profiles of samples grown at Strassmoos could be clearly
separated by PCA from those grown at the other locations in two out of three
growing seasons (Figure 14). This may be explained by differences in the soil
compositions. Whereas Strassmoos has a very sandy soil with limited water-retaining

capacity, the other locations were characterized by a more silty/clay loam soil. In
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addition, differences in the local microclimate may influence the observed PCA
separations. Details on these parameters have been provided in Table 1.

Pairwise comparisons and ANOVA between growing locations performed for one
cultivar showed fewer statistically significant differences (p < 0.05) than the statistical
assessment of cultivars grown at one farming location. This could lead to the
conclusion that the impact of genetic background on metabolic variation is more
pronounced than the influence of the environment; however, it has been shown that
variation caused by environmental factors, e.g. site location, is dependent on the
genotype grown (Reynolds et al., 2005). The cultivar (Amadeo) grown at the four
different locations has a medium maturity index, and is therefore equally suitable for
all locations. This could also explain the smaller number of significant differences
between years for this cultivar grown at different locations. Additional support is
given by another study that highlighted the interaction of genetic and environmental
background for many metabolites (Harrigan et al., 2007b). In this survey a total of 58
metabolites were analyzed, of which 36% differed statistically significantly (p < 0.05)
between maize inbreds crossed against two different testers, and 48% of statistically

significant differences were due to the influence of the location.

4.2.5 Conclusions

The study demonstrates the suitability of the described extraction and fractionation
approach for metabolite profiling of maize kernels. The combination with appropriate
statistical tools enabled the evaluation of metabolic variation for maize cultivars
differing in genetic and environmental background. The analysis of sub-fractions
allowed the assessment of the contribution of metabolites from different chemical
classes. The data obtained do not indicate that one of the fractions is generally more
important; each of them may add information to explain genotype or environmental
effects on crop compositions. Thus, the unbiased sub-fractionation as applied in this
study is a technically demanding but useful approach providing additional value to
metabolite profiling. The type of comparative datasets generated may serve as
objective basis for crop assessment and the data confirm the potential of metabolite

profiling to assist in breeding and farming approaches.
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4.3 Influence of Input System (Conventional vs. Organic Farming)

4.3.1 Introduction

With the arising ecological awareness in the 1980s, farmers and consumers started to
look for alternatives to conventional farming. Rather than intensively applying
mineral fertilizers and relying on chemical plant protection, organic farming is based
on minimal use of off-farm inputs and on ecologically friendly management practices
(Lampkin et al., 2000; Winter et al., 2006). The share of organically farmed area has
continuously increased over the last two decades in particular in Europe and North
America (Willer and Kilcher, 2009). Surveys indicate that many consumers purchase
organic foods because of the perceived health and nutrition benefits (Bourn and
Prescott, 2002), although a recent systematic review found no evidence for a
difference in nutritional quality between organically and conventionally produced
foods (Dangour et al., 2009).

The rising interest in this field is also reflected by an increased scientific activity; from
1993 to 2008 an 8-fold increase of scientific publications concerned with “organic
farming” can be observed (SciFinder, 2009). Many of these publications deal with the
impact of organic farming practice on soil parameters such as organic matter (Gong
et al., 2009; Herencia et al., 2007), biodiversity and vitality (Mader et al., 2002) or pH
(Zhang et al., 2008). Others focus on the influence of input regimes and tillage
systems (Fuentes et al., 2009; Ghorbani et al., 2008) on vyield. From a food quality
point of view, parameters such as protein content, nutrient levels (Jacob, 2007;
Warman and Havard, 1998) and minerals (Langenkdamper et al., 2006) have been
thoroughly investigated.

A more comprehensive approach for the assessment and evaluation of a broad
spectrum of crop constituents, complementing the above-described targeted studies,
is envisaged by application of the so-called omics-techniques. For example, the
impact of different amounts and forms (organic, inorganic) of nitrogen supply on the
gene expression level in the wheat endosperm have been investigated (Lu et al.,
2005). Many of the genes showing differential expression in this study are known to

participate in nitrogen metabolism and storage protein synthesis. Other studies
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involved proteomics approaches: Comparison of the protein compositions of potato
tubers subjected to organic and mineral-based fertility management practices,
respectively, suggested an increased stress response in organic farming (Lehesranta
et al., 2007). In wheat 16 diagnostic proteins with potential to afford a signature to
prove authenticity of organic wheat were proposed (Z6rb et al., 2009).

In addition to transcriptomics and proteomics, metabolomics-based approaches
should also be suitable to reflect the impact of different input systems on crops. Gas
chromatography coupled with mass spectrometry (GC/MS) proved to be one of the
most robust technologies for metabolite profiling (Kopka, 2006). At present, there is
only one example for the application of this approach to organically farmed crops;
the analysis of 52 polar metabolites in one wheat grain variety grown under organic
and conventional farming practices, respectively, detected only moderate differences
(Zorb et al., 2006).

The aim of this study was to investigate the metabolite profiles of maize (Zea mays)
grown conventionally and organically, respectively, using a methodology that
recently was shown to be suitable to demonstrate variations in maize grain
metabolite pools resulting from the interplay of environment, season and genotype
(section 4.2). By analysis of three cultivars grown at two locations with different input
systems and at a third location, where both organic and conventional farming were
applied, the impact of the growing regime on the metabolite spectrum should be put

into the context of natural variability.

4.3.2 Experimental Setup

Three cultivars (Amadeo, Lukas, Flavi) were used in the study to evaluate the impact
of input systems on metabolite profiles of maize kernels differing in genetic
background. They were grown in the seasons 2004 (experiment la) and 2005
(experiment Ib) at two locations in Bavaria, one (Frankendorf) with conventional and
the other (Schonbrunn) with organic farming practice. The two locations were
approximately 30 km apart. In order to minimize environmental influences, a further
experiment (ll) was designed in which the three cultivars were grown at one location
(Scheyern) providing field plots for both conventional and organic farming at a

distance of approximately 400 m (Figure 16).
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The metabolite profiling methodology applied in this study is based on consecutive
extraction of freeze-dried maize flour and subsequent sub-fractionation resulting in
four fractions including (1) major lipids, (II) minor lipids such as free fatty acids and
sterols, (Ill) sugars and sugar alcohols and (V) organic acids, amino acids and amines.
A total of approximately 300 distinct analytes were detected by GC/MS analysis.
Comparison of mass spectral data and retention times to those of reference
compounds or to literature data resulted in the identification of 167 compounds
(Tables 2 and 3). Figure 17 provides an example of the respective total ion current
chromatograms for cultivar Lukas grown at locations Frankendorf (conventional

farming) and Schénbrunn (organic farming) in 2004.

Northern Bavaria
Czech

Republic

O Schénbrunn

[1Scheyern
O Frankendorf

Austria

Figure 16 Geographical locations of the field trial sites Frankendorf, Schonbrunn and
Scheyern. © Aerial photo: Bayerische Vermessungsverwaltung. © Cartography: Kober-
Kimmerly+Frey, Kéln
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Figure 17 GC/MS total ion current chromatograms of metabolite profiling (A/B)
fractions | (major lipids), (C/D) Il (minor lipids), (E/F) lll (sugars and sugar alcohols) and
(G/H) IV (acids and amino acids) obtained by analysis of cultivar Lukas grown
conventionally at location Frankendorf (left column) and organically at location
Schonbrunn (right column) in season 2004. The peak numbers refer to the numbers in
Tables 2 and 3.
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4.3.1 Qualitative Assessment of Differences due to Farming Condition

4.3.1.1 Principal Component Analysis

Metabolite profiling data obtained for the three cultivars (Amadeo, Lukas, Flavi)
grown in 2004 at the two locations with different input systems were subjected to
statistical assessment via Principal Component Analysis (PCA) to determine the major
sources of variation. On the basis of the data from all metabolites covered in fractions
I-1V, a clear separation according to farming locations/input systems was observed on
the first principal component accounting for 30% of the variation (Figure 18A). At the
location Schonbrunn (organic farming) the three cultivars formed one cluster
whereas at location Frankendorf (conventional farming) cultivar Lukas was
differentiated on the second principal component (16% of the variation).

In the following season 2005 the clustering of the samples on the first two principal
components (38% of the variation) was increasingly determined by differences
between cultivars (Figure 18B). The effects of the farming location/input system were
much less pronounced than in 2004.

An even clearer impact of the genetic background became obvious from the data
obtained for the three cultivars grown under different input systems at the same
location: As shown in Figure 18C, the cultivars showed quite distinct clusters on the
first two principal components of the PCA, explaining 59% of the variation. However,
only small differences were observed between the samples obtained by conventional

and organic farming, respectively.

4.3.1.1 Analysis of Variance (ANOVA)

An analysis of variance (ANOVA) was performed for each of the three datasets to
evaluate the number of differences due to locations/input systems and to genetic
background. In 2004 the levels of a total of 125 compounds were compared; post hoc
testing (Tukey’s HSD, p < 0.01) revealed 29% to be statistically significantly different
for locations/input systems and 23% different for genotype (Table 8). In agreement
with the clustering seen in the PCA, in 2005 the number of the statistically significant
differences for locations/input systems was much lower (13% of 127 compounds),

whereas the differences due to the influence of cultivars increased to 32%.
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Figure 18 Principal Component Analysis of metabolite profiling data from fractions I-IV
obtained by analysis of three maize cultivars (®: Amadeo, B: Lukas, A: Flavi) grown at
farming sites with different input regimes (®,M,A: conventional, @,/ A: organic) in
growing seasons (A) 2004 and (B) 2005 at locations Frankendorf (conv) and Schéonbrunn
(org) and (C) 2006 at location Scheyern (conv, org).
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At location Scheyern, where both conventional and organic farming were applied at
the same site, the number of differences due to input systems decreased further to
only 11%. The clear separation of cultivars seen in this experiment is reflected by 56%
of the 126 compounds being statistically significantly different due to genetic
background.

Assessment of the different chemical classes revealed that the influence of
locations/input systems was mainly reflected by statistically significant differences in
the polar fractions Ill and IV, whereas differences between cultivars were found more
in the lipophilic fractions | and Il. In total, only two metabolites turned out to be
consistently different over all three seasons (malic acid, myo-inositol) due to input

system, but 14 due to cultivar (Table 8).

Table 8: Number of statistically significant differences obtained
by ANOVA (p < 0.01) and Tukey’s HSD (p < 0.01) of metabolite
profiling data from fractions | (major lipids), Il (minor lipids), llI
(sugars, sugar alcohols) and IV (organic acids, amino acids,
amines) of three maize cultivars (Amadeo, Lukas, Flavi) grown in
the experiments la, Ib and I

experiment
la Ib Il consistent?®

Location (Input System)

compounds included 125 127 126 116
differences
fraction | 7 3 1 0
fraction Il 8 0 0 0
fraction Il 10 11 3 1
fraction IV 11 3 10 1
total 36 17 14 2
differences [%] 29 13 11 2

Genetic Background (Cultivar)

compounds included 125 127 126 116
differences
fraction | 5 8 19 2
fraction Il 12 14 17 7
fraction Il 5 9 12 2
fraction IV 7 10 22 3
total 29 41 70 14
differences [%] 23 32 56 12

® Numbers of compounds consistently included for comparison and
differences consistently detected as statistically significant in all
experiments
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4.3.2 Comparison of Relative Metabolite Levels

In 2004 the influence of locations/input systems was most prominent. To determine

the metabolic sources of variation, loading scores of the first principal component of

the PCA data were examined (Figure 19). Metabolites with the 10 highest absolute

loading scores were quantified on the basis of relative signals. They all belonged to

the polar fractions Ill and IV containing sugars, sugar alcohols, acids and amines. In

addition, the levels of myo-inositol were determined, as this metabolite was found to

be consistently different by ANOVA over all seasons (Figure 20).
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Figure 19 Factor loading scores of principal component 1 and 2 of PCA of metabolite
profiling data of three cultivars grown in season 2004 at two locations (Frankendorf
(conventional) / Schénbrunn (organic)) from fractions I-IV. Black circles (®) representing
compounds with 10 highest absolute loading scores on PC1.
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Figure 20 Comparison of locations with conventional and organic farming by
semiquantified levels of compounds selected according to the ten highest loading
scores on PC1 in experiment la and myo-inositol. Relative signals calculated on the
basis of the respective internal standard. Statistically significant differences (Tukey’s
HSD, p < 0.01) are indicated by different characters (a,b) within each experiment (la, Ib,
Il); ' significant interaction of cultivar*location (p < 0.01).
In the first growing season 2004 (experiment la) higher levels for these compounds
were detected in the samples grown at the location Schonbrunn under the organic
regime. All differences were statistically significant (p < 0.01) or the lower value was
below the limit of quantification. Although, the levels of some of the metabolites
showed a significant (p < 0.01) interaction effect of cultivar and farming location, a

closer look at the interaction diagrams revealed an ordinal interaction in these cases
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Figure 21 Comparison of three maize cultivars (l Amadeo, Lukas, Flavi) by

semiquantified levels of identified compounds that showed consistently different levels

in three field trials (la, Ib, IlI). Relative signals calculated on the basis of the respective

internal standard. Statistically significant differences (Tukey’s HSD, p < 0.01) were

indicated by different characters (a,b,c) within each experiment.
for the effect of locations/input systems, which allowed a further evaluation of these
results on the basis of individual cultivars (Leigh and Kinnear, 1980). Comparison of
the levels of these metabolites between conventional and organic practice by post
hoc testing (Tukey’s HSD, p <0.01) resulted in significant differences for these
compounds. Repetition of this trial in 2005 (experiment Ib) resulted in fewer
statistically significant differences. The smallest differences were detected in
experiment Il in which both input systems were applied at one location (Scheyern).
Regarding all three sample sets, only malic acid, myo-inositol, and after post hoc
testing, phosphate turned out to be consistently different at all experiments.
Of the 14 differences consistently observed between cultivars over all three sample
sets, 9 metabolites were identified and quantified (Figure 21). Differences were

observed for compounds from all four metabolite profiling fractions I-IV.
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4.3.3 Comparison of Major Impact Factors on Metabolite Variation

The sequence of PCA plots obtained from the experiments la, Ib and Il (Figure 18A—C)
demonstrates that the observed separations are mainly due to the genetic
differences (cultivars) and to environmental influences; the different input systems
(conventional/organic) only lead to minor differentiations. Figure 18A (experiment la)
showed a strong separation of farming sites on the first principal component in 2004.
At this point it remained unclear whether this effect was due to the different input
systems employed or only due to the different locations. The repetition in 2005
(experiment Ib, Figure 18B) also resulted in differentiations according to locations
and/or input systems; however, the genetic background (cultivars) turned out to be
the dominating contributor to the observed clustering. Finally, experiment Il revealed
that, if environmental influences are minimized by performing the trials at one
location, only a very slight differentiation according to the input system is observed,
and the clustering pattern is mainly determined by the differences in cultivars
(Figure 18C).

The clustering in Figure 18A may be explained by differences in nutritional supply, soil
composition and influences in the local microclimates. The location Frankendorf was
characterized by a silty loam soil with a rather high soil index of 80, which represents
80% of the performance capacity of an “ideal” soil (Wendland et al., 2007), whereas
the location Schonbrunn had a more sandy loam soil with a soil index of only 52. In
addition, though temperatures were more adequate at Schonbrunn, precipitation
was much more abundant at the location Frankendorf and may have contributed to a
better plant growth at this location (Table 1). Additional support for the less
favorable conditions in Schonbrunn is given by the clear separation of Lukas on PC2
at this location (Figure 18A). Lukas is known to be a robust cultivar under different
environmental conditions from dryness to low temperature (Eder, 2009). Apparently,
at location Frankendorf the growing conditions met the requirements for all cultivars,
resulting in one PCA cluster. Under the conditions in Schénbrunn, the more robust
cultivar Lukas behaved differently from Amadeo and Flavi. In 2005 the precipitation
was higher than in 2004 at both locations (Table 1) and obviously reached a sufficient

amount to ensure similar growth behavior of the maize plants at both farming sites.
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However, a differentiation of locations/input systems was still observable within the
clusters of each cultivar.

Evaluation of metabolite profiling data by ANOVA confirmed the observations made
by PCA; most differences between locations and/or input systems were found in
2004, less in 2005 and only a few number of differences between input systems
conducted at the same location in 2006. The decrease in statistically significant
differences due to locations/input systems and the simultaneous increase due to
genetic background (cultivar) from field trials la/lb to Il reflects the set-up of these
experiments. The extent of changes seen due to the factors genetics and
environment is in the same order of magnitude as observed for maize kernel
metabolites in a previous study employing the same metabolite profiling
methodology (section 4.2).

Considering the broad range of low molecular weight constituents analyzed by the
applied GC/MS-metabolite profiling approach, the number of consistent differences
identified owing to input system is relatively small; only for malic acid, myo-inositol
and phosphate higher levels were determined for maize grown at organic farming
sites in all three experiments. For two of these metabolites similar effects are known
from other studies: A metabolite profiling approach analyzing 51 polar metabolites in
wheat grown at different input practices also reported higher levels of myo-inositol at
growing sites with organic farming compared to the respective conventional site
(Zorb et al., 2006). Myo-inositol plays important functional roles in various
physiological routes involved in, for example, seed desiccation, osmo-regulation and
stress response (Loewus and Murthy, 2000); at this point the data available do not
allow a reasoned answer why this metabolite should be consistently changed in
organically grown crops. Phosphate is one of the most important plant constituents
that affect growth and metabolism (Raghothama, 1999). The increased levels of
phosphate observed in the organically grown maize samples observed in this study
are in agreement with higher levels of phosphate reported in various other

organically grown plants (Dangour et al., 2009; Winter et al., 2006).
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4.3.4 Conclusions

In conclusion, the application of a comprehensive metabolite profiling approach
allowed the investigation of the effect of conventional and organic farming
management practices on maize metabolites from different chemical classes ranging
from lipophilic to polar. The assessment of impact factors on metabolic variation such
as genotype, farming location and growing season, enabled the evaluation of
differences in the light of natural variation. The results of this study suggest that
genotype and environment are the major contributors to differentiations seen in
metabolite profiles of maize kernels. The application of different input systems had
only a small impact on the metabolites covered by the applied analytical approach.
The few consistent differences seen between maize grown conventionally and
organically, respectively, are in agreement with phenomena previously observed for

organically grown crops.
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4.4 Influence of Genetic Engineering

4.4.1 Introduction

Genetic engineering of agricultural crops is being employed for yield improvement,
e.g. by increasing resistance to disease (Fujimoto et al., 1993) and stress (Xue et al.,
2004) and tolerance to herbicides (Oard et al., 1996), as well as for improvement of
the nutritive value of crops, e.g. by increasing the availability of essential
micronutrients (Lucca et al., 2001; Ye et al.,, 2000). Maize as one of the most
important agricultural crops and as part of the staple diet of humans and livestock
has been subjected to a variety of genetic modifications. Transgenic maize plants
have been produced with different characteristics including insect-resistant Bt-maize
(James, 2003) and herbicide-tolerant Roundup Ready maize (Sidhu et al., 2000).
Current safety assessment procedures developed for GM crops are primarily based
on a targeted compositional analysis of specific safety and nutrition-related
compounds (FAO/WHO, 2000; OECD, 1993). Targeted analysis of specific key
compounds, using well established and validated protocols, has provided the
cornerstone for assessing the nutritional value and safety of cultivated crop species.
Such a targeted approach may, however, has its limitations in detecting unintended
effects in genetically modified organisms. Consequently, further assessment by non-
targeted profiling technologies as unbiased analytical approaches has been suggested
to overcome this drawback (Cellini et al., 2004; Kuiper et al., 2003).

In addition, a comparative analysis should not only focus on the GM crop itself, and
its corresponding parental line, but metabolite profiles should also be assessed in the
light of natural variability that is inherent in conventional crop material (EFSA, 2006).
Such information would allow a more comprehensive benchmark against which the
new generations of crops and advances in production systems could be evaluated.
Genetic background, growing environment (geographical, seasonal) and crop
management practices are major factors underpinning this variation.

In this chapter two sets of transgenic maize lines and their isogenic counterparts
grown in South Africa and Bavaria (Germany) were analyzed by GC/MS-metabolite

profiling. Genetically modified Bt maize expresses a crystal protein from the soil
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bacterium Bacillus thuringiensis (Bt) that when ingested by insect pests causes a
lethal paralysis in the digestive tract. In addition, transgenic Roundup ready (RR)
maize was grown in South Africa that has been developed by genetic engineering to
tolerate glyphosate, the active ingredient in the Roundup ready herbicide. The data
were assessed by multivariate statistics (PCA) to allow the evaluation of the results in

the light of natural variation.

4.4.2 South African Maize (GM-Bt, GM-RR, non-GM)

To assess the influence of genetic modification under different environmental
conditions, a GM maize line (GM-Bt) was grown together with its near isogenic line
(non-GM) at three locations in South Africa (Petit, Potchefstroom, Lichtenburg) in
growing season 2004. In addition, at Petit and Lichtenburg Roundup ready-maize
(GM-RR) was grown together with the Bt-maize and the isogenic line. To include the
potential influence of the growing season, the maize lines grown at location Petit
were also harvested in two additional years (2005 and 2006).

Statistical assessment via PCA of the GC/MS-metabolite profiling data from the
samples grown at the three locations in 2004 revealed clear separations of the GM
lines from the respective isogenic line at Potchefstroom and Lichtenburg (Figure 22).
For the maize lines grown over three years, a distinct separation of both GM lines
was observed for the location Petit in 2006; the separation of GM lines from the
isogenic maize line was less pronounced for this location in 2004 and 2005. However,
despite partly obvious differences between GM lines and isogenic maize determined
for one location/year, no separations of the different maize lines were detectable
when combining the metabolite profiling data obtained from GM lines and isogenic
maize for all growing locations/years (Figure 22). This confirms that, at least in the
case of the specific GMOs analyzed, the effect of environment (location, year) was
more pronounced than that of the genetic background (GM, non-GM).

In addition to GC/MS-metabolite profiling, the described samples were also analyzed
by cDNA microarray transcriptome profiling, two-dimensional gel electrophoresis
proteome profiling and 1H-NMR metabolic fingerprinting. All techniques showed that
the environmental factors caused more variation in the different transcript, protein,

and metabolome profiles than the different genotypes (Barros et al., 2010).
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Figure 22 Principal component analysis of GC/MS-metabolite profiling data from
fractions I-IV obtained by triplicate analysis of three maize lines (® non-GM, ® GM-Bt,

GM-RR) grown in South Africa at locations Petit, Potchefstroom and Lichtenburg in
growing seasons 2004, 2005 and 2006. In 2005 three technical replicates were analyzed.
Each plot contains all samples, sub-sets are highlighted in color.

4.4.3 German Maize (GM-Bt, non-GM)

Two maize genotypes (GM-Bt, non-GM) were grown at two different farming
locations in Bavaria, Germany, in season 2004. Field replicates (n=4 location Neuhof,
n=3 location Pfaffenhofen) were collected for analysis by GC/MS-metabolite profiling.
Data from triplicate analysis were subjected to Principal Component Analysis
(Figure 23). PCA of pooled data from the four metabolite profiling fractions -V
revealed a clear separation of the two farming locations on the first principal

component representing 34% of the total variation in the dataset (Figure 23A).
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Figure 23 Principal component analysis of metabolite profiling data from (A) combined
fractions I-IV (I: major lipids, Il: minor lipids, lll: sugar/sugar alcohols and IV: acids/amino
acids/amines), and (B) individual fractions I, (C) Il, (D) lll and (E) IV of two maize genotypes (A
GM-Bt, ® non-GM) grown at locations Neuhof (®, A) and Pfaffenhofen (®, A) (Bavaria,
Germany) in season 2004. Field replicates for each treatment were analyzed in triplicate.
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Clusters according to genotypes could be observed within farming locations only on
PC2 (10% of the total variation). Tukey’s post hoc testing resulted in a significant
(p < 0.001) differentiation of the clusters.

To achieve a better understanding which maize constituents are the drivers of the
observed differentiation pattern, PCAs of data from the four individual metabolite
profiling fractions were investigated. PCAs of the two lipid fractions | and Il
(Figures 23B/C) show differentiation clusters according to locations on the first
principal component. However, there is no clear separation as compared to the
combined PCA (Figure 23A). In the plots based on data for minor lipids (fraction II,
Figure 23C) a grouping of non-GM samples from Pfaffenhofen, but not Neuhof, was
observed. In contrast to the lipid fractions, the plots obtained for data of the polar
fractions Ill and IV, demonstrate a strong effect of the location similar to the
combined PCA (Figures 23D/E). For sugars and sugar alcohols (fraction I,
Figure 23D), the non-GM samples do overlap with GM-Bt at location Neuhof, whereas
results for acids, amino acids and amines (fraction IV, Figure 23E) show distinct
clusters for both genotypes at Neuhof, but not at location Pfaffenhofen.

The results obtained by PCA for individual fractions I-IV demonstrate unequal
contributions of the maize metabolites from different chemical classes. The influence
of the growing location could be detected in all plots, but this effect was much more
pronounced for the polar fractions Il and IV. Differences observed between the
different genotypes were not consistent. For example, PCA of minor lipids data
revealed a cluster for non-GM samples grown at Pfaffenhofen. For acids, amino acids
and amines a similar effect was observed for samples grown in Neuhof. This indicates
a more pronounced impact of environment for samples collected from different sites
for GM-Bt, and non-GM maize, respectively, whereas the influence of the different
genotypes on the metabolite profiles seem to play only a minor role for the

investigated maize material.

The results obtained for the comparative metabolite profiling of the South African
and the German GM maize, and their respective isogenic counterparts are in
agreement with data obtained for wheat showing that differences observed between

GM and the control lines were generally within the same range as the differences
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observed between the control lines grown on different sites and in different years
(Baker et al., 2006). In addition, the results are in accordance with observations made
for differently ripening maize cultivars over a consecutive three-year period
(section 4.2). Whereas the influence of the genotype (cultivar) could be clearly shown
within the single years, combination of samples from all seasons revealed the
environmental impact to be the most prominent impact factor. Similar results were
also reported by a research program (GO2) commissioned to assess the potential use
of omics approaches in comparative analysis and their relevance to risk assessment
(FSA, 2005). This three-year research program was focusing on the applicability and
practicality of a variety of existing and emerging techniques for the safety assessment
procedures for the next generation of GM foods. The program examined the use of
transcriptomic, proteomic and metabolomic techniques in a number of different
plant species including potato, barley, tomato and Arabidopsis. Publications arising
from the FSA projects observed that the differences between conventional varieties
were always significantly greater than the differences between the wild-types and
their respective transgenics despite the fact that some GM lines had very distinct
morphological phenotypes (Catchpole et al., 2005; Defernez et al., 2004). It was
concluded that the vast majority of the observed changes were small (ca. 2-fold or
less) with evidence provided that at least some of these changes may be due to
somaclonal variation resulting from the in vitro manipulation of plants rather than

the presence of an inserted transgene per se.

4.4.4 Conclusions

The influence of genetic modification on maize metabolite profiles was assessed
under different environmental conditions. The data generated revealed that
environmental influences (farming location, growing season) had a stronger overall
effect on the metabolome of the investigated maize genotypes than the genetic
modification. The data do not allow a general conclusion on the potential for
unintended effects in GMO and a case-by-case approval remains pragmatic.
However, for the GM plants investigated in this study, the differences in the
metabolite profiles of maize genotypes grown in different environments were

significantly greater than the effects of the transgene.
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4.5 NIRS Screening of Maize

4.5.1 Introduction

The preceding chapters demonstrated the potential of GC/MS-based metabolite
profiling for the qualitative and quantitative assessment of a broad range of maize
constitutents. To achieve this, a sophisticated analytical protocol is used that employs
extraction, fractionation and derivatization steps to face the different chemical
characteristics inherent in a set of metabolites from a biological sample. However, if
the aim is to look for compositional similarities or if the overall natural variability
should be explored in a large sample set, it might not be necessary to determine the
individual levels of all metabolites. In a first step, an uncomplex, rapid fingerprinting
approach, without a major pre-treatment of the raw material would be sufficient for
the detection of the major effects (Fiehn, 2002). Based on the results of this
screening, a pre-selection of samples could be further thoroughly analyzed by
comprehensive GC/MS-metabolite profiling.

A non-destructive, highly reproducible technique known for its cost effective and
simple application is near infrared spectroscopy (NIRS). The absorption of infrared
light (800—2500 nm) corresponding to overtones and combinations involving C-H, O-H
or N-H chemical bonds results in a characteristic spectral profile for each sample
based on its chemical composition. Together with multivariate analysis, such as
principal component or linear discriminant analysis, NIRS showed great promise as a
screening tool for monitoring biochemical changes in crop developing systems, such
as malting barley (Allison and Maule, 1991), or for both discriminating between yeast
strains and grouping strains with deletions in genes that disturb similar metabolic
pathways (Cozzolino et al., 2006).

NIRS is commonly used for targeted proximate analyses (Osborne, 2008; Woodcock
et al.,, 2008) and detection of physical properties, such as hardness or solubility
(Blanco et al., 2006; Miralbés, 2004). These applications are based on calibration
models for each analyte that have to be developed based on multivariate statistics.
By mathematically correlating spectral data with the data obtained by the currently

accepted laboratory procedures for reference analyses, the content of a respective
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constituent can be predicted by NIRS (Shenk et al., 2008). A major challenge during
the development of the calibration models are the different characteristics of
spectral data, i.e. the absorption of the X-H chemical bonds, and of reference
analytical data, for example the content of nitrogen in a sample based on digestion
and detection by titration. As a second aspect, available calibration models are based
on targeted reference analytical data from proximate analyses. For use of NIRS in a
profiling context, the unbiased character of GC/MS-metabolite profiling data has to
be considered, if NIRS models should be used for the non-targeted prediction of the
chemical composition.

Therefore, the aim was to apply NIRS profiling for the qualitative and quantitative
screening of maize samples. By multivariate comparison (principal component
analysis) of the spectra with data from polar GC/MS-metabolite profiling, the ability
of NIRS for the detection of the major sources of variation in a dataset should be
determined. Environmental and genetic impact on maize metabolite profiles were
considered by analysis of three cultivars grown in different growing seasons and at
different locations. For substantiation of differences between the locations based on
NIRS data, calibration models should be developed based on polar GC/MS-metabolite
profiling data for the prediction of the total content of sugars and of acids/amino
acids. By this, the suitability of the applied NIRS approach as tool for the pre-
assessment of large sample-sets should be tested. It should be demonstrated that
NIRS could complement existing GC/MS-metabolite profiling methods in the
investigation of crop samples from large sample sets with potential for use in

complex metabolomic studies and breeding programs.

4.5.2 Qualitative Assessment by GC/MS and NIRS

The potential of NIRS profiling for the investigation of maize kernels should be
determined by analysis of cultivars grown under different environments. For
comparison, the maize kernels were first analyzed by the established GC/MS-
metabolite profiling approach. For NIRS profiling, near infrared spectra (1000-
2500 nm) were recorded in diffuse reflection mode by means of a commercial

Fourier-transform (FT) NIR spectrometer. After performing standard data pre-
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processing (smoothing, scatter correction, elimination of water band), the NIR

spectra were subsequently used for statistical analysis.

Influence of Farming Location / Input System

Assessment of three maize cultivars (Amadeo, Lukas, Flavi) collected from two
different field trials comprising conventional (location Frankendorf) and organic
(location Schonbrunn) farming practice was performed by principal component
analysis (PCA) of the chromatographic GC/MS and the spectral NIRS data. PCA of
GC/MS-metabolite profiling data of sugars (Figure 24A) and acids/amino acids (Figure
24B) revealed a clear separation due to locations/input systems on the first principal
component. Differentiation of cultivars could be observed on the second principal
component. PCA of NIRS profiling data obtained for the same sample set also
resulted in clustering according to locations/input systems on the two first principal

components (Figure 24C), but there was no differentiation of the three cultivars.

Influence of Growing Season

In a second experiment the influence of farming location should be investigated.
Samples of three maize cultivars (Gomera EU, Amadeo, Lukas) were harvested in
three consecuting growing seasons (2004-2006). Examination of the first two
principal components for GC/MS data of sugars revealed a clear differentiation
according to years (Figure 25A), whereas only one of the cultivars (Gomera EU)
formed a more distinct cluster. GC/MS data for acids/amino acids also exhibited a
strong impact of growing season, with the most prominent separation of samples
obtained from 2004 (Figure 25B). Again cultivar Gomera EU could be differentiated
from the other two cultivars, for which clusters overlapped. A PCA of NIR spectral
data revealed a distinct clustering of all three seasons (Figure 25C). This observation
was in agreement with the GC/MS results. Due to the strong impact of the growing
season, the three cultivars could be distinguished only within the three years

(Figure 25C).
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Figure 24 Principal Component Analysis of data obtained by GC/MS-metabolite profiling
of (A) sugars and sugar alcohols and (B) acids/amino acids, and by (C) NIRS analysis of
three maize cultivars (®: Amadeo, B: Lukas, V:Flavi) grown at different locations
(®,M,V: Frankendorf, ®,[,7: Schonbrunn).
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Figure 25 Principal Component Analysis of data obtained by GC/MS-metabolite
profiling of (A) sugars and sugar alcohols, (B) acids/amino acids, and by (C) NIRS
analysis of three maize cultivars (A: Gomera EU, @: Amadeo, B: Lukas) harvested at
location Strassmoos in three growing seasons (A,®,H: 2004, A,@® H: 2005, A,0 N:
2006).
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Assessment of NIR spectra via PCA revealed similar differentiation patterns as those
obtained by GC/MS-metabolite profiling. The variation covered by the first two
principal components was in the same order of magnitude for both approaches. NIRS
as well as GC/MS were able to identify environment (farming location, growing
season) as the major impact factor on maize composition. Also an effect of the
genetic background (cultivar) was identified by the two profiling approaches,
although PCAs based on GC/MS-metabolite profiling appeared to be more sensitive
to the differentiation of cultivars on the first two principal components. This may be
explained by the type of information that is contained in chromatographic GC/MS
versus spectrometric NIR data. The metabolite coverage of the applied GC/MS
protocol ranges from sugars and sugar alcohols to organic acids, amino acids and
amines. However, the maize kernel exhibits also a broad range of non-polar
metabolites such as lipids, free fatty acids, sterols and carotenoids (Kirchhoff, 2008).
Profiling approaches based on GC/MS are restricted to the detection of low
molecular weight constituents, selected according to the solubility of the chosen
extraction solvents (Fiehn, 2008). In contrast, NIR spectra will be the result of
absorption due to the total composition of a sample. That means, both low and high
molecular weight constituents, including matrix compounds such as starch and
cellulose, are reflected by the obtained absorption patterns (Osborne, 2008; Wang

and Paliwal, 2007).
4.5.3 Establishment of NIRS Calibration Models

4.5.3.1 Calculation of Sum Parameters

A quantitative assessment should enable the elucidation of the metabolic changes
underlying the observed PCA differentiation patterns. Basic quantification of GC/MS-
metabolite profiling data can be performed by calculating response ratios (i.e.
relative peak signals according to the internal standard). In contrast, NIR spectra do
not contain quantitative data per se. A correlation has to be established between
spectral information (i.e. absorptions at distinct wavelength points) and the content
of the target compound. This is accomplished by building mathematical models based
on reference data obtained for samples analyzed by both NIRS and an accepted

analytical method. For a compositional analysis based on unbiased profiling data for
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each metabolite an individual model would have to be calculated. However, GC/MS
profiling approaches are also capable of detecting compounds that may not have
been identified according to standard compounds, thus no reference analytical
method will exist for these constituents.

Therefore, the idea of this study was to create a parameter analogous to the
reference data of a single target compound, but based on GC/MS-metabolite profiling
data. Accordingly, the GC/MS response ratios of sugars/sugar alcohols and of
acids/amino acids were summarized representing the total metabolites contents in
the respective fraction. Reference data was obtained from a broad range of maize
samples investigated by GC/MS-metabolite profiling for the assessment of genetics
and environment (sections 4.2, 4.3). The samples were selected according to
genotype (32 cultivars), location (20 farming sites, Bavaria, Germany) and growing
season (2004-2006). In addition, 20 samples from three field sites located in South
Africa were included. The resulting high diversity in the reference sample set is a
prerequisite for the development of a global NIRS prediction model (Shenk et al.,
2008). The selected samples should be representative for the population of samples

to be analyzed in the future.

Table 9: Metabolites included for calculation of sum parameter
for sugars and sugar alcohols

content? SD®  %oftotal sum%

sucrose 38.47 15.33 79.8 79.8
glucose 3.80 2.30 7.9 87.6
fructose 1.96 1.45 4.1 91.7
raffinose 1.70 0.95 3.5 95.2
sorbitol 0.71 0.52 1.5 96.7
inositol 0.50 0.25 1.0 97.7
galactose 0.27 0.19 0.6 98.3
glycerol 0.18 0.21 04 98.7
sugar (tent. identified) 0.09 0.05 0.2 98.9
erythritol 0.08 0.06 0.2 99.0
sugar (tent. identified) 0.07 0.03 0.1 99.2

? Based on relative levels according to the internal standard
® SD: standard deviation (n = 99)
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Table 10: Metabolites included for calculation of sum parameter
for acids, amino acids

content?® SD®  %oftotal sum%

phosphoric acid 3.56 2.84 23.9 23.9
proline 2.80 1.13 18.8 42.6
aspartic acid 1.29 0.76 8.7 51.3
citric acid 1.02 0.49 6.9 58.2
malic acid 0.93 0.74 6.3 64.4
asparagine 0.81 0.56 54 69.8
alanine 0.77 0.70 5.2 74.8
glutamic acid 0.67 0.50 4.5 79.3
pyroglutamic acid 0.46 0.24 3.1 82.4
serine 0.41 0.40 2.8 85.1
acid (tent. identified) 0.36 0.40 2.4 87.5
glutamine 0.26 0.19 1.7 89.2
tyrosine 0.21 0.09 1.4 90.7
GABA 0.20 0.14 1.3 92.0
threonine 0.16 0.15 1.1 93.1
valine 0.16 0.10 1.0 94.1
lysine 0.12 0.07 0.8 95.0
glycine 0.12 0.07 0.8 95.8
acid (tent. identified) 0.10 0.07 0.7 96.5
fumaric acid 0.09 0.23 0.6 97.0
leucine 0.07 0.07 0.5 97.5
lactic acid 0.06 0.09 0.4 97.9
phenylalanine 0.06 0.05 0.4 98.3
ethanolamine 0.06 0.05 0.4 98.7
B-alanine 0.05 0.07 0.3 99.0
adenine 0.03 0.06 0.2 99.5
glyceric acid 0.02 0.03 0.2 99.6
acid (tent. identified) 0.02 0.03 0.1 99.7
threonic acid 0.02 0.03 0.1 99.9
tryptophan 0.01 0.02 0.1 99.9
methionine 0.01 0.02 0.1 100.0

? Based on relative levels according to the internal standard
® SD: standard deviation (n = 101)

Based on these samples the total metabolite content was calculated for sugars (a
total of n =99 samples) and for acids/amino acids (a total of n =101 samples. The

relative levels of 11 sugars and sugar alcohols were summarized, with sucrose
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representing almost 80% of the total sugar content (Table 9). Within the fraction of
acids/amino acids, phosphoric acid was the most abundant metabolite (24% of the
total content), followed by proline (19%) and aspartic acid (9%) (Table 10). In total 31
compounds were included in the calculation of the second sum parameter. The
resulting sum parameters represented more than 99% of the total content in the

samples as detected by GC/MS-metabolite profiling (Tables 9, 10).

4.5.3.2  Choice of Regression Algorithm

To establish a correlation between spectral data and the content of the constituent of
interest several calibration methods are in use (Wang and Paliwal, 2007). To find
those wavelengths whose inclusion in the calibration model results in the best
prediction of the reference value on the basis of spectral data, partial least square
regression (PLS) was applied as a full-spectrum method. In addition, stepwise
multiple linear regression (MLR) was used as another relatively robust methodology

for comparison.

4.5.3.3  NIRS Calibration Model for Sugars

The calibration set used for development of a NIRS model for sugars exhibited 99
samples selected according to their relative sugar content (Figure 26). The histogram
shows a high bar for low relative levels owing to the low contents of sugars in most of

the South African samples.
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Figure 26 Histograms of the reference data obtained by metabolite profiling for the
prediction of the sum parameter for sugars and sugar alcohols for (A) models PLSR,
MLR1 and MLR3 (n = 99) and for (B) models MLR2 and MLR3 (n = 82). Relative signals
were calculated on the basis of the respective internal standard.
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For prediction of sugars by NIRS five models were evaluated. In order to assess the
performance of the calibration models NIRS performance criteria were calculated and
compared to literature data generally accepted as minimum requirements for NIRS
methods (De la Roza et al., 1998; Perez et al., 2001; Williams and Sobering, 1996).
The ratio of the range in reference data for the validation samples to the SECV
(criterion 1) and the ratio of the standard deviation SD of the sample population to
the standard error of prediction SECV (criterion 2) relate the SECV to the range and
variance in the original data. A minimum requirement of 10 and 3 for criterion 1 and
2, respectively, allows the differentiation of samples low, medium and high in the
target constituent (Williams and Sobering, 1996). Criterion 3 was deduced according
to requirements described in literature (Fontaine et al., 2001) that the SECV should
not be higher than twice the standard deviation of the reference method (10% for
GC/MS-metabolite profiling according to section 4.1. For prediction of sugars, a PLS
regression was calculated on the basis of the whole NIR spectrum (Table 11). The
correlation of the regression line of the calibration equation was > 0.9, but the model
did not qualify according to criteria 1 and 2. Therefore, a MLR model was calculated
including 8 wavelengths (1260 nm, 1405 nm, 1705 nm, 1720 nm, 2180 nm, 2315 nm,
2385 nm und 2395 nm) selected from bands that exhibited high loadings of the PLS
regression model. MLR1 performed better than the PLSR model as reflected by the
regression parameters (Table 11). The requirements 1 and 3 reported in literature for
calibration models could be fulfilled (Table 11); criterion 2 was nearly fulfilled.

To pass all three performance criteria, two approaches were considered. First, for the
distribution of reference values a slight Gaussian normal curve was observed, due to
too many samples with medium levels of sugars. It was decided to remove 17
samples with levels between 30 and 60, resulting in a linear distribution of reference
values from 82 samples in the histogram (Figure 26B). The respective model (MLR2)
fulfilled all performance criteria (Table 11). In a second approach, it was strived to
reach the criteria without reducing the reference sample set. It was presumed, that
there was an overlap of sugar and starch bands due to structural similarities of sugars
and starch. Therefore, an additional wavelength (2097 nm) from a known starch band
(Osborne, 2008; Shenk et al., 2008), was included into the model (MLR3). In fact, the

model fulfilled criteria 1-3, although it did not perform as well as MLR2. It was
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concluded, that the best approach would be to combine a reference sample
distribution consisting of equal proportions of samples low, medium and high in sugar
content, with the additional wavelength from the starch band. This final model
(MLR4) showed the best performance, and it was used for prediction of the relative
content of sugars for further experiments.

In comparison to literature data the SECV of model MLR4 may seem high (Qin et al.,
2007; Woodcock et al., 2008). However, it has to be considered, that the standard
error of the prediction model cannot be lower than the standard error of the
reference method. For the applied GC/MS-metabolite profiling approach, a
repeatability cut-of is set at 10%. NIRS calibrations for prediction of soluble sugar
content in maize forage gave a similar SECV as compared to the results obtained in
this study (Welle et al., 2003). Therefore, the level of accuracy obtained in this study
was considered to be adequate for the selection of samples according to low,
medium and high sugar content, independently of the absolute value, as needed for a

NIRS a pre-screening approach.

Table 11: Regression parameters of NIRS calibrations based on metabolite profiling data
for sugars and for acids/amino acids

Feal Fyal Meal’ Myal SEC* SECV'  Crit.1®  Crit.2"  Crit.38
sugars
PLSR  0.9080 0.8521 0.825 0.787  7.60 9.60 7.45 1.98 1.87
MLR1  0.9525 0.9414 0.907 0.898  5.75 6.38 1121 2.98 1.24
MLR2  0.9626 09514 0.927 0917 557 6.34 11.27  3.26 1.24
MLR3  0.9578 0.9462 0.917 0.908  5.42 6.11 11.70  3.11 1.19
MLR4 0.9672 0.9556 0.935 0.928  5.23 6.07 11.78  3.41 1.18

acids/amino acids
PLSR 0.9477 0.9325 0.898 0.874 2.49 2.82 12.09 2.79 1.26
MLR 0.9615 0.9540 0.924 0.913 2.15 2.34 14.57 3.36 1.05

<l calibration, *' validation

? coefficient of correlation

b slope of regression line

‘ root mean squared error of calibration

?root mean squared error of prediction

¢ performance criterion 1 = (max-min) / SECV > 10

f performance criterion 2 = s/SECV > 3

& performance criterion 3 = SECV / Sreference < 2

Details on the calculation of the performance criteria as described in the methods section
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4.5.3.4  NIRS Calibration Model for Acids/Amino Acids

For prediction of the contents of acids/amino acids a reference sample set of 96
equally distributed samples was selected. In addition 5 samples with very high
contents were included, resulting in a total of 101 reference samples (Figure 27).
First, a PLSR was performed, fulfilling the performance criteria 1 and 2 (Table 3). As
for sugars the multiple linear regression approach resulted in better regression
parameters, also an MLR model was calculated. Inclusion of 8 wavelengths (1190 nm,
1215 nm, 1340 nm, 1405 nm, 1530 nm, 1650 nm, 1860 nm und 2220 nm) resulted in

the fulfillment of the performance criteria 1-3 (Table 11).
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Figure 27 Histogram of the reference data obtained by

metabolite profiling for the prediction of the sum parameter for
acids/amino acids by NIRS models (PLSR and MLR, n = 101). Relative
signals were calculated on the basis of the respective internal
standard.

NIRS prediction of the total content of free amino acids as descibed in literature
suggests a strong influence of the matrix to the quality of the prediction models.
Whereas in tea smaller SECVs were achieved, the prediction in cheese was in the
same order of magnitude as for GC/MS profiling as reference method (lkegaya, 1990;
Skeie et al., 2006; Woodcock et al., 2008). Taking these studies into consideration,

the performance of the developed NIRS method was found to be sufficient.
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4.5.4 Application of Calibration Models/Method Evaluation

Influence of Farming Locations / Input System

Applicability of the developed NIRS models was evaluated by comparison of maize
grown at two different locations (Frankendorf, Schénbrunn), based on quantitative
data from GC/MS and NIRS analyses. Comparison of the mean (three cultivars) levels
for total sugar content as determined by GC/MS between two locations revealed
higher levels at the location Schonbrunn deploying organic farming practice
(Figure 28A). The relative levels for sugars as predicted by the calibration model
MLR4 also exhibit higher levels at Schonbrunn, and lower sugar content at
Frankendorf (Figure 28A). In addition, the relative total content for acids/amino acids
was analyzed by GC/MS and NIRS confirming the results for sugars, and showing both
approaches to be in excellent agreement (Figure 28B). The quantified levels of sugars
and acids/amino acids shown in Figure 28 demonstrate that the separations between

locations observed by PCA (Figure 24) are mainly owing to increased levels of polar

metabolites.
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Figure 28 Comparison of maize samples grown at two locations with different input
systems (conventional/organic) by relative levels of the sum parameters for sugars and
sugar alcohols (A, as described in Table 1) and for acids/amino acids (B, as described in
Table 3) as determined by GC/MS-metabolite profiling (light bars) and as predicted by
NIRS models (grey bars) for sugars and acids/amino acids, respectively. Relative signals
were calculated on the basis of the respective internal standard. Mean values and the
corresponding standard errors were calculated for three maize cultivars.



Metabolite Profiling of Maize Grain 92

Influence of Growing Season

For GC/MS data from maize cultivars grown in three consecutive growing seasons
Principal Component Analysis revealed the most prominent separation of years for
acids/amino acids (Figure 25B). Therefore, the respective sum parameter was
compared as determined by GC/MS and as predicted by NIRS. Samples harvested in
the season 2004 that were separated by PCA exhibited higher levels than samples
from 2005 or 2006 (Figure 29). The results obtained by NIRS prediction were in good
agreement with the levels as determined by GC/MS. The strong impact of growing
season on the chemical composition of maize kernels is confirmed by results shown
earlier in chapter 4.2, in which GC/MS-metabolite profiling investigated the influence

of growing season on the differentiation of cultivars and farming locations.
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Figure 29 Comparison of maize samples grown in three consecutive seasons (2004,
2005, 2006) for three maize cultivars by relative levels of the sum parameters for
acids/amino acids (Table 2) as determined by GC/MS-metabolite profiling (light bars) and
as predicted by NIRS models (grey bars). Relative signals were calculated on the basis of
the respective internal standard. Mean values and the corresponding standard errors
were calculated for three maize cultivars.

4.5.5 Conclusions

The potential of NIRS as a profiling tool for the screening of maize samples was
compared to GC/MS-based metabolite profiling. PCA evaluation of cultivars grown at
different environments revealed the suitability of the full spectrum NIRS approach for
the qualitative investigation of maize kernel composition. Major impact factors such

as environment and genetic background could be equally determined by both GC/MS
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and NIRS profiling. Multivariate statistics enabled the quantification of basic
metabolic changes underlying the observed PCA clusters and allowed the
differentiation of samples exhibiting low, medium and high levels of sugars or
acids/amino acids. The straight forward use of GC/MS data as a basis for building
NIRS prediction models demonstrated the robustness and suitability of GC/MS-
metabolite profiling for both routine analysis and as reference data for spectroscopic
methods. NIRS as a rapid screening approach may serve as a valuable tool for the pre-
assessment of large sample sets prior to a more thorough analysis by GC/MS-
metabolite profiling, thus demonstrating its potential for the investigation of crops in

complex metabolomic studies and breeding programs.
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5 SUMMARY

A comparative metabolite profiling approach based on gas chromatography-mass
spectrometry (GC/MS) was applied to investigate the impact of genetic background,
environment and farming practice on the chemical composition of maize (Zea mays)
grain. The metabolite profiling protocol involved sub-fractionation of the metabolites
and allowed the assessment of about 300 distinct analytes from different chemical
classes (polar to lipophilic), of which 167 could be identified. Recoveries and intra-
laboratory repeatability determined for selected representatives from the different
chemical classes confirmed the suitability of the applied metabolite profiling
procedure for the comprehensive assessment of maize grain composition.

The metabolite profiles of four maize cultivars that differed in their maturity
classification were compared using principal component analysis (PCA) over three
consecutive growing seasons. This revealed a strong separation of one cultivar in the
first growing season, which could be explained by the immaturity of the kernels of
this cultivar compared with the others in the field trial. Further evaluations by
pairwise comparison using Student’s t-test and analysis of variance (ANOVA) showed
that the growing season was the most prominent impact factor driving variation of
the metabolite pool. An increased understanding of metabolic variation was achieved
by analysis of a second sample set comprising one cultivar grown for three years at
four locations. The analysis of sub-fractions allowed the assessment of the
contribution of metabolites from different chemical classes. The data obtained do not
indicate that one of the fractions is generally more important; each of them may add
information to explain genotype or environmental effects on crop compositions.
Maize kernels grown conventionally and organically, respectively, were investigated
using GC/MS-based metabolite profiling. By analysis of three cultivars grown at two
locations with different input systems and at a third location, where both organic and
conventional farming were applied, the impact of the growing regime on the
metabolite spectrum should be put into the context of natural variability. The
metabolite profiling data were statistically assessed via PCA and ANOVA. The PCA
demonstrated that the observed separations were mainly due to genetic differences

(cultivars) and to environmental influences. The different input systems
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(conventional/organic) only led to minor differentiations. ANOVA and quantification
of selected constituents confirmed these observations. Only three metabolites (malic
acid, myo-inositol and phosphate) were consistently different due to the employed
input system if samples from all field trials were considered.

Two sets of transgenic maize lines and their isogenic counterparts were grown in
South Africa (GM-Bt, GM-RR, non-GM) and Bavaria, Germany (GM-Bt, non-GM).
Multivariate assessment by PCA of the GC/MS profiling data allowed the investigation
of the potential effect of the genetic modification on the maize metabolite profiles.
For evaluation of the results in the light of natural variation, samples were considered
from different environments including farming locations and growing seasons. The
data generated revealed that environmental influences (farming location, growing
season) had a stronger overall effect on the metabolite profiles of the investigated
maize genotypes than the genetic modification.

The potential of Near Infrared Spectroscopy (NIRS) as a profiling tool for the
screening of maize samples was compared to GC/MS-based metabolite profiling.
Qualitative assessment by PCA of three cultivars grown at different locations and in
different growing seasons demonstrated the equal determination of major impact
factors such as environment and genetic background on maize kernel composition by
both NIRS and GC/MS profiling. Substantiation of potential differences was evaluated
based on NIRS calibration models developed for the total content of sugars and
acids/amino acids as determined by GC/MS-metabolite profiling. The models enabled
the quantification of basic metabolic changes underlying the observed PCA clusters
and allowed the differentiation of samples exhibiting low, medium and high levels of
sugars or acids/amino acids. The straight forward use of GC/MS data as a basis for
building NIRS prediction models demonstrated the robustness and suitability of
GC/MS-metabolite profiling for both routine analysis and as reference data for
spectroscopic methods. NIRS was shown to be a valuable tool for the pre-assessment
of sample sets complementing existing GC/MS approaches, used subsequently for a
more thorough analysis of samples of interest. The type of comparative datasets
generated by both GC/MS and NIRS may serve as objective basis for crop assessment
and the data confirm the potential of metabolite profiling to assist in breeding and

farming approaches.
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6 ZUSAMMENFASSUNG

Ein auf Gaschromatographie/Massenspektrometrie basierender Metabolite Profiling
Ansatz wurde verwendet, um die Einflisse von genetischem Hintergrund, Umwelt
und Anbaupraxis auf die chemische Zusammensetzung von Mais (Zea mays) zu
untersuchen.

Die Metabolite Profiling Methodik basiert auf Extraktion und Fraktionierung und
erlaubt die Erfassung von ca. 300 individuellen Analyten (polar bis lipophil), von
welchen 167 identifiziert werden konnten. Fir ausgewdhlte Vertreter der
verschiedenen chemischen Klassen zeigten Ergebnisse zur Wiederfindung und labor-
internen Wiederholbarkeit die Eignung des verwendeten Metabolite Profilings zur
umfassenden Untersuchung der Zusammensetzung von Mais.

Ein Vergleich — (iber drei aufeinanderfolgende Anbaujahre — der Metabolitenprofile
von vier Maissorten, welche in ihrem Reifeverhalten variierten, wurde mittels
Hauptkomponentenanalyse (PCA) durchgefiihrt. Die deutliche Abtrennung einer der
Sorten in der ersten Anbausaison konnte auf den unreifen Zustand dieser Maiskdrner
zurlickgefuhrt werden. Weiterfiihrende Untersuchungen durch paarweisen Vergleich
mittels t-Test und Varianzanalyse (ANOVA) zeigten, dass die Anbausaison den
grofSten Einfluss auf die Variation innerhalb des Metabolitenpools hatte. Ein tieferes
Verstandnis metabolischer Schwankungen wurde durch die Betrachtung eines
zweiten Probensets erreicht, welches Proben einer Sorte an vier Standorten im
Zeitraum von drei Jahren enthielt. Die Analyse einzelner Fraktionen erlaubte die
Erfassung des Beitrages von Metaboliten verschiedener Stoffklassen. Die erhaltenen
Daten legen nahe, dass keine der Fraktionen grundsatzlich einen groReren Einfluss
hat; vielmehr kann jede Fraktion Informationen enthalten, welche fiir die Erklarung
der Effekte von Genotyp oder Umwelteinflissen auf die Zusammensetzung von
Getreide eine Rolle spielen.

Maiskorner aus konventionellem und biologischem Anbau wurden mittels GC/MS-
Metabolite Profiling untersucht. Durch die Analyse dreier Sorten von zwei
Anbauorten mit unterschiedlicher Anbaupraxis und einem dritten Anbauort, an
welchem sowohl konventionelle als auch biologische Landwirtschaft durchgefiihrt

werden, wurde der Einfluss der Anbaupraxis auf das Metabolitenspektrum im Licht
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der natirlichen Schwankungsbreite betrachtet. Die Metabolite Profiling Daten
wurden statistisch mittels PCA und ANOVA untersucht. Die PCA zeigte, dass die
beobachteten Trennungen hauptsachlich auf genetische Unterschiede (Sorten) und
Umwelteinflisse zuriick zu fihren waren. Die Anbaupraxis (konventionell/biologisch)
fihrte lediglich zu geringflgigen Unterschieden. ANOVA und die Quantifizierung
ausgewadhlter Inhaltsstoffe bestatigten diese Beobachtung. Unter Berlicksichtigung
von Proben aller Feldversuche wiesen nur drei Metabolite (Apfelsiure, myo-Inositol
und Phosphat) konsistent unterschiedliche Gehalte zwischen den beiden
Anbaupraktiken auf.

Zwei Sets gentechnisch veranderter Maislinien und deren entsprechenden
Elternlinien wurden in Sudafrika (GM-Bt, GM-RR, non-GM) und in Bayern (GM-Bt,
non-GM) angebaut. Multivariate Auswertung der GC/MS Profiling Daten mittels PCA
erlaubten die Untersuchung des potentiellen Einflusses der genetischen Modifikation
auf die Metabolitenprofile von Mais. Zur Bewertung der Ergebnisse im Licht der
natlrlichen Variabilitdt wurden verschiedene Umgebungseinfliisse (Anbauort,
Anbaujahr) bericksichtigt. Die ermittelten Daten zeigen, dass Umweltbedingungen
auf die Metabolitenspektren der untersuchten Maisgenotypen einen grof3eren
Einfluss hatten als die gentechnische Veranderung.

Nahinfrarotspektroskopie (NIRS) als potentieller Profiling Ansatz flir das Screening
von Maisproben wurde mit GC/MS-basiertem Metabolite Profiling verglichen. Die
gualitative Untersuchung dreier Sorten aus unterschiedlichen Anbauorten und
Anbaujahren mittels PCA zeigte eine vergleichbare Eignung von sowohl NIRS als auch
GC/MS zur Bestimmung der Haupteinflussfaktoren auf die Zusammensetzung von
Maiskodrnern, wie zum Beispiel Umwelteinfliisse und genetischer Hintergrund. Zur
Substantivierung moglicher Unterschiede wurden NIRS Kalibrierungsmodelle fir die
Gesamtgehalte an Zuckern und Sauren/Aminosaduren entwickelt, die zuvor mittels
GC/MS-Metabolite Profiling bestimmt wurden. Die Modelle ermoglichten die
Quantifizierung von metabolischen Veranderungen, welche die PCA Gruppierungen
begriinden, und erlauben die Differenzierung von Proben mit niedrigen, mittleren
und hohen Gehalten an Zuckern oder Sauren/Aminosduren. Die Moglichkeit der
direkten Verwendung von GC/MS Daten als Basis fur die Erstellung von NIRS

Kalibrierungsmodellen belegte die Robustheit und Eignung der beschriebenen
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GC/MS-Metabolite Profiling Methode sowohl zur Routineanalyse als auch als
Referenzmethode fir spektroskopische Anwendungen. NIRS erwies sich als
wertvolles Werkzeug fiir die Einstufung von groBen Probensets. Es erganzt damit
vorhandene GC/MS Methoden, welche im Anschluss fir eine weiterfuhrende Analytik
interessanter Proben eingesetzt werden kénnen. Die Art von umfassenden Daten,
welche durch die beiden Ansatze GC/MS und NIRS gewonnen werden, kdnnen als
objektive Basis fir die Untersuchung von Getreide angesehen werden. Die im
Rahmen dieser Arbeit erhaltenen Daten bestdtigen das Potential von Metabolite

Profiling zur analytischen Bewertung im Rahmen von Ziichtung und Anbau.
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