
Channel-Adaptive Coding for Coarsely Quantized

MIMO Systems

Thomas Lang, Amine Mezghani and Josef A. Nossek

Institute for Circuit Theory and Signal Processing, Technische Universität München

Theresienstraße 90, 80290 Munich, Germany

Email: {Lang, Mezghani, Nossek}@nws.ei.tum.de

Abstract—We present iterative algorithms which efficiently
compute an optimized subset of equiprobable input symbols
that achieves near-capacity on a large asymmetric discrete
memoryless channel (DMC). The optimized subset defines a
delay-free channel-adapted inner code which can be combined
with a standard code. The introduction of a dense data structure
renders it possible to apply channel-adaptive coding to 2-bit
quantized MIMO systems, which exhibit a very large output
set. The coding approach is shown to be robust to imperfect
channel state information (CSI). Finally, we present a binary
index switching algorithm that minimizes the BER by optimizing
the mapping from code bits to input symbols.

I. INTRODUCTION

In high-speed MIMO communication systems, e.g. Ultra-

Wideband (UWB) communications, the use of low resolution

analog-to-digital converters (ADCs) simplifies the circuit de-

sign and saves power as well as chip area [1]. Additionally, the

loss in channel capacity due to 1-bit and 2-bit analog-to-digital

conversion is surprisingly small [2]. However, coarse quanti-

zation implies that even for zero-noise some transmit symbols

are not distinguishable at the receiver after quantization. For

instance, in a 1-bit quantized 4 × 4 Gaussian MIMO system

the uncoded BER saturates around 10−1 with maximum-

likelihood (ML) decoding [3]. Thus, reliable communication

with code rates close to the i.u.d. channel capacity Ci.u.d.

(which is the mutual information induced by an independently

and uniformly distributed source) would necessitate the use

of turbo-like codes (Turbo codes, LDPC, etc.) with very

long code lengths. Moreover, distribution shapers should be

applied, because coarsely quantized Gaussian MIMO channels

are very asymmetric in that their capacity C is considerably

higher compared to the i.u.d. capacity [4]. Thus, the use

of turbo-like codes (which are very effective on any binary

input channel and on non-binary symmetric channels [5]) to

approach the capacity would involve a considerable average

communication delay and a high decoding complexity [6].

In [4] a channel-adaptive coding approach is presented that

takes the coarse quantization operation fully into account.

The idea is to select a reduced subset of equiprobable in-

put symbols which are well distinguishable at the receiver

despite quantization. This channel-adaptive coding approach

has several advantages. First of all, the overall system is

simplified as no distribution shapers are needed to tightly

approach the capacity. Secondly, the reduced symbol packing

virtually transforms the very asymmetric DMC into an almost

symmetric one. Thirdly, the optimized input symbol selection

can be used as an inner delay-free code that can easily be

combined with an outer standard code. Thereby, the channel-

adapted code simplifies the task of the outer code by reducing

the SER while increasing the mutual information. This holds

true, if the rate of the inner code is sufficiently high for

the given signal-to-noise ratio (SNR) [4]. Though, finding

a subset of equiprobable input symbols which achieves near-

capacity on large asymmetric DMCs is a non-polynomial (NP)

hard problem. The algorithms in [4] solve this optimization

problem well, but their computational complexity is quite high.

The main contribution of this paper are efficient algorithms

which iteratively solve the symbol selection optimization prob-

lem. We demonstrate that the symmetry of the received signal

constellation can be exploited to decrease the computational

complexity. In MIMO systems with many transmit and receive

antennas as well as in MIMO systems with 2-bit ADCs

the number of channel transition probabilities becomes a

bottleneck. Therefore, we introduce a dense data structure that

considers only the significant channel transition probabilities.

If the optimized subset of input symbols serves as an inner

code that is combined with an outer code, we would like

to minimize the bit-error ratio (BER) of the inner code so

as to minimize the SER of the combined code. The binary

switching algorithm [7] can be used to minimize the BER

by optimizing the mapping from code bits to input symbols.

We present a binary index switching algorithm which uses a

compact formula of the BER to efficiently optimize the bit-to-

symbol mapping. Finally, we demonstrate that the proposed

channel-adaptive coding approach is robust to imperfect CSI.

The remainder of this paper is organized as follows. Section

2 introduces the system model of quantized MIMO systems.

Section 3 describes the symbol selection optimization problem

and presents algorithms that solve it efficiently. Section

4 demonstrates the robustness of the coding approach to

imperfect CSI. Section 5 deals with the optimization of the

bit-to-symbol mapping. Section 6 shows the performance of

channel-adaptive coding when combined with convolutional

coding. Conclusions are given in Section 7.

II. SYSTEM MODEL

We consider the point-to-point quantized MIMO system

in Fig. 1. The channel matrix H ∈ CN×M connects the

M transmit antennas with the N receive antennas and it

2010 International ITG Workshop on Smart Antennas (WSA 2010)

978-1-4244-6072-4/10/$26.00 ©2010 IEEE 20

...

...
...

......
...

...

...

x1

xM

η1

ηN

y1,R

yN,R

y1,I

yN,I

H

Q1

QN

Q1

QN

ℜ

ℑ

Figure 1. Quantized MIMO System.

is composed of i.i.d. zero-mean complex Gaussian random

variables [H]i,j of unit variance. Each source vector x

comprises M source symbols xi which are drawn from a

discrete QPSK modulation alphabet. The average transmit

energy of x is normalized to one. The unquantized output

r = Hx + η, r ∈ C
N (1)

is perturbed by additive white Gaussian noise (AWGN) η with

covariance matrix E[ηηH] = σ2
ηIN . The signal-to-noise ratio

(SNR) is defined by

SNR = σ−2
η .

After reception, the real-part ri,R = ℜ(ri) and imaginary-part

ri,I = ℑ(ri) of the received signal component ri are quantized

separately by scalar b-bit resolution quantizers

yi,c = Qi(ri,c), c ∈ {R, I}, 1 ≤ i ≤ N. (2)

The overall quantization process is summarized by

y = Q(r), (3)

where Q(•) is a short notation for the operation of the two

identical banks of quantizers Q1, Q2, . . . , QN . In this paper,

we consider uniform symmetric quantizers. The quantized

receive alphabet for the i-th antenna is given by

Ai = {∆i · (k − 2b−1 − 2−1) : k = 1, . . . , 2b} ∋ yi,c, (4)

where ∆i is the quantizer step-size of the i-th antenna. As in

[3], we assume that the unquantized received signals ri,c are

Gaussian distributed and calculate the step-size as follows

∆i = ∆ ·
√

E[r2
i,c]. (5)

Here, ∆ is the optimum output level spacing (with respect

to the mean-squared error criterion) for a zero-mean Gaussian

source with unit variance [8]. The lower and upper boundaries

of the quantization intervals are given by

dlow(yi,c) =

{

yi,c − ∆i

2 for yi,c ≥ −∆i(2
b−1 − 1)

−∞ otherwise,
(6)

and

dup(yi,c) =

{

yi,c + ∆i

2 for yi,c ≤ ∆i(2
b−1 − 1)

+∞ otherwise.
(7)

In fact, the quantized MIMO system in Fig. 1 represents a

DMC with input x ∈ X , output y ∈ Y and channel transition

probabilities Pr(y|x). The set X contains all possible transmit

vectors and the set Y comprises all possible quantized receive

vectors. The quantization process is called coarse, if it is not

possible to distinguish between all possible transmit vectors

at the receiver after quantization even though the noise power

is zero [2].

Since the real part ni,R and imaginary part ni,I of the noise

ni at the i-th receive antenna are uncorrelated with variance

σ2
η/2, the conditional probability Pr(y|x) factorizes

Pr(y|x) =
∏

c∈{R,I}

∏N

i=1
φ(x, yi,c), (8)

where

φ(x, yi,c) = Φ
(√

2/ση · (dup(yi,c)− [Hx]i,c)
)

− Φ
(√

2/ση · (dlow(yi,c)− [Hx]i,c)
)

(9)

and Φ(x) = 1√
2π

∫ x

−∞ e−
t2

2 dt stands for the cumulative

normal distribution function.

III. OPTIMIZING THE INPUT SYMBOL SELECTION

We assume that the receiver has access to the channel state

information (CSI), which can be obtained even with coarse

quantization [9]. The receiver optimizes the input symbol

selection and feeds its choice back to the transmitter. This

requires at most as many bits as the initial number of transmit

symbols. If the bit-to-symbol mapping is optimized as well,

additional bits (may) have to be fed back.

A. The Optimization Problem

The optimization problem is to find a subset X ′ ⊆ X of

equiprobable input symbols Pr(x) = 1/|X ′| which achieves

near-capacity for a given DMC realization. One option is to

maximize the mutual information between x and y, i.e.,

max
X ′⊆X

I(X ; Y) = max
X ′⊆X

{

log2 (|X ′|) +
1

|X ′|
∑

x∈X ′
αx

}

,

(10)

where

αx =
∑

y∈Y
Pr(y|x) log2

(

Pr(y|x)
∑

x′∈X ′ Pr(y|x′)

)

. (11)

As pointed out in [4], it is also possible to use the SER as

optimization criterion, that is

min
X ′⊆X

SER = 1− max
X ′⊆X

{

1

|X ′|
∑

x∈X ′
βx

}

, (12)

where

βx =
∑

y|x = arg max
x′∈X′

{Pr(y|x′)}
Pr(y|x). (13)

We require the subset size S = |X ′| to be a power of 2 such

that source (or code) bits can be mapped directly to input

symbols. Hence, for M = N and QPSK modulation the

possible code rates Ri are

Ri ∈ {(1/2M), (2/2M), . . . , 1}. (14)

21

Algorithm 1 Iterative Capacity Maximization (C-max)

1: initialization X ′ = X , S = 4R·M , Ly|x = log2(Pr(y|x))
2: while |X ′| > S do

3: for all y ∈ Y do

4: Ly = log2

(
∑

x∈X ′ Pr(y|x)
)

5: for all x ∈ X ′ do
6: αx =

∑

y∈Y Pr(y|x) · (Ly|x − Ly)
7: z = arg min

x∈X ′
{αx} and X ′ ← X ′ \ z

Algorithm 2 Iterative SER Minimization (SER-min)

1: initialization: X ′ = X , S = 4R·M , βx = 0 ∀x ∈ X
2: for all y ∈ Y do

3: x = arg max
x′∈X ′

{Pr(y|x′)}
4: βx = βx + Pr(y|x) and Yx ← Yx ∪ y

5: while |X ′| > S do

6: z = arg min
x∈X ′
{βx} and X ′ ← X ′ \ z

7: for all y ∈ Yz do

8: x = arg max
x′∈X ′

{Pr(y|x′)}
9: βx = βx + Pr(y|x) and Yx ← Yx ∪ y

For a given target code rate R the maximizations in (10) and

(12) simplify to

max
X ′⊆X

{

∑

x∈X ′
αx

}

(15)

and

max
X ′⊆X

{

∑

x∈X ′
βx

}

. (16)

In the following subsections, we propose algorithms that

efficiently compute almost optimal solutions of (15) and (16).

B. Maximizing the Uniform Capacity

The iterative capacity maximization (C-max) algorithm in

Algorithm 1 iteratively solves (15). In each iteration the C-

max algorithm evaluates the (negative) contribution αx/|X ′|
of each individual x ∈ X ′ to the mutual information. Subse-

quently, the input symbol with the smallest αx is removed

from the set of remaining input symbols in line 7. After

(|X | − S) iterations, the algorithm delivers the optimized

symbol selection X ′.

C. Minimizing the Symbol Error Ratio

The iterative SER minimization (SER-min) algorithm in

Algorithm 2 successively deletes bad symbols from the input

set X ′ ⊆ X until the target code rate R is reached. In

each iteration of the while loop, the symbol with the lowest

probability of correct detection βx/|X ′| is removed from the

set of remaining input symbols X ′. The list Yx keeps track of

all quantization regions y ∈ Y that are assigned to the symbol

x ∈ X ′ by the ML decoder. After the deletion of a symbol z

only the quantization regions y ∈ Yz of the deleted symbol

have to be reallocated.

The C-max and SER-min algorithm have in common that

the decision to remove a symbol is final. In contrast, a binary

Algorithm 3 Binary Symbol Switching (BSS)

1: initialization: X ′ ⊂ X , S = |X ′|, u = 0, µ = 1000
2: loop

3: X ′′ ← X \ X ′

4: βx = 0 ∀x
5: for all y ∈ Y do

6: x = arg max
x′∈X ′

{Pr(y|x′)}
7: βx = βx + Pr(y|x)
8: Sort xk ∈ X ′ such that βx1

≤ βx2
≤ . . . ≤ βxS

9: for k = 1, . . . , S do

10: u = u + 1
11: if u > µ then

12: return X ′ as solution

13: X ′ ← X ′ \ xk

14: for all y ∈ Y do

15: λy = max
x′∈X ′

{Pr(y|x′)}
16: for all x′′ ∈ X ′′ do
17: γx′′ =

∑

y∈Y max{λy , Pr(y|x′′)}
18: γz = max

x′′∈X ′′
{γx′′}

19: if γz >
∑

x∈X ′ βx + 10−10 then

20: X ′ ← X ′ ∪ arg{z}
21: goto line 3
22: else

23: X ′ ← X ′ ∪ xk

24: if k ≡ S then

25: return X ′ as solution

switching algorithm has the freedom to correct decisions

[4]. In [7], a binary switching algorithm was proposed

for optimizing the mapping from source symbols to code

symbols. As the complexity of a binary switching algorithm

crucially depends on the costs per switch, we choose (16) as

optimization criterion.

The binary symbol switching (BSS) algorithm in Algorithm

3 finds a locally optimal symbol selection through systematic

symbol switching. Initially, the algorithm sorts the selected

input symbols x ∈ X ′ according to their probability of

correct detection βx/S. Then, the algorithm tries to decrease

the SER by replacing the worst symbol x1 with a currently

unused symbol x′′ ∈ X ′′. If such a symbol exists, the

symbol z = arg max
x′′∈X ′′

{γx′′} which leads to the lowest

SER = 1−γz/S is added to the reduced subset in line 20 and

the algorithm is restarted with the new subset X ′. Otherwise,

the second worst symbol x2 is tried next, and so on. If no

symbol switch further improves the SER, X ′ is returned as

solution. The variable u ensures that the algorithm terminates

after at most µ = 1000 executions of the lines 10 − 25. For

good initial subsets X ′, the algorithm is likely to halt at a local

optimum after a moderate number of symbol switches.

This argument motivates the application of the BSS algorithm

to the optimized symbol selection of the C-max algorithm.

The combined algorithm is called C-max BSS.

22

−2 0 2

−2

0

2

 1
 2

 3
 4

−4 −2 0 2 4

−4

−2

0

2

4

 1
 2

 3
 4

−2 0 2

−2

−1

0

1

2
 1

 2

 3
 4

−2 0 2

−2

0

2

 1
 2

 3
 4

A
n

te
n

n
a

1

A
n

te
n

n
a

2

A
n

te
n

n
a

3

A
n

te
n

n
a

4

Figure 2. Noise-free received signal constellation. The bold lines through
the origin divide the space into 4N hyper-rectangular quantization regions.
The circles (squares) mark a rotational symmetry group. The numbers 1, 2, 3
and 4 tag the noise-free received signals of one rotational symmetry group.

D. Exploiting the Received Signal Symmetry

The symbol selection optimization problems (10) and (12)

can be simplified by exploiting the rotational symmetry of the

received signal constellation. Due to the QPSK modulation

rotating a transmit vector x by 90˚, 180˚ or 270˚ yields another

transmit vector x′. The noiseless receive vectors r̄ = Hx and

r̄′ = Hx′ exhibit the same rotational relation, that is

x′ = α ·x ↔ r̄′ = α · r̄ for α ∈ {+1, +j,−1,−j} . (17)

Fig. 2 shows the received signal constellation of the random

4× 4 MIMO channel defined by (16) and (17) in [4]. In this

figure, the circles (squares) mark a group of four received sig-

nals which are interconnected by (17). A rotational symmetry

group is characterized completely by one of its four members.

Each receive vector of a group exhibits the same distances to

all other receive vectors and to the quantization boundaries,

i.e., the distance structure of group members matches. Fig.

2 illustrates that receive vectors within one group are very

well distinguishable. Hence, the task of selecting a well

distinguishable subset of input symbols can be simplified by

searching for well distinguishable rotational symmetry groups

of four symbols instead. This argument is strong when N and

S = |X ′| are large enough.

Due to the symmetry, each Ly, Ly|x and βx occurs fourfold

in the C-max algorithm in Algorithm 1. The iterative symmet-

ric capacity maximization (SC-max) algorithm in Algorithm 4

exploits this fact and executes line 6 only for x ∈ Xs, where

Xs ⊂ X contains one member of each remaining symmetry

group. Also, the SC-max algorithm deletes all four symbols

of the currently worst group at once. The function G(z) in

line 8 delivers the four group members of the argument z.

As the computational effort is dominated by the calculations

in line 6, the overall complexity of the SC-max algorithm is

roughly 4 · 4 times lower compared to the C-max algorithm.

Algorithm 4 Iterative Symmetric Capacity Max. (SC-max)

1: initialization S = 4R·M , X ′ = X ,

Ly|x = log2(Pr(y|x)) ∀x ∈ Xs ⊂ X
Xs contains one member of each symmetry group

2: while |Xs| > S/4 do

3: for all y ∈ Y do

4: Ly = log2

(
∑

x∈X ′ Pr(y|x)
)

5: for all x ∈ Xs do

6: αx =
∑

y∈Y Pr(y|x) · (Ly|x − Ly)
7: z = arg min

x∈Xs

{αx} and Xs ← Xs \ z

8: X ′ ← X ′ \ G(z)

−5 0 5 10 15 20
0

1

2

3

4

5

6

SER−min

C−max

SC−max

C−max BSS

Capacity

C i.u.d.
I
(X

;Y
)

[b
p
cu

]

SNR [dB]

Figure 3. Mutual information increase through optimized selection of S =

32 input symbols for 1000 single-bit quantized 4 × 4 MIMO channels.

E. Simulation Results for Single-Bit Quantization

Fig. 3 and Fig. 4 illustrate the performance of the proposed

algorithms for a 1-bit quantized QPSK MIMO system with

M = N = 4 antennas and code rate R = 5/8. The subsets

are optimized anew for each SNR value. In contrast to [4]

the results are averaged over 1000 i.i.d. channel realizations.

The selected subsets of the algorithms yield information rates

which are well above the i.u.d. capacity and which tightly

lower bound the capacity for C < log2(S)− 1 bits per chan-

nel use (bpcu). Remarkably, the SC-max algorithm, which

exploits the received signal symmetry, performs practically

as well as the C-max algorithm. At higher SNR values the

subset selection can be further improved by applying the

BSS algorithm to the pre-optimized subset selection of the

C-max algorithm. The results for the C-max and C-max BSS

algorithm show, that decreasing the SER can result in a lower

mutual information at low SNR values.

Finally, the C-max algorithm outperforms the SER-min algo-

rithm over the whole SNR-range for both performance criteria.

The following intuitive argument helps to explain this result.

At the start of the SER-min algorithm many input symbols

exhibit an individual SER of 1, i.e., βx = 0. Consequently

the SER-min algorithm deletes all these symbols at once. In

contrast, αx in the C-max algorithm is a measure for the

amount of interference that all symbols x′ ∈ X ′ \ x cause

to x and vice versa. Hence, the C-max algorithm is able to

distinguish the quality of input symbols with βx = 0.

23

0 5 10 15 20

10
−4

10
−3

10
−2

10
−1

10
0

SER−min

C−max

SC−max

C−max BSS

i.u.d. symbols

S
E

R

SNR [dB]

Figure 4. SER decrease through optimized selection of S = 32 input
symbols for 1000 single-bit quantized 4 × 4 MIMO channels.

F. Exploiting the Sparse Transition Probability Matrix

So far we assumed that all |X | · |Y| entries Pr(y|x) of

the transition probability matrix Py|x are known. In practice,

|X | is bounded, as the receiver has to feed the indices of the

selected input symbols back to the transmitter. In contrast,

|Y| has no influence on the feedback delay. In a 4× 4 MIMO

system with 2-bit ADCs the memory requirements for storing

|X |·|Y| = 44 ·42·4 = 16777216 transition probabilities as well

as the computational complexity for the optimization is very

high. However, most Pr(y|x) are close to zero at medium to

high SNR values and |Y| → min{|Y|, |X |} for SNR → ∞.

Thus, we introduce a dense data structure that captures only

the significant channel transition probabilities. To this end, the

calculation in (8) is split into two parts using the sets

Pc =

{

N
∏

i=1

φ(x, yi,c) : yi,c ∈ Ai, x ∈ X
}

, c ∈ {R, I}, (18)

which satisfy

Pr(y|x) ∈ {p1 · p2 : p1 ∈ PR, p2 ∈ PI}. (19)

Those elements of the sets PR and PI that are larger than some

threshold T are sorted according to

ai ∈ PR, a1 ≥ a2 ≥ . . . ≥ aA, aA+1 < T, (20)

bi ∈ PI, b1 ≥ b2 ≥ . . . ≥ bB, bB+1 < T. (21)

Clearly, the computational burden for computing and sorting

the (relatively small) sets PR and PI is negligible compared

to the evaluation of all Pr(y|x) via (19).

Our goal is to approximate the sparse |Y| × |X | matrix Py|x
with a dense L × |X | matrix By|x. The approximation will

be precise, if we consider the L largest Pr(y|x) per x ∈ X
and choose L large enough. Unfortunately, it is not known

a priori which Pr(y|x) are large and also it is too complex

to calculate and sort all Pr(y|x) for a given x ∈ X in order

to find out the L largest ones. In Algorithm 5 we pursue a

different approach that exploits the sorted vectors a and b.

Though, before we explain the details of this algorithm, it

is important to explain how we access the data in By|x.

Obviously, it is not possible to address an element Pr(y|x)

of By|x by using its position as its (implicit) address within

the matrix. In contrast, the vector py that is composed of all

possible sums

Py =
∑

x∈X
Pr(y|x) (22)

is not compressed, and hence the position of Py within py can

be used as the address of Py . The index matrix Iy|x provides

the connection from an entry of By|x to the respective entry

in py . More precisely, the (i, j)-th element of Iy|x contains

the address of Py within py for the (i, j)-th element of By|x.

The function index(x) in line 4 of Algorithm 5 delivers the

column index of x within By|x. The function index(ak, bl) in

line 10 yields the index of the element Py = py(ȳ) of which

Pr(y|x) = ak · bl is a summand of.

Clearly, the calculation of By|x would be straightforward, if

we were to know the value of the L-th largest Pr(y|x) for

each x ∈ X . Having no a priori information the key idea in

Algorithm 5 is to use a threshold array t of length V satisfying

t1 > t2 > . . . > tV . (23)

The Algorithm 5 works as follows. In the first iteration

of the v-loop in line 5 the algorithm evaluates and stores all

Pr(y|x) ≥ t1. Thereby, the algorithm starts by saving all

products which satisfy a1 · bl ≥ t1, l ∈ {1, . . . , B} to By|x
and to py . If a1 · bl < t1 occurs, the algorithm remembers

the current position d1 = l so that the processing of a1 ·
bl can be resumed later on, when v = 2. Thereafter, the

algorithm computes all products a2 · bl ≥ t1, l ∈ {1, . . . , B},
and so forth. Finally, the algorithm has evaluated all products

Pr(y|x) ≥ t1 and continues with v = 2, etc.

If ak · bB ≥ tv is fulfilled for some k and v, the algorithm has

already saved all products containing ak, and consequently

the k-loop will begin with k = g + 1 in the next iteration of

the v-loop. At the end of the algorithm, py and By|x are

normalized. As all probabilities are scaled with the same κ to

avoid biasing,
(
∑

i By|x(i, x̄)
)

∈ [0, κ−1] with κ−1 ≥ 1.

Please note, that the v-loop in line 5 increases the complex-

ity of Algorithm 5 only slightly, because the v-loop accounts

at most for A · V executions of the lines 8− 21. In contrast,

the maximum number of executions of the lines 8−21 equals

A · (B + V) and, in general, B > V .

The accuracy of the approximation By|x can be adjusted

by modifying L, T and t. It is important to mention, that

the algorithm finds most of the L largest Pr(y|x) for each

x ∈ X . Indeed, it considers all Pr(y|x) above some threshold

tv plus some (sub-optimally and randomly) chosen values

Pr(y|x) ≥ tv+1. Also, if T is chosen such that L > A · B,

some entries of By|x will remain 0. Clearly, the restriction

that L is the same for all x (to obtain a simple dense data

structure) is suboptimal, because the number of elements

which fulfill Pr(y|x) > tv varies considerably for different

x. Moreover, the performance of the algorithm could be

further improved, if it were allowed to dynamically adjust the

threshold array t during the algorithm’s execution.

Algorithm 1, 2 and 3 can be properly adapted to work with

By|x, Iy|x and py instead of Py|x. Interestingly, the dense

24

Algorithm 5 Computation of the Dense Matrix By|x

1: initialization: py = 0|Y|×1, By|x = 0L×|X |, Iy|x =
0L×|X |, where 0n×m is a n×m matrix of zeros.

2: for all x ∈ X do

3: i = 0, g = 1, dk = 1 for k = 1, . . . , A
4: x̄ = index(x)
5: for v = 1 to V do

6: for k = g to A do

7: for l = dk to B do

8: c = ak · bl

9: if c ≥ tv then

10: ȳ = index(ak, bl)
11: By|x(i, x̄) = c
12: Iy|x(i, x̄) = ȳ
13: py(ȳ) = py(ȳ) + c
14: i = i + 1
15: if i = L then

16: continue with the next x in line 2
17: if l = B then

18: g = g + 1
19: else

20: dk = l
21: continue with k = k + 1 in line 5
22: By|x = By|x/κ, py = py/κ with κ = |X |−1

∑

ȳ py(ȳ)

data structure reveals another means to save complexity in

Algorithm 1, 2 and 3. For instance, let us focus on Algorithm

1. At the end of an iteration of the C-max algorithm the

symbol z ∈ X ′ with αz ≤ αx, ∀x ∈ X ′ is removed from X ′.
The crucial point is, that not all αx have to be recomputed

after this deletion. On the one hand, only those entries Py of

py have to be updated via Py = Py −Pr(y|z) which contain

some Pr(y|z) ∈ By|x. On the other hand, αx has to be

updated only for those x ∈ X ′ which fulfill Yz ∩ Yx 6= ∅.
Here, Yz denotes the subset {y : Pr(y|z) ∈ By|x} ∈ Y .

From a geometric point of view, only those input symbols

x ∈ X ′ are affected by the deletion of z which are so close

to z that the truncated transition probability mass functions of

x and z overlap.

In the following, the efficient C-max (EC-max) algorithm shall

denote an implementation of the C-max algorithm that both

operates on the dense data structure and efficiently updates Py

and αx as explained above. The dense data structure combined

with the EC-max algorithm renders it possible to handle very

large |Y| as well as quite large |X |. One reason is that the

average ratio Ex[|Yx|/|Y|] decreases with increasing number

of receive antennas N .

G. Simulation Results for Two-Bit Quantization

In this subsection, the performance of the C-max algorithm

(which is based on the uncompressed transition probability

matrix Py|x) is compared to the performance of the EC-max

algorithm (which uses the dense transition probability matrix

By|x). Similar to subsection III-E, the subsets are optimized

−5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

L = 64

L = 512

64/4096 = 1/64

512/4096 = 1/8

κ

SNR [dB]

Figure 5. Dependence of the probability normalization factor κ on the SNR
and L for 1000 two-bit quantized 4 × 4 MIMO channels.

−5 0 5 10 15 20

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

C−max

EC−max L = 512

EC−max L = 64

C i.u.d.

C i.u.d. L = 512

C i.u.d. L = 64

S
E

R
SNR [dB]

Figure 6. SER decrease through optimized selection of S = 16 input
symbols for 1000 two-bit quantized 4 × 4 MIMO channels.

anew for each SNR value. As we want to average the results

over 1000 channels and as the complexity of the C-max

algorithm is very high for 2-bit quantization and M = N = 4
antennas, we simulate 1000 two-bit quantized 3 × 3 MIMO

channels with code rates R ∈ {2/3, 5/6}. Fig. 5 indicates

the accuracy of the approximation of the sparse |Y| × |X |
matrix Py|x by means of the L × |X | matrix By|x, because

κ = |X |−1
∑

ȳ py(ȳ) equals the proportion of the considered

transition probabilities. The dashed lines in Fig. 5 illustrate

that By|x is compressed by the factor
|Y|
L
∈ {8, 64} compared

to Py|x. Fig. 6, Fig. 7 and Fig. 8 demonstrate that the EC-

max algorithm performs nearly as well as the C-max algorithm

for high SNR values at L = 64 and for medium to high SNR

values at L = 512. Apparently, the C-max algorithm yields

information rates that are well above the i.u.d. capacity and

close to the capacity for C < log2(S)−1 bits per channel use.

Moreover, the curves C i.u.d. L = 64 and C i.u.d. L = 512
show that the i.u.d. capacity can be tightly approximated at

medium to high SNR values by computing the i.u.d. capacity

based on By|x. Hence, the dense data structure makes it

possible to accurately estimate the i.u.d. capacity of very large

DMCs at moderate to high SNR values.

IV. ROBUSTNESS TO AN IMPERFECT CSI

In this section, we demonstrate that the channel-adaptive

coding approach is robust to an imperfect channel state

information (CSI). The imperfect CSI is defined by

H = g ·Hunknown +
√

1− g2 ·Hknown,

25

−5 0 5 10 15 20

1

2

3

4

5

6

C−max

EC−max L = 512

EC−max L = 64

C i.u.d.

C i.u.d. L = 512

C i.u.d. L = 64

Capacity

I
(X

;Y
)

[b
p
cu

]

SNR [dB]

Figure 7. Mutual information increase through optimized selection of S =

16 input symbols for 1000 two-bit quantized 4 × 4 MIMO channels.

−5 0 5 10 15 20

1

2

3

4

5

6

C−max

EC−max L = 512

EC−max L = 64

C i.u.d.

C i.u.d. L = 512

C i.u.d. L = 64

Capacity

I
(X

;Y
)

[b
p
cu

]

SNR [dB]

Figure 8. Mutual information increase through optimized selection of S =

32 input symbols for 1000 two-bit quantized 4 × 4 MIMO channels.

where both matrices Hunknown and Hknown are composed of

i.i.d. zero-mean complex Gaussian random variables of unit

variance. Thereby, we assume that the receiver has only access

to the matrix Hknown as well as to the variance of the unknown

channel taps g2. In order to make the optimized input symbol

selection robust against the imperfect CSI, the variance g2 is

factored in by using σ̃2
η = σ2

η+g2 instead of σ2
η as the variance

for the calculation of the transition probability matrix. Fig. 9

demonstrates, that the symbol optimization as well as the ML

detection are robust, if they are based on the robust DMC

estimate P̃y|x = Py|x|σ̃2=σ2+g2 . In contrast to the previous

simulations, the input symbol selection is optimized only once

at SNR = 15dB and evaluated over the whole SNR-range.

Interestingly, at an SNR of 20dB the input subsets optimized

at 20dB in Fig. 4 do not perform better than the input subsets

optimized at 15dB with g = 0 in Fig. 9. This result supports

the claim in [4], that the optimal input symbol selection does

not strongly depend on the SNR.

V. OPTIMIZING THE BIT-TO-SYMBOL MAPPING

In this section, we show how to efficiently minimize the

BER by optimizing the 1-to-1 mapping from the code (or

source) vectors c = [c1, c2, . . . , clog
2
(S)] ∈ C = {0, 1}log2

(S)

to the selected input vectors x ∈ X ′ ⊂ X with S = |X ′|. The

symmetric weight function

W(i, j) = dH(ci, cj) · (log2(S))−1 (24)

delivers the proportion of bits in which the i-th and j-th code

vectors ci and cj differ. Here, dH(ci, cj) is the Hamming

0 5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

g = 0

g = 0.0316

g = 0.0548

g = 0.1000

g = 0.1414

g = 0.2000

S
E

R

SNR [dB]

Figure 9. Robustness of the channel-adaptive coding approach for 1000

single-bit quantized 4 × 4 MIMO channels and different values of g.

distance between ci and cj . The BER can be expressed as

BER =
∑

y∈Y

∑

j∈{1,...,S}\îy

Pr(y, cj) · W(j, îy), (25)

where

îy = arg max
i∈{1,...,S}

Pr(y, ci). (26)

An optimization of the BER based on equation (25) is quite

complex, as |C| · |Y| = S · |Y| products have to be calculated

and summarized and as |Y| = 4b·N can be very large.

We define the following partition of the set of output vectors

Y =
⋃

i
Yi =

⋃

i
{y ∈ Y|ci = argmax

c∈C
Pr(y, c)}, (27)

with Yi ∩ Yj = ∅ for i 6= j. The strictly upper triangular

matrix U satisfies

[U]i,j =
∑

y∈Yi

Pr(y, cj) +
∑

y∈Yj

Pr(y, ci) (28)

for i < j and [U]i,j = 0 for i ≥ j. Roughly speaking, the

value of [U]i,j corresponds to the ’individual SER’ that xj

exhibits due to xi plus the ’individual SER’ that xi exhibits

due to xj . The mapping from code bits to input symbols is

defined by the permutation vector π = [π1, π2, . . . , πS], which

is a permutation of the indices 1, 2, . . . , S of the selected input

symbols x ∈ X ′. Therewith, the BER can be written as

BER =
∑S

i=1

∑S

j=i+1
[U]i,j · W(πi, πj). (29)

Now, the optimization problem can be formulated as

min
π∈P

∑S

i=1

∑S

j=i+1
[U]i,j · W(πi, πj), (30)

where the set P contains all possible permutations of the

indices 1, 2, . . . , S.

The binary index switching (BIS) algorithm in Algorithm 6

efficiently finds a local optimum of (30). The BIS algorithm

avoids to evaluate the quality of a symbol switch with (29).

In line 6 − 10, the BIS algorithm determines the differential

BER variation db which would result from an exchange of

the permutation indices πa and πb. The z-loop is performed

only four times, as the BIS algorithm was very close to (or

already reached) a local optimum after four iterations, in the

simulations.

26

Algorithm 6 Binary Index Switching (BIS)

1: initialization: π = [π1, π2, . . . , πS] = [1, 2, . . . , S]
BER =

∑S
i=1

∑S
j=i+1[U]i,j · W(πi, πj)

2: for z = 1, . . . , 4 do

3: di = 0 for i = 1, . . . , S
4: for a = 1, . . . , S do

5: for b = a, . . . , S do

6: for i = 1, . . . , S do

7: ci =W(πa, πi)−W(πb, πi)
8: db =

∑a−1
i=1 ci · ([U]i,a − [U]i,b)

9: +
∑b−1

i=a+1 ci · ([U]a,i − [U]i,b)

10: +
∑S

i=b+1 ci · ([U]a,i − [U]b,i)

11: d̂ = max b∈{a,...,S}{db}
12: if d̂ > 10−14 then

13: b = arg(d̂), t = πb

14: πb = πa, πa = t
15: BER = BER−d̂

VI. CHANNEL-ADAPTIVE CODING COMBINED WITH

CONVOLUTIONAL CODING

In this section, we investigate the combination of channel-

adaptive coding with convolutional coding1. A symbol selec-

tion that is optimized using the C-max BSS algorithm serves

as a delay-free code of rate Ri. This inner code is combined

with a convolutional code of maximum free distance. The

convolutional code with constraint length 9 and rate Ro is

decoded using a Viterbi decoder with a traceback length of

50 bits. We apply the same decoupled detection/decoding

approach as in [2]. The rate of the combined code equals

R = Ri ·Ro. The simulation results in Fig. 10 refer to a code

rate of R = 1/2 and the simulation results in Fig. 11 refer to

code rates of R ∈ {1/4, 1/3, 5/8}. The symbol selections are

optimized at SNR = 10dB in Fig. 11 and at SNR = 15dB

in Fig. 10 in order to highlight the robustness of the coding

approach to SNR fluctuations. Clearly, the channel-adaptive

coding approach is superior to pure convolutional coding. (A

similar result was obtained for LDPC codes of block length

250 in [4]). For R = 1/2, it is even best to solely use an

optimized selection of S = 16 input symbols. Moreover, the

optimization of the mapping from convolutional code bits to

input symbols by means of the BIS algorithm leads to an

SNR gain of 0.5dB and 1.3dB for R = 1/3 and R = 1/2 at

BER = 10−2, respectively.

VII. CONCLUSION

This paper presents various new algorithms with fixed and

moderate complexity that compute a uniform input distribution

that almost achieves the capacity of coarsely quantized MIMO

channels. A new dense data structure reduces the complexity

and memory requirements of the algorithms. Moreover, at

medium to high SNR levels, this dense data structure renders it

possible to accurately estimate the capacity of 2-bit quantized

1We choose convolutional codes, as they exhibit a low decoding complexity
and a small decoding delay.

0 5 10 15 20

10
−4

10
−3

10
−2

10
−1

10
0

R
i
=3/4, R

o
=2/3

R
i
=3/4, R

o
=2/3, BIS

R
o
=R=1/2

R
i
=R=1/2

R
i
=R=1/2, BIS

B
E

R

SNR [dB]

Figure 10. Channel-adaptive and convolutional coding for the single-bit
quantized 4 × 4 MIMO channel specified by (16) and (17) in [4].

0 5 10 15 20

10
−4

10
−3

10
−2

10
−1

10
0

R
i
=1/2, R

o
=2/3

R
i
=1/2, R

o
=2/3, BIS

R
o
=R=1/3

R
i
=R=3/8, BIS

R
i
=R=1/4, BIS

B
E

R

SNR [dB]

Figure 11. Channel-adaptive and convolutional coding for the single-bit
quantized 4 × 4 MIMO channel specified by (16) and (17) in [4].

MIMO channels, which exhibit a very large output set. A

binary index switching algorithm is derived that efficiently

optimizes the mapping from code bits to input symbols. This

algorithm is based on a compact formulation of the optimiza-

tion cost function. Finally, the robustness of the channel-

adaptive coding approach to imperfect CSI is demonstrated.

REFERENCES

[1] R. Schreier and G. C. Temes, “Understanding Delta-Sigma Data Con-
verters,” IEEE Computer Society Press, 2004.

[2] J. A. Nossek and M. T. Ivrlac, “Capacity and Coding for Quantized
MIMO Systems,” International Wireless Communication and Mobile

Computing Conference (IWCMC), pp. 1387–1392, July 2006, (invited).
[3] A. Mezghani, M. S. Khoufi, and J. A. Nossek, “Maximum Likelihood

Detection for Quantized MIMO Systems,” in Smart Antennas, 2008. WSA

2008. International ITG Workshop on, Feb. 26–27, 2008, pp. 278–284.
[4] A. Mezghani, M. T. Ivrlač, and J. A. Nossek, “Achieving near-Capacity

on Large Discrete Memoryless Channels with Uniform Distributed Se-
lected Input,” International Symposium on Information Theory and its

Applications (ISITA), Dec. 2008.
[5] R. J. McEliece, “Are Turbo-like Codes Effective on Nonstandard

Channels?,” IEEE Inform. Theory Society Newsletter, vol. 51, no. 4,
pp. 1–8, Dec. 2001.

[6] A. Bennatan and D. Burshtein, “Design and Analysis of Nonbinary LDPC
Codes for Arbitrary Discrete-memoryless Channels,” IEEE Transactions

on Information Theory, vol. 52, no. 2, pp. 549–583, Feb. 2006.
[7] K. Zeger and A. Gersho, “Pseudo-Gray Coding,” IEEE Transactions on

Communications, vol. 38, pp. 1100–2147, Dec. 1990.
[8] J. Max, “Quantizing for Minimum Distortion,” IRE Transactions on

Information Theory, vol. 6, no. 1, pp. 7–12, Mar. 1960.
[9] J. A. Nossek and M. T. Ivrlac, “On MIMO Channel Estimation with

Single-Bit Signal-Quantization,” in Smart Antennas, 2007. WSA 2007.

International ITG Workshop on, Feb. 26–27, 2007.

27

