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Abstract—Electromagnetic field theory provides the physics of
radio communications, while information theory approaches the
problem from a purely mathematical point of view. While there is
a law of conservation of energy in physics, there is no such law
in information theory. Consequently, when, in information theory,
reference is made (as it frequently is) to terms like energy, power,
noise, or antennas, it is by no means guaranteed that their use is
consistent with the physics of the communication system. Circuit
theoretic multiport concepts can help in bridging the gap between
the physics of electromagnetic fields and the mathematical world
of information theory, so that important terms like energy or an-
tenna are indeed used consistently through all layers of abstrac-
tion. In this paper, we develop circuit theoretic multiport models
for radio communication systems. To demonstrate the utility of
the circuit theoretic approach, an in-depth analysis is provided on
the impact of impedance matching, antenna mutual coupling, and
different sources of noise on the performance of the communica-
tion system. Interesting insights are developed about the role of
impedance matching and the noise properties of the receive am-
plifiers, as well as the way array gain and channel capacity scale
with the number of antennas in different circumstances. One par-
ticularly interesting result is that, with arrays of lossless antennas
that receive isotropic background noise, efficient multistreaming
can be achieved no matter how densely the antennas are packed.

Index Terms—Antenna losses, channel capacity, circuit theory of
communications, impedance matching, multi-input–multi-output
(MIMO) systems, physical channel models, receive array gain,
transmit array gain.

I. INTRODUCTION

T HE ANALYSIS and optimization of communication
systems involves a host of technical and scientific dis-

ciplines. In the case of radio communications, these include
electromagnetic field theory, radio-frequency engineering,
and signal, coding, and information theories. The first two
disciplines form part of the physical theory of communications,
for the laws of nature, like the Maxwell equations or the major
conservation laws, play a central role in their concepts and
methods. In contrast, signal, coding, and information theories
are essentially mathematical theories. As such, they are not
based on the laws of nature but rather on definitions and mathe-
matical logic. Only in conjunction with the physical disciplines
can one attempt a complete theory where predictions can be
put to the test by experiment. To this end, it is crucial that the
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Fig. 1. Abstract model of a communication system showing the domains of
physical and mathematical modelings. From the perspective of the latter, it is a
vector AWGN channel; from the view point of the former, it is a multiport.

mathematical and physical layers of abstraction are consistent
with each other.

There are several important terms, like “energy,” “power,”
“antenna,” “signal,” or “noise,” which are used in both phys-
ical and mathematical disciplines. Yet, from a physics point of
view, energy, for instance, is a quantity for which there exists
a law of conservation, while in signal and information theories,
energy is commonly represented by the squared magnitude of
some complex number, for which there need not be any law of
conservation. Only in the context of wave digital filters [1] is it
customary that energy in the signal processing context (called
pseudoenergy there) is consistent with physical energy and can
be exploited to make sure that the signal processing system is
stable. Therefore, special care has to be taken such as to en-
sure that energy in the information theoretic layer of abstrac-
tion is consistent with physical energy. To better understand this
problem, consider the additive white Gaussian noise (AWGN)
channel, shown in Fig. 1, which is popular in information theory
and signal processing. For example, a vector of signals is
presented to the input of the channel, and a vector of sig-
nals is observed at its output

where the vector models an AWGN of a known variance.
The transmit power is defined to be proportional to the average
squared Euclidean norm of while the -dimensional
matrix is called “channel matrix.” It got its name due to
the fact that once it is known, the information capacity of the
AWGN channel can be computed [2]. Hence, from an informa-
tion theory point of view, the channel matrix tells all about the
channel.

The channel input vector has to be related somehow with
a relevant physical quantity of the communication system: per-
haps with a voltage or an electric field strength. However, phys-
ical power (or energy) cannot be obtained from just one such
quantity, but instead, a conjugated pair [3] is needed, for ex-
ample, voltage and electric current, or electric and magnetic
field strength. Hence, in a physical description of the channel,
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there are twice as many variables (one conjugated pair for each
input and each output) than in the information theoretic descrip-
tion. By identifying each conjugated pair with one port of an

port, the noiseless input–output relationship needs an
matrix which connects one half of the port

variables with the other half [4]. Because ,
the channel matrix does not have enough degrees of freedom to
capture the complete physics of the channel. Yet, from an infor-
mation theory point of view, it has to tell everything about the
channel.

Nevertheless, this conflict can be resolved by making use of
the additional degrees of freedom which come from the rela-
tionship between the information theoretic channel input and
output on the one hand and some of the physical port variables
on the other. By virtue of this relationship, the physical context
can be “encoded” into the channel matrix such that the cor-
rect channel capacity can be obtained in the usual way within the
information theory layer of abstraction. In Fig. 1, this relation-
ship is represented by the blocks termed DAC (digital-to-analog
converter) and ADC (analog-to-digital converter). These terms
are used in an abstract sense since it is not merely the technical
part of the conversion between the digital and analog domains
that takes place, but, more importantly, the conversion between
the mathematical and the physical layer of abstraction.

What this conversion looks like depends on how physical
quantities (i.e., the conjugated port variables) are related to the
mathematical channel inputs and outputs. In the case of radio
communication systems, it may appear that electric and mag-
netic field strengths are natural physical quantities to relate. In-
deed, this approach is taken in [5]–[7], where the electromag-
netic field equations are brought into a direct contact with infor-
mation theory. However, this type of approach has the following
two major drawbacks. First, field and information theories are
not easily united, for both are mature theories which rely on a
set of quite different mathematical methods (such as the solu-
tion of partial differential equations in continuous space–time
on the one hand and statistics and linear algebra on the other).
The successful application of such “electromagnetic informa-
tion theory” requires profound understanding of both theories.
The second drawback is related to the treatment of noise. Be-
cause classical electromagnetic field theory is a deterministic
theory, modeling random noise is difficult. In fact, [5]–[7] have
no physical noise model. Gaussian random variables just pop up
without their relationship with the physical origins of noise or
their interaction with the antennas and the receiver (low-noise
amplifier and impedance matching network) being made. Be-
cause, in information theory, noise is just as important as the
signal, the lack of a physical noise model is a serious drawback.

Both the aforementioned problems are solved when the
modeling of the physical aspects of communication systems
is founded on circuit theory. This comes about because of the
following three reasons. Regardless of its physical origin, noise
is easy to deal with in circuit theory [8]–[11]. In particular, the
superposition of contributions of different noise sources (such
as amplifier and background noises received by the antennas)
directly leads to the important concept of the noise figure and
its circuit theoretic minimization by noise matching. Second,
the algebraic mathematical treatment of circuit theoretic multi-
ports interfaces smoothly with signal and information theories.

Finally, the complexity of electromagnetic field theory is en-
capsulated within the multiport model and henceforth does
not have to be dealt with directly in signal or information
theory. Electromagnetic field theory is therefore confined to
the behavior of those multiports which model the antennas and
propagation aspects of communications. Instead of trying to
establish an electromagnetic information theory, we therefore
propose to employ a circuit theory as a medium between the
physical world of electrodynamics and the mathematical world
of signal and information theories.

A circuit theoretic approach for modeling communication
systems is not new. Wallace and Jensen have used this idea in
[12] where they analyze the effect of mutual antenna coupling
on channel capacity. We start out with similar ideas as in [12],
but with a more rigorous and systematic approach, we are
able to actually perform an in-depth analysis of the commu-
nication system and obtain some valuable insights. We begin
by developing a multiport model for radio communication
systems and justify the assumptions that we make on the way.
The multiport model covers the physics of signal generation,
transmit impedance matching, mutual antenna coupling, receive
impedance matching, and noise. For the latter, we distinguish
between extrinsic noise that is received by the antennas and
intrinsic noise, which originates from the receive amplifiers
and their subsequent circuitry.

The transmit-side and receive-side antennas, together
with the medium that connects the transmitter and receiver, are
jointly modeled by one single port. Its circuit theo-
retic description (for example, its scattering or impedance ma-
trix) has to be derived from electromagnetic field theory. Once
this is done, the antennas and propagation aspects of communi-
cations are completely encapsulated by the multiport such that
one does not have to bother with the field equations any longer
but can proceed with a much easier multiport matrix description.
In this paper, we focus on isotropic antennas that are arranged
into uniform linear arrays. With a bare minimum of field theory
(essentially using only the concept of the Poynting vector and
the law of conservation of energy), we derive in Section III all
the necessary properties of the impedance matrix of the antenna
multiport.

In Section IV, the developed multiport model is applied to
study the impact of impedance matching, mutual antenna cou-
pling, and noise properties on different aspects of communica-
tions. As a relevant performance measure, we define the array
gain in terms of the improvement of the receiver signal-to-noise
ratio (SNR) with respect to using only a single antenna at the
receiver and the transmitter. Interestingly, it turns out that one
has to distinguish between a transmit array gain and a receive
array gain, for both are not always identical. We study both array
gains in different circumstances and particularly pay attention to
how they depend on the number of antennas. It is well known
in the antenna and propagation literature [13] that, under cer-
tain circumstances, the array gain can grow with the square of
the number of antennas. While we confirm this result, we also
show that the receive array gain can even grow exponentially
with the number of antennas.

Multi-input–multi-output (MIMO) systems are considered in
Section V, where the general procedure is developed on how to
“encode” the complete physical context into the channel matrix.
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Fig. 2. Linear multiport model of a radio multi-antenna communication system covering signal generation, impedance matching, antenna mutual coupling, and
noise of both extrinsic (received by the antennas) and intrinsic (from low-noise amplifiers and remaining circuitry) origins.

By doing so, one makes sure that information theoretic results
which are based on this channel matrix are automatically consis-
tent with the physics of the communication system. We demon-
strate the power of this approach by analyzing what happens
to the channel matrix when the antennas are packed closer and
closer. Under certain conditions, the channel matrix can con-
verge to a scaled identity as the antenna separation is reduced
toward zero, which shows that efficient multistreaming is pos-
sible even with compact arrays.

An analysis of the impact of antenna losses on the array gain
and the array efficiency is given alongside a comment on a fre-
quently cited result by Yaru [14]. It turns out that obtaining a
high array gain from lossy antennas with a high efficiency is
possible provided that the antenna separation and excitation are
chosen optimally.

Notation: In the following, we use bold lowercase letters for
vectors and bold uppercase letters for matrices. An exception
from this rule are bold uppercase letters that are accented by an
arrow —these refer to 3-D field vectors (e.g., electric field).
The expectation operation is denoted by , while , , and ,
are the complex conjugate, the transposition, and the complex
conjugate transposition, respectively. Moreover, denotes
the Frobenius norm, and and are the -dimensional
identity matrix and the zero matrix, respectively.

II. MULTIPORT SYSTEM MODEL

The physical modeling of multi-antenna radio communica-
tion systems which is founded on the circuit theoretic concept
of linear multiports is shown in Fig. 2. It consists of four basic
parts: signal generation, impedance matching, antenna mutual
coupling, and noise, which will be discussed in more detail in
the following. Before that, however, some general assumptions
applied in this paper deserve to be mentioned.

A. Port Variables, Bandwidth, and Power

Complex voltage and current envelopes serve as port
variables. The associated real-valued bandpass signals are suf-

ficiently narrow in bandwidth compared with the center fre-
quency such that the term

is (in a very good approximation) the average active power ,
which flows into the port. Interpreting and , as information
carrying, and hence, random signals, we have

(1)

provided that the time average can be replaced by the ensemble
average (which we assume to be the case). The bandwidth shall
also be small enough such that the multiports are described by
their network properties evaluated at the center frequency.

B. Signal Generation

In the multiport model shown in Fig. 2, the number of an-
tennas at the transmit side is denoted by . The genera-
tion of the physical signal that is to be transmitted is modeled
by voltage sources which are connected in series with resis-
tances . The th voltage source is described by its complex
voltage envelope , where . The maximum
average power that can be delivered by the th generator equals

.

C. Impedance Matching Networks

It can be advantageous to use impedance matching networks
as a medium between the antenna array and the amplifiers or
signal generators. These matching networks can be designed
to ensure that the available power of the signal generators is
delivered into the antennas (power matching) or that the SNR
at the outputs of the receive amplifiers is as large as it can be
(noise matching, [8], [9]) or any other goal one desires [15].
The transmitter-side impedance matching network is modeled
as a linear port, described by its impedance matrix

(2)
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displayed and partitioned into four square matrices. We
introduce vectors and

and the corresponding vectors
and for the ports connecting

to the transmit antenna array. In a similar way, the receiver-side
impedance matching network is modeled as a linear port
and described by its impedance matrix

(3)

where is partitioned into four square matrices. The vec-
tors of voltage and current envelopes, i.e.,
and , are defined analogously to the case of
transmit impedance matching and are shown in Fig. 2. Herein,

denotes the number of antennas at the receiver. We will
treat the impedance matching networks as lossless and recip-
rocal multiports. Note that the lack of dissipation causes them to
be noiseless, too [16]. Describing lossless and reciprocal mul-
tiports and must be symmetric matrices with van-
ishing real parts [17]. We assume that the amplifiers are uncon-
ditionally stable such that they remain stable with any lossless
matching networks.

D. Antenna Mutual Coupling

Let the antennas at the transmit end of the link be enumer-
ated by the integers from 1 to and the remaining antennas by
the integers from to . Assume that the antennas
are made of wires and that an electric current flows through an-
tenna . Suppose we can arrange things such that no currents
flow through the remaining antennas. Because the antennas in-
teract, voltages appear across all antenna wires. The ratio of the
complex envelope of the voltage observed at the th antenna
to the complex envelope of the excitation current applied to
the th antenna is then the mutual coupling coefficient between
the th and the th antenna. As ranges over all possible
combinations, we obtain all coupling coefficients
which are clearly the entries of the impedance matrix

, which describes a linear port.
By associating the antenna currents and voltages by port cur-
rents and voltages, the following multiport model is obtained:

(4)

where is partitioned into four blocks: transmit and receive
impedance matrices and ,
respectively, and the two transimpedance matrices

and . Because antennas are
reciprocal [18], we have , , and

.
Even though it would be impossible to establish zero port

currents in a real experiment, all we have to do to deduce the
impedance matrix from theory is to calculate what the port volt-
ages are supposed to be if all port currents, except one, happened
to be zero. This is comparatively easy—at least for thin-wire an-
tennas. A vanishing electric current in the antenna wire means
that the antenna does not alter the electromagnetic field [19], be-
coming essentially “invisible.” Assuming this so-called canon-
ical minimum-scattering [20] property, the coefficients of the
impedance matrix can be computed by just looking at pairs of

antennas without having to consider the neighbors, since they
do not interfere for zero current.

E. Noise

In radio communication systems, it makes sense to distin-
guish between intrinsic noise and extrinsic noise. The latter
comes from background radiation which is received by the
antennas. While there are numerous origins of background
noise [21], we can always model it by the inclusion of
voltage sources with complex voltage envelopes , where

, as shown in Fig. 2. These ’s are the
complex envelopes of the noise voltages that appear at the an-
tenna ports when no currents flow (open-circuit noise voltages).

The reader may have noticed that, in Fig. 2, noise voltage
sources are included only at the receiver’s ports. Strictly
speaking, one has to have another set of noise voltage
sources in series with the transmit-side ports. However, they
are omitted here because of the following argument. In radio
communications, one usually encounters a strong attenuation
as the signal propagates from the transmitter to the receiver.
Consequently, the transmit power or the associated voltage and
current amplitudes are much larger with respect to the noise we
observe in practice.

The complex voltage envelopes and are usually cor-
related. This is modeled by the covariance matrix

(5)

where . The symbol denotes
the so-called radiation resistance of the antennas

(6)

It is standard practice to write

(7)

wherein denotes the Boltzmann constant, while is the
bandwidth of the desired signals, which we assume is small
enough such that the noise power density can be considered
constant within this band of frequencies. The term is the
so-called noise temperature of the antennas. It is the absolute
temperature that a resistor with resistance has to have such
that it generates an open-circuit thermal noise voltage of vari-
ance [11]. By requiring that

(8)

it follows that, for the mean square open-circuit noise voltage

(9)

In this way, the noisy antennas behave as if the received back-
ground noise was generated by their radiation resistance at
temperature .

The intrinsic noise originates from the components that are
connected to the other end of the receiver impedance matching
network. Most of the noise stems from the first stage of the
low-noise amplifier, but other circuit components, including the
ADC, contribute, too. When we model the low-noise amplifier
and all the subsequent circuitry as a two port, we need two noise
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sources to describe its noise properties—one source per port or,
equivalently, two noise sources at the input [10], as shown in
Fig. 2 in the form of noise voltage sources with the complex
voltage envelopes and noise current sources with the
complex current envelopes , where . For
simplicity, the input impedances of the low-noise amplifiers are
assumed to be real valued and equal to . We write for the sta-
tistical properties of the intrinsic noise sources

(10)

The fact that all covariance matrices are diagonal reflects the
reasonable assumption that the physical noise sources in each
of the low-noise amplifiers (and the subsequent circuitry) are
independent with respect to different amplifiers (and their sub-
sequent circuitry). The idea that all three covariance matrices
are even scaled identities means that we assumed the statistical
properties to be the same for each amplifier, which is reason-
able. From the first and second lines of (10), we see that

(11)

is the so-called noise resistance. The complex noise voltage en-
velope and the complex noise current envelope be-
longing to the same amplifier are usually correlated. From (11)
and the first and last lines of (10), we see that

(12)

is the complex noise correlation coefficient.

F. Unilateral Approximation

Because antennas are reciprocal [18], it is generally true that,
in (4), . However, it is also true that the signal
attenuation between the transmitter and the receiver is usually
extremely large. Hence,
holds true in practice. This motivates us to keep as is, but
to set in (4):

(13)

The expression (13) will be called the unilateral approxima-
tion. Because , the electrical properties at the
transmit-side antenna ports are (almost) independent of what
happens at the receiver. This significantly simplifies the anal-
ysis of the communication system and synthesis of some of its
parts (for example, the impedance matching networks). The ap-
proximate equality in (13) becomes an almost exact one, pro-
vided that is small enough. It can be shown (see
Appendix A) that

(14)

is sufficiently small in practice. Herein, and denote the
smallest eigenvalues of and , respectively.
Because is proportional to the and inversely

proportional to the distance between the transmitter and re-
ceiver, we have to ensure that the distance is large compared
with some critical distance , where

(15)

The values and depend on the number of antennas, their
radiation pattern, and—most importantly—the separation be-
tween neighboring antennas in the arrays. It will be shown that
or decrease toward zero as the antennas are placed closer and
closer within the transmit- or receive-side array, respectively.
This means that when compact antenna arrays are used at either
side of the link, the critical distance between the receiver
and the transmitter is larger than when the antennas are widely
spaced. This is in accordance with a result obtainable from elec-
tromagnetic field theory, which states that the near field of an
antenna array increases its size unboundedly as the antennas in-
side the array are placed closer and closer to each other [22]. In
this paper, it is assumed that the receiver and the transmitter are
separated far enough such that (14) holds true and the unilat-
eral approximation (13) can be used.

G. Input–Output Relationship

We put all complex envelopes , with ,
that appear at the system’s output (see Fig. 2) into the vector

. Because the circuit from Fig. 2 is linear, the
relationship between and the complex envelopes of the volt-
ages and currents generated by the signal and noise sources can,
in general, be written as

(16)

where is the contribution of the noise sources.
Scaling by is performed such that has the physical di-
mension of power. Using the unilateral approximation, we ob-
tain from circuit analysis

(17)

(18)

where we have introduced the impedance matrices

(19)

and defined the abbreviations

(20)

for notational convenience. Notice that the system composed of
the multi-antenna multiport and the two impedance matching
networks is described in the noise-free case by

(21)

which is true within the realm of the unilateral approximation.
This shows the circuit theoretic meaning of , , and .
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H. Transmit Power and Noise Covariance

The transmit power is defined

(22)

(22a)

as the sum of the average active powers that flow into the
ports at the transmitter side of the matched multiport system.
As the matching networks are lossless, the so-defined transmit
power is also equal to the average active power that flows into
the transmit antenna array. Assuming lossless antennas, the
transmit power is also equal to the radiated power . We
will come back to this important point later on. From (21),
we have , and holds true because of
reciprocity (recall from Section II-C that the matching networks
are reciprocal such that the cascade of matching networks and
multi-antenna multiport is reciprocal). As

(23)

with the “power-coupling” matrix

(24)

for which holds true, because the transmit power
is positive for any . The noise covariance is defined as

(25)

With (5), (10), and (18), we obtain

(26)

where the dimensionless matrix is defined as

(27)

III. MULTI-ANTENNA MULTIPORT

Shifting our focus back to the antenna multiport, what can
we say about its impedance matrix ? Certainly it depends on
the type of antennas, their spatial arrangement, the distance be-
tween the transmitter and the receiver, and on the medium con-
necting them. Obviously, this is a complicated problem. In order
to handle it here, we shall restrict the discussion to simple an-
tennas in simple arrangements with a simple medium, yet com-
plex enough such that the important physical effects of multi-an-
tenna communications are visible.

The Hertzian dipole may come into mind when searching for
a “simple” antenna. Nevertheless, the authors prefer yet a sim-
pler approach: the isotropic antenna. This concept enjoys ex-
treme popularity in the literature of array signal processing and
information theory (e.g., [23]–[27]), obviously because of its
inherent simplicity. The only trouble is that isotropic electro-
dynamic vector fields do not exist [18]. The reason for this is
that the isotropic vector field, far enough removed from the an-
tenna, is not supposed to change when we turn the antenna in
any direction. Only radially symmetric vector fields fulfill such
a requirement. However, radial symmetry causes the curl of a

vector to be zero, such that the Maxwell equations permit ra-
dially symmetric fields in free space only for the static case.
Nevertheless, the idea of the isotropic antenna can be saved if
we do not think only in terms of the electric and magnetic field
vectors, but in terms of the Poynting vector field which is the
cross product of the electric and magnetic field vectors [28]. The
isotropic antenna is defined such that the radial component of
the Poynting vector is independent of the direction. Hence, the
isotropic antenna shall be isotropic with respect to the radiated
power density instead of electric or magnetic field vectors. This
is permitted by the Maxwell equations.

With the additional assumption that the isotropic antennas are
lossless, one can find and just from the law
of conservation of energy. Later, it will become clear that the
real part is all one needs to know about and regarding
the analysis of a matched multi-antenna system. Hence, this is
good news. Furthermore, the real part of the impedance matrix
of a linear array of isotropic antennas is qualitatively the same
as one would obtain for a linear array of Hertzian dipoles [29].
This shows that the concept of isotropic antennas, albeit simple,
does capture the essential physics of mutual near-field coupling.

A. Radiated Power

In order to calculate the real part of the impedance matrix of
an array of isotropic antennas, let us first take a look into the be-
havior of “ordinary” antennas. We can compute the power
which is radiated by an ordinary antenna in free space by inte-
grating the Poynting vector over any closed surface which
completely surrounds the antenna [30]. With the vectors and

of the complex envelopes of the electric and magnetic fields,
this becomes

(28)

By placing the antenna in the origin of a spherical coordinate
system (see left-hand side of Fig. 3) and choosing for the
surface of a sphere of radius centered in the origin, we can
express the radiated power as

(29)

Let be large enough such that the surface of the sphere is inside
the far field of the antenna; then, the electromagnetic field is a
spherical transversal electric wave [18]

(30)

wherein is the wavenumber, is the wavelength,
and and are functions specific to the antenna used. The
empty-space Maxwell equation used in
(30), with and the angular frequency ,
requires that and , where

and is the speed of light. Hence, (29) becomes

(31)
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Fig. 3. (Left) Definition of the spherical coordinate system. (Right) Array of
two antennas and a point � in the far field.

where is the intensity of the
electric field. Let us write (30) as

(32)

where is a unit vector pointing in the direction of the electric
far field and

Because is a unity vector, one can see by taking the mag-
nitude of (32) that . Since (31) does not
depend on , we do not need to know where the electric field
vector is pointing. We just look at its magnitude

(33)

B. Array Impedance Matrix

Consider two identical antennas, one located in the origin,
as before, and another one which is displaced by the distance

along the negative -axis, as shown in the right-hand side of
Fig. 3. The electric field at a point , far away from the antennas,
can be written as the linear superposition . The
electric fields generated by each antenna

(34)

where and are the distances between the point and the
first and the second antenna, respectively (see right-hand side
of Fig. 3). Now, let these two identical antennas be oriented in
the same way and excited by currents of complex envelopes
and , respectively. Then, we have and

(35)

When , the second antenna does not change the field of
the first and vice versa (see also the discussion in Section II-D on
antenna mutual coupling). Hence, the function is not in-
fluenced by the neighboring antenna—it is the same function we
would obtain if only one antenna was present in the first place.

The distance can be expressed in terms of and elevation
(see right-hand side of Fig. 3)

(36)

so that, in a large enough distance in the far field, we
obtain from , using (34)–(36)

(37)

(37a)

where we have collected the current envelopes into the vector
and defined the array steering vector

(38)

Comparing (37a) with (32), we see that

(39)

Substituting (39) into (33) and pulling the expectation operation
outside the integrals, we find

(40)

On the other hand, the definition of the transmit power from
(22a) together with from (13) and the relationship

, due to reciprocity, yields

(41)

Assuming lossless antennas, must hold true. The
real part of the impedance matrix can therefore readily be
obtained from equating (41) with (40).

C. Uniform Linear Array of Isotropic Antennas

If the antennas of the array are isotropic, then does
not depend on and and hence is a constant

(42)

By using this expression in (40) and equating the result with
(41), we can express the real part of as

(43)

where is the radiation resistance and

(44)

is a dimensionless matrix with the property

(45)
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Because depends on the mutual distances between the
antennas and the latter depend on the spatial arrangement of the
antennas, we consider a simple arrangement: the uniform linear
array, where the antennas are aligned along the (negative)

-axis. To this end, we generalize the array steering vector from
(38) to the case of antennas

(46)

where is the distance between neighboring antennas. When
we apply (46) in (44) and integrate, we arrive at

(47)
where

. . .
...

. . .
. . .

. . .
. . .

(48)

(49)

while the index specifies the dimension of the matrix. Note
that is a real-valued Toeplitz matrix which happens to be
positive definite for . The last property follows from the
fact that the radiated power is always nonnegative, regardless of
what excitation currents are used, and . Because (49) has
zeros for , we see that (since )

(50)

When we align isotropic antennas in such a way that all mu-
tual distances are integer multiples of half the wavelength, the
mutual coupling completely disappears. On the other hand, as

, the matrix tends to the all-one matrix, such that
its smallest eigenvalue . Recalling the discussion of the
unilateral approximation from Section II-F, we therefore see
with the help of (15) that the critical distance between the trans-
mitter and the receiver increases unboundedly as . Hence,
the antenna separation cannot be made arbitrarily small without
having to move the receiver arbitrarily far away from the trans-
mitter. However, we will see that most of the effects of mutual
coupling on the performance of the communication system al-
ready occur for rather moderate values of .

Regarding the receive impedance matrix , we have

(51)

D. Transimpedance Matrix

Finding the mutual coupling between the antennas of the re-
ceiver and the transmitter is complicated by the fact that the mu-
tual coupling depends on the medium that connects the receiver
and the transmitter. In order to keep things simple, we consider
only the case where the receiver and the transmitter are located
in free space. Suppose the receiver is located at elevation
from the transmitter’s point of view. Similarly, the transmitter
is located at elevation from the receiver’s point of view (see

Fig. 4. Two arbitrarily oriented uniform linear arrays in free space.

Fig. 4). Let us call the distance between the th receive
and th transmit antennas. Then, , where

(52)

while is the distance between the first antenna of the trans-
mitter and the first antenna of the receiver. The electric field
vector at the th antenna of the receiver excited by the

th antenna of the transmitter becomes

(53)

Recall from the discussion in Section II-D that (53) requires
such that the antennas at the receiver do not disturb

the field. Herein, is the vector of the complex current en-
velopes of the receiver-side ports of the multi-antenna multiport
(see Fig. 2). The corresponding open-circuit voltage is pro-
portional to the strength of the total electric field

(54)
where is a constant and . With the transmit
and receive array steering vectors

(55)

(55a)

we can write (54) as

(56)

Comparison with (13) then reveals that

(57)

IV. ARRAY GAIN

A proper choice of the generator voltage envelopes makes the
electromagnetic fields which are excited by the transmit-side an-
tennas superimpose coherently in a given direction, hence pro-
ducing there a peak in the power density. Similarly, the super-
position of the receive voltage envelopes with suitably chosen
combining coefficients makes the receiver more sensitive for
waves impinging from certain directions. Both effects can be
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used for communications for the increase of SNR at the receiver.
This increase is quantified by the so-called array gain

(58)

Hence, the largest SNR, obtainable by using all antennas simul-
taneously is compared with the SNR, obtainable when only one
transmit and one receive antenna are used,
while the same transmit power is employed in both cases.

Let , where is called transmit beam-
forming vector and is the information-carrying signal
to be transferred to the receiver. Let be the super-
position of all receive voltage envelopes, where is
called receive beamforming vector. With (16), (23), and (25),
we have

(59)

The maximization in (58) is therefore to be understood as an
unconstrained maximization with respect to and . It makes
sense to distinguish between the transmit array gain

(60)

and the receive array gain

(61)

because both are not necessarily the same despite the fact that
all multiports are reciprocal.

A. Transmit Array Gain

We have receive antenna, such that
is a row vector, and the SNR from (59) becomes

(62)

The SNR is largest [31] for

(63)

where is an arbitrary constant such that the maximum
SNR becomes

(64)

With (58), it then follows that

(65)

From (17), (24), (57), and the third line of (19), it follows that

(66)

where , as and are scalars in
the case . When we assume lossless impedance matching
multiports, we have . Hence, using the second

line of (19), it follows that .
Therefore

(67)

Furthermore (using and )

such that (67) can be simplified to

(68)

where the last equality is again due to .
When we substitute (68) into (66), we arrive at

(69)

Now, setting in (69) leads to

(70)

where is the radiation resistance (note that and
for ). Substituting (69) and (70) into

(65) and applying (43) yields

(71)

Because and , we can rewrite (71) in
the following way:

(72)

Note that the transmit array gain is independent of what sort of
impedance matching network is used and solely depends on the
following parameters:

1) number of antennas (obviously);
2) usually on the direction of beamforming ;
3) antenna separation , via and .

Notice that the transmit array gain is independent of the imag-
inary part of . All that matters is its normalized real part

for which we already have derived a formula for the case of
isotropic radiators [see (47) and (48)].

Let us now look at the transmit array gain in several situations.
First, let or any integer multiple thereof. Then, from
(50) and (72), it follows that

(73)

Hence, the transmit array gain equals the number of antennas at
the transmitter and is independent of the beamforming direction

. For other values of , however, the array gain does depend
on the direction of beamforming. Let us consider two distinct
directions: The first is the “end-fire” direction and points along
the array axis . The other one is perpendicular to the
array axis and is called “front-fire” direction.

Fig. 5 shows the transmit array gain for beamforming in the
end-fire direction as a function of antenna separation . In the
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Fig. 5. Transmit array gain � in the end-fire direction as a function of the
antenna separation for a different number � of antennas.

case when , the transmit array gain more or less equals
the number of antennas, only to raise sharply once is re-
duced below . It approaches from below as . How-
ever, recall from Section II-F that one cannot allow for an arbi-
trarily small , for this would cause the critical distance
between the receiver and the transmitter increase unboundedly.
One can show that the smallest eigenvalue of the matrix
has the property .
Imagine that we have closely spaced antennas
and that we decrease the antenna spacing to half. Then, re-
duces by a factor of 16, causing the critical distance (15) to be-
come four times as long. By allowing antennas, this
increase of the critical distance would already become 512 fold.
This clearly indicates that, with more antennas inside the array,
we should be more conservative with a small antenna separation.
On the other hand, we see from Fig. 5 that decreasing below
some limit does not increase the transmit array gain by any sig-
nificant amount. In fact, a moderate separation of ensures
that the transmit array gain comes about 1 dB close to . In
particular, for a moderate number of antennas, those large array
gains can indeed be realized, as is confirmed by experimental
results with monopole antennas [32], [33].

Fig. 6 shows the transmit array gain in the front-fire direction.
For efficient beamforming, one has to put the antennas consid-
erably apart. As can be seen, there is a finite optimum antenna
separation which is always larger than but smaller than .
In the front-fire direction, the transmit array gain grows linearly
with the number of antennas, yet its maximum value is larger
than . It is intriguing that as , there is no difference be-
tween and antennas with respect to transmit array
gain.

Another interesting problem arises when the number of an-
tennas is increased while the length of the uniform linear an-
tenna array is kept constant such that

The array becomes more and more densely packed as we in-
crease the number of antennas. How much transmit array gain is
obtainable in this case? Fig. 7 shows the result for beamforming

Fig. 6. Transmit array gain � in the front-fire direction as a function of the
antenna separation for a different number � of antennas.

Fig. 7. Transmit array gain in decibels (!) for a fixed array size and beam-
forming in the end-fire direction.

in the end-fire direction and . Note that the transmit
array gain is given in decibels. For a small , the antenna sep-
aration is large such that mutual antenna coupling is
relatively low and the transmit array gain behaves more or less
like that when no coupling was present. However, once is
large enough such that the distance reduces somewhat below

, the transmit array gain essentially stays constant (actually,
it drops a little bit). The reason for this peculiar behavior can
be found in Fig. 5: When is within the range aforementioned,
the transmit array gain reduces with decreasing distance in a
way which compensates the increase which comes from having
larger values. This continues until is large enough such
that the antenna separation drops below . Then, the transmit
array approaches a quadratic growth with respect to . The
transmit array gain in the end-fire direction is theoretically un-
bounded—there is no hard limit for the transmit array gain that
can be achieved by an antenna array of any fixed size.

For beamforming in the front-fire direction, the situation is
rather different, as we can see from Fig. 8 which shows the
transmit array gain in linear scaling. As is increased such
that drops for the first time below , the transmit array gain
makes a sudden jump. It roughly doubles its value when going
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Fig. 8. Transmit array gain (linear scaling) for a fixed array size and beam-
forming in the front-fire direction.

Fig. 9. (Top) Noisy single-antenna receiver. (Bottom) Equivalent circuit.

from seven to eight antennas. This effect can be understood by
looking back at Fig. 6: In the front-fire direction, the maximum
transmit array gain occurs for a separation , which is slightly
below . As a further decrease of leads to a decreasing transmit
array gain, there is once more a compensation effect, such that in
Fig. 8, the transmit array gain remains almost constant (it actu-
ally drops a little bit) as is increased. Only when becomes
large enough such that is reduced below half the wavelength
does the strong mutual coupling cause the transmit array gain to
grow again, however very slowly and irregularly.

B. Noise Matching

In contrast to the transmit array gain, the receive array gain
does depend on receiver impedance matching. Consequently,
it makes sense to talk about the important technique of noise
matching first, before approaching the receive array gain. Let
us start with a single receive antenna. For this case, the circuit
shown in the upper part of Fig. 9 is equivalent to the system
shown in Fig. 2. The single receive antenna port is modeled here
by its Thévenin/Helmholtz equivalent: two voltage sources with
complex envelopes and for the signal voltage and the re-
ceived noise, respectively, and a series impedance equal to the
antenna impedance . The job of the impedance matching
twoport is to transform the antenna impedance from into

. Therefore, it makes sense to use the equivalent circuit
shown in the lower part of Fig. 9, where the matched antenna
is modeled by two voltage sources with complex envelopes
and , respectively, and a series impedance . Because the
impedance matching network is lossless, it can be shown (see
Appendix B) that

(74)

Since the same transformation has to hold for the noise voltage
envelope , we have with (9) and (6)

(75)

By letting be the noise part of the output voltage envelope

(76)

where is a complex number (depending on the amplifier’s net-
work properties), which we do not have to worry about, how-
ever, for it will cancel out later. The signal voltage envelope at
the amplifier’s output equals and with (74)

(77)

The SNR at the output can be defined as

(78)

where

(79)

is the available SNR, defined as the ratio of the signal power
and noise power delivered into a matched load, and NF is the
famous noise figure [34]. With (75)–(79), we find

(80)

wherein and are defined in (11) and (12), respectively. It
is easy to show that is minimum for

(81)

Note that and the minimum noise figure equals

(82)
The case of more than a single antenna at the receiver is compli-
cated by mutual antenna coupling. In this case, one reduces the
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problem back into the single-antenna case [35] by employing
an impedance matching network which decouples the antennas.
Hence, the receive impedance matrix of the matched antenna
array becomes

(83)

With the topmost equations in (19) and (20), a lossless recip-
rocal impedance matching network described by (84), as shown
at the bottom of the page, gets the job done nicely. Note that,
from (19), there is

(85)

Even though the receive-side antennas are decoupled, the mu-
tual antenna coupling sneaks into the transimpedance matrix of
the matched system via the matrix . Therefore, a de-
coupled antenna array is substantially different from an array
of uncoupled antennas.

C. Receive Array Gain

We have transmit antenna, such that
is a column vector, and the SNR from (59) becomes

(86)

The SNR is largest for , where is an arbitrary
constant such that the maximum SNR becomes

(87)

With (58), it then follows that

(88)

With (18), (19), (57), and (26), we find

(89)

where , and we use as a
shorthand for . Now, we apply the technique of noise
matching. Using the impedance matching network described by
(84), it can be shown (see Appendix C) that

(90)

where . From (84) and the first line
of (20), it follows that, with the help of (83) and (51)

(91)

When we substitute (90) and (91) into (89), we obtain

(92)

By setting , we obtain from (92)

(93)

for and when . By substituting (92) and
(93) into (88) and using the fact that , the receive
array gain finally becomes

(94)

A comparison of (94) and (72) reveals that transmit and receive
array gains are fairly similar, but at the same time, subtly dif-
ferent. Most notably, the receive array gain depends on the min-
imum noise figure—something for which there is no counter-
part in the transmit array gain. Thus, transmit and receive array
gains are, in general, different despite the fact that all involved
multiports are reciprocal.

Notice that the minimum noise figure depends on an-
tenna noise temperature. From (82), at antenna
noise temperature depends on at another
antenna noise temperature like

. If equals, for ex-
ample, 2 dB at an antenna noise temperature of 300 K,
increases to 7.3 dB, as antenna noise temperature decreases to
40 K. Similarly, drops to 0.15 dB, when the antenna
noise temperature hits 5000 K. Ultimately, as , we see
that and cause . Based on
this observation, we can separate three interesting cases.

1) Noiseless antennas .
It is not possible to have noiseless antennas, yet such a sit-
uation occurs approximately in the case where the receive
amplifiers are the dominating contributors to the noise.
From (94), one obtains in this case

(95)

(84)



IVRLAČ AND NOSSEK: TOWARD A CIRCUIT THEORY OF COMMUNICATION 1675

That means, for zero background noise, the receive array
gain is exactly the same as the transmit array gain of the
same array.

2) Effectively noiseless amplifiers .
This case is allowed in theory and corresponds to the sit-
uation where amplifier noise originates solely from the
thermal agitation of the electrons in the real part of its input
admittance. In this case, the noise resistance , and
from (82), indeed, . This time

(96)

When the antennas are the dominant noise source, then the
receive array gain is usually different from the transmit
array gain.

3) Isotropic extrinsic noise .
In the case that the background noise which is received by
the antenna array happens to have a very special covariance
matrix, namely, , we find

(97)

For , the receive array gain is again equal to the
transmit array gain, regardless of the noise figure. It can
be shown (see Appendix D) that the case is in-
deed possible and corresponds to isotropic background ra-
diation.

D. On Scaling Laws

We have seen that transmit and receive array gains are both
capable of growing as the square of the number of antennas,
provided that optimum beamforming is applied in the end-fire
direction. While the transmit array gain does not depend on
the type of transmit impedance matching, the achievable SNR
does depend on receive impedance matching. Its largest value
is achieved when noise matching is employed. However, what
happens to the SNR if a different impedance matching technique
is used? It shall not come as a surprise to see that the SNR is
lower than that in the case of noise matching, but how about the
dependence on the number of antennas?

To this end, let us introduce a different matching technique
and refer to it as IZ-matching. Herein, the receive impedance
matching multiport is described by

As can be easily verified from the first line of (19), this causes
. Hence, the effect of this matching technique

is to remove the imaginary part of and keep its real part as
is. The antennas therefore remain coupled. Let us now see what
maximum SNR can be achieved using IZ-matching and compare
it to the case of noise matching. One merely has to evaluate (87)
separately for those two matching techniques.

There is a single transmit antenna positioned in the end-fire
direction of the receiver . We set the noise param-
eters as , , and .
The distance between the neighboring antennas of the receive
array is . Fig. 10 shows the resulting maximum SNR

Fig. 10. Maximum SNR as a function of antenna number at the receiver for
different matching techniques and constant transmit power.

in decibels as a function of the number of antennas, while the
transmit power is kept constant. For noise matching, we can ob-
serve an (almost) quadratic growth (6 dB per doubling the an-
tenna number) of SNR with the antenna number. As expected,
the SNR is always larger than that with IZ-matching. However,
it might be surprising that, with IZ-matching, the SNR can in-
crease exponentially with the antenna number. In this example,
the increase is about 8 dB for each additional antenna. At a high
SNR, the channel capacity is proportional to the logarithm of
SNR [36] such that an exponential growth of SNR translates
into a linear growth of channel capacity with the number of re-
ceive antennas. The linear growth of capacity is commonly—yet
wrongly—attributed only to systems with multiple antennas at
both ends of the link [2]. Of course, IZ-matching is not really
favorable because it starts out with a penalty in SNR due to
the impedance mismatch (in this example, about 25 dB). This
penalty is never quite made up, even by exponential growth of
SNR, for the latter eventually flattens out. It is an interesting
phenomenon that, with IZ-matching, the SNR is not monotonic
in the antenna number. In this example, going from six to seven
antennas actually decreases the SNR.

V. MIMO COMMUNICATIONS

Let us now proceed further and consider radio communica-
tion systems which employ multiple antennas at both ends of
the system. These so-called MIMO systems have been exten-
sively analyzed in the information theory literature, particularly
for Gaussian-distributed signals and noise (e.g., [2], [27], and
[37]–[39]). The MIMO system is modeled

(98)

(98a)

(98b)

where the -dimensional vector is called “channel input,” the
-dimensional vector is called the “channel output,” while

is the vector of zero-mean, additive, white, complex, and cir-
cularly symmetric Gaussian noise. The matrix
is called the channel matrix. For a given channel matrix, the
channel capacity of the MIMO system can be computed [2].
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It is part of the beauty of information theory that one does
not have to—and usually does not—define what the channel
input and output actually are, i.e., how they are related with
measurable quantities (physical quantities) of the communica-
tion system. By this abstract approach, (98)–(98b) can be used
to model a great variety of communication systems.

In order to successfully apply information theory to a par-
ticular communication system—successful in the sense that the
predictions of the theory can stand the test of actual measure-
ment—one has to encode the physical context of the system into
the channel matrix. It must make a difference in the way we
build the channel matrix, when, at one time, our MIMO system
is a multiwire on-chip bus and, another time, a multi-antenna
radio communication system, for the governing physics is dif-
ferent for the two. However, how does one encode the physical
context into the channel matrix?

A. Channel Matrix

We find the channel matrix when we define the relationships
between and on the one hand and the physical quantities of
the communication system on the other. Because of (98a), what-
ever that relationship may be, has to equal the (phys-
ical) transmit power of the communication system. Using our
circuit theoretic system model from Section II, it makes sense
to associate the channel input with the vector of the complex
generator voltage envelopes . By defining

(99)

we make sure that (98a) holds true, as is easily verified by
substituting (99) into (98a) and comparing the result with (23).
Note that because is Hermitian positive definite, is also
Hermitian positive definite. Similarly, by associating with
the vector of the complex voltage envelopes at the receiver
output and defining

(100)

we make sure that (98b) holds true. This follows from

and the application of (16). Notice that means that
and vice versa, for is positive definite and hence

regular. We are now almost set, but we still need one more
assumption: The physical noise sources of the communication
system must produce a Gaussian noise. This is necessary be-
cause only the Gaussian distribution remains Gaussian under
arbitrary linear transformations [40]. In this way, the noise part
of (100) is guaranteed to be Gaussian, too. When we substitute
(99) and (100) into (98) and compare with (16), we find that

(101)

The channel matrix given in (101) contains the complete phys-
ical context of the communication system.

B. Matched Systems With Isotropic Background Noise

There are numerous factors, including the impedance
matching and the background noise correlation, which have
impact on the channel matrix. However, matters are simplified a
great deal when one requires that specific impedance matching
is used and that the background radiation is isotropic, i.e.,

(102)

as shown in Appendix D. We have seen in Section IV-B that
it does make good sense to employ noise matching [see (84)]
at the receiver. On the other hand, recall from Section IV-A
that transmit matching has no influence on the transmit array
gain. One could therefore use just about any kind of transmit
matching strategy. Both from a practical view point and for
mathematical convenience, it makes sense to choose the power
matching technique for the transmitter

(103)

This ensures that such that all the available power
of the generators is delivered into the antenna array. Defining

(104)

we obtain from (101)—assuming (84), (102), and (103)

(105)

where . The information theoretic channel
matrix as given in (105) contains the essential physics of a loss-
less multi-antenna MIMO system which uses noise matching at
the receiver and power matching at the transmitter and where, in
addition to amplifier noise, there is isotropic background noise
being received by the antennas. Note that and only con-
tribute to a common phase term of all entries of . Hence, they
have no influence on the channel capacity. If is given, then
what one really needs to know in information theory is just the
triple

(106)

The physics of mutual antenna coupling is fully included by
virtue of the matrices and . Note that these matrices also
influence the Frobenius norm of .

In information theory, one frequently uses stochastic channel
matrices. For correlated Rayleigh fading, which is independent
between the receiver and the transmitter [41], [42], this can be
achieved by modeling as [43]

(107)

where and
are the transmit and receive fading correlation matrices, re-
spectively, while the matrix contains independent
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and identically distributed (i.i.d.) zero-mean and unity-variance
complex Gaussian entries.

C. Channel Rank of Densely Packed Antenna Arrays

One of the key properties of MIMO systems is their ability to
transfer multiple data streams at the same time using the same
band of frequencies. For example, consider a system with two
antennas at each end of the link. Let

be the singular value decomposition of , where
are unitary matrices and and are its two singular
values. In new variables and , we obtain
from (98)

where . Since and
, the “primed” MIMO system aforementioned and the

original system (98) are identical from an information theory
view point (as long as all the signals are Gaussian distributed).
However, the primed MIMO system has a diagonal channel
matrix which directly shows the possibility to transfer two
independent data streams simultaneously, without having the
streams interfere with each other. Of course, this only works as
long as both and are strictly positive. That is, of course,
only the case when has a full rank.

What is going to happen to the rank of the channel matrix
if the separation between the two antennas in the transmit and
receive arrays is reduced more and more? Without considering
mutual coupling, the antennas ultimately look like a single an-
tenna—the same way the MIMO system would behave as if only
one antenna was present at each end of the link. In other words,
without mutual coupling, the channel matrix is rank deficient;
hence, its determinant vanishes as we reduce . However,
what is the result when we take mutual coupling into account?

To this end, let there be two paths connecting the transmitter
to the receiver, for example, one direct path in the line of sight
and another path via some reflectors. The th path departs the
transmit array in the direction and arrives at the receive
array from the direction , where . The tran-
simpedance matrix is then given as a linear superposition
of (57) for the two paths

(108)

Note that converges to a scaled all-one matrix, as ;
hence, it becomes rank deficient. However, when we substitute
(108) into (105), one can show (after some lengthy algebraic
calculation) that

where . Effective multistreaming is possible ir-
respective of how densely the antennas are packed. In order

to demonstrate this effect in an even more striking way, let us
consider

The channel matrix now becomes, as

This intriguing result shows that it is possible to transfer two
data streams free of mutual interference, which are even capable
to carry the same information rate, despite the fact that .
Of course, cannot really be arbitrarily small as we have pointed
out in Section IV-A. However, we can anticipate that wireless
MIMO systems comprising compact antenna arrays (minimum
antenna spacing below half the wavelength) have the potential
for multistreaming.

VI. LOSSY ANTENNAS—ARRAY GAIN AND EFFICIENCY

Up to now, only lossless antennas were considered in this
paper. However, while antennas may not have too much loss,
the little loss they have may become important, in case compar-
atively large electric currents have to flow in order to radiate a
given power. In particular, for very low antenna separation, the
losses inside the antenna can strongly reduce the array gain. It is
therefore important to carefully design the antenna separation.

In the following, we assume ohmic losses in the transmitter-
side antennas. The real part of the transmit impedance matrix
then becomes

(109)

where is the dissipation resistance of each antenna.

A. Transmit Array Gain of Lossy Antenna Arrays

The transmit array gain for a lossy array is defined as

(110)

Therefore, the maximum SNR achievable by using all lossy
antennas at the transmitter is compared with the SNR achievable
when only one single but lossless antenna is employed at the
transmitter, while the same transmit power is used in both cases.
Note that transmit power is defined as the power flowing into the
antenna array. Since the antennas are lossy now, the transmit
power is larger than the radiated power.

The denominator of (110) is very similar to that of (58); the
only difference is that, in the numerator of (110), we have to
cater for the antenna losses. With (109), we only have to replace
in (72) the matrix by

(111)
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Fig. 11. Transmit array gain of a lossy array of isotrops with beamforming in
the end-fire direction.

It is easy to see that

(112)

for and have the same eigenvectors,
but the latter has smaller corresponding eigenvalues, because

is positive definite and .
Fig. 11 shows the transmit array gain as evaluated from (111)

and beamforming in the end-fire direction and a uniform linear
array of isotropic antennas. For lossless antennas

, the largest array gain is achieved as and approaches
from below. However, as , a too small value for

is disastrous for the transmit array gain. On the other hand,
there is an optimum separation for which the transmit array
gain is maximum. From Fig. 11, is always less than half
the wavelength. Because -spaced isotropic antennas are un-
coupled [see (50)], we can conclude that with the correct an-
tenna spacing, the antenna mutual coupling always improves
the transmit array gain compared with uncoupled antennas, re-
gardless of how lossy the antennas are.

Note from Fig. 11 that, for , one can achieve
with antennas a transmit array gain , pro-
vided one uses the optimum antenna separation and applies the
optimum beamforming vector (see Section VI-B).

The optimum antenna separation depends on the direction of
beamforming, number of antennas, and the ratio . Fig. 12
shows the results for the end-fire direction and a uniform linear
array of isotropic radiators, e.g., with antennas which
have , we have . However,

antennas with an need a little bit more
room to breathe. They are most happy with space between
neighbors. Note from Fig. 12 that the more antennas we have,
or the more lossy they are, the more close comes to .

B. Array Efficiency

Recall from Section IV-A that the transmit impedance
matching strategy has no impact on the transmit array gain.
Hence, we can choose any matching strategy we like. For math-
ematical convenience, let us use power matching as defined

Fig. 12. Optimum antenna separation for end-fire beamforming as a function
of the amount of loss �� �� �.

in (103). A generator voltage envelope vector then lets
electric currents flow through the antennas according to

(113)

which is easily verified by the elementary analysis of the circuit
in Fig. 2. The power that is dissipated in the antenna array is
then given by

(114)

(114a)

From (63), the optimum vector of generator voltage envelopes
is given by

(115)

where is the information carrying signal which we
want to transfer to the receiver and is a constant. Because of
power matching, we have , and it follows from (23) and
(115), setting that

(116)

Substituting (115) for in (114a), the dissipated power can be
written with the help of (116) as

(117)

The array efficiency is then defined as

(118)
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Fig. 13. Array efficiency as a function of � �� for a different number of
antennas. Beamforming is done in the end-fire direction.

which is the ratio of radiated power to the total power supplied
into the antenna array. With (117), we obtain

(119)

where is used. In Fig. 13, the array efficiency of
a uniform linear array of lossy isotropic antennas is shown,
which is employed for beamforming in the end-fire direction.
The distance between antennas is chosen such as to maximize
the array gain (see Fig. 12). The array efficiency depends only
very little on the number of antennas. It mostly depends on the
ratio . From Fig. 13, we can observe that the array ef-
ficiency is actually quite high, provided that the optimum an-
tenna separation is chosen and the optimum excitation (115)
is used. For , the array efficiency
ranges between 80% and 99.5%. For example, with and

, we can see from Fig. 11 and Fig. 13 that a
transmit array gain of can be achieved with an ef-
ficiency of , provided that . That
surely is a good performance for a lossy four-element array with

aperture. Notice, too, that is less than 1 dB
away from the theoretical maximum of 16 but more than 5 dB
larger than the number of antennas.

C. Bad Efficiency Reputation

Ever since the frequently cited work by Yaru [14], densely
packed antenna arrays have gotten a bad reputation for being
grossly inefficient, easily having efficiencies as low as 10
or even worse. How does this combine with our result from
Section VI-B where the efficiency of dense arrays is shown to
be quite high (see Fig. 13)?

In order to understand this, it is helpful to realize that, in [14],
many antennas are placed extremely close together, like

. We know by now from Fig. 12 that this is
far too close for a nonsupraconducting antenna. Moreover, [14]
does not use optimized antenna excitation (beamforming) which
would take the antenna losses into account [like (115)].

Of course, it is not too difficult an exercise to obtain similar
results as in [14] when less than optimum beamforming is used
and the antennas are spaced very closely together (for example,

). To demonstrate this, we choose to use a beam-
forming which is optimized for a lossless array. From (113) and
(115), the optimum array current vector for the case
equals

In order to get this current excitation with the lossy array and its
power matching network, we set up the generators as

By following the same line of argument as in Section VI-B, we
obtain for the array efficiency

Suppose , , and . For beam-
forming in the end-fire direction, we obtain an .
Radiating 1 W of power requires dissipating 1/2 GW of power in
the antenna. Of course, such high dissipation is completely im-
practical. Hence, the array could radiate only very little power.
This is the main argument of [14].

However, note that is much too dense. If
the optimum separation is used instead and the
optimum excitation is applied, the efficiency instantly climbs up
to . To radiate 1 W of power, the array now dissipates
only 78 mW, which is reasonable. The transmit array gain for

equals , which is less than 1.5 dB
away from the maximum of 25 and more than 5.5 dB larger than
the number of antennas. This array has an aperture of just a little
more than one wavelength. Therefore, to extract the potentially
high gain of compact antenna arrays, it is crucial to choose the
antenna separation carefully, such that high array efficiency can
be retained.

VII. CONCLUSION AND OUTLOOK

“Did we get the physics right in the modeling of multichannel
communication systems?” This question was the starting point
of the investigations reported in this paper which have lead to
quite a number of interesting insights and results. A multi-an-
tenna radio communications system has to be modeled by linear
multiports to enable consistency with the underlying physics.
As shown, the computation of transmit power or receiver noise
covariance requires knowledge of the governing physics. Cir-
cuit theory is shown to be the perfect link to bridge the gap
between electromagnetic theory, information theory, and signal
processing. The main contributions are as follows.

1) A linear multiport model of antenna-array-based commu-
nication systems is derived using only simple far-field cal-
culations of the electromagnetic field and its power density
based on energy conversation in lossless media.
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2) Array gain is defined as the enhancement of SNR com-
pared with a single-antenna configuration. This results, in
general, in different transmit and receive array gains de-
spite the fact that antennas themselves are reciprocal.

3) Transmit array gain does not depend on which strategy of
transmit impedance matching is used, although it definitely
makes sense to apply power matching to exploit the avail-
able power from the high-power transmit amplifiers. This
is also advantageous from the viewpoint of sensitivity with
respect to the components of the matching network and its
source and load.

4) Receive array gain depends on the receiver’s impedance
matching network and on the properties of the extrinsic
(received via the antennas) and intrinsic noise (originating
from the low-noise receive amplifiers and subsequent cir-
cuitry).

5) The optimum strategy for the receive impedance matching
is the decoupling of antenna elements with noise matching.
If extrinsic and intrinsic noises have the same covariance
matrix, then transmit and receive array gains are identical
and maximum in the end-fire direction, where they grow
with the square of the number of array elements as the
distance between elements becomes small (less than half
of the wavelength).

6) If, instead of decoupling and noise matching, the receive
matching network merely cancels out the imaginary part
of the array’s impedance matrix, the receive array gain can
even increase exponentially with the number of the antenna
elements, provided that the inter-element spacing is less
than half of the wavelength.

7) For MIMO systems (where antenna arrays are employed
at both ends of the radio link), power matching should be
used on the transmit side and noise matching should be
used on the receive side. The channel matrix used in the
information theoretic context can be computed from the
multiport models derived in this paper. This channel matrix
can have a full rank, henceforth supporting multistream
transmission even if the antennas are densely spaced.

8) Losses in the antenna elements lead to a graceful degra-
dation of the efficiency if taken into account at the design
stage, i.e., if the antenna spacing and the beamforming are
optimized, accounting for this effect.

The results and insights presented here open up a number of new
research directions such as the following:

1) optimized design of antenna elements and arrays for
MIMO systems;

2) optimal design of realizable impedance matching multi-
ports taking into account the system bandwidth (broadband
matching [44]);

3) optimizing sensitivity of such systems to variations in pa-
rameter values;

4) considering multiuser/multicell scenarios, and making the
numerous important information theoretic results consis-
tent with the physics of communications.

This can be summarized as not only trying to achieve capacity
for a given MIMO communication channel but also to design
the channel for optimum capacity. Circuit theory is the mediator
between physics and information theory on the way toward this
ambitious goal.

APPENDIX A
ON THE VALIDITY OF THE UNILATERAL APPROXIMATION

Using the following impedance matching:

we obtain for the noise-free case ( and )

(120)

by using the unilateral approximation (13),
where , , and

, while .
Of course, this leads to the following simple relationship:

(121)

Because we do know that the impedance matrix from (120) is,
in fact, symmetric, we obtain another approximation when we
set .
It still is an approximation, since the given value for is
the one obtained from the unilateral approximation. However,
suppose that is very small, such that the unilateral
approximation is almost exact. Then, the given value for is
almost exact, too. Hence, in the noise-free case ( ;
see Fig. 2), the following result:

(122)

is almost exact, provided that is sufficiently small. In
order to find out how small it actually has to be, we can compare
the result (122) to the result (121). Since the latter is exact for

, we conclude that is sufficiently small
when the difference between both results is negligible. Let us
define the symbol as the event when is sufficiently
small. Then, from comparing (122) and (121)

(123)

Because and,
furthermore, , it follows that

(124)

With , we
have

such that, with (124)

(125)
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Fig. 14. (Left) Generator connected to lossless twoport terminated with the
complex conjugate match. (Right) Equivalent circuit.

Now, there is

where denotes the eigenvalues of and is the
smallest eigenvalue. Similarly, we have

where are the eigenvalues of and is the smallest
eigenvalue. With (125), it therefore follows that

(126)

APPENDIX B
VOLTAGE TRANSFORMATION

In the upper part of the circuit in Fig. 9, temporarily dis-
connect the noisy amplifier from the matching network and
terminate the latter with the complex conjugate of its output
impedance, as displayed on the left-hand side of Fig. 14.
Describing the lossless matching twoport by

where are arbitrary real resistance values, with
, then the output impedance equals

(127)

The input impedance (i.e., the load impedance seen by the gen-
erator) is similarly given by

(128)

Substituting (127) in (128) reveals that , i.e., we have
a complex conjugated match. Hence, the active power delivered
by the generator is given by .
The equivalent circuit from the right-hand side of Fig. 14 shows
that the active power which is delivered into the load equals

. As the impedance matching
network is lossless, we have , and therefore

APPENDIX C
DERIVATION OF EQUATION (90)

From (27), the first line of (20), and (51), we have

(129)

where we have also used the from (81). Moreover,
we find from (81) that

such that (129) can be written as

(130)

where

From (82), we find

such that substituting this in (130) and using (7) yields (90).
APPENDIX D

BACKGROUND NOISE COVARIANCE MATRIX

Imagine that the background radiation originates from a
number of single-antenna transmitters located somewhere in
space far away from the receiver antenna array. From (56),
the vector of the open-circuit voltage envelopes of the receive
antennas is proportional to the receive array steering vector

which corresponds to the th source of background
radiation. Hence

where the complex coefficients contain the amplitude and
phase of the signal received from the th source. The covariance
matrix is then given by

where we used the shorthand to denote . Now, it
is reasonable that the different sources of background noise are
uncorrelated such that for . Hence
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Now, let the number of sources approach infinity

(131)

where is, in general, a function of and . Also

is the available power of background noise that arrives from
within the directional window that ranges from to and
from to . With the density of the available power
of the background radiation, we can write this also as

, where denotes the infinitesimal
area that corresponds to the directional window. Hence

When we substitute this into (131), we obtain

(132)
where we have fixed to a constant value which ensures that
the complete antenna array is inside the corresponding sphere
around it and all sources of background noise remain outside
the sphere. From (5) and (8), the matrix is equal to (132),
normalized to unity entries in its main diagonal

(133)

where is the magnitude of the entries of the array steering
vector . For isotropic antennas, such that

If the background radiation is also isotropic, we know that
does not depend on , or , such that

where the second equality stems from (44) when it is written
for the receive array instead of the transmit array. This shows
that is the normalized covariance matrix of isotropic
background radiation. Notice that is a real-valued
matrix, with unity on its main diagonal.
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