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Nomenclature 
The following tables contain a survey of the formula symbols and the abbreviations utilized 
most frequently throughout the thesis. Common symbols as well as indices are written in 
italics, while matrices and vectors are shown in bold. Furthermore, vectors with a physical 
meaning in the three-dimensional Euclidean space are marked with an arrow on top of the 
symbol. 

For any Euclidean vector X1, the following declaration scheme is applied: 

 ( ) Frame  Reference 

FrameNotation   
Point Reference

nt Force/Mome of rce Motion/Sou of  TypeX
v

 

 
LATIN CAPITAL LETTERS 

SYMBOL EXPLANATION UNIT 

A Aerodynamic force N 

Ci,j Aerodynamic derivative of index i due to index j ˗ 

D Aerodynamic drag force N 

F1 Force vector N 

G Gravitational force N 

H1 Angular momentum Nms 

I Inertia tensor / identity matrix [kg·m²] / ˗ 

K Feedback gain ˗ 

L Aerodynamic lift force N 

Li Roll moment derivative due to index i ˗ 

M Transformation matrix ˗ 

M1  Moment vector Nm 

Mi Pitch moment derivative due to index i ˗ 

Mμ Meridian radius of curvature m 

Ni Yaw moment derivative due to index i ˗ 

Nμ Radius of curvature in the prime vertical m 

P Propulsive force N 

S Reference area m² 

T Thrust / time constant / temperature N / ˗ / °C 



2  NOMENCLATURE 

V1 Kinematic velocity vector m/s 

Xi Force derivative in x-direction due to index i ˗ 

Y / Q Aerodynamic side force N 

Yi Force derivative in y-direction due to index i ˗ 

Zi Force derivative in z-direction due to index i ˗ 

 
LATIN SMALL LETTERS 

SYMBOL EXPLANATION UNIT 

a Length of semi-major axis m 

a1 Acceleration m/s² 

b Length of semi-minor axis / wing span m / m 

e First eccentricity ˗ 

f Flattening ˗ 

g Gravitational constant m/s² 

m Aircraft mass kg 

n Load factor ˗ 

nC Number of controls ˗ 

nS Number of states ˗ 

nvar Number of variables ˗ 

p Roll rate rad/s 

p1 Linear momentum Ns 

q Pitch rate rad/s 

q̅ Dynamic pressure kg/(m·s²) 

qi Quaternions (i = 0,1,2,3) ˗ 

r Yaw rate rad/s 

r1 Position vector m 

s Laplace variable / half wing span ˗ / m 

t Time s 

u Control variable ˗ 

u Wind speed component into x-direction m/s 

v Wind speed component into y-direction m/s 

w Wind speed component into z-direction m/s 

x State variable ˗ 



NOMENCLATURE  3 

y Output variable ˗ 

 
GREEK LETTERS 

SYMBOL EXPLANATION UNIT 

α Angle of attack rad 

β Angle of sideslip rad 

γ Flight-path climb angle rad 

δT Thrust lever position ˗ 

ζ Rudder deflection / relative damping ratio rad / ˗ 

η Elevator deflection rad 

Θ Aircraft pitch angle rad 

κ Curvature / engine mounting angle ˗ / rad 

λ Geodetic longitude rad 

μ Flight-path bank angle / geodetic latitude rad / rad 

ν Pseudo-control ˗ 

ξ Aileron deflection rad 

ρ Density kg/m³ 

σ Engine mounting angle rad 

τ Normalized time ˗ 

Φ Aircraft bank angle rad 

χ Flight-path course angle rad 

Ψ Aircraft azimuth angle rad 

ω1 Angular velocity vector (rotation rate) rad/s 

Ω Rotation matrix rad/s 

ω0 Natural frequency Hz 

 
INDICES 

SYMBOL EXPLANATION 

* Sub-optimal solution 

~ Scaled quantity / dimensionless quantity 

+ Pseudo-inverse 

0 Initial 

A Aerodynamic Frame / aerodynamic motion 



4  NOMENCLATURE 

a Set of equality and active inequality constraints 

AUX Auxiliary 

B Body-Fixed Frame 

CMD Commanded value 

D Aerodynamic drag 

DR Dutch-roll 

E Earth-Centered Earth-Fixed Frame (ECEF) 

EF Error Feedback 

eq Equality 

f Final 

FP Footpoint 

G Centre of Gravity / gravitational force 

Gyro Gyroscopic 

hor Horizontal 

I Earth-Centered Inertial Frame (ECI) 

I Inlet 

ineq Inequality 

ini initial 

INV Simulation model with inversion controller 

K Kinematic Flight Path Frame / kinematic motion 

K̅ Intermediate Kinematic Flight Path Frame 

kin Kinetic 

L Aerodynamic lift / rolling moment 

l Rolling moment when used in a derivative 

LB Lower bound 

loc Local 

LTF Simulation model with linear transfer functions 

M Pitching moment 

m Pitching moment when used in a derivative 

MS Multiple shooting 

N Navigation Frame / yawing moment 

n Yawing moment when used in a derivative 

NLI Full non-linear 6-DoF simulation model with non-linear inner loop 



NOMENCLATURE  5 

O North-East-Down Frame (NED) / outlet 

opt Optimal 

OPT Optimization result 

P Propulsive force 

p Roll rate 

PC Path constraint 

PM Point-mass simulation model 

pot Potential 

q Pitch rate 

r Yaw rate 

REF Reference value 

Rot Rotor Reference Frame 

SIM Simulation result 

sol Solar 

SP Short-period 

SSM Simulation model with linear state-space models 

T Total force / total moment / transpose 

UB Upper bound 

W Wind motion 

WP Waypoint 

Y / Q Aerodynamic side force 

 
ABBREVIATIONS 

SYMBOL EXPLANATION 

A/C Aircraft 

abs Absolute value 

DoF Degrees of Freedom 

DR Dutch-roll 

ECEF Earth-Centered Earth-Fixed Frame 

ECI Earth-Centered Inertial Frame 

EOT Equation of time 

eps Machine precision 

ISA International standard atmosphere 



6  NOMENCLATURE 

max Maximum value 

MIMO Multi-input multi-output 

min Minimum value 

N Navigation Reference Frame 

NED North-East-Down Reference Frame 

Rot Rotor Reference Frame 

SAT Saturated 

SP Short-period 

T Trajectory Frame 

vec Matrix vectorization 

WGS84 World Geodetic System 1984 
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1  
 
Introduction 
1.1 Optimal Control and Trajectory Optimization 
From a historical perspective, the theory of optimal control evolved from the theory of 
calculus of variations. The origins of calculus of variations date back to the 17th century when 
Johann Bernoulli posed the famous Brachistochrone problem to the mathematicians at that 
time. In the 18th century, it was up to Leonhard Euler and Joseph-Louis Lagrange to develop 
the principle framework of the theory of calculus of variations, resulting in the first order 
necessary optimality conditions called the Euler-Lagrange equations. Only if the Euler-
Lagrange equations are fulfilled, the corresponding function is an extremal function and the 
respective functional reaches a maximum value, a minimum value or a saddle point.  
A comprehensive treatment of the theory of calculus of variations can be found e.g. in Refs. 
[Bolza, 1909] and [Bryson, 1998].  

The theory of optimal control distinguishes from the calculus of variations in that it separates 
the control variables from the state variables. An introduction to the theory of optimal control 
is given e.g. in Ref. [Kirk, 2004]. With regard to continuous time optimal control problems, 
the necessary optimality conditions are provided by the maximum principle that was derived 
by the Russian mathematician Lev S. Pontryagin and his co-workers in the middle of the  
20th century (see Ref. [Pontryagin, 1962]). The maximum principle results in a two-point 
boundary value problem involving the original states of the dynamic system as well as 
additional adjoint states and constitutes the basis for the solution of optimal control problems 
either by analytical or indirect methods. 

Optimal control is nowadays applied in many different disciplines, like e.g. economics, 
medicine, chemistry, robotics, etc. Many optimal control applications can also be found in the 
field of aerospace engineering. Here, the applications range from atmospheric flight problems 
to space flight problems as well as from civilian to military applications. In the majority of 
cases the task is to find a flight trajectory and the corresponding control inputs for a flight 
mission such that a certain objective value becomes minimized or maximized. Therefore, 
optimal control in the field of aerospace engineering is often referred to as trajectory 
optimization. Trajectory optimization has the goal… 

…to find an optimal control history and the corresponding optimal trajectory for a dynamic 
system that are fully compatible with the regarded dynamic system itself, minimize a certain 
objective function (cost functional), meet initial boundary conditions, interior point 
conditions and final boundary conditions and fully satisfy given equality and inequality 
constraints. 



8  INTRODUCTION 

At this, the dynamic system is usually represented by a set of ordinary differential equations 
for the computational solution of the optimal control problem. The set of ordinary differential 
equation is referred to as simulation model, since a simulation of the flight path can be done 
by integration of the ordinary differential equations given the controls and the initial state 
values.  

Besides the analytical and the indirect methods that are mainly based on Pontryagin’s 
maximum principle, a vast number of direct methods exists for the solution of trajectory 
optimization problems. With direct methods, the infinite dimensional continuous time optimal 
control problem is first transcribed into a finite dimensional parameter optimization problem 
by approximating the states and / or the controls by discrete functions. Then, non-gradient 
based algorithms like e.g. genetic algorithms or gradient based algorithms are applied for the 
solution of the parameter optimization problem. For a comprehensive overview on direct 
methods for optimal control see e.g. Refs. [Betts, 1998] and [Betts, 2001]. 

Especially for gradient based algorithms, the optimization procedures suffer from small 
convergence areas and the convergence properties of the applied algorithm depend heavily on 
the quality of the initial guess that is used for the control variables and the state variables to 
start the optimization. If the initial guess is too far away from the optimal solution, the 
optimization algorithm might fail to converge and no optimal solution is found at all or the 
algorithm gets stuck in a local minimum or maximum. This is especially true if trajectories 
are to be optimized that are highly dynamic or if complex dynamic systems are considered.  

Over the last decades, a vast number of trajectory optimization problems in aerospace 
engineering has been solved where the majority of the trajectory optimization problems dealt 
with point-mass models (see e.g. Refs. [Bulirsch, 1991a], [Bulirsch, 1991b], [Miele, 1986], 
[Ringertz, 2000], [Schultz, 1987] and [Grimm, 1990]): There, the aircraft is modeled as a 
point-mass and its motion is optimized. The attitude of the aircraft as well as the rotational 
motion are not incorporated in the simulation models. Although the resulting trajectories are 
optimal for the point-mass model, the full dynamic order of the flight system with its attitude 
and rotational dynamics is not accounted for and it is not guaranteed that the calculated 
optimal trajectory could be followed by the aircraft in reality. Moreover, in some cases 
boundary conditions or path constraints with respect to the attitude or the rotational motion of 
the aircraft may arise so that the treatment of the aircraft as a point-mass model is no longer 
sufficient and a simulation model of higher fidelity has to be implemented. By doing so, the 
complexity of the optimization problem is increased dramatically and the optimization faces 
severe problems that arise with the more accurate modeling of the flight system. 

To the author’s knowledge, only a few applications of atmospheric flight trajectory 
optimization exist that are based on higher-fidelity simulation models taking into account the 
rotational and attitude dynamics of the aircraft. Mostly, only single maneuvers over short time 
spans are optimized utilizing full 6-Degree of Freedom simulation models. The reason 
therefore can be seen in the difficulties that arise if high-fidelity simulation models are 
utilized, especially in the lack of suitable initial guesses for the solution of highly dynamic 
trajectories in conjunction with high fidelity 6-DoF simulation models. An overview on 
solved trajectory optimization problems that are based on 6-DoF simulation models is given 
in chapter 1.2.1, where also some spacecraft trajectory optimization problems are mentioned. 
At this, no algorithm for the generation of suitable initial guesses for optimization of 
atmospheric flight trajectories with high-fidelity simulation models was found. 
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In some cases, not only the controls and the initial states may be subject to optimization but 
also some additional parameters may be involved that can be related e.g. to the basic design of 
the aircraft itself or to the fundamental procedure of the flight mission that has to be 
accomplished. If e.g. the designers of the aircraft or the flight mission planers pursue the same 
goals as the pilots, the original optimal control problem only has to be augmented by the 
supplementary parameters and the solution is straight forward. Otherwise, if the decision 
makers aim at different or even opposing objectives, so-called bilevel programming problems 
arise with different objectives on the various optimization levels. For example, air race pilots 
are primarily interested in flying the given course in the minimum possible time and are not 
concerned about safety aspects as long as no penalties are imposed on them. In contrary, the 
main focus of the track planners is with regard to the safety of the race track layout, i.e. they 
want to design the race track such that it will be as safe as possible. For the described 
scenarios, the aircraft designers or the flight mission planers are first to decide, and then the 
pilots will make their decisions based on the given aircraft or the prescribed flight mission in 
order to reach their own objectives. At this, it is assumed that the aircraft designers or the 
flight mission planners know how their decisions affect the decisions of the pilots. 

Thus, a special class of bilevel optimal control problems is established, where an optimal 
solution of an upper level parameter optimization problem depends on the optimal solutions 
of one or more lower level optimal control problems. For the scenarios described above, the 
upper level optimization problem relates to the decisions of the aircraft designer respectively 
the flight mission planners while the lower level optimal control problems correspond to the 
decisions taken by the pilots. Furthermore, equality or inequality constraints on the upper 
level may be present that depend directly on the optimal trajectories or associated output 
functions of the lower level optimal control problems. 

In the literature, the term “bilevel optimization problem” means a bilevel programming 
problem where the lower level and the upper level optimization problems are represented by 
standard parameter optimization problems (Ref. [Knauer, 2009]). The term “bilevel optimal 
control problem” refers to bilevel programming problems where both the lower and the upper 
level optimization problems are given by optimal control problems. The bilevel programming 
problem described above is a combination of an upper level parameter optimization problem 
and one or more lower level optimal control problems. Nevertheless it is termed “bilevel 
optimal control problem” since the overall computational effort for the solution of the entire 
bilevel programming problem is clearly dominated by the solution of the lower level optimal 
control problems. 

With respect to the solution of bilevel optimization problems, a lot of research on theoretical 
fundamentals, solutions algorithms and applications has been carried out in the last decades 
and can be found in the literature (for an overview see e.g. Refs. [Vicente, 1994],  
[Colson, 2007] and [Dempe, 2003]). In contrary, the solution of bilevel optimal control 
problems has not gained so much attention up to now, and in the field of aerospace only few 
applications exist that are outlined in chapter 1.2.2. For the special type of bilevel optimal 
control problems described above, no applications and no efficient solution methods were 
found in the literature in the field of atmospheric flight. 

Similar types of bilevel programming problems arise in the field of multidisciplinary design 
optimization of aircraft respectively spacecraft vehicles or by applying the trajectory 
decomposition method. With the trajectory decomposition method, a single trajectory is split 
up into multiple subarcs. The subarcs are then optimized either sequentially or simultaneously 
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on the lower level of the bilevel optimization architecture, while the optimizer on the upper 
level has to ensure the integrity of the trajectory segments at the junction points. At this, all 
equality and inequality constraints are usually assigned to the lower level optimal control 
problems and no path constraints apply to the optimization problem on the upper level. 
Applications of the trajectory decomposition method that have been found in the literature are 
given in chapter 1.2.3. These applications are mainly limited to the optimization of spacecraft 
missions or trajectories.  

Multidisciplinary design optimization is the task of designing an aircraft or a spacecraft 
vehicle taking into account multiple disciplines like e.g. weights and sizing, structure, 
aerodynamics or aircraft performance. Therefore, the aircraft performance can be evaluated 
either by a mission analysis or by the solution of a trajectory optimization problem. One way 
to solve the multidisciplinary design task is the decomposition approach that decomposes the 
optimization problem into multiple sub-problems according to the disciplines involved in the 
respective design task. Thus, a bilevel programming structure results where the upper level 
optimizer has to ensure the integrity between the optimal solutions of the multiple sub-
problems associated to the disciplines involved in the vehicle design. The upper level 
optimizer adjusts the design variables and passes them to the lower level optimizers until the 
overall objective is optimized. Various decomposition methods exist, like e.g. Collaborative 
Optimization (CO), Enhanced Collaborative Optimization (ECO), Concurrent Subspace 
Optimization (CSSO) and Bilevel Integrated System Synthesis (BLISS). For an overview, see 
e.g. Refs. [Brown, 2004] and [Perez, 2004]. For the solution of multidisciplinary design 
optimization tasks, often response surface models, krigging models or neural networks are 
used to approximate the subsystems. In chapter 1.2.4, examples for the multidisciplinary 
design optimization of aircraft or spacecraft vehicles involving trajectory optimization that 
have been found in the literature are given where the majority of the applications is related to 
spacecraft vehicle design.  

Despite being similar, there are also differences between the type of bilevel optimal control 
problem specified above and the bilevel programming problems resulting from the 
decomposition of trajectory optimization problems respectively multidisciplinary design 
optimization problems. First, the decomposition approach artificially transforms an original 
standard single-level optimization problem into a bilevel programming problem where the 
overall objective that is to be optimized remains unchanged. In contrary, the bilevel optimal 
control problem described above features different objectives on the lower and upper level of 
the bilevel optimal control problem that may be even contradicting. Furthermore, path 
constraints on the upper level may exist that involve directly the trajectory or any other time-
dependent output function of the lower level optimal control problems. This is usually not the 
case for the bilevel programming problems obtained by applying the decomposition method. 

A crucial point for the solution of any bilevel programming problem is the efficient and 
accurate computation of the gradient information for the upper level optimization problem. 
The gradient information is usually obtained by a sensitivity analysis with respect to the 
optimal solutions of the various sub-problems what is called a post-optimality sensitivity 
analysis. As can be seen from the literature cited in chapter 1.2, different approaches exist to 
deal with the post-optimality sensitivity analysis. While for some applications the sensitivity 
analysis can be avoided by making some simplifying assumptions, for other applications the 
derivation of the gradient information is straightforward due to the structure of the bilevel 
programming problem, especially if the main problem parameters and the parameters of the 
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various subproblems are identical. Alternatively, the sensitivities can be computed 
approximately or by utilizing numerical differences. Especially numerical differences come 
along with a high computational cost in addition to the reduced accuracy of the obtained 
sensitivities. For example, a lower level trajectory optimization problem has to be solved 
twice with respect to each upper level parameter in order to compute the gradient information 
for the upper level by means of numerical differences.  

1.2 Literature Review – State of the Art 
In the following, a review of the literature on the essential topics related to the thesis at hand 
is given and the current state of the art is depicted. 

1.2.1 Trajectory Optimization utilizing  
6-Degree-of-Freedom Simulation Models 

Hoffman (Ref. [Hoffman, 1991]) optimizes a short-time turning maneuver for a high-alpha 
fighter aircraft utilizing a 6-Degree-of-Freedom simulation model and the multiple shooting 
method. The simulation model incorporates quaternions instead of the usually utilized Euler 
angles, and the objective is the final time required for flying a turning maneuver. 

In Ref. [Ciarcià, 2009], a 6-Degree-of-Freedom simulation model is utilized to model the 
dynamics of an Ekranoplane that is an aircraft designed for using ground effects at extremely 
low-flight altitudes. An optimal collision avoidance trajectory for a cruising Ekranoplane with 
regard to an obstacle that is located straight ahead the Ekranoplane is computed. The solution 
of the trajectory optimization problem was done by the multiple-subarc sequential gradient 
restoration algorithm. 

Pourtakdoust (Ref. [Pourtakdoust, 2009]) determines optimal flight paths for aircraft 
encountering microburst wind shears during critical flight phases like take-off or landing. The 
computation of the optimal escape respectively approach strategies is based on a 6-Degree-of-
Freedom formulation of the dynamic system and the optimal trajectories are found 
numerically using a gradient based algorithm. 

Optimal aircraft trajectories for terrain-masking flight of an unmanned aerial vehicle are given 
in Refs. [Ries, 2005] and [Corban, 2007], where the dynamics of the UAV are represented by 
a non-linear 6-Degree-of-Freedom simulation model. The solutions of the optimal control 
problems were accomplished by applying the multiple shooting method in conjunction with a 
sequential quadratic programming algorithm. 

Desai (Refs. [Desai, 2005] and [Desai, 2008]) proposes a two-timescale collocation 
architecture for the solution of a 6-Degree-of-Freedom reentry vehicle trajectory optimization 
problem. At this, a dense discretization grid is applied to the states associated with the high-
frequency rotational dynamics, while only a coarse discretization grid is used for the states 
corresponding to the slowly varying translational dynamics. Thereby, the size of the overall 
problem could be reduced significantly, allowing for a more efficient solution of the  
6-Degree-of-Freedom trajectory optimization problem by the collocation method. 

In the field of trajectory optimization for launch, reentry and orbit vehicles the software tool 
ASTOS (Aerospace Trajectory Optimization Software, formerly named ALTOS) includes the 
possibility to use dynamic 6-Degree-of-Freedom simulation models for the computation of 
optimal spacecraft trajectories (Refs. [Well, 1997], [Wiegand, 1999] and [Cremaschi, 2009]). 
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At this, the flight system is not controlled directly by the moments but the dynamic system 
model is augmented by a flight-control system. Thus, the control inputs to the dynamic 
system model are the commanded angle of attack and bank angle while the sideslip angle is 
set to zero. 

The trajectory for a launch vehicle mission that is the Titan IV mission from liftoff to park 
orbit is optimized in Ref. [Rao, 1996]. Therefore, Rao, Sutter and Hong developed a  
6-Degree-of-Freedom trajectory optimization program called 6D TOP that utilizes a full  
6-Degree-of-Freedom simulation model incorporating non-linear rotation and attitude 
equations of motion. 

Bollino (Refs. [Bollino, 2006a] and [Bollino, 2006b]) considers 3-Degree-of-Freedom point-
mass simulation models as well as full 6-Degree-of-Freedom simulations models for the 
solution of reentry guidance and trajectory optimization problems for the X-33 reusable 
launch vehicle. The discretized reentry trajectory optimization problems are solved using the 
Legendre pseudospectral collocation method. 

1.2.2 Bilevel Optimal Control 
In Refs. [Raivio, 2000] and [Ehtamo, 2001] pursuit-evasion games are interpreted as bilevel 
optimal control problems that are the visual identification of an aircraft respectively the 
escape of an aircraft from a missile encounter. At this, the optimal control problem of the 
pursuer trying to minimize the distance to the evader is identified with the lower level optimal 
control problem, while the evader’s optimal control problem is regarded as the upper level 
optimal control problem with the evader trying to maximize the distance to the pursuer. The 
resulting bilevel optimal control problem is then solved iteratively, where common 
discretization and nonlinear programming techniques can be applied to solve the two sub-
problems that are ordinary optimal control problems. Here, at each iteration step gradient 
information with respect to the cost function of the lower level optimal control problem is 
utilized for the solution of the upper level optimal control problem. 

For the computation of the gradient of the cost function of the lower level optimal control 
problem with respect to the terminal position of the pursuer, solely the sensitivities of the cost 
function respectively the capture condition (i.e. the terminal constraint) of the lower level 
optimal control problem with respect to the pursuer’s final position are required. 

Callies (Ref. [Callies, 2000]) determines the optimal ascent trajectory of a hypersonic rocket-
powered flight vehicle requiring that in case of a mission abort from every point of the 
nominal ascent trajectory an emergency landing site can be reached. These additional path 
constraints are regarded as (secondary) optimal control problems themselves and are solved 
along with the primary optimal control problem by means of an indirect multiple shooting 
method. 

The problem of simultaneously stabilizing a finite number of dynamic flight systems 
respectively flight conditions under a single feedback controller is addressed in Ref.  
[Perez, 2008]. There, a decomposition method is applied that results in a bilevel design 
optimization architecture. While on the sub-level the stability of the individual plants has to 
be achieved, the converged top-level optimization problem assures that within each individual 
subsystem the same single feedback controller is implemented. 
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For the optimization of chemical processes by means of collocation methods, Tanartkit and 
Biegler (Ref. [Tanartkit, 1997]) derive a bilevel programming problem by splitting an optimal 
control problem into an inner and an outer problem, where the inner problem solves the 
corresponding non-linear programming problem on a fixed mesh while the outer problem is 
devoted to minimize the objective function utilizing the mesh element lengths as optimization 
parameters. In the outer problem, the gradients of the objective function with respect to the 
element lengths are either computed analytically by a sensitivity analysis of the inner problem 
or numerically by finite differences where the inner problem is re-solved for perturbed 
element lengths. 

1.2.3 Trajectory Decomposition 
A trajectory decomposition method for the selection of optimal intermediate targets w.r.t. a 
spacecraft trajectory optimization problem has been formulated by Petersen et al. (Ref. 
[Petersen, 1977]). The trajectory is split into natural segments like e.g. ascent, orbital or 
reentry representing the subproblems within the two-level optimization framework. The 
master or upper level optimization algorithm coordinates the solutions of the subproblems and 
ensures the continuity of the entire trajectory at the junction points. The subproblems are 
solved sequentially and analytical equations based on linearized subproblem equations are 
used for the evaluation of the master-level gradient. 

Rahn (Refs. [Rahn, 1998], [Rahn, 1996a] and [Rahn, 1996b]) applies the trajectory 
decomposition method to optimize simultaneously the trajectory and the design of a space 
transportation system for a space flight mission. The entire trajectory is split into multiple 
flight path segments that are optimized in parallel on the sub-level of the two-level 
optimization scheme. The various path segments are coordinated by the main-level optimizer 
by determining subproblem targets such that the global objective is optimized. At this, the 
gradient information for the main-level optimizer is obtained by means of numerical 
differences. 

Beltracchi (Ref. [Beltracchi, 1992]) solves the ground to mission (all-up) trajectory 
optimization problem for a two-stage earth-to-orbit launch vehicle by applying the trajectory 
decomposition method. At this, the trajectory is split up into a booster stage and an upper 
stage that are regarded as sub-level optimization tasks. For the booster stage, the objective is 
the maximum throw weight to a park orbit while for the upper stage the objective is the 
maximum payload that can be transferred from the park into the mission orbit. The main-level 
optimization problem coordinates the parameters of the park orbit such that the payload that 
can be transferred to the mission orbit becomes maximal. The objective of the main-level 
optimization problem is a direct function of the objectives of the two sub-level optimization 
tasks. Thus, the gradient of the main-level objective can be obtained straightaway by applying 
the chain rule for differentiation and using the parameter sensitivity derivatives of the sub-
level objective functions. 

Ledsinger (Refs. [Ledsinger, 2000a], [Ledsinger, 2000b] and [Ledsinger, 1998]) utilizes the 
Collaborative Optimization framework to optimize branching trajectories of an advanced two-
stage-to-orbit launch vehicle where the flight path splits up into two branches, the orbital 
branch and the booster branch. After booster separation, the orbital branch is represented by 
the ascent trajectory of the upper stage into the orbit while the booster branch is the trajectory 
of the booster on its way back to the launching site. Here, a simplified algebraic form for the 
computation of the gradient information on the upper system level is used that avoids the 
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computationally expensive post-optimality sensitivity analysis for the optimal solutions of the 
various subsystem-level optimization problems. 

In Ref. [Sugar, 1974], a decomposition technique for the solution of minimum-time optimal 
control problems by indirect methods is proposed where the original standard single-level 
optimal control problem is transformed into a three-level optimization problem. Therefore, the 
original trajectory is decomposed into multiple arcs due to intermediate constraints or 
discontinuities. On the first level, each arc is optimized given the initial and final states and 
phase transition times by the second level controller respectively third level optimizer. The 
coupling of the single arcs in time is accomplished by the second level controller, while the 
third level optimizer minimizes the overall objective by adjusting the states at the arc 
boundaries. 

1.2.4 Multidisciplinary Design Optimization involving Trajectory 
Optimization 

Mor and Livne (Refs. [Mor, 2006] and [Mor, 2007]) focus on the multidisciplinary 
optimization of launch and reentry vehicles including the discipline of trajectory optimization. 
The sensitivities of the optimal solutions for the ascent or reentry trajectories are obtained 
using either finite differences or the concept of feasible directions. The concept of feasible 
directions augments the parameter vector for the controls and the states by vehicle design 
variables and formulates an additional optimization problem that gives the sensitivities of the 
objective with respect to the additional shape or structural design variables. 

Braun applies the Collaborative Optimization architecture to design a launch vehicle 
involving the disciplines propulsion, weights and sizing, cost and ascent trajectory 
optimization (Refs. [Braun, 1996] and [Braun, 1997]). The issue of computing the subsystem-
level post-optimality sensitivity data is not addressed. 

Brown and Olds (Ref. [Brown, 2006]) evaluate various multidisciplinary optimization 
techniques by solving a reusable launch vehicle design problem. Besides the fixed-point 
iteration method and the all-at-once technique, three bi-level optimization techniques are 
considered, namely Bi-Level Integrated Synthesis (BLISS), Collaborative Optimization (CO) 
as well as Modified Collaborative Optimization (MCO). A propulsion tool, a performance 
tool and a weights and sizing tool are involved in the multidisciplinary optimization task. 
Within the performance tool, the program to optimize simulated trajectories (POST) was 
utilized to analyze and optimize the launch vehicle trajectories. For the solution of the 
multidisciplinary optimization problem, the outputs of the various tools were replaced by 
response surface models. The response surface models are generated by a sequence of 
experiments and describe the dependency of the output (response) variables with respect to 
one or more input variables by response surface equations. Response surface equations are 
polynomial functions that are utilized to approximate the complex model response. 

Sobieszczanski-Sobieski provides two methods for the generation of sensitivity data of 
optimal solutions w.r.t. problem parameters that are not subject to optimization (Ref. 
[Sobieszczanski-Sobieski, 1982]). While the one method derives the sensitivity equations 
from the Lagrange multiplier equations of the optimization problem, the other method is 
based on extremum conditions of the penalty functions involved in sequential unconstrained 
minimization techniques (SUMT). Numerical examples for the application of the sensitivity 
equations are given namely the optimization with conflicting objectives and the extrapolation 
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of the optimal solution. Further possible applications are mentioned that are the utilization of 
the sensitivity equations in order to predict a change in the constraint status or to solve large 
optimization problems by decomposition into multiple subproblems. 

A decomposition method for the optimization of multidisciplinary engineering systems called 
Bilevel Integrated System Synthesis (BLISS) is given in Refs. [Sobieszczanski-Sobieski, 2000] 
and [Sobieszczanski-Sobieski, 1998]. The decomposition method is characterized by 
alternating optimizations on the system level and the subsystem (or discipline) level that are 
linked by sensitivity information. Two versions of BLISS are given with one version avoiding 
the computationally expensive post-optimality sensitivity analysis on the subsystem level. The 
method is tested on an aircraft configuration problem involving aircraft structure, 
aerodynamics, propulsion and performance, where the performance optimization has the goal 
to maximize the range using the Breguet range equation. 

Braun (Ref. [Braun, 1993]) applies the multi-level decomposition strategy to the complex 
multidisciplinary design of a reusable, single-stage-to-orbit (SSTO) vehicle. The resulting 
hierarchical decomposed programming problem is solved using first-order post-optimality 
sensitivity information. There, the main problem parameters and the parameters of the various 
subproblems are identical so that the subproblem objective gradients equal the main problem 
objective gradient. 

In Ref. [Braun, 1996], Braun and Kroo develop a Collaborative Optimization framework for 
the solution of multidisciplinary optimization tasks. They introduce a simplified algebraic 
form for the computation of the gradient information for the discrepancy constraints on the 
system level. The simplified algebraic form avoids the computationally expensive post-
optimality sensitivity analysis w.r.t. the optimal solutions of the various subsystem-level 
optimization problems. The decomposition method is applied to optimize a lunar ascent 
trajectory where the trajectory is split into three subsegments. Within the Collaborative 
Optimization, the trajectory subsegments represent the subsystem-level optimization problems 
that are coordinated by the system-level optimization problem with its discrepancy 
constraints. 

Roth develops the Collaborative Optimization technique further, resulting in the so-called 
Enhanced Collaborative Optimization (ECO) technique (Refs. [Roth, 2008a] and  
[Roth, 2008b]). The system level optimization problem is an unconstrained minimization 
problem that ought to ensure consistency between the various sub-level systems while the 
global objective itself is not involved in the system level optimization problem. Instead, 
quadratic models of the global objective together with linearized models of all subspace 
constraints are included in each subspace optimization problem. For the evaluation of the 
linearized constraint models, a constraint violation minimization (CVM) problem is solved 
and a post-optimality sensitivity analysis is carried out to give the coefficients for the 
linearized constraint models. The Enhanced Collaborative Optimization method is applied to 
an analytic test case and the design of an aircraft family, involving an optimization of the 
aircraft performance using an aircraft conceptual design tool. 

1.3 Contributions of the Thesis 
The following aspects are regarded as the main contributions of this thesis to advance beyond 
the current state of the art in the respective fields: 
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• Deployment of a flexible method for the analytical evaluation of the gradient and 
the hessian of the dynamic flight system 
For the computation of the Jacobian and the Hessian matrix of the optimal control 
problem, the first and second order derivative of the dynamic system with respect to 
the state vector and the control vector has to be evaluated. In chapter 2.2.4, a method 
is proposed that is based on the block structure of the implemented simulation model 
and that is very flexible with respect to modifications in the simulation model. 

• Development of a scalable, multi-fidelity fixed-wing aircraft simulation model 
specifically tailored for optimization tasks 
The scalable, multi-fidelity simulation model features a sequential structure and takes 
into account the full dynamic order of the regarded flight systems as well as 
supplementary subsystems (e.g. actuator dynamics) and environmental influences like 
e.g. static and convective wind fields. Thus, it is ensured that the resulting trajectories 
are dynamically realistic and can be flown by the aircraft in reality. Furthermore, the 
simulation model involves an inversion controller and reference models. The inversion 
controller also takes into account environmental influences and features a sequential 
structure identical to that of the simulation model itself. The simulation model is 
described in detail in chapter 3. 

• Establishment of an algorithm for the solution of complex aircraft trajectory 
optimization problems 
The simulation model with its special structure and additional features constitutes the 
basis for the establishment of the robust and effective process for the solution of rather 
complex aircraft trajectory optimization problems. The optimization procedure starts 
with a homotopy for the generation of an initial guess for an optimal point-mass 
trajectory and ends up with the optimal trajectory for the full, non-linear 6-DoF system 
dynamics without the necessity for the user to provide any initial guess. The 
optimization algorithm is given in chapter 4. 

• Development of an efficient algorithm for the solution of the above described 
bilevel optimal control problem 
The proposed algorithm is based on a post-optimality sensitivity analysis that utilizes 
second order derivative information with respect to the lower level optimal control 
problems. Thus, it allows for a direct computation of the gradient of the upper level 
optimization problem at each iteration step so that the time consuming evaluation of 
the gradient of the upper level optimization problem by numerical techniques can be 
avoided. The algorithm for the efficient solution of the above described bilevel 
optimal control problem is outlined in chapter 5. 

Furthermore, in chapter 2 a framework for the solution of optimal control problems by the 
direct multiple shooting method is formulated. The framework comprises the discretization of 
the continuous time optimal control problem, the analytical evaluation of the Jacobian and the 
Hessian, a suitable scaling of the problem as well as a mesh refinement algorithm. 

Finally, in chapter 6 results are shown that originate from the application of the proposed 
optimization algorithms to an Air Race optimal control problem. The Air Race optimal 
control problems pose a very challenging task with regard to trajectory optimization since the 
participating aerobatic aircraft are very agile. Thus, the resulting trajectories are highly 
dynamic and the full dynamic order of the regarded flight systems has to be taken into 
account to achieve realistic optimal trajectories. 
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Fundamentals of Optimal Control 
For the solution of optimal control problems respectively trajectory optimization problems, 
one can distinguish between two basically different types of methods, namely the indirect 
methods and the direct methods. The indirect methods are based on the theory of calculus of 
variations (Ref. [Bliss, 1946]), where necessary optimality conditions subject to a local or 
global minimum (maximum) principle are derived that have to be fulfilled by the optimal 
solution. For trajectory optimization problems with state and control constraints, this usually 
leads to the formulation of a multi-point boundary value problem with corresponding state 
and adjoint differential equations. Then, the resulting multi-point boundary value problems 
are discretized and solved by an appropriate solution method, e.g. the multiple shooting 
method (Refs. [Callies, 2000], [von Stryk, 1994]). Since the indirect methods make explicit 
use of the Hamiltonian, the adjoint variables and the minimum (respectively maximum) 
principle, this problem-dependent information has to be provided by the user for the solution 
of an optimal control problem. 

By applying direct methods the original infinite-dimensional optimal control problems are 
transformed into finite-dimensional non-linear parameter optimization problems by 
discretizing either solely the controls or both the states and the controls. Methods that rely on 
the discretization of both the states and the controls are referred to as collocation methods, 
whereas the discretization of solely the controls gives rise to the so-called shooting methods. 
With regard to the collocation methods, one can further distinguish between local and global 
collocation methods where local collocation methods are based on integration schemes like 
e.g. the Euler method or the Runge-Kutta method. Global collocation methods make use of 
polynomials for the discretization of the states and the controls and are also termed 
orthogonal or pseudospectral collocation methods. A special type of direct methods are the 
inversion based trajectory optimization methods or the methods of differential inclusion, 
where the controls or some of the states together with the controls are eliminated from the 
system model and only the remaining states are discretized. With all direct methods, the 
discretized optimization problems are solved by utilizing non-linear programming methods 
like e.g. sequential quadratic programming. In contrast to the indirect methods, no 
information concerning the Hamiltonian, the adjoint variables or the minimum principle has 
to be provided by the user for the solution of the optimal control problem. 

Thus, the fundamental difference between the direct and the indirect methods is the sequence 
of the optimization and the discretization: while the indirect methods first optimize, then 
discretize, the direct methods first discretize, then optimize. Comprehensive surveys on the 
different methods of trajectory optimization can be found e.g. in Refs. [Betts, 1998],  
[Betts, 2001], [Riehl, 2006], [Ross, 2002], [von Stryk, 1992], [von Stryk, 1994]. In the 
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following, the general optimal control problem for problems with only one phase as well as 
for problems with multiple phases is stated. Then, a framework for the solution of the optimal 
control problem by the multiple shooting method is established. This framework also 
comprises an evaluation of the Jacobian and Hessian of the optimal control as well as various 
mesh refinement procedures. 

2.1 The General Optimal Control Problem 
In general, a trajectory optimization problem can be stated as follows:  

Determine the optimal control history 

 ( ) m
opt t R∈u  (2.1)

the corresponding optimal state trajectory 

 ( ) n
opt t R∈x  (2.2)

and possibly real parameters 

 uR∈p  (2.3)

that minimize the Bolza cost functional 
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subject to the state dynamics 

 ( ) ( ) ( )( )tttt ,,, puxfx =&  (2.5)

the initial and final boundary conditions 

 ( )( ) nmqtt q +≤∈=               ,, 0000 Rψ0pxψ  (2.6)
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the interior point conditions 

 ( ) ( )( ) kittt iiii  ..., ,1       ,,, == 0puxr  (2.8)

and the equality and inequality conditions 

 ( ) ( )( ) r
eqeq ttt R∈= C0puxC        ,,,  (2.9)

 ( ) ( )( ) s
ineqineq ttt R∈≤ C0puxC        ,,,  (2.10)

where m is the number of controls, n the number of states, u the number of real parameters,  
q the number of initial boundary conditions, p the number of final boundary conditions, k the 
number of interior point conditions, r the number of equality conditions and s the number of 
inequality conditions. The cost functional (2.4) is termed Bolza cost functional since it 
comprises an integral term L as well as a final term e. If only the integral term L is present in 
the cost functional, it is termed Lagrange cost functional. Otherwise, if the cost functional 
consists only of the final term e, it is termed Mayer cost functional. 
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Multi-phase optimal control problems 
Multi-phase optimal control problems result if interior point conditions (2.8) are present that 
cannot be implemented directly for the solution of the optimal control problem. Then, the 
entire trajectory has to be split up into k+1 phases and the interior point conditions (2.8) are 
transformed into final boundary conditions for each phase: 

 ( ) ( )( ) kittt ifififi  ..., ,1       ,,, ,,, == 0puxr  (2.11)

in which tf,i is the final time of the i-th phase. Additionally, the multiple phases have to be 
connected to the preceding phases to guarantee the continuity of the state and the control time 
histories at the phase boundaries: 

 ( ) ( ) kitt iif ,...,1       1,0, ==− + 0xx  (2.12)

 ( ) ( ) kitt iif ,...,1       1,0, ==− + 0uu  (2.13)

where t0,i is the initial time of the i-th phase. Within the optimization problem, Eqs. (2.12) and 
(2.13) are treated as supplementary equality conditions. 

Furthermore, multi-phase optimal control problems arise if the number of states, controls or 
real parameters changes within the trajectory optimization problem or if different Lagrange 
cost functions, path equality constraints or path inequality constraints apply for different 
phases of the trajectory that is to be optimized. Thus, in its most general form, a multi-phase 
optimal control problem can be stated as follows: 

Determine the optimal control histories 

 ( ) im
opti t R∈,u  (2.14)

the corresponding optimal state trajectories 

 ( ) in
opti t R∈,x  (2.15)

and possibly real parameters 
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that minimize the Bolza cost functional 
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subject to the state dynamics 

 ( ) ( ) ( )( )tttt iiiii ,,, puxfx =&  (2.18)

the initial and final boundary conditions 

 ( )( ) iii
q

iiiiii nmqtt i +≤∈=               ,, ,0,0,0,0 Rψ0pxψ  (2.19)

 ( )( ) i,,,,               ,, nmptt ii
p

ififiifiif
i +≤∈= Rψ0pxψ  (2.20)

and the equality and inequality conditions 

 ( ) ( )( ) ir
ieqiiiieq ttt R∈= ,,        ,,, C0puxC  (2.21)
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 ( ) ( )( ) i
,,        ,,, s
iineqiiiiineq ttt R∈≤ C0puxC  (2.22)

where ph is the number of phases. The subscript i denotes the state vector x, the terminal cost 
function e, the Lagrange cost function L, the initial and final boundary conditions Ψ0 and Ψf 
and the equality and inequality constraints Ceq and Cineq of the respective phase i. 

At the phase transition times ti, phase transition conditions gi enforce prescribed relationships 
between the states, the controls and the real parameters of the adjacent phases: 

  ( ) ( ) ( ) ( )( ) phittttt iiiiiifiiiifii ..., ,2       ,,,,,, 1,01,1,01,1 ==−−−−− 0ppuuxxg  (2.23)

where 

  phittt iifi ..., ,2       ,01, === −  (2.24)

2.2 Framework for the Solution of the Optimal Control 
Problem 

2.2.1 Multiple Shooting Method 
As mentioned above, with the shooting method solely the controls are discretized in order to 
transform the infinite-dimensional optimal control problem into a finite-dimensional 
optimization problem. The equations of motions are fulfilled by numerical integration of the 
corresponding ordinary differential equations. The shooting method is also referred to as 
sequential approach (Ref. [Huesman, 2003]), recursive approach (Ref. [Büskens, 2000]) or 
reduced discretization approach (Ref. [Gerdts, 2007]), since only the controls are discretized 
and the states are obtained recursively by integrating the differential equations. Furthermore, 
it has to be distinguished between the single shooting method and multiple shooting method. 
The single shooting method integrates the state equations from the initial point to the terminal 
point of the trajectory in one sweep. Thus, for a trajectory optimization problem with free 
final time the parameter vector z is made up by the free states x0,free at the initial time t0 in 
addition to the vector u of control variables and the free final time tf: 

 T
freeft ],,[ ,0 uxz =  (2.25)

In contrast to the single shooting method, the multiple shooting method introduces a relatively 
small number of so-called multiple shooting nodes xMS,j, j = 1, …, m for the states on a mesh 
of m grid points: 

 ( ) ( )ffmMSmMSMSMS tt ττττττττ =<<<<<<= − ,1,2,1,00 ...  (2.26)

Here, τ denotes the normalized time and is given by the following expression: 

 ( ) f
f
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−
−

= 0
0

0       ,τ  (2.27)

Then, the state equations have to be multiplied by (tf − t0) for the integration w.r.t. the 
normalized time τ: 
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Consequently, the integration of the state dynamics is not carried out from the initial states x0 
to the end of the trajectory in a single sweep, but is reset to the state values xMS,j at the 
multiple shooting nodes. This procedure is depicted in Fig. 1. The state values xMS,j are 
additional parameters of the nonlinear programming problem, and for a solution to be optimal 
the defects at the multiple shooting nodes resulting from the integration of the state dynamics 
have to be zero. By introducing multiple shooting nodes, the Jacobian of the parameter 
optimization problems shows a sparse block structure in contrary to the single shooting 
method that features a dense Jacobian. Thus, the multiple shooting method is well suited for 
the solution of trajectory optimization problems by applying non-linear programming 
techniques for large-scale optimization problems that explicitly exploit the sparsity of the 
Jacobian, like e.g. SNOPT (Ref. [Gill, 2007]). Furthermore, by dividing the trajectory into 
multiple segments for the integration, the solution of the ordinary differential equations by the 
numerical integration is less sensitive to the initial conditions and the robustness and stability 
of the solution of the trajectory optimization problems is increased. Together with the free 
initial states x0,free that are also subject to optimization the complete parameter vector z of an 
optimal control problem with free final time tf applying the multiple shooting method reads: 

 T
mMSMSMSMSfreeft ],,...,,,,,[ ,3,2,1,,0 uxxxxxz =  (2.29)
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Figure 1. Multiple shooting 

2.2.2 Control Discretization 
For the discretization of the controls u(τ), a mesh of n+1 grid points is chosen such that 

 ( ) ( )ffnn tt ττττττττ ==<<<<<= −12100 ...  (2.30)

In between the grid points τi, i = 0, …, n, the approximated controls u(τ) are obtained by linear 
interpolation of the control values ui = u(τi), i = 0, …, n at the grid points: 
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Alternatively, the control function u(τ) can be specified by a B-spline representation of degree 
k−1 (respectively order k), where the elementary B-splines are defined recursively (Refs.  
[de Boor, 72] and [Cox, 72]) by the initialization splines for k = 1 
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and the higher-order splines (k > 1) 
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with the auxiliary grid points λj, j = 1, …, n+2k−1 
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This means that the auxiliary grid given by Eq. (2.34) is identical to the grid given by  
Eq. (2.30) with a multiplicity of the first and the last grid point equal to the order k of the  
B-spline. In Fig. 2, exemplarily the elementary B-splines N1,5, N2,5 and N3,5 on an equidistant 
grid with n = 4 are depicted. 
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Figure 2. Elementary B-Splines on an equidistant grid with n = 4 
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The control function u(τ) of order k can then be written as a linear combination of the 
elementary B-splines Nj,k: 

 ∑
−+

=

=
1

1  
, )()(

kn

j
kjj Ncu ττ  (2.35)

where the cj, j = 1, …, n+k−1 are the B-spline coefficients. At this, the vector u of the control 
variables in the parameter vector z of the trajectory optimization problem is replaced by the 
vector c of B-spline coefficients cj: 

 mjt T
jMSfreef ,...,1      ],,,[ ,,0 == cxxz  (2.36)

Utilizing a B-spline representation of order k = 1, the controls are piecewise constant and the 
control values in between the grid points λj = τj−1 and λj+k = τj+k−1 equal the respective B-spline 
coefficients cj. For a B-spline representation of order k = 2, continuous and piecewise linear 
controls are obtained identical to the linear interpolation given by Eq. (2.31), where the  
B-spline coefficients cj are just the discretized control values at the respective grid points  
λj+1 = τj−1. Fig. 3 depicts the elementary B-splines of order k = 2 and k = 3 on a generic, 
equidistant grid with normalized time τ and n = 4. Especially for higher-order approximation 
of the controls, the utilization of B-splines has the major advantage that the elementary  
B-splines support the control function u(τ) only locally (Ref. [Dierckx, 1993]). Thus, the  
B-spline coefficients cj influence the control function u(τ) only in the interval [λj , λj+k) which 
is not the case with other spline interpolation methods. This results in a specific sparsity 
pattern of the Jacobian that can also be exploited in order to reduce the computational effort 
for the non-linear programming technique that is utilized to solve the trajectory optimization 
problem. It is mentioned that different elements of the control vector u may be approximated 
by B-splines of different order. 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

normalized time τ [-]
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

normalized time τ [-]  
Figure 3. Elementary B-Splines of order k = 2 and k = 3 with [τ0, τf]=[0,1] 

In addition to the state discretization grid and the control discretization grid, a grid for the 
evaluation of the path constraints with the normalized time points τPC,p, i = 1, …, p is 
introduced: 

 fpPCpPCPCPC ττττττ ≤<<<<≤ − ,1,2,1,0 ...  (2.37)
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Furthermore, the parameter vector z can be augmented by additional parameters p that are 
also subject to optimization but that do not pertain to the state discretization variables nor the 
control discretization variables: 

 mjt T
jMSfreef ,...,1      ],,,,[ ,,0 == puxxz  (2.38)

By applying the multiple shooting method and the control discretization, the original 
continuous-time infinite-dimensional optimal control problem stated in chapter 2.1 is 
transformed into the following finite-dimensional non-linear programming problem: 
Minimize 
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subject to the parameter vector z given by Eq. (2.38) such that the following equality and 
inequality constraints are fulfilled: 
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Here, x(z, τj-1, τj) are the state values resulting from the integration of the equations of motion 
given by Eq. (2.5) respectively Eq. (2.18) in the interval [τj-1, τj]: 
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The non-linear programming problem defined by Eqs. (2.40) and (2.41) is efficiently solved 
by software for large-scale non-linear optimization like e.g. SNOPT (Ref. [Gill, 2007]) or 
IPOPT (Ref. [Wächter, 2009]). Therefore, usually an augmented Lagrange cost function L0 is 
defined that features the following form: 

 CμTJL +=0  (2.42)

where μ are the so-called Lagrange multipliers. Necessary conditions for any solution of the 
nonlinear programming problem to be an optimal one are the so-called Karush-Kuhn-Tucker 
conditions. The Karush-Kuhn-Tucker conditions require the complementarity of the Lagrange 
multipliers for the active constraints, i.e. 

 0≤i
aμ  (2.43)

where μi
  a is the Lagrange multiplier associated with the i-th active constraint. 

2.2.3 Multi-Phase Optimal Control Problems 
As mentioned in chapter 2.1, optimal control problems can involve multiple phases with 
changes in the number of states, controls and parameters from one phase to another as well as 
various numbers of path constraints in the different phases. The various phases may also be 
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associated with different types of initial and final boundary conditions ψ, terminal cost 
functions e or integral Lagrange cost functions L. Then, the extended objective and the 
augmented constraint vector of the multi-phase optimal control problem read: 
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where ph is the number of phases of the multi-phase trajectory optimization problem. The 
state vector xi(z, τj-1,i, τj,i) results from the integration of the equations of motion in the time 
interval [τj-1,i, τj,i] in phase i: 
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Here, the subscript i denotes the state vector x, the terminal cost function e, the Lagrange cost 
function L, the initial and final boundary conditions Ψ0 and Ψf and the equality and inequality 
constraints Ceq and Cineq of the respective phase. 

Additionally, phase transition conditions gi have to be taken into account that enforce 
prescribed relationships between the states, the controls and the real parameters of the various 
phases at the phase transition times ti: 

  ( ) ( )( ) phitiiii ..., ,2       ,,,1 ==− 0zzxzxg  (2.47)

where 

  phittt iifi ..., ,2       ,01, === −  (2.48)

2.2.4 Gradient, Jacobian and Hessian Evaluation 
While all of the programs for the solution of the discretized optimal control problem require 
the gradient of the objective (Eq. (2.44)) and the Jacobian of the constraint vector (Eq. (2.45)), 
at least some non-linear optimization programs also necessitate the Hessian of the objective 
and the constraint vector in order to be able to solve the discretized optimal control problem 
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efficiently. Here, Jacobian means the first order derivative of the constraint vector with 
respect to parameter vector z of the discretized optimal control problem and Hessian its 
second order derivative. One possibility would be the evaluation of the Jacobian and the 
Hessian by numerical techniques like e.g. finite differences. Requiring no additional 
information from the user, the application of finite differences is straight forward, but results 
in a considerable computational effort and suffers from a lack of accuracy. Thus, the 
sensitivity equation approach (Refs. [Gerdts, 2007], [Büskens, 2000]) is implemented to allow 
for an efficient analytical computation of the gradient, the Jacobian and the Hessian for the 
discretized trajectory optimization problem. In order to be able to apply the sensitivity 
equation approach, the derivatives of the equations of motion (2.5) with respect to the state 
vector x(t), 

 
( ) ( ) ( )( )

TT
tttt

x
puxf

x
x

∂
∂

=
∂
∂ ,,,&

 (2.49)

the control vector u(t), 
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and the parameter vector p, 
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have to be calculated at every evaluation time step t during the integration of the equations of 
motion of Eq. (2.5). With regard to the quite complicated and extensive simulation model 
given in chapter 3, the analytical derivation of these derivatives would be a very daunting 
task. Therefore, an approach has been found that exploits the modular block structure of the 
simulation model and promises to be very flexible with regard to modifications of the 
simulation. This approach is illustrated in Fig. 4 for a simplified structure of the simulation 
model. Instead of deriving the Jacobian and the Hessian of the differential equations (2.5) 
with respect to the states x and the controls u for the entire simulation model at once, for each 
block only the derivatives of its outputs with respect to its inputs are derived and implemented 
in the simulation model. Due to the modular block structure of the simulation model, the 
equations that have to be derived analytically are quite succinct. The inputs and outputs of the 
various blocks of the simulation model are then joint together in order to give the required 
Jacobian and Hessian for the entire simulation model. Exemplarily, the Jacobian of the  
output y22 of the simulation model depicted in Fig. 4 is given by 

 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∂
∂

∂
∂⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

=

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

∂
∂

12

11

11

11

11

22

21

22

12

11

11

11

21

11

12

21

11

21

21

21

11

22

21

22

12

22

11

22

21

22

0
001

 

 

u
y

u
y

y
y

u
y

u
y

u
y

u
y

u
u

u
u

u
u

y
y

u
y

u
y

u
y

u
y

 (2.52)



THEORETICAL FOUNDATIONS  27 

Within the subsystem f2, only the derivatives ∂y22/∂u21 and ∂y22/∂y11 are implemented, while 
the subsystem f1 provides the derivatives ∂y11/∂u11 and ∂y11/∂u12 that are in turn inputs to the 
subsystem f2. 

f2
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21u

11u

12u

21y

22y
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11y

 
Figure 4. Modular simulation model structure 

With regard to simulation models that represent flight system dynamics, usually many 
transformation matrices between the different reference frames and many matrix-vector 
products are involved. While the derivation of a vector with respect to another vector ends up 
in a matrix, the derivation of a matrix with respect to a vector gives a three-dimensional 
tensor. The second order derivative of a matrix with respect to a vector even yields a four-
dimensional tensor. At this, special care has to be taken if derivatives of matrix-vector 
products are to be implemented in the simulation model. The rules for the differentiation of 
matrix-vector products respectively Kronecker products can be found e.g. in Ref.  
[Magnus, 1985]. For the first order derivative, the following relationship holds: 
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where vec() denotes the vectorization of a matrix, converting the matrix into a column vector 
by stacking the columns of the matrix vertically. The Kronecker product is an operation 
between two matrices resulting in a block matrix, where each element of the first matrix is 
multiplied with the second matrix. In Eq. (2.53), the dimensions of the matrix M and the 
vectors x and a are: 

 rm×∈RM (2.54)

 1×∈ rRx (2.55)

 1×∈ sRa (2.56)
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For example, with M being a 3×3 matrix, x being a 3×1 vector and a being a 2×1 vector,  
Eq. (2.53) evaluates to: 
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(2.57)

where the Kronecker product is: 
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By expanding Eqs. (2.57) and (2.58) the derivative of the matrix-vector product becomes: 
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The second order derivative of the matrix-vector product is obtained by: 
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2.2.5 Sensitivity Equations 
The sensitivity equations are the first and second order state derivatives with respect to the 
parameter vector z of the discretized optimal control problem and indicate how the state 
vector x at time t is changed if any element of the parameter vector z is perturbed. These 
sensitivities are obtained by integrating the differential equations for the state sensitivities that 
result from the differentiation of the state dynamics given with respect to the parameter  
vector z (Ref. [Gerdts, 2007]). Given the state dynamics 

 ( )puxfx ,),(),( fttt=&  (2.61)

the first order sensitivity equations w.r.t. the parameter vector z evaluate to: 
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Here, the dot denotes the differentiation of the state vector x with respect to the normalized 
time τ, i.e. the time transformation is already incorporated in the function f. The matrices 
∂f/∂xT, ∂f/∂uT, ∂f/∂tf and ∂f/∂pT are the derivatives of the states dynamics with respect to the 
control vector u, the state vector x, the final phase time tf and a parameter vector p (see  
Eqs. (2.49) to (2.51)). The normalized time τ is given by Eq. (2.27). With respect to the 
parameter vector z of Eq. (2.38), the derivative ∂tf/∂zT and ∂p/∂zT evaluate to: 
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Accordingly, the derivative ∂u(t)/∂zT is given by: 
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The derivative ∂u(t)/∂uT depends on the type of discretization that is applied for the 
transformation of the infinite-dimensional optimal control problem. For linearly interpolated 
controls, the differentiation of u(t) with respect to the parameters ui, i = 1, …, n yields 
functions that depend solely on the grid points τi so that the derivatives ∂u(t)/∂ui

T have to be 
computed only once for a specific control grid by the following formulae: 
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where nc is the number of controls and 0 the zero matrix. If a B-spline representation of 
degree k is chosen for the discretization of the controls, the derivative matrix ∂u(t)/∂uT has to 
be replaced by the derivative matrix ∂u(t)/∂cT. The evaluation of the derivatives ∂u(t)/∂cT is 
straightforward, resulting in the corresponding elementary B-splines: 
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It is mentioned that the derivative matrix ∂u(t)/∂cT can be calculated offline before the 
optimization starts since it does not depend on the actual value of the optimization parameter 
vector c for the controls. 
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The corresponding second order sensitivity equations are obtained by differentiating  
Eq. (2.62) with respect to the parameter vector z  
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Differentiating the single terms gives: 
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where nvar is the total number of variables of the transformed optimal control problem, i.e. the 
length of the parameter vector z. Here, the second order derivatives of the final time ∂2tf/∂zT2 
and the parameter vector ∂2p/∂zT2 evaluate to zero. Furthermore, for linearly interpolated 
controls the second order derivative ∂2u/∂zT2 is given by a three-dimensional tensor that 
contains only zeros. By applying the chain rule, the mixed second order derivatives of  
Eqs. (2.70) to (2.73) are expanded to: 

 

TTT
f

T
f

TTTTTTTT

vec
t

vec
t

tvectvecvec

z
p

x
f

pzx
f

z
u

x
f

uz
x

x
f

xx
f

z

∂
∂

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

+
∂

∂
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

+

+
∂
∂
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

+
∂
∂
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂ )()(

 (2.74)



32  THEORETICAL FOUNDATIONS 

 

TTT
f

T
f

TTTTTTTT

vec
t

vec
t

tvectvecvec

z
p

u
f

pzu
f

z
u

u
f

uz
x

u
f

xu
f

z

∂
∂

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

+
∂
∂

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

+

+
∂
∂
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

+
∂
∂
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂ )()(

 (2.75)

 

T
f

T
f

ff

T
f

TT
f

T
f

T

t
vec

t
t

vec
t

t
t

vect
t

vec
t

vec

z
pf

pz
f

z
uf

uz
xf

x
f

z

∂
∂

⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

+
∂
∂
⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

+

+
∂
∂
⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

+
∂
∂
⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂ )()(

 (2.76)

 

TTT
f

T
f

TTTTTTTT

vec
t

vec
t

tvectvecvec

z
p

p
f

pzp
f

z
u

p
f

uz
x

p
f

xp
f

z

∂
∂

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+
∂
∂
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+

+
∂
∂
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+
∂
∂
⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂ )()(

 (2.77)

Inserting Eqs. (2.70) to (2.77) into Eq. (2.69), one obtains for the second order sensitivity 
equations: 
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where the dependency of the state dynamics f w.r.t. the final time tf and the parameter  
vector p has been omitted for readability reasons. The full version can be found in the 
appendix (chapter A.1).  

With regard to many trajectory optimization problems, the initial and final boundary 
conditions Ψ0 and Ψf, the equality and inequality constraints Ceq and Cineq and the interior 
point conditions ri are often combined functions of the states x(t), the controls u(t) and 
possibly the parameter vector p. The first order derivative of any function h = h(x(t), u(t), p) 
involving the states x, the controls u and the parameters p with respect to the parameter  
vector z yields: 
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where ∂h/∂uT, ∂h/∂xT and ∂h/∂pT are the derivatives of the function h with respect to the 
control vector u, the state vector x respectively the parameter vector p. The second order 
derivative of function h then becomes: 
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Here again, the derivatives with respect to the parameter vector p are left out to increase the 
readability. Fig. 5 illustrates the sparse block structure of the Jacobian exemplarily for an 
optimal control problem with two phases, two controls, one multiple shooting node in each 
phase and with linearly interpolated controls. The triangular form of the blocks results from 
the fact that for linearly interpolated controls any path constraint C(τPC,p) is only influenced by 
a control variable ui if the evaluation time point τPC,p is larger than the control discretization 
time τi-1. 

 
Figure 5. Sparse block structure of the Jacobian 

2.2.6 Scaling 
For the efficient solution of the finite-dimensional optimal control problem by the applied 
non-linear programming method, the scaling of the parameter vector z as well as the objective 
vector F plays a crucial role (Ref. [Betts, 2001]). It is the goal of the scaling procedure to 
adjust all elements of the parameter vector, the objective function and the constraint vector to 
the same order of magnitude. While the scaling of the parameter vector z is achieved by 

 zMz ⋅=~ (2.81)
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the scaling of the objective vector F is done by 
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where the vector of constraints C is given by Eq. (2.40) respectively (2.45). Here, the tilde 
denotes the scaled entities. The matrices M and T are the respective scaling matrices, where 
TJ is the scaling factor associated with the objective J of Eq. (2.39) and TC the diagonal 
scaling matrix for the constraint vector C of Eq. (2.40). The scaling factors are chosen such 
that the objective function and the elements of the parameter and the constraint vector are of 
the same magnitude. Then, for the scaling of the Jacobian G the following equations hold: 
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Utilizing the rules for the differentiation of matrix-matrix products given in Ref.  
[Magnus, 1985], the scaling of the Hessian H is: 
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where nx is the length of the parameter vector z and nf the length of the objective vector F. In 
some cases it may also be useful to restore the Lagrange multipliers μ for the non-scaled 
discretized optimal control problem from the Lagrange multipliers μ~ associated with the 
optimal solution of the scaled optimal control problem. From the scaled Lagrange function L~0,  

 CTμCμ C ⋅⋅+⋅=⋅+= ~~~~~
0 JTJL J  (2.85)

and the relationship between the scaled and the non-scaled Lagrange functions, 
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the following equation for the computation of the non-scaled Lagrange multipliers μ results: 
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2.2.7 Estimation of adjoint variables 
Based on the sensitivity equations above, the estimation of the adjoint variables λ(t) of the 
optimal control problem is accomplished without much effort, utilizing the Lagrange 
multipliers μ resulting from the optimal solution of the finite-dimensional parameter 
optimization problem (Ref. [Büskens, 2000]): 
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Here, L0 is the augmented Lagrange function of the finite-dimensional parameter optimization 
problem: 

 CμTJL +=0  (2.89)



THEORETICAL FOUNDATIONS  35 

2.2.8 Mesh Refinement 
Basically, mesh refinement procedures can be divided into static methods (see e.g. Refs. 
[Zhao, 2009], [Jain, 2008], [Darby, 2009], [Gong, 2006] and [Betts, 1998]) and dynamic 
methods (Refs. [Anisi, 2006], [Teo, 2005], [Cuthrell, 1987] and [Vasantharajan, 1990]). 
Dynamic methods include the grid points as decision variables in the discretized optimal 
control problem. This means that the spacing of the grid points is not fixed and that the 
optimal distribution of the grid points is determined during the optimization. At this, the 
number of optimization variables of the discretized nonlinear programming problem is 
increased significantly, resulting in a degraded convergence behavior of the nonlinear 
programming problem and an increase of the time that is required for the computation of the 
optimal solution. In contrary to dynamic methods, static methods first compute the optimal 
solution of the nonlinear programming problem for a fixed number of grid points with 
predetermined distribution. Then, the current optimal solution is utilized to refine the mesh 
either by moving the current grid points or by inserting and deleting certain grid points. Thus, 
the dimension of the original nonlinear programming problem remains unchanged utilizing a 
static mesh refinement procedure. In the following, a static mesh refinement method is 
considered that adapts the mesh by inserting respectively deleting grid points based on a 
weighting function that is derived from the time histories of the controls.  

For this weighting function w either the first order time derivative u̇  of the respective control 
or alternatively the curvature κ of the control time history is utilized. Regarding linear 
interpolated controls and the current mesh distribution 

 fnn ττττττ =<<<<= −1210 ...  (2.90)

with the corresponding control values 
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the first order time derivatives u̇ i of the control time history are obtained by 
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with the corresponding time points ti̇  
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Alternatively, for linear interpolated controls it is also possible to establish a weighting 
function based on the angle between two adjacent segments of the discretized controls (see 
Fig. 6): 
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Figure 6. Angle between adjacent control segments 

For any function f that is at least twice differentiable, the curvature κ is defined as 
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Thus, for a linear interpolation of the controls, the curvature κi can be calculated by 
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where the first order time derivative is given by Eq. (2.92). The second order time  
derivative ui˙̇  of the controls can be approximated by (Ref. [Zhao, 2009]): 
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The corresponding time points ti˙̇   are given by 
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Approximate values for the first order time derivative u̇  of the controls at the nodes ti˙̇   of the 
second order time derivative function u̇̇ can be obtained e.g. by a spline interpolation. Once 
the weighting function has been computed, the mesh is refined in the following way: Those 
grid points where the weighting function w lies below a certain threshold wmin defined by the 
user are removed from the grid. At grid points where the weighting function w is larger than a 
defined threshold wmax, the segments directly before and behind the respective grid point are 
split up into two sub-segments by inserting additional grid points before and behind the 
respective grid point. Next, control variables ui are detected that are at their lower or upper 
bounds and where the control time history enters or leaves its lower or upper boundary. 
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ALGORITHM I 

 1 Given ti, ui, i = 1, …, n compute the weighting function w either by Eq. (2.92), by 
Eq. (2.94) or Eq. (2.96)  

 2 Refine the control mesh 

 2A Delete those grid points where the weighting function w is below a certain 
threshold wmin 

 2B Insert grid points where the weighting function w is above a certain threshold wmax 

 2C Insert grid points where controls leave or enter bounds 

 2D Insert grid points where path constraints become active or inactive 

 3 Refine the path constraint mesh 
Table 1. Mesh Refinement Algorithm 

Additional grid points are inserted before and behind the detected grid points in order to 
determine as exact as possible the time point at which the control enters or leaves one of its 
boundaries. Furthermore, at time points where inequality path constraints become active or 
inactive, grid points are added to all control meshes to enable a precise determination of the 
time point when the path constraints get active or inactive. 

Besides the control grids, the path constraint grids are refined, too. Therefore, it is checked in 
between the current path constraint grid points where the path constraints are violated. At the 
time points that show the maximum violation of the path constraints, additional grid points are 
added to the path constraint grids. 

In Table 1, an overview of the algorithm for the refinement of the control mesh and the path 
constraint grids is given. 
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3  
 
Optimization Simulation Model 
3.1 Overview 
The following chapter describes the development of a scalable, multi-fidelity simulation 
model that is specifically tailored for optimization tasks. This simulation model provides the 
basis for the establishment of a robust and effective process for the solution of complex 
trajectory optimization problems because of its novel, sequential structure that is a scalable 
inner loop followed by an outer loop as depicted in Fig. 7. For the implementation of the 
simulation model and the optimization tasks, the full dynamic order of the regarded flight 
system is taken into account. Therefore it is ensured that the trajectory found by the 
optimization later on is dynamically realistic and can be followed by the aircraft in reality. 

Outer Loop
with Translation & Position EoM

Non-Linear Inner Loop
with Rotation & Attitude EoM

Linear Inner Loop
with Linear State-Space Models

Linear Inner Loop
with Linear Transfer Functions  

Figure 7. Simulation Model Structure with Scalable Inner Loop 

The outer loop contains the nonlinear translation equations of motion as well as the position 
propagation equations and can therefore be considered as a quasi non-linear point mass 
simulation model. The inner loop represents the rotation equation of motions and the attitude 
dynamics of the flight system under consideration. At this, the equations of motion are 
formulated such that the inner loop and the outer loop can be simulated sequentially. This 
sequential structure follows the structure of the physical causal chains of flight systems. 
Physical causal chains describe the causal relationships covering flight system dynamics, e.g. 
between the deflections of the control surfaces and the resulting changes in the states of the 
aircraft. To give an example, the causal chain between an elevator deflection η and the 
resulting change in the altitude h of the aircraft is depicted in Fig. 8. A deflection η of the 
elevator control surface invokes a pitching moment M around the y-axis of the aircraft. This 
moment in turn effects a pitch acceleration q̇ and therefore via an integration a pitch rate q. 
This pitch rate induces a time rate change α̇ of the angle of attack. An integration of this angle 
of attack time rate change results in a change Δα of the aerodynamic angle of attack that in 
turn leads to a variation ΔL of the aerodynamic lift force perpendicular to the flight path, i.e. 
in the direction of the z-axis of the aircraft. The variation ΔL of the lift then produces an 
acceleration that results in a load factor increment Δnz parallel to the lift increment, finally 
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leading to a time rate change of the flight-path climb angle γ̇. Integrating this change, a climb 
angle γ results that causes a time rate change of the altitude ḣ of the aircraft. By a further 
integration, the change of the altitude yields the actual altitude h of the flight system vehicle. 
The portion of the causal chain from an elevator deflection to a load factor change is 
represented by the inner loop of the simulation model, while the part from a change in the 
load factor to a variation in the aircraft’s altitude is assigned to the outer loop. 

Interface

Kinematics Dynamics KinematicsDynamics

OUTER LOOPINNER LOOP
Translation – ForcesRotation – Moments

Elevator
Deflection

Pitching
Moment

Pitch Rate
Change

Angle of Attack
Change

Load Factor
Increment

Flight Path Angle
Change

Aircraft Altitude
Change

ηΔ M q& α& znΔ γ& h&q∫ αΔ∫ γ∫ h∫
 

Figure 8. Causal Chain from an Elevator Deflection to a Change in the Altitude of the Aircraft 

The modeling fidelity of the inner loop is scalable and can be increased from a low level of 
simulation model complexity represented by linear transfer functions for the load factors and 
the roll rate to a more sophisticated complexity level with linear state space models for the 
longitudinal respectively the lateral dynamics of the aircraft and finally to the most accurate 
flight system modeling featuring full non-linear rotation equations of motion and attitude 
propagation equations. At this juncture, the alternative equations for the different depths of 
modeling for the inner loop are formulated and implemented in such a way that the interface 
between the inner and the outer loop always remains the same regardless of the depth of 
modeling that is chosen, i.e. the modeling of the outer loop is not affected by the selected 
model complexity level of the inner loop. Therefore, the rotation equations of motion and the 
attitude propagation equations are formulated with respect to the Kinematic Flight-Path  
Frame K and not with respect to the local geodetic North-East-Down Reference Frame as 
habitual. This fundamental difference is illustrated in Fig. 9. The interface between the inner 
and outer loop is represented by the aerodynamic load factors (n1A)K̅ in the Intermediate 
Kinematic Flight-Path Reference Frame K̅. 

Conventional Approach

New Approach

Rotation 
Dynamics

Attitude 
Propagation 
w.r.t. K-Frame

Translation 
Dynamics

Position 
Propagation

w.r.t. NED-Frame

Rotation 
Dynamics

Translation 
Dynamics

Position 
Propagation

w.r.t. NED-Frame

Attitude 
Propagation 

w.r.t. NED-Frame

 
Figure 9. Conventional and New Simulation Model Structure 
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By the unified structure of the simulation model, the complexity of the simulation model can 
be scaled to varying levels of fidelity in a nearly continuous manner and it can be easily 
adapted to various requirements of a specific simulation or optimization task like total 
duration of the optimization process, operational robustness, level of complexity, accuracy of 
the optimized trajectory or the specific data that are available for the modeling of the flight 
system that is to be simulated. This is depicted in Fig. 10. Thus, the simulation model allows 
for an easy transition between the accuracy of the simulation respectively the optimization 
results and the overall time needed for the optimization process. 

Point-Mass Model
without 

Inner Loop

Point-Mass Model
with Linear Inner Loop

(Transfer Functions)

Point-Mass Model
with Linear Inner Loop
(State-Space Models)

Point-Mass Model
with 

Non-Linear Inner Loop

Direct 
Command

Indirect 
Command

Direct 
Command

Indirect 
Command

Direct 
Command

Indirect 
Command

Complexity/
Fidelity

Computation 
Speed

Computational 
Robustness

A/C Data 
required

Accuracy

High

High

High

High

High

Direct Command

SCALE
 

Figure 10. Scalable, Multi-Fidelity Simulation Model 

Besides the rigid body dynamics, further subsystems have to be taken into account in the 
simulation model in order to achieve simulated and thus optimal trajectories that are 
compatible to the true dynamic order of the flight system and thus as realistic as possible. 
Therefore, for example actuator dynamics and the impact of static and dynamic properties of 
the atmosphere surrounding the aircraft are incorporated in the simulation model. Since 
especially wind is supposed to have a great influence on optimal trajectories, the influence of 
static, time variant and convective wind fields is included in the equations of motion to 
provide a maximum level of realism in the reproduction of the environment. 

In addition to flight system modeling itself, a controller that is based on the principle of 
dynamic inversion of the physical causal chain of flight systems is implemented in the 
simulation model. For all depths of modeling included in the scalable simulation model, the 
equations of motion are inverted so that e.g. for a given trajectory the required control surface 
deflections can be computed. Feeding these control surface deflections forward to the 
simulation model will then again result in the predetermined trajectory. As another example, 
by utilizing only the inversion controller for the inner loop, the full non-linear 6-Degree of 
Freedom simulation model can be simulated making use of the same virtual controls as for the 
non-linear point mass model without any inner loop and inversion controller i.e. the 
aerodynamic angle of attack αA, the aerodynamic sideslip angle βA, the first order time 
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derivative of the aerodynamic bank angle μ̇ A and the thrust lever position δT. This represents 
another essential feature of the simulation model required for the development of the 
optimization process to be described later. For the inversion controller to work, not only the 
reference values themselves but also higher order derivatives of the respective reference 
values are required. Therefore, the simulation model is augmented by reference models of the 
appropriate order to produce these derivatives in a consistent manner.  

The exact dynamic inversion of a causal chain of any flight system is only possible for flight 
system dynamics with minimum phase behavior (see chapter 3.3.1). Thus, besides the 
numerical computation errors, any non-minimum phase behavior will cause the actual values 
of the simulation model to diverge from the reference values. In order to cope with these 
effects and to guarantee a precise tracking of the reference values, error feedbacks on all 
levels of the simulation model are implemented to attenuate possible deviations. Therefore, 
the various states are fed back to the highest possible derivatives of their corresponding 
reference values to allow the simulation model to react to any occurring deviation as fast as 
possible. 

In the following, the equations of motion for the different depths of modeling of a rigid-body 
aircraft based on the underlying reference coordinate systems as well as the equations for the 
corresponding inversion controllers are stated, with a proper inclusion of the influences of 
environmental conditions, especially static and convective wind fields, and the forces and 
moments acting on the aircraft that result from the gravitational force, the airflow surrounding 
the aircraft and the propulsion system. Furthermore, the equations for the implemented error 
feedbacks are outlined and an overview of the various simulation model modes with the 
respective inputs and outputs is given. 

3.2 Rigid-Body Equations of Motion 
In this section, the rigid-body differential equations of motion that describe the time rate 
change of the states of the rigid-body aircraft in the respective degrees of freedom are given 
for the different depths of modeling. The differential equations of motion can be subdivided 
into equations for the description of the translational motion and the rotational motion and 
into differential equations for the determination of the position and the attitude in space. As 
shown in Fig. 9, in a conventional approach (Refs. [Stevens, 1992], [Philips, 2004],  
[Etkin, 1996], [Etkin, 2005] and [Roskam, 2001]) the rotational and attitude dynamics are in 
general modeled in a manner parallel to the translational and position dynamics, so that the 
attitude dynamics are given with respect to the NED-Reference Frame utilizing the set of 
Euler-angles that are the azimuth angle Ψ, the inclination angle Θ and the bank angle Φ. With 
the sequential approach, the rotational and attitude dynamics denoted as inner loop dynamics 
are modeled in series to the outer loop dynamics that are the translation and position equations 
of motion. Thus, the rotational and attitude equations of motion are not formulated with 
respect to the NED-Reference Frame but with respect to the trajectory reference frame or 
more precisely the Intermediate Kinematic Flight-Path Frame K̅. The sequential approach 
allows one to switch between different depths of modeling for the inner loop without the 
necessity for any modification of the modeling of the outer loop since the differential 
equations are formulated in such a way that the interface between the inner and outer loop 
always remains the same regardless of the type of modeling for the inner loop. In the 
following, besides the differential equations for the translation equations of motion and the 
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position propagation equations, the equations for three different depths of modeling for the 
inner loop are described: first, linear transfer functions for the load factors and the roll rate 
representing the characteristic dynamics of the inner loop, second, linear state-space models 
for the longitudinal and the lateral motion of the aircraft, and third the full, non-linear rotation 
equations of motion and attitude propagation equations representing the highest model fidelity 
respectively depth of modeling.  

Detailed derivations of the rigid-body equations of motion can be found in the literature e.g. 
in Refs. [Holzapfel, 2009b], [Stevens, 1992], [Philips, 2004], [Etkin, 1996], [Etkin, 2005], 
[Roskam, 2001], [Schmidt, 1998], [Brockhaus, 2001], [McRuer, 1990], [Nelson, 1997], 
[Russell, 2003], [Boiffier, 1998], [Blakelock, 1991], [Hancock, 1995] and  
[McCormick, 1994]. 

3.2.1 Scope of Validity 
For the modeling of the flight system, a trade-off between the model complexity on the one 
side and the external validity of the implemented model on the other side has to be done and 
certain simplifying assumptions have to be made. This approach is legitimated by the 
affirmation that all requirements that are necessary for the implementation of the simplifying 
assumptions without any significant implications on the validity of the implemented models 
are fulfilled. The flight systems that are mainly taken into consideration in this work are 
aircraft of a relatively high stiffness with a relative small fuel consumption compared to the 
total mass of the aircraft. Furthermore, the speed range is limited to subsonic speeds. Thus, 
the following assumptions can be made: 

• The vehicle is assumed to feature a quasi constant mass for the derivation of the 
equations of motion, i.e. the change in the linear momentum of the vehicle due to 
dynamic changes in the system mass is negligible. Therefore, the mass is considered 
quasi-stationary. 

• For the derivation of the equations of motion, the vehicle is assumed to be a rigid 
body, i.e. that relative changes in the position of mass elements inside the system are 
not accounted for and that the mass distribution is considered quasi-stationary. 

• The reference point is assumed to coincidence with the center of gravity point of the 
aircraft. 

• The ECI-Reference Frame is considered to be a valid Euclidean frame, i.e. a system 
where the residual acceleration is negligible so that Newton’s 2nd law may be applied. 

• The angular speed ω1IEof the ECEF-Reference Frame with respect to the ECI-Frame is 
assumed to be constant in both absolute value and direction. This means that the slow 
variations in the Earth’s rotational axis and rotation rate are neglected. 

3.2.2 Position Propagation Equations 
There are various possibilities to select a triple of states that can be used to describe the 
position of an aircraft in space. E.g. the aircraft’s position can either be given with respect to 
the ECEF-Frame or with respect to a Navigation-Frame N. The associated equations for the 
position propagation with respect to the ECEF-Frame are given by Eq. (3.1) where the 
position of a point in space is specified according to the World Geodetic System WGS84 
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(Ref. [NN, 2000]) utilizing two angles and the altitude above the reference ellipsoid namely 
the geodetic longitude λ, the geodetic latitude μ and the geodetic altitude h: 
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In Eq. (3.1) VK denotes the kinematic velocity of the aircraft, χK the kinematic course angle 
and γK the kinematic flight path inclination angle. The radius of curvature in the prime  
vertical Nμ and the meridian radius of curvature Mμ are computed from the semi-major axis 
length a of the reference ellipsoid and the first eccentricity e, where the first eccentricity e has 
to be calculated from the flattening f: 

 22 2 ffe −=  (3.4)

The flattening f is defined as: 

 
a

baf −
=  (3.5)

with b being the length of the semi-minor axis of the reference ellipsoid. In WGS84, the 
values for the semi-major axis length a and the semi-minor axis length b are set to  
6378137,0 m respectively 6356752,3142 m. Fig. 11 depicts the reference ellipsoid of WGS84 
as well as the associated values. 
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Figure 11. WGS84 Reference Ellipsoid 

Thus, the position state vector of the flight system consists of the geodetic latitude μ, the 
geodetic longitude λ and the geodetic height h. A Navigation-Frame N can be derived from 
the NED-Frame and is used to specify the position of an aircraft in a local Cartesian 
coordinate system with its x-axis rotated to an arbitrary heading. The origin of a Navigation-
Frame N is fixed to a certain location on the Earth surface and the frame itself is rotated about 
the navigation angle ψN around the z-axis of the NED-Frame. The corresponding position 
equations of motion with respect to such a Navigation-Frame N are given by Eq. (3.6), where 
the matrix MNO is the transformation matrix between the Navigation-Frame N and the  
NED-Frame: 

 

O

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

NO

E

O

G
K

G
K

G
K

NO

E

O

NO

E

N
V

V
V

w
v
u

z
y
x

z
y
x

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⋅−
⋅⋅
⋅⋅

⋅=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⋅=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⋅=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

γ
γχ
γχ

sin
cossin
coscos

MMM
&

&

&

&

&

&

 (3.6)

 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

100
0cossin
0sincos

NN

NN

NO ψψ
ψψ

M (3.7)



46  OPTIMIZATION SIMULATION MODEL 

Here, the position state vector is made up of the three states x, y and z that are the coordinates 
in the local Navigation-Frame N. If the Navigation-Frame N coincides with the NED-Frame 
(i.e. ψN = 0), x represents the coordinate position in a northward direction, y the coordinate 
position in an eastward direction and z the coordinate position in the downward direction. The 
local Navigation-Frame N is well-suited to generate an easily interpreted graphically image of 
trajectories that are characterized by small geographic extents as it is the case for Red Bull Air 
Races.  

3.2.3 Translation Equations of Motion 
The basis for the formulation of the differential equations for dynamic systems is Newton’s 
2nd law that states that the rate of change of the linear momentum p1 with respect to an inertial 
(i.e. not accelerated) frame is proportional to the sum of external forces ΣF1 acting on the 
vehicle (Ref. [Holzapfel, 2009b]): 
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For Newton’s 2nd law to be valid the velocity V1I of an arbitrary mass element P at the  
position x1P has to be given with respect to a reference frame that is not accelerated, i.e. the 
velocity has to be given with respect to an Inertial or an Euclidean frame I. The integration is 
carried out over all mass elements of the considered flight system vehicle. Assuming that the 
mass of the aircraft is quasi-stationary, i.e. ṁ = dm/dt = 0, Eq. (3.8) gives: 
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where a1II is the total acceleration of the vehicle. Assuming that the aircraft is a rigid body, i.e.  

 ,0=RPr&v  (3.10)

the total acceleration of an arbitrary point R of the vehicle w.r.t. the ECI-Frame is: 
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Here, ω1EO denotes the transport rate, i.e. the rotational rate between the ECEF-Frame and the 
NED-Frame and ω1IE the rotational rate of the Earth. In Eq. (3.11) the ECI-Frame is chosen as 
reference frame since together with the transformation given by Eqs. (3.21) respectively 
(3.22) one finally obtains the differential equations for the kinematic flight-path course  
angle χK and the kinematic flight-path inclination angle γK. Thus, the kinematic flight-path 
course angle χK and the kinematic flight-path inclination angle γK are states of the simulation 
model. This is essential for the sequential structure of the simulation model. Inserting  
Eq. (3.11) into Eq. (3.9), one obtains: 
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Now the constant terms can be extracted from the integral: 
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The position vector from the reference point R to an arbitrary point P is then split up into: 

 GPRGRP rrr vvv += (3.14)

where G is the center of gravity. Inserting Eq. (3.14) into Eq. (3.13) gives: 
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With the definition of the center of gravity, 
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Eq. (3.15) simplifies to: 
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where the constant position vector from the reference point R to the center of gravity G has 
been extracted from the integral. Furthermore, assuming that the reference point R 
coincidences with the center of gravity G of the aircraft, i.e.  

 0=RGrv  (3.18)

one gets: 
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Thus, based on the simplifying assumptions made above, the following translation equations 
of motion for the simulation model with the components given in the Kinematic Flight-Path 
Reference Frame K result: 
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Here, m denotes the mass of the aircraft. The translation equations of motion of the aircraft 
are described by the first order time derivatives of the states uK, vK and wK, the components of 
the kinematic velocity vector V1K given in the Kinematic Flight-Path Reference Frame. The 
resulting sum of external forces ΣF1 acting on the aircraft is primarily composed of the 
gravitational force, the aerodynamic forces as well as the propulsion forces. Since the choice 
of the system’s states is not unique, the translation equations of motion can also be formulated 
with respect to the states kinematic velocity VK, the kinematic flight-path climb angle γK and 
the flight-path course angle χK. Therefore, the following transformation of the velocity  
vector V1K has to be done: 
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Equating the preceding equations (3.20) and (3.22) and solving for the first order time 
derivatives of the states kinematic velocity VK, kinematic flight-path climb angle γK and flight-
path course angle χK, the translation equations of motion become: 
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Assuming that merely flight over flat, non-rotating Earth is considered, the rotational rates ω1IE 
and ω1EO equal zero, resulting in the following simplified translation equations of motion: 
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Formulating the translation equation of motions in such a way means that a singularity 
emerges when the aircraft reaches a kinematic flight-path angle of γK = ±90°. This singularity 
is similar to the singularity that occurs when the inclination angle Θ equals ±90° if the set of 
Euler-angles is used to describe the attitude of an aircraft. For simulating and optimizing 
aerobatic and all attitude trajectories including aerobatic maneuvers like the Half Cuban 
Eight, it is mandatory to find a way to cope with this singularity. Thus, the simulation model 
has to be modified so that the occurrence of these singularities has no influence on the 
performance of the simulation model. Regarding Fig. 12, the sequential approach for the 
implementation of the simulation model follows the path from the NED-Frame to the 
Kinematic Flight-Path Frame K respectively the Intermediate Kinematic Flight-Path Frame K̅ 
to the Body-Fixed Frame B for a complete description of the attitude of the aircraft. Thus, five 
angles are required as states that are the kinematic flight-path bank angle μK and the kinematic 
attitude angles angle of attack αK and angle of sideslip βK besides the kinematic flight-path 
angles γK and χK.  

A

K

B

Kμ

KK αβ ,−KK γχ ,

ΦΘΨ ,,

AA γχ , AA αβ ,−

K

O

A
Aμ  

Figure 12. Coordinate Systems 

At this, the differential equations for the kinematic flight-path bank angle μK and the 
kinematic attitude angles αK and βK are given by the attitude dynamics (chapter 3.2.4,  
Eq. (3.43)). Instead of regarding the states resulting from the attitude dynamics as a separate 
set of states, the kinematic flight-path bank angle μK is regarded as a state belonging to the 
kinematic flight-path angles γK and χK so that a set of states is formed by the kinematic flight-
path angles γK and χK and the kinematic flight-path bank angle μK (see Fig. 12). Then, the 
translation equations of motion can be formulated using the four quaternions q0, q1, q2 and q3 
(Refs. [Stevens, 1992], [Philips, 2004]) instead of the three kinematic flight-path angles γK, χK 
and μK. By utilizing the quaternions, singularities that occur for climb angles of ±90° are 
avoided and the flight-path angles can be determined without ambiguity. The translation 
equations of motion using the four quaternions then read: 
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Here it is mentioned that the differential equation for the kinematic flight-path bank angle μK 
resulting from Eq. (3.43) is not integrated as a state but acts as input into Eq. (3.30) for the 
calculation of the angular rate (ω1OK̅)K̅. Since the quaternions introduce an additional state, the 
dynamic system is now over-determined and thus constrained. The algebraic constraint to be 
met is that the square sum of the quaternions equals 1 (Eq. (3.28)). As after a number of 
performed integration steps the build-up of computational errors will eventually cause the 
quaternion vector to take a non-unit length and thus violate the constraint so that the vector is 
not suited to describe the underlying set of flight-path angles any more. Thus, an additional 
constraint has to be enforced on the quaternions: 
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The constraint is enforced by accounting for the square sum error λ computed by Eq. (3.29) in 
the quaternion update equations (3.27) in the fourth column. The square sum error λ acts as an 
integration drift correction gain that attempts to drive the quaternion vector back to unit length 
if any deviation results from computational errors during integration (Refs. [Pamadi, 1998] 
and [Rolfe, 1986]). 

 ( )2
3

2
2

2
1

21 qqqq0 +++−=λ  (3.29)

In Eq. (3.27), the constant k represents a correction step factor and may be chosen such that  
kh < 1 for a fixed integration step size h (Ref. [Rolfe, 1986]). For kh = 1, the entire correction 
step is performed within one iteration cycle, whereas for 0 < kh < 1, the deviation decreases 
exponentially. 

As can be seen from the quaternion update equations (3.27) the angular rate (ω1OK̅)K̅ between 
the NED-Frame and the Intermediate Kinematic Flight-Path Frame K̅ has to be determined 
which can be done in two alternative ways: By the first alternative, the first order time 
derivatives of the kinematic flight-path climb angle γK˙  and course angle χK˙  together with the 
first order time derivative of the kinematic flight-path bank angle μK˙  are used to calculate the 
required angular rate (ω1OK̅)K̅ with the help of the following equation that can be derived from 
the appropriate strap-down equation (Refs. [Stevens, 2003] and [Holzapfel, 2009b]): 
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By the second alternative, at first the y- and z-component of the angular rate (ω1OK)K are 
calculated by putting Eq. (3.22) equal to Eq. (3.31): 
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where the angular rate (ω1OK)K is given by: 

 ( )
K

G
K

G
K

G
K

G
K

G
K

K
OK
K

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛−
=

γχ
γ

γχ

cos

sin

&

&

&
vω  (3.32)

This gives the following relationships for the y- and z-component of the angular rate (ω1OK)K: 
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The x-component of the angular rate (ω1OK)K can then be calculated using the relationship 
between the x- and z-component of the angular rate (ω1OK)K (Eq. (3.32)):  
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Together with the first order time derivative of the kinematic flight-path bank angle μK˙ , finally 
the required angular rate (ω1OK̅)K̅ can be computed: 
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where the transformation matrix MK̅K is given by: 
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After the integration of the quaternions, the corresponding flight path angles can be re-
calculated by: 
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Regardless of the use of the quaternions, the flight-path climb angle γK has to be limited to 
values between -90° and +90° to avoid singularities while calculating the angular rate (ω1OK̅)K̅, 
but it has only to be limited for this calculation and not globally as it would have been the 
case with the utilization of the flight-path climb angle γK as a state itself. Another advantage 
of the quaternions compared to the usage of the flight-path angles is the uniqueness of the 
quaternions, i.e. that the flight-path angles can be determined from the quaternions without 
ambiguity. Furthermore, the values of the flight-path bank angle μK and of the flight-path 
course angle χK switch automatically when the flight-path climb angle γK reaches ±90° e.g. 
when flying a looping or a Half Cuban Eight. Of course, if there are no aerobatic maneuvers 
that might cause climb angles of ±90°, the original translation equations of motion (Eq. (3.23) 
respectively Eqs. (3.24) to (3.26)) can be utilized. Given the case that the four quaternions are 
utilized, the state vector associated to the translation equations of motion comprises the 
kinematic velocity VK and the four quaternions q0, q1, q2 and q3, else the kinematic velocity VK 
is augmented by the three kinematic flight-path angles γK, χK and μK to give the full translation 
state vector. With regard to the trajectory optimization problem, the utilization of the 
kinematic flight-path angles improves the stability of the optimization problem since the 
number of states and thus the dimension of the optimization problem is reduced. Furthermore, 
the implementation of path constraints, initial or final boundary conditions is achieved more 
easily with the three kinematic flight-path angles. 

3.2.4 Attitude Propagation Equations 
In contrast to conventional flight system models (Refs. [Stevens, 1992], [Philips, 2004], 
[Etkin, 1996], [Etkin, 2005] and [Roskam, 2001]), in this work the attitude of the flight 
vehicle is not specified with respect to the NED-Frame by the Euler-angles azimuth Ψ, 
inclination Θ and bank angle Φ but with respect to the trajectory respectively the Intermediate 
Kinematic Flight-Path Frame K̅ that is the Kinematic Flight-Path Frame K rotated by the 
kinematic bank-angle μK around its x-axis. Thus the attitude states are given by the angles 
between the Body-Fixed Frame B and the Intermediate Kinematic Flight-Path Frame K̅. The 
associated kinematic attitude angles are αK and βK. The respective equations of motion for the 
attitude dynamics can be derived by the so called strap-down equation (Refs. [Stevens, 2003], 
[Holzapfel, 2009a]): 
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The angular rate ω1KB that is required for the above equations can be computed by Eqs. (3.44) 
and (3.45), where the angular rate ω1OK is an output of the translation equations of motion and 
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the angular rate ω1IB is given by the rotation equations of motion described later on  
(chapter 3.2.5): 

 ( ) ( ) ( )KOK
B

OB
KKBK

KB
K ωωMω vvv −⋅=  (3.44)

 ( ) ( ) ( ) ( )OEO
BOO

IE
BOB

IB
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OB
K ωMωMωω vvvv ⋅−⋅−= (3.45)

If quaternions are used for the translation equations of motion, the first order time derivative 
of the flight-path bank angle μK˙  is not considered as an attitude state and thus not directly 
integrated but used to compute the angular rate ω1OK̅ in Eq. (3.30) respectively Eq. (3.36). 
Therefore, the first order time derivative of the flight-path bank angle μK˙  is an output of the 
attitude propagation system and the states associated with the flight vehicle’s attitude are just 
the kinematic angle of attack αK and the kinematic angle of sideslip βK. 

3.2.5 Rotation Equation of Motions 
Analogous to the linear momentum, the derivation of the differential equations for the 
rotational degrees of freedom is also based on Newton’s 2nd law. Just like the linear 
momentum, the angular momentum is defined for an arbitrary differential mass element P of 
the vehicle and then integrated over the complete vehicle mass. While the principle of 
conservation of the linear momentum poses a relationship between the translational motion of 
a vehicle and the external forces acting on this vehicle, the principle of conservation of the 
angular momentum draws the relationship between the rotational motion of an aircraft and the 
sum of external moments: it indicates that the time rate of change of the angular  
momentum H1 of a dynamic system is proportional to the sum of external moments ΣM1  acting 
on the dynamic system:  
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where r1P represents the position vector and V1I the velocity of an arbitrary mass element P. In 
Eq. (3.46) the reference point for the angular momentum and thus for the external moments is 
the center of the Earth since the ECI-Frame has been identified as a legitimate Euclidean 
Frame. With the simplifying assumptions made above and the choice of the center of  
gravity G of the aircraft as reference point for the determination of the external moments, the 
sum of external moments ΣM1  acting at the center of gravity G and denoted in the Body-Fixed 
Reference Frame B evaluates to (Ref. [Holzapfel, 2009b]): 
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Here, IG denotes the inertia tensor of the aircraft with respect to the center of gravity point G. 
Solving Eq. (3.47) for the first order time derivative of the angular rate ω1IB between the Body-
Fixed Frame B and the ECI-Frame I, the following differential equations for the rotational 
motion of the aircraft denoted in the Body-Fixed Reference Frame B result: 
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Thus, the states of the rotational motion of the aircraft are the components of the rotational 
rate ω1IB between the Body-Fixed Reference Frame B and the ECI-Frame I, namely the roll  
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rate pK, the pitch rate qK and the yaw rate rK, and Eq. (3.48) provides the corresponding 
differential equations for the determination of the state derivatives. 

3.2.6 Linear State-Space Models 
Alternatively to the full, non-linear attitude propagation equations and rotational equation of 
motions stated above, the attitude and rotational dynamics can be simulated utilizing a state-
consistent but simplified approach with linear state-space models incorporated in the 
optimization simulation model. The input quantities to these state-space models are the 
control surface deflections, the outputs are the rotational and attitude motions of the aircraft, 
i.e. the linear state-space models feature the same inputs and outputs as the nonlinear model 
with the nonlinear attitude and rotation equations of motion. These state-space models are 
more accurate than the transfer functions for the inner loop presented in chapter 3.2.7, but 
they are still only linear state-space models and do not represent the full non-linear behavior 
of the rotational and attitude dynamics of an aircraft. But they are easier to implement than the 
full non-linear rotational and attitude equations of motion that have been depicted in the 
preceding chapters. The linear state-space models represent a linear approximation of the 
rotation and attitude dynamics around a steady-state condition. In contrast to the single-input 
single-output transfer functions, they allow to take into account coupling effects. 

Basically, linear state-space models for an arbitrary flight system can be obtained by 
linearizing the non-linear equations of motion of the flight system with respect to a specific, 
quasi-steady-state reference or trim condition (Refs. [Roskam, 2001] and [Holzapfel, 2009c]). 
Linear state-space models are usually derived for the analytical investigation of flying 
qualities of an aircraft like e.g. stability or controllability or for the design of flight control 
laws. It is important to mention that the resulting linear substitute equations of motion are 
only valid in the vicinity of the regarded steady-state flight condition. Therefore the 
investigation of flying qualities and the development of control laws is also limited to the 
close vicinity of the considered trim condition. Within the state-space models, the states that 
effect a motion of the aircraft solely in the vertical plane are assigned to the longitudinal 
dynamics, while states that lead to a motion in the horizontal plane are assigned to the lateral 
dynamics. Setting the states of the lateral motion to zero in the differential equations of the 
longitudinal dynamics and vice versa, the longitudinal motion can be investigated decoupled 
from the lateral dynamics. The resulting state-space models for the longitudinal as well as the 
lateral motion are given in appendix A (Refs. [Roskam, 2001] and [Holzapfel, 2009c]). 

As can be seen from the linearized state-space models for the longitudinal motion  
(appendix A, Eq. (A.22)), the state variable for the position x is not coupled to the differential 
equations of the remaining longitudinal states since the according elements of the system 
matrix are zero. This means that the derivatives of the remaining state variables are 
independent of the actual position x: they are dynamically decoupled from the position x. 
Since for conventional aircraft the derivatives CLα̇, CDα̇ as well as Cmα̇ are quite small in 
reality, the substitute derivatives Zα̇, Xα̇ and Mα̇ can be set to zero. Furthermore, the substitute 
derivatives with respect to a change in the altitude h, i.e. Xh, Zh and Mh can also be neglected 
to a first approximation, so that the differential equation of the altitude h may also be regarded 
as dynamically decoupled from the remaining linearized equations of motion. Taking into 
account the dynamic decoupling for the position x and the altitude h, the simplified linear 
state-space model for the longitudinal motion given by Eq. (A.22) in appendix A results. 
Investigating the eigen values of the longitudinal motion, two basic eigen motion forms can 
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be observed that are the short-period motion and the phygoid motion. Here, the natural 
frequency of the short-period motion is by far larger than the natural frequency of the phygoid 
motion. Furthermore, the primary states of the phygoid motion that are the velocity VK and the 
flight-path inclination angle γK are only slightly involved in the short-period dynamics, so that 
the simplified state-space model for the longitudinal motion can be split up into a state-space 
model representing the short-period motion (Eq. (3.49)) and a state-space model for the 
phygoid motion, where the primary states regarding the short-period motion are the pitch  
rate qK and the angle of attack αK (Refs. [Roskam, 2001], [Holzapfel, 2009c] and  
[Stevens, 1992]). This means that only the rotational and attitude dynamics are accounted for 
with negligible backward influence from the translation dynamics that are implemented in the 
nonlinear outer loop. 

Consequently, for the longitudinal dynamics of the aircraft’s inner loop the appropriate linear 
state-space model that represents the characteristic short-period motion of an aircraft is 
chosen. As mentioned above, the two states that are mainly involved in the short-period 
motion are the kinematic angle of attack αK and the pitch rate qK, thus a second-order state-
space model is implemented in the simulation model that describes the short-period coupling 
between the kinematic angle of attack αK and pseudo-pitch rate qK

  *, while the according control 
input is the elevator deflection η: 
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Here, in analogy to the nonlinear rotation and attitude dynamics the first order time 
derivatives of the kinematic angle of attack αK and the pitch rate qK

  * are a function of the 
aerodynamic angle of attack αA and not of the kinematic angle of attack αK. Furthermore the 
pitch rate qK is termed pseudo-pitch rate since the pitch rate resulting from the linear state 
space model (3.49) is consistent with the real pitch rate only at the linearization point of the 
state space model, i.e. with the angle of attack equal to zero. Otherwise, for a steady-state 
flight with a constant angle of attack deviating from the linearization point and not being 
equal to zero, a pitch rate qK would result from the steady-state flight requirement qK˙  =0, 
contradicting the steady-state flight assumption. Thus, the pitch rate can only be regarded as 
the second state in a second order linear state-space model. The real pitch rate has to be 
restored by Eq. (3.58) given below. Regarding the lateral dynamics of an aircraft, the 
dependencies on the first order time derivative of the sideslip angle β̇K can be neglected for 
conventional configurations and the corresponding substitute derivatives Nβ̇, Yβ̇ and Lβ̇ can 
approximately be set to zero in the system matrix of the lateral state-space model. Thus, the 
four state variables of the lateral motion roll rate pK, yaw rate rK, sideslip angle βK and the 
bank angle Φ are dynamically decoupled from the remaining lateral states that are the position 
variable y and the azimuth angle Ψ. Furthermore, for small steady-state pitch angles Θ0 (and 
thus tan(Θ0) being approximately zero) and with the influence of the bank angle Φ in the 
differential equation of the sideslip angle βK being negligible, the differential equation for the 
bank angle Φ can also be regarded as dynamically decoupled from the remaining linearized 
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equations of motion, so that the simplified state-space model for the lateral motion given by 
Eq. (3.50) results. 

This linearized state-space model for the lateral dynamics is characterized by two eigen 
motion forms that are the roll motion and the dutch-roll mode. The states that are primarily 
incorporated in the dutch-roll motion are the sideslip angle βK and the yaw rate rK, while the 
roll mode incorporates mainly the roll rate pK (Refs. [Roskam, 2001], [Holzapfel, 2009c] and 
[Stevens, 1992]). 

Thus, for the modeling of the inner loop lateral dynamics a third order approach with the 
states pseudo-roll rate pK

  *, pseudo-yaw rate rK
  * and kinematic angle of sideslip βK is 

implemented in order to represent the appropriate dynamics, where the inputs are the aileron 
surface deflection ξ and the rudder surface deflection ζ: 
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In total, the linear state-space models for the longitudinal and the lateral motion incorporate 
five states in order to guarantee state-consistency in comparison to the full, non-linear rotation 
and attitude equations of motion. 

In Eqs. (3.49) and (3.50), the system matrices A and the control matrices B are made up of the 
dimensional force derivatives Z and Y respectively the aerodynamic moment coefficients L, M 
and N with respect to the various states and controls, where the derivatives are functions of 
the actual aircraft configuration (i.e. mass m, location of the center of gravity and inertia), the 
aerodynamic velocity VA and the air density ρ (Ref. [Holzapfel, 2009c]). Exemplarily, the 
equation for the aerodynamic force derivative Zα due to a change in the angle of attack α is 
given below, while the formulae for the remaining force and moment derivatives can be found 
in appendix A: 

 [ ]
0DL

A

CC
Vm
SqZ +⋅

⋅
⋅

−= αα  (3.51)

Here, S is the aircraft’s wing reference area, CLα the variation of the aircraft’s lift coefficient 
with the angle of attack αA and CD|0 the drag coefficient of the aircraft in the steady-state 
reference flight condition utilized for linearization: 

 ( )2,00 00 DCLALLDD CCCkCC −⋅+⋅+= αα  (3.52)

q̅ is the dynamic pressure calculated from the air density ρ and the aerodynamic velocity VA: 

 ( ) 2

2
1 G

AVq ⋅⋅= ρ  (3.53)
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As can be seen from Eqs. (3.49) and (3.50), the kinematic angle of attack αK and the kinematic 
angle of sideslip βK are chosen as states in order to give a full description of the aircraft 
following the path from the NED-Frame to the Body-Fixed Frame B via the Kinematic Flight-
Path Frame K and Intermediate Kinematic Flight-Path Frame K̅ due to the sequential 
implementation of the simulation model. In addition, the rotation equations of motion given in 
chapter 3.2.5 incorporate kinematic body-angular rates, so that kinematic attitude angles result 
from the attitude equations of motion. While kinematic attitude angles are chosen as states, 
the aerodynamic attitude angles αA and βA are regarded as inputs to the state-space models. 
This is done to take into account the analogy to the full, non-linear 6-Degree of Freedom 
simulation model where the derivatives αK and βK are evidently not a function of the 
kinematic angles αK and βK but a function of the aerodynamic angles αA and βA that have to be 
utilized to compute the aerodynamic moments for the rotation equations of motion (3.48).  

Furthermore, the angular rates pK
  *, qK

  * and rK
  * are marked with a star to accentuate that these 

angular rates are in fact not the real angular body rates. As one can see from Eq. (3.49), a 
change in the pitch rate qK˙   and consequently a pitch rate qK would result for any arbitrary 
angle of attack αA that does not equal zero. But e.g. for a steady-state straight flight in trim 
condition, i.e. a trimmed flight condition with the pitch rate qK being constantly zero, an angle 
of attack αA is required that does not equal zero. Thus, the linearized longitudinal state-space 
model (3.49) cannot be used to compute the pitch rate change qK˙   since this would not lead to a 
trimmed straight horizontal flight. Instead, the real angular body rates pK, qK and rK between 
the Body-Fixed Frame B and the NED-Reference Frame respectively the ECI-Frame have to 
be restored with the help of the following equations: 

 ( ) ( ) ( ) ( ) ( )BBK
KK

KO
KKBB

BK
KB

KO
KB

OB
K

BK

K

K

r
q
p

ωωMωωω vvvvv +⋅=+==
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
 (3.54)

 ( ) ( ) ( ) ( )BOB
KB

EO
KB

IE
KB

IB
K ωωωω vvvv ++=  (3.55)
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so that 
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For the implementation of the linear state-space models, the absolute values and the rates of 
the state variables have to be limited in order to adjust the dynamics of the state-space models 
to the dynamics of the non-linear inner loop. Especially the angle of attack αA has to be 
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restricted to prevent the aircraft from stalling, while the control surface deflections ξ, η and ζ 
have to be limited due to the given geometry of the aircraft, i.e. the maximum possible 
physical control surface deflections: 

 ( ) max,min, AAA t ααα ≤≤ (3.59)

 ( ) maxmin ξξξ ≤≤ t (3.60)

 ( ) maxmin ηηη ≤≤ t  (3.61)

 ( ) maxmin ζζζ ≤≤ t  (3.62)

The computation of the aerodynamic angle of attack αA is given by Eq. (3.106). Here it is 
mentioned that implementing any limiters into the state-space models means that these state-
space models also incorporate non-linearities although they are linear in principle. Fig. 13 
shows the principal layout for the implementation of a limiter, where the saturation flag 
indicates whether the respective signal is saturated or not. 

eps⋅>100abs

y limy

SATflag

Limiter

 
Figure 13. Limiter with Saturation Flag 

3.2.7 Linear Transfer Functions 
The most simplified approach for modeling the dynamics represented by the inner loop, i.e. 
the attitude and rotational dynamics, that still preserves the true dynamic order of this inner 
loop but is not state-consistent any more is the utilization of linear transfer functions for the 
load factors and the roll rate. This inner loop can be utilized to represent the rotational and 
attitude dynamics of an aircraft in a rudimentary manner retaining the correct order for the 
case that only little aircraft data are available. For this purpose, the dynamics of the normal 
load factor nz and the dynamics of the lateral load factor ny given in the Aerodynamic 
Reference Frame A are approximated by a second order time behavior, whereas the dynamics 
of the pseudo-roll rate pK

  * feature a first order time behavior. Here again the roll rate is marked 
with a star to indicate that this roll rate does not correspond to the true roll rate of the aircraft. 
In order to guarantee a good approximation of the correct aircraft dynamics, the dynamics for 
the lift build-up use the same dynamics as the short-period oscillation and the build-up of the 
side force corresponds to the dutch roll dynamics. Furthermore, for the roll rate the simple, 
decoupled roll dynamics are used: 
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Alternatively, the linear transfer functions for the load factors ny and nz can also account for a 
non-minimum phase behavior of the flight system by the utilization of the following, slightly 
modified equations for the transfer functions: 
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Considering the transfer function (3.67) for the load factor in the direction of the aircraft’s  
z-axis, this transfer function accounts for the fact that an aircraft initially moves downward 
when the pilot pulls the stick before it begins to ascend as desired by the pilot’s control input. 
This effect is depicted in Fig. 14. 

The various parameters included in the load factor transfer functions that are the natural 
frequencies ω0, the relative damping ζ and the time constants T depend on the current 
aerodynamic velocity VA of the aircraft, the actual aircraft mass m and the air density ρ and 
are therefore scheduled with regard to the current flight condition. The pseudo-roll rate pK

  *  
also has to be limited depending on the current aircraft mass m and dynamic pressure q̅. The 
respective values can be derived from the analytical dependency of the modes on the various 
parameters. The transformation of the above stated transfer functions for the roll rate 
respectively the load factors into state-space models of first order gives: 
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Thus, the state vector for the linear transfer functions comprises the load factors nA,y and nA,z, 
the first order time derivatives of the load factors nA,y˙   and nA,z˙   as well as the roll rate pK

  *. For the 
load-factor transfer functions taking into account non-minimum phase effects (Eqs. (3.66) and 
(3.67)), the following state-space models result: 
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Limitations with respect to the load factors ny and nz can arise due the maximum achievable 
lift coefficient CL,max, the maximum achievable side force coefficient CY,max, the maximum 
allowable load capacity nmax,structure of the aircraft structure or the maximum load  
factors nmax,pilot the pilot can sustain: 
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Additionally to the minimum and maximum values for the load factors ny and nz, limits for 
their first and second order time derivatives as well as limits regarding the roll rate pK and its 
first order time derivative can be taken into account for the modeling respectively the 
implementation of the inner loop utilizing linear transfer functions in order to adjust the 
dynamics of the linear transfer functions to the dynamics of the non-linear inner loop: 
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As for the linear state-space models above, it is mentioned that incorporating these limits in 
the simulation model introduces non-linearities into the transfer functions that are in principle 
linear.  

For the transfer functions, the natural frequency ω0,SP and the damping ratio ζ0,SP of the short-
period motion, the natural frequency ω0,DR and the damping ratio ζ0,DR of the dutch-roll mode 
and the time constant TRoll of the roll mode are required since these quantities determine the 
oscillation of the load factor build-up respectively the roll-rate build-up. These values are also 
only valid for a specific reference point and thus depend on the actual flight condition where 
the variables are the air density ρ, the aerodynamic velocity VA and the aircraft mass m. 



OPTIMIZATION SIMULATION MODEL  61 

maximum load factor onset rate nz,max
•

time t

load factor nz

maximum steady-state load factor nz,max

load factor nz

percentage of overshoot

non-minimum phase behavior 

settling time

error band

 
Figure 14. Load Factor nz Time History showing Non-Minimum Phase Behavior 

With the values for the load factors ny and nz given, the appurtenant force coefficients CL and 
CY can be restored: 
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Given the assumption that the aerodynamic lift coefficient CL depends only on the angle of 
attack αA and that the aerodynamic side force coefficient CY is solely a function of the sideslip 
angle βA of the aircraft, the approximate angle of attack αA as well as the angle of sideslip βA 
can be obtained. 

3.2.8 Aircraft Attitude described by Euler Angles 
By the kinematic angle of attack αK and the kinematic sideslip angle βK, the attitude of the 
aircraft is described with respect to the Intermediate Kinematic Flight-Path Frame K̅. Usually, 
the attitude of the aircraft is given with respect to the NED-Reference Frame, utilizing the set 
of Euler angles azimuth Ψ, inclination Θ and bank angle Φ. This representation is derived in 
the following for the simulation model described above. 

The Euler angles can be restored from the transformation matrix MBO between the Body-
Fixed Frame B and the NED-Reference Frame: 
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Here, s is the abbreviation for sin() and c means the abbreviation for cos(). The value for the 
transformation matrix MBO is determined by the following relationship: 

 OKKBBO MMM ⋅=  (3.88)

Equating element (1,1) with element (1,2) of the transformation matrix MBO given by  
Eq. (3.87), the kinematic azimuth angle ΨK evaluates to: 
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The kinematic inclination angle ΘK is obtained from element (1,3) of the transformation 
matrix MBO: 

 ( ))3,1(arcsin BOKΘ M−=  (3.90)

Finally, elements (2,3) and (3,3) of the matrix MBO between the Body-Fixed Frame B and the 
NED-Reference Frame give the kinematic flight-path bank angle ΦK: 
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3.2.9 Wind Inclusion and Kinematic Relationships 
The aerodynamic forces and moments are a function of the relative motion of the aircraft with 
respect to the surrounding air. Given the seldom case that there is no atmospheric motion and 
thus no wind at all, the kinematic velocity VK and the kinematic angles resulting from the 
integration of the differential equation of motions equal the aerodynamic velocity VA 
respectively the aerodynamic angles αA, βA, etc. Otherwise, the aerodynamic values differ 
from the kinematic values and the kinematic relationships have to be accounted for in the 
simulation model. Thus, wind influences like static and convective wind fields play an 
important role when simulating aircraft trajectories and therefore a proper inclusion of these 
environmental issues in the simulation model is mandatory to provide a reproduction of the 
real environmental conditions that is as realistic as possible. 

For the optimization simulation model, static, time dependent and convective wind terms 
given in the NED-Frame are regarded as sufficient modeling accuracy. The aerodynamic 
velocity of the aircraft’s center of gravity with its components denoted in the NED-Frame can 
then be calculated as (Ref. [Brockhaus, 2001]): 
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Here, V1W represents the wind field given in the NED-Reference Frame as a function of time t 
and position r1. Then, the first order time derivative of the aerodynamic velocity vector is as 
follows: 
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The first order time derivative of the wind velocity vector V1W with respect to the NED-Frame 
can be calculated by taking the total derivative: 
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In case that the velocity V1W is assumed to be time-constant, this equation reduces to: 
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With respect to the NED-Frame, the convective wind field is given by the gradient  
matrix “V1W of the wind velocity V1W relative to the ECEF-Frame: 
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With the help of the aerodynamic velocity V1A, the aerodynamic flight-path course angle χA 
and the aerodynamic flight-path climb angle γA as well as the absolute aerodynamic  
velocity VA can be restored: 
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where the aerodynamic flight-path course angle χA and the aerodynamic flight-path climb 
angle γA give the transformation from the NED-Reference Frame O to the Intermediate 
Aerodynamic Frame A̅. The kinematic angle of attack αK and the kinematic sideslip angle βK 
are used to determine the transformation matrix MBK̅ between the Intermediate Kinematic 
Flight-Path Frame K̅ and the Body-Fixed Frame B that in turn gives the transformation  
matrix MBO between the Body-Fixed Frame B and the NED-Frame with the transformation 
matrix MK̅O given by the kinematic flight-path angles respectively the quaternions: 
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With the help of the transformation matrix MBO, the aerodynamic velocity V1A of the center of 
gravity with respect to the ECEF-Frame and its components denoted in the Body-Fixed  
Frame B can be restored: 
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This aerodynamic velocity V1A in turn allows for the calculation of the absolute aerodynamic 
velocity VA, the aerodynamic angle of attack αA and the aerodynamic angle of sideslip βA: 

 ( ) ( )
E

B
G
A

G
A

G
A

G
A

G
A

G
A

G
A

G
A

E

A

G
A

BA
E
A

G
ABA

E

B
G
A

G
A

G
A

E
B

G
A

V
V

VV

w
v
u

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⋅⋅
⋅

⋅⋅
=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⋅=⋅=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
βα

β
βα

cossin
sin

coscos

0
0MVMV

vv
 (3.104)

 ( ) ( ) ( ) ( ) 222

2 ⎥⎦
⎤

⎢⎣
⎡+⎥⎦

⎤
⎢⎣
⎡+⎥⎦

⎤
⎢⎣
⎡==

E
B

G
A

E
B

G
A

E
B

G
A

E
B

G
A

G
A wvuV V

v
(3.105)

 
( )
( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
= E

B
G
A

E
B

G
AG

A
u

w
arctanα

 
(3.106)

 
( )

( ) ( ) ⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎥⎦
⎤

⎢⎣
⎡+⎥⎦

⎤
⎢⎣
⎡

=
22

arctan
E
B

G
A

E
B

G
A

E
B

G
AG

A

wu

v
β

 
(3.107)

Finally, the aerodynamic bank μA angle is computed with the help of the transformation 
matrices between the Aerodynamic Reference Frame A and the Intermediate Aerodynamic 
Reference Frame A̅ that is the Aerodynamic Reference Frame A rotated by the aerodynamic 
bank angle μA around its x-axis: 
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3.2.10 External Forces and Moments 
For the derivation of the translation and rotation equations of motion in the preceding 
chapters, the sum of external forces and the sum of external moments acting on the aircraft 
have been related to the translational respectively the rotational accelerations of the aircraft by 
applying Newton’s 2nd law. Subsequently, the external forces and moments will be examined 
in detail, where the sum of forces is split up into the categories gravitational force F1G, 
aerodynamic forces F1A and propulsion force F1P and the moments are divided into the 
categories aerodynamic moments M1 A and propulsive moments M1 P: 
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where MKA and MKB are the transformation matrices between the Kinematic Flight-Path 
Reference Frame K and the Aerodynamic Reference Frame A respectively the Body-Fixed 
Reference Frame B. 

3.2.10.1. Gravitational Force 
Since flight trajectories with relatively low altitudes and with a limited geographic extent are 
to be considered, the decrease in the gravitational force with increasing flight altitude as well 
as inhomogeneities in the Earth’s gravitational field are not accounted for in the simulation 
model. Thus, the absolute gravitational force acting on the aircraft is considered to be a 
constant value. Since the point of application of the gravitational force coincides with the 
center of gravity of the aircraft, no moments are induced by the attraction force. Denoting the 
gravitational force in the Kinematic Flight-Path Frame K, the following expression results: 
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3.2.10.2. Aerodynamic Forces and Moments 
The aerodynamic forces and moments acting on the aircraft are invoked by the airflow 
surrounding the flight vehicle. For the calculation of the aerodynamic forces, it is assumed 
that the aerodynamic reference point coincides with the center of gravity of the aircraft. Then, 
the aerodynamic forces and moments with respect to the center of gravity G denoted in the 
Aerodynamic Frame A respectively the Body-Fixed Frame B are computed by the following 
formulae: 

 ( )
AL

Q

D

A

A
G
A

C
C
C

Sq
L

Q
D

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−
⋅⋅=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−
=F

v
 (3.113)

 ( )
Bn

m

l

B

B
G
A

Cs
Cc
Cs

Sq
N
M
L

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⋅
⋅
⋅

⋅⋅=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=M

v

 
(3.114)

where D denotes the aerodynamic drag force, Q the aerodynamic force in the direction of the 
y-axis of the Aerodynamic Frame A and L the lift force. The aerodynamic moments L, M and 
N denote the rolling moment, the pitching moment and the yawing moment respectively. The 
aerodynamic force and moment coefficients are primarily functions of the aerodynamic angles 
αA and βA, the control surface deflections ξ, η and ζ and the dimensionless aerodynamic 
angular rates pA

~ , qA
~  and rA
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The aerodynamic angular rates pA, qA and rA are the elements of the aerodynamic rotation 
vector ω1 A

AB between the aircraft and the surrounding air denoted in the Body-Fixed Frame B: 
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Analogous to the aerodynamic velocity V1A, the aerodynamic rotation vector ω1A can in general 
be derived from the difference between the kinematic rotation vector ω1K and the wind rotation 
vector ω1W of the surrounding atmosphere (Ref. [Brockhaus, 2001]): 

 WKA ωωω vvv −=  (3.119)

Thus, the aerodynamic rotation vector ω1 A
AB is obtained by subtracting the rotation vector ω1 W

OA of 
the circumfluent air relative to the NED-Frame from the rotation vector ω1 K

OB of the flight 
vehicle relative to the NED-Frame: 
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The rotation vector ω1 W
OA of the surrounding air relative to the NED-Frame is given by  

Eq. (3.121), utilizing the non-diagonal elements of the gradient matrix “V1W of the wind 
velocity V1W given by Eq. (3.96) (Ref. [Brockhaus, 2001]). 
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3.2.10.3. Propulsion Forces and Moments 
The installed propulsion system of a flight vehicle generates a thrust force acting at the thrust 
reference point. In general, this thrust reference point is not identical to the center of gravity 
and the thrust direction is not aligned with the Body-Fixed Reference Frame’s x-axis. The net 
thrust generated by the propulsion system can be split up into an inlet impulse TI and an outlet 
impulse TO (Fig. 15) acting at the reference points TI and TO, where the inlet impulse is 
parallel to the x-axis of the Aerodynamic Frame A. The direction of the outlet impulse with 
respect to the Body-Fixed Frame B is considered as constant and is given by the two 
mounting angles of an aircraft’s engine that are the angle κ in the body-fixed xy-plane and the 
thrust elevation angle σ. For the depiction of the outlet impulse TO, a Propulsion Frame P is 
introduced that is the Body-Fixed Frame B rotated by the two mounting angles κ and σ of the 
aircraft’s engine, so that consequently the x-axis of the Propulsion Frame P is aligned with the 
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direction of the outlet impulse TO. Especially for air-breathing propulsion systems, table data 
for the outlet impulse are provided instead of table data for the net forces and moments.  

The net thrust force with its components given in the Body-Fixed Frame B is the sum of the 
outlet impulse TI and the inlet impulse TO:  
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Figure 15. Depiction of Inlet Impulse and Outlet Impulse 

MBP is the transformation matrix between the Body-Fixed Reference Frame B and the 
Propulsion Frame P: 
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Because of the lever arms between the aircraft’s center of gravity point G and the thrust 
reference points TI and TO, the inlet impulse TI and the outlet impulse TO also induce a 
supplementary moment around the center of gravity point G of the flight system. Furthermore, 
components of the propulsion system rotating at high speeds like e.g. shafts induce gyroscopic 
moments M1 Gyro also acting on the aircraft. These moments can be taken into account in the 
total propulsion moments M1 P acting at the aircraft’s center of gravity point: 
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If the propulsion system is not a tilt-rotor system nor a system with thrust vector control, i.e. if 
the Propulsion Frame P is fixed relative to the Body-Fixed Reference Frame B, the gyroscopic 
moments are (Ref. [Holzapfel, 2009b]): 
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Here, Rot denotes the Rotor Reference Frame that is fixed to the rotor and thus rotates with 
the rotor. The x-axis of the Rotor Reference Frame Rot is aligned with the x-axis of the 
Propulsion Frame P and the rotation vector ω1 K

PRot is given by 
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For the calculation of the thrust force T that is a function of the commanded thrust lever 
position δT,CMD, one has to bear in mind that due to the engine dynamics the thrust force 
cannot perform discrete changes even if a step change in the thrust lever position is 
commanded. For this reason, it is much more realistic to model the relationship between the 
commanded thrust lever position δT,CMD and the thrust force T as a linear transfer function of 
first order depending on the maximum possible thrust for any given altitude and velocity: 

 CMDTT sT
TTT ,maxmax 1

1 δδ
δ

⋅
+⋅

⋅=⋅=  (3.127)

This transfer function can also be rewritten as a differential equation: 

 ( )TCMDTT T
δδδ
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−= ,
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The engine time constant Tδ can be adjusted to simulate the real engine dynamics in a realistic 
manner. With the effective thrust lever position δT a further state is added to the non-linear 
simulation model. Within the simulation model, the effective thrust lever position δT has to be 
limited so that on the one hand the thrust force cannot take negative values and on the other 
hand the thrust force cannot exceed the maximum available thrust force Tmax: 

 [ ]1,0∈Tδ  (3.129)

Furthermore, the first order time derivative of the effective thrust lever position can be limited 
to achieve a realistic reproduction of the characteristic dynamics of the propulsion system in 
the simulation model: 

 max,min, TTT δδδ &&& ≤≤  (3.130)

3.2.11 Actuator Dynamics 
Additionally to the basic flight system components that have been considered so far, for a 
realistic simulation of the aircraft it is also necessary to take into account further characteristic 
dynamics that are directly enclosed in the physical causal chain of the flight system. In this 
conjunction, one important aspect that has to be considered are the dynamics associated with 
the actuators installed in the aircraft. Even in case of an aerobatic aircraft without any 
actuators installed, the pilot will not be able to move the control surfaces at infinite speed 
because of the pilot’s limited maximum physical motion speed that in turn is further reduced 
by the counteracting aerodynamic forces acting on the control surfaces. Thus, it is more 
realistic to assume that discrete jumps in the acceleration of the control surfaces are possible 
instead of discrete changes in the velocity or even in the position of the control surfaces. This 
justifies the modeling of the actuator dynamics by a substituted mechanical system of second 
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order. The according linear transfer functions between the commanded control surface 
deflections and the achieved deflection values have the following form: 
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Here, the input uCMD represents the commanded control surface deflection while the output y 
gives the effectively achieved value. This transfer function can also be cast in state-space 
form: 
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Because the actuator dynamics are modeled as second-order mechanical systems, the aileron 
deflection ξ, the elevator surface deflection η and the rudder deflection ζ augment the state-
vector of the optimization simulation model by totally six states that are the effective control 
surface deflections ξ, η and ζ and their first order time derivatives ξ̇, η̇ and ζ ˙. Within the 
simulation model, these states are limited to take into account the maximum achievable 
control surface deflections and rates of the regarded flight system and to simulate this flight 
system as precise as possible. Furthermore, if the maximum occurring control moments shall 
be limited, the accelerations, i.e. the second order time derivatives ξ̇̇ , η̇̇  and ζ̇̇  of the various 
control surface deflections have to be restricted. 

3.2.12 Static Atmosphere 
The atmospheric conditions are calculated in accordance to the International Standard 
Atmosphere DIN ISO 2533 (Ref. [NN, 1975]). Deviations from the norm standard 
atmosphere can be taken into account by an adjustment of the respective norm reference 
values p0 and T0 regarding the polytropic troposphere layer:  

 ISAppp Δ+= 0
*
0  (3.134)

 ISATTT Δ+= 0
*

0 (3.135)

In this manner, deviations from the norm standard atmosphere given in the form “ISA+25°C” 
as it could be the case for air races taking place on a hot day e.g. in Abu Dhabi are taken into 
account for the simulation and optimization of the flight trajectories. If any deviations from 
the norm standard atmosphere are existent, the corresponding reference values T11

   *, T20
   *, p11

  *  and 
p20
  *  for the isothermal lower stratosphere layer respectively the polytropic upper stratosphere 
layer have to be calculated from T0

   * and p0
  *. 

3.3 Feedback Linearization as Plant Transformation 
Additionally to the simulation model with its different depths of modeling described above, 
for all subsystems inverse simulation models are implemented so that for given reference 
values the required command values that force the simulation model to track the prescribed 
reference values can be calculated. This inversion is based on the principle of nonlinear 
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dynamic inversion (Refs. [Slotine, 1991], [Holzapfel, 2004], [Holzapfel, 2009d] and  
[Khalil, 2001]) of the flight dynamics equations. 

For the dynamic inversion, the equations of motion respectively the propagation equations 
implemented in the various subsystems are inverted so that the inputs that in turn will produce 
the desired outputs can be computed. It has to be mentioned that the inversion is only possible 
for minimum phase systems, i.e. systems that have all their transfer function zeros in the left-
hand side of the complex plane. If any system or subsystem incorporates a non-minimum 
phase behavior, only the minimum phase part of the subsystem can be inverted to yield an 
inverse system that is also stable and causal. 

The application of dynamic inversion to flight control tasks has a long tradition (Refs.  
[Snell, 1991], [Snell, 1992] and [Lane, 1988]) and has been successfully implemented in 
different experimental programs simulating a broad range of aircraft with various tasks (Ref. 
[Calise, 2000]). Over the time, a lot of modifications have been made to the basic concept, 
like the addition of adaptive terms to cancel the inversion error, a concept that has originally 
been demonstrated for robots. Basically the principle of dynamic inversion can be stated as 
follows: for a system with relative degree of one the dynamic inversion of the plant computes 
the required control inputs uCMD with respect to any given reference trajectory ν = ẏREF such 
that the model plant reacts with the desired output trajectory ẏ = ẏREF.  

For the full non-linear 6-Degree-of-Freedom simulation model plant, a change in the altitude 
results from a certain deflection of the elevator control surface over a chain of integrations. 
On the other side, for a desired altitude profile, the necessary elevator deflections can be 
computed by inverting the equations of motion of the simulation plant. If the computed 
control surface deflections are then commanded to the simulation model, the aircraft follows 
the desired reference trajectory.  

As can be seen from Fig. 8 in chapter 3.1, there are at least four integrations between the 
control surface deflections and the resulting position of the aircraft if no actuator dynamics 
are taken into account, so the relative degree of the overall flight system is four. Thus, not 
only the reference time history itself but also higher order time derivatives are required as 
input to the inverse simulation model in order to be able to calculate the command values that 
have to be fed into the simulation model so that the simulation model follows a given 
reference time history. Since there are two integrations in the causal chain between the 
commanded control surface deflections and the resulting changes in the aerodynamic attitude 
angles respectively aerodynamic load factors (see Fig. 8 in chapter 3.1), for the dynamic 
inversion of the inner loop attitude and rotational dynamics the second order time derivatives 
of the reference load factors n1̇̇  are required. This in turn means that the third order time 
derivatives of the flight-path velocity V̇̇̇, the climb angle γ̇̇̇  and the course angle χ̇̇̇  have to be 
computed thus demanding for the fourth order time derivative of the position vector x1(4). In 
the following the derivation of the required reference values is depicted, starting from a given 
reference trajectory x1(τ). For this reference trajectory, it is essential to be at least four times 
differentiable with respect to the trajectory parameter τ. 

Since the inversion controller that is based on the principle of dynamic inversion is a 
substantial part of the simulation model and thus of the developed optimization algorithm, 
theoretical foundations on the principle of nonlinear dynamic inversion respectively input-
output linearization are reviewed in chapter 3.3.1. More detailed information on the principle 
of dynamic inversion can also be found in Refs. [Slotine, 1991], [Holzapfel, 2004], 
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[Holzapfel, 2009d] or [Khalil, 2001]. The input to the outermost part of the inversion 
controller is a reference trajectory that the dynamic system ought to follow. Thus, in  
chapter 3.3.2 the method for computing the required reference values from a given input 
trajectory is depicted.  

The dynamic inversion part of the simulation model is built up as a cascaded structure, 
whereas the reference signals for a particular subsystem are calculated from the signals given 
by the next outer subsystem. The derivation of the reference values for the distinct subsystems 
is explained in chapters 3.3.3 to 3.3.12, starting from the outermost system, the subsystem for 
the generation of the reference values for the kinematic flight-path variables, and then going 
inwards to the subsystem for the generation of the moments respectively the control surface 
reference values. Here, the major task of the different subsystems is to generate reference 
signals up to the respective required derivative order with respect to a given reference 
trajectory. For the computation of these reference values by the particular subsystems, not 
only the reference commands themselves coming from the next outer subsystem are required 
as input signals but also their derivatives with respect to time up to a certain order. 

3.3.1 Non-Linear Dynamic Inversion - Theoretical Fundamentals 
The primary objective of non-linear dynamic inversion is to find a non-linear transformation 
of the state vector of the form 

 )(xΦz =  (3.136)

so that the transformed system shows a linear input-output behavior. Therefore, the principle 
of non-linear dynamic inversion is also called exact input-output linearization. It can be 
termed exact, since the linearization is done without any approximations or simplifications of 
the underlying dynamic system. 

In the following, non-linear multi-input multi-output (MIMO) systems are considered that are 
of the state-space form 

 ( ) ( ) uxGxfx ⋅+=&  (3.137)

 ( )xhy = (3.138)

where x ∈ n is the state vector, u ∈ m the control input vector and y ∈ m the output vector 
of the dynamic system. The functions f: x ö n, G: u ö m and h: x ö m that are 
functions of the n-dimensional state vector have to be sufficiently smooth, i.e. that they have 
to be continuously differentiable up to a certain differentiation order. Since the control input 
vector u appears linear in the system (3.137), the system is called input affine. Furthermore, 
the system is square, i.e. the number of input variables equals the number of outputs. The 
matrix G is comprised of m vector fields gi: 

 ( ) ( ) ( )[ ]xgxgxG mL1=  (3.139)

The vector fields f, gi and h in turn consist of non-linear functions of the state vector x:  

 ( ) ( ) ( )[ ]T
nff xxxf L1=  (3.140)

 ( ) ( ) ( )[ ] migg T
niii  ..., ,1,1, == xxxg L (3.141)

 ( ) ( ) ( )[ ]T
mhh xxxh L1= (3.142)
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Now, the basic approach of the dynamic inversion principle in order to linearize the input-
output behavior of the regarded system is to differentiate the outputs repeatedly with respect 
to time until the control u appears. Then, the control u can be designed such that the non-
linearities of the system are canceled out. A necessary pre-condition in order to be able to 
accomplish this task is the existence of a well-defined relative degree r of the considered 
system that is defined as follows: 

Definition: A non-linear multi-input multi-output system of the form (3.137) to (3.138) is 
said to have a vectorial relative degree {r1, …, rm} at a point x0 if 
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≤≤−<≤≤∀= 1,1,10xfg  (3.143)

with x being in the neighborhood W of x0. Furthermore, the m x m decoupling matrix A 
defined by Eq. (3.144) must not be singular at x = x0, which also implies that the decoupling 
matrix A is invertible. 
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For the vectorial relative degree, the following relation holds: 
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In (3.143) and (3.144), the so-called Lie derivatives Lfh are used that are defined as follows: 

Definition: Given a real-valued, smooth scalar function h: n ö  and a real-valued, smooth 
vector field f: n ö n, the Lie derivative Lfh of h with respect to f is defined as the 
derivative of the function h along the vector field f:  
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i.e. the Lie derivative is the gradient of h with respect to x projected onto the vector field f. 
Since the resulting Lie derivative is again a scalar value, higher order Lie derivatives with 
respect to the same vector field can be computed by recursion: 
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with 

 ( ) ( ).0 xxf hhL =  (3.148)

If another vector field g: n ö n is given, the recursive execution of the Lie derivative with 
respect to f and g gives: 
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Finally, the Lie derivative can also be applied with respect to a matrix G as given by  
Eq. (3.139): 

 ( )hLhLhL
mggG ...

1
=  (3.150)

which means that the gradient of the function h is projected on the vector fields gi that form 
the columns of the matrix G. 

For the system given by (3.137) and (3.138), the relative degree ri of each single output yi can 
be determined by differentiating the respective output with respect to time repeatedly until a 
control variable ui appears directly in the ri-th order time derivative of the output yi: 
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Here it is assumed that the control vector u at a point x = x0 has no influence on the first ri-1 
time derivatives, so that the corresponding Lie derivatives are zero. This implies that the ri-th 
order time derivative of the output yi is the first time derivative order that can directly be 
influenced by the control input u, while the lower order time derivatives do not depend on the 
control vector u in a direct manner and thus cannot be influenced forthright. Thus, the relative 
degree ri of an output yi provides the lowest differentiation order of the considered output that 
can be directly prescribed by a control input which means that the ri-th order time derivative 
of this output is proper with respect to the control input. Furthermore, the relative degree ri 
can be regarded as a measure for the minimum possible time delay for the output yi to react to 
any change Du in the control input since the lower order time derivatives of the output yi 
result from integration of its ri-th order time derivative. In case of a linear transfer function 
the relative degree ri of the system matches the pole excess, i.e. the difference between the 
degree of the denominator polynomial and the degree of the numerator polynomial. 

As mentioned before, the existence of a well-defined relative degree r as well as the non-
singularity of the decoupling matrix A are necessary conditions in order to perform an input-
output linearization of a specific system. If these conditions are fulfilled, the transformation 
(3.136) can be carried out so that the resulting system will feature a linear input-output 
relationship. This is illustrated in the following, where for a system with multiple outputs at 
first the individual outputs are treated separately before finally the transformations for the 
single outputs are combined together to give the transformation for the entire multi-output 
system. 

Exploiting the fact that for the output yi with relative degree ri the first ri-1 Lie derivatives do 
not depend on the control u, i.e. 

 ( ) ( ) 1..., ,1               −== ii
kk

i rkhLy xf  (3.154)

the system can be transformed to 

 ( ) ( ) ( )xxx f iii
iii hhLyz ===Φ== 0
111 ξ  (3.155)
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Thus, the transformed state xi vector for the i-th output is 

 [ ]Ti
r

ii
i

ξξ L1=ξ  (3.159)

Joining together the transformed state vectors xi for the different outputs gives the following 
state vector x for the first r = r1 + … + rm coordinates: 
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If the state vector x obtained by the transformation contains less elements than the original 
state vector x comprising in total n elements, n-r additional coordinates h1, …, hn-r have to be 
found in order to ensure that the transformation (3.136) is a local diffeomorphism and thus a 
valid coordinate transformation. Formally, the definition of a diffeomorphism reads: 

Definition: A function Φ(x): n ö n is called a diffeomorphism if Φ(x) is bijective, i.e. 
the function has to be invertible so that a function Φ-1(x) exists with 

 ( )( ) nR∈∀=− xxxΦΦ         1  (3.161)

and if Φ(x) and Φ-1(x) are smooth, continuously differentiable mappings, i.e. that all partial 
derivatives have to exist and must be continuous: 

 ( ) 1C∈xΦ  (3.162)

 ( ) 11 C∈− zΦ (3.163)

If the necessary conditions are fulfilled only locally at a point x0, and not globally in n, the 
diffeomorphism is said to be a local diffeomorphism. In case of a local diffeomorphism, the 
Jacobi-matrix 

 ( )
x
xΦxΦ

∂
∂

=∇
)(  (3.164)

of the mapping Φ(x) is regular, i.e. invertible. 

For the Jacobian ∑Φ/∑x to be invertible, the row vectors of these matrix have to be linearly 
independent. This implies that for the selection of the remaining n-r coordinates h1, …, hn-r 
the linear independence of the derivatives dΦi, i = r+1, …, n among themselves as well as 
their linear independence with respect to the r coordinates given by Eq. (3.160) have to be 
taken into account: 
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 ( )x111 ++ Φ== rrz η  (3.165)

 M

 ( )xnrnnz Φ== −η (3.166)

The full length state vector of the transformed system then reads: 
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with the corresponding transformation being defined by Eq. (3.136). According to this 
transformation, each of the first r states corresponds to the first order time derivative of the 
preceding state: 

 1−= ii zz &  (3.168)

Then, substituting the state vector x by the inverse of the transformation, i.e. x = Φ-1(z) and 
introducing the fraction state vectors x = [x1, …, xr]T and h = [h1, …, hn-r]T so that z = [x,h]T, 
the following system dynamics result with one block for each output yi, i = 1, …, m 
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21 ξξ =&  (3.169)
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and one additional block 
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where 
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For the outputs of the transformed system, the following relationships hold: 
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Based on the state-transformation derived so far, a non-linear state feedback can be found that 
gives the desired linear input-output behavior. Therefore, only equations (3.170) that contain 
the highest order derivatives of the various outputs are combined together: 
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In addition to the linearization of the input-output behavior of the dynamic system, non-linear 
dynamic inversion has the goal to decouple the system dynamics between the inputs and the 
outputs, i.e. each control input shall only influence a single output. Therefore, pseudo-controls 
n = [n1, …, nm]T are introduced for the transformed system, where the number of pseudo-
controls has to equal the number of the system outputs in order to allow for a decoupling of 
the input-output dynamics. Then, a non-linear state-feedback of the following form can be 
chosen: 

 ( ) ( ) νxβxαu ⋅+=  (3.181)

Substituting Eq. (3.181) into the transformed system (3.178), the dynamics of the closed-loop 
system are: 

 ( )[ ] ( ) ( ) ( ) ( )[ ]νxβxαxAxb ⋅+⋅+=ir
iy  (3.182)

Setting the coefficients of the non-linear state-feedback (3.181) to 

 ( ) ( ) ( )xbxAxα ⋅−= −1  (3.183)

respectively 

 ( ) ( )xAxβ 1−=  (3.184)

the system dynamics (3.182) reduce to 

 ( )[ ] ν=ir
iy  (3.185)

The actual controls u that have to be fed forward into the original dynamic system can then be 
restored from the pseudo-controls n and the implemented feedback gains a(x) and b(x): 

 ( ) ( )[ ]xbνxAu −⋅= −1  (3.186)
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Thus, the original system featuring coupled and non-linear dynamics has been substituted by a 
transformed system with decoupled and linear dynamics between the pseudo-controls and the 
system outputs, where the i-th output yi results directly from the i-th pseudo-control ni after ri 

integrations as can be seen from (3.185), i.e. that the ri-th derivative of the i-th output yi can 
be set directly by the i-th pseudo-control ni. Fig. 16 shows the principle layout of the system 
that ideally results from an exact input-output linearization respectively dynamic inversion. 
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Figure 16. Input-Output Linearization 

The relationships between the input quantities ui and the ri-th order time derivatives of the 
output quantities yi are given by a system of non-linear algebraic equations. These equations 
are determined by the vector fields f, g1, …, gm which describe the dynamics of the considered 
system and depend on the actual control inputs and state values of the system. In principle, the 
exact input-output linearization is identical to solving the system equations F(x, u) for the 
control inputs u for the example of a system of relative degree 1. 

In the following chapters, the principle of input-output linearization respectively non-linear 
dynamic inversion is applied to the rigid body equations of motion introduced in chapter 3.2. 
At this, the input-output linearization is not applied to the dynamic flight system on the whole, 
but it is made use of its sequential structure. Starting with the outermost system, i.e. the 
position propagation equations, the inputs to these equations that are the kinematic flight-path 
variables are considered as control inputs. Applying the principle of dynamic inversion, these 
variables can then be calculated from a given reference trajectory x1REF (see chapter 3.3.3). 
Now, feeding the computed flight-path variables directly into the position propagation 
equations would again result in the reference trajectory as output. Next, the input-output 
linearization is applied to the translation equations of motion, where now the kinematic flight-
path variables are regarded as the output while the load factors in the kinematic flight-path 
frame K now represent the inputs and thus the controls (chapter 3.3.4). Given the reference 
values for the kinematic flight-path variables, the load factors can be computed that would 
result in the prescribed reference values of the kinematic flight-path variables if they were fed 
into the translation equations of motion. This procedure (see Fig. 17) is repeated until the 
innermost subsystem is reached that incorporates the rotation equation of motions. 
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Figure 17. Structure of the Applied Input-Output Linearization 

As can be seen from Fig. 17, from the viewpoint of the outer loops the respective inner loops 
are seen as actuator dynamics (with transfer functions G) since the inner loops impress some 
dynamics onto the respective controls. Given the case that all input-output linearizations are 
exact, i.e. G = 1 for all inner loops and that no actuator dynamics are present (GA = 1), the 
complete dynamic inversion is exact and any reference trajectory will result in exactly the 
same output trajectory. In reality, it is an impossible task to give an exact reproduction of the 
real dynamic behavior of a system by mathematical equations out of numerous reasons that 
can be 

• parameter uncertainties, 
• modeling uncertainties, 
• neglected dynamics, 
• external perturbations, 
• errors or delay when measuring certain quantities, 
• or quantities that are not measurable at all. 

Thus, for real-world applications of the input-output linearization only approximate systems 
can be utilized whose dynamic behavior differs from the behavior of the real system. 
Regarding an input-output linearization for a simulation model that is only run on computers, 
most of the above mentioned problems are non-existent. Besides the actuator dynamics (that 
could also be input-output linearized), differences between the reference values and the 
resulting output quantities appear only due to numerical imprecision or inherent non-
minimum phase dynamics of the considered flight system that cannot be treated by the 
dynamic inversion. As mentioned in Ref. [Slotine, 1991], if the “internal dynamics is stable 
[…], our tracking control design problem has indeed been solved. Otherwise, the […] 
tracking controller is practically meaningless, because the instability of the internal dynamics 
would imply undesirable phenomena […]” (Ref. [Slotine, 1991, p. 218]). As this, “the internal 
dynamics is stable if the plant zeros are in the left-hand plane, i.e., if the plant is “minimum-
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phase” (Ref. [Slotine, 1991, p. 222]). If the input-output dynamics of the actuators were also 
linearized, the reference trajectory would have to be given up to its sixth order time derivative 
assuming that second-order linear transfer functions were implemented for the actuator 
dynamics as proposed in chapter 3.2.11. 

3.3.2 Reference Trajectory 
One basic mode of the whole simulation model is the trajectory following mode, i.e. the 
geometry of the desired trajectory is given as input to the inverse simulation model and the 
simulation model ought to follow this trajectory as closely as possible respecting the given 
limitations of the aircraft dynamics. Therefore, the reference trajectory for the x-, y- and  
z-position in the Navigation Frame has to be specified: 
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Here the trajectory is parameterized with respect to the parameter τ that does not necessarily 
have to be identical to the simulation time t. As mentioned above, the reference trajectory has 
to be at least four times continuously differentiable, thus it could for example be given as a 
quintic spline. 

With the given reference trajectory and the actual position of the aircraft, the reference point 
on the trajectory can be computed with the reference point being the point on the reference 
trajectory at which the aircraft ideally should be at a particular time. Since the reference point 
is specified as the nearest point on the reference trajectory from the current aircraft position 
(see Fig. 18), the reference point is the perpendicular foot point on the trajectory from the 
current aircraft position. 

Aircraft Position

Reference Point

Reference Trajectory

 
Figure 18. Calculation of the Aircraft’s Reference Point 

Thus, the vector from the current aircraft position to the reference point is orthogonal to the 
tangent at the trajectory in the reference point, so that the actual reference point can be 
calculated by 

 ( ) ( )( ) 0=−′ xxx vv
o

v
REFREFREFREF ττ  (3.188)

In case that this equation cannot be solved analytically for the parameter τREF of the actual 
reference point x1REF(τREF), it has to be solved numerically, what can be accomplished e.g. by 
the Newton algorithm (Refs. [Kiusalaas, 2005] and [Quarteroni, 2000]) or alternatively by the 
Laguerre algorithm (Ref. [Kiusalaas, 2005]) if the reference trajectory is given in polynomial 
form. Here, x1’ denotes the derivative of the position vector with respect to the parameter τ.  
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Within the inverse simulation model, the reference trajectory is the input to the path reference 
subsystem that contains the dynamic inversion of the position propagation equations and is 
introduced below. For this subsystem the derivatives of the current reference position vector 
of the aircraft up to the fourth order with respect to time are required. Thus, if the parameter τ 
is not identical to the time variable t, the derivatives with respect to time have to be computed 
within the reference trajectory subsystem. Therefore, the derivatives of the position vector 
with respect to the parameter τ up to the fourth order are derived and a scalar pseudo- 
velocity V̅ is introduced. Next, the derivatives of this pseudo-velocity V̅ up to the third order 
with respect to the parameter τ are obtained by 
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In combination with the current kinematic aircraft velocity VK and its time derivatives, the 
above computed pseudo velocity V̅ and its derivatives with respect to the trajectory  
parameter τ can now be used to compute the required derivatives of the position vector x1(t) 
with respect to time up to the fourth order: 
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3.3.3 Reference Kinematic Flight-Path Values 
The path reference subsystem contains the inverted position propagation equations. Here, the 
reference kinematic flight-path signals namely the kinematic velocity VK, the kinematic flight-
path climb angle γK and the kinematic flight-path course angle χK are computed up to their 
third order time derivatives from the reference trajectory. Therefore, the path reference 
subsystem requires as input the reference trajectory as well as the derivatives of this reference 
trajectory with respect to time up to the fourth order. 

The computation of the required reference values is accomplished as follows: 
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Within the inverse simulation model, these flight-path signals are in turn utilized for the 
computation of the reference load factor values and their time derivatives up to the second 
order. Therefore, not only the flight-path signals themselves but also their derivatives with 
respect to time up to the third order are necessary. The derivatives of the kinematic flight-path 
signals can be derived by differentiation of the above stated Eqs. (3.201) to (3.204): 
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3.3.4 Reference Load Factors in the Kinematic Flight-Path Frame K 
The reference load factors in the Kinematic Flight-Path Frame K are obtained by the inversion 
of the translation equations of motion that describe the translational dynamics of the vehicle 
with respect to the surface of the Earth and are the basis for the control of the path dynamics 
variables. Physically, to follow a desired trajectory, forces are to be generated that counter the 
inertia forces associated with the desired curvature of the trajectory as well as the 
gravitational force. Primary virtual controls which can be utilized are mainly the lift 
(controlled by the aerodynamic angle of attack αA and the dynamic pressure q̅) to produce 
forces perpendicular to the flight-path climb angle γK and the thrust to generate forces in the 
velocity direction. Secondary force generators in other directions are the aerodynamic angle 
of sideslip βA to produce side forces and thus to quicken changes in the lateral plane of 
curvature, the flaps to produce direct lift force changes at low bandwidth, speed- or air-brakes 
to increase the drag and thus the deceleration potential of the aircraft and finally, if available, 
thrust vector controls. 

Specified in the Kinematic Flight-Path Frame K (i.e. the path-axis system), the required total 
forces for maneuvers over a non-flat, rotating Earth are: 
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In case that only maneuvers over a flat, non-rotating Earth are considered, the equations for 
the required forces simplify to: 
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Thus, the required load factors in the K-Frame have to be calculated from the reference flight-
path signals and their derivatives, which is done by the following equations that are derived 
from Eqs. (3.218) to (3.220) with the load factor nz having the opposite direction as the sum 
of forces in z-direction: 
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As mentioned above, for the reference load factors not only the reference signals themselves 
but also their first and second order time derivatives are necessary. These derivatives have to 
be computed by differentiating Eqs. (3.221) to (3.223) with respect to time: 
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From the preceding equations it can be seen that not only the first and second order 
derivatives of the flight-path climb angle γK, the azimuth angle χK and the kinematic  
velocity VK have to be computed, but also the third order time derivatives of the reference 
flight-path values. 
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3.3.5 Reference Load Factors in the Intermediate Flight-Path Frame K̅ 
In the Intermediate Kinematic Flight-Path Frame K̅, also the kinematic flight-path bank  
angle μK can be utilized to control the direction of the lift force in addition to the virtual 
controls that can be used in the Kinematic Flight-Path Frame K. Concerning the generation of 
the reference load factors in the K̅-Frame two alternatives are possible, namely a coordinated 
roll dynamics mode and an external kinematic roll dynamics mode where the roll dynamics 
are commanded externally in addition to the reference load factors in the K-Frame. 

By the coordinated roll dynamics or coordinated turning mode, the reference load factors and 
the reference flight-path bank angle in the K̅-Frame are calculated from the reference load 
factors in the K-Frame. At this, the side force corresponding to the y-component of the load 
factors in the K̅-Frame is assumed to be zero which means that the necessary side force for a 
turn can be produced only by rotating the lift vector in the yz-plane what is done by the flight-
path bank angle μK. The equations for the calculation of the reference values are 
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The first and second order time derivatives of the load factors and roll rate reference values 
that are also necessary can be calculated by differentiating the above equations, yielding 
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With the alternative mode that is the external roll dynamics mode the kinematic roll dynamics 
are commanded externally in addition to the load factors. This is necessary for certain flight 
maneuvers e.g. for flying through a knife edge gate with a kinematic flight-path bank angle μK 
equal to 90°. In such a case, the side force is used to compensate the external roll dynamics. 
So the flight-path bank angle command and its derivatives do not result from the load factors 
in the K-Frame as in the previous mode, but they are commanded directly and the load factors 
in the K̅-Frame are calculated by the following equations, using the transformation matrix 
between the K̅-Frame and K-Frame and its derivatives: 
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where the transformation matrix MK̅K and its derivatives are: 
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For both the coordinated roll dynamics and the external roll dynamics not only the reference 
load factor values in the K-Frame themselves but also their first and second order time 
derivatives have to be given as inputs. 

3.3.6 Reference Load Factors in the Aerodynamic Frame A 
Within this subsystem of the inverse simulation model, the reference load factors in the 
Aerodynamic Frame A are generated. Therefore, the reference load factors and their 



86  OPTIMIZATION SIMULATION MODEL 

derivatives given in the K̅-Frame have to be transformed into reference load factor values in 
the Aerodynamic Frame A in order to account for the influence of the wind. This is 
accomplished by 
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In case that there is no wind, the Intermediate Kinematic Flight-Path Frame K̅ is identical to 
the Aerodynamic Reference Frame A and the above computations can be omitted. As one 
might notice from the above equations, the transformation matrix MAK̅ between the 
Intermediate Kinematic Flight-Path Reference Frame K̅ and the Aerodynamic Frame A as 
well as the rotational rate ω1AK̅ and its first order time derivative between those two reference 
frames require the kinematic flight-path bank angle μK up to its second order time derivative. 
The kinematic flight-path bank angle and its derivatives can only be calculated from the 
aerodynamic flight-path bank angle if the aerodynamic and kinematic attitude angles and their 
derivatives are already known. Since this is obviously not the case at this point of the inverse 
simulation model, an alternative inverse simulation model subsystem has been implemented 
that circumvents this drawback, that is the external aerodynamic roll dynamics mode for the 
calculation of the reference load factors in the Aerodynamic Frame A. This mode is similar to 
the external kinematic roll dynamics mode but instead of the kinematic flight-path bank  
angle μK, here the aerodynamic bank angle μA can be commanded externally in addition to the 
load factors in the Kinematic Flight-Path Reference Frame K. The corresponding equations 
read as follows: 
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Thus, the reference values for the load factors in the Intermediate Kinematic Flight-Path 
Reference Frame K̅ do not have to be computed at all and the kinematic flight-path bank  
angle μK is not required as input so far. Since the aerodynamic flight-path bank angle μA ought 
to be less descriptive than the kinematic flight-path bank angle μK, the external aerodynamics 
roll dynamics mode might also be less descriptive than the external kinematic roll dynamics 
mode. This imposes a drawback only in case that the flight-path bank angle is commanded 
externally by a human but not in case that a computer prescribes the time history for the 
flight-path bank angle as it is the case for the optimization tasks. Moreover, as described later 
on the external aerodynamic roll dynamics mode gives way to the development of an 
optimization procedure that is more integrated and continuous than it would be the case with 
the external kinematic roll dynamics mode. 
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3.3.7 Reference Aerodynamic Attitude Angles 
After deriving the necessary reference load factors in the Aerodynamic Frame A, the 
corresponding aerodynamic reference attitude angles that are the aerodynamic angle of  
attack αA and the aerodynamic angle of sideslip βA that are primarily utilized to control the 
aerodynamic forces respectively the aerodynamic load factors can be computed.  

Therefore, at first the aerodynamic coefficients have to be calculated from the aerodynamic 
load factors and their derivatives given in the Aerodynamic Reference Frame A. For the 
computation of the derivatives of the force coefficients CL, CY and CD, only the load factors 
and the velocity are regarded as time-dependent. This leads to the following formulae for the 
lift coefficient CL and its derivatives: 
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The equations for the aerodynamic force coefficients CY and CD are analogous. 

Given the assumption that the lift force derivative CL is only a function of the aerodynamic 
angle of attack αA, the reference values for the aerodynamic angle of attack αA and its 
derivatives are obtained by: 
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Furthermore, assuming that the side force derivative CY is only a function of the sideslip  
angle βA, the corresponding equations for the respective reference values of the aerodynamic 
sideslip angle βA are: 
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As mentioned above, non-minimum phase effects like e.g. the generation of a downward lift 
force due to an upward deflection of the elevator cannot be taken into account for the 
calculation of the aerodynamic attitude angles in the inverse simulation model. Finally, the 
required thrust force T can be computed utilizing the x-component of the aerodynamic load 
factor vector n1A: 

 ( ) DmgnT
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G
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Here it is assumed that the thrust force T is aligned with the x-axis of the Aerodynamic 
Reference Frame A. For the calculation of the drag force D, a quadratic drag polar as given by 
Eq. (6.18) can be utilized: 
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where the reference angle of attack αA,REF is given by Eq. (3.257) and where the reference 
sideslip angle βA,REF is given by Eq. (3.260). Finally, the reference thrust lever position δT,REF 
can be derived from the thrust force T depending on the propulsion model. For example, if for 
the thrust force computation Eq. (6.24) is implemented, the reference thrust lever  
position δT,REF evaluates to: 
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where Tref is the engine’s reference thrust, Vref the reference velocity, ρref the reference air 
density and nρ the density exponent. The exponent nV gives the dependency of the thrust w.r.t. 
the aerodynamic velocity, for propeller-driven aircraft this exponent equals -1. The higher 
order derivatives for the reference thrust lever position δT,REF can be obtained by 
differentiating the above equations. 

Without the assumptions made above, the computation of the reference values for the 
aerodynamic attitude angles αA and βA and the thrust lever position δT would not be that 
straight forward: before the aerodynamic coefficients can be calculated, the load factors n1P 
induced by the propulsion force have to be subtracted from the total reference load factor 
values to obtain the load factors n1A that have to be produced solely by the aerodynamic 
forces. Therefore, the aerodynamic load factors n1A and their derivatives can be computed as: 
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A major drawback of the above stated equations is the fact that the aerodynamic attitude 
angles αA and βA for the calculation of the transformation matrix MAB between the 
Aerodynamic Reference Frame A and the Body-Fixed Frame B as well as the thrust lever 
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position δT for the calculation of the propulsion force are required. But these reference values 
are in turn calculated from the aerodynamic load factors given by the above equations. There 
are various possibilities to cope with this problem: for simulation tasks, one could take the 
reference values for the aerodynamic attitude angles and the thrust lever position from the 
preceding time step to approximately compute the required reference values for the 
aerodynamic load factors in the actual time step. Alternatively, the corresponding values for 
the aerodynamic attitude angles and the thrust lever position from the simulation model plant 
itself could be used and fed back to calculate the aerodynamic load factor reference values. 
Finally, the aerodynamic attitude angles and the thrust lever position could be calculated 
iteratively. Therefore, e.g. a Newton Algorithm can be used to solve the following equation: 
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where CD, CY and CL are the aerodynamic force coefficients given in the Aerodynamic 
Reference Frame A. Eq. (3.269) can then be solved iteratively to give the aerodynamic 
attitude angle angles αA and βA together with the thrust lever position δT. At this, the force 
coefficients can also be taken from appropriate look-up tables. 

Accordingly, the higher order time derivatives of the aerodynamic angle of attack αA, the 
aerodynamic sideslip angle βA and the thrust lever position δT can be computed by deriving 
Eq. (3.269) with respect to time and solving the resulting equations iteratively for the higher 
order derivatives. 

3.3.8 Reference Kinematic Attitude Angles 
With the reference values for the aerodynamic angle of attack αA and the aerodynamic angle 
of sideslip βA specified, one can now calculate the according reference values for the 
kinematic angle of attack αK and the kinematic angle of sideslip βK including their derivatives 
by the below equations where foremost the kinematic velocity V1K with its components given 
in the Body-Fixed Frame B has to be established: 
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Furthermore, the first and second order derivative with respect to the Body-Fixed Frame B of 
the kinematic velocity V1K denoted in the Body-Fixed Frame B are necessary for the 
calculation of the kinematic attitude angles: 

 ( ) ( ) ( ) ( ) ( )ENG
WBNB

BN
K

EN

N
G

WBN

EB

REFB
G
A

EB

REFB
G
K VMωVMVV

vv&v&v&v ×++= ,,  (3.272)

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )[ ]E
N

G
WBNB

BN
KB

BN
K

EN

N
G

WBNB
BN
K

E
N

G
WBN

B
B

BN
K

ENN

N
G

WBN

EBB

REFB
G
A

EBB

REFB
G
K

                        VMωωVMω

VMωVMVV
vvv&vv

v
&v&&v&&v&&v

××+×⋅+

×++=

2

,,  (3.273)



90  OPTIMIZATION SIMULATION MODEL 

The kinematic velocity V1K denoted in the Body-Fixed Frame B is related to the kinematic 
attitude angles as given by Eq. (3.274): 
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Solving Eq. (3.274) for the kinematic angle of attack αK and the kinematic sideslip angle βK 
gives: 
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The first and the second order time derivatives of the kinematic angle of attack αK and the 
angle of sideslip βK can be restored by differentiating the above equations and are as follows: 
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In Eqs. (3.277) to (3.280), VK denotes the total kinematic velocity and VK,VER the total kinematic 
velocity of the aircraft in the vertical plane calculated from the kinematic velocity vector V1K 
with its components given in the Body-Fixed Reference Frame B: 
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3.3.9 Reference Angular Rates 
Given the reference values for the kinematic attitude angles that are the kinematic angle of 
attack αK and the kinematic sideslip angle βK and their derivatives, the necessary reference 
signals for the angular rate ω1KB can then be derived by the inversion of the attitude 
propagation equations (3.43), leading to the following expression: 
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The first order derivative of the angular rate ω1̇ KB can be computed by differentiating the above 
equation, whereat the second order time derivatives of the kinematic angle of attack α̇̇K and of 
the kinematic sideslip angle β̇̇K are necessary and therefore have to be computed by the 
subsystem for the generation of the kinematic reference attitude values described above in 
chapter 3.3.8: 
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By use of the computed reference values for the angular rate ω1KB and its first order time 
derivative, the angular rate ω1IB and its first order derivative can then be restored as follows: 
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Since for the calculation of the reference values for the total sum of the moments the first 
order time derivative of the angular rate ω1̇ IB with respect to the Body-Fixed Frame B and its 
components denoted in the Body-Fixed Frame B is essential, this derivative of the angular rate 
is calculated by 
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3.3.10 Reference Control Surface Deflections 
With the reference values for the angular rate ω1IB and its first order time derivative given by 
Eqs. (3.285) and (3.287), the required moments that are necessary to produce the desired 
angular rates and that have to be commanded by the dynamic inversion system can be 
computed by inversion of the rotation equations of motion that are given by Eq. (3.48): 
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In general, the relationship between the moments and the control surface deflections is quite 
complicated and cannot be solved analytically for the required control surface deflections. 
Then, an incremental approach can be chosen where at first the difference between the actual 
moments and the commanded reference moments has to be determined by: 
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Since now only incremental changes in the moments are demanded, these can be assumed to 
be small and therefore the incremental changes can be linearized with respect to the control 
surface deflections η, ξ and ζ. In the following, u represents the vector of those control surface 
deflections: 
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Now the required changes in the control surface deflections can be computed and later be 
added to the actual control surface deflections in order to obtain the total reference values for 
the control surface deflections that represent the output of the complete dynamic inversion 
part of the simulation model and simultaneously act as input to the full 6-Degree of Freedom 
simulation model: 

 ( )( ) REFB
G

REF ,
1 uMBu ΔΔ⋅=Δ − v

 (3.291)

 REFREF uuu Δ+= 0  (3.292)

If the actual moments can be separated into moments solely due to the control surface 
deflections and into moments that are only produced by the body angular rates and the attitude 
angles, Eq. (3.292) can be rewritten into: 
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If the aerodynamics moments are computed utilizing Eqs. (6.21) to (6.23) of chapter 6.1, the 
moments that are solely generated by the control surface deflections are: 
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where 
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Inserting Eq. (3.294) into Eq. (3.293), the reference control surface deflections evaluate to 
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where 
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3.3.11 Reference Values for the Linear State-Space Models 
Besides the full, non-linear rotational and attitude dynamics, the principle of dynamic 
inversion can also be applied to the simplified, linearized state-space models representing the 
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rotational and attitude dynamics that have been described in chapter 3.2.6. This is illustrated 
in the following. 

The dynamic model for the generation of the reference values uses the linearized dynamics of 
longitudinal and lateral motion of the aircraft. As described above, the longitudinal motion is 
described by the following short period approximation: 
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Here again it has to be mentioned that the first order time derivative of the kinematic angle of 
attack α̇K is a function of the aerodynamic angle of attack αA in analogy to the full, non-linear 
6-Degree of Freedom simulation model. 

For the longitudinal motion, the output y of the linearized dynamic model equals the 
kinematic angle of attack αK. Since the elevator deflection η does not appear directly in this 
output y nor in its first order derivative ẏ  (after substituting ẋ  by Eq. (3.298) and with Zη being 
close to zero), the second order derivative ẏ̇  of the output y has to be computed to apply the 
principle of dynamic inversion. Therefore, the output y is said to be of relative degree two. 

By solving Eq. (3.298) for the elevator command ηCMD, the following equations for the 
computation of the commanded elevator deflection ηCMD result: 
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where the first order time derivatives of the force coefficients are obtained by deriving the 
respective coefficients with respect to time. For example, the first order time derivative of the 
force coefficient Zα evaluates to: 
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where  
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For the lateral motion a third order model with the states pseudo-roll rate pK
  *, pseudo-yaw  

rate rK
  * and kinematic angle of sideslip βK is implemented, where the first order time derivative 

of the kinematic sideslip angle β̇ K is a function of the aerodynamic angle of sideslip βA 
analogous to the full, non-linear 6-Degree of Freedom simulation model plant: 
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The outputs of the lateral motion dynamic model are the pseudo-roll rate pK
  * and the kinematic 

angle of sideslip βK. For the pseudo-roll rate output, the input appears for the first time in the 
first order derivative, whereas for the angle of sideslip, the input can be seen primarily in the 
second order derivative with the side force derivatives Yξ and Yζ being close to zero. Thus, the 
roll rate output is of relative degree one, the angle of sideslip output is of relative degree two. 

Solving Eq. (3.305) for the aileron command ξ and the rudder command ζ gives the following 
equations for the calculation of the reference values for the aileron and rudder surface 
deflections: 
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The reference value for the pseudo-roll rate pK,REF
*     is set equal to the first order derivative of the 

reference value for the kinematic flight-path bank angle μ̇ K,REF: 

 ( )KG
KKp μ&=*  (3.311)

Accordingly, the first order time derivative of the pseudo-roll rate reference value ṗ K,REF
*     is set 

equal to the second order derivative of the reference value for the kinematic flight-path bank 
angle μ̇̇ K,REF: 
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As one might observe from the equations stated above, again not only the reference signals 
themselves are necessary for the dynamic inversion of the linear state-space models, but also 
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the second order time derivatives of the reference input values. The output of the described 
subsystem containing the inverted linear state-space models are the reference control surface 
deflections η, ξ and ζ that in turn act as input to the hybrid simulation model that is the non-
linear point-mass model augmented by the linear state-space models representing the inner 
loop dynamics. 

3.3.12 Reference Values for the Linear Transfer Functions 
The principle of dynamic inversion can also be applied to the most simplified hybrid 
simulation model where the attitude and rotational dynamics are modeled as linear transfer 
functions for the load factors and the roll rate respectively. This procedure is described in the 
following for the case that the flight system is not modeled as a non-minimum phase system. 

As mentioned above, in the kinematic model the dynamics of the normal load factor nz and 
the dynamics of the lateral load factor ny are approximated by a second order time behavior, 
while the dynamics of the load factor nx and the dynamics of the roll rate pK feature a first 
order time behavior. In order to guarantee a good approximation of the correct aircraft 
dynamics, the dynamics for the lift build-up use the same dynamics as the short period 
oscillation and the build-up of the side force corresponds to the dutch roll dynamics. 
Furthermore, for the roll rate, the decoupled first order roll dynamics are used and for the 
thrust, a specific engine time constant is defined. 

For example, the dynamics for the normal load factor nz are given by the following second 
order linear transfer function: 
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A paramount goal of the inverse simulation model together with the simulation model plant is 
to follow a given trajectory as close as possible. Therefore, a dynamic inversion control 
structure has been chosen for the inner loop control system to achieve this goal. By applying 
the dynamic inversion control principle, the linear transfer functions for the load factor and 
roll rate dynamics are inverted and the highest derivative order of the load factor is replaced 
with the respective reference value to provide optimal trajectory following of the simulation 
model. Thus, the resulting equation for the computation of the reference value for the normal 
load factor nz is given by 
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where the new virtual input ν, the so-called pseudo-control, is then replaced by the second 
order derivative of the load factor reference value to guarantee perfect trajectory following: 
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As can be seen from the above equation, not only the reference values themselves are required 
for the inner loop dynamic inversion, but the second order derivatives of the specific reference 
values. The equations for the side force ny, the load factor in the x-direction nx and the roll  
rate pK are derived just in the same manner. The reference value for the commanded roll  
rate pK is obtained by: 
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 KKRollCMDK ppTp +⋅= &,  (3.316)

3.4 Reference Models 
As mentioned before, for the inverse simulation model not only the time history of the 
reference values themselves but also higher order time derivatives of these reference values 
are essential for the calculation of the inputs to the simulation model that will produce the 
desired outputs. Because of its inherent dynamics, the respective flight system under 
consideration will not be able to follow arbitrary time histories concerning the reference 
values that are fed into the inverse simulation model. This means that the differentiation order 
of the reference values’ time histories has to take into account the dynamic order of the causal 
chain between the considered inputs and outputs. As can be seen from the corresponding 
physical causal chain (Fig. 8), there are two integrations between the commanded elevator 
deflection ηCMD and the resulting angle of attack α. Therefore, the second order time 
derivative with respect to time of the angle of attack α is a direct function of the elevator 
deflection command ηCMD: 

 ( ) ( )( )tft CMDηα =&&  (3.317)

Thus, the resulting time history for the angle of attack α is twice differentiable with respect to 
time. On the other hand this implies that for the calculation of the elevator deflection 
command by inversion of Eq. (3.317) not only the time histories for the angle of attack α and 
its first order time derivative but also the time history for the second order time derivative of 
the angle of attack are necessary: 

 ( ) ( ) ( ) ( )( )tttftREF αααη &&& ,,1−=  (3.318)

This implies that the reference time history for the angle of attack cannot be discrete nor 
linear but has to be at least twice differentiable with respect to time to give a time history for 
the commanded elevator deflection. 

Each subsystem of the inverse simulation model requires as input specific reference values 
and their derivatives up to a certain order for the calculation of the respective output reference 
values and their derivatives up to a specified order. E.g. the subsystem for the calculation of 
the reference load factor values in the K-Frame requires the flight-path kinematic variables 
and their time derivatives up to the order of three to be able to compute the reference load 
factors and their second order time derivatives. These input reference values can either be 
taken from the next outer subsystem that would be the path reference subsystem or they can 
be commanded directly. In the latter case it has to be guaranteed that the time history for the 
flight-path values that is fed into the subsystem for the generation of the reference load factors 
is smooth enough so that the dynamics of the flight system can track the prescribed reference 
values.  

One possibility to guarantee the required differentiation order is the utilization of a model-
based approach on the basis of reference models. Reference models generate signals that are 
continuously differentiable where the relative degree of those signals corresponds to the 
dynamic order of the regarded flight system. These reference models contain linear transfer 
functions of the respective degree, where the input is an arbitrary time history for any 
reference value. This time history can also be discrete or linear and does not have to take into 
account the in fact required differentiation order. The resulting output of these reference 
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models is the corresponding time history of this reference value that is of the necessary 
differentiation order such that the reference value fed forward to the inverse simulation model 
already takes into account the dynamic order of the physical causal chain under consideration. 
In the following, exemplified reference models up to the order of two are given, i.e. that the 
resulting time history for the respective reference value is twice continuously differentiable 
with respect to time. 

3.4.1 First Order Reference Model 
Direct command values for the body angular rates, that are the roll rate pK, the pitch rate qK 
and the yaw rate rK have to be fed through first order reference models in order to generate 
time histories that are smooth enough, i.e. that the resulting time histories can once be 
continuously differentiated with respect to time. This is guaranteed by a linear transfer 
function of the order of one: 
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The transfer functions for the pitch rate qK and the yaw rate rK are analogous. The basic layout 
of a first order reference model is shown in Fig. 19. The time constants of the various 
reference models have to be adapted so that the reference time history and its first order time 
derivative can be followed by the plant and thus an accurate tracking is guaranteed. The above 
linear transfer function can also be written as a first order differential equation: 
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Figure 19. First Order Reference Model 

With each first order reference model, an additional state is added to the state vector of the 
simulation model. Thus, with the three reference models for the body angular rates pK, qK and 
rK the three states pK,REF, qK,REF and rK,REF are added to the simulation model state vector. In 
Fig. 20, the response curve for a first order reference model due to a step input is shown. 
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Figure 20. Step Response of 1st Order Reference Model 

3.4.2 Second Order Reference Model 
For the reference load factors n1REF, the reference attitude angles αREF and βREF as well as the 
reference flight-path bank angle μREF the time histories for the reference values have to be at 
least twice continuously differentiable with respect to time to take into account the dynamic 
order of the respective flight system. Thus, direct load factor commands or direct commands 
for the attitude angles are delayed by second order linear transfer functions in order to enable 
the simulation model to track the prescribed reference values. For example, the reference 
model for the aerodynamic angle of attack αA consists of the following second order linear 
transfer function: 
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The transfer functions for the load factors n1 and the angles β and μ feature the same structure. 
Here again, the parameters of the linear transfer functions that are the relative damping ζ and 
the natural frequency ω0 have to be adjusted in such a way to allow for an accurate tracking of 
the reference values by the simulation model plant. Written in state-space form, the linear 
transfer function (3.321) reads: 
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Figure 21. Second Order Reference Model 

The reference model-based approach for the generation of sufficiently smooth reference 
values augments the simulation model state vector by two states for every single reference 
model, i.e. the simulation model state vector is supplemented in total by six additional states. 
In case that the load factor reference values are generated by the respective reference models, 
the six extra states are the three reference load factors nx,REF, ny,REF and nz,REF and their first 
order time derivatives ṅ x,REF, ṅ y,REF and ṅ z,REF. Fig. 21 shows the basic layout of a second order 
reference model, while in Fig. 22 the corresponding step response curve is depicted. 
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Figure 22. Step Response of 2nd Order Reference Model 

3.5 Error Feedbacks as Stabilizing Controls 
In order to guarantee a precise tracking of the reference values given by the inversion 
controllers provided in chapter 3.3, error feedbacks on all levels of the simulation model have 
to be implemented to eliminate deviations of the actual values from the reference values. For 
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the simulation model, there are various reasons why the resulting trajectories may diverge 
from the input reference trajectories: besides numerical computation errors that occur because 
of the limited computational accuracy and the round-off errors that are inherent to the 
machine used for simulation respectively optimization, further reasons are the actuator 
dynamics and the non-minimum phase behavior of the flight system dynamics. While the 
actuator dynamics are not incorporated in the inverse simulation model at all, the non-
minimum phase part of the respective flight system cannot be inverted as mentioned before. 
Thus, in general the reference commands generated by the inverse simulation model will 
result in output trajectories of the simulation model that differ from the input reference 
trajectories not only by the computational errors but also by additional errors caused by the 
actuator dynamics and the non-minimum phase part of the flight system dynamics if these 
effects are taken into account in the simulation model itself. In order to avoid growing 
deviations between the reference trajectories and the resulting trajectories induced by the 
effects outlined above, error feedbacks on all levels of the simulation model are implemented 
in the simulation model.  

To allow the error feedback controllers to react to any possible deviations from the reference 
values as fast as possible, the deviations of the respective state values of the simulation model 
and also of the higher order time derivatives of the considered values are fed back to the 
highest order time derivative of the corresponding reference value of the inverse simulation 
model. The lower derivatives of the reference signals are used directly as input reference 
values for the next subsystem of the dynamic inversion part of the simulation model. Since all 
derivatives of a specific signal are utilized for the error feedback, the error dynamics can be 
set to any desired dynamic order by adjusting the feedback gains of the respective control 
loops. 

For the implementation of the error feedback control loops, parts of the simulation model 
have to be extended to allow for the computation of not only the first order time derivatives 
themselves but also of certain higher order time derivatives. E.g. not only the first order time 
derivative of the kinematic flight-path course angle but also its second order time derivative 
will be fed back to the third order time derivative of the given reference time history of the 
flight-path course angle. Therefore, this second order time derivative has to be computed in 
addition to its first order time derivative that results from the translation equations of motion. 
The corresponding equations can be obtained by differentiating the equations of motion and 
the propagation equations depicted in chapter 3.2 with respect to time. In the following, the 
implemented error feedback control laws for the different levels of the simulation model are 
given. Furthermore, the error dynamics for the aerodynamic angle of attack control loop are 
derived exemplarily. 

3.5.1 Trajectory Deviation Control Loop 
For the trajectory deviation control, a Trajectory Frame T is defined with its origin located at 
the current footpoint on the reference trajectory calculated by Eq. (3.188). The orientation of 
the Trajectory Frame T is then obtained by two rotations of the NED-Frame around its z-axis 
respectively its y-axis by the reference values for the kinematic course angle χK and the 
kinematic climb angle γK corresponding to the actual footpoint on the reference trajectory. 
The transformation matrix MTO between the NED-Frame and the corresponding rotational 
rates are: 



OPTIMIZATION SIMULATION MODEL  101 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

=
G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

TO

γγχγχ
χχ

γγχγχ

cossinsinsincos
0cossin

sincossincoscos
M  (3.324)

 ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅−
−
⋅

=
G
K

G
K

G
K

G
K

G
K

T
TO

γχ
γ

γχ

cos

sin

&

&

&
vω  (3.325)

 ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅⋅+⋅−
−

⋅⋅+⋅
=

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

T
T

TO

γγχγχ
γ

γγχγχ

&&&&

&&

&&&&

&v

sincos

cossin
ω  (3.326)

 ( )
( )( ) ( )

( )( ) ( )⎥⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅+⋅⋅⋅+⋅−⋅−
−

⋅+⋅⋅⋅+⋅−⋅
=

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

G
K

TT
T

TO

γχγχγγχχγ
γ

γχγχγγχχγ

&&&&&&&&&&&

&&&

&&&&&&&&&&&

&&v

2sincos

2cossin

2

2

ω  (3.327)

Given the case that the aircraft is perfectly following the reference trajectory, the Trajectory 
Frame T coincidences with the Kinematic Flight-Path Frame K. Then, the trajectory deviation 
vector Dr1 = [Dx, Dy, Dz] and its time derivatives up to the third order are transformed from 
the NED-Frame into the Trajectory Frame T by the following equations: 
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For the desired feedback dynamics in the horizontal plane, first order error dynamics have 
been implemented to guide the aircraft back onto the reference trajectory: 

 ( ) ( ) 0=Δ+Δ⋅ TTy yyT & (3.332)

where the time constant Ty can be utilized to adjust the dynamics of the trajectory deviation 
controller. From the position propagation equations, the first order time derivative of the 
deviation Dy evaluates to: 

 G
K

G
K

G
KVy γχ Δ⋅Δ⋅=Δ cossin& (3.333)

For small angles DχK and DγK, the following approximations can be made: 

 1cos ≅Δ G
Kγ (3.334)
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Then, Eq. (3.333) simplifies to 
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K

G
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Inserting Eq. (3.336) into Eq. (3.332) and solving for DχK gives 
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For the kinematic flight-path reference loop that follows the trajectory deviation control loop, 
time derivatives of the kinematic course angle χK up to the third order are required. The higher 
order derivatives therefore are obtained by differentiating the course angle deviation DχK: 
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(3.340)

For the vertical dynamics, the same feedback dynamics as for the horizontal error feedback 
controller have been chosen: 

 ( ) ( ) 0=Δ+Δ⋅ TTz zzT & (3.341)

where the time constant Tz can be utilized to adjust the dynamics of the trajectory deviation 
controller. From the position propagation equations, the first order time derivative of the 
vertical deviation Dz is: 
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KVz γΔ⋅−=Δ sin& (3.342)

Applying the assumption that 

 G
K

G
K γγ Δ≅Δsin (3.343)

and inserting Eq. (3.342) into Eq. (3.341), one obtains for the deviation of the kinematic 
flight-path inclination angle γK: 
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Again, the higher order derivatives are required: 
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(3.347)

Finally, the reference values for the kinematic course angle χK respectively the kinematic 
flight-path bank angle γK are corrected by the course angle and climb angle deviations 
obtained by Eqs. (3.337) to (3.340) respectively Eqs. (3.344) to (3.347) to guide the aircraft 
back onto the reference trajectory: 
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3.5.2 Kinematic Flight-Path Variables Control Loop 
In the kinematic flight-path variables control loop, deviations between the actual values for 
the kinematic flight-path variables and the respective reference values are fed back to the 
highest order time derivatives of the flight-path variables that are the second order time 
derivatives of the absolute kinematic velocity VK and the third order time derivatives of the 
kinematic course angle χK as well as the kinematic flight-path climb angle γK: 
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So far, the coupling between the kinematic flight-path climb angle γK and the kinematic 
course angle χK via the kinematic flight-path bank angle μK has not yet been considered for the 
implementation of the flight-path variables control loop. The coupling implies that at flight-
path bank angles μK close to zero a faster reaction of the aircraft in the vertical plane is 
possible while at bank angles close to 90°, a faster reaction in the horizontal plane can be 
achieved. For a further improvement of the controller this coupling could also be taken into 
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account for the error feedbacks of the kinematic flight-path inclination angle γK respectively 
the kinematic course angle χK by an adjustment of the gains depending on the flight-path bank 
angle μK. 

3.5.3 Kinematic Load Factors Control Loop 
The kinematic load factors control loop contains the feedbacks of the deviations between the 
reference values for the kinematic load factors and the actual values of the kinematic load 
factors. The deviations of the load factors are fed back to the highest order time derivatives of 
the commanded kinematic load factors that are the first order time derivatives for the load 
factor nK,x and the second order time derivatives for the load factors nK,y respectively nK,z: 

 ( )xKREFxKnxREFxKCMDxK nnKnn ,,,,,,, −+= &&  (3.359)

 ( ) ( )yKREFyKnyyKREFyKynREFyKCMDyK nnKnnKnn ,,,,,,,,,, −+−+= &&&&&& & (3.360)

 ( ) ( )zKREFzKnzzKREFzKznREFzKCMDzK nnKnnKnn ,,,,,,,,,, −+−+= &&&&&& & (3.361)

For the load factors n1K̅ in the Intermediate Kinematic Flight-Path Frame K̅ respectively the 
load factors n1A in the Aerodynamic Reference Frame A, the same error feedbacks can be 
implemented.  

3.5.4 Aerodynamic Attitude Angles Control Loop 
As for the kinematic load factors control loop, the deviations between the reference values 
and the actual values of the aerodynamic attitude angles and their first order time derivatives 
are fed back to the second order time derivatives of the aerodynamic angle of attack αA, the 
aerodynamic sideslip angle βA and the aerodynamic flight-path bank angle μA in order to avoid 
any divergences between the reference values and the resulting simulation model plant values: 

 ( ) ( )AREFAAREFAREFACMDA KK αααααα αα −+−+= ,,,, &&&&&& &  (3.362)

 ( ) ( )AREFAAREFAREFACMDA KK ββββββ ββ −+−+= ,,,,
&&&&&&

& (3.363)

 ( ) ( )AREFAAREFAREFACMDA KK μμμμμμ μμ −+−+= ,,,, &&&&&& & (3.364)

Regarding the kinematic attitude angles αK, βK and μK, identical error feedbacks can be 
applied. 

In the following, a differential equation that describes the error dynamics with respect to the 
aerodynamic angle of attack αA is derived. Therefore, at first the control error e is defined as 
(Ref. [Holzapfel, 2009d]): 

 AREFAe αα −= ,  (3.365)

For the input-output linearized simulation model, the relationship between the commanded 
and the resulting second order time derivative of the aerodynamic angle of attack αA is given 
by Eq. (3.366), where Δα represents an error term due to model uncertainties, modeling errors 
and/or numerical integration drift: 

 ααα Δ+= CMDAA ,&&&&  (3.366)
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Inserting Eq. (3.362) into Eq. (3.366) gives: 

 ( ) ( )AREFAAREFAREFAA KK αααααα ααα −+−+Δ=− ,,, &&&&&& &  (3.367)

Substituting the difference between the reference value and the resulting value for the 
aerodynamic angle of attack αA by the error e defined in Eq. (3.365) and resorting the terms, 
the following differential equation for the error e results: 

 ααα Δ−=++ eKeKe &&& &  (3.368)

The error dynamic with respect to the aerodynamic angle of attack αA is excited by the error 
term Δα and can be adjusted by the coefficients Kα̇ and Kα. The evolution of the error e with 
time is limited if 

• the real parts of the solution of the characteristic polynomial of the error dynamics 
(3.368) are negative, 

• the error term Δα is limited and 
• the initial deviation between the reference value α̇̇ A,CMD and the actual value α̇̇ A is 

limited. 

3.5.5 Body Angular Rates Control Loop 
Since the highest order time derivative of the body angular rates that is incorporated in the 
simulation model is the first order time derivative, only the deviations between the reference 
body angular rates and the actual values of the angular rates are fed back to the first order 
time derivative to penalize any deviations between the reference values and the simulation 
model output: 

 ( )KREFKpREFKCMDK ppKpp −+= ,,, &&  (3.369)

 ( )KREFKqREFKCMDK qqKqq −+= ,,, && (3.370)

 ( )KREFKrREFKCMDK rrKrr −+= ,,, && (3.371)

3.6 Simulation Modes 
As mentioned before, the simulation model features a novel architecture where the attitude 
and rotational dynamics are modeled in a serial manner to the translational and position 
dynamics in contrast to the widespread conventional simulation model architecture where the 
rotation equations of motion and the attitude propagation equations are modeled in a parallel 
manner to the translation equations of motion and the position propagation equations of 
motion (Refs. [Stevens, 1992], [Philips, 2004], [Etkin, 1996], [Etkin, 2005] and  
[Roskam, 2001]). This basic difference is depicted in Fig. 9. With this serial model 
architecture and the afore mentioned different depths of modeling for the inner loop, i.e. the 
rotational and the attitude flight dynamics, the simulation model allows for many different 
simulation modes and for a switching between these simulation modes. In this chapter, the 
most important simulation modes that are fundamental for the newly developed optimization 
procedure described later on are figured out. Besides the states that are utilized in the 
respective simulation modes the inherent characteristics like e.g. accuracy, complexity, 
computation time, etc. of these simulation modes are given. 
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3.6.1 Point-Mass Simulation Mode 
The pure point-mass simulation mode (Fig. 23) is the most simplifying approach for 
simulating the flight system dynamics since with the non-linear point-mass simulation model 
only the position propagation equations and the translations equations of motion are taken into 
account for the simulation but no rotational and attitude dynamics. Therefore, the states of the 
simulation model are the aircraft position values x, y and z, the absolute kinematic  
velocity VK, the thrust lever position δT and the kinematic flight-path variables course  
angle χK, climb angle γK and bank angle μK respectively the four quaternions q0, q1, q2 and q3. 
The controls are the aerodynamic angle of attack αA, the aerodynamic angle of sideslip βA and 
the first order time derivative of the aerodynamic bank angle μ̇ A as well as the commanded 
thrust lever position δT,CMD. 
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Actuator Dynamics
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Inverse Translation 
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Figure 23. Point-Mass Simulation Mode 

 [ ] T

TK qqqqVzyx δ,,,,,,,, 3210=x  (3.372)

 [ ] T

CMDTCMDACMDACMDA ,,,, ,,, δμβα &=u (3.373)

Here, the first order time derivative of the aerodynamic bank angle μ̇ A is chosen as control 
input instead of the first order time derivative of the kinematic bank angle μ̇ K. Furthermore, 
within the simulation model the first order time derivative of the aerodynamic bank angle μ̇ A 
then directly acts as input to the translation equations of motion, so that the four quaternions 
effectively represent the three flight-path angles that are the kinematic course angle χK, the 
kinematic path inclination angle γK and the aerodynamic bank angle μA.  

Then, the load factors that are calculated in the Aerodynamic Reference Frame A from the 
aerodynamic angle of attack αA,CMD and the aerodynamic sideslip angle βA,CMD can be directly 
transformed to the Kinematic Flight-Path Frame K utilizing the aerodynamic bank angle μA 
together with the aerodynamic and kinematic course angle χA and χK as well as the 
aerodynamic and kinematic inclination angle γA and γK (see Fig. 24). If the kinematic bank 
angle μK had been chosen, this would not have been possible since in this case the 
aerodynamic bank angle μA could not be restored. On the other hand, using the aerodynamic 
bank angle μA together with the commanded attitude angles αA,CMD and βA,CMD, even the 
kinematic angle of attack αK and the kinematic sideslip angle βK can be calculated making use 
of the equations given in chapter 3.3.8. Thus, finally the kinematic bank angle μK can be 
computed and the circle depicted in Fig. 24 gets closed. 
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Figure 24. Coordinate Systems 

3.6.2 Hybrid Simulation Mode with Linear Transfer Functions 
Since the aerodynamic angle of attack αA, the aerodynamic angle of sideslip βA and the first 
order time derivative of the aerodynamic bank angle μ̇ A are the controls of the pure point-mass 
simulation models, arbitrary time histories for these control signals could be commanded and 
these time histories do not necessarily take into account the real dynamic order of the flight 
system. E.g. in reality there cannot occur any discrete jumps in the aerodynamic angle of 
attack αA nor in the first order time derivative of the kinematic bank angle μ̇ A and also the time 
rate of change of these signals is limited due to the inherent dynamics of the real flight 
vehicle. One approach to come closer to reality and to generate more realistic time histories 
for the angle of attack αA or the bank angle μA is the utilization of second order linear transfer 
functions for the load factor build-up respectively first order linear transfer functions for the 
build-up of the first order time derivative of the flight-path bank angle μA as depicted in  
Fig. 25. 

In comparison to the pure point-mass simulation mode the dynamic order of the flight system 
dynamics is increased since the rotational and attitude dynamics of the flight system are 
represented by linear transfer functions for the load factors and the roll rate. If only the point-
mass simulation mode, i.e. the outer loop without any inner loop is used for simulation, the 
load factors are the directly commanded values and therefore it would be possible that there 
are leaps in the load factor curves that cannot occur in reality. With the linear inner loop 
comprising transfer functions for the load-factors and the roll rate, the maximum achievable 
build-up rates of these quantities are limited and the progression of the load factor and roll 
rate curves become much more realistic. 

Additionally to the states of the pure point-mass simulation model, the following states are 
added to the simulation model state vector: the load factors ny and nz, the first order time 
derivatives of these load factors ṅ y and ṅ z and the first order time derivative of the kinematic 
flight-path bank angle μ̇ K respectively the roll rate pK. Besides the commanded thrust lever 
position δT,CMD, the controls are the attitude angles αA,CMD and βA,CMD and the first order time 
derivative of the flight-path bank angle μ̇ A,CMD. 
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Figure 25. Hybrid Simulation Mode with Linear Transfer Functions 
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Here again, the first order time derivative of the aerodynamic bank angle μ̇ A is the preferred 
control input since for the hybrid simulation mode with linear transfer functions in principle 
the same statements hold as for the pure point-mass simulation mode stated in the preceding 
chapter. 

3.6.3 Hybrid Simulation Mode with State-Space Models 
This hybrid simulation mode utilizes the point-mass simulation model supplemented by the 
linearized state-space models for the longitudinal and lateral motion of the aircraft (Fig. 26) to 
represent the rotational and attitude dynamics of the flight system in a more realistic manner 
than the linear transfer functions. Additionally, the actuator dynamics are incorporated in this 
simulation mode. Thus, the states for the simulation with the hybrid simulation mode with 
state space models are, in addition to the states of the pure point-mass simulation model, the 
kinematic attitude angles angle of attack αK and sideslip angle βK and the pseudo-roll rates pK

  *, 
qK
  * and rK

  *. The actuator dynamics introduce six extra states, namely the elevator position η, the 
aileron surface deflection ξ and the rudder position ζ as well as their respective first order time 
derivatives ξ̇, η̇ and ζ ˙. The controls are the thrust lever position δT,CMD as for the pure point-
mass simulation model augmented by the commanded deflections of the elevator ηCMD, the 
aileron ξCMD and the rudder ζCMD. 
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Figure 26. Hybrid Simulation Mode with Linear State-Space Models 
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3.6.4 Full, Non-Linear Simulation Mode 
The full, non-linear simulation mode illustrated in Fig. 27 is the simulation mode that comes 
closest to reality since the point-mass simulation model is augmented by the full non-linear 
rotational and attitude dynamics. Thus, the states related to this simulation mode are the angle 
of attack αK, the sideslip angle βK and the real body angular rates that are the roll rate pK, the 
pitch rate qK and the yaw rate rK plus the states originating from the pure point-mass 
simulation model. As for the hybrid simulation model with linear state-space models, the 
actuator dynamics introduce the six supplementary states for the control surface deflections η, 
ξ, ζ and their first order time derivatives ξ̇, η̇ and ζ ˙. The controls are also identical to the 
controls of the hybrid simulation model with linear state-space models and comprise the 
commanded thrust lever position δT,CMD as well as the commanded control surface deflections 
ηCMD, ξCMD and ζCMD. 
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Figure 27. Full, Non-Linear Simulation Mode 
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3.6.5 Hybrid Simulation Mode with State-Space Models, Inner Loop 
Inversion and Reference Models 

This simulation mode expands the hybrid simulation mode with state-space models 
introduced in chapter 3.6.3 by the inversion of the linearized state-space models and reference 
models for the controls that are now the aerodynamic angle of attack αA, the aerodynamic 
sideslip angle βA and the first order time derivative of the aerodynamic flight-path bank  
angle μ̇ A. If only the inversion controller for the inner loop is used, the hybrid simulation 
model with linear state-space models can be simulated utilizing the same controls as the pure 
non-linear point-mass model without inner loop that is to say the angle of attack αA, the 
sideslip angle βA, the first order time derivative of the aerodynamic flight-path bank angle μ̇ A 
and the thrust lever position δT. 

Additionally to the states of the hybrid simulation mode with state-space models listed in 
chapter 3.6.3, the simulation model state vector is augmented by the reference models states 
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that are the reference values for the aerodynamic attitude angles αA,REF, βA,REF and μA,REF plus 
their first order derivatives with respect to time α̇ A,REF, β̇ A,REF and μ̇ A,REF.  
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Figure 28. Hybrid Simulation Mode with State-Space Model, Inner Loop Inversion and Reference Models 
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3.6.6 Full, Non-Linear Simulation Mode with Inner Loop Inversion and 
Reference Models 

Analogous to the hybrid simulation mode depicted in chapter 3.6.5 with linear state-space 
models and the corresponding inner loop inversion and reference models, this simulation 
mode (Fig. 29) augments the full non-linear simulation mode illustrated in chapter 3.6.4 by 
the dynamic inversion subsystems of the non-linear inner loop and the respective reference 
models for the command signals that again are the aerodynamic angle of attack αA, the 
aerodynamic sideslip angle βA and the first order time derivative of the aerodynamic flight-
path bank angle μ̇ A. In addition to the states incorporated in the full, non-linear simulation 
mode of chapter 3.6.4, six extra states in association with the reference models are added that 
are the aerodynamic attitude angles αA,REF, βA,REF and μA,REF as well as their first order time 
derivatives α̇ A,REF, β̇ A,REF and μ̇ A,REF. 

By this simulation mode where only the inversion controller for the non-linear inner loop is 
taken into account, one can simulate the full, non-linear 6-Degree-of-Freedom simulation 
model using the same controls as for the non-linear point-mass model without any inner loop 
respectively the hybrid simulation model depicted in chapter 3.6.5 with linear state-space 
models and the corresponding inversion controllers for the state-space models. 
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Figure 29. Non-Linear Simulation Mode with Inversion and Reference Models 



OPTIMIZATION SIMULATION MODEL  111 

 
[

] T

AAAAA

T
IB
KKKK qqqqVzyx

μββααζζξξηη

δβα

,,,,,,,,,,

,,,,,,,,,,,, 3210

&&&&&

vωx =
 (3.382)

 [ ] T

CMDTCMDACMDACMDA ,,,, ,,, δμβα &=u (3.383)

3.6.7 Trajectory Following Mode with Linear Transfer Functions 
The trajectory following mode with linear transfer functions depicted in Fig. 30 comprises the 
point-mass simulation model with linear transfer functions for the inner loop, the actuator 
dynamics models and the inverse simulation models for the point-mass model and the linear 
transfer functions. Thus, the state vector consists of the point-mass model states plus five 
states caused by the linear transfer functions that are the load factors ny and nz, their first order 
time derivatives ṅ y and ṅ z and the roll rate pK. The reference trajectory has to be given in 
parameterized vector form and has to be at least four times continuously differentiable. 
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Figure 30. Trajectory Following Mode with Linear Transfer Functions 
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3.6.8 Trajectory Following Mode with State-Space Models 
The trajectory following mode with state-space models (Fig. 31) is the same as the trajectory 
following mode with linear transfer functions except for the inner loop and the inverted inner 
loop that are now simulated by the linearized state-space models respectively their dynamic 
inversion subsystems. Thus, instead of the states associated with the linear transfer functions, 
the state vector consists of the states for the linear state-space models that are the kinematic 
angle of attack αK, the kinematic sideslip angle βK and the pseudo-roll rates pK

  *, qK
  * and rK

  * plus 
six states brought by the incorporated actuator dynamics, namely the control surface 
deflections η, ξ, ζ and their first order time derivatives ξ̇, η̇ and ζ ˙. This means that a more 
realistic reproduction of the rotational and attitude dynamics is taken into account by this 
trajectory following mode than it is the case for the trajectory following mode described in 
chapter 3.6.7. 



112  OPTIMIZATION SIMULATION MODEL 

Translation & 
Position EoM

Rotation & Attitude 
EoM

Actuator Dynamics

Inverse Rotation & 
Attitude EoM

Reference 
Models

Inverse Translation 
& Position EoM

Inverse Linear 
Transfer Functions

Linear Transfer 
Functions

Inverse Linear 
State-Space Models

Linear State-Space 
Models

( )τREFxv

 
Figure 31. Trajectory Following Mode with State-Space Models 
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3.6.9 Trajectory Following Mode with Full, Non-Linear Inner Loop 
The most accurate and realistic trajectory following mode is the mode with the full, non-linear 
inner loop shown in Fig. 32. Instead of linear transfer functions or linear state-space models as 
in the preceding two trajectory following modes this mode utilizes the full non-linear inner 
loop and the respective inverse simulation model equations and thus allows for a 
representation of the rotational and attitude dynamics in the most realist manner. Additionally 
to the states of the point-mass simulation model and the states of the actuator dynamics, this 
mode adds the states of the full non-linear inner loop that are the kinematic angle of attack αK, 
the kinematic sideslip angle βK, the roll rate pK, the pitch rate qK and the yaw rate rK to the 
simulation model state vector. 
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Figure 32. Trajectory Following Mode with Non-Linear Inner Loop 
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4  
 
Optimization Algorithm 
4.1 Algorithm Abstract 
In this chapter, a newly developed optimization algorithm is introduced that allows for the 
generation of robust and suitable initial guesses for the optimization of aircraft trajectories 
with underlying simulation models of varying depths of modeling fidelity. The optimization 
algorithm is based on the scalable, multi-fidelity simulation model presented in detail in 
chapter 3 as well as the various simulations modes given therein. In the following, the 
optimization algorithm is outlined and for the various optimization steps of the algorithm, the 
general optimization problem stated in chapter 2 is rendered more precisely. Furthermore, a 
slightly modified algorithm is illustrated, resulting in the same final result as the original 
algorithm that is an optimal trajectory for a full, non-linear 6-DoF simulation model. The 
various steps performed during the optimization procedure are depicted in Fig. 33. 
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Figure 33. Optimization Algorithm I 
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The algorithm is initialized with a given trajectory that is feasible for the point-mass 
simulation model, i.e. the point-mass simulation mode given in chapter 3.6.1 is utilized first. 
A procedure for generating feasible trajectories that are already close to the optimal 
trajectories when multiple waypoints have to be passed is depicted in detail in chapter 4.2.2. 
Utilizing the feasible trajectory as initial guess, the optimal trajectory for the point-mass 
simulation model is computed that is step 1A of the optimization algorithm. Therefore, the 
state vector respectively the control vector of the optimization problem stated in chapter 2.2 
are: 
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Once the optimal trajectory for the point-mass model has been found, the modeling 
complexity of the simulation model is increased by incorporating the linear inner loop with 
linear transfer functions for the load factors and the roll rate, thus making use of the 
simulation mode given in chapter 3.6.2. As can be seen from Eq. (3.375) in chapter 3.6.2, the 
same command inputs as for the point-mass simulation model are required, thus the trajectory 
can easily be simulated utilizing the hybrid simulation mode with linear transfer functions 
where the controls are now the input signals to the linear transfer functions in the inner loop. 
Within the optimization algorithm, this simulation of the aircraft trajectory by the hybrid 
simulation mode with linear transfer functions constitutes step 1B.  

By simulating the trajectory utilizing the command inputs that have been optimal for the 
point-mass model without any inner loop, the resulting simulated trajectory will deviate from 
the trajectory that has been optimal utilizing the point-mass simulation mode because of the 
increased dynamic order of the simulation model. Without any inner loop, step inputs for the 
aerodynamic angle of attack αA and the aerodynamic sideslip angle βA or the first order time 
derivative of the aerodynamic bank angle μ̇ A are directly forwarded to the point-mass 
simulation model, while now with an inner loop featuring linear transfer functions the 
respective step inputs are delayed by first or second order linear transfer functions. Thus, the 
reaction of the point-mass model to changes in the control inputs is also delayed. The 
simulated flight system incorporating linear transfer functions will not be able to follow the 
trajectory that has been computed for the point-mass model if the same control time histories 
are fed to the simulation model. Hence, for the simulation task the inversion controllers for 
the outer loop (chapter 3.3) together with the error feedbacks outlined in chapter 3.5 are 
utilized to force the simulated flight system with linear transfer functions onto the optimal 
trajectory found for the model without any inner loop, resulting in the control inputs uSIM,LTF for 
the hybrid simulation model with linear transfer functions (see Fig. 33). At this, the reference 
trajectory r1REF = r1OPT,PM is only given up to its second order time derivative since the control 
inputs of the point-mass simulation model in step 1A are approximated linearly. Thus, the 
point-mass simulation model allows only for the computation of smooth second order time 
derivatives for the position vector. The first order time derivatives of the position vector are 
obtained automatically by the position propagation equations. Consequently, the inversion 
controllers and the error feedbacks can also only be utilized up to the respective derivative 
order, i.e. the second order time derivatives in the trajectory control loop and the first order 
time derivatives in the kinematic flight-path control loop. 
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Alternatively, the trajectory following mode with linear transfer functions of chapter 3.6.7 can 
be used to generate the commands uSIM,LTF. Then, a smooth and continuously differentiable 
reference trajectory up to its fourth order time derivative has to be given that is usually not the 
case regarding the trajectory that results from the optimization using the point-mass 
simulation model. Thus, an approach to generate a reference trajectory with smooth fourth 
order time derivatives from the reference trajectory that is only twice continuously 
differentiable has to be established. One possibility is to fit the given reference trajectory by 
B-splines of sufficient order. Then, the newly established reference trajectory is sufficiently 
smooth and the required derivatives can easily be calculated from the B-spline curve fit. 
Another possibility to generate the required reference trajectory up to its fourth order time 
derivative is provided in chapter 4.2.3. There, a substitute optimization problem is established 
to smoothen the given reference trajectory. Besides the reference trajectory itself, also the 
reference time history for the kinematic flight-path bank angle μK (that is set equal to the 
aerodynamic flight-path bank angle μA for the point-mass model) has to be considered. The 
time history for the bank angle that is output by the point-mass simulation model is only 
continuously differentiable once, while for the error feedbacks stated in chapter 3.5 a 
reference time history is required that is at least twice continuously differentiable. Thus, the 
reference time history for the flight-path bank angle μK has also to be fitted by B-splines. 
Alternatively, it can also be treated by the substitute optimization problem given in  
chapter 4.2.3. 

Of course, the control histories uSIM,LTF resulting from the simulation step 1B are unlikely to be 
optimal since the cost function has not been minimized by optimization, but an initial guess 
for the optimization task utilizing the hybrid simulation mode with linear transfer functions 
has been generated that fulfills all given boundary conditions to a wide extent and that might 
already come close to an optimal solution based on this hybrid simulation model. This 
optimization task represents the next step in the optimization algorithm (step 2A), where the 
corresponding state and control vector within the general optimization problem are: 
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When the optimal solution for a trajectory utilizing the simulation model with the attitude and 
rotational dynamics represented by linear transfer functions has been computed, the obtained 
time histories for the position vector r1OPT,LTF can then be used as reference trajectory r1REF for 
simulating the trajectory utilizing the simulation mode of chapter 3.6.8. At this, a simulation 
model is taken into account that features an inner loop with linear state-space models 
augmented by the appropriate inversion controllers. This simulation task represents step 2B of 
the optimization algorithm depicted in Fig. 33. In step 2A of the optimization algorithm the 
point-mass simulation model has been augmented by linear transfer functions, while the 
control inputs to the augmented simulation models are linearly interpolated. Thus, due to the 
increased dynamic order of the simulation model in step 2A, a reference trajectory r1REF = 
r1OPT,LTF can be computed that features smooth time derivatives up to the fourth order. Again, 
the simulated trajectory is likely to deviate from the optimal trajectory found for the model 
with linear transfer functions since now linear state-space models are incorporated in the 
simulation model. Thus, the modeling fidelity is increased and in contrast to the optimization 
based on linear transfer functions in the inner loop, the coupling between the states in the 
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longitudinal motion respectively the coupling between the states in the lateral motion is now 
incorporated in the simulation model, causing the simulated trajectory to deviate from the 
trajectory that has been optimal for the hybrid simulation mode incorporating linear transfer 
functions. Due to this reason, the error feedbacks given in chapter 3.5 are used to force the 
aircraft model with linear state-space models in the inner loop back onto the trajectory that 
has been optimal for the model with linear transfer functions in the inner loop. To sum up, in 
step 2B the hybrid simulation model with linear state-space models in the inner loop tries to 
follow the trajectory that has been obtained by the optimization using the hybrid simulation 
model with linear transfer functions. Finally, the control time histories uSIM,SSM that are the 
input to the next step of the optimization algorithm have to be restored by appropriate inverse 
reference models (see chapter 4.2.1). 

Here again it has to be stated that the control time histories uSIM,SSM are not assumed to be 
optimal since they were generated by simulation and not by optimization, but they provide a 
well suitable initial guess for the next step in the optimization algorithm that is step 3A. 
Within this step, the time histories uSIM,SSM found by simulating the trajectory using the model 
with linear state-space models, inversion controller and error feedbacks in turn are used as 
initial guess for the optimization of the aircraft trajectory utilizing the simulation mode with 
linear state-space models supplemented by the appropriate inversion controller (see  
chapter 3.6.5) so that the control and state vector with regard to the general optimization 
problem read: 
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Stepping forward in the optimization procedure, in step 3B the position vector r1OPT,SSM being 
optimal for the simulation model with the state-space models and the inversion controller is 
then used as reference trajectory r1REF for a simulation based on the model with the non-linear 
inner loop combined with the respective inversion controllers (see chapter 3.6.9). Due to its 
dynamic order, the hybrid simulation model with linear state-space models used in step 3A of 
the optimization algorithm allows for a direct computation of a reference trajectory r1REF = 
r1OPT,SSM up to the fourth order time derivative. As before, due to the increased depth of 
modeling, deviations from the trajectory that has been optimal for the simulation model with 
state-space models and inversion controller in the inner loop will occur. These deviations are 
corrected by the appropriate error feedbacks, see chapter 3.5. Thus, in step 3B the simulation 
model with the nonlinear inner loop attempts to follow the trajectory that is the outcome of 
the optimization with the hybrid simulation model with linear state-space models in the inner 
loop (step 3A). Again, the controls uSIM,NLI have to be restored utilizing appropriate inverse 
reference models (chapter 4.2.1). In the sequel, the controls uSIM,NLI constitute the input to  
step 4A of the optimization algorithm. 

As before, the controls uSIM,NLI might not be optimal for the increased modeling fidelity but 
result in a sub-optimal trajectory that obeys all boundary conditions to a great extent. Thus, 
the controls uSIM,NLI represent a good and well-suited initial guess for the next step in the 
optimization algorithm that is step 4A. Here, the optimization task is accomplished based on 
the simulation mode with the full, non-linear rotation and attitude dynamics inclusively 
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inversion controller given in chapter 3.6.6. The control respectively the state vector of the 
general optimization problem stated in the preceding chapter are then modified to: 
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As can be seen from Eq. (4.7), computing the optimal trajectory respectively the optimal 
controls uOPT,NLI,INV for this level of the simulation model in turn yields time histories for the 
control surface deflections η, ξ and ζ. Finally, in the last step 5A of the optimization algorithm 
these time histories for the control surface deflections are utilized as quite good initial guesses 
for the optimization of an aircraft trajectory based on a full 6-degree of freedom simulation 
model with non-linear attitude and rotational dynamics but without any inversion controller so 
that the control surface deflections are the directly commanded control inputs, where the 
simulation mode dedicated to this optimization task can be found in chapter 3.6.4. Regarding 
the general optimization problem, the control vector and the state vector for this last step of 
the optimization algorithm comprise the following quantities: 
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Thus, the final output of the optimization algorithm are the controls uOPT,NLI that give the 
optimal aircraft trajectory based on a full, non-linear 6-degree of freedom simulation model. 
In Table 2, a summary of the various steps that are performed during the optimization 
algorithm described so far is given. 

 

ALGORITHM I 

 1A Optimization using point-mass simulation mode 

 1B Simulation using hybrid simulation mode with linear transfer functions 

 2A Optimization using hybrid simulation mode with linear transfer functions 

 2B Simulation using hybrid simulation mode with linear state-space models 

 3A Optimization using hybrid simulation mode with linear state-space models, 
inversion controller and reference models 

 3B Simulation using full simulation mode with non-linear inner loop 

 4A Optimization using full 6-DoF simulation mode with non-linear inner loop, 
inversion controller and reference models 

 5A Optimization using full 6-DoF simulation mode with non-linear inner loop 
Table 2. Optimization Algorithm I 

Furthermore, an alternative optimization algorithm is developed that is a slightly modified 
version of algorithm I. A summary of the steps performed therein can be found in table 3, the 
optimization algorithm itself is illustrated in Fig. 34. Up to step 3A, the alternative 
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optimization algorithm proceeds in exactly the same way as algorithm I. As can be noticed 
from Eq. (4.5), performing the optimization task in step 3A also produces time histories for 
the control surface deflections η, ξ and ζ. Instead of simulating the aircraft trajectory utilizing 
the full, 6-DoF simulation mode with the non-linear inner loop, the appropriate inversion 
controller and reference models that would have been step 3B of algorithm I, the alternative 
algorithm II proceeds by optimizing the aircraft trajectory making use of the simulation mode 
given in chapter 3.6.3. This simulation mode is a hybrid simulation mode with linear state-
space models in the inner loop, but without any inversion controller or reference models. In 
the optimization task of step 4A of the modified algorithm, the state time histories for the 
control surface deflections η, ξ and ζ being the outcome of step 3A are used as initial guess, 
and the control and state vector of the general optimization problem are set to: 

 [ ] T

TKKKKKKKKK rqpVzyx ζζξξηηδμγχβα &&& ,,,,,,,,,,,,,,,,,, ***=x  (4.11)

 [ ] T

CMDTCMDCMDCMD ,,,, δζξη=u (4.12)
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Figure 34. Optimization Algorithm II 

Then, in step 4B of optimization algorithm II, the trajectory following mode of chapter 3.6.9 
is utilized that involves the 6-Degree-of-Freedom simulation model with the full, non-linear 
inner loop. The simulation model must follow the trajectory that has been obtained by the 
optimization in the preceding step 4A of the optimization algorithm. As depicted above,  
step 4A is based on the hybrid simulation model with linear state-space models in the inner 
loop. Here again the statement holds that due to the increased depth of modeling deviations 
from the aircraft trajectory that has been optimal for the optimization based on the simulation 
mode with the linear state-space models will occur, so that the error feedbacks given in 
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chapter 3.5 are incorporated in the simulation model to cancel out these deviations. By the 
simulation in step 4B of optimization algorithm II, the control time histories uSIM,NLI result (see 
Fig. 34). The control vector u is given by the control surface deflections η, ξ and ζ and any 
deviation from the reference trajectory is directly fed back to these control quantities. Finally, 
the time histories uSIM,NLI for the controls provide a suitable initial guess to perform the last step 
of the optimization algorithm II, step 5A, that again is identical to the last step of algorithm I 
and that optimizes the aircraft trajectory based on the full, non-linear 6-DoF simulation model 
of chapter 3.6.4. 

 

ALGORITHM II 

 1A Optimization using point-mass simulation mode 

 1B Simulation using hybrid simulation mode with linear transfer functions 

 2A Optimization using hybrid simulation mode with linear transfer functions 

 2B Simulation using hybrid simulation mode with linear state-space models 

 3A Optimization using hybrid simulation mode with linear state-space models, 
inversion controller and reference models 

 4A Optimization using hybrid simulation mode with linear state-space models 

 4B Simulation using full 6-DoF simulation mode with non-linear inner loop 

 5A Optimization using full 6-DoF simulation mode with non-linear inner loop 
Table 3. Optimization Algorithm II 

4.2 Implementation Details 

4.2.1 Inverse Reference Models 
Within the optimization algorithms of chapter 4.1, corrected reference values up to their 
second order time derivatives for the aerodynamic attitude angles that are the angle of  
attack αA, the angle of sideslip βA and the bank angle μA are obtained after simulating the 
respective trajectory in step 1B, 2B or 3B of algorithm I or in step 1B or 2B of algorithm II. 
In the successive optimization tasks, corrected command values for the attitude angles are 
required as control inputs to the respective reference models, producing just the same 
reference values for the attitude angles. The command time histories can be restored by 
making use of the appropriate inverted reference models. For example, the inversion of the 
second order reference model for the aerodynamic angle of attack αA reads: 
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generating the required command time history αA,CMD that in turn is used as initial guess for 
the optimization task in the subsequent step of the optimization algorithm. The computation 
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of the first and second order time derivatives of the angle of attack αA is given by Eqs. (3.258) 
and (3.259). 

4.2.2 Initial Guess Generation 
In this chapter, an algorithm is illustrated that allows for an automatic generation of initial 
guesses respectively feasible trajectories for the optimization algorithms outlined in the 
preceding chapter when multiple waypoints have to be passed at prescribed kinematic course 
angles. In addition, besides the position coordinates and the course angle, further quantities 
can be prescribed at the respective waypoints like e.g. speed values, bank angles, etc. In the 
following, the initial guess generation is illustrated for a point-mass simulation model, but the 
extension of the proposed algorithm to simulation models of higher fidelity is straightforward.  

First of all, the trajectory optimization problem is split up into multiple phases where each 
single phase is defined as the flight path segment between two succeeding waypoints. Thus, 
the initial and final boundary conditions for each phase are defined by the position 
coordinates r1 = [x, y, z]T of the respective waypoints, the initial and final course angles χK and 
the supplementary quantities specified at the considered waypoints. The algorithm then starts 
by computing the optimal solution for the first phase, using a homotopy procedure that is 
illustrated in Fig. 35. At first, an auxiliary waypoint is introduced and the optimization 
problem is solved for a flight from the initial waypoint of the first phase to the newly defined 
auxiliary waypoint. To initialize the homotopy procedure, the auxiliary waypoint is specified 
as a waypoint at the same altitude as the initial waypoint with a certain distance d from the 
initial waypoint in the direction of the initial course angle: 

 WPIKWPIiniAUX dxx ,, cosχ⋅+=  (4.14)

 WPIKWPIiniAUX dyy ,, sinχ⋅+= (4.15)

 WPIiniAUX zz =, (4.16)

where the subscript WPI denotes the initial waypoint and the subscript AUX the auxiliary 
waypoint. The course angle χK and the kinematic velocity VK at the auxiliary waypoint are set 
to the same values that are prescribed at the initial waypoint: 

 WPIKiniAUXK ,,, χχ =  (4.17)

 WPIKiniAUXK VV ,,, = (4.18)

If no value for the kinematic velocity VK at the initial waypoint of the first phase is specified 
at all, it is initially set to the intermediate value of the lower and the upper bound for the 
kinematic velocity. In this case, the initial boundary constraint for the kinematic velocity VK is 
freed and the determination of the kinematic velocity VK,WPI at the initial waypoint is left to 
the optimization. Additionally, the values for the kinematic flight-path bank angle μK and the 
kinematic flight-path inclination angle γK at the initial waypoint and at the auxiliary waypoint 
are initially set to zero: 

 °== 0,,,, iniWPIKiniAUXK γγ  (4.19)

 °== 0,,,, iniWPIKiniAUXK μμ (4.20)
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Figure 35. Homotopy Procedure 

This means that the initial waypoint of the first phase and the auxiliary waypoint are 
positioned in line at the same level and that the aircraft can pass the two waypoints flying 
straight and level. Moreover, the position of the auxiliary waypoint is chosen such that the 
distance from the initial waypoint to the auxiliary waypoint is just the same as the distance 
from the initial waypoint to the given terminal waypoint of this phase: 
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Here, the subscript WPII denotes the terminal waypoint. Finally, the initial control  
inputs uini,0 (t) that are required to solve the initial optimization problem for a straight and level 
flight between the initial waypoint and the auxiliary waypoint can e.g. be calculated using a 
trim routine that forces the aircraft to fly straight and level. Therefore, the trim routine has to 
determine the control time histories uini,0 (t) in such a way that the first order time derivatives 
of the following state variables equal zero: 

 0)()()()()( ===== tVttttz KKKK
&&&&& μγχ  (4.22)

Then the homotopy procedure starts whereat the state vector xAUX of the auxiliary waypoint is 
gradually changed so that the auxiliary waypoint xAUX approaches the given terminal  
waypoint xWPII of the first phase: 
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in which k is the actual iteration number and nS the total number of iteration steps. In doing 
so, for each iteration step k the corresponding optimization problem that determines the 
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optimal flight path between the initial waypoint xWPI and the actual auxiliary waypoint xAUX,k is 
solved.  

If the values for the kinematic flight-path bank angle μK,WPI and the kinematic inclination 
angle γK,WPI at the initial waypoint of the first phase are prescribed, the bank angle μK and the 
inclination angle γK are alternated by applying the same iterative scheme as for the auxiliary 
waypoint xAUX so that the initial boundary constraints for the bank angle μK and the inclination 
angle γK are finally met: 
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where γK,WPI,ini and μK,WPI,ini are specified by Eq. (4.19) respectively Eq. (4.20). On the other 
hand, if no values for the kinematic flight-path bank angle μK,WPI and the kinematic inclination 
angle γK,WPI at the initial waypoint are specified, the corresponding initial boundary 
constraints are freed and the determination of those values is left to the optimization. The 
same holds for the controls, i.e. if no control values uWPI at the initial waypoint of the first 
phase are specified, the determination of those values is also left to the optimization. 
Otherwise, initial boundary constraints for the controls are enforced and the control values are 
alternated within each iteration by: 
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where the controls uWPI,ini are set equal to the controls uini,0 (t) determined by the trim routine: 

 ( )tini,iniWPI 0, uu =  (4.27)

In each iteration step k, the resulting slightly altered optimization problem is then solved 
utilizing the optimal solution uopt (t) from the previous optimization run as initial guess uini (t): 

 ( ) ( ) Sopt,k-ini,k nktt  ..., ,2       1 == uu  (4.28)

This procedure is repeated until the state vector of the original terminal waypoint of the first 
phase is met, so that the auxiliary waypoint xAUX and the terminal waypoint xWPII of the first 
phase coincidence: 

 WPIInAUX S
xx =,  (4.29)

The number of iterations nS that is taken to shift the auxiliary waypoint xAUX from its initial to 
its final position depends on the distance d0 between the initial position of the auxiliary 
waypoint and the position of the prescribed terminal waypoint of the first phase: 

 

2,

,

,

0
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−
−

=

iniAUXWPII

iniAUXWPII

iniAUXWPII

zz
yy
xx

d  (4.30)

 



OPTIMIZATION ALGORITHM  123 

The iteration number nS is derived such that a maximum displacement dmax of the auxiliary 
waypoint within one iteration is not exceeded: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

max

0 ceil
d
dnS  (4.31)

The value for the maximum displacement can be set within specified bounds, and it allows for 
a trade-off between  

• increased stability of the initial guess generation if a low value is specified, or 
• decreased computational time for generating the initial guess if the maximum 

displacement is set to a high value. 

Furthermore, to speed up the initial guess generation the optimization tolerance that has to be 
achieved by the optimization within each iteration of the homotopy procedure can be set to a 
relatively low value, before the optimization tolerance is set to a higher value for the last 
iteration of the homotopy procedure. Additionally, the initial guess generation incorporates a 
special treatment of waypoint settings where the given terminal waypoint is very close or 
even identical to the initial waypoint and where the change in the course angle is very large 
between the initial and the final waypoint. An example maneuver would be a 270° turn where 
the aircraft has to return to its initial position in the shortest possible time. Before the 
homotopy procedure starts, the waypoint positions are checked and if a setting as described 
above is identified, an intermediate auxiliary waypoint is introduced so that the auxiliary 
waypoint is not shifted directly towards the terminal waypoint. Thus, infeasible waypoint 
positions and settings for the course angle are avoided since this might result in severe 
computational problems, causing the optimization and thus the homotopy procedure to fail. 

Once the homotopy procedure is completed for the first phase, it is repeated in the same way 
for the remaining phases. At this, the determination of the initial boundary values that are 
eventually not specified at the initial waypoints of the distinctive phases, that could be the 
bank angle μK, the inclination angle γK, the kinematic velocity VK and/or the controls u, is not 
left to the optimization as it would have been the case in the first phase, but initial boundary 
constraints are enforced that require the respective quantities to take the final values of the 
preceding phases once the homotopy procedure for the respective phase has been finished: 

 ( ) ( ) 1,...,1     ,1,0 −==+ pitt ifi xx  (4.32)

 ( ) ( ) 1,...,1       ,1,0 −==+ pitt ifi uu  (4.33)

with p being the number of phases. Regarding the path inclination angle γK, the bank angle μK 
and the controls u, this is achieved by setting the initial starting values due to Eqs. (4.19), 
(4.20) and (4.27) and then alternating the initial boundary constraints according to Eqs. (4.24) 
to (4.26) during the homotopy procedure. Thus, the continuity of the time histories for the 
states as well as the controls is guaranteed across all phase boundaries.  

Finally, the computed states and controls of all the phases are put together, producing a quite 
good initial guess for the optimization of the whole aircraft trajectory. This initial guess can 
be termed sub-optimal since the aircraft trajectory has only been optimized between the 
successive waypoints but it has not been optimized as a whole.  

Table 4 summarizes the algorithm for the automatic generation of the initial guess for the 
entire trajectory optimization problem. 
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ALGORITHM III 

1  Split the optimization problem into p phases due to given waypoints 

2  Solve the optimization problem for each single phase i = 1, …, p 

 2.A Introduce auxiliary waypoint xAUX,i according to (4.14) to (4.20) 

 2.B Determine initial controls uini,0,i (t) by a trim routine such that (4.22) holds 

 2.C Determine the number of iteration steps nS using (4.30) and (4.31) 

 2.D Apply the homotopy procedure defined by Eqs. (4.23) to (4.26) and (4.28) 

3  Combine uopt,i (t), i = 1, …, p to give usub-optimal (t) 
Table 4. Automatic Generation of Initial Guesses 

4.2.3 Substitute Optimization Problem 
In this chapter, a substitute optimization problem is established to smoothen a given reference 
trajectory and to generate a reference trajectory up to its fourth order time derivative for the 
position vector that is required in step 1B of the trajectory algorithm outlined in chapter 4.1. 
Therefore, a slightly modified version of the point-mass simulation model is set up. In this 
simulation model, only the kinematics given in chapter 3.2.2 and 3.2.3, but no aerodynamics 
are taken into account. Thus, the inputs to the modified point-mass simulation model would 
be made up by the load factors n1K̅  in the Intermediate Kinematic Flight-Path Frame K̅ 
respectively the first order time derivative of the kinematic flight-path bank angle μK. Instead 
of the load factors or the first order time derivative of the bank angle, their second order time 
derivatives are chosen as control inputs to the point-mass simulation model and the following 
ordinary differential equations are added to the simulation model: 
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The same equations hold for the load factors nx,K̅ and ny,K̅ in the x- respectively the y-direction 
of the Intermediate Kinematic Flight-Path Frame K̅. In doing so, the load factors n1K̅  and the 
flight-path bank angle μK are delayed and the total dynamic order of the point-mass simulation 
model is artificially increased. Furthermore, now the time histories for the position vector as 
well as for the flight-path bank angle μK that are produced by the simulation model are 
sufficiently smooth. 

Then, the following substitute trajectory optimization problem is solved: Determine the 
optimal control history 

 ( ) m
opt t R∈u  (4.36)

and the corresponding optimal state trajectory 

 ( ) n
opt t R∈x  (4.37)
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that minimize the Lagrange cost functional 

 ( )( ) ( )( ) dtttdttJ
ff t

t
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 (4.38)

subject to the state dynamics given by Eqs. (4.34) and (4.35) as well as the position 
propagation equations and translation equations of motion of chapter 3.2. The corresponding 
control and state vector are: 

 [ ] T

CMDKCMDKzCMDKyCMDKx nnn ,,,,,,, ,,, μ&&&&&&&&=u  (4.39)

 [ ] T

KzKzKyKyKxKxKK nnnnnnqqqqVzyx ,,,,,,3210 ,,,,,,,,,,,,,, &&&&μ=x  (4.40)

The least-square criterion J in Eq. (4.38) minimizes deviations between the actual position 
vector r1 = [x, y, z]T and the reference position vector r1PM  that has been produced by the 
optimization task in step 1A of the optimization algorithm of chapter 4.1, utilizing the 
unmodified point-mass simulation model. 
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5  
 
Bilevel Optimal Control 
The following chapters are concerned with the statement and the effective solution of a 
special class of bilevel optimal control problems, where an optimal solution of the upper level 
parameter optimization problem depends on the optimal solutions of one or more lower level 
optimal control problems. Although the bilevel programming problem is a combination of an 
upper level optimization problem and a certain number of lower level optimal control 
problems, it is termed bilevel optimal control problem since the solution of the entire bilevel 
problem is clearly dominated by the solution of the lower level optimal control problems. 
After the statement of the bilevel optimal control problem in chapter 5.1, chapter 5.2 
introduces the sensitivity analysis for the lower level optimal control problems that forms the 
basis for the solution algorithm given in chapter 5.3. 

5.1 Statement of the Bilevel Optimal Control Problem 
Bilevel optimal control problems where an optimal solution of the upper level parameter 
optimization problem depends on the optimal solutions of one or more lower level optimal 
control problems can be stated as follows: 

 ( )( ) ( )( ) ( )( ) nittJ iiiii ..., ,1       ,,,,,,,min =ppzppzyppzx  (5.1)

subject to 

 ( )( ) ( )( ) ( )( ) nitt iiiii ..., ,1       ,,,,,,, =≤ 0ppzppzyppzxG (5.2)

where xi(p) are the state functions, yi(p) the output functions and zi(p) the parameter vectors 
with respect to optimal solutions of optimal control problems as stated in chapter 2.2. Here, n 
indicates the number of the lower level optimal control problems. J denotes the objective of 
the upper level parameter optimization problem (5.1), G is the corresponding constraint 
vector and p the parameter vector of the upper level optimization problem. The parameter 
vector p is also involved in the solution of the lower level optimal control problems. Fig. 36 
depicts the structure of the stated bilevel optimal control problems. 
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Figure 36. Structure of Bilevel Optimal Control Problem 

If for the solution of such bilevel programming problems the gradient of the objective of the 
upper level optimization problem with respect to the parameter vector p was evaluated by 
means of numerical methods, this would result in an extreme computational effort. Utilizing 
central differences for the evaluation of the gradient of the upper level optimization problem, 
each lower level optimal control problem would have to be solved twice to compute the 
central difference with respect to one single parameter. Thus, an efficient way for the solution 
of such bilevel problems is needed that avoids the time consuming evaluation of the gradient 
of the upper level optimization problem. The basis for this solution algorithm is a sensitivity 
analysis for the lower level optimal control problems that is given in the following chapter. 

5.2 Sensitivity Analysis for Lower Level Optimal Control 
Problems 

In general, the goal of a sensitivity analysis is to determine how the solution of an optimal 
control problem changes when certain parameters within the optimal control problem are 
altered. At this, the parameters under consideration can either be subject to optimization or 
not. The sensitivity analysis can be utilized to compute a suboptimal solution of the optimal 
control problem in fairly short time or it can be applied if parameters with uncertainty are 
present in the optimal control problem. Theoretical fundamentals on the theory of sensitivity 
analysis can be found e.g. in Refs. [Fiacco, 1976] and [Fiacco, 1983]. In Refs.  
[Büskens, 1998] and [Büskens, 2000], Büskens gives a technique that is based on the work of 
Fiacco and that allows for the computation of sensitivity differentials and suboptimal 
solutions for a discretized optimal control problem. In the following, basic results for the 
computation of sensitivity information utilizing the technique of Büskens are given. These 
equations for the computation of sensitivity information form the basis for the efficient 
solution of the bilevel optimal control problem stated in chapter 5.1 by the algorithm outlined 
in the chapter 5.3. 

For the nonlinear programming problem resulting from the discretization of the original 
optimal control problem, the augmented Lagrange cost function L(z, μ, p) together with the 
equality constraints Ga(z, p) constitute the following set of equations: 

 ),(),(),,( pzGμpzpμz a
T
aJL +=  (5.3)

 0pzG =),(a (5.4)
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where z is the parameter vector and p a vector of additional parameters associated with the 
optimal control problem (see chapter 2.2). J(z, p) denotes the final cost function. Ga(z, p) is 
the vector of equality and active inequality constraints and μa the vector of the corresponding 
Lagrange multipliers. For any solution of the nonlinear programming problem to be an 
optimal solution, the necessary conditions have to be fulfilled. This means, the gradient of the 
Lagrange function L(z, μ, p) with respect to the parameter vector z has to equal zero in order 
to ensure that the computed solution is at least a local minima or maxima: 
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In the following, Eq. (5.5) and Eq. (5.4) are joint together to give the vector of constraints F: 
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Then, the Jacobian of the constraint vector F with respect to the parameter vector z and the 
vector of Lagrange multipliers μ is: 
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where the matrix Lzz evaluates to: 
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Since it is the goal to compute a solution of the nonlinear programming problem that is 
optimal or at least sub-optimal for small perturbations in the parameter vector p, it is required 
that the necessary optimality conditions (5.6) hold in the vicinity of the parameter vector p. 
This can be achieved by requiring that the gradient of the optimality conditions (5.6) with 
respect to the parameter vector p equals zero: 
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where p0, z0 and μ0 indicate the values of the parameter vector z, the vector of Lagrange 
multipliers μ respectively the parameter vector p of the optimal solution of the nonlinear 
programming problem. The matrix Lzp is given by: 
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From Eq. (5.10) the sensitivity matrix dz0/dp and also the sensitivity matrix dμa,0/dp are then 
obtained by: 
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Here, the dimension of the matrix dz0/dp is nvar×npar, where nvar is the length of the parameter 
vector z and where npar is the number of parameters, i.e. the length of the parameter vector p. 
The matrix dμa,0/dp is a nact×npar-matrix, where nact is the number of active constraints. The 
Hessian Lzz is a nvar×nvar-matrix, while the matrix Ga,z has the dimension nact×nvar. The 
dimension of the matrix Lzp is nvar×npar and the dimension of the matrix Ga,p is nact×npar. 

At this, the sensitivity matrix dz0/dp indicates how the parameter vector z0 has to be changed 
in order to obtain a sub-optimal solution if any parameter in the parameter vector p is subject 
to perturbation. From the sensitivity matrix given by Eq. (5.12), the sensitivity of the cost 
function, the sensitivity of the constraints as well as the sensitivity of the state functions with 
respect to the parameter vector p can be obtained. The results are given in the following. 

The sensitivity of any constraint function gi(z, p) with respect to the parameter vector p 
evaluates to: 
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Since the constraints gi(z, p) are only a function of the parameter vectors z and p but not of 
the Lagrange multipliers μ, Eq. (5.14) can be written as: 
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For the sensitivity of the cost function J(z, p) with respect to the parameter vector p the 
following relationships result: 
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With the cost function J(z, p) being solely a function of the parameter vectors z and p but not 
of the Lagrange multiplier vector μ, it follows: 
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Using Eq. (5.5), the sensitivity of the cost function becomes: 
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From the second line of Eq. (5.10), one has for the active constraint functions Ga(z, p) in the 
vicinity of the parameter vector p0: 
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Then, the derivative of the active constraint functions Ga(z, p) with respect to the parameter 
vector p can be written as: 
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Utilizing Eq. (5.21) together with Eq. (5.19), it finally results that the sensitivity of the cost 
function J(z, p) with respect to the parameter vector p equals the sensitivity of the Lagrange 
cost L(z, μ, p) with respect to the parameter vector p: 
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The sensitivity of the state function x(t) with respect to the parameter vector p is given by: 
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Accordingly, the sensitivity of any output function y(t) with respect to the parameter vector p 
may be evaluated by: 
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For an optimal solution (z0, μ0, p0) of the nonlinear programming problem, a sub-optimal 
solution with regard to a perturbed parameter vector p can be obtained by a first order 
approximation using the above sensitivity results: 
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where it is mentioned that the perturbed parameter vector p has to lie in a certain vicinity of 
the parameter vector p0 associated to the optimal solution. If the perturbation is too large, i.e. 
the perturbed parameter vector is not within a valid vicinity of the parameter vector p0, the 
sensitivity results are not valid any more. Possibilities for the estimation of the size of the 
valid vicinity are given in Ref. [Bueskens, 1998]. According to Ref. [Bueskens, 1998], the 
validity of the sensitivity results is usually limited by changes in the set of active constraints. 
Thus, one possibility to estimate the valid perturbation Dp of the parameter vector p is to 
consider the inactive constraints. An inactive constraint becomes active if its value goes to 
zero, i.e. 
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Consequently, the valid perturbation Dp considering the i-th constraint can be determined as: 

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≈−=Δ

p
pz
pzppp

d
dg
g

i

i
i ),(

),(

00

00
0  (5.29)

This implies that if any perturbation is larger than the perturbation determined by Eq. (5.29), 
the respective inactive constraint of the sub-optimal solution would be violated, resulting in a 
non-valid sub-optimal solution. 
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5.3 Solution Algorithm 
According to Ref. [Falk, 1995], the solution algorithms that can been applied to solve bilevel 
optimization problems can be divided into three categories. Algorithms of the first category 
add the necessary optimality conditions for the lower level optimization problem (i.e. the 
Karush-Kuhn-Tucker conditions) as constraints to the upper level optimization problem. At 
this, the bilevel programming problem is turned into a nonconvex, standard single level 
optimization problem. Algorithms that utilize double-penalty functions to approximate the 
upper and lower level optimization problems, thus transforming them into a sequence of 
unconstrained optimization problems, form the second category. In the third category, there 
are algorithms that utilize gradient information with respect to the lower level optimization 
problem in order to solve the upper level optimization method by a descent method where 
usually all constraints are associated to the lower level optimization problem. 

The solution algorithm that is proposed in this chapter for the solution of the bilevel optimal 
control problem stated in chapter 5.1 falls into the third category. At this, the sensitivity 
analysis outlined in chapter 5.2 is not utilized in order to compute a suboptimal solution of an 
optimal control problem but to determine the gradient of the objective of the upper level 
optimization problem with respect to selected parameters of the lower level optimal control 
problems. Furthermore, if there are any equality or inequality constraints present in the upper 
level optimization problem, the sensitivity analysis is also utilized to compute the gradient of 
the constraint vector of the upper level optimization problem with respect to the selected 
parameters of the lower level optimal control problems.  

The sensitivity matrix dz/dp that is a basic result of the sensitivity analysis is used to directly 
compute the gradient of the objective of the upper level optimization problem with respect to 
the parameter vector p. Here, z is the parameter vector of a lower level optimal control 
problem and p is the parameter vector of the upper level optimization problem, where the 
parameter vector p is also involved in the solution of the lower level optimal control 
problems. In Table 5, the various steps that have to be taken in every iteration step k of the 
upper level optimization problem are listed, where n denotes the number of lower level 
optimal control problems. The sub-optimal solutions z~i,k for the parameter vectors zi,k are 
obtained by a first order approximation of the parameter vectors zi,k-1 of the preceding 
iteration step: 
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Here, zi,k is the optimal solution of the i-th lower level optimal control problem at the k-th 
iteration step of the upper level optimization problem. Then, the optimal solutions zi,k,  
i = 1, …, n can either be computed using the sub-optimal solutions z~i,k or the optimal 
solutions zi,k-1 from the previous iteration step as initial guesses. The optimal control problems 
are solved by applying the direct multiple shooting method given in chapter 2.2, converting 
the optimal control problems into parameter optimization problems by means of discretization 
of the control time histories. Furthermore, the objective Jk and the constraint vector Gk of the 
upper level optimization problem have to be evaluated. After carrying out the sensitivity 
analysis outlined in chapter 5.2 in order to obtain the sensitivity matrices dzi,k/dpk,, the 
gradient dJk/dpk of the objective and the Jacobian dGk/dpk of the constraint vector with 
respect to the parameter vector pk can be computed straight forward: 
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Given the objective Jk, 
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and the constraint vector Gk, 
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the gradient dJk/dpk of the objective with respect to the parameter vector pk evaluates to 
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while the Jacobian dGk/dpk of the constraint vector with respect to the parameter vector pk is 
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where dxi/dpk and dyi/dpk are given by Eq. (5.23) respectively Eq. (5.24). 

 

ALGORITHM I 

 1 Given pk, pk-1, zi,k-1, i = 1, …, n and dzi,k-1/dpk-1 

 1A Compute the sub-optimal solutions z~i,k, i = 1, …, n by Eq. (5.30) 

 1B Find the optimal solutions zi,k, i = 1, …, n using the sub-optimal solutions z~i,k, 
i = 1, …, n or the optimal solutions zi,k-1 as initial guesses 

 1C Get the sensitivity matrices dzi,k/dpk, dxi/dpk and dyi/dpk utilizing the sensitivity 
analysis of chapter 5.2 (Eqs. (5.12), (5.23) respectively (5.24)) 

 2A Evaluate the objective Jk of the upper level optimization problem 

 2B Compute the gradient dJk/dpk using dxi/dpk, dyi/dpk and dzi,k/dpk (Eq. (5.33)) 

 3A Evaluate the constraint vector Gk of the upper level optimization problem 

 3B Compute the Jacobian dGk/dpk using dxi/dpk, dyi/dpk and dzi,k/dpk (Eq. (5.34)) 

i … index of lower level optimal control problem, i = 1, …,n 
k … iteration step of upper level parameter optimization problem 

Table 5. Algorithm Abstract for the Solution of the Bilevel Programming Problem 

The proposed algorithm allows for a direct computation of the gradient of the upper level 
optimization problem at each iteration step. Thus, the time consuming evaluation of the 
gradient of the upper level optimization problem by numerical techniques can be avoided and 
an efficient way for the solution of the bilevel programming problem is implemented. 
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Applications and Results 
In the field of optimal control, the optimization of air race trajectories constitutes a very 
challenging application. The aerobatic aircraft taking part in the air races are extremely agile 
and the setup of the race tracks causes the pilots to fully exploit the dynamics of the aircraft. 
Thus, the optimization of race trajectories as well as the optimization of race track layouts are 
well suited to show the performance of the solution algorithms outlined in chapter 4 and 5. In 
the following chapter 6.1, the optimization of an air race trajectory is formulated as 
benchmark problem and in chapter 6.2, the time-optimal race trajectory is provided for the 
highest fidelity level of the various simulation models that is the 6-DoF simulation model. In 
chapter 6.3 and 6.4, the solutions of bilevel optimal control problems are depicted where it 
has been the goal to optimize the layout of the race track such that certain safety criteria or the 
fairness of the race track become optimal. 

6.1 Air Race as Benchmark Problem 
The basic procedure of the regarded air races is as follows: after passing a starting point, 
which can be defined by a significant landmark like e.g. the chain bridge in Budapest, the 
aircraft have to fly a course defined by inflatable pylons at minimum time. The pylons form 
gates which either are to be passed wings level (level gate, Fig. 37), or at 90° bank angle 
(knife edge gate, Fig. 38) which can be differentiated by their color. 

 
Figure 37. Level Gate (blue) 

 
Figure 38. Knife Edge Gate (red) 

Other features are the “Quadro” (Fig. 39), consisting of two pylon pairs that have to be passed 
from perpendicular directions or the “Chicane” (Fig. 41) which is a sequence of single pylons 
in a straight line requiring rapid changes in turn direction. Furthermore, re-alignment and 
aerobatic maneuvers like vertical rolls or Half Cuban Eights (Fig. 40) are included to re-
position the aircraft with respect to the track. 
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Figure 39. Quadro 

 

 
Figure 40. Half Cuban Eight 

The race ends by passing a finish gate which in many cases is equal to the start gate or again a 
significant landmark. The air races take place right in the hearts of large cities like Budapest, 
San Diego, Rio de Janeiro, New York or Berlin and are often located on rivers or on the 
waterside. 

 
Figure 41. Chicane 

For such air races, the pilots are flying different types of aerobatic aircraft like e.g. the Zivko 
Edge 540 (Fig. 42) or the MXS-R. Those aerobatic aircraft are very agile, featuring e.g. roll 
rates up to 420°/s. Table 6 gives an overview of the technical specifications of such an 
aerobatic aircraft. 
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Figure 42. Zivko Edge 540 

 
Aircraft Specifications 

mass m [kg] 693.0 

wing area S [m²] 8.928 

wing span b [m] 7.5 

half wing span s [m] 3.75 

chord length c̄ [m] 1.44 

reference speed Vref [m/s] 30.0 

maximum thrust Tref [N] 0.8mg 

moment of inertia Ixx [kg·m²] 

Iyy [kg·m²] 

Izz [kg·m²] 

420.30356820 

726.71842759 

919.24457818 

Table 6. Aircraft Specifications 

In order to win such an air race competition, the pilot has to find the fastest possible flight 
course through the gates, i.e. he tries to finish the race course in the minimum possible flight 
time. Thus, for the air race trajectory optimization problem, the Bolza cost functional given by 
Eq. (2.4) reduces to a Mayer functional since the only objective of the trajectory optimization 
problem is to minimize the final time: 

 ftJ =  (6.1)

The initial boundary conditions of Eq. (2.6) for the optimization problem are given by the 
position of the start gate, whereas the final boundary conditions (Eq. (2.7)) are determined by 
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the location of the finishing gate and the direction the finishing gate has to be passed by the 
aircraft: 

 ( ) 0rr
vvv =− StartGatet0  (6.2)

 ( ) 0rr
vvv =− FinalGateft (6.3)

where r1 denotes the position vector. The requirement that the pilot has to fly through certain 
gates in a certain direction and at given bank angles imposes interior point conditions  
(Eq. (2.8)) to the trajectory optimization problem. Basically, there are two different types of 
gates, level gates and knife edge gates. Level gates have to be passed wings level, i.e. with the 
kinematic bank angle ΦK equal to zero whereas knife edge gates have to be flown through 
with a bank angle ΦK = ±90°. The resulting conditions read: 

 ( ) °=°± 090ateKnifeEdgeGKΦ rv  (6.4)

 ( ) °= 0LevelGateKΦ rv (6.5)

Furthermore, the direction in which the various air race gates have to be passed is enforced by 
the following relationship for the heading angle ψK: 

 ( ) °=− 0iGateK ψψ rv  (6.6)

At the chicane gates, there are only the final boundary conditions for the position vector r1, 
but no final boundary conditions for the kinematic bank angle ΦK or the heading angle ψK. 

By separating the entire race trajectory into multiple phases from gate to gate, these interior 
point conditions are transformed into final boundary conditions for each phase. The phases 
then have to be connected to the preceding phases to guarantee the continuity of the state and 
the control time histories: 

 ( ) ( ) nitt iiifi ,...,2       ,01,1 ==−−− 0xx  (6.7)

 ( ) ( ) nitt iiifi ,...,2       ,01,1 ==−−− 0uu (6.8)

where n denotes the number of phases, tf,i the final time of the i-th phase and t0,i the initial 
time of the i-th phase. Additionally, path constraints have to be fulfilled along the flight path 
for an air race. While no equality path constraints are present, inequality path constraints arise 
from safety regulations or from aircraft performance limits. First of all, of course a certain 
ground clearance has to be respected by the pilots: 

 0)(min ≤− tzz  (6.9)

Furthermore, the safety regulations require that an upper limit and a lower limit of the load 
factor nz,B in the direction of the z-axis of the Body Fixed Reference Frame B is never 
exceeded: 

 ( ) 0,min, ≤− tnn BZZ  (6.10)

 ( ) 0max,, ≤− ZBZ ntn (6.11)

Besides the kinematic never-exceed speed VK,max given by the safety regulations, the 
aerodynamic velocity VA of the aircraft must not go below the stall speed VA,stall of the aircraft: 

 ( ) 0, ≤− tVV AstallA  (6.12)
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 ( ) 0max, ≤− KA VtV (6.13)

Additional inequality path constraints are due to aircraft performance limitations with respect 
to the minimum and maximum angle of attack αA 

 ( ) 0min, ≤− tAA αα  (6.14)

 ( ) 0max, ≤− AA t αα (6.15)

as well as the minimum and maximum roll rate pK 

 ( ) 0min, ≤− tpp KK  (6.16)

 ( ) 0max, ≤− KK ptp (6.17)

Furthermore, in order to avoid dangerous flying that can lead to disqualification path 
constraints with respect to the flight path bank angle μK can be introduced. At this, large flight 
path bank angles and especially inverted flight close to the ground are avoided. The 
corresponding values for the various bounds of the inequality path constraints are listed in 
Table 7. 

 
Path Constraint Specifications due to 

altitude zmin [m] 7.5 ground clearance 

load factor nz,min [-] -2.0 race regulations 

nz,max [-] 12.0 race regulations 

velocity VA,stall [m/s] 25.0 aircraft performance 

VK,max [m/s]/[kts] 102.9/200.0 race regulations 

angle of attack αA,min [rad]/[°] -0.35/-20.05 aircraft performance 

αA,max [rad] /[°] 0.35/20.05 aircraft performance 

roll rate pK,min [rad/s] /[°/s] -7.33/-420.0 aircraft performance 

pK,max [rad/s] /[°/s] 7.33/+420.0 aircraft performance 

Table 7. Path Constraints Specifications 

At this, the stall velocity or the stall speed VA,stall is the minimum required aerodynamic 
velocity to sustain the aircraft weight in a 1g, steady-state level flight at sea level. With 
respect to the aircraft simulation model that is utilized for the trajectory optimization, various 
parameters have to be specified especially for the aerodynamic properties. For the full non-
linear 6-DoF aircraft simulation model, the aerodynamic force coefficient equations are: 

 ( ) ( )22
,0 0 YYCLLLDD CkCCkCC

D
⋅+−⋅+= (6.18)

 ξςβ ξςβ ⋅+⋅+⋅+⋅+⋅= YYAYrAYpYY CCrCpCCC ~~ (6.19)

 ηα ηα ⋅+⋅+⋅+= LALqLLL CqCCCC ~
0 (6.20)
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Aerodynamic Force Coefficients 

CD0 0.0761 CYβ -0.589355 CL0 0.055 

kY 1.69677 CYp 0.042480 CLα 4.75 

kL 0.05134 CYr 0.048340 CLq -3.479492 

  CYζ -0.195313 CLη -0.073242 

  CYξ 0.195313   

Table 8. Aerodynamic Force Coefficients 

The aerodynamic moment coefficients are calculated from: 

 βςξ βςξ ⋅+⋅+⋅+⋅+⋅= lAlrAlplll CrCpCCCC ~~ (6.21)

 Amqmmmm qCCCCC ~
0 ⋅+⋅+⋅+= ηα ηα (6.22)

 βςξ βςξ ⋅+⋅+⋅+⋅+⋅= nAnrAnpnnn CrCpCCCC ~~ (6.23)

 
Aerodynamic Moment Coefficients 

Clβ 0.024902 Cm0 -0.004883 Cnβ 0.149902 

Clp -0.583008 Cmα -0.145406 Cnp 0.014648 

Clr -0.087891 Cmq -16.930176 Cnr -0.157715 

Clζ 0.001 Cmη -0.634766 Cnζ 0.170898 

Clξ -0.303711   Cnξ -0.014648 

Table 9. Aerodynamic Moment Coefficients 

The implemented aerodynamic derivatives are listed in Table 8 respectively Table 9 and shall 
represent a generic aerobatic aircraft. The corresponding technical parameters can be found in 
Table 6 where it is mentioned that the remaining moments of inertia are set to zero. 

For the computation of the thrust force T, the following equation is utilized: 
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where Tref is the engine’s reference thrust, Vref the reference velocity, ρref the reference air 
density and nρ the density exponent. The exponent nV gives the dependency of the thrust on 
the aerodynamic velocity. 

For the air race trajectory optimization problem, a flat, non-rotating Earth has been assumed 
due to the very limited spatial extent of the air races. Furthermore, the density has been set 
constant because the maximum change in the aircraft’s altitude is very small and thus the 
influence of the static atmosphere model is negligible. 
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6.2 Minimum Time Air Race Trajectories 
In the preceding chapter, the air race trajectory optimization problem has been stated in detail. 
In this chapter, the results for the 3-DoF point-mass simulation model and the full non-linear  
6-DoF simulation model for the race track layout shown in chapter 6.3.3.1 will be given that 
have been obtained using the multiple shooting method of chapter 2.2. Out of comparison 
reasons, the same control discretization grid has been chosen for the point-mass simulation 
model and the 6-DoF simulation model. Therefore, the race trajectory has been split up into 
eight phases according to the race gates and a certain number of equally distributed grid 
points has been defined for each single phase according to the approximate phase durations 
(Table 10). 

 
Phase Number Number of Grid Points n 

1 40 

2 20 

3 20 

4 40 

5 40 

6 100 

7 80 

8 80 

Table 10. Control Discretization 

For the point-mass simulation model, the final race time evaluates to 44.74s. Fig. 43 shows 
the optimized time histories for the controls of the point-mass simulation model that are the 
angle of attack αA,CMD, the sideslip angle βA,CMD, the first order time derivative of the bank 
angle μ̇A,CMD and the thrust lever position δT,CMD. Furthermore, the upper and lower bounds for 
the controls are drawn. Here it can be seen that the full roll rate capability is utilized for the 
roll maneuvers at the various air race gates. The sideslip angle βA,CMD has been limited to ±15° 
assuming that for a sideslip angle of ±15° the linearly approximated sideforce curve equals 
roughly the maximum achievable sideforce before the vertical tail of the aerobatic aircraft 
stalls. The thrust lever position is at its upper boundary all the time. 
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Figure 43. Controls (Point-Mass Simulation Model) 

In Fig. 44 and Fig. 45, the according time histories for the translational states and the position 
states as well as the implemented path constraints are shown. Finally, in Fig. 46 the load 
factor in the direction of the z-axis of the Body-Fixed Frame B together with its lower and its 
upper bound are depicted. 
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Figure 44. Translational States (Point-Mass Simulation Model) 
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Figure 45. Position States (Point-Mass Simulation Model) 
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Figure 46. Load Factor nZ,B (Point-Mass Simulation Model) 

In Fig. 47, the three-dimensional optimal air race trajectory for the full non-linear 6-DoF 
simulation model is shown that has been obtained by applying the optimization algorithm 
outlined in chapter 4. Here it is mentioned that the various optimization tasks throughout the 
optimization algorithm have been accomplished utilizing Lagrange cost functions w.r.t. the 
squared control derivatives in order to avoid possible control oscillations and to reduce the 
inherent highly non-linear dynamics of the resulting trajectories and to allow for a successful 
completion of the trajectory simulation tasks subsequent to the optimization tasks.  

 
Figure 47. Time-Optimal Race Trajectory for the 6-DoF Simulation Model 
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Although the race track is quasi two-dimensional, i.e. the race gates are all about on the same 
level, the resulting optimal trajectory is three-dimensional. This is especially true for the 
270°-turn that is required for flying through the “Quadro”: here, the aircraft pulls up in order 
to shorten the flight time for this maneuver. The final minimum race time for flying one round 
of the described race course equals 45.82s. Here, a Lagrange cost with respect to the second 
order time derivatives of the control surface deflections (see Eq. (6.25)) has been introduced 
to avoid undesirable oscillations of the control surface deflections. 

 ( )dtkkkkL
ft

L ∫ ⋅+⋅+⋅⋅=
0

222 ςηξ ςηξ &&&&&&  (6.25)

In Fig. 48, the time histories of the commanded control surface deflections together with the 
real control surface deflections are given and their lower and upper bounds are depicted. As 
can be seen, the whole trajectory is flown at full thrust. 
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Figure 48. Commanded and real Control Values (6-DoF Simulation Model) 

In Fig. 49, the rotational states for the optimized air race trajectory are shown. With regard to 
the rotational states, only the roll rate has been limited. In contrary to the 3-DoF point-mass 
simulation model where the bounds with respect to the first order time derivative of the bank 
angle are active multiple times the 6-DoF simulation model does not reach the roll rate limits. 
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Figure 49. Rotational States (6-DoF Simulation Model) 

In Fig. 50, the time history of the aircraft’s kinematic velocity together with the angle of 
attack and the sideslip angle are shown. Starting with the maximum allowed kinematic speed 
that is 200.0kts or 102.9m/s, the velocity of the aircraft decreases although the optimal race 
trajectory is completely flown at full thrust, i.e. the thrust lever position is permanently set to 
one as can be seen from Fig. 48.  
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Figure 50. Kinematic Velocity and Attitude States (6-DoF Simulation Model) 
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In Fig. 51, the states for the flight-path angles are given. Here, the bank angle limitation is 
reached at a single point in the 8th phase, while for the 3-DoF simulation model the bank angle 
limitation does not become active at all. 
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Figure 51. Flight-Path Variables (6-DoF Simulation Model) 

Finally, in Fig. 52 the states of the position variables are shown and in Fig 53 the time history 
for the load factor in the direction of the z-axis of the Body-Fixed Reference Frame B is 
drawn. Here again, as for the point-mass simulation model, only the lower bound with respect 
to the load factor becomes active. 
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Figure 52. Position States (6-DoF Simulation Model) 
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Figure 53. Load Factor nZ,B (6-DoF Simulation Model) 

6.3 Increasing the Safety of Air Races 
For air races, the aspect that has to be considered more than anything else is safety. First of all 
it has to be the self-set requirement of the organizer that safety is of paramount interest and 
thus the most important criterion overruling everything else. Furthermore local public and 
aviation authorities must be convinced of the safety concept to grant permission for the event 
on a local basis. If one wants to design the layout of the race track such that a certain safety 
criterion is maximized (or minimized), a bilevel optimal control problem as described in 
chapter 5 arises. The upper level optimization problem is a parameter optimization problem 
and ought to place the race gates such that the respective safety criterion is maximized or 
minimized. At each iteration of the upper level optimization problem, its objective depends on 
the solution of a lower level optimal control problem that gives the minimum possible race 
time for fixed positions of the race gates. Fig. 54 depicts the basic principle of the bilevel 
optimal control problem that has to be solved in order to achieve a maximum level of safety 
for the respective race track. 

The goal of the upper level optimization problem is to position the air race gates such that a 
certain safety criterion is maximized or minimized. Besides the northward and eastward 
positions x and y of the gates also the azimuth angles ψ of the gates are considered as 
optimization parameters so that the parameter vector p is given by 

 [ ] siyx iii ,...,1      ,, == ψp  (6.26)

where s is the number of race gates. 

Upper Level Parameter Optimization Problem
Objective: J Parameter vector: p

p

p∂
∂J

JLower Level Optimal Control Problem

Objective: tf Parameter vector: z

 
Figure 54. Safety Bilevel Optimal Control Problem 
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If the race track layout contains a “Chicane” (this means a slalom), the y-axis of the local 
Navigation Frame N is aligned with the direction of the „Chicane“. Then, additional 
constraints are added to the upper level optimal control problem that enforce equal distances 
between the various pylons of the „Chicane“ as well as the placement of the pylons in a 
straight line. If the „Chicane“ consists of three single pylons, the corresponding constraints 
reads: 

 xxx Δ=− 12 (6.27)

 013 =− xx (6.28)

 02 123 =+⋅− yyy (6.29)

where xi, i = 1, 2, 3 and yi, i = 1, 2, 3 are the positions of the race gates that have to be passed 
by the aircraft (see Fig. 55). Eqs. (6.27) and (6.28) enforce an S-curve while constraint (6.29) 
positions the second gate in the middle of the first and the third gate. At this it is ensured that 
the principal layout of the „Chicane“ is kept throughout the solution of the bilevel optimal 
control problem. Furthermore, the upper level parameter optimization problem has to be 
augmented by constraints that enforce the “Quadro” respectively the identical position for the 
first and the final race gate: 

 012 =− xx (6.30)

 012 =− yy (6.31)

31 xx =

2x

x

y
1y 2y 3y

PylonFlight Path

xΔ

 
Figure 55. Layout for the Implementation of the Constraints for the Chicane 

With respect to the “Quadro” that is in fact a 270°-turn, the corresponding constraint for the 
heading angle ψ is: 

 πψψ
2
3

12 =−  (6.32)

while for the start and the finish gate the heading angle ψ has to obey the following 
relationship: 

 πψψ ⋅=− t12 (6.33)

where t is the number of turns the pilot has to accomplish during the race. 

 

 



APPLICATIONS AND RESULTS  149 

The safety criteria that are considered in the following lead to minimax problems given by 

 ( ))(maxmin tS
p

 (6.34)

respectively maximin problems of the following form 

 ( ))(minmax tS
p  (6.35)

where S(t) denotes the measure for the safety criterion that is to be maximized or minimized. 
Those minimax respectively maximin problems can be transformed into standard optimization 
problems resulting in 

 ( )maxmin S
p

 (6.36)

subject to 

 0)(max ≥− tSS (6.37)

for the minimax problem respectively 

 ( )minmin S−
p

 (6.38)

subject to 

 0)( min ≥− StS (6.39)

for the maximin problem, where Smax and Smin denote the upper bound respectively the lower 
bound with respect to the selected safety criterion S. Supposing that that the safety criterion 
S(t) is a function of the state history x(t), an output time history y(t) or the parameter vector z 
of the lower level optimal control problem, the Jacobian of the constraints (6.37) respectively 
(6.39) can be directly computed using the sensitivity results of chapter 5.2: 
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As for the lower level optimal control problems, SNOPT (Ref. [Gill, 2007]) has been used for 
the solution of the upper level optimization problem.  

6.3.1 Computation of Sensitivity Information for the Air Race Bilevel 
Optimal Control Problem 

Since for the lower level optimal control problem the objective is the final race time tf, the 
matrices Jzz and Jzp of Eq. (5.8) respectively Eq. (5.11) in chapter 5.2 evaluate to zero. 
Furthermore, in Eq. (5.11) the tensor Gzp only contains zeros. This is due to the fact that the 
parameters p which are the positions of the air race gates are only involved in the initial and 
final boundary constraints as well as the interior point constraints (see Eqs. (6.2), (6.3) and 
(6.7)). Differentiating the constraints with respect to the parameter vector z of the lower level 
optimal control problem cancels out the parameters p so that the parameters p are not 
incorporated in the Jacobian Gz any more, hence the tensor Gzp being a tensor of zeros. Thus, 
the matrix Lzp of Eq. (5.11) is a matrix of zeros, too. The matrix Gp also contains solely zeros 
except for the derivatives of the initial boundary conditions, the final boundary conditions and 
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the interior points conditions where the parameter vector p is involved linearly as can be seen 
from Eqs. (6.2), (6.3) and (6.7). Thus, the respective entries of the matrix Gp equal -1 when 
differentiating any of the initial boundary conditions, the final boundary conditions or the 
interior point conditions with respect to the parameter vector p that comprises the northward 
positions x, the eastward positions y and the headings ψ of the race gates, e.g. 
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if x1 was the first element of the parameter vector p. 

6.3.2 Safety Criteria for Air Races 
In the subsequent chapters, various safety criteria and the computation of their gradients are 
explained. In chapter 6.3.3, optimal air race tracks for these safety criteria are given. 

6.3.2.1. Minimum Distance to Crowd 
A very crucial safety criterion is the distance to the spectators. During the air race, the pilots 
have to keep a prescribed minimum distance to the spectators if they do not want to be 
disqualified. For the computation of the distance to the crowd, the position of the aircraft is 
projected into the horizontal plane and the spectator areas are wrapped by polygons in the 
horizontal plane that represent the foremost line of the spectators. Every polygon consists of 
multiple piecewise linear curves and is called crowd line. For at least one point of all the 
polygons, the horizontal distance to the actual position of the aircraft is minimal, referred to as 
the minimum distance to crowd dC(t). The minimum distance to the i-th segment of the k-th 
polygon is computed by 

 ( ) ( )2,,
2

,,,, )()()()()( tytytxtxtd ikFPikFPikC −+−= (6.43)

where xFP and yFP denote the northward respectively the eastward position of the 
perpendicular footpoint on the respective segment (see Fig. 56). The position of the footpoint 
is given by 

 ( )ikikikikikFP xxtxtx ,,1,,2,,,1,, )()( −⋅+= λ (6.44)

 ( )ikikikikikFP yytyty ,,1,,2,,,1,, )()( −⋅+= λ (6.45)

where x1, y1, x2 and y2 are the coordinates of the end points of segment (k, i). λ(t) evaluates to 
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and only if λ(t) œ [0, 1] a perpendicular footpoint on the respective segments exists. 
Otherwise, if λ(t) < 0 the footpoint is set to the first endpoint  

 ikikFP xtx ,,1,, )( = (6.47)

 ikikFP yty ,,1,, )( = (6.48)

and if λ(t) > 0, the footpoint is set to the second endpoint: 

 ikikFP xtx ,,2,, )( = (6.49)
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 ikikFP yty ,,2,, )( = (6.50)
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Figure 56. Calculation of Footpoint 

Then, the overall minimum distance dC(t) with respect to all segments is found by 

 kikCC sipktdtd ..., ,1       ..., ,1       )(min)( ,, === (6.51)

where p is the number of polygons and sk the number of segments of the k-th polygon.  
Table 11 states the algorithm for the computation of the minimum distance to the crowd lines 
for a given position of the aircraft. 

 

ALGORITHM 6.I 

 1 For k = 1, …, p 

   For i = 1, …, sk 

    Compute λk,i(t) by Eq. (6.46) 

    If λk,i(t) < 0 

     Set actual footpoint to first endpoint of segment (k, i) 

    Else if λk,i(t) > 1 

     Set actual footpoint to second endpoint of segment (k, i) 

    Else if λk,i(t) œ [0, 1] 

     Calculate actual footpoint by Eqs. (6.44) and (6.45) 

    Compute distance to crowd dC,k,i(t) for segment (k, i) by Eq. (6.43) 

 2 Select minimum distance to crowd dC(t) from all dC,k,i(t) 
Table 11. Computation of Minimum Distance to Crowd 

The gradient of the distance to crowd dC(t) with respect to the parameter vector p of the upper 
level parameter optimization problem is: 
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where the gradients ∑x(t)/∑p and ∑y(t)/∑p are obtained by the sensitivity analysis explained in 
chapter 5.2. The derivatives ∑dC(t)/∑x(t) and ∑dC(t)/∑y(t) can be calculated by differentiating 
Eq. (6.43) with respect to x(t) respectively y(t). 

6.3.2.2. Minimum Time to Crowd 
The time to crowd is defined as the time between the first deviation from the race track and 
the arrival at the spectators if the actual translation flight states are kept unchanged, i.e. if the 
aircraft continues on a straight trajectory. This safety criterion can be seen as a further 
development of the distance to crowd since it takes into account the current direction of 
motion of the aircraft while the preceding safety criterion only evaluates the current aircraft 
position. Thus, a small distance to the crowd line is acceptable if the aircraft is flying parallel 
to the crowd line while a large distance to the crowd line is required if the aircraft is heading 
directly towards the spectators. 

Again, the spectator areas are specified by crowd lines as in chapter 6.3.2.1 and the actual 
velocity vector is projected into the horizontal plane. For the actual position of the aircraft, the 
time to crowd has to be computed with respect to all segments of all polygons. Therefore, it is 
checked first if the aircraft is flying parallel to the i-th segment of the k-th polygon by: 

 ( ) ( ) 0)()( ,,1,,2,,1,,2 =−⋅−−⋅ ikikikik xxtyyytx && (6.53)

If so, the aircraft will never reach the respective segment and the minimum time to crowd is 
set to infinity. Otherwise, it is checked if the projection of the actual velocity vector into the 
horizontal plane points towards segment (k, i) by the following relationship: 
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where λ(t) is obtained from Eq. (6.55) that gives the condition for the computation of the time 
to the crowd line tC(t) if the aircraft continues on a straight trajectory with constant velocity: 
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Only if λ(t) œ [0, 1], the prolongation of the actual velocity vector crosses the specific 
segment. In this case, the time until the segment is reached if the actual flight states are kept is 
computed by: 
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If the resulting time value is negative, the aircraft is veering away from the segment and it 
does not cross this specific part of the crowd lines at any time. For all the situations where the 
aircraft does not cross a specific segment (k, i), the time to crowd with respect to this segment 
is set to infinity:  

 ∞→)(,, tt ikC (6.57)
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Then, the overall minimum time tC(t) with respect to all segments results from: 

 kikCC sipktttt ..., ,1       ..., ,1       )(min)( ,, === (6.58)

where p is the number of polygons and sk the number of segments of the k-th polygon. 

 

ALGORITHM 6.II 

 1 For k = 1, …, p 

   For i = 1, …, sk 

    If Eq. (6.53) holds 

     Set tC,k,i(t) to infinity 

    Else 

     Compute λk,i(t) by Eq. (6.54) 

     If λk,i(t) œ [0, 1] 

      Calculate minimum time to crowd tC,k,i(t)  
for segment (k, i) by Eq. (6.56) 

      If tC,k,i(t) < 0 

       Set tC,k,i(t) to infinity 

     Else set tC,k,i(t) to infinity 

 2 Select minimum time to crowd tC(t) from all tC,k,i(t) 
Table 12. Computation of Minimum Time to Crowd 

In Table 12, the algorithm for the computation of the minimum time to the crowd lines for the 
actual aircraft position is given. 

The evaluation of the gradient of the time to crowd with respect to the parameter vector p is 
done by: 
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where the gradients ∑x(t)/∑p, ∑y(t)/∑p, ∑ẋ(t)/∑p and ∑ẏ(t)/∑p are obtained by the sensitivity 
analysis explained in chapter 5.2. The derivatives ∑tC(t)/∑x(t), ∑tC(t)/∑y(t), ∑tC(t)/∑ẋ(t) and 
∑tC(t)/∑ẏ(t) can be evaluated by differentiating Eq. (6.56). 

6.3.2.3. Minimum Time to Crowd based on the Normal Velocity Component 
The time to crowd safety criterion can be modified so that the computation of the minimum 
time to crowd is based on the component of the velocity that is normal to a certain segment of 
the crowd line. Therefore, it first has to be checked if the aircraft is flying parallel to the i-th 
segment of the k-th polygon by: 

 ( ) ( ) 0)()( ,,1,,2,,1,,2 =−⋅−−⋅ ikikikik xxtyyytx && (6.60)
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If so, the normal velocity component with respect to this segment equals zero and the 
minimum time to crowd is set to infinity: 

 ∞→)(,, tt ikC (6.61)

Next, it is verified by the following relationship if a perpendicular footpoint on the respective 
segment exists: 
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If λ(t) – [0, 1], no perpendicular footpoint and thus no normal velocity component can be 
computed for the respective segment. Consequently, the minimum time to crowd based on the 
normal velocity is set to infinity, see Eq. (6.61). Otherwise, a perpendicular footpoint on the 
particular segment is existent and the position of the footpoint evaluates to: 

 ( )ikikikikikFP xxtxtx ,,1,,2,,,1,, )()( −⋅+= λ (6.63)

 ( )ikikikikikFP yytyty ,,1,,2,,,1,, )()( −⋅+= λ (6.64)

Then, the velocity component that is normal to the respective segment is given by: 
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where the minimum distance dC,k,i(t) is given by Eq. (6.43). Next, the time to crowd tC,k,i(t) 
based on the normal velocity component is obtained by the following equation: 
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Here, if the time to crowd tC,k,i(t) takes a negative value the aircraft is veering away from the 
respective segment and the time to crowd is set to infinity since in this case there is no threat 
for this segment. 

Finally, the overall minimum time to crowd tC(t) with respect to all segments is found by: 

 kikCC sipktttt ..., ,1       ..., ,1       )(min)( ,, === (6.67)

where p is the number of polygons and sk the number of segments of the k-th polygon. 

Table 13 states the algorithm for the computation of the minimum time to the crowd lines 
based on the normal velocity component for a given position of the aircraft. 

The gradient of the time to crowd tC(t) with respect to the parameter vector p of the upper 
level parameter optimization problem evaluates to: 
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where the gradients ∑x(t)/∑p, ∑y(t)/∑p, ∑ẋ(t)/∑p and ∑ẏ(t)/∑p are obtained by the sensitivity 
analysis explained in chapter 5.2. The derivatives ∑tC(t)/∑x(t), ∑tC(t)/∑y(t), ∑tC(t)/∑ẋ(t) and 
∑tC(t)/∑ẏ(t) are obtained by differentiating Eq. (6.66). 
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ALGORITHM 6.III 

 1 For k = 1, …, p 

   For i = 1, …, sk 

    If Eq. (6.60) holds 

     Set tC,k,i(t) to infinity 

    Else 

     Compute λk,i(t) by Eq. (6.62) 

     If λk,i(t) œ [0, 1] 

      Calculate minimum time to crowd tC,k,i(t)  
for segment (k, i) by Eqs. (6.63) to (6.66) 

      If tC,k,i(t) < 0 

       Set tC,k,i(t) to infinity 

     Else set tC,k,i(t) to infinity 

 2 Select minimum time to crowd tC(t) from all tC,k,i(t) 
Table 13. Computation of the Minimum Time to Crowd based on the Normal Velocity Component 

6.3.2.4. Minimum Maximum Directed Energy-equivalent Time 
The energy that is directed towards the crowd is regarded as another important safety 
criterion: The higher the maximum directed energy is, the less safe is the race track. This 
safety criterion is even an advancement of the time to crowd since it involves also the 
absolute value of the kinematic velocity besides the current position and the actual direction 
of motion of the respective airplane. At this, it is taken into account that an aircraft heading 
directly towards the crowd line at a high kinematic velocity poses the less danger to the 
spectators the larger the distance of the aircraft to the crowd line is. Thus, situations where the 
aircraft is heading directly towards the spectators at a high total energy are rated highly 
critical if the aircraft is close to the crowd line. 

The computation of the maximum directed energy is based upon the total velocity Vtotal(t) that 
is derived from the actual total energy of the aircraft: 
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where Ekin(t) is the kinetic energy and Epot(t) the actual potential energy of the aircraft. The 
total velocity vector Vtotal(t) then equals: 
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Next, the total velocity vector Vtotal(t) is projected into the horizontal plane: 
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The portion of the total velocity vector Vtotal(t) that is directed towards a specific point on the 
crowd lines is given by: 
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where Vtotal,hor(t) is the absolute value of the total velocity vector Vtotal,hor(t). κ(t) represents the 
angle between the total velocity vector Vtotal,hor(t) and the direction vector dC,hor,k,i(t) in the 
horizontal plane (see Eq. (6.76) and Fig. 57). The direction vector dC,hor,k,i(t) is the vector 
between the actual aircraft position and a specific point on the i-th segment of the k-th 
polygon of the crowd lines: 
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where xFP,k,i and yFP,k,i are the northward and the eastward position of the respective point on 
the crowd line: 

 ( )ikikikikFP xxxtx ,,1,,2,,1,, )( −⋅+= λ (6.74)

 ( )ikikikikFP yyyty ,,1,,2,,1,, )( −⋅+= λ (6.75)

Accordingly, dC,hor,k,i(t) is the absolute value of the direction vector dC,hor,k,i(t). Furthermore, 
κ(t) in Eq. (6.72) represents the angle between the total velocity vector Vtotal,hor(t) and the 
direction vector dC,hor,k,i(t) in the horizontal plane (see Fig. 57): 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
=

)()(
)()(

 arccos)(
,,,,

,,,,

tVtd
tt

t
hortotalikhorC

hortotalikhorC Vd o
κ  (6.76)

A/C Position

Foot Point Fk,i

Crowd Line

)(,, tikCdEndpoint P1,k,i

Endpoint P2,k,i

)(ttotalV

)(tκ

 
Figure 57. Angle κ(t) 

Here, if κ(t) evaluates to 90°, the velocity vector is perpendicular on the current direction 
vector. Thus, the energy that is directed towards the specific point on the crowd line is zero. 
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Then, the absolute value of the velocity vector VC,k,i(t) (Eq. (6.72)) pointing towards a specific 
point on the crowd lines evaluates to: 
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Theoretically, the safety criterion with respect to the maximum direct energy has to be 
computed for every point on the crowd lines before the largest value is selected. Since this 
would imply an infinite number of points on the crowd line, a specific step size Dλ is chosen 
and the value of λ is increased by this step size in the interval [0,1] for the computation of the 
safety criterion on all segments i of all polygons k. The velocity VC(t) is a measure for the 
energy that is directed towards a specific point on the crowd lines. In order to obtain a safety 
criterion with a reasonable meaning, the absolute distance to the crowd dC,hor(t) has also to be 
involved since a high directed energy is worse if the aircraft is close to the crowd line. Thus, 
the distance to the crowd dC,hor(t) is divided by the velocity VC(t) to give an equivalent  
time tC(t) that measures the energy directed towards the crowd line: 
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The time tC(t) is called the maximum directed energy-equivalent (MDE-equivalent) time tC(t). 
If tC(t) is negative, the directed energy does not point towards the specific point on the crowd 
line and thus tC(t) is set to infinity. Then, the overall minimum MDE-equivalent time tC(t) 
with respect to all segments results from: 

 kikCC sipktttt ..., ,1       ..., ,1       )(min)( ,, === (6.79)

where p is the number of polygons and sk the number of segments of the k-th polygon. In 
Table 14, the algorithm for the computation of the minimum MDE-equivalent time for the 
actual aircraft position is given. 

The evaluation of the gradient of the safety criterion given by Eq. (6.79) with respect to the 
parameter vector p reads: 
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where the gradients ∑x(t)/∑p, ∑y(t)/∑p, ∑z(t)/∑p, ∑ẋ(t)/∑p, ∑ẏ(t)/∑p and ∑V(t)/∑p are obtained 
by applying the sensitivity analysis of chapter 5.2. The derivatives ∑tC(t)/∑x(t), ∑tC(t)/∑y(t), 
∑tC(t)/∑z(t), ∑tC(t)/∑ẋ(t), ∑tC(t)/∑ẏ(t) and ∑tC(t)/∑V(t) result from differentiation of Eq. (6.78). 
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ALGORITHM 6.IV 

 1 For k = 1, …, p 

   For i = 1, …, sk 

    Set tC,k,i(t) to infinity 

    Increase λ by Dλ from λ = 0.0 to λ = 1.0 

     Compute κ(t) by Eq. (6.76) 

     If κ(t) equals 90° 

      Set tC,k,i,λ(t) to infinity 

     Else 

      Compute tC,k,i,λ(t) by Eqs. (6.69) to (6.78) 

      If tC,k,i,λ(t) < 0 

       Set tC,k,i,λ(t) to infinity 

     If tC,k,i,λ(t) < tC,k,i(t) 

      Set tC,k,i(t) to tC,k,i,λ(t) 

 2 Select minimum maximum directed energy-equivalent time tC(t) from all tC,k,i(t) 
Table 14. Computation of Minimum Maximum Directed Energy-equivalent Time 

6.3.2.5. Ballistic Extrapolation 
The safety criterion ballistic extrapolation shall provide a virtual measure for the assessment 
of the current value of the directed energy of the aircraft. Therefore, the aircraft is regarded as 
a mass part and its ballistic trajectory in a vacuum is computed. For the computation of the 
flight path of such a mass part, the initial conditions of the mass part are set equal to the 
current direction of motion and the current kinematic velocity of the aircraft. It is assumed 
that the only force acting is the gravitational force. Then, the impact zone, i.e. the zone where 
the mass parts will probably reach the ground level, is regarded as an indicator for the relative 
comparison of various race track layouts with respect to safety: a race track layout is regarded 
the more safe the larger the distance between the spectator areas and the impact zone is. 

For the computation of the ballistic trajectory in a vacuum, the equations of motion of the 
mass part are: 

 ( ) ( ) ( ) ττ ⋅+= txtxx & (6.81)

 ( ) ( ) ( ) ττ ⋅+= tytyy & (6.82)
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where t is the time point when the extrapolation starts. Setting Eq. (6.83) to zero, the time 
point tB(t) when the mass part will approximately hit the ground is: 
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Inserting tB(t) into Eqs. (6.81) and (6.82), one obtains the northward and the eastward position 
where the mass part falls onto the ground. 

Evaluating the gradient of the ballistic extrapolation time tB(t) of Eq. (6.84) with respect to the 
parameter vector p results in: 
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where the gradients ∑z(t)/∑p, ∑VK(t)/∑p and ∑γK(t)/∑p are obtained by the sensitivity analysis 
given in chapter 5.2. For the computation of the derivatives ∑tB(t)/∑z(t), ∑tB(t)/∑VK(t) and 
∑tC(t)/∑γK(t), Eq. (6.84) has to be differentiated accordingly. 

6.3.2.6. Pilot Blinding 
Another relevant situation arises if the pilot gets blinded by the Sun and thus cannot recognize 
possible obstacles directly in front of the aircraft. In order to avoid such situations, a safety 
criterion is established that measures the current angle between the direction towards the Sun 
and the kinematic velocity vector of the actual flight state. In doing so it is assumed that the 
pilot approximately peers into the direction the aircraft is currently flying. The smaller the 
angle towards the Sun is, the higher is the risk for the pilot to be blinded by the Sun. Thus, the 
angle between the Sun direction and the kinematic velocity vector has to be as large as 
possible. 

First, the current position of the Sun respectively the direction towards the Sun in the local 
Navigation Frame N has to be established. Given the actual day of the year with January 1st of 
a leap year featuring the day number N = 1, the solar declination angle δ can be approximated 
by (Ref. [Winter, 1991]): 

 ( )[ ]( ) )4.2(sin93.13.82sin409105.0 −⋅⋅+−⋅⋅= NpNpδ (6.86)

with the period p being: 
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Here a simple leap-year cycle is assumed, this means that the Earth cycles around the Sun 
once in 365.25 days. Furthermore, the Equation of Time EOT has to be computed that 
corrects the assumption of a constant circular motion of the Earth around the Sun (Ref. 
[Duffie, 1980]): 
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Then, the local solar time tsol,loc is (Ref. [Winter 1991]) 

 ( ) ( )( )tEOTttt loclocsol λλ −⋅++−= 0, 0.360
0.240.12  (6.89)

where λ(t) represents the aircraft’s current longitude and λ0 the geographic longitude referring 
to the standard local time zone tloc. Next, the hour angle ω evaluates to: 
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finally resulting in the current direction vector n1sol towards the Sun given in the local 
Navigation Frame N: 
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The Sun angle σ(t) between the aircraft’s current velocity vector and the direction vector 
towards the Sun is obtained by: 
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Evaluating the gradient of the Sun angle σ(t) given by Eq. (6.92) with respect to the parameter 
vector p reads: 
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As before, the gradients ∑λ(t)/∑p, ∑μ(t)/∑p, ∑χ(t)/∑p and ∑γ(t)/∑p result by applying the 
sensitivity analysis of chapter 5.2. The derivatives ∑σ(t)/∑λ(t), ∑σ(t)/∑μ(t), ∑σ(t)/∑χ(t) and 
∑σ(t)/∑γ(t) are obtained by differentiation of Eq. (6.92). 

6.3.2.7. Load Factor Fatigue Index 
The actual load factor value as well as the preceding load factor time history greatly influence 
the current capabilities of the pilot. In the worst case, the pilot could lose consciousness due to 
too high load factors what is called G-LOC which stands for G-induced loss of consciousness. 
Thus, the load factor time history of the optimal race trajectory plays an important role with 
respect to the safety of the respective race track. A safety index with respect to the load factor 
has to take into account 

• the actual load factor value, 
• the load factor onset rate 
• and an integral term over the preceding load factor time history. 

While too high load factors as well as too high load factor onset rates can directly cause 
unconsciousness of the pilot, the integral term takes into account the stress of the pilot due to 
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long-duration high load factor levels that can also lead to G-LOC. Therefore, for the load 
factor fatigue index E(t) the following transfer function is defined: 
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where Dnz(t) is the deviation from the load factor nz = 1.0 required for horizontal flight: 

 0.1)()( −=Δ tntn zz (6.95)

The P-element involves the actual load factor deviation into the load factor fatigue index. The 
DT1-element measures the load factor onset rate and the PT1-element represents the integral 
term where the time constant T2 associated with the PT1-element is set to a much higher value 
than the time constant T1 of the DT1-element. The factors k1 to k3 allow for a weighting of the 
influence of the various elements onto the load factor fatigue index. Written in second-order 
state-space form, the following differential equations for the load factor fatigue index E(t) 
result: 
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Fig. 58 depicts the load factor fatigue index E(t) as well as the contributions of the P-element, 
the PT1-element and DT1-element to the load factor fatigue index for a generic load factor 
time history Dnz(t). 
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Figure 58. Load Factor Fatigue Index 
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The gradient of the 2nd order time derivative of the load factor fatigue index E(t) with respect 
to the parameter vector p of the upper level parameter optimization problem is: 
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where the gradients ∑Dṅ̇z(t)/∑p, ∑Dṅz(t)/∑p and ∑Dnz(t)/∑p are obtained by the sensitivity 
analysis explained in chapter 5.2. Eq. (6.97) then has to be integrated twice to give the 
required gradient of the load factor fatigue index E(t) w.r.t. the parameter vector p, ∑E(t)/∑p. 

6.3.3 Optimized Air Race Tracks for Selected Safety Criteria 
First, in this chapter the initial layout of the race track that is to be optimized is described. 
Then, race tracks are depicted that are optimized with respect to the safety criteria that have 
been defined in the preceding chapter. For the solution of the lower level optimal control 
problems, a slightly modified point-mass simulation model has been utilized in order to 
reduce the dimensionality of the lower level optimal control problem and thus the 
computational time that is required for the solution of the entire bilevel optimal control 
problem. For the modified simulation model, the controls w.r.t. the aerodynamic sideslip 
angle βA as well as the thrust lever position δT have been set to zero respectively one since it 
has been observed that all the time-optimal trajectories are mostly flown at full thrust with 
nearly no sideslip angle. 

6.3.3.1. Initial Race Track Layout 
At the outset of the solution of the bilevel programming problem, the basic layout of the air 
race track is given (Fig. 59). The initial setup is similar to the air race that took place in San 
Diego in 2009. Table 15 gives an overview of the approximate positions x and y of the air race 
gates in the local Navigation Frame N. The local Navigation Frame N is derived from a  
NED-Frame with its origin located at the position of the first gate. 

 
Race Gate Position x Position y 

1/7 0.00m 0.00m 

2a 22.33m 429.75m 

2b -77.76m 531.33m 

2c -140.93m 635.51m 

3 -523.67m 705.86m 

4 -406.59m 940.27m 

5/6 -240.28m 281.30m 

Table 15. Approximate Positions of the Air Race Gates  
in the Local Navigation Frame N 
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The position of the first gate in geodetic coordinates with longitude λ and latitude μ is 
−117°10’29.9” respectively 32°42’18.5”. The “Chicane” is defined by three separate gates 
(Race Gates 2a-2b) and for each gate the position that has to be passed by the aircraft is given.  

While the positions and the directions of the race gates are subject to optimization, the basic 
layout shall remain unchanged throughout the optimization procedure. Especially race track 
elements like the “Chicane” and the “Quadro” are to be preserved throughout the 
optimization. Furthermore, for the computation of the safety criteria two appropriate spectator 
areas that are wrapped by crowd lines are defined (Fig. 59). The crowd lines are given in form 
of piecewise linear polygons: 
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Here again, N denotes a local Navigation Frame with its origin located at the position of the 
first gate and the x-, y- and z-axis of the Navigation Frame N pointing into northward, 
eastward and downward direction. 

 
Figure 59. Initial Track Layout and Crowd Lines 

Within the optimization problems, the upper and lower bounds with respect to the gate 
positions can be imposed either directly in the Navigation Frame N or alternatively in Gate 
Frames G. At this, the Gate Frame for the i-th gate is derived from the Navigation Frame by 
rotating the Navigation Frame around its z-axis by an arbitrary gate rotation angle αG,i. Then, 
the upper and lower bounds on the i-th gate’s forward position x and sideward position y can 
be imposed in the i-th Gate Frame: 

 ( ) ( ) ( ) UBiGiGLBiG xxx ,,,,, ≤≤ (6.100)
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 ( ) ( ) ( ) UBiGiGLBiG yyy ,,,,, ≤≤ (6.101)

Thus, individual gate boxes for each gate can be defined and the edges of the gate boxes do 
not have to be aligned with the x-axis respectively the y-axis of the Navigation Frame N. For 
the optimization task, the gate positions given in the Gate Frame have to be transformed into 
the Navigation Frame: 
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where MNG,i denotes the transformation matrix between the i-th Gate Frame and the 
Navigation Frame: 
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Furthermore, the parameter sensitivities with respect to the respective gate position 
parameters have to be transformed back into the i-th Gate Frame before the gradient for the 
upper level parameter optimization problem can be computed. For example, the following 
transformation has to be applied to the parameter sensitivities of the final time tf with respect 
to the gate position parameters: 
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Here it is mentioned that on all the following figures the filled dots mark the optimized 
positions of the race gates while the dots that are not filled indicate the initial race gate 
positions. The colorbars provide a visualization of the respective safety criterion for the 
optimized race track layouts. 

6.3.3.2. Minimum Distance to Crowd 
With regard to the minimum distance to crowd, the maximin upper level parameter 
optimization problem of the bilevel optimal control problem is: 

 ( ))(minmax tdCp  (6.105)

where dC(t) is the distance to the crowd and p the parameter vector of the upper level 
parameter optimization problem. The maximin problem can be transformed into a standard 
parameter optimization problem: 

 ( ) 0)(      s.t.       min min,min, ≥−− CCC dtdd
p  (6.106)
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Fig. 60 depicts the optimized race track layout and the corresponding flight trajectory together 
with the initial race track layout. While for the initial race track layout the minimum distance 
to crowd is dC,min = 142.36m, the minimum distance to crowd for the optimized race track 
evaluates to dC,min = 193.26m. Thus, the minimum distance to crowd dC,min is increased by 
35.8%. The minimum distance to crowd is visualized by the dashed, red line in Fig. 60. 
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Figure 60. Race Track optimized w.r.t. Distance to Crowd [m] 

6.3.3.3. Minimum Time to Crowd 
For the minimum time to crowd, a maximin upper level parameter optimization problem can 
be stated as: 

 ( ))(minmax ttCp  (6.107)

where tC(t) is the distance to the crowd and p the parameter vector of the upper level 
parameter optimization problem. As before, the maximin problem is transformed into the 
following minimization problem: 

 ( ) 0)(      s.t.       min min,min, ≥−− CCC tttt
p  (6.108)

The race trajectory and the optimized race track layout can be seen in Fig. 61. Here, the race 
track layout is optimized such that finally the minimum time to crowd is tC,min = 4.57s at every 
point of the race trajectory. With the minimum time to crowd being tC,min = 3.24s for the 
initial race track layout, this corresponds to an increase by 41.0%. In Fig. 61, the point of the 
trajectory where the minimum time to crowd occurs is marked with a red circle. 
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Figure 61. Race Track optimized w.r.t. Time to Crowd [s] 

6.3.3.4. Minimum Time to Crowd based on the Normal Velocity Component 
For the minimum time to crowd based on the normal velocity component, the same upper 
level parameter optimization problem as stated by Eqs. (6.107) and (6.108) in the preceding 
chapter results. The resulting race trajectory and the corresponding time history of the time to 
crowd tC(t) are depicted in Fig. 62. For the optimized race track, the minimum time to crowd 
amounts to tC,min = 4.63s at every time point t of the race trajectory. Hence, the initial value 
for the minimum time to crowd that is tC,min = 3.24s is increased by 42.8%. In Fig. 62, the 
point of the trajectory corresponding to the minimum time to crowd is highlighted by a red 
circle. 

6.3.3.5. Minimum Maximum Directed Energy-equivalent Time 
With respect to the maximum directed energy-equivalent time, the upper level parameter 
optimization problem features the following maximin problem: 

 ( ))(minmax ttCp  (6.109)

Here, tC(t) is the maximum directed energy-equivalent time and p the parameter vector of the 
upper level parameter optimization problem. The transformation of the maximin problem 
gives: 

 ( ) 0)(      s.t.       min min,min, ≥−− CCC tttt
p  (6.110)
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Figure 62. Race Track optimized w.r.t. Time to Crowd based on the Normal Velocity Component [s] 
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Figure 63. Race Track optimized w.r.t. Directed Energy [s] 
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In Fig. 63, an optimized layout of the race track is presented. For the optimized race track 
layout, the minimum MDE-equivalent time tC,min is tC,min = 3.79s. Compared to the minimum 
MDE-equivalent time for the initial race track layout that is tC,min = 2.48s, this constitutes an 
increase by 52.5%. The point of the trajectory that features the minimum MDE-equivalent 
time is labeled by a red circle. 

6.3.3.6. Ballistic Extrapolation 
Regarding the mass part flight time tB(t) calculated by the ballistic extrapolation in  
chapter 6.3.2.5, it holds that if at time t the flight time tB(t) until the ground level is reached is 
smaller than the time to crowd tC(t), the mass part will not reach any of the spectator areas if a 
ballistic flight path of the mass part in a vacuum is taken as basis. This is due to the fact that 
for the calculation of both time measures the same horizontal velocity vector is utilized. Thus, 
if the inequality 

 0)()()( ≥−=Δ tttttt BC (6.111)

holds for all times t of the race trajectory, none of the mass parts will reach the spectator areas 
if the flight path of the mass part is computed as a ballistic trajectory in a vacuum. As 
mentioned above, the ballistic extrapolation concept only provides a virtual measure for the 
qualitative comparison of various race track layouts with respect to safety. Furthermore, with 
respect to Eq. (6.111) an additional safety margin might be taken into account so that the time 
difference Dt(t) is restricted to lie above a certain time margin Dtmin: 

 min)()()( ttttttt BC Δ≥−=Δ (6.112)

Then, the following maximum upper level parameter optimization problem can be stated to 
layout the race track more safe with respect to the ballistic extrapolation safety criterion: 

 ( )minmax tΔ
p  (6.113)

i.e. the larger the final time margin Dtmin is, the more safe is the race track. Rewriting the 
maximization problem into a minimization problem gives: 

 ( ) 0)(      s.t.       min minmin ≥Δ−ΔΔ− tttt
p  (6.114)

In Fig. 64, the race track that has been optimized with respect to the ballistic extrapolation 
safety criterion is depicted. The final race track layout has been improved such that the time 
margin Dtmin for the time-optimal race trajectory equals Dtmin = 2.85s. Thus, the initial time 
margin Dtmin = 1.31s is increased by 117.2%. The point corresponding to the minimum time 
margin Dtmin is shown by a red circle in Fig. 64. 

Fig. 65 depicts the ballistic extrapolation zone, i.e. the zone where the mass parts would hit 
the ground if a ballistic flight path in a vacuum was assumed. 
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Figure 64. Race Track optimized w.r.t. Ballistic Extrapolation [s] 
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Figure 65. Ballistic Extrapolation Zone 
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6.3.3.7. Pilot Blinding 
For the safety criterion that has been set up to avoid any blinding of the pilot by the Sun, the 
maximin upper level parameter optimization problem of the bilevel optimal control problem 
reads: 

 ( ))(minmax tσ
p  (6.115)

where σ(t) is the angle between the aircraft’s current velocity vector and the direction vector 
towards the Sun and p the parameter vector of the upper level parameter optimization 
problem. Then, the maximin problem has to be transformed into a standard minimization 
problem: 

 ( ) 0)(      s.t.       min minmin ≥−− σσσ t
p  (6.116)

where σmin represents a lower threshold for the Sun angle. Fig. 66 depicts the race trajectories 
for the initial race track layout as well as for the race track layout optimized with respect to 
the Sun angle σ(t). For the optimized race track layout, the minimum Sun angle is 0.930rad 
(=53.24°) while the minimum Sun angle for the initial race track layout is 0.594rad (=34.04°). 
Thus, the minimum Sun angle is increased by 56.4%. In Fig. 66, the point where the 
minimum Sun angle occurs is pointed out with a red circle. 

 

−200 0 200 400 600 800 1000 1200

−400

−200

0

200

400

600

Position y [m]

P
os

it
io

n 
x 

[m
]

 

 

60

70

80

90

100

110

120

Initial Track
Optimized Track

 
Figure 66. Race Track optimized w.r.t. Pilot Blinding [°] 
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6.3.3.8. Load Factor Fatigue Index 
With respect to the load factor fatigue index E(t), the upper level parameter optimization 
problem is represented by the following minimax problem: 

 ( ))(maxmin tE
p  (6.117)

Here again, p is the parameter vector of the upper level parameter optimization problem. By 
the transformation of the minimax problem, one obtains: 

 ( ) 0)(      s.t.       min maxmax ≥− tEEE
p  (6.118)

In Fig. 67, the layout of the race track optimized with respect to the load factor fatigue  
index E(t) is presented. For the optimized race track layout, the peak of the load factor fatigue 
index E(t) is reduced to Emax = 17.24, a reduction of 13.4% in comparison to the maximum 
initial load factor fatigue index value Emax = 19.90. The point of the trajectory with the 
maximum value of the load factor fatigue index is marked by a red circle. 
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Figure 67. Race Track optimized w.r.t. Load Factor Fatigue Index [-] 

6.4 Increasing the Fairness in Air Races 

6.4.1 Increasing the Fairness for Two Competing Aircraft 
For the air races described in chapter 6.1, the pilots are flying different types of aerobatic 
aircraft like e.g. the Zivko Edge 540 or the MXS-R. While one type might be able to reach 
higher velocities, the other type might be more agile, having an advantage over the faster type  
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if the race track layout is more winding. In order to reach a high level of fairness for the pilots 
participating, the track planners have to position the gates such that different aircraft have the 
same chance of winning, which means that for the designed race track the minimum possible 
flight times have to be identical regardless of the respective aircraft in use.  

If one wants to determine such a race track layout mathematically, this will result in a bilevel 
optimal control problem, because different optimization tasks with distinct optimization goals 
are to be solved. The upper level problem is a nonlinear parameter computation problem and 
ought to place the race gates such that the difference in the minimum race times of different 
aircraft becomes zero. At each iteration of the upper level optimization problem, its objective 
depends on the solution of at least two lower level optimal control problems that give the 
minimum possible race times for the different aircraft types for fixed positions of the gates. 
Fig. 68 depicts the basic principle of the bilevel optimal control problem that has to be solved 
in order to achieve equal chances for the participating pilots. 

Upper Level Parameter Adjustment Problem
Objective: Dtf = tf,1 - tf,2=0 Parameter vector: p
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Aircraft I

Objective: tf,1 Parameter vector: z1

2nd Lower Level Optimal Control Problem
Aircraft II

Objective: tf,2 Parameter vector: z2

!

 
Figure 68. Fairness Bilevel Optimal Control Problem 

The goal of the upper level optimization problem is to position the air race gates such that two 
different aircraft require the same minimum race time tf . Besides the forward and sideward 
positions x and y of the gates also the azimuth angles ψ of the gates are considered as free 
parameters so that the parameter vector p is given by 

 [ ] siyx iii ,...,1      ,, == ψp  (6.119)

where s is the number of race gates.  

In order to enforce race track elements like e.g. the “Quadro” or the “Chicane”, the upper 
level optimization problem is augmented by the same constraints as the bilevel optimal 
control problem concerned with the safety of air races that is described in chapter 6.3. 

Table 16 gives an overview of the parameter values that have been utilized for the point-mass 
simulation model of the two aircraft. For the second aircraft, the maximum thrust Tmax is set to 
0.7mg, slowing down the aircraft. At the same time, the parameter k associated with the drag 
polar of the aircraft is reduced. By this, the drag increase due to an increase of the lift is 
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reduced so that higher angles of attack αA come along with a smaller drag coefficient CD than 
in case of the first aircraft. This might be beneficial for the second aircraft when flying at high 
bank angles μK, allowing for sharper turns without losing too much speed and thus making the 
second aircraft more agile. 

 
Aircraft Specifications I II 

mass m [kg] 693.0 693.0 

wing area S [m²] 8.928 8.928 

wing span b [m] 7.5 7.5 

reference speed Vref [m/s] 30.0 30.0 

maximum thrust Tmax [N] 0.8mg 0.7mg 

aerodynamic coefficients CD0 [-] 0.0761 0.0761 

k [-] 0.051340000 0.024065625 

CQβ [-] -0.589355 -0.589355 

CLα [-] 4.75 4.75 

CL0 [-] 0.055 0.055 

Table 16. Aircraft Specifications 

The solution of the race fairness problem is accomplished in two different ways: first, the 
upper level fairness problem is formulated as a parameter optimization problem and then 
solved using a gradient-based optimization method. Second, the fairness problem is stated as a 
system of equations that can then be solved using any root-finding algorithm like e.g. 
Newton’s method.  

Formulation of the Fairness Problem as an Optimization Problem 
The upper level fairness optimization problem can be stated as follows: Find a parameter 
vector p restricted by its lower bound pLB and its upper bound pUB, 

 UBLB ppp ≤≤  (6.120)

such that the objective 

 ( ) ( )( )22,1, pp ff ttJ −=  (6.121)

is minimized. Here, tf,1 is the minimum possible race time of the first aircraft type and tf,2 the 
minimum possible race time of the second aircraft type. For this objective the square of the 
time difference has been chosen so that it is ensured that the objective function is positive and 
continuously differentiable. 
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The gradient of the objective J with respect to the parameter p is 
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At this, the sensitivity results obtained by Eq. (5.12) in chapter 5.2 can be utilized directly to 
compute the gradient Jp so that the bilevel optimal control problem can be solved very 
efficiently. As for the lower level optimal control problems, SNOPT (Ref. [Gill, 2007]) has 
been utilized to solve the upper level optimization problem. Furthermore, since the two lower 
level optimal control problems do not depend on each other, the optimization of the optimal 
control problems has been parallelized in order to further shorten the time required for the 
solution of the entire bilevel programming problem. 

Fig. 69 depicts the final result for the fair race track layout where the final time difference 
equals −0.85ms. The initial time difference between the minimum race times of the two 
aircraft has been 1.057s. 
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Figure 69. Race Track optimized w.r.t. to Fairness using SNOPT 

Solution of the Fairness Problem using Newton’s Method 
The solution of the upper level fairness problem can also be regarded as the solution of a 
system of equations: for a race track layout to be a fair race track, the final race times of the 
two competing aircraft have to be the same, this means the difference between the final race 
times has to equal zero: 

 ( ) ( ) 0
!

2,1, =−=Δ pp fff ttt  (6.123)

Together with the constraints that have to be imposed to maintain basic race track elements 
like e.g. the “Chicane” or the “Quadro”, a system of equations results that can then be solved 
using any appropriate root finding algorithm: 
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Here, C denotes the constraint vector due to the race track elements that are to be maintained. 
In the following, Newton’s method is applied for finding the roots of the above system of 
equations. At this, Eq. (6.124) is rewritten into a first-order Taylor series expansion: 
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Eq. (6.125) can then be solved for Dp: 
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where + denotes the pseudo-inverse since the number of equations does not necessarily equal 
the number of optimization parameters. Here again, the sensitivity results obtained by  
Eq. (5.12) in chapter 5.2 can be used directly to compute the gradient matrix ∑f/∑p. Finally, 
the following iteration step has to be done to drive the system of equations (6.124) iteratively 
to zero: 

 ppp Δ⋅+= λ0  (6.127)

where λ can be utilized to adjust the step size of the Newton step. So far, no upper or lower 
bounds with respect to the parameter vector p have been taken into account. Therefore, it is 
first checked if any elements of the parameter vector p violate their upper or lower 
boundaries. If this is the case, the values of the respective elements are reset to their 
boundaries. Then, an additional step Dpred in the parameter vector p is computed that takes 
into account only those elements of the parameter vector p that are not at their boundaries. 
Accordingly, only the corresponding columns of the gradient matrix ∑f/∑p are taken into 
account, giving the reduced gradient matrix ∑f/∑pred. The additional step Dpred is computed 
by: 
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Here, Dpbounded is the step Dp given by Eq. (6.126) once the upper and lower boundaries have 
been imposed. Finally, the new parameter vector p evaluates to: 

 redbounded pppp Δ+Δ+= 0  (6.129)

The computation steps given by Eq. (6.128) and Eq. (6.129) can then be repeated until the 
newly obtained additional step Dpred does not violate any of the boundaries of the parameter 
vector p. At this, the upper and lower boundaries with respect to the parameter vector p are 
taken into account while the remaining degrees of freedom are utilized to drive the constraint 
vector f to zero. 

In Fig. 70, the fair race track layout for the above stated fairness problem is depicted that has 
been obtained by applying the outlined method where the final time difference is −0.99ms. 
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Figure 70. Race Track optimized w.r.t. Fairness using Newton’s Method 

6.4.2 Increasing the Fairness for Three Competing Aircraft 
In the following, a race fairness problem for three competing aircraft is posed. For the third 
aircraft the maximum thrust is set to 0.75mg while the drag polar parameter k is reduced to 
0.038505. The upper level fairness problem can then be stated as follows: Find a parameter 
vector p such that the objective 
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is minimized where tf,1 is the minimum possible race time of the first aircraft type, tf,2 the 
minimum possible race time of the second aircraft type and tf,3 the minimum possible race 
time of the third aircraft type for the given parameter vector p. As before, upper and lower 
bounds with respect to the parameter vector p have to be taken into account: 

 UBLB ppp ≤≤  (6.131)

Then, the gradient of the objective J with respect to the parameter p evaluates to: 
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Again, the sensitivity results given by Eq. (5.12) in chapter 5.2 are utilized to compute the 
gradient Jp. As for the fairness problem with two competing aircraft, SNOPT (Ref.  
[Gill, 2007]) has been utilized to solve the upper level optimization problem. Furthermore, the 
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solution of the three lower level optimal control problems can again been parallelized in order 
to shorten the time required for the solution of the entire bilevel programming problem. 

Fig. 71 depicts the final result for the race track layout. While the initial time differences 
evaluated to Dtf1,2 = 1.057s, Dtf1,3 = 0.508s and Dtf2,3 = −0.549s, the time differences finally 
could be reduced to Dtf1,2 = 0.0021s, Dtf1,3 = −0.0017s and Dtf2,3 = −0.0038s. 
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Figure 71. Race Track optimized w.r.t. Fairness for 3 Competing Aircraft 

6.4.3 Increasing the Fairness and the Safety of Air Races 
As one might notice from Fig. 71, the time optimal trajectories for the fair race track layout 
get very close to the crowd line. Therefore, it is straight forward to combine the aspect of 
fairness with one or more of the above defined safety criteria. In the following, a race track 
layout is sought where a maximum level of fairness for three competing aircraft is achieved 
and where the time optimal trajectories keep a certain minimum distance to the crowd. Thus, 
the following upper level parameter problem taking into account the fairness and the safety of 
the race track layout is stated: Find a parameter vector p such that the objective 
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is minimized subject to 

 0),( min,1, ≥− CC dtd p (6.134)

 0),( min,2, ≥− CC dtd p (6.135)

 0),( min,3, ≥− CC dtd p (6.136)

where the distance to crowd dC,t is computed as explained in chapter 6.3.2.1. The sensitivity 
results given by Eq. (5.12) in chapter 5.2 are utilized to compute the gradient Jp of the 
objective as well as the Jacobian of the constraints. It is mentioned that the upper level 
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parameter optimization problem can be augmented by any of the above stated safety criteria. 
Moreover, multiple safety criteria might be added to the fairness problem. In order to keep the 
dimension of the upper level parameter optimization problem as small as possible, the path 
constraints can be taken into account only in areas of the flight trajectories where it is likely 
that the safety criterion will be violated. 

In Fig. 72, the final result for the fair and safe race track layout is shown. As can be seen from 
Fig. 73, the minimum distance to crowd dC,t for the final race track layout lies above the 
threshold of 100.0 m for all three competing aircraft while the final time differences equal 
zero. 
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Figure 72. Race Track optimized w.r.t. Fairness and Safety 
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Figure 73. Distance to Crowd in Combination with Race Fairness 
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7  
 
Summary and Perspectives 
7.1 Summary 
Within the thesis at hand, a framework is established that allows for the efficient and robust 
solution of highly complex trajectory optimization problems as well as a special type of 
bilevel optimal control problems. In the following, the main topics of the thesis are 
recapitulated. 

In chapter 2, a general framework for the treatment and the solution of optimal control 
problems is depicted that is based on the multiple shooting method. After the statement of the 
general optimal control problem, the infinite dimensional continuous time optimal control 
problem is transformed into a finite dimensional parameter optimization problem by 
discretization of the control variables. The Jacobian and the Hessian of the transformed 
optimal control problem are derived analytically using the gradient of the dynamic system 
with respect to the control vector and the state vector in conjunction with the appropriate 
sensitivity equations. For the analytical evaluation of the gradient of the dynamic system, a 
method is depicted that follows the block structure of the implemented simulation model and 
that is very flexible to modifications with regard to the simulation model. The transformed 
optimal control problem is scaled to improve the stability and the convergence for the 
computation of the optimal solution. A mesh refinement algorithm with respect to the control 
grids is introduced in order to reproduce the continuous time controls by the discretized 
controls as closely as possible. At the same time, unnecessary control discretization points are 
dropped to reduce the size of the parameter optimization problem. Furthermore, path 
constraint violations in between the current path constraint grid points are detected and 
additional grid points are inserted to cancel out the violations. 

The structure and the various subsystems of a scalable, multi-fidelity simulation model that is 
specifically tailored for optimization tasks are illustrated in chapter 3. The simulation model 
features a special sequential structure that follows the causal dynamic chain of flight systems 
and that is the non-linear point-mass simulation model in the outer loop followed by various 
representations for the rotational and attitude dynamics in the inner loop. The depth of 
modeling for the inner loop is scalable from load factor transfer functions via state-space 
models to the full, non-linear rotation and attitude equations of motion. The simulation model 
takes into account environmental influences like static and convective wind fields and 
comprises additional subsystems like e.g. actuator dynamics in order to achieve optimal 
trajectories that are as realistic as possible. Based on the principle of dynamic inversion, a 
controller is implemented that features the same sequential structure as the system dynamics 
itself and that also accounts for the environmental influences. The simulation model is 
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augmented by reference models to produce the required derivatives for the command inputs 
fed into the inversion controller. Error feedbacks are implemented to cancel out deviations 
between the inversion controller and the states of the simulation plant due to possible non-
minimum phase effects and numerical computation impreciseness. 

Based on the optimization simulation model, an algorithm for the solution of highly complex 
trajectory optimization problems without the necessity for the user to provide any initial guess 
is outlined in chapter 4. A homotopy procedure is introduced that allows for the generation of 
an initial guess for the optimization of highly non-linear trajectories using the point-mass 
simulation model. Starting with the optimal solution for the point-mass simulation model, the 
algorithm increases the modeling fidelity of the simulation model step by step, ending up with 
the optimal trajectory for the full, non-linear 6-DoF simulation model. In order to perform the 
step from the pure point-mass simulation model to the point-mass simulation model 
augmented by the linear transfer functions within the optimization algorithm, a substitute 
optimization problem is formulated. 

In chapter 5, a bilevel optimal control problem is stated that comprises a parameter 
optimization problem at the upper level and one or more optimal control problems at the 
lower level. Details for the sensitivity analysis with regard to the discretized lower level 
optimal control problems are given. The sensitivity analysis allows for an analytical 
evaluation of the gradient of the upper level parameter optimization problem, thus avoiding 
the time-consuming evaluation of the gradient by numerical methods. Thus, an efficient 
method for the solution of the stated bilevel optimal control problem is developed. The given 
gradient evaluation method can also be utilized within a multidisciplinary design optimization 
framework that involves the discipline of trajectory optimization for an efficient and accurate 
evaluation of the gradient of the upper level optimization problem. 

The proposed solution methods for highly complex trajectory optimization problems as well 
as for the special type of bilevel optimal control problems have been applied to the very 
challenging task of optimizing the race trajectories respectively the race track layouts for a 
Red Bull Air Race. In chapter 6.1, the Air Race problem is formulated as a benchmark. A 
minimum time air race trajectory for the full, non-linear 6-Degree-of-Freedom point-mass 
simulation model is depicted. Bilevel optimal control problems as stated in  
chapter 5 result if one wants to increase the safety respectively the fairness of the race track 
since the pilots will not take care of these aspects as long as no penalties are imposed. The 
pilots are focused on flying the race track such that the minimum possible race time results, 
and the designer of the race track layout has to arrange the gates such that certain safety 
criteria or fairness are optimal if the pilots fly the minimum-time race trajectory. Various 
safety criteria that are the distance to crowd, the time to crowd, the maximum directed energy, 
the ballistic extrapolation, the pilot blinding and a load factor fatigue index are derived and 
the corresponding results are shown. Finally, for two different aircraft with one aircraft being 
more agile and the other aircraft being faster a fair layout of the race track is found where 
both aircraft require the same minimum race time. 

7.2 Perspectives 
Within the framework for the solution of the trajectory optimization problem, the multiple 
shooting method that is a direct method for the solution of optimal control problems has been 
implemented. For the multiple shooting method, only the controls are discretized, while for 
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the states only a limited number of multiple shooting nodes is introduced. The state time 
histories are then obtained by integration (or “shooting”) of the dynamic system from one 
multiple shooting node to the next. Other direct methods are the collocations methods, where 
the states are discretized together with the controls. Especially the so-called pseudospectral 
methods have gained much attention during the last years, and a lot of research has been 
carried out on this topic. With the collocation methods, there is no integration of the dynamic 
system but the equations of motion are added as supplementary constraints to the discretized 
optimal control problem that have to be fulfilled at the optimal solution. At this, the number 
of parameters as well as the numbers of constraints is increased significantly within the 
discrete parameter optimization problem in comparison to the multiple shooting method, 
especially if a large number of states and controls is present. But nowadays, efficient and 
powerful algorithms for the solution of large, nonlinear parameter optimization problems with 
up to thousands of constraints and variables are available, especially for the optimization of 
sparse problems, i.e. optimization problems where many of the elements of the Jacobian are 
zero. At the same time, the cost of integrating dynamic systems with a large number of states 
in combination with an enormous number of first and second order sensitivity equations for 
the computation of the Jacobian respectively the Hessian can be avoided with the collocation 
methods. Thus, collocation methods could be investigated for the solution of highly complex 
trajectory optimization problems in order to compare their performance to that of the multiple 
shooting method. 

With regard to the bilevel optimal control problem for the layout of air race tracks, further 
safety criteria have to be developed and implemented like e.g. the time to ground, the 
maximum wing root bending moment, the engine gyroscopic moment or various load factor 
consciousness, illusion or fatigue indices. Furthermore, the existing safety criteria might also 
be developed further: for example, the prediction algorithm for the calculation of the safety 
criterion time to crowd might be extended taking into account the current flight path bank 
angle of the aircraft since at high bank angles a curved propagation of the aircraft trajectory 
might be more realistic than a straight extrapolation. For the fairness aspect, not only the 
positions of the air race gates might be seen as parameters of the upper level optimization 
problem but also aircraft parameters like e.g. the aircraft mass. This would imply that superior 
aircraft have to take on board additional penalty mass to level out the chances between the 
participating aircraft. 

Another crucial aspect that may be subject to further research is related to the numerous 
aircraft parameters that are implemented in the simulation models. So far, most of the aircraft 
parameters are obtained by estimation. More realistic and feasible aircraft parameters have to 
be derived e.g. by parameter estimation methods in order to provide reliable results and 
statements concerning the fairness and the safety of the considered race tracks. 

In summary, by the thesis at hand a framework has been established that allows for the 
solution of two very challenging optimization tasks, namely the optimization of flight 
trajectories using high-fidelity simulation models as well as the efficient solution of complex 
bilevel optimal control problems. Especially the generation of suitable initial guesses for the 
trajectory optimization based on high-fidelity simulation models is seen as main contribution 
of this thesis. 
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Appendix 
A.1 Second Order State Sensitivity Equations 
The full second order state sensitivity equations are: 
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A.2 Frames 
In the following, the various coordinate systems and their characteristics are described 
according to Ref. [Holzapfel, 2009a]. 

A.2.1 Earth-Centered Inertial (ECI) Frame I 
Index: I 
Role: Notation frame for Newtonian Inertial Physics (i.e. valid Euclidean Frame) 
Origin: Center of Earth 
Translation: Around the Sun with solar system 
Rotation: None 
  
x-axis: In equatorial plane, pointing towards vernal equinox 
y-axis: In equatorial plane to form a right-hand system 
z-axis: Rotation axis of Earth 
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Figure 74. ECI-Frame I 
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A.2.2 Earth-Centered-Earth-Fixed (ECEF) Frame E 
Index: E 
Role: Notation frame for positioning and navigation 
Origin: Center of Earth 
Translation: Moves with ECI-Frame 
Rotation: Earth rotation about z-axis with Earth angular rate, i.e. approximately 2π/24h
  
x-axis: In equatorial plane, pointing through Greenwich meridian 
y-axis: In equatorial plane to form a right-hand system 
z-axis: Rotation axis of Earth 
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Figure 75. ECEF-Frame E 
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A.2.3 North-East-Down (NED) Frame O 
Index: O 
Role: Notation frame for velocity and orientation 
Origin: Reference point of aircraft 
Translation: Moves with aircraft reference point 
Rotation: Rotates with transport rate to keep the NED-alignment 
  
x-axis: Parallel to local geoid surface, pointing to geographic north pole 
y-axis: Parallel to local geoid surface, pointing east to form a right hand system 
z-axis: Pointing downwards, perpendicular to local geoid surface 
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Figure 76. North-East-Down (NED) Frame O 

 

  



APPENDIX  187 

A.2.4 Body-Fixed Frame B 
Index: B 
Role: Notation frame 
Origin: Reference point of aircraft 
Translation: Moves with aircraft reference point 
Rotation: Rotates with rigid body aircraft 
  
x-axis: Pointing towards aircraft nose in symmetry plane 
y-axis: Pointing to right (starboard) wing to form an orthogonal right-hand system 
z-axis: Pointing downwards in symmetry plane, perpendicular to x- and y-axes 
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Figure 77. Body-Fixed Frame B 
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A.2.5 Kinematic-Frame K 
Index: K 
Role: Notation frame for flight path 
Origin: Reference point of aircraft 
Translation: Moves with aircraft reference point 
Rotation: Rotates with direction of kinematic aircraft motion 
  
x-axis: Aligned with the kinematic velocity, pointing into the direction of the 

kinematic velocity 
y-axis: Pointing to right, perpendicular to the x- und z- axes 
z-axis: Pointing downwards, parallel to the projection of the local surface normal of 

the WGS-84 ellipsoid into a plane perpendicular to the x-axis (i.e. 
perpendicular to the kinematic velocity) 
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Figure 78. Kinematic-Frame K 
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A.2.6 Intermediate Kinematic Frame K̅ 
Index: K̅ 
Role: Notation frame 
Origin: Reference point of aircraft 
Translation: Moves with aircraft reference point 
Rotation: Rotates with direction of kinematic aircraft motion 
  
x-axis: Aligned with the kinematic velocity, pointing into the direction of the 

kinematic velocity 
y-axis: Pointing to right, perpendicular to the x- und z- axes 
z-axis: z-axis of the Kinematic Frame K rotated clockwise by the kinematic flight-

path bank angle μK 
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Figure 79. Intermediate Kinematic-Frame K̅ 
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A.2.7 Aerodynamic Frame A 
Index: A 
Role: Notation frame for aerodynamic flow 
Origin: Aerodynamic reference point of aircraft 
Translation: Moves with aircraft reference point 
Rotation: Rotates with direction of airflow 
  
x-axis: Aligned with aerodynamic velocity, pointing into the direction of the 

aerodynamic velocity 
y-axis: Pointing to right, perpendicular to the x- und z- axes 
z-axis: Pointing downwards in the symmetry plane of the aircraft, perpendicular to 

the x-axis 
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Figure 80. Aerodynamic Frame A 
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A.2.8 Intermediate Aerodynamic Frame A̅ 
Index: A̅ 
Role: Notation frame 
Origin: Aerodynamic reference point of aircraft 
Translation: Moves with aircraft reference point 
Rotation: Rotates with direction of airflow 
  
x-axis: Aligned with aerodynamic velocity, pointing into the direction of the 

aerodynamic velocity 
y-axis: Pointing to right, perpendicular to the x- und z- axes 
z-axis: z-axis of the Aerodynamic Frame A rotated counterclockwise by the 

aerodynamic flight-path bank angle μA 
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Figure 81. Intermediate Aerodynamic Frame A̅ 
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A.3 Transformation Matrices and Angular Rates 
In the following chapters, the sequences of rotation, transformation matrices and angular 
velocities between the coordinate systems specified in the preceding chapter are given (Ref. 
[Holzapfel, 2009a]. 

A.3.1 ECEF-Frame E – NED-Frame O 
Angles: Geodetic Longitude λ 

Geodetic Latitude μ 
Sequence of rotation: λ → μ 
Transformation matrix:  
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−

−−
=

μλμλμ
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μλμλμ

sinsincoscoscos
0cossin

cossinsincossin

OEM (A.2)

Angular velocity:  
 

( )
E

E
E

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅−
⋅

=
λ

λμ
λμ

&

&

&
v cos

sin
0ω (A.3)

 

h

zE

xE

yE

x0

z0

y0

μλ

 
Figure 82. ECEF-Frame E – NED-Frame O 
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A.3.2 NED-Frame O – Body-Fixed Frame B 
Angles: Azimuth Angle Ψ 

Inclination Angle Θ 
Bank Angle Φ 

Sequence of rotation: Ψ → Θ → Φ 
Transformation matrix:  
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Φ⋅ΘΦ⋅Ψ−Φ⋅Θ⋅ΨΦ⋅Ψ+Φ⋅Θ⋅Ψ
Φ⋅ΘΦ⋅Ψ+Φ⋅Θ⋅ΨΦ⋅Ψ−Φ⋅Θ⋅Ψ

Θ−Θ⋅ΨΘ⋅Ψ
=

coscossincoscossinsinsinsincossincos
sincoscoscossinsinsincossinsinsincos

sincossincoscos

BOM (A.4)

Angular velocity:  
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Figure 83. NED-Frame O – Body-Fixed Frame B 
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A.3.3 NED-Frame O – Kinematic Flight-Path Frame K 
Angles: Flight-Path Azimuth Angle χK 

Flight-Path Inclination Angle γK 
Sequence of rotation: χK → γK 
Transformation matrix:  
 

⎥
⎥
⎥

⎦
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Angular velocity:  
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Figure 84. NED-Frame O – Kinematic Flight-Path Frame K 
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A.3.4 NED-Frame O – Intermediate Kinematic Flight-Path Frame K̅ 
Angles: Kinematic Flight-Path Azimuth Angle χK 

Kinematic Flight-Path Inclination Angle γK 

Kinematic Flight-Path Bank Angle μK 
Sequence of rotation: χK → γK → μK 
Transformation matrix:  
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Angular velocity:  
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Figure 85. NED-Frame O – Intermediate Kinematic Flight-Path Frame K̅ 
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A.3.5 NED-Frame O – Aerodynamic Frame A 
Angles: Aerodynamic Flight-Path Course Angle χA 

Aerodynamic Flight-Path Inclination Angle γA 

Aerodynamic Flight-Path Bank Angle μA 
Sequence of rotation: χA → γA → μA 
Transformation matrix:  
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Angular velocity:  
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Figure 86. NED-Frame O – Aerodynamic Frame A 
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A.3.6 NED-Frame O – Intermediate Aerodynamic Frame A̅ 
Angles: Aerodynamic Flight-Path Azimuth Angle χA 

Aerodynamic Flight-Path Inclination Angle γA 
Sequence of rotation: χA → γA 
Transformation matrix:  
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Angular velocity:  
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Figure 87. NED-Frame O – Intermediate Aerodynamic Frame A̅ 
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A.3.7 Kinematic Flight-Path Frame K – Body-Fixed Frame B 
Angles: Kinematic Flight-Path Bank Angle μK  

Kinematic Sideslip Angle βK 
Kinematic Angle of Attack αK 

Sequence of rotation: μK → −βK → αK 
Transformation matrix:  
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Angular velocity:  
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Figure 88. Kinematic Flight-Path Frame K – Body-Fixed Frame B 
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A.3.8 Intermediate Kinematic Flight-Path Frame K̅ – Body-Fixed Frame B 
Angles: Kinematic Sideslip Angle βK 

Kinematic Angle of Attack αK 
Sequence of rotation: −βK → αK 
Transformation matrix:  
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Angular velocity:  
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Figure 89. Intermediate Kinematic Flight-Path Frame K̅ – Body-Fixed Frame B 
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A.3.9 Aerodynamic Frame A – Body-Fixed Frame B 
Angles: Kinematic Sideslip Angle βA 

Kinematic Angle of Attack αA 
Sequence of rotation: −βA → αA 
Transformation matrix:  
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−=

AA

AAAAA

AAAAA

AB

αα
βαββα
βαββα

cos0sin
sinsincossincos

cossinsincoscos
M (A.18)

Angular velocity:  
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Figure 90. Aerodynamic Frame A – Body-Fixed Frame B 
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A.3.10 Intermediate Aerodynamic Frame A̅ – Body-Fixed Frame B 
Angles: Aerodynamic Flight-Path Bank Angle μA  

Aerodynamic Sideslip Angle βA 
Aerodynamic Angle of Attack αA 

Sequence of rotation: μA → −βA → αA 
Transformation matrix:  
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Angular velocity:  
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Figure 91. Intermediate Aerodynamic Frame A̅ – Body-Fixed Frame B 
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A.4 Linearized State-Space Models 

A.4.1 Longitudinal State-Space Models 
For the longitudinal motion, the linearized state-space model is: 

 ⎥
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with the corresponding force and moment coefficients: 
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Omitting the decoupled differential equations for the northward position x and the altitude h, 
the longitudinal state-space model simplifies to: 
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A.4.2 Lateral State-Space Models 
With the assumptions that the angle of attack α0 and the pitch angle Θ0 are very small (i.e.  
α0 º 0 and Θ0 º 0), the linearized lateral state-space model is: 
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where 

 000 coscos γψ ⋅⋅=Va  (A.42)

Furthermore, it is assumed that Yr and Yp equal zero. The remaining force and moment 
coefficients are: 
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Here, 

 2
xzzzxx III −=Δ  (A.56)

Omitting the decoupled differential equations for the heading angle ψ and the eastward 
position y, the simplified lateral state-space model reads: 
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