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Nomenclature

The following tables contain a survey of the formula symbols and the abbreviations utilized
most frequently throughout the thesis. Common symbols as well as indices are written in
italics, while matrices and vectors are shown in bold. Furthermore, vectors with a physical
meaning in the three-dimensional Euclidean space are marked with an arrow on top of the
symbol.

For any Euclidean vector i, the following declaration scheme is applied:

(XReferencePoint ) Reference Frame

Type of Motion/Source of Force/Moment / Notation Frame

LATIN CAPITAL LETTERS

SYMBOL EXPLANATION UNIT
A Aerodynamic force N
Cij Aerodynamic derivative of index i due to index j -
D Aerodynamic drag force N
F Force vector N
G Gravitational force N
H Angular momentum Nms
I Inertia tensor / identity matrix [kg'm?] /-
K Feedback gain -
L Aerodynamic lift force N
L; Roll moment derivative due to index i -
M Transformation matrix -
M Moment vector Nm
M; Pitch moment derivative due to index i -
M, Meridian radius of curvature m
N; Yaw moment derivative due to index i -
N, Radius of curvature in the prime vertical m
P Propulsive force N
S Reference area m?*
T Thrust / time constant / temperature N/-/°C




2 NOMENCLATURE
\Y% Kinematic velocity vector m/s
X; Force derivative in x-direction due to index i -
Y/Q Aerodynamic side force N
Y Force derivative in y-direction due to index i -
Z; Force derivative in z-direction due to index i -

LATIN SMALL LETTERS

SYMBOL EXPLANATION UNIT
a Length of semi-major axis m
a Acceleration m/s®
b Length of semi-minor axis / wing span m/m
e First eccentricity -
f Flattening -
g Gravitational constant m/s?
m Aircraft mass kg
n Load factor -
nc Number of controls -
ns Number of states -
Nyar Number of variables -
)% Roll rate rad/s
P Linear momentum Ns
q Pitch rate rad/s
q Dynamic pressure kg/(m-s?)
qi Quaternions (i = 0,1,2,3) -
r Yaw rate rad/s
T Position vector m
s Laplace variable / half wing span -/m
t Time S
u Control variable -
u Wind speed component into x-direction m/s
v Wind speed component into y-direction m/s
w Wind speed component into z-direction m/s
X State variable -




NOMENCLATURE

y Output variable -
GREEK LETTERS

SYMBOL EXPLANATION UNIT

o Angle of attack rad
Angle of sideslip rad
v Flight-path climb angle rad
or Thrust lever position -
¢ Rudder deflection / relative damping ratio rad / -
n Elevator deflection rad
] Aircraft pitch angle rad
K Curvature / engine mounting angle -/ rad
A Geodetic longitude rad
U Flight-path bank angle / geodetic latitude rad / rad
v Pseudo-control -
¢ Aileron deflection rad
p Density kg/m?
o Engine mounting angle rad
T Normalized time -
@ Aircraft bank angle rad
X Flight-path course angle rad
v Aircraft azimuth angle rad
o Angular velocity vector (rotation rate) rad/s
Q Rotation matrix rad/s
() Natural frequency Hz
INDICES

SYMBOL EXPLANATION
* Sub-optimal solution
~ Scaled quantity / dimensionless quantity
+ Pseudo-inverse

Initial

A Aerodynamic Frame / aerodynamic motion




4 NOMENCLATURE

a Set of equality and active inequality constraints
AUX Auxiliary

B Body-Fixed Frame

CMD Commanded value

D Aerodynamic drag

DR Dutch-roll

E Earth-Centered Earth-Fixed Frame (ECEF)

EF Error Feedback

eq Equality

f Final

FP Footpoint

G Centre of Gravity / gravitational force

Gyro Gyroscopic

hor Horizontal

1 Earth-Centered Inertial Frame (ECI)

1 Inlet

ineq Inequality

ini initial

INV Simulation model with inversion controller

K Kinematic Flight Path Frame / kinematic motion
K Intermediate Kinematic Flight Path Frame

kin Kinetic

L Aerodynamic lift / rolling moment

[ Rolling moment when used in a derivative

LB Lower bound

loc Local

LTF Simulation model with linear transfer functions
M Pitching moment

m Pitching moment when used in a derivative
MS Multiple shooting

N Navigation Frame / yawing moment

n Yawing moment when used in a derivative
NLI Full non-linear 6-DoF simulation model with non-linear inner loop




NOMENCLATURE

(0] North-East-Down Frame (NED) / outlet

opt Optimal

OPT Optimization result

P Propulsive force

p Roll rate

PC Path constraint

PM Point-mass simulation model

pot Potential

q Pitch rate

r Yaw rate

REF Reference value

Rot Rotor Reference Frame

SIM Simulation result

sol Solar

SP Short-period

SSM Simulation model with linear state-space models

T Total force / total moment / transpose

UB Upper bound

w Wind motion

wp Waypoint

Y/Q Aerodynamic side force

ABBREVIATIONS

SYMBOL EXPLANATION

A/C Aircraft

abs Absolute value

DoF Degrees of Freedom

DR Dutch-roll

ECEF Earth-Centered Earth-Fixed Frame

ECI Earth-Centered Inertial Frame

EOT Equation of time

eps Machine precision

JAY! International standard atmosphere




NOMENCLATURE

vec

WGS84

Maximum value

Multi-input multi-output

Minimum value

Navigation Reference Frame
North-East-Down Reference Frame
Rotor Reference Frame

Saturated

Short-period

Trajectory Frame

Matrix vectorization

World Geodetic System 1984




Introduction

1.1 Optimal Control and Trajectory Optimization

From a historical perspective, the theory of optimal control evolved from the theory of
calculus of variations. The origins of calculus of variations date back to the 17" century when
Johann Bernoulli posed the famous Brachistochrone problem to the mathematicians at that
time. In the 18" century, it was up to Leonhard Euler and Joseph-Louis Lagrange to develop
the principle framework of the theory of calculus of variations, resulting in the first order
necessary optimality conditions called the Euler-Lagrange equations. Only if the Euler-
Lagrange equations are fulfilled, the corresponding function is an extremal function and the
respective functional reaches a maximum value, a minimum value or a saddle point.
A comprehensive treatment of the theory of calculus of variations can be found e.g. in Refs.
[Bolza, 1909] and [Bryson, 1998].

The theory of optimal control distinguishes from the calculus of variations in that it separates
the control variables from the state variables. An introduction to the theory of optimal control
is given e.g. in Ref. [Kirk, 2004]. With regard to continuous time optimal control problems,
the necessary optimality conditions are provided by the maximum principle that was derived
by the Russian mathematician Lev S. Pontryagin and his co-workers in the middle of the
20™ century (see Ref. [Pontryagin, 1962]). The maximum principle results in a two-point
boundary value problem involving the original states of the dynamic system as well as
additional adjoint states and constitutes the basis for the solution of optimal control problems
either by analytical or indirect methods.

Optimal control is nowadays applied in many different disciplines, like e.g. economics,
medicine, chemistry, robotics, etc. Many optimal control applications can also be found in the
field of aerospace engineering. Here, the applications range from atmospheric flight problems
to space flight problems as well as from civilian to military applications. In the majority of
cases the task is to find a flight trajectory and the corresponding control inputs for a flight
mission such that a certain objective value becomes minimized or maximized. Therefore,
optimal control in the field of aerospace engineering is often referred to as trajectory
optimization. Trajectory optimization has the goal...

...to find an optimal control history and the corresponding optimal trajectory for a dynamic
system that are fully compatible with the regarded dynamic system itself, minimize a certain
objective function (cost functional), meet initial boundary conditions, interior point
conditions and final boundary conditions and fully satisfy given equality and inequality
constraints.
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At this, the dynamic system is usually represented by a set of ordinary differential equations
for the computational solution of the optimal control problem. The set of ordinary differential
equation is referred to as simulation model, since a simulation of the flight path can be done
by integration of the ordinary differential equations given the controls and the initial state
values.

Besides the analytical and the indirect methods that are mainly based on Pontryagin’s
maximum principle, a vast number of direct methods exists for the solution of trajectory
optimization problems. With direct methods, the infinite dimensional continuous time optimal
control problem is first transcribed into a finite dimensional parameter optimization problem
by approximating the states and / or the controls by discrete functions. Then, non-gradient
based algorithms like e.g. genetic algorithms or gradient based algorithms are applied for the
solution of the parameter optimization problem. For a comprehensive overview on direct
methods for optimal control see e.g. Refs. [Betts, 1998] and [Betts, 2001].

Especially for gradient based algorithms, the optimization procedures suffer from small
convergence areas and the convergence properties of the applied algorithm depend heavily on
the quality of the initial guess that is used for the control variables and the state variables to
start the optimization. If the initial guess is too far away from the optimal solution, the
optimization algorithm might fail to converge and no optimal solution is found at all or the
algorithm gets stuck in a local minimum or maximum. This is especially true if trajectories
are to be optimized that are highly dynamic or if complex dynamic systems are considered.

Over the last decades, a vast number of trajectory optimization problems in aerospace
engineering has been solved where the majority of the trajectory optimization problems dealt
with point-mass models (see e.g. Refs. [Bulirsch, 1991a], [Bulirsch, 1991b], [Miele, 1986],
[Ringertz, 2000], [Schultz, 1987] and [Grimm, 1990]): There, the aircraft is modeled as a
point-mass and its motion is optimized. The attitude of the aircraft as well as the rotational
motion are not incorporated in the simulation models. Although the resulting trajectories are
optimal for the point-mass model, the full dynamic order of the flight system with its attitude
and rotational dynamics is not accounted for and it is not guaranteed that the calculated
optimal trajectory could be followed by the aircraft in reality. Moreover, in some cases
boundary conditions or path constraints with respect to the attitude or the rotational motion of
the aircraft may arise so that the treatment of the aircraft as a point-mass model is no longer
sufficient and a simulation model of higher fidelity has to be implemented. By doing so, the
complexity of the optimization problem is increased dramatically and the optimization faces
severe problems that arise with the more accurate modeling of the flight system.

To the author’s knowledge, only a few applications of atmospheric flight trajectory
optimization exist that are based on higher-fidelity simulation models taking into account the
rotational and attitude dynamics of the aircraft. Mostly, only single maneuvers over short time
spans are optimized utilizing full 6-Degree of Freedom simulation models. The reason
therefore can be seen in the difficulties that arise if high-fidelity simulation models are
utilized, especially in the lack of suitable initial guesses for the solution of highly dynamic
trajectories in conjunction with high fidelity 6-DoF simulation models. An overview on
solved trajectory optimization problems that are based on 6-DoF simulation models is given
in chapter 1.2.1, where also some spacecraft trajectory optimization problems are mentioned.
At this, no algorithm for the generation of suitable initial guesses for optimization of
atmospheric flight trajectories with high-fidelity simulation models was found.
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In some cases, not only the controls and the initial states may be subject to optimization but
also some additional parameters may be involved that can be related e.g. to the basic design of
the aircraft itself or to the fundamental procedure of the flight mission that has to be
accomplished. If e.g. the designers of the aircraft or the flight mission planers pursue the same
goals as the pilots, the original optimal control problem only has to be augmented by the
supplementary parameters and the solution is straight forward. Otherwise, if the decision
makers aim at different or even opposing objectives, so-called bilevel programming problems
arise with different objectives on the various optimization levels. For example, air race pilots
are primarily interested in flying the given course in the minimum possible time and are not
concerned about safety aspects as long as no penalties are imposed on them. In contrary, the
main focus of the track planners is with regard to the safety of the race track layout, i.e. they
want to design the race track such that it will be as safe as possible. For the described
scenarios, the aircraft designers or the flight mission planers are first to decide, and then the
pilots will make their decisions based on the given aircraft or the prescribed flight mission in
order to reach their own objectives. At this, it is assumed that the aircraft designers or the
flight mission planners know how their decisions affect the decisions of the pilots.

Thus, a special class of bilevel optimal control problems is established, where an optimal
solution of an upper level parameter optimization problem depends on the optimal solutions
of one or more lower level optimal control problems. For the scenarios described above, the
upper level optimization problem relates to the decisions of the aircraft designer respectively
the flight mission planners while the lower level optimal control problems correspond to the
decisions taken by the pilots. Furthermore, equality or inequality constraints on the upper
level may be present that depend directly on the optimal trajectories or associated output
functions of the lower level optimal control problems.

In the literature, the term “bilevel optimization problem” means a bilevel programming
problem where the lower level and the upper level optimization problems are represented by
standard parameter optimization problems (Ref. [Knauer, 2009]). The term “bilevel optimal
control problem” refers to bilevel programming problems where both the lower and the upper
level optimization problems are given by optimal control problems. The bilevel programming
problem described above is a combination of an upper level parameter optimization problem
and one or more lower level optimal control problems. Nevertheless it is termed “bilevel
optimal control problem” since the overall computational effort for the solution of the entire
bilevel programming problem is clearly dominated by the solution of the lower level optimal
control problems.

With respect to the solution of bilevel optimization problems, a lot of research on theoretical
fundamentals, solutions algorithms and applications has been carried out in the last decades
and can be found in the literature (for an overview see e.g. Refs. [Vicente, 1994],
[Colson, 2007] and [Dempe, 2003]). In contrary, the solution of bilevel optimal control
problems has not gained so much attention up to now, and in the field of aerospace only few
applications exist that are outlined in chapter 1.2.2. For the special type of bilevel optimal
control problems described above, no applications and no efficient solution methods were
found in the literature in the field of atmospheric flight.

Similar types of bilevel programming problems arise in the field of multidisciplinary design
optimization of aircraft respectively spacecraft vehicles or by applying the trajectory
decomposition method. With the trajectory decomposition method, a single trajectory is split
up into multiple subarcs. The subarcs are then optimized either sequentially or simultaneously
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on the lower level of the bilevel optimization architecture, while the optimizer on the upper
level has to ensure the integrity of the trajectory segments at the junction points. At this, all
equality and inequality constraints are usually assigned to the lower level optimal control
problems and no path constraints apply to the optimization problem on the upper level.
Applications of the trajectory decomposition method that have been found in the literature are
given in chapter 1.2.3. These applications are mainly limited to the optimization of spacecraft
missions or trajectories.

Multidisciplinary design optimization is the task of designing an aircraft or a spacecraft
vehicle taking into account multiple disciplines like e.g. weights and sizing, structure,
aerodynamics or aircraft performance. Therefore, the aircraft performance can be evaluated
either by a mission analysis or by the solution of a trajectory optimization problem. One way
to solve the multidisciplinary design task is the decomposition approach that decomposes the
optimization problem into multiple sub-problems according to the disciplines involved in the
respective design task. Thus, a bilevel programming structure results where the upper level
optimizer has to ensure the integrity between the optimal solutions of the multiple sub-
problems associated to the disciplines involved in the vehicle design. The upper level
optimizer adjusts the design variables and passes them to the lower level optimizers until the
overall objective is optimized. Various decomposition methods exist, like e.g. Collaborative
Optimization (CO), Enhanced Collaborative Optimization (ECO), Concurrent Subspace
Optimization (CSSO) and Bilevel Integrated System Synthesis (BLISS). For an overview, see
e.g. Refs. [Brown, 2004] and [Perez, 2004]. For the solution of multidisciplinary design
optimization tasks, often response surface models, krigging models or neural networks are
used to approximate the subsystems. In chapter 1.2.4, examples for the multidisciplinary
design optimization of aircraft or spacecraft vehicles involving trajectory optimization that
have been found in the literature are given where the majority of the applications is related to
spacecraft vehicle design.

Despite being similar, there are also differences between the type of bilevel optimal control
problem specified above and the bilevel programming problems resulting from the
decomposition of trajectory optimization problems respectively multidisciplinary design
optimization problems. First, the decomposition approach artificially transforms an original
standard single-level optimization problem into a bilevel programming problem where the
overall objective that is to be optimized remains unchanged. In contrary, the bilevel optimal
control problem described above features different objectives on the lower and upper level of
the bilevel optimal control problem that may be even contradicting. Furthermore, path
constraints on the upper level may exist that involve directly the trajectory or any other time-
dependent output function of the lower level optimal control problems. This is usually not the
case for the bilevel programming problems obtained by applying the decomposition method.

A crucial point for the solution of any bilevel programming problem is the efficient and
accurate computation of the gradient information for the upper level optimization problem.
The gradient information is usually obtained by a sensitivity analysis with respect to the
optimal solutions of the various sub-problems what is called a post-optimality sensitivity
analysis. As can be seen from the literature cited in chapter 1.2, different approaches exist to
deal with the post-optimality sensitivity analysis. While for some applications the sensitivity
analysis can be avoided by making some simplifying assumptions, for other applications the
derivation of the gradient information is straightforward due to the structure of the bilevel
programming problem, especially if the main problem parameters and the parameters of the
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various subproblems are identical. Alternatively, the sensitivities can be computed
approximately or by utilizing numerical differences. Especially numerical differences come
along with a high computational cost in addition to the reduced accuracy of the obtained
sensitivities. For example, a lower level trajectory optimization problem has to be solved
twice with respect to each upper level parameter in order to compute the gradient information
for the upper level by means of numerical differences.

1.2 Literature Review — State of the Art

In the following, a review of the literature on the essential topics related to the thesis at hand
is given and the current state of the art is depicted.

1.2.1 Trajectory Optimization utilizing
6-Degree-of-Freedom Simulation Models

Hoffman (Ref. [Hoffman, 1991]) optimizes a short-time turning maneuver for a high-alpha
fighter aircraft utilizing a 6-Degree-of-Freedom simulation model and the multiple shooting
method. The simulation model incorporates quaternions instead of the usually utilized Euler
angles, and the objective is the final time required for flying a turning maneuver.

In Ref. [Ciarcia, 2009], a 6-Degree-of-Freedom simulation model is utilized to model the
dynamics of an Ekranoplane that is an aircraft designed for using ground effects at extremely
low-flight altitudes. An optimal collision avoidance trajectory for a cruising Ekranoplane with
regard to an obstacle that is located straight ahead the Ekranoplane is computed. The solution
of the trajectory optimization problem was done by the multiple-subarc sequential gradient
restoration algorithm.

Pourtakdoust (Ref. [Pourtakdoust, 2009]) determines optimal flight paths for aircraft
encountering microburst wind shears during critical flight phases like take-off or landing. The
computation of the optimal escape respectively approach strategies is based on a 6-Degree-of-
Freedom formulation of the dynamic system and the optimal trajectories are found
numerically using a gradient based algorithm.

Optimal aircraft trajectories for terrain-masking flight of an unmanned aerial vehicle are given
in Refs. [Ries, 2005] and [Corban, 2007], where the dynamics of the UAV are represented by
a non-linear 6-Degree-of-Freedom simulation model. The solutions of the optimal control
problems were accomplished by applying the multiple shooting method in conjunction with a
sequential quadratic programming algorithm.

Desai (Refs. [Desai, 2005] and [Desai, 2008]) proposes a two-timescale collocation
architecture for the solution of a 6-Degree-of-Freedom reentry vehicle trajectory optimization
problem. At this, a dense discretization grid is applied to the states associated with the high-
frequency rotational dynamics, while only a coarse discretization grid is used for the states
corresponding to the slowly varying translational dynamics. Thereby, the size of the overall
problem could be reduced significantly, allowing for a more efficient solution of the
6-Degree-of-Freedom trajectory optimization problem by the collocation method.

In the field of trajectory optimization for launch, reentry and orbit vehicles the software tool
ASTOS (Aerospace Trajectory Optimization Software, formerly named ALTOS) includes the
possibility to use dynamic 6-Degree-of-Freedom simulation models for the computation of
optimal spacecraft trajectories (Refs. [Well, 1997], [Wiegand, 1999] and [Cremaschi, 2009]).
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At this, the flight system is not controlled directly by the moments but the dynamic system
model is augmented by a flight-control system. Thus, the control inputs to the dynamic
system model are the commanded angle of attack and bank angle while the sideslip angle is
set to zero.

The trajectory for a launch vehicle mission that is the Titan IV mission from liftoff to park
orbit is optimized in Ref. [Rao, 1996]. Therefore, Rao, Sutter and Hong developed a
6-Degree-of-Freedom trajectory optimization program called 6D TOP that utilizes a full
6-Degree-of-Freedom simulation model incorporating non-linear rotation and attitude
equations of motion.

Bollino (Refs. [Bollino, 2006a] and [Bollino, 2006b]) considers 3-Degree-of-Freedom point-
mass simulation models as well as full 6-Degree-of-Freedom simulations models for the
solution of reentry guidance and trajectory optimization problems for the X-33 reusable
launch vehicle. The discretized reentry trajectory optimization problems are solved using the
Legendre pseudospectral collocation method.

1.2.2 Bilevel Optimal Control

In Refs. [Raivio, 2000] and [Ehtamo, 2001] pursuit-evasion games are interpreted as bilevel
optimal control problems that are the visual identification of an aircraft respectively the
escape of an aircraft from a missile encounter. At this, the optimal control problem of the
pursuer trying to minimize the distance to the evader is identified with the lower level optimal
control problem, while the evader’s optimal control problem is regarded as the upper level
optimal control problem with the evader trying to maximize the distance to the pursuer. The
resulting bilevel optimal control problem is then solved iteratively, where common
discretization and nonlinear programming techniques can be applied to solve the two sub-
problems that are ordinary optimal control problems. Here, at each iteration step gradient
information with respect to the cost function of the lower level optimal control problem is
utilized for the solution of the upper level optimal control problem.

For the computation of the gradient of the cost function of the lower level optimal control
problem with respect to the terminal position of the pursuer, solely the sensitivities of the cost
function respectively the capture condition (i.e. the terminal constraint) of the lower level
optimal control problem with respect to the pursuer’s final position are required.

Callies (Ref. [Callies, 2000]) determines the optimal ascent trajectory of a hypersonic rocket-
powered flight vehicle requiring that in case of a mission abort from every point of the
nominal ascent trajectory an emergency landing site can be reached. These additional path
constraints are regarded as (secondary) optimal control problems themselves and are solved
along with the primary optimal control problem by means of an indirect multiple shooting
method.

The problem of simultaneously stabilizing a finite number of dynamic flight systems
respectively flight conditions under a single feedback controller is addressed in Ref.
[Perez, 2008]. There, a decomposition method is applied that results in a bilevel design
optimization architecture. While on the sub-level the stability of the individual plants has to
be achieved, the converged top-level optimization problem assures that within each individual
subsystem the same single feedback controller is implemented.
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For the optimization of chemical processes by means of collocation methods, Tanartkit and
Biegler (Ref. [Tanartkit, 1997]) derive a bilevel programming problem by splitting an optimal
control problem into an inner and an outer problem, where the inner problem solves the
corresponding non-linear programming problem on a fixed mesh while the outer problem is
devoted to minimize the objective function utilizing the mesh element lengths as optimization
parameters. In the outer problem, the gradients of the objective function with respect to the
element lengths are either computed analytically by a sensitivity analysis of the inner problem
or numerically by finite differences where the inner problem is re-solved for perturbed
element lengths.

1.2.3 Trajectory Decomposition

A trajectory decomposition method for the selection of optimal intermediate targets w.r.t. a
spacecraft trajectory optimization problem has been formulated by Petersen et al. (Ref.
[Petersen, 1977]). The trajectory is split into natural segments like e.g. ascent, orbital or
reentry representing the subproblems within the two-level optimization framework. The
master or upper level optimization algorithm coordinates the solutions of the subproblems and
ensures the continuity of the entire trajectory at the junction points. The subproblems are
solved sequentially and analytical equations based on linearized subproblem equations are
used for the evaluation of the master-level gradient.

Rahn (Refs. [Rahn, 1998], [Rahn, 1996a] and [Rahn, 1996b]) applies the trajectory
decomposition method to optimize simultaneously the trajectory and the design of a space
transportation system for a space flight mission. The entire trajectory is split into multiple
flight path segments that are optimized in parallel on the sub-level of the two-level
optimization scheme. The various path segments are coordinated by the main-level optimizer
by determining subproblem targets such that the global objective is optimized. At this, the
gradient information for the main-level optimizer is obtained by means of numerical
differences.

Beltracchi (Ref. [Beltracchi, 1992]) solves the ground to mission (all-up) trajectory
optimization problem for a two-stage earth-to-orbit launch vehicle by applying the trajectory
decomposition method. At this, the trajectory is split up into a booster stage and an upper
stage that are regarded as sub-level optimization tasks. For the booster stage, the objective is
the maximum throw weight to a park orbit while for the upper stage the objective is the
maximum payload that can be transferred from the park into the mission orbit. The main-level
optimization problem coordinates the parameters of the park orbit such that the payload that
can be transferred to the mission orbit becomes maximal. The objective of the main-level
optimization problem is a direct function of the objectives of the two sub-level optimization
tasks. Thus, the gradient of the main-level objective can be obtained straightaway by applying
the chain rule for differentiation and using the parameter sensitivity derivatives of the sub-
level objective functions.

Ledsinger (Refs. [Ledsinger, 2000a], [Ledsinger, 2000b] and [Ledsinger, 1998]) utilizes the
Collaborative Optimization framework to optimize branching trajectories of an advanced two-
stage-to-orbit launch vehicle where the flight path splits up into two branches, the orbital
branch and the booster branch. After booster separation, the orbital branch is represented by
the ascent trajectory of the upper stage into the orbit while the booster branch is the trajectory
of the booster on its way back to the launching site. Here, a simplified algebraic form for the
computation of the gradient information on the upper system level is used that avoids the
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computationally expensive post-optimality sensitivity analysis for the optimal solutions of the
various subsystem-level optimization problems.

In Ref. [Sugar, 1974], a decomposition technique for the solution of minimum-time optimal
control problems by indirect methods is proposed where the original standard single-level
optimal control problem is transformed into a three-level optimization problem. Therefore, the
original trajectory is decomposed into multiple arcs due to intermediate constraints or
discontinuities. On the first level, each arc is optimized given the initial and final states and
phase transition times by the second level controller respectively third level optimizer. The
coupling of the single arcs in time is accomplished by the second level controller, while the
third level optimizer minimizes the overall objective by adjusting the states at the arc
boundaries.

1.2.4 Multidisciplinary Design Optimization involving Trajectory
Optimization

Mor and Livne (Refs. [Mor, 2006] and [Mor, 2007]) focus on the multidisciplinary
optimization of launch and reentry vehicles including the discipline of trajectory optimization.
The sensitivities of the optimal solutions for the ascent or reentry trajectories are obtained
using either finite differences or the concept of feasible directions. The concept of feasible
directions augments the parameter vector for the controls and the states by vehicle design
variables and formulates an additional optimization problem that gives the sensitivities of the
objective with respect to the additional shape or structural design variables.

Braun applies the Collaborative Optimization architecture to design a launch vehicle
involving the disciplines propulsion, weights and sizing, cost and ascent trajectory
optimization (Refs. [Braun, 1996] and [Braun, 1997]). The issue of computing the subsystem-
level post-optimality sensitivity data is not addressed.

Brown and Olds (Ref. [Brown, 2006]) evaluate various multidisciplinary optimization
techniques by solving a reusable launch vehicle design problem. Besides the fixed-point
iteration method and the all-at-once technique, three bi-level optimization techniques are
considered, namely Bi-Level Integrated Synthesis (BLISS), Collaborative Optimization (CO)
as well as Modified Collaborative Optimization (MCO). A propulsion tool, a performance
tool and a weights and sizing tool are involved in the multidisciplinary optimization task.
Within the performance tool, the program to optimize simulated trajectories (POST) was
utilized to analyze and optimize the launch vehicle trajectories. For the solution of the
multidisciplinary optimization problem, the outputs of the various tools were replaced by
response surface models. The response surface models are generated by a sequence of
experiments and describe the dependency of the output (response) variables with respect to
one or more input variables by response surface equations. Response surface equations are
polynomial functions that are utilized to approximate the complex model response.

Sobieszczanski-Sobieski provides two methods for the generation of sensitivity data of
optimal solutions w.r.t. problem parameters that are not subject to optimization (Ref.
[Sobieszczanski-Sobieski, 1982]). While the one method derives the sensitivity equations
from the Lagrange multiplier equations of the optimization problem, the other method is
based on extremum conditions of the penalty functions involved in sequential unconstrained
minimization techniques (SUMT). Numerical examples for the application of the sensitivity
equations are given namely the optimization with conflicting objectives and the extrapolation
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of the optimal solution. Further possible applications are mentioned that are the utilization of
the sensitivity equations in order to predict a change in the constraint status or to solve large
optimization problems by decomposition into multiple subproblems.

A decomposition method for the optimization of multidisciplinary engineering systems called
Bilevel Integrated System Synthesis (BLISS) is given in Refs. [Sobieszczanski-Sobieski, 2000]
and [Sobieszczanski-Sobieski, 1998]. The decomposition method is characterized by
alternating optimizations on the system level and the subsystem (or discipline) level that are
linked by sensitivity information. Two versions of BLISS are given with one version avoiding
the computationally expensive post-optimality sensitivity analysis on the subsystem level. The
method is tested on an aircraft configuration problem involving aircraft structure,
aerodynamics, propulsion and performance, where the performance optimization has the goal
to maximize the range using the Breguet range equation.

Braun (Ref. [Braun, 1993]) applies the multi-level decomposition strategy to the complex
multidisciplinary design of a reusable, single-stage-to-orbit (SSTO) vehicle. The resulting
hierarchical decomposed programming problem is solved using first-order post-optimality
sensitivity information. There, the main problem parameters and the parameters of the various
subproblems are identical so that the subproblem objective gradients equal the main problem
objective gradient.

In Ref. [Braun, 1996], Braun and Kroo develop a Collaborative Optimization framework for
the solution of multidisciplinary optimization tasks. They introduce a simplified algebraic
form for the computation of the gradient information for the discrepancy constraints on the
system level. The simplified algebraic form avoids the computationally expensive post-
optimality sensitivity analysis w.r.t. the optimal solutions of the various subsystem-level
optimization problems. The decomposition method is applied to optimize a lunar ascent
trajectory where the trajectory is split into three subsegments. Within the Collaborative
Optimization, the trajectory subsegments represent the subsystem-level optimization problems
that are coordinated by the system-level optimization problem with its discrepancy
constraints.

Roth develops the Collaborative Optimization technique further, resulting in the so-called
Enhanced Collaborative Optimization (ECO) technique (Refs. [Roth, 2008a] and
[Roth, 2008b]). The system level optimization problem is an unconstrained minimization
problem that ought to ensure consistency between the various sub-level systems while the
global objective itself is not involved in the system level optimization problem. Instead,
quadratic models of the global objective together with linearized models of all subspace
constraints are included in each subspace optimization problem. For the evaluation of the
linearized constraint models, a constraint violation minimization (CVM) problem is solved
and a post-optimality sensitivity analysis is carried out to give the coefficients for the
linearized constraint models. The Enhanced Collaborative Optimization method is applied to
an analytic test case and the design of an aircraft family, involving an optimization of the
aircraft performance using an aircraft conceptual design tool.

1.3  Contributions of the Thesis

The following aspects are regarded as the main contributions of this thesis to advance beyond
the current state of the art in the respective fields:
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e Deployment of a flexible method for the analytical evaluation of the gradient and
the hessian of the dynamic flight system
For the computation of the Jacobian and the Hessian matrix of the optimal control
problem, the first and second order derivative of the dynamic system with respect to
the state vector and the control vector has to be evaluated. In chapter 2.2.4, a method
is proposed that is based on the block structure of the implemented simulation model
and that is very flexible with respect to modifications in the simulation model.

e Development of a scalable, multi-fidelity fixed-wing aircraft simulation model
specifically tailored for optimization tasks
The scalable, multi-fidelity simulation model features a sequential structure and takes
into account the full dynamic order of the regarded flight systems as well as
supplementary subsystems (e.g. actuator dynamics) and environmental influences like
e.g. static and convective wind fields. Thus, it is ensured that the resulting trajectories
are dynamically realistic and can be flown by the aircraft in reality. Furthermore, the
simulation model involves an inversion controller and reference models. The inversion
controller also takes into account environmental influences and features a sequential
structure identical to that of the simulation model itself. The simulation model is
described in detail in chapter 3.

o Establishment of an algorithm for the solution of complex aircraft trajectory
optimization problems
The simulation model with its special structure and additional features constitutes the
basis for the establishment of the robust and effective process for the solution of rather
complex aircraft trajectory optimization problems. The optimization procedure starts
with a homotopy for the generation of an initial guess for an optimal point-mass
trajectory and ends up with the optimal trajectory for the full, non-linear 6-DoF system
dynamics without the necessity for the user to provide any initial guess. The
optimization algorithm is given in chapter 4.

e Development of an efficient algorithm for the solution of the above described
bilevel optimal control problem
The proposed algorithm is based on a post-optimality sensitivity analysis that utilizes
second order derivative information with respect to the lower level optimal control
problems. Thus, it allows for a direct computation of the gradient of the upper level
optimization problem at each iteration step so that the time consuming evaluation of
the gradient of the upper level optimization problem by numerical techniques can be
avoided. The algorithm for the efficient solution of the above described bilevel
optimal control problem is outlined in chapter 5.

Furthermore, in chapter 2 a framework for the solution of optimal control problems by the
direct multiple shooting method is formulated. The framework comprises the discretization of
the continuous time optimal control problem, the analytical evaluation of the Jacobian and the
Hessian, a suitable scaling of the problem as well as a mesh refinement algorithm.

Finally, in chapter 6 results are shown that originate from the application of the proposed
optimization algorithms to an Air Race optimal control problem. The Air Race optimal
control problems pose a very challenging task with regard to trajectory optimization since the
participating aerobatic aircraft are very agile. Thus, the resulting trajectories are highly
dynamic and the full dynamic order of the regarded flight systems has to be taken into
account to achieve realistic optimal trajectories.
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2

Fundamentals of Optimal Control

For the solution of optimal control problems respectively trajectory optimization problems,
one can distinguish between two basically different types of methods, namely the indirect
methods and the direct methods. The indirect methods are based on the theory of calculus of
variations (Ref. [Bliss, 1946]), where necessary optimality conditions subject to a local or
global minimum (maximum) principle are derived that have to be fulfilled by the optimal
solution. For trajectory optimization problems with state and control constraints, this usually
leads to the formulation of a multi-point boundary value problem with corresponding state
and adjoint differential equations. Then, the resulting multi-point boundary value problems
are discretized and solved by an appropriate solution method, e.g. the multiple shooting
method (Refs. [Callies, 2000], [von Stryk, 1994]). Since the indirect methods make explicit
use of the Hamiltonian, the adjoint variables and the minimum (respectively maximum)
principle, this problem-dependent information has to be provided by the user for the solution
of an optimal control problem.

By applying direct methods the original infinite-dimensional optimal control problems are
transformed into finite-dimensional non-linear parameter optimization problems by
discretizing either solely the controls or both the states and the controls. Methods that rely on
the discretization of both the states and the controls are referred to as collocation methods,
whereas the discretization of solely the controls gives rise to the so-called shooting methods.
With regard to the collocation methods, one can further distinguish between local and global
collocation methods where local collocation methods are based on integration schemes like
e.g. the Euler method or the Runge-Kutta method. Global collocation methods make use of
polynomials for the discretization of the states and the controls and are also termed
orthogonal or pseudospectral collocation methods. A special type of direct methods are the
inversion based trajectory optimization methods or the methods of differential inclusion,
where the controls or some of the states together with the controls are eliminated from the
system model and only the remaining states are discretized. With all direct methods, the
discretized optimization problems are solved by utilizing non-linear programming methods
like e.g. sequential quadratic programming. In contrast to the indirect methods, no
information concerning the Hamiltonian, the adjoint variables or the minimum principle has
to be provided by the user for the solution of the optimal control problem.

Thus, the fundamental difference between the direct and the indirect methods is the sequence
of the optimization and the discretization: while the indirect methods first optimize, then
discretize, the direct methods first discretize, then optimize. Comprehensive surveys on the
different methods of trajectory optimization can be found e.g. in Refs. [Betts, 1998],
[Betts, 2001], [Riehl, 2006], [Ross, 2002], [von Stryk, 1992], [von Stryk, 1994]. In the



18 THEORETICAL FOUNDATIONS

following, the general optimal control problem for problems with only one phase as well as
for problems with multiple phases is stated. Then, a framework for the solution of the optimal
control problem by the multiple shooting method is established. This framework also
comprises an evaluation of the Jacobian and Hessian of the optimal control as well as various
mesh refinement procedures.

2.1 The General Optimal Control Problem

In general, a trajectory optimization problem can be stated as follows:

Determine the optimal control history

u,,(t)eR” 2.1)
the corresponding optimal state trajectory
X,,,(t) R’ (22)
and possibly real parameters
peR" (2.3)
that minimize the Bolza cost functional
Ly
J=elxlt, L.z, )+ [ £(x(e)u(e), p,t)at (2.4)
t
subject to the state dynamics
x(¢) = £(x(¢), u(z), p,?) (2.5)
the initial and final boundary conditions
\po(x(to),p,to)=0 y,eR?  g<m+n (2.6)
‘I’f(x(tf)’p’tf)zo v, eR"  p<m+n (2.7)
the interior point conditions
r.(x(¢,)u(z)p.)=0 i=1,..k (2.8)
and the equality and inequality conditions
C,,(x(t)ut)p.r)=0 C,eR 2.9)
C,.x(t)ult)pt)<0 C,, R’ (2.10)

where m is the number of controls, n the number of states, u the number of real parameters,
g the number of initial boundary conditions, p the number of final boundary conditions, k the
number of interior point conditions, 7 the number of equality conditions and s the number of
inequality conditions. The cost functional (2.4) is termed Bolza cost functional since it
comprises an integral term L as well as a final term e. If only the integral term L is present in
the cost functional, it is termed Lagrange cost functional. Otherwise, if the cost functional
consists only of the final term e, it is termed Mayer cost functional.
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Multi-phase optimal control problems

Multi-phase optimal control problems result if interior point conditions (2.8) are present that
cannot be implemented directly for the solution of the optimal control problem. Then, the
entire trajectory has to be split up into k+1 phases and the interior point conditions (2.8) are
transformed into final boundary conditions for each phase:

L (X(tf,i )’ u(tf,i )’pa tf,i): 0 i=L..k (2.11)

in which #; is the final time of the i-th phase. Additionally, the multiple phases have to be
connected to the preceding phases to guarantee the continuity of the state and the control time
histories at the phase boundaries:

Xy, )-xty,0)=0  i=1.k (2.12)

u(tf’,.)—u(to’m):() i=1,..,k (2.13)
where 7y, is the initial time of the i-th phase. Within the optimization problem, Egs. (2.12) and
(2.13) are treated as supplementary equality conditions.

Furthermore, multi-phase optimal control problems arise if the number of states, controls or
real parameters changes within the trajectory optimization problem or if different Lagrange
cost functions, path equality constraints or path inequality constraints apply for different
phases of the trajectory that is to be optimized. Thus, in its most general form, a multi-phase
optimal control problem can be stated as follows:

Determine the optimal control histories

u,,()eR" (2.14)
the corresponding optimal state trajectories
X;o(t) €R” (2.15)
and possibly real parameters
p, €R" (2.16)

that minimize the Bolza cost functional

ph fi
J = Zei(xi(tf,i)apiatf,i)"'z ILi(Xi(t)aui(t)apiat)dt (2.17)

=

subject to the state dynamics

Xi(t):fi(xi(t)’ui(t)’pi’t) (2.18)

the initial and final boundary conditions
Yo, (Xi (tO,i )> p; lO,i) =0y, € R* q; <m; +n (2.19)
V. (Xi (tf,i ),p[,tf’[ ) =0 Y, € R” pism +n (2.20)

and the equality and inequality conditions

C,.(x(Lult)p.1)=0 C,, eR’ 2.21)

eq,i
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Cors(x,()u(t)p,.t)<0  C,,, R (2.22)

where ph is the number of phases. The subscript i denotes the state vector x, the terminal cost
function e, the Lagrange cost function L, the initial and final boundary conditions ¥, and ¥,
and the equality and inequality constraints C,, and C;,., of the respective phase i.

At the phase transition times ¢, phase transition conditions g; enforce prescribed relationships
between the states, the controls and the real parameters of the adjacent phases:

gi(xi—l (tf,i—l )> Xi(to,i )a u;, (t_f',i—l )> ui(tO,i )a PP ti) =0 i=2,..,ph (2.23)
where

=t =1, i=2,..,ph (2.24)

2.2  Framework for the Solution of the Optimal Control
Problem

2.2.1 Multiple Shooting Method

As mentioned above, with the shooting method solely the controls are discretized in order to
transform the infinite-dimensional optimal control problem into a finite-dimensional
optimization problem. The equations of motions are fulfilled by numerical integration of the
corresponding ordinary differential equations. The shooting method is also referred to as
sequential approach (Ref. [Huesman, 2003]), recursive approach (Ref. [Biiskens, 2000]) or
reduced discretization approach (Ref. [Gerdts, 2007]), since only the controls are discretized
and the states are obtained recursively by integrating the differential equations. Furthermore,
it has to be distinguished between the single shooting method and multiple shooting method.
The single shooting method integrates the state equations from the initial point to the terminal
point of the trajectory in one sweep. Thus, for a trajectory optimization problem with free
final time the parameter vector z is made up by the free states Xgj.. at the initial time # in
addition to the vector u of control variables and the free final time #

z=[t;,X, oo u]" (2.25)

In contrast to the single shooting method, the multiple shooting method introduces a relatively
small number of so-called multiple shooting nodes Xys;, j = 1, ..., m for the states on a mesh
of m grid points:

Ty =1lty) < Tys) < Tassz <o < Tysmas < Tygsm <Ty = r(tf) (2.26)

Here, 7 denotes the normalized time and is given by the following expression:

r—t
(t)=—">, t,<t<t, 2.27)
t,—t,
Then, the state equations have to be multiplied by (¢ — #) for the integration w.r.t. the
normalized time 7:
dx(t) ax(t) dt

AL-E (t, —1,)-£(x(z),u(¢) p,¢) (2.28)
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Consequently, the integration of the state dynamics is not carried out from the initial states xq
to the end of the trajectory in a single sweep, but is reset to the state values xys; at the
multiple shooting nodes. This procedure is depicted in Fig. 1. The state values Xys; are
additional parameters of the nonlinear programming problem, and for a solution to be optimal
the defects at the multiple shooting nodes resulting from the integration of the state dynamics
have to be zero. By introducing multiple shooting nodes, the Jacobian of the parameter
optimization problems shows a sparse block structure in contrary to the single shooting
method that features a dense Jacobian. Thus, the multiple shooting method is well suited for
the solution of trajectory optimization problems by applying non-linear programming
techniques for large-scale optimization problems that explicitly exploit the sparsity of the
Jacobian, like e.g. SNOPT (Ref. [Gill, 2007]). Furthermore, by dividing the trajectory into
multiple segments for the integration, the solution of the ordinary differential equations by the
numerical integration is less sensitive to the initial conditions and the robustness and stability
of the solution of the trajectory optimization problems is increased. Together with the free
initial states Xo . that are also subject to optimization the complete parameter vector z of an
optimal control problem with free final time #rapplying the multiple shooting method reads:

_ T
z= [tf > X0, fiees X515 X1s,20 Xngs 300+ X pss,m o u]j (2.29)

x(l)“

Xass.1 T/-\/I st
I

‘xMS,zT/--~~~
xo-\/:

XMS,m

defect

- o o o o o o =
N ek o e o e o e e o -

e 1
t, Tys 1 Tus 2 T Ms m-1 Tms,m f
Figure 1. Multiple shooting

2.2.2 Control Discretization
For the discretization of the controls u(z), a mesh of n+1 grid points is chosen such that

f(to): Ty <7, <7, <.<7,, <7, =7,= r(tf) (2.30)
In between the grid points 7;, i = 0, ..., n, the approximated controls u(z) are obtained by linear
interpolation of the control values u; = u(z;), i =0, ..., n at the grid points:

T—7T,
u(r)=u, +(u,, —u)——— 7, <7<7, (2.31)
Tin =T
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Alternatively, the control function u(z) can be specified by a B-spline representation of degree
k—1 (respectively order k), where the elementary B-splines are defined recursively (Refs.
[de Boor, 72] and [Cox, 72]) by the initialization splines for k= 1

N (7)= {1 , i.f Te[d,4,,), 232
’ 0, ifrg[d, 4,,),
and the higher-order splines (k> 1)
N0 = - {/2 N (@) %Nm,k_l(r), I N,
k-1 j Jj+k Jj+ '
with the auxiliary grid points 4, j =1, ..., n+2k—1
Ty» if1<j<k,

A, =974 Wk+1<j<n+k-1, (2.34)

T, ifn+k<j<n+2k-1.

This means that the auxiliary grid given by Eq. (2.34) is identical to the grid given by
Eq. (2.30) with a multiplicity of the first and the last grid point equal to the order k£ of the
B-spline. In Fig. 2, exemplarily the elementary B-splines N5, N> s and N3 s on an equidistant
grid with n = 4 are depicted.

N3,5

0.8

: o~
0.2 ~ N

0.4 / \
0.2

0.8
0.6
0.4
0.2

0 1 2 3 4
grid points T

Figure 2. Elementary B-Splines on an equidistant grid with n =4
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The control function u(z) of order k can then be written as a linear combination of the
elementary B-splines N;:

n+k—1

u(r) = chijk(r) (2.35)

where the ¢;, j = 1, ..., n+k—1 are the B-spline coefficients. At this, the vector u of the control
variables in the parameter vector z of the trajectory optimization problem is replaced by the
vector ¢ of B-spline coefficients c;:

zZ= [tf,xoyﬁee,xMS,j,c]T j=L...m (2.36)

Utilizing a B-spline representation of order k£ = 1, the controls are piecewise constant and the
control values in between the grid points 4; = 71 and 4;+ = 7j+1-1 equal the respective B-spline
coefficients ¢;. For a B-spline representation of order k£ = 2, continuous and piecewise linear
controls are obtained identical to the linear interpolation given by Eq. (2.31), where the
B-spline coefficients ¢; are just the discretized control values at the respective grid points
Aj+1 = 1-1. Fig. 3 depicts the elementary B-splines of order £ = 2 and k£ = 3 on a generic,
equidistant grid with normalized time 7 and n = 4. Especially for higher-order approximation
of the controls, the utilization of B-splines has the major advantage that the elementary
B-splines support the control function u(z) only locally (Ref. [Dierckx, 1993]). Thus, the
B-spline coefficients ¢; influence the control function u(z) only in the interval [/;, 4;+) which
is not the case with other spline interpolation methods. This results in a specific sparsity
pattern of the Jacobian that can also be exploited in order to reduce the computational effort
for the non-linear programming technique that is utilized to solve the trajectory optimization
problem. It is mentioned that different elements of the control vector u may be approximated
by B-splines of different order.
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Figure 3. Elementary B-Splines of order k =2 and k = 3 with [z, 7;]=[0,1]

In addition to the state discretization grid and the control discretization grid, a grid for the
evaluation of the path constraints with the normalized time points zpcp, i = 1, ..., p 1is
introduced:

Ty STpey <Tpey <eee<Tpc,y <Tpc, ST, (2.37)
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Furthermore, the parameter vector z can be augmented by additional parameters p that are
also subject to optimization but that do not pertain to the state discretization variables nor the
control discretization variables:

Z:[tfax(),freeaxMS’jauap]T J :19"':m (238)

By applying the multiple shooting method and the control discretization, the original
continuous-time infinite-dimensional optimal control problem stated in chapter 2.1 is
transformed into the following finite-dimensional non-linear programming problem:
Minimize

J =) )+ [ Lix(e) 2.0)d 2.39)

subject to the parameter vector z given by Eq. (2.38) such that the following equality and
inequality constraints are fulfilled:

(2.40)

Here, x(z, i1, 7)) are the state values resulting from the integration of the equations of motion
given by Eq. (2.5) respectively Eq. (2.18) in the interval [z, 7;]:

X(Z’TJ—I’TJ): Xpgs,ja + Ji(tf _to)' f(x(z),z,1)dz (2.41)

T

The non-linear programming problem defined by Eqgs. (2.40) and (2.41) is efficiently solved
by software for large-scale non-linear optimization like e.g. SNOPT (Ref. [Gill, 2007]) or
[POPT (Ref. [Wichter, 2009]). Therefore, usually an augmented Lagrange cost function L is
defined that features the following form:

Ly=J+pn'C (2.42)

where p are the so-called Lagrange multipliers. Necessary conditions for any solution of the
nonlinear programming problem to be an optimal one are the so-called Karush-Kuhn-Tucker
conditions. The Karush-Kuhn-Tucker conditions require the complementarity of the Lagrange
multipliers for the active constraints, i.e.

4 <0 (2.43)

where y! is the Lagrange multiplier associated with the i-th active constraint.

2.2.3 Multi-Phase Optimal Control Problems

As mentioned in chapter 2.1, optimal control problems can involve multiple phases with
changes in the number of states, controls and parameters from one phase to another as well as
various numbers of path constraints in the different phases. The various phases may also be
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associated with different types of initial and final boundary conditions y, terminal cost
functions e or integral Lagrange cost functions L. Then, the extended objective and the
augmented constraint vector of the multi-phase optimal control problem read:

ph ph Ly

J= Zei (x,(z).z)+ Z ILi (x,(z),z,t)dt (2.44)

i=1 i=l g

C= 5 (2.45)

zZ
j-1ph> T j.ph >_ Xt jon = 0
W o \X i (Z) z)=0

X, \Z,7;

where ph is the number of phases of the multi-phase trajectory optimization problem. The
state vector Xz, 7.1, 7j;) results from the integration of the equations of motion in the time
interval [z, ;, 7;;] in phase i:

Xi(z’ Tj—l,i’Tj,i):XMS,j—l,i + _jr(t_f',i _to,i>'fi (Xi(z)’zat)df (2.46)

Tj—l,l

Here, the subscript i denotes the state vector x, the terminal cost function e, the Lagrange cost
function L, the initial and final boundary conditions ¥, and ¥, and the equality and inequality
constraints C,, and C;,, of the respective phase.

Additionally, phase transition conditions g; have to be taken into account that enforce
prescribed relationships between the states, the controls and the real parameters of the various
phases at the phase transition times #;:

g,(x,(2)x,(z)z,0)=0 i=2,..ph (2.47)
where

t=t,, =ty i=2..,ph (2.48)

2.2.4 Gradient, Jacobian and Hessian Evaluation

While all of the programs for the solution of the discretized optimal control problem require
the gradient of the objective (Eq. (2.44)) and the Jacobian of the constraint vector (Eq. (2.45)),
at least some non-linear optimization programs also necessitate the Hessian of the objective
and the constraint vector in order to be able to solve the discretized optimal control problem
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efficiently. Here, Jacobian means the first order derivative of the constraint vector with
respect to parameter vector z of the discretized optimal control problem and Hessian its
second order derivative. One possibility would be the evaluation of the Jacobian and the
Hessian by numerical techniques like e.g. finite differences. Requiring no additional
information from the user, the application of finite differences is straight forward, but results
in a considerable computational effort and suffers from a lack of accuracy. Thus, the
sensitivity equation approach (Refs. [Gerdts, 2007], [Biiskens, 2000]) is implemented to allow
for an efficient analytical computation of the gradient, the Jacobian and the Hessian for the
discretized trajectory optimization problem. In order to be able to apply the sensitivity
equation approach, the derivatives of the equations of motion (2.5) with respect to the state
vector x(¢),

ox(t) _ of (x(¢), u(t).p.?)

o = o (2.49)
the control vector u(?),
ox(t) of(x(z),ulz),p, ¢
) _ ettt 050
and the parameter vector p,
10)'¢ of
() _ etlsle)uchp.0) s

op’ op’
have to be calculated at every evaluation time step ¢ during the integration of the equations of
motion of Eq. (2.5). With regard to the quite complicated and extensive simulation model
given in chapter 3, the analytical derivation of these derivatives would be a very daunting
task. Therefore, an approach has been found that exploits the modular block structure of the
simulation model and promises to be very flexible with regard to modifications of the
simulation. This approach is illustrated in Fig. 4 for a simplified structure of the simulation
model. Instead of deriving the Jacobian and the Hessian of the differential equations (2.5)
with respect to the states x and the controls u for the entire simulation model at once, for each
block only the derivatives of its outputs with respect to its inputs are derived and implemented
in the simulation model. Due to the modular block structure of the simulation model, the
equations that have to be derived analytically are quite succinct. The inputs and outputs of the
various blocks of the simulation model are then joint together in order to give the required
Jacobian and Hessian for the entire simulation model. Exemplarily, the Jacobian of the
output y», of the simulation model depicted in Fig. 4 is given by

Ou,, Ou, Ou,,
{ayzz W ayzz}:{ayzz ayzz} Ouy  Owyy Ouy, _
Ou, Ou,, Ou, Ouy, vy || Y Y
| Oy, Oy Owyy (2.52)
Ouy Oy 0 Jn le




THEORETICAL FOUNDATIONS 27

Within the subsystem f5, only the derivatives 0y,,/0uy; and Oy,,/0y;; are implemented, while
the subsystem f; provides the derivatives 0y;1/0u;; and 0y;1/0u,, that are in turn inputs to the
subsystem f>.

e N
u21 4 N\ y:ZI
: f 2
\_ J
Uy 4 A =
U, X fl y:l2
\_ _J
\ J

Figure 4. Modular simulation model structure

With regard to simulation models that represent flight system dynamics, usually many
transformation matrices between the different reference frames and many matrix-vector
products are involved. While the derivation of a vector with respect to another vector ends up
in a matrix, the derivation of a matrix with respect to a vector gives a three-dimensional
tensor. The second order derivative of a matrix with respect to a vector even yields a four-
dimensional tensor. At this, special care has to be taken if derivatives of matrix-vector
products are to be implemented in the simulation model. The rules for the differentiation of
matrix-vector products respectively Kronecker products can be found e.g. in Ref.
[Magnus, 1985]. For the first order derivative, the following relationship holds:

8vec(1r\/lx) =(XT ®Im)5vec(TM)+M 6XT (2.53)
Ooa Ooa oa
where vec() denotes the vectorization of a matrix, converting the matrix into a column vector
by stacking the columns of the matrix vertically. The Kronecker product is an operation
between two matrices resulting in a block matrix, where each element of the first matrix is
multiplied with the second matrix. In Eq. (2.53), the dimensions of the matrix M and the
vectors x and a are:

M eR™ (2.54)
xeR™ (2.55)
acR™ (2.56)



28

THEORETICAL FOUNDATIONS

For example, with M being a 3x3

Eq. (2.53) evaluates to:

dvec(Mx)

_8m11 6m11_
Oa,  da,
om,, Om,,
‘6a, éa,
Oomy,  Omy,
oa, da,
om, Om,
oa, da,
T Omy, — Omy,
(X ®Im) a—al a—az
Omy,  Om,,
‘ba, éa,
om, Omy,
ba,  da,
om,, %
8—611 oa,
omy,  Omy,

where the Kronecker product is:

(XT ®Im): [x1 X, x3]®
x, 0 0 x,

=0 x, 0 O

0 0 x, O

oS O =
S = O

0
0
1

0 0
x, 0

0 x,

my mpy

My My

My, My
x, 0
0 x
0 O

ox,

oa,
ox,

Oa,
Ox,

| Oa,

0
0

X3

ox,
oa,
ox,
oa,
ox,

oa, |

matrix, X being a 3x1 vector and a being a 2x1 vector,

(2.57)

(2.58)

By expanding Eqgs. (2.57) and (2.58) the derivative of the matrix-vector product becomes:

om,,x, Om,x, Om., X
111+ 122+ 13°V3

om, . x, Om.,Xx, OmM X
111+ 122+ 13°¥3

0Oa, Oa, Oa, oa, oa, oa,
OMx _| Omyx, N Om,, X, N Omyx;  OmyX, N Om,, X, N Om,; X,
oa’ oa, oa, oa, oa, oa, oa,

Oy X, OMyX, OMayX
311+ 322+ 33743

oMy X, OMyX, OMayX
311+ 322+ 3373

Oa, Oa, Oa,

oa,

oa,

oa,

(2.59)
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The second order derivative of the matrix-vector product is obtained by:

sl o
0X

0, @1, ©1,)veclt, ) 2 +

ot o5 o
() on o
ol

2.2.5 Sensitivity Equations

The sensitivity equations are the first and second order state derivatives with respect to the
parameter vector z of the discretized optimal control problem and indicate how the state
vector x at time ¢ is changed if any element of the parameter vector z is perturbed. These
sensitivities are obtained by integrating the differential equations for the state sensitivities that
result from the differentiation of the state dynamics given with respect to the parameter
vector z (Ref. [Gerdts, 2007]). Given the state dynamics

x =f(x(r),u(0),z,,p) 2.61)
the first order sensitivity equations w.r.t. the parameter vector z evaluate to:

o ox of ou of O, of p -
o ox o o o o, o op o (2.62)

Here, the dot denotes the differentiation of the state vector x with respect to the normalized
time 7, i.e. the time transformation is already incorporated in the function f. The matrices
of/ox’, of/ou’, of/oty and of/op” are the derivatives of the states dynamics with respect to the
control vector u, the state vector X, the final phase time # and a parameter vector p (see
Egs. (2.49) to (2.51)). The normalized time 7 is given by Eq. (2.27). With respect to the
parameter vector z of Eq. (2.38), the derivative 8(,/8ZT and dp/oz’ evaluate to:

a, [o, & a a @
aZT atf , 8Xg,ﬁfee ’ GXIT/IS,J‘ auT , apT

b

(2.63)

=[1, 0, 0, 0, 0] j=1..,m
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@_apapapapap}

o’ o, ox " oxh, ou’ op! (2.64)
=[0, 0, 0, 0, I j=1.,m
Accordingly, the derivative du(f)/dz’ is given by:
our) |[ou@) ou@)  ou@) our) ou@)|
oz" Ot,  OXg g Oy, Ou T op’
(2.65)
- ou(t) .
=0, 0, 0, ——, O =1,..,m
ou” } /

The derivative du(7)/ou’ depends on the type of discretization that is applied for the
transformation of the infinite-dimensional optimal control problem. For linearly interpolated
controls, the differentiation of u(#) with respect to the parameters w;, i = 1, ..., n yields
functions that depend solely on the grid points 7; so that the derivatives du(f)/du;’ have to be
computed only once for a specific control grid by the following formulae:

Inc®(l— i ] 7, <t<7,,
ou(?) _ Tin =T, (2.66)
ou! '
0, else
Inf®£ i ] 7, <t<7t,,
ou@) |- Tin—T (2.67)
ouy, .
0 else

ne

where n. is the number of controls and 0 the zero matrix. If a B-spline representation of
degree k is chosen for the discretization of the controls, the derivative matrix du(¢)/du’ has to
be replaced by the derivative matrix du(z)/dc’. The evaluation of the derivatives du(z)/dc” is
straightforward, resulting in the corresponding elementary B-splines:
. < )
ou) I, ®N,, (1) A St<A,,
oc’

(2.68)
0 else.

ne

It is mentioned that the derivative matrix du(s)/6¢’ can be calculated offline before the
optimization starts since it does not depend on the actual value of the optimization parameter
vector ¢ for the controls.
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The corresponding second order sensitivity equations are obtained by differentiating
Eq. (2.62) with respect to the parameter vector z

0 ve[axj 0 vec(@f.axj_'_@ vec[af.auJ+
oz" oz" oz" ox' oz oz" ou’ oz"
2.69
o {af asz a[ (Gf apD (2.69)
+ T ved . ‘T +
0z ot, oz oz" op’ oz"

Differentiating the single terms gives:
j ;
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where n,,- is the total number of variables of the transformed optimal control problem, i.e. the
length of the parameter vector z. Here, the second order derivatives of the final time 821‘/8272
and the parameter vector 0'p/0z’” evaluate to zero. Furthermore, for linearly interpolated
controls the second order derivative d’u/dz” is given by a three-dimensional tensor that
contains only zeros. By applying the chain rule, the mixed second order derivatives of
Egs. (2.70) to (2.73) are expanded to:
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Inserting Eqgs. (2.70) to (2.77) into Eq. (2.69), one obtains for the second order sensitivity
equations:
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where the dependency of the state dynamics f w.r.t. the final time # and the parameter

vector p has been omitted for readability reasons. The full version can be found in the
appendix (chapter A.1).

With regard to many trajectory optimization problems, the initial and final boundary
conditions ¥, and ¥, the equality and inequality constraints C,, and C,., and the interior
point conditions r; are often combined functions of the states x(¢), the controls u(#) and
possibly the parameter vector p. The first order derivative of any function 4 = A(x(¢), u(?), p)
involving the states x, the controls u and the parameters p with respect to the parameter
vector z yields:

Oh _oh 0w oh Ox Oh dp
oz ou' o' ox' o' op' o2

(2.79)

where 0h/ou’, 6h/ox” and dh/dp” are the derivatives of the function A with respect to the
control vector u, the state vector x respectively the parameter vector p. The second order
derivative of function / then becomes:
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Here again, the derivatives with respect to the parameter vector p are left out to increase the
readability. Fig. 5 illustrates the sparse block structure of the Jacobian exemplarily for an
optimal control problem with two phases, two controls, one multiple shooting node in each
phase and with linearly interpolated controls. The triangular form of the blocks results from
the fact that for linearly interpolated controls any path constraint C(zpc),) is only influenced by
a control variable u; if the evaluation time point 7pc, is larger than the control discretization
time 7;.1.

(2.80)

—

Figure 5. Sparse block structure of the Jacobian

2.2.6 Scaling

For the efficient solution of the finite-dimensional optimal control problem by the applied
non-linear programming method, the scaling of the parameter vector z as well as the objective
vector F plays a crucial role (Ref. [Betts, 2001]). It is the goal of the scaling procedure to
adjust all elements of the parameter vector, the objective function and the constraint vector to
the same order of magnitude. While the scaling of the parameter vector z is achieved by

Z=M-z (2.81)
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the scaling of the objective vector F is done by

I S A N
=TF=ly 1 llc (2.82)

where the vector of constraints C is given by Eq. (2.40) respectively (2.45). Here, the tilde
denotes the scaled entities. The matrices M and T are the respective scaling matrices, where
T is the scaling factor associated with the objective J of Eq. (2.39) and T¢ the diagonal
scaling matrix for the constraint vector C of Eq. (2.40). The scaling factors are chosen such
that the objective function and the elements of the parameter and the constraint vector are of
the same magnitude. Then, for the scaling of the Jacobian G the following equations hold:

~ OF _OF |

G= =T—M 2.83

oz" oz" (2.83)

Utilizing the rules for the differentiation of matrix-matrix products given in Ref.
[Magnus, 1985], the scaling of the Hessian H is:

H=(1, ®T) [(M-1 Jerl, ]a% (vec (;Z—FT] )M‘l (2.84)

where n, is the length of the parameter vector z and n,the length of the objective vector F. In
some cases it may also be useful to restore the Lagrange multipliers p for the non-scaled
discretized optimal control problem from the Lagrange multipliers [l associated with the
optimal solution of the scaled optimal control problem. From the scaled Lagrange function Lo,

L=J+i-C=T,-J+ji-T.-C (2.85)
and the relationship between the scaled and the non-scaled Lagrange functions,
L,=T,-L,=T,-(J+p-C) (2.86)

the following equation for the computation of the non-scaled Lagrange multipliers p results:

n=T. (2.87)

o |'=Z

2.2.7 [Estimation of adjoint variables

Based on the sensitivity equations above, the estimation of the adjoint variables A(¢) of the
optimal control problem is accomplished without much effort, utilizing the Lagrange
multipliers p resulting from the optimal solution of the finite-dimensional parameter
optimization problem (Ref. [Biiskens, 2000]):

oL,

M= 50

(2.88)

Here, L, is the augmented Lagrange function of the finite-dimensional parameter optimization
problem:

L,=J+pn'C (2.89)
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2.2.8 Mesh Refinement

Basically, mesh refinement procedures can be divided into static methods (see e.g. Refs.
[Zhao, 2009], [Jain, 2008], [Darby, 2009], [Gong, 2006] and [Betts, 1998]) and dynamic
methods (Refs. [Anisi, 2006], [Teo, 2005], [Cuthrell, 1987] and [Vasantharajan, 1990]).
Dynamic methods include the grid points as decision variables in the discretized optimal
control problem. This means that the spacing of the grid points is not fixed and that the
optimal distribution of the grid points is determined during the optimization. At this, the
number of optimization variables of the discretized nonlinear programming problem is
increased significantly, resulting in a degraded convergence behavior of the nonlinear
programming problem and an increase of the time that is required for the computation of the
optimal solution. In contrary to dynamic methods, static methods first compute the optimal
solution of the nonlinear programming problem for a fixed number of grid points with
predetermined distribution. Then, the current optimal solution is utilized to refine the mesh
either by moving the current grid points or by inserting and deleting certain grid points. Thus,
the dimension of the original nonlinear programming problem remains unchanged utilizing a
static mesh refinement procedure. In the following, a static mesh refinement method is
considered that adapts the mesh by inserting respectively deleting grid points based on a
weighting function that is derived from the time histories of the controls.

For this weighting function w either the first order time derivative # of the respective control
or alternatively the curvature x of the control time history is utilized. Regarding linear
interpolated controls and the current mesh distribution

Ty=7,<7,<..<7,,<7, =71, (2.90)
with the corresponding control values
u, i=1L..,n (2.91)
the first order time derivatives #; of the control time history are obtained by

g =t =My -] (2.92)
lin — 1

with the corresponding time points £;
|
i =5(tl. +t,), i=1..,n-1 (2.93)

Alternatively, for linear interpolated controls it is also possible to establish a weighting
function based on the angle between two adjacent segments of the discretized controls (see
Fig. 6):

Aq, = arctan| —*—* |—arctan| —=L | i=2,..,n—1 (2.94)
lig 1 L=t



36 THEORETICAL FOUNDATIONS

u(?),

—— -
.
— e e o= o o o= o

|
1
[
1
I
7 1
1
I
1
[
I

) o - ——

T, T, T,

i i+1

Figure 6. Angle between adjacent control segments

i+2

For any function fthat is at least twice differentiable, the curvature « is defined as

K= ‘ f ‘ (2.95)
T -
Thus, for a linear interpolation of the controls, the curvature x; can be calculated by
K= (2.96)

i W

where the first order time derivative is given by Eq. (2.92). The second order time
derivative #; of the controls can be approximated by (Ref. [Zhao, 2009]):

. l/.l~+1 - l/‘l .
u, =———7+, i=1..,n-2 2.97
Ly =4 237
The corresponding time points 7; are given by

g:%@+g@ i=1..,n=2 (2.98)

Approximate values for the first order time derivative # of the controls at the nodes #; of the
second order time derivative function ii can be obtained e.g. by a spline interpolation. Once
the weighting function has been computed, the mesh is refined in the following way: Those
grid points where the weighting function w lies below a certain threshold wp,, defined by the
user are removed from the grid. At grid points where the weighting function w is larger than a
defined threshold wp,x, the segments directly before and behind the respective grid point are
split up into two sub-segments by inserting additional grid points before and behind the
respective grid point. Next, control variables u; are detected that are at their lower or upper
bounds and where the control time history enters or leaves its lower or upper boundary.
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ALGORITHM 1

1 Given t;, u;, i = 1, ..., n compute the weighting function w either by Eq. (2.92), by
Eq. (2.94) or Eq. (2.96)

2 Refine the control mesh

2A  Delete those grid points where the weighting function w is below a certain
threshold Wiin

2B Insert grid points where the weighting function w is above a certain threshold wpax
2C  Insert grid points where controls leave or enter bounds
2D Insert grid points where path constraints become active or inactive

3 Refine the path constraint mesh

Table 1. Mesh Refinement Algorithm

Additional grid points are inserted before and behind the detected grid points in order to
determine as exact as possible the time point at which the control enters or leaves one of its
boundaries. Furthermore, at time points where inequality path constraints become active or
inactive, grid points are added to all control meshes to enable a precise determination of the
time point when the path constraints get active or inactive.

Besides the control grids, the path constraint grids are refined, too. Therefore, it is checked in
between the current path constraint grid points where the path constraints are violated. At the
time points that show the maximum violation of the path constraints, additional grid points are
added to the path constraint grids.

In Table 1, an overview of the algorithm for the refinement of the control mesh and the path
constraint grids is given.
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Optimization Simulation Model

3.1 Overview

The following chapter describes the development of a scalable, multi-fidelity simulation
model that is specifically tailored for optimization tasks. This simulation model provides the
basis for the establishment of a robust and effective process for the solution of complex
trajectory optimization problems because of its novel, sequential structure that is a scalable
inner loop followed by an outer loop as depicted in Fig. 7. For the implementation of the
simulation model and the optimization tasks, the full dynamic order of the regarded flight
system is taken into account. Therefore it is ensured that the trajectory found by the
optimization later on is dynamically realistic and can be followed by the aircraft in reality.
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Figure 7. Simulation Model Structure with Scalable Inner Loop

The outer loop contains the nonlinear translation equations of motion as well as the position
propagation equations and can therefore be considered as a quasi non-linear point mass
simulation model. The inner loop represents the rotation equation of motions and the attitude
dynamics of the flight system under consideration. At this, the equations of motion are
formulated such that the inner loop and the outer loop can be simulated sequentially. This
sequential structure follows the structure of the physical causal chains of flight systems.
Physical causal chains describe the causal relationships covering flight system dynamics, e.g.
between the deflections of the control surfaces and the resulting changes in the states of the
aircraft. To give an example, the causal chain between an elevator deflection # and the
resulting change in the altitude % of the aircraft is depicted in Fig. 8. A deflection # of the
elevator control surface invokes a pitching moment M around the y-axis of the aircraft. This
moment in turn effects a pitch acceleration ¢ and therefore via an integration a pitch rate q.
This pitch rate induces a time rate change a of the angle of attack. An integration of this angle
of attack time rate change results in a change Aa of the aerodynamic angle of attack that in
turn leads to a variation AL of the aerodynamic lift force perpendicular to the flight path, i.e.
in the direction of the z-axis of the aircraft. The variation AL of the lift then produces an
acceleration that results in a load factor increment An, parallel to the lift increment, finally
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leading to a time rate change of the flight-path climb angle . Integrating this change, a climb
angle y results that causes a time rate change of the altitude / of the aircraft. By a further
integration, the change of the altitude yields the actual altitude /4 of the flight system vehicle.
The portion of the causal chain from an elevator deflection to a load factor change is
represented by the inner loop of the simulation model, while the part from a change in the
load factor to a variation in the aircraft’s altitude is assigned to the outer loop.

INNER LOOP OUTER LOOP

Rotation — Moments Translation — Forces

Elevator Pitching Pitch Rate Angle of Attack Load Factor | Flight Path Angle  Aircraft Altitude
Deflection ~ Moment Change Change Increment Change Change
Dynamics Dynamics Kinematics

Figure 8. Causal Chain from an Elevator Deflection to a Change in the Altitude of the Aircraft

The modeling fidelity of the inner loop is scalable and can be increased from a low level of
simulation model complexity represented by linear transfer functions for the load factors and
the roll rate to a more sophisticated complexity level with linear state space models for the
longitudinal respectively the lateral dynamics of the aircraft and finally to the most accurate
flight system modeling featuring full non-linear rotation equations of motion and attitude
propagation equations. At this juncture, the alternative equations for the different depths of
modeling for the inner loop are formulated and implemented in such a way that the interface
between the inner and the outer loop always remains the same regardless of the depth of
modeling that is chosen, i.e. the modeling of the outer loop is not affected by the selected
model complexity level of the inner loop. Therefore, the rotation equations of motion and the
attitude propagation equations are formulated with respect to the Kinematic Flight-Path
Frame K and not with respect to the local geodetic North-East-Down Reference Frame as
habitual. This fundamental difference is illustrated in Fig. 9. The interface between the inner
and outer loop is represented by the aerodynamic load factors (m4)g in the Intermediate
Kinematic Flight-Path Reference Frame K.

Conventional Approach

Rotation Attitude
Dynamics Propagation
w.r.t. NED-Frame
-
() )
Translation Position
Dynamics Propagation
w.r.t. NED-Frame
- @ @@
New Approach
S
Rotation Attitude Translation Position
Dynamics Propagation Dynamics Propagation
w.r.t. K-Frame w.r.t. NED-Frame
- @

Figure 9. Conventional and New Simulation Model Structure
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By the unified structure of the simulation model, the complexity of the simulation model can
be scaled to varying levels of fidelity in a nearly continuous manner and it can be easily
adapted to various requirements of a specific simulation or optimization task like total
duration of the optimization process, operational robustness, level of complexity, accuracy of
the optimized trajectory or the specific data that are available for the modeling of the flight
system that is to be simulated. This is depicted in Fig. 10. Thus, the simulation model allows
for an easy transition between the accuracy of the simulation respectively the optimization
results and the overall time needed for the optimization process.

Point-Mass Model Point-Mass Model Point-Mass Model Point-Mass Model
without with Linear Inner Loop || with Linear Inner Loop with
Inner Loop (Transfer Functions) (State-Space Models) || Non-Linear Inner Loop

Direct C d Direct Indirect Direct Indirect Direct Indirect
HECEOman Command || Command || Command || Command || Command || Command

-

T
Complexity/
Fidelity
T
Computation
Speed
T
Computational
Robustness

A/C Data
required
—

Accuracy

-
a 2

SCALE

Figure 10. Scalable, Multi-Fidelity Simulation Model

Besides the rigid body dynamics, further subsystems have to be taken into account in the
simulation model in order to achieve simulated and thus optimal trajectories that are
compatible to the true dynamic order of the flight system and thus as realistic as possible.
Therefore, for example actuator dynamics and the impact of static and dynamic properties of
the atmosphere surrounding the aircraft are incorporated in the simulation model. Since
especially wind is supposed to have a great influence on optimal trajectories, the influence of
static, time variant and convective wind fields is included in the equations of motion to
provide a maximum level of realism in the reproduction of the environment.

In addition to flight system modeling itself, a controller that is based on the principle of
dynamic inversion of the physical causal chain of flight systems is implemented in the
simulation model. For all depths of modeling included in the scalable simulation model, the
equations of motion are inverted so that e.g. for a given trajectory the required control surface
deflections can be computed. Feeding these control surface deflections forward to the
simulation model will then again result in the predetermined trajectory. As another example,
by utilizing only the inversion controller for the inner loop, the full non-linear 6-Degree of
Freedom simulation model can be simulated making use of the same virtual controls as for the
non-linear point mass model without any inner loop and inversion controller i.e. the
aerodynamic angle of attack ay, the aerodynamic sideslip angle S, the first order time



42 OPTIMIZATION SIMULATION MODEL

derivative of the aecrodynamic bank angle ji4 and the thrust lever position d7. This represents
another essential feature of the simulation model required for the development of the
optimization process to be described later. For the inversion controller to work, not only the
reference values themselves but also higher order derivatives of the respective reference
values are required. Therefore, the simulation model is augmented by reference models of the
appropriate order to produce these derivatives in a consistent manner.

The exact dynamic inversion of a causal chain of any flight system is only possible for flight
system dynamics with minimum phase behavior (see chapter 3.3.1). Thus, besides the
numerical computation errors, any non-minimum phase behavior will cause the actual values
of the simulation model to diverge from the reference values. In order to cope with these
effects and to guarantee a precise tracking of the reference values, error feedbacks on all
levels of the simulation model are implemented to attenuate possible deviations. Therefore,
the various states are fed back to the highest possible derivatives of their corresponding
reference values to allow the simulation model to react to any occurring deviation as fast as
possible.

In the following, the equations of motion for the different depths of modeling of a rigid-body
aircraft based on the underlying reference coordinate systems as well as the equations for the
corresponding inversion controllers are stated, with a proper inclusion of the influences of
environmental conditions, especially static and convective wind fields, and the forces and
moments acting on the aircraft that result from the gravitational force, the airflow surrounding
the aircraft and the propulsion system. Furthermore, the equations for the implemented error
feedbacks are outlined and an overview of the various simulation model modes with the
respective inputs and outputs is given.

3.2 Rigid-Body Equations of Motion

In this section, the rigid-body differential equations of motion that describe the time rate
change of the states of the rigid-body aircraft in the respective degrees of freedom are given
for the different depths of modeling. The differential equations of motion can be subdivided
into equations for the description of the translational motion and the rotational motion and
into differential equations for the determination of the position and the attitude in space. As
shown in Fig. 9, in a conventional approach (Refs. [Stevens, 1992], [Philips, 2004],
[Etkin, 1996], [Etkin, 2005] and [Roskam, 2001]) the rotational and attitude dynamics are in
general modeled in a manner parallel to the translational and position dynamics, so that the
attitude dynamics are given with respect to the NED-Reference Frame utilizing the set of
Euler-angles that are the azimuth angle ¥, the inclination angle @ and the bank angle @. With
the sequential approach, the rotational and attitude dynamics denoted as inner loop dynamics
are modeled in series to the outer loop dynamics that are the translation and position equations
of motion. Thus, the rotational and attitude equations of motion are not formulated with
respect to the NED-Reference Frame but with respect to the trajectory reference frame or
more precisely the Intermediate Kinematic Flight-Path Frame K. The sequential approach
allows one to switch between different depths of modeling for the inner loop without the
necessity for any modification of the modeling of the outer loop since the differential
equations are formulated in such a way that the interface between the inner and outer loop
always remains the same regardless of the type of modeling for the inner loop. In the
following, besides the differential equations for the translation equations of motion and the
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position propagation equations, the equations for three different depths of modeling for the
inner loop are described: first, linear transfer functions for the load factors and the roll rate
representing the characteristic dynamics of the inner loop, second, linear state-space models
for the longitudinal and the lateral motion of the aircraft, and third the full, non-linear rotation
equations of motion and attitude propagation equations representing the highest model fidelity
respectively depth of modeling.

Detailed derivations of the rigid-body equations of motion can be found in the literature e.g.
in Refs. [Holzapfel, 2009b], [Stevens, 1992], [Philips, 2004], [Etkin, 1996], [Etkin, 2005],
[Roskam, 2001], [Schmidt, 1998], [Brockhaus, 2001], [McRuer, 1990], [Nelson, 1997],
[Russell, 2003], [Boiffier, 1998], [Blakelock, 1991], [Hancock, 1995] and
[McCormick, 1994].

3.2.1 Scope of Validity

For the modeling of the flight system, a trade-off between the model complexity on the one
side and the external validity of the implemented model on the other side has to be done and
certain simplifying assumptions have to be made. This approach is legitimated by the
affirmation that all requirements that are necessary for the implementation of the simplifying
assumptions without any significant implications on the validity of the implemented models
are fulfilled. The flight systems that are mainly taken into consideration in this work are
aircraft of a relatively high stiffness with a relative small fuel consumption compared to the
total mass of the aircraft. Furthermore, the speed range is limited to subsonic speeds. Thus,
the following assumptions can be made:

e The vehicle is assumed to feature a quasi constant mass for the derivation of the
equations of motion, i.e. the change in the linear momentum of the vehicle due to
dynamic changes in the system mass is negligible. Therefore, the mass is considered
quasi-stationary.

e For the derivation of the equations of motion, the vehicle is assumed to be a rigid
body, i.e. that relative changes in the position of mass elements inside the system are
not accounted for and that the mass distribution is considered quasi-stationary.

e The reference point is assumed to coincidence with the center of gravity point of the
aircraft.

e The ECI-Reference Frame is considered to be a valid Euclidean frame, i.e. a system
where the residual acceleration is negligible so that Newton’s 2™ law may be applied.

e The angular speed ®"of the ECEF-Reference Frame with respect to the ECI-Frame is
assumed to be constant in both absolute value and direction. This means that the slow
variations in the Earth’s rotational axis and rotation rate are neglected.

3.2.2 Position Propagation Equations

There are various possibilities to select a triple of states that can be used to describe the
position of an aircraft in space. E.g. the aircraft’s position can either be given with respect to
the ECEF-Frame or with respect to a Navigation-Frame N. The associated equations for the
position propagation with respect to the ECEF-Frame are given by Eq. (3.1) where the
position of a point in space is specified according to the World Geodetic System WGS84
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(Ref. [NN, 2000]) utilizing two angles and the altitude above the reference ellipsoid namely
the geodetic longitude 4, the geodetic latitude x« and the geodetic altitude 4:

(VKG )i -sin yJ -cosyy
NE (N# + (h)f)) cos(,u)f)

A
il - (V,f)i-cos;(g-cosyg G3.0)
}.l ) M)u-i-(h)g
(72 ) -siny
a
N =
8 \/l—e2 sin”(u)p) 3-2)
1-¢°
M =N, -
# N P sin2(,u)g (3-3)

In Eq. (3.1) Vk denotes the kinematic velocity of the aircraft, yx the kinematic course angle
and ypx the kinematic flight path inclination angle. The radius of curvature in the prime
vertical N, and the meridian radius of curvature M, are computed from the semi-major axis
length a of the reference ellipsoid and the first eccentricity e, where the first eccentricity e has
to be calculated from the flattening f:

e =2f—f? (3.4)
The flattening fis defined as:
a—b

f= 3.5)
with b being the length of the semi-minor axis of the reference ellipsoid. In WGS84, the
values for the semi-major axis length a and the semi-minor axis length b are set to
6378137,0 m respectively 6356752,3142 m. Fig. 11 depicts the reference ellipsoid of WGS84
as well as the associated values.
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Figure 11. WGS84 Reference Ellipsoid

Thus, the position state vector of the flight system consists of the geodetic latitude u, the
geodetic longitude 4 and the geodetic height 4. A Navigation-Frame N can be derived from
the NED-Frame and is used to specify the position of an aircraft in a local Cartesian
coordinate system with its x-axis rotated to an arbitrary heading. The origin of a Navigation-
Frame N is fixed to a certain location on the Earth surface and the frame itself is rotated about
the navigation angle yy around the z-axis of the NED-Frame. The corresponding position
equations of motion with respect to such a Navigation-Frame N are given by Eq. (3.6), where
the matrix My is the transformation matrix between the Navigation-Frame N and the
NED-Frame:

ANE ANE G E G G G
X X uy Vi -cos gy -cosyy
_ _ G _ G _: G G
VI =My =M, | vg | =M, | Vi -sin y -cosyy (3.6)
G G . G
z), z), Wi ), =V -sinyy o

cosy, siny, 0

M,, =|—-siny, cosy, O (3.7)
0 0 1
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Here, the position state vector is made up of the three states x, y and z that are the coordinates
in the local Navigation-Frame N. If the Navigation-Frame N coincides with the NED-Frame
(i.e. wy = 0), x represents the coordinate position in a northward direction, y the coordinate
position in an eastward direction and z the coordinate position in the downward direction. The
local Navigation-Frame N is well-suited to generate an easily interpreted graphically image of
trajectories that are characterized by small geographic extents as it is the case for Red Bull Air
Races.

3.2.3 Translation Equations of Motion

The basis for the formulation of the differential equations for dynamic systems is Newton’s
2" law that states that the rate of change of the linear momentum P with respect to an inertial
(i.e. not accelerated) frame is proportional to the sum of external forces >F acting on the
vehicle (Ref. [Holzapfel, 2009b]):

zr (o) o o9

For Newton’s 2™ law to be valid the velocity V' of an arbitrary mass element P at the
position X" has to be given with respect to a reference frame that is not accelerated, i.e. the
velocity has to be given with respect to an Inertial or an Euclidean frame /. The integration is
carried out over all mass elements of the considered flight system vehicle. Assuming that the
mass of the aircraft is quasi-stationary, i.e. m = dm/dt = 0, Eq. (3.8) gives:

3 FC =(%) pe = [a"(x")- dm (3.9)

where 2" is the total acceleration of the vehicle. Assuming that the aircraft is a rigid body, i.e.
=0, (3.10)

the total acceleration of an arbitrary point R of the vehicle w.r.t. the ECI-Frame is:
i = (Ve[ 02 )< (2 +2- (0 )< (V2 ) +(0 )< [0 ) ()]

o2y o)< ok 6)+ @02 )x[0:0)< )

Here, ®° denotes the transport rate, i.e. the rotational rate between the ECEF-Frame and the
NED-Frame and " the rotational rate of the Earth. In Eq. (3.11) the ECI-Frame is chosen as
reference frame since together with the transformation given by Egs. (3.21) respectively
(3.22) one finally obtains the differential equations for the kinematic flight-path course
angle yx and the kinematic flight-path inclination angle yk. Thus, the kinematic flight-path
course angle yx and the kinematic flight-path inclination angle yx are states of the simulation
model. This is essential for the sequential structure of the simulation model. Inserting
Eq. (3.11) into Eq. (3.9), one obtains:

S0 = {2 o 92 4202 (52 oo )
oy + o )xto e )+ oo )< e am

3.11)

(3.12)
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Now the constant terms can be extracted from the integral:
- fan {2] ot W2 2 o (v

T A [

o1 | o7« )i

The position vector from the reference point R to an arbitrary point P is then split up into:
TR S (3.14)
where G is the center of gravity. Inserting Eq. (3.14) into Eq. (3.13) gives:

S F = [ o) (V) 201 (2
L R B B [ S TER
®” )x {(&)?)x l(fRG +F )dm}

With the definition of the center of gravity,
[E)-dm=0 (3.16)

m

Eq. (3.15) simplifies to:
AWE o (2 +2-(0k )< (VY
)<fo e }+[(<ﬁﬁf)0+(®1<) o b fams o
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[
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where the constant position vector from the reference point R to the center of gravity G has
been extracted from the integral. Furthermore, assuming that the reference point R
coincidences with the center of gravity G of the aircraft, i.e.

F“=0 (3.18)

Sr =m0 (V) 2o )< v
+ (@ <@ )]}

Thus, based on the simplifying assumptions made above, the following translation equations
of motion for the simulation model with the components given in the Kinematic Flight-Path
Reference Frame K result:

(3.19)
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EO

Vel = ve | =L(ZF0), - @), (Vo)

1
G m (3.20)

-2 (0 ) < (V) ~ (0 ) <@ ) <),

Here, m denotes the mass of the aircraft. The translation equations of motion of the aircraft
are described by the first order time derivatives of the states ug, vk and wg, the components of
the kinematic velocity vector A\ given in the Kinematic Flight-Path Reference Frame. The
resulting sum of external forces XF acting on the aircraft is primarily composed of the
gravitational force, the aerodynamic forces as well as the propulsion forces. Since the choice
of the system’s states is not unique, the translation equations of motion can also be formulated
with respect to the states kinematic velocity Vi, the kinematic flight-path climb angle yx and
the flight-path course angle yx. Therefore, the following transformation of the velocity
vector VK has to be done:

- (% - K _
Ve =(ve " +@p), (v (3.21)
’ EK . . E . EO
e [ — g sinyg) (V¢ ye
(VI?)Z =/ 0 + Ve x| 0 | =|z-VS cosyg (3.22)
0 ) 7o cosyy L0 —V8 .50 .

Equating the preceding equations (3.20) and (3.22) and solving for the first order time
derivatives of the states kinematic velocity Vx, kinematic flight-path climb angle yx and flight-
path course angle yx, the translation equations of motion become:

o h 0 0
Ve
G 1 {1 _
Wl =0 ——— 0 [{2(>F9)
o Vi -cosyy w 2Fh (3.23)
Tk )y 0 0 _L
i v

— EO UG — IE G (~IE — IE =G

_((’OK )K X(VK)i _2'((”K )K X(VK )K _((DK )K X[((DK )K x(r )K]}

Assuming that merely flight over flat, non-rotating Earth is considered, the rotational rates ®"
and ®" equal zero, resulting in the following simplified translation equations of motion:

Ve =—(FXG ) (3.24)
m
(£°)
-G _ y
2= yo _C’;Syg (3.25)
.
Yk = (3.26)
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Formulating the translation equation of motions in such a way means that a singularity
emerges when the aircraft reaches a kinematic flight-path angle of yx = £90°. This singularity
is similar to the singularity that occurs when the inclination angle @ equals +90° if the set of
Euler-angles is used to describe the attitude of an aircraft. For simulating and optimizing
aerobatic and all attitude trajectories including aerobatic maneuvers like the Half Cuban
Eight, it is mandatory to find a way to cope with this singularity. Thus, the simulation model
has to be modified so that the occurrence of these singularities has no influence on the
performance of the simulation model. Regarding Fig. 12, the sequential approach for the
implementation of the simulation model follows the path from the NED-Frame to the
Kinematic Flight-Path Frame K respectively the Intermediate Kinematic Flight-Path Frame K
to the Body-Fixed Frame B for a complete description of the attitude of the aircraft. Thus, five
angles are required as states that are the kinematic flight-path bank angle ux and the kinematic
attitude angles angle of attack ax and angle of sideslip fx besides the kinematic flight-path
angles yx and yx.

Hg =

%

XasV 4

\ 4

H,
Figure 12. Coordinate Systems

At this, the differential equations for the kinematic flight-path bank angle ux and the
kinematic attitude angles ax and fx are given by the attitude dynamics (chapter 3.2.4,
Eq. (3.43)). Instead of regarding the states resulting from the attitude dynamics as a separate
set of states, the kinematic flight-path bank angle ux is regarded as a state belonging to the
kinematic flight-path angles yx and yx so that a set of states is formed by the kinematic flight-
path angles yx and yx and the kinematic flight-path bank angle ux (see Fig. 12). Then, the
translation equations of motion can be formulated using the four quaternions gy, q;, ¢> and ¢;
(Refs. [Stevens, 1992], [Philips, 2004]) instead of the three kinematic flight-path angles yx, yx
and ug. By utilizing the quaternions, singularities that occur for climb angles of £90° are
avoided and the flight-path angles can be determined without ambiguity. The translation
equations of motion using the four quaternions then read:
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4o -4 —9% —9; 4,
q, _l 9 ~49 4 4 . W
& 2lq 9 —49 49, (oz?
qs -4, 4 9 4

(3.27)

2kA

Here it is mentioned that the differential equation for the kinematic flight-path bank angle ux
resulting from Eq. (3.43) is not integrated as a state but acts as input into Eq. (3.30) for the
calculation of the angular rate (@”);. Since the quaternions introduce an additional state, the
dynamic system is now over-determined and thus constrained. The algebraic constraint to be
met is that the square sum of the quaternions equals 1 (Eq. (3.28)). As after a number of
performed integration steps the build-up of computational errors will eventually cause the
quaternion vector to take a non-unit length and thus violate the constraint so that the vector is
not suited to describe the underlying set of flight-path angles any more. Thus, an additional
constraint has to be enforced on the quaternions:

(@2 +q2++42)=1 (3.28)

The constraint is enforced by accounting for the square sum error A computed by Eq. (3.29) in
the quaternion update equations (3.27) in the fourth column. The square sum error 4 acts as an
integration drift correction gain that attempts to drive the quaternion vector back to unit length
if any deviation results from computational errors during integration (Refs. [Pamadi, 1998]
and [Rolfe, 1986]).

a=1-(g2+q? +42 +42) (3.29)

In Eq. (3.27), the constant k represents a correction step factor and may be chosen such that
kh < 1 for a fixed integration step size & (Ref. [Rolfe, 1986]). For k4 = I, the entire correction
step is performed within one iteration cycle, whereas for 0 < kh < I, the deviation decreases
exponentially.

As can be seen from the quaternion update equations (3.27) the angular rate (@°); between

the NED-Frame and the Intermediate Kinematic Flight-Path Frame K has to be determined

which can be done in two alternative ways: By the first alternative, the first order time

derivatives of the kinematic flight-path climb angle 7, and course angle y, together with the

first order time derivative of the kinematic flight-path bank angle £, are used to calculate the
_AOK

required angular rate (@ ), with the help of the following equation that can be derived from
the appropriate strap-down equation (Refs. [Stevens, 2003] and [Holzapfel, 2009b]):

) 48— 3% siny?
@2 ). =| #¢ cosy@ sinpC + 7% cos (3.30)

-G G G -G G
H{ coSyy cos p — i sinpy |
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By the second alternative, at first the y- and z-component of the angular rate (®”), are
calculated by putting Eq. (3.22) equal to Eq. (3.31):

. EK E . EO
43 o | [V 23
- 0 ’
OK G OK
0 o \%k: ), 0 o Vo)

where the angular rate (®”°), is given by:

— Ji sinyy

@) =| 7 (3.32)
i cosyy

This gives the following relationships for the y- and z-component of the angular rate (&),

(w2, =7¢ (3.33)
(@2%), = 78 -cosyg (3.34)
The x-component of the angular rate (©”°), can then be calculated using the relationship
between the x- and z-component of the angular rate (®”), (Eq. (3.32)):
OK
0]
@4§X{:-Zg.gnygz_f_ﬁﬁg.gnyg:_(wggK.mnyg (3.35)
CoSyy

Together with the first order time derivative of the kinematic flight-path bank angle /i, finally
the required angular rate (®”); can be computed:

o) [y
(@7 e =M @), +@F ) =My | o2y | +] 0 (3.36)
Wit Lo
where the transformation matrix Mgx is given by:
1 0 0
M., =|0 cospu, singy, (3.37)

0 —sing, cospy

After the integration of the quaternions, the corresponding flight path angles can be re-
calculated by:

2 +
;(g = arctan( 5 (%6122 6]20%)2j (3.38)
90 v91 =92 — 43
yi =arcsin(-2(¢,4; — 404, ) (3.39)
2 +
48 :arctan( 2(q2q23 %Oql)zj (3.40)
90 — 41 —49; +4;
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Regardless of the use of the quaternions, the flight-path climb angle yx has to be limited to
values between -90° and +90° to avoid singularities while calculating the angular rate (@),
but it has only to be limited for this calculation and not globally as it would have been the
case with the utilization of the flight-path climb angle yx as a state itself. Another advantage
of the quaternions compared to the usage of the flight-path angles is the uniqueness of the
quaternions, i.e. that the flight-path angles can be determined from the quaternions without
ambiguity. Furthermore, the values of the flight-path bank angle ux and of the flight-path
course angle yx switch automatically when the flight-path climb angle yx reaches +£90° e.g.
when flying a looping or a Half Cuban Eight. Of course, if there are no aerobatic maneuvers
that might cause climb angles of £90°, the original translation equations of motion (Eq. (3.23)
respectively Egs. (3.24) to (3.26)) can be utilized. Given the case that the four quaternions are
utilized, the state vector associated to the translation equations of motion comprises the
kinematic velocity V and the four quaternions gy, q;, ¢> and g3, else the kinematic velocity Vg
is augmented by the three kinematic flight-path angles yk, yx and ux to give the full translation
state vector. With regard to the trajectory optimization problem, the utilization of the
kinematic flight-path angles improves the stability of the optimization problem since the
number of states and thus the dimension of the optimization problem is reduced. Furthermore,
the implementation of path constraints, initial or final boundary conditions is achieved more
easily with the three kinematic flight-path angles.

3.2.4 Attitude Propagation Equations

In contrast to conventional flight system models (Refs. [Stevens, 1992], [Philips, 2004],
[Etkin, 1996], [Etkin, 2005] and [Roskam, 2001]), in this work the attitude of the flight
vehicle is not specified with respect to the NED-Frame by the Euler-angles azimuth ¥,
inclination @ and bank angle @ but with respect to the trajectory respectively the Intermediate
Kinematic Flight-Path Frame K that is the Kinematic Flight-Path Frame K rotated by the
kinematic bank-angle ux around its x-axis. Thus the attitude states are given by the angles
between the Body-Fixed Frame B and the Intermediate Kinematic Flight-Path Frame K. The
associated kinematic attitude angles are ax and fk. The respective equations of motion for the
attitude dynamics can be derived by the so called strap-down equation (Refs. [Stevens, 2003],
[Holzapfel, 2009a]):

KB\ _«x
(QK )KK =Myp - Mpg (3.41)
KB -G -G . G
Wk g +ay -sin fiy
_ KB KB | G G G, pG .+ G
( K )K =|wg, | =|ax-cosfy -cosuy + fy -sinuy (3.42)
KB G G : G G G
@k ). Qg -cosfy -sin — B¢ -cos iy .
1 ( KB G, KB G)
e —— |k, -cos g + g, -sin g
K cos B¢
2G| _ KB . G KB G
K| = Wk - Sty — O - COS Ly (3.43)
-G KB G (kB G, KB . G
Hi )| DK —tan Sy -\, - oS py + wp 'SmﬂK)

K

The angular rate @ that is required for the above equations can be computed by Egs. (3.44)
and (3.45), where the angular rate @™ is an output of the translation equations of motion and
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the angular rate ®" is given by the rotation equations of motion described later on
(chapter 3.2.5):

@) =M, - 02), - (@), (3.44)

(‘523)3 = (6)?)3 —M;,- (@IE )0 —Mjo- (6)E0)0 (3.45)

If quaternions are used for the translation equations of motion, the first order time derivative
of the flight-path bank angle ji, is not considered as an attitude state and thus not directly
integrated but used to compute the angular rate ®” in Eq. (3.30) respectively Eq. (3.36).
Therefore, the first order time derivative of the flight-path bank angle ji, is an output of the
attitude propagation system and the states associated with the flight vehicle’s attitude are just
the kinematic angle of attack ax and the kinematic angle of sideslip fx.

3.2.5 Rotation Equation of Motions

Analogous to the linear momentum, the derivation of the differential equations for the
rotational degrees of freedom is also based on Newton’s 2™ law. Just like the linear
momentum, the angular momentum is defined for an arbitrary differential mass element P of
the vehicle and then integrated over the complete vehicle mass. While the principle of
conservation of the linear momentum poses a relationship between the translational motion of
a vehicle and the external forces acting on this vehicle, the principle of conservation of the
angular momentum draws the relationship between the rotational motion of an aircraft and the
sum of external moments: it indicates that the time rate of change of the angular
momentum H of a dynamic system is proportional to the sum of external moments M acting
on the dynamic system:

> (me)= (%jH = (%j [ (" (3.46)

where T represents the position vector and V' the velocity of an arbitrary mass element P. In
Eq. (3.46) the reference point for the angular momentum and thus for the external moments is
the center of the Earth since the EC/-Frame has been identified as a legitimate Euclidean
Frame. With the simplifying assumptions made above and the choice of the center of
gravity G of the aircraft as reference point for the determination of the external moments, the
sum of external moments SM acting at the center of gravity G and denoted in the Body-Fixed
Reference Frame B evaluates to (Ref. [Holzapfel, 2009b]):

Z(MG)B = (IG)BB : (é‘)?)ﬁ +((—0?)B X [(IG)BB '(‘?)3] (3.47)

Here, I1¢ denotes the inertia tensor of the aircraft with respect to the center of gravity point G.
Solving Eq. (3.47) for the first order time derivative of the angular rate ®" between the Body-
Fixed Frame B and the ECI-Frame [, the following differential equations for the rotational
motion of the aircraft denoted in the Body-Fixed Reference Frame B result:

(@), =00 ), A 00C), ~(@f), <[1°),, (@), ]} (3.48)

Thus, the states of the rotational motion of the aircraft are the components of the rotational
rate ® between the Body-Fixed Reference Frame B and the ECI-Frame I, namely the roll
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rate pg, the pitch rate gx and the yaw rate r, and Eq. (3.48) provides the corresponding
differential equations for the determination of the state derivatives.

3.2.6 Linear State-Space Models

Alternatively to the full, non-linear attitude propagation equations and rotational equation of
motions stated above, the attitude and rotational dynamics can be simulated utilizing a state-
consistent but simplified approach with linear state-space models incorporated in the
optimization simulation model. The input quantities to these state-space models are the
control surface deflections, the outputs are the rotational and attitude motions of the aircraft,
i.e. the linear state-space models feature the same inputs and outputs as the nonlinear model
with the nonlinear attitude and rotation equations of motion. These state-space models are
more accurate than the transfer functions for the inner loop presented in chapter 3.2.7, but
they are still only linear state-space models and do not represent the full non-linear behavior
of the rotational and attitude dynamics of an aircraft. But they are easier to implement than the
full non-linear rotational and attitude equations of motion that have been depicted in the
preceding chapters. The linear state-space models represent a linear approximation of the
rotation and attitude dynamics around a steady-state condition. In contrast to the single-input
single-output transfer functions, they allow to take into account coupling effects.

Basically, linear state-space models for an arbitrary flight system can be obtained by
linearizing the non-linear equations of motion of the flight system with respect to a specific,
quasi-steady-state reference or trim condition (Refs. [Roskam, 2001] and [Holzapfel, 2009c]).
Linear state-space models are usually derived for the analytical investigation of flying
qualities of an aircraft like e.g. stability or controllability or for the design of flight control
laws. It is important to mention that the resulting linear substitute equations of motion are
only valid in the vicinity of the regarded steady-state flight condition. Therefore the
investigation of flying qualities and the development of control laws is also limited to the
close vicinity of the considered trim condition. Within the state-space models, the states that
effect a motion of the aircraft solely in the vertical plane are assigned to the longitudinal
dynamics, while states that lead to a motion in the horizontal plane are assigned to the lateral
dynamics. Setting the states of the lateral motion to zero in the differential equations of the
longitudinal dynamics and vice versa, the longitudinal motion can be investigated decoupled
from the lateral dynamics. The resulting state-space models for the longitudinal as well as the
lateral motion are given in appendix A (Refs. [Roskam, 2001] and [Holzapfel, 2009c¢]).

As can be seen from the linearized state-space models for the longitudinal motion
(appendix A, Eq. (A.22)), the state variable for the position x is not coupled to the differential
equations of the remaining longitudinal states since the according elements of the system
matrix are zero. This means that the derivatives of the remaining state variables are
independent of the actual position x: they are dynamically decoupled from the position x.
Since for conventional aircraft the derivatives Cr4, Cpg as well as C,; are quite small in
reality, the substitute derivatives Z;, X; and M, can be set to zero. Furthermore, the substitute
derivatives with respect to a change in the altitude 4, i.e. X}, Z; and M), can also be neglected
to a first approximation, so that the differential equation of the altitude 4 may also be regarded
as dynamically decoupled from the remaining linearized equations of motion. Taking into
account the dynamic decoupling for the position x and the altitude 4, the simplified linear
state-space model for the longitudinal motion given by Eq. (A.22) in appendix A results.
Investigating the eigen values of the longitudinal motion, two basic eigen motion forms can
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be observed that are the short-period motion and the phygoid motion. Here, the natural
frequency of the short-period motion is by far larger than the natural frequency of the phygoid
motion. Furthermore, the primary states of the phygoid motion that are the velocity Vx and the
flight-path inclination angle yx are only slightly involved in the short-period dynamics, so that
the simplified state-space model for the longitudinal motion can be split up into a state-space
model representing the short-period motion (Eq. (3.49)) and a state-space model for the
phygoid motion, where the primary states regarding the short-period motion are the pitch
rate ¢, and the angle of attack ax (Refs. [Roskam, 2001], [Holzapfel, 2009c] and
[Stevens, 1992]). This means that only the rotational and attitude dynamics are accounted for
with negligible backward influence from the translation dynamics that are implemented in the
nonlinear outer loop.

Consequently, for the longitudinal dynamics of the aircraft’s inner loop the appropriate linear
state-space model that represents the characteristic short-period motion of an aircraft is
chosen. As mentioned above, the two states that are mainly involved in the short-period
motion are the kinematic angle of attack ax and the pitch rate g,, thus a second-order state-
space model is implemented in the simulation model that describes the short-period coupling
between the kinematic angle of attack ax and pseudo-pitch rate gy, while the according control
input is the elevator deflection #:

(d,ﬁ}_'za Zq+l](afJ+[Z”]'n
L ® - * CMD
qK _Ma Mq QK M77

Panls 2 ) e
0 Mq dx M, Mfz Nemp

G G
= A . aK + B . aA
longitudinal * longitudinal
qx Memp

Here, in analogy to the nonlinear rotation and attitude dynamics the first order time
derivatives of the kinematic angle of attack ax and the pitch rate g; are a function of the
aerodynamic angle of attack a4 and not of the kinematic angle of attack ax. Furthermore the
pitch rate g, is termed pseudo-pitch rate since the pitch rate resulting from the linear state
space model (3.49) is consistent with the real pitch rate only at the linearization point of the
state space model, i.e. with the angle of attack equal to zero. Otherwise, for a steady-state
flight with a constant angle of attack deviating from the linearization point and not being
equal to zero, a pitch rate g, would result from the steady-state flight requirement §,=0,
contradicting the steady-state flight assumption. Thus, the pitch rate can only be regarded as
the second state in a second order linear state-space model. The real pitch rate has to be
restored by Eq. (3.58) given below. Regarding the lateral dynamics of an aircraft, the
dependencies on the first order time derivative of the sideslip angle fx can be neglected for
conventional configurations and the corresponding substitute derivatives Nj, Y3 and Lj can
approximately be set to zero in the system matrix of the lateral state-space model. Thus, the
four state variables of the lateral motion roll rate p,, yaw rate r, sideslip angle fx and the
bank angle @ are dynamically decoupled from the remaining lateral states that are the position
variable y and the azimuth angle ¥. Furthermore, for small steady-state pitch angles @, (and
thus tan(©,) being approximately zero) and with the influence of the bank angle @ in the
differential equation of the sideslip angle Sk being negligible, the differential equation for the
bank angle @ can also be regarded as dynamically decoupled from the remaining linearized
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equations of motion, so that the simplified state-space model for the lateral motion given by
Eq. (3.50) results.

This linearized state-space model for the lateral dynamics is characterized by two eigen
motion forms that are the roll motion and the dutch-roll mode. The states that are primarily
incorporated in the dutch-roll motion are the sideslip angle fx and the yaw rate r,, while the
roll mode incorporates mainly the roll rate p, (Refs. [Roskam, 2001], [Holzapfel, 2009¢] and
[Stevens, 1992]).

Thus, for the modeling of the inner loop lateral dynamics a third order approach with the
states pseudo-roll rate pg, pseudo-yaw rate r¢; and kinematic angle of sideslip fx is
implemented in order to represent the appropriate dynamics, where the inputs are the aileron
surface deflection ¢ and the rudder surface deflection (:

pe) |L, L Ly|(pc) [L: L,
Fe |=|N, N, Nyl|-|r [+|N. N, -(QMDJ
,BI? Yp Y, -1 Yﬂ ﬁj Yg Yg e
L, L 0| (px L. L, L, Semw
=|N, N, O|:|r [+|N: N, Ny|-| o (3.50)
Y, Y-1 0| (B¢) |Y Y Y, |\ B
P1*< Semp
= Aleral e |+ B eral ‘| Cawp
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In total, the linear state-space models for the longitudinal and the lateral motion incorporate
five states in order to guarantee state-consistency in comparison to the full, non-linear rotation
and attitude equations of motion.

In Egs. (3.49) and (3.50), the system matrices A and the control matrices B are made up of the
dimensional force derivatives Z and Y respectively the aerodynamic moment coefficients L, M
and N with respect to the various states and controls, where the derivatives are functions of
the actual aircraft configuration (i.e. mass m, location of the center of gravity and inertia), the
aerodynamic velocity V4 and the air density p (Ref. [Holzapfel, 2009c]). Exemplarily, the
equation for the aerodynamic force derivative Z, due to a change in the angle of attack « is
given below, while the formulae for the remaining force and moment derivatives can be found
in appendix A:

z,=—21 > -[Cw +CDO] (3.51)

m-V,

Here, S is the aircraft’s wing reference area, Cy, the variation of the aircraft’s lift coefficient
with the angle of attack a4 and Cp, the drag coefficient of the aircraft in the steady-state

reference flight condition utilized for linearization:
Cp, =Con+k-(Cro+Cpu @, = Cug, f (3.52)

q is the dynamic pressure calculated from the air density p and the aerodynamic velocity V:

(o) (3.53)
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As can be seen from Egs. (3.49) and (3.50), the kinematic angle of attack ok and the kinematic
angle of sideslip fx are chosen as states in order to give a full description of the aircraft
following the path from the NED-Frame to the Body-Fixed Frame B via the Kinematic Flight-
Path Frame K and Intermediate Kinematic Flight-Path Frame K due to the sequential
implementation of the simulation model. In addition, the rotation equations of motion given in
chapter 3.2.5 incorporate kinematic body-angular rates, so that kinematic attitude angles result
from the attitude equations of motion. While kinematic attitude angles are chosen as states,
the aerodynamic attitude angles o4 and f4 are regarded as inputs to the state-space models.
This is done to take into account the analogy to the full, non-linear 6-Degree of Freedom
simulation model where the derivatives ax and fx are evidently not a function of the
kinematic angles ax and Sk but a function of the aerodynamic angles a4 and 4 that have to be
utilized to compute the aerodynamic moments for the rotation equations of motion (3.48).

Furthermore, the angular rates py, g and r; are marked with a star to accentuate that these
angular rates are in fact not the real angular body rates. As one can see from Eq. (3.49), a
change in the pitch rate ¢, and consequently a pitch rate ¢, would result for any arbitrary
angle of attack a, that does not equal zero. But e.g. for a steady-state straight flight in trim
condition, i.e. a trimmed flight condition with the pitch rate g, being constantly zero, an angle
of attack a, is required that does not equal zero. Thus, the linearized longitudinal state-space
model (3.49) cannot be used to compute the pitch rate change §, since this would not lead to a
trimmed straight horizontal flight. Instead, the real angular body rates py, g and r, between
the Body-Fixed Frame B and the NED-Reference Frame respectively the ECI-Frame have to
be restored with the help of the following equations:
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For the implementation of the linear state-space models, the absolute values and the rates of
the state variables have to be limited in order to adjust the dynamics of the state-space models
to the dynamics of the non-linear inner loop. Especially the angle of attack a4 has to be
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restricted to prevent the aircraft from stalling, while the control surface deflections &, # and
have to be limited due to the given geometry of the aircraft, i.e. the maximum possible
physical control surface deflections:

A i S () S 0, (3.59)
i S E(0) < &, (3.60)
Moin S 77() S (3.61)
Cin SC0) <L s (3.62)

The computation of the aerodynamic angle of attack a4 is given by Eq. (3.106). Here it is
mentioned that implementing any limiters into the state-space models means that these state-
space models also incorporate non-linearities although they are linear in principle. Fig. 13
shows the principal layout for the implementation of a limiter, where the saturation flag
indicates whether the respective signal is saturated or not.

+ fagsr
» abs ] >100-eps >

Limiter

Yy q —/_ >y Jim

Figure 13. Limiter with Saturation Flag

3.2.7 Linear Transfer Functions

The most simplified approach for modeling the dynamics represented by the inner loop, i.e.
the attitude and rotational dynamics, that still preserves the true dynamic order of this inner
loop but is not state-consistent any more is the utilization of linear transfer functions for the
load factors and the roll rate. This inner loop can be utilized to represent the rotational and
attitude dynamics of an aircraft in a rudimentary manner retaining the correct order for the
case that only little aircraft data are available. For this purpose, the dynamics of the normal
load factor n. and the dynamics of the lateral load factor n, given in the Aerodynamic
Reference Frame A are approximated by a second order time behavior, whereas the dynamics
of the pseudo-roll rate p; feature a first order time behavior. Here again the roll rate is marked
with a star to indicate that this roll rate does not correspond to the true roll rate of the aircratft.
In order to guarantee a good approximation of the correct aircraft dynamics, the dynamics for
the lift build-up use the same dynamics as the short-period oscillation and the build-up of the
side force corresponds to the dutch roll dynamics. Furthermore, for the roll rate the simple,
decoupled roll dynamics are used:

2

),

G 0,DR G

(5,), = ’ (n5,) (3.63)
/4 2 2 Ay J4,cMD

s°+2-Cpp "Wy pr St Wy pr

2
o,
G 0,5P G
(n5.), = (n5.) (3.64)
24 T2 2 = )4,cMD
§T+2-Cop - @y 5p S+ W sp
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* 1 *
Px = 7 Pxcwn (3.65)

Tey-s+1
Alternatively, the linear transfer functions for the load factors n, and ». can also account for a
non-minimum phase behavior of the flight system by the utilization of the following, slightly
modified equations for the transfer functions:

G\ _ _(T 'S_l)'a)g,DR G
( A,y )A - S2 1. é/ZR @ g+ 4 a)g,DR (nA,y )A,CMD (366)
—_ . [— . 2
(nS.), = (.51 ony (45.), o (3.67)

2 2
ST +2-Cop -y gp S+ gp

Considering the transfer function (3.67) for the load factor in the direction of the aircraft’s
z-axis, this transfer function accounts for the fact that an aircraft initially moves downward
when the pilot pulls the stick before it begins to ascend as desired by the pilot’s control input.
This effect is depicted in Fig. 14.

The various parameters included in the load factor transfer functions that are the natural
frequencies wy, the relative damping { and the time constants 7" depend on the current
aerodynamic velocity V, of the aircraft, the actual aircraft mass m and the air density p and
are therefore scheduled with regard to the current flight condition. The pseudo-roll rate py
also has to be limited depending on the current aircraft mass m and dynamic pressure g. The
respective values can be derived from the analytical dependency of the modes on the various
parameters. The transformation of the above stated transfer functions for the roll rate
respectively the load factors into state-space models of first order gives:

afris].| 0 b 0 e (3.68)
dt I;lij - a)(iDR —2-Cpp W, pr | ’;lg,y a)(iDR Apcib '
d(nj. 0 1 (ne. 07,
ar\nS. )" ks n. 3.69
dt [’;lj,j [_ wg,SP —2-Cgp "W sp | I"ljz a)(iSP A.2.CMD ( )
% 1 . .
Px = '(pK,CMD - pK) (3.70)
TRoll

Thus, the state vector for the linear transfer functions comprises the load factors »,, and n,_,
the first order time derivatives of the load factors 7,, and 7,. as well as the roll rate p;. For the
load-factor transfer functions taking into account non-minimum phase effects (Egs. (3.66) and
(3.67)), the following state-space models result:

d nij _ 0 1 ng,y N 0 0 nAG’y’CMD
dt ﬁg,y _a)g,DR —=2-Cpp Oy pp ’;lj,y a)(iDR _Tya)(iDR ’;lg,y,CMD (3.71)

d ng’z _|: 0 1 :| nf,z +|: 0 0 :| n,cq;,z,CMD
dt ﬁAG,z _a)(isp =2y ﬁf,z a)(?,SP -T za)(?,SP ﬁf,z,CMD (3.72)
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Limitations with respect to the load factors n, and n. can arise due the maximum achievable
lift coefficient Cy ., the maximum achievable side force coefficient Cy 4y, the maximum
allowable load capacity #uarsoucnre Of the aircraft structure or the maximum load
factors Ay pitor the pilot can sustain:

G G G
nA,y,min = nA,y = nA,y,max (373)
G G G
nA,z,min S nA,z S nA,z,max (3 74)
where
¢ _ qg-S
nA,y,min = max CY,min ’ ny,min,structure > ny,min,pilot (3 75)
mg
G - qg- S
nA,y,max = min CY,max H ny,max,structure H ny,max,pilot (3 76)
mg
and
¢ _ q-S
nA,z,min = max CL,min b nz,min,structure ’ nz,min,pilot (3 77)
mg
G s q- S
nA,z,max = min mg L,max * nz,max,structure 4 nz,max,pilot (3 78)

Additionally to the minimum and maximum values for the load factors n, and »., limits for
their first and second order time derivatives as well as limits regarding the roll rate p, and its
first order time derivative can be taken into account for the modeling respectively the
implementation of the inner loop utilizing linear transfer functions in order to adjust the
dynamics of the linear transfer functions to the dynamics of the non-linear inner loop:

Ay min S, S (3.79)
Y ymin ST ST (3.80)
A omin S SR (3.81)
A omin ST ST (3.82)
~Prmax = Pk = P max (3.83)
- pK,max < pK < pK,max (3.84)

As for the linear state-space models above, it is mentioned that incorporating these limits in
the simulation model introduces non-linearities into the transfer functions that are in principle
linear.

For the transfer functions, the natural frequency @ sp and the damping ratio {;sp of the short-
period motion, the natural frequency wy pr and the damping ratio {y pg of the dutch-roll mode
and the time constant T,; of the roll mode are required since these quantities determine the
oscillation of the load factor build-up respectively the roll-rate build-up. These values are also
only valid for a specific reference point and thus depend on the actual flight condition where
the variables are the air density p, the acrodynamic velocity ¥, and the aircraft mass m.
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Figure 14. Load Factor n, Time History showing Non-Minimum Phase Behavior

With the values for the load factors n, and n. given, the appurtenant force coefficients C; and
Cy can be restored:

C, = ("i;_)#mg (3.85)
G
c, = (”“’yq_)fgmg (3.86)

Given the assumption that the aerodynamic lift coefficient C; depends only on the angle of
attack a4 and that the aerodynamic side force coefficient Cy is solely a function of the sideslip
angle f4 of the aircraft, the approximate angle of attack o, as well as the angle of sideslip £,
can be obtained.

3.2.8 Aircraft Attitude described by Euler Angles

By the kinematic angle of attack ax and the kinematic sideslip angle Sk, the attitude of the
aircraft is described with respect to the Intermediate Kinematic Flight-Path Frame K. Usually,
the attitude of the aircraft is given with respect to the NED-Reference Frame, utilizing the set
of Euler angles azimuth ¥, inclination @ and bank angle @. This representation is derived in
the following for the simulation model described above.

The Euler angles can be restored from the transformation matrix Mz between the Body-
Fixed Frame B and the NED-Reference Frame:
c¥cO sV cO, - 5O,
M,, =|c¥VysOisP, —s¥cPy sY 5O 5P +cV ey cOpsDy (3.87)
Vi 5OcD+ sV sD, sYpsOpcDy —c¥sP, cOpcDy
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Here, s is the abbreviation for sin() and ¢ means the abbreviation for cos(). The value for the
transformation matrix Mp is determined by the following relationship:

M, = MBE 'MEO (3.88)

Equating element (1,1) with element (1,2) of the transformation matrix Mpo given by
Eq. (3.87), the kinematic azimuth angle ¥k evaluates to:

— MBO (1’2)
¥ = arctan [—M ) j (3.89)

The kinematic inclination angle @k is obtained from element (1,3) of the transformation
matrix Mpo:

0, = —arcsin(M ,,(1,3)) (3.90)

Finally, elements (2,3) and (3,3) of the matrix Mo between the Body-Fixed Frame B and the
NED-Reference Frame give the kinematic flight-path bank angle ®:

_ MBO (293)
b, = arctan(—M L G3) j (3.91)

3.2.9 Wind Inclusion and Kinematic Relationships

The aerodynamic forces and moments are a function of the relative motion of the aircraft with
respect to the surrounding air. Given the seldom case that there is no atmospheric motion and
thus no wind at all, the kinematic velocity Vx and the kinematic angles resulting from the
integration of the differential equation of motions equal the aerodynamic velocity Vy
respectively the aerodynamic angles a4, f4, etc. Otherwise, the aerodynamic values differ
from the kinematic values and the kinematic relationships have to be accounted for in the
simulation model. Thus, wind influences like static and convective wind fields play an
important role when simulating aircraft trajectories and therefore a proper inclusion of these
environmental issues in the simulation model is mandatory to provide a reproduction of the
real environmental conditions that is as realistic as possible.

For the optimization simulation model, static, time dependent and convective wind terms
given in the NED-Frame are regarded as sufficient modeling accuracy. The aerodynamic
velocity of the aircraft’s center of gravity with its components denoted in the NED-Frame can
then be calculated as (Ref. [Brockhaus, 2001)):

vel =(ve), -(ve), (3.92)

Here, V, represents the wind field given in the NED-Reference Frame as a function of time ¢
and position T. Then, the first order time derivative of the aecrodynamic velocity vector is as

follows:
- o - (0] - 0}
(Vf)f) =(V1?)f) —(V$)§ (3.93)

The first order time derivative of the wind velocity vector V, with respect to the NED-Frame
can be calculated by taking the total derivative:

il - (g) Vi) + o) v (3.94)



OPTIMIZATION SIMULATION MODEL 63

In case that the velocity V,, is assumed to be time-constant, this equation reduces to:

- o _ _

el =bewer) ey 399
With respect to the NED-Frame, the convective wind field is given by the gradient
matrix VVW of the wind velocity VW relative to the ECEF-Frame:

[ 6(uVGV )g a(u;’; )Z a(”v?f )2 |
8(()6)5) a((y ))0 69((2 )()7
ofeov] av;z GVPCV;i avgﬁ

o o), ), o),

ows E e Y alwg ),

a(x )o 0 (y )0 0 (Z )0

(3.96)

With the help of the aerodynamic velocity V,, the aerodynamic flight-path course angle y4
and the aerodynamic flight-path climb angle y, as well as the absolute aerodynamic
velocity ¥V, can be restored:

E E
G G G G
u, V,/-cosy,-cosy,
= V) .
Vo) =[vS | =| ¥ sing$ -cosy? (3.97)
G G : G
w =V, -sin
1 )0 y V4 o

- \/[(”3)5}2 J{(vff )gT +[(Wff )gT (3.98)

VAG = H(Vj )g

G \E
75 = arctan[g% ;(Ob; ) (3.99)
£
¥4 = —arctan ) (3.100)

Wesx ] +osx]’

where the aerodynamic flight-path course angle y, and the aerodynamic flight-path climb
angle y4 give the transformation from the NED-Reference Frame O to the Intermediate
Aerodynamic Frame 4. The kinematic angle of attack ax and the kinematic sideslip angle fx
are used to determine the transformation matrix Mpzz between the Intermediate Kinematic
Flight-Path Frame K and the Body-Fixed Frame B that in turn gives the transformation
matrix Mpo between the Body-Fixed Frame B and the NED-Frame with the transformation
matrix Mgo given by the kinematic flight-path angles respectively the quaternions:

cosay -cos B, —cosay -sinfB, —sina,
Mo =M Mg, = sin Sy cos S 0 [‘Mg, (3.101)

sinay -cos f, —sina -sin B,  cosay
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G rai~a a4 2-(¢ 0+ a0 4) 2-(a 4540 42)
Mg, =(2-(¢0:-49-45) @o-ai+% -4 20 a:+9-a)|  (3.102)
2:(¢a:+490°42) 2-(a2-a-q0-a) 447~ 43 +4;
With the help of the transformation matrix Mpo, the aerodynamic velocity V, of the center of

gravity with respect to the ECEF-Frame and its components denoted in the Body-Fixed
Frame B can be restored:

(V) =Muo (V5 =Moo | (V5 - (V) | (3.103)

This aerodynamic velocity V, in turn allows for the calculation of the absolute aerodynamic
velocity V4, the acrodynamic angle of attack a4 and the aerodynamic angle of sideslip f4:

ug E VAG E VAG‘COSOKf-cos,Bf E
Wg B 0 P Vf-Sinag-cosﬁg .
vy =“(Vf)§ ﬂ/[(uff)ir +[(v§)§r+[(w§)§r (3.105)
2
(5 )y
G _ 4 )
o, = arctan (ug)i (3.106)
ﬂf = arctan <Vg )g

IEARCT] oo

Finally, the aerodynamic bank u, angle is computed with the help of the transformation
matrices between the Aerodynamic Reference Frame 4 and the Intermediate Aerodynamic
Reference Frame A that is the Aerodynamic Reference Frame A rotated by the aerodynamic
bank angle x4 around its x-axis:

MATA(,U/?): M;N(Zjﬂ/j)'MNK(Zgayg)'MKB(ﬂgvagsﬂlg)'MBA(afoﬂAG) (3.108)

Mz, (3a2) (3.109)

us = arctan(

3.2.10 External Forces and Moments

For the derivation of the translation and rotation equations of motion in the preceding
chapters, the sum of external forces and the sum of external moments acting on the aircraft
have been related to the translational respectively the rotational accelerations of the aircraft by
applying Newton’s 2" law. Subsequently, the external forces and moments will be examined
in detail, where the sum of forces is split up into the categories gravitational force F,,
aerodynamic forces F, and propulsion force F, and the moments are divided into the
categories aerodynamic moments M, and propulsive moments M,:
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S(F), = (F9), +F), +(FS), =M, (FS), + M, (FS), + (S (3.110)
> (M), = (M), +(m5), G.111)

where Mg, and Mg are the transformation matrices between the Kinematic Flight-Path
Reference Frame K and the Aerodynamic Reference Frame A respectively the Body-Fixed
Reference Frame B.

3.2.10.1. Gravitational Force

Since flight trajectories with relatively low altitudes and with a limited geographic extent are
to be considered, the decrease in the gravitational force with increasing flight altitude as well
as inhomogeneities in the Earth’s gravitational field are not accounted for in the simulation
model. Thus, the absolute gravitational force acting on the aircraft is considered to be a
constant value. Since the point of application of the gravitational force coincides with the
center of gravity of the aircraft, no moments are induced by the attraction force. Denoting the
gravitational force in the Kinematic Flight-Path Frame K, the following expression results:

Fs . 0
£ =| Fo, | =My (FS),=M,,-| O (3.112)
F . X m-£g),

3.2.10.2. Aerodynamic Forces and Moments

The aerodynamic forces and moments acting on the aircraft are invoked by the airflow
surrounding the flight vehicle. For the calculation of the aerodynamic forces, it is assumed
that the aerodynamic reference point coincides with the center of gravity of the aircraft. Then,
the aerodynamic forces and moments with respect to the center of gravity G denoted in the
Aerodynamic Frame A respectively the Body-Fixed Frame B are computed by the following
formulae:

-D -C,

(FS),=| 0 | =7-5-| ¢, (3.113)
_L A _CL A
L s-C,

™), =| M| =7-s-|z-C, (3.114)
N R s-C, R

where D denotes the aerodynamic drag force, Q the aerodynamic force in the direction of the
y-axis of the Aerodynamic Frame 4 and L the lift force. The aerodynamic moments L, M and
N denote the rolling moment, the pitching moment and the yawing moment respectively. The
aerodynamic force and moment coefficients are primarily functions of the aerodynamic angles
o4 and f4, the control surface deflections ¢, # and ¢ and the dimensionless aerodynamic
angular rates p,, ¢, and 7

~ pub

P4 Zﬁ (3.115)



66 OPTIMIZATION SIMULATION MODEL
~ _q,°C
=3 (3.116)
7, =4
s (3.117)

The aerodynamic angular rates p,, ¢, and r, are the elements of the aerodynamic rotation
vector ®"; between the aircraft and the surrounding air denoted in the Body-Fixed Frame B:

Py
(3.118)

B

Analogous to the aerodynamic velocity V., the aerodynamic rotation vector ®, can in general
be derived from the difference between the kinematic rotation vector ®, and the wind rotation
vector ®,, of the surrounding atmosphere (Ref. [Brockhaus, 2001]):

O, =0, -0 (3.119)
Thus, the aerodynamic rotation vector ®"; is obtained by subtracting the rotation vector @', of
the circumfluent air relative to the NED-Frame from the rotation vector ®% of the flight
vehicle relative to the NED-Frame:

_ AB — OB — OA
((’JA )B = ((oK )B _((‘)W )B
The rotation vector @9 of the surrounding air relative to the NED-Frame is given by

Eq. (3.121), utilizing the non-diagonal elements of the gradient matrix VV, of the wind
velocity V,, given by Eq. (3.96) (Ref. [Brockhaus, 20017).

(3.120)

E S

5(y)% 8(Z)OE
(©%), ==rot, (V) == [70 x (V¢ ]=% aa(?:)())o - 6;&2“ (3.121)

oby), ol ),

a(x )0

0()} )0

3.2.10.3.

The installed propulsion system of a flight vehicle generates a thrust force acting at the thrust
reference point. In general, this thrust reference point is not identical to the center of gravity
and the thrust direction is not aligned with the Body-Fixed Reference Frame’s x-axis. The net
thrust generated by the propulsion system can be split up into an inlet impulse 77 and an outlet
impulse Tp (Fig. 15) acting at the reference points 7; and Ty, where the inlet impulse is
parallel to the x-axis of the Aerodynamic Frame 4. The direction of the outlet impulse with
respect to the Body-Fixed Frame B is considered as constant and is given by the two
mounting angles of an aircraft’s engine that are the angle « in the body-fixed xy-plane and the
thrust elevation angle o. For the depiction of the outlet impulse T, a Propulsion Frame P is
introduced that is the Body-Fixed Frame B rotated by the two mounting angles x and ¢ of the
aircraft’s engine, so that consequently the x-axis of the Propulsion Frame P is aligned with the

Propulsion Forces and Moments
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direction of the outlet impulse 7. Especially for air-breathing propulsion systems, table data
for the outlet impulse are provided instead of table data for the net forces and moments.

The net thrust force with its components given in the Body-Fixed Frame B is the sum of the
outlet impulse 77 and the inlet impulse 7:

(Fe), = (F2, ), + (5,
=My, - (F;ITI )A My (Fg?T” )P

-7, T, (3.122)
=M, | O +M,,-| O
0, 0),

Figure 15. Depiction of Inlet Impulse and Outlet Impulse

Mgpp is the transformation matrix between the Body-Fixed Reference Frame B and the
Propulsion Frame P:

COSK-COSO —SInk COSK-Sino
M,, =|sink-cosc cosk sink-sinoc (3.123)

—sino 0 cos o

Because of the lever arms between the aircraft’s center of gravity point G and the thrust
reference points 77 and Ty, the inlet impulse 7; and the outlet impulse 7y also induce a
supplementary moment around the center of gravity point G of the flight system. Furthermore,
components of the propulsion system rotating at high speeds like e.g. shafts induce gyroscopic
moments I\A/IG},m also acting on the aircraft. These moments can be taken into account in the
total propulsion moments M, acting at the aircraft’s center of gravity point:

M), =7, ), +F ), < (B, ), +(F ), < (Fl5, ), (3.124)

If the propulsion system is not a tilt-rotor system nor a system with thrust vector control, i.e. if
the Propulsion Frame P is fixed relative to the Body-Fixed Reference Frame B, the gyroscopic
moments are (Ref. [Holzapfel, 2009b]):

(v, =), - @), + (@2), x (%), - @2%),] (3.125)
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Here, Rot denotes the Rotor Reference Frame that is fixed to the rotor and thus rotates with
the rotor. The x-axis of the Rotor Reference Frame Rof is aligned with the x-axis of the
Propulsion Frame P and the rotation vector ® " is given by

PRot
a)K X

@), =| o (3.126)
P

For the calculation of the thrust force 7 that is a function of the commanded thrust lever
position drcup, one has to bear in mind that due to the engine dynamics the thrust force
cannot perform discrete changes even if a step change in the thrust lever position is
commanded. For this reason, it is much more realistic to model the relationship between the
commanded thrust lever position o7 cyp and the thrust force 7T as a linear transfer function of
first order depending on the maximum possible thrust for any given altitude and velocity:

1

T = T . 5 = T “_ .
max T max T5 C5+ 1 T,CMD (3 127)
This transfer function can also be rewritten as a differential equation:
; 1
o = _(5T,CMD - §T) (3.128)

T

The engine time constant 7 can be adjusted to simulate the real engine dynamics in a realistic
manner. With the effective thrust lever position Jr a further state is added to the non-linear
simulation model. Within the simulation model, the effective thrust lever position d7 has to be
limited so that on the one hand the thrust force cannot take negative values and on the other
hand the thrust force cannot exceed the maximum available thrust force 7,

5, €[0,1] (3.129)

Furthermore, the first order time derivative of the effective thrust lever position can be limited
to achieve a realistic reproduction of the characteristic dynamics of the propulsion system in
the simulation model:

0.

T ,min

<67 <67 (3.130)

3.2.11 Actuator Dynamics

Additionally to the basic flight system components that have been considered so far, for a
realistic simulation of the aircraft it is also necessary to take into account further characteristic
dynamics that are directly enclosed in the physical causal chain of the flight system. In this
conjunction, one important aspect that has to be considered are the dynamics associated with
the actuators installed in the aircraft. Even in case of an aerobatic aircraft without any
actuators installed, the pilot will not be able to move the control surfaces at infinite speed
because of the pilot’s limited maximum physical motion speed that in turn is further reduced
by the counteracting aerodynamic forces acting on the control surfaces. Thus, it is more
realistic to assume that discrete jumps in the acceleration of the control surfaces are possible
instead of discrete changes in the velocity or even in the position of the control surfaces. This
justifies the modeling of the actuator dynamics by a substituted mechanical system of second
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order. The according linear transfer functions between the commanded control surface
deflections and the achieved deflection values have the following form:
@)

= u
y S2+2'§'w0's+w§ CMD (3.131)

Here, the input ucyp represents the commanded control surface deflection while the output y
gives the effectively achieved value. This transfer function can also be cast in state-space

form:
X, _ 0 1 X, 0
5) |~ —2:¢-a) \w ) [wg] (3.132)

yZﬁOWEJ (3.133)

Because the actuator dynamics are modeled as second-order mechanical systems, the aileron
deflection ¢, the elevator surface deflection # and the rudder deflection { augment the state-
vector of the optimization simulation model by totally six states that are the effective control
surface deflections &, # and { and their first order time derivatives ¢, i and ¢. Within the
simulation model, these states are limited to take into account the maximum achievable
control surface deflections and rates of the regarded flight system and to simulate this flight
system as precise as possible. Furthermore, if the maximum occurring control moments shall
be limited, the accelerations, i.e. the second order time derivatives cf , 7 and C of the various
control surface deflections have to be restricted.

3.2.12 Static Atmosphere

The atmospheric conditions are calculated in accordance to the International Standard
Atmosphere DIN ISO 2533 (Ref. [NN, 1975]). Deviations from the norm standard
atmosphere can be taken into account by an adjustment of the respective norm reference
values py and Ty regarding the polytropic troposphere layer:

Do = Po +Ap, (3.134)
T, =T, + AT, (3.135)

In this manner, deviations from the norm standard atmosphere given in the form “IS4+25°C”
as it could be the case for air races taking place on a hot day e.g. in Abu Dhabi are taken into
account for the simulation and optimization of the flight trajectories. If any deviations from
the norm standard atmosphere are existent, the corresponding reference values 7, T, p/; and
P for the isothermal lower stratosphere layer respectively the polytropic upper stratosphere
layer have to be calculated from 7, and p.

3.3 Feedback Linearization as Plant Transformation

Additionally to the simulation model with its different depths of modeling described above,
for all subsystems inverse simulation models are implemented so that for given reference
values the required command values that force the simulation model to track the prescribed
reference values can be calculated. This inversion is based on the principle of nonlinear
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dynamic inversion (Refs. [Slotine, 1991], [Holzapfel, 2004], [Holzapfel, 2009d] and
[Khalil, 2001]) of the flight dynamics equations.

For the dynamic inversion, the equations of motion respectively the propagation equations
implemented in the various subsystems are inverted so that the inputs that in turn will produce
the desired outputs can be computed. It has to be mentioned that the inversion is only possible
for minimum phase systems, i.e. systems that have all their transfer function zeros in the left-
hand side of the complex plane. If any system or subsystem incorporates a non-minimum
phase behavior, only the minimum phase part of the subsystem can be inverted to yield an
inverse system that is also stable and causal.

The application of dynamic inversion to flight control tasks has a long tradition (Refs.
[Snell, 1991], [Snell, 1992] and [Lane, 1988]) and has been successfully implemented in
different experimental programs simulating a broad range of aircraft with various tasks (Ref.
[Calise, 2000]). Over the time, a lot of modifications have been made to the basic concept,
like the addition of adaptive terms to cancel the inversion error, a concept that has originally
been demonstrated for robots. Basically the principle of dynamic inversion can be stated as
follows: for a system with relative degree of one the dynamic inversion of the plant computes
the required control inputs ucyp with respect to any given reference trajectory v = yrgr such
that the model plant reacts with the desired output trajectory y = prer.

For the full non-linear 6-Degree-of-Freedom simulation model plant, a change in the altitude
results from a certain deflection of the elevator control surface over a chain of integrations.
On the other side, for a desired altitude profile, the necessary elevator deflections can be
computed by inverting the equations of motion of the simulation plant. If the computed
control surface deflections are then commanded to the simulation model, the aircraft follows
the desired reference trajectory.

As can be seen from Fig. 8 in chapter 3.1, there are at least four integrations between the
control surface deflections and the resulting position of the aircraft if no actuator dynamics
are taken into account, so the relative degree of the overall flight system is four. Thus, not
only the reference time history itself but also higher order time derivatives are required as
input to the inverse simulation model in order to be able to calculate the command values that
have to be fed into the simulation model so that the simulation model follows a given
reference time history. Since there are two integrations in the causal chain between the
commanded control surface deflections and the resulting changes in the aerodynamic attitude
angles respectively aerodynamic load factors (see Fig. 8 in chapter 3.1), for the dynamic
inversion of the inner loop attitude and rotational dynamics the second order time derivatives
of the reference load factors T are required. This in turn means that the third order time
derivatives of the flight-path velocity ¥, the climb angle %" and the course angle % have to be
computed thus demanding for the fourth order time derivative of the position vector X“. In
the following the derivation of the required reference values is depicted, starting from a given
reference trajectory X (7). For this reference trajectory, it is essential to be at least four times
differentiable with respect to the trajectory parameter .

Since the inversion controller that is based on the principle of dynamic inversion is a
substantial part of the simulation model and thus of the developed optimization algorithm,
theoretical foundations on the principle of nonlinear dynamic inversion respectively input-
output linearization are reviewed in chapter 3.3.1. More detailed information on the principle
of dynamic inversion can also be found in Refs. [Slotine, 1991], [Holzapfel, 2004],
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[Holzapfel, 2009d] or [Khalil, 2001]. The input to the outermost part of the inversion
controller is a reference trajectory that the dynamic system ought to follow. Thus, in
chapter 3.3.2 the method for computing the required reference values from a given input
trajectory is depicted.

The dynamic inversion part of the simulation model is built up as a cascaded structure,
whereas the reference signals for a particular subsystem are calculated from the signals given
by the next outer subsystem. The derivation of the reference values for the distinct subsystems
is explained in chapters 3.3.3 to 3.3.12, starting from the outermost system, the subsystem for
the generation of the reference values for the kinematic flight-path variables, and then going
inwards to the subsystem for the generation of the moments respectively the control surface
reference values. Here, the major task of the different subsystems is to generate reference
signals up to the respective required derivative order with respect to a given reference
trajectory. For the computation of these reference values by the particular subsystems, not
only the reference commands themselves coming from the next outer subsystem are required
as input signals but also their derivatives with respect to time up to a certain order.

3.3.1 Non-Linear Dynamic Inversion - Theoretical Fundamentals

The primary objective of non-linear dynamic inversion is to find a non-linear transformation
of the state vector of the form

z=®P(x) (3.136)

so that the transformed system shows a linear input-output behavior. Therefore, the principle
of non-linear dynamic inversion is also called exact input-output linearization. It can be
termed exact, since the linearization is done without any approximations or simplifications of
the underlying dynamic system.

In the following, non-linear multi-input multi-output (MIMO) systems are considered that are
of the state-space form

X:f(x)+G(x)-u (3.137)
y =h(x) (3.138)

where x € R" is the state vector, u € R” the control input vector and y € R" the output vector
of the dynamic system. The functions f: x — R’, G: u — R" and h: x — R" that are
functions of the n-dimensional state vector have to be sufficiently smooth, i.e. that they have
to be continuously differentiable up to a certain differentiation order. Since the control input
vector u appears linear in the system (3.137), the system is called input affine. Furthermore,
the system is square, i.e. the number of input variables equals the number of outputs. The
matrix G is comprised of m vector fields g;:

G(x)=[g,(x) - g,x)] (3.139)

The vector fields f, g and h in turn consist of non-linear functions of the state vector x:
fx)=[(kx) - A& (3.140)
g (x)=[g,(x) - g, & i=lL..m (3.141)

h(x)=[n(x) - &, (x)]" (3.142)
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Now, the basic approach of the dynamic inversion principle in order to linearize the input-
output behavior of the regarded system is to differentiate the outputs repeatedly with respect
to time until the control u appears. Then, the control u can be designed such that the non-
linearities of the system are canceled out. A necessary pre-condition in order to be able to
accomplish this task is the existence of a well-defined relative degree » of the considered
system that is defined as follows:

Definition: A non-linear multi-input multi-output system of the form (3.137) to (3.138) is
said to have a vectorial relative degree {ri, ..., rn} at a point X, if

Lg/_L’;hi(x):O VI<j<mk<r-1,1<i<m (3.143)
with x being in the neighborhood 2 of x¢. Furthermore, the m x m decoupling matrix A

defined by Eq. (3.144) must not be singular at x = x,, which also implies that the decoupling
matrix A is invertible.

L L7'h(x) L L'm(x) - L, Li7'h(x)
Aw)=| (o) BEIRG) e G o
LglL?"‘.lhm (x) ngL?;lhm (x) L, L'f‘milhm (x)
For the vectorial relative degree, the following relation holds:
r=r1+...+rm:ir[ <n (3.145)

i=1
In (3.143) and (3.144), the so-called Lie derivatives L are used that are defined as follows:
Definition: Given a real-valued, smooth scalar function 4: R" — R and a real-valued, smooth

vector field f: R® — R, the Lie derivative L/ of 4 with respect to f is defined as the
derivative of the function 4 along the vector field f:

Lh= [%"))T f(x) (3.146)

Ox

1.e. the Lie derivative is the gradient of 4 with respect to x projected onto the vector field f.
Since the resulting Lie derivative is again a scalar value, higher order Lie derivatives with
respect to the same vector field can be computed by recursion:

Lin(x) = M-f(x) (3.147)

ox
with
LYA(x) = h(x). (3.148)

If another vector field g: R — R" is given, the recursive execution of the Lie derivative with
respect to f and g gives:

L,Lh(x)= 8(]43—};(")) -g(x) (3.149)
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Finally, the Lie derivative can also be applied with respect to a matrix G as given by
Eq. (3.139):

Leh=(Lgh .. L, h) (3.150)

which means that the gradient of the function /% is projected on the vector fields g; that form
the columns of the matrix G.

For the system given by (3.137) and (3.138), the relative degree r; of each single output y; can
be determined by differentiating the respective output with respect to time repeatedly until a
control variable u; appears directly in the 7;-th order time derivative of the output y;:

=0

T T T
y =@=(a—hfj -x:(a—h"j ~f(x)+[a—h’) -G(x)-u=Lh +Lghu  (3.151)

"odr \ox ox ox
. (on Y oLk .,
V= o £(x)+ — -G(x)-u=Lh+L;Lh -u (3.152)
#0
o _ (ot ) oy, h I
w = = f(x)+ . G(x)-u=Lih + L, Li'h, -u (3.153)

Here it is assumed that the control vector u at a point x = X has no influence on the first -1
time derivatives, so that the corresponding Lie derivatives are zero. This implies that the 7;-th
order time derivative of the output y; is the first time derivative order that can directly be
influenced by the control input u, while the lower order time derivatives do not depend on the
control vector u in a direct manner and thus cannot be influenced forthright. Thus, the relative
degree r; of an output y; provides the lowest differentiation order of the considered output that
can be directly prescribed by a control input which means that the 7-th order time derivative
of this output is proper with respect to the control input. Furthermore, the relative degree 7;
can be regarded as a measure for the minimum possible time delay for the output y; to react to
any change Au in the control input since the lower order time derivatives of the output y;
result from integration of its r;-th order time derivative. In case of a linear transfer function
the relative degree r; of the system matches the pole excess, i.e. the difference between the
degree of the denominator polynomial and the degree of the numerator polynomial.

As mentioned before, the existence of a well-defined relative degree » as well as the non-
singularity of the decoupling matrix A are necessary conditions in order to perform an input-
output linearization of a specific system. If these conditions are fulfilled, the transformation
(3.136) can be carried out so that the resulting system will feature a linear input-output
relationship. This is illustrated in the following, where for a system with multiple outputs at
first the individual outputs are treated separately before finally the transformations for the
single outputs are combined together to give the transformation for the entire multi-output
system.

Exploiting the fact that for the output y; with relative degree r; the first ;-1 Lie derivatives do
not depend on the control u, i.e.

vy = Lfh,(x) 3 A (3.154)

the system can be transformed to
Z{ =§li =(Di(x)=y[ :Lghl.(x)=hi(x) (3.155)
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i i i d®l .
2 =& =0 (x) == b=, = L (x) = L (x) (3.156)
S A’
=g =0 ()= =y = L ) (3.157)
Y
z) =& =@ (x)= d:*l = U = [ (x). (3.158)

Thus, the transformed state & vector for the i-th output is
i i i |r
g z[cfl g,[] (3.159)

Joining together the transformed state vectors £ for the different outputs gives the following
state vector & for the first » =r; + ... + r,, coordinates:

&1
E=|: (3.160)

élﬂ
If the state vector & obtained by the transformation contains less elements than the original
state vector X comprising in total n elements, n-r additional coordinates 7, ..., 17,.- have to be

found in order to ensure that the transformation (3.136) is a local diffeomorphism and thus a
valid coordinate transformation. Formally, the definition of a diffeomorphism reads:

Definition: A function ®(x): R" — R" is called a diffeomorphism if ®(x) is bijective, i.e.
the function has to be invertible so that a function ®'(x) exists with

@ '(d(x))=x VxeR’ (3.161)

and if ®(x) and ®'(x) are smooth, continuously differentiable mappings, i.e. that all partial
derivatives have to exist and must be continuous:

®(x)e C' (3.162)
®'(z)eC' (3.163)

If the necessary conditions are fulfilled only locally at a point xy, and not globally in R, the
diffeomorphism is said to be a local diffeomorphism. In case of a local diffeomorphism, the
Jacobi-matrix

_ 0D (x)

vV (x) ax

(3.164)

of the mapping ®(x) is regular, i.e. invertible.

For the Jacobian d®/dx to be invertible, the row vectors of these matrix have to be linearly
independent. This implies that for the selection of the remaining n-r coordinates 7n;, ..., .,
the linear independence of the derivatives d®;, i = r+1, ..., n among themselves as well as
their linear independence with respect to the » coordinates given by Eq. (3.160) have to be
taken into account:
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Zn = = cDr+1(X) (3.165)

z,=1,,=0,(x) (3.166)

The full length state vector of the transformed system then reads:

A
“olx) < @Lx) e D(x) - DN (x) @,,(x) - @, (x)] G167
=[§11 e &g e mir]T

with the corresponding transformation being defined by Eq. (3.136). According to this
transformation, each of the first » states corresponds to the first order time derivative of the
preceding state:

(3.168)

Then, substituting the state vector x by the inverse of the transformation, i.e. x = ®'(z) and
introducing the fraction state vectors & = [£1, ..., &]" and p = (71, .oy nn_,]T so that z = [£7]",
the following system dynamics result with one block for each output y;, i=1, ..., m

&=¢ (3.169)
& =bem)+ Zm:a,-j(&, n)u, (3.170)
and one additional block
n=q&n)+ ip_,(é,n)-uj =q(&m)+PEn)u (3.171)
where
b(z)=Lih(@"(z) i=1,...m (3.172)
a,(2)=L, L7'h(@7(2)) i j=1.m (3.173)
q,(z)=L®,@"(z)) i=r+l..n (3.174)
pl.T(z):LG(Dl.((I)’l(z)) i=r+l,..,n (3.175)
and
p:+l
P(z)=| : | (3.176)
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For the outputs of the transformed system, the following relationships hold:

y=h(@'(2)=& i=l..m (3.177)

Based on the state-transformation derived so far, a non-linear state feedback can be found that
gives the desired linear input-output behavior. Therefore, only equations (3.170) that contain
the highest order derivatives of the various outputs are combined together:

[ = b(x)+ A(x)- u=bEn)+ AEG ) i=1..m (3.178)
where
LglL?_lhl(X) ngL?_lhl(x) Lg,,,L?_lhl(X)
Alx)= LglL?:lhz(x) ngL?:lhz(x) 5 LgmL?:‘hz(x) 5179
L Ly, (x) L, Ly 'k, (x) - L, Ly7'h,(x)
Lih(x)
L:h
b(x)=| f(") . (3.180)
Ly h,(x)

In addition to the linearization of the input-output behavior of the dynamic system, non-linear
dynamic inversion has the goal to decouple the system dynamics between the inputs and the
outputs, i.e. each control input shall only influence a single output. Therefore, pseudo-controls
v =1[v1, ..., vu]" are introduced for the transformed system, where the number of pseudo-
controls has to equal the number of the system outputs in order to allow for a decoupling of
the input-output dynamics. Then, a non-linear state-feedback of the following form can be
chosen:

u=a(x)+B(x)-v (3.181)

Substituting Eq. (3.181) into the transformed system (3.178), the dynamics of the closed-loop
system are:

] =b(x)+ Ax)-[o(x)+ B(x)-v] (3.182)
Setting the coefficients of the non-linear state-feedback (3.181) to
o(x)=-A"(x)-b(x) (3.183)
respectively
B(x)=A"(x) (3.184)

the system dynamics (3.182) reduce to
] =v (3.185)

The actual controls u that have to be fed forward into the original dynamic system can then be
restored from the pseudo-controls v and the implemented feedback gains @(x) and B(x):

u=A"(x)-[v-b(x)] (3.186)
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Thus, the original system featuring coupled and non-linear dynamics has been substituted by a
transformed system with decoupled and linear dynamics between the pseudo-controls and the
system outputs, where the i-th output y; results directly from the i-th pseudo-control v; after 7;
integrations as can be seen from (3.185), i.e. that the r;-th derivative of the i-th output y; can
be set directly by the i-th pseudo-control v;. Fig. 16 shows the principle layout of the system
that ideally results from an exact input-output linearization respectively dynamic inversion.

3 N N o [ i I
Vi ' 1 | [ ] |
F(x,v) F(x,u) s === P >
u
-—=-#u=A"(x)[v-b)] [ |= b(x) + A)-uf---> "y -
— e B H—
Vm y(’”m) L | ym
(_Inversion Controller /  { Plant )" \_ Integration Chain )
L
N »1%)

Figure 16. Input-Output Linearization

The relationships between the input quantities u; and the r;-th order time derivatives of the
output quantities y; are given by a system of non-linear algebraic equations. These equations
are determined by the vector fields f, gi, ..., g, which describe the dynamics of the considered
system and depend on the actual control inputs and state values of the system. In principle, the
exact input-output linearization is identical to solving the system equations F(x, u) for the
control inputs u for the example of a system of relative degree 1.

In the following chapters, the principle of input-output linearization respectively non-linear
dynamic inversion is applied to the rigid body equations of motion introduced in chapter 3.2.
At this, the input-output linearization is not applied to the dynamic flight system on the whole,
but it is made use of its sequential structure. Starting with the outermost system, i.e. the
position propagation equations, the inputs to these equations that are the kinematic flight-path
variables are considered as control inputs. Applying the principle of dynamic inversion, these
variables can then be calculated from a given reference trajectory X, (see chapter 3.3.3).
Now, feeding the computed flight-path variables directly into the position propagation
equations would again result in the reference trajectory as output. Next, the input-output
linearization is applied to the translation equations of motion, where now the kinematic flight-
path variables are regarded as the output while the load factors in the kinematic flight-path
frame K now represent the inputs and thus the controls (chapter 3.3.4). Given the reference
values for the kinematic flight-path variables, the load factors can be computed that would
result in the prescribed reference values of the kinematic flight-path variables if they were fed
into the translation equations of motion. This procedure (see Fig. 17) is repeated until the
innermost subsystem is reached that incorporates the rotation equation of motions.
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Figure 17. Structure of the Applied Input-Output Linearization

As can be seen from Fig. 17, from the viewpoint of the outer loops the respective inner loops
are seen as actuator dynamics (with transfer functions G) since the inner loops impress some
dynamics onto the respective controls. Given the case that all input-output linearizations are
exact, i.e. G = 1 for all inner loops and that no actuator dynamics are present (G4 = 1), the
complete dynamic inversion is exact and any reference trajectory will result in exactly the
same output trajectory. In reality, it is an impossible task to give an exact reproduction of the
real dynamic behavior of a system by mathematical equations out of numerous reasons that
can be

parameter uncertainties,

modeling uncertainties,

neglected dynamics,

external perturbations,

errors or delay when measuring certain quantities,
or quantities that are not measurable at all.

Thus, for real-world applications of the input-output linearization only approximate systems
can be utilized whose dynamic behavior differs from the behavior of the real system.
Regarding an input-output linearization for a simulation model that is only run on computers,
most of the above mentioned problems are non-existent. Besides the actuator dynamics (that
could also be input-output linearized), differences between the reference values and the
resulting output quantities appear only due to numerical imprecision or inherent non-
minimum phase dynamics of the considered flight system that cannot be treated by the
dynamic inversion. As mentioned in Ref. [Slotine, 1991], if the “internal dynamics is stable
[...], our tracking control design problem has indeed been solved. Otherwise, the [...]
tracking controller is practically meaningless, because the instability of the internal dynamics
would imply undesirable phenomena [...]” (Ref. [Slotine, 1991, p. 218]). As this, “the internal
dynamics is stable if the plant zeros are in the left-hand plane, i.e., if the plant is “minimum-
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phase” (Ref. [Slotine, 1991, p. 222]). If the input-output dynamics of the actuators were also
linearized, the reference trajectory would have to be given up to its sixth order time derivative
assuming that second-order linear transfer functions were implemented for the actuator
dynamics as proposed in chapter 3.2.11.

3.3.2 Reference Trajectory

One basic mode of the whole simulation model is the trajectory following mode, i.e. the
geometry of the desired trajectory is given as input to the inverse simulation model and the
simulation model ought to follow this trajectory as closely as possible respecting the given
limitations of the aircraft dynamics. Therefore, the reference trajectory for the x-, y- and
z-position in the Navigation Frame has to be specified:

X REF (T)
Xper = yREF(T) (3.187)

ZREF (T) N

Here the trajectory is parameterized with respect to the parameter z that does not necessarily
have to be identical to the simulation time z. As mentioned above, the reference trajectory has
to be at least four times continuously differentiable, thus it could for example be given as a
quintic spline.

With the given reference trajectory and the actual position of the aircraft, the reference point
on the trajectory can be computed with the reference point being the point on the reference
trajectory at which the aircraft ideally should be at a particular time. Since the reference point
is specified as the nearest point on the reference trajectory from the current aircraft position
(see Fig. 18), the reference point is the perpendicular foot point on the trajectory from the
current aircraft position.

Aircraft Position

Reference Point

Reference Trajectory

Figure 18. Calculation of the Aircraft’s Reference Point

Thus, the vector from the current aircraft position to the reference point is orthogonal to the
tangent at the trajectory in the reference point, so that the actual reference point can be
calculated by

X er (TREF )° (iREF (TREF )_ i) =0 (3.188)

In case that this equation cannot be solved analytically for the parameter .. of the actual
reference point X (7., it has to be solved numerically, what can be accomplished e.g. by
the Newton algorithm (Refs. [Kiusalaas, 2005] and [Quarteroni, 2000]) or alternatively by the
Laguerre algorithm (Ref. [Kiusalaas, 2005]) if the reference trajectory is given in polynomial
form. Here, X’ denotes the derivative of the position vector with respect to the parameter .



80 OPTIMIZATION SIMULATION MODEL

Within the inverse simulation model, the reference trajectory is the input to the path reference
subsystem that contains the dynamic inversion of the position propagation equations and is
introduced below. For this subsystem the derivatives of the current reference position vector
of the aircraft up to the fourth order with respect to time are required. Thus, if the parameter 7
is not identical to the time variable 7, the derivatives with respect to time have to be computed
within the reference trajectory subsystem. Therefore, the derivatives of the position vector
with respect to the parameter 7 up to the fourth order are derived and a scalar pseudo-
velocity V is introduced. Next, the derivatives of this pseudo-velocity ¥ up to the third order
with respect to the parameter 7 are obtained by

I7:||)‘(’(TREF)” (3.189)
7 X'(7 g )O_XN(TREF ) (3.190)
V
7 X"(7T ) 0 X" (T ) + XETREF )o X" () =V " (3.191)
V
oo 3% () X (i) + X () X (2y) =377 (3.192)

7

In combination with the current kinematic aircraft velocity Vx and its time derivatives, the
above computed pseudo velocity 7 and its derivatives with respect to the trajectory
parameter 7 can now be used to compute the required derivatives of the position vector X(7)
with respect to time up to the fourth order:

g X dr_dx, (3.193)
dr dt dr '
2. —
§=122 ’2‘+f§ (3.194)
dr dr
3= 2 -
i=09 =43 4 ’2‘+f§ (3.195)
T dr dr
4 3= 2= 2= —
£ =49 67 X 4E d =43 24 ’2‘+r(“)§ (3.196)
dr T T dr dr
G
dr _dr dx _Vy _. (3.197)
dt dx dt V
dr _VVE Ve T 5.19%)
dr? V2 '
&t VTV v TV Ve +i v w2a2 ve 77
= = (3.199)
d'r 1 G 713 -3 . 2 1,6 g s 176 G
o =ﬁ[—6~VK T 46V TV T +T (V8 5+
(3.200)

TS Tt TV 4B T
w3 V1308 w4718
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3.3.3 Reference Kinematic Flight-Path Values

The path reference subsystem contains the inverted position propagation equations. Here, the
reference kinematic flight-path signals namely the kinematic velocity Vx, the kinematic flight-
path climb angle yx and the kinematic flight-path course angle yx are computed up to their
third order time derivatives from the reference trajectory. Therefore, the path reference
subsystem requires as input the reference trajectory as well as the derivatives of this reference
trajectory with respect to time up to the fourth order.

The computation of the required reference values is accomplished as follows:

Ve = B0, =V o GV =)+ () + ) (3.201)

P o ner = (yj G+ 6Y (3202
G z
Yk pep = —arctan—- (3.203)
K, HOR
G B v
XK. REF = arctan — (3.204)
X

Within the inverse simulation model, these flight-path signals are in turn utilized for the
computation of the reference load factor values and their time derivatives up to the second
order. Therefore, not only the flight-path signals themselves but also their derivatives with
respect to time up to the third order are necessary. The derivatives of the kinematic flight-path
signals can be derived by differentiation of the above stated Egs. (3.201) to (3.204):

= \N = \NN
Vi per = M (3.205)
, e
= \NN = \NN = \WV -+ \NNN . 2
Vi ner AR +(X2%°(X)N A (3.206)
K
V0 e 3-®) o R +(X)]§/‘; &)™ =397 (3.207)
K
(IG)
po )y (3.208)
K ,HOR ,REF G
VK,HOR
£) (2 (2 (%) (e v
o :(yJ (;vj{y] (yj Vo) (3.209)
K ,HOR ,REF VKG,HOR

.e cee . (4)
X X X X . .
3. o + o _3.VG .VG
~ (y] (yJ (y] (y(“)] Lo o (3.210)

G
VK,HOR,REF -
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. 2V wor =V nor £
V6 rer = K’HO(’;/G)ZK’HOR (3.211)
K
. Z"VKG,HOR _VIS,HOR "z . VG
V& wor = 7 ~2-7¢ % (3.212)
2+ G _ Z'VIS,HOR _VIS,HOR 'é‘+Z.'V.K(fHOR B KG,HOR '2(4)
K.REF — ( G)z
V
(o) 52+ veie . o) (3.213)
_2(VK ) 7K Vi (VK VK 2 Vi rer '71<)
(29
o _Eoyei
Axrer =7 w2 (3.214)
( K,HOR)
G xy—yx G VKGHOR
X K REF :ﬁ_z'lk C (3.215)
(VK, HOR ) Vi nor
.......... . . : 2 .
B e B A U S X /0 Iy S
K.REF = 2
G
e .G( K’H‘”f)G e (3.216)
_ 2'(V1<,H0R XKk T2V nor 'ZK)
VI?,HOR

3.3.4 Reference Load Factors in the Kinematic Flight-Path Frame K

The reference load factors in the Kinematic Flight-Path Frame K are obtained by the inversion
of the translation equations of motion that describe the translational dynamics of the vehicle
with respect to the surface of the Earth and are the basis for the control of the path dynamics
variables. Physically, to follow a desired trajectory, forces are to be generated that counter the
inertia forces associated with the desired curvature of the trajectory as well as the
gravitational force. Primary virtual controls which can be utilized are mainly the lift
(controlled by the aerodynamic angle of attack a4 and the dynamic pressure g) to produce
forces perpendicular to the flight-path climb angle yx and the thrust to generate forces in the
velocity direction. Secondary force generators in other directions are the aerodynamic angle
of sideslip f4 to produce side forces and thus to quicken changes in the lateral plane of
curvature, the flaps to produce direct lift force changes at low bandwidth, speed- or air-brakes
to increase the drag and thus the deceleration potential of the aircraft and finally, if available,
thrust vector controls.

Specified in the Kinematic Flight-Path Frame K (i.e. the path-axis system), the required total
forces for maneuvers over a non-flat, rotating Earth are:

(F)=m {02 |+ (02) x(VE ) 2 (o) < (V2
(0 ) <[@ ) (). ]}

(3.217)
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In case that only maneuvers over a flat, non-rotating Earth are considered, the equations for
the required forces simplify to:

(FXG)K =m-VS+m-g-siny’ (3.218)
(FO), =m- v cosyi- ie (3.219)
(FO)e=-m-VE-7¢—m-g-cosyg (3.220)

Thus, the required load factors in the K-Frame have to be calculated from the reference flight-
path signals and their derivatives, which is done by the following equations that are derived
from Egs. (3.218) to (3.220) with the load factor n, having the opposite direction as the sum
of forces in z-direction:

(FXG )K VG

(nxG)K,REF = m-g :?K"'Sin?’]g (3.221)
F¢ ye. ;6. G

(16 ) e = (myé( =X ng Rk (3.222)

(nzG )K,REF = % =cosyy + % (3.223)

As mentioned above, for the reference load factors not only the reference signals themselves
but also their first and second order time derivatives are necessary. These derivatives have to
be computed by differentiating Eqs. (3.221) to (3.223) with respect to time:

. Ve
(”xG )i,REF = ?K+ Vi -cosyy (3.224)
-G)K _1('G .G G G -G -G .. G
(n =—Wy - xg-cosyg —Vy - xg -7 -sinyg +
TR g (3.225)
Vg 7 -cosyf)
. o . ve .79 4+y9 .59
(8 fe e =7 -siny g+~ Kg £ Tk (3.226)
.G \KK Ve , ,
(1 ) eer = f +7¢ cosyg — (g f -sinyg (3.227)
(”yG)KK,REF :g{cowg(ﬂf(ﬂcﬁ —(ye¥ -12)+2-V1? S a4 -zﬁj— 528
siny 8878 7G4 58 48)+ 2.8 58 4E)]
B L v JG .56 9 .G . 56 L G G

g

From the preceding equations it can be seen that not only the first and second order
derivatives of the flight-path climb angle yk, the azimuth angle yx and the kinematic
velocity Vi have to be computed, but also the third order time derivatives of the reference
flight-path values.
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3.3.5 Reference Load Factors in the Intermediate Flight-Path Frame K

In the Intermediate Kinematic Flight-Path Frame K, also the kinematic flight-path bank
angle ux can be utilized to control the direction of the lift force in addition to the virtual
controls that can be used in the Kinematic Flight-Path Frame K. Concerning the generation of
the reference load factors in the K-Frame two alternatives are possible, namely a coordinated
roll dynamics mode and an external kinematic roll dynamics mode where the roll dynamics
are commanded externally in addition to the reference load factors in the K-Frame.

By the coordinated roll dynamics or coordinated turning mode, the reference load factors and
the reference flight-path bank angle in the K-Frame are calculated from the reference load
factors in the K-Frame. At this, the side force corresponding to the y-component of the load
factors in the K-Frame is assumed to be zero which means that the necessary side force for a
turn can be produced only by rotating the lift vector in the yz-plane what is done by the flight-
path bank angle ux. The equations for the calculation of the reference values are

(19 ) s = (1% )¢ (3.230)

(”yG )g,REF =0 (3.231)
0 e e = (0N F +(9), F (3.232)

(%)

The first and second order time derivatives of the load factors and roll rate reference values
that are also necessary can be calculated by differentiating the above equations, yielding

,u,(g RrEF = arctan

(3.233)

(2 e e = (2 ) (3.234)

(nyG )IIE,REF =0 (3.235)

(5 ) e = ) 4 )EK‘ :)(n )b (3.236)
n. Jx

FLi e = k) (n}(()f’; G_)(n)i ) (3.237)

(1 ) eer = )" (3.238)

(0 (3.239)

JREF —
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With the alternative mode that is the external roll dynamics mode the kinematic roll dynamics
are commanded externally in addition to the load factors. This is necessary for certain flight
maneuvers e.g. for flying through a knife edge gate with a kinematic flight-path bank angle ux
equal to 90°. In such a case, the side force is used to compensate the external roll dynamics.
So the flight-path bank angle command and its derivatives do not result from the load factors
in the K-Frame as in the previous mode, but they are commanded directly and the load factors
in the K-Frame are calculated by the following equations, using the transformation matrix
between the K-Frame and K-Frame and its derivatives:

(ﬁG )E,REF =M, ('“1? ) (ﬁG )K (3.242)
(ﬁG )?REF =Mz, (:UI? ) (ﬁc )z + MEK (/“12 e ) (ﬁG )K (3.243)

(:G)g%EF = MEK (/ul?) (ﬁo)?( +2- MEK (uff,ﬂ,? ) (ﬁc)z

(3.241)

+ M (i it ) (6) (3.244)
where the transformation matrix Mgx and its derivatives are:
1 0 0
Macm|0 Soose, i (3.245)
0 —singy cospy
0 0 0
M. =|0 —sinpg cosug |-if 520
0 —cospu; —sinuy
0 0 0
Mg, =-Mg, -(ﬂg)z +[0 —sinpd  cosul |-jil (247

0 —cosuy —sinug

For both the coordinated roll dynamics and the external roll dynamics not only the reference
load factor values in the K-Frame themselves but also their first and second order time
derivatives have to be given as inputs.

3.3.6 Reference Load Factors in the Aerodynamic Frame 4

Within this subsystem of the inverse simulation model, the reference load factors in the
Aerodynamic Frame A4 are generated. Therefore, the reference load factors and their
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derivatives given in the K-Frame have to be transformed into reference load factor values in
the Aerodynamic Frame A4 in order to account for the influence of the wind. This is
accomplished by

(0)2er =M [0 (3.248)
G) e =M (0N + (@), x (@), (3.249)

5 =06 ) i o) 6
(3.250)

In case that there is no wind, the Intermediate Kinematic Flight-Path Frame K is identical to
the Aerodynamic Reference Frame A and the above computations can be omitted. As one
might notice from the above equations, the transformation matrix Myz between the
Intermediate Kinematic Flight-Path Reference Frame K and the Aerodynamic Frame A4 as
well as the rotational rate ®"* and its first order time derivative between those two reference
frames require the kinematic flight-path bank angle ux up to its second order time derivative.
The kinematic flight-path bank angle and its derivatives can only be calculated from the
aerodynamic flight-path bank angle if the aerodynamic and kinematic attitude angles and their
derivatives are already known. Since this is obviously not the case at this point of the inverse
simulation model, an alternative inverse simulation model subsystem has been implemented
that circumvents this drawback, that is the external aerodynamic roll dynamics mode for the
calculation of the reference load factors in the Aerodynamic Frame 4. This mode is similar to
the external kinematic roll dynamics mode but instead of the kinematic flight-path bank
angle uk, here the aerodynamic bank angle u4 can be commanded externally in addition to the
load factors in the Kinematic Flight-Path Reference Frame K. The corresponding equations
read as follows:

(ﬁG)A,REF = MAK(ﬁG)K (3.251)
(ﬁG)j,REF =M (ﬁG)Ifi + (6)21( )A X (ﬁG)A (3.252)

(R ) =M G+ (@15), )+ (@7 ), (v )
o) ),

Thus, the reference values for the load factors in the Intermediate Kinematic Flight-Path
Reference Frame K do not have to be computed at all and the kinematic flight-path bank
angle ux is not required as input so far. Since the aerodynamic flight-path bank angle x4 ought
to be less descriptive than the kinematic flight-path bank angle uk, the external aerodynamics
roll dynamics mode might also be less descriptive than the external kinematic roll dynamics
mode. This imposes a drawback only in case that the flight-path bank angle is commanded
externally by a human but not in case that a computer prescribes the time history for the
flight-path bank angle as it is the case for the optimization tasks. Moreover, as described later
on the external aerodynamic roll dynamics mode gives way to the development of an
optimization procedure that is more integrated and continuous than it would be the case with
the external kinematic roll dynamics mode.

(3.253)
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3.3.7 Reference Aerodynamic Attitude Angles

After deriving the necessary reference load factors in the Aerodynamic Frame A4, the
corresponding aerodynamic reference attitude angles that are the aerodynamic angle of
attack a4 and the aerodynamic angle of sideslip £, that are primarily utilized to control the
aerodynamic forces respectively the aerodynamic load factors can be computed.

Therefore, at first the aecrodynamic coefficients have to be calculated from the aerodynamic
load factors and their derivatives given in the Aerodynamic Reference Frame A. For the
computation of the derivatives of the force coefficients C;, Cy and Cp, only the load factors
and the velocity are regarded as time-dependent. This leads to the following formulae for the
lift coefficient C; and its derivatives:

2mg ((nS.)
Corer = %{ (V/;G );J (3.254)

2mg (’;lj,z)j 2: VG (nAZ)A

CL,REF = oS ) (VAG)2 (Vf)z (3.255)
CL REF = zmg_ (ﬁg,z)jA 4- VA (nAZ)j _ Z'VAG '(ng’z)A
| s ey ey iy (3.256)
+ 6: (VAG)Z '(niz )A |
4
)

The equations for the aerodynamic force coefficients Cy and Cp are analogous.

Given the assumption that the lift force derivative C; is only a function of the aerodynamic
angle of attack ay, the reference values for the aerodynamic angle of attack a4 and its
derivatives are obtained by:

aj;,REF = 0{/? (CL) (3.257)
6% o0aq(C,) _ 0a;(C, )|
A,REF ot ac,

()28aA

Furthermore, assuming that the side force derivative Cy is only a function of the sideslip
angle f4, the corresponding equations for the respective reference values of the aerodynamic
sideslip angle f4 are:

.y (3.258)
¢

2
e 0“a
& 4 REF =

; Cz C, (3.259)

c, c,

ﬂAG,REF = ﬂAG (CY) (3.260)
o _0pilc,)_opic)| .
IBA REF ST o ac, Cy (3.261)

Cy
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As mentioned above, non-minimum phase effects like e.g. the generation of a downward lift
force due to an upward deflection of the elevator cannot be taken into account for the
calculation of the aerodynamic attitude angles in the inverse simulation model. Finally, the
required thrust force 7" can be computed utilizing the x-component of the aerodynamic load
factor vector 4

T=(nS,), - mg+D (3.263)

Here it is assumed that the thrust force 7 is aligned with the x-axis of the Aerodynamic
Reference Frame 4. For the calculation of the drag force D, a quadratic drag polar as given by
Eq. (6.18) can be utilized:

D=05p-(FCY -5-(Cop+k,-(C, = Cpe, F+ky-(C, ) (3.264)

where the reference angle of attack o, rzr is given by Eq. (3.257) and where the reference
sideslip angle f4 zer 1s given by Eq. (3.260). Finally, the reference thrust lever position drzer
can be derived from the thrust force 7 depending on the propulsion model. For example, if for
the thrust force computation Eq. (6.24) is implemented, the reference thrust lever

position d7 zgr evaluates to:
T (P ) (Vs )"
Sr per = —[—fj [—f] (3.265)

T;ef IO VAG

where T,.ris the engine’s reference thrust, V. the reference velocity, p,.s the reference air
density and n, the density exponent. The exponent ny gives the dependency of the thrust w.r.t.
the aerodynamic velocity, for propeller-driven aircraft this exponent equals -1. The higher
order derivatives for the reference thrust lever position J7gezr can be obtained by
differentiating the above equations.

Without the assumptions made above, the computation of the reference values for the
aerodynamic attitude angles a4 and S, and the thrust lever position dr would not be that
straight forward: before the aerodynamic coefficients can be calculated, the load factors mp
induced by the propulsion force have to be subtracted from the total reference load factor
values to obtain the load factors m, that have to be produced solely by the aerodynamic
forces. Therefore, the aerodynamic load factors T4 and their derivatives can be computed as:

(ﬁj)A,REF = (ﬁG )A _mig ) MAB(F}? )B = (ﬁG)A _MAB(ﬁIGJ )B (3.266)

A A B

GG e = @) M, (65 ), ~(@2), x (M, @9),) (3.267)
(6) e = ) - M, 62)) - (@37), x[(@2), <, (6¢), )]

2-(@), <M G )6, < (v, 65),)

A major drawback of the above stated equations is the fact that the aerodynamic attitude
angles a4 and f4 for the calculation of the transformation matrix M,z between the
Aerodynamic Reference Frame 4 and the Body-Fixed Frame B as well as the thrust lever

(3.268)
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position Jr for the calculation of the propulsion force are required. But these reference values
are in turn calculated from the aerodynamic load factors given by the above equations. There
are various possibilities to cope with this problem: for simulation tasks, one could take the
reference values for the aerodynamic attitude angles and the thrust lever position from the
preceding time step to approximately compute the required reference values for the
aerodynamic load factors in the actual time step. Alternatively, the corresponding values for
the aerodynamic attitude angles and the thrust lever position from the simulation model plant
itself could be used and fed back to calculate the aerodynamic load factor reference values.
Finally, the aerodynamic attitude angles and the thrust lever position could be calculated
iteratively. Therefore, e.g. a Newton Algorithm can be used to solve the following equation:

CD(aAaIBAoVA) |
—_:g '(ﬁG)A,REF - CY(aAnBAoVA) _T'MAB(aAa,BA)'(Fg(é‘T))B =0 (3.269)
I CL(aAaﬁAaVA) y

where Cp, Cy and Cj are the aerodynamic force coefficients given in the Aerodynamic
Reference Frame 4. Eq. (3.269) can then be solved iteratively to give the aerodynamic
attitude angle angles a4 and S, together with the thrust lever position dr. At this, the force
coefficients can also be taken from appropriate look-up tables.

=

Accordingly, the higher order time derivatives of the aerodynamic angle of attack ay, the
aerodynamic sideslip angle £, and the thrust lever position d7 can be computed by deriving
Eq. (3.269) with respect to time and solving the resulting equations iteratively for the higher
order derivatives.

3.3.8 Reference Kinematic Attitude Angles

With the reference values for the aerodynamic angle of attack a4 and the aerodynamic angle
of sideslip f4 specified, one can now calculate the according reference values for the
kinematic angle of attack ax and the kinematic angle of sideslip fx including their derivatives
by the below equations where foremost the kinematic velocity V, with its components given
in the Body-Fixed Frame B has to be established:

E
VS .cosa§ -cos B
(Vf )g,REF = Vf -sin ﬂg (3.270)
VAG -sin aff - COS ,Bf .
(Vl? )B,REF = (Vft; )B,REF + My, (va )0 (3.271)

Furthermore, the first and second order derivative with respect to the Body-Fixed Frame B of
the kinematic velocity V, denoted in the Body-Fixed Frame B are necessary for the
calculation of the kinematic attitude angles:

= B = B - N R N\E
(Vl? )Z,REF - (VAG )tE?,REF + My (va); + ((D?v )B x My, (Vpg )N (3.272)
e 2 = - \EBB = \ENN L o \E
(VI? )Z,REF = (VAG )Z,REF +Myy (Vncj)j/ + ("JiN )B XM, (Vwcj )N

. (3.273)
'N

r2 (o) (L 02, <o), v ()
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The kinematic velocity V. denoted in the Body-Fixed Frame B is related to the kinematic
attitude angles as given by Eq. (3.274):

E
G G G
Vi -cosay -cos Sy

(VI? )g,REF = Vi -sin B¢ (3.274)

G . i G G
V¢ -sinag -cos ¢ .

Solving Eq. (3.274) for the kinematic angle of attack ax and the kinematic sideslip angle Sk

gives:
£
G
(WK )B

(3.275)
(s )

b,

gl ]+ gk ]

The first and the second order time derivatives of the kinematic angle of attack ax and the
angle of sideslip Sk can be restored by differentiating the above equations and are as follows:

P O R 0 i 0 R

G —
Ok ppp = arctan

PR rer = arctan \/ (3.276)

O rir = (VG )2 (3.277)
K.VER
G . G \EB GY¥ 176
ﬂ'g’REF _ Vi ver '(VK )IEV;)(ZVK )B Vi ver (3.278)
K
. W& -0 —wo ) -GS S 28 e Vi
¢ _\Uk)p " Wk)p ks "\Uk)p : :
OlK,REF (V[gVER )2 V,gVER (3 .279)
BE’REF _ Vicven (Vlg )fz(l;j G_)z(vg )Z 'VKG,VER 2 ﬁg;:jcp Vi (3.280)
K

In Egs. (3.277) to (3.280), V' denotes the total kinematic velocity and V., the total kinematic
velocity of the aircraft in the vertical plane calculated from the kinematic velocity vector V,
with its components given in the Body-Fixed Reference Frame B:

Vicven = \/ [(uff )ﬁ]z + [(w,‘j )j]z (3.281)

Vi = \/ o] ok +loe] (3.282)

3.3.9 Reference Angular Rates

Given the reference values for the kinematic attitude angles that are the kinematic angle of
attack ax and the kinematic sideslip angle fx and their derivatives, the necessary reference
signals for the angular rate @' can then be derived by the inversion of the attitude
propagation equations (3.43), leading to the following expression:
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A+ ail -sin B

~ KB _| 4G G G, 3G o G
(")K )K,REF =| ag -cos fig -cos ug + [y -sin ug (3.283)
a ¢ -cos BY -sin ul — B -cos pud
K

The first order derivative of the angular rate ®"” can be computed by differentiating the above
equation, whereat the second order time derivatives of the kinematic angle of attack ¢x and of
the kinematic sideslip angle fx are necessary and therefore have to be computed by the
subsystem for the generation of the kinematic reference attitude values described above in
chapter 3.3.8:

jig + ¢ -sin B¢ +ay -cos B - B
G¢-cos B -cos ul —af -sin B¢ - BS - cos ul

O Vo pie =| — il -cos B -sin pl - ] + B -sin 1 + B -cos pf - (3.284)

ay -cos B -sin g —ay -sin B¢ - B -sin ug
G -G

e G G G _ pG G AG o
Tag 'COS:BK “COS Uy - Hy _:BK “COS Uy _:BK SIN Uy - Hg

By use of the computed reference values for the angular rate ®" and its first order time
derivative, the angular rate ®" and its first order derivative can then be restored as follows:

©2 ) ror = @2 ) + @), + (65 ); (3.285)
O2 ) pr = 02°)¢ + (62 S + (052 )¢ (3.286)

Since for the calculation of the reference values for the total sum of the moments the first
order time derivative of the angular rate ®"” with respect to the Body-Fixed Frame B and its
components denoted in the Body-Fixed Frame B is essential, this derivative of the angular rate
is calculated by

(6’? )g,REF =M (6)?)15( =My (6)?)2 + My [(ﬁiK )K X (@?)K] (3.287)

3.3.10 Reference Control Surface Deflections

With the reference values for the angular rate ®" and its first order time derivative given by
Eqgs. (3.285) and (3.287), the required moments that are necessary to produce the desired
angular rates and that have to be commanded by the dynamic inversion system can be
computed by inversion of the rotation equations of motion that are given by Eq. (3.48):

(MTG')B,REF = (IG)BB '(é)?)f; + (6)?)3 X (IG)B ‘((35?)3 (3.288)

In general, the relationship between the moments and the control surface deflections is quite
complicated and cannot be solved analytically for the required control surface deflections.
Then, an incremental approach can be chosen where at first the difference between the actual
moments and the commanded reference moments has to be determined by:

(AMG(AUJ AS, Ag))B,REF = (A g)B,REF - (Mc(ﬂm 0550 ))B (3.289)
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Since now only incremental changes in the moments are demanded, these can be assumed to
be small and therefore the incremental changes can be linearized with respect to the control
surface deflections 7, £ and C. In the following, u represents the vector of those control surface
deflections:

ome),

~ Ay =B Ay, (3.290)

(AM ¢ (Au ))B,REF =

Now the required changes in the control surface deflections can be computed and later be
added to the actual control surface deflections in order to obtain the total reference values for
the control surface deflections that represent the output of the complete dynamic inversion
part of the simulation model and simultaneously act as input to the full 6-Degree of Freedom
simulation model:

A =B - (AM (Au)), (3.291)
Uppr = Uy + AUl (3.292)

If the actual moments can be separated into moments solely due to the control surface
deflections and into moments that are only produced by the body angular rates and the attitude
angles, Eq. (3.292) can be rewritten into:

Uppp =W, + B '(AMG(Au))B,REF =
=u, + B [(M? )B,REF - (MG(U(N $0>S0 ))B - (MG(ﬁAana Ty aAuBA)

If the aerodynamics moments are computed utilizing Eqs. (6.21) to (6.23) of chapter 6.1, the
moments that are solely generated by the control surface deflections are:

)] (3.293)

M°(7.¢,.5,)), =B-u, (3.294)
where
s-C 0 5-Cy,
B=g-S 0 c-C,, 0 (3.295)
§-C,e 0 s-C,. 5

Inserting Eq. (3.294) into Eq. (3.293), the reference control surface deflections evaluate to
Uy =4, +B™- [(MZG")B,REF -B-u, _(MG(ﬁAan’a’aA’ﬁA))B]: (3.296)
=B (M?)B,REF_(MG(ﬁA’aA’a’aA’ﬂA))B] |

where
S'(Clp '1N7A +Clr 'FA +Clﬁ 'ﬂA)

(MG(ﬁAﬂaA’a’aAﬂﬂA))B =q-S- E'(C,no+czna'aA+Cmq"7A) . (3.297)
s:(C,y B+ C T+ Cpy By,

3.3.11 Reference Values for the Linear State-Space Models

Besides the full, non-linear rotational and attitude dynamics, the principle of dynamic
inversion can also be applied to the simplified, linearized state-space models representing the
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rotational and attitude dynamics that have been described in chapter 3.2.6. This is illustrated
in the following.

The dynamic model for the generation of the reference values uses the linearized dynamics of
longitudinal and lateral motion of the aircraft. As described above, the longitudinal motion is
described by the following short period approximation:

. G 0 Z +1 G zZ, Z g
x:(a’(}:{ q ](“f}{ o ’7][% J:A-X+B-u (3.298)
qK 0 Mq qK Ma M?] 77CMD

aG
y=(1 o)-(qf}cf-x (3.299)
K

Here again it has to be mentioned that the first order time derivative of the kinematic angle of
attack dg is a function of the aerodynamic angle of attack a4 in analogy to the full, non-linear
6-Degree of Freedom simulation model.

For the longitudinal motion, the output y of the linearized dynamic model equals the
kinematic angle of attack ak. Since the elevator deflection # does not appear directly in this
output y nor in its first order derivative y (after substituting X by Eq. (3.298) and with Z, being
close to zero), the second order derivative j/ of the output y has to be computed to apply the
principle of dynamic inversion. Therefore, the output y is said to be of relative degree two.

By solving Eq. (3.298) for the elevator command 7y, the following equations for the
computation of the commanded elevator deflection #¢,, result:

1. \
Mewn =M—(q;< ~M,a$~M,q)) (3.300)
n
with
N
qx =7 H(a? ~Z,a5) (3.301)
q
iy =——(6¢ - 2,05~ 7,4° ~Z,4;) (3.302)
Zq +1

where the first order time derivatives of the force coefficients are obtained by deriving the
respective coefficients with respect to time. For example, the first order time derivative of the
force coefficient Z, evaluates to:

. .S . .
Z, = ——‘2)_ - (VA : [CL,, +Cp ]+ Vs -CD\O) (3.303)
where
Cp, =2:k-(Cho+Crpa, =C,, ) Cuo -y (3.304)

For the lateral motion a third order model with the states pseudo-roll rate pg, pseudo-yaw
rate 7, and kinematic angle of sideslip fx is implemented, where the first order time derivative
of the kinematic sideslip angle fx is a function of the aerodynamic angle of sideslip S,
analogous to the full, non-linear 6-Degree of Freedom simulation model plant:
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Dk Lp L, 0 p;; Lg Lg L,B Semp

X = r:KG =|N, N, Of i +|N, N, N,| éméD (3.305)
)|y, v-1 0[\Bg) (Y. Y, v, | B
=A-x+B-u
1 00 p*K c{ 3306
= . v = -X
YZlo o 1) |7l (3-306)
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The outputs of the lateral motion dynamic model are the pseudo-roll rate p; and the kinematic
angle of sideslip fx. For the pseudo-roll rate output, the input appears for the first time in the
first order derivative, whereas for the angle of sideslip, the input can be seen primarily in the
second order derivative with the side force derivatives Y: and Y being close to zero. Thus, the
roll rate output is of relative degree one, the angle of sideslip output is of relative degree two.

Solving Eq. (3.305) for the aileron command ¢ and the rudder command ¢ gives the following
equations for the calculation of the reference values for the aileron and rudder surface
deflections:

Lk * * N * L% *
Iy _NppK - N,rg _NﬁﬂAG +T;(LppK —Ppx + L.y +Lﬂﬂj)

boup = A (3.307)
Nf _iNc
LC
» N
g NppK N, ry NﬂﬂAG +L7§(Lpp1( Px +L,ry +Lﬁ:8AG>
Som = 2 (3.308)
¢ _iNf
Lé‘
with
e =ﬁ(ﬂ§ ~Y,py ~Y,p9) (3.309)
s 1 .. - s - . .
ie=——(BS =Y pi =Y, by ~Yri =Y, B9 -V, 5 (3.310)

Y, -1

The reference value for the pseudo-roll rate p,. is set equal to the first order derivative of the
reference value for the kinematic flight-path bank angle jix zgr:

pr =l ) (3.311)

Accordingly, the first order time derivative of the pseudo-roll rate reference value p,,. is set
equal to the second order derivative of the reference value for the kinematic flight-path bank
angle ,l.l.K,REFZ

pj{,REF = (ﬂ]g )K,REF (3312)

As one might observe from the equations stated above, again not only the reference signals
themselves are necessary for the dynamic inversion of the linear state-space models, but also
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the second order time derivatives of the reference input values. The output of the described
subsystem containing the inverted linear state-space models are the reference control surface
deflections 7, ¢ and ( that in turn act as input to the hybrid simulation model that is the non-
linear point-mass model augmented by the linear state-space models representing the inner
loop dynamics.

3.3.12 Reference Values for the Linear Transfer Functions

The principle of dynamic inversion can also be applied to the most simplified hybrid
simulation model where the attitude and rotational dynamics are modeled as linear transfer
functions for the load factors and the roll rate respectively. This procedure is described in the
following for the case that the flight system is not modeled as a non-minimum phase system.

As mentioned above, in the kinematic model the dynamics of the normal load factor . and
the dynamics of the lateral load factor n, are approximated by a second order time behavior,
while the dynamics of the load factor n, and the dynamics of the roll rate px feature a first
order time behavior. In order to guarantee a good approximation of the correct aircraft
dynamics, the dynamics for the lift build-up use the same dynamics as the short period
oscillation and the build-up of the side force corresponds to the dutch roll dynamics.
Furthermore, for the roll rate, the decoupled first order roll dynamics are used and for the
thrust, a specific engine time constant is defined.

For example, the dynamics for the normal load factor n. are given by the following second
order linear transfer function:

(19 (s)), = s (9 (s)) (3:313)
B 52+2'§SP'C‘)0,SP'S+@§,SP T D '

A paramount goal of the inverse simulation model together with the simulation model plant is
to follow a given trajectory as close as possible. Therefore, a dynamic inversion control
structure has been chosen for the inner loop control system to achieve this goal. By applying
the dynamic inversion control principle, the linear transfer functions for the load factor and
roll rate dynamics are inverted and the highest derivative order of the load factor is replaced
with the respective reference value to provide optimal trajectory following of the simulation
model. Thus, the resulting equation for the computation of the reference value for the normal
load factor n. is given by

(49), ey = ——v+ 22 i )! + (), (3.314)

o,sP @y sp

where the new virtual input v, the so-called pseudo-control, is then replaced by the second
order derivative of the load factor reference value to guarantee perfect trajectory following:

(nzG )A,CMD = a)zL(nzG )j:‘lREF + 2y (nzG ):11 + (nzG )A (3.315)

0,SP 0,SP

As can be seen from the above equation, not only the reference values themselves are required
for the inner loop dynamic inversion, but the second order derivatives of the specific reference
values. The equations for the side force n,, the load factor in the x-direction n, and the roll
rate px are derived just in the same manner. The reference value for the commanded roll
rate pg is obtained by:
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Pr.cup = Trou " Pxc + P (3.316)

3.4 Reference Models

As mentioned before, for the inverse simulation model not only the time history of the
reference values themselves but also higher order time derivatives of these reference values
are essential for the calculation of the inputs to the simulation model that will produce the
desired outputs. Because of its inherent dynamics, the respective flight system under
consideration will not be able to follow arbitrary time histories concerning the reference
values that are fed into the inverse simulation model. This means that the differentiation order
of the reference values’ time histories has to take into account the dynamic order of the causal
chain between the considered inputs and outputs. As can be seen from the corresponding
physical causal chain (Fig. 8), there are two integrations between the commanded elevator
deflection #cyp and the resulting angle of attack a. Therefore, the second order time
derivative with respect to time of the angle of attack o is a direct function of the elevator
deflection command #cup:

é(t) = f (e (t)) (3.317)

Thus, the resulting time history for the angle of attack a is twice differentiable with respect to
time. On the other hand this implies that for the calculation of the elevator deflection
command by inversion of Eq. (3.317) not only the time histories for the angle of attack a and
its first order time derivative but also the time history for the second order time derivative of
the angle of attack are necessary:

Mo (£) = £ (a(e), 62),6(2)) (3.318)

This implies that the reference time history for the angle of attack cannot be discrete nor
linear but has to be at least twice differentiable with respect to time to give a time history for
the commanded elevator deflection.

Each subsystem of the inverse simulation model requires as input specific reference values
and their derivatives up to a certain order for the calculation of the respective output reference
values and their derivatives up to a specified order. E.g. the subsystem for the calculation of
the reference load factor values in the K-Frame requires the flight-path kinematic variables
and their time derivatives up to the order of three to be able to compute the reference load
factors and their second order time derivatives. These input reference values can either be
taken from the next outer subsystem that would be the path reference subsystem or they can
be commanded directly. In the latter case it has to be guaranteed that the time history for the
flight-path values that is fed into the subsystem for the generation of the reference load factors
is smooth enough so that the dynamics of the flight system can track the prescribed reference
values.

One possibility to guarantee the required differentiation order is the utilization of a model-
based approach on the basis of reference models. Reference models generate signals that are
continuously differentiable where the relative degree of those signals corresponds to the
dynamic order of the regarded flight system. These reference models contain linear transfer
functions of the respective degree, where the input is an arbitrary time history for any
reference value. This time history can also be discrete or linear and does not have to take into
account the in fact required differentiation order. The resulting output of these reference
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models is the corresponding time history of this reference value that is of the necessary
differentiation order such that the reference value fed forward to the inverse simulation model
already takes into account the dynamic order of the physical causal chain under consideration.
In the following, exemplified reference models up to the order of two are given, i.e. that the
resulting time history for the respective reference value is twice continuously differentiable
with respect to time.

3.4.1 First Order Reference Model

Direct command values for the body angular rates, that are the roll rate pg, the pitch rate gx
and the yaw rate rx have to be fed through first order reference models in order to generate
time histories that are smooth enough, i.e. that the resulting time histories can once be
continuously differentiated with respect to time. This is guaranteed by a linear transfer
function of the order of one:

P rer =

WPK,CMD (3.319)

The transfer functions for the pitch rate gx and the yaw rate rx are analogous. The basic layout
of a first order reference model is shown in Fig. 19. The time constants of the various
reference models have to be adapted so that the reference time history and its first order time
derivative can be followed by the plant and thus an accurate tracking is guaranteed. The above
linear transfer function can also be written as a first order differential equation:

. 1
Pk rer = T_(pK,CMD - pK,REF) (3.320)
R
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Figure 19. First Order Reference Model

With each first order reference model, an additional state is added to the state vector of the
simulation model. Thus, with the three reference models for the body angular rates pg, gx and
rk the three states px rer, gxrer and rg rer are added to the simulation model state vector. In
Fig. 20, the response curve for a first order reference model due to a step input is shown.
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y(®) [-]

Time t [s]
Figure 20. Step Response of 1** Order Reference Model

3.4.2 Second Order Reference Model

For the reference load factors mgzr, the reference attitude angles azer and Srer as well as the
reference flight-path bank angle uzgr the time histories for the reference values have to be at
least twice continuously differentiable with respect to time to take into account the dynamic
order of the respective flight system. Thus, direct load factor commands or direct commands
for the attitude angles are delayed by second order linear transfer functions in order to enable
the simulation model to track the prescribed reference values. For example, the reference
model for the aerodynamic angle of attack a4 consists of the following second order linear
transfer function:
ay = % ay 3.321
42wy s+l O (3.321)

The transfer functions for the load factors T and the angles f8 and u feature the same structure.
Here again, the parameters of the linear transfer functions that are the relative damping ¢ and
the natural frequency wy have to be adjusted in such a way to allow for an accurate tracking of
the reference values by the simulation model plant. Written in state-space form, the linear
transfer function (3.321) reads:

ofed)_| O 1 -a‘c‘;+0-aG 3.322
ot\aS) |~y -2-C-w,|\a%) |ag| M (3.322)

y=ai=[l 0]-(22] (3.323)
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Figure 21. Second Order Reference Model

The reference model-based approach for the generation of sufficiently smooth reference
values augments the simulation model state vector by two states for every single reference
model, i.e. the simulation model state vector is supplemented in total by six additional states.
In case that the load factor reference values are generated by the respective reference models,
the six extra states are the three reference load factors n, rer, 1y rer and n; ger and their first
order time derivatives 7 rer, 71y, rer and i, ger. Fig. 21 shows the basic layout of a second order
reference model, while in Fig. 22 the corresponding step response curve is depicted.

y(®) [-]

Time t [s]
Figure 22. Step Response of 2" Order Reference Model

3.5 Error Feedbacks as Stabilizing Controls

In order to guarantee a precise tracking of the reference values given by the inversion
controllers provided in chapter 3.3, error feedbacks on all levels of the simulation model have
to be implemented to eliminate deviations of the actual values from the reference values. For
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the simulation model, there are various reasons why the resulting trajectories may diverge
from the input reference trajectories: besides numerical computation errors that occur because
of the limited computational accuracy and the round-off errors that are inherent to the
machine used for simulation respectively optimization, further reasons are the actuator
dynamics and the non-minimum phase behavior of the flight system dynamics. While the
actuator dynamics are not incorporated in the inverse simulation model at all, the non-
minimum phase part of the respective flight system cannot be inverted as mentioned before.
Thus, in general the reference commands generated by the inverse simulation model will
result in output trajectories of the simulation model that differ from the input reference
trajectories not only by the computational errors but also by additional errors caused by the
actuator dynamics and the non-minimum phase part of the flight system dynamics if these
effects are taken into account in the simulation model itself. In order to avoid growing
deviations between the reference trajectories and the resulting trajectories induced by the
effects outlined above, error feedbacks on all levels of the simulation model are implemented
in the simulation model.

To allow the error feedback controllers to react to any possible deviations from the reference
values as fast as possible, the deviations of the respective state values of the simulation model
and also of the higher order time derivatives of the considered values are fed back to the
highest order time derivative of the corresponding reference value of the inverse simulation
model. The lower derivatives of the reference signals are used directly as input reference
values for the next subsystem of the dynamic inversion part of the simulation model. Since all
derivatives of a specific signal are utilized for the error feedback, the error dynamics can be
set to any desired dynamic order by adjusting the feedback gains of the respective control
loops.

For the implementation of the error feedback control loops, parts of the simulation model
have to be extended to allow for the computation of not only the first order time derivatives
themselves but also of certain higher order time derivatives. E.g. not only the first order time
derivative of the kinematic flight-path course angle but also its second order time derivative
will be fed back to the third order time derivative of the given reference time history of the
flight-path course angle. Therefore, this second order time derivative has to be computed in
addition to its first order time derivative that results from the translation equations of motion.
The corresponding equations can be obtained by differentiating the equations of motion and
the propagation equations depicted in chapter 3.2 with respect to time. In the following, the
implemented error feedback control laws for the different levels of the simulation model are
given. Furthermore, the error dynamics for the aerodynamic angle of attack control loop are
derived exemplarily.

3.5.1 Trajectory Deviation Control Loop

For the trajectory deviation control, a Trajectory Frame T is defined with its origin located at
the current footpoint on the reference trajectory calculated by Eq. (3.188). The orientation of
the Trajectory Frame 7 is then obtained by two rotations of the NED-Frame around its z-axis
respectively its y-axis by the reference values for the kinematic course angle yx and the
kinematic climb angle yx corresponding to the actual footpoint on the reference trajectory.
The transformation matrix Mo between the NED-Frame and the corresponding rotational
rates are:
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COS ¥y cosyy siny¢ cosys —sinyy

M,, =| -—sinyy cos yg 0 (3.324)

cos ygsinyy sinygsinyg cosyy

X sinyy
@°), =] -5 (3.325)

. G G
— Xk "COSYg

7 -sinyd + y¢ -cosyg -y
- T .
@) = — 7y (3.326)

=X cosyg + i sinyg g
sin y¢ (11? ~72-(¢) )+COS7§ 278784 48 79)
(: TO )TT _ e
0”) = -V (3.327)
—cosyy (zi - 78 ¢) )+Sln7§ 2z i+ i)
Given the case that the aircraft is perfectly following the reference trajectory, the Trajectory
Frame T coincidences with the Kinematic Flight-Path Frame K. Then, the trajectory deviation

vector AT = [Ax, Ay, Az] and its time derivatives up to the third order are transformed from
the NED-Frame into the Trajectory Frame 7 by the following equations:

(Af)T =M, (Af)a (3.328)

(AF); =M, (aF )] +(67), < (aF), (3.329)

(7] = M, (A +(67), M, (67

3.330
(6T x(ar), + (), < (aF) (3330

(5™ =M (AF ) +2- (), % M, (47
o) x Mo 07), <o) < arR]] @33
HB7 ) x (A7), +2- @7 < (aF) + (@), < (A7)

For the desired feedback dynamics in the horizontal plane, first order error dynamics have
been implemented to guide the aircraft back onto the reference trajectory:

T, (&), +(ay), =0 (3.332)

where the time constant 7, can be utilized to adjust the dynamics of the trajectory deviation
controller. From the position propagation equations, the first order time derivative of the
deviation Ay evaluates to:

Ay =V -sinAy? -cosAyy (3.333)
For small angles Ayx and Ayk, the following approximations can be made:

cosAyy =1 (3.334)
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sinAyy ~Ayy (3.335)
Then, Eq. (3.333) simplifies to
Ay =V Ayl (3.336)
Inserting Eq. (3.336) into Eq. (3.332) and solving for Ayx gives
Ay)
A G _ _ ( T
Xk ye T, (3.337)

For the kinematic flight-path reference loop that follows the trajectory deviation control loop,
time derivatives of the kinematic course angle yx up to the third order are required. The higher
order derivatives therefore are obtained by differentiating the course angle deviation Ayk:

1 (_ VKG'(A)’)T +(Ay)TJ

Ayy = o 7 P (3.338)
o R0y v i) ), P -e9) (89),
A"K Ty{ @ Ty ) O
I O S (7 R/ 7 B / Fd A D)
Xk T, (VKG)4
X _ (3.340)
R0 v ) ), o), | ),
ey vy

For the vertical dynamics, the same feedback dynamics as for the horizontal error feedback
controller have been chosen:

T, -(A2), +(Az), =0 (3.341)

where the time constant 7. can be utilized to adjust the dynamics of the trajectory deviation
controller. From the position propagation equations, the first order time derivative of the
vertical deviation Az is:

Az =-VS sinAyy (3.342)
Applying the assumption that
sinAyl = Ayg (3.343)

and inserting Eq. (3.342) into Eq. (3.341), one obtains for the deviation of the kinematic
flight-path inclination angle yx:

Az)
A G _ ( T
Yk vo.T (3.344)
Again, the higher order derivatives are required:
6 1 vE(Az2), (Az)
Ay =—| =Kt 3.345
Yk T { (VIS )2 ye ( )
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A;/,? _ 1 [(2(I/KG)2 _VKG VKG)(AZ)T _2V1<G (AZ)T (AZ)T]

_Z (VKC?)] (V;)z + VKG (3.346)
o [Fo ) vere e ve e ey ) o), |
Yk = Tz (VKG)4
. B _ (3.347)
ey v o)), e, (),
() ey

Finally, the reference values for the kinematic course angle yx respectively the kinematic
flight-path bank angle yx are corrected by the course angle and climb angle deviations
obtained by Egs. (3.337) to (3.340) respectively Egs. (3.344) to (3.347) to guide the aircraft
back onto the reference trajectory:

Xk cup = X% rer = DK (3.348)
KX cmp = X6 wer = DI (3.349)
Fé cup = T8 wer = DX (3.350)
TX cup = i per = DK (3.351)
Viomn = Vi rer = DYX (3.352)
Vecup = Virer — AV (3.353)
Vi cmp = V& rer = AV (3.354)
Vioup = Vi rer = AVK (3.355)

3.5.2 Kinematic Flight-Path Variables Control Loop

In the kinematic flight-path variables control loop, deviations between the actual values for
the kinematic flight-path variables and the respective reference values are fed back to the
highest order time derivatives of the flight-path variables that are the second order time
derivatives of the absolute kinematic velocity Vx and the third order time derivatives of the
kinematic course angle yx as well as the kinematic flight-path climb angle yx:

VKG,CMD = V1<G,REF + KV (VKG,REF - VKG)+ KV (VIS,REF - VKG) (3.356)
7KG,CMD = j./.KG:REF +K7(771C(;,REF - 71?)"‘ Ky’(j/lg,REF _71((;)+K;/(71C(;,REF - 7/1?) (3.357)
jZI?,CMD = }ZI?,REF +Kjg(/i}1€,REF _).(.Ig)—i_K;'g(ZIg,REF _Zlg)+KZ(ZI€,REF _;(1?) (3-358)

So far, the coupling between the kinematic flight-path climb angle yx and the kinematic
course angle yx via the kinematic flight-path bank angle ux has not yet been considered for the
implementation of the flight-path variables control loop. The coupling implies that at flight-
path bank angles ux close to zero a faster reaction of the aircraft in the vertical plane is
possible while at bank angles close to 90°, a faster reaction in the horizontal plane can be
achieved. For a further improvement of the controller this coupling could also be taken into
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account for the error feedbacks of the kinematic flight-path inclination angle yx respectively
the kinematic course angle yx by an adjustment of the gains depending on the flight-path bank
angle ux.

3.5.3 Kinematic Load Factors Control Loop

The kinematic load factors control loop contains the feedbacks of the deviations between the
reference values for the kinematic load factors and the actual values of the kinematic load
factors. The deviations of the load factors are fed back to the highest order time derivatives of
the commanded kinematic load factors that are the first order time derivatives for the load
factor ng . and the second order time derivatives for the load factors ng, respectively ng .:

N comp =N rir + Ko (nK,x,REF - nK,x) (3.359)
Mg yomp =Mk yrer T Kny (nK,y,REF — g, )+ Kny (nK,y,REF - nK,y) (3.360)
Ng . cup =Nk o rer T K, (nK,z,REF — Nk, )+ K.. (nK,z,REF - nK,z) (3.361)

For the load factors W in the Intermediate Kinematic Flight-Path Frame K respectively the
load factors m, in the Aerodynamic Reference Frame 4, the same error feedbacks can be
implemented.

3.5.4 Aerodynamic Attitude Angles Control Loop

As for the kinematic load factors control loop, the deviations between the reference values
and the actual values of the aerodynamic attitude angles and their first order time derivatives
are fed back to the second order time derivatives of the aerodynamic angle of attack oy, the
aerodynamic sideslip angle S, and the aerodynamic flight-path bank angle x4 in order to avoid
any divergences between the reference values and the resulting simulation model plant values:

dA,CMD = dA,REF +K, (dA,REF -a, )+ K, (aA,REF - aA) (3.362)
BA,CMD = BA,REF + Kﬁ (:BA,REF - :BA )+ Kﬁ (:BA,REF - :BA ) (3.363)
Lycnp = Harer + K, (laA,REF — Ly ) +K, (IUA,REF —Hy ) (3.364)

Regarding the kinematic attitude angles ax, fx and ug, identical error feedbacks can be
applied.

In the following, a differential equation that describes the error dynamics with respect to the

aerodynamic angle of attack ay is derived. Therefore, at first the control error e is defined as
(Ref. [Holzapfel, 2009d]):

€=y pep — A (3.365)

For the input-output linearized simulation model, the relationship between the commanded
and the resulting second order time derivative of the aerodynamic angle of attack a4 is given
by Eq. (3.366), where 4, represents an error term due to model uncertainties, modeling errors
and/or numerical integration drift:

Gy =Gy + A, (3.366)
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Inserting Eq. (3.362) into Eq. (3.366) gives:
a,— dAJeEF =A,+K, (dA,REF -a, )+ K, (aA,REF —a, ) (3.367)

Substituting the difference between the reference value and the resulting value for the
aerodynamic angle of attack a4 by the error e defined in Eq. (3.365) and resorting the terms,
the following differential equation for the error e results:

é+K,e+K,e=-A, (3.368)

The error dynamic with respect to the aerodynamic angle of attack a, is excited by the error
term 4, and can be adjusted by the coefficients K; and K,. The evolution of the error e with
time is limited if
e the real parts of the solution of the characteristic polynomial of the error dynamics
(3.368) are negative,
e the error term 4, is limited and
e the initial deviation between the reference value ¢4 cyp and the actual value dy is
limited.

3.5.5 Body Angular Rates Control Loop

Since the highest order time derivative of the body angular rates that is incorporated in the
simulation model is the first order time derivative, only the deviations between the reference
body angular rates and the actual values of the angular rates are fed back to the first order
time derivative to penalize any deviations between the reference values and the simulation
model output:

Pr.cwp = Pxrer + Kp (pK,REF _pK) (3.369)
9x.omp =9k rer T K, (qKJ?EF - QK) (3.370)
T cmp :’;K7REF+KV(FK7REF_FK) (3.371)

3.6 Simulation Modes

As mentioned before, the simulation model features a novel architecture where the attitude
and rotational dynamics are modeled in a serial manner to the translational and position
dynamics in contrast to the widespread conventional simulation model architecture where the
rotation equations of motion and the attitude propagation equations are modeled in a parallel
manner to the translation equations of motion and the position propagation equations of
motion (Refs. [Stevens, 1992], [Philips, 2004], [Etkin, 1996], [Etkin, 2005] and
[Roskam, 2001]). This basic difference is depicted in Fig. 9. With this serial model
architecture and the afore mentioned different depths of modeling for the inner loop, i.e. the
rotational and the attitude flight dynamics, the simulation model allows for many different
simulation modes and for a switching between these simulation modes. In this chapter, the
most important simulation modes that are fundamental for the newly developed optimization
procedure described later on are figured out. Besides the states that are utilized in the
respective simulation modes the inherent characteristics like e.g. accuracy, complexity,
computation time, etc. of these simulation modes are given.
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3.6.1 Point-Mass Simulation Mode

The pure point-mass simulation mode (Fig. 23) is the most simplifying approach for
simulating the flight system dynamics since with the non-linear point-mass simulation model
only the position propagation equations and the translations equations of motion are taken into
account for the simulation but no rotational and attitude dynamics. Therefore, the states of the
simulation model are the aircraft position values x, y and z, the absolute kinematic
velocity Vk, the thrust lever position Jr and the kinematic flight-path variables course
angle yx, climb angle yx and bank angle ux respectively the four quaternions ¢y, q;, ¢> and ¢;.
The controls are the aerodynamic angle of attack a,, the aerodynamic angle of sideslip £, and
the first order time derivative of the aerodynamic bank angle ;14 as well as the commanded
thrust lever position oz cup.

& 4 cnp > Pa.cups Boa.cups Or o

Reference Inverse Linear Linear Transfer
Models Transfer Functions Functions
Inverse Linear Linear State-Space Translation &

Actuator Dynamics

State-Space Models Models Position EoM
Inverse Translation Inverse Rotation & Rotation & Attitude
& Position EoM Attitude EoM EoM

Figure 23. Point-Mass Simulation Mode

T
X:[‘x’y>z>VK>q09q19q29q315T] (3372)

T

u= [aA,CMD s Bacvn s Baonp > Or e ] (3.373)

Here, the first order time derivative of the aerodynamic bank angle ji4 is chosen as control
input instead of the first order time derivative of the kinematic bank angle jix. Furthermore,
within the simulation model the first order time derivative of the aerodynamic bank angle /14
then directly acts as input to the translation equations of motion, so that the four quaternions
effectively represent the three flight-path angles that are the kinematic course angle yk, the
kinematic path inclination angle yx and the aerodynamic bank angle z4.

Then, the load factors that are calculated in the Aerodynamic Reference Frame 4 from the
aerodynamic angle of attack o cyp and the aerodynamic sideslip angle 4 cup can be directly
transformed to the Kinematic Flight-Path Frame K utilizing the aerodynamic bank angle 14
together with the aerodynamic and kinematic course angle y4, and yx as well as the
aerodynamic and kinematic inclination angle y,4 and yx (see Fig. 24). If the kinematic bank
angle ux had been chosen, this would not have been possible since in this case the
aerodynamic bank angle u4 could not be restored. On the other hand, using the aerodynamic
bank angle uy together with the commanded attitude angles a4 cvp and f4.cmp, €ven the
kinematic angle of attack ax and the kinematic sideslip angle Sk can be calculated making use
of the equations given in chapter 3.3.8. Thus, finally the kinematic bank angle ux can be
computed and the circle depicted in Fig. 24 gets closed.
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Figure 24. Coordinate Systems

3.6.2 Hybrid Simulation Mode with Linear Transfer Functions

Since the aerodynamic angle of attack a4, the aerodynamic angle of sideslip f4 and the first
order time derivative of the aerodynamic bank angle /14 are the controls of the pure point-mass
simulation models, arbitrary time histories for these control signals could be commanded and
these time histories do not necessarily take into account the real dynamic order of the flight
system. E.g. in reality there cannot occur any discrete jumps in the aerodynamic angle of
attack a4 nor in the first order time derivative of the kinematic bank angle si4 and also the time
rate of change of these signals is limited due to the inherent dynamics of the real flight
vehicle. One approach to come closer to reality and to generate more realistic time histories
for the angle of attack ay or the bank angle x4 is the utilization of second order linear transfer
functions for the load factor build-up respectively first order linear transfer functions for the
build-up of the first order time derivative of the flight-path bank angle w4 as depicted in
Fig. 25.

In comparison to the pure point-mass simulation mode the dynamic order of the flight system
dynamics is increased since the rotational and attitude dynamics of the flight system are
represented by linear transfer functions for the load factors and the roll rate. If only the point-
mass simulation mode, i.e. the outer loop without any inner loop is used for simulation, the
load factors are the directly commanded values and therefore it would be possible that there
are leaps in the load factor curves that cannot occur in reality. With the linear inner loop
comprising transfer functions for the load-factors and the roll rate, the maximum achievable
build-up rates of these quantities are limited and the progression of the load factor and roll
rate curves become much more realistic.

Additionally to the states of the pure point-mass simulation model, the following states are
added to the simulation model state vector: the load factors n, and n., the first order time
derivatives of these load factors 7, and 7. and the first order time derivative of the kinematic
flight-path bank angle /ix respectively the roll rate px. Besides the commanded thrust lever
position d7cup, the controls are the attitude angles a4 cyp and f4cup and the first order time
derivative of the flight-path bank angle /4 cup.
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Figure 25. Hybrid Simulation Mode with Linear Transfer Functions

" T
x:[x’y’z’VK’Qanl9q2aQ3any,Aany,Aanz,A,nz’A,pK,5T] (3.374)

T

u= [aA,CMD s Ba.cup s B aomp > Or cup ] (3.375)

Here again, the first order time derivative of the aerodynamic bank angle ji4 is the preferred
control input since for the hybrid simulation mode with linear transfer functions in principle
the same statements hold as for the pure point-mass simulation mode stated in the preceding
chapter.

3.6.3 Hybrid Simulation Mode with State-Space Models

This hybrid simulation mode utilizes the point-mass simulation model supplemented by the
linearized state-space models for the longitudinal and lateral motion of the aircraft (Fig. 26) to
represent the rotational and attitude dynamics of the flight system in a more realistic manner
than the linear transfer functions. Additionally, the actuator dynamics are incorporated in this
simulation mode. Thus, the states for the simulation with the hybrid simulation mode with
state space models are, in addition to the states of the pure point-mass simulation model, the
kinematic attitude angles angle of attack ax and sideslip angle fx and the pseudo-roll rates py,
qx and r¢. The actuator dynamics introduce six extra states, namely the elevator position 7, the
aileron surface deflection £ and the rudder position { as well as their respective first order time
derivatives &, 7 and ¢. The controls are the thrust lever position d7cyp as for the pure point-
mass simulation model augmented by the commanded deflections of the elevator #cyp, the
aileron &eyp and the rudder Comp.
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Figure 26. Hybrid Simulation Mode with Linear State-Space Models

. T
X:[xay’Z:*VK’aK’ﬂKaqo’qlaqzrqypK’qK’rK’é‘T’n’ﬁ’g’éaé”C] (3.376)
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T
u= [UCMD>§CMD’§CMDa5T,CMD] (3.377)

3.6.4 Full, Non-Linear Simulation Mode

The full, non-linear simulation mode illustrated in Fig. 27 is the simulation mode that comes
closest to reality since the point-mass simulation model is augmented by the full non-linear
rotational and attitude dynamics. Thus, the states related to this simulation mode are the angle
of attack ok, the sideslip angle Sk and the real body angular rates that are the roll rate pk, the
pitch rate gx and the yaw rate rx plus the states originating from the pure point-mass
simulation model. As for the hybrid simulation model with linear state-space models, the
actuator dynamics introduce the six supplementary states for the control surface deflections 7,
&, ¢ and their first order time derivatives é’, 7 and C . The controls are also identical to the
controls of the hybrid simulation model with linear state-space models and comprise the
commanded thrust lever position o7 cup as well as the commanded control surface deflections

Hemp, Sevp and Cemp.

Nemp s éCMD > é/CMD > 5T,CMD
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Figure 27. Full, Non-Linear Simulation Mode

Translation &
Position EoM

Rotation & Attitude
EoM

Inverse Translation Inverse Rotation &
& Position EoM Attitude EoM

. T
X= [xayaza VK7a](aﬂ]{aq09q15q25q39(6§595T’77’775 57554941] (3378)
T
u= [UCMD>§CMD’§CMDa5T,CMD] (3.379)

3.6.5 Hybrid Simulation Mode with State-Space Models, Inner Loop
Inversion and Reference Models

This simulation mode expands the hybrid simulation mode with state-space models
introduced in chapter 3.6.3 by the inversion of the linearized state-space models and reference
models for the controls that are now the aerodynamic angle of attack a4, the aecrodynamic
sideslip angle f4 and the first order time derivative of the aerodynamic flight-path bank
angle fi4. If only the inversion controller for the inner loop is used, the hybrid simulation
model with linear state-space models can be simulated utilizing the same controls as the pure
non-linear point-mass model without inner loop that is to say the angle of attack ay, the
sideslip angle f4, the first order time derivative of the aerodynamic flight-path bank angle ji4
and the thrust lever position d7.

Additionally to the states of the hybrid simulation mode with state-space models listed in
chapter 3.6.3, the simulation model state vector is augmented by the reference models states



110 OPTIMIZATION SIMULATION MODEL

that are the reference values for the aerodynamic attitude angles a4 rer, fa.rer and g rer plus
their first order derivatives with respect to time 6.4 rer, farer and iy rer.

a4 cmp> ﬂA,CMD sHacmp> 5T,CMD
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Models Transfer Functions Functions
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Figure 28. Hybrid Simulation Mode with State-Space Model, Inner Loop Inversion and Reference Models

* * *
X= [xﬂyﬁz9VK’aK’ﬁK’q()’ql’qz’q}’pK’qK’rK’aT’

. ) . T (3.380)
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T

u= [aA,CMD’ﬂA,CMD’ﬂA,CMD’é‘T,CMD] (3.381)

3.6.6 Full, Non-Linear Simulation Mode with Inner Loop Inversion and
Reference Models

Analogous to the hybrid simulation mode depicted in chapter 3.6.5 with linear state-space
models and the corresponding inner loop inversion and reference models, this simulation
mode (Fig. 29) augments the full non-linear simulation mode illustrated in chapter 3.6.4 by
the dynamic inversion subsystems of the non-linear inner loop and the respective reference
models for the command signals that again are the aerodynamic angle of attack ay, the
aerodynamic sideslip angle f4 and the first order time derivative of the aerodynamic flight-
path bank angle si4. In addition to the states incorporated in the full, non-linear simulation
mode of chapter 3.6.4, six extra states in association with the reference models are added that
are the aerodynamic attitude angles a4 rer, Sarer and ugrer as well as their first order time
derivatives O.CA,REF, ,BA,REF and ,L'LA,REF.

By this simulation mode where only the inversion controller for the non-linear inner loop is
taken into account, one can simulate the full, non-linear 6-Degree-of-Freedom simulation
model using the same controls as for the non-linear point-mass model without any inner loop
respectively the hybrid simulation model depicted in chapter 3.6.5 with linear state-space
models and the corresponding inversion controllers for the state-space models.

a4 cmp> ﬂA,CMD sHyq.cmp> 5T,CMD
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Figure 29. Non-Linear Simulation Mode with Inversion and Reference Models
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— IB
X= [xnynznVK’aKaﬁKaqoaqlaqzaq:me :579

. . r (3.382)
775777574:54/9élaaAﬁdAaﬂA’ﬁAﬂuA]

T

u= [aA,CMDHBA,CMD9:[lA,CMD95T,CMD] (3.383)

3.6.7 Trajectory Following Mode with Linear Transfer Functions

The trajectory following mode with linear transfer functions depicted in Fig. 30 comprises the
point-mass simulation model with linear transfer functions for the inner loop, the actuator
dynamics models and the inverse simulation models for the point-mass model and the linear
transfer functions. Thus, the state vector consists of the point-mass model states plus five
states caused by the linear transfer functions that are the load factors n, and 7., their first order
time derivatives 7, and 7. and the roll rate px. The reference trajectory has to be given in
parameterized vector form and has to be at least four times continuously differentiable.

Linear Transfer
Functions

Inverse Linear Actuator Dynamics Linear State-Space
State-Space Models ¥ Models

Inverse Linear
Transfer Functions

Reference
Models
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Figure 30. Trajectory Following Mode with Linear Transfer Functions

. T
X= [x,y,z, VK:%aCh,42’43any,Aaﬁy,Aanz,A’ﬂz,AapK>5T] (3.384)
u=%,,(7) (3.385)

3.6.8 Trajectory Following Mode with State-Space Models

The trajectory following mode with state-space models (Fig. 31) is the same as the trajectory
following mode with linear transfer functions except for the inner loop and the inverted inner
loop that are now simulated by the linearized state-space models respectively their dynamic
inversion subsystems. Thus, instead of the states associated with the linear transfer functions,
the state vector consists of the states for the linear state-space models that are the kinematic
angle of attack ak, the kinematic sideslip angle fx and the pseudo-roll rates py, gy and r; plus
six states brought by the incorporated actuator dynamics, namely the control surface
deflections #, &, ¢ and their first order time derivatives é, 7 and ( . This means that a more
realistic reproduction of the rotational and attitude dynamics is taken into account by this
trajectory following mode than it is the case for the trajectory following mode described in
chapter 3.6.7.
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Figure 31. Trajectory Following Mode with State-Space Models
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3.6.9 Trajectory Following Mode with Full, Non-Linear Inner Loop

The most accurate and realistic trajectory following mode is the mode with the full, non-linear
inner loop shown in Fig. 32. Instead of linear transfer functions or linear state-space models as
in the preceding two trajectory following modes this mode utilizes the full non-linear inner
loop and the respective inverse simulation model equations and thus allows for a
representation of the rotational and attitude dynamics in the most realist manner. Additionally
to the states of the point-mass simulation model and the states of the actuator dynamics, this
mode adds the states of the full non-linear inner loop that are the kinematic angle of attack ok,
the kinematic sideslip angle S, the roll rate pk, the pitch rate gx and the yaw rate rx to the
simulation model state vector.

Reference Inverse Linear Linear Transfer
Models Transfer Functions Functions
X REF (T)
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Inverse Translation Inverse Rotation &
& Position EoM Attitude EoM

Figure 32. Trajectory Following Mode with Non-Linear Inner Loop
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4

Optimization Algorithm

4.1 Algorithm Abstract

In this chapter, a newly developed optimization algorithm is introduced that allows for the
generation of robust and suitable initial guesses for the optimization of aircraft trajectories
with underlying simulation models of varying depths of modeling fidelity. The optimization
algorithm is based on the scalable, multi-fidelity simulation model presented in detail in
chapter 3 as well as the various simulations modes given therein. In the following, the
optimization algorithm is outlined and for the various optimization steps of the algorithm, the
general optimization problem stated in chapter 2 is rendered more precisely. Furthermore, a
slightly modified algorithm is illustrated, resulting in the same final result as the original
algorithm that is an optimal trajectory for a full, non-linear 6-DoF simulation model. The
various steps performed during the optimization procedure are depicted in Fig. 33.
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Figure 33. Optimization Algorithm I



114 OPTIMIZATION ALGORITHM

The algorithm is initialized with a given trajectory that is feasible for the point-mass
simulation model, i.e. the point-mass simulation mode given in chapter 3.6.1 is utilized first.
A procedure for generating feasible trajectories that are already close to the optimal
trajectories when multiple waypoints have to be passed is depicted in detail in chapter 4.2.2.
Utilizing the feasible trajectory as initial guess, the optimal trajectory for the point-mass
simulation model is computed that is step 1A of the optimization algorithm. Therefore, the
state vector respectively the control vector of the optimization problem stated in chapter 2.2
are:

T
XZ[X,y,Z,VK,ZK,VK,ﬂK,5T] (41)

. T
u= [aA,CMDa IBA,CMD’ Hacmps 5T,CMD] 4.2)

Once the optimal trajectory for the point-mass model has been found, the modeling
complexity of the simulation model is increased by incorporating the linear inner loop with
linear transfer functions for the load factors and the roll rate, thus making use of the
simulation mode given in chapter 3.6.2. As can be seen from Eq. (3.375) in chapter 3.6.2, the
same command inputs as for the point-mass simulation model are required, thus the trajectory
can easily be simulated utilizing the hybrid simulation mode with linear transfer functions
where the controls are now the input signals to the linear transfer functions in the inner loop.
Within the optimization algorithm, this simulation of the aircraft trajectory by the hybrid
simulation mode with linear transfer functions constitutes step 1B.

By simulating the trajectory utilizing the command inputs that have been optimal for the
point-mass model without any inner loop, the resulting simulated trajectory will deviate from
the trajectory that has been optimal utilizing the point-mass simulation mode because of the
increased dynamic order of the simulation model. Without any inner loop, step inputs for the
aerodynamic angle of attack a4 and the aerodynamic sideslip angle S, or the first order time
derivative of the aerodynamic bank angle s, are directly forwarded to the point-mass
simulation model, while now with an inner loop featuring linear transfer functions the
respective step inputs are delayed by first or second order linear transfer functions. Thus, the
reaction of the point-mass model to changes in the control inputs is also delayed. The
simulated flight system incorporating linear transfer functions will not be able to follow the
trajectory that has been computed for the point-mass model if the same control time histories
are fed to the simulation model. Hence, for the simulation task the inversion controllers for
the outer loop (chapter 3.3) together with the error feedbacks outlined in chapter 3.5 are
utilized to force the simulated flight system with linear transfer functions onto the optimal
trajectory found for the model without any inner loop, resulting in the control inputs uy,,, - for
the hybrid simulation model with linear transfer functions (see Fig. 33). At this, the reference
trajectory Ty = T oprpy 18 Only given up to its second order time derivative since the control
inputs of the point-mass simulation model in step 1A are approximated linearly. Thus, the
point-mass simulation model allows only for the computation of smooth second order time
derivatives for the position vector. The first order time derivatives of the position vector are
obtained automatically by the position propagation equations. Consequently, the inversion
controllers and the error feedbacks can also only be utilized up to the respective derivative
order, i.e. the second order time derivatives in the trajectory control loop and the first order
time derivatives in the kinematic flight-path control loop.
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Alternatively, the trajectory following mode with linear transfer functions of chapter 3.6.7 can
be used to generate the commands wug,,,,». Then, a smooth and continuously differentiable
reference trajectory up to its fourth order time derivative has to be given that is usually not the
case regarding the trajectory that results from the optimization using the point-mass
simulation model. Thus, an approach to generate a reference trajectory with smooth fourth
order time derivatives from the reference trajectory that is only twice continuously
differentiable has to be established. One possibility is to fit the given reference trajectory by
B-splines of sufficient order. Then, the newly established reference trajectory is sufficiently
smooth and the required derivatives can easily be calculated from the B-spline curve fit.
Another possibility to generate the required reference trajectory up to its fourth order time
derivative is provided in chapter 4.2.3. There, a substitute optimization problem is established
to smoothen the given reference trajectory. Besides the reference trajectory itself, also the
reference time history for the kinematic flight-path bank angle ux (that is set equal to the
aerodynamic flight-path bank angle p4 for the point-mass model) has to be considered. The
time history for the bank angle that is output by the point-mass simulation model is only
continuously differentiable once, while for the error feedbacks stated in chapter 3.5 a
reference time history is required that is at least twice continuously differentiable. Thus, the
reference time history for the flight-path bank angle ux has also to be fitted by B-splines.
Alternatively, it can also be treated by the substitute optimization problem given in
chapter 4.2.3.

Of course, the control histories ug,,, ;- resulting from the simulation step 1B are unlikely to be
optimal since the cost function has not been minimized by optimization, but an initial guess
for the optimization task utilizing the hybrid simulation mode with linear transfer functions
has been generated that fulfills all given boundary conditions to a wide extent and that might
already come close to an optimal solution based on this hybrid simulation model. This
optimization task represents the next step in the optimization algorithm (step 2A), where the
corresponding state and control vector within the general optimization problem are:

T
. . *
X= [xayaZ7VK’ZKa71<>/U1<any,Aany,Aanz,A7nz,A’p1<>5T] (4.3)

. T
u= [aA,CMDa ﬂA,CMD’ Hicmps 5T,CMD] (4.4)

When the optimal solution for a trajectory utilizing the simulation model with the attitude and
rotational dynamics represented by linear transfer functions has been computed, the obtained
time histories for the position vector F,,;,,- can then be used as reference trajectory T, for
simulating the trajectory utilizing the simulation mode of chapter 3.6.8. At this, a simulation
model is taken into account that features an inner loop with linear state-space models
augmented by the appropriate inversion controllers. This simulation task represents step 2B of
the optimization algorithm depicted in Fig. 33. In step 2A of the optimization algorithm the
point-mass simulation model has been augmented by linear transfer functions, while the
control inputs to the augmented simulation models are linearly interpolated. Thus, due to the
increased dynamic order of the simulation model in step 2A, a reference trajectory T =
T orrrr Can be computed that features smooth time derivatives up to the fourth order. Again,
the simulated trajectory is likely to deviate from the optimal trajectory found for the model
with linear transfer functions since now linear state-space models are incorporated in the
simulation model. Thus, the modeling fidelity is increased and in contrast to the optimization
based on linear transfer functions in the inner loop, the coupling between the states in the
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longitudinal motion respectively the coupling between the states in the lateral motion is now
incorporated in the simulation model, causing the simulated trajectory to deviate from the
trajectory that has been optimal for the hybrid simulation mode incorporating linear transfer
functions. Due to this reason, the error feedbacks given in chapter 3.5 are used to force the
aircraft model with linear state-space models in the inner loop back onto the trajectory that
has been optimal for the model with linear transfer functions in the inner loop. To sum up, in
step 2B the hybrid simulation model with linear state-space models in the inner loop tries to
follow the trajectory that has been obtained by the optimization using the hybrid simulation
model with linear transfer functions. Finally, the control time histories uy,, s, that are the
input to the next step of the optimization algorithm have to be restored by appropriate inverse
reference models (see chapter 4.2.1).

Here again it has to be stated that the control time histories uyg,,,, are not assumed to be
optimal since they were generated by simulation and not by optimization, but they provide a
well suitable initial guess for the next step in the optimization algorithm that is step 3A.
Within this step, the time histories ug,, s, found by simulating the trajectory using the model
with linear state-space models, inversion controller and error feedbacks in turn are used as
initial guess for the optimization of the aircraft trajectory utilizing the simulation mode with
linear state-space models supplemented by the appropriate inversion controller (see
chapter 3.6.5) so that the control and state vector with regard to the general optimization
problem read:

* * *
X= [xﬁy7z’VK’aK’ﬂK’ZK’yKﬂﬂK’pK’qK’rK’gT’

. . . T 4.5)
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) T
u= [aA,CMDJ ﬂA,CMD’ Hacups 5T,CMD] (4.6)

Stepping forward in the optimization procedure, in step 3B the position vector T, being
optimal for the simulation model with the state-space models and the inversion controller is
then used as reference trajectory T, for a simulation based on the model with the non-linear
inner loop combined with the respective inversion controllers (see chapter 3.6.9). Due to its
dynamic order, the hybrid simulation model with linear state-space models used in step 3A of
the optimization algorithm allows for a direct computation of a reference trajectory T, =
Torrssy Up to the fourth order time derivative. As before, due to the increased depth of
modeling, deviations from the trajectory that has been optimal for the simulation model with
state-space models and inversion controller in the inner loop will occur. These deviations are
corrected by the appropriate error feedbacks, see chapter 3.5. Thus, in step 3B the simulation
model with the nonlinear inner loop attempts to follow the trajectory that is the outcome of
the optimization with the hybrid simulation model with linear state-space models in the inner
loop (step 3A). Again, the controls ug,,,,, have to be restored utilizing appropriate inverse
reference models (chapter 4.2.1). In the sequel, the controls ug,,,,, constitute the input to
step 4A of the optimization algorithm.

As before, the controls uy,,,,, might not be optimal for the increased modeling fidelity but
result in a sub-optimal trajectory that obeys all boundary conditions to a great extent. Thus,
the controls ug,,,,, represent a good and well-suited initial guess for the next step in the
optimization algorithm that is step 4A. Here, the optimization task is accomplished based on
the simulation mode with the full, non-linear rotation and attitude dynamics inclusively
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inversion controller given in chapter 3.6.6. The control respectively the state vector of the
general optimization problem stated in the preceding chapter are then modified to:

— |B
X= [x9yazaV[(aaKalBK9lK’7/KﬂuK’mK ’§T’

. . . T 4.7)
77:77’é:vé:vg&g’aAﬁdA’ﬂA’ﬁA’ﬂAaﬂA]

) T
u= [aA,CMD ) ﬂA,CMD sH 4 cmp > 5T,CMD ] (4.8)

As can be seen from Eq. (4.7), computing the optimal trajectory respectively the optimal
controls W,y for this level of the simulation model in turn yields time histories for the
control surface deflections #, ¢ and ¢ Finally, in the last step SA of the optimization algorithm
these time histories for the control surface deflections are utilized as quite good initial guesses
for the optimization of an aircraft trajectory based on a full 6-degree of freedom simulation
model with non-linear attitude and rotational dynamics but without any inversion controller so
that the control surface deflections are the directly commanded control inputs, where the
simulation mode dedicated to this optimization task can be found in chapter 3.6.4. Regarding
the general optimization problem, the control vector and the state vector for this last step of
the optimization algorithm comprise the following quantities:

. T
X =, 9,2,V @ Bes s Vi Mo ®2 811 .5 4.9)

T

u= [UCMDﬂé:CMD’é/CMD’aT,CMD] (4.10)

Thus, the final output of the optimization algorithm are the controls u,,;,,, that give the
optimal aircraft trajectory based on a full, non-linear 6-degree of freedom simulation model.
In Table 2, a summary of the various steps that are performed during the optimization
algorithm described so far is given.

ALGORITHM I

1A Optimization using point-mass simulation mode

1B Simulation using hybrid simulation mode with linear transfer functions
2A  Optimization using hybrid simulation mode with linear transfer functions
2B Simulation using hybrid simulation mode with linear state-space models

3A°  Optimization using hybrid simulation mode with linear state-space models,
inversion controller and reference models

3B Simulation using full simulation mode with non-linear inner loop

4A  Optimization using full 6-DoF simulation mode with non-linear inner loop,
inversion controller and reference models

SA  Optimization using full 6-DoF simulation mode with non-linear inner loop

Table 2. Optimization Algorithm I

Furthermore, an alternative optimization algorithm is developed that is a slightly modified
version of algorithm I. A summary of the steps performed therein can be found in table 3, the
optimization algorithm itself is illustrated in Fig. 34. Up to step 3A, the alternative
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optimization algorithm proceeds in exactly the same way as algorithm I. As can be noticed
from Eq. (4.5), performing the optimization task in step 3A also produces time histories for
the control surface deflections 7, ¢ and {. Instead of simulating the aircraft trajectory utilizing
the full, 6-DoF simulation mode with the non-linear inner loop, the appropriate inversion
controller and reference models that would have been step 3B of algorithm I, the alternative
algorithm II proceeds by optimizing the aircraft trajectory making use of the simulation mode
given in chapter 3.6.3. This simulation mode is a hybrid simulation mode with linear state-
space models in the inner loop, but without any inversion controller or reference models. In
the optimization task of step 4A of the modified algorithm, the state time histories for the
control surface deflections #, ¢ and ¢ being the outcome of step 3A are used as initial guess,
and the control and state vector of the general optimization problem are set to:

* * * . . 17
X = [X,y,Z,VK,OlK,ﬁKaZKJ/Ka,UK,pK,qK,rK,5T,n,n,§,§,é',é’] (411)
T
u= [UCMD’§CMD’§CMD’5T,CMD] (4.12)
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Then, in step 4B of optimization algorithm II, the trajectory following mode of chapter 3.6.9
is utilized that involves the 6-Degree-of-Freedom simulation model with the full, non-linear
inner loop. The simulation model must follow the trajectory that has been obtained by the
optimization in the preceding step 4A of the optimization algorithm. As depicted above,
step 4A is based on the hybrid simulation model with linear state-space models in the inner
loop. Here again the statement holds that due to the increased depth of modeling deviations
from the aircraft trajectory that has been optimal for the optimization based on the simulation
mode with the linear state-space models will occur, so that the error feedbacks given in
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chapter 3.5 are incorporated in the simulation model to cancel out these deviations. By the
simulation in step 4B of optimization algorithm II, the control time histories ug,,,,, result (see
Fig. 34). The control vector u is given by the control surface deflections #, ¢ and { and any
deviation from the reference trajectory is directly fed back to these control quantities. Finally,
the time histories ug,, ,,, for the controls provide a suitable initial guess to perform the last step
of the optimization algorithm II, step 5A, that again is identical to the last step of algorithm I
and that optimizes the aircraft trajectory based on the full, non-linear 6-DoF simulation model
of chapter 3.6.4.

ALGORITHM II

1A  Optimization using point-mass simulation mode

1B Simulation using hybrid simulation mode with linear transfer functions
2A  Optimization using hybrid simulation mode with linear transfer functions
2B Simulation using hybrid simulation mode with linear state-space models

3A  Optimization using hybrid simulation mode with linear state-space models,
inversion controller and reference models

4A  Optimization using hybrid simulation mode with linear state-space models
4B Simulation using full 6-DoF simulation mode with non-linear inner loop

SA  Optimization using full 6-DoF simulation mode with non-linear inner loop

Table 3. Optimization Algorithm II

4.2 Implementation Details

4.2.1 Inverse Reference Models

Within the optimization algorithms of chapter 4.1, corrected reference values up to their
second order time derivatives for the aerodynamic attitude angles that are the angle of
attack a4, the angle of sideslip f4 and the bank angle w4 are obtained after simulating the
respective trajectory in step 1B, 2B or 3B of algorithm I or in step 1B or 2B of algorithm II.
In the successive optimization tasks, corrected command values for the attitude angles are
required as control inputs to the respective reference models, producing just the same
reference values for the attitude angles. The command time histories can be restored by
making use of the appropriate inverted reference models. For example, the inversion of the
second order reference model for the aerodynamic angle of attack a4 reads:

1
G _ 2 2\ ¢
Aycmp = e (S +2-0 w5+ o, )'aA,REF
o

(4.13)

l (.¢ e 2 G
= P (aA,REF +2-¢ o, "y ppr T Wy 'aA,REF)
o

generating the required command time history o4 cup that in turn is used as initial guess for
the optimization task in the subsequent step of the optimization algorithm. The computation
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of the first and second order time derivatives of the angle of attack a4 is given by Egs. (3.258)
and (3.259).

4.2.2 Initial Guess Generation

In this chapter, an algorithm is illustrated that allows for an automatic generation of initial
guesses respectively feasible trajectories for the optimization algorithms outlined in the
preceding chapter when multiple waypoints have to be passed at prescribed kinematic course
angles. In addition, besides the position coordinates and the course angle, further quantities
can be prescribed at the respective waypoints like e.g. speed values, bank angles, etc. In the
following, the initial guess generation is illustrated for a point-mass simulation model, but the
extension of the proposed algorithm to simulation models of higher fidelity is straightforward.

First of all, the trajectory optimization problem is split up into multiple phases where each
single phase is defined as the flight path segment between two succeeding waypoints. Thus,
the initial and final boundary conditions for each phase are defined by the position
coordinates ¥ = [x, y, z]" of the respective waypoints, the initial and final course angles yx and
the supplementary quantities specified at the considered waypoints. The algorithm then starts
by computing the optimal solution for the first phase, using a homotopy procedure that is
illustrated in Fig. 35. At first, an auxiliary waypoint is introduced and the optimization
problem is solved for a flight from the initial waypoint of the first phase to the newly defined
auxiliary waypoint. To initialize the homotopy procedure, the auxiliary waypoint is specified
as a waypoint at the same altitude as the initial waypoint with a certain distance d from the
initial waypoint in the direction of the initial course angle:

X quxni = Xppr +d - COS X ypy (4.14)
Yavxni = Ywer T d -sin X wpr (4.15)
Z qux.ni = Zwp1 (4.16)

where the subscript WPI denotes the initial waypoint and the subscript AUX the auxiliary
waypoint. The course angle yx and the kinematic velocity Vk at the auxiliary waypoint are set
to the same values that are prescribed at the initial waypoint:

Xk auxni = Xk wpr (4.17)

Vi avxini = Viwer (4.18)

If no value for the kinematic velocity Vi at the initial waypoint of the first phase is specified
at all, it is initially set to the intermediate value of the lower and the upper bound for the
kinematic velocity. In this case, the initial boundary constraint for the kinematic velocity Vx is
freed and the determination of the kinematic velocity Vi wpr at the initial waypoint is left to
the optimization. Additionally, the values for the kinematic flight-path bank angle ux and the
kinematic flight-path inclination angle yx at the initial waypoint and at the auxiliary waypoint
are initially set to zero:

Yk .avxin = Vi = 0° (4.19)

M avximi = Mg e = 0° (4.20)
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Figure 35. Homotopy Procedure

This means that the initial waypoint of the first phase and the auxiliary waypoint are
positioned in line at the same level and that the aircraft can pass the two waypoints flying
straight and level. Moreover, the position of the auxiliary waypoint is chosen such that the
distance from the initial waypoint to the auxiliary waypoint is just the same as the distance
from the initial waypoint to the given terminal waypoint of this phase:

Xweir — Xwer
d =|| Yipn = Ve (4.21)

Zweir — Zwer )|,

Here, the subscript WPII denotes the terminal waypoint. Finally, the initial control
inputs u,,,(¢) that are required to solve the initial optimization problem for a straight and level
flight between the initial waypoint and the auxiliary waypoint can e.g. be calculated using a
trim routine that forces the aircraft to fly straight and level. Therefore, the trim routine has to
determine the control time histories u,,,(?) in such a way that the first order time derivatives
of the following state variables equal zero:

2(t)= jo(6) = 7 () = i () =V () =0 (4.22)

Then the homotopy procedure starts whereat the state vector x,,,, of the auxiliary waypoint is
gradually changed so that the auxiliary waypoint x,, approaches the given terminal
waypoint Xx,,, of the first phase:

k- (XWPII - XAUX,im‘)

ng

X X +

AUX k= R AUX ini k=1,...,ng (4.23)

in which £ is the actual iteration number and ng the total number of iteration steps. In doing
so, for each iteration step k the corresponding optimization problem that determines the
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optimal flight path between the initial waypoint x,,,, and the actual auxiliary waypoint X, 18
solved.

If the values for the kinematic flight-path bank angle ux wp; and the kinematic inclination
angle yx wpr at the initial waypoint of the first phase are prescribed, the bank angle ux and the
inclination angle yx are alternated by applying the same iterative scheme as for the auxiliary
waypoint X, so that the initial boundary constraints for the bank angle ux and the inclination
angle yx are finally met:

k- (7/ xwer — 7 K,WP],im‘)

Yewerxe = Vewprin T " k=1,..,ng (4.24)
s
k ' lu - lu ini
Hywpri = Mg wprini + ( KqWP[n S ) k=1,..ng (4.25)
s

where yk wprmi and ux werim: are specified by Eq. (4.19) respectively Eq. (4.20). On the other
hand, if no values for the kinematic flight-path bank angle ux wp; and the kinematic inclination
angle yxwp; at the initial waypoint are specified, the corresponding initial boundary
constraints are freed and the determination of those values is left to the optimization. The
same holds for the controls, i.e. if no control values uyp; at the initial waypoint of the first
phase are specified, the determination of those values is also left to the optimization.
Otherwise, initial boundary constraints for the controls are enforced and the control values are
alternated within each iteration by:
k- (uWPI ~Wypr i )

Wyypp g = Wypy i " k=1,..,ng (4.26)
s

where the controls uyp;;,; are set equal to the controls u,,,(7) determined by the trim routine:
Wypr ini = Winio (t ) 4.27)

In each iteration step k, the resulting slightly altered optimization problem is then solved

utilizing the optimal solution u,, (¢) from the previous optimization run as initial guess u,,(?):

Wi () =0, () k=2,.0mg (428)
This procedure is repeated until the state vector of the original terminal waypoint of the first

phase is met, so that the auxiliary waypoint x,,, and the terminal waypoint x,,, of the first
phase coincidence:

X yuxng = Xwenr (4.29)

The number of iterations ng that is taken to shift the auxiliary waypoint x,,, from its initial to
its final position depends on the distance dy between the initial position of the auxiliary
waypoint and the position of the prescribed terminal waypoint of the first phase:

Xwpir — X 4Ux ini
do =\| Yier = Y avini (4.30)

Zwpin ~ Z 4Ux ini 5
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The iteration number ng is derived such that a maximum displacement d,,,, of the auxiliary
waypoint within one iteration is not exceeded:

A d,
ng = ceil p (4.31)

max

The value for the maximum displacement can be set within specified bounds, and it allows for
a trade-off between

e increased stability of the initial guess generation if a low value is specified, or
e decreased computational time for generating the initial guess if the maximum
displacement is set to a high value.

Furthermore, to speed up the initial guess generation the optimization tolerance that has to be
achieved by the optimization within each iteration of the homotopy procedure can be set to a
relatively low value, before the optimization tolerance is set to a higher value for the last
iteration of the homotopy procedure. Additionally, the initial guess generation incorporates a
special treatment of waypoint settings where the given terminal waypoint is very close or
even identical to the initial waypoint and where the change in the course angle is very large
between the initial and the final waypoint. An example maneuver would be a 270° turn where
the aircraft has to return to its initial position in the shortest possible time. Before the
homotopy procedure starts, the waypoint positions are checked and if a setting as described
above is identified, an intermediate auxiliary waypoint is introduced so that the auxiliary
waypoint is not shifted directly towards the terminal waypoint. Thus, infeasible waypoint
positions and settings for the course angle are avoided since this might result in severe
computational problems, causing the optimization and thus the homotopy procedure to fail.

Once the homotopy procedure is completed for the first phase, it is repeated in the same way
for the remaining phases. At this, the determination of the initial boundary values that are
eventually not specified at the initial waypoints of the distinctive phases, that could be the
bank angle ux, the inclination angle yx, the kinematic velocity Vx and/or the controls u, is not
left to the optimization as it would have been the case in the first phase, but initial boundary
constraints are enforced that require the respective quantities to take the final values of the
preceding phases once the homotopy procedure for the respective phase has been finished:

Xty )=xlt,,) i=1.p-1 (4.32)
u(to,m): u(tf,i) i=1l..,p-1 (4.33)

with p being the number of phases. Regarding the path inclination angle yk, the bank angle ux
and the controls u, this is achieved by setting the initial starting values due to Egs. (4.19),
(4.20) and (4.27) and then alternating the initial boundary constraints according to Egs. (4.24)
to (4.26) during the homotopy procedure. Thus, the continuity of the time histories for the
states as well as the controls is guaranteed across all phase boundaries.

Finally, the computed states and controls of all the phases are put together, producing a quite
good initial guess for the optimization of the whole aircraft trajectory. This initial guess can
be termed sub-optimal since the aircraft trajectory has only been optimized between the
successive waypoints but it has not been optimized as a whole.

Table 4 summarizes the algorithm for the automatic generation of the initial guess for the
entire trajectory optimization problem.
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ALGORITHM III
1 Split the optimization problem into p phases due to given waypoints
2 Solve the optimization problem for each single phasei=1, ..., p

2.A  Introduce auxiliary waypoint x,,,; according to (4.14) to (4.20)

2.B  Determine initial controls u,,,;(f) by a trim routine such that (4.22) holds
2.C  Determine the number of iteration steps ns using (4.30) and (4.31)

2.D  Apply the homotopy procedure defined by Egs. (4.23) to (4.26) and (4.28)

3 Combine u,,;(?), i =1, ..., p to ZIVE W ypiima (1)

Table 4. Automatic Generation of Initial Guesses

4.2.3 Substitute Optimization Problem

In this chapter, a substitute optimization problem is established to smoothen a given reference
trajectory and to generate a reference trajectory up to its fourth order time derivative for the
position vector that is required in step 1B of the trajectory algorithm outlined in chapter 4.1.
Therefore, a slightly modified version of the point-mass simulation model is set up. In this
simulation model, only the kinematics given in chapter 3.2.2 and 3.2.3, but no aerodynamics
are taken into account. Thus, the inputs to the modified point-mass simulation model would
be made up by the load factors m; in the Intermediate Kinematic Flight-Path Frame K
respectively the first order time derivative of the kinematic flight-path bank angle ux. Instead
of the load factors or the first order time derivative of the bank angle, their second order time
derivatives are chosen as control inputs to the point-mass simulation model and the following
ordinary differential equations are added to the simulation model:

By = Py cup (4.34)

d{ng| |0 1T(ng) [0f,
E n o = O O n o + 1 nz,[?,CMD (435)
z,K z,K

The same equations hold for the load factors 7, g and n,, ¢ in the x- respectively the y-direction
of the Intermediate Kinematic Flight-Path Frame K. In doing so, the load factors m; and the
flight-path bank angle ux are delayed and the total dynamic order of the point-mass simulation
model is artificially increased. Furthermore, now the time histories for the position vector as
well as for the flight-path bank angle ux that are produced by the simulation model are
sufficiently smooth.

Then, the following substitute trajectory optimization problem is solved: Determine the
optimal control history

u,,(t)eR" (4.36)
and the corresponding optimal state trajectory

x,,(t)eR" (4.37)
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that minimize the Lagrange cost functional

J= T(Af'(t))zdt = }(F(t)— ¥, (1)) dt (4.38)

) )

subject to the state dynamics given by Egs. (4.34) and (4.35) as well as the position
propagation equations and translation equations of motion of chapter 3.2. The corresponding
control and state vector are:

.. .o T

u= [n h v,K,CMD? ”z,E,CMD » Mk cup ] (4-39)

x,K,CMD?

T
X= [x, Y2,V G0-915955 NN NN NN nZ’E] (4.40)

The least-square criterion J in Eq. (4.38) minimizes deviations between the actual position
vector T = [x, y, z]" and the reference position vector ¥,, that has been produced by the
optimization task in step 1A of the optimization algorithm of chapter 4.1, utilizing the
unmodified point-mass simulation model.
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Bilevel Optimal Control

The following chapters are concerned with the statement and the effective solution of a
special class of bilevel optimal control problems, where an optimal solution of the upper level
parameter optimization problem depends on the optimal solutions of one or more lower level
optimal control problems. Although the bilevel programming problem is a combination of an
upper level optimization problem and a certain number of lower level optimal control
problems, it is termed bilevel optimal control problem since the solution of the entire bilevel
problem is clearly dominated by the solution of the lower level optimal control problems.
After the statement of the bilevel optimal control problem in chapter 5.1, chapter 5.2
introduces the sensitivity analysis for the lower level optimal control problems that forms the
basis for the solution algorithm given in chapter 5.3.

5.1 Statement of the Bilevel Optimal Control Problem

Bilevel optimal control problems where an optimal solution of the upper level parameter
optimization problem depends on the optimal solutions of one or more lower level optimal
control problems can be stated as follows:

minJ(x,(z,(p).p,2).y,(z,(p)p. 1)z, (p)p) i=L..n (5.1)
subject to
G(x,(z,(p).p.2).y,(z. () p.0)2,(p)p)<0  i=1,..n (5.2)

where x,(p) are the state functions, y{p) the output functions and z(p) the parameter vectors
with respect to optimal solutions of optimal control problems as stated in chapter 2.2. Here, n
indicates the number of the lower level optimal control problems. J denotes the objective of
the upper level parameter optimization problem (5.1), G is the corresponding constraint
vector and p the parameter vector of the upper level optimization problem. The parameter
vector p is also involved in the solution of the lower level optimal control problems. Fig. 36
depicts the structure of the stated bilevel optimal control problems.
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Upper Level
Parameter Optimization Problem

—>x,(z,(p)p.?)
nt" Lower Level

p ———> Optimal Control Problem —>vy, (z,(p).p,?)

——>2,(p0)

Figure 36. Structure of Bilevel Optimal Control Problem

If for the solution of such bilevel programming problems the gradient of the objective of the
upper level optimization problem with respect to the parameter vector p was evaluated by
means of numerical methods, this would result in an extreme computational effort. Utilizing
central differences for the evaluation of the gradient of the upper level optimization problem,
each lower level optimal control problem would have to be solved twice to compute the
central difference with respect to one single parameter. Thus, an efficient way for the solution
of such bilevel problems is needed that avoids the time consuming evaluation of the gradient
of the upper level optimization problem. The basis for this solution algorithm is a sensitivity
analysis for the lower level optimal control problems that is given in the following chapter.

5.2 Sensitivity Analysis for Lower Level Optimal Control
Problems

In general, the goal of a sensitivity analysis is to determine how the solution of an optimal
control problem changes when certain parameters within the optimal control problem are
altered. At this, the parameters under consideration can either be subject to optimization or
not. The sensitivity analysis can be utilized to compute a suboptimal solution of the optimal
control problem in fairly short time or it can be applied if parameters with uncertainty are
present in the optimal control problem. Theoretical fundamentals on the theory of sensitivity
analysis can be found e.g. in Refs. [Fiacco, 1976] and [Fiacco, 1983]. In Refs.
[Biiskens, 1998] and [Biiskens, 2000], Biiskens gives a technique that is based on the work of
Fiacco and that allows for the computation of sensitivity differentials and suboptimal
solutions for a discretized optimal control problem. In the following, basic results for the
computation of sensitivity information utilizing the technique of Biiskens are given. These
equations for the computation of sensitivity information form the basis for the efficient
solution of the bilevel optimal control problem stated in chapter 5.1 by the algorithm outlined
in the chapter 5.3.

For the nonlinear programming problem resulting from the discretization of the original
optimal control problem, the augmented Lagrange cost function L(z, p, p) together with the
equality constraints G,(z, p) constitute the following set of equations:

L(z,p,p) = J(z,p)+n,G,(z.,p) (5.3)
G, (z,p)=0 (5.4)
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where z is the parameter vector and p a vector of additional parameters associated with the
optimal control problem (see chapter 2.2). J(z, p) denotes the final cost function. G,(z, p) is
the vector of equality and active inequality constraints and p, the vector of the corresponding
Lagrange multipliers. For any solution of the nonlinear programming problem to be an
optimal solution, the necessary conditions have to be fulfilled. This means, the gradient of the
Lagrange function L(z, p, p) with respect to the parameter vector z has to equal zero in order
to ensure that the computed solution is at least a local minima or maxima:

_dzp) o’ oG, (z.p)
oz ‘oz
In the following, Eq. (5.5) and Eq. (5.4) are joint together to give the vector of constraints F:

- [Lz(z, b p)j _ (sz,p) +mG,, (z,p>] o
G,(z.p) G, (z.p)

Then, the Jacobian of the constraint vector F with respect to the parameter vector z and the
vector of Lagrange multipliers p is:

B (GF OF j B (Lzz (zwp) G, (Z,p)J o
zp) - B

L,(z,pn,p) =J,(z,p)+n.G,,(z.p)=0 (5.5)

(5.6)

F = =
‘ oz on,) |\ G,,(zp) 0 (1)
where the matrix L,, evaluates to:
aJZ Z, aGaz(Zﬁp)
Lzz (Z9 l’l9 p) = ( p) + ! ; = Jzz (Z3 p) + HZ;Ga,Zz (Z’ p) (58)

1]
oz ¢ oz
Since it is the goal to compute a solution of the nonlinear programming problem that is
optimal or at least sub-optimal for small perturbations in the parameter vector p, it is required
that the necessary optimality conditions (5.6) hold in the vicinity of the parameter vector p.

This can be achieved by requiring that the gradient of the optimality conditions (5.6) with
respect to the parameter vector p equals zero:

daz,
dp L (z,n,, !
F=F,, - N w(Zo> 1o, Py) 0 (5.9)
o d 0 Ga,p(z()’po)
dp
daz,
_ Lzz(zoallO’pO) G;Z(Zoﬂpo) dp + sz(zoau())p()) ;0 (5 10)
’ Ga,Z(ZO’pO) 0 dpva,o Ga,p(ZO’pO) .
dp

where po, zo and po indicate the values of the parameter vector z, the vector of Lagrange

multipliers p respectively the parameter vector p of the optimal solution of the nonlinear

programming problem. The matrix L, is given by:

oJ oG, (z,
z(Z’p)_i_"(Y; a, ( p)
ap ap

T
sz (Za i, p) = = JZP (Z’ p) + u’aGa,zp (Z’ p) (511)
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From Eq. (5.10) the sensitivity matrix dzo/dp and also the sensitivity matrix dp, ¢/dp are then
obtained by:

dz,
T -1
dp Lzz(Z09u09p0) GaT,z(Zoapo) sz(zoauoapo)
== (5.12)
dp, G,.(zy,p,) 0 G, (2y,P)
dp

Here, the dimension of the matrix dzo/dp is n,u-¥np., Where n,,, is the length of the parameter
vector z and where n,,, is the number of parameters, i.e. the length of the parameter vector p.
The matrix dp,o/dp 1S a nuenpq-matrix, where ny, is the number of active constraints. The
Hessian Ly, is a n,4%n,,-matrix, while the matrix G,, has the dimension n,.Xn,,.. The
dimension of the matrix L, 1S 7,41, and the dimension of the matrix G p 1S Ry Mpar

At this, the sensitivity matrix dzo/dp indicates how the parameter vector z, has to be changed
in order to obtain a sub-optimal solution if any parameter in the parameter vector p is subject
to perturbation. From the sensitivity matrix given by Eq. (5.12), the sensitivity of the cost
function, the sensitivity of the constraints as well as the sensitivity of the state functions with
respect to the parameter vector p can be obtained. The results are given in the following.

The sensitivity of any constraint function gi(z, p) with respect to the parameter vector p
evaluates to:

a,
dgi(ZOspo): 0g,(zy,p,) 0g;(2y,pP,) dp +agi(Z0’p0) (5.13)
dp oz o, dp, op '
dp
az,
dg,(2,,p,) dp
= . y A ) + i Z N .14
dp gz(z,pa)( 0:Po) dllajo g,p( 0:Po) (5.14)
dp

Since the constraints gi(z, p) are only a function of the parameter vectors z and p but not of
the Lagrange multipliers p, Eq. (5.14) can be written as:

daz,

deg.(z,, dp
92,20, P) :[gi,z(209p0) 0] +8:5(Z05Py) (5.15)

dp dl‘l'a,O

dp
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For the sensitivity of the cost function J(z, p) with respect to the parameter vector p the
following relationships result:

daz,
dJ(z,,p,) :{aj(zmpo) a](ZOapo)} dp + aJ(z,,p,) (5.16)
dp aZ aua dp(LO 6p
dp
az,
dJ(z,, dp
%:J(Zm(zo,po) " +J,(20,Py) (5.17)
a,0
dp

With the cost function J(z, p) being solely a function of the parameter vectors z and p but not
of the Lagrange multiplier vector p, it follows:

daz,
dJ(z,,p,) dp
———=\J (z,, 0 +J (z,, 1
s [3,(z,,p,) 0] ., 2 (Zy,P) (5.18)
dp

Using Eq. (5.5), the sensitivity of the cost function becomes:

az,

dJ(z,, dp
(Zo:Ro) :[_"Z,oGa,z(Zo:po) 0] +J,(20,Py) (5.19)

dp dpa,o

dp

From the second line of Eq. (5.10), one has for the active constraint functions G,(z, p) in the
vicinity of the parameter vector py:

dy
dG (z,.p,) dp !
—Op():[Ga,z(ZO’pO) 0] +Ga,p(Z0’p0):O' (520)
dp dpa,O
dp

Then, the derivative of the active constraint functions G,(z, p) with respect to the parameter
vector p can be written as:

az,

dp
Ga,p(ZO’pO) :_[Ga,z(ZO’pO) 0] (521)
d”a,o

dp
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Utilizing Eq. (5.21) together with Eq. (5.19), it finally results that the sensitivity of the cost
function J(z, p) with respect to the parameter vector p equals the sensitivity of the Lagrange
cost L(z, p, p) with respect to the parameter vector p:

dJ(zy,p,)

dp :Jp(z()’p0)+uZ,OGa,p(ZO’pO) =L, (2,,19,P,) (5.22)

The sensitivity of the state function x(¢) with respect to the parameter vector p is given by:

dx(zy,po,1) _ OX(2y,Py,1) dz, N 0X(Zy, Py, 1)
dp oz dp op

Accordingly, the sensitivity of any output function y(#) with respect to the parameter vector p
may be evaluated by:

(5.23)

dy(zoapoet) — GY(Zoapoat) . dZO + GY(Zoapoat)
dp oz dp op
For an optimal solution (zy, po, po) of the nonlinear programming problem, a sub-optimal

solution with regard to a perturbed parameter vector p can be obtained by a first order
approximation using the above sensitivity results:

(5.24)

. dx(z,,p,,t
X (z,p,t) zX(Zo,po,t)+$(p—po) (5.25)
. de.(z,,
g (zp)= gi<zo,po)+%(p—po) (5.26)
. dJ(z,,
J (Z,p)zJ(ZO,pO)-I-w(p—po) (5.27)

where it is mentioned that the perturbed parameter vector p has to lie in a certain vicinity of
the parameter vector py associated to the optimal solution. If the perturbation is too large, i.e.
the perturbed parameter vector is not within a valid vicinity of the parameter vector po, the
sensitivity results are not valid any more. Possibilities for the estimation of the size of the
valid vicinity are given in Ref. [Bueskens, 1998]. According to Ref. [Bueskens, 1998], the
validity of the sensitivity results is usually limited by changes in the set of active constraints.
Thus, one possibility to estimate the valid perturbation Ap of the parameter vector p is to
consider the inactive constraints. An inactive constraint becomes active if its value goes to
Zero, i.e.

dgi(ZO’pO)(p_p )=0
0

i* Z,p)~ g;(z,,p,) + 2
g, (z,p) = g(z,,p) dp (5.28)
Consequently, the valid perturbation Ap considering the i-th constraint can be determined as:
(z,,
Apizp_poz_ g[( Op())
dg,(z,,p,) (5.29)
dp

This implies that if any perturbation is larger than the perturbation determined by Eq. (5.29),
the respective inactive constraint of the sub-optimal solution would be violated, resulting in a
non-valid sub-optimal solution.
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5.3  Solution Algorithm

According to Ref. [Falk, 1995], the solution algorithms that can been applied to solve bilevel
optimization problems can be divided into three categories. Algorithms of the first category
add the necessary optimality conditions for the lower level optimization problem (i.e. the
Karush-Kuhn-Tucker conditions) as constraints to the upper level optimization problem. At
this, the bilevel programming problem is turned into a nonconvex, standard single level
optimization problem. Algorithms that utilize double-penalty functions to approximate the
upper and lower level optimization problems, thus transforming them into a sequence of
unconstrained optimization problems, form the second category. In the third category, there
are algorithms that utilize gradient information with respect to the lower level optimization
problem in order to solve the upper level optimization method by a descent method where
usually all constraints are associated to the lower level optimization problem.

The solution algorithm that is proposed in this chapter for the solution of the bilevel optimal
control problem stated in chapter 5.1 falls into the third category. At this, the sensitivity
analysis outlined in chapter 5.2 is not utilized in order to compute a suboptimal solution of an
optimal control problem but to determine the gradient of the objective of the upper level
optimization problem with respect to selected parameters of the lower level optimal control
problems. Furthermore, if there are any equality or inequality constraints present in the upper
level optimization problem, the sensitivity analysis is also utilized to compute the gradient of
the constraint vector of the upper level optimization problem with respect to the selected
parameters of the lower level optimal control problems.

The sensitivity matrix dz/dp that is a basic result of the sensitivity analysis is used to directly
compute the gradient of the objective of the upper level optimization problem with respect to
the parameter vector p. Here, z is the parameter vector of a lower level optimal control
problem and p is the parameter vector of the upper level optimization problem, where the
parameter vector p is also involved in the solution of the lower level optimal control
problems. In Table 5, the various steps that have to be taken in every iteration step k of the
upper level optimization problem are listed, where n denotes the number of lower level
optimal control problems. The sub-optimal solutions Z;; for the parameter vectors z;; are
obtained by a first order approximation of the parameter vectors z;;; of the preceding
iteration step:

dz, -
= (P —Piy)  i=L..n (5.30)

k-1

N?

Here, z;; is the optimal solution of the i-th lower level optimal control problem at the k-th
iteration step of the upper level optimization problem. Then, the optimal solutions z;,
i =1, ..., n can either be computed using the sub-optimal solutions Z;; or the optimal
solutions z;;; from the previous iteration step as initial guesses. The optimal control problems
are solved by applying the direct multiple shooting method given in chapter 2.2, converting
the optimal control problems into parameter optimization problems by means of discretization
of the control time histories. Furthermore, the objective J; and the constraint vector Gy of the
upper level optimization problem have to be evaluated. After carrying out the sensitivity
analysis outlined in chapter 5.2 in order to obtain the sensitivity matrices dz;i/dps,, the
gradient dJi/dp; of the objective and the Jacobian dGy/dp; of the constraint vector with
respect to the parameter vector p, can be computed straight forward:
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Given the objective J;,
T =Jx 2, ety 2 B )Rz, D) i=lean (531)
and the constraint vector Gy,
G.(p)=G(x (2, (P Lpt)y (2, (P Ptz (B )Lpy)  i=Lin (532)
the gradient dJk/dpk of the objective with respect to the parameter vector p; evaluates to
Zji ;Zx ZdJk dy, "'Zn:d]k .dzi’k N dJ,
P p. ‘T dy, dp, ‘T dz; dp, dp,
while the Jacobian dGy/dpy of the constraint vector with respect to the parameter vector py is

dG ZdG dx, Zde'dyi“‘ide'dZi’k“‘de
P. dx, dp, ‘T dy, dp, ‘T dz, dp, dp,

(5.33)

(5.34)

where dx;/dp; and dy/dp; are given by Eq. (5.23) respectively Eq. (5.24).

ALGORITHM 1

1 Given Pis Pi-15 Zi k-1, = 1, e and dZ,',k_l/dpk_l
1A Compute the sub-optimal solutions Z;x, i =1, ..., n by Eq. (5.30)

1B Find the optimal solutions z;, i = 1, ..., n using the sub-optimal solutions Z;,
i=1, ..., nor the optimal solutions z;; as initial guesses

1C Get the sensitivity matrices dz;/dpk, dx;/dpy and dy;/dp; utilizing the sensitivity
analysis of chapter 5.2 (Egs. (5.12), (5.23) respectively (5.24))

2A  Evaluate the objective J; of the upper level optimization problem
2B Compute the gradient dJ;/dpy using dx,/dpy, dy/dpy and dz; /dpx (Eq. (5.33))
3A  Evaluate the constraint vector Gy of the upper level optimization problem

3B Compute the Jacobian dGy/dpy using dx;/dpx, dy/dpi and dz;/dpi (Eq. (5.34))

i ... index of lower level optimal control problem,i=1, ...,n
k ... iteration step of upper level parameter optimization problem

Table 5. Algorithm Abstract for the Solution of the Bilevel Programming Problem

The proposed algorithm allows for a direct computation of the gradient of the upper level
optimization problem at each iteration step. Thus, the time consuming evaluation of the
gradient of the upper level optimization problem by numerical techniques can be avoided and
an efficient way for the solution of the bilevel programming problem is implemented.



135

6

Applications and Results

In the field of optimal control, the optimization of air race trajectories constitutes a very
challenging application. The aerobatic aircraft taking part in the air races are extremely agile
and the setup of the race tracks causes the pilots to fully exploit the dynamics of the aircraft.
Thus, the optimization of race trajectories as well as the optimization of race track layouts are
well suited to show the performance of the solution algorithms outlined in chapter 4 and 5. In
the following chapter 6.1, the optimization of an air race trajectory is formulated as
benchmark problem and in chapter 6.2, the time-optimal race trajectory is provided for the
highest fidelity level of the various simulation models that is the 6-DoF simulation model. In
chapter 6.3 and 6.4, the solutions of bilevel optimal control problems are depicted where it
has been the goal to optimize the layout of the race track such that certain safety criteria or the
fairness of the race track become optimal.

6.1 Air Race as Benchmark Problem

The basic procedure of the regarded air races is as follows: after passing a starting point,
which can be defined by a significant landmark like e.g. the chain bridge in Budapest, the
aircraft have to fly a course defined by inflatable pylons at minimum time. The pylons form
gates which either are to be passed wings level (level gate, Fig. 37), or at 90° bank angle
(knife edge gate, Fig. 38) which can be differentiated by their color.

Figure 37. Level Gate (blue) Figure 38. Knife Edge Gate (red)

Other features are the “Quadro” (Fig. 39), consisting of two pylon pairs that have to be passed
from perpendicular directions or the “Chicane” (Fig. 41) which is a sequence of single pylons
in a straight line requiring rapid changes in turn direction. Furthermore, re-alignment and
aerobatic maneuvers like vertical rolls or Half Cuban Eights (Fig. 40) are included to re-
position the aircraft with respect to the track.



136 APPLICATIONS AND RESULTS

S Knife-Edge Maneuver

Knife-Edge Maneuver\\‘\ /

Pull Maximum g

Figure 39. Quadro

Inverted Dive

Push-Over

Pull-Up

Level Flight

Figure 40. Half Cuban Eight

The race ends by passing a finish gate which in many cases is equal to the start gate or again a
significant landmark. The air races take place right in the hearts of large cities like Budapest,
San Diego, Rio de Janeiro, New York or Berlin and are often located on rivers or on the

waterside.

e

Figure 41. Chicane

For such air races, the pilots are flying different types of aerobatic aircraft like e.g. the Zivko
Edge 540 (Fig. 42) or the MXS-R. Those aerobatic aircraft are very agile, featuring e.g. roll
rates up to 420°/s. Table 6 gives an overview of the technical specifications of such an
aerobatic aircraft.
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Figure 42. Zivko Edge 540

Aircraft Specifications

mass m [kg] 693.0
wing area S [m?] 8.928
wing span b [m] 7.5
half wing span s [m] 3.75
chord length ¢ [m] 1.44
reference speed Vier [m/s] 30.0
maximum thrust Ther [N] 0.8mg
moment of inertia I, [kgm?] 420.30356820

I, [kg'm?] | 726.71842759

L. [kgm?] | 919.24457818

Table 6. Aircraft Specifications

In order to win such an air race competition, the pilot has to find the fastest possible flight
course through the gates, i.e. he tries to finish the race course in the minimum possible flight
time. Thus, for the air race trajectory optimization problem, the Bolza cost functional given by
Eq. (2.4) reduces to a Mayer functional since the only objective of the trajectory optimization
problem is to minimize the final time:

J=t; (6.1)

The initial boundary conditions of Eq. (2.6) for the optimization problem are given by the
position of the start gate, whereas the final boundary conditions (Eq. (2.7)) are determined by
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the location of the finishing gate and the direction the finishing gate has to be passed by the
aircraft:

(—]]

F(ty) — Funae = (6.2)

F(tf )_ FFmalGaze =
where T denotes the position vector. The requirement that the pilot has to fly through certain
gates in a certain direction and at given bank angles imposes interior point conditions
(Eq. (2.8)) to the trajectory optimization problem. Basically, there are two different types of
gates, level gates and knife edge gates. Level gates have to be passed wings level, i.e. with the
kinematic bank angle @ equal to zero whereas knife edge gates have to be flown through
with a bank angle @x ==+90°. The resulting conditions read:

Dy (?KnlfeEdge@le ) +£90°=0° (6.4)

QDK (FLeve/Gate) =0° (65)

Furthermore, the direction in which the various air race gates have to be passed is enforced by
the following relationship for the heading angle wx:

Wi (Foe)— W, =0° (6.6)

At the chicane gates, there are only the final boundary conditions for the position vector T,
but no final boundary conditions for the kinematic bank angle @k or the heading angle wx.

=1}

(6.3)

By separating the entire race trajectory into multiple phases from gate to gate, these interior
point conditions are transformed into final boundary conditions for each phase. The phases
then have to be connected to the preceding phases to guarantee the continuity of the state and
the control time histories:

X (tfj—l )_ X; (tO,i )

ul.fl(tf’ifl)—u[(to,i):O i=2,..,n (6.8)

0 i=2..,n (6.7)

where n denotes the number of phases, #;; the final time of the i-th phase and #y; the initial
time of the i-th phase. Additionally, path constraints have to be fulfilled along the flight path
for an air race. While no equality path constraints are present, inequality path constraints arise
from safety regulations or from aircraft performance limits. First of all, of course a certain
ground clearance has to be respected by the pilots:

Zpin —2(0) <0 (6.9)

Furthermore, the safety regulations require that an upper limit and a lower limit of the load
factor n.p in the direction of the z-axis of the Body Fixed Reference Frame B is never
exceeded:

Nz min ~Nzp (t) <0 (6.10)
nZ,B (t)_ nZ7max S 0 (6 1 1)

Besides the kinematic never-exceed speed Vk..c given by the safety regulations, the
aerodynamic velocity V4 of the aircraft must not go below the stall speed V4 g4 Of the aircraft:

Vsar = V)< 0 (6.12)
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VA (t)_ VK,max <0 (613)

Additional inequality path constraints are due to aircraft performance limitations with respect
to the minimum and maximum angle of attack ay

&y —,(£) <0 (6.14)

()= @y <O (6.15)
as well as the minimum and maximum roll rate pg

Prcnin = P ()0 (6.16)

Pi(l)= Prm <O (6.17)

Furthermore, in order to avoid dangerous flying that can lead to disqualification path
constraints with respect to the flight path bank angle ux can be introduced. At this, large flight
path bank angles and especially inverted flight close to the ground are avoided. The
corresponding values for the various bounds of the inequality path constraints are listed in
Table 7.

Path Constraint Specifications due to
altitude Zmin [M] 7.5 ground clearance
load factor Mz min [-] -2.0 race regulations

My max [-] 12.0 race regulations

velocity V4 stanr [M/S] 25.0 | aircraft performance
Vi max [/s]/[kts] 102.9/200.0 race regulations

angle of attack O4min [rad]/[°] -0.35/-20.05 aircraft performance
Oymax [rad] /[°] 0.35/20.05 | aircraft performance

roll rate Pikmin [1ad/s] /[°/s] | -7.33/-420.0 | aircraft performance
Pxmax [rad/s] /[°/s] | 7.33/+420.0 | aircraft performance

Table 7. Path Constraints Specifications

At this, the stall velocity or the stall speed Vg is the minimum required aerodynamic
velocity to sustain the aircraft weight in a 1g, steady-state level flight at sea level. With
respect to the aircraft simulation model that is utilized for the trajectory optimization, various
parameters have to be specified especially for the aerodynamic properties. For the full non-
linear 6-DoF aircraft simulation model, the acrodynamic force coefficient equations are:

Cp=Cpo+k,-(C,~Cpe. J4k,-(C,) (6.18)
C,=Cy-p+Cyp-p,+Cy -7, +Cy-c+Cy - & (6.19)
C,=C,+C,-a+C,-q,+C,, -1 (6.20)
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Aerodynamic Force Coefficients
Cpo 0.0761 Cyp -0.589355 Cuo 0.055
ky 1.69677 Cy, 0.042480 CLa 4.75
ky 0.05134 Cy, 0.048340 Ci -3.479492
Cyr -0.195313 Cr, -0.073242
Cy: 0.195313
Table 8. Aerodynamic Force Coefficients
The aerodynamic moment coefficients are calculated from:
C,=C:¢+C6+C,-p+C,-F +Cp- (6.21)
C,=C,+C,,-a+C, n+C, -q, (6.22)
C,=C:¢+C,.-6+C,-p,+C, -7, +Cy-B (6.23)
Aerodynamic Moment Coefficients
Cp 0.024902 Cuo -0.004883 Cuy 0.149902
Cp -0.583008 Cua -0.145406 Cup 0.014648
Cr -0.087891 Cg -16.930176 Cu -0.157715
Cr 0.001 Cuy -0.634766 Cu 0.170898
Ci -0.303711 Cu -0.014648

Table 9. Aerodynamic Moment Coefficients

The implemented aerodynamic derivatives are listed in Table 8 respectively Table 9 and shall
represent a generic aerobatic aircraft. The corresponding technical parameters can be found in
Table 6 where it is mentioned that the remaining moments of inertia are set to zero.

For the computation of the thrust force 7, the following equation is utilized:
n, VG ny

T=T,, Pl
: V

ref ref

“Or.cmp (6.24)

where T, is the engine’s reference thrust, Vs the reference velocity, p,.r the reference air
density and n, the density exponent. The exponent ny gives the dependency of the thrust on
the aerodynamic velocity.

For the air race trajectory optimization problem, a flat, non-rotating Earth has been assumed
due to the very limited spatial extent of the air races. Furthermore, the density has been set
constant because the maximum change in the aircraft’s altitude is very small and thus the
influence of the static atmosphere model is negligible.
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6.2 Minimum Time Air Race Trajectories

In the preceding chapter, the air race trajectory optimization problem has been stated in detail.
In this chapter, the results for the 3-DoF point-mass simulation model and the full non-linear
6-DoF simulation model for the race track layout shown in chapter 6.3.3.1 will be given that
have been obtained using the multiple shooting method of chapter 2.2. Out of comparison
reasons, the same control discretization grid has been chosen for the point-mass simulation
model and the 6-DoF simulation model. Therefore, the race trajectory has been split up into
eight phases according to the race gates and a certain number of equally distributed grid

points has been defined for each single phase according to the approximate phase durations
(Table 10).

Phase Number Number of Grid Points n
1 40
2 20
3 20
4 40
5 40
6 100
7 80
8 80

Table 10. Control Discretization

For the point-mass simulation model, the final race time evaluates to 44.74s. Fig. 43 shows
the optimized time histories for the controls of the point-mass simulation model that are the
angle of attack a4 cump, the sideslip angle f4 cup, the first order time derivative of the bank
angle 14 cup and the thrust lever position o7 cup. Furthermore, the upper and lower bounds for
the controls are drawn. Here it can be seen that the full roll rate capability is utilized for the
roll maneuvers at the various air race gates. The sideslip angle f4 cap has been limited to +15°
assuming that for a sideslip angle of £15° the linearly approximated sideforce curve equals
roughly the maximum achievable sideforce before the vertical tail of the aerobatic aircraft
stalls. The thrust lever position is at its upper boundary all the time.
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Figure 44. Translational States (Point-Mass Simulation Model)
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Figure 46. Load Factor nzz (Point-Mass Simulation Model)

In Fig. 47, the three-dimensional optimal air race trajectory for the full non-linear 6-DoF
simulation model is shown that has been obtained by applying the optimization algorithm
outlined in chapter 4. Here it is mentioned that the various optimization tasks throughout the
optimization algorithm have been accomplished utilizing Lagrange cost functions w.r.t. the
squared control derivatives in order to avoid possible control oscillations and to reduce the
inherent highly non-linear dynamics of the resulting trajectories and to allow for a successful
completion of the trajectory simulation tasks subsequent to the optimization tasks.

Figure 47. Time-Optimal Race Trajectory for the 6-DoF Simulation Model
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Although the race track is quasi two-dimensional, i.e. the race gates are all about on the same
level, the resulting optimal trajectory is three-dimensional. This is especially true for the
270°-turn that is required for flying through the “Quadro”: here, the aircraft pulls up in order
to shorten the flight time for this maneuver. The final minimum race time for flying one round
of the described race course equals 45.82s. Here, a Lagrange cost with respect to the second
order time derivatives of the control surface deflections (see Eq. (6.25)) has been introduced
to avoid undesirable oscillations of the control surface deflections.

I
L=k, [l & vk, i +k & i (6.25)
0
In Fig. 48, the time histories of the commanded control surface deflections together with the

real control surface deflections are given and their lower and upper bounds are depicted. As
can be seen, the whole trajectory is flown at full thrust.
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Figure 48. Commanded and real Control Values (6-DoF Simulation Model)

In Fig. 49, the rotational states for the optimized air race trajectory are shown. With regard to
the rotational states, only the roll rate has been limited. In contrary to the 3-DoF point-mass
simulation model where the bounds with respect to the first order time derivative of the bank
angle are active multiple times the 6-DoF simulation model does not reach the roll rate limits.
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In Fig. 51, the states for the flight-path angles are given. Here, the bank angle limitation is

reached at a single point in the 8" phase, while for the 3-DoF simulation model the bank angle

limitation does not become active at all.
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Figure 51. Flight-Path Variables (6-DoF Simulation Model)

Finally, in Fig. 52 the states of the position variables are shown and in Fig 53 the time history
for the load factor in the direction of the z-axis of the Body-Fixed Reference Frame B is
drawn. Here again, as for the point-mass simulation model, only the lower bound with respect

to the load factor becomes active.

=== mm g

time t[s]

Figure 52. Position States (6-DoF Simulation Model)
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6.3 Increasing the Safety of Air Races

For air races, the aspect that has to be considered more than anything else is safety. First of all
it has to be the self-set requirement of the organizer that safety is of paramount interest and
thus the most important criterion overruling everything else. Furthermore local public and
aviation authorities must be convinced of the safety concept to grant permission for the event
on a local basis. If one wants to design the layout of the race track such that a certain safety
criterion is maximized (or minimized), a bilevel optimal control problem as described in
chapter 5 arises. The upper level optimization problem is a parameter optimization problem
and ought to place the race gates such that the respective safety criterion is maximized or
minimized. At each iteration of the upper level optimization problem, its objective depends on
the solution of a lower level optimal control problem that gives the minimum possible race
time for fixed positions of the race gates. Fig. 54 depicts the basic principle of the bilevel
optimal control problem that has to be solved in order to achieve a maximum level of safety
for the respective race track.

The goal of the upper level optimization problem is to position the air race gates such that a
certain safety criterion is maximized or minimized. Besides the northward and eastward
positions x and y of the gates also the azimuth angles y of the gates are considered as
optimization parameters so that the parameter vector p is given by

p=[x.y.w,] i=l..s (6.26)

where s is the number of race gates.

Upper Level Parameter Optimization Problem

Objective: J Parameter vector: p

Lower Level Optimal Control Problem :!> J

P—>
- oJ
Objective: 7, Parameter vector: z ::> -

Figure 54. Safety Bilevel Optimal Control Problem



148 APPLICATIONS AND RESULTS

If the race track layout contains a “Chicane” (this means a slalom), the y-axis of the local
Navigation Frame N is aligned with the direction of the ,,Chicane®. Then, additional
constraints are added to the upper level optimal control problem that enforce equal distances
between the various pylons of the ,,Chicane* as well as the placement of the pylons in a
straight line. If the ,,Chicane® consists of three single pylons, the corresponding constraints
reads:

X, —x, = Ax (6.27)
X,—x,=0 (6.28)
=2y, +»=0 (6.29)

where x;, i = 1,2, 3 and y;, i = 1, 2, 3 are the positions of the race gates that have to be passed
by the aircraft (see Fig. 55). Egs. (6.27) and (6.28) enforce an S-curve while constraint (6.29)
positions the second gate in the middle of the first and the third gate. At this it is ensured that
the principal layout of the ,,Chicane® is kept throughout the solution of the bilevel optimal
control problem. Furthermore, the upper level parameter optimization problem has to be
augmented by constraints that enforce the “Quadro” respectively the identical position for the
first and the final race gate:

X, —x =0 (6.30)

Y,=»n =0 (6.31)

Wi N BE

Figure 55. Layout for the Implementation of the Constraints for the Chicane
With respect to the “Quadro” that is in fact a 270°-turn, the corresponding constraint for the
heading angle v is:
3

Vv =S (6.32)

while for the start and the finish gate the heading angle y has to obey the following
relationship:

W,—y,=t-7 (6.33)

where ¢ is the number of turns the pilot has to accomplish during the race.
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The safety criteria that are considered in the following lead to minimax problems given by
i S(t
mpm(max ( )) (6.34)
respectively maximin problems of the following form
in S(¢
ml?x(mln (1)) (6.35)

where S(7) denotes the measure for the safety criterion that is to be maximized or minimized.
Those minimax respectively maximin problems can be transformed into standard optimization
problems resulting in

min(S,,,) (6.36)
subject to
S —S() 20 (6.37)
for the minimax problem respectively
min(-S,,,) (6.38)
subject to
S@®-S,,20 (6.39)

for the maximin problem, where Syax and Syin denote the upper bound respectively the lower
bound with respect to the selected safety criterion S. Supposing that that the safety criterion
S(¢) 1s a function of the state history x(#), an output time history y(#) or the parameter vector z
of the lower level optimal control problem, the Jacobian of the constraints (6.37) respectively
(6.39) can be directly computed using the sensitivity results of chapter 5.2:

8(Smax -5 (t)) aS(t) _ 0S(r) ox(¢) OS(z) oy(t) aS(t) oz

» @ a0 @ o0 a o o Y

A(S() = S,i) _ 0S() _ 3S(t) ox(¥) L0 oy(r) , a5() o

op’ op’  ox(t) op" o) op’ oz op’

As for the lower level optimal control problems, SNOPT (Ref. [Gill, 2007]) has been used for
the solution of the upper level optimization problem.

(6.41)

6.3.1 Computation of Sensitivity Information for the Air Race Bilevel
Optimal Control Problem

Since for the lower level optimal control problem the objective is the final race time #; the
matrices J, and J, of Eq. (5.8) respectively Eq. (5.11) in chapter 5.2 evaluate to zero.
Furthermore, in Eq. (5.11) the tensor G4, only contains zeros. This is due to the fact that the
parameters p which are the positions of the air race gates are only involved in the initial and
final boundary constraints as well as the interior point constraints (see Egs. (6.2), (6.3) and
(6.7)). Difterentiating the constraints with respect to the parameter vector z of the lower level
optimal control problem cancels out the parameters p so that the parameters p are not
incorporated in the Jacobian G, any more, hence the tensor G4, being a tensor of zeros. Thus,
the matrix L,, of Eq. (5.11) is a matrix of zeros, too. The matrix G, also contains solely zeros
except for the derivatives of the initial boundary conditions, the final boundary conditions and
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the interior points conditions where the parameter vector p is involved linearly as can be seen
from Egs. (6.2), (6.3) and (6.7). Thus, the respective entries of the matrix G, equal -1 when
differentiating any of the initial boundary conditions, the final boundary conditions or the
interior point conditions with respect to the parameter vector p that comprises the northward
positions x, the eastward positions y and the headings y of the race gates, e.g.

a(x(to)_xStartGate) 8(x(t0)T—x1):[_1 0 .. O]

o’ op

if x; was the first element of the parameter vector p.

(6.42)

6.3.2 Safety Criteria for Air Races

In the subsequent chapters, various safety criteria and the computation of their gradients are
explained. In chapter 6.3.3, optimal air race tracks for these safety criteria are given.

6.3.2.1. Minimum Distance to Crowd

A very crucial safety criterion is the distance to the spectators. During the air race, the pilots
have to keep a prescribed minimum distance to the spectators if they do not want to be
disqualified. For the computation of the distance to the crowd, the position of the aircraft is
projected into the horizontal plane and the spectator areas are wrapped by polygons in the
horizontal plane that represent the foremost line of the spectators. Every polygon consists of
multiple piecewise linear curves and is called crowd line. For at least one point of all the
polygons, the horizontal distance to the actual position of the aircraft is minimal, referred to as
the minimum distance to crowd d(¢). The minimum distance to the i-th segment of the A-th
polygon is computed by

de i) = (Fpp s O = XOF + (70, (1) = (OF (6.43)

where xpp and ypp denote the northward respectively the eastward position of the
perpendicular footpoint on the respective segment (see Fig. 56). The position of the footpoint
is given by

Xpppi (O =X+ 2,0 -0 = x1,) (6.44)
NG ESEY MO (L (6.45)
where x;, y1, X2 and y; are the coordinates of the end points of segment (%, 7). A(¢) evaluates to
(o) =1, ) (o =20, )+ 00O =3 s = 900)
(xz,k,i Xy )2 + (y 2k T Y1k )2

Z’k,i (1) = (6.46)

and only if A(f) € [0, 1] a perpendicular footpoint on the respective segments exists.
Otherwise, if A(¢) < 0 the footpoint is set to the first endpoint

Xpppi (1) =Xy, (6.47)

VP ()= Yk (6.48)
and if A(¢) > 0, the footpoint is set to the second endpoint:

Xppyi () =Xy, (6.49)
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YEPji (1) = Yok (6.50)

Crowd Line

Foot Point F

Endpoint P, ; ;
\
Endpomnt P, , \
Wi Ade(0)
1
1
\
O A/C Position

Figure 56. Calculation of Footpoint

Then, the overall minimum distance d(¢) with respect to all segments is found by
d.(t)=mind., (1) k=1,.,p i=1..,s, (6.51)

where p is the number of polygons and s; the number of segments of the A-th polygon.
Table 11 states the algorithm for the computation of the minimum distance to the crowd lines
for a given position of the aircraft.

ALGORITHM 6.1

1 Fork=1,...,p
Fori=1, ..., s
Compute /4 (?) by Eq. (6.46)
If A1) <0
Set actual footpoint to first endpoint of segment (%, 7)
Else if A () > 1
Set actual footpoint to second endpoint of segment (k, i)
Else if 4+ 4?) € [0, 1]
Calculate actual footpoint by Eqgs. (6.44) and (6.45)
Compute distance to crowd dc (¢) for segment (&, i) by Eq. (6.43)

2 Select minimum distance to crowd d¢(¢) from all d¢ . (7)

Table 11. Computation of Minimum Distance to Crowd

The gradient of the distance to crowd d(¢) with respect to the parameter vector p of the upper
level parameter optimization problem is:
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o (1) _ 0de(t) ox(t)  ade(0) o)
op’ o) op’ o) op'
where the gradients dx(¢)/dp and dy(f)/dp are obtained by the sensitivity analysis explained in

chapter 5.2. The derivatives dd(¢)/0x(t) and dd(t)/0y(f) can be calculated by differentiating
Eq. (6.43) with respect to x(¢) respectively (7).

(6.52)

6.3.2.2. Minimum Time to Crowd

The time to crowd is defined as the time between the first deviation from the race track and
the arrival at the spectators if the actual translation flight states are kept unchanged, 1.e. if the
aircraft continues on a straight trajectory. This safety criterion can be seen as a further
development of the distance to crowd since it takes into account the current direction of
motion of the aircraft while the preceding safety criterion only evaluates the current aircraft
position. Thus, a small distance to the crowd line is acceptable if the aircraft is flying parallel
to the crowd line while a large distance to the crowd line is required if the aircraft is heading
directly towards the spectators.

Again, the spectator areas are specified by crowd lines as in chapter 6.3.2.1 and the actual
velocity vector is projected into the horizontal plane. For the actual position of the aircraft, the
time to crowd has to be computed with respect to all segments of all polygons. Therefore, it is
checked first if the aircraft is flying parallel to the i-th segment of the k-th polygon by:

x(2)- (yz,k,i ~Viki )_ (1) (x2,k,[ - xl,k,i) =0 (6.53)

If so, the aircraft will never reach the respective segment and the minimum time to crowd is
set to infinity. Otherwise, it is checked if the projection of the actual velocity vector into the
horizontal plane points towards segment (%, i) by the following relationship:

() (1(0) =y )= 90 - () - x,,,)

A1) =
k’l( ) X(t) : (yzﬁk,,» Vi )_ y(t) ’ (xz,k,i - xl,k,i)

(6.54)

where /A(f) is obtained from Eq. (6.55) that gives the condition for the computation of the time
to the crowd line #¢(¢) if the aircraft continues on a straight trajectory with constant velocity:

x(?) x(t)J ['xl kiJ Xoki = Xk
o tenO= T+ 4@ T (6.55)
[y(t)j (y(t) o Xo ki . YVosi = Viki
Only if A(r) € [0, 1], the prolongation of the actual velocity vector crosses the specific

segment. In this case, the time until the segment is reached if the actual flight states are kept is
computed by:

(y(t) Vi ) (xz,k,i - xl,k,i)_ (x(t) - xl,k,i)' (yz,k,i - yl,k,i)
x(2) - (%,k,i ~ Vi )_ ) (x2,k,i - xl,k,i)

Loy (1) = (6.56)
If the resulting time value is negative, the aircraft is veering away from the segment and it
does not cross this specific part of the crowd lines at any time. For all the situations where the
aircraft does not cross a specific segment (4, i), the time to crowd with respect to this segment
is set to infinity:

Loy (1) >0 (6.57)
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Then, the overall minimum time 7-(¢) with respect to all segments results from:
te(®)=mint. (1) k=1..,p i=1..s, (6.58)

where p is the number of polygons and s; the number of segments of the &-th polygon.

ALGORITHM 6.11

1 Fork=1,...,p
Fori=1, ..., s
If Eq. (6.53) holds
Set tcxi(?) to infinity
Else
Compute 44 (¢) by Eq. (6.54)
If Ad2) € [0, 1]

Calculate minimum time to crowd #¢ . (?)
for segment (k, i) by Eq. (6.56)

If tcri(t) <0
Set ¢c.(?) to infinity
Else set ¢ (?) to infinity

2 Select minimum time to crowd 7¢(¢) from all z¢x (7)

Table 12. Computation of Minimum Time to Crowd

In Table 12, the algorithm for the computation of the minimum time to the crowd lines for the
actual aircraft position is given.

The evaluation of the gradient of the time to crowd with respect to the parameter vector p is
done by:

A1) _ Bt(t) ax(r) | Bte(t) @p(e) | dre(t) B(e)  are(t) i)
op’ o op' @ o’ o) o’ ) op’
where the gradients dx(¢)/0p, dy(¢)/0p, 0x(f)/0p and 0y(t)/Op are obtained by the sensitivity

analysis explained in chapter 5.2. The derivatives 0t(t)/0x(t), 0tc(t)/0y(t), Otc(¢)/0x(t) and
0tc(t)/0y(f) can be evaluated by differentiating Eq. (6.56).

(6.59)

6.3.2.3. Minimum Time to Crowd based on the Normal Velocity Component

The time to crowd safety criterion can be modified so that the computation of the minimum
time to crowd is based on the component of the velocity that is normal to a certain segment of
the crowd line. Therefore, it first has to be checked if the aircraft is flying parallel to the i-th
segment of the &-th polygon by:

x()- (y2,k,i ~ Viki )_ V() (xlk,i - xuc,i) =0 (6.60)
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If so, the normal velocity component with respect to this segment equals zero and the
minimum time to crowd is set to infinity:

fey () >0 (6.61)

Next, it is verified by the following relationship if a perpendicular footpoint on the respective
segment exists:

(X(f) - xl,k,i)' (xZ,k,i Xk )"" (J’(t) ~ Viki ) (yz,k,i - y],k,i)
(‘x2,k,i Xk )2 + (yz,k,i ~Viki )2

A () = (6.62)

If A(t) & [0, 1], no perpendicular footpoint and thus no normal velocity component can be
computed for the respective segment. Consequently, the minimum time to crowd based on the
normal velocity is set to infinity, see Eq. (6.61). Otherwise, a perpendicular footpoint on the
particular segment is existent and the position of the footpoint evaluates to:

XEp i (t) =Xk + ﬂ'k,i (t) ' (xz,k,i - xl,k,i) (6-63)
YEPj, ()= Vi t /Ik,i (0)- (y2,k,i - yl,k,i) (6.64)

Then, the velocity component that is normal to the respective segment is given by:

de,;(0)oV,,. () 1 Xpp i () = x(2) x(1)
| 8 = . = n o
wO=720 0 o) [y (t)_y@J (y'(t)j (6:69)

where the minimum distance dc(¢) is given by Eq. (6.43). Next, the time to crowd #¢ (?)
based on the normal velocity component is obtained by the following equation:

dC,k,i (?) _ (xFP,k,i (1)— x(l))2 + (yFP,k,i (t)— y(t))z
Viki® (e (6) = x(0))- 50) + (v, () = 1(8))- 30)]

Here, if the time to crowd z¢x (¢) takes a negative value the aircraft is veering away from the
respective segment and the time to crowd is set to infinity since in this case there is no threat
for this segment.

Lo (= (6.66)

Finally, the overall minimum time to crowd #«(¢) with respect to all segments is found by:
te(@=mint. (1) k=1..,p i=1l..s (6.67)
where p is the number of polygons and s; the number of segments of the &-th polygon.

Table 13 states the algorithm for the computation of the minimum time to the crowd lines
based on the normal velocity component for a given position of the aircraft.

The gradient of the time to crowd #(f) with respect to the parameter vector p of the upper
level parameter optimization problem evaluates to:

Otc(t) _0tc(t) ox(t)  otc(t) opt) otc(t) o)  Otc(t) oy
op’  ox(r) op' oy op’  ax(r) op° (@) p’
where the gradients 0x(¢)/0p, dy(t)/0p, 0x(f)/dp and 0y(t)/0p are obtained by the sensitivity

analysis explained in chapter 5.2. The derivatives 0¢c(t)/0x(¢), 0tc(f)/0y(¢), Otc(t)/0x(¢) and
0tc(t)/0y(f) are obtained by differentiating Eq. (6.66).

(6.68)
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ALGORITHM 6.111

1 Fork=1,...,p
Fori=1, ..., s
If Eq. (6.60) holds
Set ¢c.(?) to infinity
Else
Compute 4z (¢) by Eq. (6.62)
If A(t) € [0, 1]

Calculate minimum time to crowd #c (?)
for segment (%, i) by Egs. (6.63) to (6.66)

If tC,k,,’(Z) <0
Set tcxi(¢) to infinity
Else set tc () to infinity

2 Select minimum time to crowd 7¢(7) from all z¢ 4 (7)

Table 13. Computation of the Minimum Time to Crowd based on the Normal Velocity Component

6.3.2.4. Minimum Maximum Directed Energy-equivalent Time

The energy that is directed towards the crowd is regarded as another important safety
criterion: The higher the maximum directed energy is, the less safe is the race track. This
safety criterion is even an advancement of the time to crowd since it involves also the
absolute value of the kinematic velocity besides the current position and the actual direction
of motion of the respective airplane. At this, it is taken into account that an aircraft heading
directly towards the crowd line at a high kinematic velocity poses the less danger to the
spectators the larger the distance of the aircraft to the crowd line is. Thus, situations where the
aircraft is heading directly towards the spectators at a high total energy are rated highly
critical if the aircraft is close to the crowd line.

The computation of the maximum directed energy is based upon the total velocity Vi,,(¢) that
is derived from the actual total energy of the aircraft:

B = %m Vo) = Ey, (0 + E,, (1) = %m V(1) + mg(=z(1)) (6.69)

where Ey;,(f) 1s the kinetic energy and E,.(?) the actual potential energy of the aircraft. The
total velocity vector V,,,/(f) then equals:

_V© _ _ry 20
Vi () = V(1) Vi @ =V (1), |1-2g Vz(t) (6.70)

Next, the total velocity vector V,,,(f) is projected into the horizontal plane:

):C(t)j 1-2g 2
0 &0

Vtotal,hor (t) = ( (67 1)
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The portion of the total velocity vector V,,.(¢) that is directed towards a specific point on the
crowd lines is given by:

d C.hor ki (t)

dC Jhor ki

Ve () = - COSK (1) Va1 or (1) (6.72)

where Vo1 n0/(f) 1s the absolute value of the total velocity vector Vg n0(f). () represents the
angle between the total velocity vector V,yuin0(f) and the direction vector d¢jorii(2) in the
horizontal plane (see Eq. (6.76) and Fig. 57). The direction vector dc ok ?) 1S the vector
between the actual aircraft position and a specific point on the i-th segment of the k-th
polygon of the crowd lines:

Xpp i () — x(t)J 6.73)

d or l(t) =
chork (yFP,k,i ()= y(0)

where xgpx; and yppy; are the northward and the eastward position of the respective point on
the crowd line:

Xppyei () = Xy + A (szc,i - xl,kj) (6.74)

Yrpk,i = Vi A (yZ,k,i - yl,k,i) (6.75)

Accordingly, dcnorri(f) 1s the absolute value of the direction vector dc¢ i i(2). Furthermore,
x(t) in Eq. (6.72) represents the angle between the total velocity vector V,yuin0(f) and the
direction vector d¢ s (f) in the horizontal plane (see Fig. 57):

dC,hor,k,i (t) ° Vtotal,har (t)
dC,hor,k,i (t) ’ I/toz‘al,hor (t)

K(t) = arccos[ (6.76)

Crowd Line

Foot Point F; ;
Endpoint P, ,

Endpoint P ; ; ”
Vtotal 4

K (1)

A/C Position
Figure 57. Angle x(7)

Here, if x(¢) evaluates to 90°, the velocity vector is perpendicular on the current direction
vector. Thus, the energy that is directed towards the specific point on the crowd line is zero.
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Then, the absolute value of the velocity vector V¢ .(?) (Eq. (6.72)) pointing towards a specific
point on the crowd lines evaluates to:

C,hor.k.i (Z) ° Vtotal,hor (Z)
dC,hor,k,i (t)

_ 1 {XFP,k,i (- X(Z)J . (x(t)} -2 2(1)
e porii O\ Vep i (1) — () () & Vz(t)

Theoretically, the safety criterion with respect to the maximum direct energy has to be
computed for every point on the crowd lines before the largest value is selected. Since this
would imply an infinite number of points on the crowd line, a specific step size Al is chosen
and the value of 4 is increased by this step size in the interval [0,1] for the computation of the
safety criterion on all segments i of all polygons k. The velocity V(f) is a measure for the
energy that is directed towards a specific point on the crowd lines. In order to obtain a safety
criterion with a reasonable meaning, the absolute distance to the crowd dc ,(f) has also to be
involved since a high directed energy is worse if the aircraft is close to the crowd line. Thus,
the distance to the crowd dc.(f) 1s divided by the velocity V(f) to give an equivalent
time 7¢(¢) that measures the energy directed towards the crowd line:

d or z(t)
tC,k,i(t):—;h ’k&t)
Cikji

V. ()= d
(6.77)

_ (pr,k,i (1)— )c(t))2 + (ypp,kj (- y(t))2 (6.78)

[5) - (%, () = X))+ 5O) - (Vs () = y D)) [1- 22 VZ2( 3)

The time tc(¢) is called the maximum directed energy-equivalent (MDE-equivalent) time #(%).
If 7c(¢) 1s negative, the directed energy does not point towards the specific point on the crowd
line and thus #c(¢) is set to infinity. Then, the overall minimum MDE-equivalent time #(t)
with respect to all segments results from:

tc(t):mintc’k’i(t) k=1..,p i=1L..s, (6.79)

where p is the number of polygons and s; the number of segments of the k-th polygon. In
Table 14, the algorithm for the computation of the minimum MDE-equivalent time for the
actual aircraft position is given.

The evaluation of the gradient of the safety criterion given by Eq. (6.79) with respect to the
parameter vector p reads:

Ot (1) _ Ot (2) ox(1) N Ot (1) (1) N ot (t) oz(2) N
op’  ax(t) op" av(t) op" o) Op'
N Ot (t) 0x(1) N Ot (1) op(1) N ot:(t) oV ()
ox(t) op’ o) op’ V() op’
where the gradients dx(¢)/0p, dy(¢)/0p, 0z(¢)/0p, 0x(t)/dp, dy(t)/0p and dV(¢)/0Op are obtained

by applying the sensitivity analysis of chapter 5.2. The derivatives 9tc(¢)/0x(t), Otc(t)/0y(¢),
0tc()/0z(1), 0t(1)/0x(t), 0t(£)/0y(t) and Ot(¢)/0V(¢) result from differentiation of Eq. (6.78).

(6.80)
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ALGORITHM 6.1V

1 Fork=1,...,p
Fori=1, ..., s
Set tcx (?) to infinity
Increase A by AA fromA=0.0toA=1.0
Compute «(#) by Eq. (6.76)
If x(¢) equals 90°
Set tc ki (¢) to infinity
Else
Compute #¢;,(¢) by Egs. (6.69) to (6.78)
If tckin(t) <0
Set tcxii(¢) to infinity
If tckia(8) < te k(D)
Set tci(t) t0 tckii?)

2 Select minimum maximum directed energy-equivalent time t(¢) from all #c ()

Table 14. Computation of Minimum Maximum Directed Energy-equivalent Time

6.3.2.5. Ballistic Extrapolation

The safety criterion ballistic extrapolation shall provide a virtual measure for the assessment
of the current value of the directed energy of the aircraft. Therefore, the aircraft is regarded as
a mass part and its ballistic trajectory in a vacuum is computed. For the computation of the
flight path of such a mass part, the initial conditions of the mass part are set equal to the
current direction of motion and the current kinematic velocity of the aircraft. It is assumed
that the only force acting is the gravitational force. Then, the impact zone, i.e. the zone where
the mass parts will probably reach the ground level, is regarded as an indicator for the relative
comparison of various race track layouts with respect to safety: a race track layout is regarded
the more safe the larger the distance between the spectator areas and the impact zone is.

For the computation of the ballistic trajectory in a vacuum, the equations of motion of the
mass part are:

x(z)=x(t)+x(¢)- 7 (6.81)
Ae)= )+ )= (6.82)

z(z')= z(t)+ z'(t)-r4r1~g-r2
2 1 (6.83)
= z(t)—VK(t)~sin;/K(t)-f+E-g~f2

where ¢ is the time point when the extrapolation starts. Setting Eq. (6.83) to zero, the time
point #5(f) when the mass part will approximately hit the ground is:
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t(t) = é (VK (O)siny () +VE@)sin® 7, () -2-g- Z(t)) (6.84)

Inserting #5(f) into Egs. (6.81) and (6.82), one obtains the northward and the eastward position
where the mass part falls onto the ground.

Evaluating the gradient of the ballistic extrapolation time #5(f) of Eq. (6.84) with respect to the
parameter vector p results in:

Oty(t) _ 0ty(1) 0z(1)  Oty(1) OVi(®)  0t,(1) Oyy (D)
op’  axt) op’ W () p’ Aty op
where the gradients 0z(¢)/0p, dVk(t)/0p and dyk(¢)/Op are obtained by the sensitivity analysis

given in chapter 5.2. For the computation of the derivatives 0tp(¢)/0z(¢), Otp(¢)/0Vk(t) and
0tc(t)/0yk(t), Eq. (6.84) has to be differentiated accordingly.

(6.85)

6.3.2.6. Pilot Blinding

Another relevant situation arises if the pilot gets blinded by the Sun and thus cannot recognize
possible obstacles directly in front of the aircraft. In order to avoid such situations, a safety
criterion is established that measures the current angle between the direction towards the Sun
and the kinematic velocity vector of the actual flight state. In doing so it is assumed that the
pilot approximately peers into the direction the aircraft is currently flying. The smaller the
angle towards the Sun is, the higher is the risk for the pilot to be blinded by the Sun. Thus, the
angle between the Sun direction and the kinematic velocity vector has to be as large as
possible.

First, the current position of the Sun respectively the direction towards the Sun in the local
Navigation Frame N has to be established. Given the actual day of the year with January 1* of
a leap year featuring the day number N = 1, the solar declination angle ¢ can be approximated
by (Ref. [Winter, 1991]):

5 =0.409105-sin(p - [N —82.3+1.93-sin(p- (N —2.4))] ) (6.86)
with the period p being:
2
= 6.87
P=36525 (6.87)

Here a simple leap-year cycle is assumed, this means that the Earth cycles around the Sun
once in 365.25 days. Furthermore, the Equation of Time EOT has to be computed that
corrects the assumption of a constant circular motion of the Earth around the Sun (Ref.
[Duffie, 1980]):

EOT = %- (0.000075+

+0.001868- cos[(N 1) p]-0.014615- cos[2- (N —1)- p] (6.88)

~0.032077-sin[(N —1)- p]-0.040890-sin[2- (N —1)- p])
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Then, the local solar time ;0 is (Ref. [Winter 1991])

24.0
torwe\t)=1,, —12.0+ EOT + 00" (4, —A(t)) (6.89)

where A(f) represents the aircraft’s current longitude and 4y the geographic longitude referring
to the standard local time zone #,.. Next, the hour angle w evaluates to:

2
(U(t) = tsol,loc (t) ’ Iﬂ;) (690)

finally resulting in the current direction vector T, towards the Sun given in the local
Navigation Frame N:

—sin x(t) - cos o - cos a)(t) +cos u(t)-sino

(B )y =My ~cosd - sin o) (6.91)
—cos u(t)-coso - cos a)(t) —sin u(f)-sind )

The Sun angle o(f) between the aircraft’s current velocity vector and the direction vector
towards the Sun is obtained by:

cos y(t)cos y (1)
o(t) = arccos (ﬁso, )N o sin y(t)cos y(t) (6.92)
—sin () N
Evaluating the gradient of the Sun angle o(¢) given by Eq. (6.92) with respect to the parameter
vector p reads:

oo(t) _ do(t) 0A() N do(t) ou(r) N

op’  0A() ap"  ou(t) op’

L 90() 0x(t) , do(0) oy()

ox(t)y op" oy op’

As before, the gradients 0A(¢)/0p, Ou(t)/dp, Ox(¢)/Op and Jy(¢)/0p result by applying the

sensitivity analysis of chapter 5.2. The derivatives do(¢)/0A(¢), do(t)/0u(t), 0o(t)/Ox(t) and
0a(t)/0y(t) are obtained by differentiation of Eq. (6.92).

(6.93)

6.3.2.7. Load Factor Fatigue Index

The actual load factor value as well as the preceding load factor time history greatly influence
the current capabilities of the pilot. In the worst case, the pilot could lose consciousness due to
too high load factors what is called G-LOC which stands for G-induced loss of consciousness.
Thus, the load factor time history of the optimal race trajectory plays an important role with
respect to the safety of the respective race track. A safety index with respect to the load factor
has to take into account

e the actual load factor value,
e the load factor onset rate
e and an integral term over the preceding load factor time history.

While too high load factors as well as too high load factor onset rates can directly cause
unconsciousness of the pilot, the integral term takes into account the stress of the pilot due to
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long-duration high load factor levels that can also lead to G-LOC. Therefore, for the load
factor fatigue index E(¢) the following transfer function is defined:

hs g 1 1+k3J-AnZQ) (6.94)

E()=|k
@ (lﬂs+l T,s +

where An.(?) is the deviation from the load factor n, = 1.0 required for horizontal flight:
An_(t)=n_(t)—-1.0 (6.95)

The P-element involves the actual load factor deviation into the load factor fatigue index. The
DT-element measures the load factor onset rate and the P7;-element represents the integral
term where the time constant 7, associated with the PT-element is set to a much higher value
than the time constant 7; of the DTj-element. The factors 4; to k; allow for a weighting of the
influence of the various elements onto the load factor fatigue index. Written in second-order
state-space form, the following differential equations for the load factor fatigue index E(¢)

result:
sy

dt | E(t) 1 T E(t)
0 0 0 An, (1) (6.96)
+ (kz +k3) (kl +k, +k3)T1 +kT, (k k ) An_(1)
1 3
I, I, Aii_(2)

Fig. 58 depicts the load factor fatigue index E(¢) as well as the contributions of the P-element,
the PTi-element and DT)-element to the load factor fatigue index for a generic load factor
time history An.(z).
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The gradient of the 2™ order time derivative of the load factor fatigue index E(f) with respect
to the parameter vector p of the upper level parameter optimization problem is:

aE(i) :[L{(kl e Ty - 22Oy ky +h ) + ) 220
|1 »

by +4) 2O gy PO —@D
op op

(6.97)

where the gradients 0A7i.(t)/0p, 0An.(¢)/0p and 0An.(t)/Op are obtained by the sensitivity
analysis explained in chapter 5.2. Eq. (6.97) then has to be integrated twice to give the
required gradient of the load factor fatigue index E(¢) w.r.t. the parameter vector p, OE(t)/0p.

6.3.3 Optimized Air Race Tracks for Selected Safety Criteria

First, in this chapter the initial layout of the race track that is to be optimized is described.
Then, race tracks are depicted that are optimized with respect to the safety criteria that have
been defined in the preceding chapter. For the solution of the lower level optimal control
problems, a slightly modified point-mass simulation model has been utilized in order to
reduce the dimensionality of the lower level optimal control problem and thus the
computational time that is required for the solution of the entire bilevel optimal control
problem. For the modified simulation model, the controls w.r.t. the aerodynamic sideslip
angle f4 as well as the thrust lever position dr have been set to zero respectively one since it
has been observed that all the time-optimal trajectories are mostly flown at full thrust with
nearly no sideslip angle.

6.3.3.1. Initial Race Track Layout

At the outset of the solution of the bilevel programming problem, the basic layout of the air
race track is given (Fig. 59). The initial setup is similar to the air race that took place in San
Diego in 2009. Table 15 gives an overview of the approximate positions x and y of the air race
gates in the local Navigation Frame N. The local Navigation Frame N is derived from a
NED-Frame with its origin located at the position of the first gate.

Race Gate Position x Position y
1/7 0.00m 0.00m
2a 22.33m 429.75m
2b -77.76m 531.33m
2c -140.93m 635.51m

3 -523.67m 705.86m
4 -406.59m 940.27m
5/6 -240.28m 281.30m

Table 15. Approximate Positions of the Air Race Gates
in the Local Navigation Frame NV
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The position of the first gate in geodetic coordinates with longitude A and latitude u is
—117°10°29.9” respectively 32°42°18.5”. The “Chicane” is defined by three separate gates
(Race Gates 2a-2b) and for each gate the position that has to be passed by the aircraft is given.

While the positions and the directions of the race gates are subject to optimization, the basic
layout shall remain unchanged throughout the optimization procedure. Especially race track
elements like the “Chicane” and the “Quadro” are to be preserved throughout the
optimization. Furthermore, for the computation of the safety criteria two appropriate spectator
areas that are wrapped by crowd lines are defined (Fig. 59). The crowd lines are given in form
of piecewise linear polygons:
P (—IOO -150 -280 -720 —1000]
=
N

-750 -530 -530 800 900 (6.98)

y =

680 400 440 360 350 220 —250 —280 —490 —720
~100 210 250 290 420 420 1030 1280 1250 1540 ) (6.99)

Here again, N denotes a local Navigation Frame with its origin located at the position of the
first gate and the x-, y- and z-axis of the Navigation Frame N pointing into northward,
eastward and downward direction.

Position x [m]

-600 -400 -200 0 200 400 600 800 1000 1200 1400
Position y [m]
Figure 59. Initial Track Layout and Crowd Lines

Within the optimization problems, the upper and lower bounds with respect to the gate
positions can be imposed either directly in the Navigation Frame N or alternatively in Gate
Frames G. At this, the Gate Frame for the i-th gate is derived from the Navigation Frame by
rotating the Navigation Frame around its z-axis by an arbitrary gate rotation angle a¢;. Then,
the upper and lower bounds on the i-th gate’s forward position x and sideward position y can
be imposed in the i-th Gate Frame:

(x)G,i,LB = (x)G,i = (x)G,i,UB (6.100)
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(V)eoszs <0)os <O0)ows (6.101)

Thus, individual gate boxes for each gate can be defined and the edges of the gate boxes do
not have to be aligned with the x-axis respectively the y-axis of the Navigation Frame N. For
the optimization task, the gate positions given in the Gate Frame have to be transformed into
the Navigation Frame:

X
V| =My, (6.102)
Z )N 2 )6

where Myg; denotes the transformation matrix between the i-th Gate Frame and the
Navigation Frame:

cosa,, -—singg, 0
M,;; =|sina;, cosa,;, O (6.103)
0 0 1

Furthermore, the parameter sensitivities with respect to the respective gate position
parameters have to be transformed back into the i-th Gate Frame before the gradient for the
upper level parameter optimization problem can be computed. For example, the following
transformation has to be applied to the parameter sensitivities of the final time #, with respect
to the gate position parameters:

ot ot
a(‘)(")G i a(‘)(")N,z
ot ; r ot P
=M, - ' 6.104
a(y )G,i e a(y )N,z ( )
ot ; atf
0 (Z )G,i 8(2 )N ;

Here it is mentioned that on all the following figures the filled dots mark the optimized
positions of the race gates while the dots that are not filled indicate the initial race gate
positions. The colorbars provide a visualization of the respective safety criterion for the
optimized race track layouts.

6.3.3.2. Minimum Distance to Crowd

With regard to the minimum distance to crowd, the maximin upper level parameter
optimization problem of the bilevel optimal control problem is:

m]?x(rnin d.(1)) (6.105)

where dc(?) is the distance to the crowd and p the parameter vector of the upper level
parameter optimization problem. The maximin problem can be transformed into a standard
parameter optimization problem:

min(-de ) st de(t)=dgy, 20 (6.106)

P
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Fig. 60 depicts the optimized race track layout and the corresponding flight trajectory together
with the initial race track layout. While for the initial race track layout the minimum distance
to crowd is dc i = 142.36m, the minimum distance to crowd for the optimized race track
evaluates to dcmin = 193.26m. Thus, the minimum distance to crowd dc ., is increased by
35.8%. The minimum distance to crowd is visualized by the dashed, red line in Fig. 60.
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Figure 60. Race Track optimized w.r.t. Distance to Crowd [m]

6.3.3.3. Minimum Time to Crowd

For the minimum time to crowd, a maximin upper level parameter optimization problem can
be stated as:

max(min (1)) (6.107)

where #c(f) is the distance to the crowd and p the parameter vector of the upper level
parameter optimization problem. As before, the maximin problem is transformed into the
following minimization problem:

min(—tc,) St () ~fepy 20 (6.108)

P

The race trajectory and the optimized race track layout can be seen in Fig. 61. Here, the race
track layout is optimized such that finally the minimum time to crowd is ¢c i, = 4.57s at every
point of the race trajectory. With the minimum time to crowd being fc,» = 3.24s for the
initial race track layout, this corresponds to an increase by 41.0%. In Fig. 61, the point of the
trajectory where the minimum time to crowd occurs is marked with a red circle.
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Figure 61. Race Track optimized w.r.t. Time to Crowd [s]

6.3.3.4. Minimum Time to Crowd based on the Normal Velocity Component

For the minimum time to crowd based on the normal velocity component, the same upper
level parameter optimization problem as stated by Egs. (6.107) and (6.108) in the preceding
chapter results. The resulting race trajectory and the corresponding time history of the time to
crowd t(¢) are depicted in Fig. 62. For the optimized race track, the minimum time to crowd
amounts to 7c ., = 4.63s at every time point ¢ of the race trajectory. Hence, the initial value
for the minimum time to crowd that is 7c,;,, = 3.24s is increased by 42.8%. In Fig. 62, the
point of the trajectory corresponding to the minimum time to crowd is highlighted by a red
circle.

6.3.3.5. Minimum Maximum Directed Energy-equivalent Time

With respect to the maximum directed energy-equivalent time, the upper level parameter
optimization problem features the following maximin problem:

max(min (1)) (6.109)

Here, tc(?) is the maximum directed energy-equivalent time and p the parameter vector of the
upper level parameter optimization problem. The transformation of the maximin problem
gives:

min(— tc’mm) sttt ()=t 20 (6.110)

P
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Figure 62. Race Track optimized w.r.t. Time to Crowd based on the Normal Velocity Component [s]
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In Fig. 63, an optimized layout of the race track is presented. For the optimized race track
layout, the minimum MDE-equivalent time #¢ i, 1S tcmin = 3.79s. Compared to the minimum
MDE-equivalent time for the initial race track layout that is #c,;,;, = 2.48s, this constitutes an
increase by 52.5%. The point of the trajectory that features the minimum MDE-equivalent
time is labeled by a red circle.

6.3.3.6. Ballistic Extrapolation

Regarding the mass part flight time #3(f) calculated by the ballistic extrapolation in
chapter 6.3.2.5, it holds that if at time ¢ the flight time #3(¢) until the ground level is reached is
smaller than the time to crowd #c(¢), the mass part will not reach any of the spectator areas if a
ballistic flight path of the mass part in a vacuum is taken as basis. This is due to the fact that
for the calculation of both time measures the same horizontal velocity vector is utilized. Thus,
if the inequality

AH(t) =t ()~ t,(£) 2 0 (6.111)

holds for all times ¢ of the race trajectory, none of the mass parts will reach the spectator areas
if the flight path of the mass part is computed as a ballistic trajectory in a vacuum. As
mentioned above, the ballistic extrapolation concept only provides a virtual measure for the
qualitative comparison of various race track layouts with respect to safety. Furthermore, with
respect to Eq. (6.111) an additional safety margin might be taken into account so that the time
difference A#(¢) is restricted to lie above a certain time margin Afpiy:

AH(t) =t () —t, (1) = AL, (6.112)

Then, the following maximum upper level parameter optimization problem can be stated to
layout the race track more safe with respect to the ballistic extrapolation safety criterion:

max(Az, . ) (6.113)

p

1.e. the larger the final time margin Az, is, the more safe is the race track. Rewriting the
maximization problem into a minimization problem gives:

min(— Atmin ) s.t. At(t) - Atmin 20 (6 1 14)
: .

In Fig. 64, the race track that has been optimized with respect to the ballistic extrapolation
safety criterion is depicted. The final race track layout has been improved such that the time
margin Atyi, for the time-optimal race trajectory equals Ay, = 2.85s. Thus, the initial time
margin Aty = 1.31s is increased by 117.2%. The point corresponding to the minimum time
margin Atyi, 1S shown by a red circle in Fig. 64.

Fig. 65 depicts the ballistic extrapolation zone, i.e. the zone where the mass parts would hit
the ground if a ballistic flight path in a vacuum was assumed.
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6.3.3.7. Pilot Blinding

For the safety criterion that has been set up to avoid any blinding of the pilot by the Sun, the
maximin upper level parameter optimization problem of the bilevel optimal control problem
reads:

m}?x(min a(t)) (6.115)

where a(?) is the angle between the aircraft’s current velocity vector and the direction vector
towards the Sun and p the parameter vector of the upper level parameter optimization
problem. Then, the maximin problem has to be transformed into a standard minimization
problem:

min(-o,,) st o()-0,, 20 (6.116)

p

where omin represents a lower threshold for the Sun angle. Fig. 66 depicts the race trajectories
for the initial race track layout as well as for the race track layout optimized with respect to
the Sun angle o(¢). For the optimized race track layout, the minimum Sun angle is 0.930rad
(=53.24°) while the minimum Sun angle for the initial race track layout is 0.594rad (=34.04°).
Thus, the minimum Sun angle is increased by 56.4%. In Fig. 66, the point where the
minimum Sun angle occurs is pointed out with a red circle.
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6.3.3.8. Load Factor Fatigue Index

With respect to the load factor fatigue index E(¢), the upper level parameter optimization
problem is represented by the following minimax problem:

rngn(max E (t)) (6.117)

Here again, p is the parameter vector of the upper level parameter optimization problem. By
the transformation of the minimax problem, one obtains:

rnin(Emax) st. E_, —E@t)=0 (6.118)
N .

In Fig. 67, the layout of the race track optimized with respect to the load factor fatigue
index E(¢) is presented. For the optimized race track layout, the peak of the load factor fatigue
index E(?) is reduced to En.x = 17.24, a reduction of 13.4% in comparison to the maximum
initial load factor fatigue index value En.x = 19.90. The point of the trajectory with the
maximum value of the load factor fatigue index is marked by a red circle.
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6.4 Increasing the Fairness in Air Races

6.4.1 Increasing the Fairness for Two Competing Aircraft

For the air races described in chapter 6.1, the pilots are flying different types of aerobatic
aircraft like e.g. the Zivko Edge 540 or the MXS-R. While one type might be able to reach
higher velocities, the other type might be more agile, having an advantage over the faster type
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if the race track layout is more winding. In order to reach a high level of fairness for the pilots
participating, the track planners have to position the gates such that different aircraft have the
same chance of winning, which means that for the designed race track the minimum possible
flight times have to be identical regardless of the respective aircraft in use.

If one wants to determine such a race track layout mathematically, this will result in a bilevel
optimal control problem, because different optimization tasks with distinct optimization goals
are to be solved. The upper level problem is a nonlinear parameter computation problem and
ought to place the race gates such that the difference in the minimum race times of different
aircraft becomes zero. At each iteration of the upper level optimization problem, its objective
depends on the solution of at least two lower level optimal control problems that give the
minimum possible race times for the different aircraft types for fixed positions of the gates.
Fig. 68 depicts the basic principle of the bilevel optimal control problem that has to be solved
in order to achieve equal chances for the participating pilots.

Upper Level Parameter Adjustment Problem

!
Objective: At =1, - 1,,~0 Parameter vector: p

15t Lower Level Optimal Control Problem :l> tf 1

Aircraft I
P— or

Objective: ¢, Parameter vector: z, :> _ Sl

2" T ower Level Optimal Control Problem :1> tf 2

p :> Aircraft I1
- Ot
Objective: s Parameter vector: z, :> >

op

Figure 68. Fairness Bilevel Optimal Control Problem

The goal of the upper level optimization problem is to position the air race gates such that two
different aircraft require the same minimum race time #, . Besides the forward and sideward
positions x and y of the gates also the azimuth angles y of the gates are considered as free
parameters so that the parameter vector p is given by

p=[x.y.p] i=l..s 6.119)
where s is the number of race gates.

In order to enforce race track elements like e.g. the “Quadro” or the “Chicane”, the upper
level optimization problem is augmented by the same constraints as the bilevel optimal
control problem concerned with the safety of air races that is described in chapter 6.3.

Table 16 gives an overview of the parameter values that have been utilized for the point-mass
simulation model of the two aircraft. For the second aircraft, the maximum thrust 7, is set to
0.7mg, slowing down the aircraft. At the same time, the parameter & associated with the drag
polar of the aircraft is reduced. By this, the drag increase due to an increase of the lift is
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reduced so that higher angles of attack a4 come along with a smaller drag coefficient Cp than
in case of the first aircraft. This might be beneficial for the second aircraft when flying at high
bank angles ux, allowing for sharper turns without losing too much speed and thus making the
second aircraft more agile.

Aircraft Specifications I I
mass m [kg] 693.0 693.0
wing area S [m?] 8.928 8.928
wing span b [m] 7.5 7.5
reference speed Vier [m/s] 30.0 30.0
maximum thrust Tax [N] 0.8mg 0.7mg
aerodynamic coefficients Cpo [-] 0.0761 0.0761

k[-]| 0.051340000 [ 0.024065625

Cop[-] -0.589355 -0.589355
Cra[-] 4.75 4.75
Cro[-] 0.055 0.055

Table 16. Aircraft Specifications

The solution of the race fairness problem is accomplished in two different ways: first, the
upper level fairness problem is formulated as a parameter optimization problem and then
solved using a gradient-based optimization method. Second, the fairness problem is stated as a
system of equations that can then be solved using any root-finding algorithm like e.g.
Newton’s method.

Formulation of the Fairness Problem as an Optimization Problem

The upper level fairness optimization problem can be stated as follows: Find a parameter
vector p restricted by its lower bound p; 5 and its upper bound pys,

Pz SP <Py (6.120)

such that the objective

J = (tf,l(p)_tf,z(p))2 (6.121)

is minimized. Here, #;; is the minimum possible race time of the first aircraft type and #, the
minimum possible race time of the second aircraft type. For this objective the square of the
time difference has been chosen so that it is ensured that the objective function is positive and
continuously differentiable.



174 APPLICATIONS AND RESULTS

The gradient of the objective J with respect to the parameter p is

ot ot

J,=2 (tf,l(p)—rf,2(p))-( g;ﬁp ). g;ﬁp )j (6.122)
At this, the sensitivity results obtained by Eq. (5.12) in chapter 5.2 can be utilized directly to
compute the gradient J, so that the bilevel optimal control problem can be solved very
efficiently. As for the lower level optimal control problems, SNOPT (Ref. [Gill, 2007]) has
been utilized to solve the upper level optimization problem. Furthermore, since the two lower
level optimal control problems do not depend on each other, the optimization of the optimal
control problems has been parallelized in order to further shorten the time required for the
solution of the entire bilevel programming problem.

Fig. 69 depicts the final result for the fair race track layout where the final time difference
equals —0.85ms. The initial time difference between the minimum race times of the two
aircraft has been 1.057s.
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Figure 69. Race Track optimized w.r.t. to Fairness using SNOPT

Solution of the Fairness Problem using Newton’s Method

The solution of the upper level fairness problem can also be regarded as the solution of a
system of equations: for a race track layout to be a fair race track, the final race times of the
two competing aircraft have to be the same, this means the difference between the final race
times has to equal zero:

Aty =t,,(p)~1,,(p)=0 (6.123)

Together with the constraints that have to be imposed to maintain basic race track elements
like e.g. the “Chicane” or the “Quadro”, a system of equations results that can then be solved
using any appropriate root finding algorithm:
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=0 (6.124)

Here, C denotes the constraint vector due to the race track elements that are to be maintained.
In the following, Newton’s method is applied for finding the roots of the above system of
equations. At this, Eq. (6.124) is rewritten into a first-order Taylor series expansion:

of of ’
f="f(p )+— p-p,)=flp,)+—1 -Ap=0 6.125
(P ap0( 0)=1(p,) o0, (6.125)
Eq. (6.125) can then be solved for Ap:
of| |
Ap=—— | -flp (6.126)
2

where " denotes the pseudo-inverse since the number of equations does not necessarily equal
the number of optimization parameters. Here again, the sensitivity results obtained by
Eq. (5.12) in chapter 5.2 can be used directly to compute the gradient matrix 0f/dp. Finally,
the following iteration step has to be done to drive the system of equations (6.124) iteratively
to zero:

p=p,+4-Ap (6.127)

where 4 can be utilized to adjust the step size of the Newton step. So far, no upper or lower
bounds with respect to the parameter vector p have been taken into account. Therefore, it is
first checked if any elements of the parameter vector p violate their upper or lower
boundaries. If this is the case, the values of the respective elements are reset to their
boundaries. Then, an additional step Ap,.; in the parameter vector p is computed that takes
into account only those elements of the parameter vector p that are not at their boundaries.
Accordingly, only the corresponding columns of the gradient matrix 0f/0p are taken into
account, giving the reduced gradient matrix 0f/dp,.,. The additional step Ap,.; is computed

by:
o | of
AP, == = 1Py )+ —
d {ap} {u) o

Here, Appoundea 18 the step Ap given by Eq. (6.126) once the upper and lower boundaries have
been imposed. Finally, the new parameter vector p evaluates to:

: Apbaunded:| (6 128)

0

p = pO + Apbuunded + Ap red (6 129)

The computation steps given by Eq. (6.128) and Eq. (6.129) can then be repeated until the
newly obtained additional step Ap,.; does not violate any of the boundaries of the parameter
vector p. At this, the upper and lower boundaries with respect to the parameter vector p are
taken into account while the remaining degrees of freedom are utilized to drive the constraint
vector f to zero.

In Fig. 70, the fair race track layout for the above stated fairness problem is depicted that has
been obtained by applying the outlined method where the final time difference is —0.99ms.



APPLICATIONS AND RESULTS

[N N

176

400~
gERR R EEY,
********* SRR R 4
e g o A?
I - =" 0 r e
¢
o N it i E
= 200 o =
‘E‘ 0“ ‘ﬂ" n
x o Lt e
o o 0T T ™ R D O S o
o o ‘\ 'ﬂ" . v
E ,,,,,,,,,,, Yy }\.L __ggst O I 'of
@ ’ T o= @] |
o o P, o \ ;e O il Ty e
=¥ 4 o) g OOO "
777777 I D sl E e
‘\

—200—
snnnmnnnnni Ajreraft [
20 ‘ Aircraft II ‘
2400 -200 0 200 400 600 800 1000 1200 1400

Position y [m]
Figure 70. Race Track optimized w.r.t. Fairness using Newton’s Method

6.4.2 Increasing the Fairness for Three Competing Aircraft

In the following, a race fairness problem for three competing aircraft is posed. For the third
aircraft the maximum thrust is set to 0.75mg while the drag polar parameter k is reduced to
0.038505. The upper level fairness problem can then be stated as follows: Find a parameter

vector p such that the objective

J = (tf,l P)-t. (P))z + (tf,l(p) - tfﬁ(p))

= (Atfl,z)2 + (Atfl,S )2 + (At.f2,3 )2

is minimized where #;; is the minimum possible race time of the first aircraft type, # the
minimum possible race time of the second aircraft type and #;3 the minimum possible race
time of the third aircraft type for the given parameter vector p. As before, upper and lower
bounds with respect to the parameter vector p have to be taken into account:

Pz SP <Py (6.131)

2

+ (tf’z(p)_tfj (p))2 (6.130)

Then, the gradient of the objective J with respect to the parameter p evaluates to:

=200, (0)-1,.0)) (até; Sp) B atg; gp)j i

2-(t,,()-1,,(p)) (ag;?’) - 62;5‘”} + (6.132)

2 o)) “2- )

Again, the sensitivity results given by Eq. (5.12) in chapter 5.2 are utilized to compute the
gradient Jp. As for the fairness problem with two competing aircraft, SNOPT (Ref.
[Gill, 2007]) has been utilized to solve the upper level optimization problem. Furthermore, the
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solution of the three lower level optimal control problems can again been parallelized in order
to shorten the time required for the solution of the entire bilevel programming problem.

Fig. 71 depicts the final result for the race track layout. While the initial time differences
evaluated to Az, = 1.057s, Atq 3 = 0.508s and Aty 3 = —0.549s, the time differences finally
could be reduced to Aty = 0.0021s, Aty 3 =—0.0017s and Atp 3 =—0.0038s.
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Figure 71. Race Track optimized w.r.t. Fairness for 3 Competing Aircraft

6.4.3 Increasing the Fairness and the Safety of Air Races

As one might notice from Fig. 71, the time optimal trajectories for the fair race track layout
get very close to the crowd line. Therefore, it is straight forward to combine the aspect of
fairness with one or more of the above defined safety criteria. In the following, a race track
layout is sought where a maximum level of fairness for three competing aircraft is achieved
and where the time optimal trajectories keep a certain minimum distance to the crowd. Thus,
the following upper level parameter problem taking into account the fairness and the safety of
the race track layout is stated: Find a parameter vector p such that the objective

J=(,,0)=1,20)) +(,,0)=1,.0)) +(,20)-1,. ()

= (Atfl,z )2 + (Atfm )2 + (Atfm )2 o
is minimized subject to
de (P,) = d pin 20 (6.134)
de,(Pst) —de pin 20 (6.135)
des(P,1) = pin 20 (6.136)

where the distance to crowd d¢; is computed as explained in chapter 6.3.2.1. The sensitivity
results given by Eq. (5.12) in chapter 5.2 are utilized to compute the gradient J, of the
objective as well as the Jacobian of the constraints. It is mentioned that the upper level
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parameter optimization problem can be augmented by any of the above stated safety criteria.
Moreover, multiple safety criteria might be added to the fairness problem. In order to keep the
dimension of the upper level parameter optimization problem as small as possible, the path
constraints can be taken into account only in areas of the flight trajectories where it is likely
that the safety criterion will be violated.

In Fig. 72, the final result for the fair and safe race track layout is shown. As can be seen from
Fig. 73, the minimum distance to crowd d¢, for the final race track layout lies above the
threshold of 100.0 m for all three competing aircraft while the final time differences equal
Zero.
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7

Summary and Perspectives

7.1 Summary

Within the thesis at hand, a framework is established that allows for the efficient and robust
solution of highly complex trajectory optimization problems as well as a special type of
bilevel optimal control problems. In the following, the main topics of the thesis are
recapitulated.

In chapter 2, a general framework for the treatment and the solution of optimal control
problems is depicted that is based on the multiple shooting method. After the statement of the
general optimal control problem, the infinite dimensional continuous time optimal control
problem is transformed into a finite dimensional parameter optimization problem by
discretization of the control variables. The Jacobian and the Hessian of the transformed
optimal control problem are derived analytically using the gradient of the dynamic system
with respect to the control vector and the state vector in conjunction with the appropriate
sensitivity equations. For the analytical evaluation of the gradient of the dynamic system, a
method is depicted that follows the block structure of the implemented simulation model and
that is very flexible to modifications with regard to the simulation model. The transformed
optimal control problem is scaled to improve the stability and the convergence for the
computation of the optimal solution. A mesh refinement algorithm with respect to the control
grids is introduced in order to reproduce the continuous time controls by the discretized
controls as closely as possible. At the same time, unnecessary control discretization points are
dropped to reduce the size of the parameter optimization problem. Furthermore, path
constraint violations in between the current path constraint grid points are detected and
additional grid points are inserted to cancel out the violations.

The structure and the various subsystems of a scalable, multi-fidelity simulation model that is
specifically tailored for optimization tasks are illustrated in chapter 3. The simulation model
features a special sequential structure that follows the causal dynamic chain of flight systems
and that is the non-linear point-mass simulation model in the outer loop followed by various
representations for the rotational and attitude dynamics in the inner loop. The depth of
modeling for the inner loop is scalable from load factor transfer functions via state-space
models to the full, non-linear rotation and attitude equations of motion. The simulation model
takes into account environmental influences like static and convective wind fields and
comprises additional subsystems like e.g. actuator dynamics in order to achieve optimal
trajectories that are as realistic as possible. Based on the principle of dynamic inversion, a
controller is implemented that features the same sequential structure as the system dynamics
itself and that also accounts for the environmental influences. The simulation model is
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augmented by reference models to produce the required derivatives for the command inputs
fed into the inversion controller. Error feedbacks are implemented to cancel out deviations
between the inversion controller and the states of the simulation plant due to possible non-
minimum phase effects and numerical computation impreciseness.

Based on the optimization simulation model, an algorithm for the solution of highly complex
trajectory optimization problems without the necessity for the user to provide any initial guess
is outlined in chapter 4. A homotopy procedure is introduced that allows for the generation of
an initial guess for the optimization of highly non-linear trajectories using the point-mass
simulation model. Starting with the optimal solution for the point-mass simulation model, the
algorithm increases the modeling fidelity of the simulation model step by step, ending up with
the optimal trajectory for the full, non-linear 6-DoF simulation model. In order to perform the
step from the pure point-mass simulation model to the point-mass simulation model
augmented by the linear transfer functions within the optimization algorithm, a substitute
optimization problem is formulated.

In chapter 5, a bilevel optimal control problem is stated that comprises a parameter
optimization problem at the upper level and one or more optimal control problems at the
lower level. Details for the sensitivity analysis with regard to the discretized lower level
optimal control problems are given. The sensitivity analysis allows for an analytical
evaluation of the gradient of the upper level parameter optimization problem, thus avoiding
the time-consuming evaluation of the gradient by numerical methods. Thus, an efficient
method for the solution of the stated bilevel optimal control problem is developed. The given
gradient evaluation method can also be utilized within a multidisciplinary design optimization
framework that involves the discipline of trajectory optimization for an efficient and accurate
evaluation of the gradient of the upper level optimization problem.

The proposed solution methods for highly complex trajectory optimization problems as well
as for the special type of bilevel optimal control problems have been applied to the very
challenging task of optimizing the race trajectories respectively the race track layouts for a
Red Bull Air Race. In chapter 6.1, the Air Race problem is formulated as a benchmark. A
minimum time air race trajectory for the full, non-linear 6-Degree-of-Freedom point-mass
simulation model is depicted. Bilevel optimal control problems as stated in
chapter 5 result if one wants to increase the safety respectively the fairness of the race track
since the pilots will not take care of these aspects as long as no penalties are imposed. The
pilots are focused on flying the race track such that the minimum possible race time results,
and the designer of the race track layout has to arrange the gates such that certain safety
criteria or fairness are optimal if the pilots fly the minimum-time race trajectory. Various
safety criteria that are the distance to crowd, the time to crowd, the maximum directed energy,
the ballistic extrapolation, the pilot blinding and a load factor fatigue index are derived and
the corresponding results are shown. Finally, for two different aircraft with one aircraft being
more agile and the other aircraft being faster a fair layout of the race track is found where
both aircraft require the same minimum race time.

7.2  Perspectives

Within the framework for the solution of the trajectory optimization problem, the multiple
shooting method that is a direct method for the solution of optimal control problems has been
implemented. For the multiple shooting method, only the controls are discretized, while for



SUMMARY AND PERSPECTIVES 181

the states only a limited number of multiple shooting nodes is introduced. The state time
histories are then obtained by integration (or “shooting”) of the dynamic system from one
multiple shooting node to the next. Other direct methods are the collocations methods, where
the states are discretized together with the controls. Especially the so-called pseudospectral
methods have gained much attention during the last years, and a lot of research has been
carried out on this topic. With the collocation methods, there is no integration of the dynamic
system but the equations of motion are added as supplementary constraints to the discretized
optimal control problem that have to be fulfilled at the optimal solution. At this, the number
of parameters as well as the numbers of constraints is increased significantly within the
discrete parameter optimization problem in comparison to the multiple shooting method,
especially if a large number of states and controls is present. But nowadays, efficient and
powerful algorithms for the solution of large, nonlinear parameter optimization problems with
up to thousands of constraints and variables are available, especially for the optimization of
sparse problems, i.e. optimization problems where many of the elements of the Jacobian are
zero. At the same time, the cost of integrating dynamic systems with a large number of states
in combination with an enormous number of first and second order sensitivity equations for
the computation of the Jacobian respectively the Hessian can be avoided with the collocation
methods. Thus, collocation methods could be investigated for the solution of highly complex
trajectory optimization problems in order to compare their performance to that of the multiple
shooting method.

With regard to the bilevel optimal control problem for the layout of air race tracks, further
safety criteria have to be developed and implemented like e.g. the time to ground, the
maximum wing root bending moment, the engine gyroscopic moment or various load factor
consciousness, illusion or fatigue indices. Furthermore, the existing safety criteria might also
be developed further: for example, the prediction algorithm for the calculation of the safety
criterion time to crowd might be extended taking into account the current flight path bank
angle of the aircraft since at high bank angles a curved propagation of the aircraft trajectory
might be more realistic than a straight extrapolation. For the fairness aspect, not only the
positions of the air race gates might be seen as parameters of the upper level optimization
problem but also aircraft parameters like e.g. the aircraft mass. This would imply that superior
aircraft have to take on board additional penalty mass to level out the chances between the
participating aircraft.

Another crucial aspect that may be subject to further research is related to the numerous
aircraft parameters that are implemented in the simulation models. So far, most of the aircraft
parameters are obtained by estimation. More realistic and feasible aircraft parameters have to
be derived e.g. by parameter estimation methods in order to provide reliable results and
statements concerning the fairness and the safety of the considered race tracks.

In summary, by the thesis at hand a framework has been established that allows for the
solution of two very challenging optimization tasks, namely the optimization of flight
trajectories using high-fidelity simulation models as well as the efficient solution of complex
bilevel optimal control problems. Especially the generation of suitable initial guesses for the
trajectory optimization based on high-fidelity simulation models is seen as main contribution
of this thesis.
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A

Appendix

A.1 Second Order State Sensitivity Equations

The full second order state sensitivity equations are:
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A.2 Frames

In the following, the various coordinate systems and their characteristics are described
according to Ref. [Holzapfel, 2009a].

A.2.1 Earth-Centered Inertial (ECI) Frame /

Index: 1
Role: Notation frame for Newtonian Inertial Physics (i.e. valid Euclidean Frame)
Origin: Center of Earth
Translation:  Around the Sun with solar system
Rotation: None
X-axis: In equatorial plane, pointing towards vernal equinox
y-axis: In equatorial plane to form a right-hand system
Z-axis: Rotation axis of Earth
North
Pole
mquator /
. . \—y
Ecliptic

Vernal Equinox

Figure 74. ECI-Frame 1
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A.2.2 Earth-Centered-Earth-Fixed (ECEF) Frame E

Index: E

Role: Notation frame for positioning and navigation

Origin: Center of Earth

Translation:  Moves with ECI-Frame

Rotation: Earth rotation about z-axis with Earth angular rate, i.e. approximately 2n/24h
X-axis: In equatorial plane, pointing through Greenwich meridian

y-axis: In equatorial plane to form a right-hand system

Z-axis: Rotation axis of Earth

Xg

Figure 75. ECEF-Frame E
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A.2.3 North-East-Down (NVED) Frame O

Index:
Role:
Origin:
Translation:

Rotation:

x-axis:
y-axis:

Z-axis:

o

Notation frame for velocity and orientation

Reference point of aircraft

Moves with aircraft reference point

Rotates with transport rate to keep the NED-alignment

Parallel to local geoid surface, pointing to geographic north pole
Parallel to local geoid surface, pointing east to form a right hand system

Pointing downwards, perpendicular to local geoid surface

Figure 76. North-East-Down (NED) Frame O
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A.2.4 Body-Fixed Frame B

Index: B
Role: Notation frame
Origin: Reference point of aircraft

Translation:  Moves with aircraft reference point

Rotation: Rotates with rigid body aircraft

x-axis: Pointing towards aircraft nose in symmetry plane

y-axis: Pointing to right (starboard) wing to form an orthogonal right-hand system
z-axis: Pointing downwards in symmetry plane, perpendicular to x- and y-axes

ZB*

Figure 77. Body-Fixed Frame B
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A.2.5 Kinematic-Frame K

Index: K
Role: Notation frame for flight path
Origin: Reference point of aircraft

Translation:  Moves with aircraft reference point

Rotation: Rotates with direction of kinematic aircraft motion

x-axis: Aligned with the kinematic velocity, pointing into the direction of the
kinematic velocity

y-axis: Pointing to right, perpendicular to the x- und z- axes

Z-axis: Pointing downwards, parallel to the projection of the local surface normal of

the WGS-84 ellipsoid into a plane perpendicular to the x-axis (i.e.
perpendicular to the kinematic velocity)

Figure 78. Kinematic-Frame K
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A.2.6 Intermediate Kinematic Frame K

Index: K
Role: Notation frame
Origin: Reference point of aircraft

Translation:  Moves with aircraft reference point

Rotation: Rotates with direction of kinematic aircraft motion

x-axis: Aligned with the kinematic velocity, pointing into the direction of the
kinematic velocity

y-axis: Pointing to right, perpendicular to the x- und z- axes

z-axis: z-axis of the Kinematic Frame K rotated clockwise by the kinematic flight-
path bank angle ux

204 “x

Figure 79. Intermediate Kinematic-Frame K
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A.2.7 Aerodynamic Frame A

Index: A
Role: Notation frame for aerodynamic flow
Origin: Aerodynamic reference point of aircraft

Translation:  Moves with aircraft reference point

Rotation: Rotates with direction of airflow

X-axis: Aligned with aerodynamic velocity, pointing into the direction of the
aerodynamic velocity

y-axis: Pointing to right, perpendicular to the x- und z- axes

z-axis: Pointing downwards in the symmetry plane of the aircraft, perpendicular to
the x-axis

Figure 80. Aerodynamic Frame 4
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A.2.8 Intermediate Aerodynamic Frame A

Index:
Role:
Origin:
Translation:

Rotation:

x-axis:

y-axis:

Zz-axis:

A

Notation frame

Aerodynamic reference point of aircraft
Moves with aircraft reference point

Rotates with direction of airflow

Aligned with aerodynamic velocity, pointing into the direction of the
aerodynamic velocity

Pointing to right, perpendicular to the x- und z- axes

z-axis of the Aerodynamic Frame A rotated counterclockwise by the
aerodynamic flight-path bank angle 14

/'f—'—ﬂ_-—-\""\

b

Figure 81. Intermediate Aerodynamic Frame 4
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A.3 Transformation Matrices and Angular Rates

In the following chapters, the sequences of rotation, transformation matrices and angular
velocities between the coordinate systems specified in the preceding chapter are given (Ref.
[Holzapfel, 2009a].

A3.1 ECEF-Frame E — NED-Frame O

Angles: Geodetic Longitude 4
Geodetic Latitude u
Sequence of rotation: A—u

Transformation matrix:

—singcosA —sinysind  cosy
M/, =| -sind cosA 0 (A.2)
—cosucosA —cosusind  —sinu
Angular velocity:
fL-sin A
((TJEO)E =| —j1-cosA (A.3)

Figure 82. ECEF-Frame E — NED-Frame O
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A.3.2 NED-Frame O - Body-Fixed Frame B

Angles: Azimuth Angle ¥
Inclination Angle ®
Bank Angle ©

Sequence of rotation: Y->0-0

Transformation matrix:

cosV-cos® sin¥-cos® —sin®
M,, =|cos¥-sin® -sin®—sin¥-cos® sin¥-sin®-sin®+cos¥-cos® cos®-sin® (A.4)
cosWV-sin®-cos®+sinW-sin® sinW-sin®-cos®—cos¥V-sin® cos®-cosd

Angular velocity:
®-cos®-cos¥ —O-sin¥

((I)OB)O =| ®-cos®-sin¥ +O-cos'¥ (A.5)
¥ —d-sin®

Figure 83. NED-Frame O — Body-Fixed Frame B
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A.3.3 NED-Frame O - Kinematic Flight-Path Frame K
Angles: Flight-Path Azimuth Angle yx
Flight-Path Inclination Angle yx
Sequence of rotation: XK — VK

Transformation matrix:
COS ¥y "COSYy SIN Y, -COSY, —sSIny,
M,,=| -—sing, COS ¥« 0 (A.6)
COS ¥y -SINy, SIny, -siny, COSyy
Angular velocity:
=7k -sin g
((Y)OK)O =| 7 -COS ¥y (A.7)
ZK o

Yk

Yk \Zg

y

Figure 84. NED-Frame O — Kinematic Flight-Path Frame K
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A.3.4 NED-Frame O — Intermediate Kinematic Flight-Path Frame K

Angles: Kinematic Flight-Path Azimuth Angle yx
Kinematic Flight-Path Inclination Angle yx
Kinematic Flight-Path Bank Angle ux
Sequence of rotation: XK — VK — UK
Transformation matrix:
COS ¥y COSYy sin y, cosyy —siny,

M, =|cos y siny, sinpu, —sin y, cosu, Sin y, siny, sinp, +cos y, CoSu,  COSy, sin i, (A.8)

COS ¥ SINY COS Lty +SIN y, Sin 1y, SiN Y, SIN Y, COS Ll —COS ¥ SIN Ll COSY COS Ly

Angular velocity:

fl - COS Yy ~COSY e =y - SIN gy
(6)01{ )o =| f1g -SIN g -COSY g + Fy - COS 7 i (A.9)
j(/( _Iak 'Sin7/< 0

z(& “k

Figure 85. NED-Frame O — Intermediate Kinematic Flight-Path Frame K
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A.3.5 NED-Frame O — Aerodynamic Frame A
Angles: Aerodynamic Flight-Path Course Angle y,4

Aerodynamic Flight-Path Inclination Angle y4

Aerodynamic Flight-Path Bank Angle z4
Sequence of rotation: XA — V4 —
Transformation matrix:
COS ¥, COSY, sin y, cosy,
M,, =|cosy,siny, sinu, —siny,cosy, sinjy,siny, sinu, +cosy, cosu,
cosy,siny,cosp, +siny,sinu, siny, siny,cosu, —cosy,singu,
Angular velocity:
f1,-COS Yy -COSY, =7, -Siny,

(6){“)0 =| /1, -siny, -cosy, +y, -cosy,
j(A _/aA'SinyA 0

Figure 86. NED-Frame O — Aerodynamic Frame A

—siny,

cosy, sing, | (A.10)

COSy, COSfL

(A.11)
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A.3.6 NED-Frame O — Intermediate Aerodynamic Frame 4
Angles: Aerodynamic Flight-Path Azimuth Angle y.
Aerodynamic Flight-Path Inclination Angle y4
Sequence of rotation: XA — V4
Transformation matrix:
cosy,-cosy, siny,-cosy, -—siny,
M. =| -—sing, cosy, 0 (A.12)
cosy,-siny, siny,-siny, cosy,
Angular velocity:
 [-hasing,
(G)OA )0 =| y,-cosy, (A.13)
/i/A o
/——\

Y 4

Zy

Figure 87. NED-Frame O — Intermediate Aerodynamic Frame 4
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A.3.7 Kinematic Flight-Path Frame K — Body-Fixed Frame B
Angles: Kinematic Flight-Path Bank Angle ux
Kinematic Sideslip Angle Sk
Kinematic Angle of Attack ax
Sequence of rotation: Ux — —Px — ag

Transformation matrix:

cosa cos By sin sina,; cos Sy
M, =| —cosay sin S cosy, +sina, sing, cosf, Cosp, —sina, sinf, cosu, —cosay sin (A.14)
—cosay, sin B sin i, —sinay, cospy,  cosfy sing, —sina, sin B sin 1, +cosa Cos i,
Angular velocity:

[ty -cOSQy, -cos By + B -sinay
(GJKB)B = Gy + [ty -sin Sy (AIS)

Ll -singy, -cos f, — By -cosa, 5

Figure 88. Kinematic Flight-Path Frame K — Body-Fixed Frame B
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A.3.8 Intermediate Kinematic Flight-Path Frame K — Body-Fixed Frame B

Angles: Kinematic Sideslip Angle fx
Kinematic Angle of Attack ax
Sequence of rotation: —fx — ax

Transformation matrix:

cosa, cosf,  sinf,  sina, cospf,

M_, =|—cosa,sinfB, cosf, —sina,sinf,
—sinay 0 cosay
Angular velocity:
B, -sina,
(@EB)B = ay
— B -cosa,

Figure 89. Intermediate Kinematic Flight-Path Frame K — Body-Fixed Frame B

(A.16)

(A.17)
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A.3.9 Aerodynamic Frame A — Body-Fixed Frame B

Angles: Kinematic Sideslip Angle f4
Kinematic Angle of Attack ay
Sequence of rotation: —B4— 0y

Transformation matrix:

cosa,cosfl, sinf, sina, cosp,

M, , =|-cosa,sinf, cosf, -—sina,sinp, (A.18)
—-sina, 0 cosa,,
Angular velocity:
B, -sina,
@*),=| a, (A.19)
- p,-cosa,

Z,

Figure 90. Aerodynamic Frame 4 — Body-Fixed Frame B
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A.3.10 Intermediate Aerodynamic Frame A — Body-Fixed Frame B
Angles: Aerodynamic Flight-Path Bank Angle u4
Aerodynamic Sideslip Angle 54
Aerodynamic Angle of Attack ay
Sequence of rotation: s — P4 — ay

Transformation matrix:

cosa, cosf3, sin 3, sina , cos fy
M, =|-cosa,sinB,cosu, +sina,singu, cosf, cosp, —sina,sinp, cosu, —cosa,sinu, (A.20)
—cosa, sinf, sinu, —sina, cosu, cosf,siny, —sina,sinf,sinyu, +cosa, cosu,
Angular velocity:

ft,-cosa, -cosf, + f3, -sina,
(G)AB )B = a,+fy 'SinﬂA (A21)

[, -sina, -cosfB,— 3, -cosa, 5

Figure 91. Intermediate Aerodynamic Frame 4 — Body-Fixed Frame B
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A.4 Linearized State-Space Models

A.4.1 Longitudinal State-Space Models

For the longitudinal motion, the linearized state-space model is:

vl | X, X, X, X, ool [x, X, ]
vyl |-z, z, -z, -z, 0 0||y| |-z, -Z,
a zZ -Z Z, Z+1 0 0| |« Z Z
= ’ ‘ Al P R A I BN OS
q M, 0 M, M, 0 0||q M, M; ||6
A siny, V,cosy, 0 0 0 O0f(nh 0 0
| x| [cosy, —Vysiny, O 0 0 O0f[x|] [ O 0 |
with the corresponding force and moment coefficients:
S oC,|
X, ~— [\ M, - +2C A23
T { ! ol (A.23)
X, =—gcosy, (A.24)
9" S
X, 24 lal -c..] (A.25)
9-S ¢
X =—-——=C
q m 2% Dq (A.26)
o
x,=-492.c, (A.27)
m
X oz :
X@:i. (X,), cosao+—( s sina, (A.28)
m | 06, |, oo, |,
g, S oc, |
Z, ~— AM, - +2C A.29
/ ng{ o ae], H2Ck (A29)
z,=2siny, (A.30)
4
9o S
Z ~————:|C,, +C
a mV, [La D|O] (A.31)
%S ¢
Z =—"——C
q mV;) 2VO Lq (A32)
q-S
2y ==y G (A.33)
oX oz
Z§T:— 1 . ( P)B| sinao— (P)B COSQO (A34)
mV, | 05, |, -,
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M, ~— 2= M, —2 A35
S SR 4 " oM, (A.33)
1 _
Mﬁl—' 08¢ C,, (A.36)
yy
M—IQSEEC (A.37)
- .G, -Se-S.c _
! Iyy 21/0 !
|
M, =T 0'5-¢c-C,, (A.38)
»w
Loy (A.39)
& — 5 .
1, 06|,

Omitting the decoupled differential equations for the northward position x and the altitude #,
the longitudinal state-space model simplifies to:

vl [ X, X, X, X, vl | X, X, |

; -Z, Z -7 -Z -7 -Z

7./ _ V ¥ a q . 7/ + n op . 77 ( A 4 0)
a z, -7, Z, Z,+l||a Z, Zs ||o;

gl |M, O M, M, ||q] M, M,

A.4.2 Lateral State-Space Models

With the assumptions that the angle of attack @ and the pitch angle ®, are very small (i.e.
ao ~ 0 and ®y ~ 0), the linearized lateral state-space model is:

Fl [N, N, N, 0 0 0][r] [N, N,
Bl |-1 Y, 0 g/V, 0 0||B||Y. Y,
> |L L, L, 0 0 0 L. L
ol 12|l B B l)e (A.41)
@ o 0 1 0 0 O0f|® |0 0]
v |1 0 0 0 0O0f|y| |0 O
1y [0 a O 0O a O]y [0 O]
where
a=V,-cosy,-cosy, (A.42)

Furthermore, it is assumed that Y, and Y, equal zero. The remaining force and moment
coefficients are:
q,:S:b b
N =$22 2

. 1 C +1 C
7 2A 21/0 xz -l XX m] (A43)

G,-S-b
N,B ~ OT ) []xzclﬂ + ]xanﬂ] (A44)
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7,-Sb b
N ="-———-.C +1C
q,-S-b
¢ = °2A '[Iszz; +1MC,,;] (A.46)
q,-S-b
N, = 02 A '[Iszz; +1HCn;] (A.47)
NC_IO'S
=2 len-al) (A48)
‘70'S
Y. = .C
¢ mv, 0¢ (A.49)
%'S
y.=20" ¢C
¢ mv, ¢ (A.50)
70-Sb b
L=""———|1C +1C
r 2A 2[/0 [zz Ir Xz nr] (AS])
q,-S-b
Lﬁ—"zA '[Izsz +1sznﬁ] (A.52)
g, S'b b
L =————|C +1_C
14 2A 21/0 zz " Ip Xz np] (A53)
g,-S-b
Lﬁ == .I:]zzle-’_Isznf] (A54)
2A
g,-S-b
L§ = ° .I:]zzclé' +]szn§:| (ASS)
2A
Here,
A=11. ~TI] (A.56)

Omitting the decoupled differential equations for the heading angle y and the eastward

position y, the simplified lateral state-space model reads:

7 N, N, N, 0 r] [N,
p _ -1 Y, 0 g/l . p . Y,
b L L, L, 0 p| | L
) 0 0 1 0 @ 0

o 2= M\Z

(A.57)
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