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ABSTRACT

Being sensitive to carrier frequency offset (CFO) is known to
be one of the main drawbacks of multicarrier systems. In this
paper, the effects of CFO on a filter bank based multicarrier
system (FBMC) in a multipath fading channel are discussed,
where an ideal root-raised cosine (RRC) filter with roll-off
factor1 is used as the prototype filter which enables analytical
derivations of the interference caused by the CFO. Based on
these results, an approximation on the SNR degradation with
very small CFO is also given. Numerical experiments as well
as Monte Carlo simulations are done to verify the analysis
and the accuracy of the approximation in FBMC systems. A
comparison with the SNR degradations in cyclic prefix based
orthogonal frequency division multiplexing (CP-OFDM) sys-
tems has indicated an advantage of FBMC systems as being
more robust to frequency misalignments.

1. INTRODUCTION

Despite their well-known advantages such as the ability to
support high data rates through frequency selective channels,
one of the main drawbacks of multicarrier systems is their
sensitivity to synchronization errors in the frequency domain
[1]. The CFO is mainly caused by Doppler shift due to mobil-
ity and the inherent difference between the oscillators at the
transmitter and receiver. It typically destroys the orthogonal-
ity between adjacent subcarriers and results in an attenuation
of the desired signal and the introduction of intercarrier inter-
ference (ICI) and possible intersymbol interference (ISI).

OFDM with cyclic prefix (CP) is by far the most popular
special case of multicarrier systems and has been adopted in
many current applications and standards. It has an efficient
implementation by using the fast Fourier Transform (FFT)
and requires very simple equalization as long as the CP ex-
ceeds the delay spread of the channel impulse response. How-
ever, the CP is purely redundant in terms of information and
considerably reduces the bandwidth efficiency. On the other
hand, FBMC systems provide a better spectral shaping of sub-
carriers than OFDM systems by careful designs of the proto-
type filter. In FBMC systems, each subcarrier is designed

to overlap only with its immediate neighboring subcarriers,
which not only simplifies equalization in the absence of CP,
but also improves the robustness of the system against a po-
tential CFO. By employing offset quadrature amplitude mod-
ulation (OQAM), the full capacity of the transmission band-
width can be achieved in FBMC systems.

The effects of CFO on single carrier systems and CP-
OFDM systems have been extensively studied in the litera-
ture, e.g., [2][3][4]. There has been several recent works on
this aspect in FBMC systems,e.g., [5][6], which are in gen-
eral based on studies and simulations of practical systems.In
this work, by employing an ideal RRC filter as the prototype
filter in FBMC systems, we provide exact analytical results
that are comparable to the work done with CP-OFDM sys-
tems. The performance metric employed to compare the two
systems is theSNR degradation D(ε) defined as

D(ε) = SINR(0)|dB − SINR(ε)|dB, (1)

whereε
△
= fT−fR

∆f is the CFO between the transmitter fre-
quencyfT and the receiver frequencyfR normalized with the
subcarrier spacing∆f , and SINR(ε) denotes the signal-to-
interference-plus-noise ratio as a function ofε. In addition,
we assume that there is also a phase offsetφ between the
transmitter and the receiver, and the system is perfectly syn-
chronized in the time domain. Further more, we restrictε to
be in the range(−0.5, 0.5], as the integer part of the normal-
ized frequency offset does not affect the SINR.

2. TWO IMPLEMENTATIONS OF MULTICARRIER
MODULATION

The equivalent baseband models of the CP-OFDM system
and the FBMC system are shown in Fig. 1, where the receive
signal is corrupted by the carrier frequency and phase offset
at the front end of the receiver. In FBMC systems, the real
and imaginary parts of the modulated data symbols of rate1

T
are first separated by the “C2R” module and multiplied with
θn,l = jn+l which results in an actual transmission rate of2

T ,
and then modulated by the synthesis filter bank (SFB) which
uniformly shifts the prototype filterp(t) in the frequency to
cover the whole signal bandwidth, and outputs the sum of
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Fig. 1. Equivalent baseband system models

signals associated with all subcarriers. At the receiver side,
the received signal is passed through the analysis filter bank
(AFB) where it is demodulated and filtered by the matched
filter of p(t), and the complex modulated symbols are recov-
ered from the detected OQAM symbols. Both SFB and AFB
can be implemented efficiently with an IFFT/FFT module fol-
lowed by polyphase filtering, yet the complexity of FBMC
systems is typically higher than CP-OFDM systems.

In the next we consider the RRC filter with roll-off factor
1 as the prototype filterp(t) which has the frequency response

HRRC(f) =

{ √
T cos πTf

2
, 0 ≤ |f | ≤ 1

T
,

0, |f | > 1
T

,

whereT is the symbol duration. The better spectral shaping of
subcarriers of such a system as compared with the CP-OFDM
system is illustrated in Fig. 2.

3. REVIEW ON THE EFFECTS OF CFO ON
CP-OFDM SYSTEM

With a CP longer than the channel impulse response, the data
transmission in CP-OFDM systems is independent from block
to block, where each block containsN modulated data sym-
bols which is usually referred to as an OFDM symbol. Let
thekth OFDM symbol bex[k] ∈ C

N . The transmitted vec-
tor before the insertion of the CP isy[k] = F Hx[k], where
F ∈ C

N×N is the unitary DFT matrix. The effect of CFO
can be formulated into a diagonal matrix [3] as

C [k] = e
jφ · ej2πεk(1+

Np
N

) · diag {1, e
j2π ε

N , · · · , e
j2π

ε(N−1)
N },
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Fig. 2. OFDM and FBMC subcarriers

whereNP denotes the length of CP, and the received signal
after the removal of the CP is given by

ŷ[k] = C [k]H [k]y[k] + η[k], (2)

whereH[k] ∈ C
N×N contains the channel impulse response

of the block and is a circulant matrix due to the CP, andη[k]
represents the additive white Gaussian noise at the receiver.

If no compensation of the CFO is considered before the
DFT at the receiver, the received OFDM symbol in the fre-
quency domain is given by

x̂[k] = F C [k]H [k]F H
x[k] + F η[k]

= U [k]Λ[k]x[k] + F η[k], (3)

whereΛ[k] ∈ C
N×N is a diagonal matrix containing the

DFT of the channel impulse response andU [k] ∈ C
N×N is a

circulant matrix defined by

U [k] = e
jφ

e
j2πεk(1+

Np
N

)

·
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, (4)

whereνN (ε, n) = 1
N

sin(π(ε−n))

sin
π(ε−n)

N

ejπ
(ε−n)(N−1)

N .

From (3) and (4) it can be seen that the symbol detected
on subcarriern is scaled in magnitude by|νN (ε, 0)|, rotated

by ej(φ+∠Hn)ej2πεk(1+
Np
N

)ejπ
ε(N−1)

N , and further interfered
by received symbols on the other subcarriers scaled by the
corresponding off-diagonal elements ofU [k]Λ[k]. For co-
herent demodulation at the receiver, the phase rotation should
be estimated and we assume that it is perfectly compensated.
Moreover, we assume that the data symbols transmitted on
each subcarrier are independent from each other, and that the
power is uniformly allocated to all subcarriers. The SINR on
subcarriern can then be expressed as

SINRn(ε) =
|νN (ε, 0)|2|Hn|2PS

N−1
∑

n′=0
n′ 6=n

|νN (ε, n′ − n)|2|Hn′ |2PS + E[|F η|2]
,



wherePS is the transmit power for each data symbol, and
E[|Fη|2] equals the noise power on one subcarrier as the DFT
operation does not change the power.

For flat fading channels and for smallε such that|ε| ≪ 1
π ,

[3] has provided an approximation ofD(ε) as

D(ε) ≈ 10

ln 10

(

1 − 1

N2

)

SNR+ 1

3
π

2
ε
2
, (5)

where SNR stands for SINR(0) for simplicity.

4. EFFECTS OF CFO ON FBMC SYSTEMS

As introduced in Sec. 2, with OQAM modulation, the trans-
mit signals(t) in an FBMC system can be written as

s(t) =

N−1
∑

n′=0

+∞
∑

l′=−∞

dn′,l′θn′,l′p(t − l
′ T

2
)ej2π n′

T
(t−l′ T

2
)

=

N−1
∑

n′=0

+∞
∑

l′=−∞

dn′,l′λn′,l′p(t − l
′ T

2
)ej2π n′

T
t
, (6)

wheren′ is the subcarrier index,l′ is the symbol index in the
transmit data sequence,λn′,l′ = θn′,l′e

−jπn′l′ , anddn′,l′ ∈ R

is alternatively the real or imaginary part of the QAM symbol
loaded subcarriern′. Note that the subcarrier spacing in such
a system equals1/T .

The received signalr(t) as indicated in Fig. 1 is given by

r(t) = (h(t) ⊗ s(t) + η(t)) · ej(2π ε
T

t+φ)
, (7)

and then passed through the AFB and sampled at each output
at rate 2

T . The detected symbol on subcarriern at symbol

indexl, namelyd̂n,l, is therefore expressed as

d̂n,l = ℜ
{

λ
∗
n,l · ejφ

(

x(t) · ej2π
ε−n

T
t
)

⊗ p̃(t)
∣

∣

∣

t=l· T
2

}

+

ℜ
{

λ
∗
n,l · ejφ

(

η(t) · ej2π
ε−n

T
t
)

⊗ p̃(t)
∣

∣

∣

t=l· T
2

}

△
= R1 + R2,

wherex(t) = h(t) ⊗ s(t), p̃(t) is the matched filter ofp(t)
which is known to bep(t) itself, and we denote the two sum-
mation terms asR1 andR2. Note that⊗ denotes the convolu-
tion operation and∗ denotes the complex conjugate operation.

Let the frequency response ofx(t) be X(f). Applying
the convolution theorem, we haveX(f) = H(f)S(f) where
H(f) andS(f) are the frequency response of the multipath
channel and the transmit signal, as well as

(

x(t) · ej2π
ε−n

T
t
)

⊗ p̃(t)
∣

∣

∣

t=l· T
2

=

∫ +∞

−∞

e
j2πl T

2
f
X(f − ε − n

T
)HRRC(f)df. (8)

SinceHRRC(f) is only nonzero for|f | ≤ 1
T , the effective

integral range is restricted tof ∈ [− 1
T , 1

T ]. Within the band-
width of this range we assume that the shifted channel fre-
quency responseH(f − ε−n

T ) is roughly a constant,i.e., the

channel coefficient on subcarriern, denoted byHn. As a re-
sult, (8) can be further formulated as

(

x(t) · ej2π
ε−n

T
t
)

⊗ p̃(t)
∣

∣

∣

t=l· T
2

= Hn

N−1
∑

n′=0

+∞
∑

l′=−∞

dn′,l′θn′,l′e
jπl′(ε−n)

w(ε, ∆n, ∆l),

where∆n = n − n′, ∆l = l − l′, andw(ε,∆n,∆l) as a
function of the normalized CFOε, subcarrier offset∆n and
symbol offset∆l is defined as

w(ε, ∆n, ∆l)
△
=

∫ +∞

−∞

e
jπ∆lTf

HRRC(f − ε − ∆n

T
)HRRC(f)df.

Consequently, we have

R1 =

N−1
∑

n′=0

+∞
∑

l′=−∞

dn′,l′ℜ
{

Hne
jφ̃(ε,n,l,n′,l′)

w(ε, ∆n, ∆l)
}

,

whereejφ̃(ε,n,l,n′,l′) △
= ejφejπl′εejπn∆le−j π

2 (∆n+∆l). Again
we assume that with the help of pilot symbols, the phase of
Hnejφ̃(ε,n,l,n,l) can be perfectly estimated and compensated,
which results in

R1 = |Hn|





N−1
∑

n′=0

+∞
∑

l′=−∞

dn′,l′αn(ε, ∆n, ∆l)





=









dn,lαn(ε, 0, 0) +

+∞
∑

l′=−∞

l′ 6=l

dn,l′αn(ε, 0, ∆l)

+

N−1
∑

n′=0
n′ 6=n

+∞
∑

l′=−∞

dn′,l′αn(ε, ∆n, ∆l)









· |Hn|,

(9)

where the definition

αn(ε, ∆n, ∆l)
△
= ℜ

{

e
−j π

2
(∆n+∆l)

e
jπ∆l(n−ε)

w(ε, ∆n, ∆l)
}

applies. Note thatαn(ε,∆n,∆l) is the weight of each symbol
to the detected symbol̂dn,l. In (9), the first summation term
represents the desired signal, the second stands for the ISI
on the detected subcarrier, and the last indicates the ICI plus
ISI from all symbols on the other subcarriers. When signal
power is concerned, the square ofαn(ε,∆n,∆l) should be
taken and subscriptn can be dropped since|ejπ∆ln| = 1.

It is assumed as before that the symbols on all subcarriers
in the data sequence are independent from each other, and
each has a power ofPS/2, i.e., the power of the original QAM
symbols isPS. The SINR at the detection ofdn,l is given by

SINRn,l(ε) =

α
2(ε, 0, 0)

N−1
∑

n′=0

+∞
∑

l′=−∞

α
2(ε, ∆n, ∆l) − α

2(ε, 0, 0) +
σ2

|Hn|2PS

, (10)



which follows from E
[

R2
2

]

= σ2/2 as the real operation
halves the noise powerσ2. Due to the assumed constant trans-
mit power, the detected symbol indexl in (10) can be set to
0 for simplicity. If the channel is flat fading, the subcarrier
indexn can be dropped as well.

Based on the above analysis, the effects of CFO on the
desired signal include: its magnitude is scaled byα(ε, 0, 0);
its phase is rotated bỹφ as defined earlier, which is to be
compensated by the phase synchronizer; it is distorted by ICI
and ISI, which only depend on the channel condition on the
detected subcarrier.

4.1. ICI and ISI Analysis

When there is no CFO, the transmultiplexer under study with
both ideal RRC filters at the transmitter and the receiver pro-
vides perfect reconstruction of the signal,i.e.,

α(0, ∆n, ∆l) =

{

1, ∆n = ∆l = 0,

0, otherwise.

With a nonzeroε, the two immediately adjacent subcarriers
and one of the secondly adjacent subcarriers, depending on
the sign ofε, contribute to the interference. Due to the sym-
metry of the frequency responseHRRC(f), we discuss only
the case thatε > 0 in the following.

The analytical expressions of the nonzerow(ε,∆n,∆l)
terms are given as follows:

w(ε, 0, ∆l) = (1 − ε

2
)ejπ∆l ε

2

[

cos π
ε

2
sinc

(

∆l(1 − ε

2
)
)

+
1

2
sinc

(

(∆l + 1)(1 − ε

2
)
)

+
1

2
sinc

(

(∆l − 1)(1 − ε

2
)
)

]

,

w(ε,−1, ∆l) =
1 − ε

2
e

jπ∆l
1+ε
2

[

cos π
1 + ε

2
sinc ∆l

1 − ε

2

+
1

2
sinc(∆l + 1)

1 − ε

2
+

1

2
sinc(∆l − 1)

1 − ε

2

]

,

w(ε, 1, ∆l) =
ε + 1

2
e

jπ∆l
ε−1
2

[

cos π
ε − 1

2
sinc ∆l

ε + 1

2

+
1

2
sinc(∆l + 1)

ε + 1

2
+

1

2
sinc(∆l − 1)

ε + 1

2

]

,

w(ε, 2, ∆l) =
ε

2
e

jπ∆l( ε
2
−1)

[

cos π
( ε

2
− 1

)

sinc ∆l
ε

2

+
1

2
sinc(∆l + 1)

ε

2
+

1

2
sinc(∆l − 1)

ε

2

]

.

Analytical and numerical studies,e.g., from Fig. 3 where
the variations ofα2 over increasing symbol offset|∆l| are
demonstrated, show that

• α(ε, 0, 0) = w(ε, 0, 0) = (1− ε
2 ) cos π ε

2 +
sin π ε

2

π < 1;

• α(ε,±1, 0) = 0, i.e., there is no pure ICI from the ad-
jacent subcarriers;

• α(ε,∆n,∆l) converges to0 when|∆l| → ∞, yet the
convergence ofα(ε,∆n,∆l) is oscillatory due to the
multiplication of sinc functions with a sinusoidal term;
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• α(ε,∆n,±1), ∆n = 0,±1 contribute to the main part
of interference.

4.2. Approximations With Very Small CFO

For |ε| ≪ 1
π , we neglect the termsα(ε,∆n,∆l), |∆l| > 1

and apply the approximationssin(x) ≈ x, cos(x) ≈ 1 − x2

2
andlog10(1 + x) ≈ x

ln 10 to obtain an approximation ofD(ε)
as

D(ε) ≈ 10

ln 10

3 · SNR+ 4

16
π

2
ε
2
. (11)

Compared with (5), it can be seen that the approximated SNR
degradations are both proportional to the square ofε, and the
degradation in FBMC systems is obviously smaller since the
SNR in both approximations are linear and hence positive.

5. NUMERICAL RESULTS

In this section, the theoretically derived SNR degradations
and their approximations in CP-OFDM and FBMC systems
are numerically evaluated. Monte Carlo simulations are also
done to verify these results. The number of subcarriersN is
chosen to equal1024, and for CP-OFDM system, the length
of CP is set toN/8. Although in Sec. 3 and Sec. 4 the effects
of CFO in multipath channels have been studied, we simulate
here only with the AWGN channel to make a general com-
parison of the two systems, since it has been shown that the
SNR degradation in the FBMC system only depends on the
channel condition of the subcarrier of interest.

In Fig. 4, D(ε) with ε up to 0.2 are shown, where the
SNR is fixed to0 dB. For the FBMC system, a slight gap
between the theoretical and simulation curves can be read,
which is due to the truncation of the RRC filter to the time in-
terval[−5T, 5T ] in Monte Carlo simulations, which is shown
to cause the system to be more sensitive against CFO as com-
pared to FBMC systems with ideal RRC prototype filters. On
the other hand, the approximations ofD(ε) as given by (5)
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and (11) also agree quite well with the theoretical results,
especially whenε is small. Note that the approximation in
FBMC system tends to be more optimistic as the ISI caused
by symbols that are at least one symbol away from the one of
interest is neglected.

Fig. 5 and Fig. 6 further illustrate with theoretical results
the advantage of FBMC over CP-OFDM systems. In Fig. 5,
the variations of SNR degradation with increasing receive SNR
values are shown, which are roughly linear with very small
CFO and the growth becomes slower than linear with larger
CFO. In Fig. 6, the normalized CFO leading to fixed SNR
degradations under various receive SNR are drawn, which
demonstrates the more tolerance the FBMC systems have against
CFO from another perspective,e.g., if a loss of1 dB in SNR
is allowed, the CP-OFDM system can live with CFO’s of up
to 19% of the subcarrier spacing, whereas the FBMC system
is able to live with a CFO of23% of the subcarrier spacing.

6. CONCLUSIONS

In this paper, we have discussed and compared the effects of
CFO on CP-OFDM and FBMC systems in multipath fading

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

no
rm

al
iz

ed
 C

F
O

SNR in dB

 

 

 CP−OFDM, D(ε) = 0.1
 FBMC, D(ε) = 0.1
 CP−OFDM, D(ε) = 1
 FBMC, D(ε) = 1
 CP−OFDM, D(ε) = 3
 FBMC, D(ε) = 3

Fig. 6. Normalized CFO to cause SNR degradations of0.1, 1 and3
dB vs. SNR in CP-OFDM and FBMC systems with AWGN channel

channels. Exact SNR degradation expressions as well as their
approximations are reviewed for the CP-OFDM system and
derived for the FBMC system. The advantage of FBMC sys-
tems as being less sensitive to CFO than CP-OFDM systems
has been proved both by theory and simulations. The SNR
degradations analyzed in this paper serve as an upper bound
on real FBMC systems, since an ideal RRC prototype filter
has been assumed which can not be implemented in practical
systems. However, the analysis can help with CFO estimation
and resource allocation in FBMC systems.
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