Fractional Reuse Partitioning for MIMO Networks

Andreas Dotzlet, Wolfgang Utschicki and Guido Diefl

* Associate Institute for Signal Processing, Technischevéfsitéat Minchen, 80290 Munich
E-Mail: {dotzler,utschick}@tum.de, Tel.: +49-89-289-280, Fax: +49-89-289-28504

f DOCOMO Communications Laboratories Europe GmbH, Landghestr. 312, 80687 Munich
E-Mail: diett@docomolab-euro.com, Tel.: +49-89-56824bZFax: +49-89-56824-301

Abstract—Inter-cell interference diminishes the performance Finding the optimal coordinated transmission strategyharal
of wireless cellular networks, hence interference manageemt and non-convex problem, where an algorithm to compute the
by cooperation of basestations should be employed to Combatglobally optimal solution is only known for the single anten

interference and increase spectral efficiency. Contrary tofull . 51 h tati | lexit i
cooperation, which renders the network into a super-cell wh SCEIVEr case [5], however computational complexity potibi

distributed antennas, we investigate a form of weak coopetmn: ~'€al-time implementation or computing it as reference for
transmission strategies among the basestations are coondited, larger networks.
which requires a minor overhead, while the users treat inter A simple method to reduce ICl is to assign non-overlapping

ference of other cells as noise. Although our results are not . .
restricted to reuse partitioning, we assume a set of stratées, frequency bands to neighbouring cells, known as frequency

each corresponding to a different reuse factor, and assign Planning. Originally designed for systems intended to tev
orthogonal resources to each strategy. Basestation coopgion all users with the same data rate, e.g. phone service, the
is realized by dynamically adjusting the resource allocatin, so- reduction in spectral efficiency, depending on the frequenc
called fractional reuse partitioning, while the capacity ahieving (eyse factor applied, was accepted. In order to achieve the

single-cell strategies are employed in each cell in order to . e
optimally manage intra-cell interference exploiting all degrees data rates targeted in the specifications of future networks

of freedom offered by multiple antennas at the transmitter and ~ that will prov_ide a huge variety _Of services, a freql_JenCy
receiver. Efficient operation of a cellular communicationsnetwork ~ reuse of one is desired. However, in a network with universal

requires interference management in order to achieve highata reuse, the cell-edge users might be excluded from service
rates including rate assignment matched to the user demands qye to high inter-cell interference. Hybrid schemes that ar

which we formulate as network utility maximization problem. L . .
We put special emphasis on the popular utilities sum-rate a2 combination of universal reuse and higher reuse factors,

proportional fairness, either with or without additional q uality SO called fractional reuse partitioning, were first intrqeld
of service constraints. Finally, we illustrate the performance gain in [6] and are suggested for standards like LTE and WiMAX.

of our method by providing system level simulation results ér a  Additionally the topic is frequently discussed in research
three sectorized cellular network with nineteen sites. literature, for example an elaborate and systematic view on
the OFDMA case is given by Ksairi et al. [7], who introduce
and motivate fractional reuse partitioning in detail arsd the
The downlink of a cellular network where information isrelevant references. In this work we provide a rather absstra
transmitted with multiple transmit antennas to users geedp treatment of the topic that is valid for a huge manifold of
with multiple receive antennas (MIMO) is regarded. Inteftc transmission strategies including MIMO.
interference (ICI) can be a severely limiting factor, esg¢  |n short, the main challenge in finding efficient interferenc

users at the cell edge are affected and might be exclud@gdnagement by fractional reuse portioning is cast by the
from network service. A possible solution to completelyo|iowing two questions:

eliminate ICl is the joint encoding of information over riple
transmitters [1], [2], so-called network MIMO. Joint endogl
over geographically distributed antennas renders the aretw
into a super-cell, which is related to the MIMO broadcast
scenario [3], [4]. In case full channel state informatiordan In this work we give a universal answer by jointly optimiz-
all data is available at a central controller, network MIMGOng resource allocation, transmission strategies, udectien
can efficiently exploit all spatial degrees of freedom tareli and assignment. Based on a network utility maximization
inate ICI. Although the network’s performance is no longgiNUM) problem we provide a general algorithmic framework
limited by interference, there is a huge amount of additionfor optimizing multi-cell MIMO communications. The centra
complexity and coordination overhead compared to single celea is to inner approximate the unknown capacity region of
signal processing. Therefore, methods aiming at eliminatithe network by an achievable rate region. This allows us to
or reduction of interference by cooperation of the tranwrst draw general conclusions on the operation of the network
while every user is served by a single cell, are of greatéster independent of the transmission strategies applied, asdsn

|I. INTRODUCTION

« How to assign resources to each reuse partition?
« What is the optimal multi-user transmission strategy for
each reuse partitions?



they constitute an achievable rate region. Our considerati experience equal channel conditions. In order to obtain an
and the algorithm proposed provide valuable insights fachievable rate regioR that inner approximates, the idea
designing interference management built on a mix of varioisto apply multiple strategies, for example reuse partitig
strategies. A nice illustration of the algorithm is a conijimt where each reuse factor corresponds to a strategy. Given a
among the strategies for the available resources, whictbeanset of transmission strategidé, N = |A/|, each strategy has
sequentially implemented. We use fractional reuse panmiitiy an achievable rate regioR, C RI. Exclusive resources

to demonstrate our method, other strategies as soft reume assigned to each strategy, expressed by the fractions

where the transmission power is limited, cooperation in the = [th...,tN]T € T of the total resources available,
spatial domain, or clustered network MIMO can be directiwhere7 = {t > 0: ||t||, = 1}. In caseP is a peak power
included. constraint, data rates scale linearly with the assignealress
A. System Model and an operation point of the network,
!/ / / !/

We regard the downlink of a cellular MIMO network with r=hri+.. ity =[] ®3)
a set of cellsS, S = |S|, where each cell is equipped withjs determined by the resource allocatiorand the rate as-
N antennas. User, K = |K|, are distributed over the areasignmentr, € Ri,...,ry € Ry. The rate regiorR,, is

covered and each user halg antennas. The channel matricegchieved in case all available resources are assigneditegyr
are given by{ H, }rex ses € CN* M. Further, we assume ;. This implies an approximation of the capacity regidiy
additive white Gaussian noise;, ~ CN(O,O’QINrX) at each an achievable rate regi(ﬁ C C, such that

receiverk € K and a transmit power budgét for each cell. , , , B ,

Every user is served with a certain transmission rate, tepic  * = U1+ x|t r1€Ri, .y € Ry, EE€ T

by the rate vector = [r1,...,rx]" € RX. Quality of service =CO{R1,...,Rn}. (4)
constraints are expressed by> rmin € Rf. A utility U(r)
measures the network performance by mapping the rate ve
to a real number, i.d/ : R — R. The algorithm we propose
is valid for arbitrary concave utilities, we however put ciaé
emphasis on two popular utilities, namely sum-rate,

The challenge in solving the NUM problem is to jointly
%Bfimize resource allocation by selectihignd rate assignment
by selectingr] € Rq,...,ry € Rn.

Remark 1 Assuming equal channel conditions among all
resources is an unrealistic assumption in case the resource
U(r) = Z e, correspond to _carriers in an QFD_M system with tirr_le_-va_rying

prs channels. Subject to the availability of suitable deswips it

. . . . ight be more reasonable to consider ergodic rate regisns, e
and network-wide proportional fairness in the sense gi'e! . 9 € regl
pecially as coordinated resource reallocation requiggsading

Kelly [8], : .

Ulr) = Z log (%) (1) among all cells and might only be allowed on a larger time
pyerd e\Tk): scale than the rate assignment that usually is adopted Iguick
) € to changes of the channel conditions.

Shared resources and interference couple users rates

C C R, universally modeled by the capacity regigh Il. NETWORK UTILITY MAXIMIZATION — JOINT

of the network. The capacity region enfolds all imaginable ~RESOURCEALLOCATION AND RATE ASSIGNMENT

transmission strategies and therefore all interferenceage: In this Section we discuss how resource allocation is jpintl

ment schemes, which allows us to formulate finding effectiv@ptimized with rate assignment. As we propose to solve the
interference management by solving a network utility maxNUM problem, given in Equation (2), by a dual method
mization (NUM) problem: we require thatU(r) is a jointly concave function in all
parameters, which is a reasonable assumption for so-called
elastic traffic [9].

Unfortuna_tely the capacity_region pf_arl_)itrary interferen 5 concave Utilities

networks is unknown and using heuristics is necessaryeadst
of applying heuristics directly on the operation of the natky
the central idea of our framework is to inner approximéte
by an achievable rate regioR C C, constituted by known
transmission strategies, and to solve

maximizeU (r) subject tor > rmin, 7 € C.

As a first step we revise a general method to solve a NUM
problem for a known rate regioR. Thereafter, we present
an efficient reformulation for the case that the achievaate r
region has the structure given by Equation (4).

As we assume a concave utiliy (r) and R is always

maximizeU (r) subject tor > rpin, r € R. (2) convex due to a timesharing argument, the problem is to
. . : . maximize a concave utility over a convex set and we can find
As we will see in the following, this procedure has some ProF . . o
.the solution by a dual approach. We dualize an artificially
found advantages and allows us to draw general conclusions : ST
. . . infroduced constrainD < r < ¢, which is interpreted
on the operation of the network and the design of interfexenc : . : . . K
elementwise, by introducing Lagrangian variabksc R
management schemes.

We suppose the availability of orthogonal resources, f(‘ﬁlrnd the Lagrangian function is given by

example frequency bands or time slots, and assume they Lir,e, A" =U(r) = AT(r —c).



Evaluating the dual functionj(\), which is the supremum of B. Sum-Rate

L(r,c,AT) for fixed AT, can be decomposed into two Sub- |, case no QoS constraints are given, the sum-rate optimiza-
problems, commonly named application layer problem ion s directly expressed by Equation (6), and by Theorem
1, it is clear that the solution is to allocate all resouraes t

the strategy that achieves the highest sum-rate. For \@riou

S o ] reuse partitions, the strategies considered in this wadris, t
which is a convex optimization problem, and physical laygfsyally means to decide for reuse 1 and serving the strongest

maximizeU () — ATr subject tormin < 7 < Tmax,  (5)
™

problem users in the network, which matches the intuition. In case
maximize A" ¢ subject toc € R. QoS constraints are given i, reducing interference might
¢ be crucial for some users and our algorithm can be used to
For the case wherB = co{R,..., Ry}, there exists an ele- find the optimal strategy mix. In this case, the solution @ th
gant reformulation, which was already successfully appiie application layer sub-problem is
other scenarios [10], [11]. When evaluating the dual fuorcti
. . Tmaxk )\k < 1
solving the physical layer problem, Ty = .
Tmin, k Ay >1

maxicmizeATc subject toc € co{R1,...,Rn},  (6) . Proportional Fairness

For the proportional fairness utility, Equation (1), the-ap

can be accomplished as follows: plication layer sub-problem, Equation (5), has a closednhfor

Theorem 1: Problem (6) is equivalent to solution
. 1
maximize (maximize)\Tc subject toc € Rn) . T = {max{ﬁ’ rm'n’k} ’Tma"k} '
ne c
For the case where users are served by a single strategy,
Proof: see [10], [11] determined by some not further regarded assignment syrateg
Consequently, it is sufficient to find the maximizgr€ R,, we are able to derive a surprising result: the NUM problem,
for given X for all strategies: € A/ independently Equation (2), decouples into two separate and independent
. . problems. AssuméC,, are the users assigned to strategy
maxclmlze)\ c, subject toc,, € R, (7) as first step, we insert the parametrization of the user rates
" given in Equation (3), where; , = 0 if k ¢ K,, into the
followed by choosing the best strategy proportional fairness utility (1):
maximize A" ¢ (8) U(r) = Zlog(rk) = Z Z log (tary,n)
neN kek neN kek,

Z Z log (tn) + Z Z log (74,.,)

From Theorem 1, it is clear that solving problem (6)

essentially means solving the weighted sum-rate (WSR) max- neN keky neN kekn
imization problem independently for all strategies andrtgk Now we can see that the NUM problem, given by Equation (2),
the best one for given dual variablas decouples into two sub-problems. Rate assignment is done by
The dual problem is solving
minimize d(\) subject toX > 0, m&xirr:ﬁi/zeZ Z log (r%.,) subjecttor], € R, VneN.
A 1o lN e NkeK,

and can be solved by a primal-dual algorithm, that iterativeAs non-overlapping resources are assigned to the usee-strat
evaluates the dual function and uses the obtained maxisizeies they do not interfere and the rate assignment sub-gmobl
to update the dual variables. Primal-dual algorithms campican be solved per strategy, for example by the primal-dual
the optimal dual variabled*, but the primal variables found algorithm presented in Section II-A. The resource allagati
by evaluating the dual function at* are in general not feasible sub-problem, which we reformulate as

to the primal problem. Nevertheless, feasible primal sohsg - .

can bepconstfucted by a convex combinationF:)f the solutions maX|tm|ze Z [KCn| log (¢n) subject to Z tn =1,

found in each iteration [12]. The optimal resource allamati neN neN
coefficientst for the strategies are automatically retrieved d¥as as a closed form solution which we derive in the following
the coefficients of the convex combination, when recoverifyp the problem is convex every KKT point is a global

the primal solution, see Section II-E for an example. optimum. The Lagrangian function is
LIn order to guarantee a finite optimal value of the applicatityer problem L(t,\) = Z I llog (tn) — A Z thn—11,
we use an arbitrary loose upper boungax on the user rates. neN neN



and the KKT conditions are isnct(é?fi'tz distance gg%?g macro-cell
antenna configuratior] 4x4 MIMO
Z tn —1=0, sectors 3 per site = 57
neN users 300
OL(t, A K
Oty tn Table |

- . PARAMETERSSYSTEM LEVEL SIMULATIONS
From the KKT conditions, we can directly conclude,

K|
A=Y |Kn| =|K| andt, = R

neN

E. Implementation and Coordination Overhead

The resource allocation problem has a simple solution given|n this Section, we treat some aspects related to implemen-
by the cardinality of the users assigned to the strategigstion and the required coordination overhead. Although no
The solution is independent of the instantaneous chanfgé best choice with respect to convergence, subgradiants ¢
realizations and therefore very attractive for commelgialpe used to update the dual variables, which in turn allows
deployable networks. Notable, the resource allocatio® ruy nice interpretation of the suggested algorithm suitabte f
does not depend on the transmission strategy used, whighctical implementation. Assume iteration stepnd given
makes it especially valuable. dual variables\’. The optimizers of the dual function aré*

andch* and a possible subgradient update is given by

D. Weighted Sum-Rate Maximization within the Strategies .

We assume that intra-cell interference is coordinated when AL — I 1 (riv* — civ*)
choosing the transmission strategy of each cell, in our case t

given by the solution of a WSR problem, given by Equay, case a subgradient type algorithm is applied, one pdisgibi
tion (7). Although well possible, we do not consider furthes  or primal recovery is to average over the results obtaimed i
operation of the transmitters within each reuse partittdere o5 iteration

we assume each sector egoistically selects its transmissio

strategy, for the DPC case the transmit covariance matrix fo Topt = 1 (' + e + ...+ ).

each user and an encoding order. In case the interferense plu t

noise covariance matrik, for every uset € K is known, so Consequently, this means that the solution found in each
called interference awareness, we know how to compute tiggration can be applied instantaneously, while convergen
optimal WSR point for each sector [3], [4], [13]. It is clearo the optimum is guaranteed. This enables online implemen-
that the transmit strategies chosen mutually depend on eagtion, and allows to interpret the sequential WSR problems
other, therefore we do not know the inter-cell interfereirce Equation (7), as a sort of multi-user scheduler. The resourc
advance and work with an estimatioR’ based on perfect allocation can then be nicely interpreted as a competition
channel knowledge to the interfering cells and assuming eagmong all strategies, Equation (8), where the fraction of
sector to transmit with full power” and a white transmit resources is adjusted to the frequency of winning the com-

covariance matrix, therefore petition. The determination of the maximum WSR points and
P the update of the dual variables can be calculated locally at
R, =o*Iy, + Z —H, H},, (9) each sector, so there is no exchange of user data, channels,

K or dual variables. The interference estimation can be done a

. . the receivers and are automatically considered by feedbfck
where Siy(k,n) is the s_et of cells that cause mt_erferencgﬁective channels. Only the best performing strategy loas t
fo userk when served in strategy. Note that solving the he determined network-wide every iteration, which causes a

weighted sum-rate problems based on an erroneous eslm*na{t)gry minor coordination overhead and stops us from labeling

corresponds to .SUbSt'tUtmg the rate regigs, .. ’R]Y by ]pur interference management scheme a distributed approach
R1,...,Rn, which assures convergence of the algorithm. Af-

ter the transmission strategies are fixed, the transmisates
have to be adapted to the actual interference received by the
users. It turns out that the error made by the estimationef th For the system level simulations we consider a three sec-
interference, which neither strictly under nor over estesahe torized network with nineteen sites and wrap-around config-
impact of the interference, is tolerable. Advanced al@pong, uration, see Table I, the channels are generated accomling t
that provide some sort of interference coordination withistochastic spatial MIMO channel model with the parameters
each pattern are of great interest. However, an implemintathosen for the urban macro-cell model. Users are uniformly
and globally optimal algorithm, that jointly optimizes thedistributed on the area served and to obtain smooth results
transmission strategy in all the sectors of the networkcivhiwe average over 10 drops. We optimize for network-wide
is currently not available, makes reuse partitioning obsol proportional fairness and assume as available strategiese

SESint(kJL)

Ill. SIMULATION RESULTS



one, reuse three, and Reuse 57The spectral noise density
is -174 dBm/Hz and we gradually increase the transmit power
from 0 dBm to 40 dBm. Compared to reuse 1, Figure 1 shows
gains for combining reuse 1 + 3, which is however still an
interference limited scheme. Additionally including reus?,
which is able to eliminate interference completely, pregd

100

90

0 mm Reuse 1

Resource Allocation in [%]

additional gains and increasing performance with increpsi = Reuse 3
) X o . . . = Reuse 5
transmit power. Finally, it is interesting to investigate tfrac- 70
tions of resource allocated to each strategy, shown in Eigur 0 10 20 30 40
where can notice a shift towards the interference avoiding P in [dBm]

strategies for higher transmit power. Especially inténgsto

see is that indeed resources are allocated to the reuse 57
strategy. These resources are further distributed amoag th
sectors such that multiple users can be served interference
free. Reducing interference comes at the price of havikgrategies, for example soft reuse with limited transmiveo
less sectors active, to find optimal cost-benefit ratio, witdoordinated beamforming, or clustered network MIMO. Our
respect to a given utility, is essential for efficient opinatof contribution can be regarded as a concept to evaluate the per
wireless networks. Under the assumptions made, our atgoritformance of interference management strategies, by thgpwi
determines the optimal level of interference protectiarefach them all into the algorithm and letting them fight for resasc
user: no protection (reuse 1), removing the most dominadur algorithm can be used to find the best mix of interference
interference (reuse 3), strict interference avoidances@eé7), management strategies matched to the utility and scenario,
or combinations thereof. while only causing a marginal coordination overhead.

Figure 2. Simulation Results — Resource Allocation

I
Reuse 1
Reuse 1 + 3
Reuse 1 + 3 + 57

(1]

(2]

£
= 3
: ! 4
) \
L ! ! (5]
0 10 20 30 40
P in [dBm] [6]
Figure 1. Simulation Results — Proportional Fairness tytili (7]

IV. CONCLUSIONS ANDFUTURE WORK (8]

We introduced an algorithm for optimizing multi-cell
MIMO communications based on a mix of various strategie§’]
implemented by solving a network utility maximization, whi 1,
we regard as a step towards systematically developing,runde
standing, and evaluating interference management tewbsiq 1]
We use fractional reuse partitioning as an example to kst
the outcome of this work and are able to demonstrate gains
compared to classical reuse patterns. Indeed, the algorith
presented is more than just an variation of reuse partit@ni;,
and allows to include a huge manifold of other coordinatio[r113]

2Although 57 is not a commonly considered reuse factor it @uited in
order to have at least one strategy that is not interferdmitetl and therefore
allows the utility to grow arbitrarily high with increasingansmit power
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