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Abstract—Inter-cell interference diminishes the performance
of wireless cellular networks, hence interference management
by cooperation of basestations should be employed to combat
interference and increase spectral efficiency. Contrary tofull
cooperation, which renders the network into a super-cell with
distributed antennas, we investigate a form of weak cooperation:
transmission strategies among the basestations are coordinated,
which requires a minor overhead, while the users treat inter-
ference of other cells as noise. Although our results are not
restricted to reuse partitioning, we assume a set of strategies,
each corresponding to a different reuse factor, and assign
orthogonal resources to each strategy. Basestation cooperation
is realized by dynamically adjusting the resource allocation, so-
called fractional reuse partitioning, while the capacity achieving
single-cell strategies are employed in each cell in order to
optimally manage intra-cell interference exploiting all degrees
of freedom offered by multiple antennas at the transmitter and
receiver. Efficient operation of a cellular communicationsnetwork
requires interference management in order to achieve high data
rates including rate assignment matched to the user demands,
which we formulate as network utility maximization problem.
We put special emphasis on the popular utilities sum-rate and
proportional fairness, either with or without additional q uality
of service constraints. Finally, we illustrate the performance gain
of our method by providing system level simulation results for a
three sectorized cellular network with nineteen sites.

I. I NTRODUCTION

The downlink of a cellular network where information is
transmitted with multiple transmit antennas to users equipped
with multiple receive antennas (MIMO) is regarded. Inter-cell
interference (ICI) can be a severely limiting factor, especially
users at the cell edge are affected and might be excluded
from network service. A possible solution to completely
eliminate ICI is the joint encoding of information over multiple
transmitters [1], [2], so-called network MIMO. Joint encoding
over geographically distributed antennas renders the network
into a super-cell, which is related to the MIMO broadcast
scenario [3], [4]. In case full channel state information and
all data is available at a central controller, network MIMO
can efficiently exploit all spatial degrees of freedom to elim-
inate ICI. Although the network’s performance is no longer
limited by interference, there is a huge amount of additional
complexity and coordination overhead compared to single cell
signal processing. Therefore, methods aiming at elimination
or reduction of interference by cooperation of the transmitters,
while every user is served by a single cell, are of great interest.

Finding the optimal coordinated transmission strategy is ahard
and non-convex problem, where an algorithm to compute the
globally optimal solution is only known for the single antenna
receiver case [5], however computational complexity prohibits
real-time implementation or computing it as reference for
larger networks.

A simple method to reduce ICI is to assign non-overlapping
frequency bands to neighbouring cells, known as frequency
planning. Originally designed for systems intended to provide
all users with the same data rate, e.g. phone service, the
reduction in spectral efficiency, depending on the frequency
reuse factor applied, was accepted. In order to achieve the
data rates targeted in the specifications of future networks,
that will provide a huge variety of services, a frequency
reuse of one is desired. However, in a network with universal
reuse, the cell-edge users might be excluded from service
due to high inter-cell interference. Hybrid schemes that are
a combination of universal reuse and higher reuse factors,
so called fractional reuse partitioning, were first introduced
in [6] and are suggested for standards like LTE and WiMAX.
Additionally the topic is frequently discussed in research
literature, for example an elaborate and systematic view on
the OFDMA case is given by Ksairi et al. [7], who introduce
and motivate fractional reuse partitioning in detail and list the
relevant references. In this work we provide a rather abstract
treatment of the topic that is valid for a huge manifold of
transmission strategies including MIMO.

In short, the main challenge in finding efficient interference
management by fractional reuse portioning is cast by the
following two questions:

• How to assign resources to each reuse partition?
• What is the optimal multi-user transmission strategy for

each reuse partitions?

In this work we give a universal answer by jointly optimiz-
ing resource allocation, transmission strategies, user selection
and assignment. Based on a network utility maximization
(NUM) problem we provide a general algorithmic framework
for optimizing multi-cell MIMO communications. The central
idea is to inner approximate the unknown capacity region of
the network by an achievable rate region. This allows us to
draw general conclusions on the operation of the network
independent of the transmission strategies applied, as long as



they constitute an achievable rate region. Our considerations
and the algorithm proposed provide valuable insights for
designing interference management built on a mix of various
strategies. A nice illustration of the algorithm is a competition
among the strategies for the available resources, which canbe
sequentially implemented. We use fractional reuse partitioning
to demonstrate our method, other strategies as soft reuse,
where the transmission power is limited, cooperation in the
spatial domain, or clustered network MIMO can be directly
included.

A. System Model

We regard the downlink of a cellular MIMO network with
a set of cellsS, S = |S|, where each cell is equipped with
Ntx antennas. UsersK,K = |K|, are distributed over the area
covered and each user hasNrx antennas. The channel matrices
are given by{Hks}k∈K,s∈S ∈ CNrx×Ntx . Further, we assume
additive white Gaussian noisenk ∼ CN (0, σ2

INrx) at each
receiverk ∈ K and a transmit power budgetP for each cell.
Every user is served with a certain transmission rate, depicted
by the rate vectorr = [r1, . . . , rK ]T ∈ RK

+ . Quality of service
constraints are expressed byr > rmin ∈ RK

+ . A utility U(r)
measures the network performance by mapping the rate vector
to a real number, i.e.U : RK

+ 7→ R. The algorithm we propose
is valid for arbitrary concave utilities, we however put special
emphasis on two popular utilities, namely sum-rate,

U(r) =
∑

k∈K

rk,

and network-wide proportional fairness in the sense of
Kelly [8],

U(r) =
∑

k∈K

log(rk). (1)

Shared resources and interference couple users ratesr ∈
C ⊂ RK

+ , universally modeled by the capacity regionC
of the network. The capacity region enfolds all imaginable
transmission strategies and therefore all interference manage-
ment schemes, which allows us to formulate finding effective
interference management by solving a network utility maxi-
mization (NUM) problem:

maximizeU(r) subject tor > rmin, r ∈ C.

Unfortunately the capacity region of arbitrary interference
networks is unknown and using heuristics is necessary. Instead
of applying heuristics directly on the operation of the network,
the central idea of our framework is to inner approximateC
by an achievable rate regionR ⊆ C, constituted by known
transmission strategies, and to solve

maximizeU(r) subject tor > rmin, r ∈ R. (2)

As we will see in the following, this procedure has some pro-
found advantages and allows us to draw general conclusions
on the operation of the network and the design of interference
management schemes.

We suppose the availability of orthogonal resources, for
example frequency bands or time slots, and assume they

experience equal channel conditions. In order to obtain an
achievable rate regionR that inner approximatesC, the idea
is to apply multiple strategies, for example reuse partitioning
where each reuse factor corresponds to a strategy. Given a
set of transmission strategiesN , N = |N |, each strategy has
an achievable rate regionRn ⊂ RK

+ . Exclusive resources
are assigned to each strategy, expressed by the fractions
t = [t1, . . . , tN ]T ∈ T of the total resources available,
whereT = {t ≥ 0 : ||t||1 = 1}. In caseP is a peak power
constraint, data rates scale linearly with the assigned resources
and an operation point of the network,

r = t1r
′
1 + . . .+ tNr

′
N = [r′1, . . . , r

′
N ] t, (3)

is determined by the resource allocationt and the rate as-
signmentr′

1 ∈ R1, . . . , r
′
N ∈ RN . The rate regionRn is

achieved in case all available resources are assigned to strategy
n. This implies an approximation of the capacity regionC by
an achievable rate regionR ⊆ C, such that

R = {[r′1, . . . , r
′
N ] t : r

′
1 ∈ R1, . . . , r

′
N ∈ RN , t ∈ T }

= co{R1, . . . ,RN}. (4)

The challenge in solving the NUM problem is to jointly
optimize resource allocation by selectingt and rate assignment
by selectingr′

1 ∈ R1, . . . , r
′
N ∈ RN .

Remark 1 Assuming equal channel conditions among all
resources is an unrealistic assumption in case the resources
correspond to carriers in an OFDM system with time-varying
channels. Subject to the availability of suitable descriptions it
might be more reasonable to consider ergodic rate regions, es-
pecially as coordinated resource reallocation requires signaling
among all cells and might only be allowed on a larger time
scale than the rate assignment that usually is adopted quickly
to changes of the channel conditions.

II. N ETWORK UTILITY MAXIMIZATION – JOINT

RESOURCEALLOCATION AND RATE ASSIGNMENT

In this Section we discuss how resource allocation is jointly
optimized with rate assignment. As we propose to solve the
NUM problem, given in Equation (2), by a dual method
we require thatU(r) is a jointly concave function in all
parameters, which is a reasonable assumption for so-called
elastic traffic [9].

A. Concave Utilities

As a first step we revise a general method to solve a NUM
problem for a known rate regionR. Thereafter, we present
an efficient reformulation for the case that the achievable rate
region has the structure given by Equation (4).

As we assume a concave utilityU(r) and R is always
convex due to a timesharing argument, the problem is to
maximize a concave utility over a convex set and we can find
the solution by a dual approach. We dualize an artificially
introduced constraint0 ≤ r ≤ c, which is interpreted
elementwise, by introducing Lagrangian variablesλ ∈ RK

+

and the Lagrangian function is given by

L(r, c,λT) = U(r)− λ
T(r − c).



Evaluating the dual function,d(λ), which is the supremum of
L(r, c,λT) for fixed λ

T, can be decomposed into two sub-
problems, commonly named application layer problem1,

maximize
r

U(r)− λ
T
r subject tormin ≤ r ≤ rmax, (5)

which is a convex optimization problem, and physical layer
problem

maximize
c

λ
T
c subject toc ∈ R.

For the case whereR = co{R1, . . . ,RN}, there exists an ele-
gant reformulation, which was already successfully applied in
other scenarios [10], [11]. When evaluating the dual function,
solving the physical layer problem,

maximize
c

λ
T
c subject toc ∈ co{R1, . . . ,RN}, (6)

can be accomplished as follows:

Theorem 1: Problem (6) is equivalent to

maximize
n∈N

(

maximize
c

λ
T
c subject toc ∈ Rn

)

.

Proof: see [10], [11]
Consequently, it is sufficient to find the maximizerc

∗
n ∈ Rn

for givenλ for all strategiesn ∈ N independently

maximize
cn

λ
T
cn subject tocn ∈ Rn, (7)

followed by choosing the best strategy

maximize
n∈N

λ
T
c
∗
n. (8)

From Theorem 1, it is clear that solving problem (6)
essentially means solving the weighted sum-rate (WSR) max-
imization problem independently for all strategies and taking
the best one for given dual variablesλ.

The dual problem is

minimize
λ

d(λ) subject toλ ≥ 0,

and can be solved by a primal-dual algorithm, that iteratively
evaluates the dual function and uses the obtained maximizers
to update the dual variables. Primal-dual algorithms compute
the optimal dual variablesλ∗, but the primal variables found
by evaluating the dual function atλ∗ are in general not feasible
to the primal problem. Nevertheless, feasible primal solutions
can be constructed by a convex combination of the solutions
found in each iteration [12]. The optimal resource allocation
coefficientst for the strategies are automatically retrieved as
the coefficients of the convex combination, when recovering
the primal solution, see Section II-E for an example.

1In order to guarantee a finite optimal value of the application layer problem
we use an arbitrary loose upper boundrmax on the user rates.

B. Sum-Rate

In case no QoS constraints are given, the sum-rate optimiza-
tion is directly expressed by Equation (6), and by Theorem
1, it is clear that the solution is to allocate all resources to
the strategy that achieves the highest sum-rate. For various
reuse partitions, the strategies considered in this work, this
usually means to decide for reuse 1 and serving the strongest
users in the network, which matches the intuition. In case
QoS constraints are given byrmin, reducing interference might
be crucial for some users and our algorithm can be used to
find the optimal strategy mix. In this case, the solution to the
application layer sub-problem is

rk =

{

rmax,k λk < 1

rmin,k λk ≥ 1
.

C. Proportional Fairness

For the proportional fairness utility, Equation (1), the ap-
plication layer sub-problem, Equation (5), has a closed form
solution

rk = min

{

max

{

1

λk

, rmin,k

}

, rmax,k

}

.

For the case where users are served by a single strategy,
determined by some not further regarded assignment strategy,
we are able to derive a surprising result: the NUM problem,
Equation (2), decouples into two separate and independent
problems. AssumeKn are the users assigned to strategyn,
as first step, we insert the parametrization of the user rates
given in Equation (3), wherer′k,n = 0 if k /∈ Kn, into the
proportional fairness utility (1):

U(r) =
∑

k∈K

log(rk) =
∑

n∈N

∑

k∈Kn

log
(

tnr
′
k,n

)

=
∑

n∈N

∑

k∈Kn

log (tn) +
∑

n∈N

∑

k∈Kn

log
(

r′k,n
)

Now we can see that the NUM problem, given by Equation (2),
decouples into two sub-problems. Rate assignment is done by
solving

maximize
r′

1
,...,r′

N

∑

n∈N

∑

k∈Kn

log
(

r′k,n
)

subject tor′n ∈ Rn ∀ n ∈ N .

As non-overlapping resources are assigned to the user strate-
gies they do not interfere and the rate assignment sub-problem
can be solved per strategy, for example by the primal-dual
algorithm presented in Section II-A. The resource allocation
sub-problem, which we reformulate as

maximize
t

∑

n∈N

|Kn| log (tn) subject to
∑

n∈N

tn = 1,

has as a closed form solution which we derive in the following.
As the problem is convex every KKT point is a global
optimum. The Lagrangian function is

L(t, λ) =
∑

n∈N

|Kn| log (tn)− λ

(

∑

n∈N

tn − 1

)

,



and the KKT conditions are
∑

n∈N

tn − 1 = 0,

∂L(t, λ)

∂tn
=

|Kn|

tn
− λ = 0, ∀ n ∈ N .

From the KKT conditions, we can directly conclude,

λ =
∑

n∈N

|Kn| = |K| and tn =
|Kn|

|K|
.

The resource allocation problem has a simple solution given
by the cardinality of the users assigned to the strategies.
The solution is independent of the instantaneous channel
realizations and therefore very attractive for commercially
deployable networks. Notable, the resource allocation rule
does not depend on the transmission strategy used, which
makes it especially valuable.

D. Weighted Sum-Rate Maximization within the Strategies

We assume that intra-cell interference is coordinated when
choosing the transmission strategy of each cell, in our case
given by the solution of a WSR problem, given by Equa-
tion (7). Although well possible, we do not consider furtherco-
operation of the transmitters within each reuse partition.Here
we assume each sector egoistically selects its transmission
strategy, for the DPC case the transmit covariance matrix for
each user and an encoding order. In case the interference plus
noise covariance matrixRk for every userk ∈ K is known, so
called interference awareness, we know how to compute the
optimal WSR point for each sector [3], [4], [13]. It is clear
that the transmit strategies chosen mutually depend on each
other, therefore we do not know the inter-cell interferencein
advance and work with an estimationR′ based on perfect
channel knowledge to the interfering cells and assuming each
sector to transmit with full powerP and a white transmit
covariance matrix, therefore

R
′
k = σ2

INrx +
∑

s∈Sint(k,n)

P

Ntx
HksH

H

ks, (9)

where Sint(k, n) is the set of cells that cause interference
to userk when served in strategyn. Note that solving the
weighted sum-rate problems based on an erroneous estimation
corresponds to substituting the rate regionsR1, . . . ,RN by
R̃1, . . . , R̃N , which assures convergence of the algorithm. Af-
ter the transmission strategies are fixed, the transmissionrates
have to be adapted to the actual interference received by the
users. It turns out that the error made by the estimation of the
interference, which neither strictly under nor over estimates the
impact of the interference, is tolerable. Advanced algorithms,
that provide some sort of interference coordination within
each pattern are of great interest. However, an implementable
and globally optimal algorithm, that jointly optimizes the
transmission strategy in all the sectors of the network, which
is currently not available, makes reuse partitioning obsolete.

scenario urban macro-cell
inter site distance 500m
antenna configuration 4x4 MIMO
sectors 3 per site = 57
users 300

Table I
PARAMETERSSYSTEM LEVEL SIMULATIONS

E. Implementation and Coordination Overhead

In this Section, we treat some aspects related to implemen-
tation and the required coordination overhead. Although not
the best choice with respect to convergence, subgradients can
be used to update the dual variables, which in turn allows
a nice interpretation of the suggested algorithm suitable for
practical implementation. Assume iteration stepi and given
dual variablesλi. The optimizers of the dual function areri,∗

andci,∗ and a possible subgradient update is given by

λ
i+1 =

[

λ
i +

1

i

(

r
i,∗ − c

i,∗
)

]+

In case a subgradient type algorithm is applied, one possibility
for primal recovery is to average over the results obtained in
each iteration

ropt =
1

i

(

c
1,∗ + c

2,∗ + . . .+ c
i,∗
)

.

Consequently, this means that the solution found in each
iteration can be applied instantaneously, while convergence
to the optimum is guaranteed. This enables online implemen-
tation, and allows to interpret the sequential WSR problems,
Equation (7), as a sort of multi-user scheduler. The resource
allocation can then be nicely interpreted as a competition
among all strategies, Equation (8), where the fraction of
resources is adjusted to the frequency of winning the com-
petition. The determination of the maximum WSR points and
the update of the dual variables can be calculated locally at
each sector, so there is no exchange of user data, channels,
or dual variables. The interference estimation can be done at
the receivers and are automatically considered by feedbackof
effective channels. Only the best performing strategy has to
be determined network-wide every iteration, which causes a
very minor coordination overhead and stops us from labeling
our interference management scheme a distributed approach.

III. S IMULATION RESULTS

For the system level simulations we consider a three sec-
torized network with nineteen sites and wrap-around config-
uration, see Table I, the channels are generated according to
stochastic spatial MIMO channel model with the parameters
chosen for the urban macro-cell model. Users are uniformly
distributed on the area served and to obtain smooth results
we average over 10 drops. We optimize for network-wide
proportional fairness and assume as available strategies,reuse



one, reuse three, and Reuse 572. The spectral noise density
is -174 dBm/Hz and we gradually increase the transmit power
from 0 dBm to 40 dBm. Compared to reuse 1, Figure 1 shows
gains for combining reuse 1 + 3, which is however still an
interference limited scheme. Additionally including reuse 57,
which is able to eliminate interference completely, provides
additional gains and increasing performance with increasing
transmit power. Finally, it is interesting to investigate the frac-
tions of resource allocated to each strategy, shown in Figure 2,
where can notice a shift towards the interference avoiding
strategies for higher transmit power. Especially interesting to
see is that indeed resources are allocated to the reuse 57
strategy. These resources are further distributed among the
sectors such that multiple users can be served interference
free. Reducing interference comes at the price of having
less sectors active, to find optimal cost-benefit ratio, with
respect to a given utility, is essential for efficient operation of
wireless networks. Under the assumptions made, our algorithm
determines the optimal level of interference protection for each
user: no protection (reuse 1), removing the most dominant
interference (reuse 3), strict interference avoidance (reuse 57),
or combinations thereof.

0 10 20 30 40

P in [dBm]

U
(r
)

Reuse 1
Reuse 1 + 3
Reuse 1 + 3 + 57

Figure 1. Simulation Results – Proportional Fairness Utility

IV. CONCLUSIONS ANDFUTURE WORK

We introduced an algorithm for optimizing multi-cell
MIMO communications based on a mix of various strategies
implemented by solving a network utility maximization, which
we regard as a step towards systematically developing, under-
standing, and evaluating interference management techniques.
We use fractional reuse partitioning as an example to illustrate
the outcome of this work and are able to demonstrate gains
compared to classical reuse patterns. Indeed, the algorithm
presented is more than just an variation of reuse partitioning
and allows to include a huge manifold of other coordination

2Although 57 is not a commonly considered reuse factor it is included in
order to have at least one strategy that is not interference limited and therefore
allows the utility to grow arbitrarily high with increasingtransmit power
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Figure 2. Simulation Results – Resource Allocation

strategies, for example soft reuse with limited transmit power,
coordinated beamforming, or clustered network MIMO. Our
contribution can be regarded as a concept to evaluate the per-
formance of interference management strategies, by throwing
them all into the algorithm and letting them fight for resources.
Our algorithm can be used to find the best mix of interference
management strategies matched to the utility and scenario,
while only causing a marginal coordination overhead.
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