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Notations

Conventions

Scalars, Vectors, and Matrices

Scalars are denoted by upper and lower case letters in italic type. Vectors are de-
noted by lower case letters in boldface and are assumed to be column vectors such that
x = (x1,T9,...,7,)". Malrices are denoted by upper case letters in boldface, where X;;
represents the element of X at row ¢ and column j.

x  scalar value
x  vector
X matrix

Subscripts and Superscripts

x; i-th component of vector x
i-th vector out of a sequence of vectors {x, }
T position x expressed in coordinate frame >4

> 8

x estimated value of z

#0) j-th estimate of x in an iteration
X! inverse of matrix X

X7 transpose of matrix X

Symbols

General

F,F force

G(-) cost function
h(-)  model function
I identity matrix
J Jacobian matrix
T,  position

| -] Euclidean norm
(-,+)  Scalar product

vi



Notations

Intention Estimation

sample index

estimation step

number of data points available at estimation step k
coefficient vector of polynomial in 7

coefficient vector of polynomial in ¢

starting orientation, final orientation expressed as quaternion
starting time, final time

starting position, final position

duration of movement 7' = t; — ¢,

step size

relative time 7 =t — ¢

state vector (position, velocity, acceleration)

Scene Recognition

< FHIQAT I IS @[O0

image-space collinearity error
object-space collinearity error
projection error matrix
number of observed points
number of object points
number of cameras

point in object coordinates
point in world coordinates
point in camera coordinates
rotation matrix

translation vector

image point coordinates
line-of-sight projection matrix

Assist Functions

AF
L, Tf
Ax
Azt
Azl
AII}O
AwT
Ax,

guidance force generated by the assist system

current position, final position

relative position to target

lateral component of relative position to target

longitudinal component of relative position to target

relative position to target on operator side

relative position to target on teleoperator side

relative position to target according to the reference trajectory
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Notations

Acronyms
ANOVA Analysis of Variance
AOP Absolute Orientation Problem
BF Bidirectional Force
BS Bidirectional Scaling
BTL Bradley-Terry-Luce Model /Scaling
cC Communication Channel
CF Constant Force
CS Constant Scaling
DOF Degree of Freedom
GLOH Gradient Location and Orientation Histogram
HMD Head Mounted Display
HMM Hidden Markov Models
HO Human Operator
HSI Human System Interface
IPC Intrinsically Passive Control
JND Just Noticeable Difference
MANOVA Multivariate Analysis of Variance
OCE Object-Space Collinearity Error
PC Position Correction
PF Position Dependent Force
PS Position Dependent Scaling
RE Remote Environment
RHBP Rate-Hardness-Based Prediction
SBP Stiffness-Based Prediction
SIFT Scale-Invariant Feature Transforms
SNR Signal-to-Noise Ratio
SURF Speeded Up Robust Features
SVD Singular Value Decomposition
TF Time Dependent Force
TOP Teleoperator
UF Unidirectional Force
US Unidirectional Scaling
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Abstract

In this thesis, a human-machine cooperation scheme is presented which increases task
performance and feeling of presence in haptic telepresence at the same time. The goal is
to assist the operator in telepresent task execution by means of an intelligent teleoperator.
Thereby, performance and transparency losses shall be reduced, which are typically induced
by unavoidable technical imperfections of the telepresence system.

The approach is based on the insight that current robots can perform simple manipulation
tasks more precisely in an autonomous way than a human. This lays the foundation
for an effective collaboration between human and robot. While the human operator has
the ability to execute tasks in a responsible, flexible, and creative manner, the robot
can tirelessly perform precise manipulations. The presented solution does not require the
human operator to explicitly trade the control between the robot and himself. Instead, a
natural collaboration between human and robot takes place.

Three prerequisites must be fulfilled to allow for effective assistance: Firstly, the manipu-
lation task which the operator intends to perform must be estimated by the teleoperator.
Secondly, the teleoperator must have a precise plan to implement the manipulation task.
And finally, there must be a method to smoothly combine the motions of the operator
with the motions planned by the teleoperator. All these requirements are addressed in the
thesis: The intended manipulation task is estimated based on a human operator model.
This model interacts with a camera-based identification of the target environment which is
used for task planning. Finally, the motions of human operator and teleoperator are fused
by a passivity maintaining controller.



Abstract/Zusammenfassung

Zusammenfassung

Die in dieser Arbeit vorgestellten Verfahren ermoglichen eine Verbesserung der Leistungs-
fahigkeit und Wirklichkeitsnahe von haptischen Teleprasenzsystemen durch den Einsatz
eines Mensch-Maschine-Kooperationsschemas. Das Ziel besteht darin, den Operator durch
lokale Intelligenz des Teleoperators in der Durchfithrung von telepriasenten Arbeiten zu
unterstiitzen. Dadurch sollen die Verluste bzgl. Performanz und Transparenz, die wegen
technischer Unzulanglichkeiten des Teleprasenzsystems unvermeidlich sind, ausgeglichen
werden.

Der Arbeit liegt die Erkenntnis zugrunde, dass heutige Roboter einfache Manipulationsauf-
gaben autonom praziser durchfiihren konnen als ein Mensch. Dadurch ist die Grundlage
fiir eine effektive Kooperation zwischen Mensch und Roboter gegeben, bei der die men-
schlichen Fahigkeiten zur verantwortungsvollen, flexiblen und kreativen Aufgabenplanung
mit der Fahigkeit des Roboters, prazise Manipulationen ermiidungsfrei durchzufiihren,
kombiniert werden. Bei der vorgestellten Losung ist es nicht erforderlich, dass der Men-
sch diese Aufgabenteilung explizit steuert, sondern es findet eine natiirliche Kooperation
zwischen Mensch und Roboter statt.

Zur wirksamen Assistenz miissen drei Voraussetzungen erfiillt werden: 1. Die Manipula-
tionsaufgabe, die der Operator durchzufithren beabsichtigt, muss vom Teleoperator ge-
schatzt werden. 2. Der Teleoperator muss einen prazisen Plan zur Durchfiihrung seiner
Aufgabe haben. 3. Die Bewegungen des Operators miissen mit den vom Teleoperator ge-
planten Bewegungen in Einklang gebracht werden konnen. Diese drei Problemstellungen
werden in der vorliegenden Arbeit eingehend betrachtet. Zur Bestimmung der Manipula-
tionsabsicht wird ein modellbasierter Schatzer verwendet. Dieser steht in Wechselwirkung
zu einer bildbasierten Erkennung der Zielumgebung, die zur Aufgabenplanung verwendet
wird. Schliefllich werden die Bewegungen von einem Passivitit gewéhrleistenden Regler
fusioniert.



1 Introduction

Despite all progresses in autonomous robotics, still a lot of work which is dangerous,
tedious, or has to be performed under awkward working conditions has to be carried out
by humans. As long as autonomous robots are not yet sophisticated enough to replace
human workers in these domains, telepresence systems play an important role to make this
work less dangerous and less tedious. Telepresence rests upon assigning a proxy to the
human, referred to as the teleoperator (TOP), which performs the work on behalf of the
human, referred to as the human operator (HO). In this way, the human is not exposed
directly to the dangers of the working site any more, but the teleoperator is instead. Also,
works requiring high forces over extended periods of time can be facilitated by scaling
forces between human and robot. Furthermore, work can be performed in areas which
are inaccessible to the human such as underwater or space missions. Finally, it is also
cost-efficient if a human does not need to travel to a certain working site, but a present
teleoperator can work on his behalf.

acoustic feedback
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Figure 1.1: A typical multi-modal telepresence system. The human operator (HO) interacts
with the human system interface (HSI), which captures motions and conveys visual, audi-
tory, and haptic feedback. The motions are replicated by the teleoperator (TOP), which
acts in the remote environment (RE) in place of the HO and acquires the multi-modal feed-
back signals. Command and feedback signals are exchanged through the communication
channel (CC), which bridges the barrier separating HO and RE.

barrier

o

HO HSI

A telepresence system as depicted in Fig. 1.1 consists of three major components: the
human system interface, the communication channel, and the teleoperator.

e The human system interface (HSI) is the device via which the human operator (HO)
interacts with the telepresence system and thus indirectly with the remote environ-
ment (RE). It can include a number of different information channels addressing the
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various senses of the human being. Typically, visual feedback from the remote envi-
ronment is presented through a screen or a head mounted display (HMD), acoustic
feedback is replayed by use of headphones, and finally physical interaction is enabled
by using haptic displays which allow interchanging energy between human operator
and remote environment.

e The communication channel (CC) is responsible for transferring the digitized infor-
mation from human operator to teleoperator and back. The information transfer
has a certain time delay, which can be constant or time varying depending on the
communication architecture. Also, in some architectures, partial loss of information
can occur in the communication channel.

e The teleoperator (TOP) acts as the representative of the human in the remote envi-
ronment (RE). It replicates all motions the human operator conveys to the human
system interface and transmits sensed information back to the human. Thereby, the
telepresence loop is closed between HO and RE over the three components HSI, CC,
and TOP.

The ideal telepresence system would convey visual feedback covering the complete field of
view at the resolution of the human eyes, give perfect audio feedback, and exactly repli-
cate forces and motions between human operator and remote environment. All information
would be instantaneously transferred between the two sites. Ultimately, the human op-
erator would not be able to distinguish between direct and telepresent interaction with
the environment. However, none of these criteria can be practically satisfied. Limits are
imposed by physical, technical, and — maybe most importantly — economic constraints.
Therefore, the advantages of a telepresence system come at the cost of a reduced dexter-
ity and a distorted perception of the remote environment. Depending on the degree of
degradation, this can compromise the quality of telepresent work.

In order to overcome the drawbacks of telepresence, the signals from operator to teleopera-
tor and vice versa can be deliberately altered and augmented by a computer. Several such
assistance concepts have been proposed, which are supposed to compensate the quality
reductions imposed by the system. These architectures vary in the type of modality they
address as well as in the level of abstraction on which the assist system intervenes. These
design choices also determine which types of reductions (delays, reduced vision, limited
degrees of freedom (DOF), etc.) the assist system can compensate best. Also the type
of interaction between assist system and human operator differs from very explicit, dialog
based concepts to more implicit concepts. Many systems enter a middle-ground between
telepresence and telerobotics, i.e. the feeling of being present in the remote environment
is often traded for higher task performance.

In Fig. 1.2, the additional elements of an assisted telepresence system as compared to the
previously illustrated unassisted telepresence system (cf. Fig. 1.1) are shown. The changes
to the interchanged command and feedback signals can be introduced both, on operator
and on teleoperator side. If the communication channel between both sides does not impose
information loss or time delay, this is an arbitrary choice. In those cases, however, where
this condition is not met, the assist functions should be implemented at the side, where
the necessary information are more accurate and less delayed. Typically, changes to the
command signals are imposed at teleoperator side, where additional information may be
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available through additional sensors, such as an eye-in-hand camera. Analogously, changes
to the feedback signals, also referred to as augmentation, are more commonly imposed at
operator side. In both cases, semi-autonomous control loops are closed at operator and
teleoperator side, respectively.
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Figure 1.2: Telepresence system with additional components to provide assistance. The com-
plete assist system comprises the augmentation and the assist block. The former is placed
on operator side and alters the feedback signals in order to increase the feeling of presence.
The latter is placed on teleoperator side and alters the command signals, and optionally
the feedback signals, in order to increase the task performance. The assistance block uses
additional sensor data, e.g. images from an eye-in-hand camera.

It is desirable to find an assistance concept in which the degree of immersion into the remote
environment and the performance of telepresent task execution are optimized at the same
time. This requires a thorough understanding of the factors which influence the human’s
feeling of presence. Furthermore, a good coordination between machine intervention and
human planning is required in order to exploit both, the efficiency of human creativity and
the precision of a robot. The right concept determines very much whether the human-robot
interaction is cooperative or destructive.

1.1 State of the Art

The roots of telepresence systems can be traced back to a purely mechanical telepresence
system built by Goertz in the 1940s to handle nuclear material. Although the system
does not include any electric or electronic components, the above listed components can
be identified with some abstractions: The human system interface consists of a mechanical
handle, the communication channel is matched by precise mechanical leverages, and the
teleoperator is a mechanical gripper. The visual channel is simply provided by a thick
quartz window.

Obviously, the distance which can be bridged by mechanical telepresence systems is limited
to a few meters. Consequently, the next generation of telepresence systems uses electric
servo motors to mediate positions and forces between human system interface and tele-
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operator [90]. The fundamental advantages of electrically controlled telepresence systems
triggered a long and intense research leading to fully digital systems with communication
over the internet.

1.1.1 Application Areas

The increased flexibility offered by electrical telepresence systems has also increased the
range of applications. While telepresence etymologically refers to mediating presence to a
distant location, the applicability of the telepresence concept goes far beyond. The barrier
which hinders the human operator from performing a task directly is not restricted to
distance, but also comprises danger, scale, endurance, accessibility, and others. The most
prominent applications associated with these different types of barriers are presented in
the following:

e Bridging the distance to a remote location can be beneficial for several reasons. For
remote locations on earth, it can save time and costs for travel if a person is needed
at some distant location. In space missions, the costs, time, risks, and discomfort of
travelling to the destination are even much higher, which again makes telepresence
an attractive choice.

Space missions constitute the application in which the spatial distance between oper-
ator and teleoperator is most conspicuous. Distances range from approx. 100 km in
orbital missions to over 50 million km for missions on the planet Mars. The biggest
challenge posed by large distances is the associated time delay. Even for relatively
short distances, complex signal relaying and processing leads to large delays. In the
ROTEX experiments, a robot was operated from a ground station with a varying
round-trip delay of 5-7 s [79]. In order to make telepresence possible despite this
delay, shared local autonomy and predictive visual displays were used. In the suc-
ceeding ROKVISS experiment, a direct dedicated link reduced the round-trip delay
to less than 20 ms [79].

Counterintuitively, intercontinental teleoperation on earth typically spans larger dis-
tances than operation in low earth orbit. The most used communication medium for
intercontinental teleoperation is the internet. The transmission over the internet has
a time-varying delay and may lead to partial information loss [42]. In [27], a teleop-
eration experiment between Munich (Germany) and Tokyo (Japan) is presented. At
a distance of approx. 5800 km and a roundtrip delay of approx. 280 ms, a bilateral
telepresence architecture can be successfully applied.

e In many areas where humans are exposed to dangerous situations, telepresence can
produce relief by substituting the human by a robot operating on his behalf. Obvious
applications can be found in the military domain with remotely controlled reconnais-
sance and weapon systems. Furthermore, space missions, deep-sea operations, and
disaster recovery tasks involve a high-risk for the human operators.

In [83], telepresence has been successfully applied to deep-sea scenarios. The tele-
operator can operate in depths of up to 7000 m and communicates over an acoustic
modem. Demining of contaminated areas is an extremely dangerous procedure which
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still causes a lot of injuries and fatalities. A telepresence has been tested as demining
tool in [55]. This system has been developed further to a versatile system for disaster
recovery in [21].

Avoiding dangerous operations is also the driving factor in using telepresence tech-
nology for the maintenance of live power lines [9]. This application has been com-
mercialized already by Kyushu Electric Power Co. Another commercial example is
the telerob Explosive Ordnance Disposal and observation robot (tEODor) by telerob
Gesellschaft fiir Fernhantierungstechnik mbH [2].

Many objects in the environment are either too small or too large and heavy to
be amenable to direct manipulation by a human. Nevertheless, it would be most
convenient if these objects could be handled in the same way as objects which can
be physically handled by a human. Telepresence can provide the necessary scaling
to allow manipulating very small or very large objects in the way humans are used
to when treating medium-sized objects.

Changing the scale of operations can be performed in two directions: In micro-
assembly, the sizes of the manipulated structures are too small to be directly handled
by a human or even to be seen with the unaided eye. Appropriate telepresence system
can scale the dimensions of these structures to a level which is comfortable for the
human operator [107, 108].

In contrast, some disaster recovery operations may require to lift objects which are
far too big and heavy to be handled by a human helper. Again, an appropriate
scaling of positions and forces can make these tasks manageable in a telepresence
setup. Examples are the Japanese T-52 Enryu and the US American Articulated
Remote Manipulator System (ARMS). As both projects are classified, no detailed
information is publicly available.

A particular type of barrier is present in medical applications. The accessibility to
the operation area, e.g. the heart or other internal organs, is obstructed by the
surrounding tissue and the skin. At this point, telepresence can play an important
role. By introducing small robot manipulators through a trocar into the human body;,
the operation can be performed with much less strain to the patient than in classic
open-sky procedures.

In [74], a prototypical telesurgery system is presented. The teleoperator side consists
of a special scalpel and a stereo laparoscope, which are inserted into the body through
two separate trocars. The operator side is composed of a haptic input device and
a stereoscopic display. The miniature force/torque-sensor in the tip of the scalpel
allows force-feedback during the procedure. According to an experimental study, this
significantly reduces the risk of injuries.

Telesurgery is one of the commercially most promising applications of telepresence.
Although high demands on safety, high development costs, and liability issues re-
tard the commercialization of telesurgery, there is one very successful system on the
market. The da Vinci System by Intuitive Surgical Inc. can be clinically used for a
number of cardiac procedures. It comprises two robotic arms and a camera on tele-
operator side and two haptic interfaces and a stereoscopic screen on operator side.
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While the haptic interface is able to deliver force-feedback, currently no appropriate
sensorized surgical tools exist on the market [1].

Of course, many applications are faced with more than one barrier. E.g. space missions
take place at a distant location and pose a significant danger. Telesurgery must provide
access to the operation area and sometimes needs to scale motions and forces to facilitate
the procedure.

1.1.2 Integrated Telepresence

Research on fundamental aspects of telepresence is complemented by research on integrated
telepresence systems using state-of-the-art components. In this research, the focus lies on
multi-modal systems with no limitations regarding degrees of freedom and workspace. A
prototypical example is presented in [21] and partly shown in Fig. 1.3.

a)

head tracking system ——

color cameras

head-mounted display — 3-DOF neck
right 7 DOF arm
left 7 DOF arm
F/T-sensors

left ViSHaRD10
right ViSHaRD10 —

CyberGlove & parallel grippers

CyberGrasp control hardware &

power supply

F/T-sensors &
magnetic couplings

3-DOF pedal mobile platform

Figure 1.3: An integrated multi-modal telepresence system. The complete system features
bimanual, mobile manipulation in six degrees of freedom.

The system consists of a mobile teleoperator and a mobile haptic interface to enable in-
tuitive manipulations in arbitrarily large environments. The teleoperator comprises two
anthropomorphically designed arms with grippers, a stereo camera head with microphones,
and an omnidirectional mobile base. The human-system interface on operator side equiva-
lently contains two haptic displays, a head-mounted display with headphones, and another
omnidirectional mobile base. Additionally, a large-scale tracking system tracks the poses
of body and head of the operator.

By appropriately connecting operator and teleoperator side, the complete system enables
the operator to freely walk around in the remote environment and to manipulate objects.
During the process, he always receives a realistic haptic, visual and auditory feedback.
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1.1.3 Assist Systems

Assist systems for telepresence applications have been developed since a long time, and they
come in a large variety of different flavors. Typically, they borrow insights from a broad
range of different areas, such as telepresence concepts, control theory, stability analysis,
image processing, as well as human physiology and psychophysics. The importance of the
individual areas heavily depends on the thematic priority of the assist system.

In the following subsections, a classification of assist systems will be developed and rel-
evant previous work will be assigned into this classification. The classification scheme
describes both, the control paradigm of the underlying telepresence system and the assis-
tance paradigm, resting upon this telepresence system. While the control paradigm mainly
describes the degree of autonomy and level of abstraction of the system, the assistance
paradigm describes how the assistance helps to improve the system performance.

Control Paradigms

It is the nature of a telepresence system that a human operator controls the remotely
located robot, the teleoperator. Consequently, commands are sent from the operator to
the teleoperator and status feedback is returned in the opposite direction. There are
numerous ways in which these commands can be given, mainly differing in the level of
abstraction and the degree of robot intelligence required.

There is a continuum of control paradigms ranging from pure bilateral control on one
end to fully autonomous operation on the other end [90]. In bilateral control, signals are
directly interchanged between human and environment through human-system-interface
and teleoperator. If a computer is inserted in this information flow, an aided control scheme
results, which is typically termed shared control. If the teleoperator closes some local
control-loops by autonomously reacting to events in the environment, a supervisory control
scheme is in place, where the human operator gives more general directives which are
implemented by the teleoperator. In an even higher degree of autonomy, the teleoperator
acts in fully autonomous control, once it has received its task assignment, and the human
operator can only monitor the execution.

The different control paradigms can be ordered according to many other properties, which
are, however, closely associated with the above described continuum. The abstraction level
of the commands increases when moving from bilateral control to autonomous operation:
While force and velocity signals are usually exchanged in bilateral control, some task primi-
tives in supervisory control, a complete task is assigned in autonomous mode. Accordingly,
the update rate in the human-robot control loop decreases with higher autonomy of the
robot. Bilateral control is operated at around 1 kHz; in autonomous mode, the execution
of a single task may take hours or even much longer. Also, the acceptable time delay is
closely related, being roughly proportional to the inverse of the update rate. Lastly, the
control paradigms differ in the ratio between the number of robots and the number of
humans involved. As the name suggests, this ratio is typically one for bilateral control.
The more autonomy the robots have, the less attention of a human operator or supervisor
is required, which allows assigning a higher number of robots to a single person.
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Bilateral Shared Supervisory Autonomous
®® Control *°°°°°° Control ®°°°°°° Control °°°°°°° Control °
Degree of Autonomy low

Abstraction Level low

<<1 Hz

Update Rate

Max. Time Delay 1 ms

Robot:Human Ratio one

Table 1.1: Properties of different control paradigms. Telepresence architectures span a broad
spectrum of control paradigms ranging from bilateral control to autonomous control. De-
pending on the control paradigm the fundamental properties of the telepresence system
change.

As illustrated qualitatively in Table 1.1, these properties are typically strongly correlated.
Therefore, telepresence systems can be classified according to the above mentioned contin-
uum from pure bilateral control to full autonomous operation.

Assistance Paradigms

Classical, unassisted telepresence systems strive for an exact replication of command and
feedback signals on remote side and operator side, respectively. In contrast, assist systems
deliberately change these signals in a purposeful manner in order to improve the perfor-
mance of the telepresence system. As assisted telepresence systems often supply additional
information to the operator, they are also referred to as Augmented Telepresence Systems.

Assistance paradigms can be classified in different ways. Firstly, the type of interaction
between operator and assist system is a major factor. Secondly, the modalities which are
involved in the assist systems form an important property. Furthermore, assist systems can
be differentiated according to the addressed abstraction level, which is strongly dependent
on the control paradigm in use (see above). Finally, they can be grouped by the application
or the deficiency they are designed to cure.

The way in which the human operator and the assist system interact can vary from very
explicit communication to purely implicit interaction. In the former case, the human op-
erator must instruct the assist system by specific commands via specific input devices to
undertake a certain task, and the assist system will give explicit feedback on the status. In
the latter case, the assist system must infer from the current task and context, whether as-
sistance is desired and which type of assistance should be employed. While explicit control
of the assist system offers richer possibilities and is less prone to errors, implicit control
requires less or no training effort and does not charge the operator with the additional load
of controlling the assist system.

The three principal modalities, which are transported by typical telepresence systems,
namely vision, acoustics, and haptics, are also exploited by assist systems. Typical exam-
ples are visual markers, paths, and warnings, as well as acoustic indicators or warnings, and
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finally haptic guides such as virtual fiztures. For any assistance concept, two modalities are
involved: the augmented modality and the augmenting modality, cf. Table 1.2. When both
modalities are the same, the assistance concept is called intramodal, otherwise it is called
crossmodal. Scaling is a simple intramodal assistance concept, which can be applied to all
modalities. E.g., if the image is magnified in a micro assembly task, the visual modality is
enhanced by visual means. In contrast, visual indicators of excess forces, e.g. by coloring
the tool tip, are crossmodal assistance, because an originally haptic property is conveyed
to the human through the visual channel. As the technical means to (re-)produce visual
and acoustic cues are more advanced than those for haptic cues, crossmodal assist systems
usually support the haptic modality by either the visual or the acoustic modality. The
most widespread type of intramodal haptic assistance are virtual guides or virtual forbid-
den regions, where the human operator is assisted in following predefined paths or in not
entering predefined regions.

augmenting modality

5

THS visual acoustic // haptic
e @ gﬁ p

scaling (magnification)

7w visual Augmented Reality [11]
Enhancing Live Video Streams

> with Virtual Reality [78]

'§ scaling (amplification)

_E @ acoustic Spatial Audio Reproduction

2 [52]

c

@

5

2 sensory substitution sensory substitution scaling (force/velocity)
// haptic ~ Sensory Substitution Metaphors [7] virtual guides/fixtures

and Information Sensory Substitution Virtual Fixtures [4]

Redundancy [81] and Information

Redundancy [81]

Table 1.2: Characteristics and examples of crossmodal and intramodal assistance paradigms.
Assistance paradigms are printed in italics; examples are printed in regular font.

As mentioned above, the assist systems are typically strongly dependent on the control
paradigm. In a bilateral telepresence system with interchange of position and force data,
an assist system will normally change these signals to improve system behavior. In a more
abstract system, on the other hand, an assist system will rather propose the most likely
task primitives, check the validity of operator commands, etc.

The most prominent application domain of assistance concepts for telepresence is
telesurgery. Telesurgery is characterized by highly trained personnel, intensive prepa-
rations of medical procedures, and extremely low fault tolerance, which makes it a good
candidate for explicit assist systems. Other application examples include grasping and
positioning tasks, which occur in many areas. These tasks are hard to execute precisely
without assistance, because they require delicate feedback.
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Previous Work

Based on the previously presented classification schemes, some major work in the field of
assisted telepresence, which is closely related to the work in this thesis, will be classified
and discussed in the following.

As mentioned above, the prevailing implementations of intramodal haptic assist functions
are based on virtual fixtures. These virtual fixtures constrain the motions of the operator
in a purposeful manner. While some constraints can be implemented mechanically, they
are usually implemented virtually in the control of the haptic interface [3, 5, 7, 98]. Due
to this implementation, which offers a much greater flexibility than the mechanical imple-
mentation, virtual fixtures are also termed active constraints. Two major types of virtual
fixtures have gained a lot of attention in the research: guidance virtual fixtures and forbid-
den regions virtual fiztures. Guidance virtual fixtures are designed to force the operator
to stay on a predefined path [6] such that he can only control the velocity and the force
in tangential direction. In contrast, forbidden regions virtual fixtures have the purpose to
protect certain vulnerable areas by forcing the operator to keep away from these zones [4].
Both types of virtual fixtures are prototypical examples of the shared control paradigm,
because they keep the operator in charge of the operation while constraining his actions
in order to increase accuracy and safety.

The concept of virtual fixtures has been extended from purely kinematic constraints to
reshaping the dynamics of the remote tool. This technique, called virtual tool dynamics, is
very useful for increasing or reducing the inertia and damping of the actual tool [22, 48].
In collaborative telemanipulation tasks, virtual tool dynamics can also be used to define
the dynamics of the interaction between the collaborating partners.

For any virtual fixture to work correctly, the guidance paths or forbidden regions must be
priorly defined. This has two possible implications: If the virtual fixture is manually de-
fined, the path can be travelled autonomously, and the human operator is only responsible
for intervening when unexpected events occur. In contrast, if manual task execution is de-
sired, virtual fixtures must be planned and updated automatically based on the intentions
of the operator.

Manual planning of virtual fixtures is most commonly done in high-risk applications such as
surgical procedures and space missions. These plans are afterwards executed autonomously,
which results in a structure following the supervisory control paradigm, because the robot
also performs higher level control tasks while the human only monitors the execution. An
example of such a supervisory control scheme is presented in [37].

However, in many applications, it is not possible to define a fixed set of virtual fixtures
before the actual teleoperation procedure. For these cases, dynamic virtual fixtures are
employed, which change in accordance with the current intention of the operator. The
focus of this research lies on the intention recognition. A common tool for distinguishing
intentions from a discrete set of alternatives are hidden markov models (HMM), which
can be trained to serve as classifiers [62, 63, 106]. If additional parameters describing the
current intention must be estimated, specific models of the particular task must be taken
into account [23].
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Assist functions for telepresence systems have been studied for a variety of application
domains. The majority of research on assisted telepresence is directed at medical appli-
cations, namely at facilitating surgical procedures. This research spans the full range of
control paradigms [24], ranging from bilateral control to autonomous control. In this re-
search field, many assist systems can be implemented either as telepresence systems or
as cooperative manipulators [4]. For cooperative manipulators, the human operator and
the robot physically interact with the same tool. In contrast, in a telepresence system,
the operator physically interacts with the haptic interface, and the intervention of the
assist system is added to the command and force signals of teleoperator and haptic inter-
face, which leads to a similar behavior, although operator and teleoperator are spatially
separated.

Other applications of assisted telepresence systems are nuclear waste handling [75] and
space maintenance missions [79]. There are also many general assistance concepts, which
are not designed for a specific application. Just as the fundamental telepresence con-
trol concepts, they can be adapted to a wide range of application domains and are then
evaluated for these domains, e.g. to operations in space and to surgical procedures [80].

The assistance concepts in literature also differ significantly in the scope of their implemen-
tation. While many concepts have only been implemented to perform very specific studies,
there also exist some fully integrated and versatile systems. A system for grasp assistance,
which is based on the shared control paradigm, is presented in [36]. A supervisory control
scheme for general manipulation tasks can be found in [54].

The above mentioned assist functions are all employed in the assistance block in Fig. 1.2.
Thus, they aim to make the motions more precise. Other concepts have been introduced
which are employed in the augmentation block and which are designed to make the feedback
more realistic. The most effective methods are based on using local impedance models or
on matching high-frequency force components.

In the presence of delays in the communication channel, the forces which occur in reaction
to movements in the remote environment are reflected back to the operator with a delay.
Besides the stability problems, this has negative effects on the feeling of presence. These
negative effects can be reduced if a linearized model of the remote environment is estimated
and used locally on operator side to predict the reaction forces [38].

More recently, it has been shown that humans can detect high-frequency force components
and use them to judge mechanical properties of the material in contact [60]. Although the
human is not able to react to these signals at an equally high rate, these components are,
nevertheless, important to provide a realistic sensation. This insight has been exploited
for telepresence systems by recording high-frequency force components on the remote side
and replaying them on the operator side [56, 57].

1.2 Problem Statement

Concluding from the above reviewed state of the art, telepresence systems can be employed
in a wide range of applications, which pose their individual challenges. Accordingly, a large
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variety of telepresence architectures exists, which can be tuned to different application sce-
narios regarding force scaling, velocity scaling, time delays, fidelity, stability, etc. However,
most of these architectures are designed from a purely control theoretic point of view, which
prevents them from taking knowledge about the characteristics of the human operator, the
remote environment, and the current task into account. This knowledge can be exploited
to cope with missing, delayed, or disturbed data.

In order to benefit from the above mentioned additional knowledge about the human
operator, the remote environment, and the current task, assist functions have been added
to telepresence systems. A large part of the telepresence assist systems introduce some level
of explicit control. Thus, the operator is charged with the additional load of controlling
the assistant itself in addition to the control of the actual manipulation task. Even those
variants, which adapt to the current task without operator intervention, show a very
obtrusive behavior, which corrupts the feeling of presence. In summary, existing assist
systems require dedicated training efforts, which compromises the promise of telepresence
to easily transport the abilities of a human to a remote site.

In this thesis, an integrated telepresence system shall be developed which does not reduce
the operator’s feeling of being present at the remote site and which increases the perfor-
mance of task execution. Typically, increasing the task performance requires to change the
command signals of the teleoperator and entrust the teleoperator itself with some partly
autonomous execution of the task. Normally this discrepancy between operator signals
and teleoperator actions can lead to a reduction of the perceived realism. However, this
rationale is only valid under the assumption of an ideal telepresence system. In a real
telepresence system with disturbed and delayed signals, the teleoperator actions may be
erroneous, i.e. different from the user inputs, in the first place. In these cases, altering the
actions back to the originally intended actions will actually increase the perceived realism.
The challenge is, therefore, to recognize the intent of the human operator and understand
how he would implement the intent. In a second step, deviations from this intent must be
detected and it must be decided between unwanted deviations and voluntary deviations
which indicate a changed intention.

1.3 Proposed Method

In this thesis, an assisted telepresence system is developed which increases task performance
and feeling of presence at the same time by using local intelligence of the teleoperator. In
contrast to existing systems, the assist system operates completely hidden from the human
operator, i.e. its presence is only indirectly perceivable through the increased degree of
task performance and feeling of presence.

For this endeavor, three major problems must be solved (cf. Fig. 1.4):

e In order to provide assistance, the intelligent telepresence system must have some
knowledge of the remote scene. From this knowledge, possible intentions of the
human operator can be derived. In addition, the scene recognition can provide an
exact reference path to the intentional goal, once it has been selected. The scene
recognition is based on the head cameras of the teleoperators and additional sensors,
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image data | Scene Recognition reference trajectory
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Figure 1.4: Interconnection of the fundamental blocks, which constitute the proposed assisted
telepresence system

e.g. an eye-in-hand camera. Therefore, the teleoperator disposes of data, which is
more accurate than the data provided to the operator, because it is not disturbed or
delayed by the communication channel.

e As the system shall efficiently assist the operator without explicitly prompting for the
type of assistance to provide, the teleoperator must silently infer the intention of the
human operator from his actions and motions. This intention estimation process is
based on possible goals, which have been priorly extracted by the scene recognition
process. The intention must be correctly estimated as early as possible to allow
effective assistance. This requires an online intention estimation algorithm with fast
convergence.

e When the intention of the operator is provided by the intention estimation unit and a
reference plan how to graciously implement this intention is available from the scene
recognition unit, the assist functions must correct or augment position and force
data in such a way that the task performance increases. At the same time, the assist
functions must be unobtrusive and preserve a high feeling of presence. Furthermore,
the stability of the telepresence system must be guaranteed.

1.4 Contribution and Qutline

The proposed method gives rise to a number of scientific questions related to the fields of
human-machine interaction, computer vision, telepresence, and psychophysics. These will
be considered in detail in the following chapters. Each chapter starts with an introductory
overview of pre-existing knowledge in the literature. Based on this foundation, the theory
of the new method is described, followed by a performance evaluation. Finally, the results
and the generalizable applications of the method are discussed in each chapter.

13
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Intention Estimation

The particular purpose of the intention estimation within the assist system requires the
results of the estimation to be available in real-time and as early as possible. This rules
out the majority of existing approaches for classification of motion patterns. The new
method, which is proposed in Chapter 2, is based on a dynamic model of human point-
to-point movements. By fitting the model parameters to the observed motion data, the
future course of the motion can be extrapolated. The results can be made more robust by
introducing additional hypotheses about the target points. Two model fitting methods are
compared w.r.t. their performance, real-time capability, and computational requirements.
Numerical considerations regarding the estimation process are given in Appendix A.

Scene Recogpnition

As the pose of the target in the remote environment must be exactly known in order
to enable effective assistance, it must be visually measured when the target object is
approached. The concept presented in Chapter 3 uses a multi-camera setup to localize
artificial markers on the target object and subsequently derive the pose of the object. The
pose estimation algorithm, which calculates the 3D pose of an object based on its 2D
projections on camera images, is specifically designed to handle non-overlapping point sets
from multiple cameras. It is thus superior to existing techniques based on stereo-matching
and is also shown to outperform the single-camera version of the Orthogonal Iteration
Algorithm.

Assistance and Augmentation

Assistance and augmentation is achieved by altering the command and feedback signals
in an intelligent manner. Existing assist concepts typically concentrate on reducing task
execution time and failure rate by using some sort of virtual fixtures. In Chapter 4, a
novel method is described, which exploits the data from the intention estimation and
scene recognition. The core idea consists in amplifying those operator commands which
are adequate for reaching the target and attenuating those which are not. This technique
keeps the human in charge of the operation and increases the task performance at the same
time.

As the intervention of the assist functions changes the closed-loop behavior of the telepre-
sent control loop, the system can be possibly destabilized by the assist functions. Thus,
an appropriate telepresence architecture must be selected, which allows integrating assist
functions while still guaranteeing stability. In Appendix B, a review of existing architec-
tures is given, and an architecture based on the port-Hamiltonian approach is proposed.

Experimental Evaluation

The overall performance of human-machine collaborative systems depends on both, the
human part and the machine part. Thus, an appropriate evaluation must include human
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factors, which can be ensured by a psychophysically well founded experimental design.
The relevant psychological background is described in Chapter 5. Subsequently, two ex-
perimental studies on the influence of the assist functions on performance and feeling of
presence are presented. It is shown that some assist functions can significantly increase
performance and feeling of presence at the same time. The study also provides some guide-
lines on the proper parametrization of the assist functions. The technical specifications of
the employed hardware devices are listed in Appendix C.

Assisted telepresence systems are an emerging field with many open directions. This work
holds several extension points which are worth to be considered in future research. These
are presented in Chapter 6.
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The overall aim of this thesis stipulates that the human operator neither explicitly instructs
nor explicitly perceives the assist system. Assist functions are not activated in response
to direct instructions, but in response to inferred intentions. Therefore, the intention
recognition process becomes an indispensable requirement of the assist system, and its
reliability largely affects the reliability of the whole assist system.

In behavioral science, intention is defined as “a plan of action the organism chooses and
commits itself to in pursuit of a goal” [20]. Thus, it does not only specify the goal, which the
human strives to achieve, but it also defines the plan of action, which is chosen to achieve
this goal. The pursuit of an intention, the intentional action, is based on three fundamental
components: the action goal, the means to purposefully change the environment, and the
means to compare the environment with the action goal. These components have their
counterparts in a typical controller with reference generator, actuator, and controller [97].

Nature has equipped all higher animals with the ability to infer the intentions of others
based on motion cues. This ability significantly contributes to the chances of an individ-
ual to survive and to reproduce [12]. Among all species, humans have the most highly
developed mechanisms to recognize the intentions of other humans, to harmonize their
intentions, and to create common action plans. This ability, referred to as shared inten-
tionality, is crucial for the social behavior of humans. For intention recognition, humans
mainly rely on visually perceived motions of the observed subject. From motion cues alone,
they can deduce properties such as sex, emotional state, action plans, etc. [17].

The most common tool for computer based intention recognition are Hidden Markov Mod-
els (HMM) [63, 96, 106]. HMM are typically used to assign observed motion patterns to
previously learned intention classes. While HMM show an impressive learning and classifi-
cation performance, they normally provide a classification result only after the intentional
goal has already been accomplished. This is not satisfactory for assistance applications,
which require the intention to be known while the action plan is still being executed [96].
Furthermore, HMM are better suited for classifying intentions into specific categories than
for extracting parameters such as execution speed, trajectories, etc. from the observed
actions.

In this thesis, the focus lies on peg-in-hole tasks, which are part of most manipulation
tasks and are thus frequently used in telepresence. The application example, which is used
throughout this thesis, is inspired by [77] and consists in inserting a hexagon screwdriver
into a hexagon socket. As there is only one class of possible intentions considered, the
intention classification can be omitted. The intention recognition process is, therefore,
restricted to determining the goal, i.e. the target of the peg-in-hole task, and the action
plan, i.e. the trajectory to the target. This intention estimation problem is illustrated in
Fig. 2.1. When the screwdriver has travelled from point 1 to point 2, the most likely target
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(A, B, or C) must be selected, and the future trajectory must be predicted based on the
trajectory travelled up to this point. In a more general setting, a classifier must be used
in the first step to determine the class of intention, which is currently being pursued, and
in the second step, an estimator, which is specifically designed for this class of intention,
can be applied to extract parameters.

Figure 2.1: Intention estimation for a peg-in-hole task. When the operator has moved the
screwdriver from point 1 to point 2, it can be deduced, whether his most likely target is
socket A, B, or C. This is done by comparing the travelled trajectory to the ideal trajectories
from the starting point to each of the target points.

While humans can effortlessly extract the motion cues which are required for intention
estimation from visual information, computer vision which is able to extract these motion
cues is still very complex and requires a lot of computational power. As the motions of the
human operator must be acquired in a haptic telepresence system anyway, it is far easier
to feed the intention estimation process directly with haptic data instead of visual data.

As described above, peg-in-hole tasks are an important part of most manipulation tasks.
The peg-in-hole task itself can be decomposed into three phases: approach, alignment, and
insertion. In the approach phase, the tool is moved toward the workpiece such that velocity
and acceleration are approximately zero when the target area is reached. In the alignment
phase, the tool is fine positioned and oriented in preparation for the actual insertion.
Finally, in the insertion phase the tool is slid into the workpiece. In a typical execution,
these phases overlap such that the tool alignment starts during the final approach phase
and the insertion phase begins while the alignment is not fully completed. Therefore, it is
reasonable to distinguish between freespace and contact phase, which are clearly separated.

The process of intention estimation for peg-in-hole tasks can be mathematically formulated
as model fitting problem. Given a mathematical model of human arm movements, the
sampled positions of a partial trajectory, and a number of possible target points of the peg-
in-hole task, find the model parameters such that the calculated trajectory best matches the
sampled trajectory and ends in one of the possible target points. These model parameters
directly yield the extrapolated trajectory to the target point as well as the remaining
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time to the target. Obviously, the quality of the estimates will be the better the more
information is available. Therefore, the intention estimation process must be repeatedly
applied to the sampled trajectory data, and thus it must be real-time capable.

The remainder of this chapter is structured as follows: in Sec. 2.1 a model of human
motion planning for reaching movements is presented, which forms the basis of the intention
estimation process. Sec. 2.2 is devoted to a trajectory generator based on that human
motion model. Two different methods for online intention estimation are presented in
Sec. 2.3. A discussion of the presented methods is given in Sec. 2.4, respectively.

2.1 Human Motion Planning

In general, human motion planning is concerned with the underlying principles of trajectory
and torque generation in human movements. The most active areas are motion planning
for humanoid walking, i.e. movement of legs, and for manipulation, i.e. movement of arms.
Here, only arm movements are of interest, and the following considerations are restricted
to a very specific class of movements, namely point-to-point movements.

There is a large variety of models for human arm movements [44, 51]. However, almost all
of them rely on optimizing some criterion, and the differences between them are produced
by different optimality criteria. An important class of models optimizes the mean square
jerk of a trajectory, where jerk denotes the third-order time derivative of the position. This
criterion can be either applied to coordinates in Cartesian space [31] or to coordinates in
joint space [92]. Both versions have in common that they have an analytical solution and
that the calculated trajectories are invariant to external dynamics. More complex models
take the dynamics of the human arm into account, e.g. the class of minimum torque
change model [72, 100]. These models are characterized by high prediction accuracy even
with external interaction forces. However, they need human arm models which are non-
linear and human dependent. Many other optimization criteria have been proposed such
as minimum-power, minimum-acceleration, etc.

2.1.1 Modeling Point-to-Point Movements

The selected model shall be used in two ways: On the one hand, it must be able to generate
a humanlike trajectory from a given start pose and end pose. On the other hand, it must
be possible to determine the most likely end-pose given a part of the trajectory. Below,
the mathematical foundations and the properties of the model are described.

Translational Movements

As mentioned above, there are infinitely many trajectories to implement a motion from
one point x4 to another point x; in space. On the one hand, the spatial course connect-
ing these two points can have an arbitrary shape. On the other hand, the time course
of the motion on this curve can have different characteristics. The chosen optimization
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2 Intention Estimation

criterion determines the unique trajectory which best matches this criterion. From the
many optimization criteria which are reviewed above, the minimum hand-jerk criterion
[31] is selected, which constitutes a good compromise between accuracy and mathematical
simplicity.

For a given trajectory x(t), t; <t < t; lasting from starting time ¢, to final time ¢y, the
minimum-jerk criterion can be expressed by integrating the square of the magnitude of
jerk over the whole duration of the operation:

tf

G = %/ (%)T (%‘f) dt (2.1)

ts

The criterion in (2.1) can be solved for given start time ¢, final time ¢;, and boundary
conditions for &, = x(t;) and &y = x(t;). The solution to this optimization problem is
presented in [31] by use of dynamic optimization theory. It yields a fifth-order polynomial.
For a point-to-point movement, where velocities and accelerations at start and final point
are zero, the polynomial takes the following form:

7_5 7.4 7.3

where 7 =t —t; and T =ty — t,.

Some characteristics of the minimum-jerk-based optimization are depicted in Fig. 2.2. It
produces straight lines for point-to-point movements, which is a good approximation to
human arm movements, although the latter show a slightly curved path. The velocity
profile is bell-shaped with a maximum in the middle between start point and end point.
The acceleration profile is symmetric. Position, velocity, and acceleration do not show any
discontinuities.

It is shown in [82] that the match between human motions and minimum jerk trajectories
is superior to those created by optimization criteria which use higher time derivatives of
the position, e.g. minimum snap, minimum crackle, etc. The minimum-jerk criterion is
validated only for planar motions and motions which do not exhibit high velocities or
accelerations. As telepresent manipulations are typically performed at low speeds, this
does not pose a significant constraint.

Rotational Movements

Mathematically, the above described model for translational movements can be transferred
to rotational movements by using quaternion interpolation. Although this approach is not
validated to correctly reproduce the human behavior, it is used in this thesis for trajectory
generation because it produces smooth rotational trajectories. In the practical evaluation,
no evidence is found that these motion patterns are disturbing to the human operator.

According to Euler’s theorem on finite rotation, an arbitrary orientation in space can be
transferred to any other orientation in space by a single rotation along a certain axis over
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Figure 2.2: Properties of minimum-jerk trajectories. The spatial and the temporal course of
a point-to-point movement with minimum-jerk characteristics are shown. a) The spatial
course of the trajectory in the x-y plane is a line connecting starting point and endpoint.
b) The temporal course of the x and y coordinates smoothly blends from starting point to
endpoint with a point symmetric profile. c) The bell-shaped profile of velocity v directed
from starting point to endpoint. d) The point symmetric profile of acceleration a directed
from start point to endpoint.

a certain angle. When moving from a start orientation g to a target orientation gy, it is
thus desired that the rotation axis remains constant. The complexity of this interpolation
depends on the selected orientation representation. Quaternions provide a simple way of
interpolating between two orientations by means of the slerp function [91]:

5 A 3
q = slerp (qs, qy; 6775 + 15774 + 10173 + 1) . (2.3)
The slerp functions is defined as:
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where 0 is the angle spanned by the two quaternions g, and g, on a four dimensional unit
sphere:

(90, 91)

cosf = .
gl - gl

(2.5)
2.2 Trajectory Generation
The assist system must continuously plan a reference trajectory to the intended target of

the human motion. Deviations of the actual trajectory, which is commanded by the human
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operator, from the reference trajectory are smoothly corrected to guarantee a successful
execution of the intended action. As stated above, it is important that the reference trajec-
tory complies with the characteristics of human motions. Otherwise, the human operator
would perceive the corrections as unintuitive and disturbing. Therefore, a trajectory gen-
erator based on the previously presented principles of human motion planning is designed.
In the following, the trajectory generator is described for a single scalar component. This is
possible, because the Cartesian components are decoupled in the minimum-jerk criterion.

At any sampled time t;, the trajectory generator is provided with the current position
xy, velocity @, and acceleration #;, as well as the desired target point z; and target time
ts, where t; > t;. Based on this information, the trajectory generator must provide a
trajectory which fulfills the boundary conditions and has humanlike motion characteris-
tics. Although the target point z; and target time ¢; are continuously recalculated, the
trajectory generator must ensure that position, velocity, and acceleration do not exhibit
any discontinuities.

The full state of the trajectory generator is described by the state vector &:

T

e=| a4 |. (2.6)

7

With this definitions, the continuity condition, and the desired target conditions can be
easily expressed as:

§(te) =&, &(ty) =& (2.7)

These six equations fully define the fifth-order polynomial which is used to model the
humanlike trajectory.

For some computations, it is convenient to define the relative time to target 7 such that
T =t—ts. Obviously, 7 is always negative while travelling the trajectory (¢ < t¢), and zero,
when the target point is reached (¢ = t;). Furthermore, it is important to note that the
relative time 7 is not forcibly monotonic because adjustments of the final time ¢; during
the execution of the trajectory can make the time 7 go backward, i.e. 7, > 73, for ky < ks.

As the humanlike trajectories are expressed as fifth-order polynomial, the vector 7 is
introduced, which contains the powers of 7. The vector 7 and its derivatives 7 and 7 take
the following form:

1 0 0
T 1 0
T2 . 2T . 2
T=| s T=] 40 T = 6 (2.8)
T 473 1272
70 57t 2073

With the definition of 7 and the six dimensional coefficient vector p, the trajectory can
be easily described as:
z(r) =1"p. (2.9)
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2.2 Trajectory Generation

The corresponding trajectory of the full state is:

&(7)

Tp
7"Tp
F'p

(2.10)

The parameter vector p to generate a trajectory which fulfills (2.7) is obtained by solving:

O O = OO

Tk

SO = O O

3
i
37

6Tk

0
0
0

G

47',3
1277
0

0

0

5
Tk

574
207
0

0

0

p:

(2.11)

For constant &, and constant ¢y, the coefficient vector p also remains constant. In a
typical application scenario, however, the target state £ is continuously updated in order
to take the increasingly accurate estimate of the target position from the scene recognition
system into account. Likewise, the target time ¢y is continuously updated to reflect the
increasingly accurate estimate of the target time from the intention estimation process.

Therefore, the coefficient vector must also be continuously updated in order to incorporate
the current £; and t;. This is done by recalculating (2.11) at every time step k and

a) 1.5
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L :1;?3_ d)
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Figure 2.3: Trajectory generation with four target points. The trajectory generator is con-
secutively commanded to plan trajectories to the points ©; = (—=1.5 m,0 m)", x, =
(—=0.5m,—1.5m)", 3 = (1.5 m,0.5 m)”, and 4, = (—1 m, 1.5 m)T. Each segment is
supposed to take 1 s. While travelling from point x5 to point x3, the execution is inter-
rupted after 0.7 s. a) z-y plot of the trajectory. b) z- and y-coordinates as a function of
time. c) Velocity profiles. d) Acceleration profiles.
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2 Intention Estimation

propagating the internal state &, via:

T§+1P
Epi1 = T%ﬂp : (2.12)
Ti+1P

The output of the trajectory generator is illustrated in Fig. 2.3 for a two-dimensional
movement. The trajectory generator is commanded to travel from the initial position
x; = (—1.5m,0 m)” to the position @y = (—0.5m,—1.5 m)” at {; = 1s. Next, it is
commanded to travel to position &3 = (1.5 m,0.5 m)” at t; = 2 s. However, at t = 1.7 s
the target position is altered to 4 = (—1 m, 1.5 m)” at ¢t; = 2.7 s. As shown in Fig. 2.3 b),
the produced position, velocity, and acceleration trajectories are continuous.

The trajectory generator can be used for equally sampled time steps as well as not equally
sampled time steps. This can relieve the real-time conditions of the target system.

2.3 Online Intention Estimation

In Sec. 2.1, the general form of the mathematical model for human point-to-point move-
ments is stated to be a fifth-order polynomial. With given coefficients, the trajectory, i.e.
the spatial as well as the temporal course of the movement, is exactly determined. The
intention estimation process gives rise to the inverse problem: Given a part of a human
point-to-point trajectory, find the coefficients of the model, which best match the observed
trajectory. These coefficients yield the intended target of the human motion.

Recall that the estimated intentions are to be used to activate and control the appropriate
assist function. Consequently, the estimate should be available as early as possible in order
to allow early assistance. In any case, it must be available before the intended action is
completed. This translates to some requirements on the estimation algorithms such as fast
convergence, real-time capability, which implies an upper bound computation time, and
possibly an incremental update law.

Pilot studies suggest that the translational part of the peg-in-hole approach movement is
far better suited for intention estimation than the rotational part. Fig. 2.1 also illustrates
that different goals may require the same alignment procedure, which can thus not be used
to differentiate between these goals. Therefore, the intention estimation process only relies
on the translational components. In order to simplify the mathematical notation, only
scalar positions z will be considered in the following. However, the method can be directly
applied to vectorial positions .

Mathematically, the intention estimation process can be described as curve fitting problem.
The physical trajectory travelled by the hand of the operator, which is assumed to be
identical to the unaltered physical trajectory travelled by the tool of the teleoperator, is
described as continuous function of the time:

z = f(t) (2.13)
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2.3 Online Intention Estimation

The physical trajectory is sampled by the telepresence system at instants t;. In the fol-
lowing, the system is assumed to be uniformly sampled, although this is not a strict
requirement. Therefore, the observed trajectory takes the form:

The general model function, which is used to approximate the data, is a fifth-order poly-
nomial with coefficient vector! q:

Zi(q) = h(ti, q) (2.15)

The input to the intention estimation algorithm is the observed part of a point-to-point
trajectory. It is given as a sequence of n time stamps ¢; and corresponding positions x;,
t=1...n, where t, <t; and t,, < ty. From this data, the intention estimation algorithm
is supposed to find the parameters g of the model function h(¢, g), which best approximate
the observed data. The best approximate is defined in a least squares sense by the cost
function G(q):

I~ . 1
G(q) = 3 Z I2i(q) — =:])* = 3 Z 1B (ti, q) — ]|” (2.16)
i=1 i=1

2.3.1 Comparison of Different Estimation Methods

Due to the high variability of human arm movements and the limited accuracy of the
employed model, an estimation solely based on minimizing the cost function (2.16) yields
inaccurate results. Prior knowledge, which is introduced in the form of additional con-
straints in the optimization procedure, can significantly improve the accuracy. In the
following, different ways of incorporating prior knowledge are compared.

The effects of constraints in the optimization procedure are illustrated in Fig. 2.4, which
shows the longitudinal component of a point-to-point movement. In each subfigure, the
recorded exemplary course of a human point-to-point movement and the extrapolated
trajectories for three different estimation methods are plotted. The Figs. 2.4a) through
2.4d) differ in the percentage of data points which are used to estimate the parameters of
the trajectory model. In Fig. 2.4a), the estimate is produced after 0.25 s, in Fig. 2.4b)
after 0.5 s, in Fig. 2.4¢) after 1.0 s, and in Fig. 2.4d) after 2.0 s, where the total duration
of the movement from start point to end point is 2.3 s. All trajectories are normalized
to start at position x = 0. The time axis is the relative time 7 = t — ¢ such that the
movement ends at 7 = 7 = 0.

The following three estimation methods are considered:

e Estimation without additional constraints: The trajectories are obtained by linear
regression based on (2.16). As shown by the narrow dashed lines in Fig. 2.4, the
extrapolated trajectories yield a bad fit and do not cross the target point, even when

Note that the coefficient vector q parameterizes a polynomial in the absolute time ¢, whereas the
coefficient vector p, defined in Sec. 2.2, parameterizes a polynomial in the relative time 7
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Figure 2.4: Comparison of intention estimation methods. The figure illustrates the perfor-
mance of the estimation method w.r.t. their ability to extrapolate the trajectory based on
different amounts of observed data, which increases from Fig. a) to Fig. d) as indicated
by the shaded area. In Fig. a), the first 0.25 s of the trajectory data is given, in Fig. b)
0.5, in Fig. ¢) 1.0 s, and in Fig. d) 2.0 s of the trajectory is already observed. The total
duration of the point-to-point trajectory is 2.3 s.

a large portion of the trajectory data is available for the estimation. At the final point
of the movement, velocity and acceleration are expected to be zero, i.e. @(ty) =0
and Z(t;) = 0. As the estimated trajectories do not exhibit points where velocity
and acceleration are zero at the same time, a unique target position and target time
cannot be derived from the trajectory at all.
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2.3 Online Intention Estimation

e By adding appropriate constraints, the trajectory can be forced to zero velocity and
zero acceleration at some future time ty > ¢,, i.e. @(ty) =0, &(t;) = 0. The dotted
lines in Fig. 2.4 show that this enhances the prediction accuracy. The estimates of
target position and target time converge to the correct values when enough data
is available. However, estimates at reasonable accuracy are only available shortly
before the end of the trajectory is reached. Furthermore, the estimation process uses
a combined line-search and Levenberg-Marquardt method, which does not meet the
real-time requirements.

e If not only target velocity #(t;) = 0 and target acceleration #(t;) = 0 are known,
but also the target position z(tf) = x; is known, the only unknown variable is
the target time t;. Fig. 2.4, sparse dashed lines, shows that this method provides
reasonably exact predictions of ¢; even when only a small portion of the trajectory
data is known and becomes very accurate when the trajectory is close to the target
point. As the target position, velocity, and acceleration are introduced as constraints,
the extrapolated trajectory always crosses that target point with zero velocity and
acceleration.

As the target position z; is part of the estimation, it cannot be known beforehand.
However, hypotheses about possible target points can be set up. In order to plan
a reference trajectory to the target, the assist system must be able to identify and
localize possible target points in the environment anyway. These target points can
be directly used as hypotheses in the estimation process. Therefore, the hypothesis
based estimation approach does not need to be able to estimate the correct target
point from the observed trajectory, but it must only be able to reliably differentiate
between several hypotheses.

The hypothesis based trajectories in Fig. 2.4 are also produced with the combined
line-search and Levenberg-Marquardt method, which is not real-time capable. How-
ever, the optimization process is much simpler than in the previous case, because only
one scalar parameter (the target time ¢;) must be estimated instead of four param-
eters (the target time ¢ty and the three-valued vector x ). Therefore, gradient-based
optimization techniques can be used to estimate ¢y in real-time.

In the following subsections, two estimation methods are presented, both of which rely on
hypotheses of the target point ;. At each estimation step k, the following data is available
to the estimation procedure:

k : current estimation step

Ny : number of data points available at estimation step k

t;,x; : sample times and sampled positions, where i = 1...ny, x; = f(t;)
Ty . hypothesized final position of the trajectory

f}k) . k-th estimate of the target time t;

The result of the estimation step is the updated estimate of the target time ¢ Jng).

At each sample step, the number of observed data points increases. The estimation steps
k do not need to be synchronized with the data sample steps. When more than one
estimation step is performed per added data point, k grows faster than the number of
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collected data points ny. Likewise, when less than one estimation step per added data
point is performed, k grows slower than ny.

Both presented methods cannot be proven to converge. However, empirical analyses show
that convergence is reached for all practical cases. The lack of a proof does not render these
methods inapplicable. If no trajectory fit can be found, the performance only degrades
to the performance of the unassisted telepresence system, but it does not compromise the
stability or safety of the system.

2.3.2 Trajectory Estimation with Known Start Point

In order to simplify the estimation process, it is assumed that starting point z, and end-
point x; are known, as well as the start time t,, where z(t;) = z5. The only unknown
parameter is the target time ¢;. Recalling (2.2), the model takes the following form:

5 A 3
h(t,tf) :l'f+(l’f—$5) (67754_15@—’_10%) s (217)
where 7 =1 —t; and T' = t; — 1.

Obviously, the model fulfills the requirements at starting point and endpoint h(ts, t £) =
and h(ts,ty) = xy. At both points, it yields zero velocity and zero acceleration h(ts) =
h(t;) = 0 and h(t,) = h(t;) = 0. The model generates estimates of the point coordinates
Z; based on the final time ¢:

Ti(ty) = h(ti, ty). (2.18)

The respective cost function, which determines the optimal value ¢y, is given as (cf. (2.16)):
1<

Glty) = §Z|Iiz’(tf) — x|, (2.19)
i=1

such that the estimated final time ¢ 7 can be expressed as:

tp = arg min G(t). (2.20)
f

Minimizing (2.19) constitutes a one-dimensional non-linear least-squares problem. This can
be solved by the Gauss-Newton method [16], which is the most commonly used method
for minimizing a cost function GG which is the sum of squared functions. In each iteration
step, the Gauss-Newton algorithm descends toward the minimum in the opposite direction
of the gradient VG.

For the cost function (2.19), the iteration takes the following form:

ok o ok o ok
B (g400) (60

(2.21)
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While the trajectory is travelled, the number of observed data points continuously in-
creases. As the estimated parameter ¢y varies slowly with additional data points, one
iteration step per added data point is sufficient, i.e. k = ny.

The computational costs of performing one iteration step according to (2.21) increase
linearly with the number of data points. In order to keep the computational costs constant,
an incremental gradient method can be employed [16], which performs one iteration step
per added data point with the modified iteration rule:

o (k+1 - (k O . ok o (7 (K
t} T = t} - Qy, (a—tfxz@} ))) (%(t} )) - x1> (2.22)

The factor a; must be a strictly positive number and determines the step size of the
iteration step. The choice of a4 is crucial for the convergence of the incremental gradient
method. Empirically, the following rule provides a good compromise between convergence
performance and stability:

(9 A\
ay, = (—f o ) , A=0.1s (2.23)
Tp— Ty

The performance of the hypothesis based intention estimation algorithms can be assessed
by two main criteria. The first criterion determines how well the algorithm can differentiate
between different hypotheses. The second criterion determines how fast the algorithm
converges to the correct final time. In Fig. 2.5, exemplary results which illustrate the
performance of the standard Gauss-Newton method and the incremental gradient method
are presented. For both methods, the estimated relative time 7 is plotted as a function of
the true relative time 7. Furthermore, the estimated trajectory and the residuals between
true and estimated trajectory are shown as functions of time. The input trajectory is
tested against three hypotheses: the correct one (d = 0.00m), a hypothesis with a target
deviation of d = —0.01 m, and a hypothesis with a target deviation of d = 0.10 m.

For the correct hypothesis, the standard Gauss-Newton method shows very accurate es-
timates of the target time already 1.5s before the target is reached. The target times of
the wrong hypotheses are underestimated or overestimated depending on the sign of the
deviation. The correct estimate of the target time yields a good match between the input
and the estimated trajectory and small residuals. After 0.8s before the target is reached,
no confusion of the hypotheses occurs.

The incremental gradient method shows a similar performance. The accuracy of the time
estimate is slightly lower, reaching good values not until 0.5s before the target is reached.
As the incremental gradient method does not iterate over the full trajectory data in each
update step, the estimated trajectory follows the input trajectory more closely. The resid-
uals also allow a clear selection of the correct hypothesis.

2.3.3 Trajectory Estimation with Unknown Start Point

In many natural motion sequences, it is difficult to exactly extract the start of a point-to-
point movement. In some cases, such a start point might even not exist when the point-to-
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Figure 2.5: Properties of trajectory estimation with known start point. On the left hand side,
in Figs. a), ), and e), results of the Gauss-Newton method are shown. On the right hand
side, in Figs. b), d), and f), results of the incremental gradient method are shown. The
top row, i.e. Figs. a) and b), illustrates the course of the estimated relative target time 7
as a function of the real relative target time 7. In the middle row, i.e. Figs. c) and d), the
observed trajectory x; is compared to the estimated trajectories z;. In the bottom row,
i.e. Figs. e) and f), the residuals of (2.19) are plotted as a function of time.

30



2.3 Online Intention Estimation

point movement emerges from another movement, e.g. avoiding an obstacle. Therefore, an
intention estimation algorithm which does not depend on such a start point is desirable.

Recalling definition (2.8), the mathematical model can be expressed as
h(t,ts,p) =T'p, (2.24)
where ¢ is the independent variable, and ¢y and p are model parameters.

The boundary conditions are given by

Wit ty,p) =as h(ty,tp,p) =iy hitty,p) =iy, (2.25)
where final velocity @ and final acceleration @ are typically zero.

For given parameters ¢y and p the position estimates 2; can be expressed analogously to
(2.18):

When the final time ¢ is given, the optimal coefficient vector p can be determined from
the trajectory data r; and the end-state £, by linear regression. Therefore, the coefficient
vector p can be expressed as a function of ty: p = p(ty). As p depends non-linearly on
ty, ty is estimated by a Gauss-Newton optimization method, which minimizes the cost
function of the following form:

Glty) = 5 O aattr, pts) — il 2:27)

Starting from an initial estimate ¢ }k), the estimation process involves the following opera-

tions

1. The coefficient vector p*) is calculated at the current estimate of the final time ¢ ]Ek).

As (2.27) is linear in p, the solution can be found analytically by linear regression.
The three components py, p1, p2 can be directly obtained by substituting (2.25) into
(2.24), because the coefficient vector p describes a polynomial in the relative time 7
and 75 = 0 by definition.

2. The nj-dimensional vector of residual function g(t¢y) is constructed, where the com-
ponent functions are ¢;(t;) = Z;(ty, p(ty)) — x; for i =1...ny.

3. The Jacobian is calculated as J = % (f}k)).

4. The next estimate £ }kﬂ) is obtained by the update equation:
~(k+1) e _ - (k
() =10 (JT g I g () (2.28)

The above described calculations are computationally expensive and prone to numerical
instabilities. An incremental method for reducing the computations required for solving
the linear regression problem is presented in Appendix A. In this appendix, also some
comments on how to avoid the numerical problems are given.

31



2 Intention Estimation

0.0
-1.0

o -2.0

-3.0

-

=

o
T

i

200}
£ 150}
~ 100}

50

—— input trajectory - estimation, d = 0.10m
--------- estimation, d = —0.01 m --- estimation, d = 0.00m

Figure 2.6: Properties of trajectory estimation with unknown start point. The figures show
estimation results of the Gauss-Newton optimization. Fig. a) illustrates how the estimates
of the relative time 7; develop over time. In Fig. b) the observed trajectory z; is compared
to the estimated trajectories ;. The residuals of the estimation process are depicted in
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2.4 Discussion

Fig. 2.6 shows the performance of the intention estimation with unknown start point in a
similar way to Fig. 2.5. The estimated relative time 7 is plotted over the true relative time
7, and the estimated trajectory as well as residuals are shown as functions of time. Again,
the input trajectory is tested against the correct hypothesis and two false hypotheses.

For the correct hypothesis, good estimates of target time and future trajectory are available
approx. 0.8s before the target is reached. A robust selection of the correct goal is reached
even 1.0s before reaching the target. For a deviation of d = 0.10 m, the estimator produces
oscillatory results. However, the oscillations do not reduce the robustness of the intention
estimation.

2.4 Discussion

The design of an assisted telepresence system requires a thorough understanding of human
motion planning and human haptic perception in order to achieve a true collaboration
between human and robot. On the one hand, this understanding can be used to infer the
intentions of the human operator from his actions. On the other hand, it enables the robot
to mimic the human behavior and, thus, to expose a more natural collaboration.

While a large body of literature exists which models human behavior for certain tasks, little
effort has been taken to exploit this knowledge for real-time intention estimation. In this
chapter, a novel integrated approach for online estimation and generation of humanlike
motion trajectories was developed. Its high estimation accuracy allows estimating the
target and reshaping the trajectory toward the target in real time.

The approach was applied to and validated for point-to-point movements, which are mod-
eled by linear differential equations. The model assumes that point-to-point movements in
free space are planned in the Cartesian space by optimizing a performance criterion. It was
experimentally confirmed that humans conduct movements such that the mean squared
jerk over time is minimized. This insight yields the mathematical description of humanlike
motion trajectories. In contrast to commonly used Hidden Markov Models, the dynamic
model does not require any training.

The trajectory generator and estimator presented in this chapter are designed to closely
interact with each other: The trajectory generation scheme can accommodate changes
of the desired motion target as well as motion duration while executing the trajectory.
The changes are integrated without sacrificing the continuity of position, velocity, and
acceleration signals. The complementary trajectory estimation scheme determines the
expected motion target and motion duration from parts of a trajectory. The estimator
works online and continuously updates the estimates when provided with new data from
the progressing trajectory. Thus both parts, trajectory generator and trajectory estimator,
can be easily combined to extrapolate trajectory data in a humanlike fashion.

Although only the class of point-to-point movements was considered in this thesis, the
concept of estimating and reshaping human actions by a complementary estimator and
generator is very general. Along with new knowledge provided by neuroscience, the class
of actions which can be estimated will be broadened. The presented intention estimation
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concept can even be applied to multi-user scenarios by using models of human-human
collaboration.
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3 Scene Recognition

In order to fulfill its purpose, the assist system needs some knowledge about the remote
environment. As the assist concept does not include a preplanning phase, the remote
environment must be analyzed online by the assist system. For the considered screwdriving
task, the required knowledge consists in the locations of possible targets. These must
be known for two reasons: On the one hand, they serve as hypotheses to the intention
estimation process described in Chapter 2, on the other hand the pose of the selected
target is used to plan a reference trajectory.

The problem of estimating the target poses is twofold. In the first step, possible targets
must be identified in the images of one or more cameras, and the image coordinates of
characteristic points of the target must be measured. In the second step, these 2D image
coordinates must be translated to 3D coordinates, which describe the relative pose between
target and teleoperator.

The hardware which serves as basis for the scene recognition is described in Sec. 3.1. A
review of feature extraction algorithms and a toolkit for the localization of artificial features
are presented in Sec. 3.2. Sec. 3.3 is devoted to the actual pose estimation process, which
translates 2D coordinates to 3D coordinates. An evaluation of the complete pose estimation
system can be found in Sec. 3.4. The chapter concludes with a discussion of the results.

3.1 Hardware Setup

The teleoperator which is considered throughout this thesis is anthropomorphically de-
signed. It has about human height and is equipped with two human scale robotic arms.
Furthermore, it is equipped with a stereoscopic camera-head, which can be arbitrarily
rotated in three degrees of freedom. In order to enable assistance, the anthropomorphic
setup is supplemented with two orthogonally mounted eye-in-hand cameras, which provide
a close-up view of the manipulation area, see Fig. 3.1.

For maximum resolution, the camera head can be equipped with two cameras which pro-
vide grayscale images at a resolution of 1024 x 768 pixels at a frame rate of 30 Hz. Having
a diagonal viewing angle of 58°, this leads to a pixel size of approx. 0.61 mm at a typical
working distance of 0.6 m. As the human operator can be expected to keep the manipula-
tion target in the viewing area of both cameras, coarse pose estimates of possible targets
can be extracted from these images.

The eye-in-hand cameras are mounted in such a way that they always capture the area in
front of the tool. They have a resolution of 640 x 480 pixels at a frame rate of 30 Hz. The
diagonal viewing angle of 66° yields a pixel size of approx. 0.11 mm at the point where the
optical axes of the cameras and the tool axis intersect. This resolution is high enough to
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Figure 3.1: Hardware setup of camera system. In Fig. a), the camera head comprising a
stereo camera setup mounted on a 3 DOF neck is shown. In Fig. b), the eye-in-hand
cameras mounted at the end-effector of the robot arm are shown. They are tilted by 45°
such that their optical axes point at the tip of the tool. For all cameras, the z-axis is
pointing in direction of the optical axis, the y-axis is pointing to the left, and the z-axis is
pointing up.

enable exact positioning of the tool relative to the workpiece, e.g. the screwdriver relative
to the screwhead.

The setup has the advantage that coarse measurements for the early stage of intention
estimation can be performed on basis of the head cameras. The eye-in-hand cameras are
used in the close range of the target. As the pixel size decreases with decreasing distance,
the measurement increases while the target is being approached. Thus, the system reaches
its maximum accuracy especially in the critical phases.

3.2 Feature Extraction

In order to detect a target in the remote environment and to determine its pose relative
to the camera, it must first be recognized and localized in the camera image. From the
position, orientation, size, and shape of the projected target in the camera image, the
absolute pose of the target in the remote environment can be subsequently calculated.

The process of extracting relevant data w.r.t. to possible targets from the camera image
is called feature extraction. More formally, feature extraction describes the dimensionality
reduction from a high dimensional input space to a feature space of much lower dimension.
A data point in the feature space is called feature vector. A well-defined feature vector
is supposed to carry all relevant data from the input space while omitting redundant
or unnecessary information. Obviously, the selection of an appropriate feature space is
application dependent.
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3.2 Feature Extraction

3.2.1 Comparison of Features

Features used in object tracking and pose estimation applications are typically local invari-
ant features. These denote characteristic points in the image, which should be invariant
to changes in illumination, perspective, etc. Typically, local features coincide with image
points which exhibit significant changes in intensity, color, or texture compared to their
neighborhood. Good features show a high degree of repeatability, accuracy, and efficiency
[69]. In other words, in two images of the same object, the same features should be de-
tected at the same object locations with little computational effort. For pose estimation,
it is furthermore important that the features are distinct, i.e. that different features in the
same image can be reliably discriminated.

A very common type of features are extracted by corner detectors. As the name suggests,
they detect points at the intersection of two edges. The detected corners in the 2D camera
image do not forcibly stem from corners of the corresponding 3D object, because they can
also occur at occlusion boundaries, shadow lines etc. The most prominent examples of
corner detectors include the Harris Detector [41], variants such as the Harris-Laplace and
Harris-Affine Detector, as well as the SUSAN Detector. A complementary feature detection
approach is given by the blob detectors [64]. These detect points or regions in the image
which differ in intensity from their neighborhood. The most widely used blob detectors
are the Hessian Detector and its advancements, the Hessian-Laplace and Hessian-Affine
Detectors.

A more specific class of features are Scale-Invariant Feature Transforms (or SIFT) [66].
Similar to blobs, SIFT features are based on local extrema in the image space, so called
keypoints. However, these extrema are required to be invariant to scaling. Furthermore, all
keypoints with low contrast and keypoints along edges are discarded, because their position
is unstable. Finally, a keypoint descriptor, the feature vector, is constructed based on the
image gradient around the keypoint. SIFT features are one of the most powerful feature
classes currently known.

More recently, some advances of SIFT features have been presented with Speeded Up Robust
Features (SURF) [13] and Gradient Location and Orientation Histogram (GLOH) [70].
They show similar performance as SIFT features and are computationally more efficient.

3.2.2 Artificial Features

The process of feature extraction can be made simpler, more robust, and computationally
less expensive by placing special markers on the objects of interest. These markers are
designed to produce a distinctive pattern in the image, which makes it easier to detect and
localize them.

Different marker types have been proposed, where round and square shapes dominate.
Most markers can encode a unique identification code, which allows differentiating between
different markers on the same object and makes pose estimation possible. Such markers
are called Coded Fiducials and are very popular in augmented reality applications. Square
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shaped fiducials provide the advantage that the four corner points are sufficient for pose

estimation such that a single detected fiducial is sufficient.

ARToolKit

In the presented thesis, the ARToolKit, developed by Mark Billinghurst und Hirokazu
Kato at the Human Interface Technology Lab of the University of Washington, is used.

The ARToolKit is based on square fiducials for feature detection.

The ARToolKit uses classic camera calibration techniques. The intrinsic parameters of
a camera are described by a perspective projection matrix K, which relates 3D camera

coordinates to 2D image coordinates:

Z; sfe 0 x. O Te
hl vi | =Kx.= 0 sfy, v O Ye
1 0 0 1 0 Ze

(3.1)

The observed image coordinates (z;,y;) are distorted by lens effects. They are transformed

to ideal screen coordinates (u,v) by the following equations:

(2 —20)* + (i —v0)> p=(1— fd®
p(x; — x0) + xo
= (¥ — Yo) + Yo

d2

u =

The image processing flow, performed by ARToolKit, is illustrated in Fig. 3.2.
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Figure 3.2: Functional Diagram of ARToolKit
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3.2 Feature Extraction

1. The grayscale image is transformed to a black-and-white image by using a dynamic
binarization threshold.

2. The black frames on white background are searched for and their contours are ex-
tracted

3. From the contour image, the edges and corner of the square frame are determined

4. The center area of the marker is rectified according to the detected edges and com-
pared to reference patterns from a marker database

5. Finally, the 3D pose of the identified marker can be computed

While the ARToolKit can compute the 3D pose of a single marker, it cannot fuse marker
points from several markers nor make use of multiple cameras. Therefore, only the 2D im-
age coordinates produced by ARToolKit are used in this thesis as inputs to the Orthogonal
Iteration Algorithm.

Performance evaluation

The performance of the whole pose estimation system is largely determined by the accuracy
with which the marker points can be localized in the camera image. This localization
accuracy is experimentally assessed, and the results are illustrated in Fig. 3.3.
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Figure 3.3: Localization accuracy of ARToolKit. The diagrams show the standard deviation
of the pixel coordinates obtained from 2 x 15 snapshots per location, where one series is
recorded with illuminated marker and the other series is recorded with dimmed marker. In
Fig. a) and Fig. b) differ in the distance between camera and marker, which is larger for
Fig. b). Note the different scaling of the axes.
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The camera is oriented such that its viewing direction is perpendicular to the flat marker,
and the image axes are aligned with the axes of the marker. In this orientation the
camera is positioned at 25 locations in a 5 x 5 grid. At each location, 5 consecutive
measurements of the marker position are performed. The measurement series is repeated
three times yielding a total of 15 measurements per location. In Fig. 3.3, the mean and the
standard deviation of these 15 measurements are plotted. The whole procedure is repeated
four times, where two distances between camera and marker as well as two illumination
conditions are covered. The results show that systematic errors are cancelled out by the
camera calibration and that the imposed illumination changes have no significant effect on
the localization accuracy. As expected, the pixel accuracy is independent of the distance
between camera and marker, which translates to a metric lateral accuracy which is inversely
proportional to the distance.

3.3 Pose Estimation

The classic pose estimation problem consists in finding the relative pose between a camera
and an object of known geometry based on the camera images of the object. In mathemat-
ical terms: Given n 3D points p, in an object fixed coordinate system and n corresponding
2D image points v;, find the rotation matrix R and the translation vector t which relate
object fixed coordinates to camera fixed coordinates.

3.3.1 State of the Art

As this problem plays an important role in computer vision and robotics, a large body of
related research exists.

Analytical solutions to the pose estimation problem exist only for a small number of points.
For three points, the solution can be efficiently calculated, but in general four possible
solutions exist [25, 40]. By adding a forth point, the ambiguity can be resolved for non-
degenerate cases [26, 30, 35, 45]. If the image points can be determined with little noise,
the analytical methods provide accurate pose estimates. However, for noisy measurements
or ill-posed configurations, a higher number of points is needed to obtain accurate results.

For more than four points, the problem becomes a non-linear least squares optimization
problem. The solutions mostly rely on the Gauss-Newton [65] or Levenberg-Marquardt
[50] method. Therefore, they are typically slow and cannot be proven to converge. More
advanced solutions take the orthogonality properties of the rotation matrix into account
[40].

A very powerful pose estimation technique is introduced with the orthogonal iteration
algorithm [67]. The algorithm is proven to be globally convergent and is empirically tested
to efficiently converge to the optimal solution. As the algorithm is designed to deal with a
high number of feature point, it is robust to image noise.

With dropping costs of image acquisition hardware, solutions which use more than one
camera are gaining more and more attention. The classic approach of pose estimation
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3.3 Pose Estimation

with multiple cameras in a fixed configuration consists in obtaining a set of 3D-points from
the images by triangulation and subsequently reconstructing the relative pose between the
camera frame and the object. While this approach can be solved analytically and in a
computationally efficient way, it can only use points which are seen in at least two camera
images. Only a few methods consider the problem of finding the pose directly from multiple
camera images [33, 84]. However, none of these methods has a comparable performance
to the orthogonal iteration algorithm.

3.3.2 Orthogonal Iteration Algorithm

The orthogonal iteration algorithm makes the following assumptions. There are n > 3

points p, = (xi,yz-,zi)T, i = 1...n defined in an object fixed coordinate system. The
. . ;1 NT - .

corresponding coordinates q; = (x}, 4}, z/)" in a camera fixed coordinate system system are

obtained by a rigid transformation®:

q, = Rp, +t¢, (3.5)
where R is a 3 X 3 rotation matrix, and t is a translation vector.

Under the assumption of an ideal pinhole camera, the corresponding image coordinates
v; = (u;, vy, 1)T are:

S~

Y;

U; =

| 8

The quantization effects of the camera and uncompensated lens distortions lead to errors
between these idealized image points and the observed image points ;. The difference
between ideal and observed image point coordinates is called image-space collinearity error:

An alternative way of expressing the error between ideal and observed image point is given
by the object-space collinearity error. Each image point v; defines a line-of-sight projection
matrix V;, which yields the projection of an arbitrary point on the ray which is cast by
the respective image point. For the observed image point v;, the observed line-of-sight
projection matrix is expressed by:

v, = 2% (3.8)

Based on the projection matrix V., the object-space collinearity error can be calculated
for a given R and t: X

The two ways of expressing collinearity errors as well as the camera-fixed and the object-
fixed coordinate system are illustrated in Fig. 3.4.

In computer vision and computer photogrammetry, the coordinate systems are usually oriented such
that the z-axis is pointing to the left, the y-axis is pointing up, and the z-axis is pointing in direction
of the optical axis. For reasons of consistency, this notation is also used in this section (cf. Fig. 3.4).
However, in the evaluation, robot coordinates are used as defined in Sec. 3.1.
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normalized
image plane

\v

Figure 3.4: Definition of the camera coordinate system, the object coordinate system, and
the normalized image plane. The representative 3D point p; is projected onto the image
plane as 2D point v;. Due to quantization effects and unmodeled distortions, the observed
image point ©; may differ. The corresponding image-space collinearity error is denoted &;,
the object-space collinearity error is denoted e; [67].

Absolute Orientation Problem

As a precursor to the solution of the pose estimation problem, the solution to a simplified
problem, the absolute orientation problem, is described: Given n 3D points p,, i =1...n
in object coordinates and n corresponding 3D points g; in camera coordinates, find the
optimal transformation R and ¢, which minimizes the errors of (3.5) in a least-squares
sense:

Gaor(R,t) =) ||Rp,+t—q (3.10)

i=1

There exist various approaches to the absolute orientation problem [46, 47]. Here, a sin-
gular value decomposition (SVD) is employed to solve the problem [10] because of its
simplicity and computational efficiency. The solution is based on the insight that the rota-
tion matrix R can be determined solely based on the positions p, and g, relative to their
respective centroids p and q. The centroids are calculated by

p:%ZPia qz%Zqi, (3.11)
=1 =1
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and the corresponding relative positions p and g, are
p,=p;,— P, 4;=4q —q (3.12)
With the definition of the matrix M as

1 n
M == T 3.13
n;qmw (3.13)

the optimal rotation matrix R* can be expressed by

R* = arg max tr(R" M) (3.14)

Finally, the value of R is obtained by singular value decomposition:
R =WU", (3.15)

where UTMW = 3 form an SVD. When the point set consists of coplanar points, the
resulting matrix R* can be a reflection matrix instead of a rotation matrix. As the corners
of a single fiducial always produce a coplanar point set, these cases must be detected and
corrected [10]. Presuming that the singular values in X are ordered in descending order,
the modified version of (3.15) is calculated:

10 0
R =w |01 0 |U" (3.16)
0 0

If R" is a rotation matrix, i.e. det(R") = 1, than R™ is a reflection matrix, i.e. det(R") =
—1, and vice versa. Therefore, the one matrix which is a rotation matrix is chosen:

[ R, if det(R") =1
R_{Rﬂihmmﬂzq (8:17)
The estimated rotation matrix R directly yields the estimated translation vector ¢:
t=q— Rp, (3.18)

such that the absolute orientation problem is completely solved.

Iteration Procedure

In contrast to the absolute orientation problem, the 3D-points g, in camera coordinates
are not given in the classic pose estimation problem. Instead, only their observed 2D
projections v; or, equivalently, their line-of-sight projection matrices V'; are available.
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Thus, in the pose estimation problem, the minimization is not performed on the Euclidean
distances between 3D points (3.10), but on the object-space collinearity errors | e;|| as
defined in (3.9):

Goce(R, 1) Z lesl* =D II(I = Vi) (Rp, + 1| (3.19)

i=1

This optimization problem cannot be solved analytically, but there exists a globally con-
vergent iterative solution [67]. Starting with an initial estimate of the rotation matrix R

the corresponding estimate of the translation vector i(k) can be analytically calculated from
(3.19), because the cost function is quadratic in ¢:

n

i — 4 B"Y) = (I - Z v, ) S (v, -nRrRYp, (3.20)

=1

By using the estimates of the rigid transformation between object and camera coordinate

~ (k ~(k . . . .
systems R( ) and #' ), the known points p, in object-fixed coordinates can be transformed
to the camera coordinate system. Subsequently, they are projected onto the corresponding
lines-of-sight by means of the line-of-sight projection matrix V;:

" =v.(Rp, +1") (3.21)

These estimates q(’“)

. are inserted in (3.10) to yield a new estimate of the rotation matrix
o (k+1)
R

Summarizing, each iteration k of the orthogonal iteration algorithm proceeds in three steps,

. (k
where an initial guess of the rotation matrix R( : is assumed:

1. Calculate a new approximation i(k) by minimizing the mean squared object-space
collinearity error (cf. (3.20)).

(k)

2. Calculate the projected points ql ) based on the rigid transformation R ) and

the observed line-of-sight projection matrices V; (cf. (3.21)).

3. Calculate a new approximation R(kH) by solving the absolute orientation problem
defined by p, and ql@ (cf. (3.10)).

3.3.3 Extended Orthogonal Iteration Algorithm

Depending on the orientation between target object and camera, the pose estimates may
become inaccurate due to quantization noise. Thus, it is favorable to use more than
one camera, which yields images of the target object from different perspectives. The
differences in the viewing perspective become the larger the closer the object is approached
with the cameras. Thus, the accuracy reaches its maximum, when it is most needed.
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As stated above, there are two possible approaches for pose estimation in multi-camera
systems. The prevailing approach uses some kind of stereo-matching to obtain 3D coor-
dinates of the markers, which than constitute an absolute orientation problem. However,
this approach requires the marker points to be visible in two or more images to be used.
In contrast, the here presented extension to the orthogonal iteration algorithm can deal
with fully disjunct point sets.

With the introduction of multiple cameras, multiple coordinate systems come into play
(Fig. 3.5). The transformation R and ¢t now describes the relation between 3D points in
object coordinates p, and world coordinates q;. Additionally, a rigid transformation for
each camera j is given by R; and t; such that the object coordinates p; map to camera
coordinates r;; = (27, v/, 2/;)" according to the the following transformation chain:

P, —&5 q; M i (3.22)

For minimizing the object-space collinearity, the mathematical description will be used:

’I"@j = R]qz + tj = R]Rpl + Rjt + tj. (323)

image plane
of camera 2

image plane
of camera 1

Figure 3.5: World coordinate system and local coordinate systems of two cameras and the
observed object. The feature points are projected onto both image planes yielding the
projected point sets v, ; and v; 5.

With these definitions, the pose estimation problem can be reformulated for a number of
object points n, and a number of cameras n.. The total number of all observed object
points is n < n,n.. The k-th observed object point is described by the index i, = 1...n,,
which denotes object point coordinates p;,, , and the index jp = 1...n,, which specifies the
camera and thus determines the camera pose R;, , t;,, where k =1...n.
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In order to simplify the notation, the observed projection error matrix E,, is defined as

~ A

E,=1- (3.24)

U Jk

The object-space collinearity error ey of the k-th observed object point, i.e. of object point
1 observed by camera jj is expressed by

€L =€, 5. = Ek (Rijka + ngt + t]k) . (325)

The new cost function is an extension of (3.19) such that the object-space collinearity
errors of all observed object points £ = 1...n are minimized in a least-squares sense:

ocx(Rt) =3 lledl® =) |IEx (R, Rp, +R;t+t;) " (3.26)
k=1 =

The optimal translation ¢ can be expressed as a function of the estimated rotation matrix
R:

t(R) = arg min Goop(R,t) (3.27)

Just as its counterpart for the single-camera case (3.19), the full optimization problem in

. (1
(3.19) is solved iteratively. Starting from an initial estimate of the rotation matrix R( ),
the translation vector i(l) can be analytically calculated. The linear least-squares problem
n (3.27), can be most conveniently solved by applying the pseudoinverse of C.

With the definitions

_Ele1 E, (leRpil + tjl)
~E>,R, E, (R;,Rp, +1t,

C = o s(R) = 2 (R :pQ ) , (3.28)
_EnRjn En (R]anzn + tjn)

the solution for ¢ can be directly obtained:

(@
).

= (cTc)'Cc"s(R (3.29)

. (1
As the dependence on the current estimate R( ) is fully encoded in s, the matrix C' and its
pseudoinverse do not need to be recomputed in every iteration, which makes the method
computationally efficient.

L (141
Finally, the iteration loop is closed by calculating a new estimate R( v by solving the
extended absolute orientation problem:

or(R Z |R; Rp;, + Rt +t;, — 7| (3.30)
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3.3.4 Simulation Results

In order to document the theoretical estimation accuracy of the extended orthogonal iter-
ation algorithm in the presence of Gaussian pixel noise, simulation results are presented.
The simulations are performed and compared for setups with one camera and with two
cameras, respectively.

For the simulation, two ideal pin-hole cameras are assumed. Perturbation of the observed
image points is produced by adding a Gaussian noise with a signal-to-noise ratio (SNR)
in the range of 20 dB to 50 dB. The cameras are arranged in a symmetric configuration
such that their coordinate systems are rotated by —45° and 45°, respectively, around the
y-axis w.r.t. the world coordinate system. The optical axes of both cameras intersect in the
origin of the world coordinate system, and the distance between the centers of projection
and the origin are set to 0.1 m. A coplanar set of object points is used in the simulation.
This complies with the typical feature sets of a screwhead as well as with the corners of a
flat artificial marker. In the single camera simulations, twelve equally spaced points on a
circle of 0.01 m diameter form the object point sets. In the multi camera simulations, only
six equally spaced points on a circle of the same size are used. Thus, the total number
of observed points is kept constant. The circle lies in the z-y-plane of the object and its
center point coincides with the origin of the world coordinate system.

In Fig. 3.6, the simulation results are illustrated. As a correct estimate of the rotation
yields an optimal estimate of the translation in a least-squares sense, only the rotational
error is shown. This is obtained by comparing the true rotation R and the estimated
rotation matrix R:

tr(RTR) — 1

; (3.31)

¢ = acos

The plotted errors are averaged results from 1000 trials. For each trial, 200 iterations of
the orthogonal iteration algorithm are performed. Empirically, this number of iterations
is enough to ensure a convergence to a precision of 107°. One trial takes about 4 ms to
compute on an AMD Athlon 3700+ processor running an optimized C++ implementation
of the algorithm.

In one series, the object is rotated around its x-axis, which is identical with the z-axis of
the world-coordinate system. Due to the symmetric configuration of the two cameras, also
the two camera images are symmetric in the unperturbed case. For the angles a = 90° and
a = 270°, all object points lie in the plane spanned by the optical axes of the two cameras.
Thus, the projected points lie on a line in the image plane. If the object is observed by
only one camera, this configuration leads to the highest estimation errors as shown in
Fig. 3.6 a). In the multi-camera setup, however, the estimation errors are even lower in
these configurations, see Fig. 3.6 b). This indicates that the extended orthogonal iteration
algorithm indirectly obtains depth information from point pairs which in turn lead to a
higher estimation accuracy. Generally, the estimation errors of the multi-camera setup are
approximately one order of magnitude lower than those of the single-camera setup.

In a complementary series, the object is rotated around its y-axis, which is identical with
the y-axis of the world-coordinate system. During this rotation, the projection of the
point set cannot degenerate to a line in both cameras at the same time. Thus, the results
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Figure 3.6: Comparison of the estimation accuracy for pose estimation with a single camera
vs. multiple cameras. The rotational estimation error ¢ is shown for different amounts of
pixel noise. On the left hand side, in Figs. a) and c), results for a single camera setup are
presented. On the right hand side, in Figs. b) and d), corresponding results for a setup
with two cameras are shown. The plots in the top row, i.e. Figs. a) and b), are created
by rotating the object around the x-axis by a. The plots in the bottom row, i.e. Figs.
c) and d), are created by rotating the object around the y-axis by 5. Note the different
scaling of the ¢ axis.

can be expected to be comparable to the rotation around the z-axis for the single-camera
setup. For the multiple-camera setup, however, the estimation accuracy is expected to
remain constant. These expectations are confirmed by Figs. 3.6¢) and d). Due to the fixed
rotation of the camera itself, the maximum errors are reached at angles of § = 135° and
£ = 315°. Again, the multi-camera setup is approximately one order of magnitude more
accurate than the single-camera setup.

3.4 Experimental Evaluation

In Sec. 3.2 and Sec. 3.3, the accuracy of the marker localization in the camera image and
the simulated accuracy of the extended orthogonal iteration were assessed. In this section,
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the position measurement accuracy of the complete camera-based pose estimation system
illustrated in Fig. 3.1 is evaluated.

In order to measure the accuracy of the camera system, the end-effector with the cameras
is sequentially positioned at 125 positions in an orthogonal 5 X 5 X 5 grid in 3D space.
The distance of the grid points is 5 mm in each direction. Thus, the covered volume is
20 mm x 20 mm x 20 mm. The size of the artifical marker is 20 mm x 20 mm. The whole
sequence is repeated three times leading to a total number of 375 measurement points.
The error e is calculated as the difference between the position which is commanded to
the robot and the position which is estimated by the camera system.

The results are illustrated in Fig. 3.7, where the accuracy of a setup with two cameras,
Fig. a), is compared to a setup with one camera, Fig. b). In both figures, the norm of the
error ||el|| is shown as a function of the x-, y-, and z-coordinate, respectively.
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Figure 3.7: Comparison of estimation accuracy with one and two cameras. In Fig. a), the
results of a setup with two cameras are illustrated; in Fig. b), the results of a setup with
one camera are illustrated. The norm of the Cartesian error ||e|| is plotted as a function of
the z-, y-, and z-coordinate, respectively. For each position, the mean error is shown. A
line is fitted to the mean errors in order to detect dependencies with the coordinate values.

The most obvious observation from the figures is that the one-camera setup produces some
outliers, whereas the two-camera setup does not. Furthermore, the accuracy of the one-
camera setup is lower than the accuracy of the two-camera setup by a factor of approx. 6.
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For the two-camera setup, the accuracy is independent of the position in y-direction, while
it decreases with increasing x- and z-coordinate. As the camera system is tilted by 45°
around the y-axis, the distance between cameras and marker increases linearly with the x-
and z-coordinate, and the decreasing accuracy can be attributed to the increasing distance
to the marker. The maximum error of the two-camera system is 1.2 mm, and the standard
deviation is below 0.5 mm. The obtained accuracy fully satisfies the requirements of the
screwdriving task. For other tasks which require an even higher accuracy, the position
measurement accuracy of the camera system can be increased by using higher-quality
cameras with higher-quality lenses. Furthermore, the calibration of intrinsic as well as
extrinsic camera parameters is subject to improvements.

3.5 Discussion

In order to support the human operator in achieving the intended goal, the assisted tele-
presence system must possess knowledge about the location of possible manipulation tar-
gets in the remote environment. This knowledge is exploited twice. On the one hand,
possible targets are used as hypotheses in the intention estimation process. On the other
hand, the pose of the selected target is used as destination in the trajectory generation
process. The extraction of possible targets can be performed by using visual data from the
remote scene. This chapter extends the state of the art in two ways. Firstly, a hardware
setup and software toolchain is proposed which enables precise visual scene recognition by
the teleoperator. Secondly, a new pose estimation algorithm for multi-camera setups is
presented which significantly outperforms existing solutions.

By means of the stereoscopic camera head and the stereoscopic eye-in-hand camera, the
system is able to coarsely identify targets in an early stage and to precisely determine the
pose of a specific target when it is closely approached. Using artificial markers, which
are extracted from the scene by the ARToolKit library, poses can be measured with an
accuracy of better than 0.5 mm.

The main contribution of the chapter lies in the development and assessment of a new
method for estimating the 3D pose of a known object based on its 2D projection to the
image planes of multiple cameras. The algorithm emerges as an extension to the orthogonal
iteration algorithm, which solves the pose estimation problem for a single camera. Sim-
ulation results show that the presented extended orthogonal iteration algorithm delivers
accurate results even for ill-posed point sets, e.g. coplanar points.

Finally, a practical evaluation confirms the accuracy of the pose estimation results which
are produced by integrating the presented subsystems. The scene recognition system can
provide coarse estimate of the target poses at an early stage. When the target is ap-
proached, these estimates are continuously refined based on the image data provided by
the eye-in-hand cameras.

Besides its usage in an assisted telepresence system, the presented setup and pose esti-
mation algorithm can be applied to a wide range of problems from classical computer
photogrammetry to autonomous robotics. Due to its robustness, it relaxes the require-
ments on the cameras and lenses and can thus help to reduce costs.
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4 Assist Functions

In the previous chapters, the foundations for providing assistance to the operator in an
intuitive manner are laid: The current intention of the human operator is classified and
expressed in form of a predicted trajectory, and a precise reference trajectory to the target
which the operator is actually aiming to reach is calculated. Based on this knowledge about
the current task, the assist functions are supposed to augment the interchanged position
and force signals such that the task performance and the feeling of presence are improved.
The stability of the telepresence system must be maintained by the assist functions.

While the concept of intuitive assistance is very general, the actual design and implemen-
tation of the assist functions is task dependent. In accordance with the previous chapters,
the screwdriving task serves as application example. The assistance which is most needed
for this task is twofold: firstly, the approach and alignment phase must be optimized in
such a way that the screwdriver is exactly positioned in front of the screwhead; secondly,
the contact between screwdriver and screwhead must be established without bouncing and
excessive forces. Generalizing, the screwdriving task is regarded as a peg-in-hole task, and
the approach movement is regarded as an unconstrained point-to-point movement.

For point-to-point movements, which are part of the peg-in-hole task, the movement can
be decomposed into a longitudinal and a lateral movement as depicted in Fig. 4.1. The
longitudinal component is oriented tangentially to the trajectory; the lateral component
is oriented perpendicularly to the trajectory. As unconstrained point-to-point movements
are implemented by humans as straight lines, only the case of straight reference paths,
illustrated in Fig. 4.1 a), is relevant for the following considerations.

The model of human point-to-point movements, given in Chapter 2, describes the spatial
as well as the temporal course of the movement, i.e. it describes the curve on which the
human travels, and it describes the progression on this curve as a function of time. When
the human behaves exactly in accordance with the model, no deviation occurs, neither
on the spatial nor on the temporal course. Accordingly, two types of deviations can be
distinguished: The human does not travel on the modeled curve, or he does not follow the
modeled speed profile, where both types of deviations can occur at the same time. It is
impossible to uniquely determine the type of deviation from the observed data. However,
it is reasonable to assign longitudinal differences between the observed and the modeled
trajectory to temporal deviations and lateral differences to spatial deviations.

The correction of spatial and temporal deviations by appropriate assist functions can be
considered separately. Following the above definitions, a spatial assist function applies
changes only to lateral positions and forces, whereas a temporal assist function applies
changes only to longitudinal positions and forces. In the following sections, both types of
assist functions, spatial and temporal, are discussed.
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4 Assist Functions

\em

Figure 4.1: Decomposition of trajectory into lateral and longitudinal components. The vector
from current point x to final point s is decomposed into a component which is tangential
to the reference path and a component which is perpendicular to the reference path. In
Fig. a), the reference path is a straight line passing through x; with direction e,. The
longitudinal component Azl is parallel to e,, the lateral component Az is perpendicular
to e,. The case of a curved reference path s is illustrated in Fig. b). Again, the longitudinal
component sl runs along the reference path s, and the lateral component is perpendicular
to s.

4.1 Spatial Assist Functions

When the operator leaves the reference path to the estimated target, the assist system can
intervene in two ways to guide him back on this path. On the one hand, the strict coupling
of the positions of operator and teleoperator can be relaxed such that the teleoperator fol-
lows the reference path even when the operator does not. On the other hand, the coupling
of the forces of operator and teleoperator can be lifted such that the operator feels a force
pushing him toward the reference path, although there are no forces applied to the tele-
operator. Both methods can be combined into one system. Thus, it can be differentiated
between position based assistance, force based assistance, and hybrid assistance, depending
on the signals which are altered by the assist system.

4.1.1 Position-Based Assistance

A position based assistance system aims at correcting errors between actual and reference
path by assigning a different desired position to the teleoperator than the observed position
of the operator. There are many different ways of implementing these corrections, which
determine the effects on performance and feeling of presence.
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4.1 Spatial Assist Functions

As the employed model of human point-to-point movements yields straight lines connecting
starting point and endpoint, the path to the target can be simply decomposed into two
vectors (cf. Fig. 4.1). The vector to the target point is defined as:

Ax=z;—x (4.1)

The longitudinal component Az!l and the lateral component Azt are defined such that

Azl =eTAxe, Azx't=Azl - Az (4.2)

When no assistance is applied, the positions of operator and teleoperator relative to the
target are the same, i.e. Axp = Azp. In order to guarantee that the target point is
reached, the lateral displacement of the teleoperator must be zero when the longitudinal
component becomes zero:

|Azx|| = 0 if | Az <0 (4.3)

A simple function, which ensures (4.3), maps a cylinder around the reference line onto a
cone around the reference line, where the apex of the cone coincides with the target point:

Agl
Awh = 18%0ll g1 (4.4)
Zo

The constant zy determines the longitudinal distance from the target, at which the cone
and the cylinder intersect. For distances larger than x(, the assistance is switched off. In
any case, the longitudinal position is not subjected to the assist function, i.e. Awgﬂ = Aaz‘(‘).

The cone mapping ensures that the target point is reached for arbitrarily large deviations.
Thus, it significantly improves the task performance. However, a pilot study showed that
this position mapping is perceived as disturbing, and thus it compromises the intuitiveness
of the assistance.

An alternative mapping, which was shown to be less obtrusive, is based on the lateral
velocity instead of the lateral position. The idea of the velocity mapping consists in
decreasing lateral motions away from the reference path, while increasing lateral motions
toward the reference path. There are a variety of possible implementations of this idea,
which can be described by the general form:

Az = f(Axp, Axd) Az (4.5)

The mapping function f determines the scaling between the lateral velocity commanded
by the operator Adzé and the lateral velocity implemented by the teleoperator A:i:#. The
selected scaling depends on the relative position to the target and the direction of the
lateral velocity. Again, the longitudinal velocity is not subjected to the assist function
such that Aa':‘T = A:i:ﬂ).

Two different scaling methods can be distinguished according to their direction dependence:
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4 Assist Functions

e The unidirectional scaling (US) damps lateral motions directed away from the refer-
ence path, but does not scale motions in the opposite direction':

g(Axy) if (Axt, Axs) >0

f(AmT,Aibé) = { 1 otherwise (46)

e The bidirectional scaling (BS) applies scaling in both directions, where motions away
from the reference path are damped, and motions toward the reference path are
amplified:

g(Axr) if (Ax#, Az5) >0

(9(Az7))'  otherwise (4.7)

f(Azp, Axh) = {

The function g determines the dependence of the scaling on the distance to the target:

e The constant scaling (CS) is independent of the distance to the target point:
9(Azr) = d, (4.8)

where d is a constant scaling factor d < 1.

e The position dependent scaling (PS) is designed such that the scaling increases with
decreasing distance to the target point:

Az
i) '

g(Azr) =d (4.9)

where xq specifies the distance to the target at which the assistance sets in, and d is
again a constant scaling factor.

According to the pilot study, the velocity mappings effectively reduce the lateral error
at the target point. However, in contrast to the position mapping, the velocity mapping
cannot guarantee that the lateral deviation becomes exactly zero. Therefore, an additional
Position Correction (PC) is introduced, which deliberately sets the lateral position error
Az to zero, just before the target is reached.

In Fig. 4.2, the resulting trajectories for the above described position and velocity scalings
are illustrated. It shows the lateral deviation from the straight reference path as a function
of the longitudinal position on the reference path. For this figure, the effects of the different
assist functions are calculated based on a pre-recorded input trajectory. Thus, reactions
of the human operator on the applied changes are not taken into account.

By definition, any position based assist function leads to deviations between operator and
teleoperator positions Axr and Axp. As long as these deviations do not exceed a certain
limit and do not change abruptly, they are not perceived by the operator. The velocity
mapping, however, can lead to unbounded differences, which is another drawback compared
to the position mapping. Therefore, an appropriate velocity mapping, which reduces the
position deviation, must be applied, in phases where no assistance is needed.

'For clarity of the notation, the scalar product between two vectors is denoted by the angle brackets (-, -)
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4.1 Spatial Assist Functions

3-0 T T T T

2.0

1.0

0.0

Az [mm]

-1.0

-2.0

-3

0 1 1 1
-0.25 -0.20 -0.15 -0.10 -0.05 0.00
1A fm]

—— input trajectory = e unidir., constant - bidir., constant
--- position mapping = -—- unidir., position dep. ---- bidir., position dep.

Figure 4.2: Resulting trajectories for different position based assist functions. The lateral
deviation of the input signal ||Az}|| and the corrected signals ||Ax7|| are plotted as
functions of the distance to the target ||Az!||. The approach movement starts at o =
0.25 m from the target. The effects are calculated in an open-loop fashion, i.e. reactions
of the operator on the corrections are not taken into account.

4.1.2 Force-Based Assistance

The force based assistance functions constitute the complementary approach to position
based assist functions. They generate forces on operator side which are designed to guide
the operator to the reference path. The position of operator and teleoperator, by contrast,
are kept synchronized. Again, there is a variety of methods to calculate appropriate forces.

The guidance forces are added to the forces reflected from the teleoperator. As the ap-
proach phase usually takes place in free space, the measured forces on teleoperator side
originate only from the inertia and gravity of the end-effector. The concept, however, is
also applicable to scenarios, where damping or stiffness components are present.

Fo=Fr+ AF (4.10)
The guidance force AF' depends on the relative position to the target Ax = Axp = Axr
and is always pointing perpendicularly to the reference path, i.e. it is aligned with Az*:

A =

In contrast to the position based assist functions, here, the function f does not describe a
scaling, but it has the dimension of a force.
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4 Assist Functions

Analogously to the position based assistance, there are different modes w.r.t. the lateral
velocity A&t of the operator as expressed by different functions f:

e In the wnidirectional force (UF) mode, forces are only applied, when the operator is
moving away from the reference path:

g(Azx) if (Axt Azt) >0

f(Am, Az) = { 0 otherwise (4.12)

e In the bidirectional force (BF) mode, forces toward the reference path are always
applied, regardless of whether the operator converges to or diverges from the reference
path:

f(Az, Az) = g(Ax). (4.13)

Three different functions g are implemented, which describe the magnitude of the force as
a function of the lateral and longitudinal distance as well as the duration of the error.

e In the simplest case, a constant force (CF) F, is applied in direction toward the
reference path, when the orthogonal distance || || exceeds a threshold r.:

F. if |Azt| > r.

g(Az) = { 0  otherwise (4.14)

e In a more sophisticated case, a position dependent force (PF) is calculated, which
increases as the lateral deviation Az increases or the longitudinal distance Az! to
the target decreases:

Azt | (wo—nAw”n) : L
g(m) —= Fc Te o lf ||Am || > /r‘C , (4.15)
0 otherwise

where xy denotes the maximum distance to the target at which the assist function is
active.

e In an alternative mode, a time dependent force (TF) is applied toward the reference
path, which increases linearly with time, when the operator position is outside a
cylinder of radius r., and is reset to zero, when he reenters this cylinder.

A comparison of the guidance forces generated by the different force based assistance modes
is given in Fig. 4.3. The lateral position deviation, which is an input to all presented force-
based assist functions, is plotted as a function of the longitudinal distance to the target.
The guidance forces generated by the five different force generation schemes are also plotted
as functions of the distance to the target. The radius r. around the reference path, below
which no forces are generated, is shaded in gray.

4.2 Temporal Assist Functions

While the previously described spatial assist functions are intended to eliminate lateral
position deviations, the temporal assist functions are intended to correct deviations from
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Figure 4.3: Guidance forces for different force based assist functions. The lateral position
deviation ||Az"|| as well as the generated guidance forces || AF|| are plotted as functions
of the longitudinal distance to the target ||Az!/|. The shaded area indicates the cylinder
of radius 7. inside of which the guidance forces are deactivated.

the temporal course of the motion. The former ensure that the target point is hit, the
latter ensure that it is hit at the correct time and velocity. Again, two types can be
distinguished depending on the altered signal, namely, a position-based assistance and a
force-based assistance.

4.2.1 Position-Based Assistance

In a practical case of inserting a screwdriver into a screwhead, a perfect alignment of the
screwdriver and screwhead cannot be guaranteed. Therefore, the tool will finally slide
into the screwhead. In order to avoid excessive forces, when the screwdriver touches the
screwhead, the velocity should be small. This is particularly important in a telepresent
execution, because the impact forces are usually considerably higher than in direct exe-
cution. An additional problem in telepresence is that the operator may overestimate the
distance to the target due to impaired vision and approach the target with even higher
velocity than normal.

The transition from freespace to stable contact with a stiff object is a challenging task
for robots in general and for telepresence systems with time delay in particular. The
comparatively high inertia and high structural stiffness of the teleoperator lead to large
interaction force peaks with the environment even at low impact velocities. These forces
can damage the teleoperator or the environment. Depending on the magnitude of the force
peaks, it becomes hard to establish contact at all, because the operator bounces back from
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4 Assist Functions

the object in response to the unexpected forces. Unwanted oscillations of the operator and
the teleoperator can be the consequence. The design of the telepresence system and the
local controller of the teleoperator can reduce these effects, but these measures are limited
by physics.

In order to eliminate the excessive interaction forces, the proposed assist function aims at
minimizing the kinetic energy and the momentum of the slave at the moment of impact
ts, which implies minimizing the impact velocity @;. In order to reduce the velocity at
the moment of impact, the trajectory must be reshaped in the temporal domain. To this
end, the estimated time of hitting the target £, is used to calculate a reference trajectory
which hits the target at the same time but with zero velocity. By smoothly fading from
the human commanded trajectory to this reference trajectory, the assistance is expected
to not be noticed by the operator.

The human-commanded trajectory xo(t) and the reference trajectory x,.(t) are merged to
provide a smooth transition between both. The result is the trajectory xr(t), which is
actually implemented by the teleoperator:

Azl () = (1—a) Azl (t) + a Azl(1). (4.16)

The sliding factor « € [0; 1] determines the degree of assistance, which is chosen to depend
on the distance to the stiff object and, in an indirect way, on the estimated duration:

0 if Az ()] >
o — xowijﬂ(tm if 20> Azl >0 . (4.17)
1 it 0 >|lAzi(t)]

where x is the maximum distance between tool and object at which the assist function is
activated.

In Fig. 4.4, the operation of the assist function is illustrated. As indicated by the input
trajectory xo(t), the operator overestimates the distance to the target and, thus, touches
the target with non-zero velocity. The recalculated reference trajectory .. (t) touches the
target at the same time, but the velocity at this point is zero. Additionally, the merged
trajectory xr(t) is shown in the figure, which smoothly blends from the input to the
reference trajectory.

The proposed assist function can serve a secondary purpose. In the presence of a known
time delay in the communication channel, the reference trajectory to the target can be
used to extrapolate the motion of the teleoperator. Thereby, operator and teleoperator
reach the target at the same time, and the time delay in one direction is cancelled out:

zr(ty) = zo(ty) = x; (4.18)

4.2.2 Force-Based Assistance

The previously described assist functions aim at increasing the level of task performance by
applying corrections to velocity and force signals. An additional demand to assist systems
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Figure 4.4: Operation of the temporal position based assistance. The input, the reference,
and the merged trajectory are plotted as functions of time. The input trajectory xo is
given by the operator. The reference trajectory @, is calculated by intention estimation and
trajectory generator. Finally, the merged trajectory r is produced by blending between
input and reference trajectory.

consists in increasing the feeling of presence. Thus, the force-based assistance presented
in this section is designed to make the force feedback from the remote environment more
consistent. The application of force assist functions is only reasonable in contact situations,
because the feedback forces are zero in free space. In the exemplary screwdriving operation,
the force assist function is effective only after contact between screwdriver and screwhead
has been established.

A realistic force feedback is typically described in terms of transparency. According to
Lawrence [59], transparency is defined as the ratio of the impedance displayed to the
operator Z; to the environment impedance Z.:

I'=—. 4.19
. (4.19)

Perfect transparency, i.e. I' = 1, implies a direct coupling between the operator and the
remote environment. However, technical limitations, such as time delay in the commu-
nication channel or sensor deficiencies, degrade the maximum achievable degree of trans-
parency. The idea of force assist functions is to circumvent some of these restrictions by
rendering the remote object locally on operator side. Using an online updated model of the
remote object, local forces between master and virtual object are computed and replace
the measured and delayed transmitted forces from the remote side. With this assistance,
the control loop is closed locally during contact, relaxing the requirements on stability. In
the enlarged stability region, parameter sets are included, by which an increased feeling of
perceived realism is reasonable to expect.
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4 Assist Functions

Stiffness-Based Prediction (SBP)

In order to predict the mechanical response of the remote environment on a certain move-
ment, the mechanical properties of the object which is in contact with the teleoperator
must be estimated beforehand. For a convincing local rendering of the remote environment,
the estimation must be accurate and converge very quickly to the correct values.

There is a large variety of mechanical models ranging from simple time-invariant linear
models to complex time-varying non-linear models. Likewise, there is a large amount of
different estimation techniques for determining the optimal parameters of these models.
In general, the more complex models with a higher number of parameters need more
extensive measurement data and longer estimation times. Many estimation techniques
furthermore require a well-defined excitation pattern to provide a good generalizability.
In a telepresence application, however, the movements which produce the excitation are
commanded by the human operator. Thus, the estimation method must be able to cope
with arbitrary excitation signals.

The above mentioned requirements favor a very simple model. In a very simplistic approx-
imation, the mechanical behavior of the remote environment can be modeled by a linear
spring. This model has only one parameter, which makes the estimation fast and robust.
Despite its simplicity, the model is well-suited for the designated application. On the one
hand, the velocity and the acceleration of the end-effector are small, when the contact is
established, such that damping and inertia properties can be neglected. On the other hand,
the adaptation of the model parameter is fast enough to accommodate non-linearities of
the compliance property. The mathematical description takes the following form:

A e A
Fl = { kAzy  if Ay <0 (4.20)

0 otherwise

where F¥ denotes the force response on teleoperator side, Aazy denotes the position of the

end-effector of the teleoperator, relative to the surface of the object, where Axy is negative,
when the end-effector advances into the object. The model parameter k represents the
mechanical stiffness of the spring. The model is implemented for scalar quantities only,
because it is applied only in the longitudinal direction, which has only one degree of
freedom.

As mentioned above, many parameter estimation methods for mechanical properties exist.
In [105], an overview of estimation methods which are specifically designed for estimat-
ing environment parameters in telepresence is given. From the various approaches, the
recursive least-squares method is selected because of its fast convergence rate.

Starting from an initial guess of the parameter /%(i), the estimate is recursively updated
according to the following rule:

N
o o oF! "
FOD = RO (a_;%:F) (Fﬁ _ Fﬁ()) (4.21)

» 1 i
. (_> (F) - F) (4.22)
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where F:ﬂ denotes the measured interaction force, and Fiﬂ(i) denotes its ¢-th estimate, which
is calculated analogously to (4.20):

(4.23)

Al _ [ —kAh i Axl <0
T 0 otherwise

The estimation process is started as soon as contact between the end-effector of the tele-
operator and the remote environment is established, which can be detected by observing
the measured interaction force Fz‘l The initial value of the estimated parameter £ should
be as close as possible to the true value. If no prior knowledge about the stiffness of the
remote environment exists, a conservative guess, i.e. a high value of k, should be selected
to increase the safety of the system.

The estimated stiffness of the remote environment % is transmitted to the operator side,
where the interaction force Fg is rendered in a similar way to (4.23):

7 |- Il
Fg _ { —kAzg, if Azg, <0 (4.24)

0 otherwise,

Obviously, the locally rendered stiffness will never exactly match the stiffness of the remote
environment. However, psychophysical findings show that the discrimination threshold of
the human is approx. 23 % for mechanical stiffness [49]. As long as the estimation error of
k is below this just noticeable difference (JND), there is no perceptual difference between
direct and telepresent interaction with the environment.

Rate-Hardness-Based Prediction (RHBP)

By reproducing the estimated stiffness of the remote environment on operator side, the
experience of contact with an object can be made more realistic. However, sudden changes
from freespace motions to contact, i.e. the experience of impact, are not convincingly con-
veyed. On the one hand, the limited convergence rate of the stiffness estimation smoothes
the sudden change in stiffness. On the other hand, more recent psychophysical experi-
ments [60] suggest that humans perceive impacts rather by the rate-hardness than by the
mechanical stiffness of the object.

Rate-hardness is defined as the ratio of initial force rate of change to initial penetration
velocity:
i)

Ll
T

h (4.25)

The perceptual importance of rate-hardness compared to stiffness increases with increasing
stiffness of the touched object. While the stiffness of soft objects can be judged by the
ratio of force to penetration depth, stiff objects lead to very small penetration depths,
which are hard to discriminate. Thus, higher frequency components of the contact force
during impact become more relevant for stiff objects [73].

61
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The concept of rate-hardness-based prediction is comparable to the stiffness-based pre-
diction. The rate-hardness of the object in the remote environment is estimated upon
impact, the estimated value is sent to the operator side, and there it is locally rendered by
producing the appropriate force rate of change in response to the velocity. The force rate
of change is estimated according to the definition

Bl =t E2E ) ZFr(®)  Frlt+aT) = Fy(t)

4.2
6—0 1) al ’ ( 6)

where a7 is an integer multiple of the sampling time 7. As the rate-hardness changes
very quickly, a7 should be in the range of 1 ms. The exact value must balance between
measurement speed and measurement noise.

The estimate of the rate-hardness h can thus be expressed by

Flt +aT) — F)(t)

h= I S
wp(t +aT) — xp(t)

(4.27)

Although this equation bears a close resemblance to the equations for stiffness estimation,
the important difference lies in the short estimation duration a7', which emphasizes the
higher frequency components.

The complementary part of the rate-hardness estimator is the rate-hardness renderer on
operator side. Theoretically, the postulated relationship between force rate of change and
initial penetration velocity (4.25) can be fulfilled by rendering a simple spring as described
by (4.20) with k& = h. However, the maximum displayable stiffness of a haptic display
is limited by stability considerations, because a spring does not dissipate energy. An
alternative way of creating the desired behavior uses a damping term to create the abrupt
force changes, which dissipates energy and is thus stable [60].

The respective mathematical model is given by:

bil () + k(zl (1) = 2l if 2l > 2
F” t) = O o] f O fo 4.28
o(t) { 0 otherwise. (4.28)

This model leads to an infinitely high force rate of change, because the force is discontinuous
at the transition from freespace to contact. However, a practical implementation, which
exhibits a natural low-pass characteristic, has a limited rate of change. Assuming ™! to be
the time constant of the first-order low-pass filter, the filtered response of (4.28) becomes:

Fg(t) _ { 5aFO(t) + oz(bdvg)(t) + k(a:g(t) — x'})) i(ftlaig)r;isz} ' (4.29)

As the penetration depth is zero at the moment of impact, the modified equation yields
an initial force rate of change of

Fo(ty) = abig(ty), (4.30)

where ¢ denotes the moment of impact. Thus, the rate-hardness is h = ab for the model
in (4.29).
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domain of assistance

spatial temporal
1L Il
Az Az,

. e correct lateral deviations e correct longitudinal deviations
= position e guarantee to hit the target e ensure zero impact velocity
Eo e active in approach phase e active in approach phase
(7]

°
L Il
o . .
= e correct lateral deviations e render contact forces locally
force e active in approach phase e compensate communication delay

e active in contact phase

Table 4.1: Matrix structure of assist functions. The table shows for each assistance mode,
which signal component is altered by the assist system and which qualitative results can
be achieved.

4.3 Combined Assist Functions

The assist functions, which are presented in the previous sections, can be categorized
as spatial and temporal assist functions, or alternatively, as position-based and force-
based functions. This categorization gives rise to a representation in a 2 X 2-matrix.
From this structure, it is easy to derive that all four assistance types act on different
signal components. Thus, they can be arbitrarily combined to benefit from their different
purposes.

Table 4.1 illustrates for each of the four assistance types, which signals are used by the
assist system to intervene and which goals are pursued by the intervention. Furthermore,
not all assist functions can be employed in all phases of the screwdriving task. While the
table states the design goals of the assist functions, it does not include any information
about the fitness of the functions for these designed goals. Therefore, the performance of
the different assist functions is evaluated in Chapter 5.

4.4 Discussion

The assist functions, presented in this chapter, constitute the core of the entire assist sys-
tem. Based on the estimated intention of the human operator and the reference trajectory
to implement this intention, they compute appropriate augmentation in order to increase
task performance and feeling of presence.

The novelty of the presented assist functions consists in their dynamic adaptation to the
intention of the operator. In contrast to commonly used virtual guides or forbidden regions,
this preserves a high feeling of presence not affected by artifacts of the assist system. In
the ideal case, the assist functions are not directly perceived by the operator as such, but
only indirectly through increased ease of operation.
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The presented assist functions target a single type of task with low complexity. The
concept, however, can be extended to more complex tasks, as the understanding of human
task planning and the autonomous capabilities of robots increase. The design process for
new assist functions can be inspired by the process followed in Chapters 2 to 4: Firstly,
find a model which describes the relevant human behavior in the targeted task. The model
must be applicable to intention estimation as well as task planning. Secondly, build the
scene recognition algorithms which can acquire the necessary data from the environment
such that the intended task can be superiorly performed by the teleoperator. Thirdly,
define a fusion strategy to merge the signals commanded by the operator with the signals
planned by the teleoperator. The fusion strategy must apply the correction in a subtle way,
lest the feeling of presence gets disturbed. Finally, a human-centered evaluation should be
conducted to validate the designed assist function.
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5 Experimental Evaluation

The quality and efficiency of typical control algorithms can be assessed by analytical com-
putations or by simulations. When application dependent quality criteria are of interest,
which involve the test under real conditions including noise etc., experimental data may
be acquired to assess the performance. In any case, numerical performance indices can be
computed from the simulated or recorded data. Although it can be hard to generalize the
results in case of badly conditioned problems, the whole evaluation process is well founded
on precise measurement data, which entails a high degree of repeatability.

As soon as humans are involved in the overall system, evaluation becomes much harder.
The results typically depend heavily on the test persons, their current fitness, and their
affinity to and prior experience with the matter of evaluation. This leads to bad generaliz-
ability, bad repeatability, and bad validity of the results. Psychophysicists have established
methods to cure these problems which are inherent to all experiments, where humans are
involved.

Despite all problems, studies with humans are the only way to check, whether the theoret-
ically reasonable approach of the assist system is accepted by the human operator. Due to
the bidirectional interaction of human and technical system, subtle changes can build up
immense changes in the overall system behavior.

5.1 Psychological Foundations

Psychology is concerned with the scientific study of mental functions and human behav-
ior. Inter alia, it aims at understanding the human in such a way that his behavior and
reactions to certain conditions can be predicted. Psychology is a broad discipline cover-
ing such diverse subfields as clinical psychology, neuropsychology, media psychology, and
organizational psychology. The more relevant subfields for the experimental evaluation of
telepresence systems are experimental psychology and psychophysics.

Experimental psychology provides the methodology to experimentally explore human be-
havior and its underlying cognitive processes. More specifically, it allows testing certain
hypotheses on human behavior. Experimental psychology is strongly governed by ap-
proaches from natural sciences.

Psychophysics is concerned with the analysis of human perception in response to physical
stimuli. The main research questions consist in measuring and explaining detection and
discrimination thresholds for different stimuli. Furthermore, the integration of different
stimuli into a single percept is analyzed.
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5.1.1 Design of Experiments

In the context of experimental evaluation, the prevailing purpose of experiments is the test
of hypotheses. A hypothesis is formulated as alleged influence of one or more independent
variables on one or more dependent variables. By verifying the hypothesis, a causal infer-
ence between the considered independent and dependent variables can be proven. Due to
the complexity of mental functions and human behavior, the experimental design plays an
important role, lest unwanted side effects dominate the results.

A major decision in the design of psychological experiments is the identification of inde-
pendent and dependent variables. The independent variables are specifically manipulated
during the experiments, and the effects on the dependent variables are observed. Using
appropriate statistical models, a causal relationship between independent and dependent
variables can be either verified or rejected. Analyses involving only one independent vari-
able are called unifactorial, those involving more than one independent variable are called
multifactorial. Analogously, analyses with a single dependent variable are called univari-
ate, and those with multiple dependent variables are called multivariate. In practical
experiments, it is impossible to completely isolate the effects of independent variables on
dependent variables. The effects are superposed by the effects of uncontrolled, extraneous
variables. Typical effects, which deteriorate the validity of an experiment are learning ef-
fects or different experience levels. This can be countered by sufficiently large test groups
and by randomization of the experimental conditions.

Besides the selection of appropriate experimental variables, the experimental design de-
termines the sample size, the grouping of participants, the combinations and order of test
conditions, as well as the way of obtaining the dependent variables. The sample size, given
by the number of participants of a study and the number of test conditions per participant,
must be balanced between validity of the results and effort of the experiment.

The quality of an experiment is largely determined by the experimental design and is
assessed by its internal and external validity. The internal validity describes the consis-
tency of the obtained results. The external validity describes how well the results can be
generalized. In general, internal and external validity are contradicting goals, because a
high internal validity requires very narrow test conditions, which in turn deteriorate the
external validity.

5.1.2 Statistical Methods

While the design of experiments must ensure that the relevant effects are contained in the
recorded data, statistical methods are needed to give a meaningful explanation to the data.
This explanation can be in the form of verifying or rejecting hypotheses. Alternatively,
the statistical data processing can yield a rating of different test conditions. In any case,
the statistical methods are employed to gain reliable results and an assessment of the level
of confidence in these results.

From the vast number of statistical methods, only those which will play an important role
in the following experimental evaluations are briefly described in the following.
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Analysis of Variance (ANOVA)

The analysis of variance (ANOVA) is used to ascribe the variations of one dependent
variable to the influence of one or more independent variables. More specifically, the core
idea consists in partitioning the observed variance of the dependent variable into different
explanatory components which are associated with the independent variables and an error
component. The error component represents the portion of variance which cannot be
explained by the independent variables and is attributed to model errors and the influence
of extraneous variables.

The ANOVA is classified according to the number of independent variables and the number
of levels in each of these variables. If only one independent variable is considered, the
ANOVA is called unifactorial, otherwise multifactorial. An ANOVA with n independent
variables, which can take m; different conditions each, is referred to as mq X mq X ... X M-

ANOVA.

The multivariate analysis of variance (MANOVA) is an extension of the ANOVA for the
case of multiple dependent variables, where the dependent variables are statistically cor-
related. It can also be used to detect interactions between independent variables and
associations between dependent variables.

Scaling Techniques

In experimental evaluations, scaling techniques are employed to quantitatively judge the
influence of certain independent variables on certain dependent variables. Although scaling
cannot be equated with a metric measurement, it provides an ordinal scale or rank order
scale. On this scale, the items are assessed regarding their relative strength. E.g. in a
telepresence system, different control parameter settings can be scaled with respect to the
feeling of presence they provide to the operator.

Scaling techniques can be classified into non-comparative scales and comparative scales.
When non-comparative scales are applied, each item is judged individually by the partici-
pants. In contrast, when comparative scales are applied, participants must judge one item
relative to one or more other items.

Non-comparative scales can be further subdivided into continuous rating scales, where
participants can attribute a continuous grade to a tested item, and itemized rating scales,
where participants must choose from a pre-defined set of grades. The most popular itemized
scales are the Likert scale, the 7-point, and the 10-point scale.

There is also a variety of comparative scales. The most commonly used are paired compar-
1son, rank order and constant sum. In a paired comparison experiment, participants are
presented with two items and asked which item they value higher w.r.t. a certain property.
For the above mentioned example, participants would be asked to judge which control
parameter setting provides a better feeling of presence.

Data from comparative scales can be processed to produce a continuous rating scale. There
is some evidence that scales from comparative studies are more reliable than those from
non-comparative studies [18]. Before the scaling can be performed, the data must be
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checked for consistency and concordance. The consistency describes the degree to which
the individual judgments are consistent, i.e. non-contradictory. This is checked by testing
the transitivity condition. For any three items Sy, Sy, and S3, the relation S; < Sy A Sy <
S3 = 51 < 53 must hold. The concordance describes the degree to which the judgments of
different participants are consistent. The number of inconsistent judgments is compared
to the total number of possible inconsistencies. If the ratio becomes too high, the data
must be rejected.

A standard method for processing data from paired comparison studies is the Bradley-
Terry-Luce (BTL) scaling [88]. The BTL scaling assigns scale values to each element
from a set of n experimental conditions & = {51, S,...,S,} such that the scale reflects
the observed preference judgments. Typically, each of the n experimental conditions is
compared to each other, leading to a total of n(n — 1)/2 paired comparisons. From the
preference judgments of all participants, the dominance matriz is deduced, which describes
for each pair (S,, S,) how often item S, is preferred over item S,. The BTL model assumes
that the probability p(S,,Sp) with which S, is preferred over S, can be solely described
by the respective scale values ¢(S,) and ¢(S,). The scale values must be chosen in such a
way that
¢(Sa)

¢(Sa) + ¢(Sh)

hold for all S,, S, € S. Scale values are positive real number. Obviously, the scale function
can be multiplied by any positive real number to yield an equivalent scale function.

p<Sa>Sb) = (51)

5.2 Definitions

The definition of independent and dependent variables in an experiment requires a defini-
tion of the effects which are under investigation. As there is no unique terminology in the
telepresence literature, the following definitions detail the meaning of some terms in the
following description of the experiments.

e Task Performance: The task performance describes the efficiency of executing a
task. The efficiency is measured by a comparison of the degree of fulfillment with
the expended costs.

The way in which the degree of fulfillment and the expended costs can be quanti-
tatively measured is task dependent, and accordingly the task performance itself is
a task dependent measure. In the context of telepresence, typical measures include
position and force tracking accuracy as well as task execution time.

e Feeling of Presence: The feeling of presence denotes the degree of similarity in the
experience of the real and of the mediated environment. The terms feeling of pres-
ence, transparency, immersion, and perceived realism are often used synonymously.

While the similarity between real and mediated environment can be measured in
terms of signals, it is unclear how deviations on the signal level translate to deviations
in the perception. As the experience and the perception of the task execution in the
real or in the mediated environment are not directly accessible, it is not possible to
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physically measure the feeling of presence. Therefore, questionnaires are frequently
used to assess the feeling of presence as subjectively perceived by the test persons.
Alternatively, the feeling of presence can be ranked by pairwise comparing different
conditions.

5.3 Spatial Assist Functions

In this section, the evaluation of spatial assist functions is described. As detailed in
Chapter 4, the spatial assist functions only change the spatial but not the temporal course
of the movement. They aim at eliminating lateral position errors during the approach
phase to the target. Consequently, the feed motion is purely controlled by the human
operator, and the total duration of the movement as well as the final velocity at the target
are not affected by the assist function.

Recalling from Chapter 4, there are two major types of spatial assist functions, namely, the
position-based and the force-based assist functions. Both methods can be parameterized to
modulate the dependence on the distance to the target and on the derivative of the lateral
error. Some additional, method-specific settings can be applied to tune the behavior of
the assist functions.

The goal of the evaluation consists in assessing and comparing the position-based and
force-based spatial assist functions w.r.t. their influence on task performance and feeling
of presence. For both methods, the evaluation shall yield the optimal parameter sets.

5.3.1 Method
Experimental Setup

Following the overall benchmark scenario of the presented thesis, the evaluation is con-
ducted for a screwdriving task. The specific scenario is inspired by a telepresent screwdriv-
ing task presented in [77]. The task consists in inserting a hexagon screwdriver into the
hexagon socket of a screw and turning it. For the purpose of this study, the experiment is
simplified in order to make the psychophysical analysis more meaningful. Instead of using
a physical teleoperator, a virtual environment is employed which ensures a better repro-
ducibility and higher safety. Furthermore, the task is restricted to the three translational
degrees of freedom. Only the approach phase is analyzed, i.e. no interaction forces occur.

The virtual reality is visually rendered using a head-mounted display (HMD) with SXGA
resolution and a frame rate of 30 Hz. The virtual camera pose is determined by tracking
the head pose of the test person. An exemplary view of the virtual scene is depicted in
Fig. 5.1. Haptic interaction is achieved through the large scale haptic display ViSHaRD10
(also used in [77],[101]). Detailed information on the experimental hardware can be found
in Appendix C.
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Figure 5.1: Virtual reality scene used as visualization tool in the experiment. The viewing area
is adapted to the field of view of the HMD. The pose of the virtual camera in the virtual
scene is always synchronized with the tracked head pose of the operator.

Experimental Design

In the experiment, the influence of position-based and force-based spatial assist methods
on task performance and feeling of presence is evaluated. The task performance is derived
from recorded data; the feeling of presence is subjectively evaluated on a rating scale.

More specifically, the experiment is designed to answer the following questions:

1. How do the parameters within the position-based assist function influence the task
performance and the feeling of presence? The parameters are the strength of the
assist function, its dependence on the direction, and its dependence on the distance
to the target.

2. Does the additional position correction (PC) in the final phase of the approach move-
ment influence the feeling of presence?

3. How do the parameters within the force-based assist function influence the task
performance and the feeling of presence? The parameters are the strength of the
assist function and its dependence on the direction, on the distance to the target,
and on the duration of the error.

4. Is there a difference between force-based and position-based assist functions?

Participants

Experiments are conducted with 21 students from the Technische Universitat Miinchen.
11 participants with an average age of 24 years (4 women, 7 men) are randomly assigned
to the position-based assist functions (group A), while 10 participants with an average age
of 23 years (5 women, 5 men) are randomly assigned to the force-based assist functions
(group B). All test persons are right-handed and have normal or corrected to normal vision.

70



5.3 Spatial Assist Functions

Independent Variables

1. Position-based assist function: Influence of scaling factor, direction dependence, and

position dependence. Participants of group A are exposed to 3 x 2 x 2 = 12 different
parameterizations of the position-based assist function. Additionally, they have to
fulfill the task without any assistance. The factors of interest are:

e scaling factors varied on 3 levels: d = 0.75, d = 0.50, d = 0.10

e direction dependence varied on 2 levels: wunidirectional scaling (US) and bidi-
rectional scaling (BS)

e position dependence varied on 2 levels: constant scaling (CS) and position de-
pendent scaling (PS)

All 12 test conditions and the control condition are presented 5 times.

. Position-based assist function: Influence of position correction in final phase. In
order to answer the question regarding the influence of correction in the final approach
phase, participants of group A also have to test 2 x 2 = 4 additional modes with
position correction in the final phase:

e direction dependence varied on 2 levels: wunidirectional scaling (US) and bidi-
rectional scaling (BS)

e position dependence varied on 2 levels: constant scaling (CS) and position de-
pendent scaling (PS)

The scaling factor is kept constant at d = 0.5. Each of the 4 additional combinations
is also repeated 5 times.

. Force-based assist function. Participants of group B have to fulfill their task under
5 x 3 = 15 different parameterizations of the force-based assist function. They also
experience the control condition with no assist function activated. The varied factors
are:

e force calculation mode on 5 levels: time dependent force, constant unidirectional
force, constant bidirectional force, position dependent unidirectional force, posi-
tion dependent bidirectional force

e scaling factors varied on 3 levels: d = 0.75, d = 0.50, d = 0.10
Each combination is again presented 5 times.

. Force vs. position-based assist function. In order to compare both assist function
types, some data from group A (combinations from 1.) and group B (combinations
from 3. without the time dependent force method) entered the analysis.

Dependent Variables

In accordance with the overall evaluation objectives, the following two dependent variables
are considered:

71



5 Experimental Evaluation

1. Task Performance Measure. The main objective of the analyzed task segment is
to align the screwdriver correctly with the screwhead. Thus, the lateral deviation
at the point of insertion is an appropriate measure for the task performance. The
quantitative performance measure is defined as:

TP = |loz] ™ (5.2)

When the position correction in the final phase is applied, the lateral deviation is
systematically forced to be zero at the point of insertion such that the performance
is optimal (TP — c0).

2. Feeling of Presence Measure. The feeling of presence is measured by two items of
the presence questionnaire in [104] (translated to German by [87]): “How natural
did your interactions with the environment seem?” and “How compelling was your
sense of moving around inside the virtual environment?” Each question is rated on
a T-point rating scale. A sum score of presence rating F'P is computed by summing
both items.

Experimental Procedure

Participants are given time to become familiar with the test environment and the task.
As soon as they can successfully complete the task in three consecutive trials with a max-
imum deviation in task execution time of one second, the preparation period is finished.
Afterwards, they complete their trials depending on their group membership without be-
ing informed about the variation of the assistance modes. Each of the above described
combinations is presented five times in fully randomized order to avoid learning effects.
After each trial, the participant answers both questions regarding his subjective feeling of
presence.

5.3.2 Result

Presence and performance measure of each combination are averaged across the 5 repe-
titions. The averaged baseline measure (no assist function activated) is subtracted from
each experimental manipulation to derive information about improvement of applying the
assist functions. This results in the relative measures AT P and AF P. The influence of the
assistance mode characteristics on both dependent variables is first tested with multivari-
ate analyses of variance (MANOVA) with the test statistics Pillai Spur. Significant effects
(as well as question 2) are tested with univariate analyses of variance (ANOVA). Partial
n? is chosen as effect size; if necessary, violations of assumed sphericity are corrected by
the Greenhouse-Geisser correction. The significance level is set to 1%.

Position-Based Assistance:
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Influence of scaling factor, direction dependence, and position dependence

The MANOVA reveals significant effects of damping (F(2,9) = 35.6, p < 0.01; n* = 0.89)
and scaling (F'(4,40) = 5.2, p < 0.01; > = 0.34). Additionally, the interaction between
both factors is statistically significant at the 5%-significance level (F'(4,40) = 3.1, p < 0.05;
n* = 0.23). No other effect is statistically significant and therefore not considered further.

1. Task Performance Measure. Variation in damping also affects position accuracy
(F(1,10) = 76.2, p < 0.01, n*> = 0.88): When inserting the screwdriver using the
position-based damping scheme, performance is significantly better (cf. Fig. 5.2a).
Scaling does not statistically influence accuracy on the 1%-significance level, but on
the 5%-significance level (F(2,20) = 15.3, p < 0.05; n* = 0.60) indicating best per-
formance with highest scaling; the Bonferroni test shows a significant improvement
with the highest scaling compared to both other ones (again on the 5%-significance
level). The interaction between damping and scaling is not statistically significant
(F(2,20) = 0.1, p < 0.01).

2. Feeling of Presence Measure. Damping influences the presence rating (F'(1,10) =
13.1, p < 0.01; n? = 0.57): Position-based damping is rated to result in a greater
feeling of presence (cf. Fig. 5.2b). Additionally, the scaling factor affects the presence
feeling indicating a greater increase of the rating with increasing scaling factor (cor-
rected by Greenhouse Geisser: F(1.2,12.5) = 10.3, p < 0.01; n* = 0.51). However,
as can be seen from Fig. 5.2b, this is only true with the constant scaling assistance
scheme (significant interaction: F(2,20) = 8.3, p < 0.01; n* = 0.45).

a) 5~O T T T b) 3.0 T T T
4.0} I 1 2.5¢ 1
Tso0F I i 2.0} i
g o N
E2.0f {1 &15f -
A <
Sof . 1.0} ]
0.0 -_— 0.5F 8
-1.0 . . : 0.0 . .
0.75 0.50 0.10 0.75 0.50 0.10
d d
—e— constant scaling -+ position dependent scaling

Figure 5.2: Effects of position-based assist functions compared to unassisted trials on a) task
performance and b) feeling of presence

Position-Based Assistance:
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Influence of Position Correction in Final Phase

Whether adding position correction in the final phase affects the feeling of presence is tested
with a univariate ANOVA and reveals a significant influence (F'(1,10) = 11.3, p < 0.01;
n* = 0.53): Position correction is rated to improve the feeling of presence. Additionally, an
interaction between position correction and damping can be observed at the 5% significance
level (F(1,10) = 5.7, p < 0.05; n* = 0.36) indicating greater differences in presence ratings
without position correction in the final phase just as described before (cf. Fig. 5.3a).
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Figure 5.3: a) Influence of position correction in final phase and damping on presence rating
(position-based assistance mode); b) Influence of different force-based assistance modes
on presence ratings

Force-Based Assistance

The influence of the five investigated force-based assistance schemes (cf. Sec. 5.3.1) is
tested with a MANOVA and affect the dependent variables (F(8,72) = 4.5, p < 0.01; n* =
0.33). Additionally, the interaction between method and scaling factor reaches statistical
significance (F(16,144) = 5.0, p < 0.01; n* = 0.36). The scaling factor is significant at the
5%-significane level (F(4,36) = 3.3, p < 0.05; n* = 0.23). Results of the separate analyses
for each dependent variables are described below.

1. Performance Measure. Neither the type of force assist function (F'(4,36) = 0.3, p =
0.89) nor the scaling factor (F(2,18) = 0.62, p = 0.54) nor the interaction between
both (corrected by Greenhouse Geisser: F(2.7,24.5) = 2.9, p = 0.06) influences the

task performance in a statistically significant way.

2. Feeling of Presence Measure. The type of force assist function significantly affects the
feeling of presence (corrected by Greenhouse Geisser: F(1.9,16.7) = 15.9, p < 0.01;
n* = 0.64). Bonferroni tests reveals a significant difference between the constant and
the position dependent bidirectional force scheme (p < 0.01) indicating a decrease
of the feeling of presence with the constant force mode. A marginally significant
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difference between the time dependent force and the constant bidirectional force
assist mode (p = 0.01) is due to a greater decrease in presence ratings with the
constant bidirectional force assistance mode (cf. Fig. 5.3b).

The interaction between type of force assist function and scaling also reaches sta-
tistical significance (F(8,72) = 7.9, p < 0.01; n? = 0.47): The greatest decrease in
presence rating is observed with the constant bidirectional force assistance and the
higher force scaling (F(2,18) = 7.0, p < 0.01; n* = 0.44).

Position Based Assistance vs. Force Based Assistance

Lastly, position-based and force-based assist functions are compared according to their
effect on task performance and feeling of presence. There is a statistically significant
influence on performance (F(1,19) = 54.1, p < 0.01; n? = 0.74) as well as on presence
rating (F(1,19) = 114, p < 0.01; n* = 0.38). Working with the position-based assist
functions result not only in an improved feeling of presence compared to experiencing the
force-based assist functions (AFP = 1.6, 0 = 1.6 vs. AFP = —0.2, 0 = 1.1) but also in
an increased task performance, i.e. an increased positioning accuracy.

5.3.3 Discussion

In the presented experimental evaluation, two different spatial assist concepts, a position-
based and a force-based approach, were assessed and compared. Both concepts are intended
to reduce lateral position deviations in the approach phase of a peg-in-hole task. The feeling
of presence should not be negatively affected by the assist functions.

In summary, the position-based assist functions are considerably superior to the force-
based assist functions. The application of a position-based assist function can result in
an increased task performance and an increase feeling of presence at the same time. As
expected, the increase of task performance and feeling of presence is closely correlated to
the scaling factor. In the experimental study, even the most extreme scaling factor did not
produce any unnatural behavior, which would have decreased the feeling of presence. The
task performance is superior when the position-dependent scaling is employed instead of a
constant scaling.

The force-based assist functions do not provide a significant increase in task performance.
The effects on feeling of presence are significant, however, none of the examined modes can
increase the feeling of presence by the same amount as position-based assist functions can.

In general, increasing task performance and feeling of presence are seen as conflicting
objectives: A high performance increase typically requires a strong intervention of the assist
system which in turn badly affects the feeling of presence. In contrast, this experimental
study shows that a human-adaptive assist system can increase performance and feeling
of presence at the same time, because the system only suppresses unwanted errors such
that the task is performed successfully and the expectations of the operator are better
matched.
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5.4 Temporal Assist Functions

In the previous section, evaluation results of the spatial assist functions were presented. In
this section, a description of the complementary approach, the temporal assist functions,
follows. The temporal assist functions leave the spatial course, i.e. the path of the approach
movement unchanged, but apply corrections to the temporal course, i.e. the velocity profile.
In this way, high impact velocities, which come along with high kinetic energy and high
mechanical momentum, are avoided.

As discussed in Chapter 4, the compensation of time delay plays a major role in the design
of the temporal assist functions. Therefore, the effects of this assist functions are tested
in a condition with time delay and compared to the undelayed case.

In addition to the temporal reshaping of the approach trajectory, the evaluation investi-
gates the effects of the force augmentation on operator side. This can be operated in two
different modes, the stiffness-based prediction (SBP) and the rate-hardness-based prediction
(RHBP) mode.

In this experimental study, the different temporal assist functions are rated w.r.t. their
influence on the feeling of presence. An evaluation of task performance is not applicable
to this assist function, because the related objective can be perfectly reached under mild
assumptions.

5.4.1 Method

Experimental Setup

The scenario of the evaluation is again the screwdriving task [103]. The test persons are
assigned to move the screwdriver forward and establish contact with the screwhead. In
accordance with the purpose of the temporal assist functions, the transition from freespace
to contact is in the focus of the evaluation. As only the longitudinal motion is of interest in
this experiment, the task is restricted to one degree of freedom in direction of the approach
motion.

The visual feedback is provided by the same virtual reality as used in Sec. 5.3 with the scene
shown in Fig. 5.1. The advantage of a virtual reality lies in the possibility to conceal the
current experimental condition from the test person. The haptic interaction is implemented
by a 1 DOF telepresence system, which is shown in Fig. 5.4. The haptic interface and the
teleoperator are both constructed as high-fidelity linear devices. The actuators are linear
servo motors, Thrusttube Modules 2504 by Copley Controls Corp. which are equipped
with an optical position encoder (resolution 1 pm). A 1 DOF force sensor is employed to
measure the interaction force with human operator and environment, respectively. Detailed
information on the experimental hardware can be found in Appendix C.

The teleoperator is equipped with a cylindrical steel pin as end-effector, which is used to
probe the remote environment. In order to vary the mechanical properties of the environ-
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haptic interface  local object teleoperator remote object

Figure 5.4: Haptic telepresence system with one degree of freedom. The system is composed
of two identical linear actuators equipped with position and force sensors. On operator side
and teleoperator side, cubes with different mechanical compliance can be mounted such
that the operator can probe the environment either in direct or telepresent interaction.

ment, different cubes can be mounted on a plate in front of the teleoperator. The initial
distance between end-effector and object is 8 cm.

On the linear device which acts as haptic interface, the handle of a screwdriver is mounted
as end-effector. During the experiment, the test person grasps the handle and moves it
away from his body toward the target object. In order to allow a comparison of direct and
telepresent interaction with a mechanical object, the same steel pin as on the teleoperator
is mounted on the backside of the haptic interface. There is also a mounting plate in front
of the haptic interface such that the different cubes can be either presented on operator or
teleoperator side.

As mentioned above, all external cues which allow the test person to differentiate between
direct and telepresent manipulation are carefully hidden. This significantly increases the
external validity of the experimental evaluation.

Experimental Design

The experiment is supposed to investigate the influence of the position- and force-based
assist functions on the attribute “perceived realism”. To this end, the method of paired
comparison is employed in a 2 x 3 mixed-subjects experimental design, where the position-
based assistance mode is varied on two levels (active, inactive) and the force-based as-
sistance mode is varied on three levels (SBP, RHBP, none). A non-mediated (“real”)
condition, in which the teleoperator is omitted, and the physical contact is established
directly on operator side, serves as reference and control condition. The systematic com-
bination of all assist modes plus the real condition, yields 2 x 3 + 1 = 7 experimental
stimuli, which are listed in Table 5.1. In each condition of the experiment, the test persons
are presented the reference stimulus (RS) followed by two comparison stimuli arbitrarily
selected from the seven possible settings (S1...56, RS). After the presentation of each
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position-based assistance

active inactive
= rate-hardness-based prediction S1 S4
g9
s S
2 8 stiffness-based prediction S2 S5
S @
]
ha none S3 S6
real condition RS

Table 5.1: Experimental stimuli for the evaluation of temporal assist functions. There are
3 x 2 = 6 assistance conditions S1...S6, which are compared to the real condition (RS),
i.e. direction manipulation.

condition, the test persons are asked to decide which one of the two presented comparison
stimuli feels most like the first presented reference stimulus.

Each stimulus is systematically contrasted with every other stimulus, thus leading to (7 x
(7—1))/2 = 21 pairs of stimuli for participants to judge. These stimulus pairs are presented
under four different conditions: On the one hand, the stiffness of the remote environment
is varied by using either a steel cube or a silicone cube. On the other hand, the time
delay in the communication channel is varied between no time delay, i.e. T; = 0 ms, and
a time delay of T; = 10 ms. Stiffness is treated as within-group variable, i.e. test persons
experience both conditions. In contrast, time delay is treated as between-group variable,
i.e. all participating test persons are randomly assigned to one of two groups, where persons
of one group only experience conditions without time delay, and those of the other group
experience only conditions with time delay.

In order to cancel out ordering effects, the sequence in which the stimulus pairs are pre-
sented is varied for each participant using the Latin square method. Furthermore, the
order in which the two cubes of different stiffness are presented is also randomized. Al-
though the visual appearance of the two cubes is different, test persons receive no prior
knowledge about the current test condition, because the visual feedback generated by the
HMD completely hides the experimental hardware.

Participants

The test persons of the experiment are an opportunity sample of 35 participants. The
data of one test person is excluded from further analysis because of irregularities during
the experiment. The remaining sample (N = 34) comprises 9 women and 25 men (mean
age: 25 yrs., standard deviation: 4 yrs.). All participants are distributed randomly across
the two test groups (see above). The groups are tested for differences in age or experience
with 3D computer gaming, which turn out to be non-significant (#(32) = 0.39, p > 0.05;
t(17,17) = 1.06, p > 0.05, respectively).

78



5.4 Temporal Assist Functions

Three participants state to be left-handed, all others state to be right-handed. Depending
on the handedness, test persons conduct the experiment either with the right or the left
hand, where the virtual reality is adapted accordingly.

Procedure

Before the actual experiment starts, the test persons are introduced to the experimental
apparatus. They are given the opportunity to get acquainted with the device and the task.
Each experimental condition consists of three trials, in which the reference stimulus and
two different stimuli from Table 5.1 are presented. In each trial, the test person moves
the virtual screwdriver forward and feeds it into the virtual screw socket, where the haptic
feedback comes from the steel pin touching one of the test cubes. After having performed
all three trials, the test person is asked to judge, which of the stimuli in the latter two
trials feels most similar to the reference stimulus experienced in the first trial. Each test
person is exposed to 2 x 21 = 42 test conditions such that both cubes are tested under all
stimulus pairs. The total duration of the experiment is approx. one hour per test person.

5.4.2 Result
Manipulation check

Before further analysis, the acquired data is checked for validity. The consistency co-
efficients are calculated for all four experimental conditions, i.e. the two stiffness levels
combined with the two time delay levels, and yield a high degree of consistency in judg-
ment. The validity of the individual ratings is also supported by the fact that the reference
stimulus is always rated higher than telepresent conditions. This confirms that the test
persons judge according to the correct criterion. Furthermore, the concordance of the judg-
ments is assessed for the four experimental conditions by calculating Kendall’s concordance
coefficient W, which demonstrates a high degree of consistency between test persons.

In Fig. 5.5, the preference judgments are illustrated. Each bar in the figure indicates how
often the stimulus is preferred over any other stimulus. As each of the 17 test persons per
group experienced 21 conditions per cube, there are a total of 17 x 21 = 357 preference
judgments, which are distributed across the 7 stimuli.

Selection of BTL model

For the further analysis, the data from the paired comparison trials is translated to a
continuous rating scale by using the Bradley-Terry-Luce (BTL) model, see Sec. 5.1 and
[19]. As the experiment comprises four experimental conditions, the BTL model is extended
to accommodate several preference matrices. A general, multinominal model with all 21
comparisons is compared to a restricted model with only 7 parameters w.r.t. the ability to
explain the paired comparison data. In both cases, the model parameters are determined by
using a maximum likelihood estimation method. As the general model does not explain the
experimental data significantly better than the restricted model, the latter is used, because
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Figure 5.5: Preference judgments for all four experimental conditions. The bars express the
number of test condition in which the stimulus is preferred over the comparison stimulus.
In Fig. a), the results for the steel cube are presented for the delayed and non-delayed
case. In Fig. b), the respective results for the silicone cube are shown.

it has fewer parameters. The numerical data of the comparison for all four experimental
conditions is depicted in Table 5.2.

Differences in preference judgments for different experimental conditions

It is tested whether time delay in the communication channel has a significant effect on
the preference ratings. To this end, a conjoint approach is employed, in which a general
model with 12 free parameters (df=12) is compared to a restrictive model with only 6
free parameters (df=6). The comparisons are performed separately for the experimental
conditions involving the steel cube and those involving the silicone cube. For the steel

hard contacts T;= 0ms x2(14) = 9.68,p = 0.79
Ty =10 ms x2(14) = 9.74,p = 0.78

soft contacts T;= 0 ms x2(14) = 12.87,p = 0.54
Ty = 10 ms x2(14) = 10.09,p = 0.76

Table 5.2: Comparison of general and restricted BTL model. The table list the values of
the y2-distributions comparing both models. The differences are not significant for any
experimental condition.
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cube, the general model (df=12) explains significantly more variance than the restricted
model (df=6). In contrast, for the soft cube, no significant difference between general and
restricted model can be observed. Thus, time delay has a significant effect on the rating
when stiff objects such as the steel cube are touched, whereas the effect vanishes when soft
objects such as the silicone cube are touched.

The relative strengths of preferences for contact settings are displayed in Fig. 5.6. The
most preferred settings are normalized to one. Note that preferences of soft contacts are
combined into one preference scale because there are no significant differences between the
two time delay conditions.

1.0

Relative Strength of Preference

RS S5 S4 S1 S2 S3 Sé6 RS S1 S4 S2 S5 S3 S6 RS S3 S6 S5 S4 S1 S2
Bl steel cube, 7, = Oms M steel cube, Ty = 10 ms B sjlicone cube

Figure 5.6: Relative strength of preference. The charts illustrate the rating scale obtained
through the BTL model for different experimental conditions. In all conditions, the refer-
ence stimulus gets the highest ranking.

Perceived realism of contacts with a stiff environment

In order to assess the effect of the various assistance modes, the BTL-models are checked
for significant differences between the respective preference ratings. Besides the influence of
the individual modes, namely position-based assistance and the two force-based assistance
modes (SBP and RHBP), the possible interactions between position-based assistance and
force-based assistance are investigated. The analysis is performed separately for contacts
with stiff environments as represented by the steel cube and contacts with soft environment
as represented by the silicone cube.

In Table 5.3, the results of the relevant comparisons between different experimental con-
ditions are summarized. The significance level for the following tests is adjusted with
Bonferroni corrections and set to p < 0.007 in order to compensate for multiple compar-
isons. Because of the differences in the preference ratings between the non-delayed and
the delayed condition, separate comparisons are performed (N = 17).
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stimulus pair

Ty = 0ms

Ty =10 ms

S4, S6 x2(1) = 15.50, p < 0.007  x3(1) = 65.97, p < 0.007
S5, S6 x2(1) =22.63, p < 0.007  x3(1) = 43.64, p < 0.007
S4, S5 x2(1) = 0.73, p = 0.39 x2(1) = 3.00, p = 0.08
S3, S6 x?(1) < 0.001, p > 0.99 x2(1) =2.18, p=0.14
S1, S6 x2(1) = 13.42, p < 0.007  x3(1) = 79.91, p < 0.007
S2, S6 x2(1) = 2.53, p = 0.12 x2(1) = 65.71, p < 0.007
S1, S2 X2 (1) = 4.42, p = 0.04 x2(1) = 3.04, p = 0.08

Table 5.3: Preference conditions of contacts with a stiff environment. Relevant experimental

conditions are checked for significant differences in their preference ratings. As the BTL
models are significantly different for experiments with and without time delay, the analyses
are performed separately.

In particular, the following qualitative results can be obtained from the comparisons:

e [orce-based assistance modes significantly improve the perceived realism compared to
the unassisted condition. This statement holds for the stiffness-based prediction (S5,
S6) as well as the rate-hardness-based prediction (S4, S6) independently of the time
delay in the communication channel. The statement is even still valid when position-
based assistance is added, because in the combined assist functions, stiffness-based
prediction (S2, S6) and rate-hardness-based prediction (S1, S6) are again preferred
over the unassisted condition.

There is no significant difference between stiffness-based prediction and rate-hardness-
based prediction. This statement is independent of the time delay and holds for
conditions without additional position-based assistance (S4, S5) as well as conditions
with additional position-based assistance (S1, S2).

Position-based assistance does not significantly deteriorate the perceived realism. The
unassisted condition (S6) is not significantly preferred over the condition without
position-based assistance alone (S3). Also in combination with force-based assist
functions, the position-based assistance did not change the effects on perceived real-
ism. However, in the non-delayed case, the preference of the stiffness-based prediction
over the unassisted case drops below significance level when position-based assistance
is activated (S2, S6).

Perceived realism of contacts with a soft environment

The same analyses regarding significant differences in the preference ratings are also per-
formed for contacts with a soft environment. The respective results are summarized in
Table 5.4. As there are no significant differences between the two time delay conditions,
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stimulus pair

S4, S6 2(1) = 9.22, p < 0.007
S5, S6 x2(1) = 8.64, p < 0.007
S4, S5 x2(1) = 0.01, p = 0.92
S3, S6 x2(1) = 0.01, p = 0.92
S1, S6 x2(1) = 13.90,p < 0.007
S2, S6 x2(1) = 28.51,p < 0.007
S1, S2 x2(1) =2.91, p = 0.08

Table 5.4: Preference conditions of contacts with a soft environment. Relevant experimen-
tal conditions are checked for relevant differences in their preference ratings. Only one
BTL model needs to be considered because there are no significant difference between
experiments with and without time delay.

all ratings of contacts with soft environments are combined into one preference matrix

(N = 34).
The specific results which can be extracted from Table 5.4 are:

e Force-based assistance modes significantly decrease the perceived realism compared to
the unassisted condition. As opposed to the experiments with stiff environments, the
stiffness-based prediction (S5, S6) as well as the rate-hardness-based prediction (54,
S6) significantly decrease the perceived realism. This also holds when the force-based
assist functions are combined with position assistance (52, S6) and (S1, S6).

e There is no significant difference between stiffness-based prediction and rate-hardness-
based prediction. This observation is in line with the experiments with stiff environ-
ments. It is valid when no position-based assistance is added (S4, S5) and when
position-based assistance is added (S1, S2).

e Position-based assistance does not significantly deteriorate the perceived realism. As
indicated by the comparison (S3, S6), the condition without assistance is not signif-
icantly preferred over the condition with position assistance.

5.4.3 Discussion

In this section, an experimental evaluation of temporal assist functions was performed.
In the evaluation, the influence of position-based and force-based assist function on the
realistic portrayal of haptic contacts with surfaces of differing stiffness in a telepresence
system was investigated.

Theoretically, the position-based assist functions are prone to reduce the perceived realism
for two reasons: On the one hand, the trajectory of the teleoperator before the impact is
deliberately altered by the assistance algorithm and is, therefore, not in full accordance with
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the commanded trajectory. On the other hand, the change of the impact velocity, which is
imposed by the position assistance scheme, is expected to affect the perception during the
establishment of contact. The results, however, contradict these expectations and show
that position-based assistance did not significantly affect the perceived realism, regardless
of the stiffness properties of the environment. Apparently, the position deviations during
the approach phase are too small and are built up too slowly to be perceived by the
user [86]. Previous studies suggest that stiffness perception when mediated by tools relies
primarily on kinesthetic rather than tactile information, e.g. [58], which could explain why
the changed impact velocity is not noticed.

The force-based assist functions are designed and expected to increase the perceived re-
alism when physical contact between teleoperator and environment is established. This
expectation is plausible, because the environment is rendered locally, thereby omitting the
deteriorating and softening effects of the telepresent control loop. In contrast, the force-
based assist functions are expected to decrease the perceived realism in interactions with
soft environments. This is attributed to the initialization of the stiffness estimation to a
stiff environment, which needs some time to adapt to the correct value. The experimental
evaluation confirms both hypotheses. The expectations are met for both force-based assis-
tance schemes, the stiffness-based prediction as well as the rate-hardness-based prediction.

As the rate-hardness-based prediction is specifically designed for contacts with stiff en-
vironments, it is expected to perform superiorly to the stiffness-based prediction when
contact with a stiff environment is actually established. However, this expectation cannot
be confirmed by the experiment. Unlike other studies in the literature, see [60], no dif-
ference in the perceived realism produced by a stiffness-based and a rate-hardness-based
prediction scheme can be observed, here. This disagreement may be attributed to the
different characteristics of the employed hardware. In contrast to the hardware used in
[60], the experimental device used in this study is able to output a high degree of stiffness.
It is, therefore, possible that rate-hardness-based prediction is only superior to mechanical
stiffness with devices that tend to render stiff surfaces softer.

For the combination of position-based and force-based assistance, a significantly positive
effect is expected for contacts with stiff environments, because force-based assistance is
thought to prevail possibly negative effects of position-based assistance. For contacts with
soft environments both assist functions are assumed to significantly deteriorate the feeling
of perceived realism, leading to an overall negative effect. Except for one comparison,
these hypotheses are confirmed by the experiment. The combination of stiffness-based
prediction and position assistance for stiff contacts without time delay fails significance
when compared with the unassisted teleoperation mode.

The experiments were conducted for a telepresence system without time delay and for a
system with time delay in the communication channel. It is expected that time delay
does not change the effects of the assist functions qualitatively but quantitatively such
that the effects are more prominent in trials with time delay than in trials without time
delay. In general, this is confirmed by the experiment. The only exception can be found in
conditions with a stiff environment when position and force assistance modes are combined.
Apparently, the influence of this combination drops below significance level for the no time
delay condition.
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5.5 Discussion

As the human operator forms an integral part of a telepresence scenario and as the pre-
sented assist system claims to improve the performance and the experience of the human
operator using the assisted telepresence system, the extent to which the claim is fulfilled
can finally be judged by the human only. In order to get reliable results regarding the ac-
ceptance of the system by the user, psychologically founded experiments were conducted.

The evaluations in this chapter attest the successful application of the developed assist
functions. More specifically, they show that the task performance of peg-in-hole tasks can
be optimized without disturbing the operator. It is even shown that the feeling of presence
also increases, when the task performance is increased.

The generalizing interpretation of the results suggests that the human operator is willing
to accept corrections of command and feedback signals, when these corrections make the
telepresent procedure more resembling to the direct execution of that procedure. In this
way, the task performance approaches the level of direct manipulation, and the feeling of
presence also increases because the expectations of the operator are better matched.
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6 Conclusions and Future Work

The research reported in this thesis is focused on the development and evaluation of as-
sist functions for haptic telepresence systems. The design objective for the assist functions
consists in supporting the human operator without degrading the intuitiveness of the telep-
resence system. In this chapter, the results of the research and the specific contributions
are summarized. Finally, future research directions are suggested.

6.1 Summary and Results

In order to properly embed the presented research into the known literature, a classifica-
tion of existing systems according to the control paradigm and the assistance paradigm
is made in Chapter 1. It is shown that there is a strong correlation between time delay,
update rate, degree of autonomy, and human-to-robot ratio of common telepresence ar-
chitectures. Furthermore, a distinction of assist systems into intramodal and crossmodal
systems according to the supporting and the supported modality is developed.

The underlying idea of the thesis is to combine the particular strengths of human operator
and robotic telemanipulator. While the human operator provides the creativity, decision
making, and sense of responsibility, the telemanipulator contributes the endurance, working
precision, and resistance to adverse environmental conditions. Consequentially, the assist
system does not interfere with the operation planning of the human, but silently corrects
inaccuracies in the operation execution. In summary, the application of the assist system
makes it easier to fulfill a given task without being noticed as such by the human operator.

The components, which are required to implement this concept, are developed in this
thesis, and the validity of the concept is shown in experiments. A screwdriving task serves
as application example for both, the development and the evaluation.

As the telemanipulator is required to support the human operator in the currently executed
task, it must first and foremost know which task he is aiming to accomplish. In order to
not distract the human operator, his intention is silently inferred from his motions and
actions. The general aspects of intention recognition are discussed in Chapter 2. For the
specific application example, the screwdriving task, an intention estimator is developed. It
is based on a model of human point-to-point movements, which constitute the differencing
part of the screwdriving task. Fitting observed movement data to the model yields the
target of the movement and, thus, the target of the screwdriving task. The fitting process
must be performed in real-time so that its results can be used before the task is finished.
In Chapter 2, different real-time capable intention estimation algorithms are developed
and compared w.r.t. their performance, complexity, and computational effort. As a main
result, it is stated that model fitting alone does not provide sufficiently accurate intention
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estimates, but that hypotheses on possible target points must be provided. Further, it is
shown that a Gauss-Newton approximation working on the full trajectory data provides
the best results at the cost of requiring high computational power.

The above postulated need of hypotheses for the intention estimation process can be ful-
filled by a proper scene recognition system, which extracts possible targets from visual
data of the remote scene. Additionally, this data is required for planning a reference path
to the target, once it is selected as the currently intended target. In Chapter 3, a broad
overview of literature in the field of image processing and scene recognition is given. As
this is a vast research domain by itself, but constitutes only a supporting technology within
the scope of this thesis, a simple, marker-based feature extraction algorithm is selected and
tailored to the application example. As the main contribution, the orthogonal iteration
algorithm, which estimates the relative pose between camera and marker, is extended to a
multi-camera setup. It is shown that the developed pose estimator with multiple cameras
far outperforms the single camera solution in terms of accuracy and robustness.

The centerpiece of the assist system are the actual assist functions, which alter the inter-
changed position and force signals in such a way that the task performance and the feeling
of presence are improved. The assist functions depend on the knowledge of the intended
target and a reference path to implement this target. Based on this knowledge, they pro-
vide assistance, which is effective but unobtrusive. Different functions are proposed in
Chapter 4. They are grouped into temporal and spatial assist functions depending on
whether they alter the temporal or the spatial course of the trajectory. Another distinc-
tion is made into position-based and force-based assist functions, where the former alter
the position signals and the latter alter the force signals. Combined assist functions are
proposed which change both signals in the spatial as well as in the temporal domain. It
is argued that smooth transitions between commanded trajectory and reference trajectory
are favorable and practically realizable.

An experimental evaluation complements the development of the assist functions. In the
respective Chapter 5, the hypotheses, which have governed the design of the assist func-
tions, are tested. In separate sections, the spatial and the temporal functions are evaluated.
It is shown that in all cases, position-based assist functions show excellent results. As a
main finding it is discovered that assist functions can increase task performance and feeling
of presence at the same time. This is attributed to the fact that a telepresent task exe-
cution with less errors resembles more the direct task execution, which in turn leads to a
higher feeling of presence. Furthermore, the temporal force assist function which is based
on estimating mechanical properties of the remote environment can increase the feeling
of presence when the initial guess of the mechanical properties is sufficiently close to the
true values. Altogether, the experimental evaluation proves the benefits of the proposed
assist concept to the effect that the performance of the telepresence system is increased,
although the human operator does not explicitly notice the assist system.
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6.2 Review of Contributions

In this section, the major research contributions of this thesis are revisited. These contri-
butions are seen as the generalizable outcomes of the presented research.

e The assist concept itself, which consists in estimating the operator intention, creat-
ing a corresponding reference plan, and finally integrating commanded actions and
reference plan into a superior action sequence, is the most significant contribution.
While this is applied to a simple example task within this thesis, it is applicable to
a broad range of tasks. Fundamentally, the concept presents an attractive way of
combining human and machine intelligence.

Although many assist systems for haptic telepresence systems have been proposed
before, this is the first concept which does not depend on prior planning or explicit
instructions to the assist system. Therefore, it is the only assist system which fully
maintains the feeling of presence in the remote environment

e The intention estimation algorithm for human point-to-point movements extends
the current state of the art. Most existing systems rely on trained classifier sys-
tems, where the most prominent ones are Hidden Markov Models. In contrast, the
presented algorithm is based on a dynamic model of the considered movements. A
system, which can estimate trajectories based on a model in real-time and in 3D, has
not been presented before.

e The pose estimation algorithm with multiple cameras combines the global conver-
gence and computational efficiency of the classic orthogonal iteration algorithm with
the increased accuracy and robustness which can be achieved by combining multi-
ple sources of information. Thus, the presented visual pose estimation algorithm
reaches a higher performance level than previous algorithms. The application range
far exceeds the context of assisted telepresence.

6.3 Future Research Directions

From the presented research, several future directions emerge. On the one hand, direct
extensions of the presented example can be considered, on the other hand, fundamentally
new applications of the presented concept are thinkable.

Within the presented application example, two lines of further developments can be fol-
lowed. On the one hand, the intention estimation process can be embedded into a larger
intention recognition process, which first determines the type of action, the human opera-
tor is aiming to perform. On the other hand, the scene recognition system can be extended
from the current marker-based system to a feature-based system, which is able to detect
possible targets from camera images of the scene without markers.

As many efforts are undertaken to provide robots with more autonomy and a higher de-
gree of intelligence, the capabilities of robots will gradually increase in the time to come.
However, in the foreseeable future, robots will not replace humans in many areas, but
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instead new forms of human-robot collaboration will emerge. Thereby, the application
range of the presented assist concept will further increase. A higher degree of intelligence
will enable the robots to detect the intention behind more complex action sequences of the
human operator. At the same time, the higher degree of intelligence will allow creating
appropriate reference plans for these more complex action sequences. Thus, unobtrusive
assistance will be implementable at a higher level. Besides from being very effective, this
form of human-robot collaboration has the advantage that the human always takes the
superior role such that the method earns a high level of human acceptance.

Finally, the idea of dynamic assist functions can be applied to telepresence systems with
multiple human operators. Such multi-user systems are a prevailing direction in telep-
resence research in order to bring the benefits of telepresence to scenarios, in which the
support of more than one operator is needed to perform a given task. In these cases,
the assist functions can help the operators to coordinate their actions, e.g. when aligning
objects. For this purpose, the intentions of all operators must be estimated and integrated
into a common goal, a reference plan for this common goal must be developed, and finally
this plan must be fused with the commands of the operators to give the actual commands
to the teleoperators. Although this setting is far more complex than the single-user case,
the basis are the same as presented in this thesis.
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A Numerical Considerations of Intention
Estimation

Among the different intention estimation algorithms presented in Chapter 2, the
hypothesis-based method with unknown start point is the most powerful. However, as
it is an iterative method which requires solving a linear least-squares problem in each it-
eration step, it is computationally expensive. In the following, some simplifications are
introduced which make the algorithm real-time capable on decent hardware.

Recalling from Sec. 2.3, the intention estimation is performed by fitting the observed
trajectory data to a model function according to the following cost function:

Gty) = 5 > Wanlty,pltr)) = il (A1)

where the estimates 2;(¢;, p) are calculated by the model function h(t;,ts,p) as follows:

= Tps+ 7P+ ...+ TP+ Do
= (ti—t)°ps+ (ti —ty)*'pa+ ...+ (& — t5)p1 + po-

(A.2)

As the position, velocity, and acceleration are hypothesized for the final time ¢y, the fol-
lowing boundary conditions at ¢ = t; must be ensured:

h(tg,t,p) =po=x5 htyty,p) =p1 =iy h(tsts,p)=2ps =iy (A.3)

If an estimate of ff is given, the coefficient vector p can be found by linear-regression,
which minimizes the following cost function:

IR
G(p) =5 > _ Ity p) — il *. (A4)
1=1

Minimizing (A.4) while observing (A.3), can be done by solving the matrix equation for p:
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where S, and X, are defined as:

s

Sy = ZTZ and X, = ZT[%‘- (A.6)

i=1

As the sum terms S, and X, depend on 7, which in turn depends on ¢, they cannot be
calculated accumulatively, but must be completely recalculated whenever ¢; changes. This
creates the major part of the computational costs. However, if the values S, and X, are
known for final time ¢y, the corresponding values S; and X for a different final time ',
can be computed by a simple matrix multiplication. To this end, the values S, and X, are
grouped in the vectors s and &, where s is an 11 dimensional vector (r = 0...10), and &
is a 6 dimensional vector (r = 0...5). The time-shifted vector s’ can be calculated by:

s'=As, (A.7)

using the 11 x 11 matrix A, which is defined as:
0 it i<y
1 if 1=

( ; ) (th =ty if P> A

ij =

The time-shifted vector & is calculated analogously. The computational costs of shifting
the vector s and & are independent of the number of data.

As the vector s and the matrix A contain powers up to 10, the high dynamic range can lead
to considerable numerical inaccuracies when using double precision floating point numbers.
Therefore, it is favorable to continuously shift the vectors s and § to ¢y = ¢, such that
the values of 7; are small. Additionally, an exponential attenuation o < 1 of older data
points is introduced to guarantee stability:

s’ =alliTt/te A g, (A.9)

This attenuation is also a reasonable weighting of the data w.r.t. the estimation process
itself, because older data points, which may reflect the current intention less accurately
then newer ones, are weighted less.
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The telepresence architecture defines the structure of the telepresence system. It specifies
which components are present in the system and how they are interconnected. Most telep-
resence systems, including the assisted telepresence system which is under investigation
in this thesis, comprise a single haptic interface and a single telemanipulator, which are
connected by a communication channel. The interaction between haptic interface and hu-
man operator, as well as the interaction between telemanipulator and remote environment,
takes place in a single point.

The interconnection of the individual components describes the signals which are inter-
changed between haptic interface and teleoperator as well as the properties of the commu-
nication channel. The interchanged signals are classically positions, velocities, forces, or
any combination of these. The most important properties of the communication channel
are time delay, jitter, and possibly loss rate of information. It is a well-known fact in
telepresence research that the interconnection has an essential effect on the stability and
the transparency of the telepresence system, e.g. time delay in the communication channel
can make a bilateral telepresence system unstable [28]. For a given architecture, the sta-
bility region is determined by the magnitude of time delay and the mechanical properties
of human operator and remote environment.

In the context of this thesis, the specific demand on the telepresence architecture consists in
integrating the assist functions. As the assist functions alter position and force signals in a
closed-loop fashion, they are prone to destabilize the system. The telepresence architecture
must, therefore, restrict the intervention of the assist functions in such a way that stability
is maintained.

The remainder of this appendix is structured as follows: A review of existing telepresence
architectures, which are relevant to the presented system, is given in Sec. B.1. From these
architectures, the port-Hamiltonian framework constitutes the most promising approach
to the specific needs of this thesis and is, thus, presented in more detail in Sec. B.2.

B.1 State of the Art

A telepresence system typically comprises two robots: the master robot, which interacts
with the human operator, and the slave robot, which interacts with the remote environ-
ment. The telepresence architecture determines how these two robots are connected and
controlled, i.e. which kind of signals are exchanged between the robots over the commu-
nication channel, and which signals are inputs of the local controllers. The telepresence
architecture, therefore, deals with the control theoretic aspects of the telepresence system.
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Figure B.1: Milestones in the research on telepresence systems.
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In order to achieve a natural interaction via the telepresence system, signals must be
exchanged bilaterally between the two robots, i.e. forces which are applied to the master
robot result in forces applied to the remote environment, and forces applied to the slave
robot result in forces applied to the human operator. This force reflection can provide a
realistic impression of the mechanical properties of the remote environment. However, due
to the closed control loop over the communication channel, it is prone to create instabilities
when the communication channel induces a delay on the exchanged signals.

Throughout the history of telepresence (cf. Fig. B.1), the two objectives stability and
transparency have dominated the research. As in any control system, stability is indis-
pensable for a correct system behavior and, finally, for avoiding harm to human operator,
remote environment, and the telepresence system itself. In the ideal case, the telepresence
system cannot be destabilized no matter how the human operator or the remote environ-
ment behaves. Transparency is a desired property of the system, meaning that the human
operator perceives the remote environment as if he was in direct contact with it. While
true transparency cannot be technically achieved, the goal is to make the feeling as realistic
as possible. The two afore-described objectives, stability and transparency, are hard to
reconcile such that an appropriate balance must be found for a specific application.

After telepresence had made the transition from purely mechanical systems to electrically
controlled servo-systems in the mid 1950s, the early research concentrated on the effects
of delay in the communication channel [28, 89]. The results suggested that the execution
time of a given task increases linearly with the amount of time delay. This insight triggered
a plethora of investigations on new telepresence paradigms such as shared and supervisory
control [29, 90]. The main idea of supervisory control consists in sending high-level com-
mands to the teleoperator, which can be executed without human intervention such that
the time delay in the communication channel plays a minor role. For the description of
these high-level commands, many new languages were developed [32, 61, 68, 85]. A similar
approach is given by predictive displays, which build a model of the remote environment
as intermediate representation [14, 15, 43, 94]. If the manipulations are virtually executed
in the intermediate representation and then transferred to the remote environment, the
concept is called the hidden-robot concept [53].

After 1980, control theoretic aspects gained more attention in the telepresence research. In
[71], a Lyapunov-based analysis of telepresence systems is conducted. A control approach
based on an internal virtual model is presented in [34].

A major advance in stabilizing telepresence systems with time delay was reached in 1988
with the introduction of network theory and impedance representations of the mechanical
properties [39]. Subsequently, more and more concepts were borrowed from network theory
such as wave transmission, scattering theory, and passivity.

B.1.1 Two-Port Networks

The main building block from network theory, which was applied to telepresence system,
is the two-port network. A two-port network interacts with its environment through two
separate ports (see Fig. B.2). The two physical quantities entering a port always constitute
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Figure B.2: A Two-Port Network. Each of the ports consist of an effort-flow pair, which is
given by force F' and velocity & in a mechanical system. The arrows indicate that power
entering the system is counted positive.

an effort-flow pair. For mechanical systems, the effort-flow pair is formed by force F' and
velocity @, for electrical systems, it is formed by voltage U and current I.

A whole telepresence system can be modeled as two port, where the interaction between
human operator and telepresence systems takes place via one port, and the interaction
between telepresence system and remote environment takes place via the other port. This
two-port model can be refined by subdividing the telepresence system into several two-
ports, namely the human-system interface, the communication channel, and the teleopera-
tor. In a further refinement, the single devices can be split into one or more control blocks
and the hardware, which are each modeled as two-ports.

Two-port networks inherently exhibit the energy flow between interconnected subsystems.
And thus, the energy exchange between human operator and remote environment, which is
an important property of a telepresence system, can also be easily modeled. The behavior
of the communication channel with time delay can be modeled by a transmission line,
which is a special type of two-port network.

For linear systems, the relationship between the signals at both ports can be expressed in
the frequency domain by using impedance, admittance, or hybrid matrices, which are also
well-known from network theory. The impedance matrix Z(s) takes the form:

(56 =20 (50 = (i o ) (50) ®
The hybrid matrix H(s) representation takes the form:
() = (20) = Ol ) (1) wo

B.1.2 Passivity Concept

VA

Passivity has become the tool of choice for proving stability of telepresence systems. The
passivity concept is based on the intuitive physical quantities power and energy and thereby
exploits the nature of two-port networks. As only input-output properties of the system
are considered, without the need of an exact dynamic model of the system, it is applicable
to a wide range of system classes including linear and non-linear, time-continuous and
time-discrete systems.
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Fundamentally, the idea of passivity consists in monitoring the energy flow of a system. As
long as the system absorbs more energy than it produces, it is said to be passive. Formally,
the energy flow takes place through ports, which are defined by a pair of power variables e
and f. Assuming that the effort variables of all ports entering the system are aggregated
in the effort vector e and the corresponding flow variables are analogously aggregated in
the flow vector f, the total power entering the system is described by:

The system is passive, if it does not generate energy, i.e. if there exists a lower bounded,
continuously differentiable energy storage function V' such that

V<elf. (B.4)

If V < el f, the system is strictly passive, and if V = e f, the system is lossless.

The enormous usefulness of the passivity concept in network theory and telepresence sys-
tems stems from the fact that the interconnection of two passive systems, either in serial,
parallel, or feedback connection, is again passive. A passive systems can be easily shown
to be stable by using the sum of all energy storage functions as Lyapunov function.

B.1.3 Scattering Transform

With the introduction of the passivity concept, the instability of a telepresence system
with time delay can be easily attributed to the non-passive behavior of the communication
channel. In order to passivate the communication channel, it can be implemented as a
transmission line, which is a well-known passive interconnection of systems in network
theory.

In a transmission line, the energy exchange between master and slave is decomposed into an
incident and a reflective wave, which are represented by the scattering variables F'(t)+i(t)
and F'(t) — @(t), respectively. Both waves are related by the scattering matrix S:

F(t) — i(t) = S(F(t) + &(t)). (B.5)

For a two-port network in hybrid representation, the scattering matrix can be directly
obtained from the hybrid matrix (B.2):

S — ( - ) (H(s) — T)(H(s) + )™ (B.6)

In order to guarantee passivity and thus stability, the energy of the reflected wave must
be smaller than or equal to the energy of the incident wave. This is equivalent to the
statement that the infinity norm of the scattering matrix must be smaller than or equal to
1:

1SGw) oo < 1 (B.7)
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The scattering transform can be successfully applied to telepresence systems in order to
stabilize systems with arbitrary, constant time-delay in the communication channel [8]. The
guaranteed stability, however, comes at the cost of an unbounded position drift between
operator and teleoperator.

B.1.4 Port-Hamiltonian Systems

Port-Hamiltonian systems constitute a recent framework which enables a unified descrip-
tion of concepts such as network interconnection, power ports, passivity, and sampled data
systems [95]. Therefore, it is well-suited for modeling a general telepresence system as well
as the assisted telepresence system described in this thesis.

An in-depth description of the mathematical foundations of port-Hamiltonian system can
be found in [102]. A description which is tailored to the application in the assisted telep-
resence follows in Sec. B.2.

B.2 Port-Hamiltonian Based Telepresence Architecture

The port-Hamiltonian framework provides an intuitive description of interconnected phys-
ical systems, where the interconnection is described in terms of energy exchange. In this
section, an introductory overview of the port-Hamiltonian formalism is given. A more
comprehensive description can be found in [102].

B.2.1 Mathematical Background

Intuitively, a port-Hamiltonian system is modelled as an n-port system, where each port
is associated with a pair of power-conjugated variables. The fundamental distinction be-
tween port-Hamiltonian system models and classical control models is, therefore, that the
interconnection between systems is modelled as energy exchange rather than a mere signal
interchange. Port-Hamiltonian systems are lossless systems and, thus, inherently passive
and stable. Typical examples can be borrowed from network theory such as ideal trans-
formers, gyrators, and transmission lines, as well as such complex systems as a complete
ideal telepresence system.

The most general mathematical description consists of four ingredients:

e A vector space of the flow variables and a dual vector space of the corresponding
effort variables. The effort-flow pairs represent the power ports through which the
system interacts with its environment. These variables do not impose any causality
on the signals, i.e. input and outputs are not explicitly assigned.

e A vector space of the state variables. The state variables represent the memory of
the system and are generally associated with energy storage.
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Port-Hamiltonian System
with Dissipation

Energy
Storage

Dirac
Stucture

Energy
Dissipation

~
=

Figure B.3: Graphical representation of a port-Hamiltonian system with dissipation. The ex-
ternal power ports are directly connected to the Dirac structure. Additionally, internal ports
for energy storage and energy dissipation are connected to the Dirac structure. The Dirac
structure distributes the power among external and internal ports in a power-preserving
way. The interconnection behavior is generally time-varying.

e A Hamiltonian function describing the total energy. The Hamiltonian function is a
lower bounded, smooth function that maps variables from the state space to a scalar
value, which specifies the energy of a given state.

e An interconnection structure describing the energy flow in the system. The inter-
connection structure takes the mathematical form of a Dirac structure. The Dirac
structure defines how the energy is distributed between the power ports and the
internal storage in a power-preserving way.

A graphical representation of this system description is depicted in Fig. B.3.

By introducing coordinates, the port-Hamiltonian formalism can be imposed on state-
space system models, which increases its applicability to practical control problems. In
this case, the state variables & are expressed in an n-dimensional vector space X. The
power variables are expressed by row- and column-vectors of equal dimensions, and their
duality product which yields the transported power is given by the intrinsically defined
matrix product. Furthermore, a causality relation is imposed on the power variables.
Input variables w live in the vector space U and output variables y live in the vector space
Y = U*. The Hamiltonian function is denoted H : X — R. The Dirac structure can be
implemented by a skew-symmetric matrix J and the power dissipation by a symmetric,
positive semidefinite matrix R.

With these definitions the state space description of the system can be expressed as:

i = (J@) - R@) 2 +g@u (B3
y = gT(w)g—Z (B.9)

99



B Telepresence Architecture

B.2.2 Control of Admittance-Type Devices

Most existing telepresence architectures are primarily designed for impedance-type haptic
interfaces. These can be approximately regarded as force sources because of their low
mass, low friction, and good backdrivability. However, their application is restricted to
areas with small workspace and low interaction forces lest mass and friction increase.
In contrast, admittance-type devices are characterized by heavy-weight constructions with
non-negligible mass and friction. In order to compensate these unwanted system properties,
typically a force-sensor is added at the end-effector and used in an admittance control.

An admittance control is composed of a virtual dynamics equation and a low-level po-
sition controller (see Fig. B.4). The virtual dynamics is represented by an admittance
equation which computes desired positions from measured forces. A natural choice for the
admittance equation are the rigid-body dynamics of a mass-damper element. The position
controller is usually implemented as PD-controller and implements the desired position. By
this combination, the controlled device behaves according to the virtual dynamics thereby
hiding the unwanted physical properties of the device itself.

A stability analysis of admittance-type devices can be found in [76]. It shows that low
values of virtual mass and virtual damping are prone to destabilize the control. The exact
stability boundaries depend on the environment the device is interacting with. A physically
intuitive explanation for these instabilities is given below.

As explained above, the control of port-Hamiltonian systems is favorably modeled as
energy-based interaction of the plant system and the control system such that the amal-
gamated system exhibits the desired properties. As port-Hamiltonian systems are always
passive, the controller can only shape the dynamics of the plant, but cannot inject energy
into the plant, which is necessary to produce some active behavior. Thus, the controller
must be provided with energy through an additional interaction port. By these consider-
ations, the controller is split into a dynamic shaping part and an energy supplying part.
The former part is also known as intrinsically passive controller (IPC).

In Fig. B.5, the mechanical representation of an intrinsically passive controller of an ad-
mittance type device is shown. The mass my is called wvirtual object and sets the desired

Td

—»(O—>| Admittance —»QO—PD-Controller P> Robot —|

Figure B.4: Block diagram of admittance conrol scheme for one degree of freedom. The
desired position x, is calculated based on the combined interal and external force F; and
F, in accordance with the virtual dynamics, which is represented in admittance form. The
robot is controlled to this position by a linear PD-controller.
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Figure B.5: Mechanical equivalent of the intrinsically passive control scheme. The desired
dynamics are modelled by the mass-damper element composed of m, and b; which is
actuated by the internal force F;. The actual robot dynamics are modelled by mass m,.
and damper b,, and the coupling between them by the spring-damper element composed
of m. and b..

behavior of the robot. By means of the damper b; some damping can be injected to sta-
bilize the system. The virtual spring k. and damper b. couple the virtual object to the
physical robot, which is modelled by m, and b,. The robot interacts with the environment
by the external force F,. Additionally, the model is coupled to the internal force F;, which
is used to interact with a virtual world or remote scene. As all elements of the intrinsically
passive controller are passive, hence its name, the combined system is also passive.

Comparing the admittance control and the intrinsically passive control scheme reveals
many similarities. The damped virtual object in the IPC is excited by the internal force
and indirectly by the external force, thus producing a similar behavior as the admittance
equation in the admittance control. Likewise, the spring-damper coupling in the IPC exerts
a force on the robot which is identical to the force commanded by the PD-controller in the
admittance control. However, there is a fundamental difference: While the force generated
by the spring k. and b, also acts on the virtual object mgy, the PD-controller has no direct
repercussions on the virtual dynamics. In other words, the PD-controller can draw from
an infinite supply of energy, whereas the IPC can only invest the energy stored in the mass
mg, which must be resupplied through F;. By monitoring and resupplying the amount of
energy which is dissipated in the damping of the admittance-type haptic device, the haptic
device can be made more transparent without getting unstable.

B.2.3 Intrinsically Passive Telepresence System

Connecting an intrinisically passive controlled haptic interface with an intrinisically passive
controlled teleoperator through a passive communication channel brings forth a completely
passive telepresence system. For a constant time delay, the passive communication chan-
nel can be realized by applying the scattering transform to the transmitted variables. If
admittance-type devices are used as haptic interface and teleoperator, the previously pre-
sented intrinsicially passive controllers with energy-resupply must be used to increase the
level of transparency.

101



B Telepresence Architecture
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Figure B.6: Port-Hamiltonian representation of an intrinsically passive telepresence system.
The structure comprises an intrisically passive controller for haptic interface and teleoper-
ator. These are intercontected by a passified communication channel with constant time
delay 7" and line impedance Z. Devices as well as controller are connected to energy
dissipating elements R and energy storing elements C.

The intrinsically passive telepresence system is shown in Fig. B.6 in a port-Hamiltonian
representation. The human interacts with the system via the power port of the haptic in-
terface which is formed by F} and 2. On the other side, the haptic interface is conntected
to an intrinisically passive controller in a negative feedback connection. The symmetric
structure can be found on teleoperator side where the teleoperator interacts with the envi-
ronment through the power port formed by F, and z.. Both controllers are interconnected
through a scattering-based communication channel. Haptic interface, teleoperator, and the
two intrinsically passive controllers have energy dissipating elements R and energy storing
elements C.

B.2.4 Passive Implementation of Assist Functions

The assist functions presented in Chapter 4 are based on scaling velocities or forces on
teleoperator side. While this does not render the system non-passive in freespace motions,
passivity can be violated in contact situations. The port-Hamiltonian formulation of the
intrinsically passive telepresence system offers an elegant way to passivate this scaling.

A transformer is a two-port network which scales the input quantities of both ports. As
efforts and flows are scaled with an inverse scaling, the behavior of the transformer is
passive and lossless. Therefore, the transformer can be represented as a port-Hamiltonian
system without energy storage and dissipation. Even when the scaling ratio is time-variant,
the passivity property is not violated, which makes the transformer the ideal element to
implement scaling-based assist functions.

In Fig. B.7, the teleoperator side of the intrinsically passive telepresence system with added
transformer is shown. The transformer is inserted between the transmission line and the
controller of the teleoperator.

Recalling the velocity scaling presented in Sec. 4.1, the output velocity of the teleoperator
can be expressed as the product of the operator velocity and a dynamically changing scaling
factor:

Azy = f(Azp, Ax}) Az} (B.10)
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transformer controller teleoperator

Figure B.7: Port-Hamiltonian diagram of an assisted passive telepresence system.

By setting the scaling ratio n to f(Azr, Azp), the behavior of the assist function is
implemented in a passive way. In freespace motions the resulting inverse scaling of the
forces has no effect, because there are no environment forces. However, in scenarios with
damping, e.g. underwater applications, attenuated velocities on teleoperator side lead to
attenuated forces on operator side and amplified velocities lead to amplified forces in order
to keep the power balance.
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C.1 Haptic Devices

The haptic devices are chosen in response to the requirements of the evaluation exper-
iments. In order to keep unwanted disturbances at a minimum, the simplest possible
hardware which fulfills the given requirements is employed.

C.1.1 Haptic Devices with 1 DOF

A haptic device with one linear degree of freedom is used in one experiment as both,
haptic interface and telemanipulator. The device is composed of a high-performance linear
direct drive ThrustTube ME2504 by Copley Corp., a high-resolution optical encoder, and
a force-sensor, which measures the interaction forces with the environment. The technical
specifications are listed in Table C.1.

property value unit
workspace size 1,612 mm
position resolution 1.0 pum
maximum peak force 624 N

maximum continuous force 44.6 N

maximum acceleration 589 m /s>
maximum velocity 14,5 m/s

Table C.1: Technical Data of Linear Device. ThrustTube ME2504, Copley Corp.

The controller of the device is implemented in software, which is executed on standard PC
hardware (see below).

C.1.2 Haptic Devices with 6 DOF

Experiments which require motions with more degrees of freedom are performed by using
the large-scale haptic display ViSHaRD10 and an anthropomorphic telemanipulator, which
both provide six degrees of freedom of the end-effector.
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The Virtual Scenario Haptic Rendering Device with 10 actuated degrees of freedom
(ViSHaRD10) is a custom-made haptic interface, which was designed to provided a large,
singularity-free workspace and large interaction forces. This is achieved by a serial kine-
matic structure with 10 actuated degrees of freedom, which provides sufficient redundancy
to avoid singularities. The technical specifications are summarized in Table C.2, more
in-depth information can be found in [99].

The anthropomorphic telemanipulator is a robot arm with human-like shape. The design
comprises seven actuated degrees of freedom distributed over two spherical joints at wrist
and shoulder and one revolute joint at the elbow. The robot arm was constructed to
approximately match the force and motion capabilities of the human arm. The resulting
specifications are shown in Table C.2. A comprehensive description of the robot arms is
given in [93].

property ViSHaRD10 Telemanipulator unit
workspace size cylinder half-sphere

r=0.85, h =0.6 r = 0.86 m
position resolution < 1.0 < 1.0 4m
maximum peak force 170 220 N
maximum velocity > 1.0 > 1.0 m/s

Table C.2: Technical Data of 6-DOF Haptic Devices. Haptic Display ViSHaRD10. Anthropo-
morphic Telemanipulator.

C.1.3 Control of Haptic Devices

All haptic devices are digitally controlled by appropriate software controllers. These run
on standard PC hardware which is equipped with I/O-extension cards to connect to sen-
sors and actuators. In order to allow executing the algorithm under real-time conditions,
a Linux operating system is used with an RTAI patched kernel. For details, refer to
www.linuz.org and www.rtai.org. The actual control algorithms are either programmed
directly in C/C++ or generated in Matlab/Simulink by using RealTime Workshop.

The control structure is depicted in Fig. C.1. Due to the relatively large mass and friction
of the employed haptic devices, an admittance control scheme is used to control the devices.
This requires to measure the interaction force between device and environment F, with
a Force/Torque Sensor (FTS). This force is combine with the internal force F;, which is
generated by the peer device or the assist system. The sum force is input to the admittance
controller. The admittance controller computes a desired position from the input force by
rendering a virtual dynamics equation. For devices with multiple degrees of freedom, the
desired position is transformed into joint space by an inverse kinematics. Finally, the
desired joint angles are controlled by a PD-controller, which commands motor torques 7.
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Figure C.1: Control Structure.

The force measurements are interfaced to the PC by a proprietary sensor card from JR3
Inc. The position measurements of the devices, which are obtained by quadrature encoders,
and the commanded motor torque are exchanged by using S626 multi-function DAQ boards
by Sensoray Inc.

C.2 Graphic Devices

Visual feedback is presented to the human operator via a head-mounted display (HMD)
nVisor SX by NVIS, inc. It displays images of SXGA resolution with 1280 x 1024 pixels
at a maximum frame-rate of 60 Hz. The field-of-view covers approx. 50°.

In order to better control the visual feedback, a virtual reality environment is used instead
of the real camera images delivered by the teleoperator. The virtual reality consists of a
model of the real teleoperator equipped with a screwdriver and some basic objects such as
a table. The scene is rendered by the free Open Inventor implementation Coin3D running
on a 64-bit Linux machine with dual-port graphics card. The scene is updated at a rate
of 30 Hz.

The virtual scene is provided with measurement data of the end-effector position and the
head pose of the operator by an ethernet connection with negligible time delay. The new
measurement values are incorporated in the next rendered image such that no perceivable
delay occurs.
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