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Chapter 1

Introduction

1.1 Theory

A major focus of research in quantum chemistry is to examine existing methods and to improve

them to solve the electronic Schrödinger equation of atoms,molecules and solids [1]. The earliest

attempt to solve the Schrödinger equation of atomic systemswas led by D. R. Hartree [1,2]. He

assumed that in a system ofN electrons surrounding a fixed nucleus, each electron experiences

a field due to the mean field of otherN−1 electrons and the nucleus. Hartree approximated the

effect of many body interactions by the potential which arises from theN−1 electrons distributed

according to their own wavefunctionsψi and solved the corresponding Schrödinger equation for

the single electron orbitalsψi . N of these wavefunctions represent the occupied states of theatom

and|ψi |2 gives the magnitude of charge density of thei-th electron. The total charge densityρ

of the atomic system will be given by summing the orbital densities over the occupied orbitals.

Unlike the orbitalsψi, the electron densityρ of an atomic or molecular system is an observ-

able quantity, for example, in X-ray scattering experiments,ρ is related to the spatial distribution

of the electrons [3, 4]. Such an interpretation ofρ is natural and according to E. Schrödinger,

electron density is the distribution of negative charge in real space [5, 6]. In Schrödinger’s 1926

paper [5], he remarks that “We have repeatedly called attention to the fact that theψ function

itself cannot and may not be interpreted directly in terms ofthree-dimensional space—however

much the one-electron problem tends to mislead us on this point—because it is in general a

function in configuration space, not real space” (quoted from [6]).

The essential properties of the electron density have been briefly summarized in a recent re-

view by R. F. W. Bader [6] as “the electron density provides a physical model of matter, one

in which point-like nuclei are embedded in a relatively diffuse spatial distribution of negative

charge—the density of electronic charge—a distribution that is static for a system in a stationary

1



2 CHAPTER 1. INTRODUCTION

state and one that changes in a continuous manner during any adiabatic change, i.e., one that does

not involve a change in the electronic state of the system. Inthe spirit of the Born-Oppenheimer

approximation to the vibronic wavefunction, the electron density is assumed to adjust instanta-

neously to any and all motions of the nuclei”.

Thus, based on similar views, earlier attempts have been made to focus on the electron den-

sity when solving the Schrödinger equation. The theory of the inhomogeneous electron gas is

aimed at describing the properties of the ground electronicstate of a system by the electron den-

sity ρ(r) and to provide methods to calculate this quantity. One of theearlier theories of the

inhomogeneous electron gas is the semi-classical, statistical approximation commonly known as

the Thomas–Fermi model [7].

Thomas–Fermi theory and its extensions were the predecessors of modern density functional

theory (DFT). The objective of DFT is to describe the properties of a many-electron system us-

ing functionals ofρ(r) [8]. DFT is founded on two theorems for the electron density which are

collectively called as Hohenberg–Kohn theorems [9]. The first of these theorems, proves by con-

tradiction that the ground-state electron density uniquely specifies the Hamiltonian operator of

a system characterized by a universalsystem-independentdensity functionalF [ρ] and asystem-

dependentexternal potentialvext(r) that usually represents the electron-nuclear interaction. The

first Hohenberg–Kohn theorem is an uniqueness theorem whichestablishes an one-to-one map-

ping between the electron density and the external potential. The second Hohenberg–Kohn the-

orem provides a variational procedure where minimization of the total energy functionalE[ρ]

subject to the constraint that the electron densityρ(r) integrates to the total number of elec-

tronsN, yields the ground state energy of a quantum mechanicalN-electron system [10, 11].

Here the total energy functionalE[ρ] is the sum of the universal functionalF [ρ] and the energy

contribution due to the electron-nuclear interaction,
∫

ρ(r)vext(r)dr .

The universal, system-independent electron density functional F [ρ] consists of a kinetic en-

ergy term and an electron-electron interaction term, the latter term can be further separated into

a classical Coulomb term according to independent-particleapproximation and a term that ac-

counts for non-classical effects in a quantum mechanical system and many-body Coulomb ef-

fects. In the earlier density functional approach such as the Thomas–Fermi model, all the con-

tributions toF [ρ] were formulated as pure density functionals that are explicitly dependent on

ρ(r) only. Proposed functionals inaccurately modelled the kinetic energy contribution which

predicted too large a positive energy contribution in molecular calculations so that molecules

turned out to be unstable.

The present success of DFT is largely due to Kohn–Sham’s formalism [12] of DFT (KS-

DFT) that introduces a reference system of non-interactingelectrons that are under the influence
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of an effective potential. The Kohn–Sham approach gives procedures to solve the corresponding

Schrödinger equation of these non-interacting electrons,to computeρ(r) using the orbitals of

this reference system as described above in the case of Hartree’s atomic calculations, and to com-

pute the largest contribution to the universal density functional F [ρ] which is the kinetic energy.

In KS-DFT, the kinetic energy term is computed as anorbital dependent term. The leading con-

tribution, the kinetic energy of the reference system of non-interacting electrons, turned out to be

a good approximation to the kinetic energy of the real systemof interacting electrons. KS-DFT

retains the classical form of the Coulomb electron-electroninteraction term which is formulated

within the independent particle approximation as in the Thomas–Fermi model.

A cornerstone of KS-DFT is the introduction of the exchange-correlation (XC) functional.

The purpose of the XC functional is to provide theresidual kinetic energy(which is the difference

between the kinetic energy of the real system and that of the reference system of non-interacting

electrons), a relatively small part, and to include the non-classical electron-electron interaction

energy namely theexchangeenergy as well as many-body Coulomb correlation effects. How-

ever the exact form of the XC functional is not known. Thus theaccuracy of a proper KS-DFT

calculation is strictly dependent on the approximations involved in modelling the XC functional.

Approximate exchange-correlation functionals are often based on the properties of the hypothet-

ical model of a homogeneous gas of interacting electrons. For this model, an exact form of the

exchange energy density is known along with accurate form ofthe correlation part of the XC that

has been found through quantum Monte Carlo simulations [10].In this model, an electron gas

containing virtually an infinite number of electrons is subjected to a positive background charge

distribution in an infinite volume which leads to a constant electron density everywhere.

In the local density approximation(LDA), the assumption involved is that the XC energy of

a real system has the same functional form as the XC energy of auniform interacting gas of elec-

trons with same density as the real systemlocally [10]. LDA is a good approximation for atoms,

and the structure of many molecules and solids. The (relative) accuracy of LDA stems from the

fact that LDA affords a surprisingly good representation ofthe spherically averaged hole func-

tion. Gradient-corrected approximations(for example, the generalized gradient approximation,

GGA) afford an improved description as they account for the variation ofρ by including terms

involving the gradient of the density∇ρ [10] so as to describe a real atomic or molecular sys-

tem which exhibit rapidly varying densities. Approximations beyond LDA and GGA focus on

arriving at better and realistic functional forms of the density, for example, by including terms

dependent on higher derivatives of the density, such as∇2ρ [10].

The main advantage of DFT over wavefunction-based methods is related to the above men-

tioned Schrödinger’s remark about electron density that for a many-electron system, the electron
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densityρ(r) has a lower dimensionality than theN-electron wavefunction. Indeed while the

cost of computation in the commonly used wavefunction basedmethods scale asB4-B7 for a

many-electron system represented byB-basis functions, DFT-based methods lead toB3-B4 scal-

ing [13]. For large systems, approximations to thematrix elementsinvolved in a DFT calculation

can provide even linear or quadratic (B1-B2) scaling [10].

While KS-DFT is an efficient alternative to wavefunction based theories, results of KS-DFT

calculations especially when they employ LDA and GGA XC functionals can suffer from a subtle

artifact. The classical Coulomb energy contribution includes spuriousself-interaction(SI) contri-

butions which represent unphysical electron-electron interactions such as an electron interacting

with itself. In the exact KS-DFT, such contributions are supposed to be cancelled by correspond-

ing self-exchangecontributions in the XC functional, hence to correct for theself-interaction.

Approximate XC functionals such as LDA and GGA only partly account forself-interaction cor-

rection(SIC) and the error thus introduced due to incomplete SIC is called as theself-interaction

error (SIE).

Some of the major failures of LDA and GGA functionals such as low barriers of reactions,

low band gaps of solids, spurious orbital mixing, underestimation of KS eigenvalues, wrong dis-

sociation limits of molecules, destabilization of anions,overstabilization of cations are all mani-

festations of the self-interaction error. Although these situations have been widely identified, the

magnitude of the errors they introduce in a KS-DFT calculation has only been vaguely under-

stood [14,15]. Thus in KS-DFT calculations employing approximate LDA or GGA functionals,

a compromise between accuracy and computational efficiencyis being made.

Improvements in the development of better XC functionals mostly come from investigations

of properties of the hypotheticalexact XCfunctional [16]. Some aspects of the properties of the

exact XC functional are readily understood by inspecting exactly solvable one electron systems

such as the hydrogen (H) atom and other model systems. Better XC functionals that are classified

asmeta-GGA [10] andhyper-GGA [10] functionals approximately model theexact behavior.

Development of XC functionals which can consistently modelthe exact behavior of even small

molecular systems is an active area of research [16].

In the so-called DFT + X methodologies [17], the DFT total energy functional (usually LDA

and GGA) is augmented by a suitable model Hamiltonian in order to partly recover the exact

behavior. While the major advantage of such schemes is the improvement of LDA and GGA

approximations in an inexpensive way, these methodologiesoften involve inclusion of semi-

empirical parameters. Thus in the DFT + X methodologies, a two-level hierarchy of parametriza-

tion should be noted. The semi-empirical parameters that eventually enter the XC functionals are

characteristic of the level of XC approximation itself and not system specific. The parameters
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that enter the model Hamiltonian are often specific to the implementation, the XC-functional, the

system, the basis set used, and the application itself. Although these DFT + X methodologies are

only crude approximations, they make it possible to improvethe DFT description for larger or

complex systems at a reduced computational cost and throughcareful studies of smaller systems

one can gain more insight about the nature of the correctionsthey provide. Two widely used

DFT + X approaches are the DFT + D and the DFT + U approaches.

In the DFT + D methodology [18, 19], the model Hamiltonian comprises 1/R6 terms which

aims at describing the interatomic dispersive interactions. Thus dispersive interactions which

alternatively require high-levelab initio methods can be included at a reduced computational

expense.

The DFT + U methodology [20] which is the main subject of this thesis originates from di-

verse motivations thus resulting in the culmination of several variants of the model Hamiltonian.

Historically, the DFT + U approach was used to improve thelocal spin density approximation

(LSDA) description of systems that contain correlated electrons in localizedd or f orbitals. In

the LSDA + U approach an intra-atomic HubbardU repulsion term is added to the DFT total en-

ergy Hamiltonian to reduce the intra-atomichybridizationof these localized orbitals by driving

the occupations of these orbitals to take the integer values0 or 1. Suchlocalizationof occupied

orbitals tends to increase theband gapand to describe well the Mott insulating state of transition

metal oxides [20]. Without such explicit inclusion of a HubbardU repulsion term, the LSDA de-

scription predicts such metal oxides to be conducting. When applying the DFT + U approach to

molecules as in the present work, the DFT + U correction Hamiltonian is aimed to approximately

provide self-interaction corrections in LDA and GGA calculations to partly recover the correct

electron-electron interaction. In this way, a model DFT approach is developed that allows one to

study the effect of self-interaction in an atom-specific (even shell-specific) fashion.

PARAGAUSS is a program package to perform high-performance density functional calcu-

lations of molecular systems and clusters [21, 22]. A wide range of molecules, from small

molecules comprising a few atoms to large clusters that contain up to several hundreds of atoms

have been studied using PARAGAUSS. In this way valuable contributions have been made to

various scientific disciplines such as theoretical and computational chemistry, spectroscopy, sur-

face science, material science and environmental chemistry. A main theme in problem solving in

any discipline of science is to exploit the available symmetry constraints. Symmetry-adapting a

mathematical problem is one of the most basic and naturally efficient strategies especially when

solving a quantum mechanical problem. In this respect, PARAGAUSS is one of the few elec-

tronic structure codes which can utilizenon-Abelianpoint group symmetries to symmetry-adapt

the electronic Schrödinger equation [23].
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The complexity in molecular electronic structure calculations increases with the atomic num-

bers of the constituting atoms. A natural consequence of increasing atomic numbers is the need

to incorporate relativistic effects on the electronic structure. In order to provide a relativistically

correct description of spin-1/2 particles such as electrons, one has to solve the Dirac equation to

get a wavefunction with four components and a set of eigenvalues where electronic and positronic

contributions are coupled. When focussing only on the decoupled negative-energy spectrum of

the Dirac Hamiltonian, an approximation strategy called the Douglas–Kroll–Hess (DKH) method

can be employed which leads to an expansion of the Dirac Hamiltonian in the external potential.

Truncation of this expansion to include a finite number of terms leads to DKH approximations of

various orders. The second-order DKH approximation withinwhich the aforementioned series

expansion is sufficiently converged has been implemented inPARAGAUSS [24]. It is also possi-

ble to employ thepseudopotentialstrategy in PARAGAUSS to approximately model relativistic

effects which are more relevant to core electrons.

While continuously used for contributing to the understanding of realistic large chemical

systems and to the related chemical physics, the framework provided by the code PARAGAUSS

is also suitable to investigate problems related to fundamental aspects of DFT. This is possible

by the variety of exchange-correlation functionals that have been implemented in PARAGAUSS.

The main goal of the present work is to implement some commonly used variants of the

DFT + U methodology that are relevant to molecular calculations and to carry out evaluatory

applications which can identify various manifestations ofthe subtle artifacts introduced in KS

density functional calculations. For solid-state problems, the DFT + U methodology has been

proven to be successful in combination with plane-wave based approaches [20]. The present

work represents the first implementation of the DFT + U methodology in the linear combination

of Gaussian-type orbitals (LCGTO) framework of PARAGAUSS which are more suitable for

molecular calculations [25].

1.2 Applications

The unifying theme of the applications performed during this thesis work is to investigate the

artifacts introduced by approximate XC functionals in a KS-DFT calculation of systems with

f electrons and to identify the manifestations of the self-interaction error in various chemical

properties of lanthanide and actinide systems [25–27].

In solid state calculations, the DFT + U methodology is ofteninvoked to describe electrons

that are localized on atomic centers. The 3d orbitals of transition metal oxides or 4f orbitals of

rare earth complexes show suchquasi-atomiclocalization. The Coulomb correlation is strong
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between these localized electrons thus these systems are known as strongly correlated systems

[28]. The molecular systems studied in this thesis can be categorized into three types according

to the localized nature of thef electrons they contain:

1. Highly localized 4f electron systems which show negligible intra/inter atomichybridiza-

tion. For example, lanthanide complexes with La III (f 0), Gd III ( f 7), Lu III ( f 14) ions

belong to this category. Magnetic moments of these systems correspond to a 4f n config-

uration of trivalent lanthanides; in an ionic formulation of the bonding, the valence 6s2

and 5d1 electrons are transferred to the ligands. With a formal 4f n configuration, the 4f

orbitals in Ln3+ systems do not participate in bonding with ligands.

2. 4f electron systems which show valence transitions. The oxides of cerium belong to this

category where the Ce III (f 1) ion can be oxidized to Ce IV (f 0) state. In the trivalent state,

the 4f 1 electron is localized on the Ce atom but in the tetravalent state along with the 6s2

and 5d1 electrons, the 4f 1 electron can form the bonds to the oxygen centers.

3. Semi-localized 5f electron systems which show non-negligible intra/inter atomic hybridiza-

tion. The 5f orbitals of these systems are radially less compact when compared to 4f or-

bitals of lanthanides, hence they can be involved inσ andπ interaction with ligands. The

early members of the actinides U, Np and Pu belong to this category.

1.3 Overview of the Thesis

Chapter 2 presents the theoretical background of the KS-DFT formalism along with a brief dis-

cussion of related concepts (Sections 2.1 and 2.2). Certain inherent limitations of the commonly

used approximate XC functionals which form the motivation for schemes such as DFT + U are

summarized in Section 2.3.

In Chapter 3, an overview of the underlying theory of the DFT + Umethodology is presented

(Section 3.1). Specific details about the variant of the DFT +U methodology which has been

used in this work are given in Section 3.2. The major steps in the implementation of the DFT + U

methodology in PARAGAUSS are summarized in Section 3.3 along with a brief discussion of the

nature of DFT + U corrections to total electronic and orbitalenergies.

Chapter 4 summarizes the computational methods used in this work (Sections 4.1). Section

4.2 briefly outlines a procedure followed in this work to empirically estimate the onsite-Coulomb

parameter along with a listing of these parameters used in this work.

Chapters 5 and 6 are devoted to the application of the DFT + U methodology as a tool to

probe self-interaction artifacts in KS-DFT calculations of f -electron systems. Chapter 5 deals
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with the application of the DFT + U methodology to Lanthanidesystems. In Section 5.1, results

of a DFT + U investigation of the role of 4f orbitals in the bonding of LuF3 are presented. Some

brief remarks on the structural features of the lanthanide trifluoride molecules are summarized

in Section 5.2. Preliminary results of a DFT + U investigation to model ceria nano-particles are

presented in Section 5.3.

Chapter 6 discusses the application of the DFT + U methodologyto some uranyl complexes.

Here, the manifestation of the self-interaction error as spurious structural distortions in LDA and

GGA calculations of uranyl complexes is investigated. The first part (Section 6.1) deals with the

uranyl ion in gas phase as a model system to understand the DFT+ U corrections. In Section 6.2,

results of a DFT + U study of the penta aqua uranyl complex are presented. Finally, in Section

6.3, results of a systematic study of the uranyl monohydroxide cation are summarized.



Chapter 2

Kohn–Sham Density Functional Theory

In the previous chapter, an overview from an historical perspective was given to electron den-

sity as a suitable quantity to compute molecular properties. The idea of computing the electron

density from a suitably defined set of orbitals dates back to Schrödinger’s definition [5] of elec-

tron densityρ and from Hartree’s works on atomic systems. The Hohenberg–Kohn theorems

show that the ground state densityρ0 uniquely defines the system Hamiltonian and that it is

possible to apply the variational principle to calculate the properties of a system fromρ0. The

Kohn–Sham formalism of density functional theory (KS-DFT)actually leads to apractical way

for constructing orbitals to obtain the ground state electron densityρ0 and to a build the sys-

tem Hamiltonian. In the present chapter, the theoretical background of KS-DFT is summarized.

For more complete and general discussions related to the content of the present chapter, one is

referred to [8,10,29,30].

In Section 2.1, the background of KS-DFT is presented. In Section 2.2 certain concepts re-

garding a generalization of KS-DFT are briefly discussed, followed by some theoretical ideas

regarding the interpretation of KS-DFT. Section 2.3 exclusively discusses the limitations of cer-

tain approximations to KS-DFT by considering the H atom as anexample.

2.1 The Kohn–Sham Method

2.1.1 Background

The first Hohenberg–Kohn (HK) theorem [9] states that the ground-state electron densityρ0(r)

uniquely describes all properties of the electronic groundstate of a system. The second HK

theorem gives a variational procedure to calculate the ground state electronic energyE0 of a

9
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system through the constrained minimization of the energy functionalE[ρ]

E0 = min
ρ→N

(E[ρ]) , (2.1)

where the energy functionalE[ρ] is defined as the sum of a system dependent term due to the

nuclei-electron interactionVNe[ρ] and auniversally validfunctional which is independent of the

number of electrons and the nuclear environmentF [ρ]

E[ρ] =VNe[ρ]+F [ρ]. (2.2)

The universal density functionalF [ρ] of the electronic system defined in the HK theorem is

hypothetical without an explicit definition. Some generalizations can however be made about

F [ρ]; it is a sum of contributions due to kinetic energyT and electron-electron interactionVee

F [ρ] = T[ρ]+Vee[ρ], (2.3)

whereVee can be further divided into contributions due to the uncorrelatedclassicalCoulomb

energy termJ[ρ] and sum ofnon-classical(purely quantum mechanical) andmany-bodyelectro-

static effectsG[ρ]

Vee[ρ] = J[ρ]+G[ρ]. (2.4)

Thus the total electronic energy functionalE[ρ] can be written in the following form

E[ρ] =VNe[ρ]+T[ρ]+J[ρ]+G[ρ]. (2.5)

Among the various terms in the above equation, analytic forms are known only for the nuclei-

electron interaction termVNe[ρ] and the classical Coulomb energy termJ[ρ] where as analytic

expressions forT[ρ] andG[ρ] are not known.

The nuclei-electron interaction termVNe[ρ] is defined as the integral

VNe[ρ] =
∫

ρ(r)vext(r)d3r , (2.6)

where the kernel of the integral is the external potentialvext(r) which is the local Coulomb

potential at the positionr due to the charges ofM nuclei. In atomic units,vext(r) is expressed as

vext(r) =−
M

∑
A=1

ZA

|r −RA|
, (2.7)

whereZA andRA charge and the position of nucleusA. The classical Coulomb energy contribu-

tion J[ρ] to the electron-electron interaction is defined as

J[ρ] =
1
2

∫ ρ(r)ρ(r ′)
|r − r ′| d3rd3r ′. (2.8)
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The termJ[ρ] is referred to as the uncorrelated classical Coulomb energy term because this term

discards the condition that within the point mass approximation, no two electrons with same spin

can simultaneously be located at the same space. Thus the term J[ρ] does not capture all the

effects due to the 1/r12 form of the Coulomb operator. Thus the contribution due to many-body

Coulomb interaction are included along with non-classical electrostatic effects through the term

G[ρ] in Eq. (2.4).

Among the various contributions to theuniversalfunctionalF [ρ], a significant contribution

comes from the kinetic energy termT[ρ]. In the earlier framework of Thomas–Fermi model

[7,31,32], the kinetic energy functional has the form

T[ρ] =
∫

ρ5/3(r)d3r , (2.9)

which resulted in too large a positive energy contribution in molecular calculations rendering

molecules unstable [33]. Subsequent investigations lead to better kinetic energy functionals

which however came with their own short-comings [34]. At present, studies that aim at mod-

elling better kinetic energy functional as apure-density functional contribute to the so-called

orbital-free density functional theory[35].

2.1.2 The Kohn–Sham Approach

The Kohn–Sham (KS) approach to density functional theory introducesorbitals. The purpose of

introducing orbitals is two-fold: they are used to compute the ground state electron densityρ0 and

to provide a framework to compute the kinetic energy functionalT[ρ]. For this purpose, W. Kohn

and L. J. Sham [12] introduced the idea of a reference system of non-interacting electronsthat are

influenced by alocal effective potential ve f f(r). This effective potential is chosen such that the

system ofN non-interacting electrons exhibits the same ground state densityρ0 as the real system

of interacting electrons. The Hamiltonian operator that defines the system of non-interacting

electrons is defined as a sum of one-electron Hamiltonian operators

ĤS=
N

∑
i

ĥKS
i , (2.10)

where the one-electron Hamiltonian operator is defined as

ĥKS
i =−1

2
∇2

i +ve f f(r i). (2.11)
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The exactwavefunction of non-interacting electrons is a Slater determinantΦS, which for an

N-electron system is defined as

ΦS=
1√
N!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(x1) φ2(x1) . . . φN(x1)

φ1(x2) φ2(x2) φN(x2)
...

...
...

φ1(xN) φ2(xN) . . . φN(xN)

,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.12)

whereφi(xi) are the spin-orbitals which can be expressed as a product of spatial (r ) and spin (σ )

dependent factors

φi(x) = ψi(r)ωi(σ). (2.13)

The spatial functionsψi(r) are eigenfunctions of the so-called KS equations. The spin-polarized

version of the KS are written as

ĥKS,σ
i ψσ

i (r) = εσ
i ψσ

i (r), (2.14)

which are similar to Fock equations in the Hartree–Fock (HF)formalism. From the KS orbitals

spin densities are computed as

ρσ (r) =
Nσ

∑
i
|ψσ

i (r)|2 , (2.15)

where the summation is done over theNσ lowest spin orbitals. The above equation can also be

written by introducing the occupation numbernσ
i of the spatial orbitals as

ρσ (r) = ∑
i

nσ
i |ψσ

i (r)|2 , (2.16)

now the summation indexi runs over all the spatial orbitals and not restricted to theNσ lowest

spin orbitals. Whennσ
i is restricted to take the integer values 0 or 1, the formalismis similar to

the HF approach. Further, when the occupation numbers of thelowestNσ spatial orbitals take

the value 1, and others 0, the densityρσ (r) corresponds to the ground state. The total electron

density due to both spin densities is then the sum

ρ(r) = ∑
σ

ρσ (r). (2.17)

The kinetic energy of the system ofN non-interacting electrons is then computed formally as

in the HF approximation as

TS[ρ] = ∑
σ

Nσ

∑
i

〈

ψσ
i (r)

∣

∣

∣

∣

−1
2

∇2
i

∣

∣

∣

∣

ψσ
i (r)

〉

. (2.18)

In the above equation the summation is performed overNσ lowest occupied orbitals of both spin

types. Eq. (2.18) can be generalized by introducing the occupation numbers as

TS[ρ] = ∑
σ

∑
i

nσ
i

〈

ψσ
i (r)

∣

∣

∣

∣

−1
2

∇2
i

∣

∣

∣

∣

ψσ
i (r)

〉

. (2.19)



2.1. THE KOHN–SHAM METHOD 13

The approximate kinetic energy termTS[ρ] which is the kinetic energy ofN non-interacting

electrons is not equal to the kinetic-energy ofN interacting electrons [10]

TS[ρ]≤ T [ρ] . (2.20)

In KS-DFT, the difference between the true kinetic energyT[ρ] and the non-interacting kinetic

energyTS[ρ] along with the non-classical electrostatic contribution in Eq. (2.4) are collectively

defined as theexchange-correlation functional

Exc = T [ρ]−TS[ρ]+G[ρ] . (2.21)

The exchange-correlation (XC) functionalExc[ρ] can be written as a sum ofexchange Ex[ρ]

andcorrelation Ec[ρ] functionals as

Exc[ρ] = Ex [ρ]+Ec [ρ] . (2.22)

The exact form of the exchange functionalEx[ρ] (as functional of the orbitals) is that of a single

determinant as in the HF approximation:

Ex =−1
2∑

σ

Nσ

∑
i, j

〈

ψσ
i (r)ψ

σ
j (r

′)

∣

∣

∣

∣

1
|r − r ′|

∣

∣

∣

∣

ψσ
j (r)ψ

σ
i (r

′)

〉

(2.23)

or by introducing the occupation numbers as in the kinetic energy term, Eq. (2.18)

Ex =−1
2∑

σ
∑
i, j

nσ
i nσ

j

〈

ψσ
i (r)ψ

σ
j (r

′)

∣

∣

∣

∣

1
|r − r ′|

∣

∣

∣

∣

ψσ
j (r)ψ

σ
i (r

′)

〉

. (2.24)

The exchange interactionis a purely quantum mechanical effect for which no classicalanalog

exists. The exchange interaction is characteristic offermionswhich follow thePauli exclusion

principle that the total wavefunction of two identical fermions is anti-symmetric. Similar to the

HF formalism, the KS formalism introduces exchange interaction by choosing the total electronic

wavefunction as a Slater determinant, Eq. (2.12). It shouldbe noted that the wavefunctions

involved in the above definition of the exchange functional are KS orbitals; thus the exchange

contribution according to Eq. (2.23 or 2.24) will be exact only when the KS orbitals represent

the true density.

The correlation functionalEc[ρ] has no explicit analytic definition. In conventional quantum

chemistry, the correlation energy is defined as the difference between the exact electronic energy

and the HF energy. In the KS theory, the residual kinetic energy contribution as in Eq. (2.21) has

to be provided byEc[ρ] along with the many body Coulomb correlation effects. Thus within the

KS-DFT formalism, the total electronic energy functional is written as

E[ρ] =VNe[ρ]+TS[ρ]+J[ρ]+Exc[ρ]. (2.25)
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The local effective potential that enters into the one-electron Hamiltonian operator in Eq. (2.11)

is defined as

vσ
e f f(r) = vext(r)+vH(r)+vσ

xc(r), (2.26)

where the external potential term is simply written according to Eq. (2.7) and the Hartree poten-

tial of a charge densityvH(r) and the XC are defined as thefunctional derivatives[8]

vH(r) =
δ

δρ
J[ρ] =

∫ ρ(r ′)
|r − r ′|d

3r ′ (2.27)

and

vσ
xc(r) =

δ
δρσ Exc[ρ]. (2.28)

The effective potential is already dependent on the densitythrough the Hartree potential in

Eq. (2.27) and the XC potential in Eq. (2.28). Thus the KS equations according to Eq. (2.11)

have to be solved self-consistently.

2.1.3 Approximate Exchange-Correlation Functionals

The XC energyExc[ρ] is usually expressed in terms of the XC energy density or XC energy per

electronεxc[ρ] as

Exc[ρ] =
∫

ρ(r)εxc[ρ] (r)d3r , (2.29)

where the termεxc[ρ] which acts as the integration kernel can be written as the sum

εxc[ρ] = εx [ρ]+ εc [ρ] . (2.30)

KS-DFT is in principle exact when the XC functional employedis exact. However, the analytic

form of the XC functional is not known and therefore it has to be approximated for practical

calculations.

2.1.3.1 Local Density Approximation

A simple, yet highly successful approximation is thelocal density approximation(LDA) [8, 10,

12, 36]. Here, the XC energy density at positionr is the XC energy density of a homogeneous

electron gas of the same electron density at that local density

εxc[ρ] (r)≈ εLDA
xc (ρ(r)) (2.31)

In the following, a brief description is given for some of thecommonly used LDA XC functionals.

The simplest LDA XC functional is the Slater–Dirac exchangefunctional (SD) [37,38], whereεx

has a dependency ofρ1/3. The spin-specific variant of SD exchange is sometimes called as the
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local spin density approximation (LSDA) exchange. The SD exchange for the statistical LDA

exchange is normally used along with a term to account for correlation contribution. Vosko,

Wilk, and Nusair [40] gave a correlation functional (VWN) by fitting the data of a Monte-Carlo

simulation [41] of uniform electron gas. The VWN correlationterm is usually referred to as

LSDA correlation. Perdew and Wang gave an improved correlation functional (PW) through a

different parametrization [42]. When both VWN and PW LDA correlation functionals are used

along with SD exchange functional, the XC functionals are commonly referred to as VWN and

PW-LDA respectively. The most severe drawback of the LDA is the systematic overestimation

of binding energies, hence resulting in rather short bond lengths.

2.1.3.2 Generalized Gradient Approximation

An improved approximation is the so-calledgeneralized gradient approximation(GGA) in which

εxc[ρ] (r) is a function of both the density,ρ(r) and the absolute value of the gradient of the

density,∇ρ(r) at positionr .

εxc[ρ] (r)≈ εGGA
xc (ρ(r), |∇ρ(r)|) (2.32)

Some of the commonly used GGA XC functionals are BP (X: B88, Becke, 1988 [43], C:

P86, Perdew, 1986 [44]), PW91 (XC: Perdew–Wang, 1991 [45]), PBE(XC: Perdew–Burke–

Ernzerhof, 1996 [46]) and PBEN (X: PBE, C: Hammer–Hansen–Nørskov, 1999 [47]). As corre-

sponding LDA XC functionals for the above listed GGA XC functionals, BP includes the VWN

functional while PW91, PBE and PBEN include the PW-LDA XC functional.

2.1.3.3 Higher Approximations

Better XC functionals are aimed at providing an improved description beyond that of GGA XC

functionals. A class of XC functionals that also accounts for the Laplacian or the second deriva-

tive of the electron density are classified as meta-GGA functionals (mGGA). Evaluation of the

Laplacian of the electron density may lead to numerical instabilities, hence the effect of the sec-

ond derivative of the electron density is often approximately introduced in the form of the orbital

kinetic energy density. One such mGGA XC functional is the TPSS (Tao–Perdew–Staroverov–

Scuseria) XC functional [48]. All the three types of approximations – LDA, GGA and mGGA—

are also referred to assemi-localapproximations because in these approximations the XC en-

ergy density (εxc) at a positionr is a function of the electron density (ρ) at the positionr and its

infinitesimal neighborhood.

A non-localXC functional includes wholly or partly the exact non-localexchange functional

as defined in Eq. (2.23). These functionals are also known as hyper-GGA functionals. When
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these hyper-GGA functionals include only a fraction of the exact exchange functional, they are

also known ashybrid-DFTXC functionals. Two commonly used hybrid-DFT XC functionals are

B3LYP (Becke 3-parameter Lee–Yang–Parr) [49–51] and PBE0 [52]. The B3LYP XC functional

is defined as

EB3LYP
xc = ESD

x +0.20
(

Eexact
x −ESD

x

)

+0.72
(

EB88
x −ESD

x

)

+0.81
(

ELYP
c −EVWN

c

)

(2.33)

where all the constituting exchange and correlations functionals have been defined previously

except for the LYP-GGA correlation functional which is due to Lee, Yang and Parr [50]. The

hybrid DFT functional PBE0 [52] functional has a much simplercomposition

EPBE0
xc = 0.75EPBE

x +0.25Eexact
x +EPBE

c . (2.34)

It should be noted that in the hyper-GGA level, only the exchange contribution has a non-local

contribution while the correlation contribution is from a semi-local functional.

The random phase approximation (RPA) [53] provides a fully non-local approximation to

the correlation energy which can be used along with the exactexchange term to get a fully

non-local exchange-correlation energy. Thus commonly used exchange-correlation functionals

can be categorized as five levels of approximation (LDA, GGA,mGGA, hyper-GGA, RPA) as

suggested by Perdew and Schmidt [54].

2.2 Generalization and Interpretation of Kohn–Sham Theory

2.2.1 Non-Integer Orbital Occupation Numbers

The KS-DFT formalism can be generalized by defining the occupation numbersnσ
i of the KS

spin-orbitalsφ σ
i also to take values between 0 and 1: 0≤ nσ

i ≤ 1.

Perdew, Parr, Levy and Balduz justified [59] the non-integer occupation extension of KS-DFT

by generalizing KS-DFT tozero temperature grand canonical ensembleswhere the ground state

of a system with a non-integer number of electronsN+n, is an ensemble mixture of the system

at two of its ground states with integer number of electronsN andN+1. Here, the variablen

is the spin-specific occupation numbernσ
i of the highest occupied molecular orbital (HOMO) of

anN-electron system i.e.nσ
HOMO. Thus the ground state energy of a system withN+n electrons

where 0≤ n≤ 1, is a linear combination of energies of the pure ground states withN andN+1

electrons:

E0
N+n = (1−n)E0

N +nE0
N+1, (2.35)

and the ground state density can then be written as the ensemble sum

ρ0
N+n = (1−n)ρ0

N +nρ0
N+1. (2.36)
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Introduction of non-integer occupations provides a way to generalize KS-DFT tofinite-

temperature grand canonical ensembleswhere the mean value ofN is considered to be a contin-

uous variable [36,60,61]. In extended molecular systems orsolids, the total number of electrons

N may be considered as a continuous variable only for practical convenience, hence introduc-

ing non-integer occupations in KS-DFT provides a way to calculate properties such as the band

structure with a total number of electronsN slightly varying from the integer value [36].

2.2.2 Scaling Relations for Density Functionals

The ensemble form of the energy functionalE0
N+n as defined in Eq. (2.35) varies linearly with

respect to the continuous variablen between the integer number of electronsN andN+1. For

an n-electron system at ground state, whereN and corresponding energy and density are zero,

Eq. (2.35) and Eq. (2.36) can be written as:

E0
n = nE0

1 (2.37)

and

ρ0
n = nρ0

1. (2.38)

The scaling behavior of individual contributions to the energy functionalE[ρ] of ann electron

system, were given by Zhang and Yang [62–64] as

TS,n = nTS,1,VNe,n = nVNe,1 and Jn = n2J1, (2.39)

where the contributions due to the non-interacting kineticenergyTS and the external potential

VNe both scale linearly as the total energy functional, Eq. (2.35), the classical Coulomb term

scales quadratically. For the XC contributionExc, Zhang and Yang gave the scaling relation

Exc,n = n(1−n)J1+nExc,1. (2.40)

and pointed out that approximate XC functionals violate this scaling behavior. In the above

equation, Eq. (2.40), for the valuesn= 0 or n= 1, the first term on the right hand side vanishes.

On the other hand, for fractional values ofn, the exchange-correlation functionalExc,n comprises

a penaltycontribution of the formn(1−n). It should be noted that the scaling relations forTS,n,

VNe,n andJn according to Eq. (2.39) can be easily derived but the scalingrelation for the XC

contribution, Eq. (2.40) is non-trivial and it was presented in Ref. [64] without proof. However

it is easy to see that then(1−n) term ensures cancellation of both the quadratic self-Coulomb

term and the linear self-exchange term for anyn whenJ1 =−Exc,1, Eq. (2.40).
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2.2.3 Orbital Energies

The energy of avertical electronic transition (without reorganization of nuclearframework) be-

tween two states can be calculated as the difference betweenthe total energies of corresponding

states involved in the transition. In the HF approximation this leads toKoopmans theorem[65],

according to which the vertical ionization energy to removean electron from a HF spin orbital

(φ σ
i ) can be approximated as the negative of the corresponding orbital energy

Ii ≈ EN−1(n
σ
i = 1)−EN(n

σ
i = 0) =−εσ

i . (2.41)

An extension of Koopmans theorem for fractional occupationnumbers which is valid in KS-

DFT is called Slater–Janak theorem [66], according to whichKS orbital energies are derivatives

of the total energy functional with respect to corresponding occupation numbers:

dE[ρ]
dnσ

i
= εσ

i . (2.42)

By comparing Eq. (2.41) and Eq. (2.42), one can realize that Koopmans theorem may be viewed

as a finite difference analogue of the Slater-Janak theorem.Since the ground state energyE0

in KS-DFT varies linearly with respect to the spin polarizedoccupation number of the HOMO,

Eq. (2.35), it is clear that both the exact derivative ofE0[ρ], Eq. (2.42), and finite derivative

variant using an arbitrary step size 0≤ n≤ 1, Eq. (2.41), are equal. Thus in KS-DFT, the negative

of εHOMO can be approximated to the first ionization potential

I ≈−εσ
HOMO. (2.43)

An extension of the above equation to orbitals that are belowthe HOMO is only restricted by the

fact that Hohenberg–Kohn–Sham theory is a ground state theory within which Eq. (2.43) can be

justified while removal of an electron from an orbital below the HOMO involves an excited state.

It should be noted that the Slater-Janak theorem, Eq. (2.42)is valid even when the exchange-

correlation functional employed in a calculation is approximate while Eq. (2.43) is valid only

whenE0 is a linear function ofnσ
HOMO which is the case only when the exchange-correlation

functional is exact.

Another concept which is extremely useful in KS-DFT, especially when approximate XC

functionals are employed, isSlater’s transition state[1] which was originally proposed within

the Hartree–Fock–Slater (HFS) approximation [39]. For a system with an orbital occupation

numbernσ
i for an orbitalφ σ

i , Slater expandedE[ρ] as a power series ofE[ρ] of a system with

nσ
i = 1/2

E[ρ]|nσ
i
= E[ρ]|nσ

i =1/2+
dE[ρ]
dnσ

i

∣

∣

∣

∣

nσ
i =1/2

(nσ
i −1/2)+ . . . . (2.44)
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Using the above equation and Slater-Janak theorem, Eq. (2.42), ionization of orbitalφ σ
i involves

a transition from a state withnσ
i = 1 to a state withnσ

i = 0. The resulting energy change can then

be approximated as

E[ρ]|nσ
i =1− E[ρ]|nσ

i =0 ≈
dE[ρ]
dnσ

i

∣

∣

∣

∣

nσ
i =1/2

= εσ
i |nσ

i =1/2 . (2.45)

The above equation is an approximation because contributions from higher order derivatives are

ignored. According to Eq. (2.45), the ionization energy canbe approximated as the negative of

the orbital energy of the orbital from which half an electronis removed. This species with an

half-electron is called Slater’s transition state. In KS-DFT, Eq. (2.45) is normally used in ground

state calculations where the transition state involved is the half-filled HOMO.

2.3 Self-interaction Error

2.3.1 Conditions for Exact Exchange-Correlation Functionals

A KS calculation will yield exact results only when the (unknown) exact XC functional would

be employed. The exact XC functional satisfies certain conditions, some of which are violated

by approximate XC functionals that are based on LDA and GGA. Often it is possible to define

these exact conditions only for certain limiting cases or model systems. One such case is that

of a one-electron system, e.g. the H atom; the single electron cannot interact with itself through

the Coulomb interaction. For this system the contribution tothe total energy due to Coulomb

interaction (Eq. 2.3) should be zero:

Eee[ρσ ] = 0;
∫

ρσ (r)dr = 1. (2.46)

When Eq. (2.46) is not satisfied, the Coulomb interaction in theone electron system is non-

vanishing resulting inself-interaction(SI) and the error introduced due to SI is called theself-

interaction error(SIE).

The HF theory is free of SI. For every individual HF orbital, Eq. (2.46) is satisfied in the HF

theory. In the general spin-polarized unrestricted HF (UHF) approach, the total electron-electron

interactionVeecan be expressed as the sum of contributions due to occupied spin orbitals of both

spin type as

Eee=
1
2

Nα

∑
a

Nα

∑
b

(

Jα ,α
ab −Kα ,α

ab

)

+
1
2

Nβ

∑
a

Nβ

∑
b

(

Jβ ,β
ab −Kβ ,β

ab

)

+
Nα

∑
a

Nβ

∑
b

Jα ,β
ab , (2.47)

whereJ andK are the Coulomb and exchange integrals [55]. TheEee contribution to the UHF

total energy of a single electron system can be written as

1
2

(

Jσ ,σ
11 −Kσ ,σ

11

)

= 0. (2.48)
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In the HF approximation, the self-Coulomb and self-exchangeof a single electron are evaluated

as the same integral and they cancel each other.

In KS-DFT,Eee is a sum of Coulomb and XC contributions

Eee= J[ρ]+Exc[ρ], (2.49)

where the Coulomb contributionJ[ρ] is the classical Coulomb term as defined in Eq. (2.8) and

the XC contributionExc[ρ] is calculated according to Eq. (2.29). For a single electrondensity of

a given spin, Eq. (2.49) yields

J[ρσ ]+Exc[ρσ ] = 0. (2.50)

For a single-electron, the correlation contribution is also zero. Thus, cancellation of self-Coulomb

energy should be due to the self-exchange term. Thus Eq. (2.50) can be written as the two sepa-

rate conditions

J[ρσ ]+Ex[ρσ ] = 0 (2.51)

and

Ec[ρσ ] = 0. (2.52)

Collectively the above two equations are referred to as conditions for the KS formalism to be free

of SI defined for a one-electron spin density which are satisfied by the exact XC functional. The

orbital energies are the eigenvalues of the KS Hamiltonian matrix where the electron-electron

contribution enter through the Hartree, Eq. (2.27), and theXC, Eq. (2.28), potentials as varia-

tional derivatives. Thus, in order for the KS orbital energies to be SI free, the exact condition for

the local potentials can be given as

vH(r)+vxc(r) = 0. (2.53)

The above follows from two separate conditions

vH(r)+vx(r) = 0 (2.54)

and

vc(r) = 0. (2.55)

Approximate XC functionals according to LDA and GGA do not satisfy the SI conditions for

total energies, Eq. (2.51, 2.52) and local potentials Eq. (2.54, 2.55), but only to some approxi-

mation. This situation has been discussed for the HFS approximation (or the Xα method) where

it is relatively simple to demonstrate that minimization ofthe SI cannot be simultaneously for

the total energy and the effective one-electron potential.Rather, the parameter denoted byα that

enters into the exchange term requires different parametrizations for each purpose, for the total

energy and the orbital energies [39,56,57]. While the SIE canbe analytically defined only for a

one-electron system, it is also present in the LDA/GGA calculations of many-electron systems.
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2.3.2 Self-Interaction Cancellation by Semi-Local Functionals

For a one-electron system the SIE in the total energy is not a serious problem in certain LDA

and all GGA approximations where Eq. (2.50) is sufficiently satisfied because of certain error

cancellations between exchange and correlation contributions. However the SIE is severe for the

orbital energy of a one-electron system where Eq. (2.53) is not satisfied to a sufficient accuracy in

both LDA and GGA approximations. In the following, the performance of some commonly used

LDA and GGA functionals in terms of self-interaction cancellation is discussed for the hydrogen

atom.

Table 2.1: Total electronic energy (E) and energy of 1sorbital (ε1s) of a hydrogen atom in various

LDA and GGAa exchange-correlation (XC) functionals along with exact values. All values are

in eV.

Approximation XC E ε1s

LDA SD –12.437 –6.719
LDA VWN –13.025 –7.319
LDA PW-LDA –13.026 –7.320

GGA BP –13.609 –7.621
GGA PW91 –13.647 –7.653
GGA PBE –13.605 –7.594
GGA PBEN –13.749 –7.644

Exact/UHFb –13.606 –13.606

a In the DFT calculations, an uncontracted basis
set of the size (8s, 4p, 3d) was employed.

b The exact value is –0.5 hartree.

Table 2.1 presents the total energy and the energy of the 1s orbital of the H atom in spin-

polarized KS-DFT calculations employing various commonlyused LDA and GGA XC function-

als along with exact values. For the H atom, the UHF total energy of –13.61 eV (–0.5 hartree)

is exact. The LDA calculation employing the exchange-only SD functional predicts the total

energy to be about -12.4 eV which differs from the exact valueby about 1.2 eV. When VWN or

PW-LDA XC functionals are employed the total energy of the H atom is much improved but still

differs from the exact value by 0.6 eV. All the GGA XC functionals BP, PW91, PBE and PBEN

improve the total energy towards the exact value. The energyof the 1sorbital for which the exact

value is same as that of the total energy –13.61 eV is incorrectly predicted by all LDA and GGA

functionals shown (Table 2.1). The difference between the exact value and the SD value is about



22 CHAPTER 2. KOHN–SHAM DENSITY FUNCTIONAL THEORY

6.9 eV which is slightly reduced to about 6.3 eV by VWN and PW-LDA XC functionals. The

GGA functionals improveε1s to –7.6 eV which still differs from the exact value by about 6 eV.

Overall the total energy of the H atom is predicted to sufficient accuracy by LDA functionals that

include both exchange and correlation contributions and byall the GGA functionals. However,

the magnitude of the orbital energy is significantly underestimated by 6 to 7 eV by all the LDA

and GGA functionals discussed here (Table 2.1).

The error introduced in LDA and GGA KS-DFT calculations of the H atom is exclusively

due to incomplete self-interaction cancellation in the one-electron potential by LDA and GGA

XC functionals. In order to understand even approximately the magnitude of the SIE in the total

energy and the orbital (HOMO) energy of a one-electron system, a measure of the exchange-

correlation contribution by the LDA and GGA XC functionals is needed. In this aspect, the

scaling relations given by Yang and others [64] form an important step towards understanding

the nature of the SIE in KS calculations employing approximate functionals. Accordingly, the

Coulomb contribution of ann-electron system, where 0≤ n≤ 1, scales as

Jn = n2J1, (2.56)

while the scaling relation for theexactexchange-correlation contribution is

Eexact
xc,n = n(1−n)J1+nEexact

xc,1 . (2.57)

The exchange-correlation energy contribution due to LDA and GGA XC functionals to a suffi-

cient accuracy takes the form

ELDA/GGA
xc,n ≈ nELDA/GGA

xc,1 ≈−nJ1 (2.58)

and by comparing Eq. (2.57) and Eq. (2.58) it is clear that part of the exact behavior which is not

accounted by LDA and GGA XC functionals is the contribution due to the penalty functional of

the typen(1−n)J1.

For the total energy contribution of a one-electron system (n= 1) to a good approximation,

the self-Coulomb energy is cancelled by the LDA/GGA self-exchange-correlation energy

SIE inE[ρσ ] = J1+ELDA/GGA
xc,1 ≈ 0. (2.59)

The above equation simply means that the LDA and GGA XC contribution varies approximately

linearly with respect ton while the Coulomb contribution varies quadratically, hencethey cancel

each other whenn= 1 and in the trivial case wheren= 0. Using the Slater-Janak theorem [66]

according to Eq. (2.42), it is easy to see that self-interaction cancellation is not sufficient in the

energy of the HOMO of the one-electron system

SIE in εHOMO = 2J1+ELDA/GGA
xc,1 ≈ J1. (2.60)
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According to the above equation it is clear that the Coulomb energy contribution to orbital energy

of a one-electron system is approximately twice the Coulomb contribution to the total energy.

Since the XC contribution varies linearly withn, the SIE in the orbital energy is approximately

equal toJ1, which is in fact the case of H atom where the energy of the 1sorbital is approximately

−7.5 eV in LDA and GGA calculations which differ from the exact value of−13.6 eV by about

−6 eV.

Table 2.2 presents the contributions to the total energy and1sorbital energy of H atom due to

the classical Coulomb termJ[ρ] and due to the exchangeEx and correlationEc contributions. For

the H atom, the exact ground state density isρ0(r) = e−2r/π and the classical Coulomb contribu-

tion J[ρ] can be analytically evaluated to 5/16 hartree (8.504 eV) [58]. In an exact KS-DFT cal-

culation or in UHF, the self-Coulomb contribution to the total energy is exactly cancelled by the

self-exchange term hence resulting in complete self-interaction cancellation. The SIE is largest

in the SD-LDA calculation where the self-Coulomb energy of 8 eV is only partly cancelled by

the SD exchange contribution of –7 eV resulting in SIE of about 1 eV. With the inclusion of cor-

relation effects the LDA approximations VWN and PW-LDA slightly reduces the SIE in the total

energy due to an error cancellation. For a one-electron system, the exact correlation contribution

is zero, but the VWN and PW-LDA XC functionals predict about –0.6 eV of correlation con-

tribution which decreases the SIE to about 0.6 eV. The GGA functionals provide almost correct

amount of exchange and correlation contributions and decrease the SIE in energy and the error

cancellation between exchange and correlation contributions is also decreased. Also one notes

that with improved XC contributions, the classical Coulomb contribution improves from 8.0 eV

in the SD-LDA method to about 8.4 eV in GGA methods approaching the exact value of 8.5 eV.

Overall the general conclusion can be drawn that the SIE in the total energy of a H atom is rather

small and Eq. (2.59) is approximately satisfied in KS-DFT calculations employing commonly

used LDA (VWN, PW-LDA) and GGA functionals.

The contributions to the 1s orbital energy due to Coulomb and exchange-correlation ener-

gies, enter via the local potentials. The UHF values for Coulomb and exchange contribution

are obtained using the Koopmans theorem [65], hence they arethe same as the corresponding

contributions to the total energy of the H atom. In an exact KS-DFT, the quadratic Coulomb

energy contribution to the total energy isJn = n2J1, wheren = 1. The contribution to the or-

bital energy according to Slater–Janak theorem [66] is obtained as the corresponding derivative

with respect ton. Thus the Coulomb energy contribution toε1s is 2J1 = 17.007 eV and the

exact exchange-contribution is obtained using Eq. (2.57) as−2J1 = −17.007 eV. The classical

Coulomb contribution toε1s in LDA calculations is about 14 eV which improves by 0.5 eV in

GGA calculations. The XC contribution toε1s in LDA and GGA calculations is approximately
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Table 2.2: Contributions to the total electronic energy (E) and the energy of the 1sorbital (ε1s) of

the hydrogen atom in LDA and GGA approximations employing various exchange-correlation

(XC) functionals along with exact values: classical Coulomb energy J, exchange energyEx,

correlation energyEc. All values are in eV.

Quantity Approximation XC J Ex J+Ex Ec J+Exc

E LDA SD 8.015 –6.891 1.124 0.000 1.124
LDA VWN 8.119 –6.977 1.141 –0.589 0.552
LDA PW-LDA 8.119 –6.977 1.142 –0.590 0.551

GGA BP 8.335 –8.290 0.046 –0.062 –0.016
GGA PW91 8.361 –8.249 0.112 –0.172 –0.060
GGA PBE 8.349 –8.211 0.138 –0.155 –0.017
GGA PBEN 8.395 –8.402 -0.007 –0.156 –0.163

Exact/UHFa 8.504 –8.504 0.000 0.000 0.000

ε1s
b LDA SD 13.804 –7.328 6.476 0.000 6.476

LDA VWN 14.049 –7.472 6.577 –0.604 5.974
LDA PW-LDA 14.050 –7.473 6.577 –0.604 5.973

GGA BP 14.417 –8.364 6.053 –0.216 5.837
GGA PW91 14.489 –8.425 6.064 –0.243 5.821
GGA PBE 14.458 –8.363 6.095 –0.224 5.870
GGA PBEN 14.536 –8.456 6.079 –0.225 5.854

UHF c 8.504 –8.504 0.000 0.000 0.000
Exactd 17.007 –17.007 0.000 0.000 0.000

a Exact values:J = J1 = 5/16 hartree andEx =−J1 hartree.
b In LDA and GGA calculations, various contributions toε1s were obtained according to

the Slater–Janak theorem as the numerical derivativeε1s =
(

EH −EH0.0001+
)

/0.0001.
Here the numerator is the difference between correspondingcontributions to the total
energy.

c UHF the contribution toε1s are obtained according to Koopmans theorem as the finite
differenceε1s = (EH −EH+)/1.

d The exact KS-DFT value is obtained using the Slater–Janak theorem:J = 2J1 = 5/8
hartree,Ex =−J1 hartree

similar to the corresponding contributions to the total energy, indicating the fact that LDA and

GGA XC contributions vary linearly. The contribution due tothe correlation energy is zero in

an exact calculation. LDA and GGA functionals contribute about –0.6 eV and –0.2 eV of corre-

lation energy respectively which slightly cancel the self-Coulomb contribution. Overall, the SIE

in ε1s of the H atom in LDA and GGA calculations is about 6 eV.
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The contribution to the total energy andε1s of H atom due to kineticT and nucleus-electron

attractionVNe energies are listed in Table 2.3. Both in LDA and GGA calculations,T andVNe

contributions to the total energy are close to exact values.However, the large SIE inε1s of

about 6–7 eV of self-Coulomb energy partially shields the electron from the nucleus resulting

in an underestimation of the external potential by about 6 eVwhich variationally decreases also

the kinetic energy contribution by 6 eV. However by error cancellation, the sum ofT andVNe

contributions toε1s approximately satisfy the virial theorem−2T/VNe= 1 hartree=−13.6 eV.

Using the scaling relations of the Coulomb and XC functionals, theself-interaction analysis

Table 2.3: Contributions to the total electronic energy (E) and the energy of the 1sorbital (ε1s) of

the hydrogen atom in LDA and GGA approximations employing various exchange-correlation

(XC) functionals along with exact values: Kinetic energyT, electron-nuclear attractionVNe. All

values are in eV.

Quantity Approximation XC T VNe T +VNe

E LDA SD 12.436 –25.998 –13.562
LDA VWN 12.697 –26.274 –13.577
LDA PW-LDA 12.697 –26.275 –13.577

GGA BP 13.367 –26.959 –13.593
GGA PW91 13.505 –27.093 –13.587
GGA PBE 13.463 –27.051 –13.588
GGA PBEN 13.609 –27.195 –13.586

Exact/UHFa 13.606 –27.211 –13.606

ε1s
b LDA SD 6.720 –19.915 –13.196

LDA VWN 6.981 –20.275 –13.294
LDA PW-LDA 6.982 –20.276 –13.294

GGA BP 7.305 –20.764 –13.459
GGA PW91 7.455 –20.929 –13.474
GGA PBE 7.401 –20.866 –13.465
GGA PBEN 7.455 –20.954 –13.499

Exact/UHFa 13.606 –27.211 –13.606

a Exact values:T = 0.5 hartree andVNe=−1.0 hartree.
b In LDA and GGA calculations, various contributions toε1s were

obtained according to the Slater–Janak theorem as the numerical
derivativeε1s=

(

EH −EH0.0001+
)

/0.0001. Here the numerator is the
difference between corresponding contributions to the total energy.
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done above for a H atom can be generalized to ann-electron case, where 0≤ n≤ 1. The self-

interaction cancellation in the total energy and the orbital energy of such a fractionally charged

H atom with n-electron in LDA and GGA calculations are qualitatively illustrated in Figure

2.1 and Figure 2.2, respectively. It has to be noted that the assumption in these figures is that

for a H atom with in the occupation numbers 0 and 1, the classical Coulomb energy contribution

scaled quadratically asn according to Eq. (2.56) and the exchange-correlation contribution varies

linearly asn according to Eq. (2.58) which are only approximately valid in LDA and GGA.
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Figure 2.1: Qualitative illustration of the self-interaction cancellation in the total energy by typi-

cal LDA/GGA XC functionals for a fractionally charged H atomwith n-electron, where 0≤ n≤ 1

according to Eq. (2.56, 2.58). Contributions toE[ρ] due to the classical CoulombJn energy and

the LDA/GGA XC energyExc,n in units of classical Coulomb contribution of the single electron

in H atom,J1.

From Figure 2.1 one notes that for ann-electron H atom, the SIE in the total energy is due

to the underestimation of the Coulomb repulsion and is largest (in absolute terms) whenn= 0.5

where the absolute value of the SIE isJ1/4, whereJ1 is the classical Coulomb contribution to

the one electron energy, 5/16 hartree in the case of the H atom. From Figure 2.2 one notes that

for the fractionally charged H atom, that the SIE ofεHOMO is due to an underestimation of the

classical Coulomb repulsion when 0≤ n≤ 0.5, and overestimated whenn> 0.5; for n= 0.5 the

self-Coulomb energy in this model is completely cancelled bythe self-exchange contribution.

Forn= 1.0, the absolute value of the SIE inεHOMO is equal toJ1.

The conclusions drawn from the analysis of the self-interaction cancellation in the present
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section for a general fractionally chargedn-electron system can be easily extended toN+n elec-

tron systems such as multi-electron atoms. The results of these analyses provide some guidelines

about the approximate magnitude of the SIE which one can expect in a KS-DFT calculation when

LDA and GGA XC correlation functionals are employed.
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Figure 2.2: Qualitative illustration of the self-interaction cancellation in the energy of the HOMO

by typical LDA/GGA XC functionals for a fractionally charged H atom withn-electron, where

0≤ n≤ 1 according to derivatives of Eq. (2.56, 2.58). Contributions toεHOMO due to the classical

CoulombJn energy and the LDA/GGA XC energyExc,n (from the corresponding local potentials)

in units of classical Coulomb contribution of the single electron in H atom,J1.

2.3.3 Manifestations of the Self-Interaction Error

The self-interaction error (SIE) which is introduced into KS-DFT calculations employing ap-

proximate XC functionals (such as LDA, GGA) arises because of the incomplete cancellation

of the self-Coulomb contribution by the self-exchange contribution. SIE in KS orbital energies

in LDA and GGA calculations is a simple case of how SIE manifests itself in a property other

than the total electronic energy. Certain system specific manifestations of the SIE in LDA and

GGA methods have been widely discussed and have been classified as failures of common LDA

and GGA XC functionals in describing these systems [14, 15].Some of the notable failures

of LDA and GGA methods are the underestimation of reaction barriers, the underestimation of

band gaps, the prediction of wrong dissociation limits of molecules such as H+2 , the prediction

of wrong excitation energies of certain transition metal atoms, wrong orbital energies of atomic
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and molecular systems especially the destabilization of the HOMO of anions such as hydride,

fluoride, etc. and overstabilization of HOMO of cations. Allthese situations can be understood

as due to the SIE in total energies, orbital energies or both.

The incorrect prediction of the energy of the H atom (Table 2.1) is also one of the failures

of LDA and GGA methods. However as discussed in the previous section, the magnitude of this

error is rather small at least in GGA methods. Moreover, the absolute electronic energy is not

an observable quantity and chemically relevant propertiessuch as the geometry or the energetics

are functions of energy differences. If one considers that the main source of error in LDA and

GGA calculations is due to wrong quadratic behavior of classical Coulomb contribution (or the

linear behavior of exchange contribution), one can semi-quantitatively understand the magnitude

of the SIE in total energies and orbital energies from Figures 2.1 and 2.2.

A good example to illustrate the SIE in molecular systems is the LDA/GGA description of

the hydrogen molecular cation, H+2 at the dissociation limit which shows the SIE in both total

energy and orbital energy. Before proceeding further, certain aspects LDA/GGA calculation of

H+
2 at large bond lengths need to be discussed.

The proper dissociation product of H+2 is a H+ ion and a neutral H atom. However when

symmetry constraints are enforced such that the two H atoms are identical, the dissociation prod-

uct is considered to be two separated H0.5+ ions. In an exact theory which is size-consistent,

both the dissociation products will have same energy.

However in LDA and GGA, two separated H0.5+ ions are predicted to be more stable than

the dissociation products H+ and a neutral H atom. The preference for the wrong dissociation

of H+
2 in LDA and GGA is due to the underestimation of the Coulomb energy of two H0.5+ ions

which results in an overstabilization of this dissociationproduct.

From Figure 2.1, one can see that both H+ and H which have 0 and 1 electron respectively are

relatively free of SIE when compared to two H0.5+ ions with fractional electrons. For a system

with half an electron the classical Coulomb term is evaluatedasJ0.5 = J1/4 which is about 2.1

eV (whereJ1 = 5/16 hartree = 8.5 eV) andExc is evaluated asEx,0.5 = −J1/2 which is about

–4.2 eV (Figure 2.1). Hence for two H0.5+ ions one can expectJ = 4.2 eV,Exc=−8.4 eV and a

SIE of about –4.2 eV. In a PBE calculation of the energy of a H0.5+ ion, J andExc are calculated

as 2.3 and –3.9 eV, respectively, with a SIE of –1.6 eV. Thus for two H0.5+ ions the SIE in PBE

method is about 3.0 eV which is same amount by which the PBE binding energy differs from the

exact UHF value at the dissociation limit (r > 100 Å).

Figure 2.3 shows the binding energy curves of H+
2 in UHF, VWN-LDA and PBE-GGA meth-

ods. For this one-electron system, the UHF description is exact. LDA and GGA methods predict

the equilibrium bond length of H+2 very accurately to be about 1 Å in good agreement with UHF.
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Figure 2.3: Binding energy curves of H+2 in UHF, VWN-LDA and PBE-GGA methods. The

binding energy is calculated as∆E = E(H+
2 )−E(H)−E(H+). DFT calculations were per-

formed by enforcing symmetry restrictions in which both H nuclei are identical.

LDA, GGA binding energy of H+2 is also very close to the exact UHF value at the equilibrium

bond length, however at large separations, LDA and GGA energies are too negative and H+2
molecule is overstabilized. This situation has been widelydiscussed in the literature [14,67]. In

Ref. [14], Yang et al. points out that the error in the energy ofH+
2 at dissociation limits is due to

SIE due to fractional charges which result in the underestimation of the Coulomb energy.

Without symmetry constraints, LDA and GGA calculations of H+
2 at large bond distance

normally do not converge. This is a consequence of the SIE of the orbital energy. From Figure

2.2, one can see thatεHOMO of H+ is underestimated andεHOMO of neutral H is overestimated

by J1. Such a situation entails that the electron localized on theH atom favors to transfer to the

1sorbital of the H+ center which ultimately results in SCF oscillations. It is however possible to

favor the localized dissociation product by fixing a electron-hole in one of the H centers, but this

will only represent an excited state.

H+
2 is an interesting system for studying effects of the SIE in semi-local KS calculations. The

SIE of the total energy of H+2 illustrates why LDA and GGA methods wrongly favor localized

solutions while the SIE in orbital energy illustrates convergence issues and issues related to under

or overestimation of orbital energies.
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2.3.4 Self-Interaction Correction Schemes

From the overall discussions in this chapter so far, it is perhaps evident that an obvious way to

proceed in order to account for self-interaction correction (SIC) in approximate KS-DFT calcu-

lations is to employ better XC functionals. In this respect,the hybrid-DFT XC functionals such

as B3LYP [49–51] and PBE0 [52] that include a fraction of exact exchange similar to HF scheme

are expected to lead to improved results.

Developing better semi-local functionals that are also free of SIE requires a thorough analysis

of the performance of semi-local methods such as LDA and GGA for simple and fully under-

stood atomic or molecular systems. In this respect, Yang et al. suggested [64] to model XC

functionals such that they satisfy Eq. (2.40) in a simpler way by including a penalty functional of

the typen(1−n)J in the exchange functional. For fractional occupation numbers, the classical

Coulomb contribution is underestimated. Thus the residual Coulomb contribution is provided in

the form of a penalty functional which provides a positive correction only whenn is fractional.

As discussed in the previous sections, such a correction term will automatically provide the SIC

needed for KS orbital energies.

In order to improve the already existing semi-local XC functionals, Perdew and Zunger pro-

vided a strategy which is commonly known as the SIC-DFT scheme[15]. In this approach, the

spurious self-interaction which is the sum of self-Coulomb and self-exchange contributions is

subtracted out from the energies of the occupied KS orbitals. Such a scheme ignores error can-

cellation between the exchange and correlation energy contributions (Table 2.2) and it has been

found to be inaccurate for molecules near the equilibrium geometry [68].

The SIC-DFT potential unlike the KS potential is orbital-dependent providing orbital specific

corrections. In the optimized effective potential (OEP) approach [69], exact exchange contribu-

tion is included but the KS potential is optimized by varyingthe orbital occupation numbers.

The present thesis work deals with a SIC strategy that uses the DFT + U methodology [20].

The DFT + U approach introduces an orbital dependent correction term to the energy functional

E[ρ] according to the generalized Hubbard Hamiltonian. The DFT +U methodology is usually

employed for solid state systems with localized electrons.However, this scheme can be also

be used for atomic calculations where the orbitals are trivially localized on atoms, for cases

like H+
2 at the dissociation limit where one can expect localizationof the single electron on one

of the centers and for systems with localized 3d or 4f electrons where these electrons due to

their compact radial distribution are localized on atomic centers even on molecules and solids.

Among various variants of the DFT + U methodology, an approach known as FLL-DFT + U

(fully localized limit DFT + U) [20] introduces an energy correction term in the form of the

penalty functional as in Eq. (2.40) – for specific atomic shells – which provides a Coulomb
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contribution for fractional charges and suitably correctsthe KS potential to improve the orbital

energies.
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Chapter 3

The DFT + U Methodology

From the discussions in the previous chapter, it is evident that the magnitude of the SIE present

in KS-DFT calculations employing LDA and GGA XC functionalsis larger for orbital energies

than for total energies. In the case of a H atom when the orbital occupation number is exactly

one, the SIE inε1s is largest resulting in a net destabilization of the 1s orbital of H atom (see

Figure 2.2). The 3d orbitals of transition metals and 4f orbitals of lanthanides do not have large

radial extension and in compounds formed by these metals, the 3d or 4f orbitals do not form

strong overlaps with the ligand orbitals and they are more localized on the corresponding atoms.

Thus when these localized orbitals are occupied, they have integer orbital occupation numbers

(i.e. 1 electron per orbital). Thus the orbital energies of 3d or 4f systems suffer from severe

self-interaction error in LDA and GGA calculations. This phenomenon is responsible for the

simple case where LDA and GGA incorrectly predict the groundstate of atomic Ni to have the

configuration 3d94s1 instead of the correct configuration 3d84s2. A more common situation is the

underestimation of band gaps of transition metal oxides in LDA and GGA solid state calculations.

Transition metal oxides such as NiO, CoO, and CaCuO2 are antiferromagnetic (AFM) insulators

with sufficiently large energy gap between the valence and conduction bands. KS-DFT methods

employing semi-local XC functionals such as LDA and GGA severely underestimate the band

gap and the magnetic moments and predict these metal oxides to be metallic [70]. The DFT + U

methodology was first proposed [20] in order to improve the DFT description of these systems.

The present chapter summarizes the details of the DFT + U methodology which is the main

topic of the present work. In section 3.1, the theoretical background of the DFT + U formalism

is presented which is followed by section 3.2 where the expressions that are used in the DFT + U

method are presented. Section 3.3 deals with the specific details related to the implementation of

the DFT + U methodology in the program PARAGAUSS. Finally in section 3.4, a brief analysis

of the correction provided by the widely used variant of the DFT + U correction is discussed by

33
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considering C atom as a simple example.

3.1 The DFT + U Formalism

In semi-empirical band structure calculation of solids, approximations given by the generalized

Hubbard model [71, 72] leads to an effective Hamiltonian to treat the bevahior of electrons in

metals. In the Hubbard model, the electron-electron repulsion of electrons on a site/atom of a

metal is quantified by the onsite-Hubbard parameterU . The Anderson model [71], more com-

monly known as the Anderson impurity model is based on the Hubbard model but allows the

treatment of localized, magnetic states of an impurity present in a non-magnetic material. In

band structure calculations, such a scheme ensures separate treatments for highly localizedd

or f electrons and less localizeds and p electrons. Motivated by the success of the Ander-

son model Anisimov et al. [20] suggested that the LSDA description of transition metal ox-

ides such as NiO can be improved by adding an orbital occupation dependent energy correction

term to the DFT energy functional in order to exclusively improve the electron-electron descrip-

tion of the 3d electrons. This resulted in the formulation of the DFT + U approach, originally

intended to improve the LSDA description, in which a screened Hartree-Fock type electron-

electron description if provided for the localized electrons such as 3d and 4f electrons. There

have been several implementations of the DFT + U methodologyin solid state electronic struc-

ture codes in the framework of linear muffin-tin orbitals (LMTO) [20], full-potential linearized

augmented plane-wave (FLAPW) [73], projector augmented-wave (PAW) [74] pseudopotential-

plane-wave [75], full-potential local orbitals (FPLO) [76] and linear-combination-of-pseudo-

atomic-orbital (LCPAO) [77] methods. The present work represents the first implementation of

the DFT + U in the framework of symmetry adaptedlinear combination of contracted Gaussian-

type orbitals(LCCGTO) framework of the program PARAGAUSS [21,22] which is more suitable

for molecular calculations [25–27].

The DFT + U total energy functional is given as the sum of DFT total energy functional and

a correction term which depends on the orbital occupation numbers of a givenshellof orbitals

EDFT+U [ρ,ns] = EDFT [ρ]+EU [ns] , (3.1)

wherens refers to the occupation numbers of a particular shell of orbitals. If the DFT + U

treatment is intended for the 3d orbitals of a single Ni atom, then a shell denoted bys can be

defined as the five 3d orbitals of each spin type andns will the set of occupation numbers of the

3d orbitals. In the symmetry adapted LCCGTO framework of PARAGAUSS, ashellcorresponds

to a unique atom indexu, the angular momentum quantum numberl of the orbitals and the
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contraction numberc. Thus the shell indexs can be mapped to the indices[u,L,c]:

s≡ [u,L,c] (3.2)

Thus in the more general symmetry adapted case, the total number of orbitals belonging to a

shell isNeq(2l +1) whereNeq is the number of atoms belonging to a unique typeu. While the

energy correction term is shell specific, it has to be noted that such corrections can be provided

separately to more that one shell of orbitals of the specifiedunique atom. The second term in the

right hand side (r.h.s.) of Eq. (2.1) is the DFT + U energy correction which has the form

EU [ns] = EU
0 [ns]−Edc[ns] , (3.3)

where the first term on the r.h.s. is a term derived according to the UHF treatment of the electron-

electron interaction of electrons within the shells and the second term is adouble counting

term which represents the electron-electron interaction contribution of the shells that is al-

ready present in the DFT total energy functional from the contributions of classical Coulomb

and exchange-correlation functionals.

3.1.1 The DFT + U Functional form

According to UHF, the contribution to the total energy due toelectron-electron interaction is

given according to Eq. (2.4). For the present purpose, it is useful to consider an expression for

the electron-electron interaction energy obtained by the expanding the spin-specific molecular

orbitalsψσ
i as a linear combination of the atomic basis functions

{

φµ
}

ψσ
i = ∑

µ
Cσ

µ iφµ . (3.4)

In terms of the linear expansion coefficientsCσ
µ i, the elements of a density matrix can now be

defined as

Dσ
µν = ∑

i
nσ

i Cσ
µ iC

σ ,∗
ν i , (3.5)

wherenσ
i is the occupation number of the molecular orbitalψσ

i .

The standard expression for the electron-electron interaction energy in the basis
{

φµ
}

is

given by [72]

EUHF
ee =

1
2∑

σ
∑

µνλη

[

(µν |ηλ )Dσ
νµD−σ

λη +{(µν |ηλ )− (µλ |ην)}Dσ
νµDσ

λη

]

(3.6)

where the indicesµ, ν , λ , η run over all the basis functions. The four center integrals(µν |ηλ )

that enter Eq. (3.6) are defined as [55]

(µν |ηλ ) =
∫

d~r1d~r2φ∗
µ(~r1)φν(~r1)r

−1
12 φ∗

η(~r2)φλ (~r2). (3.7)
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In arriving at the expression forEU
0 in Eq. (3.3) from the expression for the energy contribu-

tion due to electron-electron interaction in the UHF formalism as given in above equation, the

following approximations are invoked.

Approximations involved in the DFT + U formalism

• Energy correction is meant only for a specified shells as defined in Eq. (2.4). Thus

the atomic basis function indicesµ, ν , η andλ correspond to indices of theNeq(2l +1)

orbitals of this shell.

• As in the case of semi-empirical schemes such as the Hubbardmodel, the electron-electron

repulsion operator is replaced by an operator representingscreened electron-electron re-

pulsion between electrons in the given shell. Thus thescreenedCoulomb and exchange

integrals

Uµ ,ν ,η ,λ =
∫

d~r1d~r2φ∗
µ(~r1)φν(~r1)V̂

scr
ee φ∗

η(~r2)φλ (~r2) (3.8)

and

Jµ ,λ ,η ,ν =
∫

d~r1d~r2φ∗
µ(~r1)φλ (~r1)V̂

scr
ee φ∗

η(~r2)φν(~r2) (3.9)

which replace the four center integrals that enter Eq. (3.7).

• The DFT + U correction term was originally proposed for the tight binding linear muffin tin

orbitals where the diagonal elements of the density matrixD will give the orbital occupa-

tion numbersnσ
i . Irrespective of the basis set involved, in the atomic limitof localization,

the orbitals that belong to given shells do not mix among themselves.

The DFT + U energy correction termEU
0 is obtained by invoking the above mentioned approxi-

mations in Eq. (3.6)

EU
0 =

1
2∑

σ
∑

µνλη∈s

[

Uµ ,ν ,η ,λ nσ
µ n−σ

η δµνδλη +
(

Uµ ,ν ,η ,λ −Jµ ,λ ,η ,ν
)

nσ
µ nσ

η δµνδλη

]

, (3.10)

where the orbital occupation numbersnσ
i enter in anad hocfashion which needs to be defined

separately. After simplification, Eq. (3.10) can be writtenas

EU
0 =

1
2∑

σ
∑

µη∈s

[

Uµ ,µ ,η ,ηnσ
µ n−σ

η +
(

Uµ ,µ ,η ,η −Jµ ,η ,η ,µ
)

nσ
µ nσ

η

]

. (3.11)

In the HF formalism, self-interaction is implicit, where a self-Coulomb energy term is cancelled

exactly by a self-exchange term. This aspect is also reflected in Eq. 3.11 whereUµ ,µ ,µ ,µ =

Jµ ,µ ,µ ,µ , thus Eq. 3.11 can be presented as

EU
0 =

1
2∑

σ
∑

µη∈s

[

Uµ ,µ ,η ,ηnσ
µ n−σ

η

]

+
1
2∑

σ
∑

µ 6=η∈s

[

(

Uµ ,µ ,η ,η −Jµ ,η ,η ,µ
)

nσ
µ nσ

η

]

. (3.12)
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Spherically averaged Coulomb and exchange terms

The DFT + U scheme is easy to implement as a semi-empirical correction term where the dif-

ficulties related to defining the screened Coulomb operatorV̂scr
ee operator and computing the

four center integrals are alleviated by introducing these integrals as suitably defined parameters.

Within a shells≡ [u,L,c] with Neq(2l +1) orbitals, there will be
[

Neq(2l +1)
]2

Coulomb terms

of the formUµ ,µ ,η ,η and N2
eq[2l(2l +1)] terms of the form

(

Uµ ,µ ,η ,η −Jµ ,η ,η ,µ
)

where self-

interaction cancellation between Coulomb and exchange terms with identical indices are taken

into account. In a spherical charge distribution or when theshells is filled, spherically averaged

onsite-Coulomb and onsite-exchange terms can be defined as

U =
1

[

Neq(2l +1)
]2 ∑

µη∈s
Uµ ,µ ,η ,η (3.13)

and

U −J =
1

N2
eq[2l(2l +1)] ∑

µ 6=η∈s

(

Uµ ,µ ,η ,η −Jµ ,η ,η ,µ
)

. (3.14)

After introducing spherically averaged Coulomb and exchange terms in Eq. (3.12) one arrives at

the functional form

EU
0 =

1
2
U ∑

σ
∑

µη∈s
nσ

µ n−σ
η +

1
2

(

U −J
)

∑
σ

∑
µ 6=η∈s

nσ
µ nσ

η . (3.15)

There is no unique way to compute the spherically averaged onsite-Coulomb and onsite-exchange

termsU andJ. They are often employed in DFT + U calculations as empiricalparameters to fit

observable quantities [97, 98]. In the earlier DFT + U applications,U andJ were approximated

using Slater integrals [70,99]. Anab-initio approach to compute these terms using Coulomb and

exchange integrals from an UHF calculation was given by Mosey et al. [95,96]. Alternately one

can approximately compute these parameters through constrained DFT calculations which also

accounts for screening and relaxation effects [70,100–102].

Fully localized limit DFT + U functional form

The total DFT + U correction term depends on two terms, Eq. (3.3), of which the first term is

defined according to Eq. (3.15). The second term on the r.h.s.of Eq. (3.3) accounts for the

electron-electron interaction contribution of the shells that is already included in the DFT total

energy through the contributions of classical Coulomb and exchange-correlation functionals.

This contribution is separated through the double countingtermEdc. Various definitions ofEdc

have been proposed based on different motivations. In the review by Ylvisaker et al. [79] the

performance of different forms ofEdc is discussed.
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One of the earlier definitions ofEdc is based on the fully localized limit approximation (FLL).

According to the FLL approximation, in the integer occupation limit, DFT calculations employ-

ing semi-local XC functionals such as LDA and GGA, electron-electron interaction is free of

self-interaction to a good approximation and hence has the correct form. Thus in the FLL limit,

the double counting termEdc takes form ofEU
0 in the integer occupation limit [80]

Edc
FLL = lim

ns=1 or 0
EU

0 . (3.16)

The FLL double counting term can be derived by introducing the following identities which are

valid for integer occupation numbers in Eq. (3.15)

∑
µη∈s

nσ
µ n−σ

η = Nσ N−σ and ∑
µ 6=η∈s

nσ
µ nσ

η = Nσ (Nσ −1), (3.17)

wherenσ
µ are the spin-specific occupation numbers of the orbitals of the shells andNσ is the

total number of electrons of the spin typeσ defined as

∑
µ∈s

nσ
µ = Nσ . (3.18)

Thus the FLL double counting term can be written as

Edc
FLL =

1
2
U ∑

σ
Nσ N−σ +

1
2

(

U −J
)

∑
σ

Nσ (Nσ −1). (3.19)

Finally the total DFT + U correction term, in the FLL approximation can be given by using Eq.

(3.19) and Eq. (3.15) in Eq. (3.3)

EU
FLL = EU

0 −Edc
FLL, (3.20)

where the two terms in the r.h.s. cancel each other in the integer occupation limit and only in the

non-integer occupation limit, a non-zero correction is provided. An explicit form of Eq. (3.20)

can be given by subtracting Eq. (3.3) from Eq. (3.15) as

EU
FLL =

1
2

(

U −J
)

∑
σ

∑
µ∈s

[

nσ
µ

(

1−nσ
µ

)]

. (3.21)

The difference between spherically averaged onsite Coulomband exchange parametersU and

J can be substituted by a singleonsite-effective Coulomb repulsionparameterUeff which also

simplifies as the DFT + U functional as a semi-empirical correction term that depends on a

single parameter

EU
FLL =

1
2
Ueff ∑

σ
∑
µ∈s

nσ
µ

(

1−nσ
µ

)

. (3.22)

It is interesting to note that the r.h.s. of the above expression has the same form as the penalty

functional introduced by Yang et al. [64] as a component of anexchange functional which is
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needed to provide self-interaction cancellation for fractional occupation numbers, Eq. (2.40).

The FLL-DFT + U functional according to Eq. (3.21) is the mostwidely used DFT + U func-

tional. This functional has been implemented in the programPARAGAUSSas a part of this thesis

work and all the applications have been performed using thiscorrection term.

Modified FLL DFT + U functional form

D. Seo proposed [81] a modified version of the FLL (mFLL) DFT + Ufunctional form where

the double counting term takes the form

Edc
mFLL =

1
2
U ∑

σ
Nσ N−σ − 1

2

(

J
)

∑
σ
(Nσ )2. (3.23)

The full form of the DFT + U correction term according to the mFLL double counting term is

given by

EU
mFLL =−1

2

(

U −J
)

∑
σ

∑
µ∈s

(

nσ
µ

)2
. (3.24)

The above correction term has also been implemented in PARAGAUSSby introducing the defini-

tion U −J =Ueff

EU
mFLL =−1

2
Ueff ∑

σ
∑
µ∈s

(

nσ
µ

)2
. (3.25)

The DFT + U functional form according to Eq. (3.25) is not commonly used and this functional

was only used for exploratory calculations and for the applications discussed in this thesis, this

functional was not used.

Rotationally invariant DFT + U functional forms

The DFT + U functionals according to Eq.(3.22) and Eq.(3.25)which are given in natural orbital

representation are usually implemented in arotationally invariantform. In a rotational invariant

form, the DFT + U correction term will be invariant with respect to a unitary basis transforma-

tion. For this purpose the orbital occupation numbersnσ
µ are introduced in the DFT + U energy

correction terms, Eq.(3.22) and Eq.(3.25), in the form of anorbital occupation matrixNσ which

in general need not be diagonal hence accounts for overlap effects in a non-orthogonal basis:

nσ = AT ·Nσ ·A (3.26)

wherenσ is a diagonal matrix whose diagonal elements are the occupation numbersnσ
µ andA

is an orthogonal transformation matrix. The orbital occupation matrixNσ which enters into Eq.

(3.26) is actually defined as the sub-matrix of a global orbital occupation matrixPσ . In other
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words, the matrixPσ is the orbital occupation matrix computed for the whole system andNσ is

the sub-section ofPσ that corresponds to the orbitals of the shells. This can be represented as

Nσ ⇐ extra
t(Pσ ,s). (3.27)

The dimension of the matrixNσ is the same as the number of orbitals that belong to the shells

which isNeq(2l +1), Eq. (3.2). The expression for the occupation numbersnσ
µ can now be given

in terms of the elements ofNσ as

nσ
µ = ∑

ν
∑
η

AT
µν Nσ

νη Aην . (3.28)

The above equation is used in Eq.(3.22) and Eq.(3.25) to arrive at the rotationally invariant form

of the DFT + U functionals

EU
FLL =−1

2
Ueff ∑

σ
[Tr(Nσ ·Nσ )−Tr(Nσ )] (3.29)

and

EU
mFLL =−1

2
Ueff ∑

σ
Tr(Nσ ·Nσ ). (3.30)

3.1.2 Orbital Occupation Matrix

The DFT + U energy correction term is an orbital dependent term. Thus the magnitude of the

DFT + U energy correction depends on the definition of the orbital occupation matrixP. The or-

bital occupation matrixP is not uniquely defined, hence various definitions ofP have been made.

This is due to the fact that there is no well defined operator for measuring the charge of an atom

in a molecule. In the present implementation of the DFT + U methodology in PARAGAUSS, four

definitions ofP were considered. In the following a brief description of thevarious definitions

of P are summarized followed by a comparison of the performance of these matrices.

Full occupation matrix

Thefirst order density matrixis defined as

ρ(r ; r ′) = ∑
µ

∑
ν

Dµνφµ(r)φ∗
ν (r

′), (3.31)

whereφµ(r) is a basis function centered at positionr andDµν are the elements of the density

matrix as defined in Eq. (3.5). Thefull occupation matrix, Pf ull , is defined in terms of the first

order density matrix [82]

Pf ull
µν =

∫ ∫

φ∗
µ(r)ρ(r ; r ′)φν(r ′)d3rd3r ′. (3.32)
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By substituting Eq. (3.31) in Eq. (3.32) one arrives at

Pf ull
µν = ∑

η
∑
χ

Dη ,χ

∫ ∫

φ∗
µ(r)φη(r)φ∗

χ(r
′)φν(r ′)d3rd3r ′

= ∑
η

∑
χ

Dηχ

∫

φ∗
µ(r)φη(r)d3r

∫

φ∗
χ(r

′)φν(r ′)d3r ′

= ∑
η

∑
χ

DηχSµηSχν

= ∑
η

∑
χ

SµηDηχSχν

= (S·D ·S)µν , (3.33)

whereS is the overlap matrix. The full occupation matrix defined as the matrix productS·D ·S
is commonly used in DFT + U calculations [83]. The full occupation matrix is also used in

the natural atomic orbital (NAO) analysis [84]. The inclusion of the overlap matrix ensures the

applicability of this occupation matrix in the framework ofa non-orthogonal basis functions. All

the applications discussed in the present work have been done by employing the full occupation

matrix.

Other definitions

When the basis functions
{

φµ
}

are orthonormal, the overlap matrixS becomes the unit matrix.

In this limit, the full occupation matrix is the density matrix D which in the DFT + U literature

is called as the onsite occupation matrix [85]

Ponsite= D. (3.34)

Both the onsite and full occupation matrices do not satisfy the sum rule that the trace of the

occupation matrix is equal to the number of electrons [77]. This sum rule is satisfied by Mulliken

PM and LöwdinPL population matrices which are defined [55] as

PM =
1
2
(D.S+S·D) (3.35)

and

PL = S(1/2) ·D ·S(1/2), (3.36)

where the Mulliken population matrixPM, which is usually written as the matrix productD.S is

presented in the symmetrized form, Eq. (3.35).

Comparison of various orbital occupation matrices

The definition of the orbital occupation matrix restricts the applicability of the DFT + U method-

ology to a wide-range of systems. The DFT + U methodology is usually employed for systems
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with highly localized 3d or 4f orbitals. While the restriction to 3d or 4f orbitals is motivated by

the observation that LDA and GGA tend to destabilize these orbitals resulting in smaller band

gaps, the physical reason for the DFT + U methodology towork is the localized behavior of

the orbitals for which DFT + U methodology is employed. Thus one can employ the DFT + U

methodology also to systems such as atoms or molecules at dissociation limit where the orbitals

will be localized on atomic centers. In these cases the various definitions of the orbital occu-

pation matrixP are equivalent. This restricts the applicability of the DFT+ U methodology to

the orbitals which form strong overlaps with the other orbitals such as 1s orbitals of H atom in

molecules like H2 at the equilibrium geometry.

The performance of the various definitions ofP can be understood through some example

cases. Table 3.1 presents the value ofpartial tracesof P andP·P (that are traces ofN andN ·N)

that enter into the DFT + U energy correction expression, Eq.(3.22) for the molecules H2, NH3

and GdF3. These partial traces were computed by extracting the sub-matrix that corresponds

to the 1s, 2p and 4f shells of H, N and Gd atoms in H2, NH3 and GdF3 respectively. The

first quantity which is the trace of the submatrix ofP can be interpreted as total the number of

electrons in the corresponding shells. For the number of 1s electrons located on the quasi-H

atoms in the H2 molecule, the Löwdin population matrixS(1/2) ·D ·S(1/2) gives a reasonable

value of 1.8e while the electron count using the density (onsite-occupation) matrixD gives 1.2

e. It is known that the total number of electrons in H2 molecule is 2.0, hence both Löwdin and

onsite-occupation matrices can possibly be accepted. For H2, the Mulliken population matrix

D ·S (after symmetrization) and the full occupation matrixS·D ·S give the total electron count

as 2.1 and 3.4 respectively, where both the values are largerthat the maximum possible value 2.0.

The overall quantity which determines the DFT + U energy correction is the difference between

the partial traces ofP andP ·P according to Eq. (3.22). From Table 3.1, it can be seen that for

the 1s and 2p shells of H and N atoms in H2 and NH3, both the partial traces differ in various

definitions ofP. The discrepancies between various definitions of orbital occupation matrices

are due to the contributions of the overlap matrix, hence it is easy to understand that for atoms,

all the four definitions ofP are equivalent.

The 4f orbitals of the lanthanide system GdF3 have very short radial extensions, hence they

are localized on the Gd atom. In this case, all the four definitions ofP are equivalent, hence the

partial traces computed using these matrices are identical. A systematic study of the performance

of various definitions ofP is beyond the scope of the present work. However some remarksabout

the natural occupation numbers given by various definitionsof P can be made. The quality of

the natural occupation numbers will certainly depend on thequality of the basis set employed.

Hence if possible, one must employ basis sets that use contractions coefficients obtained from the
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eigenvectors (atomic contractions) computed at the same level of theory. In the applications, if

the absolute value of the DFT + U energy correction is not of important, but only relative energies

are important, one can relax the strict criteria regarding the use of atomic contractions. In order

to arrive at a global definition of natural atomic orbitals touse in the DFT + U methodology

for a wide range of systems it is perhaps important to consider the ideas employed in related

studies such asnatural orbital functional theory[86] or other semi-empirical orbital occupation

methods [87,88].

Table 3.1: Comparison of the values of the traces that enter into the DFT + U energy correction

expressions, Eq. (3.29) and Eq. (3.30) according to variousdefinitions of orbital occupation

matrices.

Molecule Atomic shells P ∑σ Tr(Nσ ) ∑σ Tr(Nσ ·Nσ )

H2 H 1s D 1.19 1.43
1
2 (D.S+S·D) 2.13 4.55
S·D ·S 3.41 11.62
S(1/2) ·D ·S(1/2) 1.79 3.13

NH3 N 2p D 3.83 4.98
1
2 (D.S+S·D) 4.56 6.97
S·D ·S 5.44 9.89
S(1/2) ·D ·S(1/2) 2.52 2.14

GdF3 Gd 4f D 7.08 6.99
1
2 (D.S+S·D) 7.11 6.97
S·D ·S 7.16 6.99
S(1/2) ·D ·S(1/2) 7.08 6.89

a For H2 and NH3, non-relativistic spin-restricted calculations were per-
formed and for GdF3 relativistic (DKH) spin-unrestricted calculations were
performed. For all the systems single point calculations were performed at
the corresponding PBE equilibrium geometries.

3.2 DFT + U Hamiltonian Matrix and Analytic Gradients

In order to compute the DFT + U energy correction in a self-consistent way, the DFT + U

potential has to be defined. The DFT + U potential enters in theform of a Hamiltonian correction

matrix which is added to the Kohn–Sham Hamiltonian matrix which when diagonalized gives the

Kohn–Sham eigenvalues. In order to provide DFT + U corrections to molecular geometries, the

DFT + U gradient correction is needed. The DFT + U gradients can be numerically computed
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through several single point calculations which however isprohibitively time consuming for

larger systems. In order to perform efficient geometry optimizations analytic expressions for

DFT + U gradient corrections are needed. The expressions forboth DFT + U Hamiltonian

matrix and DFT + U gradient corrections have been derived andimplemented in PARAGAUSS.

In the following a brief procedure to derive these expressions will be given in the form of set

of mathematical rules followed by a list of these expressions that are specific for the DFT + U

functional forms and the definition of the orbital occupation matrix.

It should be noted that for a single point energy evaluation,it sufficient to have only the

DFT + U Hamiltonian correction matrix elements. In the present section, the expressions for the

DFT + U potential correction matrix elements are presented along with the DFT + U gradient cor-

rection terms in order to exploit the similarities in their derivation and the common intermediate

terms that enter into these expressions.

3.2.1 Some Useful Expressions

The derivation of DFT + U Hamiltonian and gradient corrections involve extensive usage of chain

rules of partial differentiation. The derivation of these expressions are not presented in this work

and only the final expressions are listed. In the derivation of these expressions, the following

rules were systematically used while differentiating a summation or to simplify an expression.

These rules are only presented here in order to aid a future worker who might encounter similar

derivations.

Rule 1 The partial derivative of the element of a matrixX with respect to another element of

the same matrix is given by
∂Xi, j

∂Xk,l
= δi,kδ j,l . (3.37)

The above equation is often encountered in the following form when dealing with a spin-specific

orbital occupation matrixPσ

∂Pσ
µ ,ν

∂Pσ ′
µ ′,ν ′

= δσ ,σ ′δµ ,µ ′δν ,ν ′, (3.38)

whereδi j is the Kronecker delta function.

Rule 2 An expression involving a summation with several dummy indices can be simplified as

follows.

∑
σ

∑
µ

∑
ν

Pσ
µ ,νδσ ,σ ′δµ ,µ ′δν ,ν ′ = ∑

µ
∑
ν

Pσ ′
µ ,νδµ ,µ ′δν ,ν ′ = ∑

ν
Pσ ′

µ ′,νδν ,ν ′ = Pσ ′
µ ′,ν ′. (3.39)
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Rule 3 The product of two Kronecker delta functions that share a common index can be sim-

plified as

δµ ,µ ′δµ ,ν ′ = δµ ′,ν ′. (3.40)

3.2.2 DFT + U Hamiltonian Correction Matrix

The DFT + U Hamiltonian matrix is a sum of the KS Hamiltonian matrix and the DFT + U

correction matrix. The general spin-specific form of the DFT+ U Hamiltonian is given by

hσ ,DFT+U = hσ ,DFT+hσ ,U, (3.41)

whereσ ,hDFT is the spin-specific KS Hamiltonian matrix andhσ ,U is the spin-specific DFT + U

Hamiltonian correction matrix. The general expression forthe matrix elements ofhU is the

variational derivative of the energy term with respect to the corresponding matrix elements of the

density matrix:

hσ ,U
µ ,ν =

dEU

dDσ
µ ,ν

, (3.42)

which is evaluated using the chain rule for partial differentiation as

hσ ,U
µ ,ν = ∑

σ ′
∑
µ ′

∑
ν ′

∂EU

∂Pσ ′
µ ′,ν ′

∂Pσ ′
µ ′,ν ′

∂Dσ
µ ,ν

. (3.43)

In the above equation, the energy functional dependent termwhich is the first factor inside the

summation on the r.h.s. can be computed using the rules Eqs. (3.38–3.40) as

vσ ′
µ ′,ν ′ =

∂EU

∂Pσ ′
µ ′,ν ′

=−Ueff

[

Pσ ′
ν ′,µ ′ −

1
2

δµ ′,ν ′

]

. (3.44)

The above expression is the formal definition of thesymmetric matrixvσ which is used as an

intermediate matrix both in the derivation and in the implementation of various expressions. The

size of the matrixvσ is the same as the Hamiltonian matrix. In the present implementation,vσ is

constructed from the much smaller matrixuσ that corresponds to the shell index[U,L,C] which

is defined as

uσ
µ ,ν =

∂EU

∂Nσ
µ ,ν

. (3.45)

The procedure to constructvσ from uσ is the reverse of the procedure which is used to extract

Nσ from Pσ which can be briefly mentioned as adding the elements ofuσ at the appropriate

places of an empty matrixvσ .

In Eq. (3.43), the orbital occupation matrix dependent term, which is the second factor inside

the summation on the r.h.s. of Eq. (3.43) is dependent on the definition of the orbital occupation
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matrix. For the various definitions of orbital occupation matrix, this term is given as

∂Pσ ′
µ ′,ν ′

∂Dσ
µ ,ν

= δσ ,σ ′δµ ,µ ′δν ,ν ′ where Pσ = Dσ , (3.46)

∂Pσ ′
µ ′,ν ′

∂Dσ
µ ,ν

=
1
2

[

δσ ,σ ′δµ ,µ ′Sν ,ν ′ +Sµ ′,µδσ ,σ ′δν ,ν ′
]

where Pσ =
1
2
[Dσ ·S+S·Dσ ] (3.47)

and

∂Pσ ′
µ ′,ν ′

∂Dσ
µ ,ν

= Tµ ′,µδσ ,σ ′Tν ,ν ′ where Pσ = T ·Dσ ·T where T = S or S(1/2). (3.48)

Using Eqs. (3.44 – 3.48) in Eq. (3.43), expression for the DFT+ U Hamiltonian correction

matrix hσ ,U for the various definitions of orbital occupation matrix canbe given as follows

hσ ,U = vσ for Pσ = Dσ , (3.49)

hσ ,U =
1
2
[vσ ·S+S·vσ ] for Pσ =

1
2
[Dσ ·S+S·Dσ ] (3.50)

and

hσ ,U = T ·vσ ·T for Pσ = T ·Dσ ·T where T = Sor S(1/2). (3.51)

3.2.3 DFT + U Analytic Gradients

The DFT + U gradient due to the displacement of the nuclear coordinateqi is given as the sum

of contributions due to the DFT gradient and a gradient correction term:

dEDFT+U

dqi
=

dEDFT

dqi
+

dEU

dqi
. (3.52)

The DFT + U gradient correction term is evaluated using the chain rule for partial differentiation

as
dEU

dqi
= ∑

σ
∑
µ

∑
ν

∂EU

∂Pσ
µν

∂Pσ
µν

∂qi
. (3.53)

The first factor on the r.h.s. of the above equation can be identified as the element of the matrix

vσ which is a symmetric matrix, Eq. (3.44). Thus Eq. (3.53) can be written as

dEU

dqi
= ∑

σ
∑
µ

∑
ν

vσ
µν

∂Pσ
µν

∂qi
= ∑

σ
∑
µ

∑
ν

vσ
νµ

∂Pσ
µν

∂qi
= ∑

σ
Tr

[

vσ · ∂Pσ

∂qi

]

. (3.54)

For all definitions ofPσ , the total gradient according to Eq. (3.54), is given as the sum of two

gradient terms, due to the Hellmann–Feynman force and Pulayforce [55,89].

dEU

dqi
=

[

dEU

dqi

]

HF
+

[

dEU

dqi

]

Pulay
(3.55)
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The gradient term due to the Pulay force arises from the change in the density matrixDσ due

to the displacement of the nuclear coordinatesqi. This term is common for all the definitions of

Pσ and can be derived as
[

dEU

dqi

]

Pulay
= ∑

σ
Tr

[

hσ ,U · ∂Dσ

∂qi

]

. (3.56)

It should be noted that the above expression need not be codedseparately. When the DFT + U

Hamiltonian correction matrix is added to the DFT Hamiltonian matrix, this term will be com-

puted along with the similar contribution due to the DFT Hamiltonian matrix [89].

The gradient term due to Hellmann-Feynman force arises due to the dependency of the over-

lap matrixS on the nuclear coordinatesqi . For the onsite occupation matrixPσ = Dσ where

there is no overlap dependence, the Hellmann-Feynman forcevanishes hence the corresponding

term is zero. For the Mulliken population matrix and for the full-occupation matrix, the gradient

correction term due to the Hellman-Feynman force can be derived as
[

dEU

dqi

]

HF
= Tr

[

dS
dqi

·A
]

(3.57)

where the intermediate matrixA which is dependent on the definition ofPσ is given as

A =
1
2∑

σ
[(Dσ ·vσ +vσ ·Dσ )] for Pσ =

1
2
[Dσ ·S+S·Dσ ] (3.58)

and

A = ∑
σ
[(Dσ ·S·vσ +vσ ·S·Dσ )] for Pσ = S·Dσ ·S. (3.59)

In the present implementation, analytic DFT + U gradient corrections are not available when the

orbital occupation matrix is defined as the Löwdin population matrix. In this case, the difficulty

in arriving at an expression for DFT + U gradient correction is due to a term which involves

derivative of the square root of the overlap matrix with respect to the nuclear coordinates. It is

perhaps possible to derive this term by following the technique given by Nasluzov and Rösch in

the context of relativistic analytic gradients [90–92].

3.3 Implementation

In the implementation of the DFT + U methodology in PARAGAUSS the main quantities involved

are orbital occupation matrices according to Eqs. (3.33–3.36), the DFT + U energy correction

terms according to Eqs. (3.29,3.30), DFT + U Hamiltonian correction matrices according to

Eq. (3.49–3.51) and analytic gradient corrections according to Eq. (3.58, 3.59). These quantities

were implemented n almost the same way as they are defined in the previous section in a separate

moduledft_plus_u_module within the main program.
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3.3.1 Intermediate Procedures

Essential for the implementation of the main quantities aretwo routines namelyget_blo
k and

add_blo
k. The routineget_blo
k is needed in order to extract a sub-matrix that corresponds

to the specified shells i.e.[U,L,C] from a full matrix andadd_blo
k is needed to perform the

reverse task i.e., to add the elements of a submatrix to a fullmatrix at the appropriate indices that

corresponds to the shell[U,L,C]. These two routines are used to extractNσ from Pσ and to add

uσ to the empty matrixvσ respectively.

Extracting the submatrixNσ from Pσ is performed in thedft_plus_u_module by calling the

subroutineget_blo
k.

Nσ ⇐ get_blo
k(Pσ ,s) (3.60)

In PARAGAUSS, basis functions are ordered by four nested indicesU (unique atom index),L

(angular momentum),C (contraction number),N (independent functions). The size of the sub-

matrix isNeq(2L+1)whereNeq is the number of atoms belonging to a unique typeU . With in the

given point group symmetry, the matrixNσ will have off-diagonal elements only if the number

of independent functions for the given shell[U,L,C] is greater than 1 in any of the irreducible

representations. Figure 3.1 shows the indexing of orbital basis functions for the example case

H2O.

The pseudo code to extract the sub-matrixNσ for an arbitrary shell index[U,L,C] from the

full matrix Pσ is given in Figure 3.2. Adding the submatrixuσ to an empty matrixvσ at the

indices corresponding tos= [U,L,C] is performed in thedft_plus_u_module of PARAGAUSS

by calling the subroutineadd_blo
k.

uσ ⇒ add_blo
k(vσ ,s) (3.61)

The general looping structure of the procedureadd_blo
k is same as that ofget_blo
k.

3.3.2 Parallelization of Gradient Computation

The main data involved in the evaluation of DFT + U analytic gradient corrections is the deriva-

tive of the overlap matrix with respect to the nuclear coordinates. The computation of the trace

according to Eq. (3.57) is handled by the subroutinedftpu_gradwith in thedft_plus_u_module.

The structure of the subroutinedftpu_grad and the other procedures called with in this subrou-

tine is based on the scheme of integral storage in PARAGAUSS which is employed especially

during gradient computations [93]. The two-center integrals are grouped in packages that are in-

dividually described by the quadruples (U1, L1, U2, L2). DFT gradients are computed in batches

of contributions that correspond to these quadruples (U1, L1, U2, L2). Thus these quadruples
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Figure 3.1: Orbital occupation matrixP for H2O in C2v point group symmetry. The non-zero

elements ofP are along the diagonal blocks (blue) in the order ofa1, a2, b1 andb2 irreducible

representations. The dark squares along the diagonal correspond to the diagonal elements of the

sub-matrixN corresponding to the 2p shell of O atom, (U = 1, L = 1, C = 1, in red). Here the

number of independent functions (N) is not greater than 1 for any of the irreducible representa-

tions, henceN is a diagonal matrix. The basis sets used are O:(14s,9p,4d) → [5s,4p,3d], H:

(8s,4p,3d)→ [4s,3p,2d].
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N_
ont = get_N_
ont(U,L) ! Get the no. of 
ontra
tions

k = 0

do irr = 1, N_irr

N_ind = get_N_ind(U,irr,L) ! Get the no. of independent fns

N_par = get_N_par(U,irr,L) ! Get the no. of partners

off = get_off(U,irr,L) ! Get offset of (U,irr,L) in the full matrix

do i = 1, N_ind

do j = 1, N_ind

ii = off + N_
ont * (i - 1) + C

jj = off + N_
ont * (j - 1) + C

do s = 1, N_spin

N(k+i, k+j, s) = P(irr)%m(ii,jj,s)/N_par

enddo

enddo

k = k + N_ind

enddo

enddo

Figure 3.2: Pseudo code for get_block

are passed to the subroutinedftpu_grad one set at a time along with the two-center integrals

symadapt_int_2
ob_ol_grad that correspond to the gradient of overlap matrix elements.For a

given set of (U1, L1, U2, L2), relevant elements ofsymadapt_int_2
ob_ol_grad are used along

with the corresponding elements of the matrixA, Eq. (3.58, 3.59) to compute a subtrace that

contributes to the total trace given in Eq. (3.57). In the following, this procedure is briefly

described.

The datasymadapt_int_2
ob_ol_grad is a pointer with the full shape

symadapt_int_2
ob_ol_grad(1:N_gradients, 1:N_irr)%int(:,:,:,:)

which has one 4-D array per irreducible representation, pergradient and matrixA which is also

a pointer has the full shape

A(1:N_irr)%m(:,:)

which is block diagonalized similar toP in Figure 3.1 and has one square matrix (2-D array) per

irreducible representation. The procedure to compute the subtrace for a given set of quadruple

indices (U1, L1, U2, L2) is given by the pseudo code in Figure 3.3.

All the intermediate data that are needed for the computation of DFT + U analytic gradient

corrections are allocated at beginning of the process and deallocated at the end of the process by

the main or themasterprocessor. Among the two data needed for the DFT + U gradient evalua-

tion, distribution of blocks ofsymadapt_int_2
ob_ol_grad to various processors is done outside
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subtra
e = 0

do grad = 1, N_gradients

do irr = 1, N_irr

times = 1 if diagonal quadruple (U1, L1, U1, L1)

= 2 if off-diagonal quadruple (U1, L1, U2, L2)

N_par = No. of partners of irr % degenera
y index

N_C1 = size(symadapt_int_2
ob_ol_grad(grad,irr)%int, 1)

N_C2 = size(symadapt_int_2
ob_ol_grad(grad,irr)%int, 2)

N_ind1 = size(symadapt_int_2
ob_ol_grad(grad,irr)%int, 3)

N_ind2 = size(symadapt_int_2
ob_ol_grad(grad,irr)%int, 4)

L_bound_1 = fn_of(irr, L1, U1)

U_bound_1 = fn_of(L_bound_1, N_C2, N_ind2)

L_bound_2 = fn_of(irr, L, U2)

U_bound_2 = fn_of(L_bound_2, N_C1, N_ind1)

submat_A = A(irr)%m(L_bound_1:U_bound_1, L_bound_2:U_bound_2)

subsubtra
e = fn_of(submat_A,symadapt_int_2
ob_ol_grad(grad,irr)%int)

subtra
e = subtra
e + subsubtra
e * times * N_par

enddo

enddo

Figure 3.3: Pseudo code for compute subtrace for gradients

thedft_plus_u_module. Within thedft_plus_u_module, different blocks ofA that correspond to

various irreducible representations are distributed to various processors by the master processor.

3.4 FLL-DFT + U corrections

In the present work, all the applications have been performed using the FLL-DFT + U correction

method. The FLL-DFT + U energy correction term and the potential or Hamiltonian correction

matrix elements are formally written in the rotationally invariant form involving traces ofN or

P matrices. However during the analysis of results it has beenfound easier to work with the

functional form in the natural orbital representation. In the natural orbital representation, the

spin-specific FLL-DFT + U energy correction for a single orbital can be given as

EU =
1
2
Ueff nσ

i (1−nσ
i ) (3.62)

which provides a positive energy correction whennσ
i is fractional and no corrections whennσ

i = 0

or 1. Individual contributions due to all the natural orbitals of a given shells then provides the

total FLL-DFT + U energy correction. The nature of FLL-DFT + Ucorrection in the total energy

is shown in Figure 3.4 for the example system C atom.
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The FLL-DFT + U potential correction is given by

vσ ,U
i =Ueff

(

1
2
−nσ

i

)

. (3.63)

According to the above equation, for a spin-specific naturalorbital with occupation numbernσ
i ,

the FLL-DFT + U potential provides appropriate correction to the corresponding orbital energy

εσ
i . Thus if the occupation numbernσ

i equals 1 (occupied natural orbital), the potential correction

shifts down the corresponding orbital energy by−Ueff/2 and if the natural orbital is empty, the

potential correction shifts up the corresponding orbital energy byUeff/2. The nature of FLL-

DFT + U correction in the orbital energy shown in Figure 3.5 for the example system C atom.
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Figure 3.4: FLL-DFT + U energy correction for C atom: The relative energyEN −E6.0 (in eV)

is plotted a function of total number of electronsN in the range 5≤ N ≤ 7. The exact line is

obtained by interpolating between the ionization potential of C atom (11.26 eV) and negative of

the electron affinity of C atom (-1.26 eV). DFT calculations were performed at the PBE-GGA

level. In the PBE + U calculation, an arbitrary value ofUeff = 5 eV was used for the 2p shell of

C atom.

Orbital occupation dependent energy functionals such as the FLL-DFT + U term Eq. 3.62

which involve a penalty functional often perform differently when various symmetry restrictions

are employed.

This is illustrated in Figure 3.6 for the FLL-DFT + U energy correction for C atom with Ih

(spherically symmetric) C1 (no symmetry) point group symmetry restrictions. The spherically
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symmetric situation is described in the DFT + U literature asan around mean field (AMF) ap-

proximation [79, 94] where the total number of electrons of ashell s is distributed to all the

orbitals of the shell by spherically averaging i.e.ni = N/(2L+1). As shown in Figure 3.6, for

a simple case of C atom with 1, the energy correction is 0 when electron is located on a single

orbital (FLL) and when the single electron is distributed spherically i.e. 1/3e per 2p orbital

(AMF), the energy correction is positive. An exception to this situation is a completely filled

system (or empty system), where both FLL and AMF limits are equivalent, hence FLL-DFT + U

correction will be the same. It is also the case for arbitrarysymmetry restrictions when the de-

generate orbitals are either completely filled or empty. Whenspherical symmetry restrictions are

employed, the orbital-specific FLL-DFT + U penalty functional according to Eq. (3.62) becomes

a shell-specific penalty functional which provides no contribution when the shell population is 0

or N and provides a positive correction when the shell population is between 0 and N.
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Figure 3.5: FLL-DFT + U correction forεHOMO of C atom:εHOMO (in eV) is plotted a function

of total number of electronsN in the range 5≤ N ≤ 7. The exact line is obtained by interpolating

between the negative of ionization potential of C atom (-11.26 eV) and negative of the electron

affinity of C atom (-1.26 eV). DFT calculations were performed at the PBE-GGA level. In the

PBE + U calculation, an arbitrary value ofUeff = 5 eV was used for the 2p shell of C atom.
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Figure 3.6: FLL-DFT + U energy correction for C atom in a. Ih, b. C1 point group symmetry

restrictions. In the PBE + U calculation, an arbitrary value of Ueff = 1 eV was used for the 2p

shell of C atom.



Chapter 4

Computational Details

the Computational details of all the applications performedin the present thesis are presented in

this chapter. In section 4.1, computational details regarding the choice of DFT methods, basis

sets, etc., are summarized. Section 4.2, exclusively dealswith the estimation of the effective

onsite-Coulomb parameter used in the DFT + U calculations.

4.1 Method

All the calculations were performed at the scalar relativistic level using the all-electron Douglas-

Kroll-Hess (AE-DKH) approximation [24] in the linear combination of Gaussian-type orbitals

fitting-functions density functional (LCGTO-FF-DF) method[103] as implemented in the paral-

lel code PARAGAUSS [21, 22]. Spin-orbit effects were not included in any of the calculations.

Both LDA and GGA exchange correlation functionals were employed. For the lanthanide sys-

tems, PBE-GGA [46] XC functional was employed for the lanthanide trihalide systems LnF3 (Ln

= La, Ce, Gd, Lu) and for the ceria nano-particles VWN-LDA [40] XC functional was employed.

For the uranyl dication molecule all the calculations were performed using the PBE-GGA XC

functional. DFT + U calculations were performed using the FLL-DFT + U scheme with the full

occupation matrixP= S·D ·S.

Table 4.1 presents the details of the orbital basis sets, polarization functions used in all the

calculations. In Table 4.1, only the size of the basis sets and polarization functions are given. The

exponents and the contraction coefficients of the basis setswith their references are presented

separately in Appendix I. The auxiliary basis sets used in the LCGTO-FF-DF method to evaluate

the Hartree part of the electron-electron interaction was derived from the orbital basis set in a

standard fashion [103].

Numerical grids were used to numerically integrate the XC contributions to the one-electron

55
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Table 4.1: Basis sets and polarization functions employed inthe calculations. N_Bas: the con-

traction scheme of the atomic orbital basis sets, and N_Pol:number of polarization functions.

System Atom N_Bas N_Pol

LnF3 La (24s,21p,15d,5 f )→ [9s,8p,6d,4 f ] (5p,5d,5 f )
Ce (25s,22p,15d,11f )→ [9s,8p,6d,4 f ] (5p,5d,5 f )
Gd (25s,22p,15d,11f )→ [9s,8p,6d,4 f ] (5p,5d,5 f )
Lu (25s,22p,15d,11f )→ [9s,8p,6d,4 f ] (5p,5d,5 f )
F (14s,9p,4d,3 f )→ [5s,4p,3d,2 f ] (5p,5d)

Ceria Ce (25s,22p,15d,11f )→ [9s,8p,6d,4 f ] (5p,5d,5 f )
O (9s,5p,1d)→ [5s,4p,1d] (5p,5d)

UO2+
2 U (24s,19p,16d,11f )→ [10s,7p,7d,4 f ] (5p,5d,5 f )

O (9s,5p,1d)→ [5s,4p,1d] (5p,5d)

[UO2(H2O)5]2+ U (24s,19p,16d,11f )→ [10s,7p,7d,4 f ] (5p,5d,5 f )
O (9s,5p,1d)→ [5s,4p,1d] (5p,5d)
H (6s,1p)→ [4s,1p] (5p,5d)

UO2OH+ U (24s,19p,16d,11f )→ [10s,7p,7d,4 f ] (5p,5d,5 f )
O (9s,5p,1d)→ [5s,4p,1d] (5p,5d)
H (6s,1p)→ [4s,1p] (5p,5d)

potential and the total energy. For the clusters of ceria, the grid settings used is locally accurate

up to angular momentumL = 17 and contained 135 and 48 radial shells for Ce and O atoms

respectively. For all other systemsf ine grids were employed which are locally accurate up to

angular momentum L = 29. The number of radial shells in the chosen grids are 197, 189, 185,

180, 180, 68, 58, and 61 for La, Ce, Gd, Lu, U, O, F and H atoms, respectively. The details of

symmetry constraints, geometry constraints employed in the calculations are given along with

the discussions of the results. Similarly details of geometry optimization, frequency calculations

are discussed along with results.

4.2 Effective Onsite-Coulomb Parameter

In the DFT + U calculations, the effective onsite-Coulomb parameter,Ueff was used as an empiri-

cal parameter chosen by fitting the DFT + U results of some observable target quantity. It is often

the case that an approximate value or a narrow range of valuesseems to beUeff in the DFT + U

applications. The empirically fittedUeff provides theoretical justification for the DFT + U cor-
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Table 4.2: Estimation ofUeff to fit the 1s orbital energy,ε1s of H atom in PBE approximation to

the negative of experimental IP (-13.60 eV) by fitting a straight line.

Ueff ε1s

0.00 -7.58
2.00 -8.52
4.00 -9.47
6.00 -10.43
8.00 -11.39

10.00 -12.35
12.00 -13.32
14.00 -14.30
12.56 (optimum) -13.60

rections. However, in the present work all the calculationswere performed both for an optimum

empirical value ofUeff and for a range ofUeff values. For all the systems, experimental ionization

potential (IP) of the system was used as the target quantity.Vertical IP calculated as the differ-

ence of two total energies (∆SCF approach) or the energy of the relevant orbital are fitted against

the target quantity in choosing the approximately optimum value forUeff.

The straightforward procedure to empirically fit a set of data is to compute data for a wide

range ofUeff values and fit them with a straight line to get the optimal value of Ueff at which

the observed value is reproduced. In Table 4.2, the results of this procedure is described for the

example case H atom where the property of interest is the energy of the 1s orbital and the target

quantity is the experimental IP of H atom. However, if the nature of the DFT + U correction

is qualitatively known, an iterative method can be employedwhich leads to better insight and

converges to an optimalUeff value in a few steps. The FLL-DFT + U potential correction term

shifts the energy of an occupied orbital by -Ueff/2 and an unoccupied orbital by +Ueff/2. Thus

an optimum value ofUeff in which the orbital energy reproduces the experimental IP can be

approximated in successive iterations as

Uk+1
eff = Uk

eff +2
(

IP+ εk
1s

)

. (4.1)

Table 4.3 presents the result of an iterative estimation ofUeff to to fit the energy of the 1s orbital

of H atom to the experimental IP.

The 4f orbitals of lanthanide systems are highly localized. For the Ln 4f levels optimal

Ueff values for the corresponding (Ln III) ions were obtained by fitting the 4f orbital energies

ε4 f to the experimental IP [104]. In LnF3 molecules, the actual oxidation state of the Ln ions

need not necessarily be III. Hence, optimalUeff values suitable for the 4f levels in the LnF3
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Table 4.3: Estimation ofUeff to fit the 1s orbital energy,ε1s of H atom in PBE approximation to

the negative of experimental IP (-13.60 eV) by the iterativemethod.

k Uk
eff εk

1s IP+εk
1s

1 0.00 -7.58 6.02
2 12.04 -13.34 0.25
3 12.55 -13.59 0.01
4 12.56 -13.60 0.00

molecules were obtained by fitting the weighted center of thedensity of the 4f -like states of

these systems to the experimental IPs from photo-electron spectroscopy of these systems [105].

Table 4.4 presents the atomic and molecularUeff values for these systems, where for the Lu 4f

shell where the atom like localization is high in the LuF3 molecule, the molecularUeff value of

18.78 eV is very close to the atomic/ionicUeff value 17.55 eV. As a compromise between these

two, aUeff value of 18.0 eV was used in the application of the DFT + U methodology for LuF3.

TheUeff values of ions were used only in exploratory calculations.

Table 4.4: Estimate ofUeff for the 4f shell of Ln (Ce, Gd, Lu) in LnF3. Atomic Ueff values

were obtained by fittingε4 f of the Ln III ions to experimental IPs. MolecularUeff values were

obtained by fitting the weighted center of the density of states (DOS) of the 4f levels in LnF3

molecules to the experimental IP from photo-electron spectroscopy. These values were estimated

from AE-DKH-PBE+U calculations. All values are in eV.

System Configuration AtomicUeff MolecularUeff

CeF3 4 f 1 12.88 6.28
GdF3 4 f 7 16.35 10.21
LuF3 4 f 14 17.55 18.78

It is important to note that theseUeff values were estimated to use in the AE-DKH-PBE

level with the basis set and grid settings given in Table 4.1.However these values can be used

in other GGA or LDA calculations employing as a first approximation. It has been found in

test calculations that these values are not much dependent on the methodology. For example,

in various LDA and GGA approximations, the optimalUeff value for the 4f shell of LuF3 was

found to lie in the narrow range of 17−19 eV. This is perhaps due to the fact the SIE in orbital

energies in LDA and GGA calculations are of similar magnitude.

Unlike the 4f orbitals of lanthanides, 5f orbitals of uranium are semi-localized and they
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participate in bonding. Thus estimatingUeff based on orbital energies is rather difficult. In the

DFT + U applications to uranium systems, variousUeff values have been employed that are

available in the literature. Based on the formal oxidation state of the U atom in these systems,

all these values lie in the range of 1–5 eV. In a solid state calculation of uranium oxide [106], the

optimal value ofUeff = 4.3 eV was used to reproduce the experimental band gap of 2 eV. AUeff

value of 1.5 eV was employed in the solid state calculation ofUPd3 [107]. The methodology

employed in the above mentioned studies are slightly different from one another and from the

methodology used in the present work. One of the reasons for the remarkable success of the

DFT + U methodology so far in the solid state calculations lies in the fact that theseUeff values

used for a specific system in a chosen method is meaningful, hence theUeff used in a method can

be used as a starting point in a different calculations and then the value can be fine tuned.

Table 4.5: Estimate ofUeff of the U 5f shell in uranyl complexes using first and second ver-

tical ionization potentials (IP) of UOa and UO2
b from ∆SCF c PBE, PBE+U calculations in

comparison to experiment. All energies in eV.

IP

Formal PBE + U

System configurations of U Exp. Ueff 0 1 2 3

UO 5f 37s1 → 5 f 3 6.03d 6.27 6.28 6.29 6.32
UO+ 5 f 3 → 5 f 2 12.7±0.8e 13.33 12.72 12.08 11.41
UO2 5 f 17s1 → 5 f 1 6.13d 6.22 6.23 6.23 6.24
UO+

2 5 f 1 → 5 f 0 14.6±0.4e 15.08 14.84 14.60 14.36

a UO2 and its cations: D8h point group symmetry.
b UO and its cations: C8v point group symmetry.
c Spin multiplicity was fixed in all spin-unrestricted calculations.
d Ref. [108]
e Ref. [109]

In the present work, for the application of the DFT + U methodology to uranium systems,

Ueff of the U 5f level was estimated reproducing the experimental ionization potentials of the

molecular species UO+ and UO+2 through∆ SCF calculations. This procedure covers the formal

oxidation states U(III) to U(VI). Table 4.5 presents theUeff values estimated for the U 5f level

is UO+ and UO+2 . With the error margins of the experimental results as well as the relatively

weak dependence of the target quantities onUeff and the low value of the latter quantity, a value

from 1.0 eV to 2.0 eV seems acceptable, depending on the oxidation state and the coordination

of the uranium center. In the DFT + U applications of U(VI) systems that are based on the UO2+
2

moiety i.e. uranyl the narrow range of 1.0 eV to 2.0 eV was considered as an optimal range.
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However, as previously mentioned, DFT + U calculations wereperformed for a range ofUeff

values that covers the optimal value.



Chapter 5

DFT + U Application to Lanthanides

The third group of the periodic table contains the metals scandium (Sc), yttrium (Y), lanthanum

(La) and actinium (Ac). The family of metals called thelanthanidesform an inner transition

series (atomic number 57-71) which lie inside the principaltransition series. The valence elec-

tronic configuration of the lanthanide atoms is given as[Xe] 4 f n 6s2 5d1. Sc, Y along with the

lanthanides are also calledrare earth metals. The valence assignments of lanthanides are largely

deduced from experimental atomic volume data [110]. Starting from the first member of the

lanthanides (La) until the last member (Lu) there is a gradual decrease in atomic volume from La

to Lu which indicates that most of the lanthanides have same oxidation state (Ln3+). Thus going

from La to Lu, the atomic radii decreases from 187.7 pm for La to 173.4 pm for Lu (and ionic

radii from 103.2 pm for La3+ to 86.1 pm for Lu3+ ) and this phenomenon is known aslanthanide

contraction[111]. Exceptions to this trend are Eu and Yb which show anomalously large vol-

ume, hence large atomic/ionic radii because of their tendency to be stabilized in a divalent state.

The lanthanide contraction is attributed to the poor shielding of nuclear charge by 4f electrons.

In many-electron atoms, as electrons are added in an outer shell, electrons already present in

the same shell and those present in the inner shells, shield the newly added electrons from the

nuclear charge. Thisshielding effectdecreases with the increase in the angular quantum number

(l ) of the orbitals in the orders> p> d > f . Thus the 4f orbitals which show more directional-

ity (i.e. increase in the angular quantum number) provide poor shielding to outer electrons (5d1

6s2 , hence the decrease in atomic radii) and tof orbitals of the same shell (hence decrease in

ionic radii). At this point one should note that with increasing atomic numberZ, relativity has a

direct effectof radial contraction ofs and p orbitals which increases the shielding due to these

orbitals. This increase in shielding or screening of the nuclear charge due tos and p electrons

has anindirect effect: it induces a radial expansion ofd and f orbitals [112–114].

A number of lanthanide (Ln3+) complexes are colored, where the color arises fromf - f tran-

61
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sitions. The metallic conductivity of the rare earth metalsarises from the delocalized 6s and 5d

electrons but the magnetic moment results from the localized 4f electrons. Except for La3+ and

Lu3+ which are diamagnetic all other Ln3+ ions with unpaired 4f electrons are paramagnetic.

In a lanthanide complex or molecule, the 4f orbitals do not participate directly in bonding thus

the ligand environment only slightly influences the spectroscopic and magnetic properties of lan-

thanide complexes, in contrast to transition metal compounds where the effect of theligand field

splitting is substantial. In fact the 4f orbitals of lanthanides are buried deeply below the 5s and

5p shells of the[Xe] core and provide very little overlap with the ligand orbitals [111].

The main objective of the present chapter is to discuss the application of the DFT + U

methodology to lanthanide complexes both to understand therole of 4f electrons in lanthanide

complexes and to provide an improved DFT description of 4f electron systems. The chapter is

organized into two sections.

Section 5.1 focusses on the application of the DFT + U methodology as a tool to probe self-

interaction artifacts in KS-DFT calculations and to understand bonding aspects of lanthanide

trifluorides. Within this section, Subsection 5.1.1 focuses particularly on the role of 4f orbitals

in the bonding of lutetium trifluoride (LuF3) [25]. In Subsection 5.1.2 the role of 5d orbitals in

the bonding of LaF3, GdF3 and LuF3 is briefly outlined.

In Section, 5.2 preliminary results of a DFT + U investigation to model ceria nano-particles

are presented.

5.1 Lanthanide Trifluorides

The molecular properties of lanthanide (Ln) complexes havebeen the subject of intense dis-

cussions in quantum chemistry [115]. Understanding the properties of lanthanide molecules in

the gas phase is crucial for appreciating the behavior of Ln complexes in the solid state and of

actinide complexes. For this purpose, the trifluorides of lanthanides LnF3 are representative sys-

tems. They have been subjected to a number of experimental [116–118] and theoretical investiga-

tions, the latter ranging from semi-empirical calculations [119] to DFT-based studies [120–123]

and high-levelab initio [124–126] works. Two major physical effects that challengethe the-

oretical modeling of Ln complexes are relativistic effectsand dynamic correlation. As further

complication, spin-orbit interaction arises in a proper relativistic description, but it can be ne-

glected in a first approximation, at least if one focuses on structures, especially for the systems

with the Ln 4f shell empty (La 4f 0), half-filled (Gd 4f 7), or completely filled (Lu 4f 14) [127].

An important feature of the LnF3 molecules is the geometry. It is of considerable interest [117]

to know the role of participation of 4f and 5d orbitals in the appearance of pyramidal rather
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than planar geometries of lanthanide trihalides. The molecular structure of lanthanide trihalides

is often related to the ionic nature of the Ln-X bond [121] which exhibits some covalent con-

tributions of Ln 5d and 6s orbitals [117]. Early pseudo-potential studies were quitesuccessful,

even without explicitly treating the 4f shell [115]. However, a simple model related the as-

phericity of an incompletely filled 4f shell to the preference for planar or pyramidal shape of Ln

trihalides [128]. Such simple models are possible due to thesemi-core nature of the compact 4f

shell in lanthanide atoms. Furthermore, the radial extent of the 4f shell and, to a lesser degree,

the atomic radii of the lanthanides are subject to thelanthanide contraction[112].

Figure 5.1: Trend of the ionization potential, IP (in eV) of the weighted center of the density

of states of the Ln 4f and F 2p shells in LnF3 where Ln = La(f 1), Ce(f 2), Nd(f 3), Gd(f 7) and

Lu( f 14) based on photoelectron spectra [105].

5.1.1 Role of 4f Orbitals in the Bonding of LuF 3

The compact and completely filled 4f shell of lutetium(Lu) represents a challenge for standard

exchange-correlation functionals in regard to the self-interaction error [131, 132]. The well-

known underestimation (by absolute value) of eigenvalues in standard Kohn-Sham (KS) calcu-
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lations [133] due to the insufficient cancellation of the self-interaction energy, accompanied by

the relativistic destabilization of the 4f orbitals [134], places the Lu 4f orbital energies of LuF3

in the same range as the 2p orbitals of the F ligands. Yet, in the photo-electron spectrum of

LuF3 [105], the Fp-like ionization energies, 13.7–14.9 eV, are well separated from the Lu f -like

ionization potentials (IPs), 18.4–20.1 eV (see Figure 5.1).

A recent all-electron (AE) zero-order relativistic approximation (ZORA) DFT study [123] of

LnX3 complexes (X = F, Cl, Br, I) yielded highly pyramidal structures for GdF3 and LuF3 which

in the case of LuF3, in part, was related to a considerable mixing of Lu 4f orbitals with the F

2p orbitals. Yet, the increasing pyramidal shape of Ln trifluorides with F-Ln-F bond angles of

113.6◦, 106.8◦ and 101.4◦ for Ln = La, Gd, and Lu, respectively, is at variance with the results of

other calculations where the F-Ln-F angle increases towardthe end of the Ln series, approaching

120◦ of a planar structure [118].

The quasi-resonance condition between the Lu 4f and the F 2p levels, though apparently an

artifact of conventional KS methods, may be the reason for pronouncedf -covalency, observed

by Clavaguéra et al. [123]. Even in that case, from a simplifiedview of the bonding, one would

expect the interaction between the closed 4f shell of Lu(III) and the closed 2p shells of three

F− centers to be at most non-bonding, if not repulsive. Interestingly Dolg et al. noted in KS

calculations of GdF that the Gd 4f orbitals mix with F orbitals and they related this mixing as a

consequence of an artificial quasi-resonance condition dueto high-lying Gd 4f levels as result of

an insufficient self-interaction cancellation in standardexchange-correlation functionals [135].

Thus the case of LuF3 forms an ideal case to demonstrate that the Lu 4f -F 2 p orbital mixing

in KS calculations of LuF3 is not relevant to the chemical bonding by showing that removal of

this spurious orbital mixing does not affect the important experimentally observable molecular

properties.

5.1.1.1 Results and Discussion

Molecular Properties of LuF3

The AE DKH PBE and AE DKH PBE + U geometrical parameters of LuF3 along with the

atomization energy, the vertical IP, and the energy of the HOMO are collected in Table 5.1.

Results from other calculations such as the semi-empirical INDO method [119], the PBE method

(with an effective core potential for Lu) [120], the AE ZORA PBEmethod [123], the hybrid DFT

methods PBE0 [120] and B3LYP [121], as well as results from wavefunction based methods

such as CISD + Q [124], CCSD(T) [125], and CASSCF/CASPT2 [126] are reported, along with

experimental results [105,116,129]. Although all high-level calculations predict the equilibrium
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Table 5.1: Calculated properties of LuF3 at AE DKH PBE and AE DKH PBE + U levelsa along

with results from other methods: Hubbard parameterUeff, equilibrium bond lengthre (pm), F-

Lu-F angleθ (◦), atomization energyDe (eV), ∆SCF vertical ionization potential IP (eV), and

the negative of the energyεHOMO of the HOMO (eV).

Method Ueff re θ De IP −εHOMO

AE DKH PBEb 196.9 117.0 21.29 12.06 8.50
AE DKH PBE + Ub 1.0 197.0 117.1 21.29 12.09 8.57

2.0 197.0 117.2 21.29 12.11 8.61
5.0 197.0 117.3 21.28 12.16 8.68

10.0 197.1 117.5 21.27 12.19 8.72
15.0 197.2 117.6 21.26 12.21 8.73
18.0 197.2 117.7 21.25 12.21 8.74
20.0 197.2 117.7 21.25 12.21 8.74

INDOc 204.5 107.4
PBEd 199.5 118.0
PBE0d 198.3 119.0
B3LYPe 199.1 118.9
AE ZORA PBEf 196.9 101.4
CISD+Qg 196.5 120.0 18.21
CCSD(T)h 197.4 120.0
CASPT2i 196.1 120.0 20.52
Exp.j 196.8 120.0 18.44 13.75

a Point group symmetry of the molecule: C3v.
b This work.
c Ref. [119].
d Ref. [120].
e Ref. [121].
f Ref. [123].
g Ref. [124].
h Ref. [125].
i Ref. [126].
j re andθ - Ref. [116], IP - Ref. [105],De - Ref. [129].

bond length in the range 196.1–197.4 pm, which is very close to the experimental value, 196.8

pm, one notes some interesting differences. Allab initio wave function based methods predict

a planar geometry, with the bond angle F-Lu-F at 120◦ [124–126]. Most DFT based methods

[120, 121], including the present work, predict a pyramidalgeometry for LuF3, with the F-Lu-F

bond angle 2-3◦ smaller than 120◦; that decrement is slightly smaller, 1◦, with the hybrid DFT

methods PBE0 and B3LYP [120, 121]. In that regard, the PBE calculations by Clavaguéra et al.

form a singular exception where this decrement is as large as19◦ [123]. In this context, it is
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interesting to note that in the present calculations the energy barrier between the two equivalent

pyramidal configurations through the planar transition state was less than 1 kcal/mol, in close

agreement with other DFT calculations [120]. The AE DKH PBE structure of LuF3 is a rather

flat pyramid, with the Lu-F bonds forming an angle of 101◦ against the normal (C3 axis) of

the F3 plane. Clavaguéra et al. [123] related the strong pyramidalization to the participation

of 4 f orbitals in metal-ligand bonding due to Lu 4f -F 2p mixing. In contrast, a very recent

CASSCF/CASPT2 study [126] yielded a planar structure of LuF3 with an inert Lu 4f core.

Further support for the essential planarity of LuF3, is provided by other recent theoretical studies

(Table 5.1); for a discussion of general geometric trends ofmetal halides, see Ref. [136].

From Table 5.1, one notes that an increase ofUeff up to 20 eV does not affect the structure

and the calculated energetics in a chemically significant way. When comparing the results from

a standard PBE calculation (Ueff = 0 eV) and a PBE + U calculation with the optimum value

Ueff = 18 eV, very small changes of key parameters already suggestthat Lu 4f contributions to

the MOs will not play an important role in the bonding. Resultsfrom these two calculations

differ only by 0.3 pm for the Lu-F bond length of 197.2 pm and 0.7◦ for the F-Lu-F bond angle

of 117◦. Likewise, the atomization energyDe = 21.3 eV atUeff = 0 eV decreases by a mere

0.05 eV on going toUeff = 18 eV; the experiment suggests a significantly lower value of 18.4

eV. Similarly, the∆SCF result for the first vertical ionization energy, 12.2 eV, and the negative

of the energy of the HOMO, 8.7 eV, increase by 0.15 and 0.24 eV,respectively, in the PBE +

U calculation. The experimental estimate for the IP of LuF3 is 13.75 eV [129]. Whether or not

Lu 4 f and F 2p contributions mix in the MOs of LuF3 does not seem to affect the calculated

structural parameters of the molecule.

Atomic Charges and Orbital Analysis of LuF3

In the following, the nature of the Lu-F bond and the role of 4f electrons in particular is dis-

cussed. First the atomic charges from PBE and PBE + U calculations are compared to identify

possible consequences of the atomic localization of the Lu 4f orbitals. Table 5.2 lists Mul-

liken (qM) and potential derived charges (qPD) along with the populations of the valence atomic

orbitals.

The Mulliken charge of Lu, 1.57e, does not change in the PBE + U calculation. The potential

derived charge (qPD) of Lu and the population of thef shell increase by a negligible amount, 0.01

e. The 4f orbitals contribute 13.98e to the total population of 14.10e of the f shell; the excess

is from Lu 5f and higher lying contractions. In summary, enforcing localization with the help

of a Hubbard term does not change the overall picture regarding the charge on the Lu atom and

the effective occupations of the Luf shell and the Fp shell. This finding further strengthens the
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assertion that the spurious mixing of Lu 4f and F 2p orbitals in a standard KS calculation does

not affect the character of the Lu-F bonds.

As the most notable effect of the Hubbard term, the one-electron energies of the Lu 4f -like

orbitals are significantly shifted downward and the Lu 4f -F 2p mixing is removed (see Figure

5.2 and Table 5.3 ). The average energy of the Lu 4f manifold drops from approximately -10 eV

at the PBE level to -18.5 eV at the PBE + U level.

Figure 5.2 shows the partial DOS of LuF3 in the range from -8 to-20 eV, resolved for the

Lu 4 f and F 2p contributions. The figure covers the manifolds of MOs with Lu4 f and F 2p

character; there is also a slight Lu 5d contribution to the F 2p band. In the total DOS obtained

from the AE DKH PBE calculation (Ueff = 0 eV) at the equilibrium geometry, the Lu 4f and

the F 2p levels fall in the same narrow range of about -8.5 to -10.5 eV.The sharp peak from

-10.0 to -10.4 eV corresponds to the Lu 4f orbitals. When theUeff value is raised to 18 eV in

the AE DKH PBE + U calculation, as expected, the center of the 4f band moves downward by

8.5 eV (Figure 5.2). With the introduction of the Hubbard term, the F 2p band shifts down, now

ranging from -8.7 to -9.7 eV as compared to originally from -8.5 to -9.5 eV (Table 5.3). Figure

5.2 graphically indicates that the mixing of Lu 4f and F 2p states, as obtained in the AE DKH

PBE calculation, is removed in the AE DKH PBE + U calculation.

Table 5.3 quantifies the mixing of Lu 4f and F 2p orbitals upon formation of the MOs of

LuF3. In C3v symmetry the seven 4f orbitals of the central Lu atom reduce as 2a1 + 1a2 + 2e

and the nine 2p orbitals of three F ligands split as 2a1 + 1a2 + 3e. The Lu 4f -F 2p mixing

in the MOs of LuF3 is essentially removed for the physically meaningful valueUeff = 18 eV.

However, the Lu 4f orbitals undergo a very significant localization, to 90-95 %, already for

the very small valueUeff. This observation strongly suggests that a very small reduction of the

remaining 4f self-interaction error, affected by the Hubbard term withUeff = 1 eV, suffices to lift

the near degeneracy of Lu 4f and F 2p levels and to cancel their mixing. The whole situation in a

standard KS calculation of LuF3 indeed is very characteristic of an accidental degeneracy of two

Table 5.2: Mulliken chargeqM and potential derived chargeqPD of Lu in LuF3 as well as orbital

populations per atom (ine).

Method qM qPD Lu F

5s 5p 4f 5d 6s 2s 2p

AE DKH PBE 1.57 1.81 1.98 5.95 13.98 0.96 0.24 1.79 5.70
AE DKH PBE + Ua 1.57 1.82 1.98 5.95 13.98 0.95 0.24 1.79 5.70

a Ueff = 18.0 eV for the 4f shell of Lu.
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Figure 5.2: Partial density of states (DOS) for Lu 4f (green), F 2p (blue), and other orbitals

(white) of LuF3 in the energy range -8 to -20 eV as obtained from AE DKH PBE and AEDKH

PBE + U calculations, the latter withUeff = 18.0 eV for the 4f shell of Lu. The absolute positions

of the levels and their degeneracies are given by the horizontal lines. For easier comprehension,

this line spectrum is broadened into a DOS by folding with a Gaussian distribution with a full

width at half maximum of 0.09 eV.
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Table 5.3: Orbital mixing of the valence molecular orbitals(MOs) of LuF3:a energiesεi (eV) and

Mulliken atomic gross populations (as %).

MO AE DKH PBE AE DKH PBE + Ub

εi Population εi Population

Lu d Lu f F p Lu d Lu f F p

2a2 -8.49 22.5 77.9 -8.73 2.2 97.9
15e -8.69 0.2 10.2 89.1 -8.78 0.1 0.3 99.1
17a1 -8.89 0.1 16.9 81.7 -9.01 0.5 0.5 98.0
16a1 -9.09 2.3 54.0 41.3 -9.77 3.6 1.2 91.0
14e -9.13 5.5 22.7 71.5 -9.27 6.4 0.5 92.8
13e -9.50 7.6 22.6 69.1 -9.65 10.2 0.2 88.3
1a2 -9.94 79.0 20.9 -18.56 99.3 0.6
15a1 -9.99 0.3 86.2 13.3 -18.47 0.1 97.9 0.8
12e -9.99 0.7 80.0 19.0 -18.65 0.0 99.5 0.3
11e -10.09 2.8 64.6 32.0 -18.72 0.0 99.5 0.3
14a1 -10.42 1.5 42.8 53.7 -18.76 0.0 99.6 0.2

a Point group symmetry of the molecule: C3v.
b Ueff = 18.0 eV for the 4f shell of Lu.

completely filled manifolds, here the Lu 4f 14 and the F 2p band which is formally completely

filled with 18 electrons. For the MOs of the symmetry type a1, the removal of Lu 4f -F 2p

mixing is illustrated in Figure 5.3 where at the PBE + U level, almost complete localization of

the two f -like orbitals can be seen. These twof orbitals are thefz3 and thefx(x2−3y2) orbitals

both transform according to thea1 irreducible representation of the C3v point group (here the C3

axis of LuF3 coincides with the z-axis).

Table 5.4: Relative radial expectation value (∆r, in pm) of quasi-atomic 4f -like molecular or-

bitals (MOs) of LuF3 w.r.t the radial expectation valuer of 4 f orbitals of Lu2+ cationa.

MO AE DKH PBE AE DKH PBE + Ub

14a1 1.00 0.39
15a1 0.58 0.05
1a2 0.82 0.28
11e 0.55 0.36
12e 0.62 0.31

a r of Lu, Lu+, Lu2+ and Lu3+ are 38.35, 38.17,
38.06 and 37.92 pm respectively.

b Ueff = 18.0 eV for the 4f shell of Lu.
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Figure 5.3: Lu 4f -F 2p mixing in the AE DKH PBE calculation and its removal in the AE

DKH PBE + U calculation (Ueff = 18.0 eV) shown for the MOs of the symmetry type a1. The

pyramidal structure of the LuF3 molecule (bottom) is shown for reference.

Finally, to exemplify the concept of spatial localization of the 4f orbitals as enforced by

the the Hubbard parameterUeff, radial extension of the quasi Lu 4f -type orbitals is LuF3 is

discussed. To quantify this (small) effect, the radial extension of the Lu 4f -type orbitals of the

Lu2+ cation is used as reference because the potential derived charge (qPD) of the Lu center (see

Table 5.2) in LuF3 is close to +2. The radial expectation value of the 4f shell of this ion isr

= 38.1 pm. The penalty of the Hubbard term for fractional populations makes the intra-atomic

4 f -5 f hybridization less favorable in a molecule. From Table 5.4 it can be seen that: in the AE

DKH PBE calculation of LuF3 the radial expectation values of the quasi-atomic 4f contributions

are 0.62–1.00 pm larger than the reference. At the AE DKH PBE + Ulevel, size and range of

the deviations from the reference decrease as expected, to 0.06–0.39 pm.
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5.1.1.2 Conclusions

Incomplete cancellation of self-interaction due to an approximate density functional of the stan-

dard variety results in Kohn-Sham eigenvalues lying too high in energy which, in LuF3, leads to a

metal-ligand orbital mixing owing to an accidental near-degeneracy. Care should be taken when

interpreting such orbital mixing as a bonding situation. The DFT + U methodology proved to be

a suitable tool for tuning the population and localization of orbitals and thus to probe the bonding

situation. The Hubbard term included in the DFT + U scheme provides a simple procedure for

exploring self-interaction artifacts such as those shown by the quasi-atomic Lu 4f orbitals. This

scheme allows one to enforce orbital localization and thus to remove the spurious orbital mixing

present in a calculation of LuF3 with a standard gradient-corrected exchange-correlationfunc-

tional. Overall it has been shown through this study that thepresence or absence of the spurious

mixing of Lu 4f and F 2p orbitals does not affect any of the observable molecular properties

or formal atomic charges and previous claims of Lu 4f orbitals participating in the chemical

bonding of LuF3 cannot be uphold.

5.1.2 Role of 5d Orbitals in the Bonding of LnF 3

5.1.2.1 Results and Discussions

In Subsection 5.1.1, it has been shown how to interpret the Lu4 f - F 2p orbital mixing situation

as seen in a standard KS calculation. Further it has been demonstrated that the 4f orbitals of

Lu do not influence the structural and bonding features of LuF3 significantly. However, both

the DFT and DFT + U calculations predicted pyramidal structure for LuF3 and in the present

subsection, it will be shown that artifacts involving the Lu5d orbitals are responsible for the

pyramidal structures of LnF3 where Ln = La, Gd and Lu.

The possible influence of the Ln 5d orbitals on the geometry of LuF3 has been discussed in

Refs. [117, 121, 130]. The situation of Ln 5d - F 2p mixing in LnF3 is different from the Lu 4f

- F 2p orbital interaction. Here the mixing of the formally unoccupied Ln 5d-like orbitals can

also occur because of poor modeling of the wavefunction due to an incomplete basis set or poor

choice of level of theory. Thus it should be noted that in the present context, the Ln 5d - F 2p

mixing need not arise due to incomplete self-interaction cancellations but may also be a result

of insufficient modelling of the Ln 5d orbitals which places the energy levels of Ln 5d orbitals

close to the F 2p levels resulting in hybridization. Table 5.5 lists the geometry properties of LaF3,

GdF3 and LuF3 in AE DKH PBE and AE DKH PBE + U calculations along with results from

the hybrid DFT methods PBE0 [120] and B3LYP [121] as well as fromthe wave function based

methods MP2 [137] and CISD+Q [124]. In the AE DKH PBE + U calculation, a value of 2.0 eV
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was used for the Hubbard parameterUeff of the Ln 5d shell. From Table 5.5, one can clearly see a

slight elongation of Ln-F bond lengths in the AE DKH PBE + U level when compared to the AE

DKH PBE level for all the three molecules. This is a characteristic of the Hubbard term which

disfavors weak ionic interactions that lead to fractional occupation numbers. From the values of

the angle of deviation of the Ln-F bond from planarity, it is clear that at the most accurate level

of theory considered here i.e. CISD + Q [124], the geometry of the LnF3 molecules is planar. At

the PBE level, all the three lanthanide fluorides have non planar geometry. From the PBE values

Table 5.5: Structural properties of LnF3 where Ln = La, Gd, Lu at PBE and PBE + Ua levels

along with results of other methods: equilibrium bond length re (pm), F-Ln-F angleθ (degree)

and the angle between the Ln-F bond and the plane orthogonal to the three-fold axisφ (degree)b.

System Method r θ φ

LaF3 AE DKH PBE 212.1 113.4 15.2
AE DKH PBE + U 215.3 120.0 0.0
PBE0c 217.4 113.9 14.6
B3LYP d 216.1 115.1 13.0
MP2 e 215.0 112.9 15.8
CISD+Q f 215.9 120.0 0.0

GdF3 AE DKH PBE 203.3 115.2 12.9
AE DKH PBE + U 206.2 120.0 0.0
PBE0c 205.8 117.0 10.1
B3LYP d 205.6 117.7 8.8
MP2 e 206.0 117.8 8.6
CISD+Q f 205.6 120.0 0.0

LuF3 AE DKH PBE 196.9 117.0 10.1
AE DKH PBE + U 199.2 120.0 0.0
PBE0c 197.7 119.3 4.8
B3LYP d 199.1 118.9 6.1
MP2 e 198.0 120.0 0.0
CISD+Q f 196.5 120.0 0.0

a Ueff = 2.0 eV for the 5d shell of Ln.
b The angle of deviation of the Ln-F bond from planarityφ was

calculated for a given value ofθ as

φ = 90− (180/π)arccos
[

[{2cos(πθ/180)+1}/3](1/2)
]

c Ref. [120].
d Ref. [121].
e Ref. [137].
f Ref. [124].
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of the F-Ln-F bond angles or from the angle between the Ln-F bond and the plane orthogonal

to the three-fold axisφ , one notes that, going from LaF3 to LuF3, the structures approach a

planar configuration. This trend is also followed by the highlevel methods such as the hybrid-

DFT methods PBE0 and B3LYP, as well as the wavefunction based method MP2. At the MP2

level, only LuF3 is predicted to be planar while LaF3 and GdF3 are predicted to be pyramidal.

It is interesting to note that at the PBE + U level, forUeff = 2.0 eV, all the three structures are

predicted to be planar in agreement with the CISD + Q results.

Myers et al. [130] pointed out that the interaction between the metal 5dz2 orbitals and the

fluorine 2p orbitals is notably enhanced in the pyramidal configurationin LnX3; this interaction

is also discussed in Ref. [121]. For a more general discussionregarding the role ofd orbitals as

π-bonding acceptors see Ref. [138]. With the energy of the Ln 5d shell and F 2p favorable to

interact, this situation in LnF3 is similar to pyramidalization of NH3 which can be explained as a

consequence of second-order Jahn-Teller (SOJT) interaction (see Figure 5.4). A brief overview

of the Jahn-Teller interactions and related structural distortions is discussed in the next chapter

in Section 6.1. For a general discussion of orbital-interaction concepts related to geometric

perturbations as in the case of second-order Jahn-Teller situations in small molecules one is

referred to the works of Burdett and others [139–141].

Figure 5.4: Ln(5dz2)-F(2p) interaction in the C3v configuration

The Mulliken chargeqM on Ln (Ln=La, Gd and Lu) and the populations of the valence atomic

orbitals of LnF3 are listed in Table 5.6. Here one notes that for all three molecules, the Mulliken

charge of Ln decreases by 0.1e in the PBE + U calculation. This change in charge can be related

to the population of the 5d orbitals which decreases by the same amount i.e. 0.1e (Table 5.6)

by shifting the (unoccupied) Ln 5d orbitals up in energy due to the Hubbard term, which in turn

significantly removes the Ln 5d - F 2p mixing.

5.1.2.2 Conclusions

The above analysis identified an artificial second-order Jahn–Teller type artifact due to insuf-

ficient delocalization of the 5d orbitals resulted in a mixing with the ligand 2p orbitals which

resulted in the pyramidalization of the LnF3 molecules. The main objective of this section was
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Table 5.6: Mulliken chargeqM of Ln (= La, Gd, Lu) in LnF3 as well as orbital populations per

atom (ine) from PBE and PBE + U calculationsa.

System Method qM Ln F

5s 5p 4f 5d 2s 2p

LaF3 PBE 1.76 1.96 5.97 0.21 0.89 1.87 5.68
PBE + U 1.85 1.96 5.99 0.22 0.75 1.89 5.69

GdF3 PBE 1.79 1.92 5.88 7.11 0.89 1.85 5.66
PBE + U 1.86 1.92 5.89 7.13 0.75 1.86 5.69

LuF3 PBE 1.57 1.98 5.95 13.98 0.95 1.79 5.70
PBE + U 1.63 1.98 5.96 13.99 0.84 1.80 5.71

a Ueff = 2.0 eV for the 5d shell of Ln.

mainly to bring to attention the applicability of the DFT + U methodology as a probe tool to

tune the orbital energies hence to tune the occupation of a particular shell of orbitals and to fol-

low the results to gain more insight into the bonding aspects. The applications discussed in this

subsection and the previous subsection illustrate the applicability of the DFT + U methodology

to investigate structural and bonding aspects of lanthanide complexes. However, the DFT + U

scheme is equally applicable to larger realistic systems. More often than not the prediction of

reaction energies and excitation energies are of prime interest in real systems.

Theoretical modelling of 4f → 5d excitations of lanthanide ions is both challenging and

prospective. Accurate modelling of these excitations is important to study the photo-active prop-

erties of certain material which are doped with lanthanide ions. While modelling such systems is

difficult even for high-level wavefunction based methods, modelling a realistic large-scale nano-

cluster is prohibitively expensive by wavefunction based methods. As discussed in the previous

subsection 5.1.1, self-interaction artifacts complicateaccurate modelling of 4f orbitals while de-

localization artifact due to poor modelling also lightly affects the 5d orbitals. To identify and

quantify both such artifacts and to provide an accurate description, the DFT + U methodology

forms an suitable model.

5.2 Ceria Nanoparticles

Ceria or cerium oxide is widely used as a supporting metal in heterogeneous catalysis. The

advantages of ceria over other materials, specifically overother lanthanide materials are due to

the ability of the Ce 4f 1 electron to show valence transitions as discussed in Chapter1. There is
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an enormous amount of literature on the theoretical and experimental study of ceria [143–148].

This section will serve the purpose of both reviewing the basic concepts as explored during the

course of this thesis project and to summarize the results ofa preliminary DFT + U investigation

to model ceria nanoparticles. In the following introductory review only properties and other

details related to Ce 4f electron will be discussed.

CeO2 or Ce(IV) oxide is the most stable phase of ceria at room temperature and under at-

mospheric conditions [147]. Another commonly discussed form of ceria is the fully reduced

form which is represented by the stoichiometric formula Ce2O3
1 (see for example Ref. [147]).

Oxygen vacancy on the surface of ceria often play a vital rolein large-scale applications of ceria.

The concept of oxygen vacancy in ceria is related to the Ce3+/Ce4+ redox process of Ce atom

as follows: In the stoichiometric cerium oxide CeO2, all valence Ce states (i.e. 4f 16s25d1) are

empty implying a Ce4+ oxidation state. The partially reduced form of ceria CenO2n−x is formally

created by removing oxygen atoms. In other words, for every removed lattice oxygen ion, two

electrons are left behind to create two Ce3+ centers close to the site of the vacancy [143,146]. In

CeO2, the empty Ce 4f band is located between occupied O 2p band and the unoccupied Ce 5d

band while in the partially reduced ceria, a localized partially-occupied 4f band is located below

the unoccupied 4f band [143].

The number of oxygen vacancy centers in ceria is directly related to the ratio between the

numbers of Ce3+ and Ce4+ centers. The ability of ceria to store and release oxygen is related to

its ability to change the oxidation states of the cerium centers between III and IV by accepting

of releasing the 4f electron. This property has its effect in improving catalytic converters where

for the efficient conversion of the harmful gases such as CO to CO2 the level of oxygen should

be maintained optimally. Reactions involving catalysis bygold (Au) nanoparticles [143–145],

such as room temperature oxidation of CO have been observed tobe more efficient when the

Au nanoparticles (npAu) are supported on ceria [148]. An oxidized form of Au has been known

to be important in the chemisorption of CO on gold nanoparticles, npAu. Ceria nanoparticles

(npCeO2) as support stabilize the positive charge density on Au. X-ray photoelectron spec-

troscopy (XPS) of npAu/npCeO2 indeed reveals the presence of Au in its common oxidation

states I and III along with neutral gold species [148] which have been found to grow near the

oxygen vacancy sites.

1The bulk properties of reduced ceria indicate that the actual stoichiometric formula is CeOx where x=1.50 to

1.53.
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5.2.1 Model Nanoparticles

Loschen et al. [149] designed a series of octahedral ceria nanoparticles and studied them us-

ing the plane wave DFT + U method. In their work they discussedthe properties of the three

nano-dimensional model clusters with the molecular formula Ce19O32, Ce44O80 and Ce85O160.

Some of these particles were designed during the course of this thesis work and in the present

subsection, the procedure adopted to design them will be briefly summarized.

Investigations using transmission electron microscopy (TEM) investigation showed that ceria

nanoparticle single crystals with a dimension of a few nm have either an octahedral shape with

eight(111) surfaces or with an additional (200) surface they acquire a truncated octahedral shape

with a dimension of a few nm [150]. Thus one way to construct these nanoparticles will be to

build an extended cubic CeO2 framework and cut along the 8 (111) planes of the cube at various

radial distance from the center of the cube to arrive at octahedral particles of various dimensions.

By an experimental mathematical procedure a general molecular formula for these particles was

invented during the present work as Cexi Oyi where:

xi =
1
3

(

2(i+1)3+(i+1)
)

; yi =
4
3

i (i+1)(i+2) (5.1)

andi represents the number of shells of octahedral symmetry. Using the above equation a possi-

ble series of npCeO2 clusters of octahedral symmetry for various values ofi are listed in Table

5.7. One notes that as the particle dimension increases, theratio between the number of O centers

to the number of Ce centers approaches the bulk value of 2.0.

Table 5.7: Molecular formulae for a series of octahedral ceria nanoparticles.

i Cexi Oyi yi/xi

1 Ce6O8 1.333
2 Ce19O32 1.684
3 Ce44O80 1.818
4 Ce85O160 1.882
5 Ce146O280 1.918
6 Ce231O448 1.939
7 Ce344O672 1.953
8 Ce489O960 1.963
9 Ce670O1320 1.970
10 Ce891O1760 1.975
Bulk CenO2n 2.000

The 6 Ce centers of the first cluster, if assumed to be symmetrically equivalent, exhibit a

formal oxidation state of+2.67, implying the average configurationf 1.33. In the larger members



5.2. CERIA NANOPARTICLES 77

Ce3+ and Ce4+ centers can be symmetrically distributed: for example in the second member of

this series, Ce19O32 a combination of 7 Ce4+ ions (1 at the center and 1 per each of the 6 vertices

of an octahedron) and 12 Ce3+ centers ( 1 per each of the 12 edges of an octahedron) may result

in a cluster as shown in Figure 5.5.

Figure 5.5: AE DKH VWN equilibrium configuration of the octahedral Ce19O32 nanoparticle

(Ce-violet, O-red) with dimension 1.0 nm.

5.2.2 Results and Discussions

5.2.2.1 Exploratory Investigations

In preliminary DFT + U investigations, small molecules suchas Ce2O3, Ce5O8 were studied to

gain experience with convergence-related issues in DFT calculations of these systems. Modelling

of these systems present difficulties of various types. Although modelling a delocalized state is

not a problem for DFT, modelling a mixed-valence type state is more of a many-determinant

problem where schemes likebroken-symmetryDFT (BS-DFT) can partially alleviate the prob-

lem [152, 153]. In the DFT + U calculations however one can localize the f electrons in order

to prevent converging to a delocalized state, but to do that very high, physically improper values

for Ueff have to be chosen. A few useful conclusions which were drawn from exploratory calcu-

lations of model systems will be presented in this section which will be followed by the results

and discussions of some successful calculations.

In the first implementation of the DFT + U methodology, a DFT + Umixing scheme was

used where a fraction of the DFT + U potential of the (i−1)th iteration was added to the potential

calculated at the (i)th iteration:

Ṽσ
U,i = w ·Vσ

U,i +(1−w) ·Vσ
U,i−1 (5.2)
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A default value of 0.3 was used for the weight factorw which was later found to slow down

the SCF convergence. In the subsequent versions of the DFT + U module the default value for

w in Eq. 5.2 was changed to 1.0 with effectively no mixing, however w also can be fixed in a

calculation as desired.

5.2.2.2 DFT + U Investigation of Ceria Nanoparticles

The difficulties presented by DFT and DFT + U modeling of ceriananoparticles in the application

of gold catalysis has been discussed in Refs. [151] and [143].Zhang et al. [143] have summarized

various key points which are of interest and found to have aided the subsequent investigation of

the present thesis work. In previous DFT + U investigations,for the choice ofUeff of the Ce 4f

shell, optimum ranges of values such as 5–6 eV and 3–4 eV have been favored in LDA + U and

GGA + U calculations respectively (see Ref. [143] and other references there in).

The 51-atomic ceria nanoparticle (Figure 5.5) of the molecular formula Ce19O32 was cho-

sen as a candidate for the main investigation. For the preliminary investigation the geometry was

optimized with the AE DKH VWN method followed by single point AE DKH VWN + U calcula-

tions. As a preoptimization step various equilibrium geometries with differing Ce-O bond lengths

were tested and improved convergence was noted for systems with moderately larger Ce-Ce bond

lengths ( 360 pm) than models with shorter Ce-Ce bond lengths. In the AE DKH VWN + U

geometry optimization Fermi-level broadening scheme was used with a Fermi energy window

of 0.1 eV between HOMO and LUMO. Through AE DKH VWN single pointcalculations the

Fermi energy window was found to take values up to 0.07 eV below which no SCF convergence

was observed. In AE DKH VWN + U calculations using variousUeff values, Fermi energy

window below 0.1 eV did not lead to SCF convergence. Further, in AE DKH VWN geometry

optimization and AE DKH VWN + U single point calculations spin-only magnetic moment was

fixed to have the value 12ewhich formally corresponds to a system with anf 1 electron on each

of the 12 Ce atoms located at the 12 edges of the octahedron and octahedral symmetry constraints

were used. In the AE DKH VWN + U single point calculations, the converged AE DKH VWN

density was used as starting guess density to speed up the SCF convergence.

Table 5.8 presents the results of a series of spin-unrestricted AE DKH VWN + U single

point calculations of Ce19O32 performed for various values ofUeff in the range 0 to 6 eV at the

AE DKH VWN geometry. The main property of interest here is to identify Ce3+ and Ce4+-like

centers. For this purpose the total population of 4f electrons on the Ce centers along with the

energy of the Ce 3d-like orbitals were studied. While the population of the Ce centers on a bulk

system can be expected asf 0 in CeO2 and nearlyf 1 in the fully reduced Ce2O3, an indirect

effect of the net charge of the Ce centers on the corresponding3d shell has been found to aid the
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identification of the character of Ce-atoms [149]. In the stoichiometric species CeO2 where the

Ce centers carry a formal +4 charge, the energy of the 3d orbitals (ε3d) was found to be -867.0

eV from a projected augmented wave (PAW) method [149] and in the fully reduced ceria i.e.

Ce2O3, with the decrease in the formal charge to +3, this energyε3d is shifted to -861.8 eV. It

should be noted that Ce19O32 is only a small-scale representative of octahedral npCeO2 but here

one can clearly expect an approximate modeling of a npCeO2.

From Table 5.8 one clearly notes that at the AE DKH VWN level (Ueff = 0.0 eV), a severe

unphysical delocalization renders all three Ce-center to beidentical. Although Nα , Nβ and

Nα+Nβ were populated to various extents, the net spin population (Nα -Nβ ) was found to be 0.6e

on all three types of Ce centers. The indirect effect of the charge of the Ce center on−ε3d clearly

indicates that at the AE DKH VWN level all three Ce centers are identical with the corresponding

3d of about 865 eV for all three unique types of Ce centers locatedat the center, at edges and

vertices of the octahedron. With increasing value ofUeff, the results have not systematically

affected but one notes that sharply atUeff = 5.0 eV, 12f 1 electrons were localized at the 12 Ce

centers located at the edges. It is also interesting to note that for the value ofUeff = 5.0 eV,

the Ce centers at the center of the cluster and at the vertices are predicted to be in the oxidation

state IV with no net spin polarization. However, the total 4f population of approximately 0.5e

of both spin type at the Ce atoms at the vertices indicate Ce-O covalent bonding. Again−ε3d

serves as an excellent indicator of the oxidation states of the Ce centers. With increasingUeff,

to 6.0 eV, one can see that the Ce centers at the vertices tend toattain a +3 oxidation state by

partially localization of 4f electrons which subsequently affects the 4f localization at the other

centers. At this point it will only be pointed out that the DFT+ U implementation in the LCGTO

methodology of the code ParaGauss forms a suitable tool to investigate the ceria nanoparticles

where the localization as modelled by the LCGTO framework mayhave certain advantages over

other frameworks such as those based on plane wave basis.

Table 5.9 compares the net spin 4f populations andε3d of Ce19O32 from AE DKH VWN and

AE DKH VWN + U calculations along with available results for Ce19O32, Ce44O80 and Ce85O160

systems and bulk ceria from Ref. [149]. From a comparison of results from AE DKH VWN + U

and PAW VWN + U [149] calculations, it is clear that the PAW VWN + Ucalculation predicted

a delocalized state where the Ce atoms at the edges (E) and vertices (V) are of similar oxidation

states but the AE DKH VWN + U calculation (correctly) predicted 12 localized Ce centers at the

edges. In general, for all three clusters Ce19O32, Ce44O80 and Ce85O160, the PAW VWN + U

calculations predicted the number of Ce4+ centers correctly but for the Ce3+ centers, only par-

tial localization was obtained. With the success of the AE DKH VWN + U methodology in

the description of the Ce19O32 nanoparticle one can hope for an improved modelling of ceria
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Table 5.8: AE DKH VWN, AE DKH VWN + U Spin specific Mulliken population of 4f orbitals

per Ce atom in Ce19O32 (in e) a along with the negative of energy of the 3d orbitals -ε3d (in eV):

Populations of 4f electrons of majority spin-type Nα , population of 4f electrons of minority

spin-type Nβ , total population of 4f electrons Nα + Nβ , net spin population of 4f electrons Nα

- Nβ were given along with variousUeff
b values.

Ueff Positionc Nα Nβ Nα + Nβ Nα - Nβ −ε3d

0.0 C 0.39 -0.24 0.16 0.64 865.8
E 1.02 0.39 1.41 0.63 865.2
V 0.99 0.38 1.37 0.61 865.2

1.0 C 0.22 -0.24 -0.03 0.46 866.9
E 1.01 0.36 1.38 0.65 865.4
V 0.99 0.34 1.33 0.65 865.3

2.0 C 0.03 -0.23 -0.20 0.26 868.1
E 1.00 0.34 1.34 0.66 865.7
V 0.97 0.31 1.29 0.66 865.5

3.0 C -0.12 -0.25 -0.37 0.13 869.0
E 0.98 0.31 1.30 0.67 866.0
V 0.95 0.29 1.24 0.66 865.9

4.0 C -0.26 -0.29 -0.54 0.03 869.8
E 0.97 0.29 1.26 0.68 866.3
V 0.93 0.26 1.19 0.67 866.3

5.0 C 0.01 -0.01 -0.01 0.02 869.6
E 1.20 0.22 1.42 0.98 863.4
V 0.49 0.48 0.97 0.01 869.8

6.0 C -0.33 -0.29 -0.62 -0.04 870.9
E 0.99 0.24 1.23 0.75 866.1
V 0.77 0.25 1.02 0.52 868.1

a The equilibrium geometry as obtained from an
AE DKH VWN calculation was used in all calculations.

b Ueff for the 4f shell of Ce.
c C - center (1 Ce atom), E - edge (1 Ce atom in the middle of

each of the 12 edges), V - vertex (1 Ce atom at each of the 6
vertices).
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nanoparticles using the methodology implemented in the this thesis in the framework of Para-

Gauss.

Table 5.9: AE DKH VWN, PAW VWN + U and AE DKH VWN + U spin specific Mulliken

population of 4f orbitals per Ce atom in various ceria models, along with the negative of energy

of 3d orbitals -ε3d (in eV) and results from other methods: Number of equivalentCe atoms of

each typeni , net spin population of 4f electrons Nα - Nβ (in e) are given.

System Method Positiona ni −ε3d Nα - Nβ

Ce19O32 AE DKH VWN C 1 865.8 0.64
E 12 865.2 0.63
V 6 865.2 0.61

Ce19O32 AE DKH VWN + U b C 1 869.6 0.02
E 12 863.4 0.98
V 6 869.8 0.01

Ce19O32
c PAW VWN + U b C 1 868.0 0.01

E 12 863.8 0.68
V 6 863.6 0.69

Ce44O80
c PAW VWN + U b C 6 867.8 0.03

E 24 864.6 0.56
V 6 865.1 0.47
F 8 867.7 0.02

Ce85O160
c PAW VWN + U b C 19 866.3 0.04

E 36 863.2 0.41
V 6 860.7 0.70
F 24 866.2 0.03

CeO2
c bulk 867.0 0.00

Ce2O3
c bulk 861.8 0.96

a C - center, E - edge, V - vertex, F - facet.
b Ueff = 5.0 eV for the 4f shell of Ce.
c Ref. [149].
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Chapter 6

DFT + U Application to Actinides

Theactinideseries of metals belongs to the seventh period (atomic number 89-103) of the peri-

odic table. The valence electronic configuration of the actinide series is[Rn] 5 f n 6d1 7s2. When

compared to the 4f orbitals of lanthanides, the 5f orbitals of actinides are relatively less com-

pact. Localization of the 5f electrons gradually increases with the atomic number of theactinide

element due to poor shielding of the nuclear charge by 5f orbitals and experimental studies

indicate that starting fromamericium(Am, 5f 6) the 5f orbitals become localized [110]. The

5 f electrons of the early actinide elements such asprotactinium(Pa, 5f 2), uranium (U, 5f 3),

neptunium(Np, 5f 4), plutonium (Pu, 5f 5) are semi-localized (localized or more delocalized).

Along with the valence 6d1 and 7s2 electrons, the 5f electrons of these elements can be easily

removed or readily transferred to ligands, thus early actinides exhibit various oxidation states. In

the present thesis, only uranium complexes with U oxidationstate VI (5f 0) are considered. The

purpose of this chapter is to discuss the application of DFT +U methodology to some U (VI)

complexes.

Section 6.1 deals with the application of the DFT + U methodology to the UO2+
2 ion, an

important ion; as a model study, the species will be treated in the gas phase. The main objective

of this section is to discuss the essential geometric and electronic properties of UO2+2 in KS-

DFT and DFT + U descriptions. In this section, the nature of orbital interactions in UO2+2 will

be discussed with special emphasis on the role of U 5f orbitals in the bonding of UO2+2 . The

ideas developed in this section are then be used in the remainder of this chapter to rationalize the

DFT description of related complexes and improvements provided by the DFT + U treatment.

Both Sections 6.2 and 6.3 deal with the role of self-interaction error in the structural features of

actinide complexes. In Section 6.2, results of a DFT + U studyof the penta aqua uranyl complex

are presented. Finally, in Section 6.3, results of a systematic study of the uranyl monohydroxide

cation are summarized.
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6.1 Uranyl Dication

The molecular species uranyl (UO2+
2 ) has been studied with wide range of theoretical methods

ranging from the simple extended Hückel method [154] to highly accurate coupled cluster cal-

culations [155]. The uranyl dication is a very stable species exhibiting a linear geometry with a

formal U-O bond order 3. The role of 5f orbitals in the linearity of uranyl is partly supported

by the fact that the isoelectronic transition metal speciesMoO2+
2 is bent [159]. However, the

isoelectronic actinyl ion ThO2 (thorium, Th, Z = 90) is also bent (θexp. = 122◦) [159] which

indicates the role of factors other than 5f orbitals. The preference of the uranyl ion for linear

geometry has been discussed by several authors (for a reviewsee Ref. [156]).

In the earliest of these studies, Tatsumi and Hoffmann [154]based on extended Hückel cal-

culations suggested that the sub-valence 6p orbitals1 play a role in activating the Opσ orbitals

to form σ bonds with U 5f orbitals. Later in a relativistic Hartree–Fock–Slater study [157], this

effect which is referred to as "pushing-from-below" [158], has been shown to be less significant

in uranyl bonding. In a Hartree-Fock study employing a RECP, inorder to explain the bent ge-

ometry of ThO2, Wadt [159] suggested that the relative ordering of the 5f and 6d levels and

not the 6p orbitals are important to describe the geometry. Subsequent investigations [160–162]

established the ordering of the MOs of UO2+
2 and approximate contributions of uranium 5f and

6d atomic orbitals to these MOs. The near degeneracy of U 5f and 6d levels is understandable

considering the relativistic destabilization of these orbitals to different extents [163] and it is this

effect which energetically puts the U 5f orbitals at a suitable place to be involved in bonding with

the Opσ orbitals. Further, a situation similar to lanthanide contraction results in the decrease in

ionic radii with increasing atomic number from Th (Z = 90) to Lr (Z = 103) which results in a net

stabilization of the 5f orbitals with increasing atomic number (see Figure 5.1 for an analogous

situation in the lanthanides).

In the following, the ground state electronic structure, equilibrium geometry and harmonic

vibrational frequencies from AE DKH PBE and AE DKH PBE + U calculations will be dis-

cussed. Finally it will be shown that a second-order Jahn–Teller type situation exists in the

UO2+
2 cation that is enhanced in KS-DFT calculations by the self-interaction artifacts related to

the U 5f orbitals which are responsible forsofteningthe uranyl bending mode.

1The electronic configuration of neutral U atom is [Rn] 5f 3 6d1 7s2, where the 6p orbitals form the highest

occupied MO of the [Rn] core.
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6.1.1 Results and Discussions

Molecular properties of UO2+
2

The coupled-cluster CCSD(T) and the hybrid-DFT B3LYP values [155] of the equilibrium uranyl

bond length fall in the narrow range of 169.0–169.4 pm (Table6.1). The PBE and PBE + U

values are somewhat longer, 171.9–171.4 pm, and the GGA-BP value [164] is close to the PBE

result (Table 6.1). Comparing the results of the PBE calculations to those obtained with the

PBE + U method andUeff = 2.0 eV, the uranyl bond distances are shortened by 0.5 pm so that

the PBE + U value reproduces the B3LYP and CCSD(T) results better than the PBE value. In

the PBE calculation, the energy of the highest occupied molecular orbital (HOMO) is -22.07 eV

which decreases by approximately 0.2 eV whenUeff is increased by 1 eV. It will shown later that

the HOMO of UO2+
2 represents aσ interaction between a U 5f orbital and theσ∗ orbital of the

dioxo (O4−
2 ) 2p fragment. The U 5f orbital contributes 57 % to this bond which is slightly more

than 50 %, thus the potential correction provided by the Hubbard parameterUeff to this orbital

will be negative. This effect will further increase the U 5f contribution with increasing values

of Ueff; this is reflected in the stabilization of the 5f - 2p σ bond, hence results in a shortening

of the U-O distance in PBE + U calculations. Further, in the PBE calculation, the energy of

the lowest unoccupied molecular orbital (LUMO) is -19.78 eV; in the PBE + U calculations

εLUMO increases by approximately 0.5 eV withUeff increases by 1 eV. This is readily understood

through Eq. (3.63) where the potential correction providedby the Hubbard parameter to an

occupied orbital is +0.5 eV for the value ofUeff = 1.0 eV. Thus the HOMO-LUMO gap which is

2.29 eV in the PBE calculation (Table 6.1) increases by about 0.7 eV in the a PBE + U calculation

when the the Hubbard parameterUeff is enlarged by 1 eV.

The PBE values of the harmonic vibrational frequencies of theasymmetric and asymmetric

stretching modes underestimate the corresponding CCSD(T) values [155] by 34 cm−1 and 16

cm−1, respectively (Table 6.1). At the PBE + U level (Ueff = 2.0 eV), these frequencies are

slightly corrected towards higher values, by 13 and 8 cm−1. As for the structure results, one

notes that PBE + U corrections tend to change in the direction of the CCSD(T) and the B3LYP

predictions (Table 6.1) [155]. Quite a bit more distinct is the effect of DFT + U method on the

frequency of the uranyl bending, which is 86 cm−1 lower at the PBE level, 92 cm−1, than the

CCSD(T) result of 178 cm−1 [155] (Table 6.1). Indeed, the PBE + U result for this quantity

strongly depends on the Hubbard parameterUeff. With Ueff = 1.0 eV, that bending frequency

increases by 75 cm−1 compared to the PBE-GGA result, thus reproducing the B3LYP value.

With Ueff = 2.0 eV, one obtains 211 cm−1 which is 119 cm−1 higher than the PBE result and

even 33 cm−1 above the value of 178 cm−1 obtained with the CCSD(T) method [155] (Table
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6.1). From these results one can conclude that U 5f orbitals play a role in uranyl bonding and

when the localization of these 5f orbitals are tuned by the inclusion of a small positive Hubbard

parameterUeff between 1 and 2 eV, one obtains an improved description of structural properties

of UO2+
2 .

Table 6.1: Calculated properties of UO2+
2

a at AE DKH PBE and AE DKH PBE+U levels along

with results from other methods: Hubbard parameterUeff (eV), equilibrium U-O bond length

r (pm), energies of the the highest occupied molecular orbital (HOMO) εHOMO, lowest unoc-

cupied molecular orbital (LUMO)εLUMO and their difference, the HOMO-LUMO gap∆ε (eV),

harmonic frequencies of the asymmetric stretchingωa, the symmetric stretchingωs and the bend-

ing ωb vibrational modes (cm−1).

Method Ueff r εHOMO εLUMO ∆ε ωa ωs ωb

AE DKH PBE b 171.9 -22.07 -19.78 2.29 1104 1001 92
AE DKH PBE + Ub 1.0 171.7 -22.22 -19.26 2.96 1110 1005 167
AE DKH PBE + Ub 2.0 171.4 -22.39 -18.75 3.64 1117 1009 211
AE DKH BP c 172.2 1091 994 93
RECP/B3LYPd 169.4 1137 1046 166
RECP/CCSD(T)d 169.0 1120 1035 178

a Calculations carried out with symmetry constraints according to point group D8h.
b This work.
c Ref. [164].
d Ref. [155].

Atomic charges and orbital analysis of UO2+
2

Table 6.2 lists the Mulliken chargeqM of U in UO2+
2 along with the populations of the valence

atomic orbitals. The U center in UO2+2 has a formal charge of +6 and the oxo fragments represent

formally closed-shell dianionic ligand fragments. Through σ andπ interactions each oxygen

center donates 2.0e (0.1 from 2s, 1.9 from 2p) to the U center which results in the U center

having a net charge of about +2e (Table 6.2). This is reflected in the PBE description of the

Mulliken charge of the U center of UO2+2 . A larger contribution of theseσ and π donated

electrons populates the U 5f orbitals (about 2.7e) and the U 6d orbitals are populated by about

1.4 e which is almost half of the population of 5f orbitals. This reflects the different extents to

which the uranium 6d and 5f orbitals involve in bonding. The 6p orbitals show a small deficit

of about 0.2e indicating a very small contribution to the bonding. The only change introduced

in the PBE + U description is a very slight increase in the 5f population by 0.03e for theUeff



6.1. URANYL DICATION 87

value 2.0 eV.

Table 6.2: Mulliken chargeqM of U in UO2+
2 as well as valence orbital populations per atomic

center (ine).

Method Ueff qM U O

7s 6p 6d 5f 2s 2p

AE DKH PBE 2.02 0.02 -0.16 1.38 2.73 1.91 4.08
AE DKH PBE+U 1.0 2.02 0.02 -0.17 1.38 2.74 1.91 4.08
AE DKH PBE+U 2.0 2.02 0.02 -0.17 1.38 2.76 1.91 4.08

As expected, the atomic charges and the valence orbital populations indicate the role of var-

ious orbitals in chemical bonding. The individual contribution of various atomic orbitals to

molecular orbitals of UO2+2 are tabulated in Table 6.3. This information is graphicallyillustrated

in Figure 6.1 where the valence MOs of UO2+
2 from the PBE eigenvectors are shown along with

cartoon representation of these orbitals. At the bottom of the MO diagram (Figure 6.1) one can

see that the U 6p orbital which lies along the uranyl axis interacts with theσ∗ 2s orbital frag-

ment of the oxo ligands resulting in the bondingσ (7 a2u, -44.6 eV) and antibondingσ∗ (8 a2u,

-30.7 eV) orbitals. As this is a pair of bonding/antibondingMOs, the net contribution to the

metal-ligand bonding is small, if not negligible. The uranium 6p orbitals which are oriented

perpendicular to the uranyl axis stay non-bonding at -39 eV (6 e1u). Theσ 2s orbital (11 a1g,

-37.4 eV) fragment of the oxo ligands is very mildly stabilized by a U 6d orbital; 6d contribution

is not shown in cartoon representation.

For the present discussion, the most interesting occupied MOs lie in the narrow range from

-22.1 eV to -23.4 eV (Figure 6.1, Table 6.3). These orbitals represent theσ andπ orbitals formed

by uranium 6d and 5f orbitals with the oxo 2p orbitals. The lowest of these orbitals is theπ∗ 2px

and 2py orbital fragments (degenerate) of the oxo ligand both whichare stabilized (π-donation)

throughπ interactions with the uranium 6dxz and 6dyz orbitals, respectively (4 e1g, -23.4 eV). The

correspondingπ components of the 2px and 2py orbital fragments are stabilized (π-donation) by

uranium 5fxz2 and 5fyz2 orbitals, respectively (7 e1u, -23.1 eV). Theσ 2pz orbital fragment of the

oxo ligands interacts throughσ -donation with the U 6dz2 orbital (12 a1g, -22.7 eV). Finally, the

σ∗ 2pz orbital fragment of the oxo ligand interacts throughσ -donation with the U 5fz3 which

forms the HOMO of UO2+2 (9 a2u, -22.1 eV). Two pairs of unoccupied non-bonding type 5f

orbitals at -19.8 eV and -19.1 eV are theφ (2 e3u) andδ (2 e2u) type U 5f orbitals respectively.

The anti-bonding partners to the bonding MOs with 5f and 6d contributions lie above these 5f

φ andδ type orbitals. A pair of unoccupied non-bonding 6d orbitals ofdxy anddx2−y2 character
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lies far above the unoccupied 5f levels; these orbitals are not shown in Figure 6.1. The overall

orbital interactions involved in the U-O bonding is illustrated in Figure 6.2. In the axial ligand

field of the oxo ligands, the U 5f and 6d orbitals are split to form quasi-atomic 5f and 6d orbitals

(Figure 6.2) which involve in bonding with the completely filled 2p orbitals of the oxo ligands

(Figure 6.2). The 5f MOs both and unoccupied, lie between the 6d occupied and unoccupied

MOs indicating a stronger U 6d - O 2p bonding interaction and a relatively weaker U 5f - O 2f

bonding interaction.

Figure 6.1: Valence MOs of UO2+2 at the AE DKH PBE equilibrium geometry along with their

energiesε in eV (left) and symmetry labels (right) according to D8h and D∞h point group sym-

metries. The linear structure of the UO2+
2 molecule (bottom) and cartoon representation of MOs

(left) are shown for reference.

When comparing the orbital energies in PBE and PBE + U calculations (Table 6.3) one notes

that the non-bonding unoccupied orbitals of the typeφ (2 e3u) andδ (2 e2u) are shifted higher

by about 1 eV with the inclusion of the Hubbard term withUeff = 2.0 eV. The contribution of the

U 5 fz3 orbital to the HOMO (9 a2u) is more than 50%. Thus the energy correction provided by

the Hubbard term is negative and the HOMO is stabilized by about 0.3 eV forUeff = 2.0 eV. An

interesting situation arises for the 7 e1u orbital where theπ-type 5f orbitals contribute by about
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40% but in the PBE + U calculation no positive correction is obtained. This is due to the fact

that the definition of orbital occupation matrix employed inthe PBE + U calculation isS·D ·S
which leads to occupation numbers slightly larger than given by the Mulliken population matrix

which is formally expressed asD ·S. Thus for theπ-type 5f orbitalsS·D ·S leads to occupation

number of about 0.5e resulting in zero or very small corrections to the corresponding potential

matrix elements. All other MOs where the contribution of U 5f is negligible are essentially not

affected by the Hubbard term withUeff = 2.0 eV included for the U 5f shell (Table 6.3).

Figure 6.2: Qualitative illustration of the orbital interaction involving the U 5f and 6d shells and

the 2p fragment orbitals of the oxo ligands. Orbitals with 5f contribution are shown in blue and

orbitals with 6d contribution are shown in red. The symmetry classification is according to D∞h

point group symmetry where the symmetry of the MOs are the same as that of component AOs.

Second-order Jahn–Teller type interaction in UO2+
2

Before proceeding to the main discussion, a brief overview ofJahn–Teller distortion is given

in the following. According to Jahn–Teller theorem [165], degenerate electronic states in sym-

metric non-linear molecules are unstable with respect to a geometrical distortion that lifts the

degeneracy hence resulting in a non-symmetric structure. Using perturbation theory, Jahn and
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Table 6.3: Mulliken population analysis (in %) of the valence MOs of UO2+
2

a along with orbital

energiesεi (eV).

Method MO εi U O

7s 6p 6d 5f 2s 2p

AE DKH PBE 2e2u -19.05 100
3e3u -19.78 100
9a2u -22.07 9 57 6 33
12a1g -22.73 3 15 7 76
7e1u -23.13 2 37 62
4e1g -23.37 24 76
8a2u -30.71 30 5 55 10
11a1g -37.45 2 8 88 2
6e1u -38.96 99 1
7a2u -44.63 52 1 38 9

AE DKH PBE + Ub 2e2u -18.02 100
3e3u -18.75 100
9a2u -22.39 9 58 1 32
12a1g -22.77 3 15 7 76
7e1u -23.18 2 36 62
4e1g -23.43 24 76
8a2u -30.74 31 6 54 10
11a1g -37.49 2 8 88 2
6e1u -38.92 99 1
7a2u -44.75 51 1 39 9

a Calculations carried out with symmetry constraints according to point
group D8h.

b Ueff = 2.0 eV for the 5f shell of U.

Teller showed [165] that the change in energy associated with the distortion is a term that is

linearly dependent (first-order term) on the distortion coordinate. Further, using symmetry con-

siderations, they showed that for the first-order term to be non-zero, the symmetry species of the

distortion coordinate (or distortion mode) must be contained within the symmetric direct prod-

uct of the symmetry species of the electronic ground state. Thus such distortion associated with

orbitally degenerate electronic states of non-linear molecules is known as the first order Jahn–

Teller (FOJT) distortion and the related concepts are collectively known as FOJT theorem. The

FOJT theorem is invoked to explain the distorted geometry ofmolecules such as H−3 , coordina-

tion complexes of the type MX6 (where M = Cu(II), Ni(II) and X is a monodentate ligand such

as hydroxyl) [139,140].

The second-order Jahn–Teller (SOJT) [166] effect refers tothe commonly observed trend that
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a molecule with small energy gap between the occupied and unoccupied MOs is susceptible to

a geometrical distortion with enables mixing between theseMOs. Using the perturbation theory

arguments of Jahn and Teller, the net stabilization energy associated with such a distortion can

be shown to be second-order term, which is inversely proportional to the energy gap of the quasi-

degenerate MOs involved [139]. Often the MOs that are involved in the SOJT effect are the

HOMO and the LUMO of the molecule. The SOJT effect can be invoked to explain the bent

structure of H2O, pyramidal structure of NH3 and so on. Davidson and Borden [167] pointed out

that in practical computations, SOJT-like distortions canalso result due to the inaccuracy of an

approximate wavefunction leading to an artifactual SOJT distortion.
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Figure 6.3: AE DKH PBE and AE DKH PBE + U potential energy profilesof UO2+
2 along the

bending mode. In the PBE + U calculations,Ueff values of 1.0, 2.0 and -1.0 eV were employed.

Relative energy∆E in cm−1 with respect to the energy of the linear structure are plotted for

various angles of deviation from linearity∆θ in degrees. The curve was obtained by optimizing

the U-O bond length for selected values of the uranyl bond angle θ by enforcing C2v point group

symmetry restrictions.

The main aspects of the ground state electronic structure and geometry features of UO2+2

have been discussed so far. The main objective of the subsequent discussion is to explore the

reason for the low vibrational frequency of the bending modeof UO2+
2 as predicted by the GGA

method PBE and to illustrate the sources of improvements provided by the DFT + U correc-
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tion term. In the following it will shown that a weak SOJT typeinteraction which fractionally

populates the non-bonding type U 5f orbitals is enhanced in the PBE calculation. KS DFT cal-

culations overstabilize systems with fractional occupation numbers which in this case leads to an

underestimation of the uranyl bending frequency.

The potential energy of UO2+2 along the uranyl bond angle is shown in Figure 6.3 both at the

PBE and the PBE + U levels. The PBE energy profile is flat (red line connecting solid circles) and

at the PBE + U level, forUeff = 1.0 eV, bent structures are less favored which results in a steeper

potential (black line connecting hallow circles) representing a more rigid uranyl structure with

an increased bending frequency (167 cm−1, Table 6.1). With further increase,Ueff = 2.0 eV, bent

structures are increasingly less favored, i.e. uranyl is more rigid with a larger bending frequency

(211 cm−1, Table 6.1). In Table 6.4, natural orbital occupation numbers of the 5f orbitals are

given for the uranyl species with bond angles 180◦, 160◦ and 140◦ from PBE calculations as

used in Figure 6.3. The corresponding DFT + U corrections forthe total energy and diagonal

potential matrix elements are also given in Table 6.4. The estimated DFT + U energy corrections

EU for the structures withθ = 180◦, 160◦ and 140◦ are 0.69, 0.76 and 0.96 eV, respectively,

and these values are closer to the results from DFT + U constrained optimizations withUeff =

1 eV which are 0.68, 0.76 and 0.91 eV respectively2. One notes that for the bent structures,

the positive energy corrections EU from the DFT + U correction term is larger than that for the

linear structure. For the uranyl bond angle 160◦ the DFT + U energy correction EU is larger than

the energy correction obtained for the linear structure by 0.07 eV. With a larger deviation from

linearity, as in the case of uranyl bond angle 140◦, the DFT + U energy correction is even larger.

The corresponding DFT + U corrections to the potential elements vUi to the DFT eigenvalues

are also given in Table 6.4, and these contribute to the corresponding MOs of same symmetry

types based on the contributions from these quasi AOs. In thethree PBE calculations with uranyl

bond anglesθ = 180◦, 160◦ and 140◦, the total 5f occupation (sum ofni , Table 6.4) is the same

according toD·SandS·D·Smatrices, but for larger deviations from linearity, due to intra-atomic

5 f - 5 f hybridization, these occupation numbers involve variousf orbitals to different extents.

As a numerical experiment, the uranyl bending mode energy profile was probed with a nega-

tive value for the Hubbard parameter (Ueff = -1.0 eV), Figure 6.3. A negativeUeff will enhance

the shortcomings of a pure KS-DFT calculation and in this case results in predicting a bent uranyl

as the minimum energy structure. The bending mode potentialof UO2+
2 at the PBE + U level

with Ueff = -1.0 eV shows apseudo barrierat the linear configuration (green line connecting

solid squares) and represents a double-well potential witha barrier height of 121 cm−1. From a

2When performing DFT calculations it turned out to be useful insome cases to set a smallUeff value, e.g.<10−8

eV, to print the orbital occupation numbers which can be usedto estimate the DFT + U corrections.
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Table 6.4: Occupation numbers of U 5f atomic orbitals at various uranyl bending angles in

AE DKH PBE calculations along with calculated DFT + U corrections: Uranyl bond angles

(in degree), Symmetry classification off orbitals according to D∞h, D8h and C2v point groups,

natural orbital occupation numbersni in eare given according to the Mulliken population matrix

D·S and the full occupation matrixS·D·S, DFT + U corrections EU to the total energy and

diagonal elements vU
i of the potential matrix (in eV) are given for the Hubbard parameterUeff =

1.0 eV.

θ AO Symmetrya ni EU vU
i

D∞h D8h C2v D·S S·D·S

180 f 3
z σ+

u a2u b2 1.21 1.50 0.19 -0.25
fxz2 πu e1u a1 0.76 1.03 0.25 -0.02
fyz2 b1 0.76 1.03 0.25 -0.02
fxyz δu e2u a2 0.00 0.00 0.00 0.50
fz(x2−y2) b2 0.00 0.00 0.00 0.50
fx(x2−3y2) φu e3u a1 0.00 0.00 0.00 0.50
fy(3x2−y2) b1 0.00 0.00 0.00 0.50
ftotal 2.72 3.58 0.69

160 f 3
z σ+

u a2u b2 1.17 1.45 0.20 -0.23
fxz2 πu e1u a1 0.73 0.99 0.25 0.05
fyz2 b1 0.71 0.97 0.25 0.02
fxyz δu e2u a2 0.06 0.09 0.04 0.46
fz(x2−y2) b2 0.06 0.10 0.05 0.45
fx(x2−3y2) φu e3u a1 0.00 0.00 0.00 0.50
fy(3x2−y2) b1 0.00 0.00 0.00 0.50
ftotal 2.73 3.58 0.76

140 f 3
z σ+

u a2u b2 1.06 1.30 0.23 -0.15
fxz2 πu e1u a1 0.68 0.90 0.25 0.05
fyz2 b1 0.60 0.82 0.24 0.09
fxyz δu e2u a2 0.18 0.28 0.12 0.36
fz(x2−y2) b2 0.18 0.28 0.12 0.36
fx(x2−3y2) φu e3u a1 0.01 0.00 0.00 0.50
fy(3x2−y2) b1 0.00 0.00 0.00 0.50
ftotal 2.70 3.56 0.96

a The Cn axis (in Dnh) coincides with the z-axis which passes
through the O and U atoms. The C2 axis (in C2v) coincides with
the x-axis and is perpendicular to the O-U-O axis; in bent struc-
tures the molecule lies in thexzplane.
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fully relaxed geometry optimization of UO2+2 at the PBE + U level with theUeff value -1.0 eV,

the equilibrium bond angle was found to be 162.4◦. A similar trend was noted forUeff = -0.5 eV

where the potential is still a double well but is shallow; theequilibrium bond angle was found to

be 175.6◦.

As discussed before, from Table 6.3 one sees the effect of theHubbard term on the MOs. For

Ueff = 2.0 eV, the unoccupied MOs which represent theφ andδ type non-bonding U 5f orbitals

were shifted up by 1.0 eV (half the value ofUeff for zero occupation numbers) and the HOMO (9

a2u) was stabilized by about 0.3 eV. From this one can estimate the corrections introduced by the

negative Hubbard parameterUeff = -1.0 eV. In this case the HOMO will be destabilized by about

2 eV and the unoccupiedφ andδ type U 5f orbitals will be shifted down by about 0.5 eV thus

decreasing the HOMO-LUMO gap3. A decrease in the HOMO-LUMO gap means that intra-

atomic 5f -5 f hybridization is more feasible. Furthermore, the uranyl HOMO represents the U

5 f - O 2p σ bond which is destabilized in the caseUeff = -1.0 eV resulting in an elongation of

the U-O bond by 0.4 pm compared to the PBE value 171.9 pm. A possible explanation of uranyl

bending for a negativeUeff can be provided at this point. The destabilization of bonding MOs

representing uranyl U 5f - O 2p σ andπ bonds resulting in increased U-O bond length which

overall weakens the ligand binding. This is partly compensated if the ligands move away from

linearity to interact with theδ -type 5f orbitals which overlap better with O 2p orbitals in a bent

configuration.

6.1.2 Conclusions

The uranyl dication UO2+2 is a stable linear species. The participation of both 5f and 6d orbitals

in the uranyl bonds is responsible for the stability and the linearity of the uranyl framework [156,

158]. The rigidity of this framework is also supported by thefact that the ligands in coordination

complexes of uranyl are predominantly confined to the equatorial plane perpendicular to the

linear uranyl moiety [169]. The hybrid-DFT approach B3LYP and wave-function based methods

describe the bare uranyl cation with sufficient accuracy [155] whereas in GGA calculations the

vibrational frequency of the bending mode of UO2+
2 is underestimated, by 70–80 cm−1, which

is about 40% of the value obtained with more accurate methods.

The low force constant of the uranyl bending mode in the PBE-GGA KS calculation is a

consequence of the inaccurate description of the Coulomb interaction of the U 5f electrons.

From the uranyl bending mode profiles calculated at PBE and PBE +U levels (Figure 6.3), one

can note that at the PBE level, the uranyl molecule with a non-linear geometry is overstabilized.

3For Ueff = -1.0 eV,r(UO) = 172.3 pm,θ = 162.4 pm,εHOMO = -21.80 eV,εLUMO = -20.17 eV,∆ε = 1.63 eV,

see Table 6.1 for the corresponding PBE values.
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In a PBE + U calculation withUeff = -1.0 eV, such an overstabilization is further enhanced

resulting in a uranyl equilibrium bond angle of about 162◦. This situation is understood through

the fractional occupation of the non-bondingδ -type quasi 5f orbitals of U which arises due to a

second-order Jahn–Teller type interaction between the uranyl σ occupied MO (HOMO of uranyl)

and theδ -type 5f orbitals when uranyl deviates from linearity. The nature ofself-interaction

error present in LDA and GGA KS calculations is such that Coulomb repulsion is underestimated

for fractional electrons resulting in spurious stabilization of systems with fractionally occupied

orbitals.

6.2 Penta Aqua Uranyl

The present section deals with the application of the DFT + U methodology to the uranyl penta-

aqua complex[UO2(H2O)5]2+, the most frequent form in which the uranyl dication occurs in an

aqueous medium. In the uranyl penta-aqua complex, the uranyl ion is coordinated by five water

molecules in the equatorial plane which is oriented perpendicular to the axis of the linear uranyl

moiety. B3LYP and wave function based calculations of the penta-aqua complex[UO2(H2O)5]2+

indeed suggest a linear uranyl moiety with all oxygen atoms of the ligands in the equatorial

plane [170]. In contrast, LDA and GGA KS calculations yield a(slightly) bent uranyl moiety

with the ligands coordinated out of the equatorial plane [171–173]. In this thesis, by applying

the DFT + U methodology, the bent geometry of the uranyl moiety in the penta-aqua complex as

obtained in LDA and GGA KS calculations, will be identified asa self-interaction artifact related

to the Coulomb interaction of the U 5f electrons.

6.2.1 Results and Discussions

Structural properties of [UO2(H2O)5]
2+ with D5h symmetry restrictions

The effect of the equatorial ligand environment on the structural aspects of uranyl such as bond

lengths and stretching frequencies can be understood by studying the complex[UO2(H2O)5]2+

with symmetry restrictions according to the point group D5h, Table 6.5. At the PBE level, the

uranyl bonds of the bare uranyl ion are 171.9 pm (Table 6.1); in the penta-aqua complex, these

bonds are elongated by 5.3 pm (Table 6.5). This indicates a weakening of the uranyl bonds in

the presence of equatorial water ligands, as expected according to the principle of bond order

conservation. PBE and PBE + U calculations yield U-Ot bond lengths of the hydrated complex

in the range 177.2–176.3 pm (Table 6.5). WithUeff = 2.0 eV, the U-Ot bonds are 0.9 pm shorter

than the corresponding PBE distances. Notably, the PBE + U value (Ueff = 2.0 eV) for the length
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of the U-Ot bond in hydrated uranyl, 176.3 pm, is close to the B3LYP value,175.6 pm [171],

and the experimental value in aqueous solution, 176 pm [174]. That good agreement may in part

be fortuitous as long-range solvation effects are not included in this model where only the first

ligand shell of uranyl in a aqueous medium is accounted for. These long-range effects may be

estimated from the LDA values [173], (Table 6.5) without andwith long-range solvent effects

included via a continuum model; accordingly, these solventeffects tend to increase slightly the

covalent U-Ot bond length, by 1 pm, from the LDA value 177 pm.

Table 6.5: Bond distancesa (pm) and vibrational frequenciesa (cm−1) of the uranyl penta-

aqua complex[UO2(H2O)5]2+ in the gas phase from calculations applying various computational

methods and symmetry constraints. Also given is the HubbardparameterUeff (eV) for the U 5f

shell as well as available experimental data.

Method Symmetry Ueff U-Ot U-Ow ωs ωa ωb

AE DKH PBE D5h 177.2 248.9 893 985 190
AE DKH PBE + U D5h 1.0 176.7 250.0 898 995 216
AE DKH PBE + U D5h 2.0 176.3 251.1 905 1004 234
AE DKH VWN Cs

b 177 241
AE DKH VWN Cs

b, c 178 236
AE DKH BP D5h

d 177.5 248.8 886 979 190
RECP/B3LYP C1

e 175.6 251.6 908 1001 213,222
Exp. 176f 241 f 874g 963g 253g

a U-Ot–bond to terminal oxygen centers of uranyl, U-Ow–average bond length to
oxygen centers in the equatorial plane of uranyl,ωs–frequency of the symmetric
stretching vibration of uranyl,ωa–frequency of the asymmetric stretching vibra-
tion of uranyl,ωb–frequency of the Ot-U-Ot bending vibration of uranyl.

b Ref. [173].
c Long-range electrostatic solvent effects were accounted for with the COSMO

method, a polarizable continuum approach [175].
d Ref. [164].
e Ref. [171].
f Extended X-ray absorption fine structure (EXAFS) result forUO2+

2 in aqueous
chloride solution, Ref. [174].

g IR and Raman bands of uranyl perchlorate in aqueous solution,Ref. [176].

Experiment suggests a value of 241 pm for the distance U-Ow between the uranium center

and the oxygen centers of the equatorial aqua ligands [174].A PBE calculation on the penta-

aqua uranyl dication yields the value of 248.9 pm, which is very close to the results of an earlier

BP calculation, 248.8 pm [164] (Table 6.5). The PBE + U value (Ueff = 2 eV), 251.1 pm is

closer to the B3LYP result, 251.6 pm [171]. The average U-Ow distance is more sensitive to
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long-range solvent effects as can be seen from the LDA value of 241 pm which decreases by

5 pm when a polarizable continuum model is invoked (Table 6.5) [173]. From this result one

estimates the corresponding PBE + U value (Ueff = 2 eV) in a model of long-range electrostatic

effects at 246 pm, still overestimating the experimental result of 241 pm (Table 6.5) [174]. For

the intermediate value of the Hubbard parameter,Ueff = 1.0 eV, both the bond lengths U-Ot and

U-Ow take intermediate values. Overall, it is interesting to note that the PBE + U parameters

of the equilibrium geometry are approaching the B3LYP results; the same trend was previously

noted for the bare uranyl species, discussed above.

As in the case of the bare uranyl system (Table 6.1), the uranyl vibrational frequencies of

the penta-aqua complex are blue-shifted at the DFT + U level compared to the PBE results. The

corrections are notable only for the larger valueUeff = 2.0 eV, 12 cm−1 for the symmetric and

19 cm−1 for the asymmetric mode. In contrast, the vibrational frequency of the bending mode is

blue-shifted by 44 cm−1 (Table 6.5) at the DFT + U level.

Figure 6.4: Equilibrium geometries of the complex [UO2(H2O)5]2+ optimized without symmetry

constraints: (a) PBE, (b) PBE + U (Ueff = 2.0 eV).

Geometry distortion of the ligand shell in the penta-aqua uranyl complex

The D5h structure of the penta-aqua uranyl complex has been rationalized to be unstable because

of the repulsion of the lone-pairs of the water ligands in theequatorial plane [170]. At the B3LYP

level, a more stable D5 structure is reached by tilting the molecular planes of the water ligands

by about 20◦ with respect to the uranyl axis [170]. However in LDA or GGA calculations, the
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molecular planes of the water molecules are not tilted; rather, they still lie in the planes parallel

to the uranyl framework as in the D5h structure [170, 173]. Instead, some water ligands are

asymmetrically shifted up or down with respect to the equatorial plane (Figure 6.4).

Table 6.6: Bond distancesa (pm) and bond anglea (degree) of the uranyl penta-aqua complex

in the gas phase from calculations applying various computational methodswithout symmetry

constraints. Also given is the Hubbard parameterUeff (eV) for the U 5f shell.

Method Ueff 〈U-Ot〉 〈U-Ow〉 ∆(U-Ow) Ot-U-Ot

AE DKH PBE 177.4 248.1 1.20 174.6
AE DKH PBE + U 1.0 176.8 249.5 0.80 177.5
AE DKH PBE + U 1.5 176.6 250.2 0.50 178.5
AE DKH PBE + U 2.0 176.2 251.3 0.06 180.0
AE DKH VWN 176.6 240.4 1.48 171.4
AE DKH BP 177.8 248.3 1.20 172.6
AE DKH PBEN 177.7 251.8 1.62 173.0
RECP/B3LYPb 174.8 250.0 0.00 180.0
Exp. c 176 241

a 〈U-Ot〉–bond to terminal oxygen centers of uranyl,〈U-Ow〉–
average bond length to oxygen centers in the equatorial plane
of uranyl, ∆(U-Ow)–absolute average of deviations of the bond
lengths to oxygen centers in the equatorial plane from the average
value, Ot-U-Ot bond angle of uranyl.

b Ref. [170].
c EXAFS result (Table 6.5); Ref. [174].

Table 6.6 summarizes geometry parameters of the penta-aquacomplex of uranyl from B3LYP

[170, 171], as well as LDA-VWN, GGA-BP, GGA-PBE, GGA-PBEN, and GGA-PBE + U cal-

culations [26]. The PBE equilibrium geometry of the penta-aqua uranyl dication is a distorted C1

structure (Figure 6.4) with a bent uranyl moiety, Ot-U-Ot = 174.6◦, and the oxygen centers of the

equatorial aqua ligands are shifted out of the equatorial plane. With increasing onsite-Coulomb

parameterUeff, the uranyl moiety tends towards linearity: Ot-U-Ot = 177.5◦, 178.5◦, and 180.0◦

for Ueff = 1.0 eV, 1.5 eV, and 2.0 eV, respectively (Table 6.6). The overall PBE + U structure

for Ueff = 2.0 eV approximately fulfills D5 symmetry where the average value of the Ot-U-Ow-H

dihedral angle is 20.7◦ (Figure 6.4), which is very similar to the B3LYP structure [170], where

on average Ot-U-Ow-H = 20.0◦. As with increasingUeff the overall structure of the complex

tends towards D5 symmetry, but bond lengths are only moderately affected. With Ueff = 2.0 eV,

the average U-Ot bond length is shortened by 1.2 pm and the average U-Ow distance is elongated

by 3.2 pm, compared to a simple PBE calculation.
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Gutowski and Dixon also reported a distorted C1 equilibrium structure with the LDA-SVWN

functional [170]. They related this distortion to both the repulsion between neighboring oxygen

centers of equatorial water ligands (rationalized in turn by the short U-Ow bond lengths in the

SVWN model) and the low frequency of the bending mode of isolated uranyl (about 150 cm−1).

Other widely used purely local or gradient-corrected xc functionals, e.g. VWN, BP, and PBEN,

also predict a distorted C1 structure with significantly different U-Ow distances. Note, for exam-

ple, the difference of more than 7 pm between the VWN and PBE results (Table 6.6). However,

the strong correlation of theUeff values with the symmetry of the complex (and the relatively

weak correlation with changes of bond lengths) suggest thatthe repulsion between neighboring

oxygen atoms due to inaccurate U-Ow bond lengths in purely local or gradient-corrected KS

calculations may be responsible only in part for the distorted structure of the ligand shell and

the bent uranyl moiety. This suggestion is corroborated by the GGA U-Ow distances which are

rather similar to the B3LYP results (Table 6.6).

Table 6.7: Relative energiesa (kJ/mol), HOMO–LUMO gapa (eV), orbital energiesa (eV), and

populations of HOMO (percentage) of the uranyl penta-aqua complex in the gas phase from

calculations applying various computational methods and symmetry constraints. Also given is

the Hubbard parameterUeff (eV) for the U 5f shell.

Symmetry Method Ueff ∆E ∆ε εHOMO U f Ot p Ow p

D5h AE DKH PBE 3.4 2.86 -15.75 1 99
AE DKH PBE + U 1.0 1.4 2.99 -15.71 1 99
AE DKH PBE + U 2.0 1.6 3.14 -15.66 1 99
RECP/B3LYPb 1.3

D5 AE DKH PBE 2.6 2.84 -15.76 12 9 76
AE DKH PBE + U 1.0 0.3 3.03 -15.77 5 4 88
AE DKH PBE + U 2.0 0.1 3.23 -15.76 3 2 93
AE DKH SVWN b 3.3
RECP/B3LYPb 0.0

C1 AE DKH PBE 3.09 -15.94 1 0 98
AE DKH PBE + U 1.0 3.11 -15.82 0 0 98
AE DKH PBE + U 2.0 3.23 -15.76 3 2 93

a ∆E – relative electronic energy with respect to the C1 configuration,∆ε – differ-
ence between the energies of HOMO and LUMO,εHOMO – energy of the HOMO.

b Ref. [170].

To quantify the preference for the nonsymmetric (C1) structure over the D5 structure, ge-

ometry optimizations were carried out for the penta-aqua complex with symmetry constraints



100 CHAPTER 6. DFT + U APPLICATION TO ACTINIDES

according to the point groups D5 and D5h. Table 6.7 presents the relative energies of D5h, D5,

and C1 configurations from PBE and PBE + U calculations and compares them with results from

VWN and B3LYP calculations. At the PBE level, the C1 structure is more stable by 2.6 kJ/mol

than the D5 structure, the latter turning out to be a transition state ofsecond order. This finding is

similar to the preference for C1 at the LDA-SVWN level [170], 3.3 kJ/mol. In PBE + U (Ueff =

1.0 eV) calculations this margin decreases to 0.3 kJ/mol andwith Ueff = 2.0 eV both the C1 and

D5 structures have nearly identical energies, as calculated with the B3LYP approach.

Table 6.8: Lowest three harmonic frequencies of [UO2(H2O)5]2+ (by absolute value) from

AE DKH PBE + U calculations on models in the gas phase, applyingvarious symmetry con-

straints. Also given is the Hubbard parameterUeff (eV) for the U 5f shell.

Symmetry Method Ueff Modes

ω46 ω47 ω48

D5h AE DKH PBE 43.2i 44.6i 124.3i
AE DKH PBE + U 1.0 33.9i 36.0i 135.5i
AE DKH PBE + U 2.0 43.2i 43.2i 146.4i

D5 AE DKH PBE 60.2 21.9i 22.4i
AE DKH PBE + U 1.0 63.0 20.5 19.6
AE DKH PBE + U 2.0 58.7 33.6 33.1

C1 AE DKH PBE 105.3 52.0 10.7
AE DKH PBE + U 1.0 78.1 46.5 11.0
AE DKH PBE + U 2.0 56.6 32.0 31.4

In order to characterize the D5h, D5 and C1 structures of [UO2(H2O)5]2+ as maximum or

minimum energy configurations, harmonic frequency calculations were performed for the D5h,

D5 and C1 equilibrium geometries at the PBE and PBE + U levels. The valuesof the lowest

three harmonic frequencies of [UO2(H2O)5]2+ (i.e. ω46, ω47, ω48) at PBE and PBE + U levels

are presented in Table 6.8. Structures optimized with D5h constraints at the PBE level for allUeff

values exhibit three imaginary frequencies as in the case ofa B3LYP calculation [170,171]. Both

at the PBE and PBE + U levels, the weakest mode (ω48) of the D5h structure is characterized by an

imaginary frequency of 124–146i cm−1 and the penultimate modesω46 andω47 are degenerate.

A slight symmetry breaking can be noticed in the values ofω46 andω47; it arises from the fact

that the actual frequency calculations were performed without enforcing symmetry restrictions.

At the PBE level, the structure obtained with D5 symmetry constraints is a second-order

saddle point with two degenerate imaginary frequencies whereas at the PBE + U level, forUeff >
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0 the frequencies indicate a minimum structure. For increasing values ofUeff, the trend seen in

the frequencies of D5 and C1 structures are similar to the trend of the geometry parameters (Table

6.6) and the energetics (Table 6.7). ForUeff = 1.0 eV, the frequencies of D5 and C1 structures are

different, implying that these two structures are different. For Ueff = 2.0 eV, the C1 structure is

identical to the D5 structure, and the corresponding frequencies are similar.

Figure 6.5: Modes corresponding to the three imaginary harmonic frequencies of

[UO2(H2O)5]2+ at the AE DKH PBE level with D5h symmetry restriction. Geometry relaxation

of the D5h structure to the D5 structure occurs through the mode characterized by the frequency

ω48 by tilting the molecular planes of the water ligands by about20◦ with respect to the uranyl

axis.

The mode vectors corresponding to the normal modes of the imaginary frequencies of the

D5h structure at the PBE level are shown in Figure 6.5. One notes that the geometry relaxation

of the D5h structure to the D5 structure occurs throughω48 by tilting the molecular planes of

the water ligands by about 20◦ with respect to the uranyl axis. The higher modes along which
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the D5 structure distorts to C1 structure are shown in Figure 6.6. At the PBE level, these modes

(ω47, ω48) are degenerate with the frequency value 22i cm−1. It is interesting to note that

such a scheme for distortion of five coplanar water ligands inthe D5 structure through a doubly

degenerate normal mode is similar to the mode of distortion of a planar cyclopentane to a more

stable boat form. Indeed, by inspecting the C1 structure at the PBE level (Figure 6.4), one notes

that the equatorial oxygen atoms can be connected to form a boat-like structure.

Table 6.7 also summarizes the character of the HOMO of [UO2(H2O)5]2+ in terms of Mul-

liken contributions from the U 5f orbitals and the 2p orbitals of terminal and equatorial oxygen

centers. The net sum of the U 5f populations and the 2p populations of the terminal oxygen

atoms quantifies the contribution of the uranylσu fragment orbital to the HOMO of the penta-

aqua uranyl complex, the character of which is predominantly 2p (Ow). In the D5h configuration,

the uranylσu MO of a′2 character and the non-bonding 2p (Ow) MO of a′′2 character are forbidden

to interact by symmetry, hence the HOMO of the complex is purely 2p (Ow), both in the PBE

and the PBE + U calculations. In the D5 configuration, the corresponding MOs are allowed to in-

teract, i.e. the uranylσu MO and the non-bonding 2p (Ow)-type MO are of a2 character. Indeed,

in the PBE calculation the uranyl fragment contributes 23% tothe HOMO as shown is Figure

6.7.

Figure 6.6: Modes corresponding to the three imaginary harmonic frequencies of

[UO2(H2O)5]2+ at the AE DKH PBE level with D5 symmetry restriction. Geometry relaxation

of the D5 structure to the C1 structure occurs through the modes characterized by the frequencies

ω47 andω48.
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The spurious mixing between the uranylσ -like and Ow 2p-like MOs is a consequence of the

incomplete self-interaction cancellation in the description of the Coulomb interactions of the U

5 f orbitals which results in their insufficient localization in LDA and GGA calculations. At the

PBE + U level (Ueff = 2.0 eV) hybridization of U 5f orbitals is penalized and hence the corre-

sponding orbital mixing is suppressed although it would be allowed in D5 symmetry: 93% of

the HOMO are of Ow 2p character and only 5% are assigned to the uranyl fragment, mainly σu

(Table 6.7, Figure 6.7). In the PBE results and to some extent in the PBE + U calculations with

the lower Hubbard parameterUeff = 1.0 eV, the oxygen centers of the water ligands leave the

equatorial plane as soon as the symmetry constraints are fully relaxed. This leads to a C1 struc-

ture; mixing of uranylσu and Ow 2p orbitals again is avoided, this time by phase cancellation

(cf. 98% Ow 2p character of the HOMO at the PBE level, Table 6.7). Relaxing the symmetry

constraints at the PBE + U level, with a higher value of the Hubbard parameter,Ueff = 2.0 eV,

has only a minor effect; the geometry and the Mulliken populations are very similar to those of

the D5 structure, Table 6.7.

Figure 6.7: Spurious mixing of uranylσ -like and Ow 2p-like molecular orbitals of

[UO2(H2O)5]2+ in D5 symmetry at the PBE level and its removal at the PBE + U level (Ueff

= 2.0 eV).

Therefore, the instability of the D5 structure at the PBE level is related to the above discussed

mixing of uranylσu and Ow 2p orbitals. Note that this interaction between two closed shells is
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repulsive in nature. The PBE data in Table 6.7 show that the HOMO is stabilized by 0.18 eV,

together with a significant reduction of the uranyl contribution to the HOMO, when the symmetry

is relaxed from D5 to C1. At the PBE + U level (Ueff = 1.0 eV) the stabilization is smaller and

there is no net stabilization withUeff = 2.0 eV. Figure 6.8 shows the repulsive orbital interaction

of the HOMO, dominated by Ow 2p contributions, and the U 5f -dominatedσu MO of uranyl in

the PBE structures and its removal by the Hubbard term. Note also the upward energy shift of

the uranylσu MO (Figure 6.8). In summary, to the degree it is observed in PBEcalculations, the

MO mixing is a consequence of the insufficient cancellation of the self-interaction. It induces the

observed geometry distortion of the uranyl penta-aqua complex in LDA and GGA calculations.

The DFT + U method is known to approximately cure the artifacts of a overly large delocalization

of the f orbitals [25] and thus results in less or no tendency (depending on the value ofUeff)

towards distortion from D5 symmetry. The distorted structure of the water shell correlates with

the uranyl bending angle, in part due to the softness of the uranyl bending mode at the LDA

and GGA level. The deviation from linearity of the uranyl moiety is reduced together with the

distortion of its solvation shell.

Figure 6.8: Repulsive interaction between uranylσ -like and Ow 2p-like molecular orbitals of

[UO2(H2O)5]2+ in D5 symmetry and its removal when symmetry is relaxed. KS eigenvalues

from PBE and PBE + U calculations for various values ofUeff are compared for D5 and C1

structures.
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6.2.2 Conclusions

Standard GGA functionals underestimate the rigidness of the uranyl moiety with respect to bend-

ing distortions. From a detailed analysis of DFT + U results,this has been attributed to an

overestimated propensity for a second-order Jahn–Teller-like symmetry breaking. The DFT + U

method is capable of correcting this artifact of LDA and GGA calculations. DFT calculations ap-

plying the local density approximation or a gradient-corrected exchange-correlation functional

showed a distorted geometry of the water shell in the uranyl penta-aqua complex. The com-

bination of this distortion of the ligand shell and too soft auranyl bending mode results in a

notably bent structure of the uranyl moiety in these calculations. The distortion of the water

shell is a direct consequence of the spurious mixing of the U 5f orbitals with ligand orbitals

which manifests itself through a repulsive interaction of two closed shells, namely an MO with

substantial U 5f character and a non-bonding orbital of the ligand framework. Using scalar rela-

tivistic all-electron Douglas–Kroll–Hess calculations,the present study showed that inclusion of

a Hubbard-like DFT + U correction with a small positive on-site repulsion parameterUeff) ap-

proximately corrects for the self-interaction artifacts in the description of the valence U 5f -like

MOs, leading to a better description of properties of the uranyl (VI) aqua complex.

6.3 Uranyl Monohydroxide

Fractional occupations of the non-bondingδu-type quasi 5f orbitals of U in the uranyl molecule

arise due to a second-order Jahn-Teller type interaction between the uranylσu occupied MO

(HOMO of uranyl) and theδu-type 5f orbitals when uranyl deviates from linearity. In LDA and

GGA KS calculations Coulomb repulsion is underestimated forfractional electrons resulting in

spurious stabilization of systems with fractionally occupied orbitals. In uranyl complexes with

equatorial ligands fractional population of the non-bonding type quasi 5f orbitals of uranyl can

result also fromσ /π donation of electrons from the ligand donor atoms to the U atom. However

such a donation is possible only when an equatorial ligand isa strong donor such as anionic

ligands like a hydroxyl ion. Theoretical models predicted that the uranyl (VI) molecules of

the type UO2+
2 X with the equatorial ligands X = H2O [177], H− [178], F− [179], OH− [180]

or O−
2 [181, 182] show a bent uranyl moiety where the deviation fromlinearity increases with

the bond strength of the ligands. Therefore it is of interestto know the strength of the bond

between the U center and an equatorial ligand and how much U 5f orbitals contribution to such

a bond. In neutral aqueous solution, the uranyl ion is usually coordinated by water molecules

and hydroxyl ions, solvated [UO2(OH)]+ appears as hydrolysis product of the uranyl ion in dilute

solutions at acidic pH [183]. [UO2(OH)]+ has been observed in the gas-phase as a product of O2
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oxidation of [UO(OH)]+ in an ion trap-secondary ion mass spectrometric experiment[184] and

in an electrospray ionization (ESI) experiment of an aqueous uranyl solution [185]. Both the gas

phase and hydrated uranyl monohydroxide species have been subject to a number of theoretical

investigations [171, 177, 178, 186, 187]. For the gas-phaseuranyl monohydroxide molecule ion,

neither experimental nor highly accurate theoretical geometry parameters are known. Thus in

the present work, structural aspects of the gas phase molecule [UO2(OH)]+ has been investigated

through a wide range of theoretical methods such as DFT, DFT +U, hybrid-DFT methods B3LYP

and PBE0, as well as wavefunction based methods such as many-body perturbation theory of

second order, MP2, and a high-level coupled cluster approach, CCSD(T).

In the closed-shell species uranyl monohydroxide [UO2(OH)]+, static correlation effects are

absent; therefore, CCSD(T) predictions should be quite accurate for the complex in the gas phase.

For this system, [UO2(OH)]+, KS density functional calculations employing LDA or GGA level

were found to predict geometries deviating from CCSD(T) results. In order to find out if these

geometric deviations are related to the improper description of the Coulomb interaction of the

U 5 f orbitals, the DFT + U methodology was invoked for the partially localized 5f shell of the

uranium atom.

The effects of the spurious self-interaction error presentin KS-DFT approximations artifi-

cially stabilize delocalized states and solvent effects stabilize localized states [188]. Thus one

can expect relatively large effects of self-interaction artifacts for species in the gas phase and a

reduction of these effects in the presence of water due to thepreference for localized states in

solution. Therefore, the hydrated species [UO2(OH)(H2O)4]+ was also studied.

6.3.1 Results and Discussions

The major part of this subsection deals with the discussionsof equilibrium geometry parameters

of [UO2(OH)]+, followed by a brief discussion of harmonic vibrational frequencies. Finally

the effects of self-interaction artifacts in LDA and GGA calculations on the structural aspects

of [UO2(OH)]+ and the nature of correction provided by the DFT + U method arediscussed

through an orbital analysis.

Geometry parameters of [UO2(OH)]+

Table 6.9 summarizes the geometry parameters of the uranyl monohydroxide cation in the gas-

phase calculated at different theoretical levels such as AEDKH PBE, AE DKH PBE + U,

AE DKH VWN, AE DKH VWN + U, RECP/VWN [178], AE ZORA PW91 [178], RECP/B3LYP

[178], RECP/PBE0, RECP/MP2 [186] and RECP/CCSD(T). Not all of these calculations could
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b performed at the all-electron level. Before proceeding to the discussion of the main results

(Table 6.9), it seems useful to estimate possible effects when core electrons are described by an

effective-core potential. For this purpose, results of theAE DKH approach will be compared

to those of calculations employing relativistic effectivecore potentials (RECPs). Similarly, it is

appropriate to assess the quality of different basis sets used for the U atom in various calculations.

Table 6.9: Geometry parameters of [UO2(OH)]+ a from various computational methods: Average

equilibrium U-Ot bond lengthr(U-Ot), equilibrium U-Oh bond lengthr (U-Oh), uranyl bond

angleθ (Ot-U-Ot), two Ot-U-Oh bond anglesθ (Ot-U-Oh) and U-Oh-H bond angleθ (U-Oh-H).

Bond lengths in pm and bond angles in degrees. Also given is theHubbard parameterUeff (eV)

for the U 5f shell.

Method Ueff r r θ
U-Ot U-Oh Ot-U-Ot Ot-U-Oh U-Oh-H

AE DKH VWN b 174.9 199.1 168.3 95.8, 95.8 180.0
AE DKH VWN + U b 1.0 174.4 200.1 172.2 92.4, 95.3 153.7
AE DKH VWN + U b 2.0 174.0 201.2 174.9 91.6, 93.5 144.5
AE DKH PBE b 176.5 202.1 166.7 94.9, 98.3 158.8
AE DKH PBE + Ub 1.0 176.1 203.1 171.2 92.7, 96.0 145.6
AE DKH PBE + Ub 2.0 175.6 204.2 174.1 92.0, 96.0 138.6
RECP/VWNc 174.7 198.5 167.6 96.2, 96.2 180.0
AE ZORA PW91c 176.1 201.9 167.9 94.4, 97.7 151.8
RECP/B3LYPb 174.2 201.4 167.9 94.9, 97.2 154.2
RECP/B3LYPc 175.1 199.9 167.2
RECP/PBE0b 172.3 200.0 170.0 93.7, 96.3 149.4
RECP/MP2b 177.7 200.3 171.8 93.7, 94.5 140.0
RECP/MP2d 176.7
RECP/CCSD(T)b 173.6 201.3 170.7 93.8, 95.6 148.1
RECP/CCSD(T)b,e 174.1 201.8 170.7 93.8, 95.6 148.1

a Point group symmetry Cs.
b This work.
c Ref. [178]
d Ref. [186]
e Including an estimated AE DKH core correction of +0.5 pm to the bond lengths

U-Ot and U-Oh.

AE DKH correction to RECP/CCSD(T) results: As no experimental geometry is available

for the gas phase [UO2(OH)]+ molecule, the equilibrium geometry calculated at the accurate

CCSD(T) level is chosen as a reliable reference. To estimate the error introduced in the CCSD(T)

calculation due to the RECP representation of the core electrons, results of VWN calculations
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carried out with the same RECP [189] are compared with the results of the AE DKH approach

using uncontracted basis sets to achieve a more accurate result (rows 2 and 3 of Table 6.10).

Introduction of the RECP results in a contraction of the U-Ot bond by 0.5 pm and of the U-

Oh bond by 0.6 pm, while changes in angles are smaller than 0.1 degree (Table 6.10). Similar

contractions of U-X bonds have been obtained earlier for uranyl (0.7 pm) and UF6 (0.8 pm) for

the same RECP with the VWN approach [190]. A larger decrease of the uranyl bond of 1.6 pm

due to this RECP has been calculated with the BP XC functional [190]. Thus, a contraction of

U-X bonds by 0.5 pm and no change of bond angles seems to be a reasonable estimate for the

core-correction to RECP results from CCSD(T) calculations. This leads to a reference geometry

for uranyl monohydroxide with the bond lengths U-Ot = 174.1 pm, U-Oh = 201.8 pm and the

same angles as obtained in the RECP/CCSD(T) calculation (Table 6.10).

Estimation of uncertainties due to various basis sets: In the B3LYP, PBE0 and MP2 cal-

culations performed using the program Turbomole and in the CCSD(T) calculations performed

using the program Molpro, aug-cc-pVTZ basis sets were used for the atoms O and H. For the U

atom, the segmented contracted def-TZVP basis set used in the Turbomole calculations is of the

same quality as the generalized contracted basis set used inthe Molpro CCSD(T) calculation.

The specific details of these basis sets are given in Chapter 4 and Appendix I. Compared with

the basis sets used in the hybrid-DFT and wavefunction basedmethods, the basis sets used in the

DFT and DFT + U calculations performed using the program PARAGAUSS are of different size

and quality. Thus in order to estimate the uncertainties in geometry parameters due to various

basis sets used in the present work (Table 6.9), a set of systematic calculations were performed

at the RECP/VWN and AE DKH VWN levels (Table 6.10).

First of all, row 5 of Table 6.10 presents the results of a RECP/VWN calculation which

employs the same basis sets as the CCSD(T) calculation (row 6 ofTable 6.10). With respect to

the results of row 5, changing the U basis set to an uncontracted basis set or changing the aug-

cc-pVTZ to the standard basis sets for O and H atoms introduces negligible deviations. Rows

3 and 4 of Table 6.10 differ only by the basis set used for the U atom. When compared to the

quality of the (14s, 13p, 10d, 8f , 6g) basis set used in the CCSD(T) calculations (row 4), the

larger (24s, 19p, 16d, 11f ) basis set (row 3) relaxes the U-Ot , and U-Oh bonds by 0.4 pm and

0.2 pm, respectively, and the Ot-U-Ot bond angle by 0.2◦ and Ot-U-Oh bond angle by 0.1◦.

Finally through the results of the AE DKH VWN calculations (rows 1 and 2 of Table 6.10), one

notes that when compared to the quality of the uncontracted (24s, 19p, 16d, 11f ) basis set, the

contracted basis set (24s, 19p, 16d, 11f )→[10s, 7p, 7d, 4f ] which uses AE-DKH-VWN atomic

eigenvectors relaxes the U-Ot , and U-Oh bonds by 0.3 pm and 0.1 pm, respectively, leaving
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all other geometry parameters unchanged. Thus variations in results due to different basis sets

(uncontracted) are marginally larger than the effects due to specific basis set contraction (Table

6.10). From these results we estimate uncertainties due to specific basis sets to be at most 0.5

pm for distances and at the maximum 0.2◦ for bond angles. Such uncertainties are rather small

indeed.

Table 6.10: Comparison of geometry parameters of [UO2(OH)]+ a in VWN and CCSD(T) meth-

ods employing various basis sets and pseuopotentials: Average equilibrium U-Ot bond length

r(U-Ot), equilibrium U-Oh bond lengthr(U-Oh), equilibrium Oh-H bond lengthr(Oh-H), uranyl

bond angleθ (Ot-U-Ot), two Ot-U-Oh bond anglesθ (Ot-U-Oh) and U-Oh-H bond angleθ (U-

Oh-H). Bond lengths in pm, bond angles in deg.

Method r r θ
U-Ot U-Oh Oh-H Ot-U-Ot Ot-U-Oh U-Oh-H

AE DKH VWN b 174.9 199.1 98.2 168.3 95.8, 95.8 180.0
AE DKH VWN c 174.6 199.0 98.0 168.3 95.8, 95.8 180.0
RECP/VWNc 174.1 198.4 98.1 168.3 95.8, 95.8 180.0
RECP/VWNd 173.7 198.2 98.1 168.5 95.7, 95.7 180.0
RECP/VWNe 173.7 198.1 98.1 168.5 95.8, 95.8 180.0
RECP/CCSD(T)e 173.6 201.3 96.6 170.7 93.8, 95.6 148.1
RECP/CCSD(T)f 174.1 201.8 96.6 170.7 93.8, 95.6 148.1

a Point group symmetry Cs.
b Basis sets U: (24s, 19p, 16d, 11f )→[10s, 7p, 7d, 4f ] with AE DKH VWN

contraction, O: (9s, 5p, 1d)→[5s, 4p, 1d], H: (6s, 1p)→[4s, 1p].
c Basis sets U: (24s, 19p, 16d, 11f ), O: (9s, 5p, 1d), H: (6s, 1p).
d Basis sets U: (14s, 13p, 10d, 8f , 6g), O: (9s, 5p, 1d), H: (6s, 1p).
e Basis sets U: (14s, 13p, 10d, 8f , 6g)→[6s, 6p, 5d, 4f , 3g], O: aug-cc-pVTZ

(11s, 6p, 3d, 2f )→[5s, 4p, 3d, 2f ], H: aug-cc-pVTZ (11s, 6p, 3d, 2f )→[5s, 4p,
3d, 2f ].

f Including an estimated AE DKH core correction of +0.5 pm to U-Ot and U-Oh

bond lengths (according to rows 2 and 3 of this table).

VWN, VWN + U results: Compared to the reference CCSD(T) value that includes an esti-

mated core-correction to the RECP (Table 6.9), the VWN value forthe U-Ot bond length is

larger by 0.8 pm and the U-Oh bond length is shorter by 2.7 pm. The VWN value for the uranyl

angle Ot-U-Ot is 168◦ which is slightly smaller than the reference value of 171◦. As the most

remarkable difference between CCSD(T) and DFT VWN calculations the U-Oh-H angle has to

be noted, which is 180◦ (linear U-Oh-H) for VWN and 148◦ for CCSD(T). This remarkable de-

viation has been observed earlier in a RECP-VWN calculation [178] and is also reproduced in
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the VWN-RECP calculations performed in the present work (Table6.10). DFT + U results as

obtained with the VWN functional show decreasing uranyl bondlengths and an increasing U-Oh

bond with increasing value ofUeff (Table 6.9). The parameters calculated forUeff = 2 eV, U-Ot

= 174.0 pm and U-Oh = 201.2 pm agree with the reference up to the uncertainties due to basis

sets (see discussions above). The uranyl angle Ot-U-Ot increases with increasingUeff from 168◦

to 175◦, finally overestimating somewhat the reference of 171◦. The most prominent effect of

the DFT + U method is a strong decrease of the U-Oh-H angle from 180◦ for Ueff = 0 eV to 145◦

for Ueff = 2 eV (Figure 6.10), which is in good agreement with the CCSD(T)reference of 148◦

(Table 6.9). Overall the DFT + U approach leads to a notable improvement of the VWN results.

PBE, PBE + U results: Comparison of PBE and PBE + U calculations reveals the same trends

as obtained for the VWN calculations when varyingUeff (Table 6.9). The PBE value of U-Ot =

176.5 pm is overestimated compared to the reference of 174.1pm by 2.4 pm and the corrections

provided by the onsite-Coulomb parameterUeff = 2.0 eV only partially improves the result by

0.9 pm. The U-Oh bond length, already overestimated at the PBE level (202.1 pm), increases

further in the DFT + U calculations up to 204.2 pm. Both these changes of bond lengths due to

self-interaction correction, -0.9 pm for U-Ot and +2.1 pm for U-Oh, agree with the corresponding

VWN + U corrections (Table 6.9). Also the uranyl angle Ot-U-Ot increases with increasingUeff

from 167◦ (0 eV) to 174◦ (2 eV), slightly overestimating the CCSD(T) result of 171◦. In contrast

to the VWN results, PBE yields a bent OH orientation with an angle U-Oh-H of 159◦, which

decreases to 139◦ for Ueff = 2 eV. Thus, PBE slightly overestimates that angle and the DFT+ U

correction provided through theUeff value of 2.0 eV leads to a comparable underestimation of

about 10◦ (Table 6.9). Overall, comparison of VWN and PBE results reveals the same trends

for the effects of the self-interaction corrections and shows the known overestimations of bond

lengths of heavy elements compounds for GGA compared to LDA [190]. Similar results as

obtained here with PBE have been earlier calculated with the PW91 GGA functional, applying

the AE ZORA relativistic approach [178] (Table 6.9).

B3LYP, PBE0 and MP2 results: The RECP/B3LYP values for the geometry parameters of

[UO2(OH)]+ are in good agreement with the CCSD(T) reference. The uranyl bond length cal-

culated as 174.2 pm (this work) as well as the U-Oh bond length of 201.4 pm (this work) agree

very well with the reference values of 174.1 and 201.8 pm, respectively. Also the bond angles

Ot-U-Ot = 168◦ and U-Oh-H = 154◦ match the reference with deviations of 6◦ at most (Table

6.9). Slightly worse bond distances of U-Ot = 175.1 pm and U-Oh = 199.9 pm have previously

been calculated by means of the B3LYP approach [178]. The bonddistances determined with
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Table 6.11: VWN-LDA and PBE-GGA geometry parameters of [UO2(OH)]+ a from constrained

geometry optimizations whereθ (Ot-U-Ot) is fixed to 180◦ along with results from corresponding

DFT + U levels. Average equilibrium U-Ot bond lengthr(U-Ot), equilibrium U-Oh bond length

r(U-Oh), equilibrium Oh-H bond lengthr(Oh-H), two Ot-U-Oh bond anglesθ (Ot-U-Oh) and

U-Oh-H bond angleθ (U-Oh-H). Bond lengths in pm, bond angles in degree. Also given is the

Hubbard parameterUeff (eV) for the U 5f shell.

Method Ueff r r θ
U-Ot U-Oh Ot-U-Oh U-Oh-H

AE DKH VWN 174.7 199.4 88.9, 91.1 146.2
AE DKH VWN + U 1.0 174.3 200.4 89.1, 90.9 141.9
AE DKH VWN + U 2.0 174.0 201.4 89.5, 90.5 138.4
AE DKH PBE 176.3 202.6 89.0, 91.0 139.4
AE DKH PBE + U 1.0 176.0 203.5 89.3, 90.7 136.3
AE DKH PBE + U 2.0 175.6 204.5 89.7, 90.3 133.6

a Point group symmetry Cs.

the PBE0 hybrid functional employing a small-core RECP, U-Ot = 172.3 pm and U-Oh = 200.0

pm, deviate slightly more from the reference compared to theRECP/B3LYP values. On the other

hand, PBE0 yields rather accurate angles, Ot-U-Ot = 170◦ and U-Oh-H = 149◦, which agree up

to 2◦ with the reference values. Compared to LDA and GGA results (see above), it is obvious

that hybrid functionals provide better results. This improved performance is rationalized par-

tially by the inclusion of an admixture of exact exchange in these functionals, which reduces

self-interaction artifacts, especially for the PBE0 functional which includes a larger fraction of

exact exchange than the B3LYP functional. Interestingly, MP2 calculations, which are free of

self-interaction artifacts, yield rather long uranyl bonds, 177.7 pm (this work) and 176.7 pm [187]

for uranyl monohydroxide, which are comparable to GGA results (Table 1). The U-Oh bond of

200.3 pm as obtained with the MP2 approach as well as the angles Ot-U-Ot = 172◦ and U-Oh-H

= 140◦, on the other hand, are in acceptable agreement with the CCSD(T) derived reference.

Thus, relatively long bond lengths as obtained in GGA and MP2calculations are probably not

the result of unphysical self-interaction, but have to be ascribed to an insufficient representation

of dynamic correlation.

Structural analysis: The DFT + U results show as essential effects of self-interaction elonga-

tion of the uranyl bond (which may be interpreted as a bond weakening) and as a consequence

a contraction of the U-Oh ligand bond length due to bonding competition at the uraniumcenter.
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Due to the presence of an equatorial ligand, the uranyl moiety is slightly bent (Table 6.9). As in

the case of the bare uranyl ion (Section 6.1 and see below), this effect decreases with increasing

Ueff in line with an increased frequency for the uranyl bending vibrational mode. Constrained

geometry optimizations (for a fixed, linear uranyl moiety) revealed that the strong change of the

angle U-Oh-H with change inUeff is an indirect effect due to the bending of uranyl. Optimiza-

tions of [UO2(OH)]+ with a fixed linear uranyl subunit as carried out with VWN, VWN + U,

PBE and PBE + U approaches yield very much smaller effects (Table 6.11). In the VWN and

VWN + U calculations, in unconstrained optimizations U-Oh-H decreases by 35◦ whenUeff is

varied from 0 to 2 eV while for a fixed straight uranyl geometrythis angle decreases only from

146.2◦ to 138.4◦ (by 8◦) for the same variation ofUeff. A similar trend is also noted in the PBE

and PBE + U calculations where in the constrained optimizations with linear uranyl, the U-Oh-H

angle is less affected byUeff (Table 6.11).
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Figure 6.9: Correlation between Ot-U-Ot and U-Oh-H bond angles of uranyl monohydroxide

according to various methods: While fitting the straight line, MP2, VWN and VWN + U values

were ignored to give the correlation coefficient 0.998. TheUeff values used in the DFT + U

calculations are given in the parentheses.

This finding is of special interest as it shows that indirect effects of self-interaction artifacts

for geometry parameters may be sizeable for soft degrees of freedom. With the focus on the per-

formance of various methods in describing the uranyl and U-Oh-H bond angles, the correlation
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between these two angles according to various methods is illustrated in Figure 6.9. Except for

the methods VWN, VWN + U and MP2, all other methods show a linear correlation between

uranyl and U-Oh-H bond angles. The PBE values of Ot-U-Ot and U-Oh-H angles which approx-

imately fall on in the fitted straight line lie farther away from the CCSD(T) values; results of both

hybrid-DFT methods B3LYP and PBE0 lie on the straight line where the PBE0 values are close

to the CCSD(T) values. The PBE + U (Ueff = 1 eV) values are also close to the CCSD(T) value

but on the other side of PBE0 values. ForUeff = 2 eV, the deviation of the PBE + U results for

Ot-U-Ot and U-Oh-H bond angles are similar in size as those of the PBE values, but of opposite

sign (Figure 6.9).

Harmonic vibrational frequencies of [UO2(OH)]+

Table 6.12 summarizes the harmonic vibrational frequencies of the uranyl monohydroxide cation

in gas phase, calculated at different theoretical levels such as AE DKH PBE, AE DKH PBE + U,

AE DKH VWN, AE DKH VWN + U, RECP/B3LYP [178], RECP/PBE0, RECP/MP2 [187],

RECP/CCSD(T) along with available experimental results in aqueous solution [183]. The largest

frequency (ω1) corresponds to O-H stretching for which the CCSD(T) reference value is 3810

cm−1. The CCSD(T) reference values for the uranyl asymmetric (ω2) and symmetric (ω3)

stretching frequencies are 1022 and 944 cm−1, respectively. These frequencies are underesti-

mated in the VWN approximation, by 12 and 16 cm−1 respectively. At the VWN + U level for

the value ofUeff = 1.0 eV, these values are improved towards the CCSD(T) values by 16 and 8

cm−1 respectively. For the higher valueUeff = 2.0 eV, the VWN + U values for the asymmetric

stretch frequency (ω2) is larger than the CCSD(T) value by 17 cm−1 while the symmetric stretch

frequency (ω3) is identical to the CCSD(T) value (Table 6.12). At the PBE level, the values for

ω2 andω3 are underestimated by 46 and 49 cm−1 respectively. At the PBE + U (Ueff = 2.0

eV) these values are improved by 27 and 14 cm−1, respectively. The B3LYP results forω2 and

ω3 (present work and [178]) are in excellent agreement with thereference values. At the PBE0

level, both the frequenciesω2 andω3 are overestimated by 46 cm−1, while at the MP2 level

(this work), these frequencies are overestimated by 49 cm−1 and 66 cm−1, respectively, when

compared to the CCSD(T) reference value.

The next two smaller frequencies areω4 (U-Oh stretching) andω5 (torsion of the Oh-H

group), which lie in the range 500–700 cm−1. Both in VWN and PBE levels, inclusion ofUeff

increases the value ofω4 and decreases the value ofω5. The VWN value ofω4, 694 cm−1, is very

close to the CCSD(T), 683 cm−1. ForUeff=1.0 eV, the VWN + U value ofω4 is essentially the

same as the reference value. In contrast, the PBE value ofω4 is 660 cm−1 which underestimates

the reference value by 23 cm−1; for positive values ofUeff, the PBE + U results are even lower,
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underestimating the reference by 33 cm−1 and 40 cm−1 for the values ofUeff = 1.0 and 2.0 eV,

respectively. The reference value ofω5, 553 cm−1, is underestimated at the VWN and PBE

levels by 40 and 53 cm−1 respectively. For the value ofUeff = 2.0 eV, VWN + U and PBE + U

levels improveω5 by 29 and 38 cm−1 respectively. For bothω4 andω5, on an average, the PBE0

values are closer to the reference values than B3LYP and MP2 results.

The lowest four frequenciesω6−ω9 lie below 500 cm−1 of which the modes correspond

to ω6−ω8 are in-plane bending modes andω9 represents an out-of-plane bending or wagging

mode. The description of these lower-frequency modes is perhaps more relevant to the stability

of the equilibrium geometry of [UO2(OH)]+. Since the complex is planar, one can expect the

magnitude of the in-plane bending modes to be more relevant to the equilibrium bond angles.

The largest of these four frequenciesω6 corresponds to the U-Oh-H bending mode andω7 cor-

responds to the rocking of the uranyl group. In the gas phase,the bending mode of uranyl is

doubly degenerate corresponding to bending in two equivalent planes. In the uranyl monohy-

droxide molecule with the introduction of an equatorial ligand, the uranyl bending modes are

split into ω7, the Ot-U-Ot in-plane bending or scissoring mode andω9 Ot-U-Ot , an out-of-plane

bending or wagging mode.

The normal modes corresponding to the frequenciesω6 −ω8 frequencies are of the same

symmetry (a′), As these frequencies are quite similar in size, one can expect mixing between

the corresponding normal modes. The CCSD(T) values for these modes are 340, 210 and 185

cm−1 respectively. Both hybrid-DFT methods B3LYP and PBE0 predict these three frequencies

fairly well but the MP2 values are slightly overestimated, up to 60 cm−1 for ω8. This findings

perhaps allow one to rationalize why B3LYP and PBE0 methods to predict the bond angles of

[UO2(OH)]+ better than the MP2 method (Table 6.9, Figure 6.9). At this point, it is important

to note that an accurate prediction of all three frequenciesω6−ω8 is important for describing

the bond angles Ot-U-Oh and U-Oh-H, considering the fact that the normal modes ofω6−ω8

may couple. For the value ofUeff = 1.0 eV, both VWN + U and PBE + U levels predictω6−ω8

reasonably well compared to the VWN and PBE values and the corresponding DFT + U results

for the higher valueUeff = 2.0 eV. The coupling between these three modes can be understood

through the potential energy distribution (PED) along these normal mode coordinates in terms of

the three internal coordinates. The PED was performed at thePBE and the PBE + U levels; the

results, given as footnotes to Table 6.12, indicate the coupling between these three normal modes

(ω6−ω8).

The out-of-plane uranyl bending modeω9 is easy to describe because it has the symmetry

a′′ while the other lower modes belong to the symmetry type a′ and the next higher mode of

a′′ symmetry corresponds toω5 in the planar [UO2(OH)]+ molecule. Thusω9 mode is well
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Table 6.12: Harmonic vibrational frequenciesω a (in cm−1) of [UO2(OH)]+ b from various

computational methods: Also given is the Hubbard parameterUeff (eV) for the U 5f shell along

with available experimental data.

Method Ueff ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9

AE DKH VWN c 3669 1010 928 694 513 269 227 95 140
AE DKH VWN + U c 1.0 3674 1026 936 686 530 332 219 182 170
AE DKH VWN + U c 2.0 3677 1039 944 648 542 381 234 217 197
AE DKH PBE c,d,e 3680 976 895 660 500 311 200 117 145
AE DKH PBE + U c,d,f 1.0 3680 989 901 650 510 374 213 204 170
AE DKH PBE + U c,d,g 2.0 3686 1003 909 643 538 439 240 213 195
RECP/B3LYPc 3769 1026 946 672 515 321 207 168 165
RECP/B3LYPh 1025 946 679
PBE0/RECPc 3823 1068 990 691 533 350 216 193 179
MP2/RECPc 3770 973 878 701 587 400 219 90 164
MP2/RECPi 969 884
RECP/CCSD(T)c 3810 1022 944 683 553 340 210 185 168
Exp. j 849

a Assignments:ω1 (a′) – O-H stretching,ω2 (a′′) – U-Ot asymmetric stretching,ω3 (a′)
– U-Ot symmetric stretching,ω4 (a′) – U-Oh stretching,ω5 (a′′) – Oh-H torsion,ω6 (a′)
– U-Oh-H bending,ω7 (a′) – Ot-U-Ot scissoring,ω8 (a′) – Ot-U-Ot rocking,ω9 (a′′) –
Ot-U-Ot wagging.

b Point group symmetry Cs.
c This work.
d The potential energy distribution (PED) is given only for the in-plane bending modes as

sum of percentages of the three coplanar normal mode coordinatesω6, ω7 andω8 along
the bond angles: U-Oh-H, Ot1-U-Oh and Ot2-U-Oh where Ot1 is the terminal oxygen
atom which iscis w.r.t the hydroxyl H atom and Ot2 is the terminal oxygen atom which
is transw.r.t the hydroxyl H atom.

e PED:ω6 (54 + 47 + 0),ω7 (0 + 0 + 100),ω8 (47 + 52 + 0).
f PED:ω6 (75 + 26 + 3),ω7 (18 + 49 + 33),ω8 (5 + 20 + 70).
g PED:ω6 (87 + 13 + 2),ω7 (12 + 73 + 15),ω8 (0 + 0 + 100).
h Ref. [178].
i Ref. [187].
j In aqueous solution, Ref. [183].
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separated in energy from the other modes and the eigenvectorof the corresponding normal mode

essentially does not mix with other normal modes. The CCSD(T) value for the out-of-plane

uranyl bending mode is 168 cm−1; the corresponding B3LYP and MP2 results are 165 and 164

cm−1 respectively. The PBE0 value, 179 cm−1, slightly overestimates the reference. These

frequencies are identical to the bending frequency of the bare uranyl dication, 178 cm−1 at the

CCSD(T) level and 166 cm−1 at the B3LYP level, (Table 6.1). At the PBE level, the frequency

of the bending mode of bare uranyl ion is 92 cm−1 (Table 6.1) which is notably improved in

[UO2(OH)]+ molecule at the VWN level, (140 cm−1), and the PBE level, (145 cm−1). ForUeff

= 1.0 eV, both VWN + U and PBE + U levels predict the value ofω9 to be 170 cm−1, which is

very close to the reference.

Table 6.13: Population analysis of the valence molecular orbitals (MOs) of UO2OH+ a from

VWN and VWN + U calculations: orbital energiesεi (eV) and Mulliken atomic gross populations

(as percentage).

Type MO VWN VWN + U b

εi Population εi Population

U f Ot1 p c Ot2 p c Oh p U f Ot1 p c Ot2 p c Oh p

a′ 41 -12.94 31 12 12 38 -12.99 17 7 9 59
40 -14.68 17 34 33 4 -15.09 25 50 4 10
39 -14.68 34 14 14 31 -14.71 35 6 35 10
36 d -18.23 7 2 2 53 -17.84 7 5 2 52

a′′ 17 -14.44 10 5 5 71 -14.04 6 0 1 81
16 -15.18 26 28 28 12 -15.39 29 31 34 1

a Point group symmetry Cs.
b Ueff = 2.0 eV for the U 5f shell.
c Ot1 is the terminal oxygen atom which iscis w.r.t the hydroxyl H atom and Ot2 is the terminal

oxygen atom which istransw.r.t the hydroxyl H atom.
d Both in VWN and VWN + U calculations, this MO has 15% H(1s) contribution, which is not

listed. This MO has the Oh(2p)-H(1s) sigma character.

Population analysis

Table 6.13 summarizes the population analysis of six valence molecular orbitals (MOs) of the

uranyl monohydroxide cation based on Mulliken gross atomicpopulations. The main purpose

of the population analysis is to characterize the three uranyl-like MOs (oneσ and twoπ) and

the three 2p-dominated MOs that correspond to two non-bonding 2p-like orbitals and a Oh(2p) -

H(1s) σ -like orbital. Since the essential features of these orbitals are the same in both the VWN
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and the PBE levels, only the VWN and VWN + U results are presented and discussed here. The

interactions among the valence MOs are predominantly in themolecular plane, i.e., only the

MOs of the symmetry a′ show large mixing.

Figure 6.10: Equilibrium geometry and sketch of the HOMO (41a′) of uranyl monohydrox-

ide: (a) AE DKH VWN, (b) AE DKH VWN + U (Ueff = 2.0 eV). The interaction between the

uranyl dication and the hydroxyl anion in UO2OH+ changes its character from short-rangeπ to

long-rangeσ -like. In the schematic representation (top) of the orbitalinteraction, the uranylσ

contribution is not shown; and the only quasi 5fz(x2−y2) contribution is shown on the U center for

easy interpretation.

Both at the VWN and the VWN + U (Ueff = 2.0 eV) levels, the lowest of the six listed orbitals,

36a′, can be easily characterized as the hydroxyl Oh(2p) - H(1s) sigma bonding orbital. In the

VWN geometry with the linear U-Oh-H configuration, this MO slightly mixes with MO 40a′,

which is an uranyl in-planeπ MO; in the and in the bent U-Oh-H configuration (VWN + U)

this interaction is removed resulting in the stabilizationof 40 a′ by +0.4 eV and a destabilization
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of the Oh-H σ orbital, 36a′, by -0.4 eV. In the VWN calculation, MO 39a′ has the character of

the uranylσ bond with a weakπ-donation by the hydroxyl 2p to thedough nutrings of the

σ bond which is minimized with the introduction ofUeff then the 2p character decreases from

30% to 10%. As a distinct feature, the highest occupied molecular orbital (HOMO) 41 a′ of

[UO2(OH)]+ which is easily identified as the Oh (2p)non bonding-type orbital in the VWN + U

calculation but insufficient localization of the 5f orbital in the VWN calculation prevents such

a characterization of the HOMO of the VWN calculation. This latter MO shows aπ-donation

in the VWN calculation with a short U-Oh bond but in the VWN + U calculation with a slightly

longer U-Oh bond, it changes its character to a weakσ -type interaction by a rotation in order to

account for better overlap between the non-bonding type 2p orbital of the hydroxyl O center and

a δ -type 5f contribution at the U center (Figure 6.10).

Going from VWN to VWN + U, one notes that the slight mixing between the MO 16a′′,

of uranylπ character, and MO 17a′′ which is a non-bonding Oh (2p) orbital, is removed as the

former MO is shifted down by 0.2 eV and the latter shifted up by0.4 eV. This decoupling can

be partly related to both the decrease in in U-Ot bond length and an increase in the U-Oh bond

length.
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Figure 6.11: Potential energy profiles of [UO2(OH)]+ along the U-Oh-H bending mode from

AE DKH VWN and AE DKH VWN + U calculations. For various angles of deviation∆θ (in

degree) from linearity (180◦) of the U-Oh-H fragment, relative energies∆E (in cm−1) are plotted.

The energies were obtained by constrained geometry optimizations of [UO2(OH)]+ at various

fixed values ofθ (U-Oh-H).
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Second-order Jahn-Teller type interaction in [UO2(OH)]+

Figure 6.11 shows the energy profiles of [UO2(OH)]+ along the U-Oh-H bending mode, as cal-

culated at the VWN and the VWN + U methods. The VWN potential energy profile shows a

minimum for the linear structure of the U-Oh-H fragment. Including the Hubbard term with

small positiveUeff values, relatively more positive energy correction is provided for the struc-

ture with the linear U-Oh-H fragment than with a structure with a bent U-Oh-H fragment which

effectively removes the bending mode barrier atθ (U-Oh-H) = 180◦.

Similar to the second-order Jahn-Teller type interaction in the bare uranyl ion, the popula-

tion of aδu-type U 5f quasi-atomic orbital affects the shape of the potential energy profiles of

[UO2(OH)]+ along the U-Oh-H bending mode. In the linear uranyl ion, the two pertinent orbitals,

5 fxyz and 5fz(x2−y2), are degenerate (ofδu symmetry in the point group D∞h) and non-bonding.

In the discussion of [UO2(OH)]+, we focus only on the orbitalfz(x2−y2) because for the chosen

orientation, this orbital can interact with the uranylσ -like orbital. Both MOs transform as the a′

irreducible representation in the Cs point group.

The spurious stability of the linear configuration of U-Oh-H at the VWN level can be related

to the fact that theπ-type interaction between the hydroxyl 2p orbital and the uranylσ -like MO

which also contains a small contribution of the U 5fz(x2−y2) orbital is more favored when the U-

Oh-H framework is linear. Such an interaction results in a fractional population of the 5fz(x2−y2)

orbital for which the Coulomb repulsion energy is underestimated in the VWN approximation.

By providing suitable energy corrections through the Hubbard term, at the VWN + U level,

this linear U-Oh-H configuration is less favored (Figure 6.11). A related notable effect in the

structural features of [UO2(OH)]+ is the prediction of a relatively short U-Oh bond length at the

VWN and PBE levels, 199.1 pm and 202.1 pm, respectively. A shortU-Oh bond with a linear

configuration of U-Oh-H will lead to a strongerπ-type interaction and an increased population

of the U 5fz(x2−y2)-like orbital. Note that at the VWN + U and the PBE + U levels the U-Oh bond

length increases withUeff, reducing or preventing theπ-type interaction.

Uranyl monohydroxide aqua complex

Next, the structure of the [UO2(OH)]+ moiety shall be discussed when additional aqua lig-

ands are present in the complex [UO2(OH)(H2O)4]+. Geometry optimizations of the tetra aqua

uranyl monohydroxide complex [UO2(OH)(H2O)4]+ were performed at the AE DKH PBE and

AE DKH PBE + U levels. Table 6.14 summarizes the resulting parameters of the equilib-

rium geometry along with results from various methods such as B3LYP (this work, [171, 191]),

AE ZORA PBE [186], AE ZORA BP86 [186], MP2 [187] and CCSD [187]. For the average
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U-Ot bond length, AE DKH PBE calculation predicted a value of 180.1pm which is close to

the values obtained by ZORA-PBE [186] and ZORA-BP [186]. The introduction of the onsite

Hubbard term withUeff = 1.0 or 2.0 eV has the same effect as in the bare complex molecule

[UO2(OH)]+, resulting in shortening of the U-Ot bond by 0.6 and 1.2 pm, respectively. The

hybrid method B3LYP yields a slightly shorter bond length, a RECP/B3LYP calculation of this

work gave 177.2 pm forr(U-Ot) which is close to the value calculated with MP2, 177.6 pm [187]

while the CCSD method predicted a shorter bond length 175.1 pm [187].

Table 6.14: Geometry parameters of [UO2(OH)(H2O)4]+ a calculated from PBE and PBE + U

calculations, compared to results from other methods: Average equilibrium U-Ot bond lengthr

(U-Ot), average equilibrium U-Ow bond lengthr (U-Ow), equilibrium U-Oh bond lengthr (U-

Oh), uranyl bond angleθ (Ot-U-Ot) and U-Oh-H bond angleθ (U-Oh-H). Bond lengths in pm

and bond angles in degrees. Also given is the Hubbard parameterUeff (eV) for the U 5f shell.

Method Ueff r r θ
U-Ot U-Ow U-Oh Ot-U-Ot U-Oh-H

AE DKH PBE b 180.1 257 212.3 169.3 133.4
AE DKH PBE + Ub 1.0 179.5 258 212.8 172.4 129.1
AE DKH PBE + Ub 2.0 178.9 259 214.3 174.6 125.9
RECP/B3LYPb 177.2 259 210.2 173.5 137.5
AE ZORA PBEc 179.7 260 211.3
AE ZORA BP86c 180.0 259 211.6
RECP/B3LYPd 178.3 216.2
RECP/B3LYPe 178.6 258 215.5 166.7
RECP/MP2f 177.6 255-260 213.2
RECP/CCSDf 175.1 254-259 214.4

a Point group symmetry C1.
b This work.
c Ref. [186]
d Ref. [171]
e Ref. [191]
f Ref. [187]

As in the case of [UO2(OH)]+, equatorial bonds are elongated whenUeff > 0. The AE DKH

PBE value for the averager(U-Ow) is 257 pm; withUeff = 1.0 and 2.0 eV, this distance is

elongated by 1 pm and 2 pm, respectively. AE ZORA PBE [186] and AEZORA BP [186]

values are slightly longer by 3 pm and 2 pm, respectively, compared to the AE DKH PBE value.

The RECP/B3LYP value of this work, 210 pm, differs from a previous results obtained with the

same method, 216 pm, [171] indicating possible difference in the orientation of the equatorial
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water molecules. The equatorial U-Oh bond is expected to be stronger and thus shorter than

the U-Ow bond. The AE DKH PBE value for r(U-Oh) is 212.3 pm. WithUeff = 1.0 and 2.0

eV, r(U-Oh) increases by 0.5 pm and 2.0 pm, respectively, thus indicating a partial removal of

U(5 f )-Oh(2p) mixing as in the case of [UO2(OH)]+. As in the penta-aqua uranyl complex, the

uranyl bond angleθ (Ot-U-Ot) is moderately affected by the Hubbard term. The AE DKH PBE

value for the Ot-U-Ot bond angle is 169◦ which is similar to the B3LYP value 167◦ [171]. With

Ueff = 1.0 eV and 2.0 eV, the uranyl moiety becomes less bent withθ (Ot-U-Ot) values 172

and 175◦. The RECP/B3LYP value of the present work 174◦ is close to the PBE + U value for

Ueff = 2.0 eV. In the ligand-free complex [UO2(OH)]+, the U-Oh-H bond angle changes notably

with the introduction of the Hubbard term. This is no longer the case once the four aqua ligands

are present in the complex [UO2(OH)(H2O)4]+. The AE DKH PBE value of the U-Oh-H bond

angle is 133◦ which is decreased by 4◦ and 8◦ for Ueff values of 1.0 eV and 2.0 eV, respectively.

Interestingly the B3LYP calculation of the present work predicted a structure where the U-Oh-H

moiety is closer to the linear configuration than in the PBE calculation, by 5◦.

6.3.2 Conclusions

The higher angular momentum off orbitals provides greater flexibility for multi-directional ori-

entation in directed valence bonding. Uranium 5f orbitals which are semi-localized play a vital

role in the bonding of certain uranium complexes. An accurate description of their localization

is necessary to properly describe the extent of intra-shell5 f - 5 f hybridization, hence the contri-

bution of variousf orbitals to valence bonds. In the present work, a subtle competition between

a π type and aσ -type interaction has been shown to govern the equilibrium geometry of the

uranyl monohydroxide cation. Both these interactions involve the contribution of aδ -type U 5f

quasi-atomic orbital. Incomplete self-interaction correction in KS-LDA and KS-GGA calcula-

tions resulted in uranyl monohydroxide geometries which differed from accurate predictions of

CCSD(T) calculations. Also for this complex, the onsite Hubbard term with moderate values

of the parameterUeff provides approximate self-interaction correction and provides improved

description for the structural aspects of uranyl monohydroxide.
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Chapter 7

Summary and Outlook

The main objective of the present thesis was to adapt some commonly used variants of the

DFT + U methodology for use with a localized basis set, to implement this method in the paral-

lel density functional program PARAGAUSS, and to carry out molecular applications of systems

with f electrons.

Within Kohn-Sham Density Functional Theory (KS-DFT), the electron-electron interaction

energy is calculated as the sum of a classical Coulomb repulsion term and a contribution from

the so-called exchange-correlation (XC) functional. An exact expression for the XC functional

is not known, however approximations have been proposed to compute this term. The accuracy

of a proper KS-DFT calculation depends on the approximationof the XC functional. Commonly

used XC functionals that are based on the local density approximation (LDA) or the generalized

gradient approximation (GGA) are considered as standard tools in computational quantum chem-

istry. The implicit efficiency of the KS-DFT approach along with the satisfactory accuracy of the

LDA and GGA XC functionals ensures practical calculations of several physical properties for

a wide range of systems such as atoms, molecules, clusters, polymers, systems with interfaces,

etc.

While the formulation of KS-DFT allows an extension to systems with a fractional number of

electrons, the description of fractional occupation numbers by approximate XC functionals has

been identified as notable failures of LDA and GGA XC functionals. For a fractionally charged

n-electron system, where 0≤ n ≤ 1, and the electrons are of the same spin type, cancellation

of the classical Coulomb contribution by the XC contributionboth in the total energy and in the

orbital energy is an exact condition which is to be satisfied by an exact XC functional. The failure

to satisfy this condition results in a situation where an electron erroneously interacts with itself.

In such a case the error introduced due to the inexact cancellation of the classical Coulomb and

the XC contributions is called as the self-interaction error (SIE).

123
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A number of remedial schemes have been proposed to provide corrections for the SIE present

in LDA and GGA KS calculations. In solid state band structurecalculations, in order to improve

the LDA and GGA description of the 3d and 4f electrons of transition metal and lanthanide

systems, the DFT + U methodology was proposed, where a shell-specific, Hubbard like energy

correction term is added to the DFT total energy functional.Several variants of the DFT + U

methodology have been suggested, among them the fully localized limit (FLL) approximation

gives rise to a simple energy correction term which is aimed to improve the LDA and GGA

description of systems with fractional occupation numbersof specified shells. The FLL DFT + U

approach is commonly used in a simplified form where the magnitude of the energy correction

is controlled by a single parameterUeff (onsite-Coulomb parameter or the Hubbard parameter).

In the present work, the FLL DFT + U methodology has been set upfor the first time for

molecular systems and implemented in the program PARAGAUSS along with several variants of

the onsite-occupation matrix in order to compute the orbital occupation numbers. The imple-

mentation was extended to analytic energy gradients to carry out geometry optimizations and, by

numerically differentiating analytic forces, to compute the Hessian for calculating frequencies

of harmonic vibrations. After implementation, test calculations were performed for model sys-

tems to understand the nature of corrections provided by theparticular variant of the DFT + U

approach and to evaluate the implementation.

As a first application of the DFT + U methodology to molecules,the role of 4f electrons in

the bonding of LuF3 was studied. A very recent study in the literature had classified their role as

significant. Due to the poor shielding nature off electrons, the completely filled 4f shell of Lu

has a very small radial extension and was calculated not to beinvolved in covalent bonding with

ligand orbitals. In LDA and GGA KS calculations, the SIE of orbital energies is maximal for

integer occupation numbers which resulted in a severe destabilization of the 4f energy levels of

Lu in LuF3 and places the Lu 4f levels near the 2p levels of F. Such near degeneracy situations

encountered in LDA and GGA calculations have been wrongly interpreted as bonding situations.

To investigate this situation, several molecular properties such as dissociation energy, equilib-

rium geometry, etc. were calculated using the GGA-PBE methodand the same quantities were

computed at the corresponding DFT + U level. The magnitude ofthe onsite-Coulomb parameter

Ueff = 18 eV, which was used in the DFT + U calculation was found by fitting the weighted center

of the density of states (DOS) of the 4f shell of LuF3 to the corresponding ionization potential

(IP) obtained by photo-electron spectroscopy. By providinga suitable correction to the energies

of the 4f levels, the near degeneracy between Lu 4f and F 2p levels was removed at the DFT + U

level. However molecular properties of LuF3 as computed at the DFT + U level were found to be

essentially unaffected from their pure DFT values indicating that 4f electrons of Lu do not play
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a role in the bonding of LuF3.

As applications of the DFT + U methodology to 5f elements such as actinides, manifesta-

tions of SIE in the form of spurious structural distortions in LDA and GGA results of actinide

complexes were studied. The uranyl molecular cation is an important species in the actinide

chemistry, hence the bare uranyl ion and its complexes containing water and hydroxyl ligands

formed suitable representative actinide systems for this purpose. In the present work, by empir-

ical fitting, a meaningful value forUeff for the 5f levels of the uranyl ion was determined to lie

in the range of 1 to 2 eV. One of the key findings in the present work is the role of SIE on the

uranyl bending mode frequency in LDA and GGA calculations. It was shown that a deviation of

uranyl from linearity introduces intra-shell 5f -5 f mixing that results in fractional occupation of

previously unoccupied orbitals. Spurious stabilization of such fractional electrons in LDA and

GGA calculations has been shown to be the reason for an underestimation of the bending mode

frequency of uranyl. For the value ofUeff in the range 1 to 2 eV, the DFT + U methodology de-

scribes this frequency adequately in good agreement with the accurate and self-interaction free

wavefunction based method CCSD(T).

The penta-aqua uranyl complex where the uranyl fragment in its equatorial plane is sur-

rounded by five water ligands, has been predicted to have a structure of D5 symmetric structure

by hybrid-DFT methods such as B3LYP. However, KS-DFT calculations employing common

LDA and GGA XC functionals predict a distorted structure forthis molecule. This situation was

investigated in the present work and it was shown that the soft uranyl bending mode along with

a spurious near degenerate orbital interaction in LDA and GGA calculations is responsible for

the structural distortion of penta-aqua uranyl. WithUeff between 1 to 2 eV, the DFT + U method

was shown to improve the uranyl bending mode and to remove thespurious orbital interaction,

resulting in a correct geometry for penta-aqua uranyl.

As a final application, the uranyl monohydroxide cation was studied. LDA and GGA meth-

ods predicted an equilibrium geometry which markedly deviates from the results of high level

methods such as CCSD(T). In the present work, a wide range of calculations were performed

to quantify the deviation of LDA and GGA results. From the analysis of the DFT results, the

role of U 5f orbitals in the U-hydroxyl bonding has been identified whichresults in fractional

occupation of non-bonding type U 5f orbitals that are spuriously stabilized in LDA and GGA

calculations. In the DFT + U calculations, the same range ofUeff (1 to 2 eV) for the U 5f shell

which was found to be appropriate for the bare uranyl ion and the corresponding penta aqua

species is suitable for the uranyl monohydroxide cation to cancel approximately the SIE due to

fractional populations of U 5f levels. With the inclusion of theUeff parameter, both LDA and

GGA descriptions of the structural properties of uranyl monohydroxide cation were improved
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towards the results of more accurate methods such as hybrid-DFT and CCSD(T).

Overall, this thesis demonstrated the applicability of theDFT + U methodology to molecular

systems and provided some guidelines to carry out further molecular applications of the DFT + U

methodology. Besides the discussion of main results of the applications, various analyses were

performed in this work to rationalize the corrections provided by the DFT + U method which

in turn may aid in related investigations. An attractive feature of the DFT + U methodology is

the inclusion of a tunable shell-specific correction term through which self-interaction artifacts

introduced in LDA and GGA calculations can be easily identified and related to a specific atomic

shell. Through a series of molecular applications, the DFT +U method has been shown to be a

suitable probe tool when examining LDA and GGA results for self-interaction related artifacts

in LDA and GGA calculations. An implementation of a scheme tocalculate theUeff parameter

in anab-initio fashion can certainly enhance the applicability of the current implementation of

the DFT + U method in PARAGAUSS, however no unique procedure is available to accurately

calculate this quantity. In this regard, the judiciously adjusted values ofUeff, as used in this work,

may serve as suitable starting points for future DFT + U studies of related systems. Finally, the

manifestation of SIE in various properties of lanthanide and actinide molecules as studied in the

present work may also serve as test situations for newly developed XC functionals.



Appendix A

Basis sets

In this appendix some basic definitions related to the basis set framework of the program PARA-

GAUSS are given and the basis sets used in this work are described.

In the most general form, the atomic basis functions employed in the LCGTO framework of

PARAGAUSS are defined as symmetry adapted linear combinations of contracted Gaussian type

functions
SYMΦ = CONTΦ S. (A.1)

In the above equation,CONTΦ is a row vector of contracted Gaussian type functions,S is a

transformation matrixof symmetry adaption coefficients andSYMΦ is a row of symmetry adapted

basis functions. The contracted Gaussian functions are further expanded as linear combinations

of primitiveGaussian functions as

CONTΦ = PRIMΦ C, (A.2)

wherePRIMΦ is a row vector of primitive Gaussian basis functions and thetransformation matrix

C is commonly known as the matrix ofcontraction coefficients. A single primitive Gaussian

basis function is defined as the product of a Gaussian function of the form exp(−αr2), a real

solid harmonic functionCl ,m and a normalization factor [93]. Thus the two main parameters

that define a basis set used in a calculation are the set ofexponentsof the primitive Gaussian

functions{αi} and the corresponding contraction coefficientsC, both of which can be obtained

from standard basis set libraries (e.g. [192]). When the matrix C is a unit matrix with its size

equal to the number of primitive basis functions, the basis set is called anuncontracted basis

set, symbolically represented as (n0s, n1p, n2d, n3 f ) wheren0 is the number ofs-type (angular

momentuml = 0) primitive Gaussian functions and so on. On the other hand,an optimized set

of fixed values for the columns ofC is used to construct acontracted basis set, represented as

[N0s, N1p, N2d, N3 f ] whereN0 is the number of contracted functions that are linear combina-

tions ofs-type primitive functions (l = 0) and so on. Both contracted and uncontracted basis sets
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were employed in the present work. For the lanthanide (La, Ce,Gd, Lu) and actinide (U) atoms,

predominantly contracted basis sets were employed, where the columns of the matrixC were ob-

tained from corresponding spin-restricted atomic calculations as eigenvectors of the Hamiltonian

matrix. Specific details of these atomic calculations and the source of contraction coefficients of

the basis sets of main group atoms such as H, C, O and F were discussed in Chapter 4. In the

following, only the exponents of the primitive Gaussian functions of all the basis sets used in the

present work are listed.

Further, an atomic orbital basis set is supplemented by an uncontracted auxiliary basis set

which is used to fit the charge density [103]. The auxiliary basis set containssand r2 type fitting

functions whose exponents were generated from those ofs and p type orbital basis functions

respectively by multiplying them by a factor of 2. From the auxiliary basis sets of La, Ce, Gd,

Lu and U atoms, every second r2 type function is removed to arrive at a smaller fit basis in

order to decrease the near linear dependency and to improve the convergence. In addition, five

primitive Gaussian basis functions of the typep, d and f were used aspolarization functions

whose exponents form the geometric sequence

αi = ζ β i , i = 0,1,2,3,4. (A.3)

For all three types (p, d, f ) of polarization functions, the common ratioβ is chosen as 2.5 and

the pre factorζ takes the values 0.1, 0.2 and 0.3 forp, d and f functions, respectively. In the

following, the charge-fit basis set and the polarization functions are collectively represented as

(n0s, n1r2, m1p, m2d, m3 f ). The set of exponents derived using the above equation are listed in

the following table.

Exponents of polarization functions of the auxiliary basis set

p d f

α1 0.10000000 0.20000000 0.30000000
α2 0.25000000 0.50000000 0.75000000
α3 0.62500000 1.25000000 1.87500000
α4 1.56250000 3.12500000 4.68750000
α5 3.90625000 7.81250000 11.71875000
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Hydrogen (Z = 1): (6s, 1p) basis set

Reference [195,196]

Contraction ( 6s, 1p) → [4s, 1p]

Fit basis (6s, 1r2, 5p)

s p

α1 0.08989100 1.00000000
α2 0.25805300
α3 0.79767000
α4 2.82385400
α5 12.40955800
α6 82.63637400

Hydrogen (Z = 1): (8s, 4p, 3d) basis set

Reference [194]

Contraction ( 8s, 4p, 3d) → [4s, 3p 2d]

Fit basis (8s, 4r2, 5p, 5d)

s p d

α1 0.02796200 0.09882700 0.29104000
α2 0.07989100 0.28236200 0.72760000
α3 0.21214900 0.80675000 1.81900000
α4 0.59106300 2.30500000
α5 1.81504100
α6 6.42483000
α7 28.27659600
α8 188.61445000
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Carbon (Z = 6): (14s, 9p, 4d, 3f ) basis set

Reference [194]

Contraction (14s, 9p, 4d, 3f ) → [5s, 4p, 3d, 2f ]

Fit basis (14s, 9r2, 5p, 5d)

s p d f

α1 0.03468000 0.02290000 0.08146300 0.20000000
α2 0.09908700 0.06542900 0.23275000 0.50000000
α3 0.24606800 0.15474000 0.66500000 1.25000000
α4 0.61301300 0.36194400 1.90000000
α5 1.54711800 0.86515000
α6 3.57701500 2.17931700
α7 8.38397600 6.08036500
α8 20.65931100 19.55761100
α9 53.91874600 83.33315500
α10 151.71075000
α11 472.82279000
α12 1694.32760000
α13 7524.78560000
α14 50557.50100000

Oxygen (Z = 8): (9s, 5p, 1d) basis set

Reference [195,196]

Contraction ( 9s, 5p, 1d) → [5s, 4p, 1d]

Fit basis (9s, 5r2, 5p, 5d)

s p d

α1 0.30068600 0.21488200 1.15000000
α2 1.00427100 0.72316400
α3 4.75680300 2.30869000
α4 12.28746900 7.84313100
α5 33.90580900 34.85646300
α6 103.65179300
α7 364.72525700
α8 1599.70968900
α9 10662.28494000
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Fluorine (Z = 9): (14s, 9p, 4d, 3f ) basis set

Reference [194]

Contraction (14s, 9p, 4d, 3f ) → [5s, 4p, 3d, 2f ]

Fit basis (14s, 9r2, 5p, 5d)

s p d f

α1 0.08430100 0.05418400 0.21437500 0.51200000
α2 0.24086100 0.15481000 0.61250000 1.28000000
α3 0.62329000 0.40397300 1.75000000 3.20000000
α4 1.56815700 0.99506000 5.00000000
α5 3.91940100 2.44703000
α6 8.53274300 6.27499500
α7 18.94287400 17.60456800
α8 44.64472700 56.91900500
α9 113.44230000 245.33029000
α10 314.03534000
α11 967.09483000
α12 3441.53920000
α13 15281.00700000
α14 103109.46000000
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Lanthanum (Z = 57): (24s, 21p, 15d, 5f ) basis set

Reference [126]

Contraction (24s, 21p, 15d, 5f ) → [9s, 8p, 6d, 4f ]

Fit basis (24s, 11r2, 5p, 5d, 5f )

s p d f

α1 0.01471267 0.02112952 0.03130637 0.10225200
α2 0.03678167 0.05282379 0.07826592 0.24057400
α3 0.09195418 0.13205949 0.22988546 0.60143500
α4 0.22988546 0.33014872 0.56974097 1.50358800
α5 0.56974097 0.82537179 1.42250633 5.93867800
α6 1.42250633 1.96206638 3.07135819
α7 3.07135819 4.04845718 6.41189459
α8 6.41189459 8.31512573 13.16322130
α9 13.16322130 16.24070830 26.69874160
α10 26.69874160 32.08192270 55.06898320
α11 55.06898320 64.74048750 115.66963400
α12 115.66963400 130.90304300 251.40762400
α13 251.40762400 272.99883700 564.23215000
α14 564.23215000 595.55617800 1293.69218000
α15 1293.69218000 1383.57034000 3073.74453000
α16 3073.74453000 3496.48341000
α17 7611.63314000 9868.88138000
α18 19800.65040000 32036.71700000
α19 54741.68130000 123114.08400000
α20 162993.86400000 585217.19200000
α21 530660.67500000 3947501.17000000
α22 1933165.17000000
α23 8123190.06000000
α24 44334794.20000000
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Cerium (Z = 58): (25s, 22p, 15d, 11f ) basis set

Reference [126]

Contraction (25s, 22p, 15d, 11f ) → [9s, 8p, 6d, 4f ]

Fit basis (25s, 11r2, 5p, 5d, 5f )

s p d f

α1 0.00460118 0.00780792 0.03216400 0.05035943
α2 0.01150450 0.01951979 0.08040999 0.12589859
α3 0.02876124 0.04879948 0.23792043 0.31474648
α4 0.08040999 0.12199870 0.59320372 0.72992149
α5 0.23792043 0.31474648 1.49142031 1.62215185
α6 0.59320372 0.72992149 3.22291959 3.39735340
α7 1.49142031 1.62215185 6.72376354 6.94695462
α8 3.22291959 3.39735340 13.79309700 14.06409730
α9 6.72376354 6.94695462 27.94987250 28.05662940
α10 13.79309700 14.06409730 57.62530360 57.77760050
α11 27.94987250 28.05662940 121.07176300 117.58398400
α12 57.62530360 57.77760050 263.32783200
α13 121.07176300 117.58398400 591.15964500
α14 263.32783200 245.86049300 1356.51771000
α15 591.15964500 536.78966500 3225.20602000
α16 1356.51771000 1245.36053000
α17 3225.20602000 3139.55221000
α18 7989.27326000 8834.96472000
α19 20779.25380000 28617.52420000
α20 57400.92380000 109980.94900000
α21 170633.49100000 524129.96600000
α22 553938.14100000 3555062.42000000
α23 2008484.48000000
α24 8375256.96000000
α25 45191317.30000000
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Gadolinium (Z = 64): (25s, 22p, 15d, 11f ) basis set

Reference [126]

Contraction (25s, 22p, 15d, 11f ) → [9s, 8p, 6d, 4f ]

Fit basis (25s, 11r2, 5p, 5d, 5f )

s p d f

α1 0.00505301 0.00882074 0.03509922 0.06079557
α2 0.01263252 0.02205186 0.08774806 0.15198894
α3 0.03158129 0.05512964 0.27354766 0.37997236
α4 0.08774806 0.13782410 0.71264801 0.93074707
α5 0.27354766 0.37997236 1.87459311 2.11418525
α6 0.71264801 0.93074707 4.08926005 4.57627292
α7 1.87459311 2.11418525 8.54173610 9.59867792
α8 4.08926005 4.57627292 17.50432520 19.55546590
α9 8.54173610 9.59867792 35.27192760 39.64806710
α10 17.50432520 19.55546590 72.46670040 82.64890640
α11 35.27192760 39.64806710 152.32953700 172.14364000
α12 72.46670040 82.64890640 332.00042000
α13 152.32953700 172.14364000 747.42556100
α14 332.00042000 369.02563500 1722.31277000
α15 747.42556100 825.68844400 4108.48885000
α16 1722.31277000 1967.87734000
α17 4108.48885000 5114.02661000
α18 10186.06230000 14859.12410000
α19 26421.00080000 49379.84090000
α20 72467.75250000 191924.14100000
α21 212690.70200000 909355.73100000
α22 676377.58500000 5979841.01000000
α23 2377757.08000000
α24 9460580.02000000
α25 47757955.70000000
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Lutetium (Z = 71): (25s, 22p, 15d, 11f ) basis set

Reference [126]

Contraction (25s, 22p, 15d, 11f ) → [9s, 8p, 6d, 4f ]

Fit basis (25s, 11r2, 5p, 5d, 5f )

s p d f

α1 0.00865860 0.01232352 0.03641605 0.07567004
α2 0.02164651 0.03080881 0.09104013 0.18917511
α3 0.05411628 0.07702204 0.30639930 0.47293779
α4 0.13529071 0.19255512 0.84556697 1.20346956
α5 0.33822678 0.48138782 2.33020702 2.80208130
α6 0.84556697 1.20346956 5.14340016 6.16841114
α7 2.33020702 2.80208130 10.80010080 13.06410770
α8 5.14340016 6.16841114 22.18571600 26.84545200
α9 10.80010080 13.06410770 44.55784090 55.11789140
α10 22.18571600 26.84545200 91.35523090 115.62095300
α11 44.55784090 55.11789140 192.40395900 245.16436500
α12 91.35523090 115.62095300 420.73427400
α13 192.40395900 245.16436500 952.02267900
α14 420.73427400 536.92927300 2206.33627000
α15 952.02267900 1229.96307000 5285.35528000
α16 2206.33627000 3009.97919000
α17 5285.35528000 8048.21054000
α18 13115.78600000 23994.79600000
α19 33896.72310000 80964.26030000
α20 92147.91420000 314764.31600000
α21 266370.53700000 1466437.56000000
α22 827289.33400000 9206720.28000000
α23 2810703.63000000
α24 10641810.10000000
α25 50315163.60000000
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Uranium (Z = 92): (24s, 19p, 16d, 11f ) basis set

Reference [193]

Contraction (24s, 19p, 16d, 11f ) → [10s, 7p, 7d, 4f ]

Fit basis (24s, 9r2, 5p, 5d, 5f )

s p d f

α1 0.02058815 0.1579066 0.03447413 0.1103255
α2 0.04313320 0.4089979 0.08774074 0.3025422
α3 0.08254175 0.9059122 0.21542030 0.7374815
α4 0.31243190 2.2913760 0.51211640 1.6923540
α5 0.65236340 4.6491100 1.20507700 3.7526650
α6 1.85772200 11.1375800 2.55673600 8.1734170
α7 3.33603700 22.8575700 5.22965900 17.5173600
α8 8.81990900 52.7374700 10.89752000 38.2236500
α9 15.37485000 113.7117000 22.23856000 86.8443800
α10 37.71001000 270.7284000 45.78370000 219.0811000
α11 69.22380000 649.7508000 94.63173000 703.2615000
α12 172.98510000 1673.8100000 205.18560000
α13 370.13750000 4676.7450000 474.04020000
α14 849.55400000 14437.8400000 1215.79900000
α15 1981.83800000 50135.6100000 3707.24200000
α16 4869.81100000 200185.0000000 16079.47000000
α17 12511.46000000 948314.4000000
α18 33651.45000000 5589055.0000000
α19 95179.62000000 30062560.0000000
α20 285123.90000000
α21 912190.10000000
α22 3147013.00000000
α23 12113820.00000000
α24 48171220.00000000
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