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Chapter 1

Introduction

1.1 Theory

A major focus of research in quantum chemistry is to examxigtiag methods and to improve
them to solve the electronic Schrédinger equation of atomadecules and solids [1]. The earliest
attempt to solve the Schrodinger equation of atomic systeasded by D. R. Hartree [1, 2]. He
assumed that in a system Mfelectrons surrounding a fixed nucleus, each electron expees

a field due to the mean field of othr— 1 electrons and the nucleus. Hartree approximated the
effect of many body interactions by the potential whichesiffom theN — 1 electrons distributed
according to their own wavefunctiong and solved the corresponding Schrédinger equation for
the single electron orbitalg,. N of these wavefunctions represent the occupied states afahe
and| ]2 gives the magnitude of charge density of tht electron. The total charge densjy

of the atomic system will be given by summing the orbital dtes over the occupied orbitals.

Unlike the orbitalgy;, the electron densityp of an atomic or molecular system is an observ-
able quantity, for example, in X-ray scattering experinsgnis related to the spatial distribution
of the electrons [3, 4]. Such an interpretationoofs natural and according to E. Schrodinger,
electron density is the distribution of negative chargesml space [5, 6]. In Schrédinger’s 1926
paper [5], he remarks that “We have repeatedly called abtemd the fact that they function
itself cannot and may not be interpreted directly in termthoée-dimensional space—however
much the one-electron problem tends to mislead us on thist-pdiecause it is in general a
function in configuration space, not real space” (quotethff8]).

The essential properties of the electron density have beeftylsummarized in a recent re-
view by R. F. W. Bader [6] as “the electron density provides asptgt model of matter, one
in which point-like nuclei are embedded in a relatively d€é spatial distribution of negative

charge—the density of electronic charge—a distributi@t th static for a system in a stationary

1



2 CHAPTER 1. INTRODUCTION

state and one that changes in a continuous manner duringlaiatic change, i.e., one that does
not involve a change in the electronic state of the systerthdrspirit of the Born-Oppenheimer
approximation to the vibronic wavefunction, the electramsity is assumed to adjust instanta-

neously to any and all motions of the nuclei”.

Thus, based on similar views, earlier attempts have beer meefdcus on the electron den-
sity when solving the Schrodinger equation. The theory efitthomogeneous electron gas is
aimed at describing the properties of the ground electrstaite of a system by the electron den-
sity p(r) and to provide methods to calculate this quantity. One ofeidudier theories of the
inhomogeneous electron gas is the semi-classical, gtatiapproximation commonly known as

the Thomas—Fermi model [7].

Thomas—Fermi theory and its extensions were the predasesfsmodern density functional
theory (DFT). The objective of DFT is to describe the projesrof a many-electron system us-
ing functionals ofp(r) [8]. DFT is founded on two theorems for the electron densitycl are
collectively called as Hohenberg—Kohn theorems [9]. Ttst &f these theorems, proves by con-
tradiction that the ground-state electron density unigsekecifies the Hamiltonian operator of
a system characterized by a universgdtem-independedensity functionaF [p] and asystem-
dependenexternal potentialex(r) that usually represents the electron-nuclear interaciite
first Hohenberg—Kohn theorem is an uniqueness theorem velsiinlishes an one-to-one map-
ping between the electron density and the external potefitiee second Hohenberg—Kohn the-
orem provides a variational procedure where minimizatibthe total energy functiondt|[p]
subject to the constraint that the electron denpify) integrates to the total number of elec-
tronsN, yields the ground state energy of a quantum mechaNealectron system [10, 11].
Here the total energy functionglp] is the sum of the universal functiona[p] and the energy

contribution due to the electron-nuclear interactifp,r )vex(r )dr.

The universal, system-independent electron density imatF [p] consists of a kinetic en-
ergy term and an electron-electron interaction term, ttierléerm can be further separated into
a classical Coulomb term according to independent-pardipfgoximation and a term that ac-
counts for non-classical effects in a quantum mechanicgteay and many-body Coulomb ef-
fects. In the earlier density functional approach such aslthomas—Fermi model, all the con-
tributions toF [p] were formulated as pure density functionals that are eitiglidependent on
p(r) only. Proposed functionals inaccurately modelled the ticnenergy contribution which
predicted too large a positive energy contribution in molac calculations so that molecules

turned out to be unstable.

The present success of DFT is largely due to Kohn—-Sham'sdism [12] of DFT (KS-
DFT) that introduces a reference system of non-intera@lagtrons that are under the influence
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of an effective potential. The Kohn—Sham approach givesquiores to solve the corresponding
Schrodinger equation of these non-interacting electrtmspmputep(r) using the orbitals of
this reference system as described above in the case oékfaritomic calculations, and to com-
pute the largest contribution to the universal density fiemal F [p] which is the kinetic energy.
In KS-DFT, the kinetic energy term is computed asoaital dependent termrhe leading con-
tribution, the kinetic energy of the reference system of-mtaracting electrons, turned out to be
a good approximation to the kinetic energy of the real systémteracting electrons. KS-DFT
retains the classical form of the Coulomb electron-elecimnggraction term which is formulated

within the independent particle approximation as in thermas—Fermi model.

A cornerstone of KS-DFT is the introduction of the exchaegerelation (XC) functional.
The purpose of the XC functional is to provide tlesidual kinetic energgwhich is the difference
between the kinetic energy of the real system and that ofetfeeence system of non-interacting
electrons), a relatively small part, and to include the olassical electron-electron interaction
energy namely thexchangesnergy as well as many-body Coulomb correlation effects. How
ever the exact form of the XC functional is not known. Thusdbeuracy of a proper KS-DFT
calculation is strictly dependent on the approximationsived in modelling the XC functional.
Approximate exchange-correlation functionals are ofteselol on the properties of the hypothet-
ical model of a homogeneous gas of interacting electronsttff®model, an exact form of the
exchange energy density is known along with accurate fortheo€orrelation part of the XC that
has been found through quantum Monte Carlo simulations [(t0jhis model, an electron gas
containing virtually an infinite number of electrons is sdigd to a positive background charge

distribution in an infinite volume which leads to a constdat&on density everywhere.

In thelocal density approximatio(LDA), the assumption involved is that the XC energy of
a real system has the same functional form as the XC energyraf@am interacting gas of elec-
trons with same density as the real systenally [10]. LDA is a good approximation for atoms,
and the structure of many molecules and solids. The (relasiecuracy of LDA stems from the
fact that LDA affords a surprisingly good representatioringf spherically averaged hole func-
tion. Gradient-corrected approximatior{for example, the generalized gradient approximation,
GGA) afford an improved description as they account for theation of p by including terms
involving the gradient of the densityp [10] so as to describe a real atomic or molecular sys-
tem which exhibit rapidly varying densities. Approximatgbeyond LDA and GGA focus on
arriving at better and realistic functional forms of the sigyy for example, by including terms

dependent on higher derivatives of the density, sudi%as[10].

The main advantage of DFT over wavefunction-based metrsoaddated to the above men-

tioned Schrddinger’s remark about electron density thad fmany-electron system, the electron
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densityp(r) has a lower dimensionality than ti-electron wavefunction. Indeed while the
cost of computation in the commonly used wavefunction basethods scale aB*-B’ for a
many-electron system represented®iasis functionsDFT-based methods lead B3-B* scal-
ing [13]. For large systems, approximations to mhatrix elementgvolved in a DFT calculation
can provide even linear or quadrat®¢B?) scaling [10].

While KS-DFT is an efficient alternative to wavefunction béisieeories, results of KS-DFT
calculations especially when they employ LDA and GGA XC fimeals can suffer from a subtle
artifact. The classical Coulomb energy contribution inelsidpuriouself-interactionSl) contri-
butions which represent unphysical electron-electrogradtions such as an electron interacting
with itself. In the exact KS-DFT, such contributions are gogped to be cancelled by correspond-
ing self-exchangeontributions in the XC functional, hence to correct for #edf-interaction.
Approximate XC functionals such as LDA and GGA only partlgaient forself-interaction cor-
rection(SIC) and the error thus introduced due to incomplete SiClisatas theself-interaction
error (SIE).

Some of the major failures of LDA and GGA functionals suchas barriers of reactions,
low band gaps of solids, spurious orbital mixing, undenaation of KS eigenvalues, wrong dis-
sociation limits of molecules, destabilization of anioogerstabilization of cations are all mani-
festations of the self-interaction error. Although theisgagions have been widely identified, the
magnitude of the errors they introduce in a KS-DFT calcalathias only been vaguely under-
stood [14,15]. Thus in KS-DFT calculations employing apgmate LDA or GGA functionals,

a compromise between accuracy and computational efficisrmging made.

Improvements in the development of better XC functionalsthgacome from investigations
of properties of the hypotheticakact XCfunctional [16]. Some aspects of the properties of the
exact XC functional are readily understood by inspectingctly solvable one electron systems
such as the hydrogen (H) atom and other model systems. B&lt&rmctionals that are classified
asmetaGGA [10] andhyperGGA [10] functionals approximately model tlexact behaviar
Development of XC functionals which can consistently mdtiel exact behavior of even small

molecular systems is an active area of research [16].

In the so-called DFT + X methodologies [17], the DFT totalmgydunctional (usually LDA
and GGA) is augmented by a suitable model Hamiltonian in rotdgartly recover the exact
behavior. While the major advantage of such schemes is theowament of LDA and GGA
approximations in an inexpensive way, these methodologfies involve inclusion of semi-
empirical parameters. Thus in the DFT + X methodologies alvel hierarchy of parametriza-
tion should be noted. The semi-empirical parameters tratteally enter the XC functionals are

characteristic of the level of XC approximation itself anat system specific. The parameters
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that enter the model Hamiltonian are often specific to thdemgntation, the XC-functional, the
system, the basis set used, and the application itselfoAdth these DFT + X methodologies are
only crude approximations, they make it possible to impribneDFT description for larger or
complex systems at a reduced computational cost and thicargful studies of smaller systems
one can gain more insight about the nature of the correctiogs provide. Two widely used
DFT + X approaches are the DFT + D and the DFT + U approaches.

In the DFT + D methodology [18, 19], the model Hamiltonian @rises ¥R° terms which
aims at describing the interatomic dispersive interastiomhus dispersive interactions which
alternatively require high-levedb initio methods can be included at a reduced computational

expense.

The DFT + U methodology [20] which is the main subject of thiegis originates from di-
verse motivations thus resulting in the culmination of saleariants of the model Hamiltonian.
Historically, the DFT + U approach was used to improve lthel spin density approximation
(LSDA) description of systems that contain correlated tetets in localizedd or f orbitals. In
the LSDA + U approach an intra-atomic Hubb&idepulsion term is added to the DFT total en-
ergy Hamiltonian to reduce the intra-atonfigbridizationof these localized orbitals by driving
the occupations of these orbitals to take the integer vdlu@sl. SucHocalizationof occupied
orbitals tends to increase thand gapand to describe well the Mott insulating state of transition
metal oxides [20]. Without such explicit inclusion of a HasU repulsion term, the LSDA de-
scription predicts such metal oxides to be conducting. Wipgtyang the DFT + U approach to
molecules as in the present work, the DFT + U correction Hamién is aimed to approximately
provide self-interaction corrections in LDA and GGA calgtibns to partly recover the correct
electron-electron interaction. In this way, a model DFTrapgh is developed that allows one to

study the effect of self-interaction in an atom-specificefeghell-specific) fashion.

PARAGAUSS is a program package to perform high-performance densitgtional calcu-
lations of molecular systems and clusters [21, 22]. A widegeaof molecules, from small
molecules comprising a few atoms to large clusters thatamonlp to several hundreds of atoms
have been studied usinrRAGAUSS. In this way valuable contributions have been made to
various scientific disciplines such as theoretical and agatpnal chemistry, spectroscopy, sur-
face science, material science and environmental chgm#stnain theme in problem solving in
any discipline of science is to exploit the available synmnebnstraints. Symmetry-adapting a
mathematical problem is one of the most basic and naturtiibfent strategies especially when
solving a quantum mechanical problem. In this respeeRABAUSS is one of the few elec-
tronic structure codes which can utiliren-Abelianpoint group symmetries to symmetry-adapt
the electronic Schrédinger equation [23].
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The complexity in molecular electronic structure caldolas increases with the atomic num-
bers of the constituting atoms. A natural consequence oéasing atomic numbers is the need
to incorporate relativistic effects on the electronic stawe. In order to provide a relativistically
correct description of spin-1/2 particles such as elestrone has to solve the Dirac equation to
get a wavefunction with four components and a set of eigeregalhere electronic and positronic
contributions are coupled. When focussing only on the ddeodupegative-energy spectrum of
the Dirac Hamiltonian, an approximation strategy called@ouglas—Kroll-Hess (DKH) method
can be employed which leads to an expansion of the Dirac Hamah in the external potential.
Truncation of this expansion to include a finite number afigteads to DKH approximations of
various orders. The second-order DKH approximation withinch the aforementioned series
expansion is sufficiently converged has been implement@®dRrnGAUSS [24]. It is also possi-
ble to employ thgpseudopotentiastrategy in RRAGAUSS to approximately model relativistic
effects which are more relevant to core electrons.

While continuously used for contributing to the understagdof realistic large chemical
systems and to the related chemical physics, the frameworkded by the code ARAGAUSS
is also suitable to investigate problems related to fundaat@spects of DFT. This is possible
by the variety of exchange-correlation functionals thatehiaeen implemented ilnARAGAUSS.

The main goal of the present work is to implement some comynoséd variants of the
DFT + U methodology that are relevant to molecular calcafaiand to carry out evaluatory
applications which can identify various manifestationghe subtle artifacts introduced in KS
density functional calculations. For solid-state proldemhe DFT + U methodology has been
proven to be successful in combination with plane-wave daggroaches [20]. The present
work represents the first implementation of the DFT + U metthagly in the linear combination
of Gaussian-type orbitals (LCGTO) framework oAEAGAUSS which are more suitable for
molecular calculations [25].

1.2 Applications

The unifying theme of the applications performed during tthiesis work is to investigate the
artifacts introduced by approximate XC functionals in a BIBT calculation of systems with
f electrons and to identify the manifestations of the sek+iaction error in various chemical
properties of lanthanide and actinide systems [25-27].

In solid state calculations, the DFT + U methodology is oftaroked to describe electrons
that are localized on atomic centers. Thedbitals of transition metal oxides off drbitals of

rare earth complexes show sughasi-atomidocalization. The Coulomb correlation is strong
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between these localized electrons thus these systems @na las strongly correlated systems
[28]. The molecular systems studied in this thesis can kegoaized into three types according

to the localized nature of theelectrons they contain:

1. Highly localized 4 electron systems which show negligible intra/inter atohyibridiza-
tion. For example, lanthanide complexes with La #PY, Gd 1ll (f7), Lu Il ( f14) ions
belong to this category. Magnetic moments of these systemespond to a #" config-
uration of trivalent lanthanides; in an ionic formulatiohtbe bonding, the valencest
and %! electrons are transferred to the ligands. With a fornfél éonfiguration, the £

orbitals in L+ systems do not participate in bonding with ligands.

2. 4f electron systems which show valence transitions. The exaieerium belong to this
category where the Ce Ilf¢) ion can be oxidized to Ce IVf0) state. In the trivalent state,
the 4f1 electron is localized on the Ce atom but in the tetravalen¢ sttong with the &

and $i* electrons, the #! electron can form the bonds to the oxygen centers.

3. Semi-localized 5 electron systems which show non-negligible intra/intenat hybridiza-
tion. The 5 orbitals of these systems are radially less compact whempaced to 4 or-
bitals of lanthanides, hence they can be involved iand T interaction with ligands. The

early members of the actinides U, Np and Pu belong to thigoage

1.3 Overview of the Thesis

Chapter 2 presents the theoretical background of the KS-DFhdlism along with a brief dis-
cussion of related concepts (Sections 2.1 and 2.2). Certharent limitations of the commonly
used approximate XC functionals which form the motivationgchemes such as DFT + U are
summarized in Section 2.3.

In Chapter 3, an overview of the underlying theory of the DFT mé&thodology is presented
(Section 3.1). Specific details about the variant of the DRI methodology which has been
used in this work are given in Section 3.2. The major stepisénrhplementation of the DFT + U
methodology in RRAGAUSS are summarized in Section 3.3 along with a brief discussidheo
nature of DFT + U corrections to total electronic and orb#taérgies.

Chapter 4 summarizes the computational methods used in this(Bections 4.1). Section
4.2 briefly outlines a procedure followed in this work to engallly estimate the onsite-Coulomb
parameter along with a listing of these parameters usedsnvbrk.

Chapters 5 and 6 are devoted to the application of the DFT + Wadetogy as a tool to
probe self-interaction artifacts in KS-DFT calculatiorfsfeelectron systems. Chapter 5 deals
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with the application of the DFT + U methodology to Lanthansystems. In Section 5.1, results
of a DFT + U investigation of the role offdorbitals in the bonding of Lugare presented. Some
brief remarks on the structural features of the lanthanifledride molecules are summarized
in Section 5.2. Preliminary results of a DFT + U investigatio model ceria nano-particles are
presented in Section 5.3.

Chapter 6 discusses the application of the DFT + U methoddlmggme uranyl complexes.
Here, the manifestation of the self-interaction error agispis structural distortions in LDA and
GGA calculations of uranyl complexes is investigated. Tret part (Section 6.1) deals with the
uranyl ion in gas phase as a model system to understand the-Drrections. In Section 6.2,
results of a DFT + U study of the penta aqua uranyl complex egsgmted. Finally, in Section

6.3, results of a systematic study of the uranyl monohydi®xation are summarized.



Chapter 2

Kohn—Sham Density Functional Theory

In the previous chapter, an overview from an historical pective was given to electron den-
sity as a suitable quantity to compute molecular properfié® idea of computing the electron
density from a suitably defined set of orbitals dates baclkcto@&linger’s definition [5] of elec-
tron densityp and from Hartree’s works on atomic systems. The HohenbeybgrKheorems
show that the ground state denspy uniquely defines the system Hamiltonian and that it is
possible to apply the variational principle to calculate groperties of a system fropy. The
Kohn—-Sham formalism of density functional theory (KS-DFE}ually leads to aractical way
for constructing orbitals to obtain the ground state etattiensitypy and to a build the sys-
tem Hamiltonian. In the present chapter, the theoreticekdmaund of KS-DFT is summarized.
For more complete and general discussions related to therdoof the present chapter, one is
referred to [8, 10, 29, 30].

In Section 2.1, the background of KS-DFT is presented. Ini@e@.2 certain concepts re-
garding a generalization of KS-DFT are briefly discussetipdieed by some theoretical ideas
regarding the interpretation of KS-DFT. Section 2.3 exgtkly discusses the limitations of cer-

tain approximations to KS-DFT by considering the H atom asxample.

2.1 The Kohn—-Sham Method

2.1.1 Background

The first Hohenberg—Kohn (HK) theorem [9] states that theigdestate electron densipg(r)
uniquely describes all properties of the electronic groatade of a system. The second HK

theorem gives a variational procedure to calculate thergiaiate electronic enerdyp of a

9



10 CHAPTER 2. KOHN-SHAM DENSITY FUNCTIONAL THEORY
system through the constrained minimization of the enenggtionalE|[p]

Eo = min (E[p]), (2.1)

where the energy function&[p] is defined as the sum of a system dependent term due to the
nuclei-electron interactio¥iye[p] and auniversally validfunctional which is independent of the

number of electrons and the nuclear environni€jipi]

E[p] = Wnelp] +F[p]. (2.2)

The universal density function& [p] of the electronic system defined in the HK theorem is
hypothetical without an explicit definition. Some generalions can however be made about

F[p]; itis a sum of contributions due to kinetic enefgyand electron-electron interactidge

Flp] =Tlp]+Vedp], (2.3)

whereVge can be further divided into contributions due to the undatesl classicalCoulomb
energy terml[p] and sum ofhon-classica(purely quantum mechanical) anthny-bod\electro-
static effect$G[p]

Veelp] = J[p] + G[p]. (2.4)

Thus the total electronic energy functiorijp] can be written in the following form

E[p] =Wnelp] + T[p] +J[p] + Glp]. (2.5)

Among the various terms in the above equation, analytic $oane known only for the nuclei-
electron interaction terrine[p] and the classical Coulomb energy tedfp] where as analytic
expressions fof [p] andG[p] are not known.

The nuclei-electron interaction teriy¢[p] is defined as the integral

Wnelp] = [ p(r)Veulr)er, (2.6)

where the kernel of the integral is the external potentig{(r) which is the local Coulomb

potential at the position due to the charges & nuclei. In atomic unitsyex(r) is expressed as

M ZA
Vext(r) = _; |r. _ RA| ) (27)
=1

whereZa andRa charge and the position of nucleAsThe classical Coulomb energy contribu-

tion J[p] to the electron-electron interaction is defined as

Jp] = % / %d%dfﬂr'. 2.8)
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The termJ|p] is referred to as the uncorrelated classical Coulomb energylbecause this term
discards the condition that within the point mass approiimnano two electrons with same spin
can simultaneously be located at the same space. Thus thelief does not capture all the
effects due to the /x1, form of the Coulomb operator. Thus the contribution due to yraody
Coulomb interaction are included along with non-classitatteostatic effects through the term
Glp] in Eq. (2.4).

Among the various contributions to thmmiversalfunctionalF [p], a significant contribution
comes from the kinetic energy termp]. In the earlier framework of Thomas—Fermi model

[7,31, 32], the kinetic energy functional has the form

Tlpl = [ p*2(n)dr, (2.9)

which resulted in too large a positive energy contributiomiolecular calculations rendering
molecules unstable [33]. Subsequent investigations ledaketter kinetic energy functionals
which however came with their own short-comings [34]. Atgamet, studies that aim at mod-
elling better kinetic energy functional asparre-density functional contribute to the so-called
orbital-free density functional theof35].

2.1.2 The Kohn—Sham Approach

The Kohn-Sham (KS) approach to density functional theampducesorbitals. The purpose of
introducing orbitals is two-fold: they are used to compaground state electron densiyand

to provide a framework to compute the kinetic energy fun@id [p]. For this purpose, W. Kohn
and L. J. Sham [12] introduced the idea of a reference syst&impinteracting electronthat are
influenced by docal effective potentialaf¢(r). This effective potential is chosen such that the
system ol non-interacting electrons exhibits the same ground stieitypp as the real system
of interacting electrons. The Hamiltonian operator thdtnds the system of non-interacting

electrons is defined as a sum of one-electron Hamiltoniaratqs
q S ks
Hs=" h’>, (2.10)
2
where the one-electron Hamiltonian operator is defined as

A 1
¢S = —S0F + Vers(ri). (2.11)
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The exactwavefunction of non-interacting electrons is a Slater wheteant ®s, which for an

N-electron system is defined as

1| ax2) @(x2) ON(X2)
VNI 5 o
G(XN) @) - en(XN)

whereq (x;) are the spin-orbitals which can be expressed as a produpttéb() and spin §)

g = (2.12)

dependent factors
@a(x) = di(r)aw (o). (2.13)
The spatial functiong}; (r) are eigenfunctions of the so-called KS equations. The gplarized

version of the KS are written as
ASTY(r) =7yl (r), (2.14)

which are similar to Fock equations in the Hartree—Fock (fdfnalism. From the KS orbitals

spin densities are computed as
NO’
p%(r) =y ()%, (2.15)
|

where the summation is done over i€ lowest spin orbitals. The above equation can also be
written by introducing the occupation numb€t of the spatial orbitals as

p7(r) =3 7 Wl (n)f?, (2.16)

now the summation indeixruns over all the spatial orbitals and not restricted toNHelowest
spin orbitals. Whem? is restricted to take the integer values 0 or 1, the formaigssimilar to

the HF approach. Further, when the occupation numbers dbthestN? spatial orbitals take
the value 1, and others 0, the dengity(r) corresponds to the ground state. The total electron

density due to both spin densities is then the sum
p(r) =Y p°(r). (2.17)
g

The kinetic energy of the system Wfnon-interacting electrons is then computed formally as

in the HF approximation as

NCT
ol =3 5 (uF0)

In the above equation the summation is performed dielowest occupied orbitals of both spin

1

_EDiZ

wf’(r>> | (2.18)

types. Eq. (2.18) can be generalized by introducing the matton numbers as

Tslp] = Zznig<q—’ia(r) —:—ZLDi2 Wia(r)>~ (2.19)
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The approximate kinetic energy terfg[p] which is the kinetic energy o non-interacting
electrons is not equal to the kinetic-energyN\binteracting electrons [10]

Ts[p] < Tp]. (2.20)

In KS-DFT, the difference between the true kinetic enefgg| and the non-interacting kinetic
energyTs[p] along with the non-classical electrostatic contributinrEn. (2.4) are collectively

defined as thexchange-correlation functional
Exc= T [p] —Ts[p] +G[p]. (2.21)

The exchange-correlation (XC) functiorilc[p] can be written as a sum ekchange Ep]

andcorrelation E[p] functionals as

Exc[o] = Ex[p] + Ec[p]. (2.22)

The exact form of the exchange functioi&[p]| (as functional of the orbitals) is that of a single
determinant as in the HF approximation:

:_%ZZ<M wfm

or by introducing the occupation numbers as in the kinetergyterm, Eq. (2.18)

1
g (wow|

The exchange interactiors a purely quantum mechanical effect for which no classacelog

0<r>wi“<r'>> (2.23)

wf<r>wi°<r'>> . (2.24)

exists. The exchange interaction is characteristifeohionswhich follow the Pauli exclusion
principle that the total wavefunction of two identical fermions isissymmetric. Similar to the
HF formalism, the KS formalism introduces exchange intéoadyy choosing the total electronic
wavefunction as a Slater determinant, Eqg. (2.12). It shdnélchoted that the wavefunctions
involved in the above definition of the exchange functional IeS orbitals; thus the exchange
contribution according to Eq. (2.23 or 2.24) will be exactyowhen the KS orbitals represent
the true density.

The correlation functiondkc[p] has no explicit analytic definition. In conventional quantu
chemistry, the correlation energy is defined as the difie@dretween the exact electronic energy
and the HF energy. In the KS theory, the residual kineticgyneontribution as in Eg. (2.21) has
to be provided bye¢[p] along with the many body Coulomb correlation effects. Thubiwithe
KS-DFT formalism, the total electronic energy functiorelritten as

[p] VNe[ ] + Ts[p] + J[p] + Exc[p]. (2.25)
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The local effective potential that enters into the onetetecHamiltonian operator in Eq. (2.11)
is defined as
Ver (1) = Vext(r) + Vi () + V(1) (2.26)

where the external potential term is simply written acaegdio Eq. (2.7) and the Hartree poten-

tial of a charge densityy (r) and the XC are defined as thenctional derivative$8]

vy (r) :5—6pJ[p] :/]firr)’|d3r/ (2.27)

and
o
V)?c(r) = WExc[p]- (2.28)
The effective potential is already dependent on the derbityugh the Hartree potential in
Eq. (2.27) and the XC potential in Eq. (2.28). Thus the KS &quoa according to Eq. (2.11)

have to be solved self-consistently.

2.1.3 Approximate Exchange-Correlation Functionals

The XC energ\Exc[p] is usually expressed in terms of the XC energy density or X&gnper

electrongyc[p] as
Exclp] = [ p(Dswclp] ()er. (2.29)

where the terngxc[p] which acts as the integration kernel can be written as the sum

&xc[p] = &[] + &c[p] - (2.30)

KS-DFT is in principle exact when the XC functional employsa@xact. However, the analytic
form of the XC functional is not known and therefore it has ®dpproximated for practical

calculations.

2.1.3.1 Local Density Approximation

A simple, yet highly successful approximation is tbeal density approximatio{LDA) [8, 10,
12, 36]. Here, the XC energy density at positiois the XC energy density of a homogeneous
electron gas of the same electron density at that local yensi

&xclp] (1) = & (p(r)) (2.31)

In the following, a brief description is given for some of t@mmonly used LDA XC functionals.
The simplest LDA XC functional is the Slater—Dirac exchahgectional (SD) [37,38], where,
has a dependency pf/3. The spin-specific variant of SD exchange is sometimesdaliethe
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local spin density approximation (LSDA) exchange. The Sbhexge for the statistical LDA
exchange is normally used along with a term to account foretation contribution. Vosko,

Wilk, and Nusair [40] gave a correlation functional (VWN) bitiiig the data of a Monte-Carlo
simulation [41] of uniform electron gas. The VWN correlatitarm is usually referred to as
LSDA correlation. Perdew and Wang gave an improved coiogidtinctional (PW) through a

different parametrization [42]. When both VWN and PW LDA cdateon functionals are used
along with SD exchange functional, the XC functionals amacwnly referred to as VWN and
PW-LDA respectively. The most severe drawback of the LDAEs $ystematic overestimation
of binding energies, hence resulting in rather short bondtles.

2.1.3.2 Generalized Gradient Approximation

An improved approximation is the so-callgeneralized gradient approximatig®GA) in which
&c[p] (r) is a function of both the density(r) and the absolute value of the gradient of the
density,[p(r) at positionr.

exc[P] (1) =~ £¢A(p(r),|0p(r)|) (2.32)

Some of the commonly used GGA XC functionals are BP (X: B88, Bedlg88 [43], C:

P86, Perdew, 1986 [44]), PW91 (XC: Perdew—Wang, 1991 [45]), PBE Perdew—Burke—
Ernzerhof, 1996 [46]) and PBEN (X: PBE, C: Hammer—Hansen—Ngr<l®99 [47]). As corre-
sponding LDA XC functionals for the above listed GGA XC fuiectals, BP includes the VWN
functional while PW91, PBE and PBEN include the PW-LDA XC funogl.

2.1.3.3 Higher Approximations

Better XC functionals are aimed at providing an improved dpson beyond that of GGA XC
functionals. A class of XC functionals that also accountglie Laplacian or the second deriva-
tive of the electron density are classified as meta-GGA fanats (MGGA). Evaluation of the
Laplacian of the electron density may lead to numericahipifities, hence the effect of the sec-
ond derivative of the electron density is often approxiryatgroduced in the form of the orbital
kinetic energy density. One such mGGA XC functional is th&BRTao—Perdew—Staroverov—
Scuseria) XC functional [48]. All the three types of approations — LDA, GGA and mGGA—
are also referred to asemi-localapproximations because in these approximations the XC en-
ergy density £¢) at a positiorr is a function of the electron densitp) at the positiorr and its
infinitesimal neighborhood.

A non-localXC functional includes wholly or partly the exact non-loeachange functional

as defined in Eg. (2.23). These functionals are also knowrypsrfGGA functionals. When
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these hyper-GGA functionals include only a fraction of tkaat exchange functional, they are
also known asybrid-DFT XC functionals. Two commonly used hybrid-DFT XC functiosale
B3LYP (Becke 3-parameter Lee—Yang—Parr) [49-51] and PBEO [B#& B3LYP XC functional

is defined as
EBALYP_ESD, (.20 (Efxad— EXSD) +0.72 <EX888 - EXSD) +081(ENYP_EYWN)  (2.33)

where all the constituting exchange and correlations fanats have been defined previously
except for the LYP-GGA correlation functional which is dueltee, Yang and Parr [50]. The
hybrid DFT functional PBEO [52] functional has a much simmlemposition

EFBE0 — 0.75E7BE + 0.25E8%act L EPBE (2.34)

It should be noted that in the hyper-GGA level, only the exgsacontribution has a non-local
contribution while the correlation contribution is fromensi-local functional.

The random phase approximation (RPA) [53] provides a fullg-texal approximation to
the correlation energy which can be used along with the exachange term to get a fully
non-local exchange-correlation energy. Thus commonlyl exehange-correlation functionals
can be categorized as five levels of approximation (LDA, GB8&GA, hyper-GGA, RPA) as
suggested by Perdew and Schmidt [54].

2.2 Generalization and Interpretation of Kohn—Sham Theory

2.2.1 Non-Integer Orbital Occupation Numbers

The KS-DFT formalism can be generalized by defining the oatap numbers’ of the KS
spin-orbitalsg’ also to take values between 0 and KX @7 < 1.

Perdew, Parr, Levy and Balduz justified [59] the non-integeupation extension of KS-DFT
by generalizing KS-DFT taero temperature grand canonical ensemblgere the ground state
of a system with a non-integer number of electrbhs n, is an ensemble mixture of the system
at two of its ground states with integer number of electrdrsndN + 1. Here, the variable
is the spin-specific occupation numbr of the highest occupied molecular orbital (HOMO) of
anN-electron system i.enf,5,,o- Thus the ground state energy of a system With n electrons
where 0< n < 1, is a linear combination of energies of the pure grouneestaithN andN + 1
electrons:

ESin=(1—-n)EJ+nEY., 4, (2.35)

and the ground state density can then be written as the etesseorh

PR+n = (1—1) PR+ NPR 1. (2.36)
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Introduction of non-integer occupations provides a way ¢éoegalize KS-DFT tdinite-
temperature grand canonical ensemblgsere the mean value df is considered to be a contin-
uous variable [36,60,61]. In extended molecular systenselits, the total number of electrons
N may be considered as a continuous variable only for prdatamavenience, hence introduc-
ing non-integer occupations in KS-DFT provides a way towale properties such as the band

structure with a total number of electroNsslightly varying from the integer value [36].

2.2.2 Scaling Relations for Density Functionals

The ensemble form of the energy functimﬁﬁ+n as defined in Eq. (2.35) varies linearly with
respect to the continuous varialsidetween the integer number of electrdthi&ndN + 1. For
ann-electron system at ground state, whBr@and corresponding energy and density are zero,
Eqg. (2.35) and Eqg. (2.36) can be written as:

E? = nEY (2.37)

and

P = npy. (2.38)

The scaling behavior of individual contributions to the myefunctionalE[p] of ann electron
system, were given by Zhang and Yang [62—64] as

Tsn=NTs1,VNen = NWe1 and Jy =n?Jy, (2.39)

where the contributions due to the non-interacting kinetiergyTs and the external potential
Wne both scale linearly as the total energy functional, Eq.52.8he classical Coulomb term

scales quadratically. For the XC contributiBg,, Zhang and Yang gave the scaling relation
Exc,n - n(l— n)\]]_ + nEXc’l. (240)

and pointed out that approximate XC functionals violates ttcaling behavior. In the above
equation, Eq. (2.40), for the valuas= 0 orn = 1, the first term on the right hand side vanishes.
On the other hand, for fractional valuesmtthe exchange-correlation functiortg{. , comprises
apenaltycontribution of the forrm(1— n). It should be noted that the scaling relationsTgp,
Vnen andJ, according to Eq. (2.39) can be easily derived but the scabfafion for the XC
contribution, Eq. (2.40) is non-trivial and it was presehie Ref. [64] without proof. However

it is easy to see that th&1 — n) term ensures cancellation of both the quadratic self-Colnlom

term and the linear self-exchange term for anwhenJ; = —Exc 1, Eq. (2.40).
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2.2.3 Orbital Energies

The energy of aertical electronic transition (without reorganization of nucléamework) be-
tween two states can be calculated as the difference betiveeatal energies of corresponding
states involved in the transition. In the HF approximatiois teads tdkoopmans theoref®5],
according to which the vertical ionization energy to remaweelectron from a HF spin orbital

(@°) can be approximated as the negative of the correspondbitgloenergy
li ~En_1(n? =1) —En(n? =0) = —&°. (2.41)

An extension of Koopmans theorem for fractional occupatiombers which is valid in KS-
DFT is called Slater—Janak theorem [66], according to wKiSlorbital energies are derivatives

of the total energy functional with respect to correspogdincupation numbers:

dEjp] _ o
dre =g". (2.42)

By comparing Eg. (2.41) and Eq. (2.42), one can realize thapKmans theorem may be viewed
as a finite difference analogue of the Slater-Janak theo@imce the ground state energy

in KS-DFT varies linearly with respect to the spin polarizextupation number of the HOMO,
Eq. (2.35), it is clear that both the exact derivativeEdp], Eq. (2.42), and finite derivative
variant using an arbitrary step sizedh < 1, Eq. (2.41), are equal. Thus in KS-DFT, the negative

of enomo can be approximated to the first ionization potential

An extension of the above equation to orbitals that are b&@¥OMO is only restricted by the
fact that Hohenberg—Kohn—Sham theory is a ground stateythathin which Eq. (2.43) can be
justified while removal of an electron from an orbital beldve HOMO involves an excited state.
It should be noted that the Slater-Janak theorem, Eq. (2s42)lid even when the exchange-
correlation functional employed in a calculation is appmoate while Eq. (2.43) is valid only
whenE? is a linear function ohg,,o Which is the case only when the exchange-correlation
functional is exact.

Another concept which is extremely useful in KS-DFT, espligiwhen approximate XC
functionals are employed, Blater’s transition stat¢l] which was originally proposed within
the Hartree—Fock—Slater (HFS) approximation [39]. For steay with an orbital occupation
numbern? for an orbital@®, Slater expandelt[p] as a power series &[p] of a system with
n’=1/2

dE[p]

Elpllne = Elpllp-1/2+ 46 (n”=1/2)+.... (2.44)
W Ino=1y2
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Using the above equation and Slater-Janak theorem, EQ)(2o#ization of orbitakg® involves
a transition from a state with’ = 1 to a state witin” = 0. The resulting energy change can then

be approximated as
dE[p]

dry no=1/2
The above equation is an approximation because contriiifrom higher order derivatives are

E[pHni‘T:l - E[p”nf’:O ~ = Eio|n.‘1:1/2' (2-45)

ignored. According to Eqg. (2.45), the ionization energy barapproximated as the negative of
the orbital energy of the orbital from which half an electiememoved. This species with an
half-electron is called Slater’s transition state. In KEIDE(. (2.45) is normally used in ground
state calculations where the transition state involvededialf-filled HOMO.

2.3 Self-interaction Error

2.3.1 Conditions for Exact Exchange-Correlation Functionals

A KS calculation will yield exact results only when the (umkyn) exact XC functional would
be employed. The exact XC functional satisfies certain ¢ardi, some of which are violated
by approximate XC functionals that are based on LDA and GGH#erQit is possible to define
these exact conditions only for certain limiting cases odel®ystems. One such case is that
of a one-electron system, e.g. the H atom; the single elecmanot interact with itself through
the Coulomb interaction. For this system the contributiothi total energy due to Coulomb
interaction (Eq. 2.3) should be zero:

Eedp?] =0 [po(r)dr =1 (2.46)

When Eg. (2.46) is not satisfied, the Coulomb interaction indhe electron system is non-
vanishing resulting irself-interaction(SI) and the error introduced due to Sl is called siedf-
interaction error(SIE).

The HF theory is free of Sl. For every individual HF orbitatj.€2.46) is satisfied in the HF
theory. In the general spin-polarized unrestricted HF (Y&ffproach, the total electron-electron
interactionVee can be expressed as the sum of contributions due to occypiedrbitals of both
spin type as

1T% BB _ BB
Eee_zzg - zZE(J —KE >+Z%Jab , (2.47)
whereJ andK are the Coulomb and exchange integrals [55]. ERgcontribution to the UHF

total energy of a single electron system can be written as
1

5 (3577 —K;%) =0. (2.48)
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In the HF approximation, the self-Coulomb and self-exchasfgesingle electron are evaluated
as the same integral and they cancel each other.

In KS-DFT, Egeis a sum of Coulomb and XC contributions

Eee=J[p] + Exc[o], (2.49)

where the Coulomb contributiad{p] is the classical Coulomb term as defined in Eq. (2.8) and
the XC contributiorEyc[p] is calculated according to Eq. (2.29). For a single electiemsity of
a given spin, Eqg. (2.49) yields

J[p°] +Exc[p?] = 0. (2.50)
For a single-electron, the correlation contribution i®aero. Thus, cancellation of self-Coulomb
energy should be due to the self-exchange term. Thus E®)(@abh be written as the two sepa-
rate conditions

J[P°]+Ex[p?] =0 (2.51)
and

Ec[p°] =0. (2.52)

Collectively the above two equations are referred to as ¢immdifor the KS formalism to be free
of Sl defined for a one-electron spin density which are satidfiy the exact XC functional. The
orbital energies are the eigenvalues of the KS Hamiltoniatrimmwhere the electron-electron
contribution enter through the Hartree, Eq. (2.27), andX@e Eq. (2.28), potentials as varia-
tional derivatives. Thus, in order for the KS orbital eneggio be Sl free, the exact condition for

the local potentials can be given as
VH(r) + V() =0. (2.53)

The above follows from two separate conditions

VH(r) +w(r)=0 (2.54)

and

ve(r) =0. (2.55)
Approximate XC functionals according to LDA and GGA do notisfg the SI conditions for
total energies, Eq. (2.51, 2.52) and local potentials E4(22.55), but only to some approxi-
mation. This situation has been discussed for the HFS appation (or the X method) where
it is relatively simple to demonstrate that minimizationtbé Sl cannot be simultaneously for
the total energy and the effective one-electron poterf@ather, the parameter denoteddyhat
enters into the exchange term requires different parapaditbns for each purpose, for the total
energy and the orbital energies [39, 56, 57]. While the SIEbmaanalytically defined only for a
one-electron system, it is also present in the LDA/GGA dakions of many-electron systems.
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2.3.2 Self-Interaction Cancellation by Semi-Local Functionals

For a one-electron system the SIE in the total energy is netiaus problem in certain LDA

and all GGA approximations where Eq. (2.50) is sufficientlyisfied because of certain error
cancellations between exchange and correlation conitgitHowever the SIE is severe for the
orbital energy of a one-electron system where Eq. (2.53)tisatisfied to a sufficient accuracy in
both LDA and GGA approximations. In the following, the perfance of some commonly used
LDA and GGA functionals in terms of self-interaction canagbn is discussed for the hydrogen

atom.

Table 2.1: Total electronic energl¢ and energy of 4orbital (€1s) of a hydrogen atom in various

LDA and GGA? exchange-correlation (XC) functionals along with exactieal All values are

inev.

Approximation XC E &1s
LDA SD -12.437 -6.719
LDA VWN -13.025 -7.319
LDA PW-LDA -13.026 -7.320
GGA BP -13.609 -7.621
GGA PWI1 -13.647 —7.653
GGA PBE -13.605 -7.594
GGA PBEN -13.749 -7.644
Exact/UHFP -13.606 -13.606

2 In the DFT calculations, an uncontracted basis
set of the size (8 4p, 3d) was employed.
b The exact value is —0.5 hartree.

Table 2.1 presents the total energy and the energy of gtwehital of the H atom in spin-
polarized KS-DFT calculations employing various commamdgd LDA and GGA XC function-
als along with exact values. For the H atom, the UHF totalgnef —13.61 eV (0.5 hartree)
is exact. The LDA calculation employing the exchange-ony fBnctional predicts the total
energy to be about -12.4 eV which differs from the exact vaabout 1.2 eV. When VWN or
PW-LDA XC functionals are employed the total energy of thetéhais much improved but still
differs from the exact value by 0.6 eV. All the GGA XC functais BP, PW91, PBE and PBEN
improve the total energy towards the exact value. The erd@rthe Isorbital for which the exact
value is same as that of the total energy —13.61 eV is incilyreedicted by all LDA and GGA
functionals shown (Table 2.1). The difference between daetvalue and the SD value is about
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6.9 eV which is slightly reduced to about 6.3 eV by VWN and PWALRC functionals. The
GGA functionals improve;s to —7.6 eV which still differs from the exact value by about\6 e
Overall the total energy of the H atom is predicted to suffiteccuracy by LDA functionals that
include both exchange and correlation contributions andlbjhe GGA functionals. However,
the magnitude of the orbital energy is significantly undenested by 6 to 7 eV by all the LDA
and GGA functionals discussed here (Table 2.1).

The error introduced in LDA and GGA KS-DFT calculations oétH atom is exclusively
due to incomplete self-interaction cancellation in the-etextron potential by LDA and GGA
XC functionals. In order to understand even approximateymagnitude of the SIE in the total
energy and the orbital (HOMO) energy of a one-electron syste measure of the exchange-
correlation contribution by the LDA and GGA XC functionaks meeded. In this aspect, the
scaling relations given by Yang and others [64] form an inguatr step towards understanding
the nature of the SIE in KS calculations employing approxerfanctionals. Accordingly, the

Coulomb contribution of an-electron system, where<On < 1, scales as
Jn = n2Jy, (2.56)
while the scaling relation for thexactexchange-correlation contribution is
Evan’'=n(1—n)Jy +nEXG™ (2.57)

The exchange-correlation energy contribution due to LDA &GA XC functionals to a suffi-

cient accuracy takes the form

Exen’ ©®* ~ nELy % % —ndy (2.58)

and by comparing Eq. (2.57) and Eq. (2.58) it is clear that @fethe exact behavior which is not
accounted by LDA and GGA XC functionals is the contributiaredo the penalty functional of
the typen(1—n)J;.

For the total energy contribution of a one-electron systems () to a good approximation,
the self-Coulomb energy is cancelled by the LDA/GGA selfratge-correlation energy

SIEINE[p?) = 1 +E1/***~0. (2.59)

The above equation simply means that the LDA and GGA XC doution varies approximately
linearly with respect tm while the Coulomb contribution varies quadratically, hetiwy cancel
each other when = 1 and in the trivial case where= 0. Using the Slater-Janak theorem [66]
according to Eq. (2.42), it is easy to see that self-intemaatancellation is not sufficient in the
energy of the HOMO of the one-electron system

SIE ingqomo = 231 + Lgf\/GGA% Ji. (2.60)
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According to the above equation it is clear that the Coulondyggncontribution to orbital energy
of a one-electron system is approximately twice the Coulooriirdution to the total energy.
Since the XC contribution varies linearly with) the SIE in the orbital energy is approximately
equal toJy, which is in fact the case of H atom where the energy of gharhital is approximately
—7.5 eV in LDA and GGA calculations which differ from the exactwa of —13.6 eV by about
—6 eV.

Table 2.2 presents the contributions to the total energylandbital energy of H atom due to
the classical Coulomb terdip] and due to the exchan@g and correlatiore; contributions. For
the H atom, the exact ground state densiiggi§ ) = €2 /rand the classical Coulomb contribu-
tion J[p] can be analytically evaluated to 5/16 hartree (8.504 eV)) [B8an exact KS-DFT cal-
culation or in UHF, the self-Coulomb contribution to the taaergy is exactly cancelled by the
self-exchange term hence resulting in complete self-datesn cancellation. The SIE is largest
in the SD-LDA calculation where the self-Coulomb energy of\8ig only partly cancelled by
the SD exchange contribution of —7 eV resulting in SIE of aldoeV. With the inclusion of cor-
relation effects the LDA approximations VWN and PW-LDA sliytreduces the SIE in the total
energy due to an error cancellation. For a one-electroesyshe exact correlation contribution
is zero, but the VWN and PW-LDA XC functionals predict about6-8V of correlation con-
tribution which decreases the SIE to about 0.6 eV. The GGAtfanals provide almost correct
amount of exchange and correlation contributions and dseréhe SIE in energy and the error
cancellation between exchange and correlation contdbstis also decreased. Also one notes
that with improved XC contributions, the classical Coulonaitribution improves from 8.0 eV
in the SD-LDA method to about 8.4 eV in GGA methods approaghie exact value of 8.5 eV.
Overall the general conclusion can be drawn that the SIEandtal energy of a H atom is rather
small and Eqg. (2.59) is approximately satisfied in KS-DFTcakltions employing commonly
used LDA (VWN, PW-LDA) and GGA functionals.

The contributions to theslorbital energy due to Coulomb and exchange-correlation-ener
gies, enter via the local potentials. The UHF values for Caland exchange contribution
are obtained using the Koopmans theorem [65], hence thetharsame as the corresponding
contributions to the total energy of the H atom. In an exact¥S, the quadratic Coulomb
energy contribution to the total energyJs= nJ;, wheren = 1. The contribution to the or-
bital energy according to Slater—Janak theorem [66] isinbthas the corresponding derivative
with respect ton. Thus the Coulomb energy contribution &g, is 2J; = 17.007 eV and the
exact exchange-contribution is obtained using Eq. (2.5A2); = —17.007 eV. The classical
Coulomb contribution t&1s in LDA calculations is about 14 eV which improves by 0.5 eV in

GGA calculations. The XC contribution |5 in LDA and GGA calculations is approximately
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Table 2.2: Contributions to the total electronic energydnd the energy of thesbrbital (£15) of
the hydrogen atom in LDA and GGA approximations employingots exchange-correlation
(XC) functionals along with exact values: classical Coulomlergy J, exchange energgy,
correlation energ¥c. All values are in eV.

Quantity Approximation XC J Ex J+ Ex Ec J+Ex

E LDA SD 8.015 -6.891 1.124 0.000 1.124
LDA VWN 8.119 -6.977 1.141 -0.589 0.552
LDA PW-LDA 8.119 -6.977 1.142 -0.590 0.551
GGA BP 8.335 -8.290 0.046 -0.062 -0.016
GGA PW91 8.361 -8.249 0.112 -0.172 -0.060
GGA PBE 8.349 -8.211 0.138 -0.155 -0.017
GGA PBEN 8.395 -8.402 -0.007 -0.156 -0.163
Exact/UHF2 8.504 -8.504 0.000 0.000 0.000

£15° LDA SD 13.804 -7.328 6.476 0.000 6.476
LDA VWN 14.049 -7.472 6.577 -0.604 5.974
LDA PW-LDA 14.050 -7.473 6.577 -0.604 5.973
GGA BP 14417 -8.364 6.053 -0.216 5.837
GGA PW91 14489 -8.425 6.064 -0.243 5.821
GGA PBE 14458 -8.363 6.095 -0.224 5.870
GGA PBEN 14536 -8.456 6.079 -0.225 5.854
UHF ¢ 8.504 -8.504 0.000 0.000 0.000
Exactd 17.007 -17.007 0.000 0.000 0.000

a Exact valuesd = J; = 5/16 hartree anéx = —J; hartree.

b |n LDA and GGA calculations, various contributionsgg were obtained according to
the Slater—Janak theorem as the numerical derivative (EH — EHO‘OOOﬁ) /0.0001.
Here the numerator is the difference between corresporatdinggibutions to the total
energy.

¢ UHF the contribution t&;s are obtained according to Koopmans theorem as the finite
differenceei;s = (Eq — En+) /1.

d The exact KS-DFT value is obtained using the Slater—Jaredeéim:J = 2J; = 5/8
hartree Ex = —J; hartree

similar to the corresponding contributions to the totalrggeindicating the fact that LDA and
GGA XC contributions vary linearly. The contribution duettee correlation energy is zero in
an exact calculation. LDA and GGA functionals contributewth-0.6 eV and —0.2 eV of corre-
lation energy respectively which slightly cancel the getfulomb contribution. Overall, the SIE
in &15 of the H atom in LDA and GGA calculations is about 6 eV.
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The contribution to the total energy aag of H atom due to kinetid and nucleus-electron
attractionVe energies are listed in Table 2.3. Both in LDA and GGA calcoladi T andVye
contributions to the total energy are close to exact valudswever, the large SIE ig5 of
about 6-7 eV of self-Coulomb energy partially shields theteta from the nucleus resulting
in an underestimation of the external potential by about &udith variationally decreases also
the kinetic energy contribution by 6 eV. However by error aahation, the sum o andVye

contributions tce;s approximately satisfy the virial theorem2T /Vye = 1 hartree= —13.6 eV.

Using the scaling relations of the Coulomb and XC functionieself-interaction analysis

Table 2.3: Contributions to the total electronic energygnd the energy of thesbrbital (g1s) of
the hydrogen atom in LDA and GGA approximations employingotss exchange-correlation
(XC) functionals along with exact values: Kinetic eneiyelectron-nuclear attractiorye. All

values are in eV.

Quantity Approximation XC T We T +WnNe

E LDA SD 12.436 -25.998 -13.562
LDA VWN 12.697 -26.274 -13.577
LDA PW-LDA 12.697 -26.275 -13.577
GGA BP 13.367 -26.959 -13.593
GGA PW91 13.505 -27.093 -13.587
GGA PBE 13.463 -27.051 -13.588
GGA PBEN 13.609 -27.195 -13.586
Exact/UHF? 13.606 -27.211 -13.606

£1s P LDA SD 6.720 -19.915 -13.196
LDA VWN 6.981 -20.275 -13.294
LDA PW-LDA 6.982 -20.276 -13.294
GGA BP 7.305 -20.764 -13.459
GGA PW91 7.455 -20.929 -13.474
GGA PBE 7.401 -20.866 -13.465
GGA PBEN 7.455 -20.954 -13.499
Exact/UHF? 13.606 -27.211 -13.606

a8 Exact valuesT = 0.5 hartree ani¥ye = —1.0 hartree.
b|n LDA and GGA calculations, various contributions £g, were

obtained according to the Slater—Janak theorem as the rmaner
derivativegrs = (Ey — Ej0000r+ ) /0.0001. Here the numerator is the
difference between corresponding contributions to thel extergy.
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done above for a H atom can be generalized to-@tectron case, whereOn < 1. The self-
interaction cancellation in the total energy and the otleiteergy of such a fractionally charged
H atom with n-electron in LDA and GGA calculations are qualitativelyustrated in Figure
2.1 and Figure 2.2, respectively. It has to be noted that $saraption in these figures is that
for a H atom with in the occupation numbers 0 and 1, the clak8oulomb energy contribution
scaled quadratically asaccording to Eq. (2.56) and the exchange-correlation tmriton varies

linearly asn according to Eq. (2.58) which are only approximately vatid. DA and GGA.
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Figure 2.1: Qualitative illustration of the self-interect cancellation in the total energy by typi-
cal LDA/GGA XC functionals for a fractionally charged H atamith n-electron, where& n<1
according to Eq. (2.56, 2.58). ContributionsH{p| due to the classical Couloni energy and
the LDA/GGA XC energyExcn in units of classical Coulomb contribution of the single ¢leo

in H atom, J;.

From Figure 2.1 one notes that for arelectron H atom, the SIE in the total energy is due

to the underestimation of the Coulomb repulsion and is laf@esbsolute terms) whem= 0.5
where the absolute value of the SIEJg4, wherel; is the classical Coulomb contribution to
the one electron energy, 5/16 hartree in the case of the H. d&oom Figure 2.2 one notes that
for the fractionally charged H atom, that the SIEgpiomo is due to an underestimation of the
classical Coulomb repulsion wherxOn < 0.5, and overestimated wher> 0.5; forn = 0.5 the
self-Coulomb energy in this model is completely cancelledh®y self-exchange contribution.
Forn= 1.0, the absolute value of the SIE gnomo is equal tod;.

The conclusions drawn from the analysis of the self-int@gwaccancellation in the present
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section for a general fractionally charge@lectron system can be easily extendeNton elec-
tron systems such as multi-electron atoms. The resulteséthnalyses provide some guidelines
about the approximate magnitude of the SIE which one canceéxpa KS-DFT calculation when

LDA and GGA XC correlation functionals are employed.
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Figure 2.2: Qualitative illustration of the self-intereet cancellation in the energy of the HOMO
by typical LDA/GGA XC functionals for a fractionally chardeH atom withn-electron, where
0 <n<1according to derivatives of Eq. (2.56, 2.58). Contribusitoeyonmo due to the classical
CoulombJ, energy and the LDA/GGA XC enerdsicn (from the corresponding local potentials)
in units of classical Coulomb contribution of the single &lex in H atom J;.

2.3.3 Manifestations of the Self-Interaction Error

The self-interaction error (SIE) which is introduced int&4OFT calculations employing ap-
proximate XC functionals (such as LDA, GGA) arises becadgh@ incomplete cancellation
of the self-Coulomb contribution by the self-exchange dbatron. SIE in KS orbital energies
in LDA and GGA calculations is a simple case of how SIE mangféself in a property other
than the total electronic energy. Certain system specifidfestations of the SIE in LDA and
GGA methods have been widely discussed and have been ddsssffailures of common LDA
and GGA XC functionals in describing these systems [14, 150me of the notable failures
of LDA and GGA methods are the underestimation of reactianidrs, the underestimation of
band gaps, the prediction of wrong dissociation limits oflecales such asfl the prediction

of wrong excitation energies of certain transition metahad, wrong orbital energies of atomic



28 CHAPTER 2. KOHN-SHAM DENSITY FUNCTIONAL THEORY

and molecular systems especially the destabilization ®HBOMO of anions such as hydride,
fluoride, etc. and overstabilization of HOMO of cations. these situations can be understood
as due to the SIE in total energies, orbital energies or both.

The incorrect prediction of the energy of the H atom (TablB & also one of the failures
of LDA and GGA methods. However as discussed in the previeasan, the magnitude of this
error is rather small at least in GGA methods. Moreover, theohite electronic energy is not
an observable quantity and chemically relevant propesties as the geometry or the energetics
are functions of energy differences. If one considers thatbain source of error in LDA and
GGA calculations is due to wrong quadratic behavior of atadCoulomb contribution (or the
linear behavior of exchange contribution), one can serantjtatively understand the magnitude
of the SIE in total energies and orbital energies from Fig@d and 2.2.

A good example to illustrate the SIE in molecular system$iésltDA/GGA description of
the hydrogen molecular cation,jl—at the dissociation limit which shows the SIE in both total
energy and orbital energy. Before proceeding further, ceaspects LDA/GGA calculation of
H3 at large bond lengths need to be discussed.

The proper dissociation product of}Hs a H' ion and a neutral H atom. However when
symmetry constraints are enforced such that the two H atoendentical, the dissociation prod-
uct is considered to be two separate®®H ions. In an exact theory which is size-consistent,
both the dissociation products will have same energy.

However in LDA and GGA, two separated®fi” ions are predicted to be more stable than
the dissociation products™™and a neutral H atom. The preference for the wrong dissoaiati
of Hg in LDA and GGA is due to the underestimation of the Coulomb gyef two H>* ions
which results in an overstabilization of this dissociatpyoduct.

From Figure 2.1, one can see that both&hd H which have 0 and 1 electron respectively are
relatively free of SIE when compared to twdB ions with fractional electrons. For a system
with half an electron the classical Coulomb term is evaluated) s = J1 /4 which is about 2.1
eV (whereJ; = 5/16 hartree = 8.5 eV) anByc is evaluated a&, o5 = —J1/2 which is about
—4.2 eV (Figure 2.1). Hence for two®A* ions one can expedt= 4.2 eV,Ex. = —8.4 eV and a
SIE of about —4.2 eV. In a PBE calculation of the energy of&Hion, J andE,. are calculated
as 2.3 and —3.9 eV, respectively, with a SIE of —1.6 eV. Thuswo H°>* ions the SIE in PBE
method is about 3.0 eV which is same amount by which the PBErgrehergy differs from the
exact UHF value at the dissociation limit$ 100 A).

Figure 2.3 shows the binding energy curves gfiH UHF, VWN-LDA and PBE-GGA meth-
ods. For this one-electron system, the UHF descriptionastex DA and GGA methods predict
the equilibrium bond length of Hvery accurately to be about 1 A'in good agreement with UHF.
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Figure 2.3: Binding energy curves ofjHn UHF, VWN-LDA and PBE-GGA methods. The
binding energy is calculated &E = E(H)) — E(H) —E(H™). DFT calculations were per-
formed by enforcing symmetry restrictions in which both Hleuare identical.

LDA, GGA binding energy of H is also very close to the exact UHF value at the equilibrium
bond length, however at large separations, LDA and GGA éeemye too negative and;H
molecule is overstabilized. This situation has been widédgussed in the literature [14,67]. In
Ref. [14], Yang et al. points out that the error in the energiidfat dissociation limits is due to

SIE due to fractional charges which result in the undereston of the Coulomb energy.

Without symmetry constraints, LDA and GGA calculations of Ht large bond distance
normally do not converge. This is a consequence of the SIBeobtbital energy. From Figure
2.2, one can see thatomo of H™ is underestimated angliomo of neutral H is overestimated
by J;. Such a situation entails that the electron localized orHlag¢om favors to transfer to the
1sorbital of the H™ center which ultimately results in SCF oscillations. It isv@ver possible to
favor the localized dissociation product by fixing a eleottmle in one of the H centers, but this

will only represent an excited state.

H3 is an interesting system for studying effects of the SIE midecal KS calculations. The
SIE of the total energy of H illustrates why LDA and GGA methods wrongly favor localized
solutions while the SIE in orbital energy illustrates camance issues and issues related to under

or overestimation of orbital energies.
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2.3.4 Self-Interaction Correction Schemes

From the overall discussions in this chapter so far, it iypps evident that an obvious way to
proceed in order to account for self-interaction correc(i®IC) in approximate KS-DFT calcu-
lations is to employ better XC functionals. In this respéug, hybrid-DFT XC functionals such
as B3LYP [49-51] and PBEOQ [52] that include a fraction of exact@nge similar to HF scheme
are expected to lead to improved results.

Developing better semi-local functionals that are alse 6€SIE requires a thorough analysis
of the performance of semi-local methods such as LDA and G@&/Asimple and fully under-
stood atomic or molecular systems. In this respect, Yand. esuggested [64] to model XC
functionals such that they satisfy Eq. (2.40) in a simpley waincluding a penalty functional of
the typen(1—n)J in the exchange functional. For fractional occupation nerapthe classical
Coulomb contribution is underestimated. Thus the residuald@ob contribution is provided in
the form of a penalty functional which provides a positivereotion only whem is fractional.
As discussed in the previous sections, such a correctionwglt automatically provide the SIC
needed for KS orbital energies.

In order to improve the already existing semi-local XC fuoicals, Perdew and Zunger pro-
vided a strategy which is commonly known as the SIC-DFT schidisie In this approach, the
spurious self-interaction which is the sum of self-Coulomid gelf-exchange contributions is
subtracted out from the energies of the occupied KS orbifalgh a scheme ignores error can-
cellation between the exchange and correlation energyibatiobns (Table 2.2) and it has been
found to be inaccurate for molecules near the equilibriuongetry [68].

The SIC-DFT potential unlike the KS potential is orbital-dagent providing orbital specific
corrections. In the optimized effective potential (OEPp@ach [69], exact exchange contribu-
tion is included but the KS potential is optimized by varythg orbital occupation numbers.

The present thesis work deals with a SIC strategy that ueeBET + U methodology [20].
The DFT + U approach introduces an orbital dependent caoretdrm to the energy functional
E[p] according to the generalized Hubbard Hamiltonian. The DRT methodology is usually
employed for solid state systems with localized electradswever, this scheme can be also
be used for atomic calculations where the orbitals areatitwilocalized on atoms, for cases
like Hg at the dissociation limit where one can expect localizatibthe single electron on one
of the centers and for systems with localizedl & 4f electrons where these electrons due to
their compact radial distribution are localized on atoneaters even on molecules and solids.
Among various variants of the DFT + U methodology, an appndawown as FLL-DFT + U
(fully localized limit DFT + U) [20] introduces an energy cection term in the form of the

penalty functional as in Eq. (2.40) — for specific atomic Ehel which provides a Coulomb
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contribution for fractional charges and suitably correabts KS potential to improve the orbital

energies.
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Chapter 3

The DFT + U Methodology

From the discussions in the previous chapter, it is evideattthe magnitude of the SIE present
in KS-DFT calculations employing LDA and GGA XC functionadslarger for orbital energies
than for total energies. In the case of a H atom when the diitzupation number is exactly
one, the SIE irgyg is largest resulting in a net destabilization of treotbital of H atom (see
Figure 2.2). The 8 orbitals of transition metals and 4rbitals of lanthanides do not have large
radial extension and in compounds formed by these metas3ttor 4f orbitals do not form
strong overlaps with the ligand orbitals and they are moralleed on the corresponding atoms.
Thus when these localized orbitals are occupied, they haeger orbital occupation numbers
(i.e. 1 electron per orbital). Thus the orbital energies @®fo8 4f systems suffer from severe
self-interaction error in LDA and GGA calculations. Thisguiomenon is responsible for the
simple case where LDA and GGA incorrectly predict the grostade of atomic Ni to have the
configuration 8°4s! instead of the correct configuratiod®is?. A more common situation is the
underestimation of band gaps of transition metal oxide€iA bnd GGA solid state calculations.
Transition metal oxides such as NiO, CoO, and Cagarf@ antiferromagnetic (AFM) insulators
with sufficiently large energy gap between the valence amdgction bands. KS-DFT methods
employing semi-local XC functionals such as LDA and GGA selyeunderestimate the band
gap and the magnetic moments and predict these metal oxitbesnhetallic [70]. The DFT + U

methodology was first proposed [20] in order to improve thd DEscription of these systems.

The present chapter summarizes the details of the DFT + Uadelbgy which is the main
topic of the present work. In section 3.1, the theoreticakigeound of the DFT + U formalism
is presented which is followed by section 3.2 where the esgpo@s that are used in the DFT + U
method are presented. Section 3.3 deals with the specifidgletlated to the implementation of
the DFT + U methodology in the programARAGAUSS. Finally in section 3.4, a brief analysis
of the correction provided by the widely used variant of tHe€TD+ U correction is discussed by

33
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considering C atom as a simple example.

3.1 The DFT + U Formalism

In semi-empirical band structure calculation of solidgragimations given by the generalized
Hubbard model [71, 72] leads to an effective Hamiltonianr&at the bevahior of electrons in
metals. In the Hubbard model, the electron-electron répuisf electrons on a site/atom of a
metal is quantified by the onsite-Hubbard parameteThe Anderson model [71], more com-
monly known as the Anderson impurity model is based on thebdud model but allows the
treatment of localized, magnetic states of an impurity gnésn a non-magnetic material. In
band structure calculations, such a scheme ensures sepaatiments for highly localized
or f electrons and less localizedand p electrons. Motivated by the success of the Ander-
son model Anisimov et al. [20] suggested that the LSDA desion of transition metal ox-
ides such as NiO can be improved by adding an orbital ocoupadg&pendent energy correction
term to the DFT energy functional in order to exclusively noye the electron-electron descrip-
tion of the 3l electrons. This resulted in the formulation of the DFT + U ragh, originally
intended to improve the LSDA description, in which a screehartree-Fock type electron-
electron description if provided for the localized eleassuch as@and 4f electrons. There
have been several implementations of the DFT + U methoddlogglid state electronic struc-
ture codes in the framework of linear muffin-tin orbitals (I[KA) [20], full-potential linearized
augmented plane-wave (FLAPW) [73], projector augmentedewWBAW) [74] pseudopotential-
plane-wave [75], full-potential local orbitals (FPLO) [[f&nd linear-combination-of-pseudo-
atomic-orbital (LCPAO) [77] methods. The present work représ the first implementation of
the DFT + U in the framework of symmetry adaptetear combination of contracted Gaussian-
type orbitals(LCCGTO) framework of the programaARAGAUSS[21,22] which is more suitable
for molecular calculations [25-27].

The DFT + U total energy functional is given as the sum of DR@&ltenergy functional and

a correction term which depends on the orbital occupationbers of a givershellof orbitals
EPFTV[p,nd =EPFT[p] +EY[nd, (3.1)

whereng refers to the occupation numbers of a particular shell oftald If the DFT + U
treatment is intended for thed3rbitals of a single Ni atom, then a shell denotedslgan be
defined as the fivedBorbitals of each spin type and will the set of occupation numbers of the
3d orbitals. In the symmetry adapted LCCGTO framework aRRGAUSS, ashellcorresponds

to a unigue atom indexy, the angular momentum quantum numberf the orbitals and the
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contraction numbet. Thus the shell indeg can be mapped to the indicgsL,c|:
s=[u,L,c] (3.2)

Thus in the more general symmetry adapted case, the totdberuof orbitals belonging to a
shell isNeq(2l + 1) whereNgq is the number of atoms belonging to a unique typ&Vhile the
energy correction term is shell specific, it has to be notatishch corrections can be provided
separately to more that one shell of orbitals of the specifiredue atom. The second term in the
right hand side (r.h.s.) of Eq. (2.1) is the DFT + U energy ection which has the form

EY [ng = Eg [ng —E%°[ng, (3.3)

where the first term on the r.h.s. is a term derived accordinige UHF treatment of the electron-
electron interaction of electrons within the sheland the second term is @uble counting
term which represents the electron-electron interactimmrtution of the shelk that is al-
ready present in the DFT total energy functional from thetigbutions of classical Coulomb

and exchange-correlation functionals.

3.1.1 The DFT + U Functional form

According to UHF, the contribution to the total energy dueetectron-electron interaction is
given according to Eq. (2.4). For the present purpose, is&ul to consider an expression for
the electron-electron interaction energy obtained by #tpaeding the spin-specific molecular

orbitalsys” as a linear combination of the atomic basis functi¢mpg }
wla = zcgi(pll' (3.4)
]

In terms of the linear expansion coefficiemgi, the elements of a density matrix can now be
defined as
z n’ChCy” (3.5)

17

wheren? is the occupation number of the molecular orbigl.
The standard expression for the electron-electron interaenergy in the basi%qou} is
given by [72]

EUHF _

I\)IH

DY [“VW )DY.D 7+ {(1vInA) — (uA[nv)} DY, DM] (3.6)
0 uvan

where the indicest, v, A, n run over all the basis functions. The four center integfaig|nA)
that enter Eq. (3.6) are defined as [55]

(kvInA) = [ dridrag (r)@u(F2)r3 65 (F2) (7). 37)
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In arriving at the expression fdgj' in Eq. (3.3) from the expression for the energy contribu-
tion due to electron-electron interaction in the UHF forisral as given in above equation, the

following approximations are invoked.

Approximations involved in the DFT + U formalism

» Energy correction is meant only for a specified stsetls defined in Eq. (2.4). Thus
the atomic basis function indicgs v, n andA correspond to indices of thegq (2l + 1)

orbitals of this shell.

» Asinthe case of semi-empirical schemes such as the Hubhaddl, the electron-electron
repulsion operator is replaced by an operator represestirggned electron-electron re-
pulsion between electrons in the given shell. ThusdtreenedCoulomb and exchange

integrals

U = [ dradragy (F)au ()VES'ah (F2) i (72) 39)
and

Sy = [ P10r2g; (F1) 0y (FVES @5 (F2) o (F2) (3.9

which replace the four center integrals that enter Eq. (3.7)

» The DFT + U correction term was originally proposed for tigat binding linear muffin tin
orbitals where the diagonal elements of the density m&tnxill give the orbital occupa-
tion numbers?. Irrespective of the basis set involved, in the atomic liafitocalization,

the orbitals that belong to given shello not mix among themselves.

The DFT + U energy correction terEtL)J is obtained by invoking the above mentioned approxi-
mations in Eq. (3.6)

EY = % S S [me NNy %8 + (Upwna —Juan) ngngauvéAn} . (3.10)

0 uvines
where the orbital occupation number3 enter in anad hocfashion which needs to be defined
separately. After simplification, Eq. (3.10) can be writéen
Eg=5Y > [anﬂ i + (Upgn.n = Junn.p) ni‘mﬂ : (3.11)
g unes

In the HF formalism, self-interaction is implicit, where @lfsCoulomb energy term is cancelled
exactly by a self-exchange term. This aspect is also refldatéq. 3.11 wherdJ,, |, , i =
Ju,pup,u, thus Eq. 3.11 can be presented as

1 1
U _
g =32 > [Uu,u,n,n”g”n a] t3 ;WZHGS [(Uwu,n?n —Junn.m) nﬂnﬁ] : (3.12)

G UIEs
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Spherically averaged Coulomb and exchange terms

The DFT + U scheme is easy to implement as a semi-empiricaéction term where the dif-
ficulties related to defining the screened Coulomb oper‘%@@rr operator and computing the
four center integrals are alleviated by introducing thesegrals as suitably defined parameters.
Within a shells= [u, L, ¢] with Neg(2| 4 1) orbitals, there will bgNeg(2l + 1)] ? Coulomb terms

of the formUy ;i n.n and NZ,[21(21 +1)] terms of the form(Uy yi.n.n — Jun.n.u) Where self-
interaction cancellation between Coulomb and exchangestarnth identical indices are taken
into account. In a spherical charge distribution or whensting|s is filled, spherically averaged

onsite-Coulomb and onsite-exchange terms can be defined as

U= ——"—"3 > Yuunn (3.13)
[Neg(2! +1)]? unzes
and
NZ,[2 (2 +1)] N?ZUES Hop,n,n T SN0 :

After introducing spherically averaged Coulomb and excleaegms in Eq. (3.12) one arrives at
the functional form

U 1 On—0 1 00
=-U n,n," +-(U-J n,Np,. (3.15)
EO 2 ; un 2( )Z;HZI’)GS u'n

There is no unique way to compute the spherically averagsitkto@oulomb and onsite-exchange
termsU andJ. They are often employed in DFT + U calculations as empipeahmeters to fit
observable quantities [97, 98]. In the earlier DFT + U amdlmns,U andJ were approximated
using Slater integrals [70,99]. Aab-initio approach to compute these terms using Coulomb and
exchange integrals from an UHF calculation was given by Mesal. [95, 96]. Alternately one
can approximately compute these parameters through earetrDFT calculations which also
accounts for screening and relaxation effects [70, 100}-102

Fully localized limit DFT + U functional form

The total DFT + U correction term depends on two terms, Eq3)(&f which the first term is
defined according to Eq. (3.15). The second term on the rdf.€q. (3.3) accounts for the
electron-electron interaction contribution of the slsdlhat is already included in the DFT total
energy through the contributions of classical Coulomb anthamge-correlation functionals.
This contribution is separated through the double courténm EY°. Various definitions oE9¢
have been proposed based on different motivations. In theweby Ylvisaker et al. [79] the
performance of different forms &9 is discussed.
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One of the earlier definitions &9°is based on the fully localized limit approximation (FLL).
According to the FLL approximation, in the integer occupatiimit, DFT calculations employ-
ing semi-local XC functionals such as LDA and GGA, electadeetron interaction is free of
self-interaction to a good approximation and hence hasdhect form. Thus in the FLL limit,
the double counting terfd¢ takes form ofEc‘,J in the integer occupation limit [80]

EJC, = im OE(L,’. (3.16)
The FLL double counting term can be derived by introducirgftiilowing identities which are
valid for integer occupation numbers in Eq. (3.15)

z ngn,? =N°N"? and ; ngng =N (N? - 1), (3.17)
piTes p#nes

whereny are the spin-specific occupation numbers of the orbital$@fshells andN¢ is the
total number of electrons of the spin typedefined as
z nz =NC. (3.18)
HES
Thus the FLL double counting term can be written as

1 1, -
dc _ — ON-O | — _ O/NO _
Eff = 5U ZN N"7+3 U-J) ;N (N9 —1). (3.19)
Finally the total DFT + U correction term, in the FLL approxation can be given by using Eq.
(3.19) and Eq. (3.15) in Eq. (3.3)

EfL = E5 —E&FL, (3.20)

where the two terms in the r.h.s. cancel each other in thgénteccupation limit and only in the
non-integer occupation limit, a non-zero correction isved. An explicit form of Eq. (3.20)
can be given by subtracting Eq. (3.3) from Eq. (3.15) as
1, -
U
=509y [nﬁ (1— ng)} . (3.21)

o [IEs

The difference between spherically averaged onsite Coulamtbexchange parameta’sand
J can be substituted by a singbmsite-effective Coulomb repulsigarametet)e which also
simplifies as the DFT + U functional as a semi-empirical ociioe term that depends on a

single parameter
1
u _ = Z Z o O

0 UUEs
It is interesting to note that the r.h.s. of the above expoessas the same form as the penalty

functional introduced by Yang et al. [64] as a component oeachange functional which is
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needed to provide self-interaction cancellation for fiawl occupation numbers, Eq. (2.40).
The FLL-DFT + U functional according to Eq. (3.21) is the mastiely used DFT + U func-
tional. This functional has been implemented in the progPamAaGAUSS as a part of this thesis

work and all the applications have been performed usingctinisection term.

Modified FLL DFT + U functional form

D. Seo proposed [81] a modified version of the FLL (mFLL) DFT +fudctional form where
the double counting term takes the form

1_ 1.
Ede | = 5U ZNC’N—G—E (3) S (N2 (3.23)
o o

The full form of the DFT + U correction term according to the IohFdouble counting term is

given by
1. _ 2

0 [Es
The above correction term has also been implementedRaBAUSS by introducing the defini-
tionU — J = Uggs
2
: (3.25)

EmFL= _%Ueffz > (nﬂ)

0 [HES
The DFT + U functional form according to Eq. (3.25) is not coanty used and this functional
was only used for exploratory calculations and for the ajapions discussed in this thesis, this

functional was not used.

Rotationally invariant DFT + U functional forms

The DFT + U functionals according to Eq.(3.22) and Eq.(3vbich are given in natural orbital

representation are usually implemented notationally invariantform. In a rotational invariant

form, the DFT + U correction term will be invariant with regpé¢o a unitary basis transforma-
tion. For this purpose the orbital occupation numbgfsre introduced in the DFT + U energy
correction terms, Eq.(3.22) and Eq.(3.25), in the form obebital occupation matrif® which

in general need not be diagonal hence accounts for oveffiegt®fn a non-orthogonal basis:
n®=AT.N°.A (3.26)

wheren? is a diagonal matrix whose diagonal elements are the odeupatimbersny and A
is an orthogonal transformation matrix. The orbital ocdigramatrix N° which enters into Eq.
(3.26) is actually defined as the sub-matrix of a global atlitcupation matrixP®. In other
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words, the matrixP? is the orbital occupation matrix computed for the whole egsaind\N? is

the sub-section d?? that corresponds to the orbitals of the siselThis can be represented as
N? < extract(P?,s). (3.27)

The dimension of the matriX® is the same as the number of orbitals that belong to the shell
which isNeq (2l +1), Eq. (3.2). The expression for the occupation numbgrsan now be given
in terms of the elements &f° as

=5 Alv NI, Agy. (3.28)
von

The above equation is used in Eq.(3.22) and Eq.(3.25) teeaatithe rotationally invariant form
of the DFT + U functionals

1
EY . = —5Uerr y [Tr(N7-N) —Tr(N7)] (3.29)
g
and
1
(e}

3.1.2 Orbital Occupation Matrix

The DFT + U energy correction term is an orbital dependemntéFhus the magnitude of the
DFT + U energy correction depends on the definition of thetaflbiccupation matri¥. The or-
bital occupation matri® is not uniquely defined, hence various definition®dfave been made.
This is due to the fact that there is no well defined operatomfeasuring the charge of an atom
in a molecule. In the present implementation of the DFT + Uhodblogy in RRAGAUSS, four
definitions ofP were considered. In the following a brief description of Hagious definitions

of P are summarized followed by a comparison of the performahtigese matrices.

Full occupation matrix

Thefirst order density matrixs defined as
pir) =3 Y D@ (@ (1), (3.31)
LV

whereg(r) is a basis function centered at positioandD,, are the elements of the density
matrix as defined in Eq. (3.5). THell occupation matrixP™!' | is defined in terms of the first

order density matrix [82]

pfu! —//(pu @ (1) d3rd3’. (3.32)



3.1. THE DFT + U FORMALISM 41

By substituting Eqg. (3.31) in Eq. (3.32) one arrives at

P = ¥ 30w [ [aic

7 (e
B ZZan/ @ur) o (1) / () (r")dr’
n X
= > > DnxSunSqv
n x

= > > SunDnxSp
T %

= (S'D-S) (3.33)

pv

whereS is the overlap matrix. The full occupation matrix definedfas matrix producs-D - S

is commonly used in DFT + U calculations [83]. The full occtipa matrix is also used in
the natural atomic orbital (NAO) analysis [84]. The inclusiof the overlap matrix ensures the
applicability of this occupation matrix in the frameworkahon-orthogonal basis functions. All
the applications discussed in the present work have beenldpamploying the full occupation
matrix.

Other definitions

When the basis functionsg, } are orthonormal, the overlap mati®becomes the unit matrix.
In this limit, the full occupation matrix is the density matD which in the DFT + U literature

is called as the onsite occupation matrix [85]
penste—p, (3.34)

Both the onsite and full occupation matrices do not satisé/gbm rule that the trace of the
occupation matrix is equal to the number of electrons [7hjs Bum rule is satisfied by Mulliken

M and LéwdinP population matrices which are defined [55] as

pM — %(D.SJr S.D) (3.35)
and
pl — 512 .p.51/2), (3.36)

where the Mulliken population matriRM, which is usually written as the matrix produdtS is
presented in the symmetrized form, Eq. (3.35).
Comparison of various orbital occupation matrices

The definition of the orbital occupation matrix restricte tpplicability of the DFT + U method-

ology to a wide-range of systems. The DFT + U methodology islg employed for systems
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with highly localized 8l or 4f orbitals. While the restriction todBor 4f orbitals is motivated by
the observation that LDA and GGA tend to destabilize theb&ais resulting in smaller band
gaps, the physical reason for the DFT + U methodologwtuk is the localized behavior of
the orbitals for which DFT + U methodology is employed. Thue @an employ the DFT + U
methodology also to systems such as atoms or moleculessatdision limit where the orbitals
will be localized on atomic centers. In these cases the wartzfinitions of the orbital occu-
pation matrixP are equivalent. This restricts the applicability of the DFTU methodology to
the orbitals which form strong overlaps with the other alsitsuch asdorbitals of H atom in
molecules like H at the equilibrium geometry.

The performance of the various definitionstan be understood through some example
cases. Table 3.1 presents the valupantial tracesof P andP - P (that are traces dfl andN - N)
that enter into the DFT + U energy correction expression,(BE@2) for the molecules  NH3
and GdR. These partial traces were computed by extracting the satbxrthat corresponds
to the I, 2p and 4f shells of H, N and Gd atoms inJ41NH3 and GdRk respectively. The
first quantity which is the trace of the submatrix®tan be interpreted as total the number of
electrons in the corresponding shells. For the numbersaldctrons located on the quasi-H
atoms in the K molecule, the Léwdin population matr®%? . D - S(/? gives a reasonable
value of 1.8e while the electron count using the density (onsite-ocdopamatrix D gives 1.2
e. It is known that the total number of electrons in kholecule is 2.0, hence both Léwdin and
onsite-occupation matrices can possibly be accepted. Fothid Mulliken population matrix
D - S (after symmetrization) and the full occupation mat&xD - S give the total electron count
as 2.1 and 3.4 respectively, where both the values are rgiethe maximum possible value 2.0.
The overall quantity which determines the DFT + U energyextion is the difference between
the partial traces d? andP - P according to Eq. (3.22). From Table 3.1, it can be seen that fo
the Isand 2 shells of H and N atoms in HHand NH;, both the partial traces differ in various
definitions of P. The discrepancies between various definitions of orbitalipation matrices
are due to the contributions of the overlap matrix, hence @asy to understand that for atoms,
all the four definitions oP are equivalent.

The 4f orbitals of the lanthanide system Gglifave very short radial extensions, hence they
are localized on the Gd atom. In this case, all the four dedimstof P are equivalent, hence the
partial traces computed using these matrices are idenficglstematic study of the performance
of various definitions oP is beyond the scope of the present work. However some rerabokg
the natural occupation numbers given by various definitm® can be made. The quality of
the natural occupation numbers will certainly depend onqinaity of the basis set employed.

Hence if possible, one must employ basis sets that use ctintra coefficients obtained from the
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eigenvectors (atomic contractions) computed at the saveé ¢é theory. In the applications, if
the absolute value of the DFT + U energy correction is not giartant, but only relative energies
are important, one can relax the strict criteria regardirgguse of atomic contractions. In order
to arrive at a global definition of natural atomic orbitalsuge in the DFT + U methodology
for a wide range of systems it is perhaps important to conglte ideas employed in related
studies such asatural orbital functional theory86] or other semi-empirical orbital occupation
methods [87, 88].

Table 3.1: Comparison of the values of the traces that enethie DFT + U energy correction

expressions, Eq. (3.29) and Eq. (3.30) according to variditions of orbital occupation

matrices.

Molecule Atomic shels P SoTr(N9)  S45Tr(N9-N°)

Ho H1s D 1.19 1.43
3(D.S+S-D) 2.13 4.55
S-D-S 3.41 11.62
s/2.p.g1/2) 1.79 3.13

NH3 N 2p D 3.83 4.98
$(D.S+S-D) 4.56 6.97
S-D-S 5.44 9.89
s/2).p.s1/2) 2.52 2.14

GdR; Gd 4f D 7.08 6.99
(D.S+S-D) 7.11 6.97
S:D-S 7.16 6.99
s1/2.p.g1/2) 7.08 6.89

a8 For H, and NH;, non-relativistic spin-restricted calculations were -per
formed and for Gdgrelativistic (DKH) spin-unrestricted calculations were
performed. For all the systems single point calculationseevperformed at
the corresponding PBE equilibrium geometries.

3.2 DFT + U Hamiltonian Matrix and Analytic Gradients

In order to compute the DFT + U energy correction in a selfststent way, the DFT + U
potential has to be defined. The DFT + U potential enters ifidima of a Hamiltonian correction
matrix which is added to the Kohn—Sham Hamiltonian matrixollwhen diagonalized gives the
Kohn—-Sham eigenvalues. In order to provide DFT + U corrastim molecular geometries, the

DFT + U gradient correction is needed. The DFT + U gradientslimnumerically computed
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through several single point calculations which howeveprishibitively time consuming for
larger systems. In order to perform efficient geometry ogtitions analytic expressions for
DFT + U gradient corrections are needed. The expressionbdtir DFT + U Hamiltonian
matrix and DFT + U gradient corrections have been derivedimpiemented in RRAGAUSS.

In the following a brief procedure to derive these exprassiwill be given in the form of set
of mathematical rules followed by a list of these expressitnat are specific for the DFT + U
functional forms and the definition of the orbital occupatioatrix.

It should be noted that for a single point energy evaluatibsyfficient to have only the
DFT + U Hamiltonian correction matrix elements. In the preseection, the expressions for the
DFT + U potential correction matrix elements are preseni@ugavith the DFT + U gradient cor-
rection terms in order to exploit the similarities in thegrivation and the common intermediate

terms that enter into these expressions.

3.2.1 Some Useful Expressions

The derivation of DFT + U Hamiltonian and gradient correciinvolve extensive usage of chain
rules of partial differentiation. The derivation of thesg@ressions are not presented in this work
and only the final expressions are listed. In the derivatibthese expressions, the following
rules were systematically used while differentiating a swation or to simplify an expression.
These rules are only presented here in order to aid a futureawaho might encounter similar
derivations.

Rule 1 The partial derivative of the element of a matkxwith respect to another element of

the same matrix is given by
0Xij
OX|
The above equation is often encountered in the followinghfathen dealing with a spin-specific

= 8451 (337)

orbital occupation matrife?
oP7,
dF)T = 0',0'15“,“, \/7\//7 (338)

v

whered;j is the Kronecker delta function.

Rule 2 An expression involving a summation with several dummyaedican be simplified as

follows.

/

S5 PIGooOuud =S PS80 v = )3 p;;: By =P3 . (3.39)
o v v v
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Rule 3 The product of two Kronecker delta functions that share amomindex can be sim-
plified as
Oyt Opv = Opr v (3.40)

3.2.2 DFT + U Hamiltonian Correction Matrix

The DFT + U Hamiltonian matrix is a sum of the KS Hamiltoniantmaand the DFT + U

correction matrix. The general spin-specific form of the DU Hamiltonian is given by
hG,DFT+U — hG,DFT+ hG’U (341)

whereo, hPFT is the spin-specific KS Hamiltonian matrix ahfV is the spin-specific DFT + U
Hamiltonian correction matrix. The general expressiontfe matrix elements ofiV is the
variational derivative of the energy term with respect ®¢brresponding matrix elements of the

density matrix:

deY
hov = —— (3.42)
u,v dDﬂ7V
which is evaluated using the chain rule for partial diffdr@ton as
EU 0PY
4 ey (3.43)

hg7‘L/J - ; [JZ VZ 0PG’

YR

D{v

In the above equation, the energy functional dependent werith is the first factor inside the
summation on the r.h.s. can be computed using the rules E§8-3.40) as

/ JEY |
VZ/VVI == 5'37 = —Uef-f |:P‘;‘/:IJ/ — §6FlI7V,:| . (344)
wv

The above expression is the formal definition of fygnmetric matrixv® which is used as an
intermediate matrix both in the derivation and in the impdetation of various expressions. The
size of the matrix? is the same as the Hamiltonian matrix. In the present impteatien,ve is
constructed from the much smaller mata% that corresponds to the shell indgx L, C] which

is defined as
o JEY
us ., = .
H.v dN,f,{V

(3.45)

The procedure to construef from u? is the reverse of the procedure which is used to extract
N? from PY which can be briefly mentioned as adding the elementsoét the appropriate
places of an empty matric.

In Eq. (3.43), the orbital occupation matrix dependent tevirich is the second factor inside

the summation on the r.h.s. of Eq. (3.43) is dependent onefieition of the orbital occupation
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matrix. For the various definitions of orbital occupationtra this term is given as

aD“ = 05,50y w0y, Where P =D, (3.46)
v
an % 1 g 1 o g
300~ 59000 wS v + Sy udod ] where P?=3[D?-S+S.D7]  (3.47)
[TRY;
and
Y T, 180Ty Where PO=T.D°-T where T=SorS%2, (3.48)
Dy, !

Using Egs. (3.44 — 3.48) in Eq. (3.43), expression for the BRT Hamiltonian correction

matrix h?V for the various definitions of orbital occupation matrix dangiven as follows

hoV=v? for P°=DC, (3.49)
o,U 1 g o (e} 1 o o
ho :E[v .S+S-v9] for P =§[D -S+S-D7] (3.50)
and
hoU=T.vo.T for P°=T.D°-T where T=Sors%?. (3.51)

3.2.3 DFT + U Analytic Gradients

The DFT + U gradient due to the displacement of the nucleardioateq; is given as the sum

of contributions due to the DFT gradient and a gradient cbige term:

d EDFT+U d EDFT d EU
dg - dg +dq'

The DFT + U gradient correction term is evaluated using tharctule for partial differentiation

(3.52)

as
dEU AEY 9Pg

Z z 3 77, aq. (3.53)

The first factor on the r.h.s. of the above equation can bdiftehas the element of the matrix

v? which is a symmetric matrix, Eq. (3.44). Thus Eq. (3.53) camhitten as

EEEDD ST DAL S I B C R

For all definitions ofP?, the total gradient according to Eq. (3.54), is given as tha sf two

gradient terms, due to the Hellmann—Feynman force and Poilteg [55, 89].

e T

de”
dg | dg

(3.55)
dq ] Pulay
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The gradient term due to the Pulay force arises from the @amipe density matrio? due
to the displacement of the nuclear coordinaiesThis term is common for all the definitions of

P9 and can be derived as

dEU} { oD?
— =5 Tr [hoY. —] : (3.56)
{ dg Pulay ; a4

It should be noted that the above expression need not be cegeadately. When the DFT + U
Hamiltonian correction matrix is added to the DFT Hamilemmimatrix, this term will be com-
puted along with the similar contribution due to the DFT Hiomian matrix [89].

The gradient term due to Hellmann-Feynman force arisesaltieetdependency of the over-
lap matrixS on the nuclear coordinatep. For the onsite occupation matr’ = D where
there is no overlap dependence, the Hellmann-Feynman Yardshes hence the corresponding
term is zero. For the Mulliken population matrix and for thd-bccupation matrix, the gradient
correction term due to the Hellman-Feynman force can beekkas

deY ds
a0 oon

where the intermediate matri which is dependent on the definitionef is given as

A:%z[(Do.vaHa.Do)} for PU:%[DU-S+S-DU] (3.58)
g
and
A:Z[(DO.S-VU+VU-S-DU)] for P°=S.D?.S (3.59)
o

In the present implementation, analytic DFT + U gradientections are not available when the
orbital occupation matrix is defined as the Lowdin populaneatrix. In this case, the difficulty
in arriving at an expression for DFT + U gradient correctisrdue to a term which involves
derivative of the square root of the overlap matrix with o the nuclear coordinates. It is
perhaps possible to derive this term by following the teghaigiven by Nasluzov and Résch in

the context of relativistic analytic gradients [90-92].

3.3 Implementation

In the implementation of the DFT + U methodology inRFAGAUSSthe main quantities involved
are orbital occupation matrices according to Egs. (3.35)3the DFT + U energy correction
terms according to Egs. (3.29,3.30), DFT + U Hamiltonianr@ction matrices according to
Eq. (3.49-3.51) and analytic gradient corrections acogrth Eq. (3.58, 3.59). These quantities
were implemented n almost the same way as they are definegl jpméfiious section in a separate

moduledft_plus_u_module Within the main program.
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3.3.1 Intermediate Procedures

Essential for the implementation of the main quantitiestaxeroutines namelget_block and
add_block. The routineget_block is heeded in order to extract a sub-matrix that corresponds
to the specified sheli.e.[U,L,C] from a full matrix andadd_block is needed to perform the
reverse task i.e., to add the elements of a submatrix to enfatilix at the appropriate indices that
corresponds to the shéll,L,C]. These two routines are used to extrd€tfrom P° and to add
u? to the empty matrix? respectively.

Extracting the submatriXl? from P is performed in thelft_plus_u_module by calling the
subroutingget_block.

NY < get_block(P?,s) (3.60)

In PARAGAUSS, basis functions are ordered by four nested indlde@inique atom index)
(angular momentum); (contraction number)\ (independent functions). The size of the sub-
matrix isSNeq(2L + 1) whereNeq s the number of atoms belonging to a unique typénith in the
given point group symmetry, the matiN® will have off-diagonal elements only if the number
of independent functions for the given sh@gll,L,C] is greater than 1 in any of the irreducible
representations. Figure 3.1 shows the indexing of orbaaidfunctions for the example case
H->0.

The pseudo code to extract the sub-mahifk for an arbitrary shell indefU, L,C]| from the
full matrix P9 is given in Figure 3.2. Adding the submatm¥ to an empty matriw? at the
indices corresponding te= [U,L,C] is performed in theift_plus_u_module of PARAGAUSS

by calling the subroutinedd_block.
u? = add_block(v?,s) (3.61)

The general looping structure of the procedati@ block is same as that @fet_block.

3.3.2 Parallelization of Gradient Computation

The main data involved in the evaluation of DFT + U analytiadjent corrections is the deriva-
tive of the overlap matrix with respect to the nuclear cooatits. The computation of the trace
according to Eq. (3.57) is handled by the subroudifiepu_grad with in thedft_plus_u_module.
The structure of the subroutiri€ tpu_grad and the other procedures called with in this subrou-
tine is based on the scheme of integral storageARA%GAUSS which is employed especially
during gradient computations [93]. The two-center intéggaae grouped in packages that are in-
dividually described by the quadrupldd;( L1, Uy, Lo). DFT gradients are computed in batches
of contributions that correspond to these quadruplgs 1, Uo, Lo). Thus these quadruples
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U1 2 121 21 2

L O 1 20 12117 211 20 1
C 1234512341 12341 111234111234112341
N11111111112111112111111111111111111 2

ool

D
N

Figure 3.1: Orbital occupation matrR for H,O in Cy, point group symmetry. The non-zero
elements oP are along the diagonal blocks (blue) in the orderngfay, by andb, irreducible
representations. The dark squares along the diagonakpoimd to the diagonal elements of the
sub-matrixN corresponding to the@shell of O atom,y =1,L =1,C =1, in red). Here the
number of independent functionN)is not greater than 1 for any of the irreducible representa-
tions, henceN is a diagonal matrix. The basis sets used aré1@s,9p,4d) — [5s,4p, 3d], H:

(8s,4p,3d) — [4s,3p, 2d].
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N_cont = get_N_cont(U,L) ! Get the no. of contractions
k=0
do irr = 1, N_irr
N_ind = get_N_ind(U,irr,L) ! Get the no. of independent fns
N_par = get_N_par(U,irr,L) ! Get the no. of partners

off = get_off(U,irr,L) | Get offset of (U,irr,L) in the full matrix
doi=1, N_ind
=1, N_ind

do j
ii = off + N_cont * (1 - 1) + C
jj = off + N_cont * (j - 1) + C
do s = 1, N_spin
N(k+i, k+j, s) = P(irr)Ym(ii,jj,s)/N_par
enddo
enddo
k =k + N_ind
enddo
enddo

Figure 3.2: Pseudo code for get_block

are passed to the subroutiaétpu_grad one set at a time along with the two-center integrals
symadapt_int_2cob_ol_grad that correspond to the gradient of overlap matrix elemeris.a
given set of (J1, L1, Uy, L), relevant elements Gfymadapt_int_2cob_ol_grad are used along
with the corresponding elements of the mattixEqg. (3.58, 3.59) to compute a subtrace that
contributes to the total trace given in Eq. (3.57). In thdowing, this procedure is briefly
described.

The datasymadapt_int_2cob_ol_grad iS a pointer with the full shape

symadapt_int_2cob_ol_grad(1:N_gradients, 1:N_irr)%int(:,:,:,:)

which has one 4-D array per irreducible representationgpatient and matriA which is also

a pointer has the full shape
A(1:N_irr)¥%m(:,:)

which is block diagonalized similar # in Figure 3.1 and has one square matrix (2-D array) per
irreducible representation. The procedure to computeub&ace for a given set of quadruple
indices U1, L1, Uy, L) is given by the pseudo code in Figure 3.3.

All the intermediate data that are needed for the computatfdFT + U analytic gradient
corrections are allocated at beginning of the process aaltbdated at the end of the process by
the main or thenasterprocessor. Among the two data needed for the DFT + U gradiah&-

tion, distribution of blocks oéymadapt_int_2cob_ol_grad t0 various processors is done outside
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subtrace = 0
do grad = 1, N_gradients
do irr = 1, N_irr

times = 1 if diagonal quadruple (U1, L1, U1, L1)

= 2 if off-diagonal quadruple (U1, L1, U2, L2)
N_par = No. of partmners of irr % degeneracy index
N_C1 = size(symadapt_int_2cob_ol_grad(grad,irr)’int, 1)
N_C2 = size(symadapt_int_2cob_ol_grad(grad,irr)%int, 2)
N_indl = size(symadapt_int_2cob_ol_grad(grad,irr)%int, 3)
N_ind2 = size(symadapt_int_2cob_ol_grad(grad,irr)?%int, 4)

L_bound_1 = fn_of(irr, L1, Ul)
U_bound_1 = fn_of(L_bound_1, N_C2, N_ind2)

L_bound_2 = fn_of(irr, L, U2)
U_bound_2 = fn_of(L_bound_2, N_C1, N_indl)
submat_A = A(irr)%m(L_bound_1:U_bound_1, L_bound_2:U_bound_2)

subsubtrace = fn_of (submat_A,symadapt_int_2cob_ol_grad(grad,irr)’int)
subtrace = subtrace + subsubtrace * times * N_par
enddo
enddo

Figure 3.3: Pseudo code for compute subtrace for gradients

thedft_plus_u_module. Within thedft_plus_u_module, different blocks ofA that correspond to

various irreducible representations are distributed tmua processors by the master processor.

3.4 FLL-DFT + U corrections

In the present work, all the applications have been perfdraseng the FLL-DFT + U correction
method. The FLL-DFT + U energy correction term and the paéot Hamiltonian correction
matrix elements are formally written in the rotationallyamiant form involving traces of or

P matrices. However during the analysis of results it has Beand easier to work with the
functional form in the natural orbital representation. I hatural orbital representation, the
spin-specific FLL-DFT + U energy correction for a single ¢abtan be given as

1
EY = SUet n’ (1-nd) (3.62)
which provides a positive energy correction winéris fractional and no corrections whefi = 0
or 1. Individual contributions due to all the natural orkstaf a given shelk then provides the
total FLL-DFT + U energy correction. The nature of FLL-DFT +cOrrection in the total energy

is shown in Figure 3.4 for the example system C atom.
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The FLL-DFT + U potential correction is given by

1
VoY = Ut (E _ nff) . (3.63)

According to the above equation, for a spin-specific natoraital with occupation numbert?,
the FLL-DFT + U potential provides appropriate correctiorthie corresponding orbital energy
g?. Thus if the occupation numbef equals 1 (occupied natural orbital), the potential coroect
shifts down the corresponding orbital energy-bByes;/2 and if the natural orbital is empty, the
potential correction shifts up the corresponding orbitergy byUes/2. The nature of FLL-
DFT + U correction in the orbital energy shown in Figure 3.btflte example system C atom.

N [e]
Figure 3.4: FLL-DFT + U energy correction for C atom: The teaenergyEn — Eg (in eV)
is plotted a function of total number of electroNsin the range 5 N < 7. The exact line is
obtained by interpolating between the ionization potéwfi& atom (11.26 eV) and negative of
the electron affinity of C atom (-1.26 eV). DFT calculationsre performed at the PBE-GGA

level. In the PBE + U calculation, an arbitrary valuellf = 5 eV was used for the@shell of
C atom.

Orbital occupation dependent energy functionals suchea$th-DFT + U term Eq. 3.62
which involve a penalty functional often perform differgnivhen various symmetry restrictions
are employed.

This is illustrated in Figure 3.6 for the FLL-DFT + U energyreection for C atom with |

(spherically symmetric) €(no symmetry) point group symmetry restrictions. The sjlady
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symmetric situation is described in the DFT + U literatureaasaround mean field (AMF) ap-
proximation [79, 94] where the total number of electrons ahell s is distributed to all the
orbitals of the shell by spherically averaging irg.= N/(2L+ 1). As shown in Figure 3.6, for
a simple case of C atom with 1, the energy correction is O wiextren is located on a single
orbital (FLL) and when the single electron is distributedhespically i.e. 1/3e per 2p orbital
(AMF), the energy correction is positive. An exception testhituation is a completely filled
system (or empty system), where both FLL and AMF limits angadent, hence FLL-DFT + U
correction will be the same. It is also the case for arbitammetry restrictions when the de-
generate orbitals are either completely filled or empty. W8mrerical symmetry restrictions are
employed, the orbital-specific FLL-DFT + U penalty functaccording to Eq. (3.62) becomes
a shell-specific penalty functional which provides no cimition when the shell population is 0
or N and provides a positive correction when the shell pdmrias between 0 and N.
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Figure 3.5: FLL-DFT + U correction fogyomo of C atom:eqomo (in eV) is plotted a function
of total number of electrond in the range <X N < 7. The exact line is obtained by interpolating
between the negative of ionization potential of C atom @fJV) and negative of the electron
affinity of C atom (-1.26 eV). DFT calculations were perfodreg the PBE-GGA level. In the
PBE + U calculation, an arbitrary value Ot = 5 eV was used for the@shell of C atom.
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Figure 3.6: FLL-DFT + U energy correction for C atom in @, b. C; point group symmetry

restrictions. In the PBE + U calculation, an arbitrary valfidJgsz = 1 eV was used for the2

shell of C atom.



Chapter 4

Computational Details

the Computational details of all the applications perfornmetthe present thesis are presented in
this chapter. In section 4.1, computational details reggrthe choice of DFT methods, basis
sets, etc., are summarized. Section 4.2, exclusively de#iisthe estimation of the effective

onsite-Coulomb parameter used in the DFT + U calculations.

4.1 Method

All the calculations were performed at the scalar reldiwigvel using the all-electron Douglas-
Kroll-Hess (AE-DKH) approximation [24] in the linear conmation of Gaussian-type orbitals
fitting-functions density functional (LCGTO-FF-DF) methfdd®3] as implemented in the paral-
lel code RRAGAUSS [21, 22]. Spin-orbit effects were not included in any of tlactlations.
Both LDA and GGA exchange correlation functionals were empgtb For the lanthanide sys-
tems, PBE-GGA [46] XC functional was employed for the lanttartrihalide systems Lif{Ln
=La, Ce, Gd, Lu) and for the ceria nano-particles VWN-LDA [40] Xunctional was employed.
For the uranyl dication molecule all the calculations weeefgrmed using the PBE-GGA XC
functional. DFT + U calculations were performed using the.FLFT + U scheme with the full
occupation matrbP =S-D- S

Table 4.1 presents the details of the orbital basis setaripation functions used in all the
calculations. In Table 4.1, only the size of the basis sedgpaharization functions are given. The
exponents and the contraction coefficients of the basisvgdigtheir references are presented
separately in Appendix I. The auxiliary basis sets useder.ttGTO-FF-DF method to evaluate
the Hartree part of the electron-electron interaction wesvdd from the orbital basis set in a
standard fashion [103].

Numerical grids were used to numerically integrate the X@tigbutions to the one-electron

55
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Table 4.1: Basis sets and polarization functions employetercalculations. N_Bas: the con-

traction scheme of the atomic orbital basis sets, and N_rRohber of polarization functions.

System Atom N_Bas N_Pol
LnF3 La (24s,21p,15d,5f) — [9s,8p, 6d, 4f] (5p,5d, 5f)
Ce  (25s,22p,15d,11f) — [9s,8p,6d,4f]  (5p,5d,5f)
Gd (25s,22p,15d,11f) — [9s,8p,6d,4f]  (5p,5d,5f)
Lu (25s,22p,15d,11f) — [9s,8p,6d,4f]  (5p,5d,5f)
F (14s,9p,4d, 3f) — [5s,4p, 3d, 2f] (5p, 5d)
Ceria Ce (25s,22p,15d,11f) — [9s,8p,6d,4f]  (5p,5d,5f)
o] (9s,5p,1d) — [5s,4p, 1d| (5p, 5d)
uos* U (24s,19p,16d,11f) — [10s,7p,7d,4f] (5p,5d,5f)
o] (9s,5p,1d) — [5s,4p, 1d| (5p, 5d)
[UO2(H20)5]%t U (24s,19p,16d,11f) — [10s,7p, 7d,4f] (5p,5d,5f)
o] (9s,5p,1d) — [5s,4p, 1d| (5p, 5d)
H (6s,1p) — [4s,1p] (5p,5d)
UO,OH™* U (24s,19p,16d,11f) — [10s,7p,7d,4f] (5p,5d,5f)
o] (9s,5p,1d) — [5s,4p, 1d| (5p, 5d)
H (6s,1p) — [4s,1p] (5p,5d)

potential and the total energy. For the clusters of cermgtid settings used is locally accurate
up to angular momenturh = 17 and contained 135 and 48 radial shells for Ce and O atoms
respectively. For all other systenige grids were employed which are locally accurate up to
angular momentum L = 29. The number of radial shells in theseharids are 197, 189, 185,
180, 180, 68, 58, and 61 for La, Ce, Gd, Lu, U, O, F and H atomperely. The details of
symmetry constraints, geometry constraints employedencticulations are given along with
the discussions of the results. Similarly details of geoynaptimization, frequency calculations

are discussed along with results.

4.2 Effective Onsite-Coulomb Parameter

In the DFT + U calculations, the effective onsite-CoulombgpaeterUes was used as an empiri-
cal parameter chosen by fitting the DFT + U results of somergbb&e target quantity. It is often
the case that an approximate value or a narrow range of vagess to b&les in the DFT + U

applications. The empirically fittedes provides theoretical justification for the DFT + U cor-
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Table 4.2: Estimation o) to fit the 1s orbital energyg;s of H atom in PBE approximation to
the negative of experimental IP (-13.60 eV) by fitting a gfindiine.

Ueft €1s
0.00 -7.58
2.00 -8.52
4.00 -9.47
6.00 -10.43
8.00 -11.39
10.00 -12.35
12.00 -13.32
14.00 -14.30

12.56 (optimum) -13.60

rections. However, in the present work all the calculatiwese performed both for an optimum
empirical value ofJe and for a range dles values. For all the systems, experimental ionization
potential (IP) of the system was used as the target quaigical IP calculated as the differ-
ence of two total energieASCF approach) or the energy of the relevant orbital are figathat
the target quantity in choosing the approximately optim@tu® forUs.

The straightforward procedure to empirically fit a set ofadiatto compute data for a wide
range ofUgs values and fit them with a straight line to get the optimal gadfi U¢¢ at which
the observed value is reproduced. In Table 4.2, the resuitssoprocedure is described for the
example case H atom where the property of interest is theggméithe I orbital and the target
guantity is the experimental IP of H atom. However, if theunatof the DFT + U correction
is qualitatively known, an iterative method can be employéuch leads to better insight and
converges to an optiméle value in a few steps. The FLL-DFT + U potential correctiomter
shifts the energy of an occupied orbital ly«x/2 and an unoccupied orbital byJsg/2. Thus
an optimum value olgs in which the orbital energy reproduces the experimentaldP loe

approximated in successive iterations as
Uil = Uk, 42 (|P+ s'fs> . (4.1)

Table 4.3 presents the result of an iterative estimatiddegfto to fit the energy of thedlorbital
of H atom to the experimental IP.

The 4f orbitals of lanthanide systems are highly localized. Fer lth 4f levels optimal
Uesr values for the corresponding (Ln 1l) ions were obtained liynfy the 4f orbital energies
€41 to the experimental IP [104]. In LaFmolecules, the actual oxidation state of the Ln ions
need not necessarily be Ill. Hence, optinikls values suitable for the f4levels in the Lnk
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Table 4.3: Estimation o) to fit the 1s orbital energyg;s of H atom in PBE approximation to
the negative of experimental IP (-13.60 eV) by the iterathathod.

k UK ek IP+ek,
1 0.00 -7.58 6.02
2 12.04  -13.34 0.25
3 1255  -13.59 0.01
4 1256  -13.60 0.00

molecules were obtained by fitting the weighted center ofdiesity of the 4-like states of
these systems to the experimental IPs from photo-elecpectoscopy of these systems [105].
Table 4.4 presents the atomic and molecllgg values for these systems, where for the Lfu 4
shell where the atom like localization is high in the lsuRolecule, the moleculddf value of
18.78 eV is very close to the atomic/ionis value 17.55 eV. As a compromise between these
two, aUgf value of 18.0 eV was used in the application of the DFT + U mathagy for LuFs.

TheUgs values of ions were used only in exploratory calculations.

Table 4.4: Estimate ofle for the 4f shell of Ln (Ce, Gd, Lu) in Lng. Atomic Ugg values
were obtained by fittings¢ of the Ln Il ions to experimental IPs. Moleculbites values were
obtained by fitting the weighted center of the density ofesdDOS) of the 4 levels in Lnk
molecules to the experimental IP from photo-electron spscopy. These values were estimated
from AE-DKH-PBE+U calculations. All values are in eV.

System Configuration Atomides MolecularUgg

CeFR; 4f1 12.88 6.28
GdFR; 4f7 16.35 10.21
LuFs 4f14 17.55 18.78

It is important to note that thedde; values were estimated to use in the AE-DKH-PBE
level with the basis set and grid settings given in Table #awever these values can be used
in other GGA or LDA calculations employing as a first approatian. It has been found in
test calculations that these values are not much dependdhieanethodology. For example,
in various LDA and GGA approximations, the optimals value for the 4 shell of LUf; was
found to lie in the narrow range of 2719 eV. This is perhaps due to the fact the SIE in orbital
energies in LDA and GGA calculations are of similar magnétud

Unlike the 4f orbitals of lanthanides, orbitals of uranium are semi-localized and they
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participate in bonding. Thus estimatitlyy based on orbital energies is rather difficult. In the
DFT + U applications to uranium systems, varidug; values have been employed that are
available in the literature. Based on the formal oxidatiatesbf the U atom in these systems,
all these values lie in the range of 1-5 eV. In a solid stateutation of uranium oxide [106], the
optimal value ofUes = 4.3 eV was used to reproduce the experimental band gap of 2 &NgA
value of 1.5 eV was employed in the solid state calculatioBts [107]. The methodology
employed in the above mentioned studies are slightly @ffefrom one another and from the
methodology used in the present work. One of the reasonhéoramarkable success of the
DFT + U methodology so far in the solid state calculations irethe fact that thesdes values
used for a specific system in a chosen method is meaningfutghtbel ¢ used in a method can

be used as a starting point in a different calculations aed the value can be fine tuned.

Table 4.5: Estimate ofes of the U 5f shell in uranyl complexes using first and second ver-
tical ionization potentials (IP) of UG and UG P from ASCF¢ PBE, PBE+U calculations in
comparison to experiment. All energies in eV.

IP

Formal PBE + U
System configurations of U Exp. Uett 0 1 2 3
uo 5f37sl — 5f3 6.03d 6.27 6.28 6.29 6.32
uot  5f3 _5f2 12.7+0.8¢ 13.33 12.72 12.08 11.41
Uo, 5f17st — 5f1 6.139 6.22 6.23 6.23 6.24
uo;  5ft 50 14.6+0.4¢ 15.08 14.84 14.60 14.36

a2 UO; and its cations: k), point group symmetry.

b UO and its cations: & point group symmetry.

¢ Spin multiplicity was fixed in all spin-unrestricted calatibns.
d Ref. [108]

€ Ref. [109]

In the present work, for the application of the DFT + U metHodg to uranium systems,
Uesr Of the U 5f level was estimated reproducing the experimental ioromgpiotentials of the
molecular species UDand UG throughA SCF calculations. This procedure covers the formal
oxidation states U(lll) to U(VI). Table 4.5 presents tdgs values estimated for the Uf3evel
is UO" and Uq. With the error margins of the experimental results as welihe relatively
weak dependence of the target quantitiedtJgp and the low value of the latter quantity, a value
from 1.0 eV to 2.0 eV seems acceptable, depending on theteidstate and the coordination
of the uranium center. In the DFT + U applications of U(VI) &ymas that are based on the %J'O
moiety i.e. uranyl the narrow range of 1.0 eV to 2.0 eV was wmwared as an optimal range.
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However, as previously mentioned, DFT + U calculations wedormed for a range dl ¢

values that covers the optimal value.



Chapter 5

DFT + U Application to Lanthanides

The third group of the periodic table contains the metalsdicem (Sc), yttrium (Y), lanthanum
(La) and actinium (Ac). The family of metals called tt@nthanidesform an inner transition
series (atomic number 57-71) which lie inside the princtpahsition series. The valence elec-
tronic configuration of the lanthanide atoms is giverjXa 4f" 6s> 5d*. Sc, Y along with the
lanthanides are also calleare earth metalsThe valence assignments of lanthanides are largely
deduced from experimental atomic volume data [110]. Stgrtiom the first member of the
lanthanides (La) until the last member (Lu) there is a gradeerease in atomic volume from La
to Lu which indicates that most of the lanthanides have satigtion state (LA™). Thus going
from La to Lu, the atomic radii decreases from 187.7 pm fora.473.4 pm for Lu (and ionic
radii from 103.2 pm for L&' to 86.1 pm for Ld" ) and this phenomenon is knownlasthanide
contraction[111]. Exceptions to this trend are Eu and Yb which show aroosdy large vol-
ume, hence large atomic/ionic radii because of their teeylembe stabilized in a divalent state.
The lanthanide contraction is attributed to the poor simel@f nuclear charge byf4electrons.

In many-electron atoms, as electrons are added in an outdlr slectrons already present in
the same shell and those present in the inner shells, shieldawly added electrons from the
nuclear charge. Thishielding effectlecreases with the increase in the angular quantum number
(1) of the orbitals in the ordes> p > d > f. Thus the 4 orbitals which show more directional-
ity (i.e increase in the angular quantum number) provide poor shigto outer electrons (8

6s? , hence the decrease in atomic radii) and torbitals of the same shell (hence decrease in
ionic radii). At this point one should note that with incremsatomic numbetr, relativity has a
direct effectof radial contraction o6 and p orbitals which increases the shielding due to these
orbitals. This increase in shielding or screening of thelearccharge due te and p electrons

has arnindirect effect it induces a radial expansion dfand f orbitals [112—-114].

A number of lanthanide (LH) complexes are colored, where the color arises ffeintran-
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sitions. The metallic conductivity of the rare earth metaises from the delocalized@nd S
electrons but the magnetic moment results from the lochlfeelectrons. Except for 1% and
Ludt which are diamagnetic all other Bh ions with unpaired 4 electrons are paramagnetic.
In a lanthanide complex or molecule, thé drbitals do not participate directly in bonding thus
the ligand environment only slightly influences the spesttopic and magnetic properties of lan-
thanide complexes, in contrast to transition metal comgewvhere the effect of thegand field
splitting is substantial. In fact thefdorbitals of lanthanides are buried deeply below tead
5p shells of thgXe| core and provide very little overlap with the ligand orbstgl11].

The main objective of the present chapter is to discuss tiplicagion of the DFT + U
methodology to lanthanide complexes both to understandoleeof 4f electrons in lanthanide
complexes and to provide an improved DFT description foEkectron systems. The chapter is
organized into two sections.

Section 5.1 focusses on the application of the DFT + U metlogyaas a tool to probe self-
interaction artifacts in KS-DFT calculations and to untemdg bonding aspects of lanthanide
trifluorides. Within this section, Subsection 5.1.1 focuparticularly on the role of #orbitals
in the bonding of lutetium trifluoride (Luf) [25]. In Subsection 5.1.2 the role ofi®rbitals in
the bonding of Lak, GdF; and LuF; is briefly outlined.

In Section, 5.2 preliminary results of a DFT + U investigatio model ceria nano-particles

are presented.

5.1 Lanthanide Trifluorides

The molecular properties of lanthanide (Ln) complexes Hasen the subject of intense dis-
cussions in quantum chemistry [115]. Understanding thegmntees of lanthanide molecules in
the gas phase is crucial for appreciating the behavior ofdmpiexes in the solid state and of
actinide complexes. For this purpose, the trifluorides otfHanides Lnk are representative sys-
tems. They have been subjected to a number of experimea&t]18] and theoretical investiga-
tions, the latter ranging from semi-empirical calculag¢hl9] to DFT-based studies [120-123]
and high-levelab initio [124-126] works. Two major physical effects that challetige the-
oretical modeling of Ln complexes are relativistic effeatsl dynamic correlation. As further
complication, spin-orbit interaction arises in a propdatieistic description, but it can be ne-
glected in a first approximation, at least if one focuses ancsires, especially for the systems
with the Ln 4f shell empty (La 49), half-filled (Gd 4f ), or completely filled (Lu 41%) [127].
An important feature of the Lnfmolecules is the geometry. It is of considerable interes7]1

to know the role of participation of 4and 5 orbitals in the appearance of pyramidal rather
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than planar geometries of lanthanide trihalides. The nutdectructure of lanthanide trihalides
is often related to the ionic nature of the Ln-X bond [121] ethexhibits some covalent con-
tributions of Ln &l and & orbitals [117]. Early pseudo-potential studies were gsitecessful,
even without explicitly treating the f4shell [115]. However, a simple model related the as-
phericity of an incompletely filled #shell to the preference for planar or pyramidal shape of Ln
trinalides [128]. Such simple models are possible due ta&mai-core nature of the compadt 4
shell in lanthanide atoms. Furthermore, the radial extétite4f shell and, to a lesser degree,

the atomic radii of the lanthanides are subject tolmthanide contractiofl12].

IP (eV)
10.0 —
12.0 —
14.0 — 2p

16.0 —

18.0 —

0.0 LaF,  CeF,  NdF,  GdF,  LuF

Figure 5.1: Trend of the ionization potential, IP (in eV) bktweighted center of the density
of states of the Ln #and F 2 shells in Lnks where Ln = La?), Ce(f?), Nd(f3), Gd(f’) and

Lu(f1%) based on photoelectron spectra [105].

5.1.1 Role of 4 Orbitals in the Bonding of LuUF 3

The compact and completely filledf 4hell oflutetium(Lu) represents a challenge for standard
exchange-correlation functionals in regard to the sea#raction error [131, 132]. The well-

known underestimation (by absolute value) of eigenvalonegandard Kohn-Sham (KS) calcu-
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lations [133] due to the insufficient cancellation of thef-seferaction energy, accompanied by
the relativistic destabilization of thef4orbitals [134], places the Lufdorbital energies of Luf-

in the same range as the @rbitals of the F ligands. Yet, in the photo-electron speutiof
LuF3 [105], the Fp-like ionization energies, 13.7-14.9 eV, are well separ&i@m the Luf-like
ionization potentials (IPs), 18.4-20.1 eV (see Figure.5.1)

A recent all-electron (AE) zero-order relativistic appiragtion (ZORA) DFT study [123] of
LnX3 complexes (X = F, Cl, Br, 1) yielded highly pyramidal structsifer Gdr; and LuFz which
in the case of Luf; in part, was related to a considerable mixing of Liua¥bitals with the F
2p orbitals. Yet, the increasing pyramidal shape of Ln trifldes with F-Ln-F bond angles of
113.6,106.8 and 101.4 for Ln = La, Gd, and Lu, respectively, is at variance with tasuits of
other calculations where the F-Ln-F angle increases totirdnd of the Ln series, approaching
120 of a planar structure [118].

The quasi-resonance condition between the Ladd the F P levels, though apparently an
artifact of conventional KS methods, may be the reason fonguncedf-covalency, observed
by Clavaguéra et al. [123]. Even in that case, from a simplified/ of the bonding, one would
expect the interaction between the closddshell of Lu(lll) and the closed 2 shells of three
F~ centers to be at most non-bonding, if not repulsive. Intergly Dolg et al. noted in KS
calculations of GdF that the Gdf 4rbitals mix with F orbitals and they related this mixing as a
consequence of an artificial quasi-resonance conditioialnigih-lying Gd 4 levels as result of
an insufficient self-interaction cancellation in standaxdhange-correlation functionals [135].

Thus the case of Luforms an ideal case to demonstrate that the £4F42 p orbital mixing
in KS calculations of Luk is not relevant to the chemical bonding by showing that reaho¥
this spurious orbital mixing does not affect the importaxperimentally observable molecular

properties.

5.1.1.1 Results and Discussion
Molecular Properties of LuF3

The AE DKH PBE and AE DKH PBE + U geometrical parameters of 4 @afong with the

atomization energy, the vertical IP, and the energy of thavid@Dare collected in Table 5.1.
Results from other calculations such as the semi-empifN20 method [119], the PBE method
(with an effective core potential for Lu) [120], the AE ZORA PBtethod [123], the hybrid DFT
methods PBEO [120] and B3LYP [121], as well as results from wawetion based methods
such as CISD + Q [124], CCSD(T) [125], and CASSCF/CASPT2 [126] averted, along with

experimental results [105,116,129]. Although all highellecalculations predict the equilibrium
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Table 5.1: Calculated properties of Lu&t AE DKH PBE and AE DKH PBE + U levefsalong
with results from other methods: Hubbard paramétgg, equilibrium bond lengthie (pm), F-
Lu-F angle@ (°), atomization energe (eV), ASCF vertical ionization potential IP (eV), and
the negative of the energyomo of the HOMO (eV).

Method Uetf le ?] De IP —EHOMO

AE DKH PBE? 1969 117.0 21.29 12.06 8.50

AEDKHPBE+U 1.0 1970 1171 21.29  12.09 8.57
20 197.0 1172 2129 1211 8.61
50 197.0 1173 2128 12.16 8.68
10.0 1971 1175 2127  12.19 8.72
15.0 197.2 1176 2126 1221 8.73
18.0 197.2 1177 2125 12.21 8.74
20.0 1972 1177 2125 1221 8.74

INDQS 2045  107.4

PBEC 199.5  118.0

PBEC 198.3  119.0

B3LYP® 199.1  118.9

AE ZORA PBHE 1969 101.4

CISD+(¥ 196.5  120.0 18.21

CCSD(TJ' 197.4  120.0

CASPT2 196.1  120.0  20.52

Exp! 196.8  120.0 18.44  13.75

a Point group symmetry of the molecule3C

b This work.

¢ Ref. [119].

d Ref. [120].

€ Ref. [121].

' Ref. [123].

9 Ref. [124].

h Ref. [125].

' Ref. [126].

I reand® - Ref. [116], IP - Ref. [105]De - Ref. [129].

bond length in the range 196.1-197.4 pm, which is very clodbé experimental value, 196.8
pm, one notes some interesting differences. allinitio wave function based methods predict
a planar geometry, with the bond angle F-Lu-F at’1p®4-126]. Most DFT based methods
[120,121], including the present work, predict a pyramigbmetry for Luk, with the F-Lu-F
bond angle 2-3smaller than 12Q that decrement is slightly smaller;,lwith the hybrid DFT
methods PBEO and B3LYP [120,121]. In that regard, the PBE cationis by Clavaguéra et al.
form a singular exception where this decrement is as large9a§l23]. In this context, it is
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interesting to note that in the present calculations thegsnearrier between the two equivalent
pyramidal configurations through the planar transitioniest@as less than 1 kcal/mol, in close
agreement with other DFT calculations [120]. The AE DKH PBiuaiure of Luks is a rather
flat pyramid, with the Lu-F bonds forming an angle of 1CGdgainst the normal (£axis) of
the F3 plane. Clavaguéra et al. [123] related the strong pyranzidadin to the participation
of 4f orbitals in metal-ligand bonding due to LU 4 2p mixing. In contrast, a very recent
CASSCF/CASPT2 study [126] yielded a planar structure of L ukth an inert Lu 4 core.
Further support for the essential planarity of kuis provided by other recent theoretical studies
(Table 5.1); for a discussion of general geometric trendsaetfl halides, see Ref. [136].

From Table 5.1, one notes that an increas& gf up to 20 eV does not affect the structure
and the calculated energetics in a chemically significaiyt Wéhen comparing the results from
a standard PBE calculatiotd{s = 0 eV) and a PBE + U calculation with the optimum value
Uess = 18 eV, very small changes of key parameters already sutfgdtu 4f contributions to
the MOs will not play an important role in the bonding. Restiitan these two calculations
differ only by 0.3 pm for the Lu-F bond length of 197.2 pm an@Gor the F-Lu-F bond angle
of 117. Likewise, the atomization enerdYe = 21.3 eV atUe = 0 eV decreases by a mere
0.05 eV on going tdJef = 18 eV, the experiment suggests a significantly lower valug84
eV. Similarly, theASCF result for the first vertical ionization energy, 12.2 eMl ghe negative
of the energy of the HOMO, 8.7 eV, increase by 0.15 and 0.24e&3pectively, in the PBE +
U calculation. The experimental estimate for the IP of 4i8-13.75 eV [129]. Whether or not
Lu 4f and F 2 contributions mix in the MOs of Lug-does not seem to affect the calculated

structural parameters of the molecule.

Atomic Charges and Orbital Analysis of LuF3

In the following, the nature of the Lu-F bond and the role éfelectrons in particular is dis-
cussed. First the atomic charges from PBE and PBE + U calcnfatice compared to identify
possible consequences of the atomic localization of the Lwbitals. Table 5.2 lists Mul-
liken (q™) and potential derived chargeg P) along with the populations of the valence atomic
orbitals.

The Mulliken charge of Lu, 1.5& does not change in the PBE + U calculation. The potential
derived chargeq”P) of Lu and the population of the shell increase by a negligible amount, 0.01
e. The 4f orbitals contribute 13.98to the total population of 14.1€0f the f shell; the excess
is from Lu 5f and higher lying contractions. In summary, enforcing laalon with the help
of a Hubbard term does not change the overall picture regautie charge on the Lu atom and

the effective occupations of the Liushell and the Fp shell. This finding further strengthens the
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assertion that the spurious mixing of Ld 4nd F 2 orbitals in a standard KS calculation does
not affect the character of the Lu-F bonds.

As the most notable effect of the Hubbard term, the one+@ranergies of the Lu #like
orbitals are significantly shifted downward and the LitHB 2p mixing is removed (see Figure
5.2 and Table 5.3 ). The average energy of the Eunénifold drops from approximately -10 eV
at the PBE level to -18.5 eV at the PBE + U level.

Figure 5.2 shows the partial DOS of LUF3 in the range from -&teV, resolved for the
Lu 4f and F 2 contributions. The figure covers the manifolds of MOs with4iuand F 2
character; there is also a slight Ld 6ontribution to the F @ band. In the total DOS obtained
from the AE DKH PBE calculationWess = 0 eV) at the equilibrium geometry, the Lu 4nd
the F 2o levels fall in the same narrow range of about -8.5 to -10.5Té\ sharp peak from
-10.0 to -10.4 eV corresponds to the L& drbitals. When théJ¢¢ value is raised to 18 eV in
the AE DKH PBE + U calculation, as expected, the center of thé@nhd moves downward by
8.5 eV (Figure 5.2). With the introduction of the Hubbardethe F 2 band shifts down, now
ranging from -8.7 to -9.7 eV as compared to originally fronb-& -9.5 eV (Table 5.3). Figure
5.2 graphically indicates that the mixing of LU 4@nd F 2 states, as obtained in the AE DKH
PBE calculation, is removed in the AE DKH PBE + U calculation.

Table 5.3 quantifies the mixing of Luf4and F 2 orbitals upon formation of the MOs of
LuFs. In C3y symmetry the sevenfdorbitals of the central Lu atom reduce as 2alg + 2e
and the nine @ orbitals of three F ligands split as 2a& 1& + 3e. The Lu 4-F 2p mixing
in the MOs of Luks is essentially removed for the physically meaningful vallig = 18 eV.
However, the Lu 4 orbitals undergo a very significant localization, to 90-95 &fseady for
the very small valud&J. This observation strongly suggests that a very small realuof the
remaining 4 self-interaction error, affected by the Hubbard term vl = 1 eV, suffices to lift
the near degeneracy of Ld 4nd F 2 levels and to cancel their mixing. The whole situation in a

standard KS calculation of Lufndeed is very characteristic of an accidental degeneraivym

Table 5.2: Mulliken chargg™ and potential derived chargE® of Lu in LuFs as well as orbital

populations per atom (ig).

Method oq" q°P Lu F
55 5p Af 5d 6s 2s 2p
AE DKH PBE 1.57 1.81 198 595 1398 0.96 0.24 1.79 5.70

AEDKHPBE+ W 157 1.82 198 595 13.98 0.95 0.24 1.79 5.70
a8 Uest = 18.0 eV for the & shell of Lu.
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Figure 5.2: Partial density of states (DOS) for L& @reen), F » (blue), and other orbitals
(white) of LuF; in the energy range -8 to -20 eV as obtained from AE DKH PBE andD&H
PBE + U calculations, the latter withe = 18.0 eV for the 4 shell of Lu. The absolute positions
of the levels and their degeneracies are given by the hdekbnes. For easier comprehension,
this line spectrum is broadened into a DOS by folding with ai$3&n distribution with a full
width at half maximum of 0.09 eV.
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Table 5.3: Orbital mixing of the valence molecular orbitdf0s) of LuFz:2 energies; (eV) and

Mulliken atomic gross populations (as %).

MO AE DKH PBE AE DKH PBE + P
& Population & Population
Lud Lu f Fp Lud Lu f Fp

2o -8.49 22.5 77.9 -8.73 2.2 97.9
15e -8.69 0.2 10.2 89.1 -8.78 0.1 0.3 99.1
17a -8.89 0.1 16.9 81.7 -9.01 0.5 0.5 98.0
16 -9.09 2.3 54.0 41.3 -9.77 3.6 1.2 91.0
14e -9.13 5.5 22.7 71.5 -9.27 6.4 0.5 92.8
13e -9.50 7.6 22.6 69.1 -9.65 10.2 0.2 88.3
lap -9.94 79.0 20.9 -18.56 99.3 0.6
153 -9.99 0.3 86.2 13.3 -18.47 0.1 97.9 0.8
12e -9.99 0.7 80.0 19.0 -18.65 0.0 99.5 0.3
1l1le -10.09 2.8 64.6 32.0 -18.72 0.0 99.5 0.3
14y -10.42 1.5 42.8 53.7 -18.76 0.0 99.6 0.2

a Point group symmetry of the molecule3C

b Uet = 18.0 eV for the & shell of Lu.

completely filled manifolds, here the Luf#* and the F p band which is formally completely
filled with 18 electrons. For the MOs of the symmetry type thhe removal of Lu 4-F 2p

mixing is illustrated in Figure 5.3 where at the PBE + U levéinast complete localization of

the two f-like orbitals can be seen. These tWmrbitals are thef;z and thef,,o_32) orbitals

both transform according to ttag irreducible representation of they(point group (here the £

axis of LuF3 coincides with the z-axis).

Table 5.4: Relative radial expectation valde,(in pm) of quasi-atomic #-like molecular or-

bitals (MOs) of Luk w.r.t the radial expectation valueof 4f orbitals of Li#* catiorf.

MO AE DKH PBE AE DKH PBE + U
14y 1.00 0.39
15 0.58 0.05
1 0.82 0.28
1lle 0.55 0.36
12e 0.62 0.31

arof Lu, Lut, Lu?* and L&+ are 38.35, 38.17,
38.06 and 37.92 pm respectively.
b Ue = 18.0 eV for the & shell of Lu.
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Figure 5.3: Lu 4-F 2p mixing in the AE DKH PBE calculation and its removal in the AE
DKH PBE + U calculation (J¢f = 18.0 eV) shown for the MOs of the symmetry type dhe

pyramidal structure of the Lufmolecule (bottom) is shown for reference.
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Finally, to exemplify the concept of spatial localizatiohthe 4f orbitals as enforced by
the the Hubbard parametéle, radial extension of the quasi Luf4ype orbitals is Luk is
discussed. To quantify this (small) effect, the radial egien of the Lu 4-type orbitals of the
Lu®* cation is used as reference because the potential deriaegecf"P) of the Lu center (see
Table 5.2) in Lukz is close to +2. The radial expectation value of thieshell of this ion isr
= 38.1 pm. The penalty of the Hubbard term for fractional pafpans makes the intra-atomic
41-5f hybridization less favorable in a molecule. From Table 5can be seen that: in the AE
DKH PBE calculation of Luk the radial expectation values of the quasi-atonficdntributions
are 0.62-1.00 pm larger than the reference. At the AE DKH PBEleve, size and range of
the deviations from the reference decrease as expecte®@e®39 pm.
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5.1.1.2 Conclusions

Incomplete cancellation of self-interaction due to an agjnate density functional of the stan-
dard variety results in Kohn-Sham eigenvalues lying tod Imgenergy which, in Luk, leads to a
metal-ligand orbital mixing owing to an accidental neageleeracy. Care should be taken when
interpreting such orbital mixing as a bonding situatione DFT + U methodology proved to be
a suitable tool for tuning the population and localizatiéoditals and thus to probe the bonding
situation. The Hubbard term included in the DFT + U schemeides a simple procedure for
exploring self-interaction artifacts such as those showthb quasi-atomic Lu # orbitals. This
scheme allows one to enforce orbital localization and thusitnove the spurious orbital mixing
present in a calculation of LyFwith a standard gradient-corrected exchange-correldtino-
tional. Overall it has been shown through this study thaptiesence or absence of the spurious
mixing of Lu 4f and F 2 orbitals does not affect any of the observable moleculapgnttes

or formal atomic charges and previous claims of Liugtbitals participating in the chemical

bonding of Lukz cannot be uphold.

5.1.2 Role of 8 Orbitals in the Bonding of LnF 3
5.1.2.1 Results and Discussions

In Subsection 5.1.1, it has been shown how to interpret théfL.uF 2p orbital mixing situation
as seen in a standard KS calculation. Further it has beenrdgrated that the #orbitals of
Lu do not influence the structural and bonding features ofsLsignificantly. However, both
the DFT and DFT + U calculations predicted pyramidal streetior LuFs and in the present
subsection, it will be shown that artifacts involving the bd orbitals are responsible for the
pyramidal structures of Lnfwhere Ln = La, Gd and Lu.

The possible influence of the Lrd®rbitals on the geometry of LuFhas been discussed in
Refs. [117,121,130]. The situation of L5 F 2p mixing in LnF3 is different from the Lu 4
- F 2p orbital interaction. Here the mixing of the formally unopeed Ln Sd-like orbitals can
also occur because of poor modeling of the wavefunction dagtincomplete basis set or poor
choice of level of theory. Thus it should be noted that in thespnt context, the Lndb- F 2p
mixing need not arise due to incomplete self-interactiamcedlations but may also be a result
of insufficient modelling of the Ln & orbitals which places the energy levels of La &rbitals
close to the F B levels resulting in hybridization. Table 5.5 lists the gextry properties of Lag;
GdFR; and LuRs in AE DKH PBE and AE DKH PBE + U calculations along with resulterfr
the hybrid DFT methods PBEO [120] and B3LYP [121] as well as ftbmwave function based
methods MP2 [137] and CISD+Q [124]. In the AE DKH PBE + U calcigliat a value of 2.0 eV
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was used for the Hubbard parametks; of the Ln 5 shell. From Table 5.5, one can clearly see a
slight elongation of Ln-F bond lengths in the AE DKH PBE + U lewdaen compared to the AE
DKH PBE level for all the three molecules. This is a charastariof the Hubbard term which
disfavors weak ionic interactions that lead to fractionadupation numbers. From the values of
the angle of deviation of the Ln-F bond from planarity, it isar that at the most accurate level
of theory considered here i.e. CISD + Q [124], the geometryefLinF; molecules is planar. At

the PBE level, all the three lanthanide fluorides have nongolgaometry. From the PBE values

Table 5.5: Structural properties of Lghere Ln = La, Gd, Lu at PBE and PBE +&levels
along with results of other methods: equilibrium bond léngt(pm), F-Ln-F angled (degree)
and the angle between the Ln-F bond and the plane orthogwtia three-fold axig (degreé.

System Method r 0 (0]
LaFs AE DKH PBE 2121 1134 152
AEDKHPBE+U 2153  120.0 0.0
PBEQ°® 2174 1139 146
B3LYP 216.1 1151  13.0
MP2¢€ 2150 1129 1538
CISD+Qf 215.9 120.0 0.0
GdFR; AE DKH PBE 203.3 1152 129
AEDKHPBE+U  206.2  120.0 0.0
PBEQ® 205.8 117.0 101
B3LYP 205.6  117.7 8.8
MP2¢€ 206.0 117.8 8.6
CISD+Qf 205.6  120.0 0.0
LuFs AE DKH PBE 1969 117.0 101
AEDKHPBE+U  199.2  120.0 0.0
PBEQ°® 197.7  119.3 4.8
B3LYP A 199.1  118.9 6.1
MP2¢ 198.0 120.0 0.0
CISD+Qf 196.5  120.0 0.0

4 Ueff = 2.0 eV for the 8l shell of Ln.

b The angle of deviation of the Ln-F bond from planaxtyvas
calculated for a given value &f as
@ =90— (180/ rr)arccos[[{Zcos{ m6/180) + 1} /3](1/2)

¢ Ref. [120].

d Ref. [121].

€ Ref. [137].

" Ref. [124].
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of the F-Ln-F bond angles or from the angle between the Ln4kdland the plane orthogonal
to the three-fold axisp, one notes that, going from LgFo LuFs, the structures approach a
planar configuration. This trend is also followed by the Higiel methods such as the hybrid-
DFT methods PBEO and B3LYP, as well as the wavefunction bas¢idochéP2. At the MP2
level, only LuFs is predicted to be planar while Lgfand GdRk are predicted to be pyramidal.
It is interesting to note that at the PBE + U level, fogs = 2.0 eV, all the three structures are
predicted to be planar in agreement with the CISD + Q results.

Myers et al. [130] pointed out that the interaction betwe®s metal 8. orbitals and the
fluorine 2o orbitals is notably enhanced in the pyramidal configuraiiobnXs; this interaction
is also discussed in Ref. [121]. For a more general discussgarding the role odl orbitals as
r-bonding acceptors see Ref. [138]. With the energy of the d.isitell and F § favorable to
interact, this situation in LndHs similar to pyramidalization of Nglwhich can be explained as a
consequence of second-order Jahn-Teller (SOJT) intera(see Figure 5.4). A brief overview
of the Jahn-Teller interactions and related structurdbdi®ns is discussed in the next chapter
in Section 6.1. For a general discussion of orbital-inteoacconcepts related to geometric
perturbations as in the case of second-order Jahn-Tetlgtisins in small molecules one is
referred to the works of Burdett and others [139-141].

Figure 5.4: Ln(’6lz)-F(2p) interaction in the G, configuration

The Mulliken chargg™ on Ln (Ln=La, Gd and Lu) and the populations of the valencenato
orbitals of LnF; are listed in Table 5.6. Here one notes that for all three oubéss, the Mulliken
charge of Ln decreases by @in the PBE + U calculation. This change in charge can be related
to the population of thedorbitals which decreases by the same amount i.e.e(QTable 5.6)
by shifting the (unoccupied) Lndborbitals up in energy due to the Hubbard term, which in turn

significantly removes the Lndb- F 2p mixing.

5.1.2.2 Conclusions

The above analysis identified an artificial second-ordenJaéller type artifact due to insuf-
ficient delocalization of the & orbitals resulted in a mixing with the ligandorbitals which

resulted in the pyramidalization of the Lyifnolecules. The main objective of this section was
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Table 5.6: Mulliken chargg™ of Ln (= La, Gd, Lu) in Lnk as well as orbital populations per
atom (ine) from PBE and PBE + U calculatioris

System Method M Ln F
55 ©5p 4f  5d 25 2p

LaFRs PBE 1.76 196 597 0.21 0.89 1.87 5.68
PBE + U 1.85 196 599 0.22 0.75 1.89 5.69

GdR; PBE 1.79 192 588 7.11 0.89 1.85 5.66
PBE + U 1.86 192 589 7.13 0.75 1.86 5.69

LuFs PBE 1.57 1.98 595 13.98 0.95 1.79 5.70
PBE + U 1.63 198 5.96 13.99 0.84 1.80 5.71

4 Uef = 2.0 eV for the 8 shell of Ln.

mainly to bring to attention the applicability of the DFT + Uethodology as a probe tool to
tune the orbital energies hence to tune the occupation oftecylar shell of orbitals and to fol-
low the results to gain more insight into the bonding aspedte applications discussed in this
subsection and the previous subsection illustrate thacaiylity of the DFT + U methodology
to investigate structural and bonding aspects of lantleaoainplexes. However, the DFT + U
scheme is equally applicable to larger realistic systemereMften than not the prediction of
reaction energies and excitation energies are of primedsitén real systems.

Theoretical modelling of # — 5d excitations of lanthanide ions is both challenging and
prospective. Accurate modelling of these excitations igartant to study the photo-active prop-
erties of certain material which are doped with lanthanatesi While modelling such systems is
difficult even for high-level wavefunction based methodsdeilling a realistic large-scale nano-
cluster is prohibitively expensive by wavefunction basesthnds. As discussed in the previous
subsection 5.1.1, self-interaction artifacts complicateurate modelling of #orbitals while de-
localization artifact due to poor modelling also lightlyfexdts the 8l orbitals. To identify and
guantify both such artifacts and to provide an accuratergesm, the DFT + U methodology

forms an suitable model.

5.2 Ceria Nanoparticles

Ceria or cerium oxide is widely used as a supporting metal ierbgeneous catalysis. The
advantages of ceria over other materials, specifically ottegr lanthanide materials are due to

the ability of the Ce 4 electron to show valence transitions as discussed in Chapidrere is
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an enormous amount of literature on the theoretical andrerpatal study of ceria [143-148].
This section will serve the purpose of both reviewing thedasncepts as explored during the
course of this thesis project and to summarize the resuigpogliminary DFT + U investigation
to model ceria nanopatrticles. In the following introdugtoeview only properties and other

details related to Cefdelectron will be discussed.

CeQ or Ce(IV) oxide is the most stable phase of ceria at room teatpey and under at-
mospheric conditions [147]. Another commonly discussathfof ceria is the fully reduced
form which is represented by the stoichiometric formula@g! (see for example Ref. [147]).
Oxygen vacancy on the surface of ceria often play a vitalirolarge-scale applications of ceria.
The concept of oxygen vacancy in ceria is related to th&" (@ redox process of Ce atom
as follows: In the stoichiometric cerium oxide Cg@ll valence Ce states (i.e.f46s°5d?) are
empty implying a C&" oxidation state. The partially reduced form of cerig,Og,_y is formally
created by removing oxygen atoms. In other words, for evenyaved lattice oxygen ion, two
electrons are left behind to create twoCeenters close to the site of the vacancy [143,146]. In
Ce(Q, the empty Ce # band is located between occupied @tand and the unoccupied Cd 5
band while in the partially reduced ceria, a localized pdlytioccupied 4 band is located below
the unoccupied #iband [143].

The number of oxygen vacancy centers in ceria is directigteel to the ratio between the
numbers of C& and Cé+ centers. The ability of ceria to store and release oxygeglasad to
its ability to change the oxidation states of the cerium eenbetween Il and IV by accepting
of releasing the # electron. This property has its effect in improving catalgbnverters where
for the efficient conversion of the harmful gases such as CO tpt@©level of oxygen should
be maintained optimally. Reactions involving catalysisgoyd (Au) nanoparticles [143-145],
such as room temperature oxidation of CO have been obsendes twore efficient when the
Au nanoparticles (npAu) are supported on ceria [148]. Ardimad form of Au has been known
to be important in the chemisorption of CO on gold nanopasichpAu. Ceria nanoparticles
(npCeQ) as support stabilize the positive charge density on Au.ayX{hotoelectron spec-
troscopy (XPS) of npAu/npCefindeed reveals the presence of Au in its common oxidation
states | and Il along with neutral gold species [148] whiavédrbeen found to grow near the

oxygen vacancy sites.

1The bulk properties of reduced ceria indicate that the &stiséchiometric formula is CeQwhere x=1.50 to
1.53.
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5.2.1 Model Nanoparticles

Loschen et al. [149] designed a series of octahedral cenapaaticles and studied them us-
ing the plane wave DFT + U method. In their work they discugbedproperties of the three
nano-dimensional model clusters with the molecular foartig 903y, Ceys0Og9 and Cgs0160.
Some of these particles were designed during the coursasathisis work and in the present
subsection, the procedure adopted to design them will lefiypsummarized.

Investigations using transmission electron microscoB/J investigation showed that ceria
nanoparticle single crystals with a dimension of a few nmehaither an octahedral shape with
eight(111) surfaces or with an additional (200) surfacg tjuire a truncated octahedral shape
with a dimension of a few nm [150]. Thus one way to construeséhnanoparticles will be to
build an extended cubic Ce@amework and cut along the 8 (111) planes of the cube atwario
radial distance from the center of the cube to arrive at @xtedd particles of various dimensions.
By an experimental mathematical procedure a general malefarmula for these particles was
invented during the present work as, @&, where:

xi:%(Z(i+1)3+(i—|—1)); yi:gi(i—i—l)(i—i—Z) (5.1)

andi represents the number of shells of octahedral symmetmddlhie above equation a possi-
ble series of npCefXxclusters of octahedral symmetry for various values afe listed in Table
5.7. One notes that as the particle dimension increasestibdetween the number of O centers

to the number of Ce centers approaches the bulk value of 2.0.

Table 5.7: Molecular formulae for a series of octahedraboeanoparticles.

CQQ Oyi yi/Xi

Ce0s 1.333
Ce 9032 1.684
Ce40g0 1.818
Cea50160 1.882
Cel460280 1.918
Ce310448 1.939
Ce440672  1.953
CeggOggg 1.963
Ce&7001320 1.970
0 C%9101760 1.975
Bulkk Ce,02y 2.000

P OO ~NOOLh, WNPE

The 6 Ce centers of the first cluster, if assumed to be symrabiyriequivalent, exhibit a

formal oxidation state of-2.67, implying the average configuratidh33. In the larger members
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Ce*t and Cé+ centers can be symmetrically distributed: for example énsgbcond member of
this series, Cg03» a combination of 7 C& ions (1 at the center and 1 per each of the 6 vertices
of an octahedron) and 12 &ecenters ( 1 per each of the 12 edges of an octahedron) may resul

in a cluster as shown in Figure 5.5.

Figure 5.5: AE DKH VWN equilibrium configuration of the octatral Cg 03, nanoparticle

(Ce-violet, O-red) with dimension 1.0 nm.

5.2.2 Results and Discussions
5.2.2.1 Exploratory Investigations

In preliminary DFT + U investigations, small molecules sashCeO3, Ce;0g were studied to
gain experience with convergence-related issues in DFELItIons of these systems. Modelling
of these systems present difficulties of various types. Alth modelling a delocalized state is
not a problem for DFT, modelling a mixed-valence type statenore of a many-determinant
problem where schemes likmoken-symmetrdFT (BS-DFT) can partially alleviate the prob-
lem [152,153]. In the DFT + U calculations however one caralize thef electrons in order
to prevent converging to a delocalized state, but to do teat kiigh, physically improper values
for Uesr have to be chosen. A few useful conclusions which were draam £xploratory calcu-
lations of model systems will be presented in this sectiorcvivill be followed by the results
and discussions of some successful calculations.

In the first implementation of the DFT + U methodology, a DFT +nliking scheme was
used where a fraction of the DFT + U potential of the ()" iteration was added to the potential

calculated at thei (" iteration:

~
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A default value of 0.3 was used for the weight factowhich was later found to slow down
the SCF convergence. In the subsequent versions of the DFT edullmthe default value for
win Eq. 5.2 was changed to 1.0 with effectively no mixing, heerev also can be fixed in a

calculation as desired.

5.2.2.2 DFT + U Investigation of Ceria Nanoparticles

The difficulties presented by DFT and DFT + U modeling of ceaaoparticles in the application
of gold catalysis has been discussed in Refs. [151] and [H4fng et al. [143] have summarized
various key points which are of interest and found to haveaitie subsequent investigation of
the present thesis work. In previous DFT + U investigatidoisthe choice ol of the Ce 4
shell, optimum ranges of values such as 5-6 eV and 3—4 eV learefavored in LDA + U and
GGA + U calculations respectively (see Ref. [143] and othfasresces there in).

The 51-atomic ceria nanopatrticle (Figure 5.5) of the mdeactormula CegO32 was cho-
sen as a candidate for the main investigation. For the pirgdiry investigation the geometry was
optimized with the AE DKH VWN method followed by single poinEADKH VWN + U calcula-
tions. As a preoptimization step various equilibrium getrras with differing Ce-O bond lengths
were tested and improved convergence was noted for systeémsiaderately larger Ce-Ce bond
lengths ( 360 pm) than models with shorter Ce-Ce bond lengthshe AE DKH VWN + U
geometry optimization Fermi-level broadening scheme v&esl with a Fermi energy window
of 0.1 eV between HOMO and LUMO. Through AE DKH VWN single poa#lculations the
Fermi energy window was found to take values up to 0.07 eWbglbich no SCF convergence
was observed. In AE DKH VWN + U calculations using varidugs values, Fermi energy
window below 0.1 eV did not lead to SCF convergence. FurtineAE DKH VWN geometry
optimization and AE DKH VWN + U single point calculations sginly magnetic moment was
fixed to have the value 1@which formally corresponds to a system with &helectron on each
of the 12 Ce atoms located at the 12 edges of the octahedrorctaigedral symmetry constraints
were used. In the AE DKH VWN + U single point calculations, tleewerged AE DKH VWN
density was used as starting guess density to speed up thecb@rgence.

Table 5.8 presents the results of a series of spin-unrestrilE DKH VWN + U single
point calculations of Cg0O3, performed for various values tfq in the range 0 to 6 eV at the
AE DKH VWN geometry. The main property of interest here is teritify Ce&** and Cé*-like
centers. For this purpose the total population bfefectrons on the Ce centers along with the
energy of the Ce @like orbitals were studied. While the population of the Ceteeson a bulk
system can be expected & in CeQ® and nearlyf! in the fully reduced Cg03, an indirect

effect of the net charge of the Ce centers on the correspodisgell has been found to aid the
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identification of the character of Ce-atoms [149]. In thedtmmetric species CeQvhere the
Ce centers carry a formal +4 charge, the energy of therBitals (34) was found to be -867.0
eV from a projected augmented wave (PAW) method [149] and enfally reduced ceria i.e.
Ce 03, with the decrease in the formal charge to +3, this enesgys shifted to -861.8 eV. It
should be noted that G§O3> is only a small-scale representative of octahedral npGr®here

one can clearly expect an approximate modeling of a npCeO

From Table 5.8 one clearly notes that at the AE DKH VWN lewgl{ = 0.0 eV), a severe
unphysical delocalization renders all three Ce-center tidbatical. Although M, N and
N?+NPB were populated to various extents, the net spin populai§aN?) was found to be 0.6
on all three types of Ce centers. The indirect effect of thegdaf the Ce center ongzg clearly
indicates that at the AE DKH VWN level all three Ce centers aeaiatal with the corresponding
3d of about 865 eV for all three unique types of Ce centers locatete center, at edges and
vertices of the octahedron. With increasing valueJgf, the results have not systematically
affected but one notes that sharplyUat = 5.0 eV, 121 electrons were localized at the 12 Ce
centers located at the edges. It is also interesting to maiefor the value olg = 5.0 eV,
the Ce centers at the center of the cluster and at the vertieggedicted to be in the oxidation
state IV with no net spin polarization. However, the totalgbpulation of approximately 0.6
of both spin type at the Ce atoms at the vertices indicate Cev@eat bonding. Again-&ag
serves as an excellent indicator of the oxidation stateBefe centers. With increasitgy,
to 6.0 eV, one can see that the Ce centers at the vertices textthito a +3 oxidation state by
partially localization of 4 electrons which subsequently affects theldcalization at the other
centers. At this point it will only be pointed out that the DFTU implementation in the LCGTO
methodology of the code ParaGauss forms a suitable toolesiigate the ceria nanoparticles
where the localization as modelled by the LCGTO framework hmaxe certain advantages over

other frameworks such as those based on plane wave basis.

Table 5.9 compares the net spihigopulations andsy of Ce;9O3, from AE DKH VWN and
AE DKH VWN + U calculations along with available results for {g83», Cey4Og0 and Cgs0160
systems and bulk ceria from Ref. [149]. From a comparisonsflte from AE DKH VWN + U
and PAW VWN + U [149] calculations, it is clear that the PAW VWN +cdlculation predicted
a delocalized state where the Ce atoms at the edges (E) arks€l) are of similar oxidation
states but the AE DKH VWN + U calculation (correctly) preditte2 localized Ce centers at the
edges. In general, for all three clusters;§&s,, Cey4Ogp and CgsO160, the PAW VWN + U
calculations predicted the number of‘Cecenters correctly but for the e centers, only par-
tial localization was obtained. With the success of the AEFDYXWN + U methodology in
the description of the GgO3» nanoparticle one can hope for an improved modelling of ceria
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Table 5.8: AE DKH VWN, AE DKH VWN + U Spin specific Mulliken populi@n of 4f orbitals
per Ce atom in Cg0z (in €)  along with the negative of energy of thd 8rbitals €34 (in eV):
Populations of 4 electrons of majority spin-type N population of 4 electrons of minority
spin-type M, total population of 4 electrons N + N8, net spin population of #electrons N

- NP were given along with varioud e ° values.

Ue Position® N? NP NI +NP NI-NP gy

0.0 C 0.39 -0.24 0.16 0.64 865.8
E 1.02 0.39 1.41 0.63 865.2
\Y 0.99 0.38 1.37 0.61 865.2
1.0 C 0.22 -0.24 -0.03 0.46 866.9
E 1.01 0.36 1.38 0.65 865.4
\Y 0.99 0.34 1.33 0.65 865.3
2.0 C 0.03 -0.23 -0.20 0.26 868.1
E 1.00 0.34 1.34 0.66 865.7
Vv 097 0.31 1.29 0.66 865.5
3.0 C -0.12 -0.25 -0.37 0.13 869.0
E 0.98 0.31 1.30 0.67 866.0
\Y 0.95 0.29 1.24 0.66 865.9
4.0 C -0.26 -0.29 -0.54 0.03 869.8
E 097 0.29 1.26 0.68 866.3
Vv 0.93 0.26 1.19 0.67 866.3
5.0 C 0.01 -0.01 -0.01 0.02 869.6
E 1.20 0.22 1.42 0.98 863.4
\Y 0.49 0.48 0.97 0.01 869.8
6.0 C -0.33 -0.29 -0.62 -0.04 870.9
E 0.99 0.24 1.23 0.75 866.1
Vv 0.77 0.25 1.02 0.52 868.1

@The equilibrium geometry as obtained from an
AE DKH VWN calculation was used in all calculations.

b U for the & shell of Ce.

¢ C - center (1 Ce atom), E - edge (1 Ce atom in the middle of
each of the 12 edges), V - vertex (1 Ce atom at each of the 6
vertices).
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nanoparticles using the methodology implemented in thettiesis in the framework of Para-
Gauss.

Table 5.9: AE DKH VWN, PAW VWN + U and AE DKH VWN + U spin specific Muken
population of 4 orbitals per Ce atom in various ceria models, along with ttgatiee of energy
of 3d orbitals €34 (in eV) and results from other methods: Number of equivatémtatoms of

each typen;, net spin population of #electrons N - NB (in €) are given.

System Method Positioh nj —e&3g NZ-NP
Ce 9032 AE DKH VWN C 1 865.8 0.64
E 12 865.2 0.63
\Y 6 865.2 0.61

Ce 9032 AE DKHVWN + U P 1 869.6 0.02
863.4 0.98

6 869.8 0.01

<mO
[ERN
N

Ceg032¢ PAWVWN +UP 1 868.0 0.01
863.8 0.68

6 863.6 0.69

<mO
[ERN
N

Ceyq050¢ PAW VWN +UP C 6 867.8 0.03
E 24 864.6 0.56
Vv 6 865.1 0.47
F 8 867.7 0.02
Ces0160° PAW VWN + U P C 19 866.3 0.04
E 36 863.2 0.41
\Y} 6 860.7 0.70
F 24 866.2 0.03
CeO ¢ bulk 867.0 0.00
Ce03°¢ bulk 861.8 0.96

aC - center, E - edge, V - vertex, F - facet.
b Ut = 5.0 eV for the 4 shell of Ce.
¢ Ref. [149].
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Chapter 6

DFT + U Application to Actinides

Theactinideseries of metals belongs to the seventh period (atomic nug#:&03) of the peri-
odic table. The valence electronic configuration of theraati series i$Rn] 5f" 6d* 7s?. When
compared to the #orbitals of lanthanides, thefSorbitals of actinides are relatively less com-
pact. Localization of the 6electrons gradually increases with the atomic number chtti@ide
element due to poor shielding of the nuclear charge byofbitals and experimental studies
indicate that starting fronramericium(Am, 5f®) the 5f orbitals become localized [110]. The
5f electrons of the early actinide elements suctp@sactinium(Pa, 52), uranium (U, 5f3),
neptunium(Np, 5f4), plutonium (Pu, $°) are semi-localized (localized or more delocalized).
Along with the valence & and % electrons, the & electrons of these elements can be easily
removed or readily transferred to ligands, thus early a®mexhibit various oxidation states. In
the present thesis, only uranium complexes with U oxidastaite VI (5f°) are considered. The
purpose of this chapter is to discuss the application of DRT methodology to some U (VI)

complexes.

Section 6.1 deals with the application of the DFT + U methodglto the U(§Jr ion, an
important ion; as a model study, the species will be treatdde gas phase. The main objective
of this section is to discuss the essential geometric anttrel@c properties of U@ in KS-
DFT and DFT + U descriptions. In this section, the nature bital interactions in U&" will
be discussed with special emphasis on the role off Wbihitals in the bonding of U§T. The
ideas developed in this section are then be used in the rdevadfthis chapter to rationalize the
DFT description of related complexes and improvementsigeavby the DFT + U treatment.
Both Sections 6.2 and 6.3 deal with the role of self-intecacérror in the structural features of
actinide complexes. In Section 6.2, results of a DFT + U stifdfe penta aqua uranyl complex
are presented. Finally, in Section 6.3, results of a sysierstudy of the uranyl monohydroxide

cation are summarized.

83
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6.1 Uranyl Dication

The molecular species uranyl (@O has been studied with wide range of theoretical methods
ranging from the simple extended Hickel method [154] to lyigitcurate coupled cluster cal-
culations [155]. The uranyl dication is a very stable speedhibiting a linear geometry with a
formal U-O bond order 3. The role off5orbitals in the linearity of uranyl is partly supported
by the fact that the isoelectronic transition metal spets/le@%+ is bent [159]. However, the
isoelectronic actinyl ion Th@(thorium, Th, Z = 90) is also bentfexp, = 122°) [159] which
indicates the role of factors other tham brbitals. The preference of the uranyl ion for linear

geometry has been discussed by several authors (for a reeewef. [156]).

In the earliest of these studies, Tatsumi and Hoffmann [ba4d on extended Huickel cal-
culations suggested that the sub-valenp@fitals® play a role in activating the @o orbitals
to form o bonds with U 5 orbitals. Later in a relativistic Hartree—Fock—Slatedst{l57], this
effect which is referred to as "pushing-from-below" [158stbeen shown to be less significant
in uranyl bonding. In a Hartree-Fock study employing a RECByder to explain the bent ge-
ometry of ThGQ, Wadt [159] suggested that the relative ordering of tlieafd &l levels and
not the @ orbitals are important to describe the geometry. Subseqguoastigations [160-162]
established the ordering of the MOs of %Iband approximate contributions of uraniurh &nd
6d atomic orbitals to these MOs. The near degeneracy of dri @l levels is understandable
considering the relativistic destabilization of theseitailb to different extents [163] and it is this
effect which energetically puts the U Brbitals at a suitable place to be involved in bonding with
the Opo orbitals. Further, a situation similar to lanthanide caation results in the decrease in
ionic radii with increasing atomic number from Th (Z = 90) to(Z = 103) which results in a net
stabilization of the % orbitals with increasing atomic number (see Figure 5.1 foamalogous

situation in the lanthanides).

In the following, the ground state electronic structureyikiorium geometry and harmonic
vibrational frequencies from AE DKH PBE and AE DKH PBE + U caktins will be dis-
cussed. Finally it will be shown that a second-order JahleiTeype situation exists in the
UO5" cation that is enhanced in KS-DFT calculations by the seraction artifacts related to

the U 5f orbitals which are responsible feofteningthe uranyl bending mode.

1The electronic configuration of neutral U atom is [Rr®56d! 7<%, where the @ orbitals form the highest
occupied MO of the [Rn] core.
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6.1.1 Results and Discussions
Molecular properties of UO%+

The coupled-cluster CCSD(T) and the hybrid-DFT B3LYP valu&&]bf the equilibrium uranyl
bond length fall in the narrow range of 169.0-169.4 pm (T#&bly. The PBE and PBE + U
values are somewhat longer, 171.9-171.4 pm, and the GGA-BE [#64] is close to the PBE
result (Table 6.1). Comparing the results of the PBE calauiatito those obtained with the
PBE + U method andle = 2.0 eV, the uranyl bond distances are shortened by 0.5 pimaso t
the PBE + U value reproduces the B3LYP and CCSD(T) results béterthe PBE value. In
the PBE calculation, the energy of the highest occupied mitdeorbital (HOMO) is -22.07 eV
which decreases by approximately 0.2 eV whk is increased by 1 eV. It will shown later that
the HOMO of UG represents @ interaction between a UfSorbital and thes™ orbital of the
dioxo (O‘Z“) 2p fragment. The U % orbital contributes 57 % to this bond which is slightly more
than 50 %, thus the potential correction provided by the Hwtbparametet ¢ to this orbital
will be negative. This effect will further increase the W Bontribution with increasing values
of Ueg; this is reflected in the stabilization of thd 5 2p o bond, hence results in a shortening
of the U-O distance in PBE + U calculations. Further, in the PBEEWation, the energy of
the lowest unoccupied molecular orbital (LUMO) is -19.78, @Vthe PBE + U calculations
ELumo increases by approximately 0.5 eV withg increases by 1 eV. This is readily understood
through Eq. (3.63) where the potential correction provitlgdthe Hubbard parameter to an
occupied orbital is +0.5 eV for the value Ot = 1.0 eV. Thus the HOMO-LUMO gap which is
2.29 eV in the PBE calculation (Table 6.1) increases by abdut\d in the a PBE + U calculation
when the the Hubbard parametés is enlarged by 1 eV.

The PBE values of the harmonic vibrational frequencies ofayanmetric and asymmetric
stretching modes underestimate the corresponding CCSD(d@s/§155] by 34 cm?® and 16
cm~1, respectively (Table 6.1). At the PBE + U levalds = 2.0 eV), these frequencies are
slightly corrected towards higher values, by 13 and 8 tmAs for the structure results, one
notes that PBE + U corrections tend to change in the directitheoCCSD(T) and the B3LYP
predictions (Table 6.1) [155]. Quite a bit more distincthe effect of DFT + U method on the
frequency of the uranyl bending, which is 86 chlower at the PBE level, 92 cnt, than the
CCSD(T) result of 178 cmt [155] (Table 6.1). Indeed, the PBE + U result for this quantity
strongly depends on the Hubbard paraméteg. With Ui = 1.0 eV, that bending frequency
increases by 75 cmt compared to the PBE-GGA result, thus reproducing the B3LYReval
With Ues = 2.0 eV, one obtains 211 cm which is 119 cm? higher than the PBE result and
even 33 cm?! above the value of 178 cn obtained with the CCSD(T) method [155] (Table
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6.1). From these results one can conclude thatf Wibitals play a role in uranyl bonding and
when the localization of thesef ®rbitals are tuned by the inclusion of a small positive Huldba
parametel) ¢ between 1 and 2 eV, one obtains an improved description wétsiral properties
of UO3™.

Table 6.1: Calculated properties of l%*ba at AE DKH PBE and AE DKH PBE+U levels along
with results from other methods: Hubbard paraméteg (eV), equilibrium U-O bond length
r (pm), energies of the the highest occupied molecular drg®MO) eyomo, lowest unoc-
cupied molecular orbital (LUMO4_ymo and their difference, the HOMO-LUMO gdke (eV),
harmonic frequencies of the asymmetric stretcliggthe symmetric stretchings and the bend-

ing w, vibrational modes (cmt).

Method Uef I EHomo Elumo A wa s Wy

AE DKH PBEP® 171.9 -22.07 -19.78 2.29 1104 1001 92
AEDKHPBE+UP 1.0 1717 -22.22 -19.26 2.96 1110 1005 167
AEDKHPBE +UP 20 1714 -22.39 -18.75 3.64 1117 1009 211

AE DKH BP ¢ 172.2 1091 994 93
RECP/B3LYPH 169.4 1137 1046 166
RECP/CCSD(TY 169.0 1120 1035 178
@ Calculations carried out with symmetry constraints acaadd point group [gh.

b This work.

¢ Ref. [164].

d Ref. [155].

Atomic charges and orbital analysis of UG"

Table 6.2 lists the Mulliken chargg” of U in UO%+ along with the populations of the valence
atomic orbitals. The U centerin Lgi) has a formal charge of +6 and the oxo fragments represent
formally closed-shell dianionic ligand fragments. Thrbug and 7 interactions each oxygen
center donates 2.6 (0.1 from &, 1.9 from 2) to the U center which results in the U center
having a net charge of about €XTable 6.2). This is reflected in the PBE description of the
Mulliken charge of the U center of USZ'J A larger contribution of theser and 1t donated
electrons populates the U ®rbitals (about 2.2) and the U @ orbitals are populated by about
1.4 e which is almost half of the population off Sorbitals. This reflects the different extents to
which the uranium @ and 5f orbitals involve in bonding. TheBorbitals show a small deficit

of about 0.2e indicating a very small contribution to the bonding. Theyochange introduced

in the PBE + U description is a very slight increase in tlepdpulation by 0.03 for the Ugg
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value 2.0 eV.

Table 6.2: Mulliken chargg™ of U in UO%+ as well as valence orbital populations per atomic
center (ine).

Method Uet M U o)
7s  6p 6d  5f 2s 2p
AE DKH PBE 2.02 0.02 -0.16 1.38 2.73 1.91 4.08

AE DKH PBE+U 1.0 2.02 0.02 -0.17 1.38 2.74 191 4.08
AE DKH PBE+U 2.0 2.02 0.02 -0.17 1.38 2.76 191 4.08

As expected, the atomic charges and the valence orbitalgigns indicate the role of var-
ious orbitals in chemical bonding. The individual conttiba of various atomic orbitals to
molecular orbitals of Ufg)+ are tabulated in Table 6.3. This information is graphicaliystrated
in Figure 6.1 where the valence MOs of @Dfrom the PBE eigenvectors are shown along with
cartoon representation of these orbitals. At the bottonhefMO diagram (Figure 6.1) one can
see that the U g orbital which lies along the uranyl axis interacts with e 2s orbital frag-
ment of the oxo ligands resulting in the bondiod7 &y, -44.6 eV) and antibonding™ (8 &y,
-30.7 eV) orbitals. As this is a pair of bonding/antibondM@s, the net contribution to the
metal-ligand bonding is small, if not negligible. The unami 6p orbitals which are oriented
perpendicular to the uranyl axis stay non-bonding at -39 @¥,(). The o 2s orbital (11 ag,
-37.4 eV) fragment of the oxo ligands is very mildly stalelizby a U @l orbital; 6d contribution
is not shown in cartoon representation.

For the present discussion, the most interesting occupi@d k& in the narrow range from
-22.1eV1to-23.4 eV (Figure 6.1, Table 6.3). These orbitpsesent the andrrorbitals formed
by uranium @l and 5f orbitals with the oxo p orbitals. The lowest of these orbitals is ttie2py
and 2y orbital fragments (degenerate) of the oxo ligand both whiehstabilized 1-donation)
throughrinteractions with the uraniumog; and &y, orbitals, respectively (4., -23.4 eV). The
correspondingt components of the& and 2oy orbital fragments are stabilized-{donation) by
uranium 5,2 and 5 » orbitals, respectively (716, -23.1 eV). Theo 2p; orbital fragment of the
oxo ligands interacts through-donation with the U @,. orbital (12 a4, -22.7 eV). Finally, the
o* 2p; orbital fragment of the oxo ligand interacts througlkdonation with the U %3 which
forms the HOMO of U@* (9 &y, -22.1 eV). Two pairs of unoccupied non-bonding type 5
orbitals at -19.8 eV and -19.1 eV are thpd2 e3,) andd (2 ey) type U 5f orbitals respectively.
The anti-bonding partners to the bonding MOs with&hd @&l contributions lie above thesd 5
¢ andd type orbitals. A pair of unoccupied non-bonding érbitals ofdyy andd,._,» character
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lies far above the unoccupied %evels; these orbitals are not shown in Figure 6.1. The divera
orbital interactions involved in the U-O bonding is illstied in Figure 6.2. In the axial ligand
field of the oxo ligands, the Ufsand @l orbitals are split to form quasi-atomid @and &l orbitals
(Figure 6.2) which involve in bonding with the completelydd 2p orbitals of the oxo ligands
(Figure 6.2). The 5 MOs both and unoccupied, lie between tliedEcupied and unoccupied
MOs indicating a stronger Uds- O 2p bonding interaction and a relatively weaker ) 50 2f

bonding interaction.
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Figure 6.1: Valence MOs of U%j at the AE DKH PBE equilibrium geometry along with their
energies in eV (left) and symmetry labels (right) according tgsland D}, point group sym-
metries. The linear structure of the @bmolecule (bottom) and cartoon representation of MOs

(left) are shown for reference.

When comparing the orbital energies in PBE and PBE + U calcuisi{idable 6.3) one notes
that the non-bonding unoccupied orbitals of the typ€& e3,) andd (2 ey) are shifted higher
by about 1 eV with the inclusion of the Hubbard term with; = 2.0 eV. The contribution of the
U 5f orbital to the HOMO (9 a,) is more than 50%. Thus the energy correction provided by
the Hubbard term is negative and the HOMO is stabilized byia®@ eV forUgg = 2.0 eV. An
interesting situation arises for the y,@rbital where thertype 5f orbitals contribute by about
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40% but in the PBE + U calculation no positive correction isaféd. This is due to the fact
that the definition of orbital occupation matrix employedhe PBE + U calculation i$-D-S
which leads to occupation numbers slightly larger thanmylve the Mulliken population matrix
which is formally expressed &- S. Thus for ther-type 5f orbitalsS- D - Sleads to occupation
number of about 0.8 resulting in zero or very small corrections to the corresjpog potential
matrix elements. All other MOs where the contribution of UiS negligible are essentially not
affected by the Hubbard term withef = 2.0 eV included for the U 6shell (Table 6.3).

ue* quasi-U®* uo,* o.*

2

Figure 6.2: Qualitative illustration of the orbital intetaon involving the U 5§ and &l shells and
the 2p fragment orbitals of the oxo ligands. Orbitals with &ontribution are shown in blue and
orbitals with &l contribution are shown in red. The symmetry classificat®adcording to Ry

point group symmetry where the symmetry of the MOs are theesasrihat of component AOs.

Second-order Jahn-Teller type interaction in UG"

Before proceeding to the main discussion, a brief overviewabin—Teller distortion is given
in the following. According to Jahn—Teller theorem [165¢g&nerate electronic states in sym-
metric non-linear molecules are unstable with respect teargtrical distortion that lifts the

degeneracy hence resulting in a non-symmetric structusgagoerturbation theory, Jahn and
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Table 6.3: Mulliken population analysis (in %) of the valerMOs of UC%+ aalong with orbital
energies; (eV).

Method MO ¢ U O
7s 6p 6d 5f 2s 2p

AE DKH PBE 2e, -19.05 100
3ey -19.78 100
Og, -22.07 9 57 6 33
12agq -22.73 3 15 7 76
7en, -23.13 2 37 62
deq -23.37 24 76
8, -30.71 30 5 55 10
llag -37.45 2 8 88 2
6ey, -38.96 99 1
Tay -44.63 52 1 38 9
AE DKH PBE + U? 2¢,, -18.02 100
3ey, -18.75 100
O9a, -22.39 9 58 1 32
12agq -22.77 3 15 7 76
7e, -23.18 2 36 62
deyg  -23.43 24 76
8, -30.74 31 6 54 10
llag -37.49 2 8 88 2
6ey, -38.92 99 1
Ty, -44.75 51 1 39 9

a Calculations carried out with symmetry constraints aceaydo point

group Dyp.
b Ueq = 2.0 eV for the 5 shell of U.

Teller showed [165] that the change in energy associatelul tvé distortion is a term that is
linearly dependent (first-order term) on the distortionrdimate. Further, using symmetry con-
siderations, they showed that for the first-order term todre zero, the symmetry species of the
distortion coordinate (or distortion mode) must be corgdiwithin the symmetric direct prod-
uct of the symmetry species of the electronic ground statesBuch distortion associated with
orbitally degenerate electronic states of non-linear mdés is known as the first order Jahn—
Teller (FOJT) distortion and the related concepts are ctllely known as FOJT theorem. The
FOJT theorem is invoked to explain the distorted geometmyalecules such asH coordina-
tion complexes of the type Mg(where M = Cu(ll), Ni(ll) and X is a monodentate ligand such
as hydroxyl) [139, 140].

The second-order Jahn—Teller (SOJT) [166] effect refetlsd@ommonly observed trend that
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a molecule with small energy gap between the occupied andcupeed MOs is susceptible to
a geometrical distortion with enables mixing between thd€es. Using the perturbation theory
arguments of Jahn and Teller, the net stabilization enesgg@ated with such a distortion can
be shown to be second-order term, which is inversely prapwtto the energy gap of the quasi-
degenerate MOs involved [139]. Often the MOs that are irlin the SOJT effect are the
HOMO and the LUMO of the molecule. The SOJT effect can be iedbto explain the bent
structure of HO, pyramidal structure of Ngland so on. Davidson and Borden [167] pointed out
that in practical computations, SOJT-like distortions e#so result due to the inaccuracy of an
approximate wavefunction leading to an artifactual SOtodiion.

I | | | | | 'PBE —e— |
8000 PBE + U (Ugs=1.0€V) -0~
PBE+U(U :20e\/) ..... N
7000 | PBE + U (Ugy =-1.0 €V) s |
6 O O O i “““ :::._
a 20000 R ¢
o 4000 | g X, X5
q - . - .'
3000
2000
1000 5
O - . .".-----.--...--.-.:_:: A : ::.‘:‘.!____.____-_____.___- ,

40 30 20 10 0 -10 -20 -30 -40
A 6 [degrees]

Figure 6.3: AE DKH PBE and AE DKH PBE + U potential energy profictrefsUO%+ along the
bending mode. In the PBE + U calculatiot values of 1.0, 2.0 and -1.0 eV were employed.
Relative energyAE in cm™ with respect to the energy of the linear structure are piofte
various angles of deviation from linearifyo in degrees. The curve was obtained by optimizing
the U-O bond length for selected values of the uranyl bondesh@y enforcing G, point group

symmetry restrictions.

The main aspects of the ground state electronic structutegaometry features of U@
have been discussed so far. The main objective of the subsediscussion is to explore the
reason for the low vibrational frequency of the bending mut:kéO%Jr as predicted by the GGA
method PBE and to illustrate the sources of improvementsigedvby the DFT + U correc-
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tion term. In the following it will shown that a weak SOJT typgeraction which fractionally
populates the non-bonding type U brbitals is enhanced in the PBE calculation. KS DFT cal-
culations overstabilize systems with fractional occugratiumbers which in this case leads to an

underestimation of the uranyl bending frequency.

The potential energy of Ugj along the uranyl bond angle is shown in Figure 6.3 both at the
PBE and the PBE + U levels. The PBE energy profile is flat (red limaeoting solid circles) and
at the PBE + U level, fol¢ = 1.0 eV, bent structures are less favored which results ieepsr
potential (black line connecting hallow circles) reprasena more rigid uranyl structure with
an increased bending frequency (167 éniTable 6.1). With further increasBes = 2.0 eV, bent
structures are increasingly less favored, i.e. uranyl isemigid with a larger bending frequency
(211 cnrl, Table 6.1). In Table 6.4, natural orbital occupation nuralué the 5 orbitals are
given for the uranyl species with bond angles 14,8060 and 140 from PBE calculations as
used in Figure 6.3. The corresponding DFT + U correctiongHertotal energy and diagonal
potential matrix elements are also given in Table 6.4. Thenased DFT + U energy corrections
EY for the structures witt® = 18(°, 160° and 140 are 0.69, 0.76 and 0.96 eV, respectively,
and these values are closer to the results from DFT + U cansttaptimizations witH) g =
1 eV which are 0.68, 0.76 and 0.91 eV respectivelyOne notes that for the bent structures,
the positive energy corrections’Brom the DFT + U correction term is larger than that for the
linear structure. For the uranyl bond angle 16t DFT + U energy correction'fis larger than
the energy correction obtained for the linear structure By @V. With a larger deviation from
linearity, as in the case of uranyl bond angle 148e DFT + U energy correction is even larger.
The corresponding DFT + U corrections to the potential elemsé’ to the DFT eigenvalues
are also given in Table 6.4, and these contribute to the gporeding MOs of same symmetry
types based on the contributions from these quasi AOs. ltitike PBE calculations with uranyl
bond angle® = 180C°, 160" and 140, the total 5 occupation (sum afi, Table 6.4) is the same
according tdD-SandS-D-S matrices, but for larger deviations from linearity, duerira-atomic
5f - 5f hybridization, these occupation numbers involve varibasbitals to different extents.

As a numerical experiment, the uranyl bending mode energfji@was probed with a nega-
tive value for the Hubbard parametéids = -1.0 eV), Figure 6.3. A negativid¢s will enhance
the shortcomings of a pure KS-DFT calculation and in thigeasults in predicting a bent uranyl
as the minimum energy structure. The bending mode potensftikai[)%+ at the PBE + U level
with Ueg = -1.0 eV shows gseudo barrierat the linear configuration (green line connecting

solid squares) and represents a double-well potentialavithrrier height of 121 cnit. From a

2When performing DFT calculations it turned out to be usefiddme cases to set a smidll value, e.g.<108

eV, to print the orbital occupation numbers which can be tsexstimate the DFT + U corrections.
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Table 6.4: Occupation numbers of U @tomic orbitals at various uranyl bending angles in
AE DKH PBE calculations along with calculated DFT + U correas: Uranyl bond angles
(in degree), Symmetry classification bforbitals according to by, Dgy and Gy point groups,
natural orbital occupation numbarsin e are given according to the Mulliken population matrix
D-S and the full occupation matri$D-S, DFT + U corrections E to the total energy and
diagonal eIementsﬂ/of the potential matrix (in eV) are given for the Hubbard paeterUgs =
1.0eV.

6 AO Symmetry? n W
Dwh Dgh Coy D-S SD-S

180 f3 of au b 121 150 0.19 -0.25
fy2 N e & 0.76 1.03 0.25 -0.02
fy2 by 0.76 1.03 0.25 -0.02
fayz & en @ 0.00 0.00 0.00 0.50
fape—y2) by 0.00 0.00 0.00 0.50
xoe-32) W eu & 0.00 0.00 0.00 0.50
fyae_y2) by 0.00 0.00 0.00 0.50
fiotal 2.72 358 0.69

160 f3 o au b 1.17 145 0.20 -0.23
fop W e & 0.73 0.99 0.25 0.05
fy2 by 0.71 0.97 0.25 0.02
fryz & eu @& 0.06 0.09 0.04 0.46
Fae_y2) by 0.06 0.10 0.05 0.45
o3 W eu @& 0.00 0.00 0.00 0.50
fyae_y2) by 0.00 0.00 0.00 0.50
fiotal 2.73 358 0.76

140 f3 of au b 1.06 1.30 0.23 -0.15
f 2 W e & 0.68 0.90 0.25 0.05
fy2 by 0.60 0.82 0.24 0.09
fayz & en @ 0.18 0.28 0.12 0.36
fape—y2) by 0.18 0.28 0.12 0.36
fie_a2) @ & & 0.01 0.00 0.00 0.50
fyae_y2) by 0.00 0.00 0.00 0.50
fiotal 270 356 0.96

@The G, axis (in Dyy) coincides with the z-axis which passes
through the O and U atoms. The @xis (in Gy) coincides with
the x-axis and is perpendicular to the O-U-O axis; in benicstr
tures the molecule lies in theplane.
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fully relaxed geometry optimization of U%fb at the PBE + U level with th&¢ value -1.0 eV,
the equilibrium bond angle was found to be 162.4 similar trend was noted fddes = -0.5 eV
where the potential is still a double well but is shallow; gwpiilibrium bond angle was found to
be 175.6".

As discussed before, from Table 6.3 one sees the effect éfubbard term on the MOs. For
Uesr = 2.0 eV, the unoccupied MOs which representgrendd type non-bonding U 6 orbitals
were shifted up by 1.0 eV (half the value G@§¢ for zero occupation numbers) and the HOMO (9
apy) Was stabilized by about 0.3 eV. From this one can estimatedirections introduced by the
negative Hubbard parametdgs = -1.0 eV. In this case the HOMO will be destabilized by about
2 eV and the unoccupieg andd type U 5f orbitals will be shifted down by about 0.5 eV thus
decreasing the HOMO-LUMO gap A decrease in the HOMO-LUMO gap means that intra-
atomic 5f-5f hybridization is more feasible. Furthermore, the uranylNHDrepresents the U
5f - O 2p o bond which is destabilized in the caSes = -1.0 eV resulting in an elongation of
the U-O bond by 0.4 pm compared to the PBE value 171.9 pm. Alglessxplanation of uranyl
bending for a negativel can be provided at this point. The destabilization of bogd#Os
representing uranyl UK- O 2p o and it bonds resulting in increased U-O bond length which
overall weakens the ligand binding. This is partly compés# the ligands move away from
linearity to interact with the&-type 5f orbitals which overlap better with Og2orbitals in a bent

configuration.

6.1.2 Conclusions

The uranyl dication U@* is a stable linear species. The participation of bottabd @l orbitals
in the uranyl bonds is responsible for the stability and thedrity of the uranyl framework [156,
158]. The rigidity of this framework is also supported by thaet that the ligands in coordination
complexes of uranyl are predominantly confined to the egiztplane perpendicular to the
linear uranyl moiety [169]. The hybrid-DFT approach B3LYRlamave-function based methods
describe the bare uranyl cation with sufficient accuracyp[i#hereas in GGA calculations the
vibrational frequency of the bending mode of @‘O’s underestimated, by 70-80 cf which
is about 40% of the value obtained with more accurate methods

The low force constant of the uranyl bending mode in the PBEAGKS calculation is a
consequence of the inaccurate description of the Coulongvaiction of the U % electrons.
From the uranyl bending mode profiles calculated at PBE and PBHevels (Figure 6.3), one
can note that at the PBE level, the uranyl molecule with a nmoemal geometry is overstabilized.

3For Uesr = -1.0 eV,r(UO) = 172.3 pm,9 = 162.4 pmgqomo = -21.80 eV.sumo = -20.17 eVAs = 1.63 eV,
see Table 6.1 for the corresponding PBE values.
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In a PBE + U calculation witHJes = -1.0 eV, such an overstabilization is further enhanced
resulting in a uranyl equilibrium bond angle of about 16Phis situation is understood through
the fractional occupation of the non-bondidgype quasi % orbitals of U which arises due to a
second-order Jahn-Teller type interaction between theylcaoccupied MO (HOMO of uranyl)
and thed-type 5f orbitals when uranyl deviates from linearity. The natureself-interaction
error presentin LDA and GGA KS calculations is such that Coldeepulsion is underestimated
for fractional electrons resulting in spurious stabiliaatof systems with fractionally occupied

orbitals.

6.2 Penta Aqua Uranyl

The present section deals with the application of the DFT +dthmdology to the uranyl penta-
aqua complefxU0,(H,0)s]%*, the most frequent form in which the uranyl dication occuarar
aqueous medium. In the uranyl penta-aqua complex, the bicaanis coordinated by five water
molecules in the equatorial plane which is oriented perjoerhat to the axis of the linear uranyl
moiety. B3LYP and wave function based calculations of thegagua complefyOx(H,0)s) %+
indeed suggest a linear uranyl moiety with all oxygen atomthe ligands in the equatorial
plane [170]. In contrast, LDA and GGA KS calculations yieldséightly) bent uranyl moiety
with the ligands coordinated out of the equatorial planel41773]. In this thesis, by applying
the DFT + U methodology, the bent geometry of the uranyl nydiethe penta-aqua complex as
obtained in LDA and GGA KS calculations, will be identifiedaaself-interaction artifact related

to the Coulomb interaction of the Uf=lectrons.

6.2.1 Results and Discussions
Structural properties of [UO2(H20)s]%" with D 5, symmetry restrictions

The effect of the equatorial ligand environment on the $tnad aspects of uranyl such as bond
lengths and stretching frequencies can be understood Hyisguthe compleXUO,(H,0)s)%*
with symmetry restrictions according to the point groug, Drable 6.5. At the PBE level, the
uranyl bonds of the bare uranyl ion are 171.9 pm (Table 6nljhé penta-aqua complex, these
bonds are elongated by 5.3 pm (Table 6.5). This indicatesakeveng of the uranyl bonds in
the presence of equatorial water ligands, as expecteddingaio the principle of bond order
conservation. PBE and PBE + U calculations yield UbOnd lengths of the hydrated complex
in the range 177.2-176.3 pm (Table 6.5). Witk = 2.0 eV, the U-@bonds are 0.9 pm shorter
than the corresponding PBE distances. Notably, the PBE + & @y = 2.0 eV) for the length



96 CHAPTER 6. DFT + U APPLICATION TO ACTINIDES

of the U-Q bond in hydrated uranyl, 176.3 pm, is close to the B3LYP valu&.6 pm [171],
and the experimental value in aqueous solution, 176 pm [TI##gt good agreement may in part
be fortuitous as long-range solvation effects are not ohetlin this model where only the first
ligand shell of uranyl in a aqueous medium is accounted fbies€ long-range effects may be
estimated from the LDA values [173], (Table 6.5) without amith long-range solvent effects
included via a continuum model; accordingly, these soledigicts tend to increase slightly the
covalent U-@ bond length, by 1 pm, from the LDA value 177 pm.

Table 6.5: Bond distances(pm) and vibrational frequencigs(cm—1) of the uranyl penta-
aqua complexU0,(H,0)s]%" in the gas phase from calculations applying various contiourizl
methods and symmetry constraints. Also given is the HubpardmetetJf (eV) for the U 5f

shell as well as available experimental data.

Method Symmetry Ueg U-Or U-Op Wa Wy

AE DKH PBE Dsh, 177.2 2489 893 985 190
AE DKH PBE +U Ds 1.0 176.7 250.0 898 995 216
AE DKH PBE + U Dsp 20 1763 251.1 905 1004 234
AE DKH VWN CsP 177 241

AE DKH VWN CsPc 178 236

AE DKH BP Dsp, @ 1775 2488 886 979 190
RECP/B3LYP G® 175.6 251.6 908 1001 213,222
Exp. 176f 2417 8749 9639 2539

a U-O;—bond to terminal oxygen centers of uranyl, W-@verage bond length to
oxygen centers in the equatorial plane of urany,frequency of the symmetric
stretching vibration of uranylp,—frequency of the asymmetric stretching vibra-
tion of uranyl,w,—frequency of the QU-O; bending vibration of uranyl.

b Ref. [173].

¢ Long-range electrostatic solvent effects were accourtedvith the COSMO
method, a polarizable continuum approach [175].

d Ref. [164].

€ Ref. [171].

 Extended X-ray absorption fine structure (EXAFS) resultLﬂ«i)%+ in agueous
chloride solution, Ref. [174].

9 IR and Raman bands of uranyl perchlorate in aqueous soluRiein[176].

Experiment suggests a value of 241 pm for the distance,\b&ween the uranium center
and the oxygen centers of the equatorial aqua ligands [1XA4ABE calculation on the penta-
agua uranyl dication yields the value of 248.9 pm, which iy \@&tose to the results of an earlier
BP calculation, 248.8 pm [164] (Table 6.5). The PBE + U valugg(= 2 eV), 251.1 pm is
closer to the B3LYP result, 251.6 pm [171]. The average JJedtance is more sensitive to
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long-range solvent effects as can be seen from the LDA val@b pm which decreases by
5 pm when a polarizable continuum model is invoked (Tablg A.33]. From this result one
estimates the corresponding PBE + U valuRy = 2 eV) in a model of long-range electrostatic
effects at 246 pm, still overestimating the experimentalitof 241 pm (Table 6.5) [174]. For
the intermediate value of the Hubbard parameiief, = 1.0 eV, both the bond lengths U-@nd
U-Oy take intermediate values. Overall, it is interesting toentbiat the PBE + U parameters
of the equilibrium geometry are approaching the B3LYP rastifte same trend was previously
noted for the bare uranyl species, discussed above.

As in the case of the bare uranyl system (Table 6.1), the urabgational frequencies of
the penta-aqua complex are blue-shifted at the DFT + U lev@lpared to the PBE results. The
corrections are notable only for the larger valuigs = 2.0 eV, 12 cm? for the symmetric and
19 cnt! for the asymmetric mode. In contrast, the vibrational fiesey of the bending mode is
blue-shifted by 44 cm! (Table 6.5) at the DFT + U level.

»
b &

Figure 6.4: Equilibrium geometries of the complex [&{B8,0)s5]%" optimized without symmetry
constraints: (a) PBE, (b) PBE + W¢gx = 2.0 eV).

Geometry distortion of the ligand shell in the penta-aqua uanyl complex

The Dy, structure of the penta-aqua uranyl complex has been réitedao be unstable because
of the repulsion of the lone-pairs of the water ligands indfjeatorial plane [170]. At the B3LYP
level, a more stable Dstructure is reached by tilting the molecular planes of tlgewligands
by about 20 with respect to the uranyl axis [170]. However in LDA or GGAaadations, the
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molecular planes of the water molecules are not tilted;eratihey still lie in the planes parallel
to the uranyl framework as in thesp structure [170, 173]. Instead, some water ligands are

asymmetrically shifted up or down with respect to the equaltplane (Figure 6.4).

Table 6.6: Bond distancés(pm) and bond angl@ (degree) of the uranyl penta-aqua complex
in the gas phase from calculations applying various contipu@ methodswithout symmetry
constraints. Also given is the Hubbard paraméteg (eV) for the U 5f shell.

Method Ut (U-O) (U-Oy) AU-On) O-U-G;
AE DKH PBE 177.4 248.1 1.20 174.6
AEDKHPBE+U 1.0 176.8 249.5 0.80 1775
AEDKHPBE+U 15 176.6 250.2 0.50 178.5
AEDKHPBE+U 20 176.2 251.3 0.06 180.0
AE DKH VWN 176.6 240.4 1.48 171.4
AE DKH BP 177.8 248.3 1.20 172.6
AE DKH PBEN 177.7 251.8 1.62 173.0
RECP/B3LYPP 174.8 250.0 0.00 180.0
Exp.°€ 176 241

8 (U-O;)-bond to terminal oxygen centers of uranylJ-Oy)—
average bond length to oxygen centers in the equatorialeplan
of uranyl, A(U-Oy)—absolute average of deviations of the bond
lengths to oxygen centers in the equatorial plane from tleeage
value, Q-U-O; bond angle of uranyl.

b Ref. [170].

¢ EXAFS result (Table 6.5); Ref. [174].

Table 6.6 summarizes geometry parameters of the pentacaquaex of uranyl from B3LYP
[170,171], as well as LDA-VWN, GGA-BP, GGA-PBE, GGA-PBEN, and &BBE + U cal-
culations [26]. The PBE equilibrium geometry of the pentaagranyl dication is a distorted,C
structure (Figure 6.4) with a bent uranyl moiety; @-O; = 174.6, and the oxygen centers of the
equatorial aqua ligands are shifted out of the equatoraigl With increasing onsite-Coulomb
parametelgs;, the uranyl moiety tends towards linearity;-0-O; = 177.5, 178.5, and 180.0
for Ueg = 1.0 eV, 1.5 eV, and 2.0 eV, respectively (Table 6.6). Theal/®BE + U structure
for Uegs = 2.0 eV approximately fulfills @ symmetry where the average value of thel®O,,-H
dihedral angle is 2077(Figure 6.4), which is very similar to the B3LYP structure (1,/where
on average PU-O,-H = 20.0°. As with increasingJes the overall structure of the complex
tends towards Bsymmetry, but bond lengths are only moderately affectedh Wis = 2.0 eV,
the average U-{bond length is shortened by 1.2 pm and the averagg/\di€iance is elongated
by 3.2 pm, compared to a simple PBE calculation.
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Gutowski and Dixon also reported a distortedeguilibrium structure with the LDA-SVWN
functional [170]. They related this distortion to both tlepulsion between neighboring oxygen
centers of equatorial water ligands (rationalized in tuyrthee short U-Q, bond lengths in the
SVWN model) and the low frequency of the bending mode of isdafranyl (about 150 cn).
Other widely used purely local or gradient-corrected xccfionals, e.g. VWN, BP, and PBEN,
also predict a distortedGtructure with significantly different U-Qdistances. Note, for exam-
ple, the difference of more than 7 pm between the VWN and PBHtse@able 6.6). However,
the strong correlation of thegs values with the symmetry of the complex (and the relatively
weak correlation with changes of bond lengths) suggestlhieatepulsion between neighboring
oxygen atoms due to inaccurate ;®ond lengths in purely local or gradient-corrected KS
calculations may be responsible only in part for the distbistructure of the ligand shell and
the bent uranyl moiety. This suggestion is corroboratecheyGGA U-Q, distances which are
rather similar to the B3LYP results (Table 6.6).

Table 6.7: Relative energi€gkJ/mol), HOMO-LUMO gag (eV), orbital energieé (eV), and
populations of HOMO (percentage) of the uranyl penta-aqurapiex in the gas phase from
calculations applying various computational methods amdnsetry constraints. Also given is
the Hubbard parametél.¢ (eV) for the U 5 shell.

Symmetry Method Uet AE A egomo UT Orp Owp

Dsp, AE DKH PBE 3.4 286 -15.75 1 99
AEDKHPBE+U 1.0 1.4 299 -1571 1 99
AEDKHPBE+U 20 1.6 3.14 -15.66 1 99
RECP/B3LYP? 1.3

Ds AE DKH PBE 26 2.84 -1576 12 9 76
AEDKHPBE+U 1.0 0.3 3.03 -15.77 5 4 88
AEDKHPBE+U 20 0.1 3.23 -15.76 3 2 93
AE DKH SVWN P 3.3
RECP/B3LYP? 0.0

C, AE DKH PBE 3.09 -1594 1 0 98
AEDKHPBE+U 1.0 3.11 -15.82 0 0 08
AEDKHPBE+U 2.0 3.23 -15.76 3 2 93

a AE — relative electronic energy with respect to thedonfiguration Ae — differ-
ence between the energies of HOMO and LUMQ@;mo — energy of the HOMO.
b Ref. [170].

To quantify the preference for the nonsymmetrig Y Gtructure over the Pstructure, ge-

ometry optimizations were carried out for the penta-aquaptex with symmetry constraints
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according to the point groupssand Dy,. Table 6.7 presents the relative energies gf, s,
and G configurations from PBE and PBE + U calculations and compasss thith results from
VWN and B3LYP calculations. At the PBE level, the 6tructure is more stable by 2.6 kJ/mol
than the @ structure, the latter turning out to be a transition stateeabnd order. This finding is
similar to the preference foriGat the LDA-SVWN level [170], 3.3 kJ/mol. In PBE + W =
1.0 eV) calculations this margin decreases to 0.3 kJ/mokatidUqs = 2.0 eV both the €and

Ds structures have nearly identical energies, as calculaiictine B3LYP approach.

Table 6.8: Lowest three harmonic frequencies of H(»O)s]?t (by absolute value) from
AE DKH PBE + U calculations on models in the gas phase, applyargpus symmetry con-
straints. Also given is the Hubbard parameitkg (eV) for the U 5f shell.

Symmetry Method Uei Modes
s a7 (a8

Dsny AE DKH PBE 43.2i 44.61 124.3i
AEDKHPBE+U 1.0 339 36.0i 135.5i
AEDKHPBE+U 2.0 432 43.2i 146.4i

Ds AE DKH PBE 60.2 21.9 224
AEDKHPBE+U 1.0 63.0 205 19.6
AEDKHPBE+U 2.0 587 336 331

C1 AE DKH PBE 105.3 52.0 10.7
AEDKHPBE+U 1.0 781 465 11.0
AEDKHPBE+U 2.0 566 320 314

In order to characterize thesR) Ds and G structures of [UQ(H20)s]% as maximum or
minimum energy configurations, harmonic frequency catcna were performed for thedy,
Ds and G equilibrium geometries at the PBE and PBE + U levels. The vatfidbe lowest
three harmonic frequencies of [U®,0)s]%t (i.e. wue, wa7, aug) at PBE and PBE + U levels
are presented in Table 6.8. Structures optimized wihdonstraints at the PBE level for &«
values exhibit three imaginary frequencies as in the caad@LYP calculation [170,171]. Both
atthe PBE and PBE + U levels, the weakest madg)of the D5, structure is characterized by an
imaginary frequency of 124-14&m~! and the penultimate modess andw,7 are degenerate.
A slight symmetry breaking can be noticed in the valuesogf and wy7; it arises from the fact
that the actual frequency calculations were performedomitienforcing symmetry restrictions.

At the PBE level, the structure obtained withy Bymmetry constraints is a second-order
saddle point with two degenerate imaginary frequenciegedseat the PBE + U level, fdd ¢ >
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0 the frequencies indicate a minimum structure. For indngaglues ofUef, the trend seen in
the frequencies of Pand G structures are similar to the trend of the geometry paramétable

6.6) and the energetics (Table 6.7). kg = 1.0 eV, the frequencies offand G structures are
different, implying that these two structures are différdfor Ue = 2.0 eV, the @ structure is

identical to the [3 structure, and the corresponding frequencies are similar.

0346:431‘cm‘1
0347=45ic:m'1

P @Y

o, =124 cm”
k;bz' g'ﬂ i"ﬂ

Figure 6.5: Modes corresponding to the three imaginary baren frequencies of
[UO,(H,0)s]%t at the AE DKH PBE level with 3, symmetry restriction. Geometry relaxation
of the Dy, structure to the B structure occurs through the mode characterized by thedrezy
wyg by tilting the molecular planes of the water ligands by al®fitwith respect to the uranyl

axis.

The mode vectors corresponding to the normal modes of thgimagy frequencies of the
Dg structure at the PBE level are shown in Figure 6.5. One notdghle geometry relaxation
of the Dy, structure to the B structure occurs througtg by tilting the molecular planes of

the water ligands by about 2@vith respect to the uranyl axis. The higher modes along which
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the Dy structure distorts to Cstructure are shown in Figure 6.6. At the PBE level, these sode
(cu7, wug) are degenerate with the frequency valuei2@n1. It is interesting to note that
such a scheme for distortion of five coplanar water ligandbénDs structure through a doubly
degenerate normal mode is similar to the mode of distortfanmanar cyclopentane to a more
stable boat form. Indeed, by inspecting thestructure at the PBE level (Figure 6.4), one notes
that the equatorial oxygen atoms can be connected to formatalike structure.

Table 6.7 also summarizes the character of the HOMO ofJi@0)s]%* in terms of Mul-
liken contributions from the U 6 orbitals and the @ orbitals of terminal and equatorial oxygen
centers. The net sum of the U Jpopulations and the@2populations of the terminal oxygen
atoms quantifies the contribution of the uramylfragment orbital to the HOMO of the penta-
agua uranyl complex, the character of which is predomig&yl(Oy,). In the Ds, configuration,
the uranyloy MO of &, character and the non-bonding @,) MO of &, character are forbidden
to interact by symmetry, hence the HOMO of the complex is g2 (O,), both in the PBE
and the PBE + U calculations. In the Donfiguration, the corresponding MOs are allowed to in-
teract, i.e. the uranydy, MO and the non-bonding,2Oy)-type MO are of a character. Indeed,
in the PBE calculation the uranyl fragment contributes 23%h&HOMO as shown is Figure
6.7.

(047=22icm’1
+ +

co48=22icm’1
\ g O §

Figure 6.6 Modes corresponding to the three imaginary baren frequencies of
[UO,(H20)5]%t at the AE DKH PBE level with [ symmetry restriction. Geometry relaxation
of the D; structure to the €structure occurs through the modes characterized by thadreies

wy7 and aus.
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The spurious mixing between the uramyike and Q, 2p-like MOs is a consequence of the
incomplete self-interaction cancellation in the desaipof the Coulomb interactions of the U
5f orbitals which results in their insufficient localizatiamlLDA and GGA calculations. At the
PBE + U level U = 2.0 eV) hybridization of U 5 orbitals is penalized and hence the corre-
sponding orbital mixing is suppressed although it would baneed in Ds symmetry: 93% of
the HOMO are of @ 2p character and only 5% are assigned to the uranyl fragmei)yra,
(Table 6.7, Figure 6.7). In the PBE results and to some extetiite PBE + U calculations with
the lower Hubbard parametéle = 1.0 eV, the oxygen centers of the water ligands leave the
equatorial plane as soon as the symmetry constraints dyedldxed. This leads to a;Gtruc-
ture; mixing of uranyloy and Qy 2p orbitals again is avoided, this time by phase cancellation
(cf. 98% Ow 2p character of the HOMO at the PBE level, Table.6Rglaxing the symmetry
constraints at the PBE + U level, with a higher value of the Hulilparametet) ¢ = 2.0 eV,
has only a minor effect; the geometry and the Mulliken popoites are very similar to those of
the D structure, Table 6.7.

o st
o

PBE + U

Figure 6.7: Spurious mixing of uranyb-like and Q, 2p-like molecular orbitals of
[UO,(H,0)5]%" in Ds symmetry at the PBE level and its removal at the PBE + U legk(
=2.0eV).

Therefore, the instability of the {structure at the PBE level is related to the above discussed

mixing of uranyla, and Q, 2p orbitals. Note that this interaction between two closedIsh®
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repulsive in nature. The PBE data in Table 6.7 show that the B0O#/stabilized by 0.18 eV,
together with a significant reduction of the uranyl conttibo to the HOMO, when the symmetry
is relaxed from @ to C;. At the PBE + U level (¢ = 1.0 eV) the stabilization is smaller and
there is no net stabilization withe¢ = 2.0 eV. Figure 6.8 shows the repulsive orbital interaction
of the HOMO, dominated by §2p contributions, and the Ufsdominatedo, MO of uranyl in
the PBE structures and its removal by the Hubbard term. Netethe upward energy shift of
the uranyloy, MO (Figure 6.8). In summary, to the degree it is observed in B&8Eulations, the
MO mixing is a consequence of the insufficient cancellatibtme self-interaction. It induces the
observed geometry distortion of the uranyl penta-aqua ¢®xip LDA and GGA calculations.
The DFT + U method is known to approximately cure the artfadta overly large delocalization
of the f orbitals [25] and thus results in less or no tendency (deipgnoin the value ofJgg)
towards distortion from Bsymmetry. The distorted structure of the water shell catesl with
the uranyl bending angle, in part due to the softness of taaylibending mode at the LDA
and GGA level. The deviation from linearity of the uranyl reityi is reduced together with the

distortion of its solvation shell.

€(V) 1y = 0.0ev  1.0ev 2.0 eV
-15.6 |
158 _ —\— —_— O, (2p)
-16.0 i —/—
162
164 _/_
16.6
i (0)
-16.8 D, C, D, C, D, C,

Figure 6.8: Repulsive interaction between uraaylike and Qy 2p-like molecular orbitals of
[UO,(H20)5]%t in Ds symmetry and its removal when symmetry is relaxed. KS eigems
from PBE and PBE + U calculations for various valueslk are compared for Hand G

structures.



6.3. URANYL MONOHYDROXIDE 105

6.2.2 Conclusions

Standard GGA functionals underestimate the rigidnesssofithnyl moiety with respect to bend-
ing distortions. From a detailed analysis of DFT + U resultss has been attributed to an
overestimated propensity for a second-order Jahn—Tikkesymmetry breaking. The DFT + U
method is capable of correcting this artifact of LDA and GGcallations. DFT calculations ap-
plying the local density approximation or a gradient-coreel exchange-correlation functional
showed a distorted geometry of the water shell in the uraaptgzaqua complex. The com-
bination of this distortion of the ligand shell and too softi@nyl bending mode results in a
notably bent structure of the uranyl moiety in these calouts. The distortion of the water
shell is a direct consequence of the spurious mixing of thef Wibitals with ligand orbitals
which manifests itself through a repulsive interactionwb ttlosed shells, namely an MO with
substantial U % character and a non-bonding orbital of the ligand framewbiding scalar rela-
tivistic all-electron Douglas—Kroll-Hess calculatiotise present study showed that inclusion of
a Hubbard-like DFT + U correction with a small positive otesiepulsion paramet&sqs) ap-
proximately corrects for the self-interaction artifagighe description of the valence U Bike

MOs, leading to a better description of properties of theylr@/1) aqua complex.

6.3 Uranyl Monohydroxide

Fractional occupations of the non-bondidigtype quasi % orbitals of U in the uranyl molecule
arise due to a second-order Jahn-Teller type interactibmesm the uranyb, occupied MO
(HOMO of uranyl) and theé,-type 5f orbitals when uranyl deviates from linearity. In LDA and
GGA KS calculations Coulomb repulsion is underestimatedrimtional electrons resulting in
spurious stabilization of systems with fractionally oc@agporbitals. In uranyl complexes with
equatorial ligands fractional population of the non-bagdiype quasi 5 orbitals of uranyl can
result also fromo/m donation of electrons from the ligand donor atoms to the Whatdowever
such a donation is possible only when an equatorial ligarad s&rong donor such as anionic
ligands like a hydroxyl ion. Theoretical models predictédttthe uranyl (V1) molecules of
the type UC§+X with the equatorial ligands X = 0 [177], H™ [178], F~ [179], OH™ [180]

or O, [181, 182] show a bent uranyl moiety where the deviation ftoearity increases with
the bond strength of the ligands. Therefore it is of intetestnow the strength of the bond
between the U center and an equatorial ligand and how much dftitals contribution to such

a bond. In neutral agueous solution, the uranyl ion is ugwabrdinated by water molecules
and hydroxyl ions, solvated [USfOH)| ™ appears as hydrolysis product of the uranyl ion in dilute
solutions at acidic pH [183]. [UGEOH)|™ has been observed in the gas-phase as a produgt of O
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oxidation of [UO(OH)]" in an ion trap-secondary ion mass spectrometric experifi€aj and

in an electrospray ionization (ESI) experiment of an agsaoanyl solution [185]. Both the gas
phase and hydrated uranyl monohydroxide species have hbgrtsto a number of theoretical
investigations [171,177,178, 186, 187]. For the gas-phaseyl monohydroxide molecule ion,
neither experimental nor highly accurate theoretical geloynparameters are known. Thus in
the present work, structural aspects of the gas phase negf0,(OH)|™ has been investigated
through a wide range of theoretical methods such as DFT, DBThybrid-DFT methods B3LYP
and PBEDO, as well as wavefunction based methods such as mdgyperturbation theory of
second order, MP2, and a high-level coupled cluster apprd&CSD(T).

In the closed-shell species uranyl monohydroxide J(@MH)| ", static correlation effects are
absent; therefore, CCSD(T) predictions should be quite atetor the complex in the gas phase.
For this system, [UQ(OH)|*, KS density functional calculations employing LDA or GGA/éd
were found to predict geometries deviating from CCSD(T) tssuh order to find out if these
geometric deviations are related to the improper desonpdf the Coulomb interaction of the
U 5f orbitals, the DFT + U methodology was invoked for the paltigdcalized 5f shell of the
uranium atom.

The effects of the spurious self-interaction error presen€S-DFT approximations artifi-
cially stabilize delocalized states and solvent effecbiize localized states [188]. Thus one
can expect relatively large effects of self-interactiotifacts for species in the gas phase and a
reduction of these effects in the presence of water due tpriéference for localized states in
solution. Therefore, the hydrated species J(0H)(H,O)4] ™ was also studied.

6.3.1 Results and Discussions

The major part of this subsection deals with the discussibeguilibrium geometry parameters
of [UO2(OH)|*, followed by a brief discussion of harmonic vibrationalduencies. Finally
the effects of self-interaction artifacts in LDA and GGA @alhtions on the structural aspects
of [UO2(OH)|™ and the nature of correction provided by the DFT + U methoddiseussed

through an orbital analysis.

Geometry parameters of [UQ(OH)]+

Table 6.9 summarizes the geometry parameters of the uramybinydroxide cation in the gas-
phase calculated at different theoretical levels such asDKH PBE, AE DKH PBE + U,
AE DKHVWN, AE DKH VWN + U, RECP/VWN [178], AE ZORA PW91[178], RECP/B3LYP
[178], RECP/PBEO, RECP/MP2 [186] and RECP/CCSD(T). Not all of thekeiledions could
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b performed at the all-electron level. Before proceedinghdiscussion of the main results
(Table 6.9), it seems useful to estimate possible effecerwvdore electrons are described by an
effective-core potential. For this purpose, results of Aie DKH approach will be compared
to those of calculations employing relativistic effecta@e potentials (RECPS). Similarly, it is
appropriate to assess the quality of different basis setsfas the U atom in various calculations.

Table 6.9: Geometry parameters of [L{OH)|™ 2from various computational methods: Average
equilibrium U-Q bond lengthr(U-G;), equilibrium U-Q, bond lengthr (U-Oy), uranyl bond
angle8(G;-U-Gy), two O-U-Op bond angle®(0;-U-Op) and U-G-H bond angled(U-Op-H).
Bond lengths in pm and bond angles in degrees. Also given islthard parametddqs (eV)

for the U 5f shell.

Method Ueif T r C]
U-O U-Op Oi-U-O; 0:-U-0,, U-On-H

AE DKH VWN P 174.9 199.1 168.3 95.8,95.8 180.0
AEDKHVWN+UP 1.0 174.4 200.1 172.2 92.4,95.3 153.7
AEDKHVWN+UP 20 174.0 201.2 174.9 91.6,93.5 1445
AE DKH PBEP 176.5 202.1 166.7 94.9,98.3 158.8
AEDKHPBE+UP 1.0 176.1 203.1 171.2 92.7,96.0 145.6
AEDKHPBE +UP 2.0 1756 204.2 174.1 92.0,96.0 138.6

RECP/VWN¢® 174.7 198.5 167.6 96.2,96.2 180.0
AE ZORA PWO1° 176.1 201.9 167.9 94.4,97.7 151.8
RECP/B3LYP? 174.2 201.4 167.9 94.9,97.2 154.2
RECP/B3LYP° 175.1 199.9 167.2

RECP/PBE® 172.3 200.0 170.0 93.7,96.3 1494
RECP/MP2 177.7 200.3 171.8 93.7,94.5 140.0
RECP/MPX 176.7

RECP/CCSD(TY 173.6 201.3 170.7 93.8,95.6 148.1
RECP/CCSD(T§¢ 1741  201.8 170.7  93.8,95.6 148.1
a Point group symmetry £

b This work.

¢ Ref. [178]

d Ref. [186]

€ Including an estimated AE DKH core correction of +0.5 pm te tiond lengths

U-O; and U-Q,.

AE DKH correction to RECP/CCSD(T) results: As no experimental geometry is available
for the gas phase [USPOH)|™ molecule, the equilibrium geometry calculated at the aateur
CCSD(T) level is chosen as areliable reference. To estimatertbr introduced in the CCSD(T)
calculation due to the RECP representation of the core eles;tresults of VWN calculations
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carried out with the same RECP [189] are compared with theteestithe AE DKH approach
using uncontracted basis sets to achieve a more accuraie (resvs 2 and 3 of Table 6.10).
Introduction of the RECP results in a contraction of the Ybond by 0.5 pm and of the U-
On bond by 0.6 pm, while changes in angles are smaller than @deddTable 6.10). Similar
contractions of U-X bonds have been obtained earlier fonyir@.7 pm) and UE (0.8 pm) for
the same RECP with the VWN approach [190]. A larger decreasesairdmyl bond of 1.6 pm
due to this RECP has been calculated with the BP XC functiondl][1Bhus, a contraction of
U-X bonds by 0.5 pm and no change of bond angles seems to be@nedde estimate for the
core-correction to RECP results from CCSD(T) calculationss Téads to a reference geometry
for uranyl monohydroxide with the bond lengths Y-©174.1 pm, U-Q = 201.8 pm and the
same angles as obtained in the RECP/CCSD(T) calculation (T&lg 6

Estimation of uncertainties due to various basis sets: In the B3LYP, PBEO and MP2 cal-
culations performed using the program Turbomole and in theTxBcalculations performed
using the program Molpro, aug-cc-pVTZ basis sets were usethé atoms O and H. For the U
atom, the segmented contracted def-TZVP basis set used ifutlhomole calculations is of the
same quality as the generalized contracted basis set used Molpro CCSD(T) calculation.
The specific details of these basis sets are given in Chapted Appendix I. Compared with
the basis sets used in the hybrid-DFT and wavefunction bastidods, the basis sets used in the
DFT and DFT + U calculations performed using the prograxRAGAUSS are of different size
and quality. Thus in order to estimate the uncertaintiessiongetry parameters due to various
basis sets used in the present work (Table 6.9), a set ofnsgstecalculations were performed
at the RECP/VWN and AE DKH VWN levels (Table 6.10).

First of all, row 5 of Table 6.10 presents the results of a RE@PWcalculation which
employs the same basis sets as the CCSD(T) calculation (row&bté 6.10). With respect to
the results of row 5, changing the U basis set to an uncoetitdmsis set or changing the aug-
cc-pVTZ to the standard basis sets for O and H atoms intradnegligible deviations. Rows
3 and 4 of Table 6.10 differ only by the basis set used for theddha When compared to the
quality of the (14, 13p, 10d, 8f, 6g) basis set used in the CCSD(T) calculations (row 4), the
larger (24, 19p, 16d, 11f) basis set (row 3) relaxes the Us;@nd U-Q, bonds by 0.4 pm and
0.2 pm, respectively, and the;@-0; bond angle by 0.2and Q-U-Oy bond angle by 01
Finally through the results of the AE DKH VWN calculationsW®1 and 2 of Table 6.10), one
notes that when compared to the quality of the uncontra@4s] {9p, 16d, 11f) basis set, the
contracted basis set (2419p, 16d, 11f)—[10s, 7p, 7d, 4f] which uses AE-DKH-VWN atomic
eigenvectors relaxes the U5CGand U-Q, bonds by 0.3 pm and 0.1 pm, respectively, leaving
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all other geometry parameters unchanged. Thus variationssults due to different basis sets
(uncontracted) are marginally larger than the effects duspecific basis set contraction (Table
6.10). From these results we estimate uncertainties dueetafe basis sets to be at most 0.5
pm for distances and at the maximum9Of@r bond angles. Such uncertainties are rather small

indeed.

Table 6.10: Comparison of geometry parameters of J(@H)] ™ 2in VWN and CCSD(T) meth-
ods employing various basis sets and pseuopotentials:ageezquilibrium U-@ bond length
T(U-Gy), equilibrium U-Q, bond lengthr (U-Oy), equilibrium Q,-H bond lengthr (On-H), uranyl
bond anglef(0;-U-0), two G-U-Oy, bond angle(0;-U-Oy) and U-Q-H bond angled(U-
Op-H). Bond lengths in pm, bond angles in deg.

Method r r 6
U-G U-O, On-H Gi-U-&¢ G-U-O U-Op-H

AEDKHVWN P 1749  199.1 982 168.3  95.8,95.8 180.0
AEDKHVWN ¢ 1746  199.0 98.0 168.3  95.8,95.8 180.0
RECP/VWNE 1741  198.4 98.1 168.3  95.8,95.8 180.0
RECP/VWN¢ 173.7 1982 98.1 168.5  95.7,95.7 180.0
RECP/VWNE 173.7  198.1 98.1 168.5  95.8,95.8 180.0
RECP/CCSD(T} 173.6  201.3 96.6 170.7  93.8,95.6 148.1
RECP/CCSD(T] 1741  201.8 96.6 170.7  93.8,95.6 148.1

a Point group symmetry £

b Basis sets U: (24 19p, 16d, 11f)—[10s, 7p, 7d, 4f] with AE DKH VWN
contraction, O: (§ 5p, 1d)—[5s, 4p, 1d], H: (6s, 1p)—[4s, 1p].

¢ Basis sets U: (2 19p, 16d, 11f), O: (Ss, 5p, 1d), H: (6s, 1p).

d Basis sets U: (18} 13p, 10d, 8f, 6g), O: (s, 5p, 1d), H: (6s, 1p).

€ Basis sets U: (1¢} 13p, 1(d, 8f, 6g)—[6s, 6p, 5d, 4f, 3g], O: aug-cc-pVTZ
(11s, 6p, 3d, 2f)—[5s, 4p, 3d, 2f], H: aug-cc-pVTZ (1%, 6p, 3d, 2f)—[5s, 4p,
3d, 2f].

f Including an estimated AE DKH core correction of +0.5 pm t@®Uand U-G,
bond lengths (according to rows 2 and 3 of this table).

VWN, VWN + U results: Compared to the reference CCSD(T) value that includes an esti-
mated core-correction to the RECP (Table 6.9), the VWN valudaHerU-Q bond length is
larger by 0.8 pm and the Uybond length is shorter by 2.7 pm. The VWN value for the uranyl
angle Q-U-0; is 168 which is slightly smaller than the reference value of 17As the most
remarkable difference between CCSD(T) and DFT VWN calculatible U-Q-H angle has to

be noted, which is 180(linear U-Q,-H) for VWN and 148 for CCSD(T). This remarkable de-
viation has been observed earlier in a RECP-VWN calculatioB][&Rid is also reproduced in
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the VWN-RECP calculations performed in the present work (Tékl®). DFT + U results as
obtained with the VWN functional show decreasing uranyl blemgths and an increasing UsO
bond with increasing value &5 (Table 6.9). The parameters calculatedi§ = 2 eV, U-Q
=174.0 pm and U-@= 201.2 pm agree with the reference up to the uncertainties@basis
sets (see discussions above). The uranyl angld-O; increases with increasinges from 168
to 175, finally overestimating somewhat the reference of°17lhe most prominent effect of
the DFT + U method is a strong decrease of the \(JHOangle from 180 for Ugg = 0 eV to 145
for Uess = 2 eV (Figure 6.10), which is in good agreement with the CCSD¢igrence of 148
(Table 6.9). Overall the DFT + U approach leads to a notabfgavement of the VWN results.

PBE, PBE + U results: Comparison of PBE and PBE + U calculations reveals the samestrend
as obtained for the VWN calculations when varyldggr (Table 6.9). The PBE value of UG
176.5 pm is overestimated compared to the reference of prd ldy 2.4 pm and the corrections
provided by the onsite-Coulomb parametks = 2.0 eV only partially improves the result by
0.9 pm. The U-Q bond length, already overestimated at the PBE level (202.)] imereases
further in the DFT + U calculations up to 204.2 pm. Both thesangjes of bond lengths due to
self-interaction correction, -0.9 pm for Ur@nd +2.1 pm for U-@, agree with the corresponding
VWN + U corrections (Table 6.9). Also the uranyl angle@-O; increases with increasingdes
from 167 (0 eV) to 174 (2 eV), slightly overestimating the CCSD(T) result of 27In contrast

to the VWN results, PBE yields a bent OH orientation with an andlG,-H of 159, which
decreases to 139or Ugis = 2 eV. Thus, PBE slightly overestimates that angle and the BET
correction provided through tHdes value of 2.0 eV leads to a comparable underestimation of
about 10 (Table 6.9). Overall, comparison of VWN and PBE results rev¢fa¢ same trends
for the effects of the self-interaction corrections andvehthe known overestimations of bond
lengths of heavy elements compounds for GGA compared to LI¥O]. Similar results as
obtained here with PBE have been earlier calculated with W8 PGGA functional, applying
the AE ZORA relativistic approach [178] (Table 6.9).

B3LYP, PBEO and MP2 results: The RECP/B3LYP values for the geometry parameters of
[UO,(OH)]" are in good agreement with the CCSD(T) reference. The uramd kength cal-
culated as 174.2 pm (this work) as well as the Hond length of 201.4 pm (this work) agree
very well with the reference values of 174.1 and 201.8 pnpeetively. Also the bond angles
Gi-U-O; = 168 and U-Q-H = 154 match the reference with deviations ¢f & most (Table
6.9). Slightly worse bond distances of U-©175.1 pm and U-@= 199.9 pm have previously
been calculated by means of the B3LYP approach [178]. The dmtdnces determined with
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Table 6.11: VWN-LDA and PBE-GGA geometry parameters of j(@H)|* @ from constrained
geometry optimizations whe#{O;-U-O;) is fixed to 180 along with results from corresponding
DFT + U levels. Average equilibrium U-Qond lengthr(U-O;), equilibrium U-Q, bond length
r(U-0Oy), equilibrium Q-H bond lengthr(Op-H), two G-U-Oy bond angle9(0;-U-0Oy) and
U-Op-H bond anglef(U-Op-H). Bond lengths in pm, bond angles in degree. Also givenas th
Hubbard parametad ¢ (eV) for the U 5f shell.

Method Ue T r ?]
U-O; U-Op G-U-0,,  U-Op-H

AE DKH VWN 174.7 199.4 88.9,91.1 146.2
AEDKHVWN+U 1.0 174.3 200.4 89.1,90.9 141.9
AEDKHVWN+U 20 174.0 201.4 89.5,90.5 138.4
AE DKH PBE 176.3 202.6 89.0,91.0 1394
AEDKHPBE+U 1.0 176.0 203.5 89.3,90.7 136.3
AEDKHPBE+U 20 175.6 204.5 89.7,90.3 133.6

a Point group symmetry £

the PBEO hybrid functional employing a small-core RECP, {J=Q72.3 pm and U-@= 200.0
pm, deviate slightly more from the reference compared t&RIBEP/B3LYP values. On the other
hand, PBEDO yields rather accurate anglespad; = 170 and U-Q-H = 149, which agree up
to 2° with the reference values. Compared to LDA and GGA results &mve), it is obvious
that hybrid functionals provide better results. This imy@a@ performance is rationalized par-
tially by the inclusion of an admixture of exact exchangehase functionals, which reduces
self-interaction artifacts, especially for the PBEO fuantl which includes a larger fraction of
exact exchange than the B3LYP functional. Interestingly2MRBIculations, which are free of
self-interaction artifacts, yield rather long uranyl bentl77.7 pm (this work) and 176.7 pm [187]
for uranyl monohydroxide, which are comparable to GGA rss(ilable 1). The U-@bond of
200.3 pm as obtained with the MP2 approach as well as thesafgld-O; = 172 and U-Q-H

= 140, on the other hand, are in acceptable agreement with the CQ3Ia(ived reference.
Thus, relatively long bond lengths as obtained in GGA and M&R2ulations are probably not

the result of unphysical self-interaction, but have to beibed to an insufficient representation
of dynamic correlation.

Structural analysis: The DFT + U results show as essential effects of self-intema@longa-
tion of the uranyl bond (which may be interpreted as a bonckes@ag) and as a consequence
a contraction of the U-Rligand bond length due to bonding competition at the uranemter.
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Due to the presence of an equatorial ligand, the uranyl maetlightly bent (Table 6.9). Asin
the case of the bare uranyl ion (Section 6.1 and see belowkeffiect decreases with increasing
Uess In line with an increased frequency for the uranyl bendingyational mode. Constrained
geometry optimizations (for a fixed, linear uranyl moietgyealed that the strong change of the
angle U-Q-H with change inUef is an indirect effect due to the bending of uranyl. Optimiza-
tions of [UO,(OH)|™ with a fixed linear uranyl subunit as carried out with VWN, VWN + U
PBE and PBE + U approaches yield very much smaller effects éT@ldl1). In the VWN and
VWN + U calculations, in unconstrained optimizations -B decreases by 35vhenUgg is
varied from O to 2 eV while for a fixed straight uranyl geometris angle decreases only from
146.2 to 138.4 (by 8) for the same variation dfles. A similar trend is also noted in the PBE
and PBE + U calculations where in the constrained optiminatwith linear uranyl, the U-@H

angle is less affected yef (Table 6.11).
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Figure 6.9: Correlation between-@-O; and U-Q,-H bond angles of uranyl monohydroxide
according to various methods: While fitting the straight lik#2, VWN and VWN + U values
were ignored to give the correlation coefficient 0.998. Thg values used in the DFT + U

calculations are given in the parentheses.

This finding is of special interest as it shows that indirdtgas of self-interaction artifacts
for geometry parameters may be sizeable for soft degreeseddm. With the focus on the per-

formance of various methods in describing the uranyl anditH®ond angles, the correlation
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between these two angles according to various methodsigdrdted in Figure 6.9. Except for
the methods VWN, VWN + U and MP2, all other methods show a linearetation between
uranyl and U-@-H bond angles. The PBE values of-O-O; and U-Q,-H angles which approx-
imately fall on in the fitted straight line lie farther awapi the CCSD(T) values; results of both
hybrid-DFT methods B3LYP and PBEDO lie on the straight line vehtée PBEO values are close
to the CCSD(T) values. The PBE + U{x = 1 eV) values are also close to the CCSD(T) value
but on the other side of PBEO values. Fdgi = 2 eV, the deviation of the PBE + U results for
0O;-U-0; and U-Q-H bond angles are similar in size as those of the PBE valuésflmpposite
sign (Figure 6.9).

Harmonic vibrational frequencies of [UO2(OH)]*

Table 6.12 summarizes the harmonic vibrational frequanai¢he uranyl monohydroxide cation
in gas phase, calculated at different theoretical levath sis AE DKH PBE, AE DKH PBE + U,
AE DKH VWN, AE DKH VWN + U, RECP/B3LYP [178], RECP/PBEO, RECP/MP2 [187],
RECP/CCSD(T) along with available experimental results in agaesolution [183]. The largest
frequency {u) corresponds to O-H stretching for which the CCSD(T) refegevadue is 3810
cm1. The CCSD(T) reference values for the uranyl asymmetis) @nd symmetric )
stretching frequencies are 1022 and 944 énrespectively. These frequencies are underesti-
mated in the VWN approximation, by 12 and 16 threspectively. At the VWN + U level for
the value ofUe; = 1.0 eV, these values are improved towards the CCSD(T) valpés$ land 8
cm~1 respectively. For the higher vallgs = 2.0 eV, the VWN + U values for the asymmetric
stretch frequencyuy) is larger than the CCSD(T) value by 17 chwhile the symmetric stretch
frequency (us) is identical to the CCSD(T) value (Table 6.12). At the PBE letie values for
w, and ws are underestimated by 46 and 49 Threspectively. At the PBE + UUgs = 2.0
eV) these values are improved by 27 and 14 ¢mespectively. The B3LYP results fos, and
w3 (present work and [178]) are in excellent agreement withréffierence values. At the PBEO
level, both the frequencies, and w; are overestimated by 46 crh while at the MP2 level
(this work), these frequencies are overestimated by 49'cand 66 cnml, respectively, when
compared to the CCSD(T) reference value.

The next two smaller frequencies as@ (U-Oy, stretching) andws (torsion of the @Q-H
group), which lie in the range 500—-700 th Both in VWN and PBE levels, inclusion &g
increases the value af; and decreases the valuewf. The VWN value ofwy, 694 cntt, is very
close to the CCSD(T), 683 cm. ForUg#=1.0 eV, the VWN + U value ot is essentially the
same as the reference value. In contrast, the PBE valug isf660 cnm 1 which underestimates

the reference value by 23 crh for positive values of) o, the PBE + U results are even lower,
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underestimating the reference by 33¢nand 40 cr? for the values ofJe = 1.0 and 2.0 eV,
respectively. The reference value @f, 553 cnt?, is underestimated at the VWN and PBE
levels by 40 and 53 cnt respectively. For the value afe = 2.0 eV, VWN + U and PBE + U
levels improvews; by 29 and 38 cm! respectively. For bothy andas, on an average, the PBEO
values are closer to the reference values than B3LYP and Mikse

The lowest four frequenciesy — wy lie below 500 cm! of which the modes correspond
to ws — wy are in-plane bending modes ang represents an out-of-plane bending or wagging
mode. The description of these lower-frequency modes isgpsrmore relevant to the stability
of the equilibrium geometry of [UgIOH)]". Since the complex is planar, one can expect the
magnitude of the in-plane bending modes to be more relewathtet equilibrium bond angles.
The largest of these four frequenciggs corresponds to the U+42H bending mode and; cor-
responds to the rocking of the uranyl group. In the gas phhsebending mode of uranyl is
doubly degenerate corresponding to bending in two equivgdanes. In the uranyl monohy-
droxide molecule with the introduction of an equatoriabhgl, the uranyl bending modes are
split into wy, the Q-U-O; in-plane bending or scissoring mode anglO;-U-O;, an out-of-plane
bending or wagging mode.

The normal modes corresponding to the frequenaigs ws frequencies are of the same
symmetry (8, As these frequencies are quite similar in size, one caeaxmixing between
the corresponding normal modes. The CCSD(T) values for thesesnare 340, 210 and 185
cm respectively. Both hybrid-DFT methods B3LYP and PBEO prediiese three frequencies
fairly well but the MP2 values are slightly overestimateg,ta 60 cnt! for ws. This findings
perhaps allow one to rationalize why B3LYP and PBEO methodsedigt the bond angles of
[UO,(OH)]™ better than the MP2 method (Table 6.9, Figure 6.9). At thistpdt is important
to note that an accurate prediction of all three frequengigs wg is important for describing
the bond angles @U-O;, and U-Qy-H, considering the fact that the normal modesugf— wyg
may couple. For the value afe = 1.0 eV, both VWN + U and PBE + U levels predicg — ws
reasonably well compared to the VWN and PBE values and thesponeling DFT + U results
for the higher valudJ¢¢ = 2.0 eV. The coupling between these three modes can be tooiérs
through the potential energy distribution (PED) along ¢hesrmal mode coordinates in terms of
the three internal coordinates. The PED was performed d&@Bteand the PBE + U levels; the
results, given as footnotes to Table 6.12, indicate theloogipetween these three normal modes
(s — ).

The out-of-plane uranyl bending mod® is easy to describe because it has the symmetry
a’ while the other lower modes belong to the symmetry typaral the next higher mode of

d’ symmetry corresponds tas in the planar [UQ(OH)]™ molecule. Thuswy mode is well
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Table 6.12: Harmonic vibrational frequencies? (in cm™1) of [UO,(OH)]* b from various
computational methods: Also given is the Hubbard paraméggreV) for the U 5 shell along
with available experimental data.

Method Uett (i @ W W W W W g Wy

AE DKH VWN ¢ 3669 1010 928 694 513 269 227 95 140
AE DKHVWN + U € 1.0 3674 1026 936 686 530 332 219 182 170
AE DKHVWN + U ¢ 2.0 3677 1039 944 0648 542 381 234 217 197
AE DKH PBE ¢ 3680 976 895 660 500 311 200 117 145
AEDKHPBE +U%f 10 3680 989 901 650 510 374 213 204 170
AE DKHPBE +U%%9 2.0 3686 1003 909 643 538 439 240 213 195

RECP/B3LYP© 3769 1026 946 672 515 321 207 168 165
RECP/B3LYP" 1025 946 679

PBEO/RECP 3823 1068 990 691 533 350 216 193 179
MP2/RECF® 3770 973 878 701 587 400 219 90 164
MP2/RECP 969 884

RECP/CCSD(T¥ 3810 1022 944 683 553 340 210 185 168
Exp. 849

a Assignments:w, (&) — O-H stretchingwy, (&) — U-Q asymmetric stretchingps ()
— U-O symmetric stretchingwy () — U-O,, stretchingws (&) — On-H torsion, ws (d)
— U-Oy-H bending,w; (d) — G-U-O scissoringws () — G-U-O; rocking, ay (&) —
0O:-U-0; wagging.

b Point group symmetry £

¢ This work.

4 The potential energy distribution (PED) is given only foe ih-plane bending modes as
sum of percentages of the three coplanar normal mode cabedas, w; andws along
the bond angles: U-@H, G,-U-Oy, and Q,-U-On where @, is the terminal oxygen
atom which iscis w.r.t the hydroxyl H atom and Qis the terminal oxygen atom which
is transw.r.t the hydroxyl H atom.

€ PED:ws (54 + 47 + 0),07 (0 + 0 + 100),a5 (47 + 52 + 0).

! PED: ws (75 + 26 + 3),007 (18 + 49 + 33) w3 (5 + 20 + 70).

9 PED: ws (87 + 13 + 2),7 (12 + 73 + 15),w3 (0 + 0 + 100).

h Ref. [178].

| Ref. [187].

I In aqueous solution, Ref. [183].



116 CHAPTER 6. DFT + U APPLICATION TO ACTINIDES

separated in energy from the other modes and the eigenwd¢ta corresponding normal mode
essentially does not mix with other normal modes. The CCSD&l)erfor the out-of-plane
uranyl bending mode is 168 crk; the corresponding B3LYP and MP2 results are 165 and 164
cm~! respectively. The PBEO value, 179 tfy slightly overestimates the reference. These
frequencies are identical to the bending frequency of tlie beanyl dication, 178 cm' at the
CCSD(T) level and 166 cmt at the B3LYP level, (Table 6.1). At the PBE level, the frequency
of the bending mode of bare uranyl ion is 92 Tth(Table 6.1) which is notably improved in
[UO,(OH)]™ molecule at the VWN level, (140 cn), and the PBE level, (145 cm). For Ugg

= 1.0 eV, both VWN + U and PBE + U levels predict the valueugfto be 170 cm®, which is

very close to the reference.

Table 6.13: Population analysis of the valence moleculbitals (MOs) of UQOH™ 2 from
VWN and VWN + U calculations: orbital energies(eV) and Mulliken atomic gross populations

(as percentage).

Type MO VWN VWN + UP
& Population & Population
Uf O, p® O,p° Onp Uf O, p® O,p° Onp
d 41 -1294 31 12 12 38 -1299 17 7 9 59
40 -14.68 17 34 33 4  -1509 25 50 4 10
39 -1468 34 14 14 31 -1471 35 6 35 10
369 -18.23 7 2 2 53 -17.84 7 5 2 52
a’ 17 -14.44 10 5 5 71  -14.04 6 0 1 81
16 -15.18 26 28 28 12  -1539 29 31 34 1

a Point group symmetry £

b Uet = 2.0 eV for the U 5 shell.

¢ Oy, is the terminal oxygen atom which @@s w.r.t the hydroxyl H atom and Qis the terminal
oxygen atom which isransw.r.t the hydroxyl H atom.

d Both in VWN and VWN + U calculations, this MO has 15% H)Tontribution, which is not
listed. This MO has the £§2p)-H(1s) sigma character.

Population analysis

Table 6.13 summarizes the population analysis of six valenclecular orbitals (MOs) of the
uranyl monohydroxide cation based on Mulliken gross atgnoipulations. The main purpose
of the population analysis is to characterize the threeyHiée MOs (oneo and twor) and
the three p-dominated MOs that correspond to two non-bondipegiRe orbitals and a €(2p) -
H(1s) o-like orbital. Since the essential features of these ddbéee the same in both the VWN
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and the PBE levels, only the VWN and VWN + U results are presenmtddiscussed here. The
interactions among the valence MOs are predominantly imtbkecular plane, i.e., only the

MOs of the symmetry’ashow large mixing.

&

- SR

1. 1

a b

Figure 6.10: Equilibrium geometry and sketch of the HOMO &)lof uranyl monohydrox-
ide: (@) AE DKH VWN, (b) AE DKH VWN + U (Ueff = 2.0 eV). The interaction between the
uranyl dication and the hydroxyl anion in JOH™ changes its character from short-rangt
long-rangeo-like. In the schematic representation (top) of the orbitedraction, the uranyr
contribution is not shown; and the only quasj%_,2) contribution is shown on the U center for

easy interpretation.

Both at the VWN and the VWN + W{¢f = 2.0 eV) levels, the lowest of the six listed orbitals,
364d, can be easily characterized as the hydroxy2p) - H(1s) sigma bonding orbital. In the
VWN geometry with the linear U-@H configuration, this MO slightly mixes with MO 4Qa
which is an uranyl in-plan& MO; in the and in the bent U-@H configuration (VWN + U)
this interaction is removed resulting in the stabilizatod0 & by +0.4 eV and a destabilization
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of the Q-H o orbital, 364, by -0.4 eV. In the VWN calculation, MO 39&as the character of
the uranylo bond with a weaki-donation by the hydroxyl @ to thedough nutrings of the
o bond which is minimized with the introduction &fe then the ® character decreases from
30% to 10%. As a distinct feature, the highest occupied nutdemrbital (HOMO) 41 aof
[UO2(OH)]* which is easily identified as thed2p)non bonding-type orbital in the VWN + U
calculation but insufficient localization of thef ®rbital in the VWN calculation prevents such
a characterization of the HOMO of the VWN calculation. ThigdaMO shows ar-donation
in the VWN calculation with a short U-@bond but in the VWN + U calculation with a slightly
longer U-Q, bond, it changes its character to a werkype interaction by a rotation in order to
account for better overlap between the non-bonding typerBital of the hydroxyl O center and
a o-type 5f contribution at the U center (Figure 6.10).

Going from VWN to VWN + U, one notes that the slight mixing betwabe MO 164,
of uranyl it character, and MO 17awhich is a non-bonding @(2p) orbital, is removed as the
former MO is shifted down by 0.2 eV and the latter shifted upOby eV. This decoupling can
be partly related to both the decrease in in UpOnd length and an increase in the J-4nd

length.

I\/WNI e @ e
VWN +U (Ug=1.0eV) —o—
VWN + U (Uggs = 2.0 €V) - - |

1000

60 50 40 30 20 10 O -10 -20 -30 -40 -50 -60
A 6 [degrees]

Figure 6.11: Potential energy profiles of [J@H)]" along the U-Q-H bending mode from
AE DKH VWN and AE DKH VWN + U calculations. For various angles aé\dationA@ (in
degree) from linearity (180 of the U-Q,-H fragment, relative energiésE (in cm™1) are plotted.
The energies were obtained by constrained geometry ogtiinis of [UGQ(OH)]"™ at various
fixed values 0B(U-Op-H).
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Second-order Jahn-Teller type interaction in [UQ,(OH)] ™+

Figure 6.11 shows the energy profiles of [L{OH)]" along the U-Q-H bending mode, as cal-
culated at the VWN and the VWN + U methods. The VWN potential ep@mgfile shows a
minimum for the linear structure of the Uy&H fragment. Including the Hubbard term with
small positiveU¢s values, relatively more positive energy correction is jpted for the struc-
ture with the linear U-@-H fragment than with a structure with a bent -8 fragment which
effectively removes the bending mode barrieféy-Op-H) = 180°.

Similar to the second-order Jahn-Teller type interactiothe bare uranyl ion, the popula-
tion of a d,-type U 5f quasi-atomic orbital affects the shape of the potentiatgnprofiles of
[UO,(OH)]* along the U-@-H bending mode. In the linear uranyl ion, the two pertinabitals,
5fxyzand 5fz(xz,y2), are degenerate (@&, symmetry in the point group £,) and non-bonding.
In the discussion of [UQ(OH)]*, we focus only on the orbitaiz(xz,yz) because for the chosen
orientation, this orbital can interact with the uramyike orbital. Both MOs transform as thé a
irreducible representation in the @oint group.

The spurious stability of the linear configuration of Y-8 at the VWN level can be related
to the fact that thet-type interaction between the hydroxyp &rbital and the urany-like MO
which also contains a small contribution of the % _,» orbital is more favored when the U-
On-H framework is linear. Such an interaction results in aticaxal population of the §,,2_2)
orbital for which the Coulomb repulsion energy is undereatad in the VWN approximation.
By providing suitable energy corrections through the Hublarm, at the VWN + U level,
this linear U-Q-H configuration is less favored (Figure 6.11). A relatedabte effect in the
structural features of [UGOH)]" is the prediction of a relatively short Us®ond length at the
VWN and PBE levels, 199.1 pm and 202.1 pm, respectively. A ddad, bond with a linear
configuration of U-Q-H will lead to a strongert-type interaction and an increased population
of the U 5f,,2_,2-like orbital. Note that at the VWN + U and the PBE + U levels thé&}Jbond
length increases withl¢f, reducing or preventing the-type interaction.

Uranyl monohydroxide aqua complex

Next, the structure of the [USOH)]™ moiety shall be discussed when additional aqua lig-
ands are present in the complex [{OH)(H>0)4] ™. Geometry optimizations of the tetra aqua
uranyl monohydroxide complex [USSOH)(H,0)4] ™ were performed at the AE DKH PBE and
AE DKH PBE + U levels. Table 6.14 summarizes the resulting patars of the equilib-
rium geometry along with results from various methods sicB3LYP (this work, [171, 191]),
AE ZORA PBE [186], AE ZORA BP86 [186], MP2 [187] and CCSD [187]. Foe thverage
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U-C; bond length, AE DKH PBE calculation predicted a value of 180 which is close to
the values obtained by ZORA-PBE [186] and ZORA-BP [186]. Theouhtiction of the onsite
Hubbard term withUeg = 1.0 or 2.0 eV has the same effect as in the bare complex melecu
[UO,(OH)]™, resulting in shortening of the UyMond by 0.6 and 1.2 pm, respectively. The
hybrid method B3LYP yields a slightly shorter bond length, a®EB3LYP calculation of this
work gave 177.2 pm far(U-O;) which is close to the value calculated with MP2, 177.6 pnv|18
while the CCSD method predicted a shorter bond length 175.118@

Table 6.14: Geometry parameters of [({OH)(H,0)4]" 2 calculated from PBE and PBE + U
calculations, compared to results from other methods: agyerequilibrium U-@bond lengthr
(U-Gy), average equilibrium U-@ bond lengthr (U-Oy), equilibrium U-Q, bond lengthr (U-
On), uranyl bond anglé (O;-U-G;) and U-Q,-H bond anglef (U-On-H). Bond lengths in pm
and bond angles in degrees. Also given is the Hubbard paeatgt (eV) for the U 5 shell.

Method Ueit T r 6

U-O; U-Oy U-O,  O-U-O; U-Op-H
AE DKH PBEP 180.1 257 212.3  169.3 133.4
AEDKHPBE+UP 1.0 1795 258 212.8 172.4 129.1
AEDKHPBE+UP 2.0 1789 259 2143  174.6 125.9
RECP/B3LYP? 177.2 259 210.2 1735 137.5
AE ZORA PBE® 179.7 260 211.3
AE ZORA BP86° 180.0 259 211.6
RECP/B3LYP 178.3 216.2
RECP/B3LYP® 178.6 258 2155  166.7
RECP/MPZ 177.6 255-260  213.2
RECP/CCSD 175.1 254-259  214.4
a Point group symmetry C
b This work.
¢ Ref. [186]
d Ref. [171]
€ Ref. [191]
 Ref. [187]

As in the case of [UQ(OH)]™, equatorial bonds are elongated whésg > 0. The AE DKH
PBE value for the averaggU-Oy) is 257 pm; withUes = 1.0 and 2.0 eV, this distance is
elongated by 1 pm and 2 pm, respectively. AE ZORA PBE [186] andZAIRA BP [186]
values are slightly longer by 3 pm and 2 pm, respectively,maned to the AE DKH PBE value.
The RECP/B3LYP value of this work, 210 pm, differs from a pregioesults obtained with the
same method, 216 pm, [171] indicating possible differemcié orientation of the equatorial
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water molecules. The equatorial Ur@ond is expected to be stronger and thus shorter than
the U-Qy bond. The AE DKH PBE value for r(U-g) is 212.3 pm. WithUes = 1.0 and 2.0
eV, r(U-Oy) increases by 0.5 pm and 2.0 pm, respectively, thus indigatipartial removal of
U(5f)-On(2p) mixing as in the case of [USOH)]*. As in the penta-aqua uranyl complex, the
uranyl bond anglé (O;-U-G;) is moderately affected by the Hubbard term. The AE DKH PBE
value for the @U-O; bond angle is 169which is similar to the B3LYP value 167171]. With
Ues = 1.0 eV and 2.0 eV, the uranyl moiety becomes less bent @if®;-U-O;) values 172
and 175. The RECP/B3LYP value of the present work 174 close to the PBE + U value for
Uest = 2.0 eV. In the ligand-free complex [WEDH)] ", the U-Q,-H bond angle changes notably
with the introduction of the Hubbard term. This is no longes tase once the four aqua ligands
are present in the complex [J@DH)(H,0)4] . The AE DKH PBE value of the U-@H bond
angle is 133which is decreased by°4nd 8 for Ugs values of 1.0 eV and 2.0 eV, respectively.
Interestingly the B3LYP calculation of the present work peeztl a structure where the UpeH

moiety is closer to the linear configuration than in the PBEwalion, by 5.

6.3.2 Conclusions

The higher angular momentum bforbitals provides greater flexibility for multi-directiahori-
entation in directed valence bonding. Uraniufndrbitals which are semi-localized play a vital
role in the bonding of certain uranium complexes. An aceudascription of their localization
is necessary to properly describe the extent of intra-&fell5f hybridization, hence the contri-
bution of variousf orbitals to valence bonds. In the present work, a subtle etitgn between
a 11 type and ao-type interaction has been shown to govern the equilibrigongetry of the
uranyl monohydroxide cation. Both these interactions mwahe contribution of &-type U 5f
guasi-atomic orbital. Incomplete self-interaction coti@n in KS-LDA and KS-GGA calcula-
tions resulted in uranyl monohydroxide geometries whidfeddd from accurate predictions of
CCSD(T) calculations. Also for this complex, the onsite Hubbrm with moderate values
of the parametet¢¢ provides approximate self-interaction correction andvigles improved

description for the structural aspects of uranyl monohyidie.
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Chapter 7

Summary and Outlook

The main objective of the present thesis was to adapt somenooibyg used variants of the
DFT + U methodology for use with a localized basis set, to enmnt this method in the paral-
lel density functional programARAGAUSS, and to carry out molecular applications of systems

with f electrons.

Within Kohn-Sham Density Functional Theory (KS-DFT), tHeatron-electron interaction
energy is calculated as the sum of a classical Coulomb repulsrm and a contribution from
the so-called exchange-correlation (XC) functional. Anatxexpression for the XC functional
is not known, however approximations have been proposedrtpuate this term. The accuracy
of a proper KS-DFT calculation depends on the approximatfahe XC functional. Commonly
used XC functionals that are based on the local density appadion (LDA) or the generalized
gradient approximation (GGA) are considered as standald itmcomputational quantum chem-
istry. The implicit efficiency of the KS-DFT approach alonghthe satisfactory accuracy of the
LDA and GGA XC functionals ensures practical calculatiohs@veral physical properties for
a wide range of systems such as atoms, molecules, clustdysigrs, systems with interfaces,

etc.

While the formulation of KS-DFT allows an extension to syssemith a fractional number of
electrons, the description of fractional occupation nuralily approximate XC functionals has
been identified as notable failures of LDA and GGA XC funcétsn For a fractionally charged
n-electron system, whereO n < 1, and the electrons are of the same spin type, cancellation
of the classical Coulomb contribution by the XC contributtmth in the total energy and in the
orbital energy is an exact condition which is to be satisfigdinexact XC functional. The failure
to satisfy this condition results in a situation where arctet erroneously interacts with itself.

In such a case the error introduced due to the inexact catioallof the classical Coulomb and

the XC contributions is called as the self-interaction e(8IE).

123
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A number of remedial schemes have been proposed to provickxtions for the SIE present
in LDA and GGA KS calculations. In solid state band structtakeulations, in order to improve
the LDA and GGA description of thed3and 4f electrons of transition metal and lanthanide
systems, the DFT + U methodology was proposed, where a shedlific, Hubbard like energy
correction term is added to the DFT total energy functiorggveral variants of the DFT + U
methodology have been suggested, among them the fullyizedalimit (FLL) approximation
gives rise to a simple energy correction term which is ainedrnprove the LDA and GGA
description of systems with fractional occupation numloéspecified shells. The FLL DFT + U
approach is commonly used in a simplified form where the ntadaiof the energy correction

is controlled by a single parametdgs (onsite-Coulomb parameter or the Hubbard parameter).

In the present work, the FLL DFT + U methodology has been sdbughe first time for
molecular systems and implemented in the programaA®&AuUss along with several variants of
the onsite-occupation matrix in order to compute the orlmtgupation numbers. The imple-
mentation was extended to analytic energy gradients ty catrgeometry optimizations and, by
numerically differentiating analytic forces, to compube tHessian for calculating frequencies
of harmonic vibrations. After implementation, test caltidns were performed for model sys-
tems to understand the nature of corrections provided bydngcular variant of the DFT + U

approach and to evaluate the implementation.

As a first application of the DFT + U methodology to moleculbe, role of 4 electrons in
the bonding of Lug was studied. A very recent study in the literature had diaskiheir role as
significant. Due to the poor shielding naturefoélectrons, the completely filledf4shell of Lu
has a very small radial extension and was calculated not ilavbésed in covalent bonding with
ligand orbitals. In LDA and GGA KS calculations, the SIE obital energies is maximal for
integer occupation numbers which resulted in a severe hikz&tion of the 4 energy levels of
Lu in LuF3 and places the Lu#levels near the g levels of F. Such near degeneracy situations
encountered in LDA and GGA calculations have been wrondbrpreted as bonding situations.
To investigate this situation, several molecular propsrguch as dissociation energy, equilib-
rium geometry, etc. were calculated using the GGA-PBE metmubithe same quantities were
computed at the corresponding DFT + U level. The magnitudeeobnsite-Coulomb parameter
Uetr = 18 eV, which was used in the DFT + U calculation was found byngtthe weighted center
of the density of states (DOS) of the 4hell of LuR; to the corresponding ionization potential
(IP) obtained by photo-electron spectroscopy. By providirggitable correction to the energies
of the 4f levels, the near degeneracy between lfaAd F 2 levels was removed at the DFT + U
level. However molecular properties of Lgi&s computed at the DFT + U level were found to be

essentially unaffected from their pure DFT values indragthat 4f electrons of Lu do not play
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arole in the bonding of Luk:

As applications of the DFT + U methodology td Blements such as actinides, manifesta-
tions of SIE in the form of spurious structural distortionsLiDA and GGA results of actinide
complexes were studied. The uranyl molecular cation is gyoitant species in the actinide
chemistry, hence the bare uranyl ion and its complexes congawater and hydroxyl ligands
formed suitable representative actinide systems for thipgse. In the present work, by empir-
ical fitting, a meaningful value fddes for the 5f levels of the uranyl ion was determined to lie
in the range of 1 to 2 eV. One of the key findings in the presenkwsthe role of SIE on the
uranyl bending mode frequency in LDA and GGA calculatiomsvds shown that a deviation of
uranyl from linearity introduces intra-shelf5f mixing that results in fractional occupation of
previously unoccupied orbitals. Spurious stabilizatidrswch fractional electrons in LDA and
GGA calculations has been shown to be the reason for an wstoeation of the bending mode
frequency of uranyl. For the value Bt in the range 1 to 2 eV, the DFT + U methodology de-
scribes this frequency adequately in good agreement wélaticurate and self-interaction free
wavefunction based method CCSD(T).

The penta-aqua uranyl complex where the uranyl fragmentsiequatorial plane is sur-
rounded by five water ligands, has been predicted to haveietste of By symmetric structure
by hybrid-DFT methods such as B3LYP. However, KS-DFT calioites employing common
LDA and GGA XC functionals predict a distorted structuretfois molecule. This situation was
investigated in the present work and it was shown that thieusahyl bending mode along with
a spurious near degenerate orbital interaction in LDA andA@@&lculations is responsible for
the structural distortion of penta-aqua uranyl. Wikl between 1 to 2 eV, the DFT + U method
was shown to improve the uranyl bending mode and to removsghgous orbital interaction,

resulting in a correct geometry for penta-aqua uranyl.

As a final application, the uranyl monohydroxide cation waslied. LDA and GGA meth-
ods predicted an equilibrium geometry which markedly degdrom the results of high level
methods such as CCSD(T). In the present work, a wide range cflatibns were performed
to quantify the deviation of LDA and GGA results. From the lgas of the DFT results, the
role of U 5f orbitals in the U-hydroxyl bonding has been identified whiebults in fractional
occupation of non-bonding type Uforbitals that are spuriously stabilized in LDA and GGA
calculations. In the DFT + U calculations, the same randdegf(1 to 2 eV) for the U 5 shell
which was found to be appropriate for the bare uranyl ion dedcorresponding penta aqua
species is suitable for the uranyl monohydroxide catioratacel approximately the SIE due to
fractional populations of U b levels. With the inclusion of thEles parameter, both LDA and

GGA descriptions of the structural properties of uranyl wioydroxide cation were improved



126 CHAPTER 7. SUMMARY AND OUTLOOK

towards the results of more accurate methods such as hplsiTdand CCSD(T).

Overall, this thesis demonstrated the applicability of @€l + U methodology to molecular
systems and provided some guidelines to carry out furthéeentar applications of the DFT + U
methodology. Besides the discussion of main results of thécgbions, various analyses were
performed in this work to rationalize the corrections pded by the DFT + U method which
in turn may aid in related investigations. An attractivetfea of the DFT + U methodology is
the inclusion of a tunable shell-specific correction termotigh which self-interaction artifacts
introduced in LDA and GGA calculations can be easily ideatifand related to a specific atomic
shell. Through a series of molecular applications, the DRT method has been shown to be a
suitable probe tool when examining LDA and GGA results fdf-sgeraction related artifacts
in LDA and GGA calculations. An implementation of a schemeatculate theJs parameter
in anab-initio fashion can certainly enhance the applicability of the enrimplementation of
the DFT + U method in RRAGAUSS, however no unique procedure is available to accurately
calculate this quantity. In this regard, the judiciouslyusted values dfles, as used in this work,
may serve as suitable starting points for future DFT + U stsidif related systems. Finally, the
manifestation of SIE in various properties of lanthanidd actinide molecules as studied in the

present work may also serve as test situations for newlylolegd XC functionals.



Appendix A
Basis sets

In this appendix some basic definitions related to the basisamework of the programaRA -
GAussare given and the basis sets used in this work are described.

In the most general form, the atomic basis functions emplayehe LCGTO framework of
PARAGAUSs are defined as symmetry adapted linear combinations ofadett Gaussian type
functions

StMp = CONTp g, (A1)

In the above equatior;°NTd is arow vector of contracted Gaussian type functioBsis a
transformation matrivof symmetry adaption coefficients a”tM® is a row of symmetry adapted
basis functions. The contracted Gaussian functions atieciluexpanded as linear combinations

of primitive Gaussian functions as
CONTCD — PRIMCD C, (AZ)

wherePRMa is a row vector of primitive Gaussian basis functions andrwesformation matrix
C is commonly known as the matrix @ontraction coefficients A single primitive Gaussian
basis function is defined as the product of a Gaussian functidhe form exp{ar?), a real
solid harmonic functiorC ,, and a normalization factor [93]. Thus the two main paranseter
that define a basis set used in a calculation are the setpmfnentof the primitive Gaussian
functions{a;} and the corresponding contraction coefficie@fdoth of which can be obtained
from standard basis set libraries (e.g. [192]). When theim&tris a unit matrix with its size
equal to the number of primitive basis functions, the bastsscalled aruncontracted basis
set symbolically represented asp6, n1p, nod, n3f) whereng is the number os-type (angular
momentum = 0) primitive Gaussian functions and so on. On the other handptimized set
of fixed values for the columns @& is used to construct eontracted basis setepresented as
[Nos, N1p, Nod, N3f] whereNy is the number of contracted functions that are linear combin

tions ofs-type primitive functionsl(= 0) and so on. Both contracted and uncontracted basis sets
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were employed in the present work. For the lanthanide (La@3delu) and actinide (U) atoms,
predominantly contracted basis sets were employed, whemiumns of the matri¢ were ob-
tained from corresponding spin-restricted atomic caloahs as eigenvectors of the Hamiltonian
matrix. Specific details of these atomic calculations amdstburce of contraction coefficients of
the basis sets of main group atoms such as H, C, O and F weresskstin Chapter 4. In the
following, only the exponents of the primitive Gaussiandtions of all the basis sets used in the
present work are listed.

Further, an atomic orbital basis set is supplemented by aoniracted auxiliary basis set
which is used to fit the charge density [103]. The auxiliargibaet containsand f type fitting
functions whose exponents were generated from thoseaofl p type orbital basis functions
respectively by multiplying them by a factor of 2. From theci#iary basis sets of La, Ce, Gd,
Lu and U atoms, every second type function is removed to arrive at a smaller fit basis in
order to decrease the near linear dependency and to imgrevatvergence. In addition, five
primitive Gaussian basis functions of the typed andf were used agolarization functions

whose exponents form the geometric sequence
ai=¢B', i=0,1,234. (A.3)

For all three typesy, d, f) of polarization functions, the common rafibis chosen as 2.5 and
the pre factor{ takes the values 0.1, 0.2 and 0.3 fprd andf functions, respectively. In the
following, the charge-fit basis set and the polarizatiorctioms are collectively represented as
(nos, n1r?, mp, mpd, mgf). The set of exponents derived using the above equatiofiséed In

the following table.

Exponents of polarization functions of the auxiliary basis st

p d f

a; 0.10000000 0.20000000  0.30000000
ap 0.25000000 0.50000000 0.75000000
a3z 0.62500000 1.25000000  1.87500000
as 1.56250000 3.12500000 4.68750000
os 3.90625000 7.81250000 11.71875000
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Hydrogen (Z = 1): (6s, 1p) basis set

Reference  [195,196]
Contraction (6, 1p) — [4s, 1p]
Fit basis (8, 112, 5p)

S p

a;  0.08989100 1.00000000
a, 0.25805300
as  0.79767000
as  2.82385400
as 12.40955800
ds 82.63637400

Hydrogen (Z = 1): (8s, 4p, 3d) basis set

Reference  [194]
Contraction (8, 4p, 3d) — [4s, 3p 2d]
Fit basis (8, 4r2, 5p, 5d)

S p d

(of] 0.02796200 0.09882700 0.29104000
ay 0.07989100 0.28236200 0.72760000
a3 0.21214900 0.80675000 1.81900000
[0/} 0.59106300 2.30500000

Os 1.81504100

06 6.42483000

a7  28.27659600

og 188.61445000
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Carbon (Z = 6): (14s, 9p, 4d, 3f) basis set

APPENDIX A. BASIS SETS

Reference  [194]
Contraction (14, 9p, 4d, 3f) — [5s, 4p, 3d, 2f]
Fit basis (14, 9r, 5p, 5d)
S p d f
a1 0.03468000 0.02290000 0.08146300 0.20000000
as 0.09908700 0.06542900 0.23275000 0.50000000
as 0.24606800 0.15474000 0.66500000 1.25000000
a4 0.61301300 0.36194400 1.90000000
as 1.54711800 0.86515000
Og 3.57701500 2.17931700
az 8.38397600 6.08036500
Og 20.65931100 19.55761100
g 53.91874600 83.33315500
(041) 151.71075000
a11 472.82279000
a2 1694.32760000
013 7524.78560000
014 50557.50100000
Oxygen (Z = 8): (S, 5p, 1d) basis set
Reference  [195,196]
Contraction (8, 5p, 1d) — [5s, 4p, 1d]
Fit basis (8, 5r%, 5p, 5d)
S p d
(o] 0.30068600 0.21488200 1.15000000
as 1.00427100 0.72316400
as 4.75680300 2.30869000
Oy 12.28746900 7.84313100
s 33.90580900 34.85646300
Og 103.65179300
a7 364.72525700
ag  1599.70968900

(0{s]

10662.28494000
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Fluorine (Z = 9): (14s, 9p, 4d, 3f) basis set

Reference  [194]
Contraction (14, 9p, 4d, 3f) — [5s, 4p, 3d, 2f]
Fit basis (14, 9r, 5p, 5d)

s p d f

a 0.08430100 0.05418400 0.21437500 0.51200000
as 0.24086100 0.15481000 0.61250000 1.28000000
as 0.62329000 0.40397300 1.75000000 3.20000000
ay 1.56815700 0.99506000 5.00000000

as 3.91940100 2.44703000

Og 8.53274300 6.27499500

az 18.94287400 17.60456800

ag 44.64472700 56.91900500

g 113.44230000 245.33029000

010 314.03534000
011 967.09483000
012 3441.53920000
o13  15281.00700000
014 103109.46000000
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Lanthanum (Z = 57): (24s, 21p, 15d, 5f) basis set

Reference

[126]

Contraction (24, 21p, 15d, 5f) — [9s, 8p, 6d, 4f]

APPENDIX A. BASIS SETS

Fit basis (24, 11/, 5p, 5d, 5f)
S p d f
ay 0.01471267 0.02112952 0.03130637 0.10225200
> 0.03678167 0.05282379 0.07826592 0.24057400
a3 0.09195418 0.13205949 0.22988546 0.60143500
ay 0.22988546 0.33014872 0.56974097 1.50358800
a5 0.56974097 0.82537179 1.42250633 5.93867800
ofs 1.42250633 1.96206638 3.07135819
as 3.07135819 4.04845718 6.41189459
ag 6.41189459 8.31512573  13.16322130
dg 13.16322130 16.24070830  26.69874160
10 26.69874160 32.08192270  55.06898320
a1 55.06898320 64.74048750 115.66963400
a1o 115.66963400 130.90304300 251.40762400
a13 251.40762400 272.99883700 564.23215000
14 564.23215000 595.55617800 1293.69218000
15 1293.69218000 1383.57034000 3073.74453000
16 3073.74453000 3496.48341000
ay7 7611.63314000 9868.88138000

018 19800.65040000
019 54741.68130000
020 162993.86400000
021 530660.67500000
o2 1933165.17000000
op3  8123190.06000000
o4 44334794.20000000

32036.71700000
123114.08400000
585217.19200000

3947501.17000000




Cerium (Z = 58): (25s, 22p, 15, 11f) basis set

Reference

Contraction (25, 22p, 15d, 11f) — [9s, 8p, 6d, 4f]

[126]

Fit basis (25, 11/, 5p, 5d, 5f)

S p d f
ay 0.00460118 0.00780792 0.03216400  0.05035943
> 0.01150450 0.01951979 0.08040999  0.12589859
a3 0.02876124 0.04879948 0.23792043  0.31474648
ay 0.08040999 0.12199870 0.59320372  0.72992149
a5 0.23792043 0.31474648 1.49142031  1.62215185
ofs 0.59320372 0.72992149 3.22291959  3.39735340
as 1.49142031 1.62215185 6.72376354  6.94695462
ag 3.22291959 3.39735340  13.79309700 14.06409730
dg 6.72376354 6.94695462  27.94987250 28.05662940
10 13.79309700 14.06409730  57.62530360 57.77760050
a1 27.94987250 28.05662940 121.07176300 117.58398400
a1o 57.62530360 57.77760050 263.32783200
a13 121.07176300 117.58398400 591.15964500
14 263.32783200 245.86049300 1356.51771000
15 591.15964500 536.78966500 3225.20602000
16 1356.51771000 1245.36053000
ay7 3225.20602000 3139.55221000
a1g 7989.27326000 8834.96472000

019 20779.25380000
020 57400.92380000
021 170633.49100000
022 553938.14100000
op3  2008484.48000000
024  8375256.96000000
05 45191317.30000000

28617.52420000
109980.94900000
524129.96600000

3555062.42000000

133
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Gadolinium (Z = 64): (25s, 22p, 15d, 11f) basis set
Reference  [126]

Contraction (25, 22p, 15d, 11f) — [9s, 8p, 6d, 4f]

Fit basis (25, 11/, 5p, 5d, 5f)

S p d f
ay 0.00505301 0.00882074 0.03509922  0.06079557
> 0.01263252 0.02205186 0.08774806  0.15198894
a3 0.03158129 0.05512964 0.27354766  0.37997236
ay 0.08774806 0.13782410 0.71264801  0.93074707
a5 0.27354766 0.37997236 1.87459311  2.11418525
ofs 0.71264801 0.93074707 4.08926005  4.57627292
as 1.87459311 2.11418525 8.54173610  9.59867792
ag 4.08926005 457627292  17.50432520 19.55546590
dg 8.54173610 9.59867792  35.27192760 39.64806710
10 17.50432520 19.55546590  72.46670040  82.64890640
a1 35.27192760 39.64806710 152.32953700 172.14364000
a1o 72.46670040 82.64890640  332.00042000
a13 152.32953700 172.14364000  747.42556100
14 332.00042000 369.02563500 1722.31277000
15 747.42556100 825.68844400 4108.48885000
16 1722.31277000 1967.87734000
ay7 4108.48885000 5114.02661000

a1s 10186.06230000
019 26421.00080000
(0676} 72467.75250000
021 212690.70200000
022 676377.58500000
a3 2377757.08000000
a4 9460580.02000000
ap5 47757955.70000000

14859.12410000
49379.84090000
191924.14100000
909355.73100000
5979841.01000000




Lutetium (Z = 71): (25s, 22p, 15d, 11f) basis set

Reference

Contraction (25, 22p, 15d, 11f) — [9s, 8p, 6d, 4f]

[126]

Fit basis (25, 11/, 5p, 5d, 5f)

S p d f
ay 0.00865860 0.01232352 0.03641605  0.07567004
> 0.02164651 0.03080881 0.09104013  0.18917511
a3 0.05411628 0.07702204 0.30639930  0.47293779
ay 0.13529071 0.19255512 0.84556697  1.20346956
a5 0.33822678 0.48138782 2.33020702  2.80208130
ofs 0.84556697 1.20346956 5.14340016  6.16841114
as 2.33020702 2.80208130  10.80010080 13.06410770
ag 5.14340016 6.16841114  22.18571600 26.84545200
dg 10.80010080 13.06410770  44.55784090 55.11789140
10 22.18571600 26.84545200  91.35523090 115.62095300
a1 44.55784090 55.11789140 192.40395900 245.16436500
a1o 91.35523090 115.62095300  420.73427400
a13 192.40395900 245.16436500 952.02267900
a14 420.73427400 536.92927300 2206.33627000
15 952.02267900 1229.96307000 5285.35528000
16 2206.33627000 3009.97919000
ay7 5285.35528000 8048.21054000

a1s 13115.78600000
019 33896.72310000
(0676} 92147.91420000
021 266370.53700000
022 827289.33400000
a3 2810703.63000000
a4 10641810.10000000
ap5; 50315163.60000000

23994.79600000
80964.26030000
314764.31600000
1466437.56000000
9206720.28000000
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Uranium (Z = 92): (24s, 19, 16d, 11f) basis set

Reference

Contraction (24, 19, 16d, 11f) — [10s, 7p, 7d, 4f]

[193]

APPENDIX A. BASIS SETS

Fit basis (24, 9r, 5p, 5d, 5f)

S p d f
ay 0.02058815 0.1579066 0.03447413  0.1103255
> 0.04313320 0.4089979 0.08774074  0.3025422
a3 0.08254175 0.9059122 0.21542030  0.7374815
s 0.31243190 2.2913760 0.51211640  1.6923540
a5 0.65236340 4.6491100 1.20507700  3.7526650
ofs 1.85772200 11.1375800 2.55673600  8.1734170
as 3.33603700 22.8575700 5.22965900 17.5173600
ag 8.81990900 52.7374700 10.89752000  38.2236500
dg 15.37485000 113.7117000 22.23856000 86.8443800
10 37.71001000 270.7284000 45.78370000 219.0811000
a1 69.22380000 649.7508000 94.63173000 703.2615000
a1o 172.98510000 1673.8100000  205.18560000
a13 370.13750000 4676.7450000  474.04020000
14 849.55400000 14437.8400000 1215.79900000
15 1981.83800000 50135.6100000  3707.24200000
16 4869.81100000  200185.0000000 16079.47000000
ay7 12511.46000000  948314.4000000
a1g 33651.45000000 5589055.0000000
19 95179.62000000 30062560.0000000

020 285123.90000000
021 912190.10000000
a2  3147013.00000000
op3 12113820.00000000
o4 48171220.00000000
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