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Chapter 1

The Problem of

Replica Placement in
Content Delivery Networks

Content delivery networks (CDN) (see Bartolini et al. [9], Dilley et al. [18],
Pallis and Vakali [53], Pathan et al. [54], Peng [56], Rabinovich and Spatschek
[60], Vakali and Pallis [72], Verma [73]) replicate data in the Internet to reduce
the latencies for users requesting the data. They are of enormous importance
for the usability of websites. Companies have to ensure that their web services
are always reachable and performing well. Especially for large companies
with high traffic on their websites this typically can not be achieved with
a single server run by the company itself. The huge amount of requests
originating from all over the world has to be processed by several servers
which should not be concentrated on one location but widely distributed.
Doing this has several effects. The requests can be handled by near servers
so that the distance each data package has to pass and thus the time delay
is short. Furthermore, the requests are split among several servers to avoid
overloaded servers with high response times and they are split among different
routes such that congestion on data links in the Internet can be reduced.

A content delivery network provider offers exactly this service. He hosts
rich and thus bandwidth consuming content or even the complete website of
a customer, processes the requests and delivers the content for him. That
is why CDN customers, typically companies, are sometimes referred to as



content providers for the CDN. An end—user visiting the website and thus
generating the requests is called client. A CDN has a large amount of servers
widely spread over the world. These servers and their connections through
physical or virtual links can be viewed as an overlay network on the Internet
(see Andersen et al. [7], Jannotti et al. [28], Jeon et al. [29], Lazar and Terrill
[45], Pathan et al. [54], Rahul et al. [62], Savage et al. [65], Shi and Turner
(66, 67], Verma [73], Wang et al. [76]).

Let us assume the network in Figure 1.1 to be a small part of the Internet.
The circles represent the servers of the CDN, the edges represent their inter-
connections and together they form the overlay network. The dotted edges
are connections to nodes outside the CDN. The square node 0 represents the
origin server, i.e. the server of the customer and content provider. The two
laptops represent clients. If the dark nodes in the figure, i. e. servers 2, 3 and
4, additionally store replicas of the original data from node 0, requests from
the two clients can be answered faster. A request for a file is typically routed
to the nearest server which belongs to the CDN. Thus, we need to consider
just the overlay network of the CDN plus the origin server. Requests from
clients can be aggregated at the nearest CDN server, i.e. at server 5 and 2 in
our example. Inside the CDN each request is then redirected to the nearest
server which stores a replica of the data and is available, i.e. from server 5
to server 3 or 4 (see Bartolini et al. [9], Dilley et al. [18], Pallis and Vakali
[53], Vakali and Pallis [72]). A lot of work has been done in this field of re-
quest redirection and load balancing (e.g. Cardellini et al. [11, 12], Guyton
and Schwartz [22], Kangasharju et al. [32], Plaxton et al. [57], Rabinovich
and Spatschek [60], Rangarajan et al. [63], Ranjan [64], Verma [73]) and we
do not consider it in our work.

Regarding the transfer technique inside the CDN we distinguish between
the content delivery and the placement. As a server handles the requests
independently and each request has to be served immediately, the content
delivery is done via traditional point—to—point connections. With this so—
called ‘unicast’ approach all answers are sent independently from each other
and the individual transfers can not be combined. This still holds if two or
more requests from the same client arrive at the same server in the same
period — even if the period is infinitesimal short (see Cidon et al. [16]). As
an example, consider Figure 1.1 with the assumption that all edges have a
weight of 1. If only the origin server 0 stores the data requested by the two



Figure 1.1: Simplified structure of an overlay CDN

clients, we get delivery cost of 4. The client whose request is aggregated on
server 2 gets the file via node 1 at cost 2. The other client, aggregated on
server 5, gets the file at cost 2 either via node 3 or also via node 1. If the
dark nodes in the figure, i.e. servers 2, 3 and 4, store replicas of the object
we only have cost of 1 to deliver the object from server 3 or 4 to node 5.

In contrast, the placement, i.e. the transfer of the data to all designated
servers, is done simultaneously. Hence, point—to-multipoint connections can
be used, the so—called ‘multicast’ transfers (see Frank et al. [21], Paul [55],
Wittmann and Zitterbart [78]). This leads to considerably reduced cost and
is by far more efficient (see Wolfson and Milo [79]). If our figure represents
the first period of a planning horizon and the data is new to the CDN, the
origin server 0 is the only host in the beginning of the period. Replicas of
the object should be transferred to the dark colored servers 2, 3 and 4. In
a unicast approach three transfers using the shortest paths from the origin
server to each designated replica server would be used. With edge weights of
1 we would use, e. g., the unicast paths shown in Figure 1.2 with placement
cost of 6.

In a multicast approach an edge induces cost only once, no matter how
often it is used in a unicast sense. The object can be copied on every passed
replica server and then be forwarded several times. Thus, it is often superior
to bundle several unicast transfers to one multicast edge. In our example the
optimal multicast route could be just the multicast path shown in Figure 1.2
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Figure 1.2: Unicast and multicast placement paths

with cost of 4. With a multicast approach the data flow during the place-
ment uses edges in a subtree of the network. As in our example, this tree is
typically different from the set of individual shortest paths.

A contract between a company and a CDN provider typically contains a
service level agreement (SLA). It defines for example that a given percentage
of all requests has to be handled within a given timespan, the permitted la-
tency. Such a guaranteed quality of service (QoS) can not be achieved with
a caching approach which is often used to reduce latencies and traffic in the
Internet. Web caches basically store copies of files for a certain timespan
when they are delivered. Succeeding requests for a cached file are not for-
warded to the origin server again but directly served by the cache. As a
cache stores the files not until they are requested, these approaches are not
suitable if SLAs are in place. Hence, CDNs and replica placement algorithms
are needed (see Karlsson and Mahalingam [36]).

As there is not enough storage space to store all files of all customers
on all servers, the CDN provider has to decide which files are stored on
which locations. Of course, this decision depends on the frequency of the
requests and their geographical distribution. And as the request rate, i.e.
the number of requests per period, changes over time, the optimal assignment
of the replicas is dynamic. An optimal assignment is one with minimum cost
which fulfills the service level agreements.

In this thesis we consider the aforementioned problem with three cost
types and a single object to be placed. This object can be seen, for example,



as the complete website of one customer of the CDN provider. The first
type of cost are the storage cost. They occur for each server and period if a
replica of the object is stored on the server in that period. The second cost
type is for the placement, the cost for transferring copies of the object to
the designated replica servers in each period. The last type are the cost for
delivering the data from the replica servers to the points of requests. They
occur for each individual transfer of data to a client

This thesis is organized as follows. In Chapter 2 we provide an overview
of the work done so far in the field of replica placement and content delivery
networks. We classify the models and solution procedures regarding the as-
sumptions made and approaches chosen. We finally put the model presented
in this thesis in perspective to existing approaches.

In Chapter 3 we present a new MIP formulation which allows a more
realistic and flexible modeling of the problem than the modeling approaches
which have been proposed so far. We show the complexity of the problem
and prove that the latter is NP-hard. Finally, we present a relaxation and
an improved lower bound which is used for evaluating the proposed solution
approaches.

In Chapter 4 we first describe the framework we developed to incorporate
the different algorithms, especially the solution representation and solution
evaluation. Afterwards we propose several heuristic solution approaches for
the problem since optimal solutions can not be obtained in reasonable time
with a standard MIP-solver such as CPLEX. We propose an efficient simu-
lated annealing heuristic, several variants of a variable neighborhood search
and various benchmark heuristics from the literature.

Chapter 5 presents the computational study. We describe our experimen-
tal setup and the design. We compare the results of our algorithms with our
lower bound as well as the benchmark heuristics. We show promising results
regarding solution time and quality of our algorithms, especially for an ap-
plication in the real world. We then analyze the impact of the parameters
on the solutions.

Finally, we conclude with a summary and an outlook in Chapter 6.



Chapter 2

Literature Review

2.1 Previous approaches

The very first treatment in the literature of a basically similar problem was
the classical file allocation problem (FAP) (see Chu [15], Dowdy and Foster
[19]), dealing with the allocation of file copies in a distributed filesystem or
their assignment to storage nodes in a computer network.

Later research focused on web proxies and web caches which can be seen
as the origin of content delivery networks (see Baentsch et al. [8], Pathan
et al. [54], Rabinovich and Spatschek [60]). Typical problems are the place-
ment of web proxies or web caches in the Internet to reduce overall traffic in
the network or the access latency (see Korupolu et al. [40], Krishnan et al.
[43], Li et al. [46]). In these first approaches the authors assumed very simple
network architectures like line, ring, tree or other hierarchical topologies.

In a different context Jamin et al. [26] tackled a similar placement problem
with general topologies. Later the work was generalized to the placement of
web server replicas in content delivery networks by Qiu et al. [59] and Jamin
et al. [27]. Radoslavov et al. [61] did a slightly refined study based on the
work of Jamin et al. [27].

Cidon et al. [16] addressed the problem with a hierarchy tree instead of
a general topology. They made an important step towards a realistic model:
Up to their approach the problems were typically modeled as some sort of
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minimum k-median [43, 46, 59] or minimum k-center problems [26, 27]. These
approaches minimize latency or bandwidth consumption. They constrain the
maximum number of replicas of the object stored in the CDN or assume that
the number of replicas is known in advance. Hence, the number of replicas
is obtained separately from the actual assignment and is not optimized. In
contrast, Cidon et al. [16] minimize the sum of storage and communication
(bandwidth) cost for the delivery. They do not bound the number of replicas
and optimize it implicitly.

Kangasharju et al. [33] do not bound the number of replicas as well and
they consider general topologies. The drawback here is that they neither
minimize the number of replicas nor incorporate replication or maintenance
cost. But they were one of the first to consider multiple objects. Therefore,
they constrain the storage space on each node. They minimize the average
distance a request must traverse.

One of the first approaches towards quality of service (QoS) oriented content
delivery is by Chen et al. [13]. While not considering general topologies, they
use a more realistic objective function in another sense: They minimize the
number of replicas while meeting capacity constraints (load, bandwidth or
storage) for the servers and latency constraints for the clients. Hence, a max-
imum latency for the clients is assured. Although they term their approach
dynamic they formulate the problem for independent periods.

To the best of our knowledge Karlsson and Karamanolis [34] are the first
to model a real dynamic, i.e. multi—period version of the problem. Their
model considers multiple objects, general topologies and specific guaranteed
QoS goals. The QoS goals are modeled to meet realistic service level agree-
ments (SLA). They minimize the sum of storage and replica creation cost.

The drawback of their approach is the assumption of unit costs of 1 for the
storage and the replica creation. Although they state that the replica creation
cost represent the cost of network resources used to create a replica, in their
model these cost do not depend on the distance to the origin of the copy or
the bandwidth used. Moreover, the delivery cost are not considered. In a
later paper, Karlsson and Karamanolis [35] expanded their work to average
performance constraints. They force the average latency to be less or equal
to a specific threshold. However, because of the averaging this approach can
not provide performance guarantees as they are required by SLAs.
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Tang and Xu [69] also concentrate on QoS requirements and add per-
formance guarantees. They minimize storage cost and maintenance cost for
keeping the replicas consistent with changes of the original data. They nei-
ther consider the multi—period nor the multi-object case.

Aioffi et al. [5] provide another contribution with a dynamic model, opti-
mizing several periods at once. Their objective function minimizes the total
traffic over the network, generated by delivery to the client, replica creation
and replica maintenance. They do not consider storage cost and service
levels.

2.2 Comparison to our approach

In contrast to the work done so far we present an integrated model for the
simultaneous solution of the replica assignment, placement and content de-
livery. Our model was inspired by Sickinger and Kolisch [68]. We consider
service level agreements, the multi-period case and incorporate multicast
transfers. The approach differs from what has been presented in the litera-
ture in several ways.

First, our approach differs from others with respect to the underlying
topology. In contrast to [13, 16, 43, 46] we do not require a special topology
but consider a general topology as suggested as an important issue by Cidon
et al. [16]. Furthermore, we do not set or bound the number of replicas as it
is done by [26, 27, 43, 46, 59].

Second, we do not consider just one period or a static problem like all of
the referenced papers except [34, 35]. Cidon et al. [16] find that additional
work is needed to take into account the dynamic characteristic of the Internet.
As the demand changes over time the optimal replica assignment can also
be different in each period. The optimal multi-period assignment can not
be found by solving the single—period problems independently because of the
cost for the placement process we need to incorporate. To illustrate this
assume that a specific replica server needs to store a replica in the periods ¢
and t + 2. Depending on the cost coefficients it might be better to store an
additional replica in period ¢ + 1 instead of deleting it and replicating it to
the server again because the latter alternative has higher placement cost.
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Similar assumptions of multicast transfers can be found in Jia et al. [30],
Kalpakis et al. [31], Unger and Cidon [71], Xu et al. [80] for content updates or
write operations. But to the best of our knowledge we are the first to model
realistic multicast transfers. We assume that the content of the origin server
does not change over the entire planning horizon. Hence, we use multicast
transfers for the placement, i.e. updating the assignment. While, e. g., Tang
and Xu [69] do consider multicast transfers for their content updates, they
assume a fixed update distribution tree for the multicast to be given. In our
model, the multicast tree is implicitly optimized for each placement.

We assume the placement to be done in the very beginning of each period,
as modeled by Karlsson and Karamanolis [34, 35]. In contrast to Karlsson
and Karamanolis [34] we address the problem with cost for the use of the
edges that depend on a distance metric. In addition to the placement cost
we consider delivery cost.

Yang and Fei [81] state that the traffic for distributing objects to the
designated replica servers can not be ignored, especially because of the huge
number of files and the more and more common multimedia files of huge
sizes. They conclude that the storage cost as well as the delivery cost and
the cost for updating the assignment have to be considered, which is what
we do with our model. Nguyen et al. [50] incorporate storage and delivery
cost but they do only consider a static problem and therefore do not consider
cost for updating the assignment. Furthermore, they just set a bound on the
maximum latency instead of modeling SLAs.

Only little other work has been done with respect to QoS, e.g. [13,
29, 34, 69]. Except [34] all these papers only constrain maximum latencies
like Nguyen et al. [50]. They do not model realistic SLAs as we do and
furthermore they consider just the static case. Karlsson et al. [37] as well
as Cidon et al. [16] state that the consideration of systems with constrained
resources and guaranteed QoS properties is an important area for further
research.

When it comes to solution methods optimal algorithms have only been
proposed for special topologies (see [16, 43, 46]). Most of the authors propose
simple heuristics (see [5, 27, 33, 59, 61, 69]), especially for more general
topologies. Karlsson and Karamanolis [34, 35] put the most effort into a
realistic model for the different aspects but they do not deal with new solution
methods for the problem. To the best of our knowledge we are the first to
tackle such a problem with metaheuristics.



Chapter 3

Model

3.1 Model assumptions

Before we present our MIP formulation of the problem we make some basic
assumptions.

First, we consider only one object, as it is done in most of the previous
work, e.g. [13, 16, 26, 27, 29, 43, 46, 59, 69]. This can be seen as one
single file or the complete web page of one customer. Some companies out—
house only bandwidth intensive files like videos or other multimedia content.
Others hand their complete Internet presence over to the CDN provider. As
we consider only one object we do not incorporate the size of the object.
Thus, we do not need to model the bandwidth of the edges and storage
capacities on the servers. Consequently, our storage cost have to be mainly
seen as opportunity cost, besides the real cost for storing a replica on a server.
There are two reasons why storage cost need to be considered. On the one
hand, they reflect the fact that in the real world we cannot store all files
of all customers on every replica server due to limited storage capacity. On
the other hand, the more replicas of one object exist, the more complex and
expensive gets the maintenance of the files (see Aggarwal and Rabinovich
2], Chen et al. [14], Jamin et al. [27], Jeon et al. [29], Shi and Turner [66],
Tang and Xu [69]). For example if the original file changes, all the replicas
need to be refreshed in order to retain consistency.

10
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The placement cost are also partly opportunity cost. There are real cost
for using data links in the Internet for the transfer. But we also want to
model the fact that in reality the bandwidth of the edges is limited and valu-
able. The bandwidth should not be used excessively for shifting replicas in
each period. We assume that the placement is done in the beginning of each
period and takes no time.

Second, we assume a deterministic time-varying demand per period.

Third, we have assumptions concerning routing and transfer techniques. We
do not consider the routing outside the overlay network of the CDN as it can
not be easily affected by the CDN provider. Hence, we assume that a request
of a client is directed into the CDN to the nearest server using the shortest
path. Likewise we assume that each delivery of an object from a replica server
to a client is done via the shortest path in the network. These assumptions
of shortest paths are prevalent (see [5, 14, 26, 27, 29, 36, 40, 43, 50, 69]).

To ease the model and reduce the amount of data needed we assume that
the cost for the transfers is proportional to the length of the used path. We
weight the network distances with cost coefficients for placement and deliv-
ery to get the corresponding cost values. In reality the cost for the data
transmission depend mainly on the used bandwidth as the data links have
limited capacities. Hence, they depend on the amount of data transferred.
As we do not consider the size of the object we cannot use this criterion. A
second important factor is the passed distance. In reality this could be the
number of autonomous systems traversed (AS-hops, see Kangasharju et al.
[33]). The distance as employed in our model correlates highly with the num-
ber of AS-hops. In general, our model works with any metric or can at least
be easily adapted. If more realistic values for the edge weights are available,
they can be used right away.

Finally we assume that deleting an object from a replica server can be done
at zero cost (see, e.g., Karlsson and Karamanolis [35]).
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3.2 Model description

Network topology. We consider a general network topology representing
the CDN overlay network. Data flow is possible in both directions of an
edge in the network. As we need directed edges to model the problem we
substitute each undirected edge with two arcs directed opposite each other
and both having the same weight as the edge. Let V be the set of nodes,
V := V|, and let A be the set of arcs in a topology. J; ; is the weight of arc
(i,7) € A, e.g. the distance between the nodes.

Replica storage. One node vy € V is the origin server, the one and only
server which stores the original object initially in the dummy starting period
t =0. Vs CV\ {w} is the set of replica servers. They are part of the
content delivery network and can store a replica of the considered object.
Each replica server s € V; has a cost coefficient oy which represents the cost
for storing a replica in one period.

For an easier notation of the model we require that the replica servers of
the CDN; i.e. the nodes s € V,, form a connected subgraph in the topology.
This typically holds for real CDN topologies because of the overlay network
characteristic we already mentioned.

Placement. As the optimal assignment of the replicas changes over time,
we consider a placement being processed at the beginning of each period
t € T. A replica server can receive a replica of the object in period t only
from a replica server which stored a replica in period t — 1 or from the origin
server vg. Normally, at the beginning of period ¢ = 1 the only source of the
object is vy. In the following periods all replica servers which store a replica
can distribute a copy of it.

The placement is done via multicast. Hence, the optimal routes are not
obvious and we need to model the placement flow. In order to ease the
notation of the model we define two additional sets of nodes.

Voul(s) = {i € Vs U{wo} | (i,s) € A}

V"(s) = {j € Vs U{uo} | (s.5) € A}
Voul(s) is the set of nodes i € V, U {vg} with an outgoing arc (i,s) € A to
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server s € V, U {vg} while V"(s) denotes the set of nodes j € Vs U {uvp} with
an incoming arc (s, j) € A from server s € Vs U {wvo}.

Content delivery. Let V. C V\ {vo} be the set of clients from which the
object can be requested. The number of requests of a client ¢ € V, in period
t € T is denoted as r.;. Each replica server s € V; has a load capacity CF
which is the maximum number of requests the server can process per period.

The service level agreement is defined by the tuple (A, ¢). In each period,
all requests for the object have to be served. With ¢ we denote the maximum
latency within which a request has to be served. X\ defines the fraction of all
requests which has to be served within ¢q. Each single request of a client can
be served by a different replica server. Hence, the total number of requests of
one client in one period can be split among several replica servers. A single
request can not be split.

For the corresponding constraints we denote with Vy(e,q) C Vg the set
of replica servers where each server s € Vg(c, q) can serve a request of client
¢ € V. within latency ¢. Hence, in the topology there is a shortest path
between client ¢ and server s of length d. s < ¢ which would be used for the
delivery.

Variables. We employ the following decision variables. For the replica
assignment x5, € {0,1} equals 1 if server s € Vs stores a replica of the object
in period t € 7 and 0 otherwise.

To model the flow of the placements we denote with 0 < w,, < 1 the
variable which indicates for ws; = 1 that replica server s € Vs receives a
replica in period t € 7. Note that ws,, although modeled as continuous
variable, will always be forced to an integer through the other constraints.
We employ z;;+ € {0,1} for the actual routes of the placements. z;;; = 1
indicates that arc (i,j) € A is used for the placement in the beginning of
period t € 7. With z; ;; > 0 we denote the variable which counts how many
times arc (i, j) € A is used for the placement in period ¢t € 7. We need 2, ;,
to model the multicast flow.

Finally, for modeling the delivery to the clients we employ y.s; > 0
which is the fraction of all requests from client ¢ € V. in period t € 7 which
is served by replica server s € V,. Note that although y. s is continuous the
resulting number of requests served by each server is integer. Table A.1 in

the Appendix provides a summary of the notation.
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3.3 MIP formulation

We can now model the following mixed-binary linear program for the dynamic
replica placement with service levels (DRPSL):

Min ZZ&S Tsr+ - Z 25” Zijt

V T
s€EV;s te (i,j)e A teT (1>

+ - Z Z Z dc,s *Tet - Yeysit

c€V,e s€Vs teT

subject to
Vs € Vg
Z Tet ® Yesit S CSL * Tt (2>
= VieT
Z _, VeeV, (3)
Yot = VieT
SEVS
Z Z Tet ® Yeysit 2 A Z Tei Vit € T (4)
c€Ve s€Vs(e,q) ceV,
Vs e Vq
ws,t 2 xs,t - xs,tfl Vit e T (5>
Vs e Vg
Z ZS]t> Z Zzst Wt VtGT (6>

]GVLTL Zevout

Vs € V, U{v
Z Zsjt< Z Zzst wst+M Tst—1 thT {0}

]Gv”L ’LGV"“t

(7)

) V(i,j) e A

M- zj4— Zij: >0 VzE c )T (8)
0y <0 Vs € V, 9)
Lg,0 Z 1 (1())

oz > 1 VteT (11)
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Wyt <0 VteT (12)
Vs € Vo U{u}

z.; €{0,1} vieT (13)
Vs e Vo U{u}

W,y € [0,1] VT (14)
V(i,j) e A

Zigt € {0, 1} Vi c T (15)

i v(i,j) € A

Zijit =0 Vie T (16)
Vee V.

Ye,s,t Z 0 Vs € VS (17)
VteT

The objective function (1) minimizes the sum of three cost terms. First,
the storage cost ay for each replica server and period if the server stores a
replica of the object. Second, the cost for the placement, i.e. the sum of the
lengths §; ; of all arcs (i, j) used in the multicast placement processes in all
periods multiplied with cost coefficient 3. Third, the cost for the delivery to
the clients. The cost coefficient v is multiplied with the sum of the distances
of all paths used for the delivery in all periods. As mentioned earlier we
consider the potential split of the requests of a client among several replica
servers with y. ;. Note that for the delivery cost single arcs or even whole
identical paths are added as often as they are used according to the unicast
transfer.

Constraints (2) ensure that each replica server in each period can only serve
requests if it stores a replica of the object. Additionally, the load capacity
CF is defined as the maximum number of requests the server s can han-
dle per period. Due to constraints (3) all requests of each client in each
period have to be served. Constraints (4) ensure that in each period the
service level agreements are fulfilled, i.e. that at least the fraction A\ of all
requests is handled by replica servers in the range of the maximum latency q.
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The variable w,, is set through constraints (5). We need it to model the
multicast data flow of the placement process in each period. The latter is
done in constraints (6) and (7) which cover the following three cases.

First, if the considered server s € V, did not store a replica in period ¢t —1
(i.e. x54—1 = 0) and does not store a new replica in the actual period t (i.e.
zsr = 0) it follows through constraints (5) that ws; = 0. In this case (6)

reduces to
E Zs,],t > E Zz ,8,0 9

JEVIN(s) ieVout(s)
(7) reduces to
E Zs,j t = E Zz ,8,t
]EVZ"(S leVout
and thus we have
E zs,] t = E Zz s,t -
]evzn ’LEVO“t

For server s the outflow is set equal to the 1nﬂow, i.e. sis just a transship-
ment node. The server s did not store a replica in the preceding period and
therefore can not copy the object and send it to other servers on its own. As
the server s also does not store a replica in period ¢, all objects it receives
are meant for other servers.

Second, if the considered server s € Vs receives a new replica in period ¢
we have z,, 1 =0, z5; = 1 and due to constraints (5) w,; = 1. In this case
the constraints (6) and (7) set the outbound flow equal to the inbound flow
minus 1 unit which is the unit stored at the server.

Third, the case if x5;—1 = 1 and through constraints (5) ws; = 0. The
considered server has a replica in period ¢ — 1 and thus can send copies to
other servers in period ¢. Independent of z,,, constraints (6) force the out-
bound flow greater than or equal to the inbound flow while constraints (7) do
not restrict the outbound flow in this case. Instead, the additional summand
M allows the server to send copies of the object even without an inbound
flow. Note that constraints (7) hold not only for the replica servers s € Vs
but do also hold for the origin server vy. Hence, constraints (7) allow to
send copies from the origin server to replicate the object. It is easy to see
that w.1l.o0.g. it is sufficient to set M = |Vs| in constraints (7) as this is an
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upper bound for the amount of outgoing copies. This could be the case if
only the origin server vy has the object and all replica servers receive a replica.

Finally the placements which are so far modeled as unicast transfers in con-
straints (6) and (7) need to be reduced to a multicast flow. This is done by
constraints (8) which set the binary decision variables z; ;; to 1 if there is a
flow on (i, j) for the placement in period t regardless of the number of units
which are transferred.

The decision variables are defined in equations (9)-(17).

3.4 Discussion

We now want to discuss some special cases of the DRPSL. If we set § = 0
and v = 0 the objective function (1) considers the storage cost only. The
goal is then to store as few replicas as possible while still being capable of
serving the demand under the service level constraints (4). In this case the
model decomposes into |7| independent submodels. Hence, the model for
each period ¢ can be considered separately. If we additionally set A =1, i.e.
the maximum latency holds for all requests, the problem can be formulated
as a set covering problem (see Krarup and Pruzan [42], Shi and Turner [66]).

By setting @ = 0 and 8 = 0 we are minimizing the delivery cost only. In
this case the optimal solution is trivial. We place a replica on every replica
server in each period.

The combination of the storage cost and delivery cost, i.e. a >0, 3 =10
and v > 0, leads to a generalized facility location problem with service level
constraints. Constraints (5)—(8) are dropped. Constraints (2) and (3) are
analog to the constraints in a capacitated facility location problem (CFLP)
that deal with the capacity of a facility and with serving all the demand
(see Aikens [4]). Constraints (4) can be seen as the maximum distance be-
tween each facility and its assigned customers which has to be met for a cer-
tain percentage of all customers. As there are no cost for deleting a replica
DRPSL also decomposes into one independent subproblem for each period.

By just minimizing storage and placement cost, i.e. setting v = 0, we
search for a ‘stable’ assignment with as few replicas as possible while serving
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the demand and fulfilling the service levels. A ‘stable’ replica assignment
means in this context an assignment with as few changes as possible over
time. This is due to the second summand of the objective function, the
placement cost. Through the placement cost the periods are connected and
consecutive periods depend on each other.

3.5 Model complexity

In what follows we show that the DRPSL can be restricted to two well known
NP-hard optimization problems, the uncapacitated facility location problem
and the Steiner tree problem in graphs.

The uncapacitated facility location problem. The problem can be
restricted to an uncapacitated facility location problem by setting |7| = 1,
B=0v=1 Ct= M and A = 0. The set V, corresponds to the set of
possible locations for the facilities. Storing a replica on a replica server then
corresponds to opening a facility.

The Steiner tree problem in networks. The Steiner tree problem in
networks is defined as follows (see Hwang and Richards [25]).

Given: An undirected network N' = (V, £, w) with nodes v € V, edges
e € £ and edge weights w.
A non—empty set of terminal nodes K C V.
Find: A subnetwork Sy (K) of N such that:
— there is a path between every pair of terminal nodes
— the total length [Sy (K)| = - cs, () w(€) is minimized

The vertices in V\K are called non-terminals. Non—terminals that end up in
the Steiner tree Syr(K) are called Steiner vertices.

We restrict the DRPSL to the Steiner tree problem using the flow formu-
lation of Voss [74] by allowing only instances with |7| =1, as =0, v = 0,
ret = 0 and A = 0. Then we set z,;, = 1 for all terminal nodes. For one
of these terminal nodes we set x5, ; = 1 as the “origin” of the flow in the
preceding period. For the solution of the Steiner tree problem in graphs it
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does not matter which node is chosen as the resulting Steiner tree will be the
same in each case.

Proposition 1. The DRPSL is NP-hard.

Proof. The uncapacitated facility location problem (see Krarup and Pruzan
[42]) and the Steiner tree problem in graphs (see Karp [38]) are both known
to be NP-hard. Since the uncapacitated facility location problem and the
Steiner tree problem in graphs are special cases of the DRPSL the latter has
to be NP-hard. O

3.6 Lower bounds

Since the DRPSL is an NP—hard optimization problem we are interested in
lower bounds. The latter can be used to determine the solution gap when
evaluating heuristic algorithms.

LP-relaxation. A straight forward LP-relaxation relaxes the binary de-
cision variables z,,; and z; ;; to be in [0, 1]. However, this relaxation provides
bad lower bounds because the assignment variable z,; is very fragmented,
i.e. many servers store a small fraction of the object. This has two effects.
First, a very low flow is sufficient for the placement, especially as z; ;; is also
relaxed. Second, there is almost no flow for the delivery. Thus, the absolute
cost values for network usage in the objective function, i.e. the placement
cost and delivery cost, are very low and far from realistic.

Improved lower bound. We improve the standard LP-relaxation in two
respects. First, by extending the model to the disaggregated or ‘strong’
formulation which is known from the facility location problem (see Krarup
and Pruzan [42]). In order to do so, we add constraints (18) to DRPSL.

Yest < Tsy YeeV,seVsteT (18)

Constraints (18) state for each period ¢ and each client ¢ that the client can
only be supplied by a replica server s if the latter stores the object, i.e.
xs4 = 1. This is basically the same as in Constraints (2) except for the load



3.6 Lower bounds 20

capacity CL. The second difference is that Constraints (2) aggregate over the
clients c. Note that with M instead of C* in Constraints (2), i.e. without the
capacity restriction, Constraints (2) could be omitted in the disaggregated
model. We denote the tightened formulation (1)-(17) and (18) as DRPSL2.

Second, we calculate an improved lower bound for the placement cost [ -
Y>> > 0ij- %+ in the objective function (1). ¢?(n) gives the lower bound
(ij)EAtET
for the placement cost if n € {1,2,...,|Vs| - T'} replicas are stored on all
servers over the entire planning horizon. Before we explain our approach to
calculate ¢(n) we want to note how to get the number of replicas n from
a relaxed solution. As the binary assignment variable x is relaxed we have
to calculate n as a lower bound for the number of replicas given the storage
cost component ¢® of the objective function value. Therefore we define:

ni=min{|R| | RCV,:> a,>c’} (19)

reER

If a, = a Vr € Vs 19 reduces to n = E . cﬂ.

To calculate ¢”(n) for a given n, we pursue the following approach. Con-
sidering only the placement cost we construct a tree which we call minimum
update tree (MUT) as it is used to update the replica assignment. Before
giving the general notation we want to give a short example. We define
T :=|T| for an easier notation.

The optimal assignment over all periods of up to T replicas at minimum
placement cost is to start in period t = 1 and store the object on the replica
server nearest to the origin server. We leave the replica there for the following
periods t = 1,...,T as this does not lead to additional placement cost. The
arc between the origin server and the nearest replica server is the first arc in
the MUT. We denote the length of this arc with 6y := min{d,, s | s € Vs :
(vo,s) € A}. This leads to cost of - 0;. In Figure 3.1 the first server of the
MUT is server 3, the first arc is (0, 3).

For storing a total amount of replicas in the range of [T+ 1,2 - T it is
optimal to store the additional replicas in consecutive periods on one server.
For this purpose we choose the server with the lowest distance to the set
of two servers which already store replicas. In Figure 3.1 this is server 5,
reached through arc (3,5). We call the length of this second arc in our MUT
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00
()

Figure 3.1: Example for a minimum update tree (MUT)

0y = min{d;; | i € {v,s},7 € Ve\{s}:(i,7) € AANSEV, : 0y = 01} Tt
follows that in this case the minimum possible placement cost are - (61 +32).

For the general case we denote with VMUT(y) C V, the set of the
u=1,...,|Vs| replica servers in our MUT, each one storing T or less of the

n replicas. It follows that the MUT to store n replicas consists of the nodes
VMUT ([, /TT). We define VMUT(0) = {vg}. In our example the sequence in
which the nodes are added to build the complete MUT is (3,5,1,2,4).

The wu-th arc in the MUT, i.e. the arc used to place the replicas
(u—=1)-T+1,...,u-T has a length of §,. In Figure 3.1 allu =1,...,5 arcs
of the complete MUT are given. We can now define:

gu = min{&;’j | 1€ VMUT(U - 1)7] € VS \ VMUT(U - ]-) : (17.]) S A}
VMUT(U) — VMUT(U _ 1) U {Smindist} ’ Smmdist € Vmindist(u>
ymindist() = {5 € YA VMU (4 —1) | 6,5 = 0y : i € VIV (1 — 1)}

Finally, the minimum placement cost given the number of replicas n are equal
to the weighted length of the MUT:

Fn)= D> b, Vn=1.. |V|-T (20)



Chapter 4

Methods

Even for small problem instances an exact solution of the proposed mixed—
binary linear program DRPSL might not be possible as it is NP-hard and
has a vast amount of binary variables. To solve the problem in reasonable
time we propose two different efficient metaheuristic approaches, i.e. a simu-
lated annealing algorithm (SA) and several variants of variable neighborhood
search (VNS). We develop various problem-specific neighborhoods to opti-
mize the different components of the problem efficiently. For comparison we
implement common heuristics from the literature and build refined versions
of them to better suit our problem.

For all methods, we consider a topology which consists of the origin server
and the replica servers of the CDN. As we already stated, this can be done
w.l.o.g. as a request from a client for a replicated object is routed to the
nearest CDN server and can be added to the latter in the topology. Hence,
each server can store a replica of the object and can have a demand at the
same time, i.e. V = Vs U and Vs = V. (see Karlsson and Karamanolis
[34], Tang and Xu [69]). Thereby we neglect the so—called “last mile”, i.e.
the distance between a client and his nearest replica server (see Candan et al.
10]).

22
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4.1 Framework

All implemented algorithms are embedded in a modular framework. The
framework incorporates a representation of network topologies and all the
data necessary for the solution methods. Among other interfaces the frame-
work provides methods for the efficient evaluation of solutions. We will now
describe the solution representation and the solution evaluation of our frame-
work.

4.1.1 Solution representation

As solution representation for our algorithms we choose a binary |V| x |7 |
matrix. An entry z,,; equals 1 if replica server s € V; stores a replica of the
object in period ¢t € 7 and 0 otherwise. Hence, each entry in the matrix
corresponds to a decision variable z,, of the DRPSL, each row represents a
replica server and each column a period. With this intuitive representation
solutions can easily be modified and special neighborhoods can be imple-
mented straightforward. The variable z; ;; for the flow of the placement in
our model is not part of the solution representation for our algorithms. We
consider the placement process in the evaluation of a solution x. Hence,
in the context of our algorithms by saying solution z we mean the solution
represented by the replica assignment in matrix z.

In our initial solution we set z,; = 1 Vs € Vs, t € T, i.e. every replica
server stores a replica in every period. The advantage of this initial solution
is that it is feasible.

4.1.2 Solution evaluation

For the evaluation of solution x we need to compute the objective function
value of it, i.e. the values of the three cost components.

Storage cost. From the solution matrix x we calculate the storage cost

according to the first term of the objective function (1) to > > ag - xs4.
SEVs te€T
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Placement cost. To calculate the placement cost for a given solution x
we need to know for each period the length of the multicast tree in the
network used for the placement. As we already mentioned our problem can
be restricted to a Steiner tree problem in graphs (STP) by just considering
the placement cost. I.e. the problem of finding the optimal multicast tree
in one period for a given replica assignment can be formulated as a Steiner
tree problem in graphs (see Oliveira et al. [51], Voss [75]).

To transform the placement problem of a period ¢ into a Steiner tree
problem we need to know the replica assignment in period ¢t and ¢t — 1. The
reason is that the servers which stored a replica in the preceding period ¢ — 1
are those which can send out copies in the placement process of period t. We
also have to define the set of terminal nodes in the network. The Steiner tree
connects all the terminal nodes and can use the other nodes to do so. Hence,
the terminal nodes represent the replica servers which receive a replica in
period t. Additionally, a replica server which stores a replica in period t — 1
needs to be in the set of terminal nodes to send out replicas using the Steiner
tree as multicast placement tree.

If there are multiple servers with replicas in the preceding period, all of
them need to be considered as each one could be used to send a replica. We
cannot add each of them individually to the set of terminal nodes as then
their connection would be enforced. The resulting placement cost would be
higher than necessary. In fact, using a server to send a replica is optional.
Accordingly, the necessary modification is to replace all replica servers which
store a replica in the preceding period by one virtual node. An example is
given in Figure 4.1 where the two replica servers 2 and 5 are aggregated to the
virtual node v. The virtual node is then added to the set of terminal nodes
as the replica origin for the placement. The virtual node gets connected by
all arcs of the aggregated nodes. As in Figure 4.1, two special cases have
to be considered. First, arcs between the aggregated nodes are ignored as
these arcs would be located within the virtual node. Second, if there would
be more than one arc between one external node and the virtual node, only
the arc with the minimum weight is used.

With this preprocessing, the placement cost of each period can be calcu-
lated by solving a Steiner tree problem. Such a STP might not be solvable
in reasonable time as it is NP-hard (see Section 3.5). To compute the place-
ment cost of one solution x, |7| Steiner tree problems have to be solved.
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Figure 4.1: Aggregation of two replica servers to a virtual node

And as there is a considerable amount of neighbor solutions that needs to be
evaluated for the metaheuristics, we cannot compute the optimal solution of
this cost component. Hence, we use a heuristic in order to solve the STP.

To compute each Steiner tree we use the well-known KMB heuristic by
Kou et al. [41] which is based on minimum spanning trees. We adapt the
scheme presented by Promel and Steger [58]. The procedure is outlined
in Algorithm 1. Figure 4.2 provides an example for the five steps of the
algorithm for a simple network in which the square node represents the origin
server and the dark circles represent the terminal nodes. The KMB heuristic
is considered to be among the Steiner tree heuristics with the best solution
quality. It guarantees a length of the generated tree no more than 2 times
the length of the optimal tree. Furthermore, it is shown that this heuristic
usually achieves a gap of at most 5% to the optimal solution (see Oliveira
and Pardalos [52]).

At the beginning of our algorithms we have to compute the Steiner trees
for all periods to get the complete placement cost. For the evaluation of
following solutions we take advantage of our neighborhood structure. Our
neighborhoods change only one period of the prior solution at a time. Hence,
it is sufficient to recompute only the Steiner trees of the changed period ¢
and the subsequent period ¢ 4+ 1 to evaluate the change. Both periods need
to be considered as the replicas in period t are potential receivers for the
placement in period ¢ and potential sources for the placement in period ¢+ 1.
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Algorithm 1 KMB heuristic for the Steiner tree problem

Input: Connected network N' = (V, €, w) with the set of nodes V,
the set of edges £ and edge weights w
Input: Set of terminal nodes I C V

1: Compute the distance network Dpr(K)
Dy (K) = the complete network (IC, Ep, wp) in N [Ep| = W and
wp(i,j) = d; j, the length of the shortest path between nodes i,j € V

2: Compute a minimum spanning tree 7p in Dy(K)

3: Transform 7p into a subnetwork A [Zp] by replacing every edge of 7Tp
with the corresponding shortest path in N

4: Compute a minimum spanning tree 7 for the subnetwork N [7p]

5: Transform 7 into a Steiner tree Sy (K) of A by successively deleting the
leaves which are no terminal nodes and the corresponding edges

step 3: NV [Tp] step 4: T step 5: Spr(K)

Figure 4.2: Steps of the KMB heuristic
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Content delivery cost. As the number of requests r.; Vc € V., t € T
is given we need to determine ¥, ,,, the fraction of all requests from client
¢ € V. in period t € 7 which is served by replica server s € V,. This is
done by solving a transportation problem. For this purpose we implement
the efficient algorithm of Ahrens [3]. This algorithm is completely based on
simple list data structures and has a very low memory usage.

Averaged over 38 problem instances with our considered problem size of
50 nodes and 12 periods, between 14,000 and 238,000 transportation prob-
lems (99,160 on average) are solved by our different metaheuristics to evaluate
the content delivery cost. CPLEX is not suitable for this task as it takes too
much time. We compared an evaluation of the delivery cost using CPLEX
against our implementation. To this end we used random assignments with
every possible amount of replicas in the network. On average it took 372 ms
to evaluate one solution using CPLEX. Hence, each of the twelve transporta-
tion problems in a solution took on average 31 ms to solve. To some extend
this is due to the necessary transformation of the input and output data
between the data structures of our framework and the special objects that
the CPLEX API requires. But even if we only consider the runtime of the
CPLEX solver we get 136.32 ms for a complete solution or 11.36 ms per
transportation problem. Our implementation takes just 8.89 ms to evalu-
ate a complete solution or 0.74 ms to solve one transportation problem on
average — including all pre— and post processing.

As with the placement cost the runtime can be further reduced. Our
implementation is suited for repeatedly evaluating similar solutions. We save
the results of every period of the actual solution. To evaluate a new neighbor
solution we recompute only those periods in which the assignment changed.
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4.2 Simulated Annealing

Simulated annealing (SA) (see Kirkpatrick et al. [39]) is a well-known meta-
heuristic inspired by the physical annealing process of solids. Starting with an
initial solution x, the SA generates a neighbor solution using a neighborhood
N(z). If the generated solution is better in terms of the objective function
value it is accepted and replaces the current solution. A worse solution is
only accepted with a certain probability. This is done in order to escape from
local minima. The acceptance probability depends on the difference between
the objective function values of the previous and the current solution and a
parameter called temperature. Basically, the temperature is decreased after
each iteration of the algorithm using a predefined cooling schedule. Hence,
the acceptance probability of worse solutions decreases during the runtime.
Based on the new or unchanged old solution a new neighbor is generated and
evaluated in each iteration until a stopping criterion is reached. We adapt
the standard simulated annealing scheme presented in Henderson et al. [24]
(see Algorithm 2).

4.2.1 Neighborhoods

The construction of a neighbor solution in neighborhood N (x) works accord-
ing to Algorithm 3. The changes are always made in just one period of the
replica storage matrix. Hence, a period has to be selected at first.

As we start the algorithm with a feasible solution and change the assign-
ment in only one period in each step, the first infeasible neighbor solution
can only be infeasible due to exactly one period. Thus, a neighbor of an in-
feasible solution can be feasible again. We try to repair an infeasible solution
as soon as possible. To this end we select the infeasible period ¢, fcqs, if there
is one, and search in this period for a server where an additional replica can
be placed.

Otherwise, if the actual solution is feasible, we randomly select a period
and remove a replica from one server in this period with probability p. With
probability 1 — p we add a replica to a server in the selected period. The
change of the assignment is done by negation of the boolean value z, ;.
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Algorithm 2 Simulated annealing scheme

Input: Initial temperature t5 > 0

Input: Temperature cooling schedule

Input: Repetition schedule M), that defines the number of iterations
executed at each temperature t;

1: Select an initial solution z

2: Set the temperature change counter: k <« 0
3: Set the currently best solution: z* «— =z

4: while k < stopping criterion do

5 for repetition counter m <+ 0 to M, do
6 Generate a solution 2’ € N(x)

7 Calculate A, ,» < cost(z') — cost(x)
8: if A, <0 then

9 Accept new solution z’ (x « z’)

10: if cost(z') < cost(z*) then

11: ¥ —

12: k0

13: end if

14: else

15: Accept new solution 2’ (x « 2’) with
16: probability exp(—A, . /t)

17: end if

18: end for

19: k—k+1
20: end while

21: return z*

For the choice of a server s to change the assignment in period ¢ several
aspects have to be considered. In an earlier version of the neighborhood we
arbitrarily selected a server. But the resulting solutions had high placement
cost. For good solutions in this respect it is essential that the servers store
replicas in consecutive periods. An example for such a solution matrix is
given in Figure 4.3. In this solution the placed replicas mostly remain on the
servers for several periods. Some servers do never store a replica over the
planning horizon. Their demand is met by nearby servers. It can be seen that
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Algorithm 3 Generate a neighbor of solution z in neighborhood N (z)

Input: Probability p to remove a server
Input: Solution z

if tinfeas 7 NULL then
13 <__'ti'nfeas
$ «— CHOOSESERVERTOADD(z, t)
else
t «— random(T)
if random[0,1] < p then
$ <— CHOOSESERVERTOREMOVE(z, t)
else
s «— CHOOSESERVERTOADD(z, t)
end if
. end if
: Tsy < sy (> negation of the boolean value to change the assignment)

— = =

: return z

—
w

Replica server
13[14]15[16]17]18[19]20] 21] 22[ 23] 24] 25[ 26 27[ 28[29]30[31]32] 33] 34| 35] 40[41[42) 50

Period

Figure 4.3: Possible solution structure

the periods 4-9 have the highest overall demand as several additional servers
store replicas in these periods. To minimize the overall cost, while serving
all demand and fulfilling the service levels, the amount of replicas should be
low, the distances to the clients should be small and the replica assignment
should rarely change. The SA scheme with the earlier neighborhood did not
find these structural blocks in the solution matrix.

Our proposed neighborhood is improved in this respect as it selects a
replica server in the chosen period t not randomly but based on the change
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of the placement cost. We calculate a value for each server according to the
change of the placement cost if the assignment on the server switches. We
do not calculate the real change as this is too time consuming considering
how many of the placement cost evaluations have to be calculated. Instead
we categorize the servers. As adding and removing a replica are analog cases
we explain the valuation by means of searching a server to remove a replica
from, i.e. the method CHOOSESERVERTOREMOVE(z,t) (see Algorithm 4).

Algorithm 4 Choice of a server to remove a replica from

1: function CHOOSESERVERTOREMOVE(solution z, period )
2 for all s € V, do

3 if z,, = 0 then

4: rg «— —1

5: else

6: rs < 0

7 if t>1and z,;,_; =0 then

8 rs < Ts+ 1

9: end if

10: if t <|7| and z5441 = 0 then

11: re<—Ts+ 1

12: end if

13: end if

14: end for

15: return a randomly chosen replica server s with the highest value r;

16: end function

If a server does not store a replica in period ¢, we assign the value —1.
The server will not be selected as it is impossible to remove a replica. There
are the following three cases if a server stores a replica in period ¢. First, if
a server stores a replica in the preceding period t — 1 and in the succeeding
period t + 1, we assign the value 0. In this case, by removing the replica
a block of consecutive periods would be split and the placement cost would
increase. Second, a value of 1 is assigned to a server which stores a replica
in period ¢t and in one adjacent period, i.e. t — 1 or t + 1. Placement cost
typically change only a little or not at all in this case. Third, if the server
stores a replica in period ¢ but does not store a replica in the adjacent pe-
riods. Since the placement cost can be reduced this is the best case and we
assign the value 2. After we have valued all servers in the chosen period t,
we select one server with the highest value randomly.
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As a given solution differs from an arbitrary solution of the neighborhood
in exactly one element, the size of the neighborhood is |Vy| x |T].

4.2.2 Infeasible solutions

So far we did not address the problem of infeasible solutions. For simulated
annealing we do not want to exclude infeasible solutions categorically. The
acceptance of worse solutions is the key to escape from local minima in the SA
scheme. And as already stated we try to repair infeasible solutions explicitly
in our neighborhood definition. But we do not want to accept all of those
worse solutions.

In the SA scheme a new neighbor solution is accepted with a probability
which decreases over time if its objective function value is higher than that of
the prior solution. The probability of accepting a worse solution depends on
the degree of worsening. Therefore, infeasible solutions should have a higher
objective function value than feasible solutions. We achieve this by adding
penalty cost to the objective function value if a solution is infeasible. As this
is not necessary for the other algorithms we implemented it only in the SA
algorithm as an addition to the general solution evaluation provided by the
framework.

The penalty cost value should be chosen as the maximum possible change
of the objective function value between any two neighbor solutions. As our
neighborhood basically adds or removes exactly one replica, the maximum
change can be estimated as

A" =max (ag) + 0 - max (des) + 7 - des - max (1¢y) (21)

where 3075 denotes the average distance between a client and a server. The
three terms of A" are as follows.

First, the maximum storage cost coefficient. As only one replica is added
or removed the maximum storage cost coefficient is an upper bound for the
change in storage cost.

Second, the length d. ; of the longest shortest path in the network weighted
with the placement cost coefficient 3. This is an upper bound for the change
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in placement cost. It occurs if the very first replica is placed as far away as
possible from the origin server. If it is an additional replica the change in
placement cost will be less because of the multicast transfers.

Third, an estimate for the change in delivery cost. If a replica is removed
from a server the demand of this server needs to be served by another one. If
areplica is added on a server it will serve its own demand and potentially that
of other clients. We multiply the maximum number of requests of a client
in one period 7.; by the average distance between a server and a client in
the topology c_lqs and the delivery cost coefficient . This is no upper bound
as higher values are possible. A real upper bound, e.g. calculated with the
maximum distance between a server and a client, would be unrealistic high
and would lead to too low acceptance probabilities for infeasible solutions.
This problem arises only at this third term due to the multiplication with the
maximum amount of requests and the maximum distance between a server
and a client which is very unlikely for the delivery because of the SLAs. By
using the average distance we aim at penalty cost values such that infeasible
solutions get accepted, but with a lower probability than feasible solutions
that are worse than their predecessor.

4.2.3 Cooling schedule

We implement the widely used geometric schedule (see Aarts et al. [1]).
It is a typical and reasonable static cooling scheduling and we use it with
tr = 0.9 - t;_1 as proposed by Aarts et al. [1].

The initial temperature ¢, for the SA algorithm needs to be chosen care-
fully. Selecting a too low temperature leads to less acceptions of inferior
solutions. This increases the risk of being stuck in local minima. In contrast,
a too high initial temperature is inefficient because of the resulting longer
runtime. It follows that a suitable initial temperature depends on the pa-
rameters of the problem. For the geometric schedule, Aarts et al. [1] propose
the maximal difference in cost between any two neighbor solutions as an ad-
equate initial temperature. We estimated the maximal difference A™** in
Equation (21). As this value is used as penalty cost for infeasible solutions
and a neighbor solution can be infeasible we get ¢ty = 2 - A",

The number of evaluated neighbor solutions at each temperature level ¢,
is in our case My = |V| - |7 | which is basically the size of the neighborhood
as also proposed by Aarts et al. [1].
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The stop criterion is normally defined as the amount of consecutive tem-
perature levels processed without finding a better solution. In our case we
use 6 consecutive temperature levels without a new best solution. In prelim-
inary tests the value of 6 turned out to be a good choice for our problem.
As we will show later this leads to a runtime long enough to reach a stable
state regarding solution quality.

4.3 Variable Neighborhood Search

Variable neighborhood search (VNS) is a metaheuristic recently introduced
by Mladenovic and Hansen [49]. The basic idea is a local search with sys-
tematic usage of different neighborhoods. It explores increasingly distant
neighborhoods and accepts a new solution only if it is an improvement. The
VNS does not follow a trajectory and can jump to more distant solutions if
necessary. VNS is well-suited to find local minima as well as to escape from
potentially surrounding valleys.

We adapt the basic variable neighborhood search scheme presented in
Hansen and Mladenovic [23] (see Algorithm 5). After selecting the set of
Kmaz neighborhood structures Ny, (k= 1,..., knae) and choosing a stopping
criterion the algorithm starts with an initial solution x. In each iteration
until the stopping criterion is met the algorithm begins with the first neigh-
borhood, i.e. k = 1. In the step called shaking a neighbor solution z’ is
selected at random within the actual neighborhood Ny (x). 2’ is used as ini-
tial solution for a local search to find the local optimum z”. If the local
optimum z” is better than z it is accepted and replaces the incumbent solu-
tion. The search starts over with the new solution and the first neighborhood
Ni. This case is called move. If the local optimum z” is not better than x
the algorithm switches to the next neighborhood k£ = k + 1 to find a better
solution starting from x again. This is repeated until £ = k,,,. Should the
last neighborhood k,,,, be reached without a better solution being found, a
new iteration starts with k = 1.

The increasing size of successive neighborhoods is typically achieved by
nested neighborhoods where N, C N, 1. Consequently, the first neighbor-
hoods which are smaller and close to the incumbent solution will be explored
more thoroughly than the farther ones.
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Algorithm 5 Basic variable neighborhood search scheme
Input: Set of neighborhoods A}, (k=1,..., knas)

1: Select an initial solution x
2: while stopping criterion is not met do
3: for neighborhood k£ < 1 to k,,,, do

4: shaking: Generate a random solution x’ from
the k-th neighborhood of z (2" € Nj(x))
5: local search: Apply a local search method with 2" as initial
solution to obtain local optimum z”
6: if local optimum z” is better than the incumbent solution x then
7 move: Move to the new local optimum (z < z”) and
continue the search with MV; (k < 1).
8: end if
9: end for

10: end while

11: return x

In the following section we explain all our developed neighborhoods and
local search schemes. As we do not use all procedures at once this is a kind
of construction kit to compose different variants of the VNS.

4.3.1 Neighborhoods and local search schemes

Through the VNS scheme we have the opportunity to use several different
neighborhoods and well-matched local search procedures. Thus, we can ad-
dress different aspects of the objective function with dedicated and special-
ized neighborhoods. The key is the selection of appropriate neighborhoods
and their meaningful application in the different stages of the algorithm. In
what follows we introduce the components of our VNS and afterwards the
implemented VNS variants.

Neighborhoods. As the successive neighborhoods should be of increasing
size, nested neighborhoods are a common approach. We define our primary
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neighborhoods N}, for k = 1,..., ke, as follows. There are two possible
actions to change a solution x. The action ADD places a replica in a period
t on a server s which did not store a replica in the incumbent solution. By
contrast, the action DROP removes an existing replica from the incumbent
solution. The construction of a neighbor solution in neighborhood N (z)
works according to Algorithm 6.

Algorithm 6 Generate a neighbor of solution z in neighborhood N (x)

Input: Set V, () of servers s € V; that store a replica in period ¢
Input: Solution x

1: t < random(T)

2: kapp < random|0, k]

3: kprop < k — kapp

4: if kapp < ]VS\Vr(t)] and kprop < ‘Vr(t” then
5: A—10 (> temporary set for the servers that receive a replica)
6: for ¢ +— 0 to kapp do

7 r «— random(Vs\V,(t))

8: Vo(t) < V.(t) u{r}

9: A— AU {r}

10 Tpp 1

11: end for

12: for i — 0 to kprop do

13: r — random(V,(t)\A)

14: Vo(t) — V. ()\{r}

15: Tpy < 0

16: end for

17: end if

18: return x

The neighborhoods N}, choose a random period at first. In this period
k actions ADD or DROP are executed. The number of ADD actions k,,, and
DROP actions kppop With k = k,pp + kprop are chosen randomly. The selection
of a feasible server for each action is also random. With these nested neigh-
borhoods we aim at a reduction of the storage and delivery cost. They do not
address the placement cost component of the objective function specifically.
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As stated in 3.4 the problem is basically a combination of an uncapacitated
facility location problem and a Steiner tree problem in graphs. The Steiner
tree component is due to the placement cost. Thus, we search for a stable
assignment over time with as few changes as possible. Therefore we devel-
oped an additional neighborhood called fill. The latter is also intended to be
a fast and problem—oriented alternative to the time—consuming local search
component of the basic VNS scheme (see Algorithm 5). The construction of
a neighbor solution in neighborhood fill works according to Algorithm 7.

Algorithm 7 Generate a neighbor of solution x in neighborhood fill(z)

Input: Set V,(t) of servers s € V, that store a replica in period ¢
Input: Solution x

1: Set the currently best solution: z* «— x

2: Set the currently lowest cost: cost* « cost(x)
3: s «— random(Vy)

4: fort«—2toT —1do

5: if v, 1 =1and z,; =0 and z,44, = 1 then
6: x—ux

7: :L’;t — 1

8: for all » € V,(t) do

9: l’lm — 0

10 cost’ «— cost(x)
11: if 2’ feasible and cost’ < cost* then
12: xt—
13: cost™ «— cost’
14: end if
15: Ty, 1
16: end for
17: T — T*
18: end if
19: end for

20: return x

The fill neighborhood starts with the random selection of a server s € V;
in the incumbent solution z. On server s we search for assignment gaps, i. e.
periods t € 7 where z,; = 0 and ;1 = 5,41 = 1 holds. We try to fill the
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gaps by placing an additional replica, i.e. z,; = 1. Since we do not want
to change the total number of replicas for each period we remove another
replica in period . We evaluate all possibilities to fill the gap x5, = 0 with
an existing replica x;; = 1 from a server ¢ € Vs in period t. We choose the
move with the highest decrease of the objective function value, if there is
one. Otherwise we do not fill this gap. To get to the neighbor solution we
try to fill all the gaps in the timeline of server s in the incumbent solution z
according to this principle.

Local search schemes. We developed two different local search schemes.
The first one (lsuqp) searches in a given period ¢ for the best of all possible
swaps of one replica from a server which stores a replica to a server which
does not. The local search can be applied to all periods or just to the period
that was changed by the last shaking step.

As an alternative we implement the local search denoted by [,cmove With
less computational effort. It evaluates all possible removals of one replica in
a period and executes the best. Again, this can be done in just the period
most recently changed by a neighborhood N, or in all periods.

Both local search variants are best improvement or steepest descent strate-
gies. But in each case we execute only one iteration. This is justified by two
aspects. First, the local search is very time consuming. Although we execute
only one iteration the local search leads to very long runtimes if applied after
every shaking step. Second, each change of the assignment has a huge impact
on all three components of the objective function. Besides the storage cost
it also affects the delivery to the clients and the placement in two periods.
In our problem, a local search which continues until the local optimum has
been found would change the solution much more than it is reasonable for

the VNS scheme.

4.3.2 Implemented variants of the VNS

An overview of the developed VNS variants is given in Table 4.1.

All VNS variants use the primary neighborhoods N} with k.. = 3.
The basic VNS utilizes a local search after each shaking step, i.e. every
new solution starts a new local search (see Algorithm 5). Therefore it is



4.3 Variable Neighborhood Search 39

neighborhood
Ny (ke = 3) N, and fill
< no local search RVNS RVNS
S Lemove overy 100 steps V¢ | VNS-Liooremove VNS pit-Liooremone
Tt lswap every 100 steps V ¢ VNS-Ligoswap VNS rii-Liooswap
§ lremove €Very step for current ¢ | VNS, cnove -

Table 4.1: Composition of the implemented VNS variants

sufficient to limit the local search to the changed period. Although our local
search schemes run just one iteration the basic VNS is very time—consuming.
Preliminary tests showed runtimes of one to two hours for the basic VNS with
lswap due to the complexity of [, and its application after each shaking step.
Runtimes of this length are inappropriate for the solution of our problem.
Hence, we do not consider VNS, in our experimental investigation. As
basic VNS we consider the VNS, .00 Which utilizes the faster l,mope local
search.

The VNS variant with the shortest runtime is the reduced variable neigh-
borhood search (RVNS) which omits the local search.

To strike a balance between runtime and solution quality we developed
several other variants. Through the different combinations of the VNS com-
ponents we can analyze the contribution of each of them and deduce reason-
able approaches.

One approach is to apply the local search not after each shaking step but
only every 100 iterations. To compensate for the solutions without a following
local search we apply the local search to every period in this variant. We

implemented this approach with both local search variants and call them
VNS'LIOOTemove and VNS'Llooswap-

To further compensate for the restricted local search and to reduce in
particular the placement cost we extend all but the basic VNS with the
additional fill neighborhood as the last neighborhood to apply, i.e. as neigh-
borhood N,. We denote these variants as RVNS i, VNS ri-Ligoremove and
VNSfill'Llooswap~
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4.4 Benchmark heuristics

To evaluate our approach we compare it with several algorithms from the
literature. To the best of our knowledge almost all work done so far solves
replica placement problems with simple heuristics, especially greedy algo-
rithms. We select some simple and the most established and promising ap-
proaches which showed good results in the literature as benchmarks for our
VNS variants. As we consider a new model which addresses additional as-
pects compared to those in the literature, we have to adapt the algorithms
to fit our problem.

Random algorithms. We implemented three random algorithms. First,
the most simple and straight—forward approach random-add (Algorithm 8)
that randomly adds replicas to servers in the first period until the demand in
this period is satisfied and the SLAs in this period are fulfilled. It processes
all periods successively in the same way.

Second, random-delete (Algorithm 9) which starts with a full placement
matrix and removes replicas in the first period from randomly chosen servers
as long as the demand is satisfied and the SLAs are fulfilled. Each period is
processed like this successively.

Third, random-delete-all (Algorithm 10) is identical to random-delete ex-
cept that it does not switch to the next period as soon as a removal would
lead to an unsatisfied demand or violated SLAs. Instead it tries to remove a
replica from another randomly chosen server. It only continues with the next
period if no removal leads to a feasible solution any more. Thus it removes
as many replicas as possible.

HotSpot algorithms. An approach introduced by Qiu et al. [59] are the
so—called HotSpot algorithms which are based on a ranking. Basically, they
place replicas in the regions with the highest demand. We implemented
three variants of them and also adapted them to better suit our problem.
In preliminary tests all variants showed bad results, even worse than all the
random algorithms. Hence, we do not consider them in this work.
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Algorithm 8 random-add

: Create starting solution = with z,;, < 0Vs € V,,t € T
- forallt €7 do
repeat
s «— random(Vs with x5; = 0)
Tst < 1
until z is feasible in period t
end for
return x

PN G Wy

Algorithm 9 random-delete

1: Create starting solution = with z,, < 1 Vs € V,,t € T
2: for allt € 7 do

3: T —ux

4 while 2’ is feasible do

5: x —

6 s < random(Vs with x5, = 1)
7 Ty 0

8: end while

9: end for

10: return x

Algorithm 10 random-delete-all

1: Create starting solution = with z,; <« 1 Vs € Vs, t € T
2: for allt € 7 do
3: Vtemp — VS

4: while Vi, # 0 do

5: s «— random(Viemp)
6: Viemp < Viemp \{5}

7: ¥ —x

8: x;t — 0

9: if 2’ is feasible then
10: x—
11: end if
12: end while
13: end for

14: return z
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Greedy algorithms. For replica placement problems the most frequently
applied heuristics in the literature are greedy algorithms (e.g. Cronin et al.
[17], Jamin et al. [27], Kangasharju et al. [33], Krishnan et al. [43], Qiu
et al. [59], Tang and Xu [69]) which show good results. Thus we implement
meaningful variants to put our VNS approach into perspective. The greedy
algorithms by Kangasharju et al. [33], Krishnan et al. [43], Qiu et al. [59] suc-
cessively add replicas based on their respective contribution to the objective
function value. This is similar to the common ADD heuristics for facility lo-
cation problems (see Kuehn and Hamburger [44]). These greedy approaches
were generalized and improved by Cronin et al. [17]. The resulting I-greedy
algorithms add a backtracking of [ steps. That means that in order to add
1 replica all combinations of removing [ replicas and adding [ + 1 replicas
are evaluated. This is done in each but the first iteration of the algorithm
to find the next greedy step. Thus, for [ = 0 this algorithm is identical to
the simple greedy approaches. For [ = 1 the algorithm is considerably more
complex and time-consuming but is expected to have much better results.

Tang and Xu [69] call all those approaches [-greedy-insert. They are
not the best choice for our problem as they start without any replicas and
add them successively. For our model all solutions in the beginning of the
algorithm would be infeasible. It is complicated to calculate an useful ob-
jective function value for the selection of the next greedy step. The similar
ADD heuristics for FLPs are mostly used for uncapacitated problems where
there are no infeasibilities. For capacitated problems there is typically in-
serted a dummy client with zero transportation cost for the excess supply
and a dummy supplier with transportation cost M for the evaluation of the
otherwise infeasible solutions. For our model the SLAs are an additional
difficulty. They can not be easily evaluated for infeasible solutions and dif-
ferent infeasible solutions are hard to differentiate. Tang and Xu [69] propose
l-greedy-delete algorithms as an alternative which is much easier to adapt to
our problem. As this approach led to results of comparable quality and is
more suitable for our problem we select it for our comparison. [-greedy-delete
algorithms start with the maximum amount of replicas and remove the repli-
cas with the maximum cost reduction successively as long as there is a cost
reduction. Again, for [ = 0 this is similar to DROP heuristics for FLPs
(see Feldman et al. [20]).

The pseudocode for 0-greedy-delete as we implement it is given in Algo-
rithm 11. One adaption with respect to our problem is that we apply the
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Algorithm 11 0-greedy-delete

1: Create starting solution = with z,, < 1 Vs € V,,t € T
2: Set currently best solution: x* « x
3: Set currently lowest cost: cost* « cost(x)

4: for allt € T do

5 repeat

6 better SolutionFound <« false

7 for all s € V, with z,; = 1 do

8: ¥ —ux

9 vy 0

10: cost’ « cost(z')

11: if 2’ is feasible and cost’ < cost* then
12: x* — a2

13: cost* « cost’

14: better SolutionFound <+ true
15: end if

16: end for

17: T —x*

18: until betterSolutionFound = false

19: end for

20: return x

greedy delete steps to each period of the solution matrix individually. The
backtracking of I-greedy-delete if [ > 0 works analogous to the [-greedy-insert,
i.e. the best combination of adding [ replicas and removing [ + 1 replicas is
used in each but the first iteration in which just [ + 1 replicas are removed.
Our implementation of I-greedy-delete is shown in Algorithm 12.

As our model incorporates new aspects of the problem we have some possi-
bilities regarding the server selection for the delete and insert steps.

First, we implement the straight—forward selection [-greedy-delete as shown
in Algorithms 11 and 12. We select the server on which the removal of a
replica leads to the maximum cost reduction while maintaining feasibility.

Second, we implement a selection scheme which pays more attention
to the SLAs. Preliminary tests showed that the [-greedy-delete algorithms
mostly stop processing a period because of an infeasibility regarding the
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SLAs. We want to avoid this as long as possible with the I-greedy-deleteg,s
algorithms. The pseudocode for 0-greedy-deleteg,s is given in Algorithm 13.
We process each period individually and in each period we iterate until no
improvement can be found. In each iteration we remove a replica from the
current period such that the achieved QoS of the solution is as high as possi-
ble. From several possibilities with equally high QoS we choose the one with
the lowest objective function value. Hence, we try to reduce the cost without
lowering the QoS as long as possible. Only if there is no other possibility
we accept the minimum reduction of the QoS and search on this QoS level
for removals with lower objective function values. 1-greedy-deleteg,s works
analog to 0-greedy-delete.
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Algorithm 12 7-greedy-delete

1: Create starting solution = with z,, < 1 Vs € V,,t € T
2: Set currently best solution: x* « x

3: Set currently lowest cost: cost* « cost(x)

4: for allt € 7 do

5 better SolutionFound <« false
6: for all j € V, with z;;, =1 do
7: for all £ € V, with x;,;, =1 and k # j do
8: ¥ —ux
9 i, 0
10: T, <0
11: cost’ «— cost(z")
12: if 2’ is feasible and cost’ < cost* then
13: x* — a2
14: cost* « cost’
15: better Solution Found «+ true
16: end if
17: end for
18: end for
19: T «— x*
20: while betterSolutionFound = true do
21: better SolutionFound <« false
22: for all © € V, with z;; =0 do
23: for all j € V, with z;; =1 do
24: for all k € V, with 2, =1 and k # j do
25: ¥ —x
26: i, — 1
27 2, <0
28: 2, <0
29: cost' «— cost(x')
30: if 2/ is feasible and cost’ < cost* then
31: r* —a
32: cost*™ < cost’
33: better SolutionFound <« true
34: end if
35: end for
36: end for
37 end for
38: r—a*
39: end while

40: end for
41: return x




4.4 Benchmark heuristics

46

Algorithm 13 0-greedy-deleteg,g
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: Create starting solution z with z,, «— 1 Vs € V,,t € T
: Set currently best solution: x* «— x
: Set currently lowest cost: cost™ «— cost(x)
: for allt € 7 do
repeat
better SolutionFound <+ false
qos® «— 0
for all s € V, with z,, = 1 do
¥ —ux
Tep 0

qos’ « qos(x)
cost’ « cost(z')
if 2’ is feasible and cost’ < cost* then
if qos’ > gos* then
xt—

qos* «— qos’

costi®” «— cost’
better Solution Found <+ true
else if gos’ = gos* and cost’ < cost?" then
x* — a2
cost1®” — cost’!
better SolutionFound < true
end if
end if
end for
T —a*
cost* «— cost1°%
until betterSolutionFound = false
. end for
: return x




Chapter 5

Experimental Investigation

5.1 Experimental setup

5.1.1 Implementation

All algorithms are implemented in Java and use object—oriented program-
ming. They are embedded in a modular Java framework which enables the
use of future solution approaches. The framework is also capable of solving
the problem instances with CPLEX. Therefore, all the input like the topol-
ogy and the request data as well as the parameters are converted to match
the application programming interface (API) of the CPLEX library.

Independent from the solution method the user can choose whether the
parameters and configuration data are loaded from an XML file, from a
Microsoft Excel Spreadsheet or from a database. The input via XML is
mainly intended for the solution of single instances. When using the Excel
or the database connection the framework allows batch processing, i.e. fully
automatic execution of any number of runs with arbitrary parameter combi-
nations and solution methods. The solutions and all relevant data are saved
back to the Excel file or the database respectively.

47
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5.1.2 Test instances

As it is very hard to get real data of CDNs we obtained data from the website
of Akamai [6], one of the biggest commercial CDN providers. To compensate
for some unreliable data we vary the parameters of a base case across a broad
range of values using a factorial ceteris paribus design.

A fundamental part of a test instance is the network topology. We use
general topologies created with the network generator BRITE (see Medina
et al. [48]). We configured BRITE to use the well-known Waxman model
for topology creation (see Waxman [77]). This is one of the most common
approaches for generating graphs algorithmically (see Jamin et al. [26], Jeon
et al. [29], Qiu et al. [59], Shi and Turner [66], Tang and Xu [69], Zhang
et al. [82]) and was shown to generate realistic networks (see Medina et al.
[47], Tangmunarunkit et al. [70]).

As stated earlier, we can limit the topologies to the nodes s € V, that
are part of the content delivery network and the one origin server vg. The
millions of clients do not need to be modeled explicitly. According to Akamai
6], there are over 55,000 servers worldwide to date. The servers are clustered
in data centers with several servers in each data center. Several data centers
are typically deployed in the wider area of a city as the CDN provider tries
to have servers as near as possible to the clients. This is done by using data
centers in the networks of different Internet service providers (ISP) instead of
just one. Hence, on each geographic location like a city several data centers
with a number of servers in each of them are ready to serve requests. We use
this to aggregate the number of servers for our model. According to Akamai
[6] we can confine a realistic worldwide topology to about 600 nodes, equal
to the number of cities or, more generally, locations with one or more data
centers in the real CDN.

From the provided information we can conclude that there are about 300
locations in the USA, about 50 are located in the European Union. We
choose the latter case of 50 nodes for our study. While solving the model for
a complete CDN is desirable, considering regional problems is still helpful
as, for the sake of the SLAs, replicas can not be placed too far away from
the requests. The main reason for the regional consideration is the size of
the resulting problem, especially because we consider the dynamic case. For
our study we consider a planning horizon of a whole day with 12 periods of 2
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Figure 5.1: Example for a request rate profile of Europe

hours length each. With this configuration we obtain test instances where the
DRPSL has 36,172 variables, 3,111 of them binary, and 35,535 constraints.

For the request rates on the nodes we analyzed real-time data on the home-
page of Akamai [6]. We extracted the raw data provided by a web service
which is used for a graphical live visualization of the actual traffic on the
homepage. The most useful information is the actual number of raw re-
quests received at the servers, separated by continental regions like North
America or Europe. Additionally, the history of the last 24 hours of this
data is provided. Therefore, we have time-varying request profiles given.
An example for a request rate profile of Europe can be seen in Figure 5.1.
The profiles for the different regions are structurally very similar. They vary
mainly in the number of requests but not in the distribution.

These values are scaled to reasonable request rates of the European Union
which could occur for the files of one customer. We do this as we consider a
complete homepage of one customer as the single object in our model. Be-
sides the request rates varying over time, we further take into account the
different time zones in the geographic area represented by the topology. We
do so by shifting the applied request profiles according to the time zones,
i.e. each server is assigned a request rate according to its local time. In each
timezone all servers have the same request rates.
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We alter a base case by varying the following three types of factors for which
real and reliable data is hard to gather.

First, we vary the load capacity CL of the servers as a performance re-
lated value. Although our model can handle different load capacities for the
servers, we assume all of them to be identical for our experimental investi-
gation. As we consider an abstraction with several servers on each node in
the topology and periods with a length of two hours, absolute values for the
number of requests a node can process per period are not very meaningful.
Therefore, we vary the parameter p™% and derive C* from it. With

max [ > Ty
teT ceV,
pmal' — c
L
>, Cf

seVs

(22)

we denote the average workload in the period with the maximum number of
requests if all servers store a replica, i.e. the ratio of the total amount of
requests in the period to the sum of all load capacities.

Second, we vary SLA related parameters, i.e. the percentage A\ of the
requests which have to be served within the maximum latency ¢ and the
maximum latency ¢ itself. ¢ is varied indirectly by a factor [. As ¢ depends
heavily on the topology, we derive ¢ from the average length of the edges in
the topology SZ-J multiplied by the factor [.

q=0;;1 i,jEV (23)

Third, the cost coefficients g, # and v are varied. As we do not expect
any special insights from varying the storage cost of the nodes, we assume
as = « and consider only « in our study.

The parameters of our test instances are summarized in Table 5.1. The
values were chosen in preliminary tests to fit the specifics of each parameter
and to cover typical and important values. Hence the number of values for
each parameter differ as well as their margins. In total we have 38 different
problem instances. The value of the base case is set in bold. A detailed
overview of the different test instances can be found in Table B.1 in the
Appendix.
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Param. experimental levels

maz 0.9, 0.8, 0.75, 0.7, 0.66, 0.6, 0.5, 0.4, 0.33, 0.3, 0.25, 0.2, 0.1
0.75, 0.9, 0.95, 0.99, 1.0

0.5, 0.75, 1.0, 1.5, 2.0, 3.0

10, 50, 100, 500, 1000, 2000

0, 0.1, 0.2, 0.5, 1

0, 0.01, 0.05, 0.1, 0.5, 1, 2, 5

e

= L Lo T >

Table 5.1: Parameters and levels for the experimental test design
(see also Appendix Table B.1)

5.1.3 Solution methods

We apply variants of five different solution approaches to the problem. An
overview of the solution methods that were applied to all instances is given
in Table 5.2 at the end of this section.

First, for a general analysis of the problem and to gain some insights into
the solution space we generate and evaluate random solutions (eval-random)
for some of the instances. As we do not know the optimal number of replicas
we proceed as follows. For each number of replicas in the interval [1,7T -
|Vs|] we generate 1,000 random replica assignments. As the test instances
have 50 nodes and a planning horizon of 12 periods we generate 600,000
random solutions for the selected instances. We evaluate these solutions
with our framework, i.e. we calculate the corresponding storage, placement
and delivery cost as described in Section 4.1.2.

From the 1,000 samples for each number of replicas we compute the mean,
the minimum and maximum values as well as the 25% and 75% quantiles for
every recorded value. With this information we can put the results of the
other approaches into perspective. Given the number of replicas in a specific
solution, we can compare this solution to the according benchmark values.
As eval-random does not optimize the objective function value and is not
applied to all instances it is not shown in Table 5.2.

Second, we employ CPLEX 10.1 with default parameters to solve the strong
LP-relaxation of DRPSL2 (CPLEX LP-s). We tighten the resulting solution
with our lower bound for the placement cost, outlined in Section 3.6. The im-
proved lower bound (CPLEX LP-i) obtained this way is used throughout the
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following analysis. For a comparison we also solve the weak LP-relaxation
of DRPSL (CPLEX LP-w). Next, we use CPLEX with a time limit of 3,600
seconds (CPLEX 3,600s) to solve DRPSL2. By this we want to see if CPLEX
can find optimal or near—optimal solutions within a relatively long runtime.
In a real CDN the assignment of the replicas is changed several times per
hour, even several times per minute are realistic. Hence, our model would
most likely be used with much shorter time intervals and perhaps a shorter
planning horizon than in our experimental study. Thus, a solution method
with a runtime of one hour is not applicable in the real world. Therefore,
we additionally solve DRPSL2 with CPLEX and time limits of 60 seconds
(CPLEX 60s), 300 (CPLEX 300s) and 600 seconds (CPLEX 600s). To get
further insights into the impact of runtime on the solution quality we finally
employ CPLEX with a relative gap limit of 0.1 (CPLEX 10%).

Third, we apply the benchmark heuristics, i.e. random-add, random-delete,
random-delete-all, 0-greedy-delete, 0-greedy-deleteg,s, 1-greedy-delete and
1-greedy-deleteg,s. The three random algorithms introduced in Section 4.4
are applied 10 times to each instance as they are not deterministic. The
results are averaged. The greedy algorithms are deterministic, thus they are
executed only once for each instance. All seven benchmark algorithms have
no hard time or iteration limit. They run without stopping criterion until no
improvement can be found.

Fourth, we apply our SA algorithm. Again, we solve each instance 10 times
independently. In the following analysis we always provide the average values
of these 10 runs (SA) if no notable differences occurred.

Fifth, the VNS algorithms described in Section 4.3 are applied 10 times
independently on each instance and we provide the average values for these
runs. The stopping criterion for the VNS algorithms is selected based on
preliminary tests. It is defined as the maximum number of iterations. The
value 4,000 turned out in preliminary tests to be a good compromise between
runtime and solution quality.

All problem instances are solved using one Intel Xeon core with 1.6 GHz
on a workstation with 6 GB RAM. The whole framework, all metaheuristics,
the benchmark heuristics and all components of the algorithms are imple-
mented in Java 6.0 and without the use of CPLEX. CPLEX is only used for
the benchmark solutions.
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Solution method stopping criterion
CPLEX (LP W) none
CPLEX (LP-s) none
CPLEX (LP-i) none
CPLEX (60s) 60 sec runtime
CPLEX (300s) 300 sec runtime
CPLEX (600s) 600 sec runtime
CPLEX (3,600s) 3,600 sec runtime
CPLEX (10%) 0.1 relative gap
random-add none
random-delete none
random-delete-all none
0-greedy-delete none
0-greedy-delete g none
1-greedy-delete none
1-greedy-delete,g none
SA 6 temperature levels

without new local optimum
RVNS 4,000 iterations
RVNS i1 4,000 iterations
VNS-L10oremove 4,000 iterations
VNS fi1-Liooremove 4,000 iterations
VNS-Liooswap 4,000 iterations
VNS fii-L1ooswap 4,000 iterations
VNS, emove 4,000 iterations

Table 5.2: Solution methods applied

5.2 Computation times

The average runtime of each algorithm is shown in Table 5.3. We average over
all 380 runs, i.e. 10 runs for each of the 38 instances, for the algorithms that
are not deterministic (SA, VNS and random variants). For the deterministic
algorithms, i.e. CPLEX and greedy variants, we average over 38 runs.

When applied to DRPSL2, CPLEX could not solve any of the instances to
optimality within the time limit of 3,600 seconds. For two instances CPLEX
could not find any feasible solution within 60 seconds. Running CPLEX with
a gap limit of 10% leads to an average runtime of 2.4 hours and a maximum
runtime of 44.9 hours.
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Solution method min. runtime avg. runtime max. runtime
CPLEX (LP-w) 0 <1 3
CPLEX (LP-s)/(LP-i) 0 11 35
CPLEX (10%) 0 8,629 161,795
random-add 0 0 0
random-delete 0 0 0
random-delete-all 0 0 0
0-greedy-delete 0 4 6
0-greedy-delete,s 0 4 6
1-greedy-delete 87 1,237 1,585
1-greedy-deleteg,g 86 926 1,098
SA 3 21 32
RVNS 7 17 26
RVNS i 9 25 63
VNS-Ligoremove 13 24 41
VNSfill'LIO(]remove 14 28 63
VNS-Liooswap 20 321 510
VNS ti1-L1ooswap 23 322 512
VNS, emove 47 272 416

Table 5.3: Average runtimes of the algorithms [s]

Compared to the solution of the unrelaxed problem with CPLEX, the LP—
relaxation is solved fast. This is consistent with the bad quality of the lower
bounds (see Section 3.6). Solving the weak LP-relaxation (CPLEX LP-w)
took for all but one instance less than one second, the outlier took 3 sec-
onds. As expected, the strong LP-relaxation (CPLEX LP-s) results in lower
bounds which are much better. Compared to the objective function value of
CPLEX LP-w they are improved by approx. 27% on average. To compute
the strong LP-relaxation CPLEX needed between 0 and 35 seconds, 11 sec-
onds on average.

It can be clearly seen that the random and greedy algorithms run very fast,
except the complex greedy variants with a backtracking of 1 step. These two
1-greedy-delete algorithms are probably not suitable for solving real problems
due to their long runtime of 15 to 20 minutes. They also run longer than all
metaheuristics.
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Our simulated annealing algorithm took on average between 3 and 32 sec-
onds for the different instances. The average runtime over all 380 runs was
21 seconds.

When comparing the SA to the VNS variants we can see that only the less
complex VNS variants have runtimes similar to those of the SA. The VNS
without local search (RVNS and RVNSy;;) and the VNS with the faster local
search l;emove applied every 100 steps (VNS-Liogremove and VNS ri-Liooremove )
are comparable to the SA. They run between 17 and 28 seconds.

The additional neighborhood fill has almost no influence on the runtime
of the VNS variants. Only for the RVNS there is a difference which is most
likely due to the more frequent use of the fill neighborhood in RVNS;;. The
fill neighborhood takes more time than the other neighborhoods because of
its evaluation of several possibilities to fill each gap (see Section 4.3.1). Since
fill is implemented as the last neighborhood it is only used if no other neigh-
borhood in the preceding steps found a better solution than the incumbent.
A local search increases the probability to find a better solution than the
incumbent, in which case the algorithm starts over with the first neighbor-
hood without using neighborhood fill. As there is no local search in the
RVNS the fill neighborhood is used more often. In contrast, all VNS vari-
ants except the two RVNS algorithms use some kind of local search, thus the
fill neighborhood is used less frequently and the runtime does not increase
much.

As expected, the type of local search has a big influence on the runtime.
The more complex and thorough the local search is, the longer is the runtime
of the algorithm. Considering the local search [ .o it takes on average 24
seconds to apply it every 100 iterations (VNS-Liggremove) i contrast to 272
seconds if it is applied after every shaking step (VNS,.cjove). The comparison
of the variants VNS-Ligoremove (24 seconds) and VNS-Liggswap (321 seconds)
as well as VNS fii-Ligoremove (28 seconds) and VNS ¢i;-Ligoswap (322 seconds)
clearly shows the higher complexity and time consumption of the l4,,, local
search compared to lyemove. Note that applying ls,q, every 100 steps takes
even longer than applying l,cm00e after every step.

Considering just the runtime we conclude that CPLEX is presumably not
suitable to solve real world problems whereas most of the implemented al-
gorithms are in general applicable. Only the runtime of the 1-greedy-delete
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algorithms is certainly too long for an efficient real-world use. It depends on
the specific purpose if a runtime of 5 minutes for the complex VNS variants
is acceptable. If the replica assignment is to be updated very frequently like
every minute for example, the two variants with /5,4, local search and the
VNS, emove are also not suited.

5.3 Solution quality

5.3.1 Lower bound

First we want to look at the quality of the lower bounds, especially when it
comes to the placement cost. If we look at the results of our general problem
analysis (eval-random) we can see evidence for the bad lower bound of the
placement cost CPLEX (LP-s) provides. Figure 5.2 shows the results regard-
ing the placement cost for instance ¢30 which has a higher placement cost
coefficient 3 than the base case. We can see the lower bound CPLEX (LP-s)
provides without our improvement. Like in every other instance it is nearly
0. The lower bound improved by our MUT approach (see Section 3.6) is
given by the bold line for each number of replicas so that we can evaluate
the placement cost of a solution no matter how many replicas it stores.

We can see that our improvement of the CPLEX (LP-s) lower bound is
very helpful and leads to a much better lower bound for the placement cost. If
we take a look at the placement cost of solutions from our algorithms we can
already see some basic results. The more complex the heuristic or metaheuris-
tic is, the lower are the achieved placement cost. The random based algo-
rithms, even the most complex random-delete-all, find solutions that are still
within the 0.75 quantile of our randomly generated solutions (eval-random).
We see that this is one of the instances for which CPLEX (600s) can not
find solutions anywhere near the optimum. With high placement cost and
by far too many replicas the solution z of CPLEX (600s) has a solution gap
A= # of 48.4%. SA and the best VNS variants perform well with total
gaps of around 4-5%.
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Figure 5.2: Analysis of the placement cost (eval-random) where for each
amount of replicas 1,000 random solutions are evaluated

5.3.2 Progress over runtime

Now we look at the values of the objective function during runtime for two
of the metaheuristics.

Figure 5.3 shows the progress of the objective function value when ap-
plying SA to instance ¢30. The typical behavior of a well configured SA can
be clearly seen, i.e. the frequent rise of objective function values due to the
acceptance of worse solutions to overcome local minima. In the example the
SA evaluated almost 21,000 solutions, about 9,000 solutions were accepted
and thus are shown in the figure. On this instance, 23% or about 4,800 of the
evaluated solutions are improved solutions, about 470 are new best solutions.
Over all instances of the test set SA evaluated on average 16,536 solutions
with a maximum of 40,200 evaluations.

The VNS variants behave quite different. As defined by the stopping cri-
terion they run 4,000 iterations. But the number of solutions they evaluate
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Figure 5.3: Typical progress of the objective function value during SA (in-
stance 130)

Solution method # evaluated solutions
SA 16,537
RVNS 14,255
RVNS i 19,700
VNS‘LlOOTemove 20,064
VNSfill'LIOOremove 24,945
VNS‘LlOOSwap 234,029
VNSfill'LloOswap 237,829
VNS, emove 225,835

Table 5.4: Number of evaluated solutions

depends heavily on whether a local search is used, how often the local search
is used, the complexity of the local search and whether the fill neighborhood
is used or not. Table 5.4 provides for each metaheuristic the average number
of evaluated solutions over all instances.

Figure 5.4 gives an example for the sequence of the neighborhoods during
VNS. It shows the first 100 neighborhoods used by VNS ti;-Ligoremove dur-
ing a run on instance ¢30. Note that one neighborhood in the figure is not
equal to one iteration of the VNS. In each iteration the VNS runs through as
many of the defined neighborhoods as necessary to find an improved solution
(see Algorithm 5). In the later stages of VNS the ’bigger’ neighborhoods are
used more and more often as improved solutions get harder to find. In the
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Figure 5.4: Typical sequence of neighborhoods in the beginning of VNS
(VNS fi-Liooremove, instance i30)

final stages each iteration typically uses all neighborhoods.

We already showed that the runtimes of the more simple VNS variants are
on the same level as the SA. Adding complex local search components leads
to much longer runtimes. However, the progress of the objective function
value is very similar for all VNS variants. A typical example and one with
a runtime comparable to the SA is shown in Figure 5.5. This is again for
instance 430, solved with VNS ¢;;-Ligoremove. For this instance about 10% or
400 of the iterations lead to solutions which are improved over the previous
solution, i.e. to new best solutions as worse solutions are never accepted.

We can conclude that the SA finds good solutions faster than the VNS vari-
ants. In the beginning of the SA algorithm the objective function value
decreases steeper than during the VNS. Hence, if the available runtime is
very limited the SA is the better choice of the metaheuristics. We will now
compare the solution quality of the algorithms in more detail.
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Figure 5.5: Typical progress of the objective function value during VNS (
VNSfill'LIOOremov67 instance 230)

5.3.3 Evaluation of the algorithms

To get an overview of the solution quality of the algorithms we use two
different measures.

Ranking for each instance. For the first measure we rank the objective
function values of the algorithms for each of the 38 instances separately. The
algorithm with the lowest objective function value for an instance gets rank
1 while the algorithm with the worst performance gets rank 19. All ranks
are shown in Table 5.5.

Table 5.6 provides the number of instances each algorithm solves with the
best solution. If we just consider the implemented algorithms and leave
CPLEX out, for % of the instances the basic VNS with [,cmove local search
after each step (VNS,emove) provides the best solution. Using ls,q, local
search but only every 100 steps (VNS-Ligoswap) leads to the best solution
for 5 instances. The same variant with the additional neighborhood fill in
VNS tin-Liooswap finds the best solution for 7 of the 38 instances. When also
considering the solutions obtained by CPLEX, the picture changes only with
respect to CPLEX (3,600s). CPLEX (3,600s) provides better solutions than
the other algorithms for 14 of the 38 instances. It improves the solution for
11 of the 25 instances where VNS, ..,..one has generated the so far best solution.
Within 600 seconds CPLEX does not find the best solution for any instance.



5.3 Solution quality

Instance il 12 i3 4 5 6 7 8 9 10 i1l 112 13
CPLEX (60s) 19 19 19 18 18 18 19 19 19 18 19 19 19
CPLEX (300s) 11 12 18 18 18 18 18 18 18 18 6 11 4
CPLEX (600s) 9 10 11 11 10 17 10 11 10 11 5 4 3
CPLEX (3,600s) 10 4 4 4 5 10 8 4 1 3 1 1 1
random-add 17 17 16 16 16 15 16 16 17 17 17 17 18
random-delete 18 18 17 17 17 16 17 17 16 16 18 18 17
random-delete-all 14 14 14 13 13 12 14 14 14 14 16 16 16
0-greedy-delete 16 16 15 15 15 14 15 15 15 15 15 15 14
O-g'reedy-deleteQOS 15 15 13 14 14 13 13 13 13 13 14 14 14
1-greedy-delete 13 13 12 12 12 11 12 12 12 12 13 13 13
I—g'rcedy—delcthOS 12 11 9 10 11 9 11 10 11 10 12 12 12
SA 8 9 10 7 7 6 6 9 9 8 11 8 10
RVNS 7 8 8 9 9 8 9 8 7 7 10 10 11
RVNS 5 5 6 6 6 5 5 5 5 6 7 6 7
VNS-Lio0remouve 6 7 7 8 8 7 7 7 8 9 9 9 8
VNS f;11-L1ooremove 4 6 5 5 4 4 4 6 6 5 8 7 9
VNS‘L100swap 2 3 3 3 3 3 3 3 3 4 3 5 6
VNS };11-L100swap 3 2 2 1 1 2 1 2 4 2 4 3 5
VNS remove 1 1 1 2 2 1 2 1 2 1 2 2 2

Instance 14 15 116 17 18 %19 120 121 122 123 124 125 126
CPLEX (60s) 19 19 19 19 5 17 17 19 18 12 19 19 19
CPLEX (300s) 18 18 18 18 3 6 3 18 18 11 12 12 18
CPLEX (600s) 11 12 17 11 2 4 2 3 10 10 9 10 11
CPLEX (3,600s) 6 9 6 1 1 1 1 1 6 8 4 4 4
random-add 14 16 15 17 18 19 18 16 15 16 18 18 16
random-delete 15 15 16 16 19 18 19 17 16 17 17 17 17
random-delete-all 13 14 13 13 16 16 16 14 12 18 16 16 14
0-greedy-delete 17 17 14 14 17 14 10 15 17 15 14 14 15
O-g'rcﬁdy-delethOS 12 11 11 14 14 7 7 13 14 14 13 13 13
1-greedy-delete 16 13 12 12 11 5 6 11 13 19 15 15 12
J-greedy-deleteQnS 10 10 10 9 4 3 5 5 11 13 11 11 10
SA 9 8 9 10 15 15 15 12 9 9 10 9 6
RVNS 7 6 8 8 12 11 13 8 8 7 8 7 9
RVNSf;1; 4 5 4 5 13 9 12 7 5 6 7 6 5
VNS-L100remouve 8 7 7 7 9 10 11 9 7 5 6 8 8
VNS f11-L100remove 5 4 5 6 8 13 14 10 4 2 5 5 7
VNS-L100swap 2 1 3 2 7 8 9 6 3 3 2 3 2
VNS f;11-L100swap 3 3 1 4 10 12 8 4 1 4 3 1 1
VNS emouve 1 2 2 3 6 2 4 2 2 1 1 2 3

Instance 127 28 129 30 31 132 133 134 35 136 137 138 >
CPLEX (60s) 18 4 19 18 19 19 19 19 11 11 9 10 640
CPLEX (300s) 18 3 12 18 18 17 11 9 6 6 4 11 494
CPLEX (600s) 11 2 8 17 10 17 9 10 5 5 3 7 338
CPLEX (3,600s) 5 1 6 5 4 1 4 5 1 1 1 2 144
random-add 16 18 18 16 16 15 17 17 14 14 14 14 620
random-delete 17 19 17 15 17 16 18 18 13 13 13 13 630
random-delete-all 13 15 14 13 14 14 13 13 15 15 15 15 544
0-greedy-delete 15 17 16 14 15 13 16 16 17 17 17 17 578
U-greedy-deleteQ,,S 14 16 15 12 13 12 15 14 18 18 18 18 517
1-greedy-delete 12 14 13 11 12 7 14 15 19 19 19 19 494
l-g'reedy-deleteQOS 9 12 11 10 11 10 10 12 16 16 16 16 401
SA 10 13 10 4 5 5 12 11 12 12 12 12 362
RVNS 7 11 9 9 9 11 8 8 10 10 11 8 334
RVNS ;11 4 10 5 7 7 6 5 6 8 9 10 9 | 248
VNS-L100remove 8 8 7 8 8 9 7 7 9 8 8 3 | 292
VNS f;11-L100remonve 6 9 4 6 6 8 6 4 7 7 7 6 | 237
VNS'L100swap 2 5 1 2 3 3 1 2 3 3 6 5 | 131
VNS f;11-L100swap 3 7 3 3 2 4 2 3 4 4 5 4 | 131
VNS emouve 1 6 2 1 1 2 3 1 2 2 2 1 75

61

Table 5.5: Ranks of the algorithms for each instance based on the objective
function values
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Solution method # best solutions # best solutions
(incl. CPLEX)
CPLEX (60s) 0
CPLEX (300s) 0
CPLEX (600s) 0
CPLEX (3,600s) 14
random-add 0 0
random-delete 0 0
random-delete-all 0 0
0-greedy-delete 0 0
0-greedy-delete g 0 0
1-greedy-delete 0 0
1-greedy-deleteg,g 1 0
SA 0 0
RVNS 0 0
RVNS i1 0 0
VNS‘Llooremove 0 0
VNSfill‘Ll(]Oremove 0 0
VNS‘Llooswap 5 3
VNSfill‘Ll(]Oswap 7 7
VNS, emove 25 14

Table 5.6: Number of instances solved best

If we add up all 38 ranks of each algorithm we obtain the overall ranking
shown in Table 5.7. Note that both VNS f;-Ligoswaep and VNS-Liggswap have
the same sum. Hence, they are both on rank 2 and we omit rank 3. The
same holds for CPLEX (300s) and 1-greedy-delete on rank 12.

All our metaheuristics outperform all simple heuristics which are preva-
lent in the literature. All variants of the variable neighborhood search also
outperform our simulated annealing approach. This is due to the great flex-
ibility of the VNS scheme with its different neighborhoods and local search
schemes. As we already showed, the different components of our VNS vari-
ants are specialized on different components of the objective function. With
the SA approach we had to combine all aspects of the problem in one neigh-
borhood. This could be a reason why in our experimental study the SA is
almost always faster than the VNS variants (see Section 5.2) but not as good
when it comes to solution quality.
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Rank Solution method Rank Solution method
1 VNS, emove 11 Z—greedy-deleters
2a VNSfill‘LlOOSwap 12a CPLEX (3008)
2b VNS-Ligoswap 12b  1-greedy-delete
4 CPLEX (3,600s) 14 O-greedy-delete,s
5 VNS ¢i1-Liooremove 15 random-delete-all
6 RVNS i1 16 0-greedy-delete
7 VNS-L100remove 17 random-add
8 RVNS 18 random-delete
9 CPLEX (600s) 19 CPLEX (60s)

10 SA

Table 5.7: Ranking of the algorithms based on their ranks for each instance

We now want to analyze the influence of the different VNS components on
the ranking of the algorithms (see Table 5.7). Obviously, there is a benefit
of using a local search after each shaking step (VNS,cmove). We can confirm
that the 5,4, local search is more efficient than l,emepe (rank 7 and 2b, 5 and
2a) but at the cost of a longer runtime (see Section 5.2).

We also see a benefit in using the additional fill neighborhood (rank 8
and 6, 7 and 5). It seems that it is an even better addition to the reduced
VNS (RVNS) than the local search l.cmeve applied every 100 steps (rank 8,
7,6).

Note that all VNS variants outperform CPLEX (600s) and have runtimes
of only 17 seconds (RVNS) to at most 322 seconds (VNS fiy-Liooswap). The
VNS variants with longer runtimes of about 300 seconds, i.e. VNS, nove,
VNS rii-Liooswap and VNS-Liggswap (rank 1, 2a, 2b) even outperform CPLEX
with a runtime of 3,600s.

Considering the greedy algorithms, the positive influences of the backtrack-
ing (rank 16 and 12b, 14 and 11) as well as of the adaption to QoS metrics
(rank 16 and 14, 12b and 11) can be seen. But as we will see next, the
solution quality of all the greedy algorithms is considerably inferior than the
solution quality of the metaheuristics.



5.3 Solution quality 64

Rank Solution method A Rank Solution method A
1 VNS, emove 3.78 11 CPLEX (300s) 40.38
2 CPLEX (3,600s) 3.80 12 I-greedy-deleteg,s 42.13
3 VNS-Liooswap 4.07 13 random-delete-all  42.90
4 VNsz’ll‘Ll()Oswap 4.10 14 random-add 44.26
5 VNS tii-Liooremove  4.88 15 random-delete 44.36
6 RVNS 4.88 16 0-greedy-deletegy,s 46.79
7 VNS-L1ooremove 5.14 17 0-greedy-delete 47.18
8 RVNS 5.25 18 1-greedy-delete 51.46
9 SA 7.03 19 CPLEX (60s) 53.51
10 CPLEX (600s) 13.66

Table 5.8: Ranking of the algorithms based on the gap A [%]

Average objective function values. With the second measure we want
to provide an insight into the differences in solution quality of the algorithms
and how they compare with each other.

Therefore we take a look at the average objective function values over all
instances. Based on the average objective function value Z of each algorithm
as well as the average LB of the improved lower bounds obtained by CPLEX
(LP-i) we provide the gap A as follows.

z— LB

z

A= (24)
We use this definition instead of an average over the gaps for each instance
as we want to penalize solution methods with low quality results according
to their objective function values. As the gaps for each instance are € [0, 1]
solutions with a very low quality have a gap near 1. But this gap value does
not clearly reflect how bad the solution actually is compared to other low
quality solutions. Building an average of these gaps results in lower values
that are harder to compare and distortet. With our definition, low quality
solutions lead to higher gaps A. The resulting ranking of the algorithms and
the gaps are given in Table 5.8.

We can see that the ranking according to A differs from the first rank-
ing, but mainly for the greedy and random algorithms. VNS, .,ove is still
on rank 1. CPLEX (3,600s) is ranked second best. Considering rank 3
(VNS-Ligoswap) and 4 (VNS g-Ligoswap) the order of these two algorithms is
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not as expected but the difference of the gap is only 0.03%. It seems that
the fill neighborhood has no positive influence on the VNS with [, local
search. Note that the addition of the fill neighborhood to the VNS-Ligoremove
(rank 7 and 5) reduces the gap by 0.26%. Adding the fill neighborhood to
the RVNS without any local search (rank 8 and 6) reduces the gap by 0.37%.
We conclude that the fill neighborhood is more useful the less effort is done in
the local search. This is consistent with our findings regarding the runtimes
(see Section 5.2). We also get confirmation of the benefit of a local search
after each step (VNS emove) When compared to a local search every 100 steps
(VNS-Ligoremove) and confirmation of the /4,4, local search being superior to
lremove if both are used every 100 steps.

Considering the gap A not only all VNS variants but also our simulated
annealing approach outperform CPLEX (600s) clearly and as we saw in Sec-
tion 5.2 with a distinct advantage in runtime. All greedy and random al-
gorithms outperform CPLEX (60s), most of them with neglectable runtimes
but all of them with very high gaps of 42% to 52%. Even CPLEX (300s) is
not much better with a gap of 40%. Only our SA and VNS metaheuristics
as well as CPLEX (3,600s) have gaps smaller than 10%.

Note that the order of the greedy and random algorithms changes in this
ranking based on the gaps when compared to the first ranking. Only the
most sophisticated 1-greedy-delete,s is in both rankings the best heuristic.
In contrast, the second best I-greedy-delete is on the last rank with A as
a measure. Even the random algorithms are ranked better than all greedy
algorithms but I-greedy-delete,g.

One possible explanation for the bad performance of the greedy heuris-
tics is as follows. All the simple heuristics perform particularly bad in the 4
problem instances ¢35—38. These instances do have very high delivery cost
coefficients. Hence, good solutions have a large number of replicas to reduce
the delivery cost. Table 5.9 illustrates this with the number of replicas in the
solutions of all algorithms for instances ¢35-438. The greedy algorithms do
not find good solutions in this respect. They have too few replicas and thus
high delivery cost in the objective function value. Even all the random algo-
rithms perform better on these instances, while with gaps of 26.78-87.15%
they are still far from optimal. With the difference in the objective function
values being very huge, these 4 instances are the only reason for the change
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Instance 135 136 137 138
CPLEX (60s) 400 473 542 588
CPLEX (300s) 379 469 542 588
CPLEX (600s) 377 470 540 588
CPLEX (3,600s) 375 469 539 588
random-add 341 334 338 340
random-delete 351 344 346 343
random-delete-all 265 265 265 264
0-greedy-delete 289 289 289 289
0-greedy-delete,g 271 271 271 271
1-greedy-delete 258 259 260 264
1-greedy-deleteg,s 254 254 254 253
SA 375 591 600 600
RVNS 381 471 542 588
RVNS riu 384 473 542 589
VNS-L1goremove 380 470 542 588
VNS ¢iu-L1ooremove 382 472 542 588
VNS-Liooswap 383 470 542 588
VNS in-L1ooswap 384 471 542 588
VNS, emove 379 470 541 588

Table 5.9: Average number of replicas for the instances ¢35-:38 with high
delivery cost coefficients

in the second ranking. In these instances the VNS algorithms all perform
very well with gaps of 0.04-3.03%. The SA algorithm lies in between with
gaps of 0.56-16.31%. For a complete overview of the gaps A = # for each
algorithm and problem instance see Tables 5.10 and 5.11 in Section 5.4.

5.3.4 Solution examples

Finally, we discuss some typical solutions of selected algorithms. The struc-
ture of the binary assignment matrix provides information on the charac-
teristics of the algorithms, especially how much attention they pay to the
placement cost component. For a better and objective comparison of the
latter we define a normalized measure ¢ for the fragmentation of a solution.
Therefore, ¢* counts the number of changes to the replica assignment on the
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servers over the planning horizon as follows.

<= Z Z |5 — Tsy1]| with 2,0=0 (25)

seVs teT

For our problem instances the maximum possible value ¢"* = 600 which
occurs if 300 replicas are placed alternately over the periods beginning with
a replica in period 1, i.e. f 2., =1Vs € Vs, t € T :t =1 (mod 2). Hence,
¢ = cmr and ¢ € [0,1].

The solution matrices of random-add and random-delete are very similar,
hence we provide only one example in Figure 5.6 with ¢ = 0.47. The random
solution structure can also be seen in the solution of random-delete-all with
¢ &~ 0.46 (see Figure 5.7). Note that the solutions of random-delete-all have
less replicas because the search for removable replicas is more exhaustive in
this algorithm.

Replica server

Period

Figure 5.6: Exemplary solution from random-add with ¢ = 0.47

Replica server
24]25[26]27]28]29]30[31]32]

13[14]15][16]17[18]19]20]21] 33[34]35]36]37]38] 39] 40[ 41] 42] 43 44] 45] 46 47] 48] 49] 50)

Period

Figure 5.7: Exemplary solution from random-delete-all with ¢ ~ 0.46

The solutions of the greedy algorithms also have very similar solutions.
Basically they are a little bit more structured than solutions of the random
algorithms. A solution of 0-greedy-delete with ¢ &~ 0.33 is given in Figure 5.8.
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Replica server
24]25]26]27] 28] 29 30[ 31] 32[33]34[35] 36 37] 38] 39 40] 41[ 42[ 43] 44] 45] 46 47] 48] 49] 50)

1]2]3]4]5]6][7][8]9]10 13[14]15]

Period

Figure 5.8: Exemplary solution from 0-greedy-delete with ¢ ~ 0.33

For the sample solution of the simulated annealing algorithm in Figure 5.9
we get ¢ = 0.1, the lowest value of all our algorithms. We can see the distinct
and very clear structure in the assignment matrix. It is formed by our neigh-
borhood definition which pays particular attention to the placement cost.
The blocks of replicas in consecutive periods can be clearly seen.

Also when looking at the solutions provided by the VNS variants we can
see some typical characteristics (see Figures 5.10-5.16).

The addition of the fill neighborhood leads to more and longer blocks of
consecutive periods with replicas. This effect can be seen most clearly when
comparing the solutions of RVNS (¢ ~ 0.29) and RVNSy;; (¢ = 0.19) as well
as VNS-LlooremOUe (C = 026) and VNSfill'LIOOTemove (C ~ 016)

As we already concluded, a local search in the VNS scheme has a similar
effect as the fill neighborhood. Especially the algorithms with the more
complex local search lguep (VNS-Ligoswap, ¢ = 0.14) and with .epmee local
search after each step (VNS,cimove, ¢ = 0.14) obtain very structured solutions
with replica—blocks although they do not use the fill neighborhood. The
impact of the fill neighborhood decreases with increasing complexity and
frequency of the local search. In our example solution of VNS f;-Ligoswap
the value ¢ = 0.14 is the same as without the fill neighborhood. Note that
the solutions of the top three metaheuristics in our rankings (VNS-Liggswap,
VNS fi-Liooswaps VNSremove) all have the same value ¢ = 0.14 although this is
not the lowest possible value (see SA with ¢ = 0.1). Obviously the placement
cost component is very important for the problem but not the only aspect
that needs to be considered for near—optimal solutions.



5.3 Solution quality

69

Replica server
] 17[18[19 27[28]29]30]31] 39]40]41]42]43[44[45[46]47
1
L2]
2
L4]
N
216/
2l
L8]
9
10,
11]
12|

Figure 5.9: Exemplary solution from SA with ¢ = 0.1

Replica server
23[24]25]26]27] 28] 29]30] 31] 32[ 33[ 34] 35] 36

[1]2]3]4]5]6]7]8]9]10[11][12][13]14]15]16]17]18[19[20[21[22

454647

Period

Figure 5.10: Exemplary solution from RVNS with ¢ ~ 0.29

Replica server

13[14]15[16]17]18][19]20]21]22]

38(39]40

Period

Figure 5.11: Exemplary solution from RVNSy;; with ¢ ~ 0.19

Replica server
17]18[19]20[21]22]23]24] 25| 26] 27] 28] 29[ 30[31[32[33[34

48[49[50)

4546]47

Period

Figure 5.12: Exemplary solution from VNS-Ligoremove With ¢ = 0.26
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Replica server
16[17]18]19[20[21]22] 23] 24] 25] 26 27] 28] 29[ 30[31

47[48]49)

Period

Figure 5.13: Exemplary solution from VNS ¢;;-Liooremove With ¢ =~ 0.16

Replica server

18[19] 20] 21]22[23[24[25 32[33[34]35]36]37[38]39] 40] 41] 42] 43] 44 45 46[47] 48

49|50

Period

Figure 5.14: Exemplary solution from VNS-Ljggswap With ¢ = 0.14

Replica server
2[23[24]25]26]27

36|37

[

8]39[40]41]42[43 46]47]48

Period

Exemplary solution from VNS ¢i;-Ligoswap With ¢ = 0.14

Replica server
20[21]22[23[24]25

Figure 5.16: Exemplary solution from VNS, .00 with ¢ = 0.14
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71 44.10 3.36 3.25 3.30 17.78 18.90 6.29 9.81 6.33 4.96 3.43
72 50.61 4.51 4.24 2.95 22.80 22.89 7.90 13.90 8.81 5.51 4.25

i3 53.89 45.49 5.97 3.47 25.09 25.46 8.35 10.51 7.50 6.24 4.67
4 56.45 56.45 5.54 3.81 24.82 25.66 9.28 16.34 9.29 6.37 4.75

5 59.15 59.15 4.18 3.65 27.71 28.92 9.97 16.25 10.82 7.44 4.64
6 63.37 63.37 55.84 6.25 29.90 32.48 10.75 14.66 10.99 8.20 6.07
a7 68.54 62.73 7.51 6.23 35.51 39.17 13.85 14.23 13.05 10.19 7.61

i8 74.43 70.40 11.28 6.05 43.37 45.40 18.15 19.61 16.19 12.76 9.54

19 78.24 74.47 10.34 5.72 51.67 50.69 21.64 25.03 20.74 14.60 13.14
i10 79.89 79.89 13.67 7.84 53.88 52.92 23.67 24.48 20.50 16.88 11.37
ill 82.72 11.02 10.01 6.39 57.68 60.83 25.74 23.65 21.58 19.92 15.03
i12 85.30 15.11 10.47 8.71 63.04 63.87 29.57 24.12 23.66 21.30 16.82
113 89.46 13.68 12.90 9.62 74.08 71.71 37.91 35.09 35.09 26.69 24.37
il4 59.51 43.70 4.96 3.10 7.25 7.35 7.05 9.52 5.05 7.54 4.39
il5 59.44 51.81 5.42 3.70 11.05 11.00 7.55 11.97 5.05 6.93 4.39
il6 59.20 47.23 44.66 3.23 14.28 16.08 8.48 12.92 5.40 7.04 4.39
il7 59.76 44.22 6.04 2.97 32.28 32.01 11.97 16.35 16.35 9.30 4.62
218 7.54 7.14 7.12 6.83 25.00 25.33 10.30 10.83 9.05 8.69 7.38
il9 39.26 10.78 10.23 6.71 42.06 41.46 15.43 12.73 11.17 10.46 10.15
i20 44.65 6.23 5.59 5.13 45.08 45.62 17.19 12.18 11.99 11.00 9.79
i21 59.68 46.23 5.84 4.10 39.56 40.83 16.41 17.05 12.30 8.85 6.33
i22 59.13 59.13 4.15 3.18 8.23 8.89 7.06 9.03 8.22 7.82 4.21
123 61.72 47.19 46.48 44.31 75.62 75.98 77.63 74.55 73.42 78.27 70.96
124 73.88 36.79 23.00 20.31 48.23 48.14 46.61 43.01 40.04 46.34 34.66
i25 67.29 26.55 21.20 16.50 40.99 40.91 34.80 33.25 29.48 33.81 23.65
26 59.88 52.81 11.38 5.16 30.74 30.76 14.11 19.02 13.87 12.12 7.72
27 59.02 59.02 4.75 2.37 26.95 27.89 7.18 14.71 9.11 4.76 2.92
128 1.58 1.50 1.48 1.47 24.50 26.83 6.54 14.35 8.99 4.73 2.71
129 58.25 3.72 3.13 2.92 28.78 27.61 7.84 15.31 9.92 6.11 3.68
130 62.61 62.61 48.40 5.31 32.61 30.98 14.77 18.92 13.40 11.16 7.36
31 — 57.53 10.66 7.13 34.71 35.89 21.93 22.92 17.29 16.63 11.46
132 - 56.53 56.53 2.22 27.77 29.50 9.49 6.72 5.11 3.40 3.79
33 55.13 7.69 6.00 3.96 25.09 25.74 11.62 18.31 14.06 13.84 7.51
134 50.09 6.87 7.08 4.79 23.38 24.11 13.35 20.30 17.13 19.50 10.26
135 4.28 2.53 2.21 1.93 27.46 26.78 33.70 40.30 40.33 47.77 34.04
136 2.12 1.56 1.53 1.39 44.85 42.95 53.22 58.52 59.15 65.46 54.61
37 0.61 0.48 0.48 0.42 62.66 62.09 71.33 74.74 75.38 79.64 72.46
38 0.06 0.07 0.05 0.04 81.77 81.73 87.15 88.66 89.03 90.92 87.69

Table 5.10: Gap A [%] for all algorithms applied to all instances (part 1)

5.4 Impact of the parameters

5.4.1 Impact on solution quality

With the detailed results in Tables 5.10 and 5.11 we can see a clear impact
of the parameters on the solution quality. Note that this impact holds for
all evaluated algorithms. Thus, higher gaps on some instances can also be
due to the quality of the lower bound. The lower bound is most likely not
equally tight for all instances.
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71 2.98 2.86 2.61 2.74 2.50 2.24 2.25 2.23
2 4.15 3.56 3.32 3.52 3.34 2.75 2.75 2.60
3 5.29 3.89 3.69 3.84 3.55 3.04 3.02 3.01
4 4.11 4.45 3.91 4.32 3.87 3.49 3.20 3.30
5 3.73 4.07 3.71 4.01 3.48 2.97 2.93 2.96
6 4.67 4.84 4.40 4.82 4.23 3.54 3.54 3.44
7 5.82 6.28 5.42 5.97 5.19 4.16 4.04 4.04
8 8.45 8.04 7.24 7.88 7.80 5.42 5.38 5.25

i9 9.63 9.35 8.58 9.52 8.78 6.72 6.98 6.33
10 10.64 10.32 9.88 10.74 9.73 7.84 7.74 6.90
711 13.00 12.54 11.40 11.95 11.91 9.42 9.72 9.33
712 14.11 14.46 13.32 14.40 13.71 10.55 10.43 10.07
13 18.65 18.88 17.99 18.03 18.21 14.34 13.69 12.86
114 3.42 3.28 3.07 3.30 3.08 2.60 2.62 2.59
il5 3.40 3.26 3.08 3.33 3.04 2.57 2.59 2.58
16 3.38 3.34 3.06 3.33 3.10 2.57 2.57 2.57

i17 4.81 4.55 4.11 4.47 4.12 3.03 3.20 3.15
718 9.76 8.72 9.04 8.51 8.45 8.28 8.61 7.54
219 13.88 12.42 12.34 12.35 12.61 11.81 12.44 9.90
120 14.44 13.17 12.93 12.87 13.28 12.07 12.05 9.42
i21 9.82 8.35 8.25 8.40 8.50 6.52 6.32 5.68
122 3.67 3.41 3.10 3.31 3.09 2.65 2.57 2.58

123 46.39 44.14 44.07 44.02 43.97 43.99 44.02 43.96
124 23.88 21.86 21.28 21.22 20.77 19.92 20.23 19.87
125 17.88 17.03 16.59 17.12 16.53 14.64 14.15 14.27
126 5.84 6.86 5.79 6.64 5.89 4.56 4.55 4.68
27 3.39 2.56 2.29 2.57 2.49 2.06 2.07 2.01

128 3.61 2.02 1.95 1.89 1.95 1.72 1.79 1.75
129 3.58 3.25 2.89 3.09 2.83 2.37 2.47 2.44
130 5.23 6.65 5.69 6.36 5.57 4.25 4.28 4.24

131 7.53 9.98 8.54 9.90 8.46 6.37 6.26 6.01
132 3.20 3.94 3.33 3.63 3.54 3.14 3.18 3.00

133 8.17 5.26 4.38 5.13 4.47 3.34 3.34 3.35
134 9.32 5.71 5.06 5.52 4.71 3.40 3.41 3.38
135 16.31 3.03 2.73 2.85 2.70 2.01 2.01 1.98
136 10.71 2.01 1.90 1.88 1.80 1.42 1.45 1.41
137 3.92 0.66 0.61 0.59 0.59 0.53 0.51 0.47

38 0.56 0.05 0.06 0.04 0.05 0.05 0.04 0.04

Table 5.11: Gap A [%] for all algorithms applied to all instances (part 2)

Server capacity. If the capacity of the servers rises (instances i1-i13)
the gaps of all solution procedures rise as well. The gaps just for these
instances are shown in Table 5.12. With down to only 10% average workload
it v,, =1Vs eV, teT oninstance 113, few servers are sufficient to obtain
feasible solutions. This can be also seen in Table 5.13 which provides the
number of replicas in the solutions of all algorithms for instances 21-413.

We expect that for the high capacity instances the higher gaps are not
due to the quality of the lower bounds but due to the low quality of the upper
bounds. Because of the sufficiency of few replicas these instances have a high
degree of freedom in the solution space, i.e. there are more feasible replica
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Instance 21 72 23 14 5 16 27 18 9 210 211 112 713
pmar 0.9 0.8 0.75 0.7 0.66 0.6 0.5 0.4 0.33 0.3 0.25 0.2 0.1
CPLEX (60s) 44.1 50.6 53.9 56.4 59.2 63.4 68.5 74.4 78.2 79.9 82.7 85.3 89.5
CPLEX (300s) 3.4 4.5 45.5 56.4 59.2 63.4 62.7 70.4 74.5 79.9 11.0 15.1 13.7
CPLEX (600s) 3.3 4.2 6.0 5.5 4.2 55.8 7.5 11.3 10.3 13.7 10.0 10.5 12.9
CPLEX (3,600s) 3.3 2.9 3.5 3.8 3.6 6.3 6.2 6.0 5.7 7.8 6.4 8.7 9.6
random-add 17.8 22.8 25.1 24.8 27.7 29.9 35.5 43.4 51.7 53.9 57.7 63.0 74.1
random-delete 18.9 22.9 25.5 25.7 28.9 32.5 39.2 45.4 50.7 52.9 60.8 63.9 71.7
random-delete-all 6.3 7.9 8.4 9.3 10.0 10.8 13.8 18.1 21.6 23.7 25.7 29.6 37.9
0-greedy-delete 9.8 13.9 10.5 16.3 16.3 14.7 14.2 19.6 25.0 24.5 23.6 24.1 35.1
0-g7’eedy-deleteQOS 6.3 8.8 7.5 9.3 10.8 11.0 13.0 16.2 20.7 20.5 21.6 23.7 35.1
1-greedy-delete 5.0 5.5 6.2 6.4 7.4 8.2 10.2 12.8 14.6 16.9 19.9 21.3 26.7
1-grcedy-delcthOS 3.4 4.3 4.7 4.8 4.6 6.1 7.6 9.5 13.1 11.4 15.0 16.8 24.4
SA 3.0 4.2 5.3 4.1 3.7 4.7 5.8 8.5 9.6 10.6 13.0 14.1 18.6
RVNS 2.9 3.6 3.9 4.5 4.1 4.8 6.3 8.0 9.3 10.3 12.5 14.5 18.9
RVNSf”l 2.6 3.3 3.7 3.9 3.7 4.4 5.4 7.2 8.6 9.9 11.4 13.3 18.0
VNS-L1gorem. 2.7 3.5 3.8 4.3 4.0 4.8 6.0 7.9 9.5 10.7  12.0 144  18.0
VNS;11-L10orem. 2.5 3.3 3.5 3.9 3.5 4.2 5.2 7.8 8.8 9.7 11.9 137  18.2
VNS Ligoswap 2.2 2.8 3.0 3.5 3.0 3.5 4.2 5.4 6.7 7.8 9.4 10.6  14.3
VNSfi11-Liooswap 22 2.7 3.0 3.2 2.9 3.5 4.0 5.4 7.0 7.7 9.7 10.4  13.7
VNS remove 2.2 2.6 3.0 3.3 3.0 3.4 4.0 5.2 6.3 6.9 9.3 10.1  12.9

Table 5.12: Gap A [%] when varying the server capacities

Instance 21 12 13 14 5 26 7 28 29 210 211 212 @13
prr 0.9 0.8 0.75 0.7 0.66 0.6 0.5 0.4 0.33 0.3 0.25 0.2 0.1
CPLEX (60s) 600 600 600 600 600 600 600 600 600 600 600 600 600
CPLEX (300s) 347 309 515 600 600 600 514 529 517 600 106 89 55
CPLEX (600s) 347 309 291 273 253 517 195 158 132 125 105 87 55
CPLEX (3,600s) 347 309 291 272 253 234 195 158 131 122 102 86 53
random-add 409 387 373 345 337 318 288 265 261 251 234 226 228
random-delete 415 387 375 350 343 331 307 276 256 246 255 232 208
random-delete-all 355 319 299 281 264 243 208 174 150 140 122 106 80
0-greedy-delete 372 345 310 311 289 258 213 181 163 147 122 102 80
0—_(17‘eedy—deleters 357 324 298 284 271 247 209 173 152 139 118 101 80
1-greedy-delete 349 310 291 272 256 236 198 162 136 126 110 91 64
1-g'reedy-deleteQOS 347 310 291 272 254 235 198 161 137 124 108 91 66
SA 348 313 297 273 254 235 198 163 136 126 109 92 62
RVNS 347 310 291 273 254 234 197 160 134 124 108 90 61
RVNSfi” 347 310 291 272 254 234 197 160 134 124 107 90 61
VNS-L100remove 347 310 291 273 254 234 196 160 135 125 107 90 60
VNSjf;-Liooremove 347 310 201 273 254 234 197 162 135 124 108 91 62
VNS-Liooswap 347 310 291 273 254 234 197 160 134 124 106 88 59
VNS i11-L100swap 347 310 291 272 254 234 197 160 134 124 107 89 58
VNS emouve 347 309 291 272 254 234 196 159 133 122 106 88 57

Table 5.13: Average number of replicas when varying the server capacities

assignments. Additionally, the heuristics tend to use too many replicas when
compared to the solutions of CPLEX (3,600s) (see Table 5.13). This seems
to be due to the SLA constraints, especially the maximum allowed latency.
With less replicas our neighborhoods supposably can not find the few changes
to the assignment that still lead to feasible solutions and further reduce the
amount of servers. Note that these high capacities are unusual for web servers
in data centers.
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Instance 14 115 116 5 117
A 075 0.9 095 0.99 1

CPLEX (60s) 59.5 594 59.2 59.2 59.8
CPLEX (300s) 43.7 51.8 472 59.2 44.2
CPLEX (600s) 50 54 447 42 6.0
CPLEX (3,600s) 31 37 32 36 30
random-add 72 11.1 143 27.7 323
random-delete 7.3 11.0 16.1 28.9 32.0
random-delete-all 71 76 85 10.0 12.0
0-greedy-delete 9.5 12.0 129 16.3 164
0-greedy-deleteg,s 5.0 5.0 54 108 16.4
1-greedy-delete 7.5 6.9 70 74 93
1-greedy-deleteg,s 4.4 44 44 46 46
SA 34 34 34 37 438
RVNS 33 33 33 41 46
RVNS i 31 31 31 37 4.1
VNS-Ligorem. 33 33 33 40 45
VNSfill‘Llo()rem. 3.1 3.0 3.1 3.5 4.1
VNS-Ligoswap 26 26 26 3.0 3.0
VNS tit-Liooswap 26 26 26 29 32
VNS, emove 26 26 26 3.0 32

Table 5.14: Gap A [%] when varying the service level A

Service level. The fraction A of all requests that needs to be handled
within the maximum latency (instances i14—i17) seems to have only very
little influence on the solution quality. The gaps for these instances are
shown in Table 5.14. Only the simple random and greedy heuristics are
an exception here. The simpler the heuristic is, the higher is the gap for
high values of A\ (e.g. instance i17). If the maximum allowed latency is a
hard restriction which can not be exceeded for some of the requests, then the
simple heuristics lead to inferior results. Only the most complex of the simple
heuristics (1-greedy-deleteg,s) does not show this behavior and handles high
values of A equally well.
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Gap A [%] average number of replicas
Instance 718 19 120 121 5 122 18 119 120 121 5 122
l 0.5 0.75 1 1.5 2 3 0.5 0.75 1 1.5 2 3

CPLEX (60s) 7.5 39.3 44.6 59.7 59.2 59.1 475 537 529 600 600 600
CPLEX (300s) 7.1 10.8 6.2 46.2 59.2 59.1 473 358 309 456 600 600
CPLEX (600s) 7.1 10.2 5.6 5.8 4.2 4.2 473 356 308 255 253 253
CPLEX (3,600s) 6.8 6.7 5.1 4.1 3.6 3.2 472 349 308 255 253 253
random-add 25.0 42.1 45.1 39.6 27.7 8.2 589 571 541 411 337 257
random-delete 25.3 41.5 45.6 40.8 28.9 8.9 591 564 547 421 343 259
random-delete-all 10.3 15.4 17.2 16.4 10.0 7.1 489 383 350 289 264 253
0-greedy-delete 10.8 12.7 12.2 17.1 16.3 9.0 493 374 333 297 289 257
0-gT‘eedy»deleters 9.1 11.2 12.0 12.3 10.8 8.2 483 367 332 280 271 255
1-greedy-delete 8.7 10.5 11.0 8.9 7.4 7.8 481 362 326 264 256 253
1-gT66dy-d(ilct6QOS 7.4 10.2 9.8 6.3 4.6 4.2 474 362 323 259 254 253
SA 9.8 13.9 14.4 9.8 3.7 3.7 488 381 344 275 254 253
RVNS 8.7 12.4 13.2 8.3 4.1 3.4 481 372 336 266 254 253

RVNS i1 9.0 123 129 8.2 3.7 3.1 | 483 373 336 268 254 253
VNS-L10oremove 8.5 12.3 129 8.4 4.0 3.3 | 480 372 335 266 254 253
VNS ti11-L100remove 8.5 12.6 13.3 85 3.5 3.1 | 480 374 338 269 254 253
VNS L100swap 83 11.8 121 6.5 3.0 2.7 | 480 371 334 264 254 253
VNS fi11-L100swap 8.6 124 120 6.3 2.9 2.6 | 481 374 334 264 254 253
VNS emouve 7.5 9.9 9.4 5.7 3.0 2.6 | 476 363 323 261 254 253

Table 5.15: Gap A [%] and average number of replicas when varying the
maximum allowed latency

Maximum allowed latency. The parameter [ which increases the maxi-
mum allowed latency (instances i18-i22), i. e. the maximum allowed distance
between server and client, has a specific influence on the problem. The cor-
responding data is provided in Table 5.15.

On the one side, low values of [ lead to a high amount of replica servers
needed for feasible solutions. With this lower degree of freedom the gaps
are smaller, especially when using the greedy heuristics and metaheuristics.
On instance 718 with the lowest allowed latency, even CPLEX (60s) performs
well. On the other side, high values of [ also lead to low gaps for the heuristics
and metaheuristics. The SLAs are almost not restrictive in this case and do
not impose any additional difficulty to the problem. The gaps are higher
in the middle of our tested range. It seems that here are the most conflicts
between the different components of the objective function and the realization
of the claimed service levels.

Note that the results of CPLEX do not show this influence. The gaps
achieved by CPLEX behave very differently when varying [ depending on

the time limits. We suppose that this is due to the underlying algorithms of
CPLEX.
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Gap A [%] average number of replicas

Instance 123 24 125 126 5 27 123 124 25 126 5 127

[eY 10 50 100 500 1,000 2,000 10 50 100 500 1,000 2,000

CPLEX (60s) 61.7 73.9 67.3 59.9 59.2 59.0 584 600 600 600 600 600
CPLEX (300s) 47.2 36.8 26.6 52.8 59.2 59.0 476 280 257 521 600 600
CPLEX (600s) 46.5 23.0 21.2 11.4 4.2 4.8 484 297 263 253 253 256
CPLEX (3,600s) 44.3 20.3 16.5 5.2 3.6 2.4 491 281 256 254 253 254
random-add 75.6 48.2 41.0 30.7 27.7 27.0 345 337 345 342 337 339
random-delete 76.0 48.1 40.9 30.8 28.9 27.9 339 342 344 344 343 343
random-delete-all 77.6 46.6 34.8 14.1 10.0 7.2 266 265 265 264 264 263
0-greedy-delete 74.6 43.0 33.2 19.0 16.3 14.7 289 289 289 289 289 289
0-g7'€ed’y-deleters 73.4 40.0 29.5 13.9 10.8 9.1 271 271 271 271 271 271
1-greedy-delete 78.3 46.3 33.8 12.1 7.4 4.8 259 256 256 256 256 256
l-chcdy-d(ilﬁthoS 71.0 34.7 23.6 7.7 4.6 2.9 254 254 254 254 254 254
SA 46.4 23.9 17.9 5.8 3.7 3.4 600 291 272 255 254 256
RVNS 44.1 21.9 17.0 6.9 4.1 2.6 506 293 257 254 254 254
RVNSf”l 44.1 21.3 16.6 5.8 3.7 2.3 504 292 257 254 254 254
VNS-T1 00remove 44.0 212 171 6.6 4.0 2.6 500 291 256 254 254 254
VNSfi-L10oremove  44.0 208 165 5.9 3.5 2.5 500 291 257 254 254 254
VNSL100swap 44.0  19.9 14.6 4.6 3.0 2.1 504 205 258 254 254 254
VNS £i11-L100s wap 44.0 202 142 4.5 2.9 2.1 505 299 259 254 254 254
VNS remouve 44.0 19.9 143 4.7 3.0 2.0 500 288 255 254 254 254

Table 5.16: Gap A [%] and average number of replicas when varying the
storage cost coefficient «

Storage cost coefficient. Now we look at the cost coefficients. With an
increasing storage cost coefficient a (instances i23—i27), the gaps typically
decrease (see Table 5.16). The instances with very low storage cost coeffi-
cients (instances i23, i24) show gaps which are among the highest gaps of all
instances for all considered algorithms.

We suppose that the high gaps are mainly due to weak lower bounds. A
low storage cost coefficient leads to solutions with a large amount of repli-
cas because this reduces the delivery cost (see Table 5.16). The remaining
placement cost involve the multi—period Steiner tree problem. This problem
is hard to solve and we already stated that the lower bounds are not tight.
The contribution of the placement cost to the total cost gets proportionally
bigger as the storage cost decrease. The placement cost become more im-
portant in determining the gap, thus the gap rises even if the placement and
delivery cost components stay constant. Hence, we assume that the best
algorithms provide solutions of good quality although there are high gaps on
the instances with low storage cost coefficients.
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Instance 432 9 133 134 135 136 137 138

¥ 0 0.01  0.05 0.1 0.5 1 2 5
CPLEX (60s) — 59.15 55.13 50.09 4.28 2.12 0.61 0.06
CPLEX (300s) 56.53 59.15 7.69 687 253 1.56 048 0.07
CPLEX (600s) 56.53 4.18 6.00 7.08 2.21 1.53 048 0.05
CPLEX (3,600s) 222 365 39 479 193 139 042 0.04
random-add 2777 27.71  25.09 23.38 27.46 44.85 62.66 81.77
random-delete 29.50 28.92 25.74 24.11 26.78 42.95 62.09 81.73
random-delete-all 9.49 997 11.62 13.35 33.70 53.22 71.33 87.15
0-greedy-delete 6.72 16.25 18.31 20.30 40.30 58.52 74.74 88.66
O-greedy-deletey,s 511 1028 14.06 17.13 40.33 59.15 75.38 89.03
1-greedy-delete 3.40 744 13.84 19.50 4777 65.46 79.64 90.92
1-greedy-deleteg,s 379  4.64 751 10.26 34.04 54.61 7246 87.69
SA 320 373 817 932 16.31 10.71 3.92  0.56
RVNS 394 407 526 571 3.03 201 0.66 0.05
RVNS i 333 371 438 506 273 190 0.61 0.06
VNS-Liooremove 3.63 401 513 552 285 1.88 0.59 0.04
VNS riu-Liooremove  3.54  3.48 447 471 270 180 0.59  0.05
VNS-L1g0swap 314 297 334 340 201 142 053 0.05
VNS fi1-Looswap 3.18 293 334 341 201 1.45 0.51  0.04
VNS, emove 3.00 296 335 338 198 141 047 0.04

Table 5.17: Gap A [%] when varying the delivery cost coefficient ~y

Delivery cost coefficient. Increasing the delivery cost coefficient v (in-
stances 132-i38) results in mostly decreasing gaps when using CPLEX or the
metaheuristics (see Table 5.17). Note that on the instances with the highest
delivery cost coefficients CPLEX and all metaheuristics also have the lowest
gaps of all instances. This is because the delivery cost dominate the other two
cost components of the objective function. As the contribution of the storage
cost to the total cost gets proportionally smaller, placing a lot more replicas
does not have a big influence on the objective function value but reduces
the delivery cost of the solution significantly. Thus, with high delivery cost
coefficients good solutions have a large amount of replicas (see Table 5.18).

A high delivery cost coefficient helps CPLEX to find near—optimal solu-
tions in short time. The CPLEX gaps are remarkably small even after 60
seconds and go down to 0.04% after 3,600 seconds. Hence, together with
the very short computation times we have a strong hint that near—optimal
solutions are trivial in this case. The random and greedy heuristics are an
exception which we already addressed and explained in Section 5.3.3.
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Instance 132 19 133 134 i35 436 @37 438
v~ 0 001 005 01 0.5 1 2 5

CPLEX (60s) - 600 600 600 400 473 542 588
CPLEX (300s) 546 600 254 257 379 469 542 588
CPLEX (600s) 546 253 253 256 377 470 540 588
CPLEX (3,600s) 253 253 253 254 375 469 539 588
random-add 334 337 335 343 341 334 338 340
random-delete 343 343 339 348 351 344 346 343
random-delete-all 265 264 264 265 265 265 265 264
0-greedy-delete 263 289 289 289 289 289 289 289
0-greedy-deleteg,s 258 271 271 271 271 271 271 271
1-greedy-delete 253 256 256 256 258 259 260 264
1-greedy-deleteg,s 254 254 254 254 254 254 254 253
SA 255 254 267 274 375 591 600 600
RVNS 254 254 254 254 381 471 542 588
RVNS i 254 254 254 254 384 473 542 589

VNS-Liooremove 254 254 254 254 380 470 542 588
VNS riu-Liooremove 255 254 254 254 382 472 542 588

VNS-Ligoswap 254 254 254 254 383 470 542 588
VNS ti-Liooswap 254 2564 254 254 384 471 542 588
VNS, emove 254 254 254 254 379 470 541 588

Table 5.18: Average number of replicas when varying the delivery cost
coeflicient

Placement cost coefficient. Finally, we look at the impact of the place-
ment cost coefficient 3. Increasing [ (instances i28-i31) does not have a
big influence on the degree of freedom as the number of feasible assignments
does not change and there is no obvious reason for significantly more or less
replicas as seen when varying some of the other parameters. The placement
cost could be omitted if x,;, = 1 Vs € Vs, t € 7 but this is most likely no
good solution. Of the tested algorithms only the short—running CPLEX (60s)
and CPLEX (300s) place more replicas with increasing 3 and that results in
low quality solutions with gaps of about 60%. Nonetheless, the gaps rise for
all algorithms with increasing 3 as shown in Table 5.19. The reason is that
the difficult Steiner tree problem gets more prominent. Its solution gets a
higher proportion of the objective function value. In addition, the problem
of the weak lower bound for the placement cost has a stronger effect here,
i.e. the lower and the upper bounds diverge with an increasing placement
cost coefficient.
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Instance 28 129 5 130 131
I6] 0 0.1 0.2 0.5 1

CPLEX (60s) 1.6 582 59.2 62.6 —

CPLEX (300s) 1.5 3.7 592 626 57.5
CPLEX (600s) 15 31 42 484 107
CPLEX (3,600s) 1.5 29 36 53 7.1
random-add 24.5 288 27.7 32.6 34.7
random-delete 26.8 276 289 31.0 359
random-delete-all 6.5 7.8 10.0 14.8 21.9
0-greedy-delete 144 153 163 18.9 229
0-greedy-delete g, 9.0 99 10.8 134 17.3
1-greedy-delete 4.7 6.1 74 11.2 16.6
1-greedy-deleteg,s 2.7 3.7 46 74 115
SA 36 36 37 52 75
RVNS 20 33 41 6.6 10.0
RVNS i 20 29 37 57 85
VNS-Ligoremove 1.9 31 40 64 99
VNSfiu-Liooremove 1.9 2.8 35 56 85
VNS-Ligoswap 1.7 24 30 42 6.4
VNS fiu-Liooswap 1.8 25 29 43 6.3
VNS, emove 1.8 24 30 42 6.0

Table 5.19: Gap A [%] when varying the placement cost coefficient (3

5.4.2 Impact on runtimes

We now want to highlight the influences of parameters on the runtimes. In
Table 5.20 the runtimes of all algorithms applied to all instances are shown.
All but two parameter configurations have no influence on the runtimes of
the greedy algorithms. Hence, we will not discuss them any further. We will
concentrate on the metaheuristics and CPLEX (10%) as the LP relaxation
CPLEX (LP-i) does not generate feasible solutions.

Server capacity. The influence of rising server capacities (instances il—
i13) seems to be different for CPLEX (10%) and the metaheuristics. On in-
stances with higher capacities and hence a higher degree of freedom CPLEX
(10%) basically has longer runtimes. The metaheuristics have slightly de-
creasing runtimes in these cases. Especially the more complex VNS vari-
ants VNS-Liooswap; VNS fin-Liooswap and VNS,¢pope show runtimes which are
shorter than the average on instance ¢13 with the highest server capacities.
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il 159 5 0 0 0 4 P 984 743 27 19 26 21 24 355 348 362
i2 267 7 0 0 0 4 4 1173 850 24 20 27 23 27 384 386 335
i3 530 6 0 0 0 5 4 1244 961 24 19 27 21 25 405 404 327
i4 330 5 0 0 0 4 4 1335 928 28 19 27 23 25 425 421 311
i5 505 13 0 0 O 5 5 1432 1053 32 21 28 24 27 425 435 294
i6 878 14 0 0 0 4 5 1327 960 28 18 23 21 22 368 369 232
i 428 13 0 0 0 5 5 1412 1041 28 20 25 23 23 345 349 205
i8 911 14 0 0 0 4 4 1316 928 22 18 22 21 23 293 291 150
i9 770 27 0 0 0 4 4 1199 869 23 19 23 23 24 272 273 138
i10 3527 35 0 0 0 4 3 1089 756 21 17 21 21 22 234 231 114
i1l 2686 27 0 0 0 3 3 919 718 19 18 21 22 22 221 218 106
i12 85 28 0 0 0 2 2 671 587 17 16 18 19 20 180 172 82
i13 892 14 0 0 0 2 2 456 416 9 13 15 17 17 95 97 47
i14 530 14 0 0 0 6 5 1550 1052 22 18 23 20 22 506 511 352
15 483 14 0 0 0 6 5 1585 1063 26 18 24 20 22 504 512 347
i16 3456 11 0 0 0 6 5 1546 1052 26 19 24 21 22 494 488 346
i17 551 12 0 0 0 4 4 1360 1054 30 22 33 28 34 397 412 262
i18 22 T 0 0 0 0 0 87 86 14 9 11 13 14 41 43 78
i19 2118 1 0 0 0 1 1 421 392 16 14 19 22 25 124 127 138
i20 138 2 0 0 o0 2 2 634 628 17 19 26 30 34 179 184 161
i21 355 7 0 0 0 3 3 1164 1058 22 26 38 41 48 341 352 224
122 395 15 0 0 0 6 6 1532 1098 19 18 23 20 23 510 494 352
123 41351 0 0 o0 0 4 5 1433 1056 3 8 9 27 25 74 74 393
i24 | 161795 1 0 0 0 4 5 1432 1052 20 15 19 33 32 246 243 356
i25 97282 4 0 0 0 4 5 1435 1058 21 22 26 29 30 404 404 311
i26 2659 13 0 0 0 4 5 1436 1055 32 21 27 24 26 434 427 302
i27 607 13 0 0 0 4 5 1437 1058 26 20 28 24 28 429 431 304
28 55 12 0 0 0 4 5 1436 1063 27 20 63 24 63 458 508 332
i29 203 14 0 0 0 4 5 1444 1053 30 20 27 24 28 435 427 306
i30 783 13 0 0 0 4 5 1445 1051 26 21 28 25 26 432 425 302
i31 1012 14 0 0 0 4 5 1438 1056 25 21 28 25 27 435 430 291
32 770 25 0 0 0 4 4 1067 1055 26 23 31 27 32 459 454 300
i33 289 8 0 0 0 4 5 1434 1056 23 20 28 24 29 447 429 310
i34 182 3 0 0 0 4 5 1440 1052 19 20 34 24 33 446 455 325
i35 27 0 0 0 0 4 5 1434 1054 9 11 25 27 33 184 196 357
i36 22 0 0 0 0 4 5 1436 1054 3 10 27 27 37 124 138 400
i37 4 0 0 0 0 4 5 1433 1055 3 9 19 27 36 67 72 416
138 0 0 0 0 0 4 5 1395 1063 3 7 11 25 28 20 23 358
avg. 8629 11 0 0 0 4 4 1237 926 21 17 25 24 28 321 322 272

Table 5.20: Runtimes of all algorithms applied to all instances

The explanation is very simple. As good solutions for these instance need
only few replicas, the local search procedures which swap or remove existing
replicas need less comparisons to find the best action. That is why the effect
is most obvious on the algorithms with a complex local search.

Service level. The fraction A of all requests that needs to be handled
within the maximum latency (instances i14-i17) has almost no impact on
the runtimes. This is consistent with the result of Section 5.4.1 that it also
has no significant impact on the solution quality.
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Maximum allowed latency. The maximum allowed latency, controlled
by parameter [ (instances i18-i22), leads to short runtimes if it is very low
(instance 718). This is also true for CPLEX (10%) and the greedy algorithms
and is caused by the low degree of freedom with the necessity of a high amount
of replicas which we already explained in Section 5.4.1.

Storage cost coefficient. An increasing storage cost coefficient a (in-
stances 123-i27) has mainly an influence on the runtime of CPLEX (10%).
The runtime is varying but generally we observe longer runtimes for low
values of a. On instances 2325 CPLEX (10%) has the longest runtimes
of all instances. It seems that CPLEX hardly finds tight lower bounds. In
these instances the storage cost are of little importance while placement and
delivery cost have normal levels. Herein we see evidence that the problem
is hard to solve for CPLEX especially due to the placement cost. This is
consistent with the importance of the placement cost for the problem and
the complexity they bring along (see Section 3.4).

The metaheuristics except VNS, .¢move are primarily faster on instance 123
with the lowest storage costs. The other cost components dominate in this
case. It follows that SA can not escape permanently from the local minimum
with the maximum amount of replicas (see Table 5.16) and hence stops soon
due to the stopping criterion (see Section 4.2). When it comes to the VNS
variants the reduction of the runtimes is stronger with [, local search than
with l,emove. The reason is that with a very low storage cost coefficient good
solutions have many replicas to reduce the other cost components. Hence,
there are not so many possibilities to swap replicas but still many possibilities
to remove a replica. Thus, l.emove has to evaluate much more solutions. This
is also the reason why VNS, .c,00e With the most frequent [,.c,,00e local search
does not have a reduced runtime at all in this case.

Delivery cost coefficient. With an increasing delivery cost coefficient ~
(instances 132—i38) the runtimes of CPLEX (10%) and of the metaheuristics
except VNS, cove decrease. As we already mentioned, these high delivery
cost coefficients lead to solutions with replicas on almost all servers and
very little potential for optimization (see Section 5.4.1). On instance i38 for
example, even CPLEX (10%) finishes in under one second. On the other
hand, VNS, cnove has the longest runtimes of all instances as the local search
lremove has to do the most comparisons here.
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Placement cost coefficient. Finally, we look at the placement cost coef-
ficient [ (instances i28-i31). While most of the runtimes are similar for each
algorithm, we can see two interesting effects here.

First, the impact of the NP-hard Steiner tree problem on CPLEX. The
runtime of CPLEX (10%) is 55 seconds without the placement cost compo-
nent (instance 128, f = 0) and 1,012 seconds for instance i31 with § = 1.
This is a further indication of the complexity of the Steiner tree problem we
already saw on the instances 123-125 with low storage cost coefficients.

Second, with § = 0 the VNS variants with additional fill neighborhood
have longer runtimes than the others. This is most likely due to the charac-
teristics of the fill neighborhood. There is no need to fill holes in the solution
matrix if there are no placement cost. The fill neighborhood tries to fill all
holes it finds on a selected server with a replica from another server in the
same period. All these possibilities are evaluated but without placement cost
there is no benefit. Thus, most of the holes are not filled. While with place-
ment cost coefficient 3 > 0 the fill neighborhood has less work to do over
time, with 0 = 0 each call of the fill neighborhood is similar complex and
time consuming.

Note that generally, in contrast to the runtimes of CPLEX, the runtimes
of all implemented algorithms are mostly robust and very similar over the
different parameter sets. Especially for the SA algorithm this is remarkable
as we do neither impose a time limit nor a hard iteration limit.



Chapter 6

Conclusion and Outlook

In this thesis we addressed the problem of dynamic replica placement in
content delivery networks, consisting of the storage, the placement and the
delivery of the content. We consider three cost types, take account of service
level agreements, consider the multi—period case and therefore incorporate
multicast transfers. We proposed a mixed—binary linear program which incor-
porates all the aspects of the problem and identifies the optimal amount and
location of replicas of a single content over several periods and the transfer
paths for the placement and the delivery. The considered problem is typical
for content delivery networks and emerges in different scopes and sizes at the
service providers.

We developed several new solution approaches for the problem. We proposed
a simulated annealing metaheuristic as well as several variable neighborhood
search variants to tackle the problem. We put effort on the fast and effi-
cient solution evaluation as well as on sophisticated neighborhoods for the
metaheuristics.

To evaluate our metaheuristics we adapted well known heuristics from the
literature to solve our problem. We also refined them to better fit the specifics
of our model. We tested all the algorithms using a factorial ceteris paribus
design with 38 different problem instances across a broad range of values.
We analyzed the runtime and solution quality of the different algorithms as
well as how these characteristics change with the different parameter sets.
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In the experimental study we demonstrated that all our metaheuristics can
solve the problem in a much faster and more reliable manner than CPLEX
as the solution quality of the metaheuristics is more constant with varying
parameters. This in particular holds true as CPLEX fails to solve the MIP—
formulation to optimality for all our problem instances when restricted to
3,600 seconds runtime. In reasonable time CPLEX can only find solutions
with high gaps or no feasible solutions at all. Even within 10 minutes CPLEX
can not constantly provide solutions of good quality.

The simulated annealing performs clearly better than CPLEX. Through-
out the tested problem instances SA provides feasible and mostly good re-
sults within a remarkably short time. In the vast majority of cases our SA
approach finds in less than a minute better solutions than CPLEX with a
runtime of up to 600 seconds. Even when compared to CPLEX (3,600s), SA
finds better solutions in 13% of the instances.

We found that the variable neighborhood search VNS is even superior
than the SA. VNS outperforms all simple heuristics, simulated annealing
and CPLEX with a runtime of up to 600 seconds. The best VNS variant
(VNS,emove) even outperforms CPLEX (3,600s) in 60% of all instances and
has a runtime of 272 seconds on average. If a solution needs to be found
very fast the SA approach is the better choice as SA outperforms the VNS
variants initially. If the solution quality is more important than the runtime
then the VNS variants should be preferred. The choice of one VNS variant
depends mainly on the time available for solving such a problem.

We see several possibilities to carry on the work in the field of replica place-
ment in content delivery networks. First and foremost the model could be
further extended. In our opinion there are three important factors which
would make the model more realistic.

First, the consideration of several content providers or different files from
one content provider, i.e. the multi-object case. This would not change the
formulation of the model very much but it gets a lot more decision variables
and constraints. Second, content updates of the stored files can be included.
Consequently, they bring along new time-—critical multicast transfers. As we
already mentioned, a file that changes on the origin server should be updated
on the replica servers as soon as possible. Third, the transfers and service
levels can be made more realistic by adding bandwidths to the topologies.
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The demand for bandwidth intensive multimedia files, especially videos, is
increasing in the Internet. Therefore, the bandwidth of the connections gets
more and more important. The transfer cost as well as the service levels can
be defined based on the bandwidth. As a result, file sizes are necessary and
capacities on the edges of the network have to be considered.

Last but not least, for a more realistic model unexpected events can be
considered. If, e.g., an important news emerges, the demand for Internet
news sites can increase dramatically. It is a real challenge to handle such
highly stochastic demand. In classical logistics, at least the available capac-
ity, e.g. of a warehouse, can often be used even though it is not sufficient.
By contrast, if the replica placement is not done right almost no client is
served as the servers slow down or do not respond at all under huge load.
The monitoring of the Internet and the fast and correct reaction to stochastic
events is probably one of the most interesting and challenging areas for fur-
ther research in the scope of replica placement in content delivery networks.



Appendix A

Notation
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Sets:

T sequence of periods

V set of all nodes in the network

28 set of replica servers in the network

V. set of clients in the network

Vs(c,q) set of replica servers which can serve client ¢ € V. within the maximum
latency ¢

A set of arcs in the network

Voul(s)  set of nodes i € V in the network with an outbound arc (i,s) € A to server
seV

Vin(s)  set of nodes j € V in the network with an inbound arc (s,j) € A from server
seV

Parameter:

\%4 number of nodes n € V

i weight of arc (i,7) € A (e.g. distance)

de,s distance if a request of client ¢ € V, is served by replica server s € Vs (i.e.
the length of the shortest path)

cL load capacity of replica server s € V, per period

Tet number of requests from client ¢ € V. for the object in period t € 7

q maximum allowed latency due to service level agreements

A fraction of all requests which has to be served within the maximum latency ¢
Qg cost coefficient for the storage of a replica on server s € V per period

I6] cost coefficient for the placement per distance unit

v cost coefficient for the delivery per distance unit

Decision variables:

Tst indicates if server s € V, stores a replica in period t € 7

Ye,s,t fraction of all requests from client ¢ € V, in period ¢t € 7 which is served by
replica server s € V

W ¢ indicates if a replica is newly stored on replica server s € Vg in period t € 7

Ziji number of uses of arc (i,j) € A during the placement in period t € 7

Zijt indicates if arc (i,5) € A is used for the placement in period t € 7

Table A.1: Notation for DRPSL and DRPSL2
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#

max

il
12
13
14
9
16
17
18
19
110
111
112
113

0.9
0.8
0.75
0.7
0.66
0.6
0.5
0.4
0.33
0.3
0.25
0.2
0.1

0.99 2

1,000 0.2 0.01

114
115
116
117

0.75
0.9
0.95

118
119
120
121
122

0.5
0.75

1.5

123
124
125
126
127

10
50
100
500
2,000

128
129
130
131

0.1
0.5

132
133
134
135
136
137
138

Table B.1: Test instances: variations of the base case (instance i5)

0
0.05
0.1
0.5
1
2
5
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