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Abstract 

The presented Access Manager framework provides modular extensibility to a standard database 

management system (DBMS), for bridging the functional gap between a data-independent DBMS 

implementation and the specific requirements of a particular application domain for specialized access 

methods, permitting efficient data retrieval, maintenance, and storage. Therefore it opens the architec-

ture of an operational standard DBMS in selected areas, by introducing a concise yet flexible and 

powerful interface to the DBMS‟s components. 

The DBMS will function as a host system for accommodating application domain-specific plug-ins, 

allowing defined adaptation and customization of the host DBMS by introduction of access modules 

for alternative primary and secondary access methods, supported by custom algorithmic units imple-

menting auxiliary transformations, and a potent data integration layer. This interface particularly 

emphasizes thorough integration of extension modules into the host system‟s intrinsic query optimiza-

tion process, by devising a fully-automated, negotiation-based technique for constructing, transform-

ing, and assessing efficient query evaluation plans containing external modules. 

Both interface and its corresponding protocol are designed for actively facilitating the development of 

extension modules by encouraging modularization and reuse. As a consequence, coding complexity of 

access modules depends closely on the complexity of the new access structure and its distinctiveness 

from existing implementations. We prove the framework‟s ability to provide true extensibility by 

augmenting an existing host DBMS with several additional access methods. To this end, a prototype 

implementation of the Access Manager framework was successfully integrated into the relational 

DBMS Transbase of Transaction Software GmbH. 

Zusammenfassung 

Das vorgestellte Access Manager Framework erlaubt die modulare Erweiterung eines herkömmlichen 

Datenbank Management Systems (DBMS) zur Überwindung der funktionalen Diskrepanz zwischen 

einem datenunabhängigen Datenbanksystem und den besonderen Anforderungen eines bestimmten 

Anwendungsgebiets. Dafür sollen speziell zugeschnittene Zugriffsmethoden für effiziente Datenhal-

tung, Suche und Manipulation hinzugefügt werden. Zu diesem Zweck wird die Architektur eines voll 

einsatzfähigen DBMSs an ausgewählten Stellen über eine kompakte, flexible und zugleich mächtige 

Schnittstelle geöffnet, um Zugriff auf interne Komponenten des Systems zu erlauben. 

Das DBMS übernimmt dabei Rolle eines Wirtssystems, das die Implementierung anwendungsspezifi-

scher Plug-ins zur wohldefinierten Erweiterung und Anpassung an eine Datenbank-Applikation 

gestattet. Bei diesen Erweiterungen handelt es sich erstens um alternative primäre oder sekundäre 

Zugriffsmethoden, die durch maßgeschneiderte Algorithmen für relationale Transformationen ergänzt 

werden können und zweitens um eine mächtige Integrationsschicht für den Zugriff auf externe Daten. 

Die Schnittstelle gewährleistet im Besonderen eine grundlegende Integration solcher Erweiterungen in 

den Anfrageoptimierer des Wirtssystems durch einen vollautomatisierten, verhandlungsbasierten 

Prozess für Konstruktion, Transformation und Kostenabschätzung effizienter Anfragepläne, welche 

externe Module beinhalten. 

Sowohl die Schnittstelle als auch das zugehörige Protokoll wurden so entworfen, dass sie den Ent-

wicklungsprozess externer Module durch Modularisierbarkeit und Wiederverwendbarkeit von Kom-

ponenten erleichtern. Dadurch wird eine starke Korrelation zwischen dem Entwicklungsaufwand neuer 

Module und deren Komplexität bzw. deren Unterschied zu existierenden Modulen bewirkt. Als Beleg 

für die Eignung dieses Frameworks für echte Erweiterbarkeit eines bestehenden DBMS wurde ein 

Prototyp in das relationale Datenbanksystem Transbase der Firma Transaction Software GmbH 

integriert.
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CHAPTER 1: INTRODUCTION  1 

1. Introduction 

The demand for modeling structured data coming from a designated application domain 

introduced user-defined data types into standard DBMSs. To satisfy the need for support of 

natural operations on these types, user-defined functions were incorporated. Finally, these 

operations had to be integrated via an extensible indexing framework into the core system‟s 

access methods to supplement efficient storage and retrieval functionality. The features of 

Informix DataBlades, Oracle Data Cartridges, and IBM Extenders, to name the most estab-

lished ones, are widely known throughout the scientific and industrial community, each using 

a different approach to open the host system architecture to a certain degree. Yet these 

frameworks are often found to be either too complex or not flexible enough to cope with the 

wide range of requirements in domain-specific access methods. Moreover, the available 

extensible indexing frameworks are clearly not suitable for rapid development and evaluation 

of research prototypes. As a consequence, implementations of such prototypes usually inte-

grate a loosely coupled DBMS (via its API) or no DBMS at all. Hence, a broad variety of 

prototype implementations for closely related research topics exist, but result comparison or 

transferability remains difficult or impossible. 

The implementation of new access methods for DBMSs, native integration of new data types, 

alternative data models (e.g. unstructured data, XML), or other core extensions usually result 

in major modifications of the DBMS kernel. Namely, the integration of a new index structure 

requires changes in the SQL compiler, query plan optimizer, access path layer, cache manag-

er, lock manager, and the physical storage layer. The latter is also likely to affect logging and 

recovery facilities. 

Such changes of the database core system make it very expensive, time consuming, and error 

prone to implement and test new access methods, user-defined data types, alternative physical 

data layout models, contiguous data flow from streaming data sources, and external storage 

approaches such as heterogeneous federated DBMS, external data files, or data on the net. 

With the existing approaches, comparison of technologies for applicability in a project or for 

scientific purposes is only possible with an isolated environment, usually outside a DBMS. 

For example, Generalized Search Trees (GiST [Hel95]) offer a generic template for tree-based 

index implementation. But there is still no industry-standard DBMS that thoroughly integrates 

this framework. On the other hand, there exist frameworks in commercial DBMSs that sup-

port integration of new access structures. For example, Oracle Data Cartridges provide DBMS 
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extensibility but are restricted to secondary index integration. Custom implementations of 

clustering primary indexes cannot be integrated with this module. Open source DBMSs can 

be modified in the source code, but they do not explicitly provide interfaces for integrating 

new structures without modifying major parts of the kernel code in an error prone venture. 

We will introduce the Access Manager specification as a new programming interface to 

several layers of a DBMS kernel. It enables a programmer to add new data structures and 

auxiliary operators to a DBMS with a minimum of effort. Therefore, it is very suitable for 

rapid development of new functionality and allows comparison against other techniques, 

having all features of a complete DBMS at hand for representative benchmarking. A proto-

type of the Access Manager interface was implemented into Transbase [Tra10], a fully-

fledged relational DBMS with a highly modularized architecture. 

1.1. Objective 

An extensible indexing architecture is a powerful framework that is adaptable to domain-

specific requirements of a DBMS application. Its basic purpose is to support natural opera-

tions on domain-specific data for efficient storage and retrieval. Examples for such domain-

specific data are multimedia objects, documents (structured and unstructured), temporal and 

spatial data, scientific and engineering data. Date storage in a primary access path and addi-

tional indexes as secondary access paths are both available. The query plan optimizer auto-

nomously chooses the best available access path for a query, so access path selection remains 

completely transparent to the user (e.g. in SQL). Additionally, the framework supports and 

enforces all necessary operations on all involved access structures throughout all DBMS 

tasks. That is, all modifications (insert/ update/ delete) on primary and secondary access paths 

are carried out consistently within their transactional context. Data integrity is enforced 

independently, and data as well as system security is provided through logging and recovery 

facilities. Access privileges of database users are maintained in a centralized data dictionary. 

Multiple operations of concurrent users are processed in parallel, offering locking technology 

and concurrency control on a reasonably fine granular basis. Intra-query parallelism is availa-

ble for performance improvements. Access methods have direct influence on performance 

characteristics of the system through their ability of holding required pages in the DBMS data 

cache. The implementation itself allows for rapid prototyping and provides sophisticated 

testing and debugging facilities. It encourages common software engineering concepts, 

namely modularization and reuse. As a consequence, coding complexity depends closely on 

the complexity of the new access structure and its distinctiveness from existing implementa-



CHAPTER 1: INTRODUCTION  3 

tions. Built-in access methods of the database system (i.e. B-tree [Bay72], UB-tree [Bay96], 

and Full-text) are available for reuse as modular components in a resource pool. Moreover, 

every implementation of a new extension also becomes immediately available as a reusable 

component in this resource pool. Additionally, the host framework provides a rich set of 

utility functionality for common tasks. System stability and data security is not to be com-

promised. Portability of existing access methods to other DBMSs implementing the Access 

Manager framework is desirable. The most important task of all is to devise a compact yet 

adaptive interface for integrating data access structures into the host DBMS that is capable of 

exploiting access method characteristics thoroughly and efficiently. Finally, the framework 

should provide enough flexibility for incorporating future requirements. 

1.2. Structure 

This thesis is divided into two major parts. The first part will provide the theoretical basis for 

an extensible relational query evaluation model by deriving its essential principles from 

Relational Algebra in Chapter 2: Theory. This chapter provides an abstract conception of 

relational algorithms consisting of classical relational operators and an instrumentation to 

handle these constructs. Finally, we will establish the main features of the scan operator, an 

abstract relational operator that provides all functionality required to encapsulate an arbitrary 

access method. After outlining the theoretical scope of this work, Chapter 3: Related Work 

will survey other existing approaches towards extending database systems and compare them 

to our own approach. The second part, beginning with Chapter 4: Architecture, will provide 

in-depth descriptions of the proposed framework and its operation inside the host DBMS 

Transbase. This will be followed by a detailed description of various existing implementations 

based on the Access Manager concept in Chapter 5: Proof of Concept. The functionality of 

the prototypes will be additionally endorsed by examination and comparison of important 

performance aspects. The final chapter will summarize the results of this thesis and indicate 

possible directions of future work. 
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2. Theory  

In 1969, the original concept of relational database systems was established by introduction of 

the relational model by E. F. Codd [Cod70]. The motivation of his contribution was to protect 

database users and database application programs from dealing with internal data representa-

tions of the DBMS. At that time, storage structures were an integral part of the data and in-

depth understanding of these structures was required for data retrieval and navigation. Codd‟s 

ultimate goal was to provide an abstraction of data representation that permits a database user 

to exploit relational data by knowing no more than names and semantics of relations and 

attributes. He summarized his mathematical approach in the formulation of the relational 

algebra (RA). Although never fully implemented in its original claim, this algebra established 

itself as the common basis of relational DBMSs. In the following years, SQL (Structured 

Query Language) evolved as equivalent, declarative counterpart to the procedural RA, 

providing a comprehensive, descriptive approach for relational database queries. In this 

process the strict set-theoretical features of RA were slightly softened for increased usability 

and improved performance characteristics. Eventually, SQL has become the standard rela-

tional query language. SQL and the Extended Relational Algebra (ERA) on which it is based, 

are the axiomatic features that define today‟s relational database concept. 

On this foundation of the relational world, we will construct a novel theoretical model for 

query evaluation. Our model is extensible as it applies to arbitrary external relational algo-

rithms. It will allow for these algorithms to be plugged into a host DBMS where they are 

employed automatically and efficiently. Algorithms can be added, refined, replaced, or 

removed at any time without affecting operability or consistency of the overall system. 

Our focus is to use such algorithms for implementing supplementary data access paths. The 

goal is to provide more flexibility to commodity RDBMS technology by enabling it to cope 

with application-specific demands for data storage and retrieval. For this, we utilize the 

primary purpose of RA, its ability to provide an abstraction from internal data representations. 

But in this case the abstraction shall relieve the DBMS itself from any dispensable details of 

particular access methods, providing a generalized model for an extensible query evaluation 

engine based on common ERA, but capable of incorporating arbitrary user-defined access 

methods and auxiliary relational operators. 
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2.1. Relational Algebra 

ERA terms are generated by a RDBMS when an SQL query, formulated by a user, is trans-

lated (compiled) for evaluation. Compilation exploits the equivalence of SQL and ERA for 

making the transition from the high-level descriptive query language to a first procedural 

representation in ERA that is iteratively computable by an abstract query evaluation engine. 

ERA terms represent an intermediate level query language where global algorithmic consider-

ations are involved. This again is the abstract equivalent of a fully-fledged Query Evaluation 

Plan (QEP) where every detail of query evaluation is decided. We start by briefly discussing 

the important characteristics of Codd‟s original RA and some of the differences between RA 

and ERA. 

RA operates on relations. If         are sets, then a relation   of degree   is a finite subset 

of the Cartesian product           .   consists of n-tuples of the form             

such that      .    is called the domain of attribute    and    is the domain of  . The 

cardinality     is defined as the number of elements in  . Let A be the set of all possible finite 

relations over an arbitrary but finite set of domains. We define:  

Definition.1:       is a RA term. 

The primitive operators of RA are projection ( ), selection ( ), rename ( ), Cartesian product 

( ), set union ( ), and set difference ( ). All other RA operators can be constructed from this 

set of primitive operators. RA operations are closed on A in the sense that every n-ary RA 

operator   operates on     relations to yield one relation, or formally:  

Definition.2:          is a RA term. 

Definitions 1 and 2 allow the recursive definition of all well-formed RA terms. It also follows 

directly that operators         with     and  

       
     with       and      

can be composed. For their composition holds the following 

Corollary.1:               
              is a RA term. 

Composition of RA operators also introduces the concept of intermediate results, i.e. the 

outcome of operator     
     before   is applied.  
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The alert reader will have noticed that we permit n-ary operators, while classic RA considers 

only unary and binary operators. Our conception of a generic n-ary relational operator is 

capable of accepting a variable number of n 2 input relations. This guarantees that any n-ary 

operation   can always be decomposed into a cascade of binary   operations. Hence, the 

addition of n-ary operations to classical RA does not compromise RA universality in any way. 

We henceforth adopt generic n-way operations for our purposes, as we expect them to offer 

additional performance relevant opportunities through their increased compactness. For such 

generic n-ary operators we define: 

Definition.3: Generic n-ary Operator:      : 

       with n   2  and      
     with       and     : 

                               

For the sake of a more intuitive presentation, RA terms are often depicted in tree representa-

tion. In this representation, all leaves are input relations (following Definition.1) and all 

internal nodes of the tree are operators (Definition.2). The precedence of operators corres-

ponds to the parent-child relationships in the operator tree. 

Figure.1 Two equivalent sample QEPs. Both plans apply the unary operators    after accessing relations 

        . On the left, these intermediate results are joined using the generic n-way operator  , operating 

on three input streams, while on the right side the same operation is conducted using a cascade of binary   

operations. 

In addition to composition, there exists a set of transformation rules for converting a given 

RA term into an equivalent RA term. The query plan optimizer of a DBMS applies such 

transformations in its effort to derive the most efficient plan for a query. The details of these 

transformations are beyond the scope of this work. We exemplary name two well-known 

techniques: projection pushdown and selection pushdown. The goal of these transformations 

is to reduce the amount of data to be processed as early as possible, i.e. as low as possible in 

the QEP tree. They translate figuratively into the tree representation of query plans where 

these operators are pushed towards the leaf nodes. Besides this, the optimizer is in charge of 

selecting access paths, i.e. deciding whether to use the primary access path or one or more of 
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the secondary indexes during evaluation. Finally, the optimizer chooses the appropriate 

evaluation algorithms, e.g. whether to process a join using the Sort-Merge, Nested-Loop or 

Hash-Join algorithm. After optimization is completed, the final QEP is ready for evaluation 

by the DBMS query processor. 

2.1.1. Relations 

Relations are the leaf nodes of operator trees. Similar to all other RA operators, relations have 

an equivalent representation in SQL. While the SQL subclass DML (data manipulation 

language) only references them by name, they are defined in DDL (data definition language). 

Data definition comprises all information on a particular relation that is visible to the DBMS. 

Properties appointed at data definition time are stored in the data dictionary of the DBMS and 

are re-evaluated when a relation is referenced from an SQL DML query. The data dictionary 

is the query optimizer‟s primary guidance for accessing a relation. It offers the possibilities to 

resolve relation names, column names, and column domains (data types). This information is 

sufficient for accessing relations in the way assigned by classical RA, namely by linearly 

traversing the relation and presenting all of its unaltered tuples to the parent operator for 

further processing. 

DDL also provides various mechanisms for expressing additional interesting properties of 

relations such as key constraints (primary key), unique constraints (key candidates), reference 

and check constraints. Although these constraints often have no obvious impact on the way 

the DBMS plans its accesses to relations, the DBMSs usually maintain various auxiliary 

storage structures to efficiently enforce such constraints. These structures are, for example, 

implemented as B-trees allowing rapid duplicate recognition for supporting UNIQUE con-

straints. As these auxiliary structures are registered in the data dictionary, they can also be 

exploited by the DBMS optimizer for other purposes, i.e. as additional access path to a rela-

tion. As these mechanisms are concealed from the SQL user, they are not preferential for 

access path modeling. Still we have to note that access paths are possibly involved as a side-

effect of constraint definition. 

This leaves the definition of secondary indexes in DDL as the only true measure provided to 

SQL users for modeling access paths. With these, it is possible to define in a comprehensible 

way which attributes of a relation are to be stored redundantly in a secondary access path. 

Many DBMSs provide different index types (e.g. B-trees, multidimensional/ spatial indexes, 

bitmaps, etc.) allowing modeling access paths tailored to a particular purpose. But the differ-
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ent DBMSs‟ DDL dialects tend to be cluttered with all sorts of physical storage parameters, 

comprising access path independent information, such as data partitioning and data allocation 

directives, but also access path specific information. All this information has to be reflected 

by the data dictionary, so the optimizer can put it to good use. This complex mixture of 

information makes modeling an efficient data dictionary a challenging problem, even for a 

limited number of access path types. Clearly, this is not a feasible approach for a DBMS with 

user-defined access structures. We therefore propose to separate access path specific informa-

tion from general access path independent information. General information remains publicly 

available in the data dictionary, while the access path relevant data becomes private to a 

particular access path implementation, i.e. it is not visible to the DBMS optimizer. Only the 

type of an access path must be stored in the data dictionary as a discriminator. 

This abstraction offers the possibility of a well-structured data dictionary and greatly relieves 

the optimizer from having to deal with different access path types. On the other hand, it 

introduces the requirement for a new approach to efficiently exploit access paths with proper-

ties that are not described in the data dictionary and hence are unknown to the query optimiz-

er. In the following, we will develop our solution to this problem by examining the interac-

tions of relations with other relational operators. 

2.1.2. Operators 

Without a formal definition, we now establish our notation of RA operators, assuming that the 

reader is familiar with these concepts. Let R be an n-ary relation with attributes            . 

The RA unary operators are: 

(1) Projection:         
    where                         . Projection allows permuta-

tion and omission of attributes in  . 

(2) Selection:       where   is a propositional function consisting of atoms of the form 

      or     .   is a binary comparison operation that is compatible with the attributes 

      and a constant value  . The atoms are combined using logical operators      . The 

selection       extracts all tuples in   for which   holds. 

For the sake of completeness we must also mention the rename operator:            . This 

construct is supplied for substitution of names of attributes and relations, preventing name 

collision and ambiguity when joining relations (in particular for self-joins). After SQL compi-

lation is completed and the RA operator tree was constructed, all ambiguity is eliminated and 
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the original names become irrelevant. Moreover, in our notion, RA operators access attributes 

of their input n-tuples by referring to the ordinal position of that attribute rather than to its 

name. Consequently, the rename operator can be neglected in the following. 

The RA set operators are the basic n-ary set operations as known from set theory. Namely 

they are: 

(3) Set Union:   
     

  
 
  

(4) Set Difference:   
     

  
 
  

(5) Cartesian product:    
     

     

Codd [Cod70] proved that this collection of operators is sufficient to achieve an expressive-

ness that he defined as relational completeness, i.e. RA‟s expressive power is equivalent to 

the domain-independent relational calculus, and thus first-order logic. Although relational 

completeness clearly does not imply that its expressiveness is sufficient to formulate every 

„interesting‟ database query, Codd identified it to be an important milestone towards this 

target. 

In order to add more functionality, RA operators were modified and additional operators were 

introduced to form the Extended RA (ERA), which is equivalent to the expressiveness of 

SQL, the de-facto standard of today‟s relational DBMSs. In contrast to the original RA, ERA 

operates on multi-sets (bags) instead of strict sets. This implies that ERA operators, unlike 

their RA counterparts, do not implicitly eliminate duplicates after every operation. The 

functional reason of this discrepancy between RA and ERA is that SQL offers explicit control 

over duplicates and their elimination and ERA must reflect this. The other aspect is that 

duplicate elimination is an expensive operation, because sorting is an algorithmic prerequisite 

for an efficient implementation. Thus, it may be cheaper to apply several relational operations 

before eliminating duplicates. In this work, when talking about relational operators, we 

always refer to ERA operators without implicit duplicate elimination for all previously intro-

duced operators.  

To preserve an expressiveness equivalent to RA, ERA introduces a new unary operator: 

(6) Distinction (Bag-to-Set Operator):      
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It is clear that ERA operators with their multi-set semantic combined with a subsequent 

distinction operator are equivalent to the RA operators. As an immediate consequence, the 

algebra formed by ERA operators (1) - (6) obviously satisfies the constraints of relational 

completeness. 

RA treats relations as unordered sets, i.e. the ordering of sets is not significant. As SQL offers 

explicit control over the ordering of sets, we also introduce sorting as unary operator: 

(7) Sort:         
    where                          .    

 indicates ascending sort 

order on attribute   , while        denotes descending order. 

The sort operator can produce any lexicographical order on the attributes of an input set, as 

required for equivalence to the SQL ORDER BY expression. The addition of the sort operator 

has no relevance for relational completeness, but it is crucial for equivalence of ERA and 

SQL. Moreover, the order of intermediate results is significant for the applicability of effi-

cient algorithms when it comes to the implementation of relational operators, a topic to be 

addressed later in greater detail. 

With these seven operators, the set of ERA operators is certainly not complete. There are still 

numerous SQL constructs left that cannot be expressed with this algebra, e.g. arithmetic 

operators, grouping, and aggregation are fundamental concepts of SQL. As a matter of fact, a 

general ERA cannot be completed, as SQL is permanently evolving. Even SQL standardiza-

tion cannot keep pace with SQL extensions of the „three large‟ commercial RDBMSs and 

often selects one of three solutions to become the SQL standard. This implies also that in 

addition to standard SQL there exist at least two more SQL dialects (with subtly distinctive 

ERA operator sets) of practical relevance.  

For the moment, we will therefore assess that our subset of seven ERA operators achieves 

relational completeness, i.e. the algebra defined by these operators is sufficiently comprehen-

sive for expressing a relevant subset of SQL functionality. Therefore, we define a name for 

this set: 

Definition.4: {  ,  ,  ,  ,  ,  ,   } are basic ERA operators. 

Our next step is to combine these operators to form expressions of higher complexity. 



12  2.2 QUERY PLANNING 

2.1.3. Composition 

With the first six primitive ERA operators {  ,  ,  ,  ,  ,   } it is possible to construct the 

set of remaining RA operators Intersection ( ), Natural Join ( ), Theta Join (  ), Semi Join 

( ), Antijoin ( ), (Full) Outer Joins (⟖, ⟗), Division ( ), etc. These compound operators do 

not add expressiveness to ERA. But they are highly valuable in terms of algorithmic complex-

ity, because often more efficient implementations exist for such compound operators than the 

mere combination of primitive operators allows. Therefore RDBMSs implement both primi-

tive and compound operators as building blocks for evaluation of relational queries. Addition-

ally a class of complex ERA operators exists, which cannot be constructed using primitive 

operators. Complex ERA operators bridge the functional gap between the expressiveness of 

pure RA and rich SQL concepts, for example arithmetic operators, grouping, and aggrega-

tion. 

2.2. Query Planning 

In the phase of query planning, the DBMS optimizer is aiming to deduce the optimal se-

quence of ERA transformations for answering a query within the present system parameters. 

Usually the goal is minimization of calculation time or maximization of system throughput by 

maximizing utilization of limited resources such as CPUs, memory and I/Os. 

Besides arranging the sequence of transformations, the optimizer often has several alternative 

algorithms available for representing one particular ERA operator, e.g. Sort-Merge, Nested-

Loop and Hash-Joins are well-known examples for join algorithms. The optimizer also 

decides which particular algorithm to apply under the given preconditions of a query plan.  

2.2.1. Optimization 

All RDBMSs are typically equipped with cost-based (as originally proposed in [Sel79]) or 

rule-based query plan optimizers. Without going into detail, all optimization steps are con-

ducted by gradually constructing an operator tree from ERA terms and subsequently refining 

it by substituting term partitions with equivalent terms. The goal of these transformations is to 

find the optimal sequence of relational operations that were specified in the declarative SQL 

query and employment of efficient algorithms for inexpensive query evaluation. An algorithm 

is one particular implementation of one ERA term. The optimizer can therefore replace a term 

using one of several matching algorithms. For example, an ERA join operator can be imple-

mented by the sort-merge or nested-loop join algorithms. 
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For supporting ERA transformations and for justification of algorithmic decisions, the DBMS 

optimizer must possess at least two minimal instruments for term comparison. 

(1) Qualitative Equivalence allows recognition that the ERA term   and an algorithm 

    implementing the class of equivalent ERA terms    are interchangeable. 

            

(2) Quantitative Efficiency allows comparison of costs for evaluating two equivalent 

algorithms      and      representing different implementations of the class ERA 

terms   , and choosing the more efficient one. 

                                              

The introduction of external algorithms into a given DBMS must therefore provide concepts 

for mapping external algorithms that are unknown to the DBMS to equivalent ERA terms 

known to the DBMS. With these instruments, the DBMS optimizer is enabled to conduct its 

work as usual, even when handling new algorithms implementing arbitrary ERA expressions. 

This is done without knowledge of the actual implementation of the algorithm, only by 

applying ERA substitution rules. This approach eliminates the need for any modifications of 

the optimizer when injecting novel algorithmic implementations into an existing system. 

2.2.2. Costs 

In essence, query planning is an iterative process of constructing several equivalent query 

plans. Then cost estimation is applied and the plans are ranked relative to their costs. Finally 

the least expensive plan is chosen for the next iteration and ultimately for query execution. 

Cost estimation is therefore the unquestioned key criterion to modern query plan optimiza-

tion. 

Query execution can induce a multitude of cost factors. An abstract conception of such costs 

is the occupation of limited resources during query execution. These resources range from 

computational costs on one or more CPUs, I/O costs, and memory consumption on the several 

levels of memory hierarchy. The impact of these costs is weighted according to a cost model 

implemented by the DBMS. The actual costs for occupying a limited resource may also vary 

depending on volatile conditions, like current system load, and on fixed configuration settings 

of the DBMS, such as preferred optimizations towards maximum throughput or minimal 

query latency. 
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Among the most important properties of a useful cost estimation facility are low computa-

tional complexity and high accuracy. Cost estimation is performed for a potentially high 

number of plan candidates. Therefore cost estimation‟s own costs have to be relatively low in 

comparison to the costs of actually executing a query. The costs of smaller plan fragments are 

used as basis for calculating the costs of more complex plans, thus even small relative errors 

may multiply and eventually cause substantially wrong estimations. 

Cost estimation is usually based on statistical information that is maintained on relations and 

indexes. Such statistics typically comprise characteristics such as size of relations, e.g. total 

number of pages, and information on data distribution, such as cardinality, number of distinct 

values, minimum, maximum, etc. Additionally they provide selectivity estimations for predi-

cates applied to relations or indexes, allowing estimation of a selection‟s cardinality. These 

cardinalities are then propagated bottom-up though the query plan. Cardinality estimation is 

useful in join optimization, when searching for a join-sequence with minimal intermediate 

result cardinalities. But its foremost purpose is assessment of a relation operator‟s CPU, 

memory, and I/O related costs, which are deducible from the operator‟s estimated input 

cardinality. 

2.3. Interoperability 

Until now, we used the concept of ERA term equivalence in optimization for enabling term 

substitution and term implementation with relational algorithms. An algorithm can be applied 

if and only if it replaces an ERA term without affecting the soundness of the complete opera-

tor tree, i.e. the correctness of the result must be preserved. In a data-centered approach, this 

means that alternative algorithms must yield equivalent output from identical input. In the 

following, we will elaborate on equivalence and its impact on interoperability of algorithmic 

implementations. 

2.3.1. Equivalence 

For strict RA, i.e. if we are operating on sets, the equivalence of two expressions is guaran-

teed if their output sets   and   are set equivalent: 

Set Equivalence:                                

Equivalence of input and output sets is a necessary precondition for interoperability. In fact it 

is also a sufficient condition on the abstraction level of strict RA with its implicit duplicate 
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elimination. In ERA however, the intermediate results might be multi-sets       , where 

          is a multiplicity function that denotes the number of occurrences of any element 

of the set   in       . Hence set equivalence has to be extended to cover bag equivalence 

for these cases: 

Bag Equivalence:                  

                                  

A weaker, alternative definition of bag equivalence as                      is not 

sufficient for our purposes, since it ignores the quantity of duplicates, leading to a notion of 

equivalence that does not match with the semantics of ERA and SQL. The relevance of set or 

bag equivalence obviously depends on the existence of duplicates in intermediate results. 

The three primitive unary ERA operators {  ,  ,   } are able to establish set-equivalence for 

different inputs to a certain degree. They allow an algorithm‟s input set to be projected, pre-

filtered, and purged of duplicates in order to bring it into a suitable form for applying that 

particular algorithm. On the other hand, these operations may be used for projection, post-

filtering, and duplicate elimination on the algorithm‟s output, if this is required for meeting 

equivalence and the algorithm does not meet these requirements. Likewise bag-equivalence 

can be established by employing the two primitive RA operators {  ,   }. Finally, the opera-

tor   alone serves as universal bag-to-set operator. 

2.3.2. Compatibility 

For allowing the composition of operations             ,   and    must meet certain 

requirements. In a data-centered approach this means that the output relations of    must be 

an adequate input for  . If, for example, n input relations are participating in an n-way union 

operation, they must be domain compatible. 

Domain compatibility:          are domain compatible, iff           
    

 

From all primitive RA operators, domain compatibility, also often called union-compatibility, 

is explicitly required only for set-union   and set-difference  . But the composition of com-

plex relational operators is responsible that operators, like intersection, inherit this require-

ment from its inherent primitive operations. 

The domain concept of attributes entails the provision of data types for the attributes of 

relations. In RA and SQL, the comparisons of attributes of different data types are conducted 
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using highly generic comparison operators. Technically this is realized using type adaptation 

mechanisms, based on SQL‟s well-defined type hierarchy, to convert the arguments into 

compatible types. Domain compatibility is satisfied if adequate type adaptations are available. 

It is a prerequisite for comparison routines as used explicitly in selections, but also for impli-

cit tuple comparison in many operators, e.g. union, difference and composed operators. Type 

adaptations are provided as a service by the DBMS, as the optimizer will provide all neces-

sary type adaptations and thereby guarantees that operators always work with compatible 

data. 

For our purposes, we will extend compatibility from mere domain compatibility to the more 

algorithmic notion of representation compatibility. Data representation is an issue whenever 

data is exchanged between operators. Strict RA only requires that data has to be exchanged in 

form of sets, without defining precisely how this is conducted. For our definition, we extend 

domain compatibility to comprise not only the arity but also a partitioning of exchanged sets, 

i.e. a set can be transferred as a whole, as in RA, or iteratively as horizontal partitions of the 

original set, either as subsets or tuple-wise. Another approach is vertical partitioning of data, 

i.e. transfer attribute by attribute, and finally combination of horizontal and vertical partition-

ing.  

We further extend the notion of compatibility to allow arbitrary representations of data. 

Representation describes how the data to be exchanged is physically modeled and how the 

exchange is technically conducted. Representation ranges over a wide area of passing data by 

value, by reference, in structures (e.g. tuples), in buffers, compressed etc., allowing the use of 

the best representation for a particular purpose. The functional prerequisites of representation 

compatibility are achieved when two operators agree on one common data exchange format, 

while the ultimate choice of representation is a cost-based decision made by the query opti-

mizer. With several operators supporting one particular representation, it is possible to com-

pose a family of related algorithms based on that representation, allowing rapid data ex-

change, tailored to a particular purpose. Later we will discuss one use-case where bitmap 

indexes, unions and intersection, all based on the bitmap representation, form the components 

of a tightly coupled, highly efficient query evaluation system. For assuring interoperability 

under all circumstances, we also presume the existence of a standard data representation that 

has to be supported by all operators. For the moment, we only define transformation of data 

representation formally as a virtual ERA operator.  
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Representation:       denotes the transformation of the input   from any representa-

tion to a non-standard representation  .      indicates transformation from any repre-

sentation to standard data representation. 

Representation is a virtual operator in the sense that it does not induce any relational trans-

formation, thus it is not a relational operator as such, and it has no analogon in SQL. It serves 

only as a marker during query optimization to illustrate where and how the representation of 

the data stream changes. Representation will change as a side-effect when an algorithm 

implementing a relational operator is applied. More details on data representation will be 

defined later in the course of applying algorithms. 

2.3.3. Data Flow 

In strict RA, all „children‟ of a relational operator have to be completely evaluated, yielding 

their complete result set, before the parent may begin processing. As a consequence, the 

DBMS would have to store intermediate results while they are processed by the subsequent 

operator. This is expensive if large amounts of data are involved. In the procedural perspec-

tive of query evaluation, input sets are not necessarily processed „as a whole‟, as proposed by 

the relational model, they can also be processed in partitions, mostly one tuple at a time. 

A common conception of query evaluation is the so-called Iterator Model, which describes 

this procedure abstractly and independent from the actual implementation. Its flow of control 

is a top-down recursion through the operator tree. First, the root operator is called, whose first 

task is to acquire input data for processing. Therefore it calls one of its children - which one is 

called depends on the operator‟s internal implementation. This call for input data propagates 

depth-first until it finally reaches a relation at a QEP leaf. This relation then produces its first 

tuple and returns it to its caller. Hence, data begins to „flow‟ from the leaf nodes of the opera-

tor tree towards the root. Every operator acquires just enough input data to produce the first 

output tuple. As a consequence, we can classify ERA operators into two general groups: 

Blocking Operators process all input tuples before any output tuple is generated. 

Streaming Operators derive output before having seen the complete input. 

This classification is very coarse, since it equalizes strict tuplewise streaming with operations 

that block for several tuples, e.g. grouping/ aggregations. The blocking property is depending 

on the actual implementation of an operator, not only on its function. Functionally streaming 

and blocking operators are equivalent. From the performance perspective however, streaming 
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is generally to be favored over blocking, because of potentially high requirements for tempor-

al storage. Also query plans consisting only of streaming operators have more attractive 

performance characteristics, as the first result tuple can be delivered before the complete 

result set is calculated. Thus, the time to first results is often significantly shorter and the 

calculation time is (usually) evenly distributed over the result set while a blocking plan 

apparently uses all calculation time for the first result tuple and the remaining tuples are 

instantly available. 

This query evaluation technique resembles the Iterator Model, where every operator exposes 

only one single interface routine, a next() method that is visible only to its parent. The parent 

repeatedly calls this method, causing the operator to iterate over its input, yielding its output 

successively as one tuple at a time. After the complete result is evaluated, the operator even-

tually terminates by returning the END-OF-DATA marker. Termination happens at leaf nodes 

if the input relation is exhausted. Internal nodes terminate if all input streams are exhausted 

(especially blocking nodes, like sort operations), or when a streaming operator cancels evalua-

tion by announcing premature END-OF-DATA to its parent, e.g. existence quantification. 

2.3.4. Sort Order 

The transition to procedural operation and the Iterator Model exhibits new aspects of our 

operators. In contrast to the relational model, relations and intermediate multi-sets are 

processed tuplewise. This induces the concepts of set and multi-set traversal into ERA. Set 

traversal is formally equivalent to a linearization of the set along a binary relation    , i.e. 

  comes before  . In other words, iteratively traversing a set   establishes a strict total order. 

We describe such a linearization formally as  

 Strict total order:                     

For base relations in a DBMS this order is usually, but not necessarily, predetermined by their 

storage order (clustering). For intermediate results, the output order is depending on the 

internal implementation of the particular operator that generates the output.  

Obviously, the output order of an operator is at the same time the input order of its parent. 

The focus now lies on how to exploit such orders. The number of relevant orderings in a QEP 

is limited by the sort operator  , as this is the prime operator for order generation. Conse-

quently, if one particular operator requires a certain input order, it must be an order that can be 

generated by  , otherwise the operator is not generally applicable. Thus we have to distinguish 
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between the general total order that is established through bag linearization and the set of 

orderings that can be generally exploited in QEPs. For the latter we will use the term sorted-

ness. We say a bag is sorted, if its traversal corresponds to a lexicographical order on its 

attributes, i.e. its order is equivalent to one established by  . Exploitable sort orders in QEPs 

are always total orders, but in the general case they are non-strict, because   is not stringently 

covering all attributes and because of the existence of duplicates in bags. Nevertheless, many 

algorithms are either relying on non-strict input orders, or they are capable to benefit from 

such orders. 

 Sortedness:                       

 Strict sortedness:                       

Sortedness of tuples is to be distinguished from equality of duplicates, as the sort criterion of 

  may refer only to a subset of attributes, while equality always refers to the complete tuple. 

                      but                        

In summary the sortedness properties for any operator   inside a QEP are classified as: 

Sort Order Establishing:                                

Sort Order Preserving:                          

Sort Order Homomorphism:             
           

     

Sort Order Disrupting:                           

Sort order is established exclusively by the primitive sort operator  , but it is possible to 

construct compound operators including sort operations and therefore inheriting the order 

establishing property. Many streaming operators are also order preserving, if they do not alter 

any order relevant fields like for example     and  . One example for a sort order homomor-

phism is a projection    that removes some order-relevant attributes, while preserving the 

attribute of highest lexicographical significance. Sort order disruption can be provoked by 

applying a non-monotonic function to at least one of the sort relevant fields. 

Order preservation is important when sortedness is not exploited by the immediate parent 

operator, but propagated to one of its ancestors to be used there. One can also imagine several 

consecutive order preserving operators that are all exploiting a given sort order. 
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Order disruption means that the output order does not satisfy any lexicographical sort criteria. 

One particular operator (including base relations) may be capable of accepting or producing 

one of several different sort orders or of preserving or disrupting an input order. Such output 

order is controlled by a configuration parameter of the encapsulated algorithm, and this 

parameter will also influence performance characteristics of the operator. Since the internal 

structure and functionality of the algorithm is unknown to the DBMS optimizer, it will em-

ploy a cost-based sort order negotiation protocol for determining the optimal configuration. 

2.4. Substitution 

Relational algorithms replace an equivalent ERA term in a query plan and thereby implement 

the replaced operations in one encapsulated, indivisible algorithmic unit. Similarly to one 

single query having many different equivalent algebraic representations, each of these alge-

braic representations may have many different algorithmic implementations. These imple-

mentations originate from a pool of available algorithmic building blocks provided by the 

DBMS. Finding the single optimal query plan for a given query in this huge search space of 

combinatory possibilities makes query optimization a challenging problem. 

To cope with this complexity, DBMSs provide sophisticated term replacement mechanisms, 

employing rule-based and cost-based iterative decision processes for assembling and trans-

forming alternative query evaluation plans. During this process, alternative plans are repeated-

ly assessed using cost estimation and unpromising candidates are pruned in order to limit the 

search space complexity. Extending such a complex mechanism, in order to deal with arbi-

trary algorithmic units in a consistent way, is a daunting task. Therefore our proposal is to 

circumvent this problem not by extending the substitution mechanism, but rather by making 

the pool of alternative algorithmic building blocks extensible. In doing so, we must provide 

the optimizer with the required leverage to deal with arbitrary external algorithmic units. The 

key to this approach is to sustain and exploit the equivalence between algebraic and algorith-

mic representation of a query plan candidate, and to offer the possibility to switch between 

these two representations as needed. 

In the following, we consider a DBMS as host system that exhibits an extensible pool of 

relational algorithms. All built-in algorithms of the DBMS represent the initial content of this 

pool. We use the limited expressiveness of the hosts system‟s ERA as a basis for defining the 

space of possible ERA expressions that may be implemented by custom algorithmic units. 
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The Access Manager framework allows the addition of such custom algorithmic implementa-

tions to the host system‟s pool of algorithms. As equivalence of different expressions within 

ERA is prevalent, one algorithmic unit corresponds automatically to an equivalence class of 

ERA expressions (cf. Qualitative Equivalence on page 13). The optimizer handles built-in and 

subsequently added algorithms equally, i.e. on a high level of abstraction as pure algebraic 

expressions. During query planning, the optimizer constructs a query plan by combining 

arbitrary expressions from its ERA basis. Intermittently, the optimizer implements parts of the 

plan, by applying appropriate algorithmic replacements for individual ERA sub-expressions, 

using relational algorithms as building blocks from its pool of implementations. All elements 

in that pool correspond to the language that is defined and limited by the host DBMS‟s ERA. 

This is apparently a restriction to the extensibility of the host DBMS, because only algorithms 

can exist in its pool that are expressible in the DBMS‟s own ERA, and hence can be formu-

lated in the DBMS‟s SQL dialect (a consequence of the formerly mentioned equivalence 

between ERA and SQL expressiveness). In other words, the host DBMS‟s algorithmic base is 

fully extensible within the scope of its query language. This is a sensible and comparatively 

small limitation to the extensibility of DBMSs. And since modern DBMSs actually provide 

extensible query languages, in form of user-defined data types, user-defined functions, proce-

dures, aggregates, and suchlike, even this limitation becomes quite insignificant. 

Figure.2 Processing an SQL request in an extensible DBMS. A query formulated in the host DBMS‟s 

query language is compiled into the DBMS‟s internal representation of a query execution plan. This plan is 

constructed from the host DBMS‟s limited set of ERA terms. Subsequent transformations of the initial plan 

strive towards obtaining an equivalent but more efficient QEP. During this process, the optimizer also 

maps ERA terms onto executable algorithmic building-blocks from its pool of available algorithms. This 

pool is extensible and may contain customized algorithms that are specialized for peculiarities of the data-

base‟s application domain. These extensions include relational transformations and data access methods. 

The extensible system provides identical interfaces for optimization and evaluation of built-in and supple-

mentary algorithms. 

Extensible DBMS:

SQL Compiler

Query Optimizer

Query Engine

Buffer Manager

Storage Manager

transform

SQL

Relational 
Algebra (ERA)

Built-in Algorithms Extensions



22  2.4 SUBSTITUTION 

Our approach is based on the principle of an iterative, cost-driven selection of implementa-

tions for ERA sub-expressions, in order to formulate the final query evaluation plan. There-

fore it is not limited to any particular optimization algorithm. We only provide mechanisms to 

support decisions of a query optimizer, dealing with arbitrary algorithms, without any com-

mitment to when and why the optimizer should employ these mechanisms. In the following 

we will exemplarily demonstrate how join-optimization, as the central problem of query 

optimization, can employ arbitrary algorithmic entities for generating optimal plans. 

To this end, we make only minimal assumptions concerning the actual optimization mechan-

isms of the host system. We presume that we deal with the well-known classical cost-driven 

optimizer model [Sel79], based on dynamic programming and early pruning. The optimizer 

iteratively constructs partial query evaluation plans in a bottom-up fashion. In construction 

phase p it tries to construct the optimal plan for joining any p+1 relations. Therefore it is 

extending its plans for joining p relations from the previous iteration by joining one additional 

relation. To reduce the complexity of the search space for the following iteration, the optimiz-

er will then assess the costs of its plans for joining any p+1 relations, in order to identify 

plans with minimal costs. All equivalent but more expensive plans joining the same set of 

p+1 relations are pruned from the search space. Pruning is based on the assumption that for 

finding the optimal plan joining p+1 relations, it suffices to consider only optimal plans for 

joining p relations and extend them with one additional join (principle of optimality). Thus at 

the end of iteration p, the optimizer retains   
   

  partial plans with minimal costs, each 

joining a different set of p+1 relations. Due to the iterative construction of these plans, the 

resulting join graphs are always left-deep trees, as opposed to bushy join trees. Neglecting 

bushy trees is a risk often accepted by optimizers. Only in rare cases a bushy plan represents 

the most efficient plan, since joining the results of two joins is usually a blocking operation, 

incurring complete calculation and expensive temporary storage of intermediate results. Still 

bushy tree joins are interesting for non-standard query evaluation techniques, in particular in 

distributed or parallel query evaluation. 

While the optimizer proceeds, it will also substitute initial algebraic expressions and map 

them to algorithmic entities. Often this concept is extended to comprise the idea of interesting 

orders, which was also introduced in [Sel79] for the System R optimizer. For interesting 

orders, two plans joining the same p relations are only equivalent in the pruning step, if they 

also deliver their results in identical output order. This concept prevents that plans offering an 

interesting order, which could be exploited by subsequent joins or other relational operators, 
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are prematurely purged in favor of less expensive equivalent plans, exhibiting no such ex-

ploitable orders. 

The dualistic conception of query plans as algebraic and algorithmic perspectives opens the 

possibility to switch between these views as necessary. The two views complement each 

other, while each one is dedicated to its own purpose. The algebraic view defines the domain 

of the DBMS optimizer, whose competence is to transform ERA terms and eventually provide 

algorithmic replacements for algebraic terms. This view offers fine-grained interpretation of 

all involved relational operations and thereby allows maximum flexibility in term optimiza-

tions on the limited set of ERA operators. The complete algebraic plan provides an exact 

specification of the query result, whereas its sub-expressions provide exact definitions of 

intermediate results. Thereby this representation is perfectly suitable for statistical estimates 

on such intermediate results, as these statistics represent the crucial input for reliable cost 

estimation. 

The algorithmic view is orthogonal to the algebraic conception. It groups one or more ERA 

sub-expressions of the query plan into an opaque algorithmic entity. For example, the alge-

braic representation of a Cartesian product with a following selection will be combined into 

an algorithmically equivalent nested-loop join. The optimizer may not make any assumptions 

on operations within an algorithmic entity beyond those that are deducible directly from the 

algorithm‟s algebraic counterpart. The most important property of this dualistic conception of 

query plans is the fact that boundaries of algorithmic units always coincide with complete 

algebraic sub-expressions. All statistically relevant properties of an intermediate result ex-

changed between two algorithmic units is specified in detail by its defining algebraic term. 

Thus, it is always possible to switch back to the algebraic view, in order to determine required 

statistical information describing input and output relations of algorithmic units. This brings 

us finally into the position to estimate costs of algorithmic entities based on statistics derived 

from the algebraic query representation. 

We will use the following simple query as running example for illustrating these transforma-

tions. It selects tuples from a relation  , having corresponding tuples in  , such that the join 

predicate           is satisfied. The result is projected to      and finally sorted. 

SELECT S.s1 FROM S, R WHERE S.s1 = R.r1 ORDER BY S.s1 
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Figure.3 Exemplary decision process during DBMS query optimization. For simplicity,      and      

shall be the input relations‟ only attributes. The two plans show the theta-join (equi-join) between S and R 

over join predicate                       } in its primitive algebraic representation. The join 

result is adjusted to contain only the desired result attribute and is finally sorted according to query specifi-

cations. Although the two presented plans are equivalent in ERA representation, as        , the 

query optimizer must momentarily consider both alternatives, because depending on the chosen algorithms, 

available access paths, and effective data distribution, each plan may incur different costs. 

2.4.1. Granularity 

Grouping ERA operators into algebraic sub-expressions (cf. 2.1.3 Composition on page 12), 

which are then implemented by opaque algorithmic entities, raises the issue of granularity: 

what is the appropriate number of ERA operators to be implemented as one algorithmic 

entity? In its initial pool of algorithms, the host DBMS will provide standard implementations 

for every primitive ERA operator. The existence of these implementations ensures that the 

system can always fill the gaps between more bulky algorithmic entities, in order to generate 

completely computable plans. Additionally, one implementation for every complex ERA sub-

expression, which cannot be expressed using primitive ERA, is required for sustaining the 

expressiveness of the system‟s query language. With this, computability of all expressible 

queries is guaranteed by the initial algorithmic instrumentation of the host DBMS. Naturally 

this guarantee holds, even if the algorithmic pool is extended with new algorithms, as it is 

independent from the characteristics and granularity of additional algorithmic entities. Addi-

tionally to these minimum algorithmic requirements, the initial pool contains a substantial 

amount of efficient implementations of compound ERA terms, like specialized join algo-

rithms. These additional algorithms guarantee that the system, even in its initial state, can 

handle most queries with respectable efficiency. Hence, even with the initial pool of algo-

rithms exists at least one, but generally several ways, to generate a computable query plan 

from available algorithmic building blocks. 

(a) (b)
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Figure.4 Relationships between algebraic expressions and algorithmic entities. The system provides a 

fixed set of primitive, compound, and complex ERA expressions. These three sets define the limited ex-

pressiveness of the overall system. They also define the algorithmic capabilities of the initial system, as 

every primitive, compound, and complex ERA term can be mapped to at least one equivalent algorithmic 

entity in the pool of built-in algorithms. The system is extended by adding alternative implementations for 

elements of the initial set of algebraic expressions. Alternatively, terms from the initial ERA can be com-

posed into custom compound expressions, to be implemented as custom algorithms. 

As a general rule, highly integrated algorithms implementing extensive compound ERA terms 

are often also highly efficient. On the other hand, overly complex algorithmic units are 

unlikely to be applied frequently, because the appearance of matching algebraic patterns in 

plans of ad-hoc queries is less probable for extensive expressions. Only if the probability of 

specific complex constructs is increased, maybe because a database application makes recur-

rent use of one particular query pattern, such a sophisticated solution will become interesting. 

In addition, the composition of several complex algorithmic building blocks into one query 

evaluation plan is bound to require interspersing smaller operations. These operations fill the 

remaining gaps between larger building blocks and provide customization of the exchanged 

data. The necessity of such additional small adaptation operators is likely to partially foil the 

efficiency benefit intended by using a small number of complex units. The complexity of 

query optimization is also expected to be influenced by the granularity of algorithms. The 

search space grows quickly with the number of possible alternatives for replacement of a 

particular ERA expression. Therefore, an algorithm implementing an extensive replacement 

patterns is likely to have a multitude of alternatives, each consisting of a patchwork of smaller 

algorithmic units. From this perspective, the ideal algorithmic pool contains elements of 
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similar granularity, such that the optimizer has to consider only a small number of algorithmic 

alternatives for any ERA expression. 

Therefore, small algorithmic units with higher potential of reuse and manageable complexity 

in query optimization are to be preferred over the pushing performance of one single unit to 

the limit. Small algorithms are also easier to maintain in terms of configuration, as an algo-

rithm may expose various „knobs‟ for adjusting it for optimal operation in a given query 

context. In particular interoperability properties, such as representation compatibility, data 

flow and order preservation represent such configuration parameters. An extensive algorith-

mic unit will always make configuration an intricate task, because a higher number of in-

volved relational operators and their potentially complex interactions will certainly hinder 

selective configurability. In such cases, diversity in algorithmic implementations is better 

achieved by providing complete algorithmic alternatives for meeting the required flexibility, 

instead of using configuration. 

For substituting an algebraic block with a valid algorithmic implementation, the query opti-

mizer must be able to match these two entities. Whenever a new algorithm is added to the 

system, it is therefore necessary to provide an expression describing the algorithm‟s algebraic 

equivalent. Typically grammar-like production rules are used in extensible DBMSs for 

accomplishing this sort of mapping. But a commitment to this solution incurs the definition of 

a complete description language for this single purpose. Instead, we capitalize on the already 

mentioned equivalence of the fixed set of SQL functionality provided by the host system and 

the expressiveness of its relational algebra. We therefore propose to use SQL itself as descrip-

tion language for algebraic expressions (cf. Figure.5). The advantage of this solution is that 

SQL is already in common use by all involved parties. The implementer of an algorithm is 

certainly familiar with the SQL provided by the host system, and the host system possessed a 

readily available compiler for translating SQL into an algebraic expression. The latter reveals 

one aspect of particular elegance provided by this approach: both query and replacement 

pattern are translated by the same SQL compiler. Hence, two equivalent algebraic expressions 

originating from compilation are also bound to be highly similar, if not even identical. This 

property helps alleviating the substitution process. 

We outline our proposal of formulating algebraic equivalents in SQL in the following table. 

Depending on the complexity of its defining SQL expression, one algorithm may correspond 

to one single relational operator or to a combination of relational operators. The number of 

input relations in an SQL expression corresponds to the algorithm‟s arity, i.e. one input 
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relation is required, and we allow at most two input relations for modeling binary operators. 

N-ary expressions are equivalent to a cascade of uniform binary patterns. Matching and 

unification with n-ary algorithmic units is conducted by the query optimizer. 

We are using variables for denoting input relations, attribute references, constants, compari-

son operators, expressions, and predicates. With this, an algebraic expression may be highly 

generic, expressing that an algorithm implements a class of similar expressions, but they may 

also be precise for formulating the necessity of exact matches for substitution.  

SELECT * FROM R sequential relational access (full table scan) 

SELECT * FROM R UNION SELECT * FROM S set UNION with duplicate elimination 

SELECT * FROM R 

  UNION ALL 

SELECT * FROM S 

set UNION without duplicate elimination 

SELECT * FROM R,S WHERE R.a=S.b equi-join on one single attribute 

SELECT * FROM R,S WHERE and(R.a = S.a) natural Join 

SELECT R.* FROM R,S 

  WHERE and(R.a cmp R.b) 

semi-join on n-ary conjunction of comparisons 

SELECT * FROM A,B WHERE pred(A.a,B.b) theta-Join on arbitrary n-ary predicate 

SELECT R.a FROM R 

  GROUP BY R.a HAVING pred(R.b) 

grouping 

SELECT R.a,aggr(R.b) FROM R 

  GROUP BY R.a HAVING pred(R.c) 

grouping with aggregation 

Figure.5 Algebraic equivalent of algorithmic entities formulated in SQL. The table shows a rough 

sketch of an SQL-related syntax for defining algebraic replacement patterns. Variables representing 

attribute references (e.g. R.a) shall refer to an arbitrary n-ary projection of actual field references from 

input stream R. Normally an SQL compiler would lookup table and field references in the system catalog, 

for validating the query, determining data-types, and checking privileges, etc. For specification of algebraic 

equivalents using variables, all these checks are disabled. 

The table above demonstrates that substitution of relational accesses, which are the main 

objective of this work, is trivial, since its defining SQL fragment consists only of the input 

relation itself, which is not even a relational operation. Hence, we will dispense with the 

requirement of explicit specification of an algebraic equivalent for accessing relations, and we 

will devise alternative conventions in due time. 

For all non-trivial relational operators, the replacement pattern possesses another important 

functionality. It decomposes the input of an ERA expression into blocks of attribute refer-
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ences, e.g. R.a   R.b   R.c = R in the ‘grouping with aggregation’ example of Figure.5. 

These blocks may also overlap, e.g. we do not explicitly claim          , but in this 

example ERA implicitly demands           for sound grouping. Hence, the replace-

ment pattern defines a fixed number of attribute reference blocks on an input stream, such that 

each block serves for a specific purpose, e.g.     attributes are used for grouping,     for 

aggregation and     for filtering in this example. These blocks are well-ordered through their 

order of appearance in the defining SQL fragment. This allows the definition of projection 

directives for each attribute reference block, such that every attribute from the input stream is 

unambiguously assigned to well-defined positions in one or more blocks, e.g. attributes from 

input stream R are mapped to attribute references                  . In general, the input 

streams of an n-ary relational operator are mapped to input attributes using 

tions       
 , where each input stream         is decomposed into           attribute 

blocks. This mapping will be important for maintaining attribute references when substituting 

algebraic expressions with their algorithmic replacements. We formally define input projec-

tions: 

Definition.5: Input Projection    . We call a projection   
   the i-th input projection of an 

n-ary algorithmic entity, if it decomposes the entities i-th input stream such that all input 

attributes are assigned to at least one of m reference blocks within the algorithmic entity‟s 

algebraic equivalent, i.e.   
              

. The entire projection for all input streams is 

defined as        
   

       
. 

To honor the permanent demand for efficiency so common for DBMSs, we devise an alterna-

tive approach for achieving the efficiency of highly integrated algorithmic entities. We will 

employ representation compatibility as a method to achieve tight coupling of autonomous 

algorithmic entities by allowing them to exchange information in whatever form seems best 

for one particular purpose. The goal of this approach is to overcome potential communication 

bottlenecks between related operators, while conserving the autonomy and general applicabil-

ity of individual algorithms. The requirement of efficient adaptations of data between algo-

rithmic entities will be addressed by devising a standardized protocol for data exchange. 

An algorithm from the DBMS‟s pool of available algorithmic building blocks is known to 

implement an expression  . It may be applied in a QEP as implementation for an ERA ex-
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pression   only if   and   are equivalent. The following Figure.6 shows possible replace-

ments of various granularities based on term equivalence in the exemplary query plan. 

Figure.6 Examples for various granularities of algorithmic replacements. The alternative join se-

quence     is temporarily omitted. Algorithmic entities are depicted as boxes around ERA sub-terms 

consisting of one or more ERA operators. For plan (a) only implementations for primitive ERA terms are 

selected from the initial pool of algorithms. This is the most fine-grained possibility of implementing the 

QEP. Plan (c) represents a specialized join algorithm, capable of directly producing the final result of this 

query in one single step. Plan (b) is a balanced implementation that uses a theta-join algorithm for conduct-

ing the join. The result is then finalized by projection and sorting according to query specifications, using 

two primitive algorithmic replacements. Functionally all three substitutions are equivalent, as they imple-

ment identical ERA expressions. The optimizer may therefore estimate the costs for each alternative and 

eventually choose the least expensive implementation for evaluation. 

Formally we define mappings between algorithmic entities and ERA expressions as 

Definition.6: Algorithmic implementation. We call an algorithmic entity     the 

algorithmic implementation of all representatives of equivalence class       . 

Correspondingly, we define       as the set of algorithmic implementations. 

Definition.7: Algorithmic equivalent. Algorithmic units      are algorithmic equivalents, 

providing different implementations for representatives of equivalence class       . 

We extend our ERA notation, allowing intermixture of algorithmic entities and algebraic 

expressions, in order to describe query plans that have been partially implemented by actual 

algorithmic entities, e.g.        , or        , etc. 

Algorithmic implementation is still rather restrictive, since it requires strict equivalence for 

permitting substitutions. In particular it prevents the application of an algorithm     as re-

placement for some       , even if   shows only a minor deviation from  . With query 

(a) (b) (c)
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optimization being a cost-driven procedure, we must take into consideration that an algorithm 

might be efficient enough to compensate for minor adaptation. For example, let     and     

be two algorithmic candidates to be applied to an input   in replacement for the term  .     

can be applied directly, while     has to be adapted using auxiliary ERA terms   and  , so 

that        . If cost estimation yields                      , then     is clearly 

the better replacement, since it outperforms     in spite of necessary adaptations. A related 

problem occurs when replacing an extensive term        . If it is possible to find one 

single replacement    , its efficiency is potentially high, as it offers tight integration of  ‟s 

complete functionality. On the other hand, the probability of finding an exact match for   

declines as  ‟s extensiveness increases, and the optimizer is forced to apply an adapted 

pattern            . So the query optimizer will often be confronted with efficiency com-

parison of extensive but adapted algorithms             against exact substitutes of the 

form          . 

We soften the algorithmic equivalence claimed above, for allowing a higher degree of toler-

ance when applying algorithmic entities, by introducing the set of standard connectors 

       ERA. Until its formal definition, we consider it a set of unary ERA transformations 

    , capable of elementary adaptations for facilitating implementation of ERA terms.      

will be used for filling the gaps between separate algorithmic implementations. We ensure 

that generated query plans are executable by assuming that the host system is capable of 

providing expedient implementations        for     -expressions. 

Definition.8: Equivalence Configuration. Two algebraic expressions     are in equiva-

lence configuration    , iff equivalence can be achieved by expansion of  , using stan-

dard input connectors    
    and a standard output connector   

   : 

  n-ary        : 

        
        

         
            

          
         

       

As consequence of Definition.6 and Definition.8 follows 

Corollary.2: Equivalent implementation. Supposing that      ERA with    , and 

there exists an algorithmic implementation     and implementations               for 

arbitrary     , then there also exists an equivalent implementation of all representatives 

of  , because 

     
          

         
     



CHAPTER 2: THEORY  31 

    
              

           
      

Equivalence configuration allows far more permissive replacement of algebraic expressions 

than algorithmic equivalence does. It defines a partial order on ERA, as it is reflexive, anti-

symmetric, and transitive. We can effectively exploit the properties of partial orders for 

maximizing the number of substitutions allowed by equivalence configuration. Let     

 
  be 

a partition of ERA, such that for every pair          

 
          . If we choose 

      

 
 such that            

 
 , then     is a suitable algorithmic implementation for 

all elements in     

 
. Under this aspect, equivalence configuration offers remarkable substitu-

tion capabilities, if the elements of       are chosen with careful consideration. 

In the following, we will concentrate on identifying a compact subset of standard connectors 

      in ERA, allowing reasonable adaptations and thereby providing general applicability for 

arbitrary algorithmic units. 

2.4.2. Applicability 

Each algorithm may have several specific functional and performance-relevant requirements 

for its application. These requirements must be met in order to make the algorithm work 

correctly and efficiently. As an example, the merge algorithm in a sort-merge operation 

assumes that its input streams are sorted on the join-relevant attributes. A straightforward 

approach would model such requirements as additional sort operations in the ERA replace-

ment pattern of the sort-merge algorithm, making the sort operation an integral part of the 

algorithm. But this strategy will encourage monolithic algorithmic units and thereby reduce 

their flexibility and applicability. Additionally, implementing sort operations unconditionally 

in the algorithm would also hinder global optimization. The integral sort operation cannot be 

removed afterwards, even if the input of the join already exhibits the desired sort order. 

Therefore, we propose to represent such input requirements as directives that are statically 

attached to each input stream of an algorithmic unit. These directives are invariants that 

confine the optimizer to apply algorithms only to suitable input. In particular, when inserting 

an algorithm possessing input requirements, it lies in the optimizer‟s responsibility to extend 

the plan in such way, that all directives are initially met. In the sort-merge example, the 

optimizer must add the appropriate sort operators for satisfying the directives. These sort 

operations are autonomous operations and may remain subject to continued optimization 

efforts, allowing the optimizer to refine, move, or remove them as appropriate. The original 
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directive however has to remain unaltered and intact for ensuring the plan‟s integrity and 

correctness. 

We informally introduced the set of standard connectors        ERA as a set of unary ERA 

transformations      and we already used connectors as adapters for compensating minor 

discrepancies in substitution of algebraic expressions and algorithmic entities. In the follow-

ing, we will extend the connector concept for describing input directives. Our goal is to devise 

a set of connectors that allows to apply an algorithmic unit     , which is applicable with 

some input directive   as a substitute for ERA expression  , such that the query optimizer 

may satisfy the input directive by inserting a connector     or formally: 

      
         
                    

While    may undergo revision during further query optimization, the original input directive 

  remains in place. We will now survey various use-cases of this concept, before we even-

tually establish connectors in a formal definition. 

For an efficient nested-loop join of relations   and  , it is of vital importance that the costs of 

finding a join partner in   (inner loop) are sufficiently low. This is achieved by transforming 

the algorithm‟s replacement pattern using algebraic equivalence. The original join predicate 

                      } is converted into an equivalent correlated predicate 

                             , to be used for a possible direct lookup in the inner 

loop. Technically this predicate is iteratively evaluated by referencing the outer loop‟s current 

value of   when processing the inner loop. Thereby the free variable   of   is bound and 

becomes a constant for every pass through the inner loop. The correctness of this transforma-

tion is a consequence of the algorithm used by the nested-loop join. The nested-loop algo-

rithm ensures that the correlated predicate is exhaustively tested for every pair of   and  . For 

an arbitrary algorithm, the optimizer cannot know whether such transformations are legal. 

Therefore the transformation is embedded in the algorithms replacement pattern as an input 

directive, where it describes this property of the algorithm. 

Placing the directive on the inner input branch also allows the removal of the original predi-

cate from the join operation. The optimizer must enforce the directive and thereby guarantees 

that only matching tuples ever reach the join algorithm by pre-filtering the inner input stream 

using standard selection operations. With this mechanism, the nested-loop replacement 
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achieves outsourcing of the selection into an autonomous operator, which can be refined in 

further optimization steps. 

Figure.7 Implanting algorithmic units with applicability requirements. On the left, the join is accom-

plished using the sort-merge algorithm. This algorithm introduces sort directives for each of its input 

streams (small boxed sections at the bottom of the merge box). At this stage of query optimization, these 

directives are satisfied by introducing the corresponding primitive sort operations. The middle plan applies 

a nested-loop algorithm. The original join predicate   is transformed into the correlated predicate   .This 

    is placed as input directive     on the right input stream (inner loop) for the nested-loop algorithm. 

Again the directive is satisfied by installing the corresponding primitive implementation of the predicate. 

The rightmost plan is a symmetric variant of (b) using a corresponding    . The optimizer has to consider 

all three variants, because each may exhibit different costs. 

Figure.7 resumes our previous example. It shows two alternatives of join algorithms, namely 

the already mentioned sort-merge and nested-loop joins, which were chosen for this example 

because both are well-known and conveniently cover many of the aspects to be presented. In 

plan (a) the optimizer chooses the sort-merge algorithm for implementing the join. Auxiliary 

sort operations are fitted into the original plan, for supporting the merge algorithm and ensur-

ing correctness. The merge algorithm can rely on receiving sorted input, thus greatly simplify-

ing its task and therefore its own complexity. The nested-loop joins in plans (b) and (c) 

initiate performance-relevant transformations by decoupling the join predicate and allowing it 

to be pushed further downwards. This predicate ensures that the nested-loop operation will 

only receive matching rows in the inner loop, dramatically reducing the complexity of the join 

operation to mere concatenation of input stream tuples. 

Enforcement of such input requirements makes an algorithm universally applicable and limits 

its implementation complexity. For generally ensuring applicability in an operator tree, the 

properties demanded from its input must not be overly complex. On the other hand, if its 

(a) (b)
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requirements are too lax, they do not provide the quality of assertions required for a signifi-

cant reduction of the algorithm‟s implementation complexity. These conflicting goals have to 

be carefully balanced. A reasonable approach is to focus on the stream properties established 

by basic unary operators            . This approach exceptionally elevates the importance of 

this operator class. They become the ribbon that ties the more advanced components of a 

query plan together, by accepting the output of the preceding operation and transforming it to 

become adequate input for the next operation. 

In addition to the four basic unary operators             providing data interoperability, we 

also introduce data representation   as the fifth applicability operator. Any algorithm must be 

able to interpret its input in order to function correctly. Therefore, two adjacent algorithmic 

units must agree on a mutual data exchange format. It should be noted, that only the standard 

data representation       is a true prerequisite for the Access Manager framework. If it is the 

only data representation accepted and produced by all algorithmic units in the [ERA] pool, 

there is no need to consider representation. We have silently assumed the use of       

throughout the course of query planning until now. 

However, in some cases it is desirable to exchange data in a more appropriate, non-standard 

way and thereby establish a tight coupling between two independent, consecutive algorithmic 

units. As example, two operators might want to exchange data as bitmap vectors instead of 

standard tuples, either because of the compactness of the bitmap representation or because 

bitmaps are particularly well suited for conducting the respective relational operation, e.g. a 

cascade of independent bitmap unions and intersections, exchanging and manipulating data in 

bitmap representation     . An illustrated example covering important aspects of representa-

tion is provided in Figure.8 of the following section 2.4.3 Exploitability. In contrast to the 

basic unary operators            ,   is not a relational operator and it has no analogon in 

SQL. Hence, transformation into non-standard representation is neither triggered by SQL 

queries, nor is it expressible in the SQL-based replacement pattern of an algorithmic unit. 

These facts actually inhibit the existence of dedicated algorithmic entities for representation 

transformation in QEPs. Still we admit that some algorithmic entity may express its desire for 

receiving input in non-standard representation, e.g. by demanding bitmap representation 

through a corresponding      input directive. For sustained general applicability, an algo-

rithmic unit accepting a non-standard data representation must also be capable of accepting 

and producing data sets in standard data representation     . The query optimizer will recog-
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nize which representations are supported by an algorithmic entity and the optimizer will also 

make the decision which representation is ultimately used. 

Non-standard representations    introduce the concept of optional input requirements, since 

algorithms may accept both standard and non-standard representation. An expansion of this 

general concept of optional input requirements upon all basic unary operators offers promis-

ing new possibilities. Assume a nested-loop join is receiving its outer-loop input in a sort 

order that corresponds to the inner relation‟s physical clustering. Under this precondition, the 

nested-loop join will actually traverse the inner relation only once, and this single traversal is 

conducted in a near-sequential manner. This special form of a nested-loop join closely resem-

bles a sort-merge join, but it has the additional ability to „skip‟ irrelevant tuples on the inner 

relation by exerting its direct lookup capabilities. In contrast to this skip-merge join, the 

standard nested-loop join uses direct lookups for matching join partners to an unsorted outer 

stream, resulting in fully random accesses to the inner relation. Therefore, the skip-merge join 

will perform better than the standard nested-loop join, if either the necessary sort order on the 

outer relation is already present, or sorting is less expensive than fully random access to the 

inner relation. Still the skip-merge join remains algorithmically identical to the standard 

nested-loop join, drawing its elevated performance characteristics solely from an optional 

input requirement. This example and alternative input representations clearly demonstrate the 

necessity for a general concept of optional input requirements for algorithmic entities. 

When considering optional input requirements of n-ary algorithms, we also have to contem-

plate possible dependencies between optional requirements of individual input streams. For 

example, the skip-merge join may exploit an adequate sort order on its outer stream, but it 

will only outperform a sort-merge join, which is also applicable under the given circums-

tances, if the inner relation also provides an appropriate access path allowing direct position-

ing. Only when both input requirements are satisfied at the same time, the full potential of this 

algorithm is unleashed. Such dependencies between input requirements are to be expected and 

need to be integrated into the query planning mechanism. The concept of optional input 

requirements enables one single implementation of the nested-loop join to operate in several 

modes, where each mode defines its own combination of input requirements for both input 

streams. Naturally, each mode results in its own characteristic join complexity and finally in 

different overall costs. 

It is important to distinguish optional input requirements of one single algorithm from alterna-

tive implementations of equivalent ERA expressions. As an example, some group algorithm 
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will work efficiently, if it can exploit an adequate input sort order on the grouping attributes. 

On the other hand, efficient grouping is also accomplished without an input sort order, if the 

group operator implements a hash-group algorithm. Evidently, both algorithms implement 

equivalent ERA expressions. They differ only in their input requirements. Yet they represent 

algorithms that are substantially distinct. In such cases, it is advisable to add both implemen-

tations as separate entities to the pool of algorithms, instead of reverting to optional input 

requirements for integrating them into the same module. 

With data representation and optional input requirements, we conclude our considerations on 

necessary properties of a set of ERA transformations for providing general interoperability of 

algorithmic entities. We define them formally in 

Definition.9: Sets of Connectors       and  . A standard connector   
    is an ERA 

expression composed of the basic unary ERA operations                    
 , operating 

according to specification  , but strictly in standard representation. The set of all standard 

connectors is     . A generic connector has the form                    , and the set 

of generic connectors is  . It follows that             

Connectors represent the mechanism for assembling discrete algorithmic entities into a 

computable query plan. They facilitate substitution of ERA terms with algorithmic implemen-

tations, by providing adaptations within the scope of equivalence configuration (cf. Defini-

tion.8 on page 30), thereby filling the gaps between algorithmic building blocks. Connectors 

are also suitable for ensuring interoperability between algorithmic entities, by establishing 

necessary transformations for meeting input requirements. These input requirements establish 

general applicability of algorithmic units and reduce the algorithm‟s complexity by accepting 

only appropriately preformatted input. Besides reduction of algorithmic complexity, externa-

lization of common tasks (like sorting) promotes global optimization. It allows accomplishing 

necessary transformation non-locally, as externalized transformations remain subject to 

ongoing optimization. Such transformations may be pushed downward in the query, plan, 

permitting to conduct them in an earlier phase of query execution in a cost-effective way or to 

exploit the same stream property as an input requirement for several consecutive operations. 

The individual components of a connector                     establish transformations 

according to a specification  . The actual sequence of transformations remains nondescript, 

since there exist dependencies between the connector‟s individual components, which are 

induced by the actual specification  . Projection    maps the original projection of the input 
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stream to a projection that is opportune for the following algorithm‟s operation. For example, 

a join implementation may request that join attributes are uniformly arranged as the first   

attributes on all input streams, such that efficient comparison of the tuple prefixes becomes 

possible. Selection    guarantees that the input meets certain restrictions via adequate pre-

filtering. As an example, consider an m-way merge-join operation with join predicates on   

attributes. If any of the   join fields of m input streams is the SQL NULL value, the tuple has 

definitely no join partner and may be removed from the join‟s input stream. Such externalized 

selection operators remain subject to further optimization, in particular selection push-down 

and recombination with other ERA operators to compound algorithms are options to be 

considered by the optimizer. As already discussed, sort operations    and similarly distinction 

   do not have to be implemented by operators that rely on these properties. Instead, the 

standard implementation of these operators is applied to the input streams if these directives 

are present. Finally, when representation   is specified as an input requirement of an algo-

rithmic unit, it expresses the algorithm‟s capability to process input in that representation. 

Especially noteworthy is the subset of     -connectors, since its exclusion of non-standard 

representations enables the host system to provide an expedient set of algorithmic modules 

implementing all     -expressions. Therefore      greatly alleviates the composition of 

computable query plans while   permits tight interoperation of consecutive algorithms using 

non-standard representation. Based on these two fixed sets of connectors, we formulate the 

general applicability of algorithmic entities: 

Definition.10: Applicability. We introduce three distinct qualities of applicability for 

arbitrary      ERA: 

(1) An arbitrary algorithm implementation     is strictly applicable in a query evaluation 

plan, iff it possesses no input requirements, i.e.  

      
         
                

(2)     is regularly applicable, iff its input requirements are satisfied by applying standard 

connectors           to a given relational input. The operator „ ‟ denotes composition in 

the presence of non-trivial input requirements. The host system is capable of supplying 

strictly applicable implementations        for every          . 
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(3)     is weakly applicable, iff it has input requirements         . The host system 

cannot provide an immediate implementation for  . 

      
         
                           

Following these conventions, a constant term       , representing an input relation, is 

strictly applicable. It has no input whatsoever and consequently it has no input requirements. 

For regular applicability, the host system possesses strictly applicable implementations of 

arbitrary          . As a consequence, every regularly applicable algorithm operating in 

standard representation always possesses a complete algorithmic implementation in [ERA]. 

Implementations for non-standard connectors must be provided as extensions to the [ERA] 

pool. Otherwise, connectors for weakly applicable algorithms are currently not computable, 

since their algorithmic implementations cannot be supplied by the host system. 

A comprehensive way of providing implementations of non-standard connectors emerges 

when contemplating the set of algorithmic entities provided by the host system for imple-

menting standard connectors     . Correspondingly, for arbitrary algorithms operating on 

some non-standard representation   , sustained applicability comparable to regular applica-

bility is achieved by extending [ERA] with a set of k-connector implementations   . Whether 

such an implementation is provided as singular algorithmic entity    ] or as several individu-

al operations, e.g.              applying some relational operations in    -representation 

using a standard connector, before switching into  -representation, is functionally irrelevant, 

but may affect performance. A discussion of such a non-standard connector for bitmap repre-

sentation (bitmap connector        ) is provided in section 5.5 Bitmaps of the Proof of 

Concept chapter. As an alternative to the provision of custom implementations of non-

standard connectors, we will also devise another mechanism for achieving computability of 

query plans containing weakly applicable algorithms. 

All functionality for application of algorithmic entities in query plans is concentrated in the 

Apply function. The Apply function is an integral part of every algorithmic implementation. 

Together with the algorithm‟s algebraic equivalent, this function provides the basis for facili-

tating algorithmic substitutions and for dealing with the algorithm‟s input requirements. The 

Apply function is defined as follows: 

Definition.11: Apply function  . For              ERA, the algorithmic implementa-

tion     is applied in a query plan as replacement for an n-ary   with the      function. 
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The mapping of attribute positions in input stream tuples to the attribute references in   is 

provided as vector         
   

       
. The function parameter         is an integer 

choosing an operational mode for   from an enumeration of available modes. Each     

settings effectuates different optional input requirements for  . The result of      are con-

nectors          
 
       

 defining input requirements for each input stream. The formal 

definition of the      is: 

                     

                       
 
       

: 

                       
    

          
   

            

        
   

           
    

       
 

where      
   

  is the implementation of  , configured to the current input mapping     and 

optional input requirement setting    . 

The      function is implemented in the algorithmic module    . It uses input permutations 

  
   (cf. Definition.5, page 28) as parameters, defining a mapping of actual attribute positions 

in input stream   to attribute references in  . By setting the function‟s parameter      , 

minimal input requirements       
 of an algorithmic entity are determined. For modeling 

optional input requirements, an algorithmic unit may provide additional input configurations 

        
, with      . During query planning, the optimizer will iteratively evaluate optional 

configurations and eventually choose the most suitable option for the given query. Every call 

to the     -function configures     to the parameter set supplied with the function call, i.e. 

              configures     to      
   

 . 

We demonstrate substitution in an example, covering the concepts of equivalence configura-

tion, algorithmic implementation and the  -function. Let       ERA, both unary with 

    , and let     be a regularly applicable implementation of  . Hence, an arbitrary ERA 

expression    may be replaced as follows: 

           
          

                (equivalence configuration) 

      
            

               (algorithmic implementation) 
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          (    -function) 

      
          

   
          

          
         (     implementation) 

In this example, the substitution mechanism allows a complete implementation of the expres-

sion   . For weakly applicable expressions, such general implementations remain unavailable. 

Equivalence implementation and applicability introduce several  -connectors into query 

plans. By definition, equivalence implementation produces only            connectors, 

while applicability will generate arbitrary   connectors. The example above demonstrates 

how connectors will accumulate between separate algorithmic implementations. 

Corollary.3: Coalescence and Decomposition. Two arbitrary         can be coalesced 

into one single     , such that         . In particular, for any   
      

         ex-

ists a   
        , such that   

      
      

   . Decomposition describes the inverse op-

eration. 

With coalescence, the result from the example above is further simplified to: 

            
          

   
           

            (coalescence) 

An efficient implementation of the  -function will specify only configuration parameters    

that are minimal for guaranteeing functioning of     in mode    . „Minimal‟ means in partic-

ular that components                    of    may remain unspecified, i.e.       . 

Similarly, any        should also be minimal, e.g. a minimal    will only specify those 

attributes, where sort order is essential. Minimal specification of input requirements improves 

flexibility when combining algorithmic components. 

The optimizer has to guarantee that the applicability directives of an algorithmic unit are met. 

This task also includes finding an adequate and cost-effective arrangement of operations     

and the resolution of potential interrelations of these operators. For example, it is reasonable 

to apply    before sorting in accordance to some   , if the input stream is already presorted 

and efficient calculation of     is immediately possible. Duplicate elimination     will then 

reduce the amount of data to be sorted in   . But if the input stream is not presorted, it will be 

smarter to sort according to any given    before applying   . Especially, if    is not cover-

ing all attributes, the optimizer is also responsible to extend    to a covering sort order    , 

for allowing an efficient application of    . 
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Global query optimization may achieve that individual     can be moved downwards in the 

operator tree, allowing them to be acquired non-locally and potentially inexpensively. Also 

repeated exploitation by several consecutive operations using the same input requirements 

becomes possible. 

2.4.3. Exploitability 

Additionally to its primary purpose, an algorithmic unit may implement auxiliary ERA 

operations. Joins, for example, are likely to produce huge result sets. Thus, it is reasonable to 

reduce the join‟s result size by incorporating a final projection into the join algorithm, for 

returning only those attributes that are required for further processing, as opposed to returning 

the join‟s designated output attributes, plus the attributes relevant for conducting the join. 

This final projection is only responsible for conclusively formatting the result and it is not 

part of the actual algorithm. Its configuration is completely flexible and therefore the projec-

tion can be exploited for arranging the output attributes as requested by the following algo-

rithmic unit. This construct allows the join algorithm to project its result in arbitrary ways for 

cooperating seamlessly and with optimal efficiency with the consecutive algorithmic unit. 

Applying two equivalent implementations (cf. Corollary.2 on page 30)      and      as re-

placement for one algorithmic sub-expression  , where      and     , to identical input 

is bound to have side-effects on the output, as the algorithms may add, modify or remove 

interoperability properties of the data stream within the scope allowed by equivalence confi-

guration. In our previous examples, the merge-join requires sorted input on the join-relevant 

attributes. At the same time, the standard implementation of the merge-join will always return 

its results in that specific order .It is an inherently order-establishing operation, whereas the 

nested-loop join is at best order preserving, if the input of its outer loop happens to be pre-

sorted. Such output order can be exploited, as it might serve as input requirement for consecu-

tive operations. An algorithmic entity will generally function in several configurable modes, 

each mode influencing properties of the output stream. We consider such configuration modes 

as exploitable parameters of an algorithmic unit. 

In order to effectively exploit auxiliary operations and other configurable properties of algo-

rithms, it is worthwhile to examine how to equip an algorithmic unit      with enough confi-

gurable flexibility for satisfying all input requirements of a consecutive algorithm    . Such 

flexibility is not generally feasible and expedient for every    , but it is a promising approach 

for constructing query evaluation plans that guarantee optimal interoperability between 
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arbitrary algorithmic entities. The ideal set of configurable output parameters of     is iden-

tical to the functionality provided by generic connectors                , which are used 

for expressing applicability requirements of    . Such congruence of input directives and 

exploitable output configuration clearly provides optimal adjustments to data exchanged 

between consecutive algorithmic units, i.e. 

              
    

           
                   

Just like applicability, exploitability is also based on the connector concept, but exploitation is 

often an imperfect operation, resulting in decomposition of the original connector, because 

algorithmic units will not generally absorb an arbitrary connector completely. In addition to 

the already established coalescence and decomposition of connectors (Corollary.3 on page 

40), we will have to contemplate the individual primitive components of a connector. We will 

temporality omit representation and revisit it later for a separate discussion. We consider the 

remaining primitive elements                 of a standard connector   
    as required 

applicability specification of some algorithmic unit     towards some preceding    . Individ-

ual applicability for each     is obtained by installing     between the algorithmic entities, 

as in 

             

The desired applicability specification     of     is obtained by configuring the preceding 

    to an exploitable specification    , i.e.        . This     is followed by an additional 

operation     on the result of        .     represents the rejected part of    , that cannot 

be obtained by configuration of    , because     does not provide the necessary flexibility. 

For each     holds the following equation: 

             

The resulting expression is 

                               

Any of the participating operations may be the identity, i.e.      . The general relationship 

between             is defined as follows: 
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A non-standard representation    can be accepted as      . If    is rejected, then data is 

exchanged in standard representation, i.e.        . Using non-standard representation 

      for exchanging data allows exceptionally tight coupling of consecutive algorithmic 

units. In this case, it is particularly important that no applicability directives are rejected, i.e. 

                           . It is clear, that otherwise transformations      would 

have to operate on non-standard data representations. Since the primary goal of non-standard 

data exchange is tight coupling of two algorithmic units, such a prerequisite for perfect 

configuration is consistent and reasonable. Perfect configuration also guarantees that the 

query plan can be implemented in      , without a non-standard connector    . If perfect 

configuration is not possible, then the system tries to resort to a custom connector  . If no 

such    is available in      , the query plan using non-standard representation cannot be 

implemented. The following example illustrates the exploitability of non-standard representa-

tion. 

Figure.8 Data representation in a cascade of bitmap operations. The depicted family of customized 

operators is capable of processing data in bitmap representation    . Applicability ensures that input data 

is retrieved in convenient     representation wherever possible. Exploitability achieves that data is also 

delivered in    . Both concepts cooperate in minimizing the number of representation transitions. For 

general applicability, the algorithms are capable of accepting and producing data in standard representation 
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    , if required. Their flexibility makes it possible to prevent the necessity for explicit operators     for 

transforming representations. 

The isolated examination of decomposition of individual                  into     

         is presented here, as it is more comprehensible, but this simplified approach is not 

practicable during actual query planning. The query optimizer has to consider functional and 

cost-relevant dependencies between these individual transformations. Functional dependen-

cies arise from the fact, that      components are integrated into the preceding algorithmic 

unit, while     transformations are conducted by a connector unit. Hence, chronologically all 

     are conducted before any     is applied. As a consequence, it is not legal to exploit 

some projection    that removes an attribute, if the same attribute is also referenced in a 

rejected   . In this case, the inability to exploit the selection also prevents the exploitation of 

a projection removing the selection-relevant attribute. Hence, the isolated decomposition 

             is fundamentally correct, but not every decomposition is also of practical 

relevance. A procedure for finding valid and cost-effective decompositions is presented in 

section 2.4.5 Negotiation. For now, we observe that applicability and exploitability are not 

configured individually for every               , but for all components of one given 

connector at once. We formally define exploitability: 

Definition.12: Exploitability. We introduce two distinct qualities of exploitability for 

arbitrary              : 

(1) An algorithmic implementation     is fully exploitable towards a connector   , iff     

allows integration of   , such that 

          
           
                   

(2) An algorithmic implementation     is partially exploitable towards a connector   , iff 

    allows decomposition of          , such that an implementation       exists in 

[ERA] and    can be integrated into    : 

          
           
                        

This concept complies with the important properties we identified for exploitation of auxiliary 

operations within algorithmic implementations. If the preconditions for full exploitability are 

satisfied, exploitation renders the QEP fragment under consideration in a form that can be 

implemented immediately with       assets. This guarantee holds also for partial exploitabil-

ity, if     is a standard connector. This follows immediately from its decomposition 
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to   
      

      
   , with    

          . In addition, exploitability offers an instrument 

for eliminating non-standard connectors      from a query plan. Ideally, such connectors 

are integrated completely into a fully exploitable algorithmic unit. In case of partial exploita-

tion, a custom implementation of the non-standard    has to exist in      . If such an imple-

mentation is unavailable, the query optimizer has either to backtrack to an alternative     

setting for applying     , resulting in an alternative    
 or even    

   . If no alternative     

settings are available, then the QEP must be discarded as not implementable. 

Of course, exploitation must be cost-driven, as it is only interesting, if it leads to a reduction 

of the overall query execution costs. In case of partial exploitation, the optimizer will there-

fore verify whether the local costs satisfy the local efficiency constraint               

      . The corresponding constraint for full exploitation is                 . Both 

cases allow reliable decisions, based solely on local costs. Costs will be examined in greater 

detail in the discussion in section 2.4.6 Cost Function. 

During query planning, output configuration of an algorithmic entity     is conducted by the 

Exploit function, which is an integral part of every algorithmic entity. It is defined as follows: 

Definition.13: Exploit function  . Let      ERA, implemented as           . The 

connector      represents coalesced transformations required for substitution and appli-

cation of     and    . The complexity of such a query evaluation plan can be reduced by 

integrating functionality from    into    , using the      function. The result      of the 

     function represents the part of    that was rejected by    : 

             

             : 

        

 
 
 
 
 
 

 
 
 
 
 
                                                                    

           
    

             

         n                                                        

           
    

             

                                                                       

                         
    

                    

  

Here      denotes an exploitable configuration of     towards obtaining the desired specifica-

tion   . In case of full exploitability,    is absorbed completely, while      degrades to    
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which is eventually omitted. If     provides partial exploitability for   , the optimizer will 

arrange for auxiliary transformations      for compensating rejected configurations. If     

and     exchange data in standard representation, the  -function will yield     
        . Since 

the host system provides implementations for standard connectors      
    , partial exploitabili-

ty on standard representation automatically guarantees the existence of an implementation of 

    in      . Full exploitability also guarantees such implementation, regardless of the 

present representation. The following example illustrates partial exploitation using standard 

connectors. 

                   

         
                 (    ) 

         
         

             (    ) 

          
          

          

We now proceed with our example by exploring exploitability of our query plan candidates. 

Figure.9 Exploiting sort and projection capabilities of algorithmic units. In all three cases, the optimiz-

er can eliminate the final projections and sort operations by integrating them into the preceding join algo-

rithms. In case of the sort-merge join (a), the algorithm can easily accept the sort specification, since this 

sort order is already present as a direct consequence of its algorithm‟s order preservation and its existing 

input directive    . A suitable sort operation is already in place for facilitating the merge-join operation. 

The nested-loop joins (b) and (c) do also accept the sort specification. The nested-loop join is order pre-

serving in the outer loop. Therefore (b) and (c) can provide the requested sort order by propagating the sort 

specification as a directive to their left input streams. In plan (c) we also exploit        , a consequence 

of the join predicate      . The optimizer has to satisfy the modified input directives in (b) and (c) by 

installing the corresponding primitive sort operations. 

2.4.4. Propagation 

Applicability and exploitability can be combined to form the concept of propagation in query 

planning. Selection push-down and projection push-down are famous examples of such 

propagation in the algebraic conception of query plans. They translate directly into our algo-
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rithmic perspective. The nested-loop joins in Figure.9 illustrate the general idea of such 

propagation, founded on the principle of preservation of individual stream properties. In 

Figure.9b the nested-loop join preserves the input order     of its outer loop. In Figure.9c 

propagation depends on order preservation     and on the given join predicate          . 

Propagation becomes possible, whenever some algorithmic unit is permeable for stream 

properties established by unary operators             . For example, every streaming algo-

rithmic entity     receiving sorted input will also produce its output in the same sort order. If 

    itself does not rely on this sort order, i.e.    ‟s applicability directive specifies      , 

then it is irrelevant whether the sort order is established before or after    . More generally, if 

several consecutive streaming algorithmic units      are capable of preserving  , then it is 

possible to establish some required   at an arbitrary location along the      chain. This allows 

the optimizer to propagate   downwards through the query plan, such that the optimizer may 

choose, on basis of cost estimations for the various alternatives, at which point   can be 

established at minimal costs. We also illustrate this with our example in Figure.9. Here 

propagation of     below the order preserving join algorithms is interesting, if the join result 

has a higher cardinality (and size) than the input stream determining the result order (i.e. outer 

loop in the nested-loop case). The goal is cost reduction by sorting less data. If the join 

reduces the cardinality, one should contemplate applying the sort operation after joining. But 

even in this case, it may still pay off to propagate the sort operation downwards, if the sort 

order of the larger set below the join can be established inexpensively, e.g. by using an 

already existing order (cf. Figure.10a), or if early sorting allows using more efficient join 

algorithms, like the skip-merge algorithm in cases (b) and (c). Once the preconditions for 

propagation are met, the ultimate decision for employing propagation is made by the optimiz-

er on basis of cost estimations. 

Compared to exploitability, propagation represents an additional means for decomposing a 

connector                  ensuring applicability between two consecutive algorithmic 

units. When considering 

            

with                representing one individual connector component, then we can de-

scribe this decomposition for each    in analogy to the corresponding exploitability equation 

above as: 
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Here      is the propagated part of the original connector    . Each term on the right hand 

side of this equation describes transformations towards     at different locations relative to 

the currently examined algorithm     .     is a transformation applied on the algorithm‟s 

input stream,      represents the algorithm‟s actual exploitability towards    , and     is the 

rejected part that has to compensate for lack of propagation and exploitability of    , i.e. 

                                     

Again, representation has to be treated separately. If a non-standard representation     is 

rejected, then data is exchanged in standard representation. As a general recommendation, any 

algorithmic unit capable of accepting a transition to non-standard representation    as    

  , should also contemplate permitting its propagation as      . Such propagation is 

attractive from the cost perspective, as each transition of representation inevitably incurs 

costs. The ability of an algorithmic unit to propagate non-standard representation effectively 

supports reducing the number of representation transitions in a QEP. It also opens additional 

opportunities in query optimization for finding ideal locations for switching between repre-

sentations. 

We extend the concept of exploitability for a formal definition of propagation 

Definition.14: Propagation. We introduce two distinct qualities of propagation for 

arbitrary                  : 

(1) A connector    is fully propagatable through an algorithmic implementation    , iff a 

decomposition          exists, such that 

              
             
                          

                   

(2) A connector    is partially propagatable through an algorithmic implementation    , iff 

    allows decomposition of            , such that an implementation      exists in 

[ERA] and    can be integrated into    , i.e. 
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Conceptually propagation is very similar to exploitation. While exploitation provides strictly 

local integration of connectors into the preceding algorithmic unit, propagation prepares 

relocation of  -transformations by propagating them downwards through algorithmic units. 

The „ ‟ operators established by propagation indicate that     was modified by propagation, 

resulting in modified application requirements. If     ‟s applicability requirements remain 

unaffected by propagation of some  , then propagation is exactly equivalent to exploitation. 

Propagation of  -transformations over algorithmic entities is provided by the Propagate 

function. It is an integral part of every algorithmic implementation and it is defined as fol-

lows: 

Definition.15: Propagate function  . Let        ERA, implemented as            

   . The connector      represents coalesced transformations required for substitution 

and application of     and    . The complexity of such a query evaluation plan can be re-

duced by propagating functionality from    through    , using the function     , where 

     represents the part of    that was rejected by    : 

            

             : 
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The following example demonstrates the combined effects of application, propagation, and 

exploitation: 
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This also exemplifies how the propagated part    of a connector    never physically appears 

in a query plan. It is immediately integrated into the modified application directives of the 

algorithmic unit conducting the propagation, which is indicated by the special composition 

operator „ ‟. 

Propagation represents an iterative process which, when used in turns with application and 

exploitation of algorithmic entities, is capable of moving transformations downwards through 

a query plan, in order to determine the optimal location for an operation. Propagation natural-

ly terminates when it reaches the leaf nodes of a QEP, or when an algorithmic unit does not 

permit further propagation. In the latter case, propagation degrades to plain exploitation. In 

addition, the optimizer may deliberately stop propagation at any time. Therefore, it uses 

explicit exploitation after several propagation steps, if the QEP requires local consolidation.  

In summary applicability, exploitability, and propagation build a robust and simple, yet 

efficient and powerful mechanism allowing the query optimizer to find the optimal configura-

tion for all participating algorithms in a query plan, without knowing the internal workings of 

the algorithms. The query plan can directly benefit from the configurable degree of freedom 

provided by algorithmic units. Still every implementation of a relational algorithm may 

choose independently how much flexibility it wants to provide. A higher flexibility will allow 

better integration with adjacent algorithms, but higher flexibility will usually involve higher 

implementation complexity. Conversely, missing flexibility of algorithmic units is automati-

cally compensated by applying the necessary customizations in form of auxiliary connector 

units. The implementer of a relational algorithm may reevaluate this trade-off in iterative 

development cycles, while the mechanisms for negotiating configurations will automatically 

adapt to the present capabilities of the algorithmic entity.  

Propagation, as the only non-local instrument of query optimization, is strictly directed 

downwards. Hence, the optimization process will always terminate. But, without further 

measures, each attempt at propagation will potentially trigger a complete recursion, with 

devastating impact on the complexity of our approach during query planning. This issue will 

be addressed in the following section. But first, we complete our example. 
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Figure.10 Propagation of configuration parameters. S and R shall be physically stored in B-trees, offer-

ing direct access capabilities and also exploitable storage orders    
 and    

. Although sorting was the last 

operation in the initial query plans, propagation makes it the first transformation to be applied in the final 

QEPs. It is pushed directly into relational access of S and R, where it is implemented inexpensively as non-

blocking ordered relational scan. Similarly for the nested-loop joins (b) and (c), the original join predicate 

  is transformed into the correlated predicate   , and     resp., and propagated for exploiting efficient 

direct access to join partners in the inner loops. 

As result of successful configuration of algorithmic entities, all plan alternatives are now 

consisting only of three algorithmic units each. The final task of choosing the most cost-

effective plan is left to the optimizer and the cost functions of the algorithms. 

2.4.5. Negotiation 

Negotiation is the configuration process between two independent algorithmic units. Its 

purpose is to ensure efficient cooperation by adjusting exploitable configuration properties of 

one unit in order to match the applicability requirements of a consecutive algorithm. Negotia-

tion operates on connectors  , or rather on their primitive components                 , 

which are established between individual algorithmic units. These connectors originate either 

from necessary adaptations resulting from equivalent implementation (cf. Corollary.2 on page 

30), or they implement additional applicability directives of algorithmic units. The goal of 

negotiation is to configure participating algorithmic units such that connectors are optimally 

arranged throughout a query plan and potentially absorbed by algorithmic units implementing 

the necessary transformation as an auxiliary, configurable functionality. Although the opti-

mizer can spot such auxiliary   s in an algorithm by examining its ERA replacement pattern, 

it can neither assess the extent of possible configurations, nor is it possible to estimate the 

implication such configurations will have on the overall behavior of the algorithm. Even 

worse, our example demonstrated the nested-loop algorithm‟s capability for retaining exploit-

able sort orders, originating not from an internal sort operation, but from order preservation 
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by propagating the requirement to one of its input streams. Hence, the existence of an opera-

tor    in the replacement pattern is neither a sufficient prerequisite for configurability, nor is 

it necessary. 

Configurability depends solely on the implementation of the algorithm. For finding an ade-

quate configuration for an algorithmic unit, each unit must be able to negotiate its own confi-

guration within the scope of its capabilities. In addition, it must be able to identify configura-

tion properties that are suitable for propagation to its various input streams. Finally, it has to 

provide a cost function that allows the DBMS optimizer to assess the quality of one particular 

configuration. 

Negotiation improves interoperability between two algorithmic entities exchanging data via a 

connector unit, e.g.           . The connector    is conducting necessary adaptations 

specified as a set of configuration parameters                 . In order to simplify or 

even eliminate   , the negotiation process tries to exploit functionality provided by     for 

implementing   . Exploitation shall map    to the cost-optimal configuration           

       to be integrated into    . Alternatively, functionality from    shall be propagated over 

   , if     will preserve the propagated transformations                  established by 

such early adaptations and their propagation is cost-effective. Finally, a set of rejected confi-

guration transformations                  shall compensate possible mismatches, such that 

for any                  the following equation holds: 

                

Naturally, there exist applicability specifications     without efficient decompositions. In 

this case, necessary transformations shall remain within the original connector, such 

that        . We call a decomposition of     efficient, if its implementation satisfies the 

general inequality 

                                    

In this consideration, interrelations between different   s are not yet represented adequately. 

Again, we temporarily omit representation  , because this is negotiated independently. The 

remaining four operators           are largely orthogonal in their functionality, but there are 

several dependencies as depicted by the following Figure.11. In order to devise a suitable 

strategy for finding efficient configurations, it is worthwhile to analyze the rules of interrela-

tions between configurable operators. 
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The exploitable operators     are integral parts of    , while propagated configurations     

are applied before, and the supplemental transformations     are installed afterwards. Al-

though the elements of each separate set                            , and               

are applied in a currently nondescript order, elements from different sets are never inter-

weaved, i.e. all     are applied before any    , which in turn always precede any    . 

Figure.11 Dependencies of configuration parameters. Configuration must comply with functional de-

pendencies, represented as solid lines: (1) Selection    before projection   avoids removal of attributes 

required by selection. (2) Distinction   follows after projection   is completed. Non-functional dependen-

cies are efficiency considerations marked with dashed lines: (3) Distinction   should be applied after a 

suitable order is available. Sorting   should be preceded by a reduction of cardinality and arity through 

selection   (4) and projection   (5). 

Following the dependencies described in Figure.11, we can now devise general rules for 

finding efficient configurations:  

(1) We start considering selection  , as it has no dependencies on other configuration para-

meters. In accordance to selection push-down, we break up the predicate of    and apply 

selections as early as possible, i.e. try to propagate maximum selectivity as    . For the 

remaining predicate, we use exploitability for installing      if possible. After completion 

of this step the settings for      and     are not modified anymore. Consequently,    also 

remains fixed in the following steps.  

(2) Then we apply the desired projection    reducing the breadth of the input set.    will 

remove attributes that were referenced in    , but are not required afterwards. We make 

sure not to remove attribute references that are required for post-filtering the rest-

predicate in     or     (dependency 1). Analogously    removes attribute references that 

have become obsolete after application of    . In this step, projections removing attributes 

are relevant for dependency considerations, while mere attribute rearrangements are not 

significant and are ignored. And even if projections reduce the number of attributes, they 

are only performance-relevant, if they are followed by a blocking operation, in particular 

by a conventional sort operation that takes advantage of the reduced breadth (cf. 
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Figure.11, dependency 5). For streaming operators, the tuple breadth has no impact on 

the costs, since storage costs can be neglected for streaming operations, and the projec-

tion can be safely postponed to the last possible point in time, i.e.    or even   , without 

performance penalty. At this point configurations of selection and projection are com-

pleted. 

(3) Now we attend to propagation and exploitation of the sort order    . Propagation is 

particularly attractive, if it is possible to establish    by means of a more efficient me-

thod than conventional sorting. Such propagation is also reasonable, if it achieves only a 

prefix of the lexicographical order specified by   . In this case,    is fully established 

using a subsequent sort operation in form of an inexpensive partial sort operation    

   or      , which will also benefit from further reductions of cardinality and arity by 

earlier application of predicates and projections (dependencies 4 and 5). 

(4) Finally, we address duplicate eliminations   . Duplicate elimination should be postponed 

until the final projection is established (Figure.11, dependency 2) and a suitable sort order 

is available (dependency 3). If necessary, available sort orders have to be extended to 

cover all attributes for supporting efficient duplicate elimination. 

Our conception of query optimization in the presence of opaque and configurable algorithmic 

units assumed the existence of a system-inherent query optimization component, providing 

and controlling the search strategy for generating efficient query execution plans on a global 

scale. One of the optimizer‟s essential tasks is limitation of complexity and costs of query 

optimization. Therefore, external algorithmic entities may only contribute in a temporally and 

spatially limited way to this procedure. The presented methodology of negotiation, based on 

applicability, exploitability and propagation is sufficiently flexible for devising optimization 

algorithms dealing with configurable algorithmic entities. At the same time, each phase of 

negotiation operates strictly locally and on a comparatively low level of complexity, leaving 

overall control to the host system‟s optimization component. 

In the following, we will outline a modified query optimization strategy, suitable for general 

cost-driven optimization based on negotiation. In addition, we will sketch the rule-based 

optimization strategy, which is used in the Transbase prototype implementation. This shall 

demonstrate that the proposed methodology is generally suitable for arbitrary optimization 

strategies, and only moderate modifications to the original optimization algorithms are re-

quired. 



CHAPTER 2: THEORY  55 

First we examine a cost-based optimization model using dynamic programming for building 

alternative plans simultaneously in a bottom-up fashion. In optimization step p of a query 

joining n relations, this model considers query plan fragments joining p+1 individual rela-

tions. This is done by extending plans joining p relations, retained from the previous iteration, 

with one additional join. Up to this point, cost-based optimization is strictly conforming to its 

original proposal in [Sel79]. The fundamental difference when using configurable algorithmic 

units results from the following observations: 

(1) a partial plan joining p+1 relation cannot be fully configured, since the configura-

tion of its topmost operator is depending on applicability requirements of its subse-

quent operator, which is still unavailable in optimization step p. 

(2) the missing configuration of the topmost operator also implies that the plan frag-

ment‟s final output sort order is still unspecified. This prevents classification of the 

plan fragment with respect to interesting orders. 

(3) an incompletely configured plan fragment cannot be associated with costs, thus 

cost-based pruning is inhibited. 

These issues are circumvented as demonstrated in Figure.12. After optimization phase one, 

the pool of query candidates contains   plans for joining relations A and B, each using a 

different one from   available join methods. The pool contains a total of     
 
  2  plans for 

joining every ordered pair of n relations, using one of   join methods. The classical optimiza-

tion algorithm will now initiate a pruning phase, which will reduce the pool size to a lower 

boundary of   
 
  plans. If interesting orders are present, then the number of plan candidates 

will be correspondingly higher. The computational complexity correlates with the total 

number of necessary cost estimations, which is equal to the original number of plan candi-

dates     
 
  2 . In our case however, the plans resulting from phase one are still incompletely 

configured (marked white in Figure.12), since the join operator‟s applicability requirements 

are met, but the topmost join operator is not yet configured for exploitation by its still missing 

consecutive operator. As a consequence, pruning at this stage is not possible (cf. reasons (1)-

(3) above) and optimization must momentarily retain all plan candidates. 

In phase two, each plan is extended for joining one additional relation (depicted white in 

Figure.12, phase 2). By enumerating all possible join methods, we can generate    plans for 

joining relations A, B and C, resulting in      
 
     plans for joining any three of n relations. 
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At this point, it becomes possible to complete the configuration of the joins built in the 

previous phase (now marked light blue), as the necessary consecutive join was just installed. 

The principle of optimality, on which cost-based query optimization using dynamic program-

ming is founded, claims that an optimal left-deep plan joining p+1 relations is built from an 

optimal plan joining p relations, extended by one additional join. Consequentially, we may 

now apply cost estimation and subsequent pruning to the fully configured plan fragments of 

phase two (light blue). Cost estimation will identify the one optimal plan for joining relations 

A and B (although interesting order may introduce additional alternatives). This plan frag-

ment also specifies the optimal join-method and join-sequence for joining A and B. Accord-

ing to the principle of optimality, it now becomes possible to discard all plan candidates 

containing sub-optimal strategies for joining A and B. This leaves only      2  plan 

candidates, joining the result of the optimal join of A and B with one arbitrary third relation, 

using all available join methods. After pruning has processed all two-way joins from phase 

one, the pool contains a lower boundary of   
 
  optimal plan fragments joining any two 

relations (plus interesting orders). Correspondingly, a minimum of      2   
 
  plan candi-

dates have to be retained by the end of phase two. In general, the storage complexity of the 

classical algorithm at the end of phase p is at least   
   

 , while our variant using configura-

tion and retarded pruning stores a minimum of          
 
  plans. With          

 
  

         
   

  follows that the storage complexity of retarded pruning is         times 

higher than that of the classical algorithm, reaching its maximum at    
 

 
 . The same factor 

also applies when comparing computational complexities, as the computational complexity of 

phase p depends directly onto the number of retained plans from the previous phase. As we 

anticipate small numbers of  , the total complexity increases by a factor of     . This is 

comparable to the increased complexity introduced by interesting orders and therefore simi-

larly acceptable. 
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Figure.12 Cost-based join optimization with configuration. Exemplified join optimization in a system 

providing     different methods for joining n relations. The graph depicts only a small fraction of the 

plan candidates of each join phase. Pruning after phase one is impossible, but the principle of optimality 

allows retarded pruning in the subsequent phases. In this example, the nested-loop join (nlj) is identified as 

the optimal method for joining A and B by the end of phase two. This form of pruning is equally effective 

as in the original optimization algorithm without configurable operators. 

As we enter phase three for adding the next join, all considered plan fragments are containing 

fully configured and optimal sub-plans (marked dark blue). 

Note that propagation is not required for this type of query optimization. The idea of con-

structing an optimal plan from optimal plan fragments contradicts the refinement of existing 

plans via propagation. The instrument of propagation is intended for optimization algorithms 

relying on algebraic transformations rather than enumeration and iterative construction. 

For rule based optimization, we can also employ applicability and exploitability for generat-

ing optimal plans. This form of optimization, as employed by Transbase, builds an initial plan 

from the original SQL query. This plan is then modified using equivalence transformations 

during several optimization phases, where each phase is strictly self-contained and dedicated 
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to a specific optimization goal. To limit computational complexity, each optimization phase is 

conceptually one single traversal through the query plan. Therefore, the complexity of each 

optimization phase, and consequentially the complete optimization algorithm is linear in the 

number of involved operators. In this form of query optimization, the system builds its initial 

QEP, based exclusively on the primitive algebraic representation. This early QEP already 

appoints a preliminary join sequence, but the joins are still conducted using the primitive 

algebraic Cartesian product operator. All relations are accessed using strictly sequential 

traversals via primary access paths and no index selection has taken place yet. The optimizer 

subsequently applies algebraic transformations to this initial QEP, employing heuristics for 

selecting substitution rules from a set of available equivalence transformations. These trans-

formations are organized in several top-down traversals through the current query plan. 

During this process, the optimizer also selects suitable algorithmic implementations for 

algebraic sub-expressions. Finally, the algorithmic entities‟ functionality for applicability, 

exploitability, and propagation are employed for achieving optimal algorithmic interoperabili-

ty. Currently Transbase uses no cost estimation for justifying transformations during query 

optimization. When considering the application of custom algorithmic units, the optimizer 

assumes that, if such an alternative algorithm is available and applicable, then it is also more 

efficient than the built-in variant.  

Similarly, the Access Manager‟s instruments for configuration and costing of algorithmic 

units are suitable for other transformation-based approaches to query optimization, as found 

in various popular DBMSs. In particular, the cost-driven depth-first branch-and-bound opti-

mization harmonizes exceptionally well with the Access Manager approach, since this form 

of query optimization emphasizes a small working set, early configuration and sustained 

pruning. 

2.4.6. Cost Function 

The costs of an operation are a gauge, used primarily during query optimization, for describ-

ing the estimated utilization of limited resources during query evaluation. Limited resources 

are an abstraction of real hardware resources, like CPU, I/O system, and memory, as well as 

immaterial assets like system responsiveness, throughput, and latency. Algorithmic units, 

when used for extending a DBMS in accordance to our conception, have to actively partici-

pate in cost estimation. Their implementation details are hidden from the DBMS, leaving no 

possibility for deriving reliable cost estimation from their visible algebraic representation. The 

accuracy of a unit‟s cost estimations is similarly important for the sound operation of the 
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overall system as the correctness of its implementation. This encapsulation and the need for 

accuracy inhibit centralized cost estimation, performed solely by the host system. In accor-

dance to foregoing design decisions, implementation complexity of cost functions inside a 

single operation is kept simple, in order to provide maximum usefulness at minimal imple-

mentation effort. Similarly to negotiation, cost functions are provided as a supporting instru-

ment for justifying optimization decisions and managing resource allocation. Cost functions 

must operate strictly locally. In particular, they must not make any assumptions or conduct 

any inspections of other algorithmic units in their vicinity. As a consequence of encapsulation 

of algorithmic units, such inspections are hardly possible and making assumptions is danger-

ous, since the QEP is still subject to ongoing optimization efforts when the cost function is 

called, and cost estimation based on assumptions on a unit‟s vicinity will eventually become 

inaccurate. The result of cost functions must depend exclusively on the data provided as direct 

input. The optimizer will permanently observe whether the input parameters of cost estima-

tion were influenced by recent QEP transformations, and eventually reinitiate cost estimation 

whenever necessary. Finally, as cost functions are expected to be called frequently, they must 

be inexpensive operations of low computational complexity. 

To satisfy these prerequisites for a generic cost function, the Access Manager framework 

models the costs of an algorithmic unit as a set of events that potentially inflict costs, rather 

than associating an operator with absolute cost values. The optimizer is in charge of rating the 

impacts of these various events and eventually it will convert them into actual costs. This 

additional level of abstraction allows the description of costs in a graphic way, and relieves 

the implementation of a cost function from the necessity to rate its costs relatively to other 

operators in the system. In addition, the host system can dynamically adapt its cost model 

when assigning costs to individual events, allowing flexible response to changing system 

parameters, such as volatile system load, but also to altered system configurations. These 

events are classified in three main groups, in ascending order of importance with respect to 

their relative impact: (1) CPU instructions, (2) primary memory requirements and (3) second-

ary I/O. CPU assets are subdivided into total sequential expenditure and a ratio specifying the 

extent of parallelizable code. The latter serves for estimating potential decrease of execution 

times, when relocating computational load to additional CPUs by applying intra-operator 

parallelism. Memory consumption is subdivided into minimum in-memory temporal storage 

(size of the working-set) and total temporal storage requirements for completing a given task. 

The system will automatically anticipate costs for secondary I/O, if the total available primary 

memory size is exceeded. Finally, we distinguish various mimics of block I/O, namely expen-



60  2.4 SUBSTITUTION 

sive random I/Os, usually more favorable sequential I/O and potentially inexpensive read-

ahead/ write-ahead operations using asynchronous I/O. The class of I/O events exemplifies 

and emphasizes the necessity for using cost events instead of cost values. The operator‟s cost 

function has no effective means for assessing I/O costs with absolute costs, since it cannot 

know the I/O characteristics of the addressed hardware (e.g. conventional hard drives, RAID 

systems, network I/O or random access secondary memory appliances based on SSD (Solid 

State Drive) technology). The optimizer, as an intrinsic component of the DBMS, possesses 

the necessary information for centralized and accurate costing of I/O events. The presented 

collection of cost related events does clearly not possess the expressiveness to model every 

cost scheme accurately, but this is not required. It just has to be sufficient for providing a 

suitable approximation, biasing the query optimizer towards the correct decisions. 

The abstraction of using cost events instead of absolute cost values offers an additional 

perception of costs. During optimization, one query plan is chosen from several candidates 

based on its cost events and on the rating of these events at the time of query optimization. 

But query plans may remain in the system over a long period of time. Stored queries, for 

example, are usually optimized only once, but they are intended to be reused perpetually. 

Hence, this optimization usually happens „ahead-of-time‟, well before query evaluation. 

However, the actual costs for executing a query may change over time, as they depend on 

numerous volatile system conditions, like system load and resource allocation. Consequently, 

the quality of cost estimation is also subject to change. In contrast to absolute query execution 

costs, the estimation of cost events will always remain valid and constant. Based on these 

constant cost events, it becomes possible to rapidly reassess the costs „just-in-time‟, imme-

diately before the query plan is actually executed. If the system finds that the current costs are 

significantly different from the costs that originally justified the decision for this particular 

query plan candidate, the system may choose to reinitiate the query optimization process or 

choose an alternative plan from a cache of plan candidates. 

Next the question arises, how to derive cost incidents of a single operator using a cost func-

tion that operates strictly locally on the currently considered operator, while conserving the 

global and versatile interrelations with other operators of the plan. In traditional cost models, 

local costs are composed from costs for providing the input to the operator plus the local 

processing costs, as expressed in the following formula. 
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Naturally, the local processing costs depend on various properties of the actual input data. 

These properties are approximated using cardinality and selectivity estimations, based on 

statistical information that is maintained by the DBMS for every stored relation. During cost 

estimation, this statistical information is extrapolated for describing all intermediate results in 

the operator tree [Sel79]. For optimal cost estimation, the host system provides such data-

centered statistics for each input stream and also for the output stream. This allows the cost 

function to incorporate all available information for cost estimation of maximum accuracy. 

The simple and obvious algorithm calculating the costs of a QEP is a recursive traversal 

through the query plan, accumulating costs while proceeding bottom-up. This approach 

allows supplying the cost function of an operator with readily available precalculated costs for 

its input data as well as with „just-in-time‟ assembled statistical information.  

The recursive accumulation of cost incidents, as reflected by the cost function above, is fully 

sufficient for costing the relational calculus in its algebraic conception, where every operation 

is implicitly blocking. But the flow of control in the algorithmic perspective is significantly 

different, with consequences on the cost model. In particular, in situations where it is not 

required to fetch the complete input of an operator for generating the complete output, this 

simplistic cost model becomes inaccurate. Refer to Figure.13 for an example based on a 

restriction in conjunction with exploitable sort orders. A general cost model has to consider 

these situations. An alternative cost model uses cost-per-tuple, as proposed and discussed in 

[Hel93] and [Cha99]. Cost functions based on this concept account only for tuples that are 

actually fetched. 

                                      

 

   

                                       

Cost function (II) is almost identical to formula (I), except that only a quota    of the data 

provided by input stream i is actually considered in cost estimation. This approach assumes a 

linear distribution of costs and it was found particularly useful when dealing with the operator 

classes exhibiting linear cost distribution, e.g. restrictions as user-defined predicates [Cha99]. 

Non-linear cost distribution is generated in the presence of blocking operators. A sort opera-

tion, for example, has to process its input completely before generating the first output tuple. 
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From the perspective of the consecutive operator retrieving input from a blocking sort opera-

tion, the production of the first input tuple is immensely expensive. Afterwards all subsequent 

tuples are available almost instantaneously, incurring very low additional costs. Conversely to 

the non-linearity of a blocking operation, linear cost distribution is a common quality of 

streaming operators, such as the aforementioned restrictions. In summary, cost function (I) is 

valid for costing plans consisting only of blocking operators, while cost function (II) applies 

to streaming operators, but neither is accurate for hybrid plans. 

This dilemma is resolved by subdividing total costs into two major cost accounts: the cost 

portion for blocking operations is henceforth denoted as       and streaming cost portion is 

represented as      . Both cost accounts are maintained independently while traversing the 

query plan. The local costs incurred by evaluation of the topmost operator, denoted as      , 

add either to the blocking or streaming account, depending on the nature of the topmost 

operator. 

Definition.16: Streaming Cost Calculation. The cumulated costs of an n-ary algebraic 

expression, concluded by a streaming algorithmic implementation of  , calculate as: 

                                     

 

   

 

                                                   

 

   

 

All local costs add to the       account, but blocking costs originating from a preceding 

blocking operation remain in the       account. 

For accurately modeling blocking operations, we have to distinguish two components of local 

costs, namely         
 for producing the first tuple, and          

     producing all remaining 

tuples. Therefore, the local costs of a blocking algorithmic implementation of   are defined 

as: 

                   
               

      

Definition.17: Blocking Cost Calculation. The cumulated costs of an n-ary algebraic ex-

pression, concluded by a blocking algorithmic implementation of  , calculate as: 

                                   
                             

 

   

 



CHAPTER 2: THEORY  63 

                                   
      

More generally, when tuples are fetched from an operator exhibiting both streaming and 

blocking costs, then blocking costs incur for fetching the first tuple, while streaming costs are 

assumed to be evenly distributed over all other tuples. The following example illustrates how 

the various cost-relevant factors of a query plan are integrated into a sound cost model. 

SELECT   FROM   WHERE   <   ORDER BY   

Figure.13 Costing blocking and streaming operations. The example shows the costing of three alterna-

tive plans for evaluating the query above, operating on input relation T storing 100.000 tuples. The cardi-

nality |Ri| of tuples exchanged between operators corresponds to the thickness for the connections. Every 

operator is annotated with a simple local cost function cL, depending on the number of processed input 

tuples |Ri|, e.g. scanning one tuple from T is costing 2 units and scanning T completely costs cL=2|T|. De-

pending on the blocking or streaming nature of a particular operator the cumulated costs for evaluating a 

sub-tree are charged to the corresponding accounts. For clarity we examine only one CPU related cost 

event. 

Local costs cL and the costs for generating input are incorporated into the operator‟s total 

costs cS and cB. Plan (a) in Figure.13 reduces the number of tuples early by applying the 

restriction first, thereby lowering the costs for projection and sort. Plan (b) applies the sort 

operation first. The restriction can exploit the sort order and projection benefits from the 

reduced cardinality. Plan (b) is attractive for predicates whose costs per tuple are high relative 

to sorting, or for predicates that are able to exploit the sort order for reducing the number of 

processed tuples. In certain circumstances plan (b) can be transformed into plan (c), which 

eliminates the costs of the sort operation by exploiting presortedness of T. 

This cost model still requires some adaptations to be suitable for configurable algorithmic 

units. First, it has to embrace the actual configuration of the operator, which was appointed in 

the foregoing negotiation process. The configuration of the currently considered operator is 
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implicitly available to the operator‟s own cost function, thus there is no need to pass it as an 

explicit parameter. Nevertheless, it must be noted that configuration plays a decisive role in 

costing. Configuration relies on applicability requirements, which were demanded by an 

algorithmic unit and established during the negotiation process. When assessing the costs of 

such a configured algorithmic unit, the cost function will assume that applicability require-

ments are met. However, it may not consider input stream properties that exceed the requested 

applicability requirements, e.g. it is not legal to factor a present input sort order into cost 

estimation, when this input order is not explicitly enforced through applicability requirements. 

Such additional input stream properties are subject to change during further optimization steps 

and their influence on previous cost estimations is not visible to the optimizer, leading to 

inaccurate cost estimation, based on outdated and invalid assumptions.  

Another necessary arrangement is the extraction of the complex calculation of cardinality and 

selectivity from the costing process, in order to keep the implementation of cost functions as 

simple as possible. We already observed that the boundaries of algorithmic units always 

coincide with complete algebraic sub-expressions. Therefore, it becomes possible to calculate 

selectivity and cardinalities solely on basis of the algebraic equivalent of a relational operator, 

which is independent from any algorithmic implementation. This task can be separated from 

the cost calculation process and it is entrusted to one centralized component of the host 

system‟s optimizer. This relieves the individual cost function of each operator from the 

difficult burden of maintaining statistical information. It also guarantees that statistics are 

calculated consistently in one single specialized module. Statistics on the local input streams 

and on the output stream are made available by passing the precalculated values as parameters 

to the local cost functions. These statistics are used directly for local cost estimation. Only for 

extensive algorithmic units, further extrapolation in the local cost function might become 

necessary, for accurately associating cost events with individual tasks within the complex 

algorithm. 

Finally, our concept of a cost function complies with the aspired design goals. Such functions 

are provided by every algorithmic implementation. They have to assemble local cost events 

and accumulate them with cost events reported by their input streams. For conserving the 

overall integrity of the cost model, each individual cost function has to comply with the 

aforementioned common definition of cost calculation rules. The complex burden of cardinal-

ity and selectivity extrapolation is handled by a dedicated component of the host system, 

which analyses QEPs in algebraic representation on granularity of algorithmic units. 
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2.5. Scan Operator 

Until now, we have discussed how a host DBMS can find optimal query evaluation plans 

when dealing with custom implementations of relational operators. In the following, we will 

focus on the leaf operators of retrieval QEPs. They provide actual access to relational data 

stored in the database, by generating the input for further processing in the query plan‟s 

internal operator nodes. 

With relational scans for data retrieval being the leaves of operator trees, only the configura-

tion of their upward exploitation using the  -function is of primary importance. Applicability 

via the  -function is always unconditionally possible. If alternative access paths are availa-

ble, the host system‟s optimizer will eventually choose one access path (index selection 

problem), and this decision is based on cost-related considerations or heuristics, rather than on 

the strict functional dependencies provided by applicability. 

Secondary indexes are redundant data structures for providing an alternative access path to a 

stored relation. Unless they are covering indexes, they contain only a projection of the data 

stored in their base relation. The optimizer may decide that the most efficient access to a 

relation is provided by such a lean index, although the index does not contain all fields re-

quested by the query. In this case, the information retrieved from the index tuples is used to 

identify and retrieve the corresponding tuple from its base relation. The base tuple is covering 

all attributes, and it will be used to complete the index tuple. This lookup operation of a base 

tuple is called materialization. In the algorithmic perspective, materialization is an operator 

receiving input from an index and producing output using a scan on the base relation. It 

represents the only form of relational scan occurring as internal nodes of a query plan. As for 

all internal nodes, its negotiation capabilities comprise applicability, exploitability, and 

propagation. 

Relational scans are also used for data modification (insertion, deletion, and updates). To this 

end, a scan on the relation to be modified is placed at the root of operator trees. The operator 

tree supplies the input required by the modification scan, i.e. data for insertion or the specifi-

cation of tuples to be deleted or updated; in the latter case, it will also provide the replacement 

data. For this class of scans applicability is essential. It is used, for example, for defining a 

preferred order of modification by requesting a corresponding sort order on its input stream. 

Exploitability is of no significance for this class of relational scans, since modification scans 
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are always the concluding operations in modification QEPs, and they do not produce any 

relational output. 

Figure.14 QEPs for retrieval and modification. Scans on relations and indexes are leaf operators in 

retrieval queries (a) and (b). They generate the input for consecutive relational operators. Scans may also 

be internal operators in a query plan, if materialization (mat) from the base relation is required after an 

index access (b). The result of a retrieval query is relational data, i.e. the result set produced by the root 

operator of the query. In modification queries (c-e), a scan on the manipulated relation serves as the root of 

the operator tree, for performing insert, delete, or update operations. It is fed with relational data required 

as input for modification. The result of a manipulation query is not a relation, but an integer number 

representing the number of tuples affected by the query. 

The granularity of the minimal algorithmic unit for accessing a relation corresponds to the 

basic functionality required for a sequential relational scan. For improved interoperability of 

this class of algorithmic units, we add functionality arising from the combinatory possibilities 

of applicability and exploitability in form of configurable parameters {  ,  ,  ,  ,  }. Al-

though more complex scan operators are generally possible, we will demonstrate that narrow-

ing the scope of a relational scan to this fundamental functionality provides extensive expres-

siveness, rich functionality, and sophisticated interoperability to the resulting compound 

operator. We will refer to this class of compound operators accessing permanently stored 

relations as scan operators. 

In the following, we will briefly discuss the impacts of the different configurable parameters 

on the functional scope of access methods, and we will also sketch possible evaluations 

techniques for retrieval queries. An in-depth discussion of various access method implementa-

tions, including data modification, integrity, and concurrency will be provided in Chapter 4: 

Architecture, followed by an extensive use-case analysis in Chapter 5: Proof of Concept. 
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2.5.1. Sequential Access 

Relations offer full abstraction from internal data representation. Therefore, the functional 

requirements for providing access to a relation are minimal: in the Iterator Model, a relation‟s 

only task is to traverse its data set and iteratively present one unaltered tuple after the other to 

its parent operator. For doing this, there must exist a linearization, allowing the operator to 

traverse the stored relation in a way that visits every tuple exactly once. There are no further 

demands to this primary linearization; no particular sort order is required, no selections, 

projections or other transformations occur. Every visited tuple is output unconditionally and 

unmodified. As a consequence there is no impulse whatsoever to exploit any characteristic 

features a particular representation of a stored relation might have. This is the primitive 

relational scan operator         on an arbitrary relation R. 

The host DBMS possesses all information required for resolving available access paths to a 

relation referenced in a database query, namely the attribute names and attribute types cov-

ered by any primary or secondary access path. This information is available from the system‟s 

data dictionary. If multiple alternative access paths are possible, then cost functions or heuris-

tics are applied for finding the most promising query plan. 

The estimated costs of pure sequential relational access, which are calculated by the scan 

operator‟s cost function, are primarily I/O related. One major cost criterion is the amount of 

data to be read for traversing a relation (compactness of representation). For example, an 

access path that stores compressed data may outperform another one using uncompressed 

representation in mere data retrieval, while incurring higher CPU costs for decompression. 

When processing relations by following their linearization, it is important to know whether 

there also exists a physical analogon to the logical primary linearization. This will make the 

difference between inexpensive sequential I/O and random I/O. In general, access structures 

do not actively enforce or preserve physical inter-page clustering when updated, because of 

the enormous costs this would inflict. But in practice, most databases are generated via initial 

mass loading processes. Such mass-loading often utilizes a preferred insertion order of the 

access structure, which generally corresponds to the access structure‟s primary linearization. 

Therefore, the bigger part of relations is physically clustered. This clustering is preserved in 

read-mostly database applications, where data is not undergoing massive modifications. 

Otherwise clustering can be restored using reorganization facilities provided by the access 

structures. Hence, the cost of a scan operator performing sequential access correlates with the 
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number of blocks to be read and their classification into sequential or random I/O. Our cost 

model expresses these different cost factors as alternative I/O event classes. The actual costs 

for events of each class are assessed by the host system, weighted under consideration of the 

available hardware resources, actual workload profile, and system configuration settings. 

In addition, an access method may actively contribute to the reduction of I/O costs by issuing 

block I/O request in a read-ahead/ write-ahead fashion against the DBMS‟s I/O subsystem. A 

first positive effect of this strategy arises from the possible combination of several individual 

requests into a batch of I/Os. Pooling a sufficiently large set of random I/Os allows reordering 

for near-sequential I/O behavior on disk-based secondary storage. Secondly, early scheduling 

of I/O operations, ideally well before data must be available for processing, permits overlap-

ping I/O operations with concurrent computational tasks, like decompression or query 

processing. Finally, the scan operator may consider the current cache situation by inspecting 

or estimating whether pages that are required in the near future are already present in the 

DBMS cache. While processing the relation, the scan will make arrangements for avoiding 

the replacement of these pages in the DBMS cache. This can be achieved by processing 

cached pages immediately, i.e. at the beginning of the scan operation, meaning that data is 

processed in an order that is different to the storage structure‟s inherent storage order. If such 

ahead-of-time processing is not possible, the scan operator may choose to prevent that re-

quired pages in the system cache are replaced by other operations, before they are processed. 

Instead of I/O costs, this operation will incur costs for temporal storage, because these cache 

frames are temporarily not available for replacement by other operations. The task of the 

operator‟s cost function is to accurately assess the costs events of processing an upcoming 

sequential scan operation, by considering its capabilities of employing the techniques de-

scribed above. 

2.5.2. Sorted Access 

The combination of a basic sequential relational access with a consecutive sort operation 

creates the first compound scan operator, which is capable of delivering an input relation   

according to a given lexicographical sort criterion  . 

As already stated, data must be linearized for storage on the linear address space of primary or 

secondary memory, i.e. all tuples are stored in accordance to some arbitrary order. Access 

paths exhibiting some significant linearization are often characterized as clustering access 

paths. If such clustering resembles a lexicographical sort order, this sort order can be ex-



CHAPTER 2: THEORY  69 

ploited when the relation is traversed during query execution. In addition to a primary lineari-

zation, data may also exhibit several secondary linearizations. These are maintained by 

auxiliary data structures such as chaining of records, or they are derived from the primary 

linearization using some functional dependency. Both primary and secondary linearizations 

may also allow navigation „backwards‟ through the data, permitting data retrieval in an order 

that is inverse to the actual linearization. 

SQL‟s data definition language deliberately chooses to provide no indication towards storage 

order, as one purpose of DDL is abstraction from the physical data representation. The DBMS 

system catalog, which is based on DDL, cannot provide this information either. Therefore sort 

orders, like all other configuration parameters, are negotiated exclusively by the access 

method‟s exploitability function  . This approach provides maximum flexibility for the host 

system in requesting arbitrary sort orders. 

Figure.15 Linearization and exploitable sort orders. The graphs show two possible linearizations of 

space spanned by a relation of two attributes a and b, each having a domain of 8 distinct values. In case (a) 

the linearization resembles the lexicographical order     . This can be directly exploited in query evalua-

tion. In case (b) the linearization is generated by bitwise interleaving the binary representations of a and b. 

Such linearization serves as space filling curve of the UB-tree, and it can only be exploited under consider-

able effort. 

If a sort criterion    is to be established on the data stream originating from a scan operator, 

then this scan operator may choose, in the course of negotiating exploitability, to accept this 

sort criteria completely as       , whereas      . This happens if     is compatible with 

a present data linearization, because the relation exhibits a linearization based on a lexico-

graphical storage order and     is a prefix of this order. Then data needs not to be sorted 

conventionally, but it will be accessed in the „right order‟, by exploiting the presortedness of 

the access structure. Thus, the access method absorbs the sort operation completely. Inside the 
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scan operator, the sort criterion serves as a mere directive how the data is to be accessed. This 

simple ordered scan operator relieves the DBMS from actually sorting a relation, offering 

massive savings on computational and temporal storage complexity. In addition, the ordered 

scan operator is a streaming operator, whereas the primitive sort operation is inherently 

blocking. 

In less ideal cases (cf. Figure.16 for examples), a sort criterion is not fully compatible with the 

available linearization                   , because linearization and sort criterion are 

matching only on a common prefix of attributes. Then the scan operator might still exploit 

partial presortedness and establish the demanded sort order by using an inexpensive non-

blocking partial sort   . 

Some clustered access methods use linearizations that are not suitable for sorted access. These 

linearizations favor other functionality over sorted sequential access. In the example of the 

UB-tree, the primary function of the employed space-filling curve (Figure.15b) is its ability to 

linearize multidimensional space, while preserving spatial vicinity, thus enabling efficient 

support for multidimensional range queries. Still, such access methods are well aware of the 

eminent importance of lexicographical sort orders in relational query processing, as the 

endeavor for sorted operations with the so-called Tetris algorithm ( [Mar99b], [Zir99]) on the 

UB-tree demonstrates. Such methods integrate seamlessly into the Access Manager model (cf. 

5.3 UB-Trees on page 194 for more details). Any scan operator may freely choose whether it 

can provide some requested sort order. By accepting a sort order, the access method guaran-

tees that its result tuples are sorted in accordance. There is no commitment whatsoever, as to 

how the sort order is actually achieved and the scan operator may employ any sort algorithm 

of its choice. The higher costs for providing a lexicographical sort order by means of built-in 

reordering has to be reflected adequately in the operator‟s cost function, typically in form of 

computational and temporal storage complexity. 

Finally, if the relation cannot be accessed along the attribute with the highest weight in the 

sort criterion, the scan operator degrades into its original components, i.e. a sequential unor-

dered relation scan and a blocking full sort operation (       and       ). The following 

example demonstrates possible outcomes of negotiating sort orders of scan operators. 

SELECT a,b FROM R ORDER BY a,b 
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Figure.16 Sort order compatibility. Overlapping available presortedness and requested sort order. The 

scan operator absorbs the maximum common sort prefix. In (a) the scan operator manages to cover the 

complete sort criterion, the original sort operation becomes obsolete. In (b) a prefix matches, the scan 

operator result undergoes a final non-blocking sort operation, which relies on presortedness via its applica-

bility directive   . Similarly, the UB-tree would absorb    and establish this output order by means of its 

integral Tetris algorithm. In (c) the sort criterion is not exploitable and the scan‟s result needs to be sorted 

with a conventional blocking sort operator. 

Exploiting clustering averts costs for applying a conventional sort operation on the scan 

result, but ordered scans are not free of costs either. Processing a relation under a full order 

constraint can limit and even prevent beneficial strategies, such as prefetching and effective 

caching. An ordered scan operator must not start by processing pages that are readily availa-

ble in cache, if these pages are not the first pages according to the sort criterion. Consequen-

tially, these pages are at risk of being replaced, because their cache frames are assigned to 

other data, before the scan reaches and processes them. Therefore, the scan‟s order constraint 

will incur direct costs by necessitating repeated reading of pages, or indirect costs by blocking 

scheduled pages in cache until they are processed, and thereby limiting the number of repla-

ceable cache frames.  

When an ordered scan pursues a logical linearization, then the resulting I/O profile is likely to 

resemble random I/O, if the logical linearization does not correspond to physical clustering. 

Even with prefetching, this effect cannot be fully compensated. When prefetching a batch of n 

pages, the I/O subsystem will retrieve those pages in an unpredictable order, determined by 

the requested block‟s physical layout on the storage device. Yet, an unordered scan can 

process any page immediately as soon as its I/O operation is completed, allowing to subse-

quently release the associated cache frame, which becomes immediately available for other 

purposes, e.g. for the next I/O batch. In case of an ordered scan conducted in batches of n 

random I/Os, an average of 
 

 
 pages are completed before the one page becomes available, that 

is logically the first one to be processed. In other words, half of a prefetch batch is completed 

and its result is retained in the system cache, occupying valuable cache frames, but these 
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frames can neither be processed nor replaced because of ordering constraints. In consequence, 

is this leads to poor overlapping of I/O operations and processing of retrieved pages, since 

query evaluation starts only when the first logical page becomes available, i.e. processing 

begins only after an average of 
 

 
 pages have been retrieved. This leads to fluctuations in 

cache and CPU utilization, with adverse impact on the overall system performance characte-

ristics. Therefore, ordered scans still inflict additional costs over unordered scans, although no 

actual sorting is performed. 

Contrary to possible performance penalties of sorted retrieval, mass-insertion may benefit 

from data being delivered in an adequate order. For example, if the insertion order corres-

ponds to the access path‟s primary linearization, then data insertion is conducted in one single 

traversal along the primary linearization, achieving a higher locality and consequently a lower 

I/O profile. Access structures can express their request towards a favored lexicographical sort 

order by means of applicability directives. But if the desired insertion sort order does not 

correspond to a lexicographical order, as it is the case for UB-trees, such a special order 

cannot be produced by conventional sort operators in a QEP. In this case, the access method 

has either to implement its own sort operation or relinquish this form of performance im-

provement. The UB-tree‟s Tetris algorithm [Mar99b] represents such an integral sort opera-

tion, which exploits a sort order on one single index attribute for fitting data into the lineariza-

tion with inexpensive partial sort operations. 

In summary, the ordered scan operator offers a genuinely new feature compared to its primi-

tive components. If the data is structured along an adequate linearization, this operator pro-

vides the concept of a scan position with navigation forwards (and optionally backwards) 

relatively to its current position and according to the given sort criterion. This concept is of 

fundamental importance for efficient processing of relational queries. 

2.5.3. Selection 

Combining relational access with selection introduces the concept of direct access to the 

resulting scan operator, as opposed to the sequential traversal used in the relational calculus. 

The specification of a selection predicate on k attributes of the form               is 

equivalent to the specification of constant coordinates           for positioning in the k-

dimensional space spanned by the domains of the attributes        . These kinds of selec-

tion predicates are generally referred to as point queries. If direct access is supported by the 

data representation of an auxiliary index structure on relation  , this allows answering point 
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queries with sub-linear complexity, typically           or even      , depending on the 

actual index structure. If combined with linearization, considerable navigational capabilities 

arise, allowing to position the scan freely at any coordinate and then to move forwards (or 

backwards) following the space-filling curve traversing the multidimensional space. 

The combination of these concepts makes it possible to answer so-called range queries of the 

form         
          

            
          

        
       

   efficiently. 

Such predicates define ranges in multiple dimensions spanned by the attributes‟ domains, 

resembling multidimensional query boxes. A possible algorithm for processing such query 

boxes starts by positioning the scan on the lowest coordinate (relating to a chosen lineariza-

tion) inside the query box spanned by the selection predicate. Then the scan follows the 

chosen linearization and returns tuples as long as they are inside the query box. If the space-

filling curve leaves the query box at some point, the scan operator uses its random access 

capabilities to position the scan on the next entry point along the linearization. With this skip-

scan-algorithm, which represents a generalization for arbitrary linearizations of the UB-tree‟s 

Range Query Algorithm [Mar99a] or the composite B-tree‟s Skipper Technique [Ram02], it is 

possible to calculate the result of any given query box. Whether this algorithm is also effi-

cient, depends on the number of necessary skip operations and on the cost ratio for position-

ing compared to the expenditure of sequential scanning. It is also important to note, that the 

effective amount of data to be retrieved from secondary storage is typically higher than the 

exact volume of the query box, since data is usually retrieved from a block I/O device. Con-

sequently every page contributing to a minimal coverage of the query box has to be retrieved 

completely, in order to satisfy the selection predicate. 

An alternative to the skip-scan algorithm also starts by positioning the scan at the lowest 

coordinate of the query box. But then it continuously scans forward until it reaches the highest 

coordinate of the query box. While scanning, all tuples are validated against the selection 

predicate and inappropriate data is discarded. In contrast to the first algorithm, this alternative 

typically involves more I/O, but it also has a sustained and more predictable I/O profile and 

thus may outperform the first variant by employing smart prefetching. 
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Figure.17 Query box evaluation techniques. Three examples for evaluating one query box (dashed box). 

In (a) and (b) the skip-scan algorithm is applied on two different space filling curves. In both cases the 

amount of retrieved data (dark blue) represents a minimal coverage of the queried data. In (c) the algorithm 

chooses to scan sequentially along the linearization, instead of skipping data. An interesting strategy, if 

skipping is more expensive then retrieving and filtering extra data. 

Whether a scan algorithm employs any of these techniques, or other possible algorithms, is 

left to the operator and its implementer to decide. The essential criterion for correctness is the 

compliance of the scan output with the selection predicate. If alternative access paths are 

available, they must provide sufficiently accurate cost estimations for supporting the query 

optimizer in choosing the best access path for a given task. 

To match the expressiveness of SQL, we now extend the concept of multidimensional query 

boxes. Query boxes are defined as intervals in one or more dimensions, or formally 

       
       

       

SQL allows the specification of several such query boxes when accessing a relation and also 

permits logical combinations (AND/ OR/ NOT) of such regions. This form of conjunction and 

disjunction of sets of multi-attribute range queries in selection predicates is the scope of 

selection predicates for index structure implementations anticipated by the Access Manager 

framework. The framework does not limit the solution domain for this problem, but it limits 

the problem description domain to multi-attribute selection predicates that can be expressed in 

conjunctive normal form: 
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This limitation is necessary for providing a well-defined interface for negotiation and for 

exchanging selection predicates between host system and custom algorithmic units. 

Until now, we silently assumed that an access path can enforce all kinds of restrictions evenly 

on all of its fields. This is not true in general. Actually, an access path is likely to provide 

direct access capabilities only to a subset of the attributes in its relation, and even for these 

attributes the restrictions are enforced with varying quality. The DBMS host system only 

knows attribute names and attribute types of a relation from its data dictionary. Therefore it 

must use negotiation based on exploitability for identifying those restrictions that are effi-

ciently enforced by the scan operator. Consider the predicate                and a B-tree 

access path on attributes           . Only the restriction on attribute prefix    is efficiently 

supported by the access structure, while the restriction on     is enforced by subsequent 

conventional filtering. In this scenario, it seems advisable for the scan only to concentrate on 

filtering    and to ignore the other restrictions. This means that the scan operator will accept 

only the exploitable part    of the original selection predicate   , while the other part    is 

rejected, i.e.          . In this example            
 and            

. The result of the 

scan operation is then post-filtered in a second step against the rejected predicate, in order to 

retrieve the final result set. More generally, the predicate accepted by the scan operator as    

serves to efficiently reduce the retrieved tuples to a superset of data satisfying the complete 

predicate. In some cases, as in the example above, the predicate of the post-filtering step    is 

simplified compared to the original predicate, but in general post-filtering will be forced to 

test the original predicate    completely. 

The decision how to split the predicate is made by general negotiation. With this, the algo-

rithmic unit is relieved of supporting every possible kind of predicate and it may also delibe-

rately refuse to enforce restrictions that it cannot support efficiently. 

2.5.4. Projection 

Integration of projection into the scan operator allows reordering attributes as required for 

consecutive operators. Attributes that are not needed afterwards, in particular those that are 

only used in the local selection predicate or sort criteria, are eliminated. Projection may lead 

to cost reduction by transporting leaner tuples to the next operator. This cost reduction may be 

insignificant for streaming subsequent operations, but if a blocking operator follows, it be-

comes highly attractive, because of reduced temporal storage requirements. To compensate 

for missing configurable projection capabilities   , the query optimizer may always insert a 



76  2.5 SCAN OPERATOR 

standard projection in form of   . Even if the supplementation of projection as configurable 

component of a scan adds comparatively little functionality and efficiency to the compound 

scan operator, its importance for the coherence of a query plan through elimination of aux-

iliary projections should not be underestimated. 

There also are cases, where an integrated projection may directly influence costs and perfor-

mance. If, for example, an access path uses vertical partitioning for storing its data, then a 

projection reducing the number of attributes will result in direct reduction of I/O volume and 

computational costs, since only the requested columns have to be retrieved. A corresponding 

example can be found in section 5.9 Data Partitioning. 

2.5.5. Distinction 

Distinction      is typically implemented to operate on a sorted stream. The actual sort order 

is irrelevant for the algorithm, but the sort order must cover all attributes of the tuple stream, 

for being useful. This allows direct comparison of the current tuple      with its predecessor 

   on the stream. Matching duplicates are discarded immediately. If consecutive tuples do not 

match, then      is output, as it represents a new distinct value, and henceforth it will also 

serve as the new reference tuple for comparison against subsequent input tuples. This algo-

rithm is inherently non-blocking, but as it relies on an input sort order, the preceding sort 

makes the operation de-facto an expensive blocking operation. 

Clearly a much more efficient solution exist, if an existing linearization of a relation can be 

exploited. The scan operator can employ a technique similar to the skip-scan algorithm for 

circumventing sorting and preserving streaming. Therefore, the algorithm positions onto the 

first tuple with respect to linearization, which is also the first representative of a group. In the 

following step, the algorithm uses its direct access capabilities to position onto the first 

representative of the next group, bypassing all duplicates of the same group. This technique 

can be effectively combined with restrictions and projections, as the following example 

illustrates. 

SELECT DISTINCT a FROM R where b>c0 
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Figure.18 Distinction and linearizations. The exploitability of a scan operator makes it possible to exer-

cise projection, selection and distinction directly on the physical data representation. This technique is 

interesting, if the cardinality of attribute a is low, since this limits the number of necessary scan reposition-

ing. 

2.5.6. Representation 

Representation is the final configuration parameter. It enables a relational scan to participate 

in a succession of operators exchanging data in non-standard representation. This form of data 

exchange offers tight integration of consecutive algorithmic units. It typically comes into 

consideration, if the negotiation process yields full exploitability and all other functional 

configuration parameters have been absorbed without exception, i.e. 

                              . If this precondition is not met, then the imple-

mentation of a non-standard connector is required for providing necessary adaptations in non-

standard representation. Finally, if such a non-standard connector is unavailable, then data 

exchange has to be conducted in standard representation. 

The benefits of using data in non-standard representation as input or output apply also for 

relational scans in a most notable manner. The data exchange format is relieved from the 

burden of using a predefined, inflexible representation. Operators can freely establish whatev-

er form of communication is most convenient for the task at hand. As an example, imagine a 

scan on a bitmap index. The most prominent advantage of bitmap indexes is the compactness 

of the bitmap representation, amplified with additional compression. This representation 

proves itself not only advantageous for storage, but it is also highly suitable for efficient 

intersection and union operations on bitmap structures. Likewise to a bitmap index implemen-

tation, any custom relational scan operator may be accompanied by a family of relational 

algorithms operating on the same specialized data representation. The bitmap example will be 

pursued in greater detail in the chapter 5: Proof of Concept. A second application will also be 
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presented in the course of discussing advanced query processing techniques for B-tree and 

UB-tree access methods. 

2.6. Chapter Summary 

In this chapter, we derived the theoretical foundations for a framework allowing general 

extensibility of the stash of algorithmic options of a host RDBMS. The main focus lies on 

access methods to secondary storage. The design goal was to supplement alternative relational 

operators as extensions to an operational DBMS. Intrinsic components of the host system 

remain unaffected by these extensions, in particular SQL compiler, query optimizer, and 

query evaluation engine. These system components merely issue calls against a uniform 

interface implemented by all DBMS extensions. In addition, the host system exports a set of 

functions for providing access to diverse DBMS functionality. This architecture provides 

substantial flexibility when implementing relational operators, while averting all requirements 

for modifications of the host system. 

Starting from the general Relational Algebra, we developed a model that allows the provision 

of arbitrary alternative algorithmic implementations for ERA expression within the expres-

siveness of the host DBMS. We determined a sensible granularity of equivalent ERA terms 

for such algorithmic extensions and presented configurable parameters to ensure interopera-

bility with other components in a query plan. We demonstrated how the host system will 

employ configuration of algorithmic units during query planning and presented a generic cost 

model to be used in cost-based query optimization. 

Finally, we examined the impacts the model of configurable algorithmic units has on relation-

al scans, which are our primary concern. We demonstrated that a minimal relational scan 

operator, in combination with functionality that arises from its configuration, opens a wide 

range of algorithmic opportunities to exploit peculiarities of the physical representation of an 

access method. Therefore, our framework exhibits sufficient flexibility for profound imple-

mentations of auxiliary access methods. The instrument of exchanging data in non-standard 

representation between independent operators allow the implementation of families of tightly 

coupled relations, indexes and relational operators, tailored for a particular application do-

main. 
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3. Related Work 

A rich body of scientific publications exists in the field of database system extensibility, 

contemplating DBMS customizations from comparatively small scales, like user-defined data-

types and functions, over enhancement of complete DBMS components, like optimizers and 

buffer managers, up to building specialized systems from scratch, using predefined building 

blocks in „generator‟ or „toolkit‟ approaches. Common to all approaches is the idea of reusing 

an existing DBMS code basis and adapt it to a specific application domain. 

3.1. Overview 

A structured survey of existing work on DBMS extensibility is provided in [Dit01]. Besides 

presenting an extensive motivation for extensible database systems, the editors indentify 

important goals and also classify existing achievements in DBMS extensibility. They coin the 

general notion of CDBMS (component database management system) as a skeleton architec-

ture for DBMSs that allows database users or third-party suppliers to extend a well-defined 

core system by adding new application specific functionality in form of components, allowing 

customization of the system by highly innovative experts in a given application domain, 

which naturally is not always the DBMS manufacturer. On this high level of abstraction, a 

component represents a coherent set of functionality, bound into an explicit software artifact 

with a formally defined interface. Apart from their interfaces, components function as black 

boxes, i.e. their implementation details are unknown. Each component adds either new fea-

tures to the base system, or it serves as replacement for an existing module. In any case, 

individual components should exhibit maximal independence from each other, for promoting 

their immanent potential for reuse. A priori, the scope of functionality provided by such 

components is not limited. They may comprise general concepts like handling custom data 

types, integration of non-standard data models, DBMS adaptations in form of functional 

extension and replacement of existing DBMS modules, but also „downsizing‟ of DBMS 

functionality that exceeds application requirements, and finally management and integration 

of external data sources. All these aspects contribute to the overall goal of providing a DBMS 

with the flexibility to adapt to a specific applications domain, instead of adapting the applica-

tion to the requirements and capabilities of the database system. A common property of all 

CDBMS approaches is that components are extending functionality, while some basic DBMS 

framework provides the „glue‟ to integrate these components into a sound system. Hence, 



80  3.1 OVERVIEW 

such frameworks define and restrict the ways in which the DBMS can be customized, but they 

also define the notion and the functional scope of a component. [Dit01] presents several 

CDBMS architectures and generalizes them into a formal, structured abstraction of DBMS 

extensibility. The remainder of that survey consists of a selection of papers discussing con-

crete approaches and aspects of existing extensible DBMS, some of which have been made 

available in commercial DBMS products. Although the book was released in 2001, and some 

of its contributions are dating back into the late 80ies and early 90ies, it still reflects the 

current state-of-art in DBMS customizability available today. As a consequence, the central 

perception from the book‟s foreword still holds, claiming that the presented technologies 

“contribute only very modestly to the lofty goals” of the ambitious agenda on DBMS extensi-

bility. We concentrate on the main contributions of the editors, who assemble a quite com-

plete summary of important properties of abstract extensible DBMSs and also devise an 

elaborate classification of general approaches to DBMS extensibility. We will employ this 

classification for identifying approaches that are related to our own concept and we will use 

their criteria for effective evaluation and differentiation of alternative approaches. The afore-

mentioned classification distinguishes four general categories of CDBMSs, namely plug-in 

based CDBMS, middleware approaches, service-oriented DBMS, and configurable DBMS. 

Plug-in components are unspecific software artifacts that are added to an existing and other-

wise complete DBMS with standard functionality, in order to augment it for a specific pur-

pose. The DBMS provides necessary facilities for hosting such extensions, in form of compo-

nent interface specifications, instrumentation for designing, adding, and testing components 

and finally the means to employ such components in suitable operational scenarios. Plug-in 

components cover abstract data types (ADT), user-defined functions and stored procedures 

(UDF). ADTs are structured types, composed from primitive database types, allowing sup-

plementary concepts like sub-typing and inheritance [Fuh99]. UDFs implement non-standard 

functionality and thereby extend declarative SQL with procedural concepts like scoped 

variables, loops, branches, and sub-procedure calls. They also allow implementation of 

specialized operations and predicates on non-standard data types. When associated with 

ADFs, they eventually imitate the general paradigm of object-orientation, including encapsu-

lation and inheritance. Such extensions bridge the gap between an application‟s object-

oriented data types, originating from the application domain, and the limited type system of 

classical RDBMS. They are subsumed under the general concept of object-relational DBMS 

(ORDBMS). However, these concepts are already well understood, and have been standar-

dized in the third major SQL standard revision [ANSI99] and are ever since prevalent in 
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database technology. More sophisticated representations of plug-in components allow custo-

mization of complex relational operators, such as user-defined aggregations. The most ad-

vanced stage of integrating application logic into the DBMS is constituted in customized 

access methods, allowing efficient storage, maintenance, and retrieval of data, while preserv-

ing data structure and semantics from the application domain to a large extent. Such advanced 

plug-ins often concentrate on function-based indexing, i.e. secondary indexes based on some 

user-defined mapping, supporting data retrieval by applying natural predicates on domain-

specific data that are not covered by the SQL standard, e.g. contains() for text documents or 

overlaps() for spatial data. After this mapping is applied, data is typically stored in one of the 

DBMS‟s built-in index structures, like B-trees, bitmaps, or hash indexes. The possibility to 

extend a DBMS with alternative base table structures and entirely new secondary access 

structures is usually not supported by available extension interfaces. A common observation 

in plug-in component systems is a domino-effect, where extensibility of one module stringent-

ly requires modifications to other DBMS modules, e.g. extensible indexing may necessitate 

adaptations to the query optimizer, storage layer, buffer manager, and concurrency control. 

Hence, the designers of extension interfaces must decide where this dependency chains are 

broken, in order to provide a sound and intelligible interface with a reasonable amount of 

flexibility. Secondary design goals are minimization of implementation complexity for new 

plug-ins, safe and reliable extensibility without compromising the integrity of the host system, 

and finally the prospect of a significant performance benefit is required for motivating plug-in 

development. The Access Manager approach clearly qualifies as plug-in component architec-

ture, but it assumes that basic ORDBMS concepts such as ADTs and UDFs are already an 

integral part of the host system. In contrast to most other plug-in CDBMSs, its focus lies on 

storage and retrieval facilities, but its concept also covers extension of arbitrary relational 

operators. 

The main focus of the middleware approach is the integration of external data sources, namely 

the combination of independent DBMSs into a Multi-DBMS, respectively integration of 

arbitrary heterogeneous information systems and other external data sources (files, e-mails, 

web), but also transient data such as information on the state of an operational system or a 

sustained stream of sensor data. In this approach, extension of a DBMS is accomplished by 

middleware components functioning as wrappers of individual data sources, leveling hetero-

geneous data models and concealing the physical location of distributed data sources, and 

eventually establishing a homogeneous, location transparent, logical view on the complete 

collection of data. With this, heterogeneous data sources are unified by transforming and 
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exchanging data in an intermediate data exchange format, facilitating data integration into 

global query processing and transaction management. The unification of data sources also 

represents the central challenge of middleware CDBMS architectures, as the individual 

capabilities of data sources may vary on a broad spectrum, concerning supported query 

languages, data models, transaction capability, concurrency control, etc. As a matter of fact, 

middleware approaches are a logical consequence of plug-in components. The transition from 

user-defined value functions to user-defined table functions is relatively simple. Table func-

tions produce a result set (table) by iteratively returning one row at a time. If the returned data 

originates from some remote data source, then table functions obviously qualify as a middle-

ware component. Nevertheless, table functions are comparatively primitive representatives of 

the middleware components, as they provide read-only access and support neither global 

query optimization nor distributed transactions. Yet their classification blurs the differentia-

tion between plug-ins and middleware components. Consequently, most plug-in component 

systems also incorporate some aspect of the middleware approach. This is also true for the 

Access Manager architecture, whose condensed data access interface possesses all relevant 

properties for effective integration of heterogeneous, remote data sources. As a consequence, 

the Access Manager framework handles internal and external data sources equally on a 

location transparent level. 

The service-oriented class of CDBMS divides the functionality of a monolithic DBMS into a 

collection of stand-alone database services. Here the term component addresses such a data-

base service implementing an „unbundled‟ subset of DBMS functionality, e.g. persistence 

services, transaction services, concurrency, query processing, etc. As each service is fully 

independent from other services, an application may dynamically compose the DBMS func-

tionality it requires for its own operation, by requesting the corresponding services through 

service broker mechanisms. The interfaces of services for a particular purpose are standar-

dized, allowing exchangeability of compatible service implementations. The goal of this 

approach is not extensibility or customizability of an existing monolithic DBMS, but rather 

the dynamic composition of a DBMS for a specific purpose. CORBAservices [Obj95] are an 

example for a standardization of such services by the Object Management Group (OMG). But 

besides establishing the basic principles, this approach is of little practical relevance. And as 

extensibility is not the primary objective of service-oriented CDBMSs, they share only very 

little similarity with our own approach. 
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The fourth class of CDBMS consists of configurable DBMS. In contrast to their service-

oriented counterparts, where services are fixed and standardized parts that may be combined 

to form a complete DBMS, the components of configurable DBMSs correspond to subsys-

tems, each implementing a subset of DBMS functionality, but neither interfaces nor the 

partitioning of functionality is initially fixed. In this conception, an operational DBMS is 

entirely composed of such components and there is no framework enforcing interoperability. 

There exists however an architecture model, defining the functionality of an individual com-

ponent class. But this model is not fixed, allowing adaptation of component classes to new 

requirements and the definition of new component classes. The process of obtaining a func-

tioning DBMS is a configuration process, where the DBMS implementer selects from a set of 

reusable components, or builds entirely new components, where each component implements 

some aspect of the desired functionality. Configuration allows mixing and matching compo-

nents in such way that they integrate into a sound system. Again, this concept deviates strong-

ly from the Access Manager approach, which is based on a strict framework, with an invaria-

ble host system at its core and a well-defined extension interface with compulsory interopera-

bility protocols. 

In the following, we will analyze several concrete examples of relevant CDBMSs, for provid-

ing a more detailed overview of existing technology. Wherever possible we will seize the 

opportunity to illuminate similarities and deviations with our own approach. 

3.2. Production Systems 

In the first part of our survey, we will concentrate on available CDBMS technology in indus-

trial strength implementations, by reviewing several commercial and one open-source system. 

3.2.1. Informix 

The most powerful but highly complex technology for DBMS extensibility is available in the 

Informix Dynamic Server (IDS), which was acquired by IBM in 2001. Since then, IDS 

development is pursued in a branch parallel to IBM‟s primary DBMS product DB2, with 

particular focus on OLTP and embedded system environments. The IDS supports integration 

of DataBlade [Ube94] packages, allowing for extension and modifications on several layers 

of the host system. IDS‟s inherent ORDBMS concepts like ADT, UDFs and user-defined 

aggregates add to the system‟s ability to adapt to specific application domains. The most 

significant parts of the DataBlade technology are the Virtual Table Interface (VTI, [IBM03a]) 
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and the Virtual Index Interface (VII, [IBM03b]), both based on the Iterator model, designed 

with focus on embedding external data as „virtual‟ tables into the DBMS. The availability of 

these interfaces resulted in numerous DataBlade implementations for external data access, e.g. 

C-ISAM, text, image and video, spatial, geodetic, web, GiST (generalized search trees, see 

also 3.3.1) and GIN (generalized inverted indexes) integration. It is also possible to use VTI 

and VII for internal storage within the system‟s so-called „smart blobspace‟, which is a 

dedicated IDS storage area for binary large objects (BLOB) of arbitrary contents. But even for 

internal storage, many essential DBMS concepts such as transactional contexts, buffer man-

agement, concurrency, locking, logging, and recovery are not commonly supported. They are 

left to the Blade-developer as an almost unbearable burden. VTI and VII offer many neces-

sary concepts for effective development of genuine alternative access methods, but owing to 

the primary operational area as gateway to external data, they suffer from missing integration 

into the storage, concurrency, and recovery facilities of the host system. 

3.2.2. Oracle 

Since version 7, Oracle incorporates extensibility support in form of stored procedures within 

their database product, and with version 8 the first object-relational Oracle DBMS became 

available in 1999 ( [Ora02], [Ora03]). This system possesses all typical ORDBMS features, 

i.e. an extensible type system and a server execution environment for UDFs. Beyond basic 

object-relational functionality, Oracle supports user-defined operators for selection and 

aggregation, function-based-indexing, access to external data sources and an extensible 

optimizer. The functionality for a specific application domain is provided in form of dedicated 

modules named Data Cartridges. A Data Cartridge integrates into the host system via the 

ODCI (Oracle Data Cartridge Interface), which is constructed of several components, each 

dedicated to a specific purpose. The interface for extensible secondary indexing is based on 

the Iterator model and data is stored internally in IOTs (index-organized tables), e.g. by 

operating a high-level procedural SQL (PL/SQL) interface. External storage is in principle 

possible, but it requires a considerable amount of code effort for maintaining consistency, 

backup, recovery, allocation, etc. As a lightweight alternative, the definition of a functional 

index on the mapping of column values using a user-defined function, offers lookup and 

materialization capabilities of pre-computed values. The concept of Abstract Tables allows 

access to external data outside the host DBMS. It provides a permanent reference to remote 

data in the system catalog, much like a view definition providing location and credentials for 

accessing a remote data source. The actual access is conducted over the Iterator-based ODCI. 
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A noteworthy characteristic of ODCI, in comparison to most other approaches, is its provision 

for extending the host system‟s optimizer with selectivity and cost estimations for user-

defined operators. In summary, ODCI provides support for user-defined secondary indexing 

based on built-in underlying access structures, to be used for functional indexing. Access to 

external abstract tables is limited to full table scans and lookup of row ids (RIDs), resulting in 

possibly severe performance limitations. Implementation of alternative primary and secondary 

access structures is clearly beyond the scope of ODCI. 

3.2.3. IBM DB2 

In 1995, IBM presented its first object-relational extensions to the DB2 RDBMS, which were 

augmented and completed in subsequent releases of the DB2 Universal Database System 

(UDB) product. In addition to standard ORDBMS features (ADTs, UDFs, etc.), DB2 also 

comprises a framework for extensible user-defined indexing and access to external data 

sources. Such specialized functionality is available in prepackaged collections called Extend-

ers, each dedicated to a certain application domain. Among the presented extensible DBMS, 

DB2 provides the most elegant indexing framework with respect to implementation complexi-

ty [IBM02a], [IBM02b]. To build a new index type, a programmer has to provide at most four 

user-defined functions that are used as hooks in the actual indexing framework operating a 

classic B-tree structure [Sto03]. Although tempting in its convenient simplicity, this approach 

suffers from its restriction to one single B-tree for indexing. Therefore, this interface is 

suitable for functional indexing, but it is not adequate for developing alternative indexing 

methods. The convincing usability of this approach motivated the discourse on its usability as 

a template for generic functional indexing (cf. section 5.7) in the Proof of Concept chapter of 

this thesis. 

In addition, DB2 can be coupled with autonomous external information systems (IS), such as 

spatial databases, text retrieval systems etc. The system allows maintaining foreign key 

references through special user-defines types (e.g. „handles‟ defined by the external IS) to 

external data and provides mechanisms to process predicates or retrieve external data by 

exploiting these references. 

3.2.4. Microsoft SQL Server 

The SQL Server possesses all typical ORDBMS functionalities for providing standard exten-

sibility. Apart from this, Microsoft pursues a radically different approach to DBMS extensi-

bility compared to its competitors, which is based on the OLE DB framework (Object Linking 
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and Embedding for Databases). The SQL Server gains advanced extensibility with its ability 

to participate actively in an OLE DB network interconnecting heterogeneous, distributed data 

sources. 

The OLE DB framework is capable of assembling complex networks of heterogeneous OLE 

DB data providers and OLE DB data consumers, possessing highly flexible interfaces for data 

retrieval and data manipulation. Interface factoring and dynamic introspection allows each 

component to implement that subset of the complete OLE DB specification it finds conve-

nient for modeling its actual capabilities. For example, primitive data providers allow for-

ward-only, read-only access to their data, while complex data provider possess elaborate 

query language support for defining fully scrollable and updatable result sets. In addition to 

conventional relational navigation through data sets, they may allow hierarchical navigation 

(e.g. for navigating along referential constraints between relations) and navigation through 

heterogeneous collections of data. Such navigation is typically supported by adequate access 

paths that are inherently available as part of the data provider implementation. Data is ex-

changed in a common data representation, equipped by conversion and binding mechanisms, 

and enriched with metadata information. OLE DB components embrace the object-oriented 

paradigm by enabling the general concepts of encapsulation, sub-typing, and inheritance. In 

addition to composition of networks of data providers and consumers, OLE DB devises 

services as a third type of middle-tier components, functioning as consumer and provider at 

the same time. Services can bridge deficiencies between the capabilities of data providers and 

requirements of data consumers, by enabling additional abilities like data caching or relational 

querying processing on primitive data providers. Finally, this general approach allows the 

SQL Server (and any other DBMS) to function as data provider, but also as data consumer. 

The SQL Server‟s internal components also expose OLE DB interfaces, e.g. the relational 

query engine and the storage layer. Hence, the relational engine, acting as a data consumer, 

may connect to arbitrary data providers, whose individual capabilities may be leveled using 

OLE DB services like cursor services, data transformation services (DTS for ETL), OLAP 

services etc. OLE DB driver implementations are available for many applications and file 

formats is the Microsoft product family. Additionally, generic data providers based on com-

mon DBMS APIs like ODBC or JDBC, allow interconnectivity with all DBMSs conforming 

to these standards. 

Conceptually, the OLE DB framework is very powerful, but it suffers from its high complexi-

ty, described in what the authors themselves call an “excruciatingly detailed specification” 
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(cf. [Dit01], page 172). The recognition of this shortcoming resulted in the specification of the 

ADO interface on top of OLE DB, as a tailored abstraction layer for application developers, 

hiding much of the OLE DB complexity. Also, in spite of its high complexity, OLE DB is not 

complete, as the integration of the Microsoft Search service (file system full text search) into 

an OLE DB component necessitated specialized adaptations beyond the scope of OLE DB, 

for resolving optimization, indexing and security issues (cf. [Dit01], page 164). The com-

plexity of the interface specification results in high flexibility when composing OLE DB 

networks, but it also promotes an important weakness. If one component in this extensive 

network fails to comply with the complex specification, data integrity is jeopardized, resulting 

in a high potential for instability of the overall system. Also, maintenance and replacement of 

individual components in a network may provoke adverse behavior through unpredictable 

side-effects. 

OLE DB and the Access Manager framework possess several analogies. Any access method 

can be seen as a data provider. Access methods may be stacked, i.e. a layer consumes data 

from the underlying layer and provides data to the layer above, just like an OLE DB service. 

In addition, each layer may choose to inherit, reuse, or overwrite functionality of an underly-

ing layer. Finally, the host DBMS functions as a data consumer, retrieving data from all 

connected sources and submits it to query processing. But in contrast to the extensive OLE 

DB specification, the lean Access Manager interface is significantly more intelligible. The 

main difference however, is the Access Manager interface‟s emphasized support for global 

query optimization. 

3.2.5. MySQL 

Like any other representative of the class of open source database systems, MySQL [Ora10] 

(owned by Oracle Corporation) is predestined for customizations of the system, since the 

availability of the complete source code allows arbitrary intrusion into the system core. But to 

the best of our knowledge, extensions of the indexing framework are not actively encouraged 

by the system, as MySQL does not offer a dedicated, explicit, and documented interface for 

custom access methods. But in terms of extensibility, MySQL offers a different, genuinely 

unique approach. Instead of integrating alternative access methods, MySQL supports the 

replacement of the complete storage layer. To date, at least four distinct MySQL storage 

systems are available, namely MyISAM, InnoDB, MEMORY, and NDB (Network Data 

Base), each with its own set of capabilities with respect to transactional isolation, lock proto-

cols, recovery, partitioning, and in particular with different index methods. The combination 
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of all storage layers supports B-tree, Fulltext, Hash, and R-tree indexing, but no single layer 

implements all four access methods. Hence, for implementing custom indexing methods, a 

developer has to attain a deep understanding of the internal workings of at least one storage 

layer, but possibly also of adjoining subsystems. This obviously results in a tremendous 

implementation and maintenance effort. 

3.3. Research Prototypes 

In the second part of our survey, we will present promising alternative approaches to DBMS 

extensibility that are not openly available in commodity database technology. Still it is likely 

that some of these findings have been incorporated into the design of internal interfaces of 

commercial DBMSs, serving for structured and systematic proprietary extensibility when new 

functionality is integrated into the system core by the DBMS vendor. 

3.3.1. GiST 

The framework for Generalized Search Trees (GiST) [Hel95], [GiST90] defines the minimal 

common interface required for implementing generalized tree-based indexing structures and a 

number of such indexing structures have been made available as GiST modules, including B-

tree and R-tree implementations. GiST has been used mainly in research prototypes using 

libgist, a stand-alone, file-based GiST implementation. However, all aspects of a surrounding 

database system are missing. Although there have been noteworthy efforts for integrating 

GiST into a major DBMS, e.g. into Informix Dynamic Server and PostgreSQL [Kor99], and 

into Oracle [Kle03], [Döl02], these solutions are not widely accepted. Still, the universality of 

this approach [Kor99], [Kor00] together with available advanced concepts like concurrency 

considerations [Kor97] or nearest neighbor search [Aok98], makes the available GiST proto-

types interesting candidates for a possible integration into the Access Manager framework. 

3.3.2. Starburst 

IBM‟s Starburst [Haa89] project (1984-1992) resulted in the prototype of an operational 

extensible RDBMS. Starburst possesses an extensible query language (Hygrogen). In addi-

tion, the system is functionally extensible via plug-ins, e.g. relational operators and access 

methods called Low-Level Plan Operators (LOLEPOPs), representing algorithmic entities 

used by the system‟s query processor. An extensible query optimization mechanism, using 

rule-based query graph transformations on the algebraic representation of a query plan 

[Pir92], accepts definitions of supplemental grammar-like production rules, called Strategy 
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Alternative Rules (STARs) [Loh88]. After a succession of non-terminal transformations using 

STARs, the grammar finally maps algebraic query plan operators to algorithmic LOLEPOP 

terminals. Both STARs and LOLEPOPs may demand certain properties in order to be applied 

in a query plan, e.g. some specific input sort order. Starburst‟s ‘glue’ mechanism establishes 

necessary requirements by installing auxiliary operators for permitting STAR transformations. 

A query plan composed completely of LOLEPOPs is submitted to cost estimation, before it 

eventually qualifies for evaluation. The impact of the Starburst approach is still relevant 

today, since it forms the basis of the IBM DB2 query optimizer and query processor. But 

unfortunately, in DB2 the flexibility of Starburst is not accessible to database architects, 

administrators or users. 

On a high level of abstraction, Starburst shows much resemblance with our own approach. 

LOLEPOPs correspond to algorithmic entities in our conception, as parameterized, executable 

operators for query evaluation. STARs describe the replacement of an algebraic term with its 

algorithmic equivalent and the glue mechanism establishes the input requirements of an 

algorithmic entity. But in contrast to Starburst, the Access Manager approach does not require 

explicit STARs for globally transforming query plans with the intention of applying custom 

relational algorithms. It uses the algebraic equivalence pattern only for ensuring correct 

substitution. Global query plan transformation and substitution are conducted solely the by 

system‟s intrinsic query optimization component. Effective integration of an algorithmic unit 

into a query plan is conducted via the cost-driven negotiation process on a strictly local scale. 

3.3.3. Garlic 

The goal of IBM‟s Garlic [Car95] project was the design and development of an operational 

prototype of a wrapper architecture for integration of heterogeneous legacy data repositories 

(e.g. RDBMSs, web search, image servers, etc.) into one uniform information system with the 

ability of distributed querying across multiple repositories. Its technology is still in use today 

in IBM products for content integration. Garlic itself stores no data, except for metadata 

describing the attached repositories. Data residing in repositories is organized in collections of 

objects, based on an object-oriented data model. The elements of each collection are described 

using the custom object definition language GDL (Garlic Data Language), which is based on 

ODL (Object Definition Language) of the Object Database Management Group (ODMG, 

[Cat00]). In this description, each object is assigned to a class of objects, each having descrip-

tive attributes and exporting an optional interface. In addition to this abstract data model, 

Garlic possesses a standard data representation for primitive data, which is used for parame-
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ters and results of object method invocations, in particular in the object attribute get/ set 

methods. Garlic‟s design is particularly interesting, as it emphasizes query optimization 

aspects, while other approaches concentrate on mere data integration. Instead of demanding a 

declarative specification of the capabilities of each data source, or by forcing all data sources 

to implement standardized functionality, Garlic wrapper implementations participate actively 

in the query optimization process. Therefore, the Garlic optimizer [Haa97] provides a wrapper 

with a generic work request, representing the largest possible plan fragment from a multi-

repository query, that may be dispatched to one individual repository. The wrapper may 

partially decline or accept the work request, by responding with one or more query plans 

representing those parts of the original request that are corresponding to the repositories 

capabilities. The wrapper may also annotate these plans with costs, statistical information 

(cardinality of result), and result set properties like sort order (details in [Tor99]). Based on 

these estimations, the cost-based Garlic optimizer will eventually choose one of the proposed 

query plan fragments for integration into the global query plan. Declined portions of the 

original work request are compensated by performing the necessary operations inside Garlic, 

after retrieving the data from the repository. This solution permits rapid development of 

wrappers with a low initial complexity by dynamically exploiting the effective capabilities of 

the wrapper. Initially simple wrappers may evolve over time, as each new release may accept 

more complex work requests, until the specific capabilities of a repository are sufficiently 

represented. 

Similar to Starburst, the Garlic optimizer is based on transformation rules following the 

STAR approach [Loh88]. Depending on the capabilities of a wrapper, the optimizer may issue 

work requests describing accesses to single collections, including predicates and projection 

directives, but also grouping and aggregation, joins for two or more collections residing in the 

same repository, and finally arbitrary plan fragments limited to one repository. Therefore, the 

Garlic approach qualifies for iterative bottom-up query optimization based on dynamic 

programming and pruning [Sel79]. In the resulting tree-structured query plan, plan fragments 

generated by wrappers always show as more or less complex leaves, each modeling access to 

one or more collections residing in the same repository. The inner parts of global query plans 

consist of Garlic operators compensating for missing query capabilities of individual reposito-

ries, but also of joins performed on data originating from different repositories. Again, query 

evaluation is based on the Iterator model, as a partial plan is processed by iteratively retriev-

ing result rows from the wrapper component. 
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Besides the obvious similarities between Garlic and the Access Manager framework, where 

both approaches lend themselves to query optimization and implementation complexity 

depends on the capabilities of a data access component, there are several important differenc-

es. Most significant is Garlic‟s restriction to read-only access to repositories, while the Access 

Manager allows transactional and fully consistent retrieval and manipulation of data, while 

upholding location transparency. Garlic uses a repository centric approach to query optimiza-

tion, where a plan fragment is ascribed to one repository and details of a query plan like exact 

specification and chronology of applied transformation on a remote repository are not visible 

to the Garlic optimizer. Consequently, Garlic cannot support secondary indexes residing 

outside of the repository housing the base data source, nor has it control over index selection 

within a repository. The Access Manager optimizes queries in an access path centered ap-

proach, where access paths to the same base relation may reside in different access modules 

and also transparently on different sites. Custom operators, especially data access related 

operators like manipulation and materialization, may appear throughout the global query plan, 

intertwined with standard operators from the host system. The Access Manager approach 

consciously distinguishes between primary and secondary access path candidates, using a 

customizable cost model for its final decision. This cost model requires only cost information 

from a data access module, while a Garlic wrapper might be forced to maintain and supply 

statistical information like cardinality and selectivity for supporting the Garlic optimizer. 

Finally, the Access Manager is integrated into an operational RDBMS, whose own local data 

repository is expected to participate in most transactions, while Garlic accesses only remote 

repositories, storing no data of its own. 

Hence, Garlic uses a distributed approach to query optimization, where every repository 

optimizes its private plan fragment, whereas the Access Manager promotes global optimiza-

tion. This global optimization ultimately puts the Access Manager framework in the position 

to manage read/ write access and maintain consistency across distributed secondary access 

paths to some relation. Yet, this approach has not only advantages, as Garlic‟s concentration 

of read-only access into the leaves of its query plans enables joins across collections residing 

in the same repository, a feature that cannot be emulated with basic Access Manager assets 

(cf. 4.6.2 Data Integration Layer on page 179 for an approach for relocating arbitrary rela-

tional transformations to remote repositories). 
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3.4. Discussion 

The foregoing survey demonstrates that certain concepts are recurring frequently in alterna-

tive approaches to DBMS extensibility. In particular, the Iterator model is the preferred 

method of query evaluation for extensions, reappearing in different flavors, from simple 

sequential full-table scans, over lookup of row identifiers, to evaluation of predicates and 

other relational expressions. Yet among all presented approaches, the customization of rela-

tional scans in the Access Manager is unrivalled in its completeness and its tight interaction 

with the query optimizer. A strong focus on query planning in related approaches is stunning-

ly rare, although it is obviously the key for effective employment of DBMS extensions in 

performance-critical environments. Query planning must happen on a reasonably fine level of 

detail, including important optimization concepts like index selection, subsequent materializa-

tion, and efficient index maintenance. Moreover, most extensions to monolithic DBMSs are 

subsequently mounted as fairly isolated attachments to the existing systems. This approach is 

often justified with concerns that plug-ins might compromise system stability and integrity, 

which admittedly are properties of paramount importance for information systems. Yet, 

obstructing access to crucial DBMS services such as transaction management, persistent 

storage layer, buffer management, locking, and recovery accomplishes a counterproductive 

goal. Every plug-in has to laboriously re-implement this functionality, resulting in a tremend-

ously increased complexity and probably poor interoperability with host system components 

and other plug-ins. In our conception, facilitating plug-in development by providing recurring 

standard functionality and encouraging reuse of existing plug-in components is the best 

approach to achieve a consistent and responsive overall system. In case of transaction man-

agement, such integration is actually the only way to obtain a sound system, capable of 

maintaining data integrity over a diversity of external data repositories. 

Access Manager Framework will prove that it provides unrivalled extensibility by accommo-

dating plug-ins via a lean, universal, and adaptive interface. Although intrinsic components of 

the host system are neither extensible nor replaceable, their behavior may be influenced 

though convenient interfaces. Access to these internal components also allows reusing these 

components‟ functionality for recurring tasks and thereby achieves a tight integration of plug-

ins into the host system, facilitates and accelerates plug-in development, and averts malfunc-

tioning by reusing mature functionality provided by the host system. In addition to plug-in 

extensibility, the Access Manager also qualifies as middleware approach, since it allows 

location transparent access to arbitrary data sources by dynamically adapting its general-
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purpose interface to a particular data source‟s capabilities. As a consequence, distributed 

query processing becomes possible, and the Access Manager‟s global optimization ensures its 

effectiveness. 

The Access Manager approach is neither service-oriented, nor provides it extensibility accord-

ing to customizable DBMS approach. The host DBMS represents a functionally sound and 

highly integrated system. We believe that such a system cannot be decomposed without 

sacrificing system integrity, stability, and performance. 

In the following, we will present in detail how the Access Manger achieves the claimed goals, 

by surveying its interface specification and discussing its prospects towards extensibility, 

anticipated performance, and provisions for supporting plug-in and application development.
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4. Architecture 

Our approach towards DBMS extensibility is based on the Access Manager interface, which 

is presented in this chapter. Its design focus lies on simplicity and usability, making extension 

of a DBMS with user-defined access methods fairly easy, as the initial implementation com-

plexity for simple access methods is low. Reuse of existing components is strongly encour-

aged when embedding a new access method into the host system, allowing rapid development 

by avoiding the necessity of time-consuming and error-prone re-implementations. Basic 

functionality is founded on a small and comprehensible set of interface routines and a simple 

and intelligible protocol. As a secondary design goal, the Access Manager interface allows 

thorough integration and efficient operation of new access methods inside the host system, 

while providing a high degree of flexibility for necessary adaptation of the host system to the 

specific requirements of a particular access method. This goal is achieved via specification of 

several optional Access Manager interfaces, permitting advanced operating modes for sophis-

ticated access method implementations. This opens the possibility to start off with a simple 

implementation of an access method, by implementing only mandatory interface routines. 

Afterwards, the access method can be selectively enhanced through implementation of op-

tional Access Manager interface routines, until the access method supports all necessary 

operations that correspond to its functional scope. Finally, each access method has a signifi-

cant degree of control over performance-relevant behavior and strategies of some selected 

subsystems of the host DBMS. By actively influencing the host system, an access method will 

adapt the host system‟s behavior to its specific needs and thereby improve the tightness of its 

own integration. During this iterative implementation process, the complexity of an access 

module will evolve as functionality is added and tighter integration is attempted. 

4.1. Layered System Model 

In the following, we will provide an overview over all layers of the host DBMS that have to 

be adapted for affiliating custom access methods. We will also discuss non-standard DBMS 

interfaces, necessary for providing extensibility and for allowing thorough and unrestricted 

integration of new access methods. The interrelations of the various subsystems of the host 

DBMS are demonstrated by an in-depth inspection of the life-cycle of a custom access me-

thod. 
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An access method possesses a tuple-oriented interface, which is operated by the host DBMS‟s 

query processor according to the Iterator model. The access method itself is usually founded 

on the page-oriented interface of the host system‟s buffer manager and storage layer. The 

storage layer provides access to the system‟s sophisticated I/O facilities, including prefetching 

and asynchronous I/O capabilities, priority queues, and scatter/ gather I/O. This I/O subsystem 

is complemented with a powerful data caching facility, implemented in the host system‟s 

buffer manager. Interfaces to these subsystems allow active control over I/O strategies and 

caching policies. In addition, the storage layer provides access to valuable functionality in 

form of intrinsic locking and concurrency mechanisms. It also enforces transactional consis-

tency and isolation and possesses logging and recovery functionality. All these complex 

DBMS features are fundamental for the implementation of expedient access methods. They 

are readily available as a service on page granularity, provided to all custom access modules 

based on the host system‟s built-in storage layer. 

Figure.19 Classical layered DBMS architecture and the Access Manager. The Access Manager‟s pri-

mary purpose is to provide a tuple-oriented Iterator interface towards the query processor. Another inter-

face is provided to the query optimizer for configuring and costing access methods. The Access Manager 

uses the buffer manager‟s page-oriented interface for accessing and manipulating pages and for controlling 

caching of individual pages. In addition, the Access Manager has to interface the host system‟s storage 

layer for directly influencing block I/O on persistent memory. Finally, optional interfaces of secondary 

importance are provided to the system‟s locking and transaction managers.  

The Access Manager encapsulates all access methods available in the system, such that no 

direct interfaces to other system components exist. Therefore, access methods may only 
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interface each other and use the Access Manager as a gateway to other host system compo-

nents. The Access Manager embraces the host system‟s built-in access methods, making them 

available as building blocks for new access methods. The B-tree structure is the ubiquitous 

example for search structures in database technology. It relies on the page-oriented interface 

of the storage layer for retrieving data from pages stored persistently on secondary memory. It 

possesses a tuple-oriented interface for providing sets of data tuples, to be used by the query 

processor. Access methods mapping pages to tuples represent the class of full access methods. 

Implementing full access methods from scratch is a laborious venture, therefore the Access 

Manager allows to reuse functionality from existing access modules when implementing new 

ones. As an example, consider an access method using one or more auxiliary B-tree structures 

for storing and retrieving data. A full-text index may be implemented using several classical 

B-trees, where one tree is used as the actual index structure, containing information on occur-

rences and positions of words in the indexed documents. A second B-tree contains a list of 

words that are insignificant for searches or frequently recurring words which are to be ignored 

by the index (stop words). A third B-tree provides mappings for word stemming. Such a full-

text index implementation, based solely on the tuple-oriented interface of another full access 

module, is a representative of the class of intermediate access modules. 

Figure.20 Types of access method implementations. The Access Manager encapsulates all access me-

thods, while providing interfaces to the relevant parts of the host system. The diagram shows five different 

types of access methods, represented in vertical sections. (a) represents built-in full access methods imple-

mentation that are implanted into the Access Manager framework. (b) represents a supplemented full 
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access structure. It also provides a mapping from the page-oriented storage layer to the tuple-oriented 

query processor. (c) is a lean intermediate access method implementation, relying on the tuple-oriented 

interfaces of one built-in and one custom access method. (d) shows a hybrid access structure, using the 

page-oriented built-in storage layer for persistent storage, but also an auxiliary access method‟s tuple-

oriented functionality. Independently from the hybrid access structure (d) also demonstrates the integration 

of a custom storage layer. (e) depicts a data integration layer accessing remote data outside of the host 

DBMS. 

Another example for the class of intermediate access methods is the UB-tree, enhancing the 

classical B-tree technology for providing efficient access to multidimensional data. This is 

accomplished by a functional mapping of all indexed attributes (dimensions) to a suitable 

multidimensional address, using a bit-interleaving technique. The result of this process is a 

relation with one additional attribute with a strong functional dependency to all indexed 

attributes. This attribute is then used as the sole key attribute of a classical B-tree structure. 

The basic search and storage functionality of the B-tree module remains unaffected, but it is 

controlled by a lean intermediate UB-tree layer, providing the necessary functionality for 

advanced handling of multidimensional queries. These approaches to full-text and UB-tree 

indexing technology, based on an existing B-tree module, dramatically reduce implementation 

complexity, while the resulting intermediate layers offer significant new functionality com-

pared to the technology used to implement it. We will pursue this approach in greater detail in 

the upcoming Proofs of Concepts chapter. Finally, it is also possible to combine the two 

aforementioned concepts for implementing hybrid access structures. These structures store 

data on pages provided by a page-oriented storage layer, i.e. they are full access structures. In 

addition, they employ auxiliary access structures based on existing access modules for effi-

cient lookups, enforcement of data integrity constraints, or other supplemental functionality. 

An example, where a simple linear access path, organized as linked list of pages, is aug-

mented with an auxiliary structure for obtaining look-ahead capabilities for exploiting the I/O 

system‟s prefetching facilities, is also provided in the Proofs of Concept chapter. 

The Access Manager interface defines and publishes the page-oriented interface and seman-

tics of the host DBMS‟s built-in storage layer. This storage layer serves as a common basis 

for custom access method implementations. But the availability of the interface definition and 

semantics may also serve for a second purpose. It offers the opportunity to allow custom 

storage layers, implementing the given storage interface. Such custom storage layers may 

serve as alternative to the built-in storage facility, tailored for particular access methods or 

storage hardware. Implementing a new storage layer is a highly intricate task and its benefits 
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are questionable. The same is true for the integration of existing storage layers, such as those 

discussed in 3.2.5 MySQL. The general possibility of implementing or integrating custom 

storage layers using the Access Manager interface is mentioned here merely for the sake of 

completeness. 

Of higher practical relevance is the incorporation of a data integration layer into the host 

DBMS. This layer provides a tuple-oriented interface towards the host system, while access-

ing remote data stored outside the DBMS. External data is registered within the database 

schema as ordinary relational table definitions, composed from standard SQL data types and 

without further indications that the data is not stored locally. Only when the data is actually 

accessed, the requests are delegated to the integration module, which is responsible to provide 

access to the remote data source. Depending on the capabilities of the integration module, 

such a relation may offer coherent access to remote data, i.e. reading and writing within a 

transactional context, while upholding location transparency. The full integration into the 

database schema allows also for creation and automated maintenance of internal secondary 

index structures on external data. Data sources may be local storage devices, or files storing 

data in a proprietary format, different from that of the DBMS storage layer, e.g. relational data 

in structured text files (CSV), XML documents, and other data sources. But the integration 

layer may also access remote services and data sources, for example a remote database server. 

With a collection of data integration layers, it becomes possible to create a uniform relational 

view over a network of interconnected heterogeneous data sources. 

This form of data integration exceeds the flexibility of primitive table functions accessing 

remote data by far, since its approach to global query optimization offers query planning 

capabilities close to those of a homogeneous federated DBMS. Negotiation and configuration 

of remote table accesses allow relocating configuration directives to remote systems. This 

includes moving restrictions to a remote system, in order to reduce the data transfer. But also 

global optimization of sort orders and projections offer massive savings compared to the 

limited possibilities of table functions. But most important, global cost-driven optimization 

allows active and effective manipulation of the join sequence. Details on alternative storage 

layers will be addressed in section 4.6 Data Integration. 

The primary advantage of this component-oriented architecture, where all access methods 

implement identical interfaces, is the aforementioned flexibility arising from the possibility of 

arbitrary recombination of all available building blocks. On the other hand, it is not always 

possible to force different access methods into identical interfaces. Such a one-size-fits-all 
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interface is bound to be highly complex. Implementing a superset of strictly required interface 

functions contradicts the design goals for rapid prototyping and the tight coupling of imple-

mentation complexity and prototype functionality. Therefore, the Access Manager interface is 

constructed as a lean mandatory interface, augmented by additional optional interface rou-

tines. The following Figure.21 provides an overview over the tuple-oriented part of the 

Access Manager interface, the access method interface. 

The compulsory part of the access method interface comprises all routines required for pro-

viding the functionality of a relational operator conforming to the Iterator model. As any other 

relational operator, an access method can be opened, iterated, and closed. It also possesses all 

means required for its configuration and cost assessment during query optimization phase. 

Finally, it provides interface routines for access path creation and deletion. Only these last-

mentioned aspects of an access method‟s mandatory interface exceed the functionality re-

quired for a common relational operator. 

Figure.21 Composition of the tuple-oriented access method interface. Complete overview of the tuple-

oriented access method interface, classified into its diverse tasks. The compulsory interface routines (in 

bold print) provide the functionality required for the Iterator model in query execution, and instruments 

used for negotiation during query optimization. The optional interface routines cover data manipulation 

assets, efficient alternatives to compulsory routines, call-back hooks for transactional transitions, and some 

administrative functionality. 
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Interface routines for data manipulation are optional, and the absence of their implementation 

indicates explicit read-only access methods. For implementing fully operational data manipu-

lation, the presence of implementations of Insert() and Delete() routines is functionally 

sufficient. The remaining optional interface routines serve mostly for efficiency purposes. 

They provide a shortcut or an inexpensive alternative for calling an expensive sequence of 

compulsory interface routines. For example updating a tuple with the optional Update() 

routine can be simulated with the deletion of the old tuple, followed by insertion of the new 

one. Other optional interface routines provide efficiency by means of graceful fault recovery. 

The SQL standard demands that data manipulation is an atomic operation. If a dynamic error 

is encountered during manipulation, e.g. an integrity constraint violation, arithmetic overflow 

etc., then the complete manipulation has to be undone. The coarse method is to abort the 

enclosing transaction, which certainly satisfies SQL‟s claim for atomicity. But this approach 

has the drawback of revoking work that already has been completed successfully by preceding 

operations within the same transaction. As an alternative, the Access Manager will use the 

optional savepoint feature of an access method implementation, for providing the required 

fault tolerance. The interfaces addressing transactional transitions are call-back hooks, in-

forming an access method about changes in the present transactional context. We will demon-

strate that they are not required in standard access method implementation, but they are useful 

under specific circumstances. A detailed discussion of the functionality of the remaining 

optional interface routines will be provided in the course of following section. 

The decision of using compulsory or alternative interface routines is made by the Access 

Manager in accordance to a strict interface protocol, which is part of the Access Manager 

specification. The decision is based on one simple assumption: if an optional interface is 

implemented, then it will be used, as it is considered superior to the „normal‟ way of opera-

tion. When access modules call routines of other access modules, as intermediate access 

methods do by directly calling their auxiliary access methods, they are bypassing the Access 

Manager framework. For these direct calls, there is no instance involved for enforcing the 

mentioned protocol for optional routines. Still, intermediate access methods should follow the 

interface protocol, because an auxiliary access method implementing optional interface 

routines expects that these routines are used. An intermediate access method ignoring the 

interface protocol will still function correctly, but it may suffer from inaccurate cost estima-

tion, since the cost function of an auxiliary access method silently assumes the use of optional 

routines when assessing the costs of a planned operation (e.g. update vs. delete/ insert). Only 

the strict compliance of all partaking access modules to the interface protocol will ensure a 
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consistent and predictable behavior of the overall system. As a direct consequence, an inter-

mediate access method strictly following the Access Manager protocol is able to exchange 

underlying auxiliary access methods without any further adaptations of its own code basis, 

since every replacement supports the Access Manager protocol, even if it implements a 

different subset of the optional interface. 

The page-oriented storage layer interface (Figure.22) has a similar design, consisting of 

mandatory and optional routines. The primary purpose of its compulsory interface routines is 

to provide page-oriented storage facilities. Besides persistent storage, it also offers extensive 

influence on the buffer manager‟s page caching strategies, with its ability to deliberately and 

selectively retain pages in cache. In contrast to the tuple-layer, the storage layer incorporates 

mandatory transactional interface routines, controlling transactional consistency of access 

methods constructed on top of this layer. In addition, it offers control over the host system‟s 

locking facilities on page granularity, as every page access is attributed with a lock type (read/ 

write/ exclusive). The subset of optional interfaces is limited to functionality for the savepoint 

feature on page granularity and some administrative functionality to be discussed later. With 

its built-in storage layer, the host system housing the Access Manager framework provides a 

complete and fully operational implementation of the storage layer interface. 

Figure.22 Storage layer interface. This lean interface comprises all functionality required for page-

oriented persistent storage, and in particular, it provides control over the host system‟s buffer manager, 

which is an integral component of the storage layer, and operates via side-effects of the page access rou-

tines. In addition, the interface integrates access methods with the host system‟s locking and transactional 

consistency services. 
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The tuple-oriented interface routines described in Figure.21 are routines to be implemented by 

external access methods for integration into the host system. The Access Manager, as a 

component of this host system, is responsible for operating these interface routines, thereby 

enabling the host system to use custom access methods. The access methods themselves may 

only call tuple-oriented interface routines of other access methods, or use the storage layer 

interface as a gateway to the page oriented storage facilities. Hence, an access method is fully 

encapsulated within the Access Manager framework, having no direct influence on other 

subsystems of the host system. In addition to the storage layer, the Access Manager comprises 

auxiliary interfaces to some other selected host system components. These interface routines 

are combined into the narrow system utility interface (Figure.23). 

Figure.23 System utility interface. Additional gateways for access methods to useful host system facili-

ties. They offer direct access to error handling and reporting, fine-granular locking based on the system‟s 

lock manager, construction of tuples in standard representation and provision of tuple identifiers (TIDs) for 

efficient secondary indexing. 

The most important among these interfaces is the gateway to the host system‟s centralized 

error reporting system. The Trace() method is called for indicating error situations and 

warnings. It allows issuing descriptive textual messages to be displayed to the database user 

or to be inserted into the host system‟s event log. An access method may implement fine-

granular locking by utilizing the host system‟s intrinsic lock manager implementation via its 

public Lock()/ Unlock() interface. With ConstructTuple() the system implements a 

central routine for constructing tuples in standard representation. Finally, the interface con-

trols a facility for generating artificial tuple identifiers (TIDs), a compact surrogate for con-

ventional primary keys, used mainly for tuple identification in secondary indexes. The pur-

pose of this set of interface routines is tighter integration and further reduction of implementa-

tion complexity of new access methods, by supplying reusable utility functionality. 

The remainder of this chapter will describe the routines of the three presented interface 

families in more detail and demonstrate how they collaborate according to a strict protocol, 

for providing the functionality of the Access Manager framework. Therefore we will proceed 
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bottom-up, starting with the storage layer interface which is implemented by the host system‟s 

built-in storage layer and serves as foundation for most access structures. 

4.2. Built-in Storage Layer 

As part of the Access Manager specification, the host DBMS provides a page-oriented inter-

face to the host system‟s built-in storage facilities, implementing the Access Manager‟s 

storage layer interface (cf. Figure.22, page 102). This storage layer is a key service of the host 

DBMS in providing reusable functionality and thereby relieving the access method implemen-

ter from recurring implementation tasks. Besides plain persistent storage services, the storage 

layer also encapsulates caching functionality on page granularity, including the possibility of 

actively influencing cache frame replacement strategies. In addition, every access to a page 

can be optionally attributed with a lock type. These page accesses are automatically recorded 

by the system‟s intrinsic lock manager for enforcing a convenient locking mechanism on page 

granularity. The combination of the host system‟s caching and locking facilities to a multi-

version concurrency control on page granularity allows any access method implementation to 

benefit from a readily available low-contention concurrency protocol. If page accesses are 

attributed with locks, then concurrency on page granularity is controlled by the host system. 

Therefore it generates and maintains multiple versions (copies) of database objects, as re-

quired for supplying concurrent transactions with the correct versions. Finally, the storage 

layer provides extensive and fully transparent recovery functionality. With this, the host 

system is in the position to restore the database state at the beginning of a transaction, without 

the requirement of any supporting functionality in the involved access modules. In addition, 

the host system possesses sophisticated undo functionality of individual DML operations, 

which is required, if data manipulation fails. The SQL standard demands such atomicity of 

data manipulation. This functionality is subsumed in the so-called savepoint feature, allowing 

the storage layer to restore the database state at the starting point of data manipulation, with-

out aborting the enclosing transaction. In order to function, the savepoint feature has to be 

supported by all access modules participating in a DML action, by implementing a relatively 

simple protocol. The bulk of the savepoint functionality is then provided by the storage layer. 

This combination of the storage subsystem services achieves compliance with the ACID 

paradigm in its claims for atomicity, consistency, isolation, and durability on page granularity. 

Only arrangements for guaranteeing consistency in manipulation of data structures con-

structed on top of the storage layer fall into the functional scope of corresponding access 
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method implementation. These important ACID assertions of the storage module are achieved 

by following an intelligible and simple protocol when using the storage layer interface. 

4.2.1. Storage 

A DBMS organizes its data in units of one or more files of considerable size (cf. Figure.24). 

Alternatively, it is also possible to use other extensive physical storage units like partitions or 

even complete devices. We refer to such physical storage units as extents. Which type or 

combination of types of extents is actually used, is ultimately irrelevant. The DBMS storage 

system conceals these storage allocation details and provides a uniform, contiguous address 

space, whose size corresponds to the concatenation of all available storage assets. This sto-

rage area, which can be subsequently extended by adding extents, represents the physical 

address space available to the DBMS for persistent storage. The arrangement and utilization 

of these physical storage units are important means for physical database schema design. For 

example, it is possible to increase storage throughput by partitioning data on independent 

physical devices. Alternatively, access times decrease when related data is closely clustered 

on one storage unit. Regardless of the configuration of storage units, the logical DBMS 

schema remains independent from such physical considerations. 

The address space is then partitioned into pages of equal size. Each page represents a closed 

interval of consecutive addresses, which is identified by a unique consecutive number, the 

page number. Each page has a page header, a small administrative storage area at its begin-

ning, while the remainders of the page are used for arbitrary storage purposes. Data stored on 

one page is retrieved or written as one logically atomic I/O operation. Consequently, the 

typical page size corresponds to the amount of data the underlying hardware processes as one 

physical block I/O operation, i.e. a logical page corresponds to one or more physical blocks. 

Data is also maintained in page-sized fragments by the DBMS caching facility, and finally, 

pages represent an opportune granularity for administering concurrency for parallel operations 

by page-wise locking data for shared and exclusive operations. 
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Figure.24 Storage units on different layers. The DBMS may use various assets for providing physical 

storage space, e.g. devices, partitions, or files. The system‟s storage layer provides a uniform view on the 

complete storage area as one consecutive address space. This space is subdivided into equal-sized pages, 

such that one page corresponds to one or more physical blocks of the underlying device, thereby providing 

manageable memory fragments. Collections of pages are combined to segments, each representing one 

access path. The storage manager maintains the assignment of each page to its segment by recording the 

page number of the associated segment‟s initial page in every page header. The logical structure of an 

access path is modeled by pointing to other pages of the same segment by referencing pages numbers in-

side a page‟s data area. 

Individual pages are combined into larger logical storage structures. Such collections of pages 

are called segments. Segments are the storage entities containing relations. Every access path 

is stored in a separate segment, i.e. every base relation but also every secondary index is 

stored in a dedicated segment. 

Initially all pages in the DBMS‟s address space are in the pool of free pages. They are not 

assigned to any segment. A segment is created, using the storage manager‟s Create() 

routine. It assigns one single free page to the new segment. A segment can grow by adding 

further pages via the AllocPage() routine. This routine offers explicit control of the loca-

tion of a new page, in order to keep segments spatially clustered in the database‟s physical 

address space. Therefore, an optional parameter of the AllocPage() routine allows the 

specification of a desired page number for a new page. If the specified page is free, it will be 

allocated. Otherwise, the page is already in use and the storage manager tries to allocate the 

next free page within the same extent. Only if the specified extent is full, a free page in 

another extent will be allocated. If no target page number is specified, then the page allocation 

strategy is left entirely to the storage manager. Conversely to allocation, a segment shrinks by 

removing a page and returning it to the pool of free pages (DeletePage()). Due to these 

dynamics, segments do not necessarily cover contiguous address ranges. From the storage 
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manager‟s perspective, they are merely a collection of loosely coupled pages. This coupling is 

enforced by marking each page header with the segment number, i.e. the identification of the 

containing segment. The segment number is identical to the page number of the initial page of 

a segment, which was allocated by the Create() routine. This distinguished page represents 

the complete segment and therefore it cannot be freed while the segment exists. In addition to 

the segment number, the page header stores its own page number and a checksum value 

(CRC) over the complete page contents. These entries in the page header are not required for 

normal operation of the storage manager, but the information serves as fault detection me-

chanism. An access method provides page number and segment number as parameters when 

requesting access to a page. If this information deviates from the information maintained 

independently in the page header, this indicates a failure in the structural integrity of the 

access method, or malfunctioning hardware. 

The storage manager‟s main purpose is to maintain memory management by recording 

whether an individual page is currently in use or not. Documenting affiliations of pages to 

segments, and even the whole concept of segments, is not required to this end. The task of 

implementing cohesion on a set of pages belonging to the same segment is delegated com-

pletely to the access method layer above. It maintains chaining between individual pages, 

representing the physical structure of the access method. 

An access method may access existing pages by using the FixPage() routine. This routine 

takes the page number as input parameter and creates a copy of a persistently stored page in 

main memory, where it is held at a fixed location. The routine returns a stable pointer to this 

page for subsequent access. An additional parameter of the FixPage() routine controls the 

intention of the page access, i.e. whether a page is retrieved for read-only access or for mod-

ification. A page acquired using AllocPage() is implicitly fixed for writing access. When 

access to the page is completed, the access method may call the UnfixPage() routine in 

order to release the fixed page. Thereby the main memory allocated for the page is released. If 

the page was modified, the storage system guarantees that changes are stored persistently 

when the enclosing transaction is committed. The detailed implications of calling Alloc-

Page(), FixPage() and UnfixPage() on the caching and locking facilities of the storage 

manager will be discussed separately. 
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Finally a segment is removed by calling the storage layer‟s Drop() routine. The access 

method maintaining the logical structure of the segment has to guarantee that all other pages 

belonging to this segment have been freed using DeletePage() prior to calling Drop(). 

4.2.2. Caching 

In addition to pure I/O services, the storage manager also provides a sophisticated caching 

facility. Access to the system cache is integrated into the storage layer interface, and automat-

ic caching takes place when operating the already introduced page access routines. Caching 

operates, like all other storage layer assets, on page granularity and uses a least-recently-used 

(LRU) replacement strategy. Whenever a page is accessed, either by AllocPage() or 

FixPage(), the contents of that page are transferred into an empty cache frame in main 

memory. As long as the page is accessed, its frame is not on the LRU stack, i.e. the cache 

frame cannot be replaced. The page stays „fixed‟ in the main memory. A page may remain in 

this fixed state for an arbitrary period of time, and concurrently access to this page becomes 

possible. This happens when a page is accessed from different transactions (concurrent read 

access), or from different scans of the same transaction (concurrent read/ write access). Every 

fix will increase the fix-counter of that page. After a page access is completed, the Unfix-

Page() routine will decrease the page‟s fix counter. Any process that fixes a page is also 

responsible to issue an identical number of unfix operations. When the fix counter eventually 

reaches zero, the page is unfixed and its frame moves on top of the LRU stack, since it now 

holds the most recently used (MRU) page. From there it starts descending through the LRU 

stack, as other pages are accessed. Any subsequent access will move it again into MRU 

position, but if the stack frame eventually reaches LRU position, its contents will be replaced 

with another page that is currently needed. If a page is deleted via DeletePage() while on 

the LRU stack, the cache frame is freed and becomes immediately available for holding 

another page. 

This simple interface offers all functionality the access method implementer requires for 

efficient access to recurrently used pages. Caching requires no implementation effort what-

soever from the access method. In addition, it offers a certain degree of control over the 

caching strategy. An access method may periodically fix/ unfix pages of high value, thereby 

averting their replacement. Critical pages may even remain fixed over a longer period of time, 

inhibiting their replacement altogether. However, interference with the host system‟s caching 

strategies should be conducted with extreme care and only on a small scale, i.e. for few pages. 

One should keep in mind that the system cache represents a shared resource, used not only 
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across concurrent scans of one single query, but across concurrent transactions. Bending the 

cache frame replacement strategy in favor of one access method will penalize other access 

structures, and thereby incur potentially high overall costs that actually exceed the locally 

induced savings. In particular, if two or more access paths based on the same greedy access 

method are competing for the limited resources of the system cache, their endeavors are likely 

to cause cache contentions instead of bringing the originally intended speed-ups. 

4.2.3. Locking & Concurrency 

Locking and concurrency in DBMSs is implemented as combinations of locks on objects of 

various granularities. These granularities are organized on hierarchical levels, where typical 

scopes for locking are relations, pages, and records. Locks on complete relations also include 

implicit locks on redundant secondary access paths. In contrast, locks on individual pages 

only affect one single page, without immediate side-effects. If a page is updated, maintaining 

data consistency compels locking and updating dependent and redundant information. Row-

level locks offer the most fine-grained locking strategy, allowing maximized concurrency at 

the expense of increased locking complexity. Row-level locking falls into the responsibility of 

the access method implementation that maintains the segment, while locking of relations and 

pages is provided as a service by the storage layer. 

Locking in the Access Manager is presuming multi-version concurrency control, based on the 

well known RAX protocol [Bay80] (cf. Figure.25). Locking is therefore organized in three 

separate lock types. The READ_LOCK (also R-lock) allows parallel reading activities of con-

current transactions on the same object. The WRITE_LOCK (A-lock) is used, if an object is to 

be updated. Only one concurrent write operation on one object is possible at any time. There-

fore, the transaction intending to modify an object creates a private copy (version) of that 

object. The original version (before-image), representing the object‟s state before the update 

took place, remains accessible for concurrent readers. The private copy of the update transac-

tion is called after-image. When the update transaction is committed, it acquires EXCLU-

SIVE_LOCKs (X-locks) on all objects it modified in its course, i.e. WRITE_LOCKs are con-

verted to EXCLUSIVE_LOCKs. If concurrent transactions still hold READ_LOCKs, the update 

transaction has to wait until these locks are released. Only when all objects are locked exclu-

sively, the buffer manager will discard all before-images and the after-images eventually 

reflect the new state of the object. Conversely, if an update transaction is aborted, all after-

images are deleted. This may be conducted without acquiring exclusive locks, since the after-



110  4.2 BUILT-IN STORAGE LAYER 

images are already private to the update transaction. The following matrix depicts the compa-

tibility of the various lock-modes. 

Figure.25 RAX compatibility matrix. A requested lock can be granted, if it is compatible with the present 

lock of another transaction (+). Otherwise (-), the requesting transaction has to wait until the conflicting 

lock is released. 

For locking hierarchical structures, this lock protocol is augmented with the RIX protocol 

(Figure.26). In addition to the RAX-locks, this protocol also uses intention locks, e.g. IR 

(intention-read) and IX (intention-exclusive). This allows to use actual locks (R/X) on a fine-

granular level, while the parent object is locked using the corresponding intention lock. If 

intention locks collide during lock acquisition, their compatibility is decided by consulting 

lock compatibility on a finer granularity. 

Figure.26 RIX compatibility matrix. I-locks are used on a coarse granularity, e.g. relations, for express-

ing the intention to perform a certain operation on a finer granularity. Intention locks are used in combina-

tion with R- and X-locks. Where potentially incompatible intention locks collide, compatibility is decided 

by on a finer level of granularity (shaded areas). Finally, locks on different granularities may also be 

mixed, as RIX acquires an R-lock on a coarse granularity, and an IX lock for expressing its intention to 

lock individual portions of the relation. Hence, the RIX-lock is used by scans reading a complete relation 

while modifying only selected portions. 

The RAX/RIX lock protocols are used for implementing isolation of diverse qualities (isola-

tion levels) between individual transactions. A low isolation level offer increased concurrency 

and throughput of the overall system. Higher concurrency is gained by accepting the possibili-

ty of certain anomalies, e.g. lost updates, dirty reads, non-repeatable reads and phantom reads. 

The isolation level of a transaction controls which form of update anomalies are tolerated by a 

database application. Isolation levels are implemented by controlling the types of applied 
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locks, and the lock durations. Figure.27 gives an overview over properties and behavior of the 

ANSI SQL isolation levels. 

Figure.27 Isolation levels as specified in the SQL standard. The respective behavior is achieved by 

variation of applied lock types. Write anomalies (lost update/ dirty write) are never tolerated, hence write-

locks are acquired for every update operation, and held until end of transaction (EOT). Conversely, data 

may be accessed without explicit read-lock, causing diverse read anomalies. If read-locks are acquired and 

held until end-of-statement (EOS), then dirty reads are eliminated. Holding read and write-locks until EOT 

(2-phase locking) prevents all anomalies. 

Each isolation level offers its own benefits and drawbacks, when trading concurrency against 

update anomalies. Isolation levels allow configuring a DBMS for a specific database applica-

tion, depending on tolerance and throughput demands of a given task. 

Regarding the Access Manager framework, almost the complete locking mechanism de-

scribed above is made available by the host system. The DBMS possesses a fully-fledged lock 

manager component, providing the required functionality. The necessity of table locks and 

their dependencies on secondary access paths is recognized by the SQL compiler by consulta-

tion of the data dictionary. The query processor will automatically acquire necessary locks 

from the lock manager at the beginning of a query execution. Hence, access structures may 

remain completely ignorant of locking on table granularity. Locking on page granularity on 

the other hand is intrinsically tied to the page-oriented storage layer. Whenever a page is 

requested by an access module, this page is attributed with the appropriate lock type. This is 

accomplished with one parameter that has to be supplied with every access to a page, describ-

ing the intention of the page access. These intentions are represented by two options: 

READ_LOCK or WRITE_LOCK. In case of WRITE_LOCK, a working copy (after-image) for the 

writing transaction is generated automatically. This form of locking resembles a pessimistic 

locking strategy, where locks are acquired as the transaction proceeds. If locking on page 

granularity is to be achieved by other means, then the host system‟s page locking facility can 

be bypassed by using the NO_LOCK attribute. When a page is accessed, the system acquires 

the appropriate locks for the given intention. In addition, it is possible to convert existing 

locks into more restrictive locks. If, for example, a page is initially accessed for mere reading 
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activities and the appropriate read-lock is already in place, then a later writing access is still 

possible. The demand for updating a page with an existing read-lock is expressed by fixing it 

again with the WRITE_LOCK option. The read-lock is thereby converted into a write-lock and 

the routine returns a reference to a working copy (after-image) of the original page. The 

necessity of making an after-image causes a noteworthy complication of lock conversions. 

The after-image is naturally stored at a location in main memory that is different from that of 

the before-image. It henceforth represents the writing transaction‟s private version of this 

page, and all other scans belonging to that transaction and operating on the same segment 

must be able to see modifications on the after-image immediately. The resulting challenge is 

to redirect all open scans of the writing transaction to the after-image. If a scan of this transac-

tion fixes this particular page in future, the storage manager will automatically supply the 

correct version, i.e. the after-image. Problematic are only lock-conversions where the page is 

currently fixed by another scan using read-locks. Any references to this page that are current-

ly held by such a scan are still pointing to the before-image. Therefore, the scan causing the 

lock conversion has to redirect such references of concurrent scans of the same transaction to 

the after-image. This is accomplished by direct manipulation of the internal structure of 

concurrent scans. The compensation of side-effects of data modification onto concurrent 

scans of the same transaction is subsumed under the notion of scan maintenance. Scan main-

tenance cannot be delegated to the host system, since the host system cannot know the inter-

nal structure describing the scan status of a custom access method. But the scan responsible 

for the lock conversion is inevitably of the same type as all other scans on the same segment, 

making immediate scan maintenance viable. 

If lock requests are not immediately grantable, because an object is currently blocked by an 

incompatible lock of another transaction, then the transaction will wait for a configurable 

amount of time (lock timeout), until the conflicting lock is released. If this time period ex-

pires, and the lock is still occupied, then an error is raised. Finally, if a lock request would 

generate a deadlock with locks held by another transaction, then the system will detect this 

situation and resolve it by rolling back the transaction causing the deadlock and thereby 

releasing all its locks. 

At this point, it is important to notice the absence of any provisions for unlocking objects. 

Also programmatic relaxation of existing locks is not possible, e.g. it is legal to subsequently 

fix a page with a READ_LOCK that was previously modified by the same transaction under 

WRITE_LOCK, but this will not affect the present lock, i.e. the WRITE_LOCK will remain in 
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place. Unlocking is controlled completely by the host system and the duration of locks is 

invariably managed via the system‟s isolation settings. Locks will be released automatically at 

the end of the current statement‟s evaluation (EOS) or at the end of the current transaction 

(EOT), depending on the isolation setting. In the latter case, locking is consistent with the 2-

phase lock protocol (2PL), a prerequisite for guaranteeing serializable schedules for SQL‟s 

highest isolation level. The host system will also convert WRITE_LOCKs into EXCLU-

SIVE_LOCKs in preparation of committing a transaction. Automated lock conversion and 

unlocking relieves the access method programmer to a large extend from the burden of 

dealing with locking and concurrency on table and page granularity. 

In summary, the storage manager provides pessimistic, hierarchical locking facilities, capable 

of pursuing configurable isolation levels from dirty reads to serializable transaction schedules. 

Despite of its simplicity, this interface is sufficient for fully operational locking on page 

granularity, which is complemented by the storage layer‟s page shadowing mechanisms 

required for low contention multi-version concurrency control. As a consequence, explicit 

calls to the system utility interface‟s Lock() and Unlock() routines are not required when 

locking on page granularity. Further details concerning locking on finer granularities are 

discussed in section 4.3.10 Locking & Concurrency on tuple-oriented access structures. 

4.2.4. Transactions & Consistency 

For providing the properties postulated by the ACID paradigm, the storage layer must always 

operate inside a transactional context. Consequently, any scan operation accessing the storage 

layer is strictly associated with a transactional context. This means that scans can neither 

operate outside transactions, nor across transactional boundaries. These fundamental prerequi-

sites are guaranteed by the Access Manager framework. It will operate the access methods in 

such way that open scans are always closed when a transaction ends. In addition, it will 

automatically call the storage layer‟s respective interface routine, namely Begin(), Pre-

pare(), Commit(), or Abort(), for indicating transactional transitions to the storage 

module. Access method implementations cannot call these routines directly, as they are 

operated exclusively by the Access Manager framework. They are mentioned here as integral 

parts of the storage layer interface, and are therefore of relevance for implementing alternative 

storage layers. 

The strict association of all storage manager operations with a transactional context is neces-

sary for ensuring well-defined behavior of the storage layer‟s multi-version concurrency 
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control, i.e. every fix and lock operation must be intrinsically tied to a transaction. Therefore, 

every transaction is labeled with a unique transaction ID (TAID). TAIDs are generated by the 

host system as a sequence of monotonous integer numbers and every transaction obtains a 

TAID in accordance to the point in time of its beginning. On the Access Manager interface, 

TAIDs become visible as function parameters. They are generated by the host system and 

passed on to access method routines, for denoting the transactional context of the currently 

conducted operation. Access methods are responsible for passing TAIDs on, when calling 

routines of the underlying storage layer, such that every storage operation is inevitably as-

signed to the correct transactional context. 

The TAID also becomes an integral part of any data page, as the transaction that made the last 

change in a page is inscribed as the producer (PID) in every page header. There it serves as 

discriminator for existing versions of one page. Whenever a transaction attempts a modifica-

tion of a page (A-lock), a copy of this page is generated. The before-image remains complete-

ly unmodified, including its original producer transaction (PID). The after-image will bear the 

ID of the transaction that acquired the A-lock as its new producer. For guaranteeing correct-

ness, the host system‟s lock manager maintains a precedence graph, where all locked objects 

of all active transactions are registered. This graph serves for detecting conflicting lock 

sequences and possible deadlock situations. In addition, it allows the lock manager to arrange 

transaction into a virtual schedule, a prerequisite for guaranteeing serializability. Finally, the 

lock manager cooperates with the host system‟s cache manager, which is responsible for 

presenting a transaction accessing a page with „correct‟ version of that page, in accordance to 

the transaction schedule determined by the lock manager. For this step, it is necessary to 

correlate page versions and the IDs of requesting transactions, which is technically conducted 

with TAID and PID. Apart from the necessity of associating every storage layer operation 

with the corresponding TAID, an access method may remain completely ignorant of these 

mechanisms. The storage layer will automatically provide correct and consistent versions of 

requested pages in accordance to the indicated transaction context, as a service of its built-in 

multi-version concurrency control. 

4.2.5. Logging & Recovery 

Database systems generally distinguish two forms of recovery mechanisms, namely transac-

tion recovery and disk recovery. Transaction recovery provides the functionality for undoing 

modifications of one single transaction. During normal operation, transaction recovery is 

required if a transaction is explicitly aborted or if it runs into a dynamic error, e.g. an integrity 
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constraint violation, and the transaction cannot complete by reaching a consistent database 

state. Transaction recovery is also required for crash recovery. If the database system fails 

because of a severe software or hardware fault, operations stop in mid-transaction. When the 

system is recovered, all uncommitted operations are undone and the system is restored in its 

last consistent state before the crash. 

Disk recovery is a protective measure against data loss in case of an unrecoverable disk 

failure of the primary storage device. First a backup of the data (snapshot) is made at an 

arbitrary point in time, which is stored in a safe place, i.e. not on the same device as opera-

tional data. During normal operation, the DBMS maintains a log of all modifications. Logging 

information and operational data are stored on separate devices. If the disk holding the prima-

ry data fails and the operational data is lost, then the now outdated backup copy is restored to 

a new disk and all operations are redone with the modification log, until the backup finally 

reaches the last consistent state before the hardware failure. 

For transaction and disk recovery, the database has to maintain a log of database operations. 

This log consists of instructions for physical modifications of individual disk pages. For 

transaction recovery, the logs are used to undo changes in the database, i.e. they are processed 

chronologically backwards. Redoing changes, as required for disk recovery, processes a log in 

forward direction. 

Transbase, as the host system for the Access Manager prototype implementation, offers two 

distinct forms of logging, namely before-image logging and delta logging. Depending on its 

purpose for disk or transaction recovery, a log may contain either complete copies of pages 

(before-images) or calculated deltas that describe the transition between two states. Before-

image logging is only appropriate for transaction recovery, because before-images only 

describe the transition of a page to its previous state, which is useful for undoing changes but 

inadequate for redo operations. A before-image of a modified page consists of the complete 

page, even if the applied changes are significantly smaller. Before-images of newly allocated 

pages are not stored, since these pages do not have an original state to be recovered. With 

their limitation to transaction recovery, before-images become obsolete and may be discarded 

as soon as modifications on its after-image are committed. This makes before-image logging 

attractive for mass insertions and extensive updates, since bulky recovery data is stored only 

as long as strictly necessary. Before-image logging may be used by arbitrary access methods, 

as it reliably specifies the physical transition of a complete page, regardless of the logical 
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operation on that page. Therefore, it can be used by the Access Manager for transaction 

recovery, without any further provisions from the access method that is operating on the page. 

Delta logging describes the transition between two consecutive page versions on byte level. A 

page delta can be applied for transforming a page from an earlier version into a newer version, 

but also in the opposite direction. Hence, delta logging is suitable for transaction and disk 

recovery. Delta logging is in general substantially more compact than before-images, since 

only the modified portions of a page are stored, but its handling and calculation is more 

complex. Hence, delta logging is particularly well-suited for logging scattered, small-scale 

modifications, while it shows no advantage over before-image logging for bulk insertions and 

bulk updates. The compactness of delta-records is achieved by using convenient descriptions 

of logical page transitions. B-trees, for example, would describe page splits and merge opera-

tions with dedicated shift operations. Here the pages are altered by insertion or deletion of one 

tuple. This triggers moving bulks of adjacent data, although this data remains otherwise 

unchanged. In a delta log, these operations are optimally described as shift-operations, in 

conjunction with small delta records describing actually modified data. In general, this means 

that every custom access method would be able to define its own log records for providing 

tailored descriptions of page transitions. As a consequence, proprietary log records originating 

from a diversity of access methods would become intermixed in the database logs. 

Despite the advantages such an integration of custom access modules into system recovery 

would bring, we dismiss it in favor of implementation simplicity and system stability. Explicit 

delta logging mechanisms in custom access modules will considerably complicate the design 

and implementation of access methods. Moreover, the integration of external code into the 

crucial recovery subsystem and the existence of proprietary log entries in the database logs, 

are likely to jeopardize overall system integrity. As an alternative, the Transbase prototype 

tries to derive compact delta records by analyzing before- and after-image of a page in the 

storage manager. Although this is not always optimal in terms of storage complexity, this 

approach is still able to generate compact log records while upholding system integrity with a 

sealed off, reliable code basis. With this, logging is removed completely from the scope of 

access method programmers. It is automatically provided by the host system, without any 

requirement of explicit support from custom access methods. 
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4.3. Access Method Interface 

This chapter will study the functionality provided by the tuple-oriented access method inter-

face (cf. Figure.21, page 100) of the Access Manager framework. This interface definition and 

its accompanying interface protocol designate the required functionality and behavior of an 

access method for integration into a DBMS. As starting point, we consider an extensible 

DBMS host system, which is exhibiting the Access Manager framework for assimilating 

custom access methods. These custom access methods are implementing the access method 

interface and each exists initially as a dynamically loadable and linkable library called access 

module. The host system‟s Access Manager framework allows integration of such modules 

into the host system‟s code basis and operates them by calling the libraries‟ exported access 

method interface in conformance with the Access Manager protocol. The access modules 

themselves are considered as black boxes, i.e. they offer a public interface and a known 

protocol, but assumptions on their internal workings are not permitted. We will now examine 

various use-cases of custom access method implementations, in order to illuminate valid 

sequences for calling access method interface routines, as defined by the Access Manager 

protocol. 

All routines provided by an access module are operated by the Access Manager framework, 

representing the host system‟s only gateway to access modules. During query evaluation, the 

access module‟s routines are called by the scan operator, a generic relational operator, encap-

sulating an arbitrary access module (Figure.28). This operator is a central component of the 

host system‟s Access Manager framework. During query compilation, the scan operator is 

statically bound to a segment  , and consequently also to the access module type   associated 

with that segment. In addition, the scan operator is assigned to a specific task, i.e. retrieval, 

manipulation, or materialization of data. The resulting specialized relational operators are 

named according to their primary task: Scan, Insert, Delete, Update, and Materialize. After 

binding and specialization during query compilation, the following query optimization phase 

will use negotiation for providing optimal interoperability through additional configuration. 

The resulting configuration also becomes part of the scan operator, where it is used for calling 

the routines of the embedded module in accordance to the Access Manager protocol, for 

accomplishing the assigned task under the given configuration. 
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Figure.28 Encapsulation of access modules in generic scan operators. The scan operator provides a 

compact abstraction from the extensive functionality of an access module implementation. It is bound to a 

given segment   of type   and specialized to one specific task (Scan, Insert, Update, Delete, or Material-

ize). Additionally it is configured via negotiation for optimal interoperability within the query plan. The 

scan operator operates the access module‟s interface routines in accordance to these settings. 

With this, the scan operator holds all information required for correct and efficient operations 

on the appointed segment, using the corresponding custom access module. Yet the scan 

operator remains an integral component of the host DBMS. Its configuration represents a 

detailed and complete description of the operation to be performed by the access module, 

without making any assumptions on any access module internals. This description makes such 

operations plannable, by recording the scan operator‟s configuration parameters in the 

DBMS‟s query plan representation. Configuration is an exact specification of a prospective 

operation, and the operator‟s cost function allows associating it with estimated costs. 

Towards its outside, the scan operator provides only the reduced functionality required for 

negotiation during query planning and for query evaluation based on the Iterator model. This 

generality allows inserting the generic scan operator throughout a query plan, like any other 

relational operator. 
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Figure.29 Generic Relational Operator Interface. The scan operator exports the universal interface of 

relational operators. The mandatory interface functionality (bold print) covers negotiation for query opti-

mization and iteration during query evaluation. The optional Reset() routine serves for efficiency pur-

poses, which remains to be discussed later. 

As DBMS extensibility by integration of custom access method implementations is the 

primary focus of this work, this section will concentrate on employing access module functio-

nality within scan operators. The following section 4.4 Relational Operator Interface will 

discuss further generalization of the scan operator to a generic relational operator for encapsu-

lating custom implementations of arbitrary relational algorithms. 

4.3.1. Data Access Module Definition 

The host DBMS is extended by integration of a library implementing an access module into 

the host system. With SQL being the preferred form of interaction with the database system, 

we also choose this language for this administrative task. To this end, the system‟s data 

definition language (DDL) has to be marginally extended to comprise the following state-

ments: 

CREATE TABLETYPE <ttype_name> FROM <path> 

CREATE INDEXTYPE <itype_name> FROM <path> 

Examples: 

CREATE TABLETYPE FILE FROM filetab.dll 

CREATE INDEXTYPE BITMAP FROM bitmap.dll 

On close examination, these DDL statements extend the schema of one particular database, 

rather than globally extending the DBMS. Their purpose is to provide the location of dynamic 

libraries implementing custom access methods. They also assign unique names (i.e. 

ttype_name or itype_name, respectively) to be recorded in the database‟s data dictionary for 

referencing this module in subsequent DDL statements. Finally, the distinction between 
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TABLETYPE and INDEXTYPE describes whether the new module is used for primary or second-

ary access paths. Secondary indexes have to implement only a subset of the access method 

interface functionality. The reasons for these differences will be discussed in the course of 

data access strategies and data maintenance protocols. The information provided by the 

statements above is stowed away into the system catalog. No interface functions of the access 

modules are called during this process. 

The inversion of this process is also required. Its purpose is the removal of an access method 

implementation from the database schema. This is accomplished by deleting the correspond-

ing entries from the system catalog, after verifying that there are no active references, i.e. 

there must not exist any access paths based on the access module to be removed. The corres-

ponding DDL extensions have the form: 

DROP TABLETYPE <ttype_name> 

DROP INDEXTYPE <itype_name> 

All the prototype modules discussed later are implemented as built-in modules of the Trans-

base Access Manager prototype. They are statically linked to the database kernel and there-

fore they are a priori known to the system via predefined names. There is no requirement to 

publish their names via DDL as described above. 

4.3.2. Access Path Creation 

Creating tables and indexes based on custom access methods is integrated tightly into the host 

system‟s DDL. The corresponding statements differ only in an additional specification of the 

access method type (i.e. ttype_name or itype_name, respectively) from the corresponding 

standard SQL statements. As an optional extension, the specification of the module type can 

be enriched with the additional clause custom_spec. This clause will not be interpreted by the 

host DBMS, instead it will be passed directly to the access method, where it is parsed and 

processed. This clause may be used for providing additional configuration parameters to the 

access method. 

CREATE <ttype_name> [(custom_spec)] TABLE <tname> (<tablespecification) 

CREATE <itype_name> [(custom_spec)] INDEX  

   <iname> ON <tname> (<fieldnamelist<) 

Examples: 
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CREATE FILE (‘/tmp/import/employee.txt’) TABLE emp (empkey 

 INTEGER, name CHAR(*), address CHAR(*), nationkey TINYINT) 

CREATE BITMAP INDEX emp_nation_bmx ON emp (nationkey) 

The effect of these statements is the creation of new data access structures. The example 

creates a new table of type FILE, which functions as a „virtual‟ table in the database schema 

for permitting direct retrieval of data from a structured text file, which is residing in the file 

system outside the database. It uses the custom_spec clause for specifying the path to the text 

file. Additional conventions on the file format (CVS, XML, etc.) or file properties (e.g., 

delimiters and sort order) could also be declared in the custom_spec. This type of tables is 

particularly useful for directly accessing data exported from other applications, or for import-

ing external data into the database. The data in the file may be queried and the query result 

can be subjected to arbitrary SQL transformations, permitting extensive SQL-based ETL 

(Extract, Transform, Load) capabilities. The possibility of creating secondary indexes on such 

tables, as demonstrated in the example, additionally promotes efficient access to external data. 

The first preparatory step in creation of a new segment is conducted by the Access Manager 

framework by calling the storage layer‟s Create() routine for allocation of one single page 

in the system‟s internal storage facility. The address of this page (i.e. its page number) is 

henceforth used for identifying the new segment (SegID). We refer to this distinguished page 

of a segment as the segment‟s description page (DescPage), as it will store information 

describing essential properties of the segment. Every segment has a description page in the 

system‟s internal storage facility, regardless of whether the segment‟s data is actually stored 

inside the database‟s storage or not. 

The second step is also conducted by the Access Manager framework. It registers the new 

access path in the system catalog. During this step, information from the original DDL state-

ment describing the logical data model of the new segment is inserted into the system catalog. 

This information covers the relation‟s name, column names, column types, check constraints, 

referential constraints and other information required for handling relations on a logical level. 

In particular, this information serves for identification of access path candidates during query 

compilation. The only information on physical properties of the new segment to be recorded 

in the system catalog is the aforementioned SegID, which is required when accessing a 

segment for retrieving the description page. Finally, preparations for segment creation are 

completed and the Access Manager will call the access module‟s Create() routine. 
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Create(TaID, DescPage, SegID, CreateSpec, CustomSpec) 

  ScanContext 

This method is provisioned with a transaction identifier (TaID), which is assigned by the host 

system and represents the transaction enclosing the Create() operation. The parameter 

binds this operation to the transaction denoted by TaID, e.g. two concurrent operations 

belonging to the same transaction may influence each other immediately, while one transac-

tion is typically isolated from uncommitted effects caused by a another transaction. The TaID 

will also be passed on as parameter for potential calls issued by this operation against the 

underlying page-oriented storage system, where it is essential for providing effective isolation 

and locking to this transaction. The second parameter DescPage is a reference to the freshly 

allocated but still empty description page. The remaining parameters describe properties of 

the segment to be created. While the TaID describes an operation‟s dynamic context, the 

SegID is passed as parameter for defining the physical scope of an operation, i.e. the SegID 

binds this operation to one particular segment. Operations on separate segments are physically 

independent, but there may exist logical dependencies between segments, e.g. segments 

storing redundant data (indexes), referential constraints, triggers, etc. The remaining two 

parameters contain additional information from the original DDL statement. Relevant infor-

mation from the standard DDL statement describing the logical data model of the new seg-

ment is provided in the standardized, structured representation of the CreateSpec parameter. 

This information comprises all logical properties such as column count, column types, column 

constraints, and primary key specification. Finally, the custom_spec clause from the original 

DDL statement is passed as uninterpreted text in the CustomSpec parameter. 

The task of the Create() routine is to choose data from the information available in the 

parameters SegID, CreateSpec, and CustomSpec, which needs to be stored in the access 

method‟s description page. The information is chosen, depending solely on implementation 

and on particular requirements of the given access method. The goal is to make the segment 

self-contained, so that all information required for accessing and operating the segment (its 

physical data model) is readily available at the segment‟s single entry-point, the description 

page. All other pages of this segment are reachable (directly or indirectly) from this page. 

Also external data (e.g. in a FILE table), stored outside the database‟s storage facility, is 

accessed with information from a description page, which must be located inside the host 

system‟s internal storage. The description page‟s main task is to prevent that the system 

catalog has to be consulted during access path configuration, data retrieval, or data manipula-
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tion, allowing fully autonomous operation of access modules. The system catalog is primarily 

consulted during query compilation, for mapping relation and attribute names to the correct 

segments. It is also used during query optimization for identifying alternative access path 

candidates for index selection. But with the retrieval of the SegIDs of all access path candi-

dates from the system catalog, access path resolution based on the logical data model con-

cludes. From this point access path configuration, cost estimation, and query evaluation are 

conducted solely with information based on the physical data model from the description 

pages. As a consequence, it is likely that some information from the DDL statement is stored 

redundantly in the system catalog, as well as in the description page (Figure.30). 

Figure.30 Information dissemination during access path creation. The original DDL statement contains 

all available information on the new access method. The information representing the logical data model of 

the new access path is automatically inserted into the system catalog. All relevant information from the 

standard DDL for describing the physical data model of the access method, plus the optional, non-standard 

custom_spec are passed to the data access module‟s Create() method. This information is stored in the 

segment‟s description page (auxiliary description pages may be allocated as necessary). The description 

page represents the segment‟s single entry-point and all other pages of this segment are linked to it. 

The description page is initially empty, but in a writable state, i.e. it is fixed in the system‟s 

cache and it is attributed with a WRITE_LOCK, since it was recently created. The access 

module managing a segment may freely choose any suitable organization for the contents of 

the description page, as well as for any other page of this segment. The only exception is the 

short page header on every page, used exclusively by the page-oriented storage layer. If the 

space on the description page should not suffice, it is always possible to allocate additional 

pages and chain them to an existing page. The proprietary internal organization of pages 

makes the managing access module the only instance capable of interpreting the segment‟s 

pages. As a consequence, the segment‟s data can only be accessed via the access method‟s 

public interface. We emphasize that the host system possesses only a logical description of 
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System Catalog
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custom_spec

AuxDescDescPage
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DataPage…
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the segment in the system catalog and the segment‟s SegID for locating the description page. 

Only the access method that created a segment can interpret and administer pages belonging 

to that segment. 

When the Create() routine returns, the new access path is prepared for immediate opera-

tion, i.e. the routine establishes an open scan on the new segment. In this state, the scan may 

have created and accessed an arbitrary number of pages of its segment. All accessed pages, 

including the description page, are attributed with WRITE_LOCKs since they have been created 

recently, and some may even remain fixed, in preparation for subsequent operation on the 

segment, when the routine completes. Other accessed pages have been unfixed and released 

into the system cache. There they are available for subsequent use when accessing the seg-

ment. If they are not accessed a second time, they move through the cache‟s LRU stack until 

they are eventually swapped out to disk. While in cache, the pages are immediately accessi-

ble, but multi-version concurrency control ensures that they are only visible for concurrent 

scans on the same segment (SegID) and of the same transaction (TaID), since these pages 

contain uncommitted changes. At this point, other transactions can access neither pages nor 

catalog entries of the new segment. The new segment becomes globally visible only when the 

transaction that created the segment is committed. 

The status of the new scan is subsumed in the ScanContext data structure, which is allo-

cated, maintained, and eventually returned as result parameter when creating or opening a 

segment. This central structure is a collection of static and dynamic information to be pre-

served between individual calls to the routines of the access method interface. The ScanCon-

text serves as the pivotal input parameter for all subsequent calls to other access method 

routines operating on this scan. Its contents are discussed in detail in the following section. 

The creation of a segment may now be followed by all sorts of operations on its resulting 

scan, e.g. if the new segment represents an index on a non-empty base relation, it will undergo 

immediate mass-insertion, for making the index contents consistent with the base relation. 

Such consolidation is automatically initiated by the host system, based on the system cata-

log‟s logical data model and it is executed via the Access Manager framework (cf. 4.3.8 Data 

Integrity for more details).  

The newly created segment becomes permanent when the surrounding transaction is commit-

ted. Then all allocated pages are persistently stored to disk and the transaction‟s locks are 

released. Finally the entries in the system catalog become permanent and visible to other 
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transactions. If the transaction is rolled back, all changes are undone and all pages allocated in 

its course are automatically released. 

Drop(ScanContext)    

The inverse activity of dropping a segment behaves exactly contrary. The Drop() method is 

called on an open scan. It uses a reference to the scan‟s ScanContext as its only input. Now 

it lies in the access methods responsibility to follow the chaining of all allocated pages be-

longing to that segment, in order to release them by calling the storage layer‟s Delete-

Page() routine. The underlying storage system does not maintain any data structures redun-

dant to the access method‟s chaining of pages of one segment. Therefore, when the Drop() 

routine returns, the access method must guarantee that all pages it ever allocated have been 

released. Finally, the Access Manager framework will release the description page and re-

move all entries associated to the dropped segment from the system catalog. Dropping a 

segment is initialized by issuing the corresponding standard SQL DDL statement. 

DROP TABLE <tname> 

DROP INDEX <iname> 

4.3.3. Tuple Identification and Indexing 

An inevitable prerequisite for creating alternative access paths (indexes) on an existing 

segment (base relation), is the ability of the base relation to provide compact tuple identifica-

tion. Functionally this identification is a bijective mapping between tuples in the base relation 

and their corresponding, redundant index tuples. This mapping is needed for resolving the 

corresponding base table tuple when a relation is accessed via a secondary access path (mate-

rialization). On the other hand, when updating the base table, the system must be able to find 

and update corresponding index tuples (index integrity). Finally, tuple identification is also 

used for associating corresponding tuples from different indexes of the same base relation, i.e. 

in secondary index intersection and union. 

The relational paradigm inherently provides such identification via the base relation‟s primary 

key specification. But a primary key may be a rather extensive attribute combination, and the 

necessity of storing this key as tuple identifier with every index tuple inevitably leads to 

similarly extensive secondary index tuples. Hence, it is often desirable to have more compact 

tuple identifier. The practical concept of artificial tuple identifiers (TID, often also called RID 

for row identifier) is common to many relational DBMSs. There exist many proprietary 
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solutions to this problem, ranging from TIDs based on physical storage addresses of base 

tuples, to assigning fully artificial numeric IDs. 

Figure.31 TIDs in Transbase. Use-cases of tuple mappings between base relation and secondary index. 

(1) In case of an update of the indexed attribute on the base relation, the corresponding tuple in the second-

ary index has to be found and updated. Technically, such updates on secondary indexes are always con-

ducted as separate delete and insert operations. (2) When accessing a relation via a secondary access path, 

materialization of the base tuple must be possible. In Transbase this is provided via an indirection over the 

auxiliary IK-tree. 

The Access Manager framework also includes an interface for generating TIDs as a service 

for custom access modules. In Transbase (cf. Figure.31) the TIDs are called IKs (internal 

keys) and are based on fully artificial numeric values. The IKs for one segment are managed 

in an auxiliary B-tree, called the IK-tree, which is residing in the same segment as the primary 

relation. The structure is created automatically at segment creation time and it is capable of 

generating unique TIDs on request. Moreover, one single IK-tree suffices for handling an 

arbitrary number of secondary indexes on a given segment. Therefore, it stores tuples of the 

form (IK, PageNumber), providing management and lookup capabilities for unique IKs. In 

addition, the IK-tree associates each IK with a page number. This page number identifies a 

page belonging to the base relation segment and storing the base tuple associated with the IK. 

Finally, corresponding tuples in the base relation and secondary indexes contain identical IK 

values. This allows direct lookup of the tuple in a secondary indexes corresponding to a given 

base relation tuple, using index attribute values plus IK value from the base tuple. Conversely, 

a given index tuple is materialized from the base relation by using its IK value for retrieving 

the base tuple‟s page number from the IK-tree. This allows direct access to the page contain-
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ing the base tuple. Within the page, the actual tuple is located using a sequential search for the 

given IK. 

The Access Manager TID facility in Transbase is used as follows. If a new tuple is to be 

inserted into the base relation, the responsible access method implementation determines an 

existing page in the segment, or allocates a new one, for storing the new tuple. The current 

transaction‟s TaID, the SegID of the base relation and the target page number (PNO) are used 

as parameter for calling the GetTID() routine. This routine generates a new unique TID and 

stores it together with the destination page number in the IK-tree denoted by SegID. This 

modification happens within the context of transaction TaID. The new TID is returned by 

GetTID(), and has to be stored in the base relation, together with the new data tuple. 

GetTID(TaID, SegID, PNO)  TID 

Besides creating TIDs, the interface also allows updates in the IK-tree structure via its Set-

TID() routine. This functionality is required, if existing tuples are moved to another page, 

e.g. if pages in the primary access path are split or merged. The required parameters for 

updating the IK-tree are the original TID and the new page number PNO. The TID allows 

locating the correct entry in the IK-tree, and then the entry is updated using the new page 

number PNO. 

SetTID(TaID, SegID, TID, PNO)    

Finally, if a tuple is deleted, its IK value is removed from the IK-tree using FreeTID(). The 

provision of SegID and TID are sufficient for locating and deleting the correct entry. 

FreeTID(TaID, SegID, TID)    

TIDs are provided as an optional service by the host system. Each access module is free to use 

this facility or to provide a custom TID implementation. As an example for an alternative TID 

mechanism, an access module might use the access method interface to create and operate an 

auxiliary B-tree structure resembling the IK-tree. Both approaches are functionally equivalent, 

but the built-in TID mechanism offers a more convenient interface for this purpose. 

How and when TIDs and primary keys are actually used for secondary access paths is dis-

cussed in detail in sections 4.3.6 Elementary Navigational Access and 4.3.7 Data Manipula-

tion of this chapter.  
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4.3.4. Opening an Access Path 

Before data can be accessed, an access path has to be prepared for operations via its Open() 

routine. The process is triggered by the SQL compiler resolving access paths from table 

names referenced in a given SQL statement. Therefore, the host system‟s SQL compiler and 

plan optimizer consult the system catalog on the logical data models of available access paths. 

These catalog queries serve also for identifying alternative access path candidates. For every 

primary or secondary access path candidate, the description page number identifying the 

access path‟s segment (SegID) is retrieved from the system catalog. Eventually the Access 

Manager framework retrieves the corresponding description pages (DescPage), which is 

used as parameter for calling the Open() method of each access path candidate. The 

READ_LOCK on the DescPage and all subsequent operations on this scan are attributed to the 

current transaction denoted by TaID. 

Open(TaID, DescPage, mode,     
 
       

,   )  ScanContext 

   mode ::= { Scan | Insert | Update | Delete | Materialize } 

The mode parameter specializes the scan to a particular purpose, namely to retrieval, inser-

tion, modification, deletion, or materialization, as appointed by the defining SQL query. This 

parameter is provided by the generic relational operator encapsulating the access module. The 

   
 parameters represent the scan‟s applicability requirements for its i-th input stream. Scan 

operations are nullary for data retrieval and unary for materialization or data manipulation. 

Still we provide an interface definition for general n-ary operators for reasons that will be-

come apparent shortly. The parameter    describes exploitability settings of the single output 

stream. When opening a scan for the first time, i.e. as an access path candidate during query 

compilation,    
 and    remain vacant, as both specifications are undetermined in this early 

phase of query planning. They will be established later during the query optimization process, 

as discussed in the following section. 

Open scans have a state of operation at all time, and this state manifests itself in the Scan-

Context. This central data structure, which is entirely defined by and fully private to the 

access module, covers all information on the scan‟s current state of operation. The ScanCon-

text is generated each time a segment is created or opened. At that time, information from 

the persistently stored description page is processed and transferred into this main memory 

structure, where it is immediately accessible as long as the scan remains open. This step 

allows unfixing the description page after the scan has been opened, releasing the occupied 
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cache frame into the host system cache‟s LRU stack. A READ_LOCK will be held on the 

unfixed description page, guaranteeing that the information in the ScanContext remains 

valid. In addition to this static information from the segment‟s description page, the scan 

context will also include information on the current transactional context (TaID), which is 

available as input parameter. This TaID defines the scan‟s affiliation to its enclosing transac-

tion, thereby determining its behavior relative to concurrent scans belonging to the same or 

other transactions. Consequently, a scan cannot outlast its enclosing transaction, nor is it 

possible to reassign a scan to another transaction. Similarly, the configuration of the scan is 

provided as    
 and    parameters of the Open() method. As already indicated, these para-

meters are optional, allowing to open a scan for negotiation without preliminary configura-

tion. During subsequent operations, the ScanContext will gather dynamic information, such 

as current scan position and information on data pages from its segment, that are currently 

held fixed in the system cache for immediate access. The ScanContext serves as the pivotal 

input parameter for all access method interface routines implementing operations on an open 

scan. It represents the scan‟s complete collection on status information and it is also the scan‟s 

only opportunity to „remember‟ information across individual operations. It will be perpetual-

ly read and modified by every operation, reflecting relocations of the scan position and 

accounting information on currently fixed data pages. 

After all suitable access path candidates have been opened, they are ready for general optimi-

zation, in particular for index selection. During optimization, all access path candidates are 

undergoing configuration via negotiation and cost assessment. The optimization strategy is 

appointed by the host system‟s query optimizer, while the individual access method imple-

mentation contributes only the necessary instrumentation by implementing the negotiation 

interface. Negotiation will directly influence the ScanContext of each scan, i.e. the ap-

pointed configuration is recorded within this structure. When optimization finds an access 

path candidate inappropriate for the current query, it is closed immediately. The Close() 

operation releases all resources that were occupied by the scan. In particular, all fixed pages 

must be released by the access module. Page locks that have been acquired thus far will be 

held by the host system‟s lock manager, as required by the enclosing transaction‟s isolation 

level. 

Close(ScanContext)    
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When query optimization completes, only the chosen access paths remain open. In this state, 

the scans are fully configured and ready for imminent query evaluation. But between query 

compilation and query evaluation may pass an arbitrary long period of time. This becomes 

apparent when considering stored queries. Therefore, the final configurations of the chosen 

access paths are now recorded in the host system‟s internal, storable representation for opti-

mized query evaluation plans. The scans are eventually closed, releasing all allocated re-

sources, in order to be reopened only immediately before actual query evaluation commences. 

When scans are reopened, the Open() routine is provided with valid    
 and    parameters 

from the prior negotiation process, as preserved in the query plan. In reopening the scan with 

full specifications, the original configurations are reinstalled, avoiding the necessity for 

repeated negotiation and preparing the access paths for immediate operation. When the 

evaluation of a query terminates, all scans of the query are ultimately closed. 

The strict protocol of closing and reopening scans offers full control over the scan status 

manifested in the ScanContext, since the initial status of a configured scan is well-defined. 

But this protocol has one important flaw: perpetually reopening scans is an unnecessary and 

expensive operation, discarding and rebuilding similar ScanContexts over and over again. 

In particular, closing scans after query optimization and reopening them for query execution 

clearly demonstrates this adverse behavior, but the same applies also to a series of similar 

queries on one segment within the same transaction. The prospect of reassigning an open scan 

directly to another operation (task) on the same segment will allow preservation of its scan 

context to a large extent. Repetitive processing of the description page can be omitted and 

static information in the scan context will prevail over multiple scan incarnations. Dynamic 

information concerning the previous scan status can be reviewed for possible reuse. The latter 

applies in particular to fixed pages, e.g. a B-tree scan, keeping a fixed path from its root page 

through internal pages to the current scan position on a leaf page, may reuse a portion (at least 

the root page) of fixed internal pages when repositioned for a new task. 

For allowing this form of operation, a scan must be able to recognize that its purpose has 

changed between two operations. But it is not possible to reliably detect the boundaries of 

independent operations, solely from the normal operation protocol. Database operations often 

consist of a series of individual but implicitly stateful operations, e.g. interweaved navigation 

and manipulation on one segment. As an example, the SQL semantics of update-positioned 

allows a database user to interact directly with a relational scan. Such semantics are not 

visible anymore at the scan‟s low-level interface. From the viewpoint of an access module, 
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such operations are just a series of consecutive calls to various interface routines. In particu-

lar, it is not clear at which point a scan is reassigned to another task. Only the Close() 

operation gives conclusive evidence that a unit of work was completed and the scan context 

has become obsolete. 

To overcome the necessity of closing a scan, the Access Manager offers the optional interface 

routine Suspend(). This routine, if implemented by an access method, is used by the Access 

Manager to inform a scan that a set of operations belonging to one task has been completed.  

Suspend(ScanContext)    

The Access Manager calls the Suspend() routine for effectively preserving unused open 

scans in an auxiliary structure called scan-buffer. This buffer contains a limited number of 

suspended scans, organized in least-recently-used fashion. If the maximum number of such 

scans is exceeded, then the least recently used scan is removed from the buffer by physically 

closing it. The scan buffer is maintained by the Access Manager framework in a way that is 

completely transparent to the access method implementation. In this buffer, a scan may exist 

across multiple logical incarnations, as readily available and reusable asset. There it may 

serve for various different purposes during its life-span, but it always remains limited to the 

one segment on which it was originally opened, as it is bound via the description page it 

processed when opened. In addition, a scan must not outlast the page locks it relies on. When 

the locks are released, the description page (or other pages) could change without being 

noticed in the scan context. Therefore, a scan‟s life-span also depends on the isolation level of 

its enclosing transaction. If the transaction‟s isolation level guarantees serializability, then 

locks are held until transaction boundaries. Consequentially, an open scan may also exist for 

the same duration. In case of a lower isolation level, a scan‟s existence is correspondingly 

shorter, e.g. only for the duration of one SQL query. The correct behavior is controlled and 

guaranteed by the Access Manager framework, which will either logically suspend or physi-

cally close scans as appropriate. When an access method experiences a call to its Suspend() 

routine, it has to initiate operations that are essential for concluding a unit of work, for exam-

ple freeing resources that will not be reused in a consecutive operation. Otherwise, the scan 

remains open and fully operational, ready for immediate reactivation. This reactivation is 

initiated by a second optional Access Manager interface routine: 

Reset(ScanContext, mode,     
 
       

,   )    
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   mode ::= { Scan | Insert | Update | Delete | Materialize } 

Similar to the Open() routine, the Reset() routine provides complete configuration settings 

for the upcoming unit of work, but it lacks the DescPage parameter, as the description page 

is already transcribed into the still active ScanContext, which is preserved from the preced-

ing operation on this segment. The next call to any routine of this scan will therefore have the 

same effect, as if called on a freshly opened scan, i.e. a sequence of Suspend() and Re-

set() is the lightweight equivalent to a sequence of Close() and Open(), reinitiating a 

scan without physically closing it. The resulting scan still belongs the same transaction 

(TaID) and operates on the same segment (SegID) on which it was opened originally, but it 

may exhibit a different specialization (mode) and an alternative configuration (   
,   ), as 

the scan is about to serve for a different purpose. Conceptually, the Suspend() routine is the 

terminal function call of a cohesive unit of work, while the Reset() call starts the consecu-

tive operation. 

4.3.5. Negotiation and Optimization 

The routines belonging to the operational area of negotiation are used in the query optimiza-

tion phase. They provide information on capabilities and requirements of custom access 

methods and other custom relational operators. Based on this information, the DBMS query 

optimizer is able to integrate such custom operators into query evaluation plans (QEPs) and 

eventually it chooses the most promising QEP from several alternatives. In cost-based optimi-

zation, this decision is supported by cost estimation, which therefore necessitates cost func-

tions for custom relational operators. For providing the required functionality for negotiation 

and query optimization, the access method interface specifies four routines, namely Apply(), 

Exploit(), Propagate(), and Cost(). 

The Apply() routine enables substitution of an n–ary ERA sub-expression in an algebraic 

query plan with an algorithmic unit implementing that expression, by establishing all neces-

sary prerequisites of that algorithm. Consequentially, the algorithmic replacement will possess 

n input streams, and for each one it may demand particular input requirements within the 

scope of equivalence configuration. Relational scans exhibit a few special characteristics, 

distinguishing them from general relational operators. Retrieval scans are always leaf opera-

tors in a query plan, possessing no input stream. Such nullary retrieval scans are applicable 

unconditionally, making an Apply() routine apparently obsolete for this type of operator. On 

the other hand, relational scans have input streams, if their purpose is modification of stored 
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data or when they are used for materialization of a base relation after an index access. The 

input stream of modification scans represents data to be inserted, or identifies tuples to be 

deleted or modified. In the latter case, it also describes the modification to be performed. 

Materialization scans operate on one input stream, originating from a secondary index and 

providing identification of tuples to be retrieved from the associated base relation. Both 

manipulation and materialization scans operate on persistently stored relations, each using one 

single input stream, i.e. they both represent unary relational operations. Both nullary and 

unary scan operators can be adapted through propagation and exploitation of correlated 

predicates, as used for direct lookup on the inner relation of a nested-loop join. The unbound 

variables of correlated predicates represent additional input streams that are also subject to 

negotiation. For basic customization of a scan operator, allowing optimized interaction with 

its input streams, the access method interface specifies the following routine, specialized for 

applicability of n-ary scan operators: 

Apply(ScanContext,    , opt)      
 
       

 

   opt ::= 0,1,2,3,... 

This routine allows the scan to announce its applicability requirements    
 (cf. Definition.11: 

Apply function    on page 38), consisting of an array of configuration 

ters                  for each input stream. Before the Apply() routine is called, the 

scan to be configured must be opened, i.e. a ScanContext is available as parameter, provid-

ing substantial information on the physical data model of the scan. The projection     

   
   

       
 describes the permutation of actual attribute positions in the i-th data input 

stream, relative to attribute references in the algorithmic unit‟s replacements pattern. The opt 

parameter selects from an enumeration of optional input requirements. Setting opt=0 estab-

lishes minimal applicability requirements for correct functioning of the applied operator. In 

particular, minimal input requirements should contain only standard representation 

tives     , otherwise the operator is not generally applicable. In addition, the scan operator 

may allow an arbitrary number of optional input requirement specifications. The optimizer 

iterates over available opt settings, starting from zero. If Apply() is called with an opt level 

exceeding the maximum number of available optional input requirements, then the routine 

returns empty    
 configurations. Whenever returning valid    

 settings, the Apply() 

routine also records    
 within its ScanContext structure, thereby configuring the scan to 

this new setting. After each iteration, the optimizer may analyze the costs for satisfying the 
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applicability requirements of the current opt setting, potentially using exploitation and 

propagation on the algorithm‟s input stream, for actively minimizing applicability costs. The 

process searches for input configurations offering the best trade-off between good interopera-

bility and low applicability expenses. Eventually the optimizer decides on the input configura-

tion to be used, and a final call to Apply() with the chosen opt setting makes sure that the 

corresponding    
 is recorded in the ScanContext. 

Minimum applicability specifications of scan operators typically comprise only convenient 

projection of input data. Advanced configurations for more efficient manipulation and mate-

rialization often enforce an input sort order that matches the primary linearization of the base 

relation. As an example, materialization using successive lookup of primary keys in the base 

relation will perform better, if the search keys are delivered in such order, that every page of 

the base relations is visited exactly once, even if it contains multiple hits. A more detailed 

example will be provided in 4.3.7 Data Manipulation. Finally, non-standard representation 

also allows tight integration with preceding operations. 

The Exploit() routine consolidates QEPs that were extended using Apply(). It aims for 

establishing applicability requirements of an algorithm efficiently, by integrating necessary 

transformations into the algorithm‟s immediate predecessor. We already demonstrated that 

this method is particularly effective for constructive query planning based on the principle of 

optimality, because exploitation operates strictly locally, having no implications on the al-

ready established applicability requirements of the preceding algorithmic unit. This is also 

true for exploitation of correlated predicates. An n-ary operator, accepting a correlated predi-

cate via exploitation, de facto obtains its n+1st input stream in form of a parameter stream 

feeding values into the predicate‟s unbound variables. This means that even nullary retrieval 

scans may factually operate on input streams. The already mentioned locality of exploitation 

ensures that this additional input stream does not introduce additional applicability require-

ments, neither on the introduced parameter stream, nor for any other input stream. 

Modification scans are always located at the root of query plans, and therefore they have 

neither parent operators, nor do they produce relational data. Their result is an integer number 

representing the total number of tuples affected by the modification. Hence, exploitation 

applies only to scans used for data retrieval and materialization. For these scan operators, 

exploitation allows conducting additional transformations on the fly, while scanning the input 

set. The Exploit() routine (cf. Definition.13: Exploit function   on page 45) takes the 
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applicability specification    of the parent operator as input and determines the accepted 

configuration parameters                  of the exploited operator. These accepted exploit-

able parameters    are immediately adopted into the ScanContext, making them part of the 

scan‟s current configuration. As result, the routine returns   , the vector of rejected parame-

ters                 . Finally, the optimizer will compensate for rejected operations by 

inserting corresponding standard implementations for   , thereby generating a coherent and 

executable query plan. 

Exploit(ScanContext,   )     

The routine Propagate() is used by query optimization based on algebraic equivalence 

transformation of a query plan. It pushes configuration parameters downwards through 

algorithmic units that are permeable for these parameters. For example, establishing a specific 

sort order either before or after an order-preserving operation is functionally equivalent. 

Similarly to exploitation, propagation will also extend an n-ary operator to n+1 factual input 

streams, by accepting a correlated predicate. This happens if a correlated predicate is absorbed 

by the algorithmic unit in the course of propagation, rather than being properly propagated. In 

contrast to exploitation, propagation may influence an algorithmic unit‟s applicability re-

quirements. The query plan optimizer will automatically explore the impact of propagation on 

applicability requirements, by employing the Apply() routine as stipulated in the negotiation 

protocol. Hence, in the presence of correlated predicates, the Apply() routine achieves true 

relevance, even for retrieval scans that are originally nullary operators without applicability 

requirements. 

Absorption of a correlated predicate through propagation may have side-effects on a unit‟s 

applicability requirements and, in particular, it may introduce applicability requirements for 

the freshly added input stream. As an example, assume an inner scan participating in a nested-

loop join is absorbing the join predicate in form of a correlated predicate (cf. also Figure.10 

(b) and (c) on page 51). Then it may request that the data stream of the join‟s outer loop, 

which is feeding the correlated predicate, is adequately sorted for improved lookup perfor-

mance, thereby effectuating a skip-merge join algorithm, i.e. a merge join capable of skipping 

mismatching data on the inner stream. It should be noted that such applicability requirements 

for correlated predicates represent non-local input directives. In case of a nested-loop join, 

they introduce additional input directives for the join algorithm‟s outer loop, although they are 

established by the inner loop‟s relational scan. This form of propagation may therefore pro-
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duce contradictory input directives. The query plan optimizer is in charge of identifying such 

conflicts and resolving them, if possible. However, it is recommended that non-local input 

directives should be used with care, and they should appear only as optional input require-

ments of an algorithmic unit, otherwise conflicting input directives might inhibit absorption of 

correlated predicates. 

Naturally, permeability and therefore also propagation applies only to internal nodes of a 

query plan, making materialization the primary class of scan operators capable of propaga-

tion. Retrieval scans support propagation only when handling correlated predicates. Finally, 

modification scans at the root of a query plan do not support propagation at all. Similarly to 

Exploit(), a call to Propagate() (cf. Definition.15: Propagate function   on page 49) 

takes the applicability specification    of its parent operator as input and returns only the 

rejected parameters                  in its result   . Propagation is described by the 

equation                  for every single configuration parameter, hence it implicitly 

includes exploitation. Similarly to exploitation, propagation directly configures the Scan-

Context to locally exploitable parameters                 . The propagated configuration 

never becomes explicitly visible. Instead, successful propagation influences the applicability 

requirements of the operator by directly modifying the scan‟s configuration in its ScanCon-

text. Modified applicability requirements necessitate repeated consolidation, which lies 

within the responsibility of host system‟s optimizer and is also accomplished via the negotia-

tion interface, i.e. the modified    is retrieved using the scan‟s Apply() routine and subse-

quently satisfied by employing downward propagation or exploitation. 

Propagate(ScanContext,   )     

Finally, after the scan is configured, a call to its Cost() routine retrieves the estimated costs 

for evaluation, making the effectiveness of alternative QEPs comparable. The general costs of 

an algorithmic units amount to the sum of local costs plus expenses for generating the neces-

sary input for the algorithm. The local costs assessed for a scan operator display the required 

expenses for completing a complex unit of work, i.e. the traversal of its persistently stored 

relation under the given configuration parameters and controlled by the scan operator‟s input 

streams. Functionally such a traversal corresponds to a succession of many individual access 

method interface calls, involving navigation and repositioning within the stored data set, but 

also retrieval and modification of data. This complex unit of work is described in detail by the 

scan operator‟s configuration, consisting of its initial operation mode, applicability directives 
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  , and exploitation   , where the latter two are established during negotiation and are 

available in the ScanContext. 

Cost(ScanContext, InCosts, Stats)  OutCosts 

For estimating cost in accordance to the recursive cost model presented earlier, the cost 

function receives the precalculated costs of its input streams in the InCosts parameter, 

separated into streaming and blocking cost accounts. In addition, cost estimation of an opera-

tion is substantiated with statistical information, namely cardinality estimations, on the opera-

tor‟s input and output streams. This information is generated autonomously by the host 

system, without any knowledge on the inner workings of custom algorithmic units. Derivation 

of statistics is based on the observations that boundaries of algorithmic building blocks in a 

query plan always coincide with the boundaries of the algorithms‟ algebraic equivalents. This 

allows maintaining valid statistical information throughout a purely algebraic representation 

of a query plan, containing arbitrary custom implementations of relational operators. Statistic-

al information on an algorithm‟s input streams and on its single output stream is provided in 

the parameter Stats. The availability of statistics on both input and output is intended for 

facilitating accurate cost assessment, in particular for algorithmic units implementing exten-

sive algebraic expressions, where interpolation of statistical information might become 

necessary for accurate cost estimation. Finally, Stats also includes input statistics of parame-

ter streams feeding correlated predicates. 

In contrast to other relational operators, the Stats parameter of a scan operator is additional-

ly supplemented with the cardinality of the persistent relation on which the scan is operating, 

as this also represents an actual input stream. For cost estimation, comparison of this input 

cardinality with the cardinality of the scan‟s output stream allows inferring the selectivity of 

the scan‟s accepted predicates. For being able to provide such information, the host system 

must maintain general statistics on persistent relations, comprising cardinality and selectivity 

estimations. These statistics are automatically collected and maintained by the host system, 

which is able to access and analyze any persistently stored relation. Such access is transpa-

rently possible, regardless of the actual access method implementation, via the corresponding 

access module‟s access method interface. This allows convenient generation of arbitrary data-

centered statistics, such as data distribution, by employing the host system‟s query processor. 

The statistics are then stored in the DBMS data dictionary, where they are available for 

subsequent cost estimation. 
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If additional information on physical properties of the access structures is required for cost 

estimation, e.g. the degree of fragmentation or height of a search tree, then such information 

has to be maintained separately by the access structure itself. This can be accomplished by 

adequate book-keeping in the description page, whenever the access path is restructured 

during data manipulation. When the access path is opened, this information is transcribed into 

the volatile ScanContext structure, where it is available for cost estimation. Cost estimation 

returns the data structure OutCosts, containing a collection of qualitative cost events, strictly 

divided into blocking and streaming accounts. OutCosts may serve directly as InCosts 

parameter in recursive cost estimation of a parent algorithmic unit. The process of cost esti-

mation is concluded, when the host system eventually maps qualitative cost events to quantit-

ative costs in accordance to the host system‟s cost model, allowing for flexible and dynamic 

cost assessment. 

4.3.6. Elementary Navigational Access 

All data retrieval facilities of the relational scan operator are concentrated in the Next() 

routine. This routine is adopted directly from the Iterator model and its operation is tightly 

interconnected with the scan operator‟s exploitable configuration parameters    

                . If the scan operates on input streams, then the Next() routine relies also 

on the input streams‟ compliance with established applicability requirements  

                    for each input stream. These configurations, which are obtained 

by negotiation during query plan optimization, integrate the scan operator tightly into the 

QEP, allowing optimized interoperability with adjacent relational operations. The combina-

tion of both configurations represents a detailed specification of a planned, iterative traversal 

through a persistently stored relation. Hence, both configurations are integral parts of the 

ScanContext, which is the single parameter of the Next() routine. 

Next(ScanContext)  (OutTup, ScanStatus) 

  ScanStatus ::= { OnTuple|NotOnTuple|EndOfData } 

The Next() call offers rich navigational capabilities in form of relative and absolute scan 

positioning within the persistent data set. For relative positioning, we define two distinguished 

scan positions, namely begin-of-data (before the first tuple) and end-of-data (after the last 

tuple). Initially, a scan on some relation T is by definition positioned on begin-of-data. Rela-

tive positioning is effectuated by configuring the scan‟s    setting to the trivial selection 

      . Every call to Next() will move the scan relatively to its previous position, i.e. the 
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scan moves forwards from its current position to the next tuple t in T, with respect to some 

chosen linearization of T. A linearization is chosen by supplying a non-trivial configuration 

parameter   , requesting traversal of T in the specified lexicographical sort order. In most 

cases however, traversal will follow the primary linearization of the relation, which is impli-

citly chosen by configuring the scan to      . This allows choosing the primary lineariza-

tion, even if it is not a lexicographical sort order. Hence, relative positioning using Next() 

always moves the scan onto the next tuple t, with respect to the chosen linearization, and the 

routine will return OnTuple as ScanStatus. In addition, t is subjected to a projection    

and output in OutTup, as an immediate result of the Next() function call. If the current tuple 

has no successor in the chosen linearization, then Next() will eventually position the scan to 

end-of-data and correspondingly return EndOfData as ScanStatus. With this, relative 

positioning allows iterative traversal of T, visiting every tuple exactly once. 

In addition, navigation using the Next() routine may be complemented with an optional 

Previous() operation. This routine offers the same functionality as the Next() routine, but 

it follows a linearization inverse to the chosen one. If the Previous() routine is not imple-

mented, the host system will try to compensate by using Next() on a scan configured to the 

inverted linearization of    . This is only possible, if the chosen linearization corresponds to a 

lexicographical sort order (        ), otherwise it cannot be formulated as configuration 

parameter. For non-lexicographical orders, or if an inverted sort order is rejected during 

negotiation, then the relation will be scanned in forward direction and the result is subsequent-

ly sorted using a conventional sort operation    . Similar to forward iteration, the optional 

Previous() function is expressed as: 

Previous(ScanContext)  (OutTup, ScanStatus) 

  ScanStatus ::= { OnTuple|NotOnTuple|EndOfData } 

In contrast to relative positioning, absolute positioning moves a scan onto a selected coordi-

nate of the multidimensional space spanned by the attributes of a relation. The position is 

specified as a restriction   , where     defines an exact point. For such pinpoint positioning, 

    may provide a full specification of all relation attributes, such that     appoints constant 

values          , determining coordinates in all n dimensions of T. The minimum specifica-

tion of an exact point in T is represented by restricting any subset of T’s attributes constituting 

a unique key in the relational sense. Alternatively,     may also select the TID of a searched 

tuple as surrogate for a unique key. In any case, if a tuple t satisfying    exists in T, then the 
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scan is positioned onto t and the existence of t is acknowledged by returning OnTuple as 

ScanStatus. In addition, t is subjected to    and output in OutTup. Direct access may also 

position the scan into unoccupied space between existing tuples, if no data in the table satis-

fies the predicate of   . Hence, no output tuple is available, but the scan is positioned to the 

spot where the searched data would be located, with respect to the primary linearization of T. 

In this case, the routine returns the status NotOnTuple and OutTup remains empty. In 

contrast to relative positioning, absolute positioning is strictly stateless, i.e. its result is always 

the same, regardless of the previous scan position. 

Finally, scans can be configured to a complex selection    defining a set of intervals, or a set 

of multidimensional query boxes, which are additionally composed with logical interrelations 

(AND/ OR/ NOT), as expressed in our conception of multi-attribute selection predicates in 

disjunctive normal form                
        

  . In this configuration, the scan will auto-

nomously use absolute positioning for navigating directly onto a query box and subsequently 

traverse it by using relative positioning, employing the skip-scan technique described earlier. 

As a result, Next() and Previous() will iteratively return all tuples qualifying for the 

given selection predicate, before finally reaching end-of-data. In conjunction with a lineariza-

tion    and the other configuration parameters, this technique allows highly sophisticated 

traversal of persistently stored data sets through the remarkably simple Iterator interface. We 

refer to this form of scan operation using a predefined and constant scan configuration    as 

conventional navigation. 

Now we will investigate possible interaction of    with an input stream on the example of a 

materialization scan. The input of a materialization scan provides tuple identification, re-

trieved from secondary indexes for direct lookup of the associated tuple in the base relation. 

Hence, navigation is a sequence of point accesses, using absolute positioning, where the 

predicate of    depends on data from the scan operator‟s input stream. Technically, this is 

conducted by substituting variables in the predicate with corresponding data delivered by the 

input stream. This preparatory step is accomplished by the scan operator entity (cf. Figure.28 

on page 118), encapsulating an access module implementation. The Next() routine does not 

provide for manipulation of the scan‟s configuration, but the Open() routine allows direct 

supplementation of the    parameter. The complete materialization procedure consists there-

fore of multiple sequences, each starting by substituting variables in    with input data, in 

preparation for calling Open(), followed by Next(), and concluded with Close(). The    

presented to the access method during query evaluation is therefore completely constant, in 
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contrast to configurations used in query planning, which may contain variables referencing 

input data or correlated predicates. 

Alternatively, such extended navigational capabilities are also accessible via the optional 

Reset() interface routine, as an replacement for Close() / Open() pairs. In contrast to 

reassignment of scans to different tasks as discussed earlier, where Suspend() and Re-

set()are called in turns, calling Reset() on an open scan serves for reassigning a new 

constant configuration    to the scan, while the scan remains within the same logical opera-

tion. Note that reconfiguration is strictly limited to   , while it is illegal to alter the invariant 

   
. We refer to this operational mode of relational scans as input-driven navigation.  

The same basic principle applies also, if    originally contains correlated predicates. These 

predicates exhibit unbound variables for iterative substitution with values retrieved from a 

parameter input stream. In query evaluation phase, all initially unbound variables in correlated 

predicates are bound to the present values on the corresponding parameter stream. With this, 

   becomes constant for the duration of one traversal through the persistently stored data set. 

This form of navigation is called parameterized navigation. 

There exists a fourth form of navigation, allowing fully dynamic manipulation of a scan‟s 

configuration. For example, assume an open scan that is currently configured to some    
 

with some non-trivial selection     
 for direct positioning. A subsequent Reset() is used to 

install a new configuration    
, removing the selection from the scan‟s configuration, such 

that hereafter     
    holds. Hence, the next call to Next() will move the scan from its 

current position to the next tuple, with respect to the currently active     
. Conversely, after 

repeated relative positioning, a call to Reset() may be used to install another selection     
, 

such that the following Next() will move the scan to a new absolute position. Iterative 

navigation with intermittent scan reconfiguration constitutes a new form of dynamic naviga-

tion.  

We emphasize that dynamic navigation must be distinguished from input-driven (e.g. materia-

lization) or parameterized (e.g. nested-loop join) scan operations. In all three cases, the scan‟s 

configuration changes frequently, yet only in case of dynamic navigation it may change in 

arbitrary ways. The configuration of input-driven and parameterized access patterns change in 

uniform ways that resemble mere substitution of variables, and these changes are strictly 

limited to the selection part of the configuration. Only this limitation to mere variable substi-
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tution makes these access patterns plannable, and the availability of statistics on input data 

and parameter streams enables reasonable cost estimation. These two implications are inevit-

able prerequisite for effective query optimization. Moreover, static configurations for planned 

traversals are generated during the negotiation process by the same algorithmic entity to 

which the configuration eventually applies, guaranteeing that static configurations are both 

valid and efficient. Dynamic navigation on the other hand uses ad-hoc configurations, assem-

bled outside of the configured entity. This requires detailed knowledge of an access module‟s 

internals for devising adequate configurations. Dynamic configurations completely impede 

cost estimation and cost-based query planning. But, in spite of these drawbacks, there certain-

ly exist practical applications for dynamic navigation, for example in intermediate access 

methods (cf. Figure.20 on page 97) using the tuple-oriented access method interface for 

exploiting the full navigational capabilities of its auxiliary data structures. 

We conclude this section on navigational data access with a brief wrap-up of the fundamental 

operations of relational scans introduced so far. Any access path may be in one of three 

possible states. It can be non-existent, operational, or closed, while suspended is an optional 

fourth state, in-between operational and closed. More precisely, any existent access path 

allows an arbitrary number of scans, where each one is operational, suspended, or closed. 

With this, all elementary functionality of a generic scan operator for read-only access is 

covered. The following Figure.32 shows the interaction of all mandatory components of the 

Access Manager interface. It also comprises optional instrumentations that are necessary for 

realizing suspension of scans. 

Figure.32 Transition of scan states. Interactions of the minimal set of Access Manager interface compo-

nents and possible transitions of scan states. Note that any existent access path may allow an arbitrary 

Operational ClosedSuspended
Non-

existent

Open

Drop

Create
Reset

Close

Suspend

Negotiate: Apply, Exploit, 
Propagate, Cost

Iterate: Next, Previous



CHAPTER 4: ARCHITECTURE  143 

number of scans in the states operational, suspended, or closed. The scan state is changed by Create(), 

Drop(), Open(), Close() and the optional Reset() and Suspend() routines. The routines be-

longing to the negotiation complex apply to operational scans and influence the scan‟s configuration, while 

the scan state remains operational. Similarly, the Iterator routines alter the scan position of an operational 

scan, in correspondence to the scan‟s current configuration. Finally, Reset() may also apply to opera-

tional scans, allowing scan reconfiguration while the scan remains operational. 

After employing any form of navigation mentioned earlier, a scan may be used for subsequent 

data manipulation at its current position. A detailed discussion of positioning with intermittent 

data manipulation will be provided in the following section. 

4.3.7. Data Manipulation 

The linear address space of secondary storage devices requires that data inside a database is 

stored according to some linearization, i.e. all tuples of a segment are stored in some arbitrary 

order. A segment‟s primary linearization can be exploited by a diversity of search structures 

for obtaining efficient access to the data, if it exhibits some functional dependency on the 

stored data (clustering). Linearization is usually maintained only within page-sized partitions 

of the physical address space (intra-page clustering). These pages are then logically assembled 

to the continuous address space of a segment, thereby manifesting coherent clustering on a 

logical level. Alternatively, inter-page clustering will also sustain physical clustering between 

individual pages, but this approach is only of secondary importance in the field of DBMS 

technology, since it generally involves significantly higher maintenance costs for reorganiza-

tion. Finally, data partitioning represents a third, hybrid form of clustering, where data is 

functionally associated with dedicated data partitions residing in different physical extents. 

Thereby related data is physically clustered into one extent, but within that extent only intra-

page clustering is enforced. Regardless of employed clustering, the logical address space of 

one segment may grow through addition and shrink through removal of pages. Additional 

pages may be inserted conveniently anywhere inside the logical address space, allowing 

dynamic adaptation to any emerging space requirements, whereas page removal may occur 

where logical address space becomes unoccupied. This approach allows dynamic manage-

ment of the address space while preserving the imposed clustering for efficient data access. 

For sustained integrity of a data access structure, access methods have to actively maintain the 

primary linearization whenever data is manipulated. General data manipulation subsumes 

insertion, deletion, and modification of data. Linearization is preserved by inserting new data 

into the segment‟s address space at the „right place‟ within the primary linearization. There-
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fore, access structures have to locate the correct position for insertion, provide required 

storage room by reorganizing data or extending the logical address space in the vicinity of the 

chosen insertion point, and finally insert the new data. When data is deleted, previously 

occupied space is released by reorganization of the affected pages. If, after deletion, the fill 

level of a page drops below a given limit, logically adjacent pages are merged and resulting 

unoccupied pages are eventually removed from the address space. 

The access method interface classifies routines for data manipulation as optional, hence 

explicit read-only access modules may refuse to implement these routines. For achieving full 

data modification functionality, an access module has to provide at least implementations of 

the access method interface routines Insert() and Delete(). These two routines are able 

to cover arbitrary data modification and also subsequently necessary access path reorganiza-

tions. Both routines will actively move the scan‟s position either onto the correct tuple to be 

deleted or to a position where the tuple to be inserted shall be located. Therefore they are 

using navigational capabilities for repositioning the scan that are similar to those provided by 

the Next() routine. Technically this navigational component of data manipulation can be 

implemented by reusing functionality from Next(). Since an access method is definitely 

familiar with its own implementation, it is possible to use effective ad-hoc configuration for 

dynamic navigation, without going through the negotiation process. If the access module also 

implements the optional Reset() routine, then reuse of the access methods public interface 

for efficient navigation during data manipulation becomes even more attractive. After moving 

the scan onto the target location on the correct page, the scan will access the page using the 

FixPage() routine, thereby acquiring a WRITE_LOCK. Finally, the contents of that page are 

modified. If data insertion would exceed the page‟s storage capacity, then additional space is 

allocated by using the AllocPage() method from the storage layer interface and the new 

page is integrated into the logical structure of the access path. Therefore it might be necessary 

to acquire additional WRITE_LOCKs on logically adjacent pages (e.g. parent and sibling pages 

in tree-like structures), in order to redirect references to the newly allocated page. Finally, 

data is inserted at the appropriate position. Conversely, data deletion may trigger restructuring 

and merging of pages according to the logic of the particular access structure. Pages remain-

ing unoccupied after such reorganization are eventually removed using DeletePage(). 

Again, references from adjacent pages to a page to be deleted will be updated after fixing the 

affected pages for acquiring necessary WRITE_LOCKs. 



CHAPTER 4: ARCHITECTURE  145 

In addition to Insert() and Delete(), the access method interface also provides the 

optional Update() routine for direct modification of data. Since every update operation can 

be simulated by deletion of original data followed by insertion of its replacement, the imple-

mentation of the Update() routine does not introduce additional functionality, yet it may 

have performance-relevant implications. While insertions and deletions are strictly local 

operations, an update may cause a tuple to leap from one position in the primary linearization 

to another, and consequentially the tuple may move from one page to another. This happens if 

the segment‟s linearization has a functional dependency on the modified data. As an example, 

a tuple stored in a B-tree will leap if any of the fields constituting the B-tree‟s compound key 

is altered, since the B-tree uses the lexicographical order on the composite key attributes as 

primary linearization. Hence, we generally distinguish in-place updates and relocation up-

dates. 

All data manipulation routines operate on open scans, using the context of that scan as input 

parameter. The remaining parameters describe data to be inserted, deleted, or updated. The 

scan operator entity (cf. Figure.28 on page 118) encapsulating an access path implementation 

is responsible for retrieving this data from the modification operator‟s input stream and feed it 

as parameters to the modification routines. 

Insert(ScanContext, NewTuple)  InsStatus 

  InsStatus ::= { Inserted | Duplicate } 

Delete(ScanContext, OldTuple)  DelStatus 

  DelStatus ::= { Deleted | NotFound } 

Update(ScanContext, OldTuple, NewTuple)  UpdStatus 

  UpdStatus ::= { Updated | NotFound | Duplicate } 

All routines return diagnostics whether the operation succeeded. An insertion may fail be-

cause it would lead to duplicates of key, and analogously a deletion may fail if the data to be 

deleted is not found. The access method merely indicates the result of the operation. The scan 

operator entity will interpret this status and decide whether it indicates an error situation or if 

the diagnostic is tolerated or even anticipated. Deletion initiated by a user query may well 

result in a NotFound status, if the searched data is not present. On the other hand, if data was 

successfully deleted from the base relation, then a successive deletion from a secondary index 

must find and delete the corresponding index tuples. These diagnostics are also used when 

aggregating the number of inserted, deleted, and modified tuples for returning the set manipu-

lation‟s result count, a task that is also handled by the enclosing scan operator. 
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Modification of data in a concurrent environment inevitably entails all sorts of ramifications. 

Concurrency is used here in the sense that multiple scans are open on one segment at the same 

time. The host DBMS query processor will call access method interface routines of different 

scans in turns. However, the routines are still called in a mutual exclusive manner. Hence, the 

scans operate concurrently, but not in parallel. Parallel query evaluation requires additional 

synchronization, which will be discussed separately in the discourse on advances query 

evaluation techniques of section 4.5.3 Parallel Query Processing. The biggest part of ramifi-

cations caused by concurrent scans, namely all necessary precautions for enabling multiple 

transactions to conduct concurrent scan activities on the same segment, are covered by the 

multi-version concurrency control of the host system. This mechanism provides reliable 

isolation on page-level granularity for operations of independent transactions, relieving the 

access method programmer from the necessity of any additional precautions. Therefore, only 

interactions of concurrent scans of the same transaction require additional attention in an 

access method implementation. We already mentioned the basic aspects of scan maintenance, 

after acquiring a WRITE_LOCK on a page. Multi-version concurrency control requires that 

locking with intention of modification creates a copy of the locked page. This copy henceforth 

represents a new version of the page, the after-image. It will be used by all scans belonging to 

the transaction that acquired the WRITE_LOCK, while scans of concurrent transaction continue 

using the before-image. As a consequence, the modifying scan has to redirect concurrent 

scans belonging to the same transaction to the after-image. This is accomplished by direct 

manipulation of concurrent scans contexts, which becomes possible, since concurrent scans 

on the same segment inevitably belong to the same access method type, and therefore they are 

familiar with the semantics of concurrent scan contexts. All scan context adaptations neces-

sary for scan maintenance are performed by the scan that caused the creation of the new 

version, immediately after acquiring the lock. This strategy of direct scan maintenance allows 

other scans to continue their work, without consciously recognizing that version, location, and 

contents of their fixed page have changed. The same strategy is always applied, when the 

contents of a page are modified. If a concurrent scan is positioned on a page being modified, 

the modification will insert, delete, or update tuples in the vicinity or at the exact position of 

that scan. In case of a modification in the vicinity, the tuples in the page may shift positions 

and the foreign scan has to be adapted in its scan position. On deletion of a scan‟s current 

tuple, that scan has to be moved to a position before the logically successive tuple according 

to that scan‟s effective    configuration. In case of insertion, scan maintenance has to be 



CHAPTER 4: ARCHITECTURE  147 

conducted such that recent modifications will become visible to concurrent scans, if those 

scans move towards the new tuple according to their    configurations. 

This strategy of active scan maintenance is not limited to altered tuples and scan positions, but 

it applies also to all page modifications effectuated by data manipulation. In B-trees, for 

example, modification on leaf-level have to be treated in the same way as their side-effects on 

internal nodes of the index part of the tree, manifesting as page insertions, deletions, splits, or 

merges. This includes in particular changes in the segment‟s description page, as these mod-

ifications also have to be reflected immediately in the scan contexts of concurrent scans 

operating inside the same transaction. When a call to a data manipulation routine completes, 

all tasks concerning modification on that segment must have concluded. The access structure 

and the contexts of all concurrent scans have to be in a state enabling them to cope with 

arbitrary subsequent calls to any of their access method interface routines. Manipulation of 

redundant data stored in separate data structures (indexes) and possible referential constraints 

to other tables will be discussed separately. This will be subject of the following section 4.3.8 

Data Integrity.  

The principles of singleton manipulations can be generalized, when dealing with mass inser-

tion, deletion, and updates. Mass manipulations essentially perform the basic operations 

described before in a repetitive fashion. Therefore, the scan operator is fed with input streams 

defining on which data the operation will be performed, i.e. a stream of tuples to be inserted 

or a data stream identifying tuples to be deleted. The performance of such mass manipulations 

can be significantly improved, if the input streams controlling the manipulation deliver their 

data in an opportune sort order. For example, insertion of tuples arriving in a sort order that 

resembles the primary linearization of the base relation will be significantly faster than ran-

dom insertion. This sort order facilitates modification in one single sweep over the base 

relation, allowing „clustered‟ modifications, as opposed to perpetual random repositioning 

within the data structure. This observation applies in the same way to mass deletion and mass 

updates. The modification scan may actively request an opportune input order during negotia-

tion of its input requirements. In this case, the input sort order has only implication on the 

operator‟s performance characteristics, but not on its functionality. Hence, such a supportive 

sort order would be requested as an optional input requirement. 

In some cases, mass manipulation has to be conducted under additional precautions. In partic-

ular circular references, where the modified relation serves as input for the modification, have 

to be specially treated (e.g. INSERT INTO T SELECT a*2 FROM T). The same holds for self-
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references in update statements that cause tuple relocations (UPDATE T SET a=a*2), and for 

sub-queries in delete statements (DELETE FROM T WHERE a > (SELECT AVG(a) FROM T)). 

This form of circular dependencies is automatically recognized by the host system‟s SQL 

compiler, considered by the query optimizer, and finally resolved by employing an adequate 

strategy in the query processor. The resolution of circular references is based on the principle 

of deferred updates, there the modification is conceptually split in two phases. The first phase 

will compute the complete information describing the planned modification (tuples to be 

inserted, deleted, or updated) and retain it in a temporary storage area. The table to be mod-

ified remains unchanged. The actual modification is performed in the second phase, using 

input streams from the temporary store and thereby eliminating all circular references. All this 

is automatically handled by the host system, completely without any support from the affected 

access module. 

4.3.8. Data Integrity 

Until now, we examined the effects of data manipulation on one single access path. But 

manipulation on a base relation may trigger numerous side-effects for maintaining overall 

data integrity in a database. These side-effects cover maintenance of secondary indexes, 

checking and propagation of integrity constraints and the execution of automatic database 

triggers. In the following, we will address each of these three topics separately and finally 

discuss interactions between these individual tasks. 

Indexes 

The modification of data in a base relation implicates updates of redundant data stored in 

secondary indexes. Insert and delete operations inevitably require a corresponding manipula-

tion on all secondary indexes, as indexes always maintain a strict one-to-one relationship 

between base tuples and index tuples. Row updates on the other hand, do not necessarily 

affect all indexes, since indexes typically constitute a lean projection of the base relation. If 

the update modifies only columns that are not part of one particular index, then this index 

remains unchanged. 

There exist two general strategies for maintaining indexes. If a set of tuples is to be modified, 

integrity can be preserved via singleton index maintenance, i.e. each individual base tuple 

modification is immediately followed by maintenance of all indexes in a one by one fashion. 

Alternatively, set-oriented index maintenance updates all base relation tuples in a first phase, 

followed by accumulated maintenance of every separate index, each in an individual phase. 
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Singleton index maintenance allows processing manipulations on-the-fly, without any re-

quirements for temporal storage. The modification of one individual tuple is processed com-

pletely on all affected access structures. Data from the input stream describing that modifica-

tion becomes obsolete and may be discarded as soon as the last index structure has been 

updated (cf. Figure.33a). This form of index maintenance uses multiple modification scans at 

the same time, one for the base relation (potentially accompanied by a separate scan on the 

IK-tree) and one for every redundant segment. These scans are operated in turns, leading to 

non-locality in index maintenance, which may cause severe performance penalties. We 

already mentioned that manipulation will benefit if its input data arrives in a convenient sort 

order, such that modifications on the base relation are performed in form of one single traver-

sal of the base relation, following an adequate linearization. This input sort order is negotiated 

during query optimization phase and often matches the primary linearization of the base 

relation. While the negotiated input order can be assumed to be optimal for handling the base 

relation, it will surely have adverse effects on secondary index maintenance. Base relation and 

all secondary indexes are inevitably based on pairwise distinct linearizations, otherwise they 

cannot serve as expedient alternative access paths. Hence, tuplewise modification on indexes 

provokes a random modification pattern, requiring frequent and potentially wide-spaced 

repositioning. These access patterns may lead to a significant overhead, if different tuples on 

the same page are modified in separate and nonconsecutive operations, with intermediate 

repositioning to other pages. Ultimately, they will cause cache frame thrashing and unfavora-

ble random I/O profiles, where the same page is physically read, modified, and written mul-

tiple times. Especially in case of bulk operations on many secondary indexes, this effect is 

likely to obliterate performance benefits gained through on-the-fly processing. 

Figure.33 Data integrity maintenance across redundant data structures. A deletion from table S with 

two secondary indexes SX1 and SX2 is being conducted using alternative strategies (a) and (b). In both 
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cases, the input stream describing tuples to be deleted is retrieved from index SX1, enforcing some given 

predicate  . Singleton index maintenance (a) processes immediate deletion for every tuple on all participat-

ing data structures. Negotiation will install a beneficial sort order    for modification on the base relation S. 

Indexes are also maintained in the preset order   . Set-oriented index maintenance (b) conclusively mod-

ifies one access structure at a time, while the input stream is retained in temporary storage, where it is 

available for modification of redundant access structures in subsequent phases. Temporary storage opens 

the opportunity to reorder input data. Thus, every access structure may install its preferred insertion order 

  ,     ,      during negotiation. 

In contrast, a set-oriented approach to index maintenance in multiple phases requires temporal 

storage of the data set defining the planned modification. This allows repetitive processing of 

identical data in each modification phase. Although temporal storage seems disadvantageous 

at first glance, it opens the opportunity of reordering data to suit the preferences of a second-

ary index. Reordering becomes possible at the expense of additional computational complexi-

ty, with the prospect of return of investment through optimized locality in data manipulation. 

The optimal manipulation order for every single index is determined via common negotiation 

with scan operators on each index segment during query optimization phase. During query 

evaluation, only one scan is open in each modification phase, using the configuration estab-

lished via negotiation. This allows manipulating every index in one single traversal, following 

the index‟s preferred linearization. 

We already discussed scenarios where data dependencies, such as self-references in data 

manipulation queries, require employment of the deferred update mechanism for achieving 

algorithmic correctness. This inevitably entails temporal storage of the input data set and 

thereby appoints the strategy to be applied. In all other cases, the choice between the two 

presented strategies offers a trade-off to be considered by the query optimizer. While tuple-

wise modifications show disadvantageous random behavior when maintaining secondary 

indexes, they are able to conduct all operations without additional temporal storage or addi-

tional computational expenditures for reordering data sets. As a variant, it is also possible to 

combine both approaches, by reordering updates for some secondary indexes, while others are 

updated randomly. Finally, two indexes may share a common prefix in their preferred lexico-

graphic input order. Using that prefix sort order for both indexes might be sub-optimal for one 

individual index operation, but it may lead to a superior evaluation plan by reducing overall 

costs. The optimizer may decide for every single segment which strategy to apply, using 

locally individualized negotiation with each scan operator and global cost-driven query 

planning. This decision may be influenced by the number of involved indexes, the amount of 
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available temporary storage, effective costs for reordering, and finally by the estimated costs 

of modifications with and without optional input orders. 

Hence, all functionality necessary for appointing efficient index maintenance is already 

provided via standard negotiation. Yet, the access method must be aware that suggesting 

optional input sort orders to the query optimizer may lead to beneficial alternative strategies. 

The host system provides all prerequisites for facilitating these strategies, including temporary 

storage, reordering, and other necessary precautions for guaranteeing correctness. The access 

module must accept that this strategic decision is made by the optimizer, and support it by 

providing ample flexibility and reliable cost estimation. During query evaluation „normal‟ 

data manipulation and index maintenance are indiscernible from the perspective of an access 

module. It will experience a series of repositioning and manipulation on the segment‟s data 

structure, using intermittent calls to its interface routines for navigation and data manipula-

tion. The logic controlling index maintenance is completely encapsulated inside the host 

system‟s query processor. 

Constraints 

With the constraint mechanism, SQL provides a variety of instruments for preserving and 

enforcing relational integrity. Check-constraints (often used as domain constraints) serve for 

restricting the values of a column to a certain subset of the column data type domain. Key-

constraints and unique-constraints guarantee that individual columns, or a combination of 

columns, do not contain duplicates. Referential constraints (also foreign key constraints) 

ensure referential integrity between individual relations. All types of constraints have the 

same general functionality. If data manipulation violates a constraint condition, then the 

responsible data manipulation is cancelled, all its previously completed effects are undone, 

and the system reports an integrity violation error. 

This behavior is conducted by the host system‟s query execution engine, by interpreting the 

diagnostics returned as ScanStatus, InsStatus, DelStatus, and UpdStatus by naviga-

tion and data manipulation routines. Besides acknowledging that insertion, deletion, or update 

has succeeded, these diagnostics can also indicate integrity violations, namely the non-

existence of a searched tuple and duplicate of keys. But not every access path is able to 

recognize duplicates in equally efficient manner. Therefore, an access method is intentionally 

appointed to the purpose of enforcing a certain constraint and consequentially it must invaria-

bly check for violations and report them reliably. If an access structure is not able to enforce 
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the assigned constraint efficiently, then it may reject that constraint at table creation time. For 

example, a simple linear access path, organized as linked list of pages, is only able to enforce 

a unique constraint or primary key constraint by sequentially scanning its complete data set 

for duplicates, before inserting new data. Such a data structure should reject these forms of 

integrity constraints, thereby forcing a schema designer to install such constraints either via an 

adequate secondary access path (e.g. a B-tree index) or to choose a more suitable access 

method for the primary access path. 

Referential constraints are validated by inspecting adequate access paths of referenced tables. 

Propagation of data manipulation to referencing tables via referential constraints (e.g. ON 

DELETE CASCADE), are accomplished via common data manipulation. All this is conducted by 

the host system, using available mechanisms of negotiation, navigation, and manipulation. 

The host system is also responsible for choosing efficient strategies when preserving referen-

tial integrity. Checking for integrity violations can involve considerable computational com-

plexity that may even exceed the costs of the actual modification. Hence, a general trade-off 

exists between an optimistic approach, attempting inexpensive lazy constraint checking but 

entailing possibly devastating undo operations, and a pessimistic approach, using early but 

potentially more expensive constraint checking and thereby avoiding costly undo operations. 

The strategy is chosen by the host system‟s query optimizer and an access method implemen-

tation may remain unaware of these considerations. An access module may however help 

confining the effects of necessary undo operations to the current modification operation by 

implementing the optional savepoint feature. 

Database Triggers 

Database triggers represent an additional means for preserving the integrity of a database. 

Similar to constraints, which are validated whenever data is inserted, updated, or deleted, 

triggers are used to execute procedural code in response to data manipulation events. In 

contrast to constraints, whose primary scope is enforcement of integrity on a strictly relational 

level, triggers allow automated enforcement of complex aspects of application logic and self-

management of data by execution of application-defined procedural SQL code. In addition, 

triggers are useful for logging and auditing data manipulations, or for automated data replica-

tion. 

The SQL standard distinguishes several general trigger types, namely statement-triggers that 

are executed once for a DML statement, and row-triggers that are executed once for every 



CHAPTER 4: ARCHITECTURE  153 

row update, and therefore possibly multiple times per statement. In addition, it is possible to 

define the exact chronology of data manipulation, by defining triggers that are executed 

before or after the data is manipulated (before-trigger and after-trigger). Finally, it is possible 

to discern the type of data manipulation (insert/ update/ delete) that will activate a trigger. As 

a consequence, it becomes possible to define triggers for a multitude of data manipulation 

events, as any possible combination of trigger types is permitted: 

{row, statement}   {before, after}   {insert, update, delete} 

Database triggers may execute arbitrary procedural SQL statements, including DML state-

ments, which in turn may activate other triggers. Therefore, it becomes possible to devise 

transitive and even cyclic trigger dependencies. With this, database triggers represent a highly 

dynamic and complex instrument for database schema designers. But this complexity affects 

only the host system, which is able to insulate access method implementations completely 

from the necessity of any special precautions for supporting fully-fledged database triggers. 

Again, from the perspective of an access method, triggers effectuate just a succession of 

access method interface calls, navigating and manipulating data. The complex logic of data-

base triggers is encapsulated inside the host system‟s query processor. 

Interrelations 

All the mechanisms described above are to be executed in an exact chronological sequence, 

which is explicitly appointed by the SQL standard. These conventions ensure that possible 

dependencies between individual tasks are resolved in a deterministic and comprehensible 

way, as depicted in Figure.34. 

Figure.34 Logical chronological sequence of integrity maintenance. The SQL standard appoints a strict 

succession for integrity maintenance tasks, where individual tasks may again provoke side-effects, leading 
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to nested data manipulation. Violation of referential integrity is detected in dedicated checks, while unique 

constraints are validated during manipulation of appointed primary or secondary access paths that have 

been put in charge of enforcing these constraints. Occurrences of any form of integrity violation and other 

dynamic errors trigger exhaustive undo operations revoking any dependant manipulation. Hence, the com-

plete manipulation process becomes one atomic operation. 

In spite of this strict definition, the query plan optimizer is free to reorder individual tasks for 

gaining performance benefits, as long as the outcome of the complete data manipulation 

process is identical to that of the demanded schedule of operations. Devising valid and benefi-

cial strategies requires sophisticated query planning. The necessary logic is concentrated in 

the host system‟s query optimization component, which is responsible for maintaining data 

integrity on a global scale. Through negotiation and cost estimation, access modules are 

participating actively in this process and thereby exert a certain influence on significant 

aspects of the final query plan. According to this plan, the scan operator entity manipulates 

the individual access modules affected by data manipulation through their access method 

interface. During this process, the operational scope of access modules does never exceed that 

of management of local data structures of its own segment, which covers manipulation of the 

access structure and maintenance of concurrent scans of the same transaction. Hence, from the 

perspective of an access module, maintaining data integrity is indiscernible from normal data 

manipulation. 

4.3.9. Savepoints 

For sustaining data integrity, the SQL standard demands that data manipulation is a strictly 

atomic operation. The existence of integrity constraints implicates that data manipulations 

may fail in case of integrity violations. The same applies for other dynamic error situations 

that may occur during these operations, including arithmetic exceptions, lock conflicts, 

insufficiency of resources, etc. In these cases, the entire manipulation must be undone, along 

with all dependant operations that have been triggered during its progression. In the transac-

tional environment of DBMSs, this can be accomplished thoroughly by aborting the transac-

tion enclosing the defective manipulation. However, this crude approach will exceed the 

aspired goal in many cases, in particular if the affected transaction also covers other extensive 

operations that have been conducted previously and did complete successfully. In these cases, 

it is desirable to preserve uncommitted work and undo only the effects of the manipulation 

that went awry. In order to accomplish such selective undo operations, the host system re-

quires support from all access structures involved into the data manipulation process. As 

already indicated, this support is provided via the savepoint feature, which is optionally 
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implemented by an access path module. Savepoints are based on the following lean interface 

and a corresponding simple protocol. 

DefineSavepoint(ScanContext)    

ApplySavepoint(ScanContext)    

The beginning of data manipulation on an access path is marked by defining a savepoint on an 

open scan, before applying any changes. Consistent savepoint definition is guaranteed by the 

host system, which is calling the corresponding access module‟s DefineSavepoint() 

routine. Savepoints preserve the state of a scan before manipulation begins, which essentially 

is accomplished by retaining a snapshot of the scan context. During the following data mani-

pulation, the scan may navigate freely and conduct a multitude of elementary update opera-

tions, where both activities will affect the scan‟s context. 

By definition, any scan participates only in one single data manipulation at any time, and 

consequentially it has to maintain at most one savepoint. If another savepoint is defined on 

one particular scan, this denotes the beginning of a subsequent operation and the previous 

savepoint becomes obsolete. Similarly, a savepoint is discarded when its scan is closed. The 

host system will define additional savepoints on other access paths as required, as data mani-

pulation progresses and side-effects on other segments unfold. Thereby the host system 

guarantees that all necessary savepoints are installed in due time. Whenever an access path 

implementation becomes involved that does not support the optional savepoint feature, then 

that scan‟s original state immediately before the manipulation cannot be reinstalled by these 

means. An exception to this rule is represented by scans that were opened dedicatedly for the 

current manipulation. In this case, a scan‟s original state is obviously reinstalled by simply 

closing it, independently of the scan‟s support for savepoints. The availability of the savepoint 

feature for undoing data manipulation is monitored by the host system. It will automatically 

resort to abortion of the whole transaction, in the adverse case that savepoints are not availa-

ble and data manipulation fails due to a dynamic error. In other cases, where an error occurs 

and all participating access modules support savepoints, ApplySavepoint() will be used to 

reinstall the preserved scan contexts, thereby resetting all scans to their original states. This 

particularly includes unfixing pages that are fixed in the current scan context, but were not 

fixed at savepoint definition time, and reacquiring fixes on all initially fixed pages. The host 

system‟s storage layer will actively participate in this operation by supplying pages with the 

correct contents at savepoint definition time. 
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Although it is vital that all involved access module implementations support the savepoint 

feature for its practicability, the bulk of the savepoint functionality is encapsulated in the host 

system‟s multi-version concurrency control. At the beginning of a data manipulation, the 

storage layer is informed via its own DefineSavepoint() interface that data manipulation 

is about to begin in the context of a given transaction. Since data modifications are atomic 

operations, they are serialized in one transaction, and consequentially at most one manipula-

tion per transaction may be in progress at any time. But in contrast to the data access layer, 

the storage layer must be able to deal with multiple transactions at the same time, and conse-

quently it must be able to support as many savepoints, making savepoints a much more 

sophisticated feature on this system layer. If a savepoint is applied, then all pages have to be 

restored into their states before the modification. The storage layer accomplishes this by 

applying logging information for undoing all page modifications issued by the defective 

manipulation. Therefore, the essential information necessary for applying savepoints on the 

storage level is an identification of the first log entry made by the current data manipulation, 

determining how far the logs have to be processed in reverse until the savepoint is reached. 

Hence, general savepoint information is quite compact, as it consists of snapshots of affected 

scan contexts and the ID of the manipulation‟s first log entry. This assumption, and the fact 

that any scan has to maintain at most one savepoint at any time, allows us to dispense with a 

separate interface for explicitly releasing a previously defined savepoint. If data manipulation 

succeeds, its savepoints technically remain installed, but the host system will make sure never 

to apply such abandoned savepoints. As already discussed, these savepoint are eventually 

cleared when new savepoints are installed as scans are reassigned to a different manipulation 

within the same transaction, or when the corresponding scan is eventually closed. This proto-

col guarantees that at the end of a transaction all its savepoints are cleared, because all scans 

are closed. 

In case of some severe errors, for example if the connection to the client application is dis-

rupted, the DBMS will have no choice but to abort active transactions, even if the savepoint 

feature is available, since the DBMS requires application logic in order to recover into a 

consistent state when interrupted. The same applies to lock conflicts, since savepoints are not 

adequate for resolving such contentions, i.e. even if a savepoint is successfully applied, 

isolation necessitates to retain all locks acquired during the defective manipulation. Therefore, 

it is inevitable to abort the complete transaction that caused the conflict, thereby releasing its 

locks and eliminating the lock contention. As a general rule, the DBMS is free to decide what 
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actions are to be taken in case of a dynamic error. Consequentially, the savepoint feature is 

employed only in error situations where it is applicable, where selective undoing is reasona-

ble, and where all participating access modules support the savepoint feature. Otherwise, the 

complete transaction is aborted. If a savepoint is applied successfully, then the original error 

is reported to the database application. The application may then choose how to proceed in 

this situation. Typical strategies include retrying the manipulation, proceeding to some alter-

native work, or manually aborting the transaction. 

4.3.10. Locking & Concurrency 

Locking and concurrency settings in a DBMS offer a certain trade-off, influencing lock 

granularity, concurrency in form of expected conflict rates, and implementation and computa-

tional complexity. The following Figure.35 sketches dependencies between these conflicting 

goals. 

Figure.35 Trade-off in lock granularity. DBMSs generally allow a variety of lock granularity settings, 

that enable the system to adjust to isolation and concurrency requirements of a particular application. Lock 

granularities typically comprise global locking of the complete database, table locks managing access to 

individual relations, page level locks and finally locks of singular data rows. 

We already discussed how the host system‟s storage layer provides reliable locking on page 

granularity, if the corresponding page fix operations are attributed with lock types describing 

the intention to read or write during an imminent page access. Moreover, the host system‟s 

multi-version concurrency control ensures that every fix operation is provided with the correct 

version of a page, in accordance to the enclosing transaction‟s isolation settings. These me-

chanisms permit coarse table locking and fine granular page locks, while operating without 

any functional requirements of direct support from access module implementations. If locking 

on row level is desired, then the access module must actively participate in locking by expli-

citly operating the host system‟s lock manager interface. 

Lock(SegID, PNO, OID, Lock)    
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Unlock(SegID, PNO, OID, Lock)    

  Lock ::= {READ_LOCK | WRITE_LOCK | EXCLUSIVE_LOCK } 

The lock interface extends the hierarchical locking facilities provided by the FixPage() 

routine. It allows locking of arbitrary objects within a segment denoted by SegID and located 

on the page identified by PNO. The access module is responsible to provide unique object IDs 

(OID) for every lockable object in its segment. Any numeric ID may serve as OID, for exam-

ple the tuple‟s primary key, an arbitrary key surrogate, or simply the TID. A call to the lock 

interface will acquire the necessary locks as required by the RAX protocol (Figure.25, page 

110). When locking on row granularity, then FixPage() must be operated with the dedicated 

INTENTION_READ, INTENTION_WRITE, INTENTION_EXCLUSIVE settings for installing 

the hierarchical intention locks according to the RIX protocol (Figure.26, page 110). 

As an alternative to this locking service provided by the host system, an access module may 

operate the FixPage() routine with the NO_LOCK setting. This allows the access module to 

implement its own lock mechanism, thereby completely bypassing the host system‟s lock 

manager. The NO_LOCK mechanism is merely provided for completeness, but as a general rule 

it is not advisable circumvent the host system‟s lock manager. 

4.3.11. Transactions & Consistency 

In principle, database consistency and transactional isolation is completely sustained by the 

host system, without any intervention from access module implementations. Scans cannot 

exist across transactional boundaries and the host system will ensure that all scans are duly 

closed before a transaction ends. Hence, the transition of transaction contexts is irrelevant for 

access modules. Still there might exist occasions where an access module wishes to be in-

formed that such a transition is in progress. For this purpose, the access method interface 

possesses a collection of optional interface routines to be used as callback hooks. Whenever 

the state of a transaction changes and the corresponding callback routine is implemented by 

an access module, the routine will be called by the host‟s Access Manager. All routines have 

the transaction‟s unique TaID as their only input parameter. 

Begin(TaID)    

Prepare(TaID)    

Abort(TaID)    

Commit(TaID)    
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A practical example for these callback hooks exists in access modules operating as data 

integration layers. These modules access remote data repositories that are not based on the 

host system‟s internal storage facilities. If these repositories support transactions, then trans-

actional transitions must be propagated to remote sites. This can be accomplished in a natural 

way by utilizing the respective callback hooks. 

4.3.12. Logging & Recovery 

The Access Manager framework makes no arrangements whatsoever for permitting interac-

tion of access module implementations with the storage layer‟s logging and recovery mechan-

isms. Any access method may rely on these system intrinsic services, as long as its persistent 

storage is based on the host system‟s internal storage facility. In case of access modules acting 

as data integration layers and accessing remote data repositories, similar services might be 

provided by external information systems. If this is not the case, then it might become neces-

sary to provide a custom implementation of logging and recovery functionality inside the 

access module. 

4.3.13. Administrative Tasks 

All remaining access method interface routines are optional and serve for diverse administra-

tive tasks. Since access modules physically exist as dynamically loadable libraries that are 

mapped into the host system‟s address space, the interface provides routines for initializing 

and releasing internal structures that might be necessary for the module‟s internal resource 

management. 

OnLoad()    

OnUnload()    

As its name indicates, OnLoad() is called after the library was loaded into the DBMS‟s 

address space. It is typically executed when the first access path of a certain type is about to 

be created or when that access method is accessed for the first time after the database service 

was started. The inverse function OnUnload() is called if an operation on a segment termi-

nates. This happens if the last access path of the corresponding access method type is dropped 

or if the database service shuts down. 

Altering access paths 

The SQL standard envisions a number of possibilities to change existing access structures.  



160  4.3 ACCESS METHOD INTERFACE 

ALTER {TABLE | INDEX} [(custom_spec)] <relation_name> 

   {ADD | ALTER | DROP} {COLUMN | CONSTRAINT} <element_name> 

   [<new_definition>] 

Typical examples range from deferred adjustments of data type properties (e.g. precision, 

scale, etc.), over changing data types and renaming columns, to addition or removal of com-

plete columns in base relations and indexes. Note that the SQL syntax above also allows 

specification of an alternate custom_spec to be passed to the access module for interpreta-

tion. The provision of facilities for conducting such modifications is optional, and an access 

method provides this feature by implementing the Alter() interface. If an access method 

does not provide an implementation for this method, the Access Manager framework will 

simulate it by creating a new access path according to the altered definition, filling it with data 

from the original structure, which is subsequently discarded. As this approach necessitates 

twice the storage requirements of an access structure in the database‟s permanent storage area 

for a short time period, the Access Manager may alternatively choose to copy the access 

structure‟s contents to its temporary storage area, thereby also allowing in-place modification 

of access structures. All data to be inserted into the new access structure undergoes SQL‟s 

automatic type adaptation, providing necessary adjustments to an altered table definition. 

Missing values for recently added columns are filled in by SQL‟s default value mechanisms. 

In contrast to the aforesaid, modifications of column names however will only affect the data 

dictionary, but not the actual access structure. 

Alter(TaID, DescPage, SegID, CreateSpec, CustomSpec) 

  ScanContext 

The routine‟s signature is identical to that of the Create() routine and it also exhibits a very 

similar behavior. The task of Alter() is to compare the table definition provided as Crea-

teSpec and CustomSpec with the original table definition in DescPage. It has to detect 

differences and apply them by altering the access structure correspondingly. Similar to the 

Create() routine, the function call results in an open scan on the modified segment, which 

is represented by the ScanContext result parameter. 

Like any other data manipulation, the whole operation is executed within a transactional 

context and dynamic errors that might occur in its progress will undo all modifications. In 

contrast to normal writing manipulation on a segment, the Alter() operation is conducted 
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under an exclusive relation lock that is automatically established by the host system at the 

beginning of the operation. 

Reorganization & Defragmentation 

If a relation is populated using a mass insertion mechanism, then the arrangement of data on 

the physical address space of a persistent storage device often corresponds to its logical 

linearization. But all search structures based on page-oriented storage tend to fragment over 

time, if the contained data is undergoing repeated modifications. Data modifications trigger 

overflowing of pages which necessitates the allocation of new pages. These new pages extend 

the logical address space between existing pages, but they are potentially allocated at remote 

addresses in the physical address space. Also merging and releasing of formerly used pages is 

a possible consequence of data manipulation. Reusing released pages will eventually cause 

mingling of pages from different segments. Hence, the logical linearization of data is gradual-

ly dissociating from the physical linearization. Although this fragmentation of physical 

address space does not cause any fundamental functional problems, retrieving data in an 

ostensibly sequential logical order will actually entail reading from random physical ad-

dresses, generating significantly higher I/O costs than sequential reads and ultimately result-

ing in poor performance of a heavily restructured access path. On conventional hard drives, 

and without further precautions, a fragmented search structure will be outperformed by one 

order of magnitude compared to a non-fragmented counterpart containing identical data. This 

effect is countered by reorganizing (defragmenting) the data structure. Defragmentation 

involves physically moving data, usually page-wise, but also intra-page reorganization is 

possible. In addition, the operation is accompanied with updates of potentially complex 

networks of inter-page references and chaining. These extensive implications make data 

reorganization a highly costly task, and therefore it is either initiated on explicit request from 

the system administrator, or as an automatic maintenance task that utilizes hardware resources 

during idle periods. 

Since the host system cannot know how pages and inter-page references of a certain access 

structure are organized, such reorganization must be provided by the access module itself. 

This functionality is supported by the storage layer, allowing systematic allocation of new 

pages through its generic AllocPage()routine. Defragmentation is triggered by the follow-

ing DML statement. 

ALTER {TABLE | INDEX} <relation_name> MOVE <destination> 
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Here the <destination> clause defines the target area for the defragmented access structure, 

either in form of a physical address interval whose boundaries are specified as page numbers 

or via the name of a logical database extent. It is legal to specify a target area that overlaps 

with the storage area occupied by the fragmented data structure, thereby requesting in-place 

defragmentation. However, defragmentation is strictly limited to one single segment, i.e. the 

specification of a target area that is known to be occupied by other access structures will 

never move those pages out of the way, but it will merely attempt to move the specified 

segment as close as possible to the target area. 

In allusion to the representation of this functionality in SQL, defragmentation is accessible 

through the optional Alter() interface routine. Another analogy to altering existing access 

structures is the identical simulation of this optional functionality with mandatory access 

method interface routines. Reorganization in absence of an Alter() routine is achieved by 

building a defragmented access structure at its new target location and subsequently discard-

ing the original fragmented structure. If in-place defragmentation is requested, then the 

Access Manager will automatically consider redirecting the access structure‟s contents to a 

temporary storage area. 

Checking & Reporting 

Database systems offer several complementary, autonomous and redundant systems for 

reliable safekeeping of data. Even in the presence of faulty hardware, data integrity can be 

sustained to a certain degree. But database systems, like all complex systems, are not com-

pletely error-free and both software and hardware defects may ultimately compromise the 

validity of a database. For a monolithic software system it is possible to maintain a constant 

quality standard by effectively testing all involved components before releasing the product. 

An extensible system on the other hand, has to trust in correctness and integrity of subse-

quently added components. To compensate for this shortcoming, the Access Manager is 

equipped with an array of mechanisms for constantly verifying correctness, organized in three 

major stages. As a first stage, the host system will perpetually conduct inexpensive integrity 

checks during normal system operation. If some discrepancy is detected, the system will 

immediately report the source of the problem, and depending on the fault‟s severity, the 

system will either cancel the currently ongoing operation, or in case of grave errors, it will 

abort the surrounding transaction. Therefore, this first stage of system verification is able to 

provide protection against problems that are detectable instantly and inexpensively, and it 

does also guarantee fail-safety through its ability to undo faulty work. If a problem is detected 
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after the transaction enclosing some erroneous modification was already committed, then this 

mechanism provides merely error detection. Monitoring of system activities is performed 

during normal operation, and to this end, no particular extensions in the Access Manager 

interface are required. However, each access module may voluntarily contribute to system 

integrity by performing its own consistency checks during normal operation. 

The remaining two stages of system verification operate in the course of dedicated checks, to 

be invoked via an external maintenance tool. The second stage examines data integrity across 

different segments by matching data from redundant or dependant access structures, e.g. base 

relations, indexes, and referential constraints. This test is performed using the Iterator inter-

face of the access structures, and from the viewpoint of an individual access structure, this 

check represents a normal retrieval operation. Actual integrity checking is performed on a 

higher level, by the Access Manager framework, where the data from redundant access 

structures is compared. During this operation, the access structure remains fully operational 

and normal concurrency precautions apply for ensuring the required isolation from concurrent 

operations. Only the third stage of checking requires an access module to implement supple-

mental functionality in form of an optional interface routine: 

Check(ScanContext)  Report 

When called, the access method will perform a series of consistency checks that are suitable 

for validating the integrity of one isolated access tructure. In contrast to the online integrity 

checks of the first two stages, where only comparatively inexpensive checks are reasonable, 

the Check() routine‟s focus lies on thorough testing, using potentially complex algorithms 

and accepting corresponding costs. The most important check to be initiated in this stage will 

search for irregularities in the chaining of pages. This validation is typically accomplished by 

traversing the search structure via redundant chaining, i.e. brother-chaining and parent-child-

chaining in tree structures. Other tests may survey the validity of invariants and assertions of a 

particular access structure, such as compliance with guaranteed page fill levels, fan-out, 

acyclicness, or comparison of the data‟s actual sort order with the expected linearization. 

Generally, all these tests are executed while the database is fully operational. But concurrent 

modifications of the data structure under examination may influence the test. Hence, the 

access method itself may choose whether the access structure is online or offline while these 

tests are conducted. An adequate measure to protect an access structure from concurrent 

access during Check() operations is to establish an exclusive lock on the access structure‟s 

description page. 
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The result of a Check() invocation is a comprehensive, textual report providing detailed 

information in human-readable form. In case of uncovered integrity violations, the diagnosis 

should contain rich information for analyzing the source of a problem and it should also 

provide useful information for its resolution. The routine may also repair minor deficiencies, 

if this can be accomplished in a reliable way. Nevertheless, such corrections are to be men-

tioned in the final report. If no errors are found, this report shall present conclusive informa-

tion on the status of an access path, e.g. current storage requirements, average page fill level, 

degree of fragmentation, etc. This information is intended to support schema analysis and 

refinement during the database design phase or schema revisions. The inefficiency and labo-

rious nature of structural integrity validation makes it generally unattractive for repeated, 

automated monitoring in a productive environment, hence such reports are typically generated 

only on explicit request of the database administrator. 

4.4. Relational Operator Interface 

The preceding section illuminated all important aspects of the access method interface for 

integrating implementations of custom access methods into a host DBMS‟s query optimiza-

tion and query evaluation procedures. Access methods represent a specialization of general 

relational operators and therefore they occupy a unique position among the set of relational 

operators and their algorithmic implementations. In this section, we will address integration of 

custom implementations of generic relational operators into the host DBMS. We will show 

how these implementations are subsumed in the class of relational algorithmic modules and 

we will demonstrate how a lean subset of the access method interface together with an ana-

logous protocol is sufficient for embracing the complete functional spectrum of arbitrary 

relational operators. 

Henceforth, we address this interface of algorithmic entities implementing generic relational 

operators as the algorithmic module interface. Similarly to the access method interface, it is 

based on the Iterator Model. But „ordinary‟ relational operators require no means for access 

path creation, data manipulation, transaction handling, etc., and therefore their interface 

consists only of the elementary Iterator routines Open(), Next(), and Close(). This 

mandatory interface may be augmented with an optional Reset() routine. For active partici-

pation of such algorithmic modules in the query optimization process, the interface also 

comprises all assets for negotiation, namely Apply(), Exploit(), Propagate(), and 
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Cost(). The following Figure.36 illustrates the common interface for all algorithmic mod-

ules. 

Figure.36 Algorithmic Module Interface. This interface provides the required abstraction of specialized 

functionality of one individual algorithmic module implementing a relational operator. It allows combining 

arbitrary Iterator-based relational algorithms to complex query execution plans. 

We already encountered this particular interface definition in form of the scan operator‟s 

external relational operator interface (cf. Figure.29 on page 119). Similar to a scan operator 

encapsulating an access module, any algorithmic unit is embedded in a generic relational 

operator entity (depicted in Figure.37), which is an integral part of the host system. As the 

scan operator is a specialization of a generic relational operator, they both export the universal 

relational operator interface, which allows handling arbitrary algorithmic implementations in 

a uniform way during query evaluation. 

Figure.37 Generic Relational Operators. The generic relational operator encapsulates an extensive func-

tional diversity of access module implementations. It is configured via negotiation for optimal interopera-
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bility within a query plan and the resulting configuration represents the detailed description of its planned 

evaluation. During query evaluation, the algorithmic module‟s Iterator-based interface routines are operat-

ed by the generic relational operator in accordance to this configuration. 

Owing to the congruence of algorithmic module interface and generic relational operator 

interface, the functionality of the generic relational operator embedding an algorithmic mod-

ule is relatively simple. It has to manage and preserve negotiated configuration settings of the 

algorithmic unit, forward all Iterator and negotiation calls to the embedded module and 

contribute all necessary parameters for these calls. Access method interface and algorithmic 

module interface are operated according to a common protocol. In the following, we will 

provide separate surveys of the subtle differences between access methods and generic opera-

tors during iteration and negotiation. 

4.4.1. Iteration 

Although the interface routines names for iteration on access method interface and relational 

operator interface are identical, the limited functionality of the latter allows omitting parame-

ters that are irrelevant for generic relational operators. The remaining interface is specified as: 

Open(    
 
       

,   )  OpContext 

Next(OpContext)  OutTup 

Close(OpContext)    

Reset(OpContext,   )    

The functionality of the individual routines is very similar to their counterparts in the access 

method interface (cf. 4.3.4 Opening an Access Path on page 128). The Open() routine of an 

algorithmic module creates a corresponding algorithmic entity associated with the resulting 

OpContext and prepares it for evaluation. The configuration parameters    
 and    are 

optional. Omitting configuration parameters allows opening an algorithmic unit for negotia-

tion. If valid configurations are available from a prior negotiation procedure, then they may be 

used for opening an algorithmic unit and immediately presetting all input streams of an 

arbitrary n-ary (   ) relational operator and its single output stream. As its result, this 

routine returns the context of an operator in OpContext, a private data structure similar to the 

access method‟s ScanContext. This structure preserves an operator‟s internal state between 

separate interface calls. In contrast to the corresponding access method routine, a relational 

operator does not require a TaID as reference to a surrounding transaction, as it is never 
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confronted with concurrency issues. It always operates on its private input relation, uses 

private internal resources, and produces output dedicated to one single subsequent algorithmic 

unit. Also the parameters DescPage and mode are irrelevant and therefore absent, as opera-

tors possess neither persistent descriptions, nor alternative operating modes. The Next() 

routine is used for iteration, having the OpContext as its sole input parameter. The routine 

iteratively computes and returns the next result tuple as OutTup. After the last valid result 

was delivered, further calls to Next() will return an empty tuple, denoting end-of-data and 

making a separate descriptive result parameter similar to the access method‟s ScanStatus 

obsolete. Finally, Close() terminates the evaluation of an algorithmic unit and releases all 

occupied resources, thereby invalidating the contents of its input parameter OpContext. The 

optional Reset() routine functions similarly as for access methods. It is used for reinstalling 

alternative configurations    as an inexpensive replacement for Close() / Open() pairs, 

while the algorithmic unit remains within the same logical operation. This is particularly 

useful if the algorithmic unit accepted a correlated predicate as exploitable configuration 

during negotiation. Note that reconfiguration via Reset() is limited to   , while    
 is 

invariant while the operator is active. In contrast, the access method interface‟s Reset() 

routine also accepts alternative    
 settings when operated in conjunction with the optional 

Suspend() routine. 

4.4.2. Negotiation 

Interface definition and protocol for negotiation in the algorithmic module interface resemble 

negotiation of access methods very closely. The interface specifications can be derived from 

each other by replacing the access method‟s dedicated ScanContext with the algorithmic 

module‟s generic OpContext: 

Apply(OpContext,    , opt)      
 
       

 

   opt ::= 0,1,2,3,... 

Exploit(OpContext,   )     

Propagate(OpContext,   )     

Cost(OpContext, InCosts, Stats)  OutCosts 

Otherwise negotiation for access methods and generic algorithmic modules behaves identical, 

enabling the query optimizer to handle both entities in the same way. For details on negotia-
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tion, please refer to the corresponding section on access methods (4.3.5 Negotiation and 

Optimization, page 132). 

4.5. Advanced Query Evaluation Techniques 

Database management systems often operate in high-end hardware environments, capable of 

massive parallel computation and attached to broadband storage appliances. And, although an 

ideal extensible DBMS architecture should avoid any hardware specific considerations in its 

extension modules, the demand for maximized performance and thorough exploitation of 

available hardware resources makes it impossible to ignore them completely. Hence, this 

chapter will focus on suitable strategies for improving interaction between access modules 

and other custom algorithmic implementations with the host system‟s query evaluation engine 

and storage layer for gaining additional performance benefits. We examine three possibilities 

for effectively speeding up operations by exploiting general properties of modern computer 

hardware. Prefetching and partitioning are two techniques that incorporate considerations on 

typical performance characteristics of common storage technology into query processing. The 

third aspect of advanced query evaluation techniques examines scalability of DBMS through-

put by utilization of parallel computation capabilities. 

4.5.1. Prefetching 

Despite rapidly growing main memory sizes and emerging alternative storage technologies, 

such as solid state drives (SDD), conventional hard drives are still the prevalent storage 

facility for persistent databases of considerable size. They represent a mature technology with 

many advantageous properties but they also have some noteworthy drawbacks. One of their 

most prominent properties is an asymmetry which is strongly favoring sequential I/O over 

random I/O. DBMSs have to actively counter this effect by employing adequate I/O strate-

gies. Additional countermeasures have been developed on the hardware side. RAID (Redun-

dant Array of Independent Disks) appliances are nowadays commonplace technology in 

computer systems running database servers. Their ability to distribute massive I/O workloads 

on conventional disks working in parallel is capable of achieving a higher throughput, even 

for random I/Os. However, the original problem is not fully overcome, and sequential I/Os 

remain substantially faster on RAID systems. In addition, RAID technology demands ba-

lanced utilization of all disks in the array, in order to operate effectively, such that the confi-

guration of employed hardware again influences the behavior of the DBMS. SSD (Solid State 

Drive) technology for random access on secondary memory is advancing quickly in the 
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DBMS field. But the considerable higher price still makes them unattractive for large data-

bases. In addition, the SSD technology introduces a new asymmetry, favoring reading opera-

tions over writing, another hardware property to be a considered in DBMS operations. The 

most important impact of hardware characteristics on DBMS performance is caused by the 

divergence of rapidly gaining CPU power and stagnating storage throughput. While disk 

performance literally remains on the same level since decades, additional CPU power was 

made available in accordance to Moore‟s Law. The divergence is not only limited to second-

ary storage in form of hard drives, but also main memory is affected. The establishment of 

multi-level hierarchies of hardware and software caches is clearly supporting this assumption. 

Although poor I/O throughput is triggered by various reasons, originating from a diversity of 

employed storage technology, they eventually all lead to the same general effect, namely a 

memory stall, where the CPU cannot proceed with its tasks, because I/O operations on the 

diverse memory levels has not yet completed. Memory stalls can be effectively countered 

with prefetching and write-ahead techniques. Both techniques are based on the same funda-

mental premise. They try to request necessary I/O operations as early as possible, instead of 

deferring them to the latest point in time. This gives the storage system the opportunity to 

reorder requests within the resulting time interval and schedule them interspersed with re-

quests from other tasks for achieving optimal I/O hardware utilization. Moreover, these 

techniques allow overlapping of I/O and computational efforts, leading to a superior overall 

system utilization. 

An access module may implement effective prefetching by means of the storage layer‟s 

FixPage() routine. We already discussed how this routine is used during regular operations, 

where it is attributed with the corresponding lock type for the intended operation (NO_LOCK, 

READ_LOCK, WRITE_LOCK, EXCLUSIVE_LOCK). For enabling prefetching, we introduce 

PREFETCH as a fifth attribute. This prefetch mechanism of the storage layer will initiate 

transportation of the page with the requested page number (PNO) into main memory. As soon 

as the transport is initiated, the routine will return immediately, allowing the access method to 

pursue other tasks, before it will eventually access the requested page. Despite the routine‟s 

name, the page is not fixed in main memory and no locks are acquired in this particular mode. 

As soon as the page arrives in main memory, it is released into the system cache‟s LRU stack. 

If the requested page is already resident in the system cache when the prefetch is requested, 

then prefetch call will merely move that page on top of the LRU the stack, into MRU position. 

In any case, the requested page is henceforth subjected to the cache‟s normal LRU strategy, 
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and it begins to sink into the LRU stack while other pages are accessed. But during this period 

it may be inexpensively fixed by the scan operation that issued the original prefetch request, 

or by any other scan operation. The loose coupling of prefetching and fixing of pages via the 

system cache demonstrates the asynchronous nature of the prefetch mechanism. The page fix 

may be effectively issued within the time period before the page drops out of the cache. If the 

page is not fixed in a timely manner, the page was prefetched in vain, and the cache frame 

will be reused for another page. 

The presented strategy raises several issues to be considered. The utilization of limited cache 

resources for buffering prefetched pages must happen in a cooperative way, because without 

further precautions the cache might be flooded with prefetch requests, making it unusable for 

its primary purpose. This is prevented by the storage layer that will actively limit the number 

of prefetched pages in the system. As a consequence, any prefetch request may be declined by 

the host system‟s storage layer. This again raises the issue of starvation, i.e. the host system 

must ensure that prefetching resources are shared in a fair way among concurrent scan opera-

tions. Finally, the access method itself must make prefetches in such way that it has a realistic 

chance that all requested pages are fixed before they drop out of cache. On the other hand, it 

must make sure that pages are not fixed too early, since a premature fix operation will block 

until the I/O is completed. Hence, every access method must devise a prefetching strategy that 

is actively balancing accepted prefetch calls of the storage layer and its own progress in 

accessing and processing of pages. 

The corresponding mechanism for asynchronous write-ahead is also integrated into the 

storage layer‟s page access facilities. Whenever a data manipulation scan unfixes a modified 

page, this page is released into the LRU stack. As soon as this happens, the page is beyond 

control of the access method, and the page becomes a candidate for an immediate write 

operation. The host system‟s cache manager will constantly analyze the current LRU situa-

tion, in search of modified pages. For these pages it will initiate required I/O operations 

generating necessary log records and eventually it will write modified pages through to disk. 

On some occasions, a modification scan might return later to the same page for conducting 

another modification. If the first modification was already written to disk, the second modifi-

cation will necessitate a second write operation. To prevent this form of page thrashing, the 

host system will employ a lazy write-through strategy, allowing scans to perform several 

modifications before the systems attempts to write to disk. Ideally, a write operation on a 

modified page is issued such that the write operation completes approximately at the time 
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when page reaches the bottom of the LRU stack, making such a page immediately replacea-

ble.  

Aside from these considerations, an access method that finds that a modified page should 

remain in cache, because the page is likely to be modified again, may either fix that page, 

which prevents its replacement altogether but binds cache resources. Alternatively, the access 

method may periodically issue prefetch calls on such pages, in order to keep them inside the 

upper part of the LRU stack, thereby preventing it from becoming a candidate for lazy write-

through. Only when a transaction is about to be committed, all its manipulated pages that are 

still on cache must be written through to disk (more precisely, writing the logging information 

suffices) in preparation of the transaction‟s termination. 

Hence, the host system is able to provide powerful prefetching and write-ahead facilities 

through the already established interface routines. Any access method may freely choose 

whether to employ these facilities for possible performance improvements. Moreover, any 

access method is free to make additional arrangements to improve its throughput by employ-

ing prefetching on other levels of the memory system hierarchy. As an example, [Che01] 

presents such considerations for cache-conscious B-trees. This form of prefetching has to be 

contemplated within access method implementations, and therefore it is beyond the scope of 

the access manager framework. 

4.5.2. Data partitioning 

Apart from prefetching, data partitioning is a commonly used technique for enabling ad-

vanced query evaluation and exerting beneficial influence on DBMS I/O and query 

processing performance. Data partitioning is used for two general purposes. Firstly, data may 

be distributed across independent storage and processing devices, in order to achieve through-

put in an order of magnitude that is a multiple of the maximum throughput of one individual 

device. Alternatively, related data may be concentrated on dedicated sites, which is particular-

ly useful for spatially distributing data of regional relevance, while allowing location transpa-

rent access to global data via federated or distributed DBMSs. Partitioning may be effectively 

combined with redundancy, either for further promoting efficiency, or for improved system 

availability and data security, or even for a combination of these two goals. 

There exist a broad range of possible strategies for data partitioning. Relations may be hori-

zontally partitioned, i.e. individual rows of one relation are kept in different storage areas. 

Alternatively, relations may be partitioned vertically, where projections of a relation are 
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stored in different places. It is also possible to combine these two partitioning techniques. The 

actual partitioning may be conducted according to various criteria. Data-driven partitioning is 

a common technique, where data satisfying a given predicate is grouped together. Typical 

predicates for this purpose are value ranges, value lists, hash functions, and compositions of 

the aforementioned, factorizing data into individual partitions, where each partition is as-

signed to a dedicated storage area. Data-driven partitioning may be conveniently exploited by 

the query plan optimizer when evaluating predicates that are similar to those used in data 

partitioning. Alternatively, data may be partitioned implicitly and independently from its 

actual datum, for example via random or round-robin assignment to different storage areas. 

Such data striping cannot be exploited directly when processing predicates in query evalua-

tion, but partitioning may facilitate parallel query evaluation techniques, e.g. for generating 

partial query results on independent sites. In contrast to data-driven partitioning, data striping 

may also be conducted on the hardware-level, e.g. by RAID appliances. Finally, all forms of 

partitioning, namely horizontal, vertical, data-driven, and data-independent, may be arbitrarily 

combined, for achieving a desired overall system behavior of joint performance, availability, 

and security characteristics. 

Data partitioning within an access path is controlled to a large extent via the SQL CREATE 

statement‟s PARTITION BY clause. The contents of PARTITION BY will be recorded within the 

system‟s data dictionary, where they are supportive for the query plan optimizer during query 

planning, in particular for effective exploitation of data-driven partitioning in predicate 

evaluation. Partition specification may contain logical names of storage areas (often referred 

to as table space or data space) or physical storage areas, e.g. extents, files, etc. Further 

partitioning directives may be provided by an access method‟s dedicated custom_spec clause 

(cf. 4.3.2 Access Path Creation on page 120). Hence, both partitioning specification are 

available at access path creation time and the access method will integrate them into its 

description page, where there are permanently available as guidance to be used for conducting 

data manipulation accordingly.  

On the low abstraction level of practical access method implementations, partitioned storage 

areas are expressed as paired page numbers, denoting the lower and upper boundaries of 

intervals on the database‟s physical address space. These intervals correspond to the logical 

storage areas of the PARTITION BY clause. Under these preconditions, partitioning from the 

perspective of an access module is a fairly easy task that is intrinsically tied to page allocation 

strategies. After the affiliation of data to a particular partition is determined, the access me-



CHAPTER 4: ARCHITECTURE  173 

thod may systematically acquire necessary storage area within the dedicated partition through 

the storage layer‟s AllocPage() interface. In section 4.2.1 Storage of the built-in storage 

layer (page 105), we already discussed how this routine allows selective memory allocation, 

which is employed for preserving physical clustering (4.3.7 Data Manipulation, page 143) 

and for reorganization (4.3.13 Administrative Tasks, page 159). Partitioning merely represents 

another application of this versatile mechanism. 

4.5.3. Parallel Query Processing 

Until recently, all technical advancements for providing additional computational power were 

achieved through higher integration of circuits, more sophisticated processing techniques, and 

higher clock rates of single core CPUs. All existing applications were automatically benefit-

ing from these improvements, without the necessity of any adaptations on their parts. In 

future, this is likely to change, since fundamental technical limitations inhibit further ad-

vancement at present rate in this direction. As an alternative, additional computational re-

sources are likely to be provided in form of multiple CPU cores. This significant change of 

the basic technical principles of computational hardware profoundly affects all performance-

critical software to be run on such systems. The conception of a DBMS as a monolithic 

service, transparently providing scalable performance, inevitably leads to the conclusion that 

parallelism has to become an integral part of DBMS design in general and its relational 

algorithms in particular. In the following, we will present how the Access Manager frame-

work provides all necessary precautions for supporting parallelism. 

Conceptually, we distinguish three forms of parallelism, namely intra-query parallelism, 

inter-query parallelism, and inter-transaction parallelism. The latter two items are very 

common in multi-user DBMS technology, thus we will not elaborate on these topics and 

concentrate on intra-query parallelism. This concept is again divided into intra-operator 

parallelism, denoting parallel execution of one particular operator like parallel sorting, and 

inter-operator parallelism, which describes functional decomposition of a query plan into 

tasks that may be executed independently. In our conception, these concepts do not operate on 

granularity of individual relational operators, but rather on granularity of the algorithmic 

entities that implement these operators. 

Transbase, as the host system for the Access Manager prototype, provides parallelism in 

query processing transparently on the granularity of individual algorithmic units in a query 

evaluation plan. Parallelism is encapsulated into one single operator, the async operator 
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[Ack08]. This operator has no analogon in relational algebra and serves merely for optimizing 

resource utilization and improving performance through parallelization. It provides a data 

buffer, capable of temporarily retaining a small portion of its input data, and an asynchronous 

thread of execution. This thread is responsible for evaluating the tree portion below the async 

node, which functions as a producer in the classical producer/ consumer pattern. Its task is to 

deliver input data and store it into the async node‟s intermediate buffer. The operator tree 

above the async node runs independently in the parent thread of execution, representing the 

consumer, which simultaneously retrieves data from the buffer. Naturally, access to the buffer 

is controlled by synchronization primitives that are also integral parts of the async operator. In 

correspondence to the well-known producer/ consumer scheme, the consumer thread will 

block until data is available in the buffer, while the producer thread will block whenever the 

buffer is full. When the lower part of the operator tree is exhausted, i.e. the last tuple was 

delivered, the producer thread terminates. Figure.38 illustrates possible scenarios for employ-

ing the async operator. 

Parallelization of sequential query execution plans using async operators is an integral part of 

the query planning process and therefore lies in the responsibility of the query optimizer. The 

optimizer identifies operator tree portions that are suitable for parallelization and separates 

them from the main thread of execution by inserting an async operator. Therefore it examines 

the possible impact of parallelization by evaluating the Cost() functions. But the optimizer 

is also responsible for managing the costs induced by parallelization, i.e. synchronization, 

memory consumption for async buffers, and overhead for copying tuples into these buffers for 

exchanging data at thread boundaries. These costs effectively limiting the number of threads 

in the system. In consequence, query optimization will try to minimize the number of thread 

boundaries while maximizing the number of parallel operations within a query plan. In 

addition to efficiency, the optimizer must guarantee that algebraic soundness and algorithmic 

integrity of the query plan are not compromised by its parallelization efforts. Separated tree 

portions are then executed independently from the main thread, thereby effectively accom-

plishing inter-operator parallelism. In addition, the optimizer identifies operator tree portions 

that represent pipelines of parallelizable operators. Initially these pipelines run independently 

in one dedicated thread, achieving mere inter-operator parallelism. But they may be replicated 

dynamically during query evaluation, and a new thread is spawned for every copy, thereby 

providing true intra-operator parallelism. The pipelines‟ input stream is partitioned among all 

existing pipeline instances. This partitioning introduces the necessity to consider order preser-

vation of data within pipelines, in order to comply with present input directives of successive 
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algorithmic units. Asyncs are capable of enforcing order-disrupting, order-preserving, or 

order-establishing data flow within a pipeline, were each mode is attributed with different 

performance characteristics. The query optimizer guarantees validity of input directives and 

enforces them by adjusting asyncs to suitable operating modes. Pipelining provides intra-

operator parallelism, and its dynamics are able to eliminate congestions in a query plan by 

adding processing capacities in form of additional pipelines as required. The objective of 

these dynamics is to achieve a balance among all consumers and producers in a query plan, 

effectuating load-balancing and self-tuning capabilities that ultimately strive for optimal 

resource utilization and maximized throughput. 

Figure.38 Parallel query execution in Transbase. A sequential query evaluation plan (a) is parallelized 

by insertion of async nodes between algorithmic units, creating new thread boundaries (dashed boxes). All 

communication between separate threads is conducted solely via the host system‟s async operator. Parti-

tioning of tree portions into threads is conducted such that each algorithmic unit is distinctly assigned to 

one single thread of execution, thereby effectuating inter-operator parallelism (b, c). Replication of paralle-

lizable plan fragments (pipelines) allows intra-operator parallelism (d). In this case, the async operator is 

responsible for partitioning input data among pipelines and for reintegration of pipeline output. For facili-

tating preservation of input directives, the async node is capable of operating in various modes 

(PASS/FIFO/HASH/SORT), each influencing order preservation and performance characteristics different-

ly. (e) demonstrates how a relational scan on R is divided into two separate algorithmic units R’ and R”, 

where R’ represent the sequential portion of the scan module‟s implementation, while R” comprises that 

part of the code that may be used in pipelines. 

Custom algorithmic implementations and custom access modules may participate in these 

parallelization mechanisms, if they comply with a few basic requirements. The most impor-

tant property of any algorithmic unit is thread-safety, i.e. every algorithmic implementation 

must assume that it is executed in multiple parallel incarnations within one or more query 
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plans and that the host system will take no synchronization precautions of its own. Moreover, 

every module must operate independently from neighboring entities and in a fully self-

contained way, as the optimizer will assume that inter-operator parallelism is generally 

possible. Only the presence of compelling indicators prohibiting parallelization, such as 

correlated predicates inducing non-local relationships between operators across thread boun-

daries, force the optimizer to refrain from parallelization. Otherwise, the optimizer is free to 

introduce thread-boundaries between algorithmic units as it sees fit. In consequence, it is 

illegal to maintain any cross-relations between individual algorithmic units. Intra-operator 

parallelism, on the other hand, is not applied to an algorithmic unit without obtaining the 

unit‟s explicit approval via its Cost() function. We already indicated in 2.4.6 Cost Function 

(page 58) how an algorithmic unit will communicate its ability to scale when executed on 

parallel hardware, by revealing a ratio of parallelizable code portions as compared to its total 

sequential expenditure via its Cost() function. This allows the query optimizer to estimate 

the algorithmic unit‟s performance in parallel execution by means of Amdahl‟s Law. If an 

algorithmic unit is incapable of parallel execution, either because its algebraic equivalent 

prohibits parallel processing, or due to an inadequate implementation, it will express this 

property by returning a parallel cost indicator that will prevent parallelization. It is important 

to note that the Cost() function is always applied to a completely configured algorithmic 

unit, therefore the resulting cost estimation will include any impact of the configuration on the 

unit‟s attainable degree of parallelism.  

Figure.38 above also demonstrates one important peculiarity of this approach towards paralle-

lization. Since algorithmic units are strictly assigned to one thread of execution, it is impossi-

ble to separate sequential and parallelizable parts of one single algorithmic entity for improv-

ing scalability. This limitation is avoided by explicitly allowing any algebraic expression (this 

explicitly includes primitive relational operators) to be implemented as a composition of 

autonomous algorithmic entities. Figure.38(e) exemplifies this on a relational scan on R, 

which is composed of two algorithmic entities R’ and R”. Both entities are participating 

separately in the negotiation process, thereby obtaining the possibility to express differing 

scaling abilities. In this example, R’ will use sequential code for performing necessary I/O 

operations. The consecutive async operator will then partition the retrieved data among 

various instances of R”, which represents the parallelizable part of the original scan operator 

R. R” will conduct mostly computational work, e.g. decompression, extraction of tuples, or 

possibly evaluation of predicates that were absorbed via exploitation. This concept may be 

conveniently combined with prefetching, where R’ will issue asynchronous I/O requests. 
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Instead of partitioning retrieved data, prefetch requests are distributed among the pipelines, 

such that R” instances are able to wait for I/O competition and subsequently commence 

processing. 

4.6. Data Integration 

Data integration serves as an instrument for incorporating data into a logical database schema, 

which is physically stored outside the built-in storage layer of the host DBMS. We will 

present two general approaches to data integration using the Access Manager framework and 

we will evaluate implications and opportunities arising from each. Both approaches are direct 

consequences of the Access Manager‟s primary interface layers, one using the high-level 

tuple-oriented access method interface while the other is based on the low-level page oriented 

storage layer interface. 

4.6.1. Alternative Storage 

The necessity to publish the host system‟s storage layer interface (Figure.22, page 102) as a 

basis for building access methods also offers the opportunity to use it for an alternative 

purpose. If a storage layer is considered as a pluggable software module, similar to the dy-

namically loadable libraries representing implementations of access methods and relational 

operations, then it becomes immediately clear that the mere existence of the storage layer 

interface definition allows to apply a similar approach for devising a concept for pluggable 

custom storage components, providing page oriented storage facilities that are able to enhance 

the technical capabilities of the overall system. Similar to the definition of a custom TABLE-

TYPE or INDEXTYPE, (4.3.1 Data Access Module Definition on page 119), it becomes possible 

to integrate storage module implementations in form of dynamically loadable libraries. A 

minor SQL extension will allow introduction of such modules into a database schema. 

CREATE STORAGETYPE <stype_name> FROM <file> 

Similar to the corresponding access module definitions, this DDL statement extends the 

schema of one particular database, rather than globally extending the DBMS. Its purpose is to 

provide the location of the dynamic library implementing a custom storage layer. It also 

assigns a unique name (stype_name) to be recorded in the database‟s data dictionary for 

referencing this storage module in subsequent DDL statements. Such references to 

stype_name are used when creating new segments, e.g. 
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CREATE TABLE <tname> <table_definition> 

  USING STORAGETYPE <stype_name>[(custom_spec)] 

This statement will cause the Access Manager framework to redirect all storage allocation 

requests issued for the segment known as <tname> to the storage module referenced by 

<stype_name>. This in particular includes the allocation of the new segment‟s description 

page, hence the new segment is completely allocated in external storage, while the database‟s 

data dictionary stores necessary information for accessing it. The purpose of the optional 

custom_spec clause is similar as in the custom access path definition. It specifies additional 

information to be parsed and processed by the storage module, e.g. a file name, connection 

string, space allocation directives etc. 

The inversion of this process is also required. Its purpose is the removal of a storage module 

from the database schema. This is accomplished by deleting the corresponding entries from 

the system catalog, after verifying that there are no active references, i.e. there must not exist 

any access paths based on the storage module to be removed. The corresponding DDL exten-

sion has the form: 

DROP STORAGETYPE <stype_name> 

The storage layer interface (Figure.22 on page 102) does not provide the same flexibility as 

the access method interface with its extensive optional interface routines. All routines, apart 

from the optional savepoint feature, are mandatory. This rigidness maximizes the compatibili-

ty and reusability among different storage layer implementations as exchangeable foundations 

for access method implementations, and it is owed to the completeness of functionality an 

access module expects from a storage layer. We demonstrated how an access module will rely 

on caching, multi-version concurrency control, locking, logging & recovery, savepoints, etc., 

to be implemented in the storage layer, thereby reducing the implementation complexity of 

the access module. If a custom storage layer is to be used as an alternative to the built-in 

storage layer, both layers will have to implement congruent functionality. However, the 

rigidness of the access method interface does not imply that storage layers with limited 

capabilities are prohibited. It is still possible to implement storage layers that operate in read-

only mode, without transactional isolation, without caching, (see also 3.2.5 MySQL on page 

87 for practical examples). But to this end, it is necessary to implement routine stubs for 

missing functionality that return error diagnostics when called, such that incompatibilities 

between storage layer and access methods are detected reliably. This will ensure that a func-
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tionally limited storage layer will only cooperate with an access module implementation that 

is aware of these limitations. 

Apart from implementing complete replacements for the built-in storage layer, the storage 

layer interface offers another interesting opportunity. Similar to the concept of intermediate 

access modules (Figure.20 on page 97), it also becomes possible to stack storage layer im-

plementations, for combining their functionalities. As an example, imagine a thin interme-

diate storage layer, which is based on the functionally complete built-in storage layer, but 

additionally provides custom encryption or compression capabilities on page level. 

But given the immense functional complexity of storage layer implementations, we expect 

that such endeavors are only of little practical relevance for data integration, in contrast to 

data integration layers that are based on the tuple oriented access method interface. 

4.6.2. Data Integration Layer 

A data integration layer (cf. Figure.20 on page 97 for a classification in the overall system 

architecture) is a software artifact that is capable of attaching an external data repository to a 

database schema that is operated by a host DBMS housing the Access Manager framework. 

Its main purpose is to bridge any discrepancies between the host system‟s and an external data 

source‟s conception of data. These versatile discrepancies may involve incompatibilities of 

data models and data representation, geographical distance, connectivity and authentication, 

etc. Hence, data integration layers function as data access drivers, each dedicated to one 

particular external data source, for providing a coherent, location transparent view on a 

collection of remote data. The Access Manager allows extending its host system with such 

modules, if they implement the access method interface. Consequentially, a data integration 

module acts as any other access module, providing navigational and optionally manipulation 

capabilities on data in its responsibility. The flexibility of the access method interface is 

applied for tackling the possibly broad functional diversity of external data sources and 

subsuming them in one comprehensible and manageable interface. Ultimately, external data is 

integrated into the database schema such that the host system may access it as any other 

ordinary relation though the access module interface. All implementation details are hidden 

within the integration module controlling the access to that relation. 

This encapsulation allows handling integration layers in exactly the same way as an access 

module. An integration layer manifests itself as a dynamically loadable library, which is used 

for extending the host system, similar to any other plug-in component implementing an access 
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module (cf. 4.3.1 Data Access Module Definition, page 119). Subsequently, an access path to 

remote data may be created, using the standard routines as described in 4.3.2 Access Path 

Creation (page 120). This new access path will be represented by corresponding descriptive 

entries in the database data dictionary, as a complete specification of the remote data as a 

table, providing the host system with a relational view on this data, regardless of the data 

source‟s actual data model. These data dictionary entries are established under the transac-

tional context of the DDL statement, creating a permanent link to external data in the database 

schema. Moreover, the new relation will be associated with a segment located in the data-

base‟s internal storage area, consisting at least of the segment‟s description page. The integra-

tion module is free to allocate additional pages as required, as a storage area serves for persis-

tently archiving all necessary information for operating on the external data source, e.g. 

connection information, credentials, data description, etc. The actual data however will 

typically remain in the remote repository. 

After creating such an access path, external data becomes accessible via SQL by referencing 

the relation‟s name in a database query. The SQL compiler is able to resolve the name via the 

system catalogue and associate it with its relational table definition. Eventually a scan is 

opened on the remote data. Depending on the capabilities of the integration module‟s imple-

mentation and on the availability of optional interface routines, this scan may be used for 

read-only access, but also for data manipulation. As the host system does not discern between 

data integration layers and other access modules, it becomes possible to improve access to 

external data by creating auxiliary internal or external access paths. 

As any data integration module implements all assets for negotiation, access to external data 

will participate in the host system optimizer‟s global optimization process. As a consequence, 

it becomes possible to relocate necessary transformations to the remote repository, if that 

system is capable of conducting relational operations. Such measures are suitable for achiev-

ing dramatically improved performance in query evaluation. For example, relocation of 

restrictions and projections to the remote system is able to minimize the data transfer volume 

between external repository and host system. Exploitation of pre-sortedness will reduce 

computational costs and temporal storage requirements. Cost-based query optimization is 

guided by assessments made by the integration module‟s Cost() function, allowing the 

optimizer to deal reliably with index selection and join optimization challenges. Index selec-

tion chooses one or more access paths from multiple alternatives, considers index intersec-

tions, index unifications, and ultimately materialization if necessary. It operates globally, and 
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evaluates all access path candidates that are registered in the central data dictionary, hence it 

becomes possible to distribute secondary access paths to the one relation arbitrarily among all 

attached repositories and the built-in storage facility. Join optimization covers cost-guided 

selection from arbitrary join sequences for combining data from diverse external repositories 

and internally stored data. Hence, this approach to data integration allows internally and 

externally stored data to participate equally in the query optimization process. 

But despite these expedient properties of data integration layers, one major shortcoming 

remains. Limitation of exploitation to the set of basic unary operators             prevents 

propagation of more advanced relational operators to remote sites. As a consequence, joins 

between two relations residing in the same repository must be conducted by the coordinating 

host system, possibly provoking excessive and expensive shipment of data. Other relational 

operations, like grouping and aggregation, capable of dramatically reducing the data transfer 

volume, cannot be applied directly at the remote site. This fact is particularly unsatisfactory, if 

the remote data repository happens to be a full-blown RDBMS, which would be perfectly 

capable of handling such complex relational transformations. This limitation represents a 

considerable handicap of the Access Manager‟s integration layer compared to some dedicated 

data integration architectures, which claim to accomplish this task. 

Our approach to circumvent this shortcoming capitalizes on the RDBMSs‟ general ability to 

rewrite queries, a prerequisite for the prevalent materialized view concept. However, we do 

not capitalize on pre-calculation aspects of materialized views, but on mere query rewriting. 

As an example, let A, B be two relations that are located in an external data repository that is 

also capable of performing a relational join operation. If we define a relation AB as a remote 

view on the result of A B, and make AB accessible via the integration layer, then the host 

system‟s query optimizer may choose for arbitrary queries joining relations A and B, whether 

to perform the join locally after transferring necessary data from the remote repository, or to 

access AB instead. In the latter case, the join is actually performed on the remote system. This 

is further supported by the Access Manager‟s negotiation process, which is admitting reloca-

tion of arbitrary predicates to the remote site. As this in particular includes relocation of join 

predicates from the original user query, this universal approach is capable of effectively 

reducing the join result size and thereby minimizing communication overhead for arbitrary 

ad-hoc queries. 

The remote view concept may be extended to other relational operations, including pre-

defined aggregations in a remote view definition. But in contrast to the generic Cartesian 
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product that is effectively refined by adding appropriate predicates, handling of aggregations 

is restricted to the pre-defined grouping granularity from the remote view definition. Although 

this may suffice for supporting a known set of aggregation queries through definition of 

convenient remote views, this concept does not possess to necessary flexibility to cope with 

ad-hoc analytic queries. 
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5. Proof of Concept 

In this chapter, we will present a collection of plug-in implementations for extending the 

Transbase RDBMS, which serves as the host system for the Access Manager framework 

prototype. This survey will exemplify the framework‟s capabilities for integrating supplemen-

tal modules for data retrieval, data storage and data integration into an operational core 

system. Some of the presented plug-ins are mature access module implementations, which 

were originally built-in Transbase components, and now have been extracted, modularized 

and adapted to the Access Manager framework, thereby making them available for interope-

rability with future plug-in implementations. Based on this reliable foundation, we developed 

several new access modules, each exhibiting fundamentally different behavior compared to 

Transbase‟s innate access methods, yet reuse of aforementioned well-tested components 

helped significantly accelerating their development process, such that the new plug-ins 

quickly reached a maturity comparable to their building blocks. Finally, other access methods 

have been implemented completely from scratch, enriching Transbase with supplemental 

access and storage technology. Some of these new implementations soon reached industrial 

strength and, in fact, have already become part of the Transbase product, while others remain 

in the stage of design concepts for fathoming the possibilities of the Access Manager frame-

work. All presented primary access methods generally permit combination with arbitrary 

secondary indexes, and vice versa, even if full support is not implemented in every case. We 

will provide an overview of interoperability of primary and secondary access paths when 

introducing the diverse access module implementations. 

The concepts of non-standard data models and abstract data types (ADTs) are omitted in this 

chapter, and we concentrate on basic operations on standard relational data. Since non-

standard data has to be transformed into the relational model eventually, in order to be 

processed with the standard relational operators provided by the host RDBMS, this omission 

does not compromise the universality of the following study. The technical details of data 

conversion between different data models are also beyond the scope of this work, but we will 

discuss conversion of data between standard and non-standard representation within the 

relational model. 

The integration of custom relational operators, which is the secondary objective of the Access 

Manager approach, will demonstrate tight coupling between access methods and supportive 

consecutive transformations. We will present how the Access Manager framework will lend 
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itself to integration of sophisticated solutions for user-defined functions, predicates, aggre-

gates, and other operators, tailored for supporting a specific access method or for specializa-

tion of the universal host RDBMS towards a certain application domain. 

5.1. Transbase Prototype 

The Access Manager prototype was integrated into the commercial RDBMS Transbase. 

Before discussing the details of its implementation, we will provide a short overview over its 

designated host system. 

5.1.1. The Transbase RDBMS 

Transbase [Tra10] is a thriving commercial RDBMS, providing dependable and efficient 

standard DBMS functionality and is equipped with rich additional features. It implements the 

typical client-server architecture, and consequentially provides a broad variety of prevalent 

client APIs. It is compliant with the ISO SQL Standard [ANSI99] (SQL-2, entry level) and 

supports many SQL features which have been categorized as optional in SQL-2, SQL-3 and 

subsequent revisions. Moreover, it provides unrestricted support for the ACID paradigm in all 

DDL and DML operations. Transbase‟s key features are its compactness and high scalability, 

as its comparatively small footprint allows providing the complete spectrum of DBMS func-

tionality at considerable performance, even under tight resource restrictions, while it is also 

able to effectively exploit extensive hardware configurations for attaining maximum efficien-

cy. In addition, Transbase has a tradition of incorporating advanced indexing techniques. Its 

Hypercube index for OLAP, which is based on the UB-tree technology, is tailored for access-

ing multidimensional and hierarchical data in data warehouse applications. Still, like in most 

other RDBMSs, the B-tree [Bay72] is the prevalent access method in Transbase, and in fact, it 

was the only access method for almost two decades. Over this time period, many B-tree 

properties have established themselves in adjoining system components, like query planning, 

query evaluation, locking, logging, and recovery. Consequently, Transbase components often 

silently presumed B-tree peculiarities, e.g. the optimizer derives assumptions on clustering 

and sort order directly from the B-tree‟s key specification. For the subsequent integration of 

the UB-tree [Ram00], these assumptions posed considerable obstacles, making it necessary to 

explicitly distinguish between these two alternatives. Now, the integration of the Access 

Manager into Transbase provides an abstraction from the properties of particular access 

methods, allowing a clean separation of Transbase‟s two innately built-in access methods. A 
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more detailed discussion on necessary adaptation of these existing access methods for integra-

tion into the Access Manager framework will be provided shortly. 

5.1.2. Limitations of the Prototype 

The Access Manager prototype is implemented as an optional feature in Transbase. It can be 

deactivated via a configuration setting at compilation time. This allows switching back to the 

original implementation by recompilation of the Transbase system. Hence, an unmodified 

implementation of the original data access layer still exists within the system‟s code basis. It 

serves as reference implementation for evaluating functional and performance-relevant 

aspects in the behavior of the Access Manager implementation. In order to allow switching 

between these two implementations, the Access Manager interface is hidden behind a facade 

resembling the original access layer interface towards other system components. In particular, 

the query processor still calls the access layer‟s original interface routines. From this fact arise 

a number of minor limitations in the current state of the prototype implementation, the most 

important being its restrained negotiation and configuration capabilities. The optimizer 

assumes uniform applicability and exploitability for all access method types. These are 

derived from the system‟s data dictionary and apply to the original B-tree implementation, the 

prevalent access method in Transbase. In detail, this means that Transbase assumes that any 

access method type is able to produce arbitrary projections of the attributes associated with a 

relation in the data dictionary. For insertions and updates, the exact sequence of attributes 

from the original table definition (DDL) is assumed as de-facto input projection to be en-

forced by applicability directives. Secondly, Transbase assumes that restrictions may be 

efficiently exploited on the prefix of the primary key, as it is the case for B-trees. Transbase 

already implements one exception to this rule for UB-tree handling, where restrictions on all 

key attributes are evenly exploited. Thirdly, Transbase expects a relation‟s primary lineariza-

tion to be identical to a lexicographical sort order on the relation‟s primary key attributes, 

also a property of the B-tree. This sort order is also used as applicable sort order for speeding 

up set-oriented data insertion and manipulation. Again, Transbase implements a specific 

exception to this rule for UB-trees, as those exhibit no exploitable sort order. All configura-

tion aspects for exploiting distinction and representation are missing completely. 

Although these limitations appear severe at first glance, they have surprisingly little impact on 

the evaluation of the prototype access methods described here. This is owed to the fact that all 

prototypes were implemented in awareness of these characteristics of Transbase. All access 

methods are equipped with the ability to produce arbitrary projections, they are capable of 
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effectively enforcing restrictions on their indexed attributes, and they expect the presence of a 

lexicographical sort order on input data streams controlling modifications. This makes negoti-

ation of projection, selection, and sort order directives obsolete, as all configurations sug-

gested by the host system are invariably accepted. Regarding alternative data representation, 

Transbase was adapted in selected places with minor modifications, providing required 

functionality for the introduction of bitmap representation. For instance, instead of imple-

menting separate bitmapped versions of union and intersection operations on sets, the original 

tuple-oriented operators were adapted for supporting both representations. These algorithmic 

units choose dynamically between the available alternatives at query execution time, depend-

ing on the actual input representation as tuples or bitmaps. This is considered a temporary 

solution, which is owed to the fact that Transbase is in permanent productive use. Any exten-

sive and fundamental modification, such as the introduction of the Access Manager frame-

work, must be conducted gradually for preserving the functional integrity of the overall 

system. This workaround will be undone in favor of an implementation conforming to the 

presented negotiation approach, as soon as the original access layer facade becomes obsolete 

and the Access Manager framework is fully activated. 

Hence, query evaluation of the prototype is fully operational, yet there remain deficiencies in 

the field of query optimization, where temporary modifications are too extensive and there-

fore not a viable alternative for a prototype implementation. In these cases, we compensate for 

missing autonomous query optimization capabilities by using Transbase‟s ability to process 

fully specified query execution plans in textual representation. With this measure, it becomes 

possible to circumvent all shortcomings of missing negotiation in the optimization phase, by 

predefining optimal configurations in „handmade‟ query evaluation plans for measuring the 

full potential of the access method interface. Whenever limitations of the current preliminary 

implementation emerge in the following discussion of a specific access method implementa-

tion, we will indicate how the limitation was circumvented, together with an evaluation of 

possible implications of this workaround on the presented results. We want to emphasize, that 

these limitations will be resolved completely, as soon as the facade currently concealing the 

Access Manager interface is removed from the host system, and negotiation becomes fully 

available during query optimization. 



CHAPTER 5: PROOF OF CONCEPT  187 

5.1.3. Reference Database & System 

In order to receive comparable results, we will conduct the following measurements on a 

uniform data basis. Therefore, we will start with a simple database schema, consisting of one 

single relation, as defined by the following SQL DDL statement: 

CREATE TABLE R (a SMALLINT NOT NULL, b SMALLINT NOT NULL, 

    c SMALLINT NOT NULL, d CHAR(80), PRIMARY KEY (a,b,c)); 

This table is populated with the reference data set using artificial data, where the three prima-

ry key attributes a, b, c are filled elements of the set    2              , i.e. the complete 

data set stores 2            2   tuples. The textual field d serves as substitute for descrip-

tive information associated with the respective key values. In total, every tuple has a constant 

payload of 86 bytes, and in Transbase‟s standard tuple representation each tuple amounts to a 

fixed size of 89 bytes, and consequently R‟s total data volume is at least 1.5 Gbyte in standard 

representation. The sample database uses a page size of 32 kbyte, hence the relation will 

occupy roughly 45600 pages. We will continuously adapt this schema for incorporating the 

currently discussed data access method as a separate access path Ti, which is structurally 

identical to R, and load the reference data set. On this relation, we will then conduct a series of 

scan operations: 

(a) SELECT COUNT(*) FROM Ti; 

(b) SELECT COUNT(*) FROM Ti WHERE a BETWEEN 100 AND 152; 

(c) SELECT COUNT(*) FROM Ti WHERE a BETWEEN 100 AND 256 

        AND b BETWEEN 100 AND 152 AND c BETWEEN 100 AND 152; 

(d) SELECT COUNT(*) FROM Ti WHERE a = 100 AND b = 100 AND c = 100; 

These queries represent the following operations: (a) 100% full table scan (FTS), (b) 10% 

interval scan, (c)                query box, (d) point access. We use the inex-

pensive aggregation COUNT(*) for eliminating the potentially time-consuming transfer of 

result sets from the query‟s elapsed time. As of data manipulation, we conduct the following 

operations in the presented sequence: 

(e) INSERT INTO S SELECT a, b+1, c+1, d FROM R 

        WHERE a mod 6 = 0 AND b mod 4 = 0 AND c mod 4 = 0; 

(f) INSERT INTO Ti SELECT * FROM S; 

(g) DELETE FROM Ti WHERE a mod 6 = 0 AND b mod 4 = 0 AND c mod 4 = 0; 

(h) UPDATE Ti SET b = b-1, c = c-1 WHERE b mod 2 = 1; 
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Statement (e) serves as a mere preparation, as it selects a „scattered‟ subset of 33      

      2   from the original relation R, applies some minor transformations, and inserts it 

into a temporary relation S that will serve as source for the following insertion (f) into the 

target relation Ti. After conducting the complete sequence of manipulations on Ti, it will hold 

the same data as before the manipulation, but the access path will have been restructured into 

a different physical layout. 

Of course, these sample queries are only suitable for a very coarse comparison of access 

methods, and the results cannot be easily transferred to arbitrary real-world database applica-

tions with genuine semantic on the stored data, non-uniform data distribution, and variable 

sized tuples. Nevertheless, they are appropriate for demonstrating the most prominent distin-

guishing properties of every access method under examination. 

All measurements in the following sections were conducted on a Dell PowerEdge T610 

server, running a SUSE Linux 2.6.31.5 x86_64 kernel. The system is equipped with 24 Intel 

Xeon 5650 CPUs operating at 2.67 GHz and 48 Gbyte RAM. Secondary storage is attached 

via a Dell Perc H700 SCSI RAID Controller, transferring 6 Gbit/s over 2x4 internal SAS 

connectors. It operates eight 160 Gbyte HDDs at 7200rpm in RAID-0 configuration with a 

total capacity of 12 Tbyte. The exact version of the employed Transbase database system is 

V6.9.1.1 (Build 555). 

5.2. B-Trees 

The B-tree [Bay72] (see also [Bay77a], and [Com79] for a survey), or more precisely the B
+
-

tree variant implemented in Transbase, is the prevalent data access structure in most DBMSs. 

It efficiently supports all common usage patterns of access paths in data retrieval and manipu-

lation, namely full table scan, interval scan, point access, singleton data manipulation, posi-

tioned update and deletion, and mass-manipulation. Since the basic concepts of B-trees are 

commonly known, we will henceforth concentrate on the technical aspects of their implemen-

tation in Transbase. 

The present B-tree implementation is capable of indexing one or more attributes of arbitrary 

SQL data types. We refer to this subset of indexed attributes as the B-tree‟s search key, which 

is potentially non-unique and therefore it must not be confused with unique key constraints in 

the relational sense. If the indexed attributes constitute the relation‟s primary key, then every 

occurring value combination must be unique, and the B-tree is capable of efficiently enforcing 
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this constraint. Alternatively, Transbase‟s B-tree implementation may also operate in dupli-

cate mode using non-unique search keys. In addition to the search key, the B-tree may store 

additional information, which is associated to the search key, in auxiliary attributes of arbi-

trary types as non-key data elements. The internal nodes of the B-tree store separators consist-

ing of prefixes of indexed attributes, stored in a compact representation similar to Prefix B-

trees [Bay77a], and serving as orientation when accessing the tree structure via search key 

lookups. The leaf level contains plain relational data, consisting of index attributes and non-

index attributes. Leaf pages also possess a forward chaining, allowing immediate sequential 

navigation on the leaf level. A sequential scan in reverse direction is also possible, but it will 

resort to the backwards chaining provided by the lowest internal node level, since an explicit 

reverse chaining on leaf level is not supplemented. 

Although the B-tree technically guarantees a filling degree of 50%, practical experience 

shows that typical page utilization is over 80%, and space utilization is further enhanced by 

diverse packing techniques in this implementation. To this end, data is not compressed, but 

arranged in a compact internal representation, allowing efficient data access and predicate 

evaluation directly on this representation. Among other techniques, compactness is achieved 

through unaligned storage of data, although some machine data types (e.g. the double preci-

sion floating-point format) require specific alignment in memory on some hardware plat-

forms, thereby introducing small gaps of unused memory in data structures representing 

relational tuples. Unalignment is conducted whenever a tuple is inserted into a page for 

persistent storage, while its inversion is applied to all tuples that are retrieved for query 

processing. This technique is beneficially combined with attribute reordering, i.e. B-trees 

store an internal projection of attributes that is different from the original table definition. 

Attribute reordering allows space-optimal rearrangement of attributes, such that a priori 

alignment is automatically achieved for efficient data access. Reordering also permits ar-

rangement of fixed-sized attributes into continuous memory blocks, simplifying memory 

management and resulting in further reduction of storage requirements. Similar to head-

compression in Prefix B-trees, a special attribute suppression mechanism exploits the B-tree‟s 

sort order, which forces tuples with common prefixes on indexed attributes onto one page 

(intra-page clustering). Attribute suppression eliminates the requirement to store redundant 

tuple prefixes repeatedly. 

Data access is organized in concurrent scan operations on B-tree segments, where scans from 

different transactions are isolated implicitly by the storage layer. Locking of B-tree operations 
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is conducted on page level, offering a good trade-off between concurrency and locking 

complexity, but locking on relation level is also possible. Both variants use Transbase‟s 

intrinsic locking facility. Naturally, the B-tree implementation is built on Transbase‟s internal 

page-oriented storage layer, operating according to a multi-version concurrency protocol 

(MVCC). Utilization of lock manager and storage layer provide transactional atomicity, 

consistency, isolation, and durability to all B-tree operations. Consequentially, this B-tree 

implementation qualifies as a full access method, as it bridges the functional mismatch be-

tween the page-oriented storage layer and tuple-oriented query processing. 

Concurrent B-tree scans belonging to the same transaction use the scan maintenance tech-

nique described earlier, for adapting the internal status of foreign scans that are influenced by 

data manipulation in the vicinity of their current scan position. In terms of negotiable evalua-

tion techniques, B-tree scans offer full support for arbitrary attribute projections and predicate 

evaluation on a continuous prefix of the index attributes. The B-tree‟s lexicographical sort 

order is fully exploitable for sequential scans in forward and backward direction. Conversely, 

the B-tree is able to draw significant performance benefits during mass-manipulation from an 

adequately presorted input stream. Implicit duplicate elimination is available, if the retrieved 

projection covers all attributes of a key constraint that is enforced by that B-tree. Finally, 

tuples are always retrieved in standard representation from B-trees. Although Transbase uses 

rule-based query optimization, it uses cost estimations drawn directly from the B-tree access 

method for justifying optimization decisions. Therefore, it uses a technique that probes the B-

tree‟s index pages with suitable predicates, typically intervals on an index attribute prefix. 

Depending on the number of examined index levels, this approach allows highly accurate 

selectivity estimation for predicates on indexed attributes, without the necessity of maintain-

ing separate statistical information. All available features are automatically exploited by query 

optimization. 

Besides these standard access method functionalities, Transbase‟s B-tree implementation 

covers the complete functional spectrum of optional access method features for improved 

performance characteristics. Therefore, it participates in the scan buffering protocol, enhanc-

ing the basic Access Manager protocol in selected operations for achieving higher efficiency 

by eliminating the necessity to physically close reusable scans. Finally, it offers full support 

for the optional savepoint feature, augmenting the storage layer‟s arrangements for concur-

rency and isolation, by providing graceful fail-safe behavior for revoking defective DML 

operations. 
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Transbase employs B-trees as the default access method type for both primary and secondary 

access paths, i.e. if no explicit index type is given in the DDL statement. For secondary access 

paths, the necessary reference between index tuples and tuples in the base relation is main-

tained either via the relation‟s primary key or via the aforementioned IK-surrogate mechan-

ism. Explicit control over this decision is given to the schema designer via an optional clause 

in the data definition syntax. If unspecified, a default mechanism will automatically choose 

the space-optimal option at base table creation time. 

In addition to their primary purpose as data access paths, B-trees are also used as default data 

structure for implementing unique constraints, by establishing secondary access paths as 

unique secondary indexes, and the query optimizer will automatically exploit constraint B-

trees for data access, if it finds them appropriate. 

In addition, B-trees offer convenient properties for several advanced query evaluation tech-

niques. Their internal index nodes contain a dense accumulation of references to leaf pages, 

which is highly suitable for effectuating prefetch operations, during full table scans and 

interval scan operations. In particular, the tree structure allows prefetching on multiple hierar-

chical levels, thereby providing excellent look-ahead capabilities. The impact of prefetching 

in B-trees is exemplified in Figure.39 at the end of this section. The B-tree‟s ability to eva-

luate predicates to a large extent solely by accessing index pages allows it to identify sets of 

qualifying leaf pages. These leaf pages can be processed in parallel, by partitioning references 

to these leaves among worker threads, which eventually retrieve the pages from disk, post-

filter any remaining predicates, unpack the qualifying tuples and apply a final projection to 

result tuples in standard representation. Figure.39 demonstrates how prefetching and parallel 

evaluation harmonize, as early identification of qualifying pages allows effective prefetching 

of these pages, while the parallel worker threads handle the laborious task of extracting the 

final results, thereby effectively overlapping computational and I/O operation for maximized 

utilization of system resources. 

Figure.39 summarizes the B-tree‟s performance characteristics as a primary access path to the 

data set introduced in 5.1.3 Reference Database (page 187). These measurements will be used 

as a reference for comparison against other indexing technologies. The B-tree index examined 

here represents a primary access path to said data set, where all three dimensions are incorpo-

rated into the B-tree‟s composite search key, i.e. 
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CREATE TABLE B (a SMALLINT NOT NULL, b SMALLINT NOT NULL, 

    c SMALLINT NOT NULL, d CHAR(80), PRIMARY KEY (a,b,c)); 

The B-tree demonstrates its balanced characteristics that endorse its position as the ubiquitous 

indexing technique in DBMS technology. It is capable of rapid mass insertion (SPOOL), and 

shows how data retrieval (SCAN) scales with the selectivity of the applied predicate, i.e. 

100% for the full table scan (FTS), 10% interval scan, and point access. The only exception is 

the 3-dimensional query box with a selectivity of               , where the B-

tree is able to exploit mere 30% selectivity from the predicate on the first dimension, and 

consequentially it has to conduct a relatively expensive interval scan on a 30% portion of the 

table.  

As to data MANIPULATION, the B-tree possesses balanced performance characteristics for 

extensive operations altering about 8% of the data volume. These manipulations are uniformly 

distributed across all dimensions, and as a consequence of the B-tree‟s clustering, every page 

is affected by every operation. The DBMS‟s query processor actively supports these manipu-

lations by providing the scan operator with input streams in a sort order that is matching the 

B-tree‟s primary linearization. 

The remaining figures demonstrate the impact of selected implementations aspects on the 

index performance. The first measurement (VARIANT) aims for quantification of the costs 

incurred by the additional Access Manager layer during query evaluation. Therefore it com-

pares the original Transbase B-tree implementation without surrounding Access Manager to 

that of the adapted B-tree access module accommodated in the Access Manager framework. It 

shows that these costs are negligible, as the B-tree integration into the Access Manager 

framework has actually a slightly better performance compared to the Transbase‟s original 

implementation. This minimal improvement can be attributed to minor simplifications in the 

B-tree interface that were conducted in preparation of its integration into the Access Manager. 

The CLUSTERING group concentrates on the influence of physical inter-page clustering on 

I/O throughput. It compares a FTS operation on a perfectly aligned B-tree structure, as con-

structed by the initial mass-insertion process, to a FTS on an artificially fragmented data 

structure, where every 10
th

 page was moved to a random location within the DBMS address 

space, simulating a B-tree after heavy restructuring through perpetual data modifications. The 

diagram displays a massive disturbance in the sequential scan performance, a direct conse-

quence of fragmentation that now prevents a reliable prediction of the DBMS‟s scan behavior 
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by the underlying operation system and hardware. This effect is countered by the active 

prefetching capabilities of the B-tree, such that the average I/O rate on the fragmented seg-

ment is significantly adjusted towards sequential behavior. 

The final PARALLEL FTS measurement compares single-threaded and multi-threaded query 

evaluation. This is the only benchmark in this scheme, where data is deliberately retrieved 

from an appropriately prepared database cache, and not from disk, since it intends to focus on 

CPU-relevant effects. As the query effectuates a simple FTS, it does not involve any expen-

sive data transformations. The savings in elapsed time are therefore predominantly resulting 

from parallelization of the tuple-extraction process from B-tree leaf pages by parallel worker 

threads. In this case, the speed-up of parallelization is not limited by the number of available 

CPUs, but by necessary synchronization of concurrent access to the database cache and other 

globally shared resources. 

Figure.39 B-tree performance characteristics. The diagram accounts for overall characteristics of the B-

tree implementation. All measurements show evaluation times (orange) for the operation denoted on the 

left, and refer to the lower horizontal axis. Some measurement also exhibit the volume (blue) of data af-

fected by this operation, plotted as number of touched pages, where one page is 32 kbyte in size, and the 

complete B-tree occupies approximately 1.75 Gbyte. Data volume refers to the upper horizontal axis. Note 

that values outside the range of the diagram are indicated by a broken bar. 
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In summary, the B-tree implementation is the most mature and most sophisticated access 

structure available in Transbase. This makes B-trees particularly interesting for serving as a 

reusable basis for functional indexes or as auxiliary search structure for custom intermediate 

access method implementations. Its integration into the Access Manager framework allows 

rapid adaptation of this technology for novel operational areas.  

5.3. UB-Trees 

The UB-tree ( [Bay96], [Mar99a]) is a generalization of the B-tree for indexing multidimen-

sional data, i.e. multiple attributes of one relation. Its key feature is good responsiveness to a 

combination of restrictions on arbitrary subsets of indexed attributes, such that the total 

selectiveness of applied predicates correlates closely with the amount of data to be retrieved 

from secondary storage. The classical B-tree also supports multidimensional indexing by 

employing compound keys. However, restrictions on these attributes are not evenly exploited, 

as an unbalanced prioritization favors index attributes in their order of appearance in the 

search key. As a consequence, the B-tree performs excellently, if a sufficiently long prefix of 

index attributes is subjected to highly selective restrictions by a query, but performance will 

degrade strongly if restrictions on high priority attributes are weak or absent. In contrast to the 

B-tree, the UB-tree uses a functional mapping of the indexed attributes as search key, which 

results from interleaving the attribute values‟ binary representations to the so-called Z-

address. By applying conventional ordering to these interleaved keys, the UB-tree clusters its 

data along the Z-curve or Lebesgue curve (Henri Léon Lebesgue, 1875–1941, French mathe-

matician), a space filling curve that is highly symmetrical in the weightings of individual 

dimensions. From this symmetry arises the UB-tree‟s ability to conserve spatial vicinity of 

multidimensional data in its physical clustering, and its robustness towards selections using 

conjunctions of arbitrary restrictions on indexed dimensions. This makes the UB-tree the 

superior indexing structure for multidimensional ad-hoc queries, such as are common in data 

warehouse and OLAP applications. 

Transbase possesses an industrial-strength UB-tree implementation [Ram00] under the prod-

uct name Hypercube index, and while its original integration necessitated several extensions 

and adaptations in the DBMS‟s SQL compiler and query optimizer, the implementation of the 

internal search structure is based on and is strongly coupled with the prevalent B-tree imple-

mentation. The UB-tree may be conceived as a classical B-tree using a functional mapping 

from multiple plain indexed attributes to one singular calculated key. This conception allows 
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both implementations to share a common code basis, which deviates only in said functional 

mapping of keys, and a corresponding predicate evaluation mechanism, the so-called Range 

Query Algorithm [Mar99a], that is capable of operating directly on this special key represen-

tation. This inseparable integration of the UB-tree access method implementation with the B-

tree complicated the former‟s migration into the Access Manager framework as an autonom-

ous access module. In the current state, the UB-tree still exists as an attachment to the B-tree 

implementation, yet the UB-tree is accessible via its own access method interface as an 

independent access structure, ready to be used by other Access Manager modules. 

In Transbase, UB-tree access paths are defined using a proprietary extension to SQL. It may 

be used for defining both primary and secondary access paths, and similar to the underlying 

B-trees, it is capable of indexing and storing data of arbitrary SQL data types and arity. For 

optimized effectiveness of spatial clustering in UB-tree indexing, all table definitions must 

exhibit compulsory check constraints on all indexed attributes, reducing the domains of 

indexed attributes from the SQL base type to the actually used value range, e.g. longitude 

NUMERIC(10,7) CHECK (longitude BETWEEN -180 AND 180). The corresponding DDL 

statements have the following form, where HCKEY denotes a Hypercube key. 

CREATE TABLE <table definition with check constraints> 

      HCKEY IS <attributelist> 

CREATE INDEX <index definition> HCKEY IS <attributelist> 

In addition to these compiler extensions, the integration of the original UB-tree implementa-

tion necessitated several dedicated interfaces to Transbase‟s optimizer module and query 

evaluation engine. In contrast to this present integration of the UB-tree, the Access Manager 

framework allows to incorporate the UB-tree into Transbase in a more generic way, allowing 

it to share a similar amount of code with the B-tree implementation, but resulting in cleanly 

separated implementations. The UB-tree‟s strong dependency on B-tree functionality suggests 

its implementation as an intermediate access method based on the B-tree. This approach 

implicates that the UB-tree will receive input tuples for insertion or manipulation in standard 

representation, subsequently transform them using the bit-interleaving technique for calculat-

ing the UB-tree‟s key, and finally forward the modified data to an internal B-tree that is 

capable of accommodating data in this new representation. Similarly, predicate evaluation 

using the Range Query Algorithm will process standard restrictions from a given SQL query 

and translate them into corresponding navigational operations on the internal B-tree‟s calcu-

lated key. The resulting UB-tree is in essence a lightweight implementation of a functional 
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index, based on the conventional B-tree. Yet it possesses all capabilities for attending multi-

dimensional operations efficiently. Integration of the UB-tree via the Access Manager permits 

using the host system‟s SQL compiler without specific adaptations, e.g.: 

CREATE HYPERCUBE TABLE <table definition with check constraints> 

CREATE HYPERCUBE INDEX <index definition> 

The enforcement of suitable check constraints is delegated to the module‟s Create() rou-

tine, which receives the constraint definitions via its function parameters, allowing it to 

evaluate and validate them as prerequisites for a UB-tree definition. The query evaluation 

engine may conduct all necessary operations on the UB-tree via the generic access method 

interface. The negotiation interface will ensure that all query evaluation capabilities of this 

access module are exploited thoroughly. The UB-tree is able to produce output tuples of 

arbitrary projections in standard representation, but in contrast to the B-tree it is able to 

enforce restrictions [Fen02] in a more flexible and effective manner. A direct exploitability of 

sort orders is not possible, since the UB-tree uses a primary linearization that is not corres-

ponding to a lexicographical sort order. Transbase uses certain adjustments for speeding up 

the initial loading phase of UB-trees, where the data spooler module adopts the capability of 

pre-calculating the UB-tree key values for presorting the input relation and feeding this 

prepared input set to the UB-trees Insert() routine. This custom adaptation of the data 

spooler module for the UB-tree demonstrates the requirement for exploiting arbitrary sort 

orders and also reveals the deficiency of the query interpreter to provide this functionality for 

non-lexicographical sort orders. Yet, such custom adaptations as used in this case contradict 

the generic Access Manager approach. A clean solution will request a lexicographically 

presorted input stream on one single indexed attribute as input directive for insertion. The host 

system is able to satisfy this simple requirement, allowing the UB-tree to employ its TempTris 

Algorithm ( [Zir99], [Zir04]), which is able to improve the loading process, using a moderate-

ly sized temporary storage area. An inverse technique, called the Tetris Algorithm [Mar99b], 

enables the UB-tree to produce a data output stream exhibiting a sort order on one single 

indexed attribute, for exploitation in a consecutive relational operation. However, neither 

form of sort order exploitation is currently in use in the present implementation. Alternatively 

to the Tetris/TempTris approach, the Access Manager allows to resort to non-standard repre-

sentation for addressing exploitation of sort orders. If a manipulation scan‟s data input stream 

is extended with the UB-tree‟s calculated key, then it becomes possible to apply a conven-

tional lexicographical sort operation on this single artificial attribute for achieving optimal 
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input sort order for UB-tree mass insertions and manipulations. Finally, negotiation requires a 

cost function for justifying decisions in query optimization, but although the theoretical 

foundations of a cost function for accurately estimating the impact of predicate on the scan‟s 

result set are available in [Mar00], the rule-based optimizer in Transbase currently decides on 

employment of UB-tree access paths solely by means of heuristics. 

With this, all functionality required for routine operations of the UB-tree is readily available. 

These basic capabilities allow to employ the UB-tree in highly advanced scenarios, like 

multidimensional data warehouse applications based on star schemata or hierarchical snow-

flake schemata. However, when considering such complex application scenarios and their 

sophisticated query evaluation concepts, especially Transbase‟s Multidimensional Hierar-

chical Clustering (MHC) (cf. [Pie03] and [Pie01], [Kar02] for related topics), then the limited 

functionality provided by the access method interface seems insufficient. But if we distinguish 

between abstract query processing strategies, such as predicate evaluation on dimension 

tables, fact table access, and residual joins, which are completely independent from the 

employed indexing methods and the basic access method concepts that implement them, 

namely interval scans, materialization, and lookups, then it becomes clear that the Access 

Manager framework is well-prepared to accept these challenges. 

The following Figure.40 compares the twin implementations of B-tree and UB-tree, both 

storing the reference data set described earlier. The UB-tree is defined as: 

CREATE TABLE UB (a SMALLINT NOT NULL CHECK(a BETWEEN 0 AND 511), 

    b SMALLINT NOT NULL CHECK(b BETWEEN 0 AND 511), c SMALLINT NOT NULL 

    CHECK(c BETWEEN 0 AND 511), D CHAR(80)) HCKEY IS a,b,c; 

As expected, both access methods show many similarities with respect to evaluation times 

and data volume. Bulk loading of an UB-tree is slower because of a difference in both imple-

mentations: the B-tree uses the highly efficient Wiper Algorithm for constructing the initial 

data structure from a presorted input stream in one single sweep, using a process resembling 

an upside-down windshield wiper. The UB-tree, on the other hand, is currently not able to 

employ this technology on its internal B-tree and therefore suffers a performance penalty in 

this direct comparison. Similarly, data manipulation on the UB-tree appears slower, but this is 

caused mainly by different scattering effects of the actual data set on the alternative lineariza-

tions. In this special case, the applied manipulations possess a higher locality on the B-tree, 

which is eventually resulting in its better performance. This effect is likely to tilt in favor of 

the UB-tree for other data sets, such that in average, both structures will show similar overall 
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performance. Query processing shows matching performance for FTS and point queries, but a 

significant difference in handling of     interval scan and    query box processing. While 

the UB-tree obviously has advantages with the small query box, as it is able to apply the given 

restriction by retrieving a number of pages that correlates with the predicate‟s total selectivity, 

the B-tree is only able to exploit a     restriction on the first attribute. On the other hand, the 

B-tree can clearly outperform the UB-tree in the interval scan. In this case, the B-tree can 

fully exploit its space filling curve, which is contiguously traversing the requested interval, 

such that almost all retrieved pages are filled completely with qualifying tuples. The UB-

tree‟s Z-curve, on the other hand, will frequently leap out and reenter the queries interval, 

leading to a significantly lower hit ratio per page and consequently the UB-tree is forced to 

retrieve more pages. In addition, the unsteadiness of the Z-curve inhibits efficient sequential 

scanning, leading to an almost random I/O pattern. This and the higher complexity of the 

Range Query Algorithm provoke a significantly higher evaluation time. But we must concede 

that a 10% selectivity is empirically the worst-case scenario for a multidimensional index, and 

a query optimizer will generally decide in favor of a FTS for restrictions with weaker selectiv-

ity. In this special case however, the restriction of the interval scan is very favorable for the B-

tree, as it can perfectly exploit restrictions on this particular attribute, but not on any other 

dimension. In contrast, the UB-tree will always respond similarly to arbitrary 10% restric-

tions, regardless of their actual composition from restrictions on the available dimensions. 
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Figure.40 UB-tree performance characteristics. This diagram compares performance characteristics of 

B-tree and UB-tree implementations. Evaluation times (orange) for the operation denoted on the left refer 

to the lower horizontal axis. The volume of data (blue) affected by this operation, plotted as the number of 

touched pages, where one page is 32 kbyte in size, and the complete UB-tree occupies approximately 1.75 

Gbyte. Data volume refers to the upper horizontal axis. Note that values outside the range of the diagram 

are indicated by a broken bar. 

In general, the UB-tree is clearly the superior data structure for handling reasonable multi-

attribute restriction on vast multidimensional data sets, such as are common in data ware-

houses and OLAP applications. The final set of measurements in these series demonstrates the 

UB-tree‟s capability to counter fragmentation of its physical layout with active prefetching, a 

property that it actually inherits from the underlying B-tree implementation. 

In its current implementation, Transbase employs much of the available knowledge on theo-

retical properties of UB-trees for taking practical advantage in query processing. In addition, 

the employment of a cost function for supporting or even replacing heuristic-based query 

optimization will lead to better query evaluation plans in future. Moreover, the Te-

tris/TempTris technology is capable of further improving bulk loading and query evaluation 

in Transbase. A future integration of these currently unutilized resources of UB-tree technolo-

gy will be significantly facilitated, if conducted as a structured extension via the Access 

Manager framework. 

8862

29485

6147

37987

22636

47192

38267

32761

14416

47

31

344

3636

2090

968

6147

5742

52932

1

1

520

17745

8956

5960

57654

56489

57654

56489

0,00 10000,00 20000,00 30000,00 40000,00 50000,00 60000,00 70000,00

0 10000 20000 30000 40000 50000 60000 70000

PREFETCH   

FRAGMENTED

PERFECT

CLUSTERING:

UB-TREE

B-TREE

DELETE:

UB-TREE

B-TREE

UPDATE:

UB-TREE

B-TREE

INSERT:

UB-TREE

B-TREE

POINT ACCESS:

UB-TREE

B-TREE

0.3% 3D QBOX:

UB-TREE

B-TREE

10% INTERVAL:

UB-TREE

B-TREE

100% FTS:

UB-TREE

B-TREE

SPOOL:

Volume (pages)

Time (ms)

91386



200  5.4 FLAT TABLE 

5.4. Flat Table 

The flat table is the first prototype of a Transbase access method that was designed and built 

entirely for the Access Manager framework. It represents a complete, self-contained, and fully 

integrated implementation of an access module. After a remarkably short development period, 

it has reached the status of a technically mature, industrial-strength access method implemen-

tation and has already become an integral part of the Transbase product. Although very 

minimalistic in its original design, it possesses a number of interesting properties that allows it 

to match the functional and performance-related characteristics of the time-tested and stream-

lined B-tree implementation in many usage scenarios. It even manages to outperform the B-

tree in a number of important aspects. 

Originally, the flat table was designed for dealing with massive, time-critical bulk loading 

processes, especially in data staging and data transformation procedures (ETL), and for 

inexpensive logging of data manipulations, e.g. conducted through database triggers for 

documentation purposes or later auditing. Flat tables are organized as doubly-linked lists of 

pages, stored in the host system‟s internal storage facility and functioning as containers for 

tuples in standard representation. The central feature of the flat table is the absence of any 

search keys and internal search structures. The segment‟s description page, which functions as 

a gateway for accessing the data structure, only possesses references (page numbers) to the 

list‟s head and tail elements, as depicted in the following Figure.41. 

In contrast to the B-tree, which suffers a certain performance penalty when conducting ran-

domized mass-insertion due to necessary expenditure for preserving its linearization and 

maintenance efforts on its search structure, the flat table simply appends data to the existing 

data basis. Consequently, it uses the insertion order as its primary linearization, which in 

general is data independent. The flat table is tailored for efficient insertion, primarily by one 

single writing scan appending data at the tail of the list, although arbitrary concurrent writing 

operations (i.e. insertion, deletion, and updates) are generally possible. In contrast to the B-

tree‟s multi-way search capabilities, the flat table does not possess a dedicated search struc-

ture, hence it does not offer any direct access capabilities and it is typically accessed by 

sequentially scanning from the head of the list towards its tail. Beyond that, relative forward 

and reverse navigation from a given scan position is also possible. 



CHAPTER 5: PROOF OF CONCEPT  201 

Figure.41 Organization of flat tables. Data is always accessed via the description page. If the page size 

setting of a database should not suffice for storing all relevant data for accessing the table in one single 

description page, then the access module will allocate auxiliary description pages and chain them to the 

data structure. The description page maintains references to the head and tail page of the storage structure, 

which is organized as a doubly linked list of pages. This data structure supports all necessary reorganiza-

tion procedures (split and merge), and also allows relative navigation forwards and backwards through the 

stored data. The ends of the list may be optionally connected, such that the data structure becomes a cyclic 

list. This variant of the flat table is able to function as a relational FIFO container. 

Similar to the B-tree, the flat table stores individual tuples of any arity and arbitrary SQL data 

types in an unaligned representation and uses attribute reordering for additional compactness, 

yet in contrast to the intra-page clustering of the B-tree, the flat table cannot exploit attribute 

suppression for common tuple prefixes. As a consequence of attribute suppression, a B-tree 

with a compound search key but low selectivity on the key‟s prefix will exhibit a higher 

capacity of tuples per page than a flat table storing an identical data set. But on the other hand, 

the limitation to sequential access permits a significantly simplified page layout for flat tables, 

leading to a constant reduction in storage requirements of 2 bytes per tuple compared to the 

B-tree, which becomes significant when storing relatively small tuples. As consequence of 

these two contrary effects, both data structures typically have approximately identical space 

complexities for storing identical data. 

Reading access to a flat table is granted to an arbitrary number of concurrent scans. Any scan 

may also manipulate data at its current scan position. Manipulation always preserves the 

original insertion order, i.e. updates are performed in-place. If the storage capacity of the 

current page is exceeded after an update, then the page is split by allocating a new page and 

the original page‟s contents are divided among the old and new page. Deletions and update 

operations may reduce the fill level of the concerned pages, thereby degrading storage utiliza-

tion of the overall data structure. Therefore, flat tables are equipped with the ability for self-
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reorganization, guaranteeing an average filling degree of at least 50%, and typically preserv-

ing a considerably higher fill level. Whenever the fill level of a page drops below 50%, then 

neighboring pages are probed for potential merging. All these operations strictly preserve the 

original insertion order, which is crucial for consistently repositioning of concurrent scans of 

the same transaction when conducting scan maintenance. Scans belonging to other transac-

tions are not affected by such reorganization, since they are protected by the storage layer‟s 

multi-version concurrency control.  

In some cases an implicit functional dependency might exist between insertion order and 

inserted data, for example in a continuous stream of sensor data exhibiting ascending time-

stamps. Although such additional semantics are not consciously maintained, verified, or 

exploited by the flat table or by the host system‟s query evaluation engine, an application may 

still exploit this property when performing relative scan operations and positioned manipula-

tion operations on this segment, as long as updates on the order-relevant attributes do not 

invalidate this correlation. 

Input order preservation is also used in a special variant of this data structure, the flat table 

operates as a relational FIFO (First-In, First-Out) container of limited total size. The data 

structure initially operates as normal flat table, until it reaches a predefined target size (i.e. a 

maximum number of data pages) through insertions. At this point, head and tail of the list are 

chained together, and the structure becomes a cyclic doubly-linked list (cf. Figure.41, page 

201). In this state, the flat table will stop allocating further pages and start overwriting the 

page containing the oldest data with newly inserted data, according to the FIFO strategy. Such 

a data structure is suitable for storing event logs in a relation of limited total size, where 

outdated records are automatically deleted. A sequential scan on this log always produces data 

chronologically, and the host system‟s query engine allows applying arbitrary SQL transfor-

mations for analyzing the log information. One could also imagine another variation, operat-

ing a Flat table as LIFO (Last-In, First Out) container, or even as a LRU (Least Recently 

Used) stack, again exploiting input order preservation, but without the space limiting con-

straint of the FIFO container. However, the current Flat table implementation supports only 

FIFO functionality. 

The absence of any direct access capabilities renders the flat table inapt for use as secondary 

access path. Yet as a primary access path, this lightweight implementation is capable of 

accomplishing all fundamental functionality, including the ability for indexation via suitable 

secondary access paths. Therefore, the flat table must maintain some unique tuple identifica-
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tion for associating base tuples with index tuples. As the flat table itself is not suitable for 

maintaining an innate primary key in its data, because it cannot verify uniqueness of newly 

inserted data efficiently, it has to be augmented with a separate data structure for generation 

of unique keys. The present implementation uses the Access Manager‟s IK service (cf. 4.3.3 

Tuple Identification and Indexing, page 125), for generating unique surrogate keys, which are 

stored alongside the corresponding data tuple in the flat table pages. The Access Manager‟s 

IK service automatically associates the number of the page inhabited by a new tuple with the 

tuple‟s IK value, and stores this pair in the auxiliary IK-tree structure. Finally, the IK-tree 

allows identification of the flat table page storing the tuple for any given IK, as required for 

materialization of base tuples after data retrieval via secondary access paths. 

Flat tables with secondary indexes provide direct access capabilities and efficient enforcement 

of unique constraints, thereby acquiring two functionalities a bare flat table does not possess. 

On the other hand, construction and maintenance of secondary indexes and auxiliary IK-tree 

will severely compromise the flat table‟s superior performance characteristics for bulk-

insertion. 

One major handicap of flat tables compared to B-trees is their missing look-ahead capabili-

ties. A flat table, being a linked list, can only know the page number of the immediate succes-

sor and predecessor pages relative to its current scan position. This massively impairs its 

capabilities to exploit parallel asynchronous I/O operations on modern storage hardware, 

because it cannot issue bulk I/O requests to be handled autonomously by the I/O subsystem. 

Although the effect is often attenuated, if the flat table pages are arranged in a physically 

adjacent way, such that a sequential scan operation on the flat table results in a sequential read 

operation on the underlying file. In this case, the storage system and hardware will be able to 

recognize this simple access pattern, allowing autonomous prediction and ahead-of-time 

scheduling of future I/O requests. Thereby prefetching is delegated from the access layer to 

the underlying operating system and hardware. However, if the address space of the database 

system is already heavily fragmented, or if data is inserted in numerous smaller chunks over a 

long period of time, allowing intermixed allocation of pages belonging to foreign segments, or 

even more common, alternating allocation of base table and index pages belonging to the 

same relation, then the probability that the operating system is capable of conducting effective 

prefetch operations is declining rapidly. Especially if the storage system operates in direct I/O 

mode, i.e. the operating system‟s file cache is bypassed for I/O operations, then automatic 

prefetching is undermined completely, resulting in poor sequential scan performance on a flat 
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table. To compensate these effects, the flat table can be optionally equipped with an auxiliary 

data structure, the prefetch list, providing the required look-ahead capabilities. This data 

structure is essentially a second, auxiliary flat table, and it is operated via the Access Manag-

er‟s access method interface, but it is significantly smaller than the main storage structure. 

Instead of storing data tuples, the prefetch list merely stores page numbers of the main struc-

ture in exactly the same sequence as they are linked into the master list. The prefetch list has 

to be maintained whenever the main structure is allocating or removing data pages during data 

manipulation. Conceptually this structure is organized as an independent flat table, and it may 

even have its own prefetch structure, permitting recursive look-ahead functionality, similar to 

the B-tree. But since the prefetch list stores only page numbers, while the B-tree must also 

store the corresponding search key separators, the former has a notably higher capacity for 

page references, which is generally sufficient for conducting adequate prefetch batches. 

In Figure.42 we compare performance characteristics of Transbase‟s B-tree with its flat table. 

But before we can proceed to measurements, we must make one amendment for guaranteeing 

fair comparison. By default, mass insertion will fill a B-tree‟s pages to a level of 80% of their 

total capacity, such that subsequent insertions will not immediately lead to split operations. 

On the other hand, all insertions into flat tables are conducted as append operations. Hence, it 

is reasonable to use all available capacity of flat table pages when conducting mass insertion, 

thereby reducing the overall size of the storage structure. As a consequence, direct compari-

son between B-trees and flat tables must compensate for different page utilization. In the 

following, we circumvent this discrepancy by forcing the B-tree to fill its leaf pages complete-

ly. 

The measurements in Figure.42 demonstrate the performance characteristics of a flat table 

storing the reference data set, defined as: 

CREATE FLAT TABLE F (a SMALLINT NOT NULL, b SMALLINT NOT NULL, 

    c SMALLINT NOT NULL, d CHAR(80)); 

Obviously, the flat table is not suitable for efficient query evaluation, as it always has to 

process the complete relation, independent of any selectivity of applied predicates. In fact, a 

higher complexity of the applied predicate will necessitate more expensive post-filtering and 

thereby increase query evaluation time. On the other hand, the flat table demonstrates good 

robustness against massive restructuring operations, as it is able to outperform the B-tree in 

initial spool operation and subsequent bulk insertion, where the B-tree suffers a performance 
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penalty for reordering the input set according to its primary linearization and for building and 

maintaining its index structure. All insert operations on the flat table operate strictly locally at 

the tail of its list. Similarly, update operations on a flat table are performed in-place, allowing 

it to complete all required operations with one single sweep over the base relation, while the 

B-tree is forced to process the update in two phases, since data must be moved as a conse-

quence of search key updates. 

Figure.42 Flat table performance characteristics. This diagram compares performance characteristics of 

B-tree and flat table implementations. Evaluation times (orange) for the operation denoted on the left refer 

to the lower horizontal axis. Some measurement also exhibit the volume (blue) of data affected by this 

operation, plotted as number of touched pages, where one page is 32 kbyte in size, and the complete flat 

table occupies approximately 1.5 Gbyte. Data volume refers to the upper horizontal axis. Note that values 

outside the range of the diagram are indicated by a broken bar. 

Finally, even the delete operation on the flat table has a minor performance advantage, be-

cause in contrast to the B-tree, it has no index to maintain, only a very compact prefetch list. 

The final measurement demonstrates the effectiveness of this prefetch list for providing 

valuable look-ahead capabilities on a fragmented flat table segment. 

In summary, flat tables are appropriate containers for volatile data, or as a temporary storage 

container for data that has to undergo some extensive refinement process. After the manipula-

tion process has concluded, the contents of a flat table can either be transferred into a primary 
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index structure, or alternatively a secondary index of arbitrary type may be built directly on 

the flat table. 

5.5. Bitmaps 

Bitmap indexes are the prime example for the construction kit principle of the Access Manag-

er framework and its distinguished ability for encouraging and cultivating reuse of existing 

components. Similar to flat tables, bitmap indexes reside completely inside the storage area 

controlled by the host DBMS, but contrary to flat tables, they never interact directly with the 

storage layer. They are entirely built on top of the DBMS B-tree layer, as an intermediate 

access module. All required storage and data retrieval functionality is attended by inserting, 

deleting, or accessing data from an auxiliary B-tree structure that serves as permanent storage 

container for bitmaps. Hence, the B-tree functions as a mediator for mapping the tuple-

oriented storage requests of the bitmap index onto the page-oriented storage layer. 

Using this approach, bitmap indexes can be implemented as a comparatively thin layer. As an 

example, the bitmap module does not implement any search structures of its own. This func-

tionality is completely provided by its B-tree component. From the perspective of the object-

oriented programming paradigm, the bitmap index extends the B-tree structure, thereby 

inheriting the bulk of its necessary functionality. Nevertheless, the bitmap module represents 

a highly specialized access method implementation that shows fundamentally different 

behavior compared to the properties of its central building block. 

Before we start examining the properties of the present bitmap implementation, we will 

establish the general concepts of bitmap indexes. A bitmap index is capable of storing and 

efficiently retrieving data of the form (               ), where       are attributes of a 

base relation  . We call             the indexed attributes on which the bitmap index will 

provide rapid predicate evaluation and direct access capabilities, while the attributes   

          constitute a relational key on   and serve as identification for locating the base 

tuple corresponding to each index tuple. The prevalent form of bitmap indexes uses equality-

encoded bitmaps (cf. [Cha98] for more details on this and other encoding schemes). In other 

words, for every distinct value of indexed fields          that is actually appearing in the 

base relation  , the index will store one bitmap     that is associated with   . These bitmaps 

provide a bijective mapping for every unique key          to a bit position       in each 

bitmap, such that for every row in   with key    that exhibits the value    on the indexed 
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fields, the bit       in the bitmap     is set to 1 (1-bit). Otherwise it remains 0 (0-bit). If   

contains n tuples and the indexed fields contain c distinct values    (including SQL NULLs), 

then the bitmap index consists of c separate bitmaps, each of a length of at least n bits. If the 

mapping          is not dense, then the resulting bitmaps are correspondingly longer. 

Using equality encoding, the sets of 1-bits in any two bitmaps are disjoint. Otherwise   would 

contain two tuples with key   , exhibiting two different values of    at the same time, thereby 

violating the key constraint. Also, the total number of 1-bits in all bitmaps equals the number 

of tuples in  . The following figure exemplifies these relationships. 

Figure.43 Equality encoded bitmaps. This example shows projections of a relation   with 8 rows, having 

a dense relational key  , and a non-key column   with four distinct values. An equality encoded bitmap 

index on   requires four bitmaps of length 8, in this case using the identity for mapping         
. 

Our implementation stores bitmaps in an auxiliary B-tree. As a B-tree arranges its data in 

fixed sized pages of the DBMS‟s storage layer, e.g. 8 kbyte, and one B-tree tuple may not 

exceed the size of a data page, bitmaps have to be compressed and eventually split-up for 

permanent storage. Therefore bitmaps are partitioned into fixed length bitmap chunks, each 

chunk covering 1 Mbit. Empty chunks containing only 0-bits are not stored but discarded 

immediately, since they can be easily reconstructed on demand. The remaining chunks are 

subjected to a multi-stage compression mechanism. The first stage uses an inexpensive run-

length encoding scheme, relying on low-level routines for optimal hardware support. It offers 

best compression results for very sparse and very dense bitmaps. The second stage uses a 

dictionary-based compression algorithm for further size reduction. Finally, if the compressed 

chunks are still not fitting into pages, they are split into page-sized fragments. These frag-

ments are finally inserted into the auxiliary B-tree as tuples, having the general structure 

                . Again   represents indexed attributes from the base relation to be stored 

redundantly in the secondary index. These attributes have the same types as in the base 

relation and they possess the highest weight in the storage B-tree‟s compound key. The field 
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        is an integer number, describing the position of this bitmap fragment‟s first bit in the 

bitmap. This field has also the lowest weight in the B-tree‟s compound search key. Finally, 

„bulk‟ stores a binary array containing the fragment of an encoded and compressed bitmap 

chunk as a descriptive field of the B-tree. The maximum size of the bulk fragment is chosen 

such, that the complete tuple occupies at most the maximum payload of one data page. Due to 

variable compression rates, the sizes of tuples may vary, yet the B-tree will guarantee a worst-

case page utilization of 50%. 

This implementation possesses all typical properties of equality-encoded bitmap indexes. It 

provides its highest compactness, if the indexed attributes exhibit a low selectivity. Owing to 

bitmap encoding and compression, the compactness of bitmap indexes is substantially higher 

than that of the corresponding standard B-tree, storing identical information in standard tuple 

representation. But, in contrast to the underlying B-tree, bitmap indexes are not suitable for 

storing additional, descriptive attributes besides   and  . 

In SQL, a bitmap index is created using the standard DDL syntax for secondary index defini-

tion. The current implementation does not support creating bitmap tables as base relations, 

because it lacks mandatory primary access pats functionality, i.e. it supports insert and delete 

operations, which are necessary for secondary index maintenance, but it supports neither 

searched nor positioned update operations. As soon as this functionality is implemented, it 

will become possible to create bitmap tables. 

CREATE BITMAP INDEX <indexname> ON <tablename>(<attributelist>); 

This statement will create a secondary index for a base relation <tablename> on the columns 

specified by <attributelist>. Generally, the host system will automatically incorporate the 

base relation‟s primary key attributes into the bitmap index definition. Alternatively, it will 

resort to the IK-surrogate mechanism, if the base table provides IK information.  

Bitmap indexes are particularly well suited for indexing columns of low selectivity, hence 

they are typically used for indexing single attributes representing some coarse classification. 

Due to their native representation as bit arrays, bitmap indexes support efficient logical bit-

operations, in particular intersection and union of bitmaps, realized as low-level coded, 

hardware-aided binary AND/ OR operation. As a consequence, building separate bitmap 

indexes on several attributes offers an alternative approach for processing multidimensional 

restrictions, where inexpensive combination of arbitrary bitmaps allows flexible mixing and 
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matching of multidimensional predicates in ad-hoc queries. Possible strategies for exploiting 

bitmap operations in query processing will be discussed separately. 

Equality-encoded bitmaps are capable of efficiently evaluating queries of the form: 

SELECT  ,  FROM   WHERE   = (               ); 

The specification of the underlying B-tree immediately suggests how search operations on 

this storage structure are conducted. Predicates on   are applied unaltered to the B-tree‟s 

search key. Therefore, the B-tree provides full support for equality queries, as well as for 

arbitrary interval queries on  . A minor additional arrangement in the bitmap index imple-

mentation allows extending the predicate to points or intervals on  , e,g. 

SELECT  ,  FROM   WHERE  =(               ) AND  =(                   ); 

This is accomplished by applying the aforementioned bijective mapping          to the 

given predicate and subsequently retrieving all qualifying bitmap fragments from the B-tree. 

Obviously, such translation of predicates can be accomplished easily, if the mapping    

      is monotonous, as it is the case in this implementation. Since the B-tree stores coarse 

bitmap fragments, the result set retrieved from the B-tree is a superset of the actual query 

result, and has to be post-filtered for compliance with the original predicate, i.e. 1-bits 

representing keys that do not match the requested interval are purged from the result bitmap. 

With this extension, the presented bitmap implementation offers efficient support for an 

extensive class of predicates on all stored attributes. 

Besides equality-encoding, a number of alternative bitmap encodings exist, with range-

encoding [Cha98] being the most popular among them. A range-encoded bitmap     exhibits 

1-bits at position      , if the corresponding base tuple is smaller or equal to the bitmap‟s 

associated value     Range-encoding responds efficiently to interval queries of the form 

SELECT  ,  FROM   WHERE   BETWEEN (               ) AND (                  ); 

The result is calculated by using an equivalent term that is easily mappable to efficient bitmap 

operations: 

SELECT  ,  FROM   WHERE NOT   (               ) AND   (                  ); 

Hence, range-encoded bitmaps can answer simple interval queries by retrieving no more than 

two bitmaps, while equality-encoded bitmaps must retrieve one bitmap for every value falling 
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into the query interval and combine all bitmaps into one conjunct bitmap. On the other hand, 

range-encoded indexes have to retrieve two bitmaps for answering a common point query. In 

addition, maintenance of range-encoded bitmaps is expensive, because several bitmaps have 

to be updated when one new tuple is inserted or deleted, making range-encoding less suitable 

for frequent updates than equality-encoding. 

The concept of range-encoding can be driven further towards bitmap binning [Rot04], suitable 

for indexing attributes of high cardinality domains. Instead of storing a separate bitmap for 

every single   , bitmap binning partitions the domain of   into intervals (bins) and stores only 

one bitmap per bin, thus reducing storage complexity. Consequently, the results produced by 

such bitmaps contain potential hits in bitmap bins at the margins of the query interval. For 

these potential hits, the exact values of    have to be materialized from the base-relation for 

post-filtering. Although the current implementation supports only equality encoded bitmap, 

the Access Manager framework is fundamentally capable of coping with the peculiarities of 

the presented alternate bitmap encodings and it is suitable for their implementation. 

Bitmap encoding and compression offer massive savings in storage requirements for bitmap 

structures. At the same time, these techniques are the main reason why bitmaps respond 

poorly to data manipulation and consequentially have acquired their reputation as read-mostly 

search structures. This effect is caused by the non-locality of the bitmaps representation. An 

update operation altering one single bit in the bitmap has to retrieve a compressed chunk from 

the disk and expand it in main memory. Now the required operation is conducted, manipulat-

ing the single bit in the uncompressed bitmap representation. Afterwards, the chunk has to 

pass again though the compression cycle and ultimately the compressed chunk is split into 

page-sized portions and stored in the B-tree. Although this procedure describes roughly the 

flow of operations in this particular implementation, we presume that some general conclu-

sions drawn from this example can be transferred to arbitrary bitmap index implementation. 

Besides being already expensive in terms of I/O and CPU-intensive operations, this procedure 

inevitably triggers additional performance penalties for concurrency, logging, and recovery. 

For example, a bitmap implementation could simply rely on locking and concurrency precau-

tions provided by the underlying B-tree. But one must be aware that a one-bit-manipulation 

will lock a complete chunk, potentially leading to locks on several B-tree pages. Moreover, a 

lock on one chunk corresponds to locks on one million tuples, i.e. this form of locking on 

bitmaps is very coarse and therefore clearly insufficient for data manipulation in high-

concurrency environments. As compression and encryption are conceptually equivalent, 
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changing one single bit in the uncompressed bitmap will possibly cause extensive changes in 

the compressed bitmap representation, owing to diffusion, a property of encryption algorithms 

that also applies to dictionary-based compression. Such diffusion of a small local change 

across a complete chunk will inevitably have adverse effects on the performance of the 

DBMS logging facility, where logs of page deltas are generated and retained as recovery 

precaution.  

These properties of compressed bitmaps make them unattractive for frequent modifications. 

Without further precautions, mass-updates on relations with bitmap indexes may become that 

expensive that dropping the bitmap indexes before performing the updates and rebuilding 

them from scratch afterwards represents a viable strategy. To compensate for this shortcom-

ing, this bitmap implementation comprises its own caching facility. The goal is to gather as 

many update operations as possible and perform them inexpensively on an uncompressed 

bitmap chunk in main memory. Only if the update operation is completed or if the cache 

memory is exhausted, modified chunks are eventually pushed to permanent storage. This 

internal cache is organized as a LRU structure on bitmap chunks. In order to maximize 

memory efficiency, this LRU is partitioned into four levels. Most recently used chunks are 

held uncompressed, offering maximum affinity to updates. Chunks that have not been touched 

for some time are compressed using inexpensive run-length-encoding. The next stage applies 

additional dictionary-based compression, before the chunks are finally forced into a temporal 

storage segment on disk. This persistent temporal storage segment is organized as a temporary 

B-tree, which is structurally identical with the B-tree used as permanent storage facility. 

Therefore temporal storage offers the same efficient lookup capabilities as the permanent 

structure and both variants share a common code basis. The fundamental difference between 

the two segments is the substantially lower I/O costs on the private temporary segment, 

without concurrency, logging, and disk recovery provisions. 

We already discussed how bitmap indexes are able to process predicates on all available 

attributes. In addition, this implementation is able to produce arbitrary projections of present 

attributes as result sets when operating in standard representation. But the bitmap indexes‟ 

unique feature is their natural ability to operate on bitmap representation, and this internal 

representation opens several new opportunities in query evaluation. For example, a bitmap 

index is capable to produce data in standard representation in ascending or descending lexico-

graphical sort order on  , a property inherited from the underlying B-tree. Alternatively, it is 

also able to inexpensively combine the final set of qualifying tuple identifiers into one result 
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bitmap and then bitwise extract result tuples in ascending or descending       order. As the 

bijective mapping          is monotonous, the result is correspondingly sorted on   . In 

addition, bitmap indexes are predestined for DISTINCT( ) queries, as this aggregation is 

used internally for partitioning the stored relation into bitmaps. Finally, and probably most 

important, bitmap indexes are able to deliver their result in bitmap representation    , such 

that algorithmic units accepting bitmap input are able to conduct further transformations in 

this representation. These output configurations are negotiable during the query optimization 

phase via the Access Manager protocol. Negotiation is supported by a simple cost function for 

bitmap indexes, which mainly relies on the underlying B-tree‟s assessment for delegated scan 

operations and finally adds local costs, e.g. for bitmap post-filtering or for conversion to 

standard representation. 

Some algorithmic units are able to accept input in bitmap representation, thereby reducing 

costs for representation conversion between bitmap scan and successive algorithmic units. 

Among these units, implementations of set intersection and set union conducted on bitmaps 

are particularly promising, as they allow rapid calculation of conjunction and disjunction of 

partial query results from different secondary bitmap indexes on the same base relation. 

Consequentially, bitmap-enabled implementations of these two operators were added to 

Transbase‟s pool of algorithmic units for exploiting bitmap representation. They distinguish 

themselves from their standard counterparts in several important ways. First of all, they do not 

require presorted input, but operate on streams of bitmap chunks in arbitrary order. This 

becomes possible as a consequence of high compression rates, allowing to retain complete 

bitmaps in the previously presented LRU structure for bitmap chunks. During query evalua-

tion, it suffices to decompress only the currently processed chunks into run-length encoding, 

as many bitmap operations are conducted directly on this compact format. This form of 

bitmap intersection and union proved itself highly efficient, so the bitmap algorithms were 

extended to accept unsorted data streams in standard representation. In this mode, the algo-

rithmic unit will construct and manipulate bitmaps on-the-fly. Similar to the bitmap scan, a 

bitmap operator is able to enforce selections, projections, distinct, and sort operations on its 

internal bitmaps, before producing its result in standard representation. Of course it may also 

produce its result in bitmap representation for further processing, e.g. in cascades of bitmap 

intersections and unifications. Apart from these two implemented operators, bitmap represen-

tation allows for other interesting operators, for example aggregation of compact bitmaps, 
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where the frequently used COUNT(*) operator seems particularly promising, but also set 

difference, set equality, etc are candidates for future implementations. 

Figure.44 compares bitmap, UB-tree, and B-tree secondary indexes on the reference data set. 

In each case, the base relation is a dedicated flat table storing IK surrogates for indexing. The 

indexes cover all three dimensions of the reference data set in anticipation of arbitrary ad-hoc 

queries, therefore we use three bitmap indexes and three B-trees, each one handling one single 

attribute, while one UB-tree index is sufficient for handling all three dimensions. The result-

ing B-trees occupy approximately 112 Mbyte each, adding up to a total of 336 Mbyte, the 

single UB-tree uses 224 Mbyte, and the three bitmap indexes are compressed to a total of 11 

Mbyte. The index creation times are dominated by the sort operation establishing the input 

sort order for optimal mass insertion. Consequentially, the UB-tree benefits from its ability of 

using one single index structure requiring only one sort operation. 

In the FTS and interval scan operations, the bitmap index is able to outperform the two other 

candidates slightly in terms of evaluation time. Therefore it reads the smallest of three availa-

ble indexes completely, which has a compressed size of only 3 pages. This unnaturally high 

compression rate is a consequence of the homogeneous structure of the artificial reference 

data set. However, the bitmap index is only able to retain a comparatively small overall 

performance benefit, because the complete data set has to be converted from bitmap represen-

tation into standard representation for further processing. The    query box and point access 

use-cases reveal the bitmap index‟s strengths for processing multidimensional queries. Al-

though the query processor has to retrieve intermediate result sets from three bitmap indexes, 

it is able to combine them efficiently using direct bitmap intersection. The query processor 

essentially uses the same strategy for B-tree indexes, but it has to use the more expensive sort-

merge algorithm for intersecting intermediate results in standard representation. Hence, the 

ability of the bitmap index to dispense of this sort operation allows it to get close to the UB-

tree‟s performance in the latter‟s primary field of application. 

The final two measurements shall give an impression of the various secondary indexes‟ 

response to massive data manipulation. The first measurement demonstrates how mass inser-

tion performs, if all indexes are maintained with an input set that is appropriately presorted to 

match the indexes‟ internal linearizations. Mass deletion, on the other hand, was deliberately 

conducted in the input order corresponding to the base relation‟s linearization, leading to 

randomized deletions on secondary indexes. The bitmap index shows its ability for good 

performance, if updates are applied in conveniently presorted batches, while it exhibits 



214  5.6 FILE TABLE 

massive performance degradation when operated in random mode, as it is likely to happen in 

concurrent multi-user environments operating on transactional data. 

Figure.44 Bitmap performance characteristics. This diagram compares performance characteristics of 

three bitmaps, one UB-tree, and three B-trees, each index type operating as secondary indexes on three 

dimensional data of separate flat tables. Evaluation times (orange) for the operation denoted on the left 

refer to the lower horizontal axis. The volume of data (blue) affected by this operation is plotted as the 

number of touched pages, where one page is 32 kbyte in size, and three bitmap indexes occupy approx-

imately 11 Mbyte while three B-tree indexes use 336 Mbyte. Data volume refers to the upper horizontal 

axis. Note that values outside the range of the diagram are indicated by a broken bar. 

Bitmap indexes show good performance in multidimensional query evaluation, comparable to 

that of UB-trees, although UB-trees exhibit superior query evaluation times for a moderate 

number of dimensions. But as the number of dimensions increases, they will ultimately suffer 

from the „course of dimensionality’, where multidimensional clustering becomes ineffective. 

This is the area where bitmap indexes have a true advantage over UB-trees, but only under the 

prerequisite that all participating dimensions are appropriate for bitmap indexing. 

5.6. File Table 

The file table access module provides direct read-only access to external data, located in text 

files outside the database. Therefore, the file table module qualifies as a simple data integra-
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tion layer. It integrates plain files containing relational data, formatted in a predefined way, 

e.g. rows are stored in one line and column values are separated by a delimiter character. CSV 

(comma-separated values) is a popular format that is suitable for this purpose. 

Due to its read-only limitations, the file table allows for a surprisingly simple implementation. 

The module is in essence a scanner/parser, capable of reading text files and converting them 

into data in standard representation. The current implementation offers two different parsers, 

one for a delimiter-separated value (DSV) format and one for structured XML documents. 

The formats are discerned using a FORMAT specification clause in the table definition state-

ment: 

CREATE FILE(<path> [FORMAT DSV|XML]) TABLE <tablename> 

  (<FieldDefinitions>) 

The current implementation uses textual representation for data, i.e. numeric values are 

represented as character strings, which in general is considerably less compact than the 

corresponding binary representation. Using a binary format could be easily accomplished, as 

it only requires the provision of an appropriate parser and a corresponding specification for 

binary file formats as discriminator in the FORMAT clause. 

As the file table possesses no search structure allowing for direct access capabilities, data is 

always accessed sequentially in storage order. Consequently, no primary key declaration is 

allowed in its DML statement. With file tables being read-only tables, there is no need to 

check a primary key constraint for inserted or modified data. Instead a primary key constraint 

serves as an assertion of a data property towards the database system, to be used by the query 

optimizer for supporting planning decisions. In order to guarantee correctness of optimization 

decisions and resulting plans, the system has to validate this assertion at table creation time. 

However, the current implementation does not validate the data in any way, so it deliberately 

chooses not to accept primary key declarations, i.e. the file table‟s Create() method will 

actively decline a primary key declaration. Even if such a check was in place, its validity 

could be compromised by editing or replacing the data file after table creation. There is no 

way to prevent such tampering with the file, but on the other hand, data integrity is always at 

risk if any database files are modified via non-standard methods. Therefore an external file 

has to be considered an integral part of the database system from the moment it is integrated 

into the database‟s system catalog until its removal via a standard drop table DML statement. 



216  5.6 FILE TABLE 

Having no direct access capabilities to individual tuples also impedes the creation of second-

ary indexes on file tables, because materialization is not feasible. Also, for supporting second-

ary indexes, an unambiguous tuple identifier is required, such as a primary key or an IK, to 

map every index tuple to exactly one tuple in the base relation. But neither primary keys nor 

direct access is available for file tables, and the employment of an IK table would require the 

storage of IK values with every tuple in the base relation, which is impossible since the 

relation is stored in a read-only file. 

But file tables still possess one unique feature, which is not yet exploited. Even though files 

do not possess search structures for direct access to individual tuples, they still allow random 

access to their data. This capability can be used in two ways: The byte-offset of the beginning 

of every line is a unique numeric identifier for each tuple. This recognition finally enables 

creation of secondary indexes on file tables. Technically, these offsets are used as key surro-

gates, providing the identification and direct access functionality similar to IK values. As a 

specific peculiarity of file tables, these values do not have to be stored explicitly in the base 

relation, as they are embedded in the physical structure of the file. In addition to saving 

storage space, these physical tuple addresses also relieve the file table from maintaining 

dedicated IK tables, offering additional savings on storage and maintenance complexity over 

traditional indexing. But exploitable physical tuple addresses in file tables are depending on 

the file table‟s read-only restraint, as it guarantees constant tuple offsets. However, technically 

this approach can be sustained for append-only file tables and a similar approach is also 

feasible for flat tables, if these tables are operated in read-only or append-only mode. 

The second consequence of random access to files is the possibility to perform binary 

searches on the data. For this, the original DDL statement has to be augmented with an 

ORDER BY specification in the file table‟s custom clause. 

CREATE FILE(<filename> ORDER BY <FieldNames>) TABLE <tablename> 

  (<FieldDefinitions>) 

Similar to a primary key declaration, this specification represents an assertion of a data 

property, which can be exploited by the file table module for performing binary searches on 

its data, thereby permitting random access capabilities with logarithmic complexity. But since 

the primary scope of file tables is data import rather than data retrieval, neither secondary 

indexes nor binary search on file tables have been implemented yet. 
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Figure.45 compares the file table‟s behavior with the conventional storage structures B-tree 

and flat table. The latter structures need to be created with a DDL statement and populated via 

a spool process, before data becomes accessible. In this example, data is spooled from an 

external ASCII file (1.6 Gbyte) that will also serve as data basis for the file table. Hence, 

creation of these conventional structures involves reading the external data file once and 

construction of data access structures. In case of the B-tree, data is additionally sorted for 

rapid insertion. After the process concludes, both flat table and B-tree occupy approximately 

1.5 Gbyte of the DBMS address space. At this point, the source file usually becomes obsolete 

and may be deleted. Even so, this load process has momentary storage requirements of 3.1 

Gbyte, and in case of the B-tree an additional temporary storage area of up to 1.5 Gbyte is 

required for sorting. Creation of a file table on the other hand, does not move any data. The 

DDL statement only allocates one single page in the DBMS‟s internal storage area for its 

description page. During FTS operations, the conventional access structures perform signifi-

cantly better than the file table, but if the file table is accessed only once, even this superior 

performance will not suffice for compensating for the expensive creation process. Only if data 

is likely to be accessed repeatedly, then internal storage structures are able to amortize them-

selves. 

Figure.45 File table performance characteristics. This diagram compares conventional data import from 

an external file into internal B-tree and flat table structures with direct access to data residing in a file out-

side the database. In the latter case, data is retrieved via the file table data integration module. Evaluation 

times (orange) for the operation denoted on the left refer to the lower horizontal axis. The volume of data 

(blue) affected by this operation, plotted as the number of touched pages, where one page is 32 kbyte in 

size. B-tree and flat table occupy approximately 1.5 Gbyte each, while the file table in ASCII format uses 

almost 1.6 Gbyte on the file-system, which is equivalent to 47980 pages. Data volume refers to the upper 

horizontal axis. Note that values outside the range of the diagram are indicated by a broken bar. 

Although full table scans on file tables are significantly slower than similar operations on 

internal structures, file tables represent an adequate instrument for alleviating and improving 

data import, as they allow to process external data with the full functional scope of SQL. This 
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makes it possible to load data, apply necessary transformations, and conduct on-the-fly 

integrity checks on the imported data in one single step. 

As a consequence of these measurements, a general revision of the ASCII scanner implemen-

tation is planned, in order to clarify its apparently poor performance. But as possible im-

provements will affect spooling internal storage structures and reading external files equally, 

all previously made conclusions will remain valid. An alternative scanner/parser implementa-

tion using a binary data format will further diminish the present performance deficiency of the 

ASCII variant and it will also allow for more compact external files. Both ASCII and binary 

variants can be effectively augmented with additional data compression and data encryption. 

5.7. Generic Functional Indexes 

In its current state, Transbase offers no support for functional indexing, and index definition is 

only possible on the plain attribute values. To a certain degree, the UB-tree represents an 

exception to this rule, as it uses an internal mapping from plain attributes to a calculated 

search key. Still the UB-tree does qualify as a functional index in the classical sense, because 

externally all restrictions operate strictly on the plain representation of indexed attributes, and 

not on a functional mapping as defined by a selection        . Before functional indexing can 

be realized in Transbase, the host system must provide extensive support for such predicates. 

This involves extensions to the SQL compiler for formulating functional index definitions and 

it also necessitates precautions in the query optimizer module for deducing the applicability of 

an available functional index to a given predicate. As soon as the host system complies with 

these preliminaries, the Access Manager framework is able to support development of func-

tional indexes, resulting in a dramatic reduction of the expected implementation effort. There-

fore, we conceive functional indexes as lightweight alternative to intermediate access mod-

ules, where the main differences between two implementations are the functions providing 

necessary mappings. Many common tasks of an access module, like storage, retrieval, and 

manipulation are independent from the actual mapping, and therefore it is desirable to provide 

a generic, reusable implementation for these recurring tasks. 

A possible solution will supply reusable functionality as an intermediate access module, 

which implements the complete access method interface, but allows for integration of two, 

optionally three, user-defined functions. This first function provides the actual mapping of 

input data to calculated values. These values are then stored in an auxiliary search structure, 
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e.g. a B-tree or any other available access module. The second function is responsible for 

translating a given predicate from a user query into one or more predicates to be applied to the 

auxiliary search structure. In some cases, the translation of search predicates might be inexact 

and retrieve a superset of qualifying data from the auxiliary search structure. As an example, 

consider bitmap indexes as functional indexes storing encoded bitmap chunks, where the 

underlying B-tree will always produce complete bitmap chunks. Then an optional third 

function is required, for post-filtering the intermediate result and delivering the exact result to 

the query processor for further evaluation. 

CREATE FUNCTIONAL(<custom_spec>) INDEX <indexname> ON (<expression>); 

Example: 

CREATE FUNCTIONAL(SOUNDEX.DLL ON B-TREE) INDEX emp_sndx 

    ON employees(soundex(name)); 

SELECT * FROM employees WHERE soundex(name) 

    BETWEEN soundex(‘SMITH’) AND soundex(‘SMYTHE’); 

Functional indexes represent a lightweight approach, allowing very fast adaptation of a 

universal DBMS towards an application domain. Only if the scope of functional indexes 

should not suffice for satisfying specific requirements, then resorting to implementation of an 

intermediate or full access module provides the necessary flexibility. 

5.8. Main Memory DBMS 

All presented search structures are designed for operating on large data sets residing on slow 

secondary storage devices. But today‟s computer hardware possesses gigabytes of fast main 

memory, and DBMSs are bound to incorporate these resources in effective query planning 

and adjusted query evaluation techniques. This cannot be accomplished by simply using 

bigger main memory caches, containing mere images of persistently stored data, but through 

reorganization of data for efficient access in main memory. Pure main memory database 

systems (MMDBs) and hybrid database systems therefore convert data that was retrieved 

from disk into dedicated main memory search structures, such as binary trees, heaps, hash 

tables, etc. The presented bitmap index implementation is an example for a hybrid access 

structure, as it organizes its bitmap chunks in compact compressed representation, which is 

appropriate for the DBMS‟s page-oriented cache and permanent storage, but at the same time 

it uses run-length encoded or inflated bitmaps with fast direct access capabilities. Finally, 
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other approaches are based on the observation that the volatile levels of today‟s memory 

hierarchies, i.e. main memory with its numerous caches, are in essence block I/O devices, just 

like hard disks. Even though access times to main memory are considerably faster, and it 

possesses random access capabilities, memory transfer is conducted in blocks of up to 512 

bytes, depending on the next cache level‟s cache-line size. Therefore Chen et al. [Che01] 

argue, that B-trees are optimal main memory search structures, if their node size is adequately 

dimensioned or if an appropriate prefetch mechanism is installed for preventing cache-misses 

while navigation through the search structure. The Access Manager provides the necessary 

flexibility for experimentally investigating such assumptions in the context of a complete 

DBMS. Moreover, the bitmap example proves that the access method interface is capable of 

effective accommodation of memory-aware access modules. 

5.9. Data Partitioning 

Horizontal and vertical data partitioning are popular instruments for improving DBMS per-

formance. Both allow physical distribution of one logical storage structure over several 

physical storage devices, thereby reducing average access times and enhancing data transfer 

rates. Data-dependant horizontal partitions also open new opportunities for parallel data 

processing, while vertical partitioning introduces additional degrees of freedom to physical 

data clustering. Preliminary experiments with both forms of partitioning, realized as interme-

diate access modules operating on several auxiliary B-trees, validate that the Access Manager 

offers appropriate flexibility for implementing partitioned access methods. Especially its 

modular approach allowing for quick and easy reuse of existing storage modules facilitated 

rapid implementation of these access module prototypes. Yet, at the time of this writing, these 

approaches have not been pursued any further than to a general study of feasibility. 
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6. Conclusion 

This work presented the Access Manager framework as an approach for systematic extension 

of a universal host RDBMS with supplemental access method implementations and auxiliary 

algorithmic units for query evaluation. Its goal is to overcome and invert the prevalent status 

quo, where DBMS applications from a vast spectrum of specific application domains, like 

customer relationship management, business intelligence, e-commerce, engineering, scientific 

applications, etc., had to adapt to the peculiarities and functional capabilities of a standard 

DBMS, instead of customizing the DBMS to the applications‟ needs. DBMS customization 

inevitably involves the requirement of incorporating new, non-standard data types like video, 

images, audio, documents (structured and unstructured) and text data, but also handling of 

standard data with rich semantics, like spatial, temporal, genetic, ecological, meteorological 

or geological information, describing complex interrelations in huge data sets, and necessitat-

ing specialized access methods for efficient exploration. There is unquestioned need and 

potential for such DBMS extensibility, as [Gae97] describes over 50 alternative index struc-

tures for spatial indexing alone, while only a comparatively small number of access structures 

is enjoying a significant acceptance in common DBMS technology. A database system must 

be prepared to meet the particular requirements of an application domain, not only by provid-

ing tailored storage and retrieval functionality, but also by supporting analytical functionality 

resembling natural operations on the entities modeled in the database schema, eventually 

resulting in specialized forms of transformation, selection, aggregation, and other operations. 

The primary objective of the Access Manager framework is to obtain a generic solution for 

meeting customization requirements from diverse application domains. In addition, the 

Access Manager approach provides direct access to external data sources for importing data, 

or, if that is not possible, e.g. in a heterogeneous information infrastructure of a global enter-

prise or for WWW data, then it permits integration of complete external data repositories and 

combination of their particular search capabilities „under one roof‟ of a common logical 

database schema. 

The currently prevalent approach to DBMSs, where one manufacturer is providing a com-

plete, monolithic system, is clearly not suitable for achieving the aspired goals, because the 

task is far too complex for a satisfactory one-size-fits-all solution. The resulting system would 

be cumbersome and overloaded with functionality, expensive because of surplus features, and 

difficult to maintain and administrate. Moreover, the presumable lack of expertise of one 

single manufacturer for addressing the huge field of possible application domains will inevit-
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ably lead to insufficiencies in functionality and performance of the resulting system. There-

fore an operational DBMS with basic functionality and optional piecemeal extensibility 

within a defined scope for embedding specialized functionality, to be provided by experts of a 

particular application domain, seems a far more promising approach. But this approach also 

has its pitfalls in form of possible functional and efficiency bottlenecks in the extensible 

infrastructure, or risk of compromised system integrity through undesirable side-effects 

between different extensions. It also may provoke a possible domino-effect, where extensibili-

ty of one DBMS module entails extensions to other modules, ultimately resulting in an overly 

complex extension interface. 

6.1. Achievements 

The Access Manager framework promotes modular DBMS extensibility and addresses poten-

tial pitfalls of this approach with effective countermeasures. Therefore it opens the architec-

ture of an operational standard DBMS in a few selected areas, by introducing a concise yet 

flexible and powerful interface to the DBMS‟s components. This DBMS will function as a 

host system for accommodating application domain specific plug-ins, allowing well-defined 

adaptation and customization of the host DBMS by introduction of alternative primary and 

secondary access methods into the system, supported by custom algorithmic units implement-

ing auxiliary operations, and a powerful data integration layer. This interface particularly 

emphasizes thorough integration of extension modules into the host system‟s intrinsic query 

optimization process, by devising a fully-automated, negotiation-based technique for con-

structing, transforming, and assessing efficient query evaluation plans containing external 

modules. This negotiation process promotes flexible substitution of partial query evaluation 

plans in algebraic representation with their implementations as encapsulated algorithmic units 

provided as opaque extension modules. It also allows an algorithmic unit to demand adapta-

tion to be applied to its input for optimizing the algorithm‟s internal operations and minimiz-

ing its implementation complexity. On the other hand, negotiation permits configuration and 

exploitation of additional functionality an algorithmic unit provides beyond its primary 

purpose. Finally it allows propagation of basic relational transformations across opaque 

algorithmic units. All these activities aim for improving interoperability between independent 

algorithmic units, where each unit may encapsulate the functionality corresponding to an 

arbitrary algebraic expression. Every form of negotiation operates on the same uniform 

functional scope at the joints between autonomous algorithmic entities, such that the resulting 
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query evaluation plans are constructed from opaque algorithmic units that are bound together 

using a common set of functionally limited connectors. 

Basic query evaluation through the Access Manager framework uses a very concise interface, 

thereby simplifying the development process of extension modules for elementary operations. 

But the framework is also adaptive to operations of higher complexity and capable of meeting 

performance challenges by provision of optional interface functionality. It particularly pro-

motes development of extension modules in short iteration cycles, by encouraging modularity 

and reuse, and by providing supportive testing and debugging facilities. As a secondary goal, 

the framework protects the host system components from mutual intrusion. It cleanly sepa-

rates autonomous extension modules and coordinates and supervises all interactions between 

these independent components and the host system. Thereby it safeguards the stability and 

consistency of the overall system and enforces data integrity by guaranteeing that all opera-

tions are carried out in a consistent way, within a transactional context, in strict adherence of a 

global concurrency control mechanism, and in accordance to present access privileges. 

The interface functions are tied together using a comprehensible yet flexible protocol. In its 

basic scope, the protocol supports fundamental operations, such as query optimization and 

query evaluation, for controlling essential configuration, navigation, and manipulation capa-

bilities of access method implementations. In addition to this rudimentary functionality, the 

protocol permits alternative sequences of basic interface calls and incorporation of optional 

interface functionality for achieving higher efficiency and for accomplishing more advanced 

concepts. This alternative protocol allows perfecting the functional capabilities of an other-

wise complete access method implementation and maximizes its efficiency. 

The Access Manager framework demonstrates its flexibility and universality in its ability to 

consistently integrate data residing in heterogeneous information systems outside the host 

DBMS‟s storage system into a homogeneous database schema, and thereby providing a 

uniform, location transparent view on distributed data. In this conception, the Access Manager 

framework accommodates pluggable extension modules, implementing access methods that 

function as gateways to other information systems. The access module wraps an external data 

repository and exposes only the Access Manager‟s abstract access method interface. The 

ability of this interface for participating actively in query optimization permits global optimi-

zation across a heterogeneous infrastructure. Efficient query evaluation is achieved through 

systematic exploitation of query evaluation capabilities of remote sites, and the Access Man-

ager ensures data integrity by integrating the remote repository into its transactional context. 
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Practical experience with multiple access method implementations proves that the Access 

Manager approach is capable of substantiating its functional claims and its pretension for 

good performance with convincing results of available prototype implementations. Moreover, 

the introduction of the Access Manager into Transbase, as its host system, confirms that the 

additional layer does not induce significant costs. In this special case, the host system using 

the Access Manager even shows slight performance benefits over the original system, which 

can be attributed to the revision and unification of access method interfaces. Yet the most 

significant approval for this approach represents its almost completed transition from a mere 

research prototype to an intrinsic component of a productive DBMS. 

In its present state, the Access Manager supports a remarkable subset of the extensive func-

tionality that the academia postulated for a hypothetical CDBMS [Dit01]. Still there remain 

several interesting starting points to be pursued in future. 

6.2. Future work 

In accordance to the presented approach, the main focus for future work on the Access Man-

ager is likely to address several query optimization problems. The most pressing of which is 

certainly the transfer from the current prototype, cooperating with a rule-based optimizer, to 

cost-based query optimization. Transbase‟s optimization heuristics are clearly apt for generat-

ing query evaluation plans of high quality. Moreover, rule-based optimization is often supe-

rior to cost-based optimization for queries of low or moderate complexity, where heuristics 

alone are sufficient for finding the optimal plan. Thereby, it allows evading all additional 

costs for collecting, maintaining and evaluating statistical information. However, rule-based 

optimization occasionally shows some vulnerability towards necessary code maintenance of 

the optimization module, or adaptations for new functionality. Integration of new heuristics 

into an extensive rule system is an intricate task, as it is likely to introduce conflicting rules or 

other unwanted side-effects. These effects are generally hard to predict and automated testing 

is often inappropriate for detecting them. Hence, cost-based validation of delicate rule-based 

decisions, and purely cost-based optimization for queries of high complexity, seems a promis-

ing approach. Moreover, it would open the unique possibility to confront the Access Manager 

framework with both optimization techniques at the same time. 

Another interesting approach would examine the implications of integrating further unary 

ERA operations into the negotiation process. In particular, when dealing with data integration, 
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where fully-fledged DBMSs are serving as remote sites, then grouping and aggregation is a 

very attractive candidate for reducing the data volume to be transferred. A more thorough 

examination of the general problem of delegating joins on remote relations to the source 

repository is also desirable. Perhaps this leads to a universal concept for partitioning query 

execution plans into arbitrary fragments for distributed evaluation (cf. Garlic in [Haa97]). 

Alternatively, a further pursuit of the remote view approach, as sketched in 4.6.2 Data Inte-

gration Layer (page 179), may open new query optimization opportunities. 

Apart from query optimization, query evaluation is another interesting field for further im-

provements. The most promising concept for a future implementation is probably presented in 

5.7 Generic Functional Indexes, (page 218). This concept is able to lower implementation 

complexity for many application-domain indexes, since it represents a highly reusable frame-

work that will effectively avoid repeated implementation of many reoccurring tasks when 

building functional indexes as intermediate access modules. Generic functional indexes 

stringently require a generalization of predicate evaluation in the host system, possibly involv-

ing new query optimization challenges for resolving functional dependencies. But if these 

preconditions are met, then a skeleton for generic functional indexes will be implemented as a 

mere pluggable access module, rather than as integral part of the Access Manager framework. 

Yet, this generic intermediate access module will possess a unique feature, allowing it to 

choose from all available full access modules the one implementation that is most appropriate 

for providing storage and retrieval functionality to a given functional index, thereby putting 

the interchangeability of access method implementations and the robustness of the Access 

Manager protocol to an ultimate test. 
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Appendices 

Quick Reference 

Definition.1:       is a RA term. 6 

Definition.2:          is a RA term. 6 

Corollary.1:               
              is a RA term. 6 

Definition.3: Generic n-ary Operator:      : 

       with n ≥ 2  and      
     with       and     : 

                               7 

Definition.4: {  ,  ,  ,  ,  ,  ,   } are basic ERA operators. 11 

Qualitative Equivalence:             13 

Quantitative Efficiency:                                               13 

Definition.5: Input Projection    . We call a projection   
   the i-th input projection of an n-

ary algorithmic entity, if it decomposes the entities i-th input stream such that all input 

attributes are assigned to at least one of m reference blocks within the algorithmic entity‟s 

algebraic equivalent, i.e.    
              

. The entire projection for all input streams is 

defined as        
   

       
. 28 

Definition.6: Algorithmic implementation. We call an algorithmic entity     the algorithmic 

implementation of all representatives of equivalence class       . Correspondingly, we 

define       as the set of algorithmic implementations. 29 

Definition.7: Algorithmic equivalent. Algorithmic units      are algorithmic equivalents, 

providing different implementations for representatives of equivalence class       . 29 

Definition.8: Equivalence Configuration. Two algebraic expressions     are in equivalence 

configuration    , iff equivalence can be achieved by expansion of  , using standard input 

connectors    
    and a standard output connector   

   : 
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  n-ary        : 

        
        

         
            

          
         

       30 

Corollary.2: Equivalent implementation. Supposing that      ERA with    , and there 

exists an algorithmic implementation      and implementations               for 

trary     , then there also exists an equivalent implementation of all representatives of  , 

because 

     
          

         
     

    
              

           
      30 

Definition.9: Sets of Connectors       and  . A standard connector   
    is an ERA expres-

sion composed of the basic unary ERA operations                    
 , operating according 

to specification  , but strictly in standard representation. The set of all standard connectors 

is     . A generic connector has the form                    , and the set of generic 

connectors is  . It follows that             36 

Definition.10: Applicability. We introduce three distinct qualities of applicability for 

arbitrary      ERA: 

(1) An arbitrary algorithm implementation     is strictly applicable in a query evaluation 

plan, iff it possesses no input requirements, i.e.  

      
         
                

(2)     is regularly applicable, iff its input requirements are satisfied by applying standard 

connectors           to a given relational input. The operator „ ‟ denotes composition in 

the presence of non-trivial input requirements. The host system is capable of supplying 

strictly applicable implementations        for every          . 

      
         
                                

(3)     is weakly applicable, iff it has input requirements         . The host system 

cannot provide an immediate implementation for  . 

      
         
                           37 
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Definition.11: Apply function  . For              ERA, the algorithmic implementation 

    is applied in a query plan as replacement for an n-ary   with the      function. The 

mapping of attribute positions in input stream tuples to the attribute references in   is pro-

vided as vector        
   

       
. The function parameter         is an integer choosing 

an operational mode for   from an enumeration of available modes. Each     settings effec-

tuates different optional input requirements for  . The result of      are connectors 

         
 
       

 defining input requirements for each input stream. The formal definition of 

the      is: 

                     

                       
 
       

: 

                       
    

          
   

            

        
   

           
    

       
 

where      
   

  is the implementation of  , configured to the current input mapping     and 

optional input requirement setting    . 38 

Corollary.3: Coalescence and Decomposition. Two arbitrary         can be coalesced 

into one single     , such that         . In particular, for any   
      

         exists 

a   
        , such that   

      
      

   . Decomposition describes the inverse operation.

 40 

Application & Exploitation:              42 

             
             

 
 
 
 
 
 

 
 
 
 
 

        n                     n                                            
                                                                         

                                     n                               
                                                                      

                                     n                             
                                                                         

                                   n                                     

                        n                                           

  42 
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Definition.12: Exploitability. We introduce two distinct qualities of exploitability for 

arbitrary              : 

(1) An algorithmic implementation     is fully exploitable towards a connector     iff     

allows integration of     such that 

          
           
                   

(2) An algorithmic implementation     is partially exploitable towards a connector     iff 

    allows decomposition of            such that an implementation       exists in 

[ERA] and    can be integrated into    : 

          
           
                        44 

Definition.13: Exploit function   . Let      ERA, implemented as            . The 

connector      represents coalesced transformations required for substitution and applica-

tion of     and    . The complexity of such a query evaluation plan can be reduced by inte-

grating functionality from    into    , using the      function. The result      of the      

function represents the part of    that was rejected by    : 

             

             : 

        

 
 
 
 
 
 

 
 
 
 
 
                                                                    

           
    

             

         n                                                        

           
    

             

                                                                       

                         
    

                    

  45 

Exploitation & Propagation:                                     48 

Definition.14: Propagation. We introduce two distinct qualities of propagation for 

arbitrary                  : 

(1) A connector    is fully propagatable through an algorithmic implementation    , iff a 

decomposition          exists, such that 
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(2) A connector    is partially propagatable through an algorithmic implementation    , iff 

    allows decomposition of              such that an implementation      exists in 

[ERA] and    can be integrated into    , i.e. 

              
             
                               

                        48 

Definition.15: Propagate function  . Let        ERA, implemented as            

   . The connector      represents coalesced transformations required for substitution and 

application of     and    . The complexity of such a query evaluation plan can be reduced by 

propagating functionality from    through     , using the function      , where      

represents the part of    that was rejected by    : 

            

             : 

          

 
 
 
 
 
 

 
 
 
 
 

                                                                               

               
    

                   

         n                                                                   

               
    

                 

                                                                                  

                             
    

                        

  49 

Definition.16: Streaming Cost Calculation. The cumulated costs of an n-ary algebraic 

expression, concluded by a streaming algorithmic implementation of  , calculate as: 

                                     

 

   

 

                                                   
 
    62 

Definition.17: Blocking Cost Calculation. The cumulated costs of an n-ary algebraic expres-

sion, concluded by a blocking algorithmic implementation of  , calculate as: 
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