

INSTITUT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Access Manager
A DBMS framework for extensible

access methods

Ralph Acker

TECHNISCHE UNIVERSITÄT MÜNCHEN
Institut für Informatik

Access Manager:

A DBMS framework for extensible
access methods

Ralph Acker

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzende: Univ.-Prof. G. J. Klinker, Ph.D.

Prüfer der Dissertation:

1. Univ.-Prof. R. Bayer, Ph.D. (em.)

2. Univ.-Prof. Dr. M. Bichler

Die Dissertation wurde am 16.02.2011 bei der Technischen Universität München eingereicht

und durch die Fakultät für Informatik am 09.06.2011 angenommen.

In memory of my father, Martin Acker.

i

Abstract

The presented Access Manager framework provides modular extensibility to a standard database

management system (DBMS), for bridging the functional gap between a data-independent DBMS

implementation and the specific requirements of a particular application domain for specialized access

methods, permitting efficient data retrieval, maintenance, and storage. Therefore it opens the architec-

ture of an operational standard DBMS in selected areas, by introducing a concise yet flexible and

powerful interface to the DBMS‟s components.

The DBMS will function as a host system for accommodating application domain-specific plug-ins,

allowing defined adaptation and customization of the host DBMS by introduction of access modules

for alternative primary and secondary access methods, supported by custom algorithmic units imple-

menting auxiliary transformations, and a potent data integration layer. This interface particularly

emphasizes thorough integration of extension modules into the host system‟s intrinsic query optimiza-

tion process, by devising a fully-automated, negotiation-based technique for constructing, transform-

ing, and assessing efficient query evaluation plans containing external modules.

Both interface and its corresponding protocol are designed for actively facilitating the development of

extension modules by encouraging modularization and reuse. As a consequence, coding complexity of

access modules depends closely on the complexity of the new access structure and its distinctiveness

from existing implementations. We prove the framework‟s ability to provide true extensibility by

augmenting an existing host DBMS with several additional access methods. To this end, a prototype

implementation of the Access Manager framework was successfully integrated into the relational

DBMS Transbase of Transaction Software GmbH.

Zusammenfassung

Das vorgestellte Access Manager Framework erlaubt die modulare Erweiterung eines herkömmlichen

Datenbank Management Systems (DBMS) zur Überwindung der funktionalen Diskrepanz zwischen

einem datenunabhängigen Datenbanksystem und den besonderen Anforderungen eines bestimmten

Anwendungsgebiets. Dafür sollen speziell zugeschnittene Zugriffsmethoden für effiziente Datenhal-

tung, Suche und Manipulation hinzugefügt werden. Zu diesem Zweck wird die Architektur eines voll

einsatzfähigen DBMSs an ausgewählten Stellen über eine kompakte, flexible und zugleich mächtige

Schnittstelle geöffnet, um Zugriff auf interne Komponenten des Systems zu erlauben.

Das DBMS übernimmt dabei Rolle eines Wirtssystems, das die Implementierung anwendungsspezifi-

scher Plug-ins zur wohldefinierten Erweiterung und Anpassung an eine Datenbank-Applikation

gestattet. Bei diesen Erweiterungen handelt es sich erstens um alternative primäre oder sekundäre

Zugriffsmethoden, die durch maßgeschneiderte Algorithmen für relationale Transformationen ergänzt

werden können und zweitens um eine mächtige Integrationsschicht für den Zugriff auf externe Daten.

Die Schnittstelle gewährleistet im Besonderen eine grundlegende Integration solcher Erweiterungen in

den Anfrageoptimierer des Wirtssystems durch einen vollautomatisierten, verhandlungsbasierten

Prozess für Konstruktion, Transformation und Kostenabschätzung effizienter Anfragepläne, welche

externe Module beinhalten.

Sowohl die Schnittstelle als auch das zugehörige Protokoll wurden so entworfen, dass sie den Ent-

wicklungsprozess externer Module durch Modularisierbarkeit und Wiederverwendbarkeit von Kom-

ponenten erleichtern. Dadurch wird eine starke Korrelation zwischen dem Entwicklungsaufwand neuer

Module und deren Komplexität bzw. deren Unterschied zu existierenden Modulen bewirkt. Als Beleg

für die Eignung dieses Frameworks für echte Erweiterbarkeit eines bestehenden DBMS wurde ein

Prototyp in das relationale Datenbanksystem Transbase der Firma Transaction Software GmbH

integriert.

iii

Acknowledgements

First of all, I thank my supervisor Prof. Rudolf Bayer, Ph.D. for his support and invaluable

feedback during the different phases of this work, especially as this external thesis was cha-

racterized by a „variable‟ pace, induced by schedules of pending projects for my employer,

such that progress came in abrupt leaps rather than as a constant flow. This necessitated him

to re-familiarize with the topic on short notice, which he always did with untiring interest,

while providing confidence and inspiring advice.

I am particularly grateful to Dr. Christian Roth, CEO of Transaction Software, for providing

the opportunity for setting out on this extensive research project and actively supporting it in

many ways, thereby effectively establishing the preconditions that made this thesis possible.

Also thanks to Dr. Klaus Elhardt, CTO of Transaction Software, who tolerated the numerous

intrusions of the Access Manager framework into critical Transbase system components, and

for the seeing past the initial irritations of its introduction.

All Transaction staff members helped greatly improving the outcome of this thesis, by provid-

ing constructive criticism in numerous discussions on questionable design decisions, but also

for acknowledging, encouraging, and supporting all achievements. Special thanks for active

support to my colleague Simon Valentini, for adopting the Flat Table in a very early state,

when it was no more than a mere case study, and perfecting it to the industrial strength access

module to which it eventually evolved. Moreover, I want to thank Dr. Roland Pieringer, who

provided invaluable support and guidance during the early phase of this work.

Very special thanks to my love Tanja, for moral support, motivation, and for diverting me

when I was hopelessly entangled. Also for proofreading this thesis on a subject outside her

own discipline - not so many thanks for laughing out loud at my less fortunate formulations.

More thanks to Ulrike Herrmann, for helping me with a highly intricate administrative proce-

dure of TUM.

Finally, I thank my family and friends for their patience and constancy, although I was only

able to spend very little time and energy for sustaining the relationships. This is going to

change – I promise.

v

Contents
Abstract ... i

Zusammenfassung ... i

Acknowledgements ... iii

Contents .. v

1. Introduction ... 1

1.1. Objective .. 2

1.2. Structure ... 3

2. Theory ... 5

2.1. Relational Algebra ... 6

2.1.1. Relations ... 8

2.1.2. Operators .. 9

2.1.3. Composition ... 12

2.2. Query Planning .. 12

2.2.1. Optimization ... 12

2.2.2. Costs ... 13

2.3. Interoperability .. 14

2.3.1. Equivalence .. 14

2.3.2. Compatibility .. 15

2.3.3. Data Flow ... 17

2.3.4. Sort Order ... 18

2.4. Substitution .. 20

2.4.1. Granularity ... 24

2.4.2. Applicability ... 31

2.4.3. Exploitability .. 41

2.4.4. Propagation ... 46

2.4.5. Negotiation ... 51

vi

2.4.6. Cost Function ... 58

2.5. Scan Operator .. 65

2.5.1. Sequential Access ... 67

2.5.2. Sorted Access ... 68

2.5.3. Selection ... 72

2.5.4. Projection ... 75

2.5.5. Distinction .. 76

2.5.6. Representation .. 77

2.6. Chapter Summary .. 78

3. Related Work .. 79

3.1. Overview ... 79

3.2. Production Systems ... 83

3.2.1. Informix .. 83

3.2.2. Oracle ... 84

3.2.3. IBM DB2 .. 85

3.2.4. Microsoft SQL Server .. 85

3.2.5. MySQL ... 87

3.3. Research Prototypes .. 88

3.3.1. GiST ... 88

3.3.2. Starburst ... 88

3.3.3. Garlic .. 89

3.4. Discussion .. 92

4. Architecture ... 95

4.1. Layered System Model .. 95

4.2. Built-in Storage Layer ... 104

4.2.1. Storage .. 105

4.2.2. Caching ... 108

4.2.3. Locking & Concurrency ... 109

vii

4.2.4. Transactions & Consistency ... 113

4.2.5. Logging & Recovery .. 114

4.3. Access Method Interface ... 117

4.3.1. Data Access Module Definition ... 119

4.3.2. Access Path Creation .. 120

4.3.3. Tuple Identification and Indexing .. 125

4.3.4. Opening an Access Path ... 128

4.3.5. Negotiation and Optimization .. 132

4.3.6. Elementary Navigational Access.. 138

4.3.7. Data Manipulation .. 143

4.3.8. Data Integrity .. 148

4.3.9. Savepoints .. 154

4.3.10. Locking & Concurrency ... 157

4.3.11. Transactions & Consistency ... 158

4.3.12. Logging & Recovery .. 159

4.3.13. Administrative Tasks .. 159

4.4. Relational Operator Interface .. 164

4.4.1. Iteration .. 166

4.4.2. Negotiation ... 167

4.5. Advanced Query Evaluation Techniques .. 168

4.5.1. Prefetching ... 168

4.5.2. Data partitioning ... 171

4.5.3. Parallel Query Processing .. 173

4.6. Data Integration ... 177

4.6.1. Alternative Storage ... 177

4.6.2. Data Integration Layer ... 179

5. Proof of Concept ... 183

5.1. Transbase Prototype .. 184

viii

5.1.1. The Transbase RDBMS ... 184

5.1.2. Limitations of the Prototype ... 185

5.1.3. Reference Database & System ... 187

5.2. B-Trees .. 188

5.3. UB-Trees ... 194

5.4. Flat Table ... 200

5.5. Bitmaps .. 206

5.6. File Table ... 214

5.7. Generic Functional Indexes ... 218

5.8. Main Memory DBMS .. 219

5.9. Data Partitioning .. 220

6. Conclusion .. 221

6.1. Achievements .. 222

6.2. Future work .. 224

7. References ... 227

Appendices ... 233

Quick Reference ... 233

List of Figures ... 238

CHAPTER 1: INTRODUCTION 1

1. Introduction

The demand for modeling structured data coming from a designated application domain

introduced user-defined data types into standard DBMSs. To satisfy the need for support of

natural operations on these types, user-defined functions were incorporated. Finally, these

operations had to be integrated via an extensible indexing framework into the core system‟s

access methods to supplement efficient storage and retrieval functionality. The features of

Informix DataBlades, Oracle Data Cartridges, and IBM Extenders, to name the most estab-

lished ones, are widely known throughout the scientific and industrial community, each using

a different approach to open the host system architecture to a certain degree. Yet these

frameworks are often found to be either too complex or not flexible enough to cope with the

wide range of requirements in domain-specific access methods. Moreover, the available

extensible indexing frameworks are clearly not suitable for rapid development and evaluation

of research prototypes. As a consequence, implementations of such prototypes usually inte-

grate a loosely coupled DBMS (via its API) or no DBMS at all. Hence, a broad variety of

prototype implementations for closely related research topics exist, but result comparison or

transferability remains difficult or impossible.

The implementation of new access methods for DBMSs, native integration of new data types,

alternative data models (e.g. unstructured data, XML), or other core extensions usually result

in major modifications of the DBMS kernel. Namely, the integration of a new index structure

requires changes in the SQL compiler, query plan optimizer, access path layer, cache manag-

er, lock manager, and the physical storage layer. The latter is also likely to affect logging and

recovery facilities.

Such changes of the database core system make it very expensive, time consuming, and error

prone to implement and test new access methods, user-defined data types, alternative physical

data layout models, contiguous data flow from streaming data sources, and external storage

approaches such as heterogeneous federated DBMS, external data files, or data on the net.

With the existing approaches, comparison of technologies for applicability in a project or for

scientific purposes is only possible with an isolated environment, usually outside a DBMS.

For example, Generalized Search Trees (GiST [Hel95]) offer a generic template for tree-based

index implementation. But there is still no industry-standard DBMS that thoroughly integrates

this framework. On the other hand, there exist frameworks in commercial DBMSs that sup-

port integration of new access structures. For example, Oracle Data Cartridges provide DBMS

2 1.1 OBJECTIVE

extensibility but are restricted to secondary index integration. Custom implementations of

clustering primary indexes cannot be integrated with this module. Open source DBMSs can

be modified in the source code, but they do not explicitly provide interfaces for integrating

new structures without modifying major parts of the kernel code in an error prone venture.

We will introduce the Access Manager specification as a new programming interface to

several layers of a DBMS kernel. It enables a programmer to add new data structures and

auxiliary operators to a DBMS with a minimum of effort. Therefore, it is very suitable for

rapid development of new functionality and allows comparison against other techniques,

having all features of a complete DBMS at hand for representative benchmarking. A proto-

type of the Access Manager interface was implemented into Transbase [Tra10], a fully-

fledged relational DBMS with a highly modularized architecture.

1.1. Objective

An extensible indexing architecture is a powerful framework that is adaptable to domain-

specific requirements of a DBMS application. Its basic purpose is to support natural opera-

tions on domain-specific data for efficient storage and retrieval. Examples for such domain-

specific data are multimedia objects, documents (structured and unstructured), temporal and

spatial data, scientific and engineering data. Date storage in a primary access path and addi-

tional indexes as secondary access paths are both available. The query plan optimizer auto-

nomously chooses the best available access path for a query, so access path selection remains

completely transparent to the user (e.g. in SQL). Additionally, the framework supports and

enforces all necessary operations on all involved access structures throughout all DBMS

tasks. That is, all modifications (insert/ update/ delete) on primary and secondary access paths

are carried out consistently within their transactional context. Data integrity is enforced

independently, and data as well as system security is provided through logging and recovery

facilities. Access privileges of database users are maintained in a centralized data dictionary.

Multiple operations of concurrent users are processed in parallel, offering locking technology

and concurrency control on a reasonably fine granular basis. Intra-query parallelism is availa-

ble for performance improvements. Access methods have direct influence on performance

characteristics of the system through their ability of holding required pages in the DBMS data

cache. The implementation itself allows for rapid prototyping and provides sophisticated

testing and debugging facilities. It encourages common software engineering concepts,

namely modularization and reuse. As a consequence, coding complexity depends closely on

the complexity of the new access structure and its distinctiveness from existing implementa-

CHAPTER 1: INTRODUCTION 3

tions. Built-in access methods of the database system (i.e. B-tree [Bay72], UB-tree [Bay96],

and Full-text) are available for reuse as modular components in a resource pool. Moreover,

every implementation of a new extension also becomes immediately available as a reusable

component in this resource pool. Additionally, the host framework provides a rich set of

utility functionality for common tasks. System stability and data security is not to be com-

promised. Portability of existing access methods to other DBMSs implementing the Access

Manager framework is desirable. The most important task of all is to devise a compact yet

adaptive interface for integrating data access structures into the host DBMS that is capable of

exploiting access method characteristics thoroughly and efficiently. Finally, the framework

should provide enough flexibility for incorporating future requirements.

1.2. Structure

This thesis is divided into two major parts. The first part will provide the theoretical basis for

an extensible relational query evaluation model by deriving its essential principles from

Relational Algebra in Chapter 2: Theory. This chapter provides an abstract conception of

relational algorithms consisting of classical relational operators and an instrumentation to

handle these constructs. Finally, we will establish the main features of the scan operator, an

abstract relational operator that provides all functionality required to encapsulate an arbitrary

access method. After outlining the theoretical scope of this work, Chapter 3: Related Work

will survey other existing approaches towards extending database systems and compare them

to our own approach. The second part, beginning with Chapter 4: Architecture, will provide

in-depth descriptions of the proposed framework and its operation inside the host DBMS

Transbase. This will be followed by a detailed description of various existing implementations

based on the Access Manager concept in Chapter 5: Proof of Concept. The functionality of

the prototypes will be additionally endorsed by examination and comparison of important

performance aspects. The final chapter will summarize the results of this thesis and indicate

possible directions of future work.

CHAPTER 2: THEORY 5

2. Theory

In 1969, the original concept of relational database systems was established by introduction of

the relational model by E. F. Codd [Cod70]. The motivation of his contribution was to protect

database users and database application programs from dealing with internal data representa-

tions of the DBMS. At that time, storage structures were an integral part of the data and in-

depth understanding of these structures was required for data retrieval and navigation. Codd‟s

ultimate goal was to provide an abstraction of data representation that permits a database user

to exploit relational data by knowing no more than names and semantics of relations and

attributes. He summarized his mathematical approach in the formulation of the relational

algebra (RA). Although never fully implemented in its original claim, this algebra established

itself as the common basis of relational DBMSs. In the following years, SQL (Structured

Query Language) evolved as equivalent, declarative counterpart to the procedural RA,

providing a comprehensive, descriptive approach for relational database queries. In this

process the strict set-theoretical features of RA were slightly softened for increased usability

and improved performance characteristics. Eventually, SQL has become the standard rela-

tional query language. SQL and the Extended Relational Algebra (ERA) on which it is based,

are the axiomatic features that define today‟s relational database concept.

On this foundation of the relational world, we will construct a novel theoretical model for

query evaluation. Our model is extensible as it applies to arbitrary external relational algo-

rithms. It will allow for these algorithms to be plugged into a host DBMS where they are

employed automatically and efficiently. Algorithms can be added, refined, replaced, or

removed at any time without affecting operability or consistency of the overall system.

Our focus is to use such algorithms for implementing supplementary data access paths. The

goal is to provide more flexibility to commodity RDBMS technology by enabling it to cope

with application-specific demands for data storage and retrieval. For this, we utilize the

primary purpose of RA, its ability to provide an abstraction from internal data representations.

But in this case the abstraction shall relieve the DBMS itself from any dispensable details of

particular access methods, providing a generalized model for an extensible query evaluation

engine based on common ERA, but capable of incorporating arbitrary user-defined access

methods and auxiliary relational operators.

6 2.1 RELATIONAL ALGEBRA

2.1. Relational Algebra

ERA terms are generated by a RDBMS when an SQL query, formulated by a user, is trans-

lated (compiled) for evaluation. Compilation exploits the equivalence of SQL and ERA for

making the transition from the high-level descriptive query language to a first procedural

representation in ERA that is iteratively computable by an abstract query evaluation engine.

ERA terms represent an intermediate level query language where global algorithmic consider-

ations are involved. This again is the abstract equivalent of a fully-fledged Query Evaluation

Plan (QEP) where every detail of query evaluation is decided. We start by briefly discussing

the important characteristics of Codd‟s original RA and some of the differences between RA

and ERA.

RA operates on relations. If are sets, then a relation of degree is a finite subset

of the Cartesian product . consists of n-tuples of the form

such that . is called the domain of attribute and is the domain of . The

cardinality is defined as the number of elements in . Let A be the set of all possible finite

relations over an arbitrary but finite set of domains. We define:

Definition.1: is a RA term.

The primitive operators of RA are projection (), selection (), rename (), Cartesian product

(), set union (), and set difference (). All other RA operators can be constructed from this

set of primitive operators. RA operations are closed on A in the sense that every n-ary RA

operator operates on relations to yield one relation, or formally:

Definition.2: is a RA term.

Definitions 1 and 2 allow the recursive definition of all well-formed RA terms. It also follows

directly that operators with and

 with and

can be composed. For their composition holds the following

Corollary.1:
 is a RA term.

Composition of RA operators also introduces the concept of intermediate results, i.e. the

outcome of operator
 before is applied.

CHAPTER 2: THEORY 7

The alert reader will have noticed that we permit n-ary operators, while classic RA considers

only unary and binary operators. Our conception of a generic n-ary relational operator is

capable of accepting a variable number of n 2 input relations. This guarantees that any n-ary

operation can always be decomposed into a cascade of binary operations. Hence, the

addition of n-ary operations to classical RA does not compromise RA universality in any way.

We henceforth adopt generic n-way operations for our purposes, as we expect them to offer

additional performance relevant opportunities through their increased compactness. For such

generic n-ary operators we define:

Definition.3: Generic n-ary Operator: :

 with n 2 and
 with and :

For the sake of a more intuitive presentation, RA terms are often depicted in tree representa-

tion. In this representation, all leaves are input relations (following Definition.1) and all

internal nodes of the tree are operators (Definition.2). The precedence of operators corres-

ponds to the parent-child relationships in the operator tree.

Figure.1 Two equivalent sample QEPs. Both plans apply the unary operators after accessing relations

 . On the left, these intermediate results are joined using the generic n-way operator , operating

on three input streams, while on the right side the same operation is conducted using a cascade of binary

operations.

In addition to composition, there exists a set of transformation rules for converting a given

RA term into an equivalent RA term. The query plan optimizer of a DBMS applies such

transformations in its effort to derive the most efficient plan for a query. The details of these

transformations are beyond the scope of this work. We exemplary name two well-known

techniques: projection pushdown and selection pushdown. The goal of these transformations

is to reduce the amount of data to be processed as early as possible, i.e. as low as possible in

the QEP tree. They translate figuratively into the tree representation of query plans where

these operators are pushed towards the leaf nodes. Besides this, the optimizer is in charge of

selecting access paths, i.e. deciding whether to use the primary access path or one or more of

8 2.1 RELATIONAL ALGEBRA

the secondary indexes during evaluation. Finally, the optimizer chooses the appropriate

evaluation algorithms, e.g. whether to process a join using the Sort-Merge, Nested-Loop or

Hash-Join algorithm. After optimization is completed, the final QEP is ready for evaluation

by the DBMS query processor.

2.1.1. Relations

Relations are the leaf nodes of operator trees. Similar to all other RA operators, relations have

an equivalent representation in SQL. While the SQL subclass DML (data manipulation

language) only references them by name, they are defined in DDL (data definition language).

Data definition comprises all information on a particular relation that is visible to the DBMS.

Properties appointed at data definition time are stored in the data dictionary of the DBMS and

are re-evaluated when a relation is referenced from an SQL DML query. The data dictionary

is the query optimizer‟s primary guidance for accessing a relation. It offers the possibilities to

resolve relation names, column names, and column domains (data types). This information is

sufficient for accessing relations in the way assigned by classical RA, namely by linearly

traversing the relation and presenting all of its unaltered tuples to the parent operator for

further processing.

DDL also provides various mechanisms for expressing additional interesting properties of

relations such as key constraints (primary key), unique constraints (key candidates), reference

and check constraints. Although these constraints often have no obvious impact on the way

the DBMS plans its accesses to relations, the DBMSs usually maintain various auxiliary

storage structures to efficiently enforce such constraints. These structures are, for example,

implemented as B-trees allowing rapid duplicate recognition for supporting UNIQUE con-

straints. As these auxiliary structures are registered in the data dictionary, they can also be

exploited by the DBMS optimizer for other purposes, i.e. as additional access path to a rela-

tion. As these mechanisms are concealed from the SQL user, they are not preferential for

access path modeling. Still we have to note that access paths are possibly involved as a side-

effect of constraint definition.

This leaves the definition of secondary indexes in DDL as the only true measure provided to

SQL users for modeling access paths. With these, it is possible to define in a comprehensible

way which attributes of a relation are to be stored redundantly in a secondary access path.

Many DBMSs provide different index types (e.g. B-trees, multidimensional/ spatial indexes,

bitmaps, etc.) allowing modeling access paths tailored to a particular purpose. But the differ-

CHAPTER 2: THEORY 9

ent DBMSs‟ DDL dialects tend to be cluttered with all sorts of physical storage parameters,

comprising access path independent information, such as data partitioning and data allocation

directives, but also access path specific information. All this information has to be reflected

by the data dictionary, so the optimizer can put it to good use. This complex mixture of

information makes modeling an efficient data dictionary a challenging problem, even for a

limited number of access path types. Clearly, this is not a feasible approach for a DBMS with

user-defined access structures. We therefore propose to separate access path specific informa-

tion from general access path independent information. General information remains publicly

available in the data dictionary, while the access path relevant data becomes private to a

particular access path implementation, i.e. it is not visible to the DBMS optimizer. Only the

type of an access path must be stored in the data dictionary as a discriminator.

This abstraction offers the possibility of a well-structured data dictionary and greatly relieves

the optimizer from having to deal with different access path types. On the other hand, it

introduces the requirement for a new approach to efficiently exploit access paths with proper-

ties that are not described in the data dictionary and hence are unknown to the query optimiz-

er. In the following, we will develop our solution to this problem by examining the interac-

tions of relations with other relational operators.

2.1.2. Operators

Without a formal definition, we now establish our notation of RA operators, assuming that the

reader is familiar with these concepts. Let R be an n-ary relation with attributes .

The RA unary operators are:

(1) Projection:
 where . Projection allows permuta-

tion and omission of attributes in .

(2) Selection: where is a propositional function consisting of atoms of the form

 or . is a binary comparison operation that is compatible with the attributes

 and a constant value . The atoms are combined using logical operators . The

selection extracts all tuples in for which holds.

For the sake of completeness we must also mention the rename operator: . This

construct is supplied for substitution of names of attributes and relations, preventing name

collision and ambiguity when joining relations (in particular for self-joins). After SQL compi-

lation is completed and the RA operator tree was constructed, all ambiguity is eliminated and

10 2.1 RELATIONAL ALGEBRA

the original names become irrelevant. Moreover, in our notion, RA operators access attributes

of their input n-tuples by referring to the ordinal position of that attribute rather than to its

name. Consequently, the rename operator can be neglected in the following.

The RA set operators are the basic n-ary set operations as known from set theory. Namely

they are:

(3) Set Union:

(4) Set Difference:

(5) Cartesian product:

Codd [Cod70] proved that this collection of operators is sufficient to achieve an expressive-

ness that he defined as relational completeness, i.e. RA‟s expressive power is equivalent to

the domain-independent relational calculus, and thus first-order logic. Although relational

completeness clearly does not imply that its expressiveness is sufficient to formulate every

„interesting‟ database query, Codd identified it to be an important milestone towards this

target.

In order to add more functionality, RA operators were modified and additional operators were

introduced to form the Extended RA (ERA), which is equivalent to the expressiveness of

SQL, the de-facto standard of today‟s relational DBMSs. In contrast to the original RA, ERA

operates on multi-sets (bags) instead of strict sets. This implies that ERA operators, unlike

their RA counterparts, do not implicitly eliminate duplicates after every operation. The

functional reason of this discrepancy between RA and ERA is that SQL offers explicit control

over duplicates and their elimination and ERA must reflect this. The other aspect is that

duplicate elimination is an expensive operation, because sorting is an algorithmic prerequisite

for an efficient implementation. Thus, it may be cheaper to apply several relational operations

before eliminating duplicates. In this work, when talking about relational operators, we

always refer to ERA operators without implicit duplicate elimination for all previously intro-

duced operators.

To preserve an expressiveness equivalent to RA, ERA introduces a new unary operator:

(6) Distinction (Bag-to-Set Operator):

CHAPTER 2: THEORY 11

It is clear that ERA operators with their multi-set semantic combined with a subsequent

distinction operator are equivalent to the RA operators. As an immediate consequence, the

algebra formed by ERA operators (1) - (6) obviously satisfies the constraints of relational

completeness.

RA treats relations as unordered sets, i.e. the ordering of sets is not significant. As SQL offers

explicit control over the ordering of sets, we also introduce sorting as unary operator:

(7) Sort:
 where .

 indicates ascending sort

order on attribute , while denotes descending order.

The sort operator can produce any lexicographical order on the attributes of an input set, as

required for equivalence to the SQL ORDER BY expression. The addition of the sort operator

has no relevance for relational completeness, but it is crucial for equivalence of ERA and

SQL. Moreover, the order of intermediate results is significant for the applicability of effi-

cient algorithms when it comes to the implementation of relational operators, a topic to be

addressed later in greater detail.

With these seven operators, the set of ERA operators is certainly not complete. There are still

numerous SQL constructs left that cannot be expressed with this algebra, e.g. arithmetic

operators, grouping, and aggregation are fundamental concepts of SQL. As a matter of fact, a

general ERA cannot be completed, as SQL is permanently evolving. Even SQL standardiza-

tion cannot keep pace with SQL extensions of the „three large‟ commercial RDBMSs and

often selects one of three solutions to become the SQL standard. This implies also that in

addition to standard SQL there exist at least two more SQL dialects (with subtly distinctive

ERA operator sets) of practical relevance.

For the moment, we will therefore assess that our subset of seven ERA operators achieves

relational completeness, i.e. the algebra defined by these operators is sufficiently comprehen-

sive for expressing a relevant subset of SQL functionality. Therefore, we define a name for

this set:

Definition.4: { , , , , , , } are basic ERA operators.

Our next step is to combine these operators to form expressions of higher complexity.

12 2.2 QUERY PLANNING

2.1.3. Composition

With the first six primitive ERA operators { , , , , , } it is possible to construct the

set of remaining RA operators Intersection (), Natural Join (), Theta Join (), Semi Join

(), Antijoin (), (Full) Outer Joins (⟖, ⟗), Division (), etc. These compound operators do

not add expressiveness to ERA. But they are highly valuable in terms of algorithmic complex-

ity, because often more efficient implementations exist for such compound operators than the

mere combination of primitive operators allows. Therefore RDBMSs implement both primi-

tive and compound operators as building blocks for evaluation of relational queries. Addition-

ally a class of complex ERA operators exists, which cannot be constructed using primitive

operators. Complex ERA operators bridge the functional gap between the expressiveness of

pure RA and rich SQL concepts, for example arithmetic operators, grouping, and aggrega-

tion.

2.2. Query Planning

In the phase of query planning, the DBMS optimizer is aiming to deduce the optimal se-

quence of ERA transformations for answering a query within the present system parameters.

Usually the goal is minimization of calculation time or maximization of system throughput by

maximizing utilization of limited resources such as CPUs, memory and I/Os.

Besides arranging the sequence of transformations, the optimizer often has several alternative

algorithms available for representing one particular ERA operator, e.g. Sort-Merge, Nested-

Loop and Hash-Joins are well-known examples for join algorithms. The optimizer also

decides which particular algorithm to apply under the given preconditions of a query plan.

2.2.1. Optimization

All RDBMSs are typically equipped with cost-based (as originally proposed in [Sel79]) or

rule-based query plan optimizers. Without going into detail, all optimization steps are con-

ducted by gradually constructing an operator tree from ERA terms and subsequently refining

it by substituting term partitions with equivalent terms. The goal of these transformations is to

find the optimal sequence of relational operations that were specified in the declarative SQL

query and employment of efficient algorithms for inexpensive query evaluation. An algorithm

is one particular implementation of one ERA term. The optimizer can therefore replace a term

using one of several matching algorithms. For example, an ERA join operator can be imple-

mented by the sort-merge or nested-loop join algorithms.

CHAPTER 2: THEORY 13

For supporting ERA transformations and for justification of algorithmic decisions, the DBMS

optimizer must possess at least two minimal instruments for term comparison.

(1) Qualitative Equivalence allows recognition that the ERA term and an algorithm

 implementing the class of equivalent ERA terms are interchangeable.

(2) Quantitative Efficiency allows comparison of costs for evaluating two equivalent

algorithms and representing different implementations of the class ERA

terms , and choosing the more efficient one.

The introduction of external algorithms into a given DBMS must therefore provide concepts

for mapping external algorithms that are unknown to the DBMS to equivalent ERA terms

known to the DBMS. With these instruments, the DBMS optimizer is enabled to conduct its

work as usual, even when handling new algorithms implementing arbitrary ERA expressions.

This is done without knowledge of the actual implementation of the algorithm, only by

applying ERA substitution rules. This approach eliminates the need for any modifications of

the optimizer when injecting novel algorithmic implementations into an existing system.

2.2.2. Costs

In essence, query planning is an iterative process of constructing several equivalent query

plans. Then cost estimation is applied and the plans are ranked relative to their costs. Finally

the least expensive plan is chosen for the next iteration and ultimately for query execution.

Cost estimation is therefore the unquestioned key criterion to modern query plan optimiza-

tion.

Query execution can induce a multitude of cost factors. An abstract conception of such costs

is the occupation of limited resources during query execution. These resources range from

computational costs on one or more CPUs, I/O costs, and memory consumption on the several

levels of memory hierarchy. The impact of these costs is weighted according to a cost model

implemented by the DBMS. The actual costs for occupying a limited resource may also vary

depending on volatile conditions, like current system load, and on fixed configuration settings

of the DBMS, such as preferred optimizations towards maximum throughput or minimal

query latency.

14 2.3 INTEROPERABILITY

Among the most important properties of a useful cost estimation facility are low computa-

tional complexity and high accuracy. Cost estimation is performed for a potentially high

number of plan candidates. Therefore cost estimation‟s own costs have to be relatively low in

comparison to the costs of actually executing a query. The costs of smaller plan fragments are

used as basis for calculating the costs of more complex plans, thus even small relative errors

may multiply and eventually cause substantially wrong estimations.

Cost estimation is usually based on statistical information that is maintained on relations and

indexes. Such statistics typically comprise characteristics such as size of relations, e.g. total

number of pages, and information on data distribution, such as cardinality, number of distinct

values, minimum, maximum, etc. Additionally they provide selectivity estimations for predi-

cates applied to relations or indexes, allowing estimation of a selection‟s cardinality. These

cardinalities are then propagated bottom-up though the query plan. Cardinality estimation is

useful in join optimization, when searching for a join-sequence with minimal intermediate

result cardinalities. But its foremost purpose is assessment of a relation operator‟s CPU,

memory, and I/O related costs, which are deducible from the operator‟s estimated input

cardinality.

2.3. Interoperability

Until now, we used the concept of ERA term equivalence in optimization for enabling term

substitution and term implementation with relational algorithms. An algorithm can be applied

if and only if it replaces an ERA term without affecting the soundness of the complete opera-

tor tree, i.e. the correctness of the result must be preserved. In a data-centered approach, this

means that alternative algorithms must yield equivalent output from identical input. In the

following, we will elaborate on equivalence and its impact on interoperability of algorithmic

implementations.

2.3.1. Equivalence

For strict RA, i.e. if we are operating on sets, the equivalence of two expressions is guaran-

teed if their output sets and are set equivalent:

Set Equivalence:

Equivalence of input and output sets is a necessary precondition for interoperability. In fact it

is also a sufficient condition on the abstraction level of strict RA with its implicit duplicate

CHAPTER 2: THEORY 15

elimination. In ERA however, the intermediate results might be multi-sets , where

 is a multiplicity function that denotes the number of occurrences of any element

of the set in . Hence set equivalence has to be extended to cover bag equivalence

for these cases:

Bag Equivalence:

A weaker, alternative definition of bag equivalence as is not

sufficient for our purposes, since it ignores the quantity of duplicates, leading to a notion of

equivalence that does not match with the semantics of ERA and SQL. The relevance of set or

bag equivalence obviously depends on the existence of duplicates in intermediate results.

The three primitive unary ERA operators { , , } are able to establish set-equivalence for

different inputs to a certain degree. They allow an algorithm‟s input set to be projected, pre-

filtered, and purged of duplicates in order to bring it into a suitable form for applying that

particular algorithm. On the other hand, these operations may be used for projection, post-

filtering, and duplicate elimination on the algorithm‟s output, if this is required for meeting

equivalence and the algorithm does not meet these requirements. Likewise bag-equivalence

can be established by employing the two primitive RA operators { , }. Finally, the opera-

tor alone serves as universal bag-to-set operator.

2.3.2. Compatibility

For allowing the composition of operations , and must meet certain

requirements. In a data-centered approach this means that the output relations of must be

an adequate input for . If, for example, n input relations are participating in an n-way union

operation, they must be domain compatible.

Domain compatibility: are domain compatible, iff

From all primitive RA operators, domain compatibility, also often called union-compatibility,

is explicitly required only for set-union and set-difference . But the composition of com-

plex relational operators is responsible that operators, like intersection, inherit this require-

ment from its inherent primitive operations.

The domain concept of attributes entails the provision of data types for the attributes of

relations. In RA and SQL, the comparisons of attributes of different data types are conducted

16 2.3 INTEROPERABILITY

using highly generic comparison operators. Technically this is realized using type adaptation

mechanisms, based on SQL‟s well-defined type hierarchy, to convert the arguments into

compatible types. Domain compatibility is satisfied if adequate type adaptations are available.

It is a prerequisite for comparison routines as used explicitly in selections, but also for impli-

cit tuple comparison in many operators, e.g. union, difference and composed operators. Type

adaptations are provided as a service by the DBMS, as the optimizer will provide all neces-

sary type adaptations and thereby guarantees that operators always work with compatible

data.

For our purposes, we will extend compatibility from mere domain compatibility to the more

algorithmic notion of representation compatibility. Data representation is an issue whenever

data is exchanged between operators. Strict RA only requires that data has to be exchanged in

form of sets, without defining precisely how this is conducted. For our definition, we extend

domain compatibility to comprise not only the arity but also a partitioning of exchanged sets,

i.e. a set can be transferred as a whole, as in RA, or iteratively as horizontal partitions of the

original set, either as subsets or tuple-wise. Another approach is vertical partitioning of data,

i.e. transfer attribute by attribute, and finally combination of horizontal and vertical partition-

ing.

We further extend the notion of compatibility to allow arbitrary representations of data.

Representation describes how the data to be exchanged is physically modeled and how the

exchange is technically conducted. Representation ranges over a wide area of passing data by

value, by reference, in structures (e.g. tuples), in buffers, compressed etc., allowing the use of

the best representation for a particular purpose. The functional prerequisites of representation

compatibility are achieved when two operators agree on one common data exchange format,

while the ultimate choice of representation is a cost-based decision made by the query opti-

mizer. With several operators supporting one particular representation, it is possible to com-

pose a family of related algorithms based on that representation, allowing rapid data ex-

change, tailored to a particular purpose. Later we will discuss one use-case where bitmap

indexes, unions and intersection, all based on the bitmap representation, form the components

of a tightly coupled, highly efficient query evaluation system. For assuring interoperability

under all circumstances, we also presume the existence of a standard data representation that

has to be supported by all operators. For the moment, we only define transformation of data

representation formally as a virtual ERA operator.

CHAPTER 2: THEORY 17

Representation: denotes the transformation of the input from any representa-

tion to a non-standard representation . indicates transformation from any repre-

sentation to standard data representation.

Representation is a virtual operator in the sense that it does not induce any relational trans-

formation, thus it is not a relational operator as such, and it has no analogon in SQL. It serves

only as a marker during query optimization to illustrate where and how the representation of

the data stream changes. Representation will change as a side-effect when an algorithm

implementing a relational operator is applied. More details on data representation will be

defined later in the course of applying algorithms.

2.3.3. Data Flow

In strict RA, all „children‟ of a relational operator have to be completely evaluated, yielding

their complete result set, before the parent may begin processing. As a consequence, the

DBMS would have to store intermediate results while they are processed by the subsequent

operator. This is expensive if large amounts of data are involved. In the procedural perspec-

tive of query evaluation, input sets are not necessarily processed „as a whole‟, as proposed by

the relational model, they can also be processed in partitions, mostly one tuple at a time.

A common conception of query evaluation is the so-called Iterator Model, which describes

this procedure abstractly and independent from the actual implementation. Its flow of control

is a top-down recursion through the operator tree. First, the root operator is called, whose first

task is to acquire input data for processing. Therefore it calls one of its children - which one is

called depends on the operator‟s internal implementation. This call for input data propagates

depth-first until it finally reaches a relation at a QEP leaf. This relation then produces its first

tuple and returns it to its caller. Hence, data begins to „flow‟ from the leaf nodes of the opera-

tor tree towards the root. Every operator acquires just enough input data to produce the first

output tuple. As a consequence, we can classify ERA operators into two general groups:

Blocking Operators process all input tuples before any output tuple is generated.

Streaming Operators derive output before having seen the complete input.

This classification is very coarse, since it equalizes strict tuplewise streaming with operations

that block for several tuples, e.g. grouping/ aggregations. The blocking property is depending

on the actual implementation of an operator, not only on its function. Functionally streaming

and blocking operators are equivalent. From the performance perspective however, streaming

18 2.3 INTEROPERABILITY

is generally to be favored over blocking, because of potentially high requirements for tempor-

al storage. Also query plans consisting only of streaming operators have more attractive

performance characteristics, as the first result tuple can be delivered before the complete

result set is calculated. Thus, the time to first results is often significantly shorter and the

calculation time is (usually) evenly distributed over the result set while a blocking plan

apparently uses all calculation time for the first result tuple and the remaining tuples are

instantly available.

This query evaluation technique resembles the Iterator Model, where every operator exposes

only one single interface routine, a next() method that is visible only to its parent. The parent

repeatedly calls this method, causing the operator to iterate over its input, yielding its output

successively as one tuple at a time. After the complete result is evaluated, the operator even-

tually terminates by returning the END-OF-DATA marker. Termination happens at leaf nodes

if the input relation is exhausted. Internal nodes terminate if all input streams are exhausted

(especially blocking nodes, like sort operations), or when a streaming operator cancels evalua-

tion by announcing premature END-OF-DATA to its parent, e.g. existence quantification.

2.3.4. Sort Order

The transition to procedural operation and the Iterator Model exhibits new aspects of our

operators. In contrast to the relational model, relations and intermediate multi-sets are

processed tuplewise. This induces the concepts of set and multi-set traversal into ERA. Set

traversal is formally equivalent to a linearization of the set along a binary relation , i.e.

 comes before . In other words, iteratively traversing a set establishes a strict total order.

We describe such a linearization formally as

 Strict total order:

For base relations in a DBMS this order is usually, but not necessarily, predetermined by their

storage order (clustering). For intermediate results, the output order is depending on the

internal implementation of the particular operator that generates the output.

Obviously, the output order of an operator is at the same time the input order of its parent.

The focus now lies on how to exploit such orders. The number of relevant orderings in a QEP

is limited by the sort operator , as this is the prime operator for order generation. Conse-

quently, if one particular operator requires a certain input order, it must be an order that can be

generated by , otherwise the operator is not generally applicable. Thus we have to distinguish

CHAPTER 2: THEORY 19

between the general total order that is established through bag linearization and the set of

orderings that can be generally exploited in QEPs. For the latter we will use the term sorted-

ness. We say a bag is sorted, if its traversal corresponds to a lexicographical order on its

attributes, i.e. its order is equivalent to one established by . Exploitable sort orders in QEPs

are always total orders, but in the general case they are non-strict, because is not stringently

covering all attributes and because of the existence of duplicates in bags. Nevertheless, many

algorithms are either relying on non-strict input orders, or they are capable to benefit from

such orders.

 Sortedness:

 Strict sortedness:

Sortedness of tuples is to be distinguished from equality of duplicates, as the sort criterion of

 may refer only to a subset of attributes, while equality always refers to the complete tuple.

 but

In summary the sortedness properties for any operator inside a QEP are classified as:

Sort Order Establishing:

Sort Order Preserving:

Sort Order Homomorphism:

Sort Order Disrupting:

Sort order is established exclusively by the primitive sort operator , but it is possible to

construct compound operators including sort operations and therefore inheriting the order

establishing property. Many streaming operators are also order preserving, if they do not alter

any order relevant fields like for example and . One example for a sort order homomor-

phism is a projection that removes some order-relevant attributes, while preserving the

attribute of highest lexicographical significance. Sort order disruption can be provoked by

applying a non-monotonic function to at least one of the sort relevant fields.

Order preservation is important when sortedness is not exploited by the immediate parent

operator, but propagated to one of its ancestors to be used there. One can also imagine several

consecutive order preserving operators that are all exploiting a given sort order.

20 2.4 SUBSTITUTION

Order disruption means that the output order does not satisfy any lexicographical sort criteria.

One particular operator (including base relations) may be capable of accepting or producing

one of several different sort orders or of preserving or disrupting an input order. Such output

order is controlled by a configuration parameter of the encapsulated algorithm, and this

parameter will also influence performance characteristics of the operator. Since the internal

structure and functionality of the algorithm is unknown to the DBMS optimizer, it will em-

ploy a cost-based sort order negotiation protocol for determining the optimal configuration.

2.4. Substitution

Relational algorithms replace an equivalent ERA term in a query plan and thereby implement

the replaced operations in one encapsulated, indivisible algorithmic unit. Similarly to one

single query having many different equivalent algebraic representations, each of these alge-

braic representations may have many different algorithmic implementations. These imple-

mentations originate from a pool of available algorithmic building blocks provided by the

DBMS. Finding the single optimal query plan for a given query in this huge search space of

combinatory possibilities makes query optimization a challenging problem.

To cope with this complexity, DBMSs provide sophisticated term replacement mechanisms,

employing rule-based and cost-based iterative decision processes for assembling and trans-

forming alternative query evaluation plans. During this process, alternative plans are repeated-

ly assessed using cost estimation and unpromising candidates are pruned in order to limit the

search space complexity. Extending such a complex mechanism, in order to deal with arbi-

trary algorithmic units in a consistent way, is a daunting task. Therefore our proposal is to

circumvent this problem not by extending the substitution mechanism, but rather by making

the pool of alternative algorithmic building blocks extensible. In doing so, we must provide

the optimizer with the required leverage to deal with arbitrary external algorithmic units. The

key to this approach is to sustain and exploit the equivalence between algebraic and algorith-

mic representation of a query plan candidate, and to offer the possibility to switch between

these two representations as needed.

In the following, we consider a DBMS as host system that exhibits an extensible pool of

relational algorithms. All built-in algorithms of the DBMS represent the initial content of this

pool. We use the limited expressiveness of the hosts system‟s ERA as a basis for defining the

space of possible ERA expressions that may be implemented by custom algorithmic units.

CHAPTER 2: THEORY 21

The Access Manager framework allows the addition of such custom algorithmic implementa-

tions to the host system‟s pool of algorithms. As equivalence of different expressions within

ERA is prevalent, one algorithmic unit corresponds automatically to an equivalence class of

ERA expressions (cf. Qualitative Equivalence on page 13). The optimizer handles built-in and

subsequently added algorithms equally, i.e. on a high level of abstraction as pure algebraic

expressions. During query planning, the optimizer constructs a query plan by combining

arbitrary expressions from its ERA basis. Intermittently, the optimizer implements parts of the

plan, by applying appropriate algorithmic replacements for individual ERA sub-expressions,

using relational algorithms as building blocks from its pool of implementations. All elements

in that pool correspond to the language that is defined and limited by the host DBMS‟s ERA.

This is apparently a restriction to the extensibility of the host DBMS, because only algorithms

can exist in its pool that are expressible in the DBMS‟s own ERA, and hence can be formu-

lated in the DBMS‟s SQL dialect (a consequence of the formerly mentioned equivalence

between ERA and SQL expressiveness). In other words, the host DBMS‟s algorithmic base is

fully extensible within the scope of its query language. This is a sensible and comparatively

small limitation to the extensibility of DBMSs. And since modern DBMSs actually provide

extensible query languages, in form of user-defined data types, user-defined functions, proce-

dures, aggregates, and suchlike, even this limitation becomes quite insignificant.

Figure.2 Processing an SQL request in an extensible DBMS. A query formulated in the host DBMS‟s

query language is compiled into the DBMS‟s internal representation of a query execution plan. This plan is

constructed from the host DBMS‟s limited set of ERA terms. Subsequent transformations of the initial plan

strive towards obtaining an equivalent but more efficient QEP. During this process, the optimizer also

maps ERA terms onto executable algorithmic building-blocks from its pool of available algorithms. This

pool is extensible and may contain customized algorithms that are specialized for peculiarities of the data-

base‟s application domain. These extensions include relational transformations and data access methods.

The extensible system provides identical interfaces for optimization and evaluation of built-in and supple-

mentary algorithms.

Extensible DBMS:

SQL Compiler

Query Optimizer

Query Engine

Buffer Manager

Storage Manager

transform

SQL

Relational
Algebra (ERA)

Built-in Algorithms Extensions

22 2.4 SUBSTITUTION

Our approach is based on the principle of an iterative, cost-driven selection of implementa-

tions for ERA sub-expressions, in order to formulate the final query evaluation plan. There-

fore it is not limited to any particular optimization algorithm. We only provide mechanisms to

support decisions of a query optimizer, dealing with arbitrary algorithms, without any com-

mitment to when and why the optimizer should employ these mechanisms. In the following

we will exemplarily demonstrate how join-optimization, as the central problem of query

optimization, can employ arbitrary algorithmic entities for generating optimal plans.

To this end, we make only minimal assumptions concerning the actual optimization mechan-

isms of the host system. We presume that we deal with the well-known classical cost-driven

optimizer model [Sel79], based on dynamic programming and early pruning. The optimizer

iteratively constructs partial query evaluation plans in a bottom-up fashion. In construction

phase p it tries to construct the optimal plan for joining any p+1 relations. Therefore it is

extending its plans for joining p relations from the previous iteration by joining one additional

relation. To reduce the complexity of the search space for the following iteration, the optimiz-

er will then assess the costs of its plans for joining any p+1 relations, in order to identify

plans with minimal costs. All equivalent but more expensive plans joining the same set of

p+1 relations are pruned from the search space. Pruning is based on the assumption that for

finding the optimal plan joining p+1 relations, it suffices to consider only optimal plans for

joining p relations and extend them with one additional join (principle of optimality). Thus at

the end of iteration p, the optimizer retains

 partial plans with minimal costs, each

joining a different set of p+1 relations. Due to the iterative construction of these plans, the

resulting join graphs are always left-deep trees, as opposed to bushy join trees. Neglecting

bushy trees is a risk often accepted by optimizers. Only in rare cases a bushy plan represents

the most efficient plan, since joining the results of two joins is usually a blocking operation,

incurring complete calculation and expensive temporary storage of intermediate results. Still

bushy tree joins are interesting for non-standard query evaluation techniques, in particular in

distributed or parallel query evaluation.

While the optimizer proceeds, it will also substitute initial algebraic expressions and map

them to algorithmic entities. Often this concept is extended to comprise the idea of interesting

orders, which was also introduced in [Sel79] for the System R optimizer. For interesting

orders, two plans joining the same p relations are only equivalent in the pruning step, if they

also deliver their results in identical output order. This concept prevents that plans offering an

interesting order, which could be exploited by subsequent joins or other relational operators,

CHAPTER 2: THEORY 23

are prematurely purged in favor of less expensive equivalent plans, exhibiting no such ex-

ploitable orders.

The dualistic conception of query plans as algebraic and algorithmic perspectives opens the

possibility to switch between these views as necessary. The two views complement each

other, while each one is dedicated to its own purpose. The algebraic view defines the domain

of the DBMS optimizer, whose competence is to transform ERA terms and eventually provide

algorithmic replacements for algebraic terms. This view offers fine-grained interpretation of

all involved relational operations and thereby allows maximum flexibility in term optimiza-

tions on the limited set of ERA operators. The complete algebraic plan provides an exact

specification of the query result, whereas its sub-expressions provide exact definitions of

intermediate results. Thereby this representation is perfectly suitable for statistical estimates

on such intermediate results, as these statistics represent the crucial input for reliable cost

estimation.

The algorithmic view is orthogonal to the algebraic conception. It groups one or more ERA

sub-expressions of the query plan into an opaque algorithmic entity. For example, the alge-

braic representation of a Cartesian product with a following selection will be combined into

an algorithmically equivalent nested-loop join. The optimizer may not make any assumptions

on operations within an algorithmic entity beyond those that are deducible directly from the

algorithm‟s algebraic counterpart. The most important property of this dualistic conception of

query plans is the fact that boundaries of algorithmic units always coincide with complete

algebraic sub-expressions. All statistically relevant properties of an intermediate result ex-

changed between two algorithmic units is specified in detail by its defining algebraic term.

Thus, it is always possible to switch back to the algebraic view, in order to determine required

statistical information describing input and output relations of algorithmic units. This brings

us finally into the position to estimate costs of algorithmic entities based on statistics derived

from the algebraic query representation.

We will use the following simple query as running example for illustrating these transforma-

tions. It selects tuples from a relation , having corresponding tuples in , such that the join

predicate is satisfied. The result is projected to and finally sorted.

SELECT S.s1 FROM S, R WHERE S.s1 = R.r1 ORDER BY S.s1

24 2.4 SUBSTITUTION

Figure.3 Exemplary decision process during DBMS query optimization. For simplicity, and

shall be the input relations‟ only attributes. The two plans show the theta-join (equi-join) between S and R

over join predicate } in its primitive algebraic representation. The join

result is adjusted to contain only the desired result attribute and is finally sorted according to query specifi-

cations. Although the two presented plans are equivalent in ERA representation, as , the

query optimizer must momentarily consider both alternatives, because depending on the chosen algorithms,

available access paths, and effective data distribution, each plan may incur different costs.

2.4.1. Granularity

Grouping ERA operators into algebraic sub-expressions (cf. 2.1.3 Composition on page 12),

which are then implemented by opaque algorithmic entities, raises the issue of granularity:

what is the appropriate number of ERA operators to be implemented as one algorithmic

entity? In its initial pool of algorithms, the host DBMS will provide standard implementations

for every primitive ERA operator. The existence of these implementations ensures that the

system can always fill the gaps between more bulky algorithmic entities, in order to generate

completely computable plans. Additionally, one implementation for every complex ERA sub-

expression, which cannot be expressed using primitive ERA, is required for sustaining the

expressiveness of the system‟s query language. With this, computability of all expressible

queries is guaranteed by the initial algorithmic instrumentation of the host DBMS. Naturally

this guarantee holds, even if the algorithmic pool is extended with new algorithms, as it is

independent from the characteristics and granularity of additional algorithmic entities. Addi-

tionally to these minimum algorithmic requirements, the initial pool contains a substantial

amount of efficient implementations of compound ERA terms, like specialized join algo-

rithms. These additional algorithms guarantee that the system, even in its initial state, can

handle most queries with respectable efficiency. Hence, even with the initial pool of algo-

rithms exists at least one, but generally several ways, to generate a computable query plan

from available algorithmic building blocks.

(a) (b)

CHAPTER 2: THEORY 25

Figure.4 Relationships between algebraic expressions and algorithmic entities. The system provides a

fixed set of primitive, compound, and complex ERA expressions. These three sets define the limited ex-

pressiveness of the overall system. They also define the algorithmic capabilities of the initial system, as

every primitive, compound, and complex ERA term can be mapped to at least one equivalent algorithmic

entity in the pool of built-in algorithms. The system is extended by adding alternative implementations for

elements of the initial set of algebraic expressions. Alternatively, terms from the initial ERA can be com-

posed into custom compound expressions, to be implemented as custom algorithms.

As a general rule, highly integrated algorithms implementing extensive compound ERA terms

are often also highly efficient. On the other hand, overly complex algorithmic units are

unlikely to be applied frequently, because the appearance of matching algebraic patterns in

plans of ad-hoc queries is less probable for extensive expressions. Only if the probability of

specific complex constructs is increased, maybe because a database application makes recur-

rent use of one particular query pattern, such a sophisticated solution will become interesting.

In addition, the composition of several complex algorithmic building blocks into one query

evaluation plan is bound to require interspersing smaller operations. These operations fill the

remaining gaps between larger building blocks and provide customization of the exchanged

data. The necessity of such additional small adaptation operators is likely to partially foil the

efficiency benefit intended by using a small number of complex units. The complexity of

query optimization is also expected to be influenced by the granularity of algorithms. The

search space grows quickly with the number of possible alternatives for replacement of a

particular ERA expression. Therefore, an algorithm implementing an extensive replacement

patterns is likely to have a multitude of alternatives, each consisting of a patchwork of smaller

algorithmic units. From this perspective, the ideal algorithmic pool contains elements of

Primitives

Built-In

Algorithms

map map

compile

compose
Custom Compounds

Compounds

Extended Relational Algebra

SQL

Custom Algorithms

Host System Extensions

map

 ⟗

Complex

26 2.4 SUBSTITUTION

similar granularity, such that the optimizer has to consider only a small number of algorithmic

alternatives for any ERA expression.

Therefore, small algorithmic units with higher potential of reuse and manageable complexity

in query optimization are to be preferred over the pushing performance of one single unit to

the limit. Small algorithms are also easier to maintain in terms of configuration, as an algo-

rithm may expose various „knobs‟ for adjusting it for optimal operation in a given query

context. In particular interoperability properties, such as representation compatibility, data

flow and order preservation represent such configuration parameters. An extensive algorith-

mic unit will always make configuration an intricate task, because a higher number of in-

volved relational operators and their potentially complex interactions will certainly hinder

selective configurability. In such cases, diversity in algorithmic implementations is better

achieved by providing complete algorithmic alternatives for meeting the required flexibility,

instead of using configuration.

For substituting an algebraic block with a valid algorithmic implementation, the query opti-

mizer must be able to match these two entities. Whenever a new algorithm is added to the

system, it is therefore necessary to provide an expression describing the algorithm‟s algebraic

equivalent. Typically grammar-like production rules are used in extensible DBMSs for

accomplishing this sort of mapping. But a commitment to this solution incurs the definition of

a complete description language for this single purpose. Instead, we capitalize on the already

mentioned equivalence of the fixed set of SQL functionality provided by the host system and

the expressiveness of its relational algebra. We therefore propose to use SQL itself as descrip-

tion language for algebraic expressions (cf. Figure.5). The advantage of this solution is that

SQL is already in common use by all involved parties. The implementer of an algorithm is

certainly familiar with the SQL provided by the host system, and the host system possessed a

readily available compiler for translating SQL into an algebraic expression. The latter reveals

one aspect of particular elegance provided by this approach: both query and replacement

pattern are translated by the same SQL compiler. Hence, two equivalent algebraic expressions

originating from compilation are also bound to be highly similar, if not even identical. This

property helps alleviating the substitution process.

We outline our proposal of formulating algebraic equivalents in SQL in the following table.

Depending on the complexity of its defining SQL expression, one algorithm may correspond

to one single relational operator or to a combination of relational operators. The number of

input relations in an SQL expression corresponds to the algorithm‟s arity, i.e. one input

CHAPTER 2: THEORY 27

relation is required, and we allow at most two input relations for modeling binary operators.

N-ary expressions are equivalent to a cascade of uniform binary patterns. Matching and

unification with n-ary algorithmic units is conducted by the query optimizer.

We are using variables for denoting input relations, attribute references, constants, compari-

son operators, expressions, and predicates. With this, an algebraic expression may be highly

generic, expressing that an algorithm implements a class of similar expressions, but they may

also be precise for formulating the necessity of exact matches for substitution.

SELECT * FROM R sequential relational access (full table scan)

SELECT * FROM R UNION SELECT * FROM S set UNION with duplicate elimination

SELECT * FROM R

 UNION ALL

SELECT * FROM S

set UNION without duplicate elimination

SELECT * FROM R,S WHERE R.a=S.b equi-join on one single attribute

SELECT * FROM R,S WHERE and(R.a = S.a) natural Join

SELECT R.* FROM R,S

 WHERE and(R.a cmp R.b)

semi-join on n-ary conjunction of comparisons

SELECT * FROM A,B WHERE pred(A.a,B.b) theta-Join on arbitrary n-ary predicate

SELECT R.a FROM R

 GROUP BY R.a HAVING pred(R.b)

grouping

SELECT R.a,aggr(R.b) FROM R

 GROUP BY R.a HAVING pred(R.c)

grouping with aggregation

Figure.5 Algebraic equivalent of algorithmic entities formulated in SQL. The table shows a rough

sketch of an SQL-related syntax for defining algebraic replacement patterns. Variables representing

attribute references (e.g. R.a) shall refer to an arbitrary n-ary projection of actual field references from

input stream R. Normally an SQL compiler would lookup table and field references in the system catalog,

for validating the query, determining data-types, and checking privileges, etc. For specification of algebraic

equivalents using variables, all these checks are disabled.

The table above demonstrates that substitution of relational accesses, which are the main

objective of this work, is trivial, since its defining SQL fragment consists only of the input

relation itself, which is not even a relational operation. Hence, we will dispense with the

requirement of explicit specification of an algebraic equivalent for accessing relations, and we

will devise alternative conventions in due time.

For all non-trivial relational operators, the replacement pattern possesses another important

functionality. It decomposes the input of an ERA expression into blocks of attribute refer-

28 2.4 SUBSTITUTION

ences, e.g. R.a R.b R.c = R in the ‘grouping with aggregation’ example of Figure.5.

These blocks may also overlap, e.g. we do not explicitly claim , but in this

example ERA implicitly demands for sound grouping. Hence, the replace-

ment pattern defines a fixed number of attribute reference blocks on an input stream, such that

each block serves for a specific purpose, e.g. attributes are used for grouping, for

aggregation and for filtering in this example. These blocks are well-ordered through their

order of appearance in the defining SQL fragment. This allows the definition of projection

directives for each attribute reference block, such that every attribute from the input stream is

unambiguously assigned to well-defined positions in one or more blocks, e.g. attributes from

input stream R are mapped to attribute references . In general, the input

streams of an n-ary relational operator are mapped to input attributes using

tions
 , where each input stream is decomposed into attribute

blocks. This mapping will be important for maintaining attribute references when substituting

algebraic expressions with their algorithmic replacements. We formally define input projec-

tions:

Definition.5: Input Projection . We call a projection
 the i-th input projection of an

n-ary algorithmic entity, if it decomposes the entities i-th input stream such that all input

attributes are assigned to at least one of m reference blocks within the algorithmic entity‟s

algebraic equivalent, i.e.

. The entire projection for all input streams is

defined as

.

To honor the permanent demand for efficiency so common for DBMSs, we devise an alterna-

tive approach for achieving the efficiency of highly integrated algorithmic entities. We will

employ representation compatibility as a method to achieve tight coupling of autonomous

algorithmic entities by allowing them to exchange information in whatever form seems best

for one particular purpose. The goal of this approach is to overcome potential communication

bottlenecks between related operators, while conserving the autonomy and general applicabil-

ity of individual algorithms. The requirement of efficient adaptations of data between algo-

rithmic entities will be addressed by devising a standardized protocol for data exchange.

An algorithm from the DBMS‟s pool of available algorithmic building blocks is known to

implement an expression . It may be applied in a QEP as implementation for an ERA ex-

CHAPTER 2: THEORY 29

pression only if and are equivalent. The following Figure.6 shows possible replace-

ments of various granularities based on term equivalence in the exemplary query plan.

Figure.6 Examples for various granularities of algorithmic replacements. The alternative join se-

quence is temporarily omitted. Algorithmic entities are depicted as boxes around ERA sub-terms

consisting of one or more ERA operators. For plan (a) only implementations for primitive ERA terms are

selected from the initial pool of algorithms. This is the most fine-grained possibility of implementing the

QEP. Plan (c) represents a specialized join algorithm, capable of directly producing the final result of this

query in one single step. Plan (b) is a balanced implementation that uses a theta-join algorithm for conduct-

ing the join. The result is then finalized by projection and sorting according to query specifications, using

two primitive algorithmic replacements. Functionally all three substitutions are equivalent, as they imple-

ment identical ERA expressions. The optimizer may therefore estimate the costs for each alternative and

eventually choose the least expensive implementation for evaluation.

Formally we define mappings between algorithmic entities and ERA expressions as

Definition.6: Algorithmic implementation. We call an algorithmic entity the

algorithmic implementation of all representatives of equivalence class .

Correspondingly, we define as the set of algorithmic implementations.

Definition.7: Algorithmic equivalent. Algorithmic units are algorithmic equivalents,

providing different implementations for representatives of equivalence class .

We extend our ERA notation, allowing intermixture of algorithmic entities and algebraic

expressions, in order to describe query plans that have been partially implemented by actual

algorithmic entities, e.g. , or , etc.

Algorithmic implementation is still rather restrictive, since it requires strict equivalence for

permitting substitutions. In particular it prevents the application of an algorithm as re-

placement for some , even if shows only a minor deviation from . With query

(a) (b) (c)

30 2.4 SUBSTITUTION

optimization being a cost-driven procedure, we must take into consideration that an algorithm

might be efficient enough to compensate for minor adaptation. For example, let and

be two algorithmic candidates to be applied to an input in replacement for the term .

can be applied directly, while has to be adapted using auxiliary ERA terms and , so

that . If cost estimation yields , then is clearly

the better replacement, since it outperforms in spite of necessary adaptations. A related

problem occurs when replacing an extensive term . If it is possible to find one

single replacement , its efficiency is potentially high, as it offers tight integration of ‟s

complete functionality. On the other hand, the probability of finding an exact match for

declines as ‟s extensiveness increases, and the optimizer is forced to apply an adapted

pattern . So the query optimizer will often be confronted with efficiency com-

parison of extensive but adapted algorithms against exact substitutes of the

form .

We soften the algorithmic equivalence claimed above, for allowing a higher degree of toler-

ance when applying algorithmic entities, by introducing the set of standard connectors

 ERA. Until its formal definition, we consider it a set of unary ERA transformations

 , capable of elementary adaptations for facilitating implementation of ERA terms.

will be used for filling the gaps between separate algorithmic implementations. We ensure

that generated query plans are executable by assuming that the host system is capable of

providing expedient implementations for -expressions.

Definition.8: Equivalence Configuration. Two algebraic expressions are in equiva-

lence configuration , iff equivalence can be achieved by expansion of , using stan-

dard input connectors
 and a standard output connector

 :

 n-ary :

As consequence of Definition.6 and Definition.8 follows

Corollary.2: Equivalent implementation. Supposing that ERA with , and

there exists an algorithmic implementation and implementations for

arbitrary , then there also exists an equivalent implementation of all representatives

of , because

CHAPTER 2: THEORY 31

Equivalence configuration allows far more permissive replacement of algebraic expressions

than algorithmic equivalence does. It defines a partial order on ERA, as it is reflexive, anti-

symmetric, and transitive. We can effectively exploit the properties of partial orders for

maximizing the number of substitutions allowed by equivalence configuration. Let

 be

a partition of ERA, such that for every pair

 . If we choose

 such that

 , then is a suitable algorithmic implementation for

all elements in

. Under this aspect, equivalence configuration offers remarkable substitu-

tion capabilities, if the elements of are chosen with careful consideration.

In the following, we will concentrate on identifying a compact subset of standard connectors

 in ERA, allowing reasonable adaptations and thereby providing general applicability for

arbitrary algorithmic units.

2.4.2. Applicability

Each algorithm may have several specific functional and performance-relevant requirements

for its application. These requirements must be met in order to make the algorithm work

correctly and efficiently. As an example, the merge algorithm in a sort-merge operation

assumes that its input streams are sorted on the join-relevant attributes. A straightforward

approach would model such requirements as additional sort operations in the ERA replace-

ment pattern of the sort-merge algorithm, making the sort operation an integral part of the

algorithm. But this strategy will encourage monolithic algorithmic units and thereby reduce

their flexibility and applicability. Additionally, implementing sort operations unconditionally

in the algorithm would also hinder global optimization. The integral sort operation cannot be

removed afterwards, even if the input of the join already exhibits the desired sort order.

Therefore, we propose to represent such input requirements as directives that are statically

attached to each input stream of an algorithmic unit. These directives are invariants that

confine the optimizer to apply algorithms only to suitable input. In particular, when inserting

an algorithm possessing input requirements, it lies in the optimizer‟s responsibility to extend

the plan in such way, that all directives are initially met. In the sort-merge example, the

optimizer must add the appropriate sort operators for satisfying the directives. These sort

operations are autonomous operations and may remain subject to continued optimization

efforts, allowing the optimizer to refine, move, or remove them as appropriate. The original

32 2.4 SUBSTITUTION

directive however has to remain unaltered and intact for ensuring the plan‟s integrity and

correctness.

We informally introduced the set of standard connectors ERA as a set of unary ERA

transformations and we already used connectors as adapters for compensating minor

discrepancies in substitution of algebraic expressions and algorithmic entities. In the follow-

ing, we will extend the connector concept for describing input directives. Our goal is to devise

a set of connectors that allows to apply an algorithmic unit , which is applicable with

some input directive as a substitute for ERA expression , such that the query optimizer

may satisfy the input directive by inserting a connector or formally:

While may undergo revision during further query optimization, the original input directive

 remains in place. We will now survey various use-cases of this concept, before we even-

tually establish connectors in a formal definition.

For an efficient nested-loop join of relations and , it is of vital importance that the costs of

finding a join partner in (inner loop) are sufficiently low. This is achieved by transforming

the algorithm‟s replacement pattern using algebraic equivalence. The original join predicate

 } is converted into an equivalent correlated predicate

 , to be used for a possible direct lookup in the inner

loop. Technically this predicate is iteratively evaluated by referencing the outer loop‟s current

value of when processing the inner loop. Thereby the free variable of is bound and

becomes a constant for every pass through the inner loop. The correctness of this transforma-

tion is a consequence of the algorithm used by the nested-loop join. The nested-loop algo-

rithm ensures that the correlated predicate is exhaustively tested for every pair of and . For

an arbitrary algorithm, the optimizer cannot know whether such transformations are legal.

Therefore the transformation is embedded in the algorithms replacement pattern as an input

directive, where it describes this property of the algorithm.

Placing the directive on the inner input branch also allows the removal of the original predi-

cate from the join operation. The optimizer must enforce the directive and thereby guarantees

that only matching tuples ever reach the join algorithm by pre-filtering the inner input stream

using standard selection operations. With this mechanism, the nested-loop replacement

CHAPTER 2: THEORY 33

achieves outsourcing of the selection into an autonomous operator, which can be refined in

further optimization steps.

Figure.7 Implanting algorithmic units with applicability requirements. On the left, the join is accom-

plished using the sort-merge algorithm. This algorithm introduces sort directives for each of its input

streams (small boxed sections at the bottom of the merge box). At this stage of query optimization, these

directives are satisfied by introducing the corresponding primitive sort operations. The middle plan applies

a nested-loop algorithm. The original join predicate is transformed into the correlated predicate .This

 is placed as input directive on the right input stream (inner loop) for the nested-loop algorithm.

Again the directive is satisfied by installing the corresponding primitive implementation of the predicate.

The rightmost plan is a symmetric variant of (b) using a corresponding . The optimizer has to consider

all three variants, because each may exhibit different costs.

Figure.7 resumes our previous example. It shows two alternatives of join algorithms, namely

the already mentioned sort-merge and nested-loop joins, which were chosen for this example

because both are well-known and conveniently cover many of the aspects to be presented. In

plan (a) the optimizer chooses the sort-merge algorithm for implementing the join. Auxiliary

sort operations are fitted into the original plan, for supporting the merge algorithm and ensur-

ing correctness. The merge algorithm can rely on receiving sorted input, thus greatly simplify-

ing its task and therefore its own complexity. The nested-loop joins in plans (b) and (c)

initiate performance-relevant transformations by decoupling the join predicate and allowing it

to be pushed further downwards. This predicate ensures that the nested-loop operation will

only receive matching rows in the inner loop, dramatically reducing the complexity of the join

operation to mere concatenation of input stream tuples.

Enforcement of such input requirements makes an algorithm universally applicable and limits

its implementation complexity. For generally ensuring applicability in an operator tree, the

properties demanded from its input must not be overly complex. On the other hand, if its

(a) (b)

m
e

rg
e

lo
o

p
n

e
st

e
d

so
rt

so
rt

sc
an

sc
an

p
ro

j
so

rt

p
ro

j
so

rt

sc
an

fi
lt

er

sc
an

(c)

lo
o

p
n

e
st

e
d

p
ro

j
so

rt

sc
an

fi
lt

er

sc
an

34 2.4 SUBSTITUTION

requirements are too lax, they do not provide the quality of assertions required for a signifi-

cant reduction of the algorithm‟s implementation complexity. These conflicting goals have to

be carefully balanced. A reasonable approach is to focus on the stream properties established

by basic unary operators . This approach exceptionally elevates the importance of

this operator class. They become the ribbon that ties the more advanced components of a

query plan together, by accepting the output of the preceding operation and transforming it to

become adequate input for the next operation.

In addition to the four basic unary operators providing data interoperability, we

also introduce data representation as the fifth applicability operator. Any algorithm must be

able to interpret its input in order to function correctly. Therefore, two adjacent algorithmic

units must agree on a mutual data exchange format. It should be noted, that only the standard

data representation is a true prerequisite for the Access Manager framework. If it is the

only data representation accepted and produced by all algorithmic units in the [ERA] pool,

there is no need to consider representation. We have silently assumed the use of

throughout the course of query planning until now.

However, in some cases it is desirable to exchange data in a more appropriate, non-standard

way and thereby establish a tight coupling between two independent, consecutive algorithmic

units. As example, two operators might want to exchange data as bitmap vectors instead of

standard tuples, either because of the compactness of the bitmap representation or because

bitmaps are particularly well suited for conducting the respective relational operation, e.g. a

cascade of independent bitmap unions and intersections, exchanging and manipulating data in

bitmap representation . An illustrated example covering important aspects of representa-

tion is provided in Figure.8 of the following section 2.4.3 Exploitability. In contrast to the

basic unary operators , is not a relational operator and it has no analogon in

SQL. Hence, transformation into non-standard representation is neither triggered by SQL

queries, nor is it expressible in the SQL-based replacement pattern of an algorithmic unit.

These facts actually inhibit the existence of dedicated algorithmic entities for representation

transformation in QEPs. Still we admit that some algorithmic entity may express its desire for

receiving input in non-standard representation, e.g. by demanding bitmap representation

through a corresponding input directive. For sustained general applicability, an algo-

rithmic unit accepting a non-standard data representation must also be capable of accepting

and producing data sets in standard data representation . The query optimizer will recog-

CHAPTER 2: THEORY 35

nize which representations are supported by an algorithmic entity and the optimizer will also

make the decision which representation is ultimately used.

Non-standard representations introduce the concept of optional input requirements, since

algorithms may accept both standard and non-standard representation. An expansion of this

general concept of optional input requirements upon all basic unary operators offers promis-

ing new possibilities. Assume a nested-loop join is receiving its outer-loop input in a sort

order that corresponds to the inner relation‟s physical clustering. Under this precondition, the

nested-loop join will actually traverse the inner relation only once, and this single traversal is

conducted in a near-sequential manner. This special form of a nested-loop join closely resem-

bles a sort-merge join, but it has the additional ability to „skip‟ irrelevant tuples on the inner

relation by exerting its direct lookup capabilities. In contrast to this skip-merge join, the

standard nested-loop join uses direct lookups for matching join partners to an unsorted outer

stream, resulting in fully random accesses to the inner relation. Therefore, the skip-merge join

will perform better than the standard nested-loop join, if either the necessary sort order on the

outer relation is already present, or sorting is less expensive than fully random access to the

inner relation. Still the skip-merge join remains algorithmically identical to the standard

nested-loop join, drawing its elevated performance characteristics solely from an optional

input requirement. This example and alternative input representations clearly demonstrate the

necessity for a general concept of optional input requirements for algorithmic entities.

When considering optional input requirements of n-ary algorithms, we also have to contem-

plate possible dependencies between optional requirements of individual input streams. For

example, the skip-merge join may exploit an adequate sort order on its outer stream, but it

will only outperform a sort-merge join, which is also applicable under the given circums-

tances, if the inner relation also provides an appropriate access path allowing direct position-

ing. Only when both input requirements are satisfied at the same time, the full potential of this

algorithm is unleashed. Such dependencies between input requirements are to be expected and

need to be integrated into the query planning mechanism. The concept of optional input

requirements enables one single implementation of the nested-loop join to operate in several

modes, where each mode defines its own combination of input requirements for both input

streams. Naturally, each mode results in its own characteristic join complexity and finally in

different overall costs.

It is important to distinguish optional input requirements of one single algorithm from alterna-

tive implementations of equivalent ERA expressions. As an example, some group algorithm

36 2.4 SUBSTITUTION

will work efficiently, if it can exploit an adequate input sort order on the grouping attributes.

On the other hand, efficient grouping is also accomplished without an input sort order, if the

group operator implements a hash-group algorithm. Evidently, both algorithms implement

equivalent ERA expressions. They differ only in their input requirements. Yet they represent

algorithms that are substantially distinct. In such cases, it is advisable to add both implemen-

tations as separate entities to the pool of algorithms, instead of reverting to optional input

requirements for integrating them into the same module.

With data representation and optional input requirements, we conclude our considerations on

necessary properties of a set of ERA transformations for providing general interoperability of

algorithmic entities. We define them formally in

Definition.9: Sets of Connectors and . A standard connector
 is an ERA

expression composed of the basic unary ERA operations
 , operating

according to specification , but strictly in standard representation. The set of all standard

connectors is . A generic connector has the form , and the set

of generic connectors is . It follows that

Connectors represent the mechanism for assembling discrete algorithmic entities into a

computable query plan. They facilitate substitution of ERA terms with algorithmic implemen-

tations, by providing adaptations within the scope of equivalence configuration (cf. Defini-

tion.8 on page 30), thereby filling the gaps between algorithmic building blocks. Connectors

are also suitable for ensuring interoperability between algorithmic entities, by establishing

necessary transformations for meeting input requirements. These input requirements establish

general applicability of algorithmic units and reduce the algorithm‟s complexity by accepting

only appropriately preformatted input. Besides reduction of algorithmic complexity, externa-

lization of common tasks (like sorting) promotes global optimization. It allows accomplishing

necessary transformation non-locally, as externalized transformations remain subject to

ongoing optimization. Such transformations may be pushed downward in the query, plan,

permitting to conduct them in an earlier phase of query execution in a cost-effective way or to

exploit the same stream property as an input requirement for several consecutive operations.

The individual components of a connector establish transformations

according to a specification . The actual sequence of transformations remains nondescript,

since there exist dependencies between the connector‟s individual components, which are

induced by the actual specification . Projection maps the original projection of the input

CHAPTER 2: THEORY 37

stream to a projection that is opportune for the following algorithm‟s operation. For example,

a join implementation may request that join attributes are uniformly arranged as the first

attributes on all input streams, such that efficient comparison of the tuple prefixes becomes

possible. Selection guarantees that the input meets certain restrictions via adequate pre-

filtering. As an example, consider an m-way merge-join operation with join predicates on

attributes. If any of the join fields of m input streams is the SQL NULL value, the tuple has

definitely no join partner and may be removed from the join‟s input stream. Such externalized

selection operators remain subject to further optimization, in particular selection push-down

and recombination with other ERA operators to compound algorithms are options to be

considered by the optimizer. As already discussed, sort operations and similarly distinction

 do not have to be implemented by operators that rely on these properties. Instead, the

standard implementation of these operators is applied to the input streams if these directives

are present. Finally, when representation is specified as an input requirement of an algo-

rithmic unit, it expresses the algorithm‟s capability to process input in that representation.

Especially noteworthy is the subset of -connectors, since its exclusion of non-standard

representations enables the host system to provide an expedient set of algorithmic modules

implementing all -expressions. Therefore greatly alleviates the composition of

computable query plans while permits tight interoperation of consecutive algorithms using

non-standard representation. Based on these two fixed sets of connectors, we formulate the

general applicability of algorithmic entities:

Definition.10: Applicability. We introduce three distinct qualities of applicability for

arbitrary ERA:

(1) An arbitrary algorithm implementation is strictly applicable in a query evaluation

plan, iff it possesses no input requirements, i.e.

(2) is regularly applicable, iff its input requirements are satisfied by applying standard

connectors to a given relational input. The operator „ ‟ denotes composition in

the presence of non-trivial input requirements. The host system is capable of supplying

strictly applicable implementations for every .

38 2.4 SUBSTITUTION

(3) is weakly applicable, iff it has input requirements . The host system

cannot provide an immediate implementation for .

Following these conventions, a constant term , representing an input relation, is

strictly applicable. It has no input whatsoever and consequently it has no input requirements.

For regular applicability, the host system possesses strictly applicable implementations of

arbitrary . As a consequence, every regularly applicable algorithm operating in

standard representation always possesses a complete algorithmic implementation in [ERA].

Implementations for non-standard connectors must be provided as extensions to the [ERA]

pool. Otherwise, connectors for weakly applicable algorithms are currently not computable,

since their algorithmic implementations cannot be supplied by the host system.

A comprehensive way of providing implementations of non-standard connectors emerges

when contemplating the set of algorithmic entities provided by the host system for imple-

menting standard connectors . Correspondingly, for arbitrary algorithms operating on

some non-standard representation , sustained applicability comparable to regular applica-

bility is achieved by extending [ERA] with a set of k-connector implementations . Whether

such an implementation is provided as singular algorithmic entity] or as several individu-

al operations, e.g. applying some relational operations in -representation

using a standard connector, before switching into -representation, is functionally irrelevant,

but may affect performance. A discussion of such a non-standard connector for bitmap repre-

sentation (bitmap connector) is provided in section 5.5 Bitmaps of the Proof of

Concept chapter. As an alternative to the provision of custom implementations of non-

standard connectors, we will also devise another mechanism for achieving computability of

query plans containing weakly applicable algorithms.

All functionality for application of algorithmic entities in query plans is concentrated in the

Apply function. The Apply function is an integral part of every algorithmic implementation.

Together with the algorithm‟s algebraic equivalent, this function provides the basis for facili-

tating algorithmic substitutions and for dealing with the algorithm‟s input requirements. The

Apply function is defined as follows:

Definition.11: Apply function . For ERA, the algorithmic implementa-

tion is applied in a query plan as replacement for an n-ary with the function.

CHAPTER 2: THEORY 39

The mapping of attribute positions in input stream tuples to the attribute references in is

provided as vector

. The function parameter is an integer

choosing an operational mode for from an enumeration of available modes. Each

settings effectuates different optional input requirements for . The result of are con-

nectors

 defining input requirements for each input stream. The formal

definition of the is:

:

where

 is the implementation of , configured to the current input mapping and

optional input requirement setting .

The function is implemented in the algorithmic module . It uses input permutations

 (cf. Definition.5, page 28) as parameters, defining a mapping of actual attribute positions

in input stream to attribute references in . By setting the function‟s parameter ,

minimal input requirements
 of an algorithmic entity are determined. For modeling

optional input requirements, an algorithmic unit may provide additional input configurations

, with . During query planning, the optimizer will iteratively evaluate optional

configurations and eventually choose the most suitable option for the given query. Every call

to the -function configures to the parameter set supplied with the function call, i.e.

 configures to

 .

We demonstrate substitution in an example, covering the concepts of equivalence configura-

tion, algorithmic implementation and the -function. Let ERA, both unary with

 , and let be a regularly applicable implementation of . Hence, an arbitrary ERA

expression may be replaced as follows:

 (equivalence configuration)

 (algorithmic implementation)

40 2.4 SUBSTITUTION

 (-function)

 (implementation)

In this example, the substitution mechanism allows a complete implementation of the expres-

sion . For weakly applicable expressions, such general implementations remain unavailable.

Equivalence implementation and applicability introduce several -connectors into query

plans. By definition, equivalence implementation produces only connectors,

while applicability will generate arbitrary connectors. The example above demonstrates

how connectors will accumulate between separate algorithmic implementations.

Corollary.3: Coalescence and Decomposition. Two arbitrary can be coalesced

into one single , such that . In particular, for any

 ex-

ists a
 , such that

 . Decomposition describes the inverse op-

eration.

With coalescence, the result from the example above is further simplified to:

 (coalescence)

An efficient implementation of the -function will specify only configuration parameters

that are minimal for guaranteeing functioning of in mode . „Minimal‟ means in partic-

ular that components of may remain unspecified, i.e. .

Similarly, any should also be minimal, e.g. a minimal will only specify those

attributes, where sort order is essential. Minimal specification of input requirements improves

flexibility when combining algorithmic components.

The optimizer has to guarantee that the applicability directives of an algorithmic unit are met.

This task also includes finding an adequate and cost-effective arrangement of operations

and the resolution of potential interrelations of these operators. For example, it is reasonable

to apply before sorting in accordance to some , if the input stream is already presorted

and efficient calculation of is immediately possible. Duplicate elimination will then

reduce the amount of data to be sorted in . But if the input stream is not presorted, it will be

smarter to sort according to any given before applying . Especially, if is not cover-

ing all attributes, the optimizer is also responsible to extend to a covering sort order ,

for allowing an efficient application of .

CHAPTER 2: THEORY 41

Global query optimization may achieve that individual can be moved downwards in the

operator tree, allowing them to be acquired non-locally and potentially inexpensively. Also

repeated exploitation by several consecutive operations using the same input requirements

becomes possible.

2.4.3. Exploitability

Additionally to its primary purpose, an algorithmic unit may implement auxiliary ERA

operations. Joins, for example, are likely to produce huge result sets. Thus, it is reasonable to

reduce the join‟s result size by incorporating a final projection into the join algorithm, for

returning only those attributes that are required for further processing, as opposed to returning

the join‟s designated output attributes, plus the attributes relevant for conducting the join.

This final projection is only responsible for conclusively formatting the result and it is not

part of the actual algorithm. Its configuration is completely flexible and therefore the projec-

tion can be exploited for arranging the output attributes as requested by the following algo-

rithmic unit. This construct allows the join algorithm to project its result in arbitrary ways for

cooperating seamlessly and with optimal efficiency with the consecutive algorithmic unit.

Applying two equivalent implementations (cf. Corollary.2 on page 30) and as re-

placement for one algorithmic sub-expression , where and , to identical input

is bound to have side-effects on the output, as the algorithms may add, modify or remove

interoperability properties of the data stream within the scope allowed by equivalence confi-

guration. In our previous examples, the merge-join requires sorted input on the join-relevant

attributes. At the same time, the standard implementation of the merge-join will always return

its results in that specific order .It is an inherently order-establishing operation, whereas the

nested-loop join is at best order preserving, if the input of its outer loop happens to be pre-

sorted. Such output order can be exploited, as it might serve as input requirement for consecu-

tive operations. An algorithmic entity will generally function in several configurable modes,

each mode influencing properties of the output stream. We consider such configuration modes

as exploitable parameters of an algorithmic unit.

In order to effectively exploit auxiliary operations and other configurable properties of algo-

rithms, it is worthwhile to examine how to equip an algorithmic unit with enough confi-

gurable flexibility for satisfying all input requirements of a consecutive algorithm . Such

flexibility is not generally feasible and expedient for every , but it is a promising approach

for constructing query evaluation plans that guarantee optimal interoperability between

42 2.4 SUBSTITUTION

arbitrary algorithmic entities. The ideal set of configurable output parameters of is iden-

tical to the functionality provided by generic connectors , which are used

for expressing applicability requirements of . Such congruence of input directives and

exploitable output configuration clearly provides optimal adjustments to data exchanged

between consecutive algorithmic units, i.e.

Just like applicability, exploitability is also based on the connector concept, but exploitation is

often an imperfect operation, resulting in decomposition of the original connector, because

algorithmic units will not generally absorb an arbitrary connector completely. In addition to

the already established coalescence and decomposition of connectors (Corollary.3 on page

40), we will have to contemplate the individual primitive components of a connector. We will

temporality omit representation and revisit it later for a separate discussion. We consider the

remaining primitive elements of a standard connector
 as required

applicability specification of some algorithmic unit towards some preceding . Individ-

ual applicability for each is obtained by installing between the algorithmic entities,

as in

The desired applicability specification of is obtained by configuring the preceding

 to an exploitable specification , i.e. . This is followed by an additional

operation on the result of . represents the rejected part of , that cannot

be obtained by configuration of , because does not provide the necessary flexibility.

For each holds the following equation:

The resulting expression is

Any of the participating operations may be the identity, i.e. . The general relationship

between is defined as follows:

CHAPTER 2: THEORY 43

 n n

 n

 n

 n

 n

A non-standard representation can be accepted as . If is rejected, then data is

exchanged in standard representation, i.e. . Using non-standard representation

 for exchanging data allows exceptionally tight coupling of consecutive algorithmic

units. In this case, it is particularly important that no applicability directives are rejected, i.e.

 . It is clear, that otherwise transformations would

have to operate on non-standard data representations. Since the primary goal of non-standard

data exchange is tight coupling of two algorithmic units, such a prerequisite for perfect

configuration is consistent and reasonable. Perfect configuration also guarantees that the

query plan can be implemented in , without a non-standard connector . If perfect

configuration is not possible, then the system tries to resort to a custom connector . If no

such is available in , the query plan using non-standard representation cannot be

implemented. The following example illustrates the exploitability of non-standard representa-

tion.

Figure.8 Data representation in a cascade of bitmap operations. The depicted family of customized

operators is capable of processing data in bitmap representation . Applicability ensures that input data

is retrieved in convenient representation wherever possible. Exploitability achieves that data is also

delivered in . Both concepts cooperate in minimizing the number of representation transitions. For

general applicability, the algorithms are capable of accepting and producing data in standard representation

44 2.4 SUBSTITUTION

 , if required. Their flexibility makes it possible to prevent the necessity for explicit operators for

transforming representations.

The isolated examination of decomposition of individual into

 is presented here, as it is more comprehensible, but this simplified approach is not

practicable during actual query planning. The query optimizer has to consider functional and

cost-relevant dependencies between these individual transformations. Functional dependen-

cies arise from the fact, that components are integrated into the preceding algorithmic

unit, while transformations are conducted by a connector unit. Hence, chronologically all

 are conducted before any is applied. As a consequence, it is not legal to exploit

some projection that removes an attribute, if the same attribute is also referenced in a

rejected . In this case, the inability to exploit the selection also prevents the exploitation of

a projection removing the selection-relevant attribute. Hence, the isolated decomposition

 is fundamentally correct, but not every decomposition is also of practical

relevance. A procedure for finding valid and cost-effective decompositions is presented in

section 2.4.5 Negotiation. For now, we observe that applicability and exploitability are not

configured individually for every , but for all components of one given

connector at once. We formally define exploitability:

Definition.12: Exploitability. We introduce two distinct qualities of exploitability for

arbitrary :

(1) An algorithmic implementation is fully exploitable towards a connector , iff

allows integration of , such that

(2) An algorithmic implementation is partially exploitable towards a connector , iff

 allows decomposition of , such that an implementation exists in

[ERA] and can be integrated into :

This concept complies with the important properties we identified for exploitation of auxiliary

operations within algorithmic implementations. If the preconditions for full exploitability are

satisfied, exploitation renders the QEP fragment under consideration in a form that can be

implemented immediately with assets. This guarantee holds also for partial exploitabil-

ity, if is a standard connector. This follows immediately from its decomposition

CHAPTER 2: THEORY 45

to

 , with

 . In addition, exploitability offers an instrument

for eliminating non-standard connectors from a query plan. Ideally, such connectors

are integrated completely into a fully exploitable algorithmic unit. In case of partial exploita-

tion, a custom implementation of the non-standard has to exist in . If such an imple-

mentation is unavailable, the query optimizer has either to backtrack to an alternative

setting for applying , resulting in an alternative
 or even

 . If no alternative

settings are available, then the QEP must be discarded as not implementable.

Of course, exploitation must be cost-driven, as it is only interesting, if it leads to a reduction

of the overall query execution costs. In case of partial exploitation, the optimizer will there-

fore verify whether the local costs satisfy the local efficiency constraint

 . The corresponding constraint for full exploitation is . Both

cases allow reliable decisions, based solely on local costs. Costs will be examined in greater

detail in the discussion in section 2.4.6 Cost Function.

During query planning, output configuration of an algorithmic entity is conducted by the

Exploit function, which is an integral part of every algorithmic entity. It is defined as follows:

Definition.13: Exploit function . Let ERA, implemented as . The

connector represents coalesced transformations required for substitution and appli-

cation of and . The complexity of such a query evaluation plan can be reduced by

integrating functionality from into , using the function. The result of the

 function represents the part of that was rejected by :

 :

 n

Here denotes an exploitable configuration of towards obtaining the desired specifica-

tion . In case of full exploitability, is absorbed completely, while degrades to

46 2.4 SUBSTITUTION

which is eventually omitted. If provides partial exploitability for , the optimizer will

arrange for auxiliary transformations for compensating rejected configurations. If

and exchange data in standard representation, the -function will yield
 . Since

the host system provides implementations for standard connectors
 , partial exploitabili-

ty on standard representation automatically guarantees the existence of an implementation of

 in . Full exploitability also guarantees such implementation, regardless of the

present representation. The following example illustrates partial exploitation using standard

connectors.

 ()

 ()

We now proceed with our example by exploring exploitability of our query plan candidates.

Figure.9 Exploiting sort and projection capabilities of algorithmic units. In all three cases, the optimiz-

er can eliminate the final projections and sort operations by integrating them into the preceding join algo-

rithms. In case of the sort-merge join (a), the algorithm can easily accept the sort specification, since this

sort order is already present as a direct consequence of its algorithm‟s order preservation and its existing

input directive . A suitable sort operation is already in place for facilitating the merge-join operation.

The nested-loop joins (b) and (c) do also accept the sort specification. The nested-loop join is order pre-

serving in the outer loop. Therefore (b) and (c) can provide the requested sort order by propagating the sort

specification as a directive to their left input streams. In plan (c) we also exploit , a consequence

of the join predicate . The optimizer has to satisfy the modified input directives in (b) and (c) by

installing the corresponding primitive sort operations.

2.4.4. Propagation

Applicability and exploitability can be combined to form the concept of propagation in query

planning. Selection push-down and projection push-down are famous examples of such

propagation in the algebraic conception of query plans. They translate directly into our algo-

m
e

rg
e

lo
o

p
n

e
st

e
d

lo
o

p
n

e
st

e
d

sc
an

sc
an

so
rt

so
rt

(a) (b) (c)

so
rt

so
rt

sc
an

sc
an

fi
lt

e
r

sc
an

fi
lt

e
r

sc
an

CHAPTER 2: THEORY 47

rithmic perspective. The nested-loop joins in Figure.9 illustrate the general idea of such

propagation, founded on the principle of preservation of individual stream properties. In

Figure.9b the nested-loop join preserves the input order of its outer loop. In Figure.9c

propagation depends on order preservation and on the given join predicate .

Propagation becomes possible, whenever some algorithmic unit is permeable for stream

properties established by unary operators . For example, every streaming algo-

rithmic entity receiving sorted input will also produce its output in the same sort order. If

 itself does not rely on this sort order, i.e. ‟s applicability directive specifies ,

then it is irrelevant whether the sort order is established before or after . More generally, if

several consecutive streaming algorithmic units are capable of preserving , then it is

possible to establish some required at an arbitrary location along the chain. This allows

the optimizer to propagate downwards through the query plan, such that the optimizer may

choose, on basis of cost estimations for the various alternatives, at which point can be

established at minimal costs. We also illustrate this with our example in Figure.9. Here

propagation of below the order preserving join algorithms is interesting, if the join result

has a higher cardinality (and size) than the input stream determining the result order (i.e. outer

loop in the nested-loop case). The goal is cost reduction by sorting less data. If the join

reduces the cardinality, one should contemplate applying the sort operation after joining. But

even in this case, it may still pay off to propagate the sort operation downwards, if the sort

order of the larger set below the join can be established inexpensively, e.g. by using an

already existing order (cf. Figure.10a), or if early sorting allows using more efficient join

algorithms, like the skip-merge algorithm in cases (b) and (c). Once the preconditions for

propagation are met, the ultimate decision for employing propagation is made by the optimiz-

er on basis of cost estimations.

Compared to exploitability, propagation represents an additional means for decomposing a

connector ensuring applicability between two consecutive algorithmic

units. When considering

with representing one individual connector component, then we can de-

scribe this decomposition for each in analogy to the corresponding exploitability equation

above as:

48 2.4 SUBSTITUTION

Here is the propagated part of the original connector . Each term on the right hand

side of this equation describes transformations towards at different locations relative to

the currently examined algorithm . is a transformation applied on the algorithm‟s

input stream, represents the algorithm‟s actual exploitability towards , and is the

rejected part that has to compensate for lack of propagation and exploitability of , i.e.

Again, representation has to be treated separately. If a non-standard representation is

rejected, then data is exchanged in standard representation. As a general recommendation, any

algorithmic unit capable of accepting a transition to non-standard representation as

 , should also contemplate permitting its propagation as . Such propagation is

attractive from the cost perspective, as each transition of representation inevitably incurs

costs. The ability of an algorithmic unit to propagate non-standard representation effectively

supports reducing the number of representation transitions in a QEP. It also opens additional

opportunities in query optimization for finding ideal locations for switching between repre-

sentations.

We extend the concept of exploitability for a formal definition of propagation

Definition.14: Propagation. We introduce two distinct qualities of propagation for

arbitrary :

(1) A connector is fully propagatable through an algorithmic implementation , iff a

decomposition exists, such that

(2) A connector is partially propagatable through an algorithmic implementation , iff

 allows decomposition of , such that an implementation exists in

[ERA] and can be integrated into , i.e.

CHAPTER 2: THEORY 49

Conceptually propagation is very similar to exploitation. While exploitation provides strictly

local integration of connectors into the preceding algorithmic unit, propagation prepares

relocation of -transformations by propagating them downwards through algorithmic units.

The „ ‟ operators established by propagation indicate that was modified by propagation,

resulting in modified application requirements. If ‟s applicability requirements remain

unaffected by propagation of some , then propagation is exactly equivalent to exploitation.

Propagation of -transformations over algorithmic entities is provided by the Propagate

function. It is an integral part of every algorithmic implementation and it is defined as fol-

lows:

Definition.15: Propagate function . Let ERA, implemented as

 . The connector represents coalesced transformations required for substitution

and application of and . The complexity of such a query evaluation plan can be re-

duced by propagating functionality from through , using the function , where

 represents the part of that was rejected by :

 :

 n

The following example demonstrates the combined effects of application, propagation, and

exploitation:

 ()

 ()

 ()

 ()

50 2.4 SUBSTITUTION

This also exemplifies how the propagated part of a connector never physically appears

in a query plan. It is immediately integrated into the modified application directives of the

algorithmic unit conducting the propagation, which is indicated by the special composition

operator „ ‟.

Propagation represents an iterative process which, when used in turns with application and

exploitation of algorithmic entities, is capable of moving transformations downwards through

a query plan, in order to determine the optimal location for an operation. Propagation natural-

ly terminates when it reaches the leaf nodes of a QEP, or when an algorithmic unit does not

permit further propagation. In the latter case, propagation degrades to plain exploitation. In

addition, the optimizer may deliberately stop propagation at any time. Therefore, it uses

explicit exploitation after several propagation steps, if the QEP requires local consolidation.

In summary applicability, exploitability, and propagation build a robust and simple, yet

efficient and powerful mechanism allowing the query optimizer to find the optimal configura-

tion for all participating algorithms in a query plan, without knowing the internal workings of

the algorithms. The query plan can directly benefit from the configurable degree of freedom

provided by algorithmic units. Still every implementation of a relational algorithm may

choose independently how much flexibility it wants to provide. A higher flexibility will allow

better integration with adjacent algorithms, but higher flexibility will usually involve higher

implementation complexity. Conversely, missing flexibility of algorithmic units is automati-

cally compensated by applying the necessary customizations in form of auxiliary connector

units. The implementer of a relational algorithm may reevaluate this trade-off in iterative

development cycles, while the mechanisms for negotiating configurations will automatically

adapt to the present capabilities of the algorithmic entity.

Propagation, as the only non-local instrument of query optimization, is strictly directed

downwards. Hence, the optimization process will always terminate. But, without further

measures, each attempt at propagation will potentially trigger a complete recursion, with

devastating impact on the complexity of our approach during query planning. This issue will

be addressed in the following section. But first, we complete our example.

CHAPTER 2: THEORY 51

Figure.10 Propagation of configuration parameters. S and R shall be physically stored in B-trees, offer-

ing direct access capabilities and also exploitable storage orders
 and

. Although sorting was the last

operation in the initial query plans, propagation makes it the first transformation to be applied in the final

QEPs. It is pushed directly into relational access of S and R, where it is implemented inexpensively as non-

blocking ordered relational scan. Similarly for the nested-loop joins (b) and (c), the original join predicate

 is transformed into the correlated predicate , and resp., and propagated for exploiting efficient

direct access to join partners in the inner loops.

As result of successful configuration of algorithmic entities, all plan alternatives are now

consisting only of three algorithmic units each. The final task of choosing the most cost-

effective plan is left to the optimizer and the cost functions of the algorithms.

2.4.5. Negotiation

Negotiation is the configuration process between two independent algorithmic units. Its

purpose is to ensure efficient cooperation by adjusting exploitable configuration properties of

one unit in order to match the applicability requirements of a consecutive algorithm. Negotia-

tion operates on connectors , or rather on their primitive components ,

which are established between individual algorithmic units. These connectors originate either

from necessary adaptations resulting from equivalent implementation (cf. Corollary.2 on page

30), or they implement additional applicability directives of algorithmic units. The goal of

negotiation is to configure participating algorithmic units such that connectors are optimally

arranged throughout a query plan and potentially absorbed by algorithmic units implementing

the necessary transformation as an auxiliary, configurable functionality. Although the opti-

mizer can spot such auxiliary s in an algorithm by examining its ERA replacement pattern,

it can neither assess the extent of possible configurations, nor is it possible to estimate the

implication such configurations will have on the overall behavior of the algorithm. Even

worse, our example demonstrated the nested-loop algorithm‟s capability for retaining exploit-

able sort orders, originating not from an internal sort operation, but from order preservation

(a) (b)

m
e

rg
e

lo
o

p
n

e
st

e
d

sc
an

sc
an

sc
an

sc
an

(c)

lo
o

p
n

e
st

e
d

sc
an

sc
an

52 2.4 SUBSTITUTION

by propagating the requirement to one of its input streams. Hence, the existence of an opera-

tor in the replacement pattern is neither a sufficient prerequisite for configurability, nor is

it necessary.

Configurability depends solely on the implementation of the algorithm. For finding an ade-

quate configuration for an algorithmic unit, each unit must be able to negotiate its own confi-

guration within the scope of its capabilities. In addition, it must be able to identify configura-

tion properties that are suitable for propagation to its various input streams. Finally, it has to

provide a cost function that allows the DBMS optimizer to assess the quality of one particular

configuration.

Negotiation improves interoperability between two algorithmic entities exchanging data via a

connector unit, e.g. . The connector is conducting necessary adaptations

specified as a set of configuration parameters . In order to simplify or

even eliminate , the negotiation process tries to exploit functionality provided by for

implementing . Exploitation shall map to the cost-optimal configuration

 to be integrated into . Alternatively, functionality from shall be propagated over

 , if will preserve the propagated transformations established by

such early adaptations and their propagation is cost-effective. Finally, a set of rejected confi-

guration transformations shall compensate possible mismatches, such that

for any the following equation holds:

Naturally, there exist applicability specifications without efficient decompositions. In

this case, necessary transformations shall remain within the original connector, such

that . We call a decomposition of efficient, if its implementation satisfies the

general inequality

In this consideration, interrelations between different s are not yet represented adequately.

Again, we temporarily omit representation , because this is negotiated independently. The

remaining four operators are largely orthogonal in their functionality, but there are

several dependencies as depicted by the following Figure.11. In order to devise a suitable

strategy for finding efficient configurations, it is worthwhile to analyze the rules of interrela-

tions between configurable operators.

CHAPTER 2: THEORY 53

The exploitable operators are integral parts of , while propagated configurations

are applied before, and the supplemental transformations are installed afterwards. Al-

though the elements of each separate set , and

are applied in a currently nondescript order, elements from different sets are never inter-

weaved, i.e. all are applied before any , which in turn always precede any .

Figure.11 Dependencies of configuration parameters. Configuration must comply with functional de-

pendencies, represented as solid lines: (1) Selection before projection avoids removal of attributes

required by selection. (2) Distinction follows after projection is completed. Non-functional dependen-

cies are efficiency considerations marked with dashed lines: (3) Distinction should be applied after a

suitable order is available. Sorting should be preceded by a reduction of cardinality and arity through

selection (4) and projection (5).

Following the dependencies described in Figure.11, we can now devise general rules for

finding efficient configurations:

(1) We start considering selection , as it has no dependencies on other configuration para-

meters. In accordance to selection push-down, we break up the predicate of and apply

selections as early as possible, i.e. try to propagate maximum selectivity as . For the

remaining predicate, we use exploitability for installing if possible. After completion

of this step the settings for and are not modified anymore. Consequently, also

remains fixed in the following steps.

(2) Then we apply the desired projection reducing the breadth of the input set. will

remove attributes that were referenced in , but are not required afterwards. We make

sure not to remove attribute references that are required for post-filtering the rest-

predicate in or (dependency 1). Analogously removes attribute references that

have become obsolete after application of . In this step, projections removing attributes

are relevant for dependency considerations, while mere attribute rearrangements are not

significant and are ignored. And even if projections reduce the number of attributes, they

are only performance-relevant, if they are followed by a blocking operation, in particular

by a conventional sort operation that takes advantage of the reduced breadth (cf.

2

1

4

3

5

54 2.4 SUBSTITUTION

Figure.11, dependency 5). For streaming operators, the tuple breadth has no impact on

the costs, since storage costs can be neglected for streaming operations, and the projec-

tion can be safely postponed to the last possible point in time, i.e. or even , without

performance penalty. At this point configurations of selection and projection are com-

pleted.

(3) Now we attend to propagation and exploitation of the sort order . Propagation is

particularly attractive, if it is possible to establish by means of a more efficient me-

thod than conventional sorting. Such propagation is also reasonable, if it achieves only a

prefix of the lexicographical order specified by . In this case, is fully established

using a subsequent sort operation in form of an inexpensive partial sort operation

 or , which will also benefit from further reductions of cardinality and arity by

earlier application of predicates and projections (dependencies 4 and 5).

(4) Finally, we address duplicate eliminations . Duplicate elimination should be postponed

until the final projection is established (Figure.11, dependency 2) and a suitable sort order

is available (dependency 3). If necessary, available sort orders have to be extended to

cover all attributes for supporting efficient duplicate elimination.

Our conception of query optimization in the presence of opaque and configurable algorithmic

units assumed the existence of a system-inherent query optimization component, providing

and controlling the search strategy for generating efficient query execution plans on a global

scale. One of the optimizer‟s essential tasks is limitation of complexity and costs of query

optimization. Therefore, external algorithmic entities may only contribute in a temporally and

spatially limited way to this procedure. The presented methodology of negotiation, based on

applicability, exploitability and propagation is sufficiently flexible for devising optimization

algorithms dealing with configurable algorithmic entities. At the same time, each phase of

negotiation operates strictly locally and on a comparatively low level of complexity, leaving

overall control to the host system‟s optimization component.

In the following, we will outline a modified query optimization strategy, suitable for general

cost-driven optimization based on negotiation. In addition, we will sketch the rule-based

optimization strategy, which is used in the Transbase prototype implementation. This shall

demonstrate that the proposed methodology is generally suitable for arbitrary optimization

strategies, and only moderate modifications to the original optimization algorithms are re-

quired.

CHAPTER 2: THEORY 55

First we examine a cost-based optimization model using dynamic programming for building

alternative plans simultaneously in a bottom-up fashion. In optimization step p of a query

joining n relations, this model considers query plan fragments joining p+1 individual rela-

tions. This is done by extending plans joining p relations, retained from the previous iteration,

with one additional join. Up to this point, cost-based optimization is strictly conforming to its

original proposal in [Sel79]. The fundamental difference when using configurable algorithmic

units results from the following observations:

(1) a partial plan joining p+1 relation cannot be fully configured, since the configura-

tion of its topmost operator is depending on applicability requirements of its subse-

quent operator, which is still unavailable in optimization step p.

(2) the missing configuration of the topmost operator also implies that the plan frag-

ment‟s final output sort order is still unspecified. This prevents classification of the

plan fragment with respect to interesting orders.

(3) an incompletely configured plan fragment cannot be associated with costs, thus

cost-based pruning is inhibited.

These issues are circumvented as demonstrated in Figure.12. After optimization phase one,

the pool of query candidates contains plans for joining relations A and B, each using a

different one from available join methods. The pool contains a total of

 2 plans for

joining every ordered pair of n relations, using one of join methods. The classical optimiza-

tion algorithm will now initiate a pruning phase, which will reduce the pool size to a lower

boundary of

 plans. If interesting orders are present, then the number of plan candidates

will be correspondingly higher. The computational complexity correlates with the total

number of necessary cost estimations, which is equal to the original number of plan candi-

dates

 2 . In our case however, the plans resulting from phase one are still incompletely

configured (marked white in Figure.12), since the join operator‟s applicability requirements

are met, but the topmost join operator is not yet configured for exploitation by its still missing

consecutive operator. As a consequence, pruning at this stage is not possible (cf. reasons (1)-

(3) above) and optimization must momentarily retain all plan candidates.

In phase two, each plan is extended for joining one additional relation (depicted white in

Figure.12, phase 2). By enumerating all possible join methods, we can generate plans for

joining relations A, B and C, resulting in

 plans for joining any three of n relations.

56 2.4 SUBSTITUTION

At this point, it becomes possible to complete the configuration of the joins built in the

previous phase (now marked light blue), as the necessary consecutive join was just installed.

The principle of optimality, on which cost-based query optimization using dynamic program-

ming is founded, claims that an optimal left-deep plan joining p+1 relations is built from an

optimal plan joining p relations, extended by one additional join. Consequentially, we may

now apply cost estimation and subsequent pruning to the fully configured plan fragments of

phase two (light blue). Cost estimation will identify the one optimal plan for joining relations

A and B (although interesting order may introduce additional alternatives). This plan frag-

ment also specifies the optimal join-method and join-sequence for joining A and B. Accord-

ing to the principle of optimality, it now becomes possible to discard all plan candidates

containing sub-optimal strategies for joining A and B. This leaves only 2 plan

candidates, joining the result of the optimal join of A and B with one arbitrary third relation,

using all available join methods. After pruning has processed all two-way joins from phase

one, the pool contains a lower boundary of

 optimal plan fragments joining any two

relations (plus interesting orders). Correspondingly, a minimum of 2

 plan candi-

dates have to be retained by the end of phase two. In general, the storage complexity of the

classical algorithm at the end of phase p is at least

 , while our variant using configura-

tion and retarded pruning stores a minimum of

 plans. With

 follows that the storage complexity of retarded pruning is times

higher than that of the classical algorithm, reaching its maximum at

 . The same factor

also applies when comparing computational complexities, as the computational complexity of

phase p depends directly onto the number of retained plans from the previous phase. As we

anticipate small numbers of , the total complexity increases by a factor of . This is

comparable to the increased complexity introduced by interesting orders and therefore simi-

larly acceptable.

CHAPTER 2: THEORY 57

Figure.12 Cost-based join optimization with configuration. Exemplified join optimization in a system

providing different methods for joining n relations. The graph depicts only a small fraction of the

plan candidates of each join phase. Pruning after phase one is impossible, but the principle of optimality

allows retarded pruning in the subsequent phases. In this example, the nested-loop join (nlj) is identified as

the optimal method for joining A and B by the end of phase two. This form of pruning is equally effective

as in the original optimization algorithm without configurable operators.

As we enter phase three for adding the next join, all considered plan fragments are containing

fully configured and optimal sub-plans (marked dark blue).

Note that propagation is not required for this type of query optimization. The idea of con-

structing an optimal plan from optimal plan fragments contradicts the refinement of existing

plans via propagation. The instrument of propagation is intended for optimization algorithms

relying on algebraic transformations rather than enumeration and iterative construction.

For rule based optimization, we can also employ applicability and exploitability for generat-

ing optimal plans. This form of optimization, as employed by Transbase, builds an initial plan

from the original SQL query. This plan is then modified using equivalence transformations

during several optimization phases, where each phase is strictly self-contained and dedicated

A B

nlj C

nlj D

join

A B

nlj C

smj D

join

A B

nlj C

hash D

join

A B

nlj C

join

A B

smj C

join

A B

hash C

joinPhase 2:

Phase 3:

Retarded Pruning:

A B

nlj

A B

smj

A B

hashPhase 1:

A B

nlj

58 2.4 SUBSTITUTION

to a specific optimization goal. To limit computational complexity, each optimization phase is

conceptually one single traversal through the query plan. Therefore, the complexity of each

optimization phase, and consequentially the complete optimization algorithm is linear in the

number of involved operators. In this form of query optimization, the system builds its initial

QEP, based exclusively on the primitive algebraic representation. This early QEP already

appoints a preliminary join sequence, but the joins are still conducted using the primitive

algebraic Cartesian product operator. All relations are accessed using strictly sequential

traversals via primary access paths and no index selection has taken place yet. The optimizer

subsequently applies algebraic transformations to this initial QEP, employing heuristics for

selecting substitution rules from a set of available equivalence transformations. These trans-

formations are organized in several top-down traversals through the current query plan.

During this process, the optimizer also selects suitable algorithmic implementations for

algebraic sub-expressions. Finally, the algorithmic entities‟ functionality for applicability,

exploitability, and propagation are employed for achieving optimal algorithmic interoperabili-

ty. Currently Transbase uses no cost estimation for justifying transformations during query

optimization. When considering the application of custom algorithmic units, the optimizer

assumes that, if such an alternative algorithm is available and applicable, then it is also more

efficient than the built-in variant.

Similarly, the Access Manager‟s instruments for configuration and costing of algorithmic

units are suitable for other transformation-based approaches to query optimization, as found

in various popular DBMSs. In particular, the cost-driven depth-first branch-and-bound opti-

mization harmonizes exceptionally well with the Access Manager approach, since this form

of query optimization emphasizes a small working set, early configuration and sustained

pruning.

2.4.6. Cost Function

The costs of an operation are a gauge, used primarily during query optimization, for describ-

ing the estimated utilization of limited resources during query evaluation. Limited resources

are an abstraction of real hardware resources, like CPU, I/O system, and memory, as well as

immaterial assets like system responsiveness, throughput, and latency. Algorithmic units,

when used for extending a DBMS in accordance to our conception, have to actively partici-

pate in cost estimation. Their implementation details are hidden from the DBMS, leaving no

possibility for deriving reliable cost estimation from their visible algebraic representation. The

accuracy of a unit‟s cost estimations is similarly important for the sound operation of the

CHAPTER 2: THEORY 59

overall system as the correctness of its implementation. This encapsulation and the need for

accuracy inhibit centralized cost estimation, performed solely by the host system. In accor-

dance to foregoing design decisions, implementation complexity of cost functions inside a

single operation is kept simple, in order to provide maximum usefulness at minimal imple-

mentation effort. Similarly to negotiation, cost functions are provided as a supporting instru-

ment for justifying optimization decisions and managing resource allocation. Cost functions

must operate strictly locally. In particular, they must not make any assumptions or conduct

any inspections of other algorithmic units in their vicinity. As a consequence of encapsulation

of algorithmic units, such inspections are hardly possible and making assumptions is danger-

ous, since the QEP is still subject to ongoing optimization efforts when the cost function is

called, and cost estimation based on assumptions on a unit‟s vicinity will eventually become

inaccurate. The result of cost functions must depend exclusively on the data provided as direct

input. The optimizer will permanently observe whether the input parameters of cost estima-

tion were influenced by recent QEP transformations, and eventually reinitiate cost estimation

whenever necessary. Finally, as cost functions are expected to be called frequently, they must

be inexpensive operations of low computational complexity.

To satisfy these prerequisites for a generic cost function, the Access Manager framework

models the costs of an algorithmic unit as a set of events that potentially inflict costs, rather

than associating an operator with absolute cost values. The optimizer is in charge of rating the

impacts of these various events and eventually it will convert them into actual costs. This

additional level of abstraction allows the description of costs in a graphic way, and relieves

the implementation of a cost function from the necessity to rate its costs relatively to other

operators in the system. In addition, the host system can dynamically adapt its cost model

when assigning costs to individual events, allowing flexible response to changing system

parameters, such as volatile system load, but also to altered system configurations. These

events are classified in three main groups, in ascending order of importance with respect to

their relative impact: (1) CPU instructions, (2) primary memory requirements and (3) second-

ary I/O. CPU assets are subdivided into total sequential expenditure and a ratio specifying the

extent of parallelizable code. The latter serves for estimating potential decrease of execution

times, when relocating computational load to additional CPUs by applying intra-operator

parallelism. Memory consumption is subdivided into minimum in-memory temporal storage

(size of the working-set) and total temporal storage requirements for completing a given task.

The system will automatically anticipate costs for secondary I/O, if the total available primary

memory size is exceeded. Finally, we distinguish various mimics of block I/O, namely expen-

60 2.4 SUBSTITUTION

sive random I/Os, usually more favorable sequential I/O and potentially inexpensive read-

ahead/ write-ahead operations using asynchronous I/O. The class of I/O events exemplifies

and emphasizes the necessity for using cost events instead of cost values. The operator‟s cost

function has no effective means for assessing I/O costs with absolute costs, since it cannot

know the I/O characteristics of the addressed hardware (e.g. conventional hard drives, RAID

systems, network I/O or random access secondary memory appliances based on SSD (Solid

State Drive) technology). The optimizer, as an intrinsic component of the DBMS, possesses

the necessary information for centralized and accurate costing of I/O events. The presented

collection of cost related events does clearly not possess the expressiveness to model every

cost scheme accurately, but this is not required. It just has to be sufficient for providing a

suitable approximation, biasing the query optimizer towards the correct decisions.

The abstraction of using cost events instead of absolute cost values offers an additional

perception of costs. During optimization, one query plan is chosen from several candidates

based on its cost events and on the rating of these events at the time of query optimization.

But query plans may remain in the system over a long period of time. Stored queries, for

example, are usually optimized only once, but they are intended to be reused perpetually.

Hence, this optimization usually happens „ahead-of-time‟, well before query evaluation.

However, the actual costs for executing a query may change over time, as they depend on

numerous volatile system conditions, like system load and resource allocation. Consequently,

the quality of cost estimation is also subject to change. In contrast to absolute query execution

costs, the estimation of cost events will always remain valid and constant. Based on these

constant cost events, it becomes possible to rapidly reassess the costs „just-in-time‟, imme-

diately before the query plan is actually executed. If the system finds that the current costs are

significantly different from the costs that originally justified the decision for this particular

query plan candidate, the system may choose to reinitiate the query optimization process or

choose an alternative plan from a cache of plan candidates.

Next the question arises, how to derive cost incidents of a single operator using a cost func-

tion that operates strictly locally on the currently considered operator, while conserving the

global and versatile interrelations with other operators of the plan. In traditional cost models,

local costs are composed from costs for providing the input to the operator plus the local

processing costs, as expressed in the following formula.

CHAPTER 2: THEORY 61

Naturally, the local processing costs depend on various properties of the actual input data.

These properties are approximated using cardinality and selectivity estimations, based on

statistical information that is maintained by the DBMS for every stored relation. During cost

estimation, this statistical information is extrapolated for describing all intermediate results in

the operator tree [Sel79]. For optimal cost estimation, the host system provides such data-

centered statistics for each input stream and also for the output stream. This allows the cost

function to incorporate all available information for cost estimation of maximum accuracy.

The simple and obvious algorithm calculating the costs of a QEP is a recursive traversal

through the query plan, accumulating costs while proceeding bottom-up. This approach

allows supplying the cost function of an operator with readily available precalculated costs for

its input data as well as with „just-in-time‟ assembled statistical information.

The recursive accumulation of cost incidents, as reflected by the cost function above, is fully

sufficient for costing the relational calculus in its algebraic conception, where every operation

is implicitly blocking. But the flow of control in the algorithmic perspective is significantly

different, with consequences on the cost model. In particular, in situations where it is not

required to fetch the complete input of an operator for generating the complete output, this

simplistic cost model becomes inaccurate. Refer to Figure.13 for an example based on a

restriction in conjunction with exploitable sort orders. A general cost model has to consider

these situations. An alternative cost model uses cost-per-tuple, as proposed and discussed in

[Hel93] and [Cha99]. Cost functions based on this concept account only for tuples that are

actually fetched.

Cost function (II) is almost identical to formula (I), except that only a quota of the data

provided by input stream i is actually considered in cost estimation. This approach assumes a

linear distribution of costs and it was found particularly useful when dealing with the operator

classes exhibiting linear cost distribution, e.g. restrictions as user-defined predicates [Cha99].

Non-linear cost distribution is generated in the presence of blocking operators. A sort opera-

tion, for example, has to process its input completely before generating the first output tuple.

62 2.4 SUBSTITUTION

From the perspective of the consecutive operator retrieving input from a blocking sort opera-

tion, the production of the first input tuple is immensely expensive. Afterwards all subsequent

tuples are available almost instantaneously, incurring very low additional costs. Conversely to

the non-linearity of a blocking operation, linear cost distribution is a common quality of

streaming operators, such as the aforementioned restrictions. In summary, cost function (I) is

valid for costing plans consisting only of blocking operators, while cost function (II) applies

to streaming operators, but neither is accurate for hybrid plans.

This dilemma is resolved by subdividing total costs into two major cost accounts: the cost

portion for blocking operations is henceforth denoted as and streaming cost portion is

represented as . Both cost accounts are maintained independently while traversing the

query plan. The local costs incurred by evaluation of the topmost operator, denoted as ,

add either to the blocking or streaming account, depending on the nature of the topmost

operator.

Definition.16: Streaming Cost Calculation. The cumulated costs of an n-ary algebraic

expression, concluded by a streaming algorithmic implementation of , calculate as:

All local costs add to the account, but blocking costs originating from a preceding

blocking operation remain in the account.

For accurately modeling blocking operations, we have to distinguish two components of local

costs, namely
 for producing the first tuple, and

 producing all remaining

tuples. Therefore, the local costs of a blocking algorithmic implementation of are defined

as:

Definition.17: Blocking Cost Calculation. The cumulated costs of an n-ary algebraic ex-

pression, concluded by a blocking algorithmic implementation of , calculate as:

CHAPTER 2: THEORY 63

More generally, when tuples are fetched from an operator exhibiting both streaming and

blocking costs, then blocking costs incur for fetching the first tuple, while streaming costs are

assumed to be evenly distributed over all other tuples. The following example illustrates how

the various cost-relevant factors of a query plan are integrated into a sound cost model.

SELECT FROM WHERE < ORDER BY

Figure.13 Costing blocking and streaming operations. The example shows the costing of three alterna-

tive plans for evaluating the query above, operating on input relation T storing 100.000 tuples. The cardi-

nality |Ri| of tuples exchanged between operators corresponds to the thickness for the connections. Every

operator is annotated with a simple local cost function cL, depending on the number of processed input

tuples |Ri|, e.g. scanning one tuple from T is costing 2 units and scanning T completely costs cL=2|T|. De-

pending on the blocking or streaming nature of a particular operator the cumulated costs for evaluating a

sub-tree are charged to the corresponding accounts. For clarity we examine only one CPU related cost

event.

Local costs cL and the costs for generating input are incorporated into the operator‟s total

costs cS and cB. Plan (a) in Figure.13 reduces the number of tuples early by applying the

restriction first, thereby lowering the costs for projection and sort. Plan (b) applies the sort

operation first. The restriction can exploit the sort order and projection benefits from the

reduced cardinality. Plan (b) is attractive for predicates whose costs per tuple are high relative

to sorting, or for predicates that are able to exploit the sort order for reducing the number of

processed tuples. In certain circumstances plan (b) can be transformed into plan (c), which

eliminates the costs of the sort operation by exploiting presortedness of T.

This cost model still requires some adaptations to be suitable for configurable algorithmic

units. First, it has to embrace the actual configuration of the operator, which was appointed in

the foregoing negotiation process. The configuration of the currently considered operator is

(c)

cS=200.000
cB=0cL=2 |T|

cL=|R0|/10
cS=210.000
cB=0

cL= |R1|
cS=220.000
cB=0

|R0|=100.000

|R1| =10.000stream

stream

cS =200.000
cB =0cL=2 |T|

cL= |Ro|
cS=300.000
cB=0

cL= |R1|
cS=310.000
cB=0

|Ro|=100.000

|R1|=10.000stream

stream

|R2|=10.000stream

 cL= |R2| log|R2|
cS=0
cB=442.877

cS=200.000
cB=0cL=2 |T|

cL= |R1|/10

cS=0
cB=1.860.964

cL= |R2|

cS=10.000
cB=1.860.964

|Ro|=100.000

|R1| =100.000block

stream

|R2| =10.000stream

cL= |R0| log|R0|

cS=20.000
cB=1.860.964

(a) (b)

64 2.4 SUBSTITUTION

implicitly available to the operator‟s own cost function, thus there is no need to pass it as an

explicit parameter. Nevertheless, it must be noted that configuration plays a decisive role in

costing. Configuration relies on applicability requirements, which were demanded by an

algorithmic unit and established during the negotiation process. When assessing the costs of

such a configured algorithmic unit, the cost function will assume that applicability require-

ments are met. However, it may not consider input stream properties that exceed the requested

applicability requirements, e.g. it is not legal to factor a present input sort order into cost

estimation, when this input order is not explicitly enforced through applicability requirements.

Such additional input stream properties are subject to change during further optimization steps

and their influence on previous cost estimations is not visible to the optimizer, leading to

inaccurate cost estimation, based on outdated and invalid assumptions.

Another necessary arrangement is the extraction of the complex calculation of cardinality and

selectivity from the costing process, in order to keep the implementation of cost functions as

simple as possible. We already observed that the boundaries of algorithmic units always

coincide with complete algebraic sub-expressions. Therefore, it becomes possible to calculate

selectivity and cardinalities solely on basis of the algebraic equivalent of a relational operator,

which is independent from any algorithmic implementation. This task can be separated from

the cost calculation process and it is entrusted to one centralized component of the host

system‟s optimizer. This relieves the individual cost function of each operator from the

difficult burden of maintaining statistical information. It also guarantees that statistics are

calculated consistently in one single specialized module. Statistics on the local input streams

and on the output stream are made available by passing the precalculated values as parameters

to the local cost functions. These statistics are used directly for local cost estimation. Only for

extensive algorithmic units, further extrapolation in the local cost function might become

necessary, for accurately associating cost events with individual tasks within the complex

algorithm.

Finally, our concept of a cost function complies with the aspired design goals. Such functions

are provided by every algorithmic implementation. They have to assemble local cost events

and accumulate them with cost events reported by their input streams. For conserving the

overall integrity of the cost model, each individual cost function has to comply with the

aforementioned common definition of cost calculation rules. The complex burden of cardinal-

ity and selectivity extrapolation is handled by a dedicated component of the host system,

which analyses QEPs in algebraic representation on granularity of algorithmic units.

CHAPTER 2: THEORY 65

2.5. Scan Operator

Until now, we have discussed how a host DBMS can find optimal query evaluation plans

when dealing with custom implementations of relational operators. In the following, we will

focus on the leaf operators of retrieval QEPs. They provide actual access to relational data

stored in the database, by generating the input for further processing in the query plan‟s

internal operator nodes.

With relational scans for data retrieval being the leaves of operator trees, only the configura-

tion of their upward exploitation using the -function is of primary importance. Applicability

via the -function is always unconditionally possible. If alternative access paths are availa-

ble, the host system‟s optimizer will eventually choose one access path (index selection

problem), and this decision is based on cost-related considerations or heuristics, rather than on

the strict functional dependencies provided by applicability.

Secondary indexes are redundant data structures for providing an alternative access path to a

stored relation. Unless they are covering indexes, they contain only a projection of the data

stored in their base relation. The optimizer may decide that the most efficient access to a

relation is provided by such a lean index, although the index does not contain all fields re-

quested by the query. In this case, the information retrieved from the index tuples is used to

identify and retrieve the corresponding tuple from its base relation. The base tuple is covering

all attributes, and it will be used to complete the index tuple. This lookup operation of a base

tuple is called materialization. In the algorithmic perspective, materialization is an operator

receiving input from an index and producing output using a scan on the base relation. It

represents the only form of relational scan occurring as internal nodes of a query plan. As for

all internal nodes, its negotiation capabilities comprise applicability, exploitability, and

propagation.

Relational scans are also used for data modification (insertion, deletion, and updates). To this

end, a scan on the relation to be modified is placed at the root of operator trees. The operator

tree supplies the input required by the modification scan, i.e. data for insertion or the specifi-

cation of tuples to be deleted or updated; in the latter case, it will also provide the replacement

data. For this class of scans applicability is essential. It is used, for example, for defining a

preferred order of modification by requesting a corresponding sort order on its input stream.

Exploitability is of no significance for this class of relational scans, since modification scans

66 2.5 SCAN OPERATOR

are always the concluding operations in modification QEPs, and they do not produce any

relational output.

Figure.14 QEPs for retrieval and modification. Scans on relations and indexes are leaf operators in

retrieval queries (a) and (b). They generate the input for consecutive relational operators. Scans may also

be internal operators in a query plan, if materialization (mat) from the base relation is required after an

index access (b). The result of a retrieval query is relational data, i.e. the result set produced by the root

operator of the query. In modification queries (c-e), a scan on the manipulated relation serves as the root of

the operator tree, for performing insert, delete, or update operations. It is fed with relational data required

as input for modification. The result of a manipulation query is not a relation, but an integer number

representing the number of tuples affected by the query.

The granularity of the minimal algorithmic unit for accessing a relation corresponds to the

basic functionality required for a sequential relational scan. For improved interoperability of

this class of algorithmic units, we add functionality arising from the combinatory possibilities

of applicability and exploitability in form of configurable parameters { , , , , }. Al-

though more complex scan operators are generally possible, we will demonstrate that narrow-

ing the scope of a relational scan to this fundamental functionality provides extensive expres-

siveness, rich functionality, and sophisticated interoperability to the resulting compound

operator. We will refer to this class of compound operators accessing permanently stored

relations as scan operators.

In the following, we will briefly discuss the impacts of the different configurable parameters

on the functional scope of access methods, and we will also sketch possible evaluations

techniques for retrieval queries. An in-depth discussion of various access method implementa-

tions, including data modification, integrity, and concurrency will be provided in Chapter 4:

Architecture, followed by an extensive use-case analysis in Chapter 5: Proof of Concept.

(a)

sc
a

n
so

rt
fi

lt
e

r

(d)

in
d

e
x

so
rt

fi
lt

e
r

d
e

le
te

sc
a

n

so
rt

fi
lt

e
r

u
p

d
a

te

(e)

(c)

sc
a

n

so
rt

fi
lt

e
r

in
se

rt

(b)

in
d

e
x

m

a
t

so
rt

S_x S_x S

S

S S

S SR

CHAPTER 2: THEORY 67

2.5.1. Sequential Access

Relations offer full abstraction from internal data representation. Therefore, the functional

requirements for providing access to a relation are minimal: in the Iterator Model, a relation‟s

only task is to traverse its data set and iteratively present one unaltered tuple after the other to

its parent operator. For doing this, there must exist a linearization, allowing the operator to

traverse the stored relation in a way that visits every tuple exactly once. There are no further

demands to this primary linearization; no particular sort order is required, no selections,

projections or other transformations occur. Every visited tuple is output unconditionally and

unmodified. As a consequence there is no impulse whatsoever to exploit any characteristic

features a particular representation of a stored relation might have. This is the primitive

relational scan operator on an arbitrary relation R.

The host DBMS possesses all information required for resolving available access paths to a

relation referenced in a database query, namely the attribute names and attribute types cov-

ered by any primary or secondary access path. This information is available from the system‟s

data dictionary. If multiple alternative access paths are possible, then cost functions or heuris-

tics are applied for finding the most promising query plan.

The estimated costs of pure sequential relational access, which are calculated by the scan

operator‟s cost function, are primarily I/O related. One major cost criterion is the amount of

data to be read for traversing a relation (compactness of representation). For example, an

access path that stores compressed data may outperform another one using uncompressed

representation in mere data retrieval, while incurring higher CPU costs for decompression.

When processing relations by following their linearization, it is important to know whether

there also exists a physical analogon to the logical primary linearization. This will make the

difference between inexpensive sequential I/O and random I/O. In general, access structures

do not actively enforce or preserve physical inter-page clustering when updated, because of

the enormous costs this would inflict. But in practice, most databases are generated via initial

mass loading processes. Such mass-loading often utilizes a preferred insertion order of the

access structure, which generally corresponds to the access structure‟s primary linearization.

Therefore, the bigger part of relations is physically clustered. This clustering is preserved in

read-mostly database applications, where data is not undergoing massive modifications.

Otherwise clustering can be restored using reorganization facilities provided by the access

structures. Hence, the cost of a scan operator performing sequential access correlates with the

68 2.5 SCAN OPERATOR

number of blocks to be read and their classification into sequential or random I/O. Our cost

model expresses these different cost factors as alternative I/O event classes. The actual costs

for events of each class are assessed by the host system, weighted under consideration of the

available hardware resources, actual workload profile, and system configuration settings.

In addition, an access method may actively contribute to the reduction of I/O costs by issuing

block I/O request in a read-ahead/ write-ahead fashion against the DBMS‟s I/O subsystem. A

first positive effect of this strategy arises from the possible combination of several individual

requests into a batch of I/Os. Pooling a sufficiently large set of random I/Os allows reordering

for near-sequential I/O behavior on disk-based secondary storage. Secondly, early scheduling

of I/O operations, ideally well before data must be available for processing, permits overlap-

ping I/O operations with concurrent computational tasks, like decompression or query

processing. Finally, the scan operator may consider the current cache situation by inspecting

or estimating whether pages that are required in the near future are already present in the

DBMS cache. While processing the relation, the scan will make arrangements for avoiding

the replacement of these pages in the DBMS cache. This can be achieved by processing

cached pages immediately, i.e. at the beginning of the scan operation, meaning that data is

processed in an order that is different to the storage structure‟s inherent storage order. If such

ahead-of-time processing is not possible, the scan operator may choose to prevent that re-

quired pages in the system cache are replaced by other operations, before they are processed.

Instead of I/O costs, this operation will incur costs for temporal storage, because these cache

frames are temporarily not available for replacement by other operations. The task of the

operator‟s cost function is to accurately assess the costs events of processing an upcoming

sequential scan operation, by considering its capabilities of employing the techniques de-

scribed above.

2.5.2. Sorted Access

The combination of a basic sequential relational access with a consecutive sort operation

creates the first compound scan operator, which is capable of delivering an input relation

according to a given lexicographical sort criterion .

As already stated, data must be linearized for storage on the linear address space of primary or

secondary memory, i.e. all tuples are stored in accordance to some arbitrary order. Access

paths exhibiting some significant linearization are often characterized as clustering access

paths. If such clustering resembles a lexicographical sort order, this sort order can be ex-

CHAPTER 2: THEORY 69

ploited when the relation is traversed during query execution. In addition to a primary lineari-

zation, data may also exhibit several secondary linearizations. These are maintained by

auxiliary data structures such as chaining of records, or they are derived from the primary

linearization using some functional dependency. Both primary and secondary linearizations

may also allow navigation „backwards‟ through the data, permitting data retrieval in an order

that is inverse to the actual linearization.

SQL‟s data definition language deliberately chooses to provide no indication towards storage

order, as one purpose of DDL is abstraction from the physical data representation. The DBMS

system catalog, which is based on DDL, cannot provide this information either. Therefore sort

orders, like all other configuration parameters, are negotiated exclusively by the access

method‟s exploitability function . This approach provides maximum flexibility for the host

system in requesting arbitrary sort orders.

Figure.15 Linearization and exploitable sort orders. The graphs show two possible linearizations of

space spanned by a relation of two attributes a and b, each having a domain of 8 distinct values. In case (a)

the linearization resembles the lexicographical order . This can be directly exploited in query evalua-

tion. In case (b) the linearization is generated by bitwise interleaving the binary representations of a and b.

Such linearization serves as space filling curve of the UB-tree, and it can only be exploited under consider-

able effort.

If a sort criterion is to be established on the data stream originating from a scan operator,

then this scan operator may choose, in the course of negotiating exploitability, to accept this

sort criteria completely as , whereas . This happens if is compatible with

a present data linearization, because the relation exhibits a linearization based on a lexico-

graphical storage order and is a prefix of this order. Then data needs not to be sorted

conventionally, but it will be accessed in the „right order‟, by exploiting the presortedness of

the access structure. Thus, the access method absorbs the sort operation completely. Inside the

000
001
010
011
100
101
110
111

b

aa

000
001
010
011
100
101
110
111

(a) (b)

70 2.5 SCAN OPERATOR

scan operator, the sort criterion serves as a mere directive how the data is to be accessed. This

simple ordered scan operator relieves the DBMS from actually sorting a relation, offering

massive savings on computational and temporal storage complexity. In addition, the ordered

scan operator is a streaming operator, whereas the primitive sort operation is inherently

blocking.

In less ideal cases (cf. Figure.16 for examples), a sort criterion is not fully compatible with the

available linearization , because linearization and sort criterion are

matching only on a common prefix of attributes. Then the scan operator might still exploit

partial presortedness and establish the demanded sort order by using an inexpensive non-

blocking partial sort .

Some clustered access methods use linearizations that are not suitable for sorted access. These

linearizations favor other functionality over sorted sequential access. In the example of the

UB-tree, the primary function of the employed space-filling curve (Figure.15b) is its ability to

linearize multidimensional space, while preserving spatial vicinity, thus enabling efficient

support for multidimensional range queries. Still, such access methods are well aware of the

eminent importance of lexicographical sort orders in relational query processing, as the

endeavor for sorted operations with the so-called Tetris algorithm ([Mar99b], [Zir99]) on the

UB-tree demonstrates. Such methods integrate seamlessly into the Access Manager model (cf.

5.3 UB-Trees on page 194 for more details). Any scan operator may freely choose whether it

can provide some requested sort order. By accepting a sort order, the access method guaran-

tees that its result tuples are sorted in accordance. There is no commitment whatsoever, as to

how the sort order is actually achieved and the scan operator may employ any sort algorithm

of its choice. The higher costs for providing a lexicographical sort order by means of built-in

reordering has to be reflected adequately in the operator‟s cost function, typically in form of

computational and temporal storage complexity.

Finally, if the relation cannot be accessed along the attribute with the highest weight in the

sort criterion, the scan operator degrades into its original components, i.e. a sequential unor-

dered relation scan and a blocking full sort operation (and). The following

example demonstrates possible outcomes of negotiating sort orders of scan operators.

SELECT a,b FROM R ORDER BY a,b

CHAPTER 2: THEORY 71

Figure.16 Sort order compatibility. Overlapping available presortedness and requested sort order. The

scan operator absorbs the maximum common sort prefix. In (a) the scan operator manages to cover the

complete sort criterion, the original sort operation becomes obsolete. In (b) a prefix matches, the scan

operator result undergoes a final non-blocking sort operation, which relies on presortedness via its applica-

bility directive . Similarly, the UB-tree would absorb and establish this output order by means of its

integral Tetris algorithm. In (c) the sort criterion is not exploitable and the scan‟s result needs to be sorted

with a conventional blocking sort operator.

Exploiting clustering averts costs for applying a conventional sort operation on the scan

result, but ordered scans are not free of costs either. Processing a relation under a full order

constraint can limit and even prevent beneficial strategies, such as prefetching and effective

caching. An ordered scan operator must not start by processing pages that are readily availa-

ble in cache, if these pages are not the first pages according to the sort criterion. Consequen-

tially, these pages are at risk of being replaced, because their cache frames are assigned to

other data, before the scan reaches and processes them. Therefore, the scan‟s order constraint

will incur direct costs by necessitating repeated reading of pages, or indirect costs by blocking

scheduled pages in cache until they are processed, and thereby limiting the number of repla-

ceable cache frames.

When an ordered scan pursues a logical linearization, then the resulting I/O profile is likely to

resemble random I/O, if the logical linearization does not correspond to physical clustering.

Even with prefetching, this effect cannot be fully compensated. When prefetching a batch of n

pages, the I/O subsystem will retrieve those pages in an unpredictable order, determined by

the requested block‟s physical layout on the storage device. Yet, an unordered scan can

process any page immediately as soon as its I/O operation is completed, allowing to subse-

quently release the associated cache frame, which becomes immediately available for other

purposes, e.g. for the next I/O batch. In case of an ordered scan conducted in batches of n

random I/Os, an average of

 pages are completed before the one page becomes available, that

is logically the first one to be processed. In other words, half of a prefetch batch is completed

and its result is retained in the system cache, occupying valuable cache frames, but these

(a) (b) (c)

sc
a

n

so
rt

sc
an

so
rt

sc
a

n

72 2.5 SCAN OPERATOR

frames can neither be processed nor replaced because of ordering constraints. In consequence,

is this leads to poor overlapping of I/O operations and processing of retrieved pages, since

query evaluation starts only when the first logical page becomes available, i.e. processing

begins only after an average of

 pages have been retrieved. This leads to fluctuations in

cache and CPU utilization, with adverse impact on the overall system performance characte-

ristics. Therefore, ordered scans still inflict additional costs over unordered scans, although no

actual sorting is performed.

Contrary to possible performance penalties of sorted retrieval, mass-insertion may benefit

from data being delivered in an adequate order. For example, if the insertion order corres-

ponds to the access path‟s primary linearization, then data insertion is conducted in one single

traversal along the primary linearization, achieving a higher locality and consequently a lower

I/O profile. Access structures can express their request towards a favored lexicographical sort

order by means of applicability directives. But if the desired insertion sort order does not

correspond to a lexicographical order, as it is the case for UB-trees, such a special order

cannot be produced by conventional sort operators in a QEP. In this case, the access method

has either to implement its own sort operation or relinquish this form of performance im-

provement. The UB-tree‟s Tetris algorithm [Mar99b] represents such an integral sort opera-

tion, which exploits a sort order on one single index attribute for fitting data into the lineariza-

tion with inexpensive partial sort operations.

In summary, the ordered scan operator offers a genuinely new feature compared to its primi-

tive components. If the data is structured along an adequate linearization, this operator pro-

vides the concept of a scan position with navigation forwards (and optionally backwards)

relatively to its current position and according to the given sort criterion. This concept is of

fundamental importance for efficient processing of relational queries.

2.5.3. Selection

Combining relational access with selection introduces the concept of direct access to the

resulting scan operator, as opposed to the sequential traversal used in the relational calculus.

The specification of a selection predicate on k attributes of the form is

equivalent to the specification of constant coordinates for positioning in the k-

dimensional space spanned by the domains of the attributes . These kinds of selec-

tion predicates are generally referred to as point queries. If direct access is supported by the

data representation of an auxiliary index structure on relation , this allows answering point

CHAPTER 2: THEORY 73

queries with sub-linear complexity, typically or even , depending on the

actual index structure. If combined with linearization, considerable navigational capabilities

arise, allowing to position the scan freely at any coordinate and then to move forwards (or

backwards) following the space-filling curve traversing the multidimensional space.

The combination of these concepts makes it possible to answer so-called range queries of the

form

 efficiently.

Such predicates define ranges in multiple dimensions spanned by the attributes‟ domains,

resembling multidimensional query boxes. A possible algorithm for processing such query

boxes starts by positioning the scan on the lowest coordinate (relating to a chosen lineariza-

tion) inside the query box spanned by the selection predicate. Then the scan follows the

chosen linearization and returns tuples as long as they are inside the query box. If the space-

filling curve leaves the query box at some point, the scan operator uses its random access

capabilities to position the scan on the next entry point along the linearization. With this skip-

scan-algorithm, which represents a generalization for arbitrary linearizations of the UB-tree‟s

Range Query Algorithm [Mar99a] or the composite B-tree‟s Skipper Technique [Ram02], it is

possible to calculate the result of any given query box. Whether this algorithm is also effi-

cient, depends on the number of necessary skip operations and on the cost ratio for position-

ing compared to the expenditure of sequential scanning. It is also important to note, that the

effective amount of data to be retrieved from secondary storage is typically higher than the

exact volume of the query box, since data is usually retrieved from a block I/O device. Con-

sequently every page contributing to a minimal coverage of the query box has to be retrieved

completely, in order to satisfy the selection predicate.

An alternative to the skip-scan algorithm also starts by positioning the scan at the lowest

coordinate of the query box. But then it continuously scans forward until it reaches the highest

coordinate of the query box. While scanning, all tuples are validated against the selection

predicate and inappropriate data is discarded. In contrast to the first algorithm, this alternative

typically involves more I/O, but it also has a sustained and more predictable I/O profile and

thus may outperform the first variant by employing smart prefetching.

74 2.5 SCAN OPERATOR

Figure.17 Query box evaluation techniques. Three examples for evaluating one query box (dashed box).

In (a) and (b) the skip-scan algorithm is applied on two different space filling curves. In both cases the

amount of retrieved data (dark blue) represents a minimal coverage of the queried data. In (c) the algorithm

chooses to scan sequentially along the linearization, instead of skipping data. An interesting strategy, if

skipping is more expensive then retrieving and filtering extra data.

Whether a scan algorithm employs any of these techniques, or other possible algorithms, is

left to the operator and its implementer to decide. The essential criterion for correctness is the

compliance of the scan output with the selection predicate. If alternative access paths are

available, they must provide sufficiently accurate cost estimations for supporting the query

optimizer in choosing the best access path for a given task.

To match the expressiveness of SQL, we now extend the concept of multidimensional query

boxes. Query boxes are defined as intervals in one or more dimensions, or formally

SQL allows the specification of several such query boxes when accessing a relation and also

permits logical combinations (AND/ OR/ NOT) of such regions. This form of conjunction and

disjunction of sets of multi-attribute range queries in selection predicates is the scope of

selection predicates for index structure implementations anticipated by the Access Manager

framework. The framework does not limit the solution domain for this problem, but it limits

the problem description domain to multi-attribute selection predicates that can be expressed in

conjunctive normal form:

aa

000
001
010
011
100
101
110
111

(a) (b)

b

000
001
010
011
100
101
110
111

(c)

000
001
010
011
100
101
110
111

CHAPTER 2: THEORY 75

This limitation is necessary for providing a well-defined interface for negotiation and for

exchanging selection predicates between host system and custom algorithmic units.

Until now, we silently assumed that an access path can enforce all kinds of restrictions evenly

on all of its fields. This is not true in general. Actually, an access path is likely to provide

direct access capabilities only to a subset of the attributes in its relation, and even for these

attributes the restrictions are enforced with varying quality. The DBMS host system only

knows attribute names and attribute types of a relation from its data dictionary. Therefore it

must use negotiation based on exploitability for identifying those restrictions that are effi-

ciently enforced by the scan operator. Consider the predicate and a B-tree

access path on attributes . Only the restriction on attribute prefix is efficiently

supported by the access structure, while the restriction on is enforced by subsequent

conventional filtering. In this scenario, it seems advisable for the scan only to concentrate on

filtering and to ignore the other restrictions. This means that the scan operator will accept

only the exploitable part of the original selection predicate , while the other part is

rejected, i.e. . In this example
 and

. The result of the

scan operation is then post-filtered in a second step against the rejected predicate, in order to

retrieve the final result set. More generally, the predicate accepted by the scan operator as

serves to efficiently reduce the retrieved tuples to a superset of data satisfying the complete

predicate. In some cases, as in the example above, the predicate of the post-filtering step is

simplified compared to the original predicate, but in general post-filtering will be forced to

test the original predicate completely.

The decision how to split the predicate is made by general negotiation. With this, the algo-

rithmic unit is relieved of supporting every possible kind of predicate and it may also delibe-

rately refuse to enforce restrictions that it cannot support efficiently.

2.5.4. Projection

Integration of projection into the scan operator allows reordering attributes as required for

consecutive operators. Attributes that are not needed afterwards, in particular those that are

only used in the local selection predicate or sort criteria, are eliminated. Projection may lead

to cost reduction by transporting leaner tuples to the next operator. This cost reduction may be

insignificant for streaming subsequent operations, but if a blocking operator follows, it be-

comes highly attractive, because of reduced temporal storage requirements. To compensate

for missing configurable projection capabilities , the query optimizer may always insert a

76 2.5 SCAN OPERATOR

standard projection in form of . Even if the supplementation of projection as configurable

component of a scan adds comparatively little functionality and efficiency to the compound

scan operator, its importance for the coherence of a query plan through elimination of aux-

iliary projections should not be underestimated.

There also are cases, where an integrated projection may directly influence costs and perfor-

mance. If, for example, an access path uses vertical partitioning for storing its data, then a

projection reducing the number of attributes will result in direct reduction of I/O volume and

computational costs, since only the requested columns have to be retrieved. A corresponding

example can be found in section 5.9 Data Partitioning.

2.5.5. Distinction

Distinction is typically implemented to operate on a sorted stream. The actual sort order

is irrelevant for the algorithm, but the sort order must cover all attributes of the tuple stream,

for being useful. This allows direct comparison of the current tuple with its predecessor

 on the stream. Matching duplicates are discarded immediately. If consecutive tuples do not

match, then is output, as it represents a new distinct value, and henceforth it will also

serve as the new reference tuple for comparison against subsequent input tuples. This algo-

rithm is inherently non-blocking, but as it relies on an input sort order, the preceding sort

makes the operation de-facto an expensive blocking operation.

Clearly a much more efficient solution exist, if an existing linearization of a relation can be

exploited. The scan operator can employ a technique similar to the skip-scan algorithm for

circumventing sorting and preserving streaming. Therefore, the algorithm positions onto the

first tuple with respect to linearization, which is also the first representative of a group. In the

following step, the algorithm uses its direct access capabilities to position onto the first

representative of the next group, bypassing all duplicates of the same group. This technique

can be effectively combined with restrictions and projections, as the following example

illustrates.

SELECT DISTINCT a FROM R where b>c0

CHAPTER 2: THEORY 77

Figure.18 Distinction and linearizations. The exploitability of a scan operator makes it possible to exer-

cise projection, selection and distinction directly on the physical data representation. This technique is

interesting, if the cardinality of attribute a is low, since this limits the number of necessary scan reposition-

ing.

2.5.6. Representation

Representation is the final configuration parameter. It enables a relational scan to participate

in a succession of operators exchanging data in non-standard representation. This form of data

exchange offers tight integration of consecutive algorithmic units. It typically comes into

consideration, if the negotiation process yields full exploitability and all other functional

configuration parameters have been absorbed without exception, i.e.

 . If this precondition is not met, then the imple-

mentation of a non-standard connector is required for providing necessary adaptations in non-

standard representation. Finally, if such a non-standard connector is unavailable, then data

exchange has to be conducted in standard representation.

The benefits of using data in non-standard representation as input or output apply also for

relational scans in a most notable manner. The data exchange format is relieved from the

burden of using a predefined, inflexible representation. Operators can freely establish whatev-

er form of communication is most convenient for the task at hand. As an example, imagine a

scan on a bitmap index. The most prominent advantage of bitmap indexes is the compactness

of the bitmap representation, amplified with additional compression. This representation

proves itself not only advantageous for storage, but it is also highly suitable for efficient

intersection and union operations on bitmap structures. Likewise to a bitmap index implemen-

tation, any custom relational scan operator may be accompanied by a family of relational

algorithms operating on the same specialized data representation. The bitmap example will be

pursued in greater detail in the chapter 5: Proof of Concept. A second application will also be

b

aa

000
001
010
011
100
101
110
111

(a) (b)

000
001
010
011
100
101
110
111

78 2.6 CHAPTER SUMMARY

presented in the course of discussing advanced query processing techniques for B-tree and

UB-tree access methods.

2.6. Chapter Summary

In this chapter, we derived the theoretical foundations for a framework allowing general

extensibility of the stash of algorithmic options of a host RDBMS. The main focus lies on

access methods to secondary storage. The design goal was to supplement alternative relational

operators as extensions to an operational DBMS. Intrinsic components of the host system

remain unaffected by these extensions, in particular SQL compiler, query optimizer, and

query evaluation engine. These system components merely issue calls against a uniform

interface implemented by all DBMS extensions. In addition, the host system exports a set of

functions for providing access to diverse DBMS functionality. This architecture provides

substantial flexibility when implementing relational operators, while averting all requirements

for modifications of the host system.

Starting from the general Relational Algebra, we developed a model that allows the provision

of arbitrary alternative algorithmic implementations for ERA expression within the expres-

siveness of the host DBMS. We determined a sensible granularity of equivalent ERA terms

for such algorithmic extensions and presented configurable parameters to ensure interopera-

bility with other components in a query plan. We demonstrated how the host system will

employ configuration of algorithmic units during query planning and presented a generic cost

model to be used in cost-based query optimization.

Finally, we examined the impacts the model of configurable algorithmic units has on relation-

al scans, which are our primary concern. We demonstrated that a minimal relational scan

operator, in combination with functionality that arises from its configuration, opens a wide

range of algorithmic opportunities to exploit peculiarities of the physical representation of an

access method. Therefore, our framework exhibits sufficient flexibility for profound imple-

mentations of auxiliary access methods. The instrument of exchanging data in non-standard

representation between independent operators allow the implementation of families of tightly

coupled relations, indexes and relational operators, tailored for a particular application do-

main.

CHAPTER 3: RELATED WORK 79

3. Related Work

A rich body of scientific publications exists in the field of database system extensibility,

contemplating DBMS customizations from comparatively small scales, like user-defined data-

types and functions, over enhancement of complete DBMS components, like optimizers and

buffer managers, up to building specialized systems from scratch, using predefined building

blocks in „generator‟ or „toolkit‟ approaches. Common to all approaches is the idea of reusing

an existing DBMS code basis and adapt it to a specific application domain.

3.1. Overview

A structured survey of existing work on DBMS extensibility is provided in [Dit01]. Besides

presenting an extensive motivation for extensible database systems, the editors indentify

important goals and also classify existing achievements in DBMS extensibility. They coin the

general notion of CDBMS (component database management system) as a skeleton architec-

ture for DBMSs that allows database users or third-party suppliers to extend a well-defined

core system by adding new application specific functionality in form of components, allowing

customization of the system by highly innovative experts in a given application domain,

which naturally is not always the DBMS manufacturer. On this high level of abstraction, a

component represents a coherent set of functionality, bound into an explicit software artifact

with a formally defined interface. Apart from their interfaces, components function as black

boxes, i.e. their implementation details are unknown. Each component adds either new fea-

tures to the base system, or it serves as replacement for an existing module. In any case,

individual components should exhibit maximal independence from each other, for promoting

their immanent potential for reuse. A priori, the scope of functionality provided by such

components is not limited. They may comprise general concepts like handling custom data

types, integration of non-standard data models, DBMS adaptations in form of functional

extension and replacement of existing DBMS modules, but also „downsizing‟ of DBMS

functionality that exceeds application requirements, and finally management and integration

of external data sources. All these aspects contribute to the overall goal of providing a DBMS

with the flexibility to adapt to a specific applications domain, instead of adapting the applica-

tion to the requirements and capabilities of the database system. A common property of all

CDBMS approaches is that components are extending functionality, while some basic DBMS

framework provides the „glue‟ to integrate these components into a sound system. Hence,

80 3.1 OVERVIEW

such frameworks define and restrict the ways in which the DBMS can be customized, but they

also define the notion and the functional scope of a component. [Dit01] presents several

CDBMS architectures and generalizes them into a formal, structured abstraction of DBMS

extensibility. The remainder of that survey consists of a selection of papers discussing con-

crete approaches and aspects of existing extensible DBMS, some of which have been made

available in commercial DBMS products. Although the book was released in 2001, and some

of its contributions are dating back into the late 80ies and early 90ies, it still reflects the

current state-of-art in DBMS customizability available today. As a consequence, the central

perception from the book‟s foreword still holds, claiming that the presented technologies

“contribute only very modestly to the lofty goals” of the ambitious agenda on DBMS extensi-

bility. We concentrate on the main contributions of the editors, who assemble a quite com-

plete summary of important properties of abstract extensible DBMSs and also devise an

elaborate classification of general approaches to DBMS extensibility. We will employ this

classification for identifying approaches that are related to our own concept and we will use

their criteria for effective evaluation and differentiation of alternative approaches. The afore-

mentioned classification distinguishes four general categories of CDBMSs, namely plug-in

based CDBMS, middleware approaches, service-oriented DBMS, and configurable DBMS.

Plug-in components are unspecific software artifacts that are added to an existing and other-

wise complete DBMS with standard functionality, in order to augment it for a specific pur-

pose. The DBMS provides necessary facilities for hosting such extensions, in form of compo-

nent interface specifications, instrumentation for designing, adding, and testing components

and finally the means to employ such components in suitable operational scenarios. Plug-in

components cover abstract data types (ADT), user-defined functions and stored procedures

(UDF). ADTs are structured types, composed from primitive database types, allowing sup-

plementary concepts like sub-typing and inheritance [Fuh99]. UDFs implement non-standard

functionality and thereby extend declarative SQL with procedural concepts like scoped

variables, loops, branches, and sub-procedure calls. They also allow implementation of

specialized operations and predicates on non-standard data types. When associated with

ADFs, they eventually imitate the general paradigm of object-orientation, including encapsu-

lation and inheritance. Such extensions bridge the gap between an application‟s object-

oriented data types, originating from the application domain, and the limited type system of

classical RDBMS. They are subsumed under the general concept of object-relational DBMS

(ORDBMS). However, these concepts are already well understood, and have been standar-

dized in the third major SQL standard revision [ANSI99] and are ever since prevalent in

CHAPTER 3: RELATED WORK 81

database technology. More sophisticated representations of plug-in components allow custo-

mization of complex relational operators, such as user-defined aggregations. The most ad-

vanced stage of integrating application logic into the DBMS is constituted in customized

access methods, allowing efficient storage, maintenance, and retrieval of data, while preserv-

ing data structure and semantics from the application domain to a large extent. Such advanced

plug-ins often concentrate on function-based indexing, i.e. secondary indexes based on some

user-defined mapping, supporting data retrieval by applying natural predicates on domain-

specific data that are not covered by the SQL standard, e.g. contains() for text documents or

overlaps() for spatial data. After this mapping is applied, data is typically stored in one of the

DBMS‟s built-in index structures, like B-trees, bitmaps, or hash indexes. The possibility to

extend a DBMS with alternative base table structures and entirely new secondary access

structures is usually not supported by available extension interfaces. A common observation

in plug-in component systems is a domino-effect, where extensibility of one module stringent-

ly requires modifications to other DBMS modules, e.g. extensible indexing may necessitate

adaptations to the query optimizer, storage layer, buffer manager, and concurrency control.

Hence, the designers of extension interfaces must decide where this dependency chains are

broken, in order to provide a sound and intelligible interface with a reasonable amount of

flexibility. Secondary design goals are minimization of implementation complexity for new

plug-ins, safe and reliable extensibility without compromising the integrity of the host system,

and finally the prospect of a significant performance benefit is required for motivating plug-in

development. The Access Manager approach clearly qualifies as plug-in component architec-

ture, but it assumes that basic ORDBMS concepts such as ADTs and UDFs are already an

integral part of the host system. In contrast to most other plug-in CDBMSs, its focus lies on

storage and retrieval facilities, but its concept also covers extension of arbitrary relational

operators.

The main focus of the middleware approach is the integration of external data sources, namely

the combination of independent DBMSs into a Multi-DBMS, respectively integration of

arbitrary heterogeneous information systems and other external data sources (files, e-mails,

web), but also transient data such as information on the state of an operational system or a

sustained stream of sensor data. In this approach, extension of a DBMS is accomplished by

middleware components functioning as wrappers of individual data sources, leveling hetero-

geneous data models and concealing the physical location of distributed data sources, and

eventually establishing a homogeneous, location transparent, logical view on the complete

collection of data. With this, heterogeneous data sources are unified by transforming and

82 3.1 OVERVIEW

exchanging data in an intermediate data exchange format, facilitating data integration into

global query processing and transaction management. The unification of data sources also

represents the central challenge of middleware CDBMS architectures, as the individual

capabilities of data sources may vary on a broad spectrum, concerning supported query

languages, data models, transaction capability, concurrency control, etc. As a matter of fact,

middleware approaches are a logical consequence of plug-in components. The transition from

user-defined value functions to user-defined table functions is relatively simple. Table func-

tions produce a result set (table) by iteratively returning one row at a time. If the returned data

originates from some remote data source, then table functions obviously qualify as a middle-

ware component. Nevertheless, table functions are comparatively primitive representatives of

the middleware components, as they provide read-only access and support neither global

query optimization nor distributed transactions. Yet their classification blurs the differentia-

tion between plug-ins and middleware components. Consequently, most plug-in component

systems also incorporate some aspect of the middleware approach. This is also true for the

Access Manager architecture, whose condensed data access interface possesses all relevant

properties for effective integration of heterogeneous, remote data sources. As a consequence,

the Access Manager framework handles internal and external data sources equally on a

location transparent level.

The service-oriented class of CDBMS divides the functionality of a monolithic DBMS into a

collection of stand-alone database services. Here the term component addresses such a data-

base service implementing an „unbundled‟ subset of DBMS functionality, e.g. persistence

services, transaction services, concurrency, query processing, etc. As each service is fully

independent from other services, an application may dynamically compose the DBMS func-

tionality it requires for its own operation, by requesting the corresponding services through

service broker mechanisms. The interfaces of services for a particular purpose are standar-

dized, allowing exchangeability of compatible service implementations. The goal of this

approach is not extensibility or customizability of an existing monolithic DBMS, but rather

the dynamic composition of a DBMS for a specific purpose. CORBAservices [Obj95] are an

example for a standardization of such services by the Object Management Group (OMG). But

besides establishing the basic principles, this approach is of little practical relevance. And as

extensibility is not the primary objective of service-oriented CDBMSs, they share only very

little similarity with our own approach.

CHAPTER 3: RELATED WORK 83

The fourth class of CDBMS consists of configurable DBMS. In contrast to their service-

oriented counterparts, where services are fixed and standardized parts that may be combined

to form a complete DBMS, the components of configurable DBMSs correspond to subsys-

tems, each implementing a subset of DBMS functionality, but neither interfaces nor the

partitioning of functionality is initially fixed. In this conception, an operational DBMS is

entirely composed of such components and there is no framework enforcing interoperability.

There exists however an architecture model, defining the functionality of an individual com-

ponent class. But this model is not fixed, allowing adaptation of component classes to new

requirements and the definition of new component classes. The process of obtaining a func-

tioning DBMS is a configuration process, where the DBMS implementer selects from a set of

reusable components, or builds entirely new components, where each component implements

some aspect of the desired functionality. Configuration allows mixing and matching compo-

nents in such way that they integrate into a sound system. Again, this concept deviates strong-

ly from the Access Manager approach, which is based on a strict framework, with an invaria-

ble host system at its core and a well-defined extension interface with compulsory interopera-

bility protocols.

In the following, we will analyze several concrete examples of relevant CDBMSs, for provid-

ing a more detailed overview of existing technology. Wherever possible we will seize the

opportunity to illuminate similarities and deviations with our own approach.

3.2. Production Systems

In the first part of our survey, we will concentrate on available CDBMS technology in indus-

trial strength implementations, by reviewing several commercial and one open-source system.

3.2.1. Informix

The most powerful but highly complex technology for DBMS extensibility is available in the

Informix Dynamic Server (IDS), which was acquired by IBM in 2001. Since then, IDS

development is pursued in a branch parallel to IBM‟s primary DBMS product DB2, with

particular focus on OLTP and embedded system environments. The IDS supports integration

of DataBlade [Ube94] packages, allowing for extension and modifications on several layers

of the host system. IDS‟s inherent ORDBMS concepts like ADT, UDFs and user-defined

aggregates add to the system‟s ability to adapt to specific application domains. The most

significant parts of the DataBlade technology are the Virtual Table Interface (VTI, [IBM03a])

84 3.2 PRODUCTION SYSTEMS

and the Virtual Index Interface (VII, [IBM03b]), both based on the Iterator model, designed

with focus on embedding external data as „virtual‟ tables into the DBMS. The availability of

these interfaces resulted in numerous DataBlade implementations for external data access, e.g.

C-ISAM, text, image and video, spatial, geodetic, web, GiST (generalized search trees, see

also 3.3.1) and GIN (generalized inverted indexes) integration. It is also possible to use VTI

and VII for internal storage within the system‟s so-called „smart blobspace‟, which is a

dedicated IDS storage area for binary large objects (BLOB) of arbitrary contents. But even for

internal storage, many essential DBMS concepts such as transactional contexts, buffer man-

agement, concurrency, locking, logging, and recovery are not commonly supported. They are

left to the Blade-developer as an almost unbearable burden. VTI and VII offer many neces-

sary concepts for effective development of genuine alternative access methods, but owing to

the primary operational area as gateway to external data, they suffer from missing integration

into the storage, concurrency, and recovery facilities of the host system.

3.2.2. Oracle

Since version 7, Oracle incorporates extensibility support in form of stored procedures within

their database product, and with version 8 the first object-relational Oracle DBMS became

available in 1999 ([Ora02], [Ora03]). This system possesses all typical ORDBMS features,

i.e. an extensible type system and a server execution environment for UDFs. Beyond basic

object-relational functionality, Oracle supports user-defined operators for selection and

aggregation, function-based-indexing, access to external data sources and an extensible

optimizer. The functionality for a specific application domain is provided in form of dedicated

modules named Data Cartridges. A Data Cartridge integrates into the host system via the

ODCI (Oracle Data Cartridge Interface), which is constructed of several components, each

dedicated to a specific purpose. The interface for extensible secondary indexing is based on

the Iterator model and data is stored internally in IOTs (index-organized tables), e.g. by

operating a high-level procedural SQL (PL/SQL) interface. External storage is in principle

possible, but it requires a considerable amount of code effort for maintaining consistency,

backup, recovery, allocation, etc. As a lightweight alternative, the definition of a functional

index on the mapping of column values using a user-defined function, offers lookup and

materialization capabilities of pre-computed values. The concept of Abstract Tables allows

access to external data outside the host DBMS. It provides a permanent reference to remote

data in the system catalog, much like a view definition providing location and credentials for

accessing a remote data source. The actual access is conducted over the Iterator-based ODCI.

CHAPTER 3: RELATED WORK 85

A noteworthy characteristic of ODCI, in comparison to most other approaches, is its provision

for extending the host system‟s optimizer with selectivity and cost estimations for user-

defined operators. In summary, ODCI provides support for user-defined secondary indexing

based on built-in underlying access structures, to be used for functional indexing. Access to

external abstract tables is limited to full table scans and lookup of row ids (RIDs), resulting in

possibly severe performance limitations. Implementation of alternative primary and secondary

access structures is clearly beyond the scope of ODCI.

3.2.3. IBM DB2

In 1995, IBM presented its first object-relational extensions to the DB2 RDBMS, which were

augmented and completed in subsequent releases of the DB2 Universal Database System

(UDB) product. In addition to standard ORDBMS features (ADTs, UDFs, etc.), DB2 also

comprises a framework for extensible user-defined indexing and access to external data

sources. Such specialized functionality is available in prepackaged collections called Extend-

ers, each dedicated to a certain application domain. Among the presented extensible DBMS,

DB2 provides the most elegant indexing framework with respect to implementation complexi-

ty [IBM02a], [IBM02b]. To build a new index type, a programmer has to provide at most four

user-defined functions that are used as hooks in the actual indexing framework operating a

classic B-tree structure [Sto03]. Although tempting in its convenient simplicity, this approach

suffers from its restriction to one single B-tree for indexing. Therefore, this interface is

suitable for functional indexing, but it is not adequate for developing alternative indexing

methods. The convincing usability of this approach motivated the discourse on its usability as

a template for generic functional indexing (cf. section 5.7) in the Proof of Concept chapter of

this thesis.

In addition, DB2 can be coupled with autonomous external information systems (IS), such as

spatial databases, text retrieval systems etc. The system allows maintaining foreign key

references through special user-defines types (e.g. „handles‟ defined by the external IS) to

external data and provides mechanisms to process predicates or retrieve external data by

exploiting these references.

3.2.4. Microsoft SQL Server

The SQL Server possesses all typical ORDBMS functionalities for providing standard exten-

sibility. Apart from this, Microsoft pursues a radically different approach to DBMS extensi-

bility compared to its competitors, which is based on the OLE DB framework (Object Linking

86 3.2 PRODUCTION SYSTEMS

and Embedding for Databases). The SQL Server gains advanced extensibility with its ability

to participate actively in an OLE DB network interconnecting heterogeneous, distributed data

sources.

The OLE DB framework is capable of assembling complex networks of heterogeneous OLE

DB data providers and OLE DB data consumers, possessing highly flexible interfaces for data

retrieval and data manipulation. Interface factoring and dynamic introspection allows each

component to implement that subset of the complete OLE DB specification it finds conve-

nient for modeling its actual capabilities. For example, primitive data providers allow for-

ward-only, read-only access to their data, while complex data provider possess elaborate

query language support for defining fully scrollable and updatable result sets. In addition to

conventional relational navigation through data sets, they may allow hierarchical navigation

(e.g. for navigating along referential constraints between relations) and navigation through

heterogeneous collections of data. Such navigation is typically supported by adequate access

paths that are inherently available as part of the data provider implementation. Data is ex-

changed in a common data representation, equipped by conversion and binding mechanisms,

and enriched with metadata information. OLE DB components embrace the object-oriented

paradigm by enabling the general concepts of encapsulation, sub-typing, and inheritance. In

addition to composition of networks of data providers and consumers, OLE DB devises

services as a third type of middle-tier components, functioning as consumer and provider at

the same time. Services can bridge deficiencies between the capabilities of data providers and

requirements of data consumers, by enabling additional abilities like data caching or relational

querying processing on primitive data providers. Finally, this general approach allows the

SQL Server (and any other DBMS) to function as data provider, but also as data consumer.

The SQL Server‟s internal components also expose OLE DB interfaces, e.g. the relational

query engine and the storage layer. Hence, the relational engine, acting as a data consumer,

may connect to arbitrary data providers, whose individual capabilities may be leveled using

OLE DB services like cursor services, data transformation services (DTS for ETL), OLAP

services etc. OLE DB driver implementations are available for many applications and file

formats is the Microsoft product family. Additionally, generic data providers based on com-

mon DBMS APIs like ODBC or JDBC, allow interconnectivity with all DBMSs conforming

to these standards.

Conceptually, the OLE DB framework is very powerful, but it suffers from its high complexi-

ty, described in what the authors themselves call an “excruciatingly detailed specification”

CHAPTER 3: RELATED WORK 87

(cf. [Dit01], page 172). The recognition of this shortcoming resulted in the specification of the

ADO interface on top of OLE DB, as a tailored abstraction layer for application developers,

hiding much of the OLE DB complexity. Also, in spite of its high complexity, OLE DB is not

complete, as the integration of the Microsoft Search service (file system full text search) into

an OLE DB component necessitated specialized adaptations beyond the scope of OLE DB,

for resolving optimization, indexing and security issues (cf. [Dit01], page 164). The com-

plexity of the interface specification results in high flexibility when composing OLE DB

networks, but it also promotes an important weakness. If one component in this extensive

network fails to comply with the complex specification, data integrity is jeopardized, resulting

in a high potential for instability of the overall system. Also, maintenance and replacement of

individual components in a network may provoke adverse behavior through unpredictable

side-effects.

OLE DB and the Access Manager framework possess several analogies. Any access method

can be seen as a data provider. Access methods may be stacked, i.e. a layer consumes data

from the underlying layer and provides data to the layer above, just like an OLE DB service.

In addition, each layer may choose to inherit, reuse, or overwrite functionality of an underly-

ing layer. Finally, the host DBMS functions as a data consumer, retrieving data from all

connected sources and submits it to query processing. But in contrast to the extensive OLE

DB specification, the lean Access Manager interface is significantly more intelligible. The

main difference however, is the Access Manager interface‟s emphasized support for global

query optimization.

3.2.5. MySQL

Like any other representative of the class of open source database systems, MySQL [Ora10]

(owned by Oracle Corporation) is predestined for customizations of the system, since the

availability of the complete source code allows arbitrary intrusion into the system core. But to

the best of our knowledge, extensions of the indexing framework are not actively encouraged

by the system, as MySQL does not offer a dedicated, explicit, and documented interface for

custom access methods. But in terms of extensibility, MySQL offers a different, genuinely

unique approach. Instead of integrating alternative access methods, MySQL supports the

replacement of the complete storage layer. To date, at least four distinct MySQL storage

systems are available, namely MyISAM, InnoDB, MEMORY, and NDB (Network Data

Base), each with its own set of capabilities with respect to transactional isolation, lock proto-

cols, recovery, partitioning, and in particular with different index methods. The combination

88 3.3 RESEARCH PROTOTYPES

of all storage layers supports B-tree, Fulltext, Hash, and R-tree indexing, but no single layer

implements all four access methods. Hence, for implementing custom indexing methods, a

developer has to attain a deep understanding of the internal workings of at least one storage

layer, but possibly also of adjoining subsystems. This obviously results in a tremendous

implementation and maintenance effort.

3.3. Research Prototypes

In the second part of our survey, we will present promising alternative approaches to DBMS

extensibility that are not openly available in commodity database technology. Still it is likely

that some of these findings have been incorporated into the design of internal interfaces of

commercial DBMSs, serving for structured and systematic proprietary extensibility when new

functionality is integrated into the system core by the DBMS vendor.

3.3.1. GiST

The framework for Generalized Search Trees (GiST) [Hel95], [GiST90] defines the minimal

common interface required for implementing generalized tree-based indexing structures and a

number of such indexing structures have been made available as GiST modules, including B-

tree and R-tree implementations. GiST has been used mainly in research prototypes using

libgist, a stand-alone, file-based GiST implementation. However, all aspects of a surrounding

database system are missing. Although there have been noteworthy efforts for integrating

GiST into a major DBMS, e.g. into Informix Dynamic Server and PostgreSQL [Kor99], and

into Oracle [Kle03], [Döl02], these solutions are not widely accepted. Still, the universality of

this approach [Kor99], [Kor00] together with available advanced concepts like concurrency

considerations [Kor97] or nearest neighbor search [Aok98], makes the available GiST proto-

types interesting candidates for a possible integration into the Access Manager framework.

3.3.2. Starburst

IBM‟s Starburst [Haa89] project (1984-1992) resulted in the prototype of an operational

extensible RDBMS. Starburst possesses an extensible query language (Hygrogen). In addi-

tion, the system is functionally extensible via plug-ins, e.g. relational operators and access

methods called Low-Level Plan Operators (LOLEPOPs), representing algorithmic entities

used by the system‟s query processor. An extensible query optimization mechanism, using

rule-based query graph transformations on the algebraic representation of a query plan

[Pir92], accepts definitions of supplemental grammar-like production rules, called Strategy

CHAPTER 3: RELATED WORK 89

Alternative Rules (STARs) [Loh88]. After a succession of non-terminal transformations using

STARs, the grammar finally maps algebraic query plan operators to algorithmic LOLEPOP

terminals. Both STARs and LOLEPOPs may demand certain properties in order to be applied

in a query plan, e.g. some specific input sort order. Starburst‟s ‘glue’ mechanism establishes

necessary requirements by installing auxiliary operators for permitting STAR transformations.

A query plan composed completely of LOLEPOPs is submitted to cost estimation, before it

eventually qualifies for evaluation. The impact of the Starburst approach is still relevant

today, since it forms the basis of the IBM DB2 query optimizer and query processor. But

unfortunately, in DB2 the flexibility of Starburst is not accessible to database architects,

administrators or users.

On a high level of abstraction, Starburst shows much resemblance with our own approach.

LOLEPOPs correspond to algorithmic entities in our conception, as parameterized, executable

operators for query evaluation. STARs describe the replacement of an algebraic term with its

algorithmic equivalent and the glue mechanism establishes the input requirements of an

algorithmic entity. But in contrast to Starburst, the Access Manager approach does not require

explicit STARs for globally transforming query plans with the intention of applying custom

relational algorithms. It uses the algebraic equivalence pattern only for ensuring correct

substitution. Global query plan transformation and substitution are conducted solely the by

system‟s intrinsic query optimization component. Effective integration of an algorithmic unit

into a query plan is conducted via the cost-driven negotiation process on a strictly local scale.

3.3.3. Garlic

The goal of IBM‟s Garlic [Car95] project was the design and development of an operational

prototype of a wrapper architecture for integration of heterogeneous legacy data repositories

(e.g. RDBMSs, web search, image servers, etc.) into one uniform information system with the

ability of distributed querying across multiple repositories. Its technology is still in use today

in IBM products for content integration. Garlic itself stores no data, except for metadata

describing the attached repositories. Data residing in repositories is organized in collections of

objects, based on an object-oriented data model. The elements of each collection are described

using the custom object definition language GDL (Garlic Data Language), which is based on

ODL (Object Definition Language) of the Object Database Management Group (ODMG,

[Cat00]). In this description, each object is assigned to a class of objects, each having descrip-

tive attributes and exporting an optional interface. In addition to this abstract data model,

Garlic possesses a standard data representation for primitive data, which is used for parame-

90 3.3 RESEARCH PROTOTYPES

ters and results of object method invocations, in particular in the object attribute get/ set

methods. Garlic‟s design is particularly interesting, as it emphasizes query optimization

aspects, while other approaches concentrate on mere data integration. Instead of demanding a

declarative specification of the capabilities of each data source, or by forcing all data sources

to implement standardized functionality, Garlic wrapper implementations participate actively

in the query optimization process. Therefore, the Garlic optimizer [Haa97] provides a wrapper

with a generic work request, representing the largest possible plan fragment from a multi-

repository query, that may be dispatched to one individual repository. The wrapper may

partially decline or accept the work request, by responding with one or more query plans

representing those parts of the original request that are corresponding to the repositories

capabilities. The wrapper may also annotate these plans with costs, statistical information

(cardinality of result), and result set properties like sort order (details in [Tor99]). Based on

these estimations, the cost-based Garlic optimizer will eventually choose one of the proposed

query plan fragments for integration into the global query plan. Declined portions of the

original work request are compensated by performing the necessary operations inside Garlic,

after retrieving the data from the repository. This solution permits rapid development of

wrappers with a low initial complexity by dynamically exploiting the effective capabilities of

the wrapper. Initially simple wrappers may evolve over time, as each new release may accept

more complex work requests, until the specific capabilities of a repository are sufficiently

represented.

Similar to Starburst, the Garlic optimizer is based on transformation rules following the

STAR approach [Loh88]. Depending on the capabilities of a wrapper, the optimizer may issue

work requests describing accesses to single collections, including predicates and projection

directives, but also grouping and aggregation, joins for two or more collections residing in the

same repository, and finally arbitrary plan fragments limited to one repository. Therefore, the

Garlic approach qualifies for iterative bottom-up query optimization based on dynamic

programming and pruning [Sel79]. In the resulting tree-structured query plan, plan fragments

generated by wrappers always show as more or less complex leaves, each modeling access to

one or more collections residing in the same repository. The inner parts of global query plans

consist of Garlic operators compensating for missing query capabilities of individual reposito-

ries, but also of joins performed on data originating from different repositories. Again, query

evaluation is based on the Iterator model, as a partial plan is processed by iteratively retriev-

ing result rows from the wrapper component.

CHAPTER 3: RELATED WORK 91

Besides the obvious similarities between Garlic and the Access Manager framework, where

both approaches lend themselves to query optimization and implementation complexity

depends on the capabilities of a data access component, there are several important differenc-

es. Most significant is Garlic‟s restriction to read-only access to repositories, while the Access

Manager allows transactional and fully consistent retrieval and manipulation of data, while

upholding location transparency. Garlic uses a repository centric approach to query optimiza-

tion, where a plan fragment is ascribed to one repository and details of a query plan like exact

specification and chronology of applied transformation on a remote repository are not visible

to the Garlic optimizer. Consequently, Garlic cannot support secondary indexes residing

outside of the repository housing the base data source, nor has it control over index selection

within a repository. The Access Manager optimizes queries in an access path centered ap-

proach, where access paths to the same base relation may reside in different access modules

and also transparently on different sites. Custom operators, especially data access related

operators like manipulation and materialization, may appear throughout the global query plan,

intertwined with standard operators from the host system. The Access Manager approach

consciously distinguishes between primary and secondary access path candidates, using a

customizable cost model for its final decision. This cost model requires only cost information

from a data access module, while a Garlic wrapper might be forced to maintain and supply

statistical information like cardinality and selectivity for supporting the Garlic optimizer.

Finally, the Access Manager is integrated into an operational RDBMS, whose own local data

repository is expected to participate in most transactions, while Garlic accesses only remote

repositories, storing no data of its own.

Hence, Garlic uses a distributed approach to query optimization, where every repository

optimizes its private plan fragment, whereas the Access Manager promotes global optimiza-

tion. This global optimization ultimately puts the Access Manager framework in the position

to manage read/ write access and maintain consistency across distributed secondary access

paths to some relation. Yet, this approach has not only advantages, as Garlic‟s concentration

of read-only access into the leaves of its query plans enables joins across collections residing

in the same repository, a feature that cannot be emulated with basic Access Manager assets

(cf. 4.6.2 Data Integration Layer on page 179 for an approach for relocating arbitrary rela-

tional transformations to remote repositories).

92 3.4 DISCUSSION

3.4. Discussion

The foregoing survey demonstrates that certain concepts are recurring frequently in alterna-

tive approaches to DBMS extensibility. In particular, the Iterator model is the preferred

method of query evaluation for extensions, reappearing in different flavors, from simple

sequential full-table scans, over lookup of row identifiers, to evaluation of predicates and

other relational expressions. Yet among all presented approaches, the customization of rela-

tional scans in the Access Manager is unrivalled in its completeness and its tight interaction

with the query optimizer. A strong focus on query planning in related approaches is stunning-

ly rare, although it is obviously the key for effective employment of DBMS extensions in

performance-critical environments. Query planning must happen on a reasonably fine level of

detail, including important optimization concepts like index selection, subsequent materializa-

tion, and efficient index maintenance. Moreover, most extensions to monolithic DBMSs are

subsequently mounted as fairly isolated attachments to the existing systems. This approach is

often justified with concerns that plug-ins might compromise system stability and integrity,

which admittedly are properties of paramount importance for information systems. Yet,

obstructing access to crucial DBMS services such as transaction management, persistent

storage layer, buffer management, locking, and recovery accomplishes a counterproductive

goal. Every plug-in has to laboriously re-implement this functionality, resulting in a tremend-

ously increased complexity and probably poor interoperability with host system components

and other plug-ins. In our conception, facilitating plug-in development by providing recurring

standard functionality and encouraging reuse of existing plug-in components is the best

approach to achieve a consistent and responsive overall system. In case of transaction man-

agement, such integration is actually the only way to obtain a sound system, capable of

maintaining data integrity over a diversity of external data repositories.

Access Manager Framework will prove that it provides unrivalled extensibility by accommo-

dating plug-ins via a lean, universal, and adaptive interface. Although intrinsic components of

the host system are neither extensible nor replaceable, their behavior may be influenced

though convenient interfaces. Access to these internal components also allows reusing these

components‟ functionality for recurring tasks and thereby achieves a tight integration of plug-

ins into the host system, facilitates and accelerates plug-in development, and averts malfunc-

tioning by reusing mature functionality provided by the host system. In addition to plug-in

extensibility, the Access Manager also qualifies as middleware approach, since it allows

location transparent access to arbitrary data sources by dynamically adapting its general-

CHAPTER 3: RELATED WORK 93

purpose interface to a particular data source‟s capabilities. As a consequence, distributed

query processing becomes possible, and the Access Manager‟s global optimization ensures its

effectiveness.

The Access Manager approach is neither service-oriented, nor provides it extensibility accord-

ing to customizable DBMS approach. The host DBMS represents a functionally sound and

highly integrated system. We believe that such a system cannot be decomposed without

sacrificing system integrity, stability, and performance.

In the following, we will present in detail how the Access Manger achieves the claimed goals,

by surveying its interface specification and discussing its prospects towards extensibility,

anticipated performance, and provisions for supporting plug-in and application development.

CHAPTER 4: ARCHITECTURE 95

4. Architecture

Our approach towards DBMS extensibility is based on the Access Manager interface, which

is presented in this chapter. Its design focus lies on simplicity and usability, making extension

of a DBMS with user-defined access methods fairly easy, as the initial implementation com-

plexity for simple access methods is low. Reuse of existing components is strongly encour-

aged when embedding a new access method into the host system, allowing rapid development

by avoiding the necessity of time-consuming and error-prone re-implementations. Basic

functionality is founded on a small and comprehensible set of interface routines and a simple

and intelligible protocol. As a secondary design goal, the Access Manager interface allows

thorough integration and efficient operation of new access methods inside the host system,

while providing a high degree of flexibility for necessary adaptation of the host system to the

specific requirements of a particular access method. This goal is achieved via specification of

several optional Access Manager interfaces, permitting advanced operating modes for sophis-

ticated access method implementations. This opens the possibility to start off with a simple

implementation of an access method, by implementing only mandatory interface routines.

Afterwards, the access method can be selectively enhanced through implementation of op-

tional Access Manager interface routines, until the access method supports all necessary

operations that correspond to its functional scope. Finally, each access method has a signifi-

cant degree of control over performance-relevant behavior and strategies of some selected

subsystems of the host DBMS. By actively influencing the host system, an access method will

adapt the host system‟s behavior to its specific needs and thereby improve the tightness of its

own integration. During this iterative implementation process, the complexity of an access

module will evolve as functionality is added and tighter integration is attempted.

4.1. Layered System Model

In the following, we will provide an overview over all layers of the host DBMS that have to

be adapted for affiliating custom access methods. We will also discuss non-standard DBMS

interfaces, necessary for providing extensibility and for allowing thorough and unrestricted

integration of new access methods. The interrelations of the various subsystems of the host

DBMS are demonstrated by an in-depth inspection of the life-cycle of a custom access me-

thod.

96 4.1 LAYERED SYSTEM MODEL

An access method possesses a tuple-oriented interface, which is operated by the host DBMS‟s

query processor according to the Iterator model. The access method itself is usually founded

on the page-oriented interface of the host system‟s buffer manager and storage layer. The

storage layer provides access to the system‟s sophisticated I/O facilities, including prefetching

and asynchronous I/O capabilities, priority queues, and scatter/ gather I/O. This I/O subsystem

is complemented with a powerful data caching facility, implemented in the host system‟s

buffer manager. Interfaces to these subsystems allow active control over I/O strategies and

caching policies. In addition, the storage layer provides access to valuable functionality in

form of intrinsic locking and concurrency mechanisms. It also enforces transactional consis-

tency and isolation and possesses logging and recovery functionality. All these complex

DBMS features are fundamental for the implementation of expedient access methods. They

are readily available as a service on page granularity, provided to all custom access modules

based on the host system‟s built-in storage layer.

Figure.19 Classical layered DBMS architecture and the Access Manager. The Access Manager‟s pri-

mary purpose is to provide a tuple-oriented Iterator interface towards the query processor. Another inter-

face is provided to the query optimizer for configuring and costing access methods. The Access Manager

uses the buffer manager‟s page-oriented interface for accessing and manipulating pages and for controlling

caching of individual pages. In addition, the Access Manager has to interface the host system‟s storage

layer for directly influencing block I/O on persistent memory. Finally, optional interfaces of secondary

importance are provided to the system‟s locking and transaction managers.

The Access Manager encapsulates all access methods available in the system, such that no

direct interfaces to other system components exist. Therefore, access methods may only

Storage Layer

Lo
ckin

g

Disk

Relations, Views,
Relational Algebra,
Access paths, Costs
Tuples, Operators,
Search Structures

Pages, Segments

Set-oriented
interface

Record-oriented
interface

Page-oriented
interface

Storage interface

Layers Components Entities

Blocks, Files

Buffer Manager

Query Processor

Optimizer

Compiler
Data

Dictionary Tra
n

sa
ctio

n
sAccess Manager

CHAPTER 4: ARCHITECTURE 97

interface each other and use the Access Manager as a gateway to other host system compo-

nents. The Access Manager embraces the host system‟s built-in access methods, making them

available as building blocks for new access methods. The B-tree structure is the ubiquitous

example for search structures in database technology. It relies on the page-oriented interface

of the storage layer for retrieving data from pages stored persistently on secondary memory. It

possesses a tuple-oriented interface for providing sets of data tuples, to be used by the query

processor. Access methods mapping pages to tuples represent the class of full access methods.

Implementing full access methods from scratch is a laborious venture, therefore the Access

Manager allows to reuse functionality from existing access modules when implementing new

ones. As an example, consider an access method using one or more auxiliary B-tree structures

for storing and retrieving data. A full-text index may be implemented using several classical

B-trees, where one tree is used as the actual index structure, containing information on occur-

rences and positions of words in the indexed documents. A second B-tree contains a list of

words that are insignificant for searches or frequently recurring words which are to be ignored

by the index (stop words). A third B-tree provides mappings for word stemming. Such a full-

text index implementation, based solely on the tuple-oriented interface of another full access

module, is a representative of the class of intermediate access modules.

Figure.20 Types of access method implementations. The Access Manager encapsulates all access me-

thods, while providing interfaces to the relevant parts of the host system. The diagram shows five different

types of access methods, represented in vertical sections. (a) represents built-in full access methods imple-

mentation that are implanted into the Access Manager framework. (b) represents a supplemented full

Storage, Network,
Services

Built-in Storage Layer

Buffer Manager
Storage

Layer

Disk

Core DBMS

(a)

Extensions

(b) (c)

Built-in
Access

Method

Built-in
Access

Method

Full Access
Method

Built-in Full AM

Intermediate

Built-in

Hybrid AM

Data
Integration

Layer

Access Manager

Query Processor

Optimizer

(d) (e)

Segments

Access Manager

Costs &
Configuration

98 4.1 LAYERED SYSTEM MODEL

access structure. It also provides a mapping from the page-oriented storage layer to the tuple-oriented

query processor. (c) is a lean intermediate access method implementation, relying on the tuple-oriented

interfaces of one built-in and one custom access method. (d) shows a hybrid access structure, using the

page-oriented built-in storage layer for persistent storage, but also an auxiliary access method‟s tuple-

oriented functionality. Independently from the hybrid access structure (d) also demonstrates the integration

of a custom storage layer. (e) depicts a data integration layer accessing remote data outside of the host

DBMS.

Another example for the class of intermediate access methods is the UB-tree, enhancing the

classical B-tree technology for providing efficient access to multidimensional data. This is

accomplished by a functional mapping of all indexed attributes (dimensions) to a suitable

multidimensional address, using a bit-interleaving technique. The result of this process is a

relation with one additional attribute with a strong functional dependency to all indexed

attributes. This attribute is then used as the sole key attribute of a classical B-tree structure.

The basic search and storage functionality of the B-tree module remains unaffected, but it is

controlled by a lean intermediate UB-tree layer, providing the necessary functionality for

advanced handling of multidimensional queries. These approaches to full-text and UB-tree

indexing technology, based on an existing B-tree module, dramatically reduce implementation

complexity, while the resulting intermediate layers offer significant new functionality com-

pared to the technology used to implement it. We will pursue this approach in greater detail in

the upcoming Proofs of Concepts chapter. Finally, it is also possible to combine the two

aforementioned concepts for implementing hybrid access structures. These structures store

data on pages provided by a page-oriented storage layer, i.e. they are full access structures. In

addition, they employ auxiliary access structures based on existing access modules for effi-

cient lookups, enforcement of data integrity constraints, or other supplemental functionality.

An example, where a simple linear access path, organized as linked list of pages, is aug-

mented with an auxiliary structure for obtaining look-ahead capabilities for exploiting the I/O

system‟s prefetching facilities, is also provided in the Proofs of Concept chapter.

The Access Manager interface defines and publishes the page-oriented interface and seman-

tics of the host DBMS‟s built-in storage layer. This storage layer serves as a common basis

for custom access method implementations. But the availability of the interface definition and

semantics may also serve for a second purpose. It offers the opportunity to allow custom

storage layers, implementing the given storage interface. Such custom storage layers may

serve as alternative to the built-in storage facility, tailored for particular access methods or

storage hardware. Implementing a new storage layer is a highly intricate task and its benefits

CHAPTER 4: ARCHITECTURE 99

are questionable. The same is true for the integration of existing storage layers, such as those

discussed in 3.2.5 MySQL. The general possibility of implementing or integrating custom

storage layers using the Access Manager interface is mentioned here merely for the sake of

completeness.

Of higher practical relevance is the incorporation of a data integration layer into the host

DBMS. This layer provides a tuple-oriented interface towards the host system, while access-

ing remote data stored outside the DBMS. External data is registered within the database

schema as ordinary relational table definitions, composed from standard SQL data types and

without further indications that the data is not stored locally. Only when the data is actually

accessed, the requests are delegated to the integration module, which is responsible to provide

access to the remote data source. Depending on the capabilities of the integration module,

such a relation may offer coherent access to remote data, i.e. reading and writing within a

transactional context, while upholding location transparency. The full integration into the

database schema allows also for creation and automated maintenance of internal secondary

index structures on external data. Data sources may be local storage devices, or files storing

data in a proprietary format, different from that of the DBMS storage layer, e.g. relational data

in structured text files (CSV), XML documents, and other data sources. But the integration

layer may also access remote services and data sources, for example a remote database server.

With a collection of data integration layers, it becomes possible to create a uniform relational

view over a network of interconnected heterogeneous data sources.

This form of data integration exceeds the flexibility of primitive table functions accessing

remote data by far, since its approach to global query optimization offers query planning

capabilities close to those of a homogeneous federated DBMS. Negotiation and configuration

of remote table accesses allow relocating configuration directives to remote systems. This

includes moving restrictions to a remote system, in order to reduce the data transfer. But also

global optimization of sort orders and projections offer massive savings compared to the

limited possibilities of table functions. But most important, global cost-driven optimization

allows active and effective manipulation of the join sequence. Details on alternative storage

layers will be addressed in section 4.6 Data Integration.

The primary advantage of this component-oriented architecture, where all access methods

implement identical interfaces, is the aforementioned flexibility arising from the possibility of

arbitrary recombination of all available building blocks. On the other hand, it is not always

possible to force different access methods into identical interfaces. Such a one-size-fits-all

100 4.1 LAYERED SYSTEM MODEL

interface is bound to be highly complex. Implementing a superset of strictly required interface

functions contradicts the design goals for rapid prototyping and the tight coupling of imple-

mentation complexity and prototype functionality. Therefore, the Access Manager interface is

constructed as a lean mandatory interface, augmented by additional optional interface rou-

tines. The following Figure.21 provides an overview over the tuple-oriented part of the

Access Manager interface, the access method interface.

The compulsory part of the access method interface comprises all routines required for pro-

viding the functionality of a relational operator conforming to the Iterator model. As any other

relational operator, an access method can be opened, iterated, and closed. It also possesses all

means required for its configuration and cost assessment during query optimization phase.

Finally, it provides interface routines for access path creation and deletion. Only these last-

mentioned aspects of an access method‟s mandatory interface exceed the functionality re-

quired for a common relational operator.

Figure.21 Composition of the tuple-oriented access method interface. Complete overview of the tuple-

oriented access method interface, classified into its diverse tasks. The compulsory interface routines (in

bold print) provide the functionality required for the Iterator model in query execution, and instruments

used for negotiation during query optimization. The optional interface routines cover data manipulation

assets, efficient alternatives to compulsory routines, call-back hooks for transactional transitions, and some

administrative functionality.

Create
Open
Next
Close
Drop
Apply
Exploit
Propagate
Cost
Previous
Reset
Suspend
Insert
Delete
Update
Alter
DefineSavepoint
ApplySavepoint
Begin
Prepare
Commit
Abort
Check
OnLoad
OnUnload

Begin
Prepare
Commit
Abort

Manipulation TransactionsIterator Administrative

Insert
Delete
Update
Alter
DefineSavepoint
ApplySavepoint

Create
Open
Next
Close
Drop

Previous
Reset
Suspend

Check
OnLoad
OnUnload

Interface

Apply
Exploit
Propagate
Cost

Negotiation

CHAPTER 4: ARCHITECTURE 101

Interface routines for data manipulation are optional, and the absence of their implementation

indicates explicit read-only access methods. For implementing fully operational data manipu-

lation, the presence of implementations of Insert() and Delete() routines is functionally

sufficient. The remaining optional interface routines serve mostly for efficiency purposes.

They provide a shortcut or an inexpensive alternative for calling an expensive sequence of

compulsory interface routines. For example updating a tuple with the optional Update()

routine can be simulated with the deletion of the old tuple, followed by insertion of the new

one. Other optional interface routines provide efficiency by means of graceful fault recovery.

The SQL standard demands that data manipulation is an atomic operation. If a dynamic error

is encountered during manipulation, e.g. an integrity constraint violation, arithmetic overflow

etc., then the complete manipulation has to be undone. The coarse method is to abort the

enclosing transaction, which certainly satisfies SQL‟s claim for atomicity. But this approach

has the drawback of revoking work that already has been completed successfully by preceding

operations within the same transaction. As an alternative, the Access Manager will use the

optional savepoint feature of an access method implementation, for providing the required

fault tolerance. The interfaces addressing transactional transitions are call-back hooks, in-

forming an access method about changes in the present transactional context. We will demon-

strate that they are not required in standard access method implementation, but they are useful

under specific circumstances. A detailed discussion of the functionality of the remaining

optional interface routines will be provided in the course of following section.

The decision of using compulsory or alternative interface routines is made by the Access

Manager in accordance to a strict interface protocol, which is part of the Access Manager

specification. The decision is based on one simple assumption: if an optional interface is

implemented, then it will be used, as it is considered superior to the „normal‟ way of opera-

tion. When access modules call routines of other access modules, as intermediate access

methods do by directly calling their auxiliary access methods, they are bypassing the Access

Manager framework. For these direct calls, there is no instance involved for enforcing the

mentioned protocol for optional routines. Still, intermediate access methods should follow the

interface protocol, because an auxiliary access method implementing optional interface

routines expects that these routines are used. An intermediate access method ignoring the

interface protocol will still function correctly, but it may suffer from inaccurate cost estima-

tion, since the cost function of an auxiliary access method silently assumes the use of optional

routines when assessing the costs of a planned operation (e.g. update vs. delete/ insert). Only

the strict compliance of all partaking access modules to the interface protocol will ensure a

102 4.1 LAYERED SYSTEM MODEL

consistent and predictable behavior of the overall system. As a direct consequence, an inter-

mediate access method strictly following the Access Manager protocol is able to exchange

underlying auxiliary access methods without any further adaptations of its own code basis,

since every replacement supports the Access Manager protocol, even if it implements a

different subset of the optional interface.

The page-oriented storage layer interface (Figure.22) has a similar design, consisting of

mandatory and optional routines. The primary purpose of its compulsory interface routines is

to provide page-oriented storage facilities. Besides persistent storage, it also offers extensive

influence on the buffer manager‟s page caching strategies, with its ability to deliberately and

selectively retain pages in cache. In contrast to the tuple-layer, the storage layer incorporates

mandatory transactional interface routines, controlling transactional consistency of access

methods constructed on top of this layer. In addition, it offers control over the host system‟s

locking facilities on page granularity, as every page access is attributed with a lock type (read/

write/ exclusive). The subset of optional interfaces is limited to functionality for the savepoint

feature on page granularity and some administrative functionality to be discussed later. With

its built-in storage layer, the host system housing the Access Manager framework provides a

complete and fully operational implementation of the storage layer interface.

Figure.22 Storage layer interface. This lean interface comprises all functionality required for page-

oriented persistent storage, and in particular, it provides control over the host system‟s buffer manager,

which is an integral component of the storage layer, and operates via side-effects of the page access rou-

tines. In addition, the interface integrates access methods with the host system‟s locking and transactional

consistency services.

OnLoad
OnUnload

CreateSavepoint
ApplySavepoint

Create
Open
AllocPage
FixPage
UnfixPage
DeletePage
Close
Drop
Begin
Prepare
Commit
Abort
CreateSavepoint
ApplySavepoint
OnLoad
OnUnload

Begin
Prepare
Commit
Abort

Storage Transactions ManipulationBuffers Administrative

Create
Open
AllocPage
FixPage
UnfixPage
DeletePage
Close
Drop

AllocPage
FixPage
UnfixPage
DeletePage

Interface

CHAPTER 4: ARCHITECTURE 103

The tuple-oriented interface routines described in Figure.21 are routines to be implemented by

external access methods for integration into the host system. The Access Manager, as a

component of this host system, is responsible for operating these interface routines, thereby

enabling the host system to use custom access methods. The access methods themselves may

only call tuple-oriented interface routines of other access methods, or use the storage layer

interface as a gateway to the page oriented storage facilities. Hence, an access method is fully

encapsulated within the Access Manager framework, having no direct influence on other

subsystems of the host system. In addition to the storage layer, the Access Manager comprises

auxiliary interfaces to some other selected host system components. These interface routines

are combined into the narrow system utility interface (Figure.23).

Figure.23 System utility interface. Additional gateways for access methods to useful host system facili-

ties. They offer direct access to error handling and reporting, fine-granular locking based on the system‟s

lock manager, construction of tuples in standard representation and provision of tuple identifiers (TIDs) for

efficient secondary indexing.

The most important among these interfaces is the gateway to the host system‟s centralized

error reporting system. The Trace() method is called for indicating error situations and

warnings. It allows issuing descriptive textual messages to be displayed to the database user

or to be inserted into the host system‟s event log. An access method may implement fine-

granular locking by utilizing the host system‟s intrinsic lock manager implementation via its

public Lock()/ Unlock() interface. With ConstructTuple() the system implements a

central routine for constructing tuples in standard representation. Finally, the interface con-

trols a facility for generating artificial tuple identifiers (TIDs), a compact surrogate for con-

ventional primary keys, used mainly for tuple identification in secondary indexes. The pur-

pose of this set of interface routines is tighter integration and further reduction of implementa-

tion complexity of new access methods, by supplying reusable utility functionality.

The remainder of this chapter will describe the routines of the three presented interface

families in more detail and demonstrate how they collaborate according to a strict protocol,

for providing the functionality of the Access Manager framework. Therefore we will proceed

Locking Representation RowIDsError Handling

GetTID
SetTID
FreeTID

Interface

Trace
Lock
Unlock
ConstructTuple
GetTID
SetTID
FreeTID

Trace
Lock
Unlock

ConstructTuple

104 4.2 BUILT-IN STORAGE LAYER

bottom-up, starting with the storage layer interface which is implemented by the host system‟s

built-in storage layer and serves as foundation for most access structures.

4.2. Built-in Storage Layer

As part of the Access Manager specification, the host DBMS provides a page-oriented inter-

face to the host system‟s built-in storage facilities, implementing the Access Manager‟s

storage layer interface (cf. Figure.22, page 102). This storage layer is a key service of the host

DBMS in providing reusable functionality and thereby relieving the access method implemen-

ter from recurring implementation tasks. Besides plain persistent storage services, the storage

layer also encapsulates caching functionality on page granularity, including the possibility of

actively influencing cache frame replacement strategies. In addition, every access to a page

can be optionally attributed with a lock type. These page accesses are automatically recorded

by the system‟s intrinsic lock manager for enforcing a convenient locking mechanism on page

granularity. The combination of the host system‟s caching and locking facilities to a multi-

version concurrency control on page granularity allows any access method implementation to

benefit from a readily available low-contention concurrency protocol. If page accesses are

attributed with locks, then concurrency on page granularity is controlled by the host system.

Therefore it generates and maintains multiple versions (copies) of database objects, as re-

quired for supplying concurrent transactions with the correct versions. Finally, the storage

layer provides extensive and fully transparent recovery functionality. With this, the host

system is in the position to restore the database state at the beginning of a transaction, without

the requirement of any supporting functionality in the involved access modules. In addition,

the host system possesses sophisticated undo functionality of individual DML operations,

which is required, if data manipulation fails. The SQL standard demands such atomicity of

data manipulation. This functionality is subsumed in the so-called savepoint feature, allowing

the storage layer to restore the database state at the starting point of data manipulation, with-

out aborting the enclosing transaction. In order to function, the savepoint feature has to be

supported by all access modules participating in a DML action, by implementing a relatively

simple protocol. The bulk of the savepoint functionality is then provided by the storage layer.

This combination of the storage subsystem services achieves compliance with the ACID

paradigm in its claims for atomicity, consistency, isolation, and durability on page granularity.

Only arrangements for guaranteeing consistency in manipulation of data structures con-

structed on top of the storage layer fall into the functional scope of corresponding access

CHAPTER 4: ARCHITECTURE 105

method implementation. These important ACID assertions of the storage module are achieved

by following an intelligible and simple protocol when using the storage layer interface.

4.2.1. Storage

A DBMS organizes its data in units of one or more files of considerable size (cf. Figure.24).

Alternatively, it is also possible to use other extensive physical storage units like partitions or

even complete devices. We refer to such physical storage units as extents. Which type or

combination of types of extents is actually used, is ultimately irrelevant. The DBMS storage

system conceals these storage allocation details and provides a uniform, contiguous address

space, whose size corresponds to the concatenation of all available storage assets. This sto-

rage area, which can be subsequently extended by adding extents, represents the physical

address space available to the DBMS for persistent storage. The arrangement and utilization

of these physical storage units are important means for physical database schema design. For

example, it is possible to increase storage throughput by partitioning data on independent

physical devices. Alternatively, access times decrease when related data is closely clustered

on one storage unit. Regardless of the configuration of storage units, the logical DBMS

schema remains independent from such physical considerations.

The address space is then partitioned into pages of equal size. Each page represents a closed

interval of consecutive addresses, which is identified by a unique consecutive number, the

page number. Each page has a page header, a small administrative storage area at its begin-

ning, while the remainders of the page are used for arbitrary storage purposes. Data stored on

one page is retrieved or written as one logically atomic I/O operation. Consequently, the

typical page size corresponds to the amount of data the underlying hardware processes as one

physical block I/O operation, i.e. a logical page corresponds to one or more physical blocks.

Data is also maintained in page-sized fragments by the DBMS caching facility, and finally,

pages represent an opportune granularity for administering concurrency for parallel operations

by page-wise locking data for shared and exclusive operations.

106 4.2 BUILT-IN STORAGE LAYER

Figure.24 Storage units on different layers. The DBMS may use various assets for providing physical

storage space, e.g. devices, partitions, or files. The system‟s storage layer provides a uniform view on the

complete storage area as one consecutive address space. This space is subdivided into equal-sized pages,

such that one page corresponds to one or more physical blocks of the underlying device, thereby providing

manageable memory fragments. Collections of pages are combined to segments, each representing one

access path. The storage manager maintains the assignment of each page to its segment by recording the

page number of the associated segment‟s initial page in every page header. The logical structure of an

access path is modeled by pointing to other pages of the same segment by referencing pages numbers in-

side a page‟s data area.

Individual pages are combined into larger logical storage structures. Such collections of pages

are called segments. Segments are the storage entities containing relations. Every access path

is stored in a separate segment, i.e. every base relation but also every secondary index is

stored in a dedicated segment.

Initially all pages in the DBMS‟s address space are in the pool of free pages. They are not

assigned to any segment. A segment is created, using the storage manager‟s Create()

routine. It assigns one single free page to the new segment. A segment can grow by adding

further pages via the AllocPage() routine. This routine offers explicit control of the loca-

tion of a new page, in order to keep segments spatially clustered in the database‟s physical

address space. Therefore, an optional parameter of the AllocPage() routine allows the

specification of a desired page number for a new page. If the specified page is free, it will be

allocated. Otherwise, the page is already in use and the storage manager tries to allocate the

next free page within the same extent. Only if the specified extent is full, a free page in

another extent will be allocated. If no target page number is specified, then the page allocation

strategy is left entirely to the storage manager. Conversely to allocation, a segment shrinks by

removing a page and returning it to the pool of free pages (DeletePage()). Due to these

dynamics, segments do not necessarily cover contiguous address ranges. From the storage

Partitions

Files

Devices

Extents

Segment

Address Space / Pages

Access path Access module

Storage manager

File system

Hardware

LayersEntities

CHAPTER 4: ARCHITECTURE 107

manager‟s perspective, they are merely a collection of loosely coupled pages. This coupling is

enforced by marking each page header with the segment number, i.e. the identification of the

containing segment. The segment number is identical to the page number of the initial page of

a segment, which was allocated by the Create() routine. This distinguished page represents

the complete segment and therefore it cannot be freed while the segment exists. In addition to

the segment number, the page header stores its own page number and a checksum value

(CRC) over the complete page contents. These entries in the page header are not required for

normal operation of the storage manager, but the information serves as fault detection me-

chanism. An access method provides page number and segment number as parameters when

requesting access to a page. If this information deviates from the information maintained

independently in the page header, this indicates a failure in the structural integrity of the

access method, or malfunctioning hardware.

The storage manager‟s main purpose is to maintain memory management by recording

whether an individual page is currently in use or not. Documenting affiliations of pages to

segments, and even the whole concept of segments, is not required to this end. The task of

implementing cohesion on a set of pages belonging to the same segment is delegated com-

pletely to the access method layer above. It maintains chaining between individual pages,

representing the physical structure of the access method.

An access method may access existing pages by using the FixPage() routine. This routine

takes the page number as input parameter and creates a copy of a persistently stored page in

main memory, where it is held at a fixed location. The routine returns a stable pointer to this

page for subsequent access. An additional parameter of the FixPage() routine controls the

intention of the page access, i.e. whether a page is retrieved for read-only access or for mod-

ification. A page acquired using AllocPage() is implicitly fixed for writing access. When

access to the page is completed, the access method may call the UnfixPage() routine in

order to release the fixed page. Thereby the main memory allocated for the page is released. If

the page was modified, the storage system guarantees that changes are stored persistently

when the enclosing transaction is committed. The detailed implications of calling Alloc-

Page(), FixPage() and UnfixPage() on the caching and locking facilities of the storage

manager will be discussed separately.

108 4.2 BUILT-IN STORAGE LAYER

Finally a segment is removed by calling the storage layer‟s Drop() routine. The access

method maintaining the logical structure of the segment has to guarantee that all other pages

belonging to this segment have been freed using DeletePage() prior to calling Drop().

4.2.2. Caching

In addition to pure I/O services, the storage manager also provides a sophisticated caching

facility. Access to the system cache is integrated into the storage layer interface, and automat-

ic caching takes place when operating the already introduced page access routines. Caching

operates, like all other storage layer assets, on page granularity and uses a least-recently-used

(LRU) replacement strategy. Whenever a page is accessed, either by AllocPage() or

FixPage(), the contents of that page are transferred into an empty cache frame in main

memory. As long as the page is accessed, its frame is not on the LRU stack, i.e. the cache

frame cannot be replaced. The page stays „fixed‟ in the main memory. A page may remain in

this fixed state for an arbitrary period of time, and concurrently access to this page becomes

possible. This happens when a page is accessed from different transactions (concurrent read

access), or from different scans of the same transaction (concurrent read/ write access). Every

fix will increase the fix-counter of that page. After a page access is completed, the Unfix-

Page() routine will decrease the page‟s fix counter. Any process that fixes a page is also

responsible to issue an identical number of unfix operations. When the fix counter eventually

reaches zero, the page is unfixed and its frame moves on top of the LRU stack, since it now

holds the most recently used (MRU) page. From there it starts descending through the LRU

stack, as other pages are accessed. Any subsequent access will move it again into MRU

position, but if the stack frame eventually reaches LRU position, its contents will be replaced

with another page that is currently needed. If a page is deleted via DeletePage() while on

the LRU stack, the cache frame is freed and becomes immediately available for holding

another page.

This simple interface offers all functionality the access method implementer requires for

efficient access to recurrently used pages. Caching requires no implementation effort what-

soever from the access method. In addition, it offers a certain degree of control over the

caching strategy. An access method may periodically fix/ unfix pages of high value, thereby

averting their replacement. Critical pages may even remain fixed over a longer period of time,

inhibiting their replacement altogether. However, interference with the host system‟s caching

strategies should be conducted with extreme care and only on a small scale, i.e. for few pages.

One should keep in mind that the system cache represents a shared resource, used not only

CHAPTER 4: ARCHITECTURE 109

across concurrent scans of one single query, but across concurrent transactions. Bending the

cache frame replacement strategy in favor of one access method will penalize other access

structures, and thereby incur potentially high overall costs that actually exceed the locally

induced savings. In particular, if two or more access paths based on the same greedy access

method are competing for the limited resources of the system cache, their endeavors are likely

to cause cache contentions instead of bringing the originally intended speed-ups.

4.2.3. Locking & Concurrency

Locking and concurrency in DBMSs is implemented as combinations of locks on objects of

various granularities. These granularities are organized on hierarchical levels, where typical

scopes for locking are relations, pages, and records. Locks on complete relations also include

implicit locks on redundant secondary access paths. In contrast, locks on individual pages

only affect one single page, without immediate side-effects. If a page is updated, maintaining

data consistency compels locking and updating dependent and redundant information. Row-

level locks offer the most fine-grained locking strategy, allowing maximized concurrency at

the expense of increased locking complexity. Row-level locking falls into the responsibility of

the access method implementation that maintains the segment, while locking of relations and

pages is provided as a service by the storage layer.

Locking in the Access Manager is presuming multi-version concurrency control, based on the

well known RAX protocol [Bay80] (cf. Figure.25). Locking is therefore organized in three

separate lock types. The READ_LOCK (also R-lock) allows parallel reading activities of con-

current transactions on the same object. The WRITE_LOCK (A-lock) is used, if an object is to

be updated. Only one concurrent write operation on one object is possible at any time. There-

fore, the transaction intending to modify an object creates a private copy (version) of that

object. The original version (before-image), representing the object‟s state before the update

took place, remains accessible for concurrent readers. The private copy of the update transac-

tion is called after-image. When the update transaction is committed, it acquires EXCLU-

SIVE_LOCKs (X-locks) on all objects it modified in its course, i.e. WRITE_LOCKs are con-

verted to EXCLUSIVE_LOCKs. If concurrent transactions still hold READ_LOCKs, the update

transaction has to wait until these locks are released. Only when all objects are locked exclu-

sively, the buffer manager will discard all before-images and the after-images eventually

reflect the new state of the object. Conversely, if an update transaction is aborted, all after-

images are deleted. This may be conducted without acquiring exclusive locks, since the after-

110 4.2 BUILT-IN STORAGE LAYER

images are already private to the update transaction. The following matrix depicts the compa-

tibility of the various lock-modes.

Figure.25 RAX compatibility matrix. A requested lock can be granted, if it is compatible with the present

lock of another transaction (+). Otherwise (-), the requesting transaction has to wait until the conflicting

lock is released.

For locking hierarchical structures, this lock protocol is augmented with the RIX protocol

(Figure.26). In addition to the RAX-locks, this protocol also uses intention locks, e.g. IR

(intention-read) and IX (intention-exclusive). This allows to use actual locks (R/X) on a fine-

granular level, while the parent object is locked using the corresponding intention lock. If

intention locks collide during lock acquisition, their compatibility is decided by consulting

lock compatibility on a finer granularity.

Figure.26 RIX compatibility matrix. I-locks are used on a coarse granularity, e.g. relations, for express-

ing the intention to perform a certain operation on a finer granularity. Intention locks are used in combina-

tion with R- and X-locks. Where potentially incompatible intention locks collide, compatibility is decided

by on a finer level of granularity (shaded areas). Finally, locks on different granularities may also be

mixed, as RIX acquires an R-lock on a coarse granularity, and an IX lock for expressing its intention to

lock individual portions of the relation. Hence, the RIX-lock is used by scans reading a complete relation

while modifying only selected portions.

The RAX/RIX lock protocols are used for implementing isolation of diverse qualities (isola-

tion levels) between individual transactions. A low isolation level offer increased concurrency

and throughput of the overall system. Higher concurrency is gained by accepting the possibili-

ty of certain anomalies, e.g. lost updates, dirty reads, non-repeatable reads and phantom reads.

The isolation level of a transaction controls which form of update anomalies are tolerated by a

database application. Isolation levels are implemented by controlling the types of applied

present lock

requested
lock

R
A
X

R A X

+
+
-

+
-
-

-
-
-

present lock

requested
lock

R
X
IR
IX

RIX

R X IR IX RIX

+
-
+
-
-

-
-
-
-
-

+
-
+
+
+

-
-
+
+
-

-
-
+
-
-

CHAPTER 4: ARCHITECTURE 111

locks, and the lock durations. Figure.27 gives an overview over properties and behavior of the

ANSI SQL isolation levels.

Figure.27 Isolation levels as specified in the SQL standard. The respective behavior is achieved by

variation of applied lock types. Write anomalies (lost update/ dirty write) are never tolerated, hence write-

locks are acquired for every update operation, and held until end of transaction (EOT). Conversely, data

may be accessed without explicit read-lock, causing diverse read anomalies. If read-locks are acquired and

held until end-of-statement (EOS), then dirty reads are eliminated. Holding read and write-locks until EOT

(2-phase locking) prevents all anomalies.

Each isolation level offers its own benefits and drawbacks, when trading concurrency against

update anomalies. Isolation levels allow configuring a DBMS for a specific database applica-

tion, depending on tolerance and throughput demands of a given task.

Regarding the Access Manager framework, almost the complete locking mechanism de-

scribed above is made available by the host system. The DBMS possesses a fully-fledged lock

manager component, providing the required functionality. The necessity of table locks and

their dependencies on secondary access paths is recognized by the SQL compiler by consulta-

tion of the data dictionary. The query processor will automatically acquire necessary locks

from the lock manager at the beginning of a query execution. Hence, access structures may

remain completely ignorant of locking on table granularity. Locking on page granularity on

the other hand is intrinsically tied to the page-oriented storage layer. Whenever a page is

requested by an access module, this page is attributed with the appropriate lock type. This is

accomplished with one parameter that has to be supplied with every access to a page, describ-

ing the intention of the page access. These intentions are represented by two options:

READ_LOCK or WRITE_LOCK. In case of WRITE_LOCK, a working copy (after-image) for the

writing transaction is generated automatically. This form of locking resembles a pessimistic

locking strategy, where locks are acquired as the transaction proceeds. If locking on page

granularity is to be achieved by other means, then the host system‟s page locking facility can

be bypassed by using the NO_LOCK attribute. When a page is accessed, the system acquires

the appropriate locks for the given intention. In addition, it is possible to convert existing

locks into more restrictive locks. If, for example, a page is initially accessed for mere reading

READ_UNCOMMITED
READ_COMMITTED
REPEATABLE_READ
SERIALIZABLE

WRITE
EOT
EOT
EOT
EOT

READ
-

EOS
EOT
EOT

Lost Update
-
-
-
-

Dirty Read
+
-
-
-

Non-rep. Read
+
+
-
-

Phantom Read
+
+
+
-

AnomaliesIsolation Level
Lock Types and

Duration

112 4.2 BUILT-IN STORAGE LAYER

activities and the appropriate read-lock is already in place, then a later writing access is still

possible. The demand for updating a page with an existing read-lock is expressed by fixing it

again with the WRITE_LOCK option. The read-lock is thereby converted into a write-lock and

the routine returns a reference to a working copy (after-image) of the original page. The

necessity of making an after-image causes a noteworthy complication of lock conversions.

The after-image is naturally stored at a location in main memory that is different from that of

the before-image. It henceforth represents the writing transaction‟s private version of this

page, and all other scans belonging to that transaction and operating on the same segment

must be able to see modifications on the after-image immediately. The resulting challenge is

to redirect all open scans of the writing transaction to the after-image. If a scan of this transac-

tion fixes this particular page in future, the storage manager will automatically supply the

correct version, i.e. the after-image. Problematic are only lock-conversions where the page is

currently fixed by another scan using read-locks. Any references to this page that are current-

ly held by such a scan are still pointing to the before-image. Therefore, the scan causing the

lock conversion has to redirect such references of concurrent scans of the same transaction to

the after-image. This is accomplished by direct manipulation of the internal structure of

concurrent scans. The compensation of side-effects of data modification onto concurrent

scans of the same transaction is subsumed under the notion of scan maintenance. Scan main-

tenance cannot be delegated to the host system, since the host system cannot know the inter-

nal structure describing the scan status of a custom access method. But the scan responsible

for the lock conversion is inevitably of the same type as all other scans on the same segment,

making immediate scan maintenance viable.

If lock requests are not immediately grantable, because an object is currently blocked by an

incompatible lock of another transaction, then the transaction will wait for a configurable

amount of time (lock timeout), until the conflicting lock is released. If this time period ex-

pires, and the lock is still occupied, then an error is raised. Finally, if a lock request would

generate a deadlock with locks held by another transaction, then the system will detect this

situation and resolve it by rolling back the transaction causing the deadlock and thereby

releasing all its locks.

At this point, it is important to notice the absence of any provisions for unlocking objects.

Also programmatic relaxation of existing locks is not possible, e.g. it is legal to subsequently

fix a page with a READ_LOCK that was previously modified by the same transaction under

WRITE_LOCK, but this will not affect the present lock, i.e. the WRITE_LOCK will remain in

CHAPTER 4: ARCHITECTURE 113

place. Unlocking is controlled completely by the host system and the duration of locks is

invariably managed via the system‟s isolation settings. Locks will be released automatically at

the end of the current statement‟s evaluation (EOS) or at the end of the current transaction

(EOT), depending on the isolation setting. In the latter case, locking is consistent with the 2-

phase lock protocol (2PL), a prerequisite for guaranteeing serializable schedules for SQL‟s

highest isolation level. The host system will also convert WRITE_LOCKs into EXCLU-

SIVE_LOCKs in preparation of committing a transaction. Automated lock conversion and

unlocking relieves the access method programmer to a large extend from the burden of

dealing with locking and concurrency on table and page granularity.

In summary, the storage manager provides pessimistic, hierarchical locking facilities, capable

of pursuing configurable isolation levels from dirty reads to serializable transaction schedules.

Despite of its simplicity, this interface is sufficient for fully operational locking on page

granularity, which is complemented by the storage layer‟s page shadowing mechanisms

required for low contention multi-version concurrency control. As a consequence, explicit

calls to the system utility interface‟s Lock() and Unlock() routines are not required when

locking on page granularity. Further details concerning locking on finer granularities are

discussed in section 4.3.10 Locking & Concurrency on tuple-oriented access structures.

4.2.4. Transactions & Consistency

For providing the properties postulated by the ACID paradigm, the storage layer must always

operate inside a transactional context. Consequently, any scan operation accessing the storage

layer is strictly associated with a transactional context. This means that scans can neither

operate outside transactions, nor across transactional boundaries. These fundamental prerequi-

sites are guaranteed by the Access Manager framework. It will operate the access methods in

such way that open scans are always closed when a transaction ends. In addition, it will

automatically call the storage layer‟s respective interface routine, namely Begin(), Pre-

pare(), Commit(), or Abort(), for indicating transactional transitions to the storage

module. Access method implementations cannot call these routines directly, as they are

operated exclusively by the Access Manager framework. They are mentioned here as integral

parts of the storage layer interface, and are therefore of relevance for implementing alternative

storage layers.

The strict association of all storage manager operations with a transactional context is neces-

sary for ensuring well-defined behavior of the storage layer‟s multi-version concurrency

114 4.2 BUILT-IN STORAGE LAYER

control, i.e. every fix and lock operation must be intrinsically tied to a transaction. Therefore,

every transaction is labeled with a unique transaction ID (TAID). TAIDs are generated by the

host system as a sequence of monotonous integer numbers and every transaction obtains a

TAID in accordance to the point in time of its beginning. On the Access Manager interface,

TAIDs become visible as function parameters. They are generated by the host system and

passed on to access method routines, for denoting the transactional context of the currently

conducted operation. Access methods are responsible for passing TAIDs on, when calling

routines of the underlying storage layer, such that every storage operation is inevitably as-

signed to the correct transactional context.

The TAID also becomes an integral part of any data page, as the transaction that made the last

change in a page is inscribed as the producer (PID) in every page header. There it serves as

discriminator for existing versions of one page. Whenever a transaction attempts a modifica-

tion of a page (A-lock), a copy of this page is generated. The before-image remains complete-

ly unmodified, including its original producer transaction (PID). The after-image will bear the

ID of the transaction that acquired the A-lock as its new producer. For guaranteeing correct-

ness, the host system‟s lock manager maintains a precedence graph, where all locked objects

of all active transactions are registered. This graph serves for detecting conflicting lock

sequences and possible deadlock situations. In addition, it allows the lock manager to arrange

transaction into a virtual schedule, a prerequisite for guaranteeing serializability. Finally, the

lock manager cooperates with the host system‟s cache manager, which is responsible for

presenting a transaction accessing a page with „correct‟ version of that page, in accordance to

the transaction schedule determined by the lock manager. For this step, it is necessary to

correlate page versions and the IDs of requesting transactions, which is technically conducted

with TAID and PID. Apart from the necessity of associating every storage layer operation

with the corresponding TAID, an access method may remain completely ignorant of these

mechanisms. The storage layer will automatically provide correct and consistent versions of

requested pages in accordance to the indicated transaction context, as a service of its built-in

multi-version concurrency control.

4.2.5. Logging & Recovery

Database systems generally distinguish two forms of recovery mechanisms, namely transac-

tion recovery and disk recovery. Transaction recovery provides the functionality for undoing

modifications of one single transaction. During normal operation, transaction recovery is

required if a transaction is explicitly aborted or if it runs into a dynamic error, e.g. an integrity

CHAPTER 4: ARCHITECTURE 115

constraint violation, and the transaction cannot complete by reaching a consistent database

state. Transaction recovery is also required for crash recovery. If the database system fails

because of a severe software or hardware fault, operations stop in mid-transaction. When the

system is recovered, all uncommitted operations are undone and the system is restored in its

last consistent state before the crash.

Disk recovery is a protective measure against data loss in case of an unrecoverable disk

failure of the primary storage device. First a backup of the data (snapshot) is made at an

arbitrary point in time, which is stored in a safe place, i.e. not on the same device as opera-

tional data. During normal operation, the DBMS maintains a log of all modifications. Logging

information and operational data are stored on separate devices. If the disk holding the prima-

ry data fails and the operational data is lost, then the now outdated backup copy is restored to

a new disk and all operations are redone with the modification log, until the backup finally

reaches the last consistent state before the hardware failure.

For transaction and disk recovery, the database has to maintain a log of database operations.

This log consists of instructions for physical modifications of individual disk pages. For

transaction recovery, the logs are used to undo changes in the database, i.e. they are processed

chronologically backwards. Redoing changes, as required for disk recovery, processes a log in

forward direction.

Transbase, as the host system for the Access Manager prototype implementation, offers two

distinct forms of logging, namely before-image logging and delta logging. Depending on its

purpose for disk or transaction recovery, a log may contain either complete copies of pages

(before-images) or calculated deltas that describe the transition between two states. Before-

image logging is only appropriate for transaction recovery, because before-images only

describe the transition of a page to its previous state, which is useful for undoing changes but

inadequate for redo operations. A before-image of a modified page consists of the complete

page, even if the applied changes are significantly smaller. Before-images of newly allocated

pages are not stored, since these pages do not have an original state to be recovered. With

their limitation to transaction recovery, before-images become obsolete and may be discarded

as soon as modifications on its after-image are committed. This makes before-image logging

attractive for mass insertions and extensive updates, since bulky recovery data is stored only

as long as strictly necessary. Before-image logging may be used by arbitrary access methods,

as it reliably specifies the physical transition of a complete page, regardless of the logical

116 4.2 BUILT-IN STORAGE LAYER

operation on that page. Therefore, it can be used by the Access Manager for transaction

recovery, without any further provisions from the access method that is operating on the page.

Delta logging describes the transition between two consecutive page versions on byte level. A

page delta can be applied for transforming a page from an earlier version into a newer version,

but also in the opposite direction. Hence, delta logging is suitable for transaction and disk

recovery. Delta logging is in general substantially more compact than before-images, since

only the modified portions of a page are stored, but its handling and calculation is more

complex. Hence, delta logging is particularly well-suited for logging scattered, small-scale

modifications, while it shows no advantage over before-image logging for bulk insertions and

bulk updates. The compactness of delta-records is achieved by using convenient descriptions

of logical page transitions. B-trees, for example, would describe page splits and merge opera-

tions with dedicated shift operations. Here the pages are altered by insertion or deletion of one

tuple. This triggers moving bulks of adjacent data, although this data remains otherwise

unchanged. In a delta log, these operations are optimally described as shift-operations, in

conjunction with small delta records describing actually modified data. In general, this means

that every custom access method would be able to define its own log records for providing

tailored descriptions of page transitions. As a consequence, proprietary log records originating

from a diversity of access methods would become intermixed in the database logs.

Despite the advantages such an integration of custom access modules into system recovery

would bring, we dismiss it in favor of implementation simplicity and system stability. Explicit

delta logging mechanisms in custom access modules will considerably complicate the design

and implementation of access methods. Moreover, the integration of external code into the

crucial recovery subsystem and the existence of proprietary log entries in the database logs,

are likely to jeopardize overall system integrity. As an alternative, the Transbase prototype

tries to derive compact delta records by analyzing before- and after-image of a page in the

storage manager. Although this is not always optimal in terms of storage complexity, this

approach is still able to generate compact log records while upholding system integrity with a

sealed off, reliable code basis. With this, logging is removed completely from the scope of

access method programmers. It is automatically provided by the host system, without any

requirement of explicit support from custom access methods.

CHAPTER 4: ARCHITECTURE 117

4.3. Access Method Interface

This chapter will study the functionality provided by the tuple-oriented access method inter-

face (cf. Figure.21, page 100) of the Access Manager framework. This interface definition and

its accompanying interface protocol designate the required functionality and behavior of an

access method for integration into a DBMS. As starting point, we consider an extensible

DBMS host system, which is exhibiting the Access Manager framework for assimilating

custom access methods. These custom access methods are implementing the access method

interface and each exists initially as a dynamically loadable and linkable library called access

module. The host system‟s Access Manager framework allows integration of such modules

into the host system‟s code basis and operates them by calling the libraries‟ exported access

method interface in conformance with the Access Manager protocol. The access modules

themselves are considered as black boxes, i.e. they offer a public interface and a known

protocol, but assumptions on their internal workings are not permitted. We will now examine

various use-cases of custom access method implementations, in order to illuminate valid

sequences for calling access method interface routines, as defined by the Access Manager

protocol.

All routines provided by an access module are operated by the Access Manager framework,

representing the host system‟s only gateway to access modules. During query evaluation, the

access module‟s routines are called by the scan operator, a generic relational operator, encap-

sulating an arbitrary access module (Figure.28). This operator is a central component of the

host system‟s Access Manager framework. During query compilation, the scan operator is

statically bound to a segment , and consequently also to the access module type associated

with that segment. In addition, the scan operator is assigned to a specific task, i.e. retrieval,

manipulation, or materialization of data. The resulting specialized relational operators are

named according to their primary task: Scan, Insert, Delete, Update, and Materialize. After

binding and specialization during query compilation, the following query optimization phase

will use negotiation for providing optimal interoperability through additional configuration.

The resulting configuration also becomes part of the scan operator, where it is used for calling

the routines of the embedded module in accordance to the Access Manager protocol, for

accomplishing the assigned task under the given configuration.

118 4.3 ACCESS METHOD INTERFACE

Figure.28 Encapsulation of access modules in generic scan operators. The scan operator provides a

compact abstraction from the extensive functionality of an access module implementation. It is bound to a

given segment of type and specialized to one specific task (Scan, Insert, Update, Delete, or Material-

ize). Additionally it is configured via negotiation for optimal interoperability within the query plan. The

scan operator operates the access module‟s interface routines in accordance to these settings.

With this, the scan operator holds all information required for correct and efficient operations

on the appointed segment, using the corresponding custom access module. Yet the scan

operator remains an integral component of the host DBMS. Its configuration represents a

detailed and complete description of the operation to be performed by the access module,

without making any assumptions on any access module internals. This description makes such

operations plannable, by recording the scan operator‟s configuration parameters in the

DBMS‟s query plan representation. Configuration is an exact specification of a prospective

operation, and the operator‟s cost function allows associating it with estimated costs.

Towards its outside, the scan operator provides only the reduced functionality required for

negotiation during query planning and for query evaluation based on the Iterator model. This

generality allows inserting the generic scan operator throughout a query plan, like any other

relational operator.

- Access
Module

Scan Operator

Access
Method
interface

Negotiation

Input Configuration:

Iterator Interface

Iterator Interface

Specialization

Output Configuration:

Input Data

Output Data

Sc
an

 |
 In

se
rt

 |
 U

p
d

at
e

 |

D
e

le
te

 |
 M

at
e

ri
al

iz
eBinding

on Segment of type .

CHAPTER 4: ARCHITECTURE 119

Figure.29 Generic Relational Operator Interface. The scan operator exports the universal interface of

relational operators. The mandatory interface functionality (bold print) covers negotiation for query opti-

mization and iteration during query evaluation. The optional Reset() routine serves for efficiency pur-

poses, which remains to be discussed later.

As DBMS extensibility by integration of custom access method implementations is the

primary focus of this work, this section will concentrate on employing access module functio-

nality within scan operators. The following section 4.4 Relational Operator Interface will

discuss further generalization of the scan operator to a generic relational operator for encapsu-

lating custom implementations of arbitrary relational algorithms.

4.3.1. Data Access Module Definition

The host DBMS is extended by integration of a library implementing an access module into

the host system. With SQL being the preferred form of interaction with the database system,

we also choose this language for this administrative task. To this end, the system‟s data

definition language (DDL) has to be marginally extended to comprise the following state-

ments:

CREATE TABLETYPE <ttype_name> FROM <path>

CREATE INDEXTYPE <itype_name> FROM <path>

Examples:

CREATE TABLETYPE FILE FROM filetab.dll

CREATE INDEXTYPE BITMAP FROM bitmap.dll

On close examination, these DDL statements extend the schema of one particular database,

rather than globally extending the DBMS. Their purpose is to provide the location of dynamic

libraries implementing custom access methods. They also assign unique names (i.e.

ttype_name or itype_name, respectively) to be recorded in the database‟s data dictionary for

referencing this module in subsequent DDL statements. Finally, the distinction between

Open
Next
Close
Apply
Exploit
Propagate
Cost
Reset

Iterator

Open
Next
Close

Reset

Interface

Apply
Exploit
Propagate
Cost

Negotiation

120 4.3 ACCESS METHOD INTERFACE

TABLETYPE and INDEXTYPE describes whether the new module is used for primary or second-

ary access paths. Secondary indexes have to implement only a subset of the access method

interface functionality. The reasons for these differences will be discussed in the course of

data access strategies and data maintenance protocols. The information provided by the

statements above is stowed away into the system catalog. No interface functions of the access

modules are called during this process.

The inversion of this process is also required. Its purpose is the removal of an access method

implementation from the database schema. This is accomplished by deleting the correspond-

ing entries from the system catalog, after verifying that there are no active references, i.e.

there must not exist any access paths based on the access module to be removed. The corres-

ponding DDL extensions have the form:

DROP TABLETYPE <ttype_name>

DROP INDEXTYPE <itype_name>

All the prototype modules discussed later are implemented as built-in modules of the Trans-

base Access Manager prototype. They are statically linked to the database kernel and there-

fore they are a priori known to the system via predefined names. There is no requirement to

publish their names via DDL as described above.

4.3.2. Access Path Creation

Creating tables and indexes based on custom access methods is integrated tightly into the host

system‟s DDL. The corresponding statements differ only in an additional specification of the

access method type (i.e. ttype_name or itype_name, respectively) from the corresponding

standard SQL statements. As an optional extension, the specification of the module type can

be enriched with the additional clause custom_spec. This clause will not be interpreted by the

host DBMS, instead it will be passed directly to the access method, where it is parsed and

processed. This clause may be used for providing additional configuration parameters to the

access method.

CREATE <ttype_name> [(custom_spec)] TABLE <tname> (<tablespecification)

CREATE <itype_name> [(custom_spec)] INDEX

 <iname> ON <tname> (<fieldnamelist<)

Examples:

CHAPTER 4: ARCHITECTURE 121

CREATE FILE (‘/tmp/import/employee.txt’) TABLE emp (empkey

 INTEGER, name CHAR(*), address CHAR(*), nationkey TINYINT)

CREATE BITMAP INDEX emp_nation_bmx ON emp (nationkey)

The effect of these statements is the creation of new data access structures. The example

creates a new table of type FILE, which functions as a „virtual‟ table in the database schema

for permitting direct retrieval of data from a structured text file, which is residing in the file

system outside the database. It uses the custom_spec clause for specifying the path to the text

file. Additional conventions on the file format (CVS, XML, etc.) or file properties (e.g.,

delimiters and sort order) could also be declared in the custom_spec. This type of tables is

particularly useful for directly accessing data exported from other applications, or for import-

ing external data into the database. The data in the file may be queried and the query result

can be subjected to arbitrary SQL transformations, permitting extensive SQL-based ETL

(Extract, Transform, Load) capabilities. The possibility of creating secondary indexes on such

tables, as demonstrated in the example, additionally promotes efficient access to external data.

The first preparatory step in creation of a new segment is conducted by the Access Manager

framework by calling the storage layer‟s Create() routine for allocation of one single page

in the system‟s internal storage facility. The address of this page (i.e. its page number) is

henceforth used for identifying the new segment (SegID). We refer to this distinguished page

of a segment as the segment‟s description page (DescPage), as it will store information

describing essential properties of the segment. Every segment has a description page in the

system‟s internal storage facility, regardless of whether the segment‟s data is actually stored

inside the database‟s storage or not.

The second step is also conducted by the Access Manager framework. It registers the new

access path in the system catalog. During this step, information from the original DDL state-

ment describing the logical data model of the new segment is inserted into the system catalog.

This information covers the relation‟s name, column names, column types, check constraints,

referential constraints and other information required for handling relations on a logical level.

In particular, this information serves for identification of access path candidates during query

compilation. The only information on physical properties of the new segment to be recorded

in the system catalog is the aforementioned SegID, which is required when accessing a

segment for retrieving the description page. Finally, preparations for segment creation are

completed and the Access Manager will call the access module‟s Create() routine.

122 4.3 ACCESS METHOD INTERFACE

Create(TaID, DescPage, SegID, CreateSpec, CustomSpec)

  ScanContext

This method is provisioned with a transaction identifier (TaID), which is assigned by the host

system and represents the transaction enclosing the Create() operation. The parameter

binds this operation to the transaction denoted by TaID, e.g. two concurrent operations

belonging to the same transaction may influence each other immediately, while one transac-

tion is typically isolated from uncommitted effects caused by a another transaction. The TaID

will also be passed on as parameter for potential calls issued by this operation against the

underlying page-oriented storage system, where it is essential for providing effective isolation

and locking to this transaction. The second parameter DescPage is a reference to the freshly

allocated but still empty description page. The remaining parameters describe properties of

the segment to be created. While the TaID describes an operation‟s dynamic context, the

SegID is passed as parameter for defining the physical scope of an operation, i.e. the SegID

binds this operation to one particular segment. Operations on separate segments are physically

independent, but there may exist logical dependencies between segments, e.g. segments

storing redundant data (indexes), referential constraints, triggers, etc. The remaining two

parameters contain additional information from the original DDL statement. Relevant infor-

mation from the standard DDL statement describing the logical data model of the new seg-

ment is provided in the standardized, structured representation of the CreateSpec parameter.

This information comprises all logical properties such as column count, column types, column

constraints, and primary key specification. Finally, the custom_spec clause from the original

DDL statement is passed as uninterpreted text in the CustomSpec parameter.

The task of the Create() routine is to choose data from the information available in the

parameters SegID, CreateSpec, and CustomSpec, which needs to be stored in the access

method‟s description page. The information is chosen, depending solely on implementation

and on particular requirements of the given access method. The goal is to make the segment

self-contained, so that all information required for accessing and operating the segment (its

physical data model) is readily available at the segment‟s single entry-point, the description

page. All other pages of this segment are reachable (directly or indirectly) from this page.

Also external data (e.g. in a FILE table), stored outside the database‟s storage facility, is

accessed with information from a description page, which must be located inside the host

system‟s internal storage. The description page‟s main task is to prevent that the system

catalog has to be consulted during access path configuration, data retrieval, or data manipula-

CHAPTER 4: ARCHITECTURE 123

tion, allowing fully autonomous operation of access modules. The system catalog is primarily

consulted during query compilation, for mapping relation and attribute names to the correct

segments. It is also used during query optimization for identifying alternative access path

candidates for index selection. But with the retrieval of the SegIDs of all access path candi-

dates from the system catalog, access path resolution based on the logical data model con-

cludes. From this point access path configuration, cost estimation, and query evaluation are

conducted solely with information based on the physical data model from the description

pages. As a consequence, it is likely that some information from the DDL statement is stored

redundantly in the system catalog, as well as in the description page (Figure.30).

Figure.30 Information dissemination during access path creation. The original DDL statement contains

all available information on the new access method. The information representing the logical data model of

the new access path is automatically inserted into the system catalog. All relevant information from the

standard DDL for describing the physical data model of the access method, plus the optional, non-standard

custom_spec are passed to the data access module‟s Create() method. This information is stored in the

segment‟s description page (auxiliary description pages may be allocated as necessary). The description

page represents the segment‟s single entry-point and all other pages of this segment are linked to it.

The description page is initially empty, but in a writable state, i.e. it is fixed in the system‟s

cache and it is attributed with a WRITE_LOCK, since it was recently created. The access

module managing a segment may freely choose any suitable organization for the contents of

the description page, as well as for any other page of this segment. The only exception is the

short page header on every page, used exclusively by the page-oriented storage layer. If the

space on the description page should not suffice, it is always possible to allocate additional

pages and chain them to an existing page. The proprietary internal organization of pages

makes the managing access module the only instance capable of interpreting the segment‟s

pages. As a consequence, the segment‟s data can only be accessed via the access method‟s

public interface. We emphasize that the host system possesses only a logical description of

DDL Statement

System Catalog

Description Page

custom_spec

AuxDescDescPage

DataPage

DataPage

…

DataPage…

System Catalog – Logical Data Model Data Segment – Physical Data Model

redundantredundant

124 4.3 ACCESS METHOD INTERFACE

the segment in the system catalog and the segment‟s SegID for locating the description page.

Only the access method that created a segment can interpret and administer pages belonging

to that segment.

When the Create() routine returns, the new access path is prepared for immediate opera-

tion, i.e. the routine establishes an open scan on the new segment. In this state, the scan may

have created and accessed an arbitrary number of pages of its segment. All accessed pages,

including the description page, are attributed with WRITE_LOCKs since they have been created

recently, and some may even remain fixed, in preparation for subsequent operation on the

segment, when the routine completes. Other accessed pages have been unfixed and released

into the system cache. There they are available for subsequent use when accessing the seg-

ment. If they are not accessed a second time, they move through the cache‟s LRU stack until

they are eventually swapped out to disk. While in cache, the pages are immediately accessi-

ble, but multi-version concurrency control ensures that they are only visible for concurrent

scans on the same segment (SegID) and of the same transaction (TaID), since these pages

contain uncommitted changes. At this point, other transactions can access neither pages nor

catalog entries of the new segment. The new segment becomes globally visible only when the

transaction that created the segment is committed.

The status of the new scan is subsumed in the ScanContext data structure, which is allo-

cated, maintained, and eventually returned as result parameter when creating or opening a

segment. This central structure is a collection of static and dynamic information to be pre-

served between individual calls to the routines of the access method interface. The ScanCon-

text serves as the pivotal input parameter for all subsequent calls to other access method

routines operating on this scan. Its contents are discussed in detail in the following section.

The creation of a segment may now be followed by all sorts of operations on its resulting

scan, e.g. if the new segment represents an index on a non-empty base relation, it will undergo

immediate mass-insertion, for making the index contents consistent with the base relation.

Such consolidation is automatically initiated by the host system, based on the system cata-

log‟s logical data model and it is executed via the Access Manager framework (cf. 4.3.8 Data

Integrity for more details).

The newly created segment becomes permanent when the surrounding transaction is commit-

ted. Then all allocated pages are persistently stored to disk and the transaction‟s locks are

released. Finally the entries in the system catalog become permanent and visible to other

CHAPTER 4: ARCHITECTURE 125

transactions. If the transaction is rolled back, all changes are undone and all pages allocated in

its course are automatically released.

Drop(ScanContext) 

The inverse activity of dropping a segment behaves exactly contrary. The Drop() method is

called on an open scan. It uses a reference to the scan‟s ScanContext as its only input. Now

it lies in the access methods responsibility to follow the chaining of all allocated pages be-

longing to that segment, in order to release them by calling the storage layer‟s Delete-

Page() routine. The underlying storage system does not maintain any data structures redun-

dant to the access method‟s chaining of pages of one segment. Therefore, when the Drop()

routine returns, the access method must guarantee that all pages it ever allocated have been

released. Finally, the Access Manager framework will release the description page and re-

move all entries associated to the dropped segment from the system catalog. Dropping a

segment is initialized by issuing the corresponding standard SQL DDL statement.

DROP TABLE <tname>

DROP INDEX <iname>

4.3.3. Tuple Identification and Indexing

An inevitable prerequisite for creating alternative access paths (indexes) on an existing

segment (base relation), is the ability of the base relation to provide compact tuple identifica-

tion. Functionally this identification is a bijective mapping between tuples in the base relation

and their corresponding, redundant index tuples. This mapping is needed for resolving the

corresponding base table tuple when a relation is accessed via a secondary access path (mate-

rialization). On the other hand, when updating the base table, the system must be able to find

and update corresponding index tuples (index integrity). Finally, tuple identification is also

used for associating corresponding tuples from different indexes of the same base relation, i.e.

in secondary index intersection and union.

The relational paradigm inherently provides such identification via the base relation‟s primary

key specification. But a primary key may be a rather extensive attribute combination, and the

necessity of storing this key as tuple identifier with every index tuple inevitably leads to

similarly extensive secondary index tuples. Hence, it is often desirable to have more compact

tuple identifier. The practical concept of artificial tuple identifiers (TID, often also called RID

for row identifier) is common to many relational DBMSs. There exist many proprietary

126 4.3 ACCESS METHOD INTERFACE

solutions to this problem, ranging from TIDs based on physical storage addresses of base

tuples, to assigning fully artificial numeric IDs.

Figure.31 TIDs in Transbase. Use-cases of tuple mappings between base relation and secondary index.

(1) In case of an update of the indexed attribute on the base relation, the corresponding tuple in the second-

ary index has to be found and updated. Technically, such updates on secondary indexes are always con-

ducted as separate delete and insert operations. (2) When accessing a relation via a secondary access path,

materialization of the base tuple must be possible. In Transbase this is provided via an indirection over the

auxiliary IK-tree.

The Access Manager framework also includes an interface for generating TIDs as a service

for custom access modules. In Transbase (cf. Figure.31) the TIDs are called IKs (internal

keys) and are based on fully artificial numeric values. The IKs for one segment are managed

in an auxiliary B-tree, called the IK-tree, which is residing in the same segment as the primary

relation. The structure is created automatically at segment creation time and it is capable of

generating unique TIDs on request. Moreover, one single IK-tree suffices for handling an

arbitrary number of secondary indexes on a given segment. Therefore, it stores tuples of the

form (IK, PageNumber), providing management and lookup capabilities for unique IKs. In

addition, the IK-tree associates each IK with a page number. This page number identifies a

page belonging to the base relation segment and storing the base tuple associated with the IK.

Finally, corresponding tuples in the base relation and secondary indexes contain identical IK

values. This allows direct lookup of the tuple in a secondary indexes corresponding to a given

base relation tuple, using index attribute values plus IK value from the base tuple. Conversely,

a given index tuple is materialized from the base relation by using its IK value for retrieving

the base tuple‟s page number from the IK-tree. This allows direct access to the page contain-

Base Relation

IK
Tree

(2) Index Access

Direct Access w. PageNo/IK

IK

(1) Update

Update

Materialization

Indexed Attributes

IK Tuple: (IK,PageNo)

Sec.
Index

Sec.
Index

Base Tuple: (a1,…, ak,ak+1,…,an,IK)
(x1,...,xj,xj+1,…,xp,IK),

IK

(y1,...,yl,yl+1,…,xq,IK)
Index Tuple: xi,yi{a1,…,an}

CHAPTER 4: ARCHITECTURE 127

ing the base tuple. Within the page, the actual tuple is located using a sequential search for the

given IK.

The Access Manager TID facility in Transbase is used as follows. If a new tuple is to be

inserted into the base relation, the responsible access method implementation determines an

existing page in the segment, or allocates a new one, for storing the new tuple. The current

transaction‟s TaID, the SegID of the base relation and the target page number (PNO) are used

as parameter for calling the GetTID() routine. This routine generates a new unique TID and

stores it together with the destination page number in the IK-tree denoted by SegID. This

modification happens within the context of transaction TaID. The new TID is returned by

GetTID(), and has to be stored in the base relation, together with the new data tuple.

GetTID(TaID, SegID, PNO)  TID

Besides creating TIDs, the interface also allows updates in the IK-tree structure via its Set-

TID() routine. This functionality is required, if existing tuples are moved to another page,

e.g. if pages in the primary access path are split or merged. The required parameters for

updating the IK-tree are the original TID and the new page number PNO. The TID allows

locating the correct entry in the IK-tree, and then the entry is updated using the new page

number PNO.

SetTID(TaID, SegID, TID, PNO) 

Finally, if a tuple is deleted, its IK value is removed from the IK-tree using FreeTID(). The

provision of SegID and TID are sufficient for locating and deleting the correct entry.

FreeTID(TaID, SegID, TID) 

TIDs are provided as an optional service by the host system. Each access module is free to use

this facility or to provide a custom TID implementation. As an example for an alternative TID

mechanism, an access module might use the access method interface to create and operate an

auxiliary B-tree structure resembling the IK-tree. Both approaches are functionally equivalent,

but the built-in TID mechanism offers a more convenient interface for this purpose.

How and when TIDs and primary keys are actually used for secondary access paths is dis-

cussed in detail in sections 4.3.6 Elementary Navigational Access and 4.3.7 Data Manipula-

tion of this chapter.

128 4.3 ACCESS METHOD INTERFACE

4.3.4. Opening an Access Path

Before data can be accessed, an access path has to be prepared for operations via its Open()

routine. The process is triggered by the SQL compiler resolving access paths from table

names referenced in a given SQL statement. Therefore, the host system‟s SQL compiler and

plan optimizer consult the system catalog on the logical data models of available access paths.

These catalog queries serve also for identifying alternative access path candidates. For every

primary or secondary access path candidate, the description page number identifying the

access path‟s segment (SegID) is retrieved from the system catalog. Eventually the Access

Manager framework retrieves the corresponding description pages (DescPage), which is

used as parameter for calling the Open() method of each access path candidate. The

READ_LOCK on the DescPage and all subsequent operations on this scan are attributed to the

current transaction denoted by TaID.

Open(TaID, DescPage, mode,

,)  ScanContext

 mode ::= { Scan | Insert | Update | Delete | Materialize }

The mode parameter specializes the scan to a particular purpose, namely to retrieval, inser-

tion, modification, deletion, or materialization, as appointed by the defining SQL query. This

parameter is provided by the generic relational operator encapsulating the access module. The

 parameters represent the scan‟s applicability requirements for its i-th input stream. Scan

operations are nullary for data retrieval and unary for materialization or data manipulation.

Still we provide an interface definition for general n-ary operators for reasons that will be-

come apparent shortly. The parameter describes exploitability settings of the single output

stream. When opening a scan for the first time, i.e. as an access path candidate during query

compilation,
 and remain vacant, as both specifications are undetermined in this early

phase of query planning. They will be established later during the query optimization process,

as discussed in the following section.

Open scans have a state of operation at all time, and this state manifests itself in the Scan-

Context. This central data structure, which is entirely defined by and fully private to the

access module, covers all information on the scan‟s current state of operation. The ScanCon-

text is generated each time a segment is created or opened. At that time, information from

the persistently stored description page is processed and transferred into this main memory

structure, where it is immediately accessible as long as the scan remains open. This step

allows unfixing the description page after the scan has been opened, releasing the occupied

CHAPTER 4: ARCHITECTURE 129

cache frame into the host system cache‟s LRU stack. A READ_LOCK will be held on the

unfixed description page, guaranteeing that the information in the ScanContext remains

valid. In addition to this static information from the segment‟s description page, the scan

context will also include information on the current transactional context (TaID), which is

available as input parameter. This TaID defines the scan‟s affiliation to its enclosing transac-

tion, thereby determining its behavior relative to concurrent scans belonging to the same or

other transactions. Consequently, a scan cannot outlast its enclosing transaction, nor is it

possible to reassign a scan to another transaction. Similarly, the configuration of the scan is

provided as
 and parameters of the Open() method. As already indicated, these para-

meters are optional, allowing to open a scan for negotiation without preliminary configura-

tion. During subsequent operations, the ScanContext will gather dynamic information, such

as current scan position and information on data pages from its segment, that are currently

held fixed in the system cache for immediate access. The ScanContext serves as the pivotal

input parameter for all access method interface routines implementing operations on an open

scan. It represents the scan‟s complete collection on status information and it is also the scan‟s

only opportunity to „remember‟ information across individual operations. It will be perpetual-

ly read and modified by every operation, reflecting relocations of the scan position and

accounting information on currently fixed data pages.

After all suitable access path candidates have been opened, they are ready for general optimi-

zation, in particular for index selection. During optimization, all access path candidates are

undergoing configuration via negotiation and cost assessment. The optimization strategy is

appointed by the host system‟s query optimizer, while the individual access method imple-

mentation contributes only the necessary instrumentation by implementing the negotiation

interface. Negotiation will directly influence the ScanContext of each scan, i.e. the ap-

pointed configuration is recorded within this structure. When optimization finds an access

path candidate inappropriate for the current query, it is closed immediately. The Close()

operation releases all resources that were occupied by the scan. In particular, all fixed pages

must be released by the access module. Page locks that have been acquired thus far will be

held by the host system‟s lock manager, as required by the enclosing transaction‟s isolation

level.

Close(ScanContext) 

130 4.3 ACCESS METHOD INTERFACE

When query optimization completes, only the chosen access paths remain open. In this state,

the scans are fully configured and ready for imminent query evaluation. But between query

compilation and query evaluation may pass an arbitrary long period of time. This becomes

apparent when considering stored queries. Therefore, the final configurations of the chosen

access paths are now recorded in the host system‟s internal, storable representation for opti-

mized query evaluation plans. The scans are eventually closed, releasing all allocated re-

sources, in order to be reopened only immediately before actual query evaluation commences.

When scans are reopened, the Open() routine is provided with valid
 and parameters

from the prior negotiation process, as preserved in the query plan. In reopening the scan with

full specifications, the original configurations are reinstalled, avoiding the necessity for

repeated negotiation and preparing the access paths for immediate operation. When the

evaluation of a query terminates, all scans of the query are ultimately closed.

The strict protocol of closing and reopening scans offers full control over the scan status

manifested in the ScanContext, since the initial status of a configured scan is well-defined.

But this protocol has one important flaw: perpetually reopening scans is an unnecessary and

expensive operation, discarding and rebuilding similar ScanContexts over and over again.

In particular, closing scans after query optimization and reopening them for query execution

clearly demonstrates this adverse behavior, but the same applies also to a series of similar

queries on one segment within the same transaction. The prospect of reassigning an open scan

directly to another operation (task) on the same segment will allow preservation of its scan

context to a large extent. Repetitive processing of the description page can be omitted and

static information in the scan context will prevail over multiple scan incarnations. Dynamic

information concerning the previous scan status can be reviewed for possible reuse. The latter

applies in particular to fixed pages, e.g. a B-tree scan, keeping a fixed path from its root page

through internal pages to the current scan position on a leaf page, may reuse a portion (at least

the root page) of fixed internal pages when repositioned for a new task.

For allowing this form of operation, a scan must be able to recognize that its purpose has

changed between two operations. But it is not possible to reliably detect the boundaries of

independent operations, solely from the normal operation protocol. Database operations often

consist of a series of individual but implicitly stateful operations, e.g. interweaved navigation

and manipulation on one segment. As an example, the SQL semantics of update-positioned

allows a database user to interact directly with a relational scan. Such semantics are not

visible anymore at the scan‟s low-level interface. From the viewpoint of an access module,

CHAPTER 4: ARCHITECTURE 131

such operations are just a series of consecutive calls to various interface routines. In particu-

lar, it is not clear at which point a scan is reassigned to another task. Only the Close()

operation gives conclusive evidence that a unit of work was completed and the scan context

has become obsolete.

To overcome the necessity of closing a scan, the Access Manager offers the optional interface

routine Suspend(). This routine, if implemented by an access method, is used by the Access

Manager to inform a scan that a set of operations belonging to one task has been completed.

Suspend(ScanContext) 

The Access Manager calls the Suspend() routine for effectively preserving unused open

scans in an auxiliary structure called scan-buffer. This buffer contains a limited number of

suspended scans, organized in least-recently-used fashion. If the maximum number of such

scans is exceeded, then the least recently used scan is removed from the buffer by physically

closing it. The scan buffer is maintained by the Access Manager framework in a way that is

completely transparent to the access method implementation. In this buffer, a scan may exist

across multiple logical incarnations, as readily available and reusable asset. There it may

serve for various different purposes during its life-span, but it always remains limited to the

one segment on which it was originally opened, as it is bound via the description page it

processed when opened. In addition, a scan must not outlast the page locks it relies on. When

the locks are released, the description page (or other pages) could change without being

noticed in the scan context. Therefore, a scan‟s life-span also depends on the isolation level of

its enclosing transaction. If the transaction‟s isolation level guarantees serializability, then

locks are held until transaction boundaries. Consequentially, an open scan may also exist for

the same duration. In case of a lower isolation level, a scan‟s existence is correspondingly

shorter, e.g. only for the duration of one SQL query. The correct behavior is controlled and

guaranteed by the Access Manager framework, which will either logically suspend or physi-

cally close scans as appropriate. When an access method experiences a call to its Suspend()

routine, it has to initiate operations that are essential for concluding a unit of work, for exam-

ple freeing resources that will not be reused in a consecutive operation. Otherwise, the scan

remains open and fully operational, ready for immediate reactivation. This reactivation is

initiated by a second optional Access Manager interface routine:

Reset(ScanContext, mode,

,) 

132 4.3 ACCESS METHOD INTERFACE

 mode ::= { Scan | Insert | Update | Delete | Materialize }

Similar to the Open() routine, the Reset() routine provides complete configuration settings

for the upcoming unit of work, but it lacks the DescPage parameter, as the description page

is already transcribed into the still active ScanContext, which is preserved from the preced-

ing operation on this segment. The next call to any routine of this scan will therefore have the

same effect, as if called on a freshly opened scan, i.e. a sequence of Suspend() and Re-

set() is the lightweight equivalent to a sequence of Close() and Open(), reinitiating a

scan without physically closing it. The resulting scan still belongs the same transaction

(TaID) and operates on the same segment (SegID) on which it was opened originally, but it

may exhibit a different specialization (mode) and an alternative configuration (
,), as

the scan is about to serve for a different purpose. Conceptually, the Suspend() routine is the

terminal function call of a cohesive unit of work, while the Reset() call starts the consecu-

tive operation.

4.3.5. Negotiation and Optimization

The routines belonging to the operational area of negotiation are used in the query optimiza-

tion phase. They provide information on capabilities and requirements of custom access

methods and other custom relational operators. Based on this information, the DBMS query

optimizer is able to integrate such custom operators into query evaluation plans (QEPs) and

eventually it chooses the most promising QEP from several alternatives. In cost-based optimi-

zation, this decision is supported by cost estimation, which therefore necessitates cost func-

tions for custom relational operators. For providing the required functionality for negotiation

and query optimization, the access method interface specifies four routines, namely Apply(),

Exploit(), Propagate(), and Cost().

The Apply() routine enables substitution of an n–ary ERA sub-expression in an algebraic

query plan with an algorithmic unit implementing that expression, by establishing all neces-

sary prerequisites of that algorithm. Consequentially, the algorithmic replacement will possess

n input streams, and for each one it may demand particular input requirements within the

scope of equivalence configuration. Relational scans exhibit a few special characteristics,

distinguishing them from general relational operators. Retrieval scans are always leaf opera-

tors in a query plan, possessing no input stream. Such nullary retrieval scans are applicable

unconditionally, making an Apply() routine apparently obsolete for this type of operator. On

the other hand, relational scans have input streams, if their purpose is modification of stored

CHAPTER 4: ARCHITECTURE 133

data or when they are used for materialization of a base relation after an index access. The

input stream of modification scans represents data to be inserted, or identifies tuples to be

deleted or modified. In the latter case, it also describes the modification to be performed.

Materialization scans operate on one input stream, originating from a secondary index and

providing identification of tuples to be retrieved from the associated base relation. Both

manipulation and materialization scans operate on persistently stored relations, each using one

single input stream, i.e. they both represent unary relational operations. Both nullary and

unary scan operators can be adapted through propagation and exploitation of correlated

predicates, as used for direct lookup on the inner relation of a nested-loop join. The unbound

variables of correlated predicates represent additional input streams that are also subject to

negotiation. For basic customization of a scan operator, allowing optimized interaction with

its input streams, the access method interface specifies the following routine, specialized for

applicability of n-ary scan operators:

Apply(ScanContext, , opt) 

 opt ::= 0,1,2,3,...

This routine allows the scan to announce its applicability requirements
 (cf. Definition.11:

Apply function on page 38), consisting of an array of configuration

ters for each input stream. Before the Apply() routine is called, the

scan to be configured must be opened, i.e. a ScanContext is available as parameter, provid-

ing substantial information on the physical data model of the scan. The projection

 describes the permutation of actual attribute positions in the i-th data input

stream, relative to attribute references in the algorithmic unit‟s replacements pattern. The opt

parameter selects from an enumeration of optional input requirements. Setting opt=0 estab-

lishes minimal applicability requirements for correct functioning of the applied operator. In

particular, minimal input requirements should contain only standard representation

tives , otherwise the operator is not generally applicable. In addition, the scan operator

may allow an arbitrary number of optional input requirement specifications. The optimizer

iterates over available opt settings, starting from zero. If Apply() is called with an opt level

exceeding the maximum number of available optional input requirements, then the routine

returns empty
 configurations. Whenever returning valid

 settings, the Apply()

routine also records
 within its ScanContext structure, thereby configuring the scan to

this new setting. After each iteration, the optimizer may analyze the costs for satisfying the

134 4.3 ACCESS METHOD INTERFACE

applicability requirements of the current opt setting, potentially using exploitation and

propagation on the algorithm‟s input stream, for actively minimizing applicability costs. The

process searches for input configurations offering the best trade-off between good interopera-

bility and low applicability expenses. Eventually the optimizer decides on the input configura-

tion to be used, and a final call to Apply() with the chosen opt setting makes sure that the

corresponding
 is recorded in the ScanContext.

Minimum applicability specifications of scan operators typically comprise only convenient

projection of input data. Advanced configurations for more efficient manipulation and mate-

rialization often enforce an input sort order that matches the primary linearization of the base

relation. As an example, materialization using successive lookup of primary keys in the base

relation will perform better, if the search keys are delivered in such order, that every page of

the base relations is visited exactly once, even if it contains multiple hits. A more detailed

example will be provided in 4.3.7 Data Manipulation. Finally, non-standard representation

also allows tight integration with preceding operations.

The Exploit() routine consolidates QEPs that were extended using Apply(). It aims for

establishing applicability requirements of an algorithm efficiently, by integrating necessary

transformations into the algorithm‟s immediate predecessor. We already demonstrated that

this method is particularly effective for constructive query planning based on the principle of

optimality, because exploitation operates strictly locally, having no implications on the al-

ready established applicability requirements of the preceding algorithmic unit. This is also

true for exploitation of correlated predicates. An n-ary operator, accepting a correlated predi-

cate via exploitation, de facto obtains its n+1st input stream in form of a parameter stream

feeding values into the predicate‟s unbound variables. This means that even nullary retrieval

scans may factually operate on input streams. The already mentioned locality of exploitation

ensures that this additional input stream does not introduce additional applicability require-

ments, neither on the introduced parameter stream, nor for any other input stream.

Modification scans are always located at the root of query plans, and therefore they have

neither parent operators, nor do they produce relational data. Their result is an integer number

representing the total number of tuples affected by the modification. Hence, exploitation

applies only to scans used for data retrieval and materialization. For these scan operators,

exploitation allows conducting additional transformations on the fly, while scanning the input

set. The Exploit() routine (cf. Definition.13: Exploit function on page 45) takes the

CHAPTER 4: ARCHITECTURE 135

applicability specification of the parent operator as input and determines the accepted

configuration parameters of the exploited operator. These accepted exploit-

able parameters are immediately adopted into the ScanContext, making them part of the

scan‟s current configuration. As result, the routine returns , the vector of rejected parame-

ters . Finally, the optimizer will compensate for rejected operations by

inserting corresponding standard implementations for , thereby generating a coherent and

executable query plan.

Exploit(ScanContext,) 

The routine Propagate() is used by query optimization based on algebraic equivalence

transformation of a query plan. It pushes configuration parameters downwards through

algorithmic units that are permeable for these parameters. For example, establishing a specific

sort order either before or after an order-preserving operation is functionally equivalent.

Similarly to exploitation, propagation will also extend an n-ary operator to n+1 factual input

streams, by accepting a correlated predicate. This happens if a correlated predicate is absorbed

by the algorithmic unit in the course of propagation, rather than being properly propagated. In

contrast to exploitation, propagation may influence an algorithmic unit‟s applicability re-

quirements. The query plan optimizer will automatically explore the impact of propagation on

applicability requirements, by employing the Apply() routine as stipulated in the negotiation

protocol. Hence, in the presence of correlated predicates, the Apply() routine achieves true

relevance, even for retrieval scans that are originally nullary operators without applicability

requirements.

Absorption of a correlated predicate through propagation may have side-effects on a unit‟s

applicability requirements and, in particular, it may introduce applicability requirements for

the freshly added input stream. As an example, assume an inner scan participating in a nested-

loop join is absorbing the join predicate in form of a correlated predicate (cf. also Figure.10

(b) and (c) on page 51). Then it may request that the data stream of the join‟s outer loop,

which is feeding the correlated predicate, is adequately sorted for improved lookup perfor-

mance, thereby effectuating a skip-merge join algorithm, i.e. a merge join capable of skipping

mismatching data on the inner stream. It should be noted that such applicability requirements

for correlated predicates represent non-local input directives. In case of a nested-loop join,

they introduce additional input directives for the join algorithm‟s outer loop, although they are

established by the inner loop‟s relational scan. This form of propagation may therefore pro-

136 4.3 ACCESS METHOD INTERFACE

duce contradictory input directives. The query plan optimizer is in charge of identifying such

conflicts and resolving them, if possible. However, it is recommended that non-local input

directives should be used with care, and they should appear only as optional input require-

ments of an algorithmic unit, otherwise conflicting input directives might inhibit absorption of

correlated predicates.

Naturally, permeability and therefore also propagation applies only to internal nodes of a

query plan, making materialization the primary class of scan operators capable of propaga-

tion. Retrieval scans support propagation only when handling correlated predicates. Finally,

modification scans at the root of a query plan do not support propagation at all. Similarly to

Exploit(), a call to Propagate() (cf. Definition.15: Propagate function on page 49)

takes the applicability specification of its parent operator as input and returns only the

rejected parameters in its result . Propagation is described by the

equation for every single configuration parameter, hence it implicitly

includes exploitation. Similarly to exploitation, propagation directly configures the Scan-

Context to locally exploitable parameters . The propagated configuration

never becomes explicitly visible. Instead, successful propagation influences the applicability

requirements of the operator by directly modifying the scan‟s configuration in its ScanCon-

text. Modified applicability requirements necessitate repeated consolidation, which lies

within the responsibility of host system‟s optimizer and is also accomplished via the negotia-

tion interface, i.e. the modified is retrieved using the scan‟s Apply() routine and subse-

quently satisfied by employing downward propagation or exploitation.

Propagate(ScanContext,) 

Finally, after the scan is configured, a call to its Cost() routine retrieves the estimated costs

for evaluation, making the effectiveness of alternative QEPs comparable. The general costs of

an algorithmic units amount to the sum of local costs plus expenses for generating the neces-

sary input for the algorithm. The local costs assessed for a scan operator display the required

expenses for completing a complex unit of work, i.e. the traversal of its persistently stored

relation under the given configuration parameters and controlled by the scan operator‟s input

streams. Functionally such a traversal corresponds to a succession of many individual access

method interface calls, involving navigation and repositioning within the stored data set, but

also retrieval and modification of data. This complex unit of work is described in detail by the

scan operator‟s configuration, consisting of its initial operation mode, applicability directives

CHAPTER 4: ARCHITECTURE 137

 , and exploitation , where the latter two are established during negotiation and are

available in the ScanContext.

Cost(ScanContext, InCosts, Stats)  OutCosts

For estimating cost in accordance to the recursive cost model presented earlier, the cost

function receives the precalculated costs of its input streams in the InCosts parameter,

separated into streaming and blocking cost accounts. In addition, cost estimation of an opera-

tion is substantiated with statistical information, namely cardinality estimations, on the opera-

tor‟s input and output streams. This information is generated autonomously by the host

system, without any knowledge on the inner workings of custom algorithmic units. Derivation

of statistics is based on the observations that boundaries of algorithmic building blocks in a

query plan always coincide with the boundaries of the algorithms‟ algebraic equivalents. This

allows maintaining valid statistical information throughout a purely algebraic representation

of a query plan, containing arbitrary custom implementations of relational operators. Statistic-

al information on an algorithm‟s input streams and on its single output stream is provided in

the parameter Stats. The availability of statistics on both input and output is intended for

facilitating accurate cost assessment, in particular for algorithmic units implementing exten-

sive algebraic expressions, where interpolation of statistical information might become

necessary for accurate cost estimation. Finally, Stats also includes input statistics of parame-

ter streams feeding correlated predicates.

In contrast to other relational operators, the Stats parameter of a scan operator is additional-

ly supplemented with the cardinality of the persistent relation on which the scan is operating,

as this also represents an actual input stream. For cost estimation, comparison of this input

cardinality with the cardinality of the scan‟s output stream allows inferring the selectivity of

the scan‟s accepted predicates. For being able to provide such information, the host system

must maintain general statistics on persistent relations, comprising cardinality and selectivity

estimations. These statistics are automatically collected and maintained by the host system,

which is able to access and analyze any persistently stored relation. Such access is transpa-

rently possible, regardless of the actual access method implementation, via the corresponding

access module‟s access method interface. This allows convenient generation of arbitrary data-

centered statistics, such as data distribution, by employing the host system‟s query processor.

The statistics are then stored in the DBMS data dictionary, where they are available for

subsequent cost estimation.

138 4.3 ACCESS METHOD INTERFACE

If additional information on physical properties of the access structures is required for cost

estimation, e.g. the degree of fragmentation or height of a search tree, then such information

has to be maintained separately by the access structure itself. This can be accomplished by

adequate book-keeping in the description page, whenever the access path is restructured

during data manipulation. When the access path is opened, this information is transcribed into

the volatile ScanContext structure, where it is available for cost estimation. Cost estimation

returns the data structure OutCosts, containing a collection of qualitative cost events, strictly

divided into blocking and streaming accounts. OutCosts may serve directly as InCosts

parameter in recursive cost estimation of a parent algorithmic unit. The process of cost esti-

mation is concluded, when the host system eventually maps qualitative cost events to quantit-

ative costs in accordance to the host system‟s cost model, allowing for flexible and dynamic

cost assessment.

4.3.6. Elementary Navigational Access

All data retrieval facilities of the relational scan operator are concentrated in the Next()

routine. This routine is adopted directly from the Iterator model and its operation is tightly

interconnected with the scan operator‟s exploitable configuration parameters

 . If the scan operates on input streams, then the Next() routine relies also

on the input streams‟ compliance with established applicability requirements

 for each input stream. These configurations, which are obtained

by negotiation during query plan optimization, integrate the scan operator tightly into the

QEP, allowing optimized interoperability with adjacent relational operations. The combina-

tion of both configurations represents a detailed specification of a planned, iterative traversal

through a persistently stored relation. Hence, both configurations are integral parts of the

ScanContext, which is the single parameter of the Next() routine.

Next(ScanContext)  (OutTup, ScanStatus)

 ScanStatus ::= { OnTuple|NotOnTuple|EndOfData }

The Next() call offers rich navigational capabilities in form of relative and absolute scan

positioning within the persistent data set. For relative positioning, we define two distinguished

scan positions, namely begin-of-data (before the first tuple) and end-of-data (after the last

tuple). Initially, a scan on some relation T is by definition positioned on begin-of-data. Rela-

tive positioning is effectuated by configuring the scan‟s setting to the trivial selection

 . Every call to Next() will move the scan relatively to its previous position, i.e. the

CHAPTER 4: ARCHITECTURE 139

scan moves forwards from its current position to the next tuple t in T, with respect to some

chosen linearization of T. A linearization is chosen by supplying a non-trivial configuration

parameter , requesting traversal of T in the specified lexicographical sort order. In most

cases however, traversal will follow the primary linearization of the relation, which is impli-

citly chosen by configuring the scan to . This allows choosing the primary lineariza-

tion, even if it is not a lexicographical sort order. Hence, relative positioning using Next()

always moves the scan onto the next tuple t, with respect to the chosen linearization, and the

routine will return OnTuple as ScanStatus. In addition, t is subjected to a projection

and output in OutTup, as an immediate result of the Next() function call. If the current tuple

has no successor in the chosen linearization, then Next() will eventually position the scan to

end-of-data and correspondingly return EndOfData as ScanStatus. With this, relative

positioning allows iterative traversal of T, visiting every tuple exactly once.

In addition, navigation using the Next() routine may be complemented with an optional

Previous() operation. This routine offers the same functionality as the Next() routine, but

it follows a linearization inverse to the chosen one. If the Previous() routine is not imple-

mented, the host system will try to compensate by using Next() on a scan configured to the

inverted linearization of . This is only possible, if the chosen linearization corresponds to a

lexicographical sort order (), otherwise it cannot be formulated as configuration

parameter. For non-lexicographical orders, or if an inverted sort order is rejected during

negotiation, then the relation will be scanned in forward direction and the result is subsequent-

ly sorted using a conventional sort operation . Similar to forward iteration, the optional

Previous() function is expressed as:

Previous(ScanContext)  (OutTup, ScanStatus)

 ScanStatus ::= { OnTuple|NotOnTuple|EndOfData }

In contrast to relative positioning, absolute positioning moves a scan onto a selected coordi-

nate of the multidimensional space spanned by the attributes of a relation. The position is

specified as a restriction , where defines an exact point. For such pinpoint positioning,

 may provide a full specification of all relation attributes, such that appoints constant

values , determining coordinates in all n dimensions of T. The minimum specifica-

tion of an exact point in T is represented by restricting any subset of T’s attributes constituting

a unique key in the relational sense. Alternatively, may also select the TID of a searched

tuple as surrogate for a unique key. In any case, if a tuple t satisfying exists in T, then the

140 4.3 ACCESS METHOD INTERFACE

scan is positioned onto t and the existence of t is acknowledged by returning OnTuple as

ScanStatus. In addition, t is subjected to and output in OutTup. Direct access may also

position the scan into unoccupied space between existing tuples, if no data in the table satis-

fies the predicate of . Hence, no output tuple is available, but the scan is positioned to the

spot where the searched data would be located, with respect to the primary linearization of T.

In this case, the routine returns the status NotOnTuple and OutTup remains empty. In

contrast to relative positioning, absolute positioning is strictly stateless, i.e. its result is always

the same, regardless of the previous scan position.

Finally, scans can be configured to a complex selection defining a set of intervals, or a set

of multidimensional query boxes, which are additionally composed with logical interrelations

(AND/ OR/ NOT), as expressed in our conception of multi-attribute selection predicates in

disjunctive normal form

 . In this configuration, the scan will auto-

nomously use absolute positioning for navigating directly onto a query box and subsequently

traverse it by using relative positioning, employing the skip-scan technique described earlier.

As a result, Next() and Previous() will iteratively return all tuples qualifying for the

given selection predicate, before finally reaching end-of-data. In conjunction with a lineariza-

tion and the other configuration parameters, this technique allows highly sophisticated

traversal of persistently stored data sets through the remarkably simple Iterator interface. We

refer to this form of scan operation using a predefined and constant scan configuration as

conventional navigation.

Now we will investigate possible interaction of with an input stream on the example of a

materialization scan. The input of a materialization scan provides tuple identification, re-

trieved from secondary indexes for direct lookup of the associated tuple in the base relation.

Hence, navigation is a sequence of point accesses, using absolute positioning, where the

predicate of depends on data from the scan operator‟s input stream. Technically, this is

conducted by substituting variables in the predicate with corresponding data delivered by the

input stream. This preparatory step is accomplished by the scan operator entity (cf. Figure.28

on page 118), encapsulating an access module implementation. The Next() routine does not

provide for manipulation of the scan‟s configuration, but the Open() routine allows direct

supplementation of the parameter. The complete materialization procedure consists there-

fore of multiple sequences, each starting by substituting variables in with input data, in

preparation for calling Open(), followed by Next(), and concluded with Close(). The

presented to the access method during query evaluation is therefore completely constant, in

CHAPTER 4: ARCHITECTURE 141

contrast to configurations used in query planning, which may contain variables referencing

input data or correlated predicates.

Alternatively, such extended navigational capabilities are also accessible via the optional

Reset() interface routine, as an replacement for Close() / Open() pairs. In contrast to

reassignment of scans to different tasks as discussed earlier, where Suspend() and Re-

set()are called in turns, calling Reset() on an open scan serves for reassigning a new

constant configuration to the scan, while the scan remains within the same logical opera-

tion. Note that reconfiguration is strictly limited to , while it is illegal to alter the invariant

. We refer to this operational mode of relational scans as input-driven navigation.

The same basic principle applies also, if originally contains correlated predicates. These

predicates exhibit unbound variables for iterative substitution with values retrieved from a

parameter input stream. In query evaluation phase, all initially unbound variables in correlated

predicates are bound to the present values on the corresponding parameter stream. With this,

 becomes constant for the duration of one traversal through the persistently stored data set.

This form of navigation is called parameterized navigation.

There exists a fourth form of navigation, allowing fully dynamic manipulation of a scan‟s

configuration. For example, assume an open scan that is currently configured to some

with some non-trivial selection
 for direct positioning. A subsequent Reset() is used to

install a new configuration
, removing the selection from the scan‟s configuration, such

that hereafter
 holds. Hence, the next call to Next() will move the scan from its

current position to the next tuple, with respect to the currently active
. Conversely, after

repeated relative positioning, a call to Reset() may be used to install another selection
,

such that the following Next() will move the scan to a new absolute position. Iterative

navigation with intermittent scan reconfiguration constitutes a new form of dynamic naviga-

tion.

We emphasize that dynamic navigation must be distinguished from input-driven (e.g. materia-

lization) or parameterized (e.g. nested-loop join) scan operations. In all three cases, the scan‟s

configuration changes frequently, yet only in case of dynamic navigation it may change in

arbitrary ways. The configuration of input-driven and parameterized access patterns change in

uniform ways that resemble mere substitution of variables, and these changes are strictly

limited to the selection part of the configuration. Only this limitation to mere variable substi-

142 4.3 ACCESS METHOD INTERFACE

tution makes these access patterns plannable, and the availability of statistics on input data

and parameter streams enables reasonable cost estimation. These two implications are inevit-

able prerequisite for effective query optimization. Moreover, static configurations for planned

traversals are generated during the negotiation process by the same algorithmic entity to

which the configuration eventually applies, guaranteeing that static configurations are both

valid and efficient. Dynamic navigation on the other hand uses ad-hoc configurations, assem-

bled outside of the configured entity. This requires detailed knowledge of an access module‟s

internals for devising adequate configurations. Dynamic configurations completely impede

cost estimation and cost-based query planning. But, in spite of these drawbacks, there certain-

ly exist practical applications for dynamic navigation, for example in intermediate access

methods (cf. Figure.20 on page 97) using the tuple-oriented access method interface for

exploiting the full navigational capabilities of its auxiliary data structures.

We conclude this section on navigational data access with a brief wrap-up of the fundamental

operations of relational scans introduced so far. Any access path may be in one of three

possible states. It can be non-existent, operational, or closed, while suspended is an optional

fourth state, in-between operational and closed. More precisely, any existent access path

allows an arbitrary number of scans, where each one is operational, suspended, or closed.

With this, all elementary functionality of a generic scan operator for read-only access is

covered. The following Figure.32 shows the interaction of all mandatory components of the

Access Manager interface. It also comprises optional instrumentations that are necessary for

realizing suspension of scans.

Figure.32 Transition of scan states. Interactions of the minimal set of Access Manager interface compo-

nents and possible transitions of scan states. Note that any existent access path may allow an arbitrary

Operational ClosedSuspended
Non-

existent

Open

Drop

Create
Reset

Close

Suspend

Negotiate: Apply, Exploit,
Propagate, Cost

Iterate: Next, Previous

CHAPTER 4: ARCHITECTURE 143

number of scans in the states operational, suspended, or closed. The scan state is changed by Create(),

Drop(), Open(), Close() and the optional Reset() and Suspend() routines. The routines be-

longing to the negotiation complex apply to operational scans and influence the scan‟s configuration, while

the scan state remains operational. Similarly, the Iterator routines alter the scan position of an operational

scan, in correspondence to the scan‟s current configuration. Finally, Reset() may also apply to opera-

tional scans, allowing scan reconfiguration while the scan remains operational.

After employing any form of navigation mentioned earlier, a scan may be used for subsequent

data manipulation at its current position. A detailed discussion of positioning with intermittent

data manipulation will be provided in the following section.

4.3.7. Data Manipulation

The linear address space of secondary storage devices requires that data inside a database is

stored according to some linearization, i.e. all tuples of a segment are stored in some arbitrary

order. A segment‟s primary linearization can be exploited by a diversity of search structures

for obtaining efficient access to the data, if it exhibits some functional dependency on the

stored data (clustering). Linearization is usually maintained only within page-sized partitions

of the physical address space (intra-page clustering). These pages are then logically assembled

to the continuous address space of a segment, thereby manifesting coherent clustering on a

logical level. Alternatively, inter-page clustering will also sustain physical clustering between

individual pages, but this approach is only of secondary importance in the field of DBMS

technology, since it generally involves significantly higher maintenance costs for reorganiza-

tion. Finally, data partitioning represents a third, hybrid form of clustering, where data is

functionally associated with dedicated data partitions residing in different physical extents.

Thereby related data is physically clustered into one extent, but within that extent only intra-

page clustering is enforced. Regardless of employed clustering, the logical address space of

one segment may grow through addition and shrink through removal of pages. Additional

pages may be inserted conveniently anywhere inside the logical address space, allowing

dynamic adaptation to any emerging space requirements, whereas page removal may occur

where logical address space becomes unoccupied. This approach allows dynamic manage-

ment of the address space while preserving the imposed clustering for efficient data access.

For sustained integrity of a data access structure, access methods have to actively maintain the

primary linearization whenever data is manipulated. General data manipulation subsumes

insertion, deletion, and modification of data. Linearization is preserved by inserting new data

into the segment‟s address space at the „right place‟ within the primary linearization. There-

144 4.3 ACCESS METHOD INTERFACE

fore, access structures have to locate the correct position for insertion, provide required

storage room by reorganizing data or extending the logical address space in the vicinity of the

chosen insertion point, and finally insert the new data. When data is deleted, previously

occupied space is released by reorganization of the affected pages. If, after deletion, the fill

level of a page drops below a given limit, logically adjacent pages are merged and resulting

unoccupied pages are eventually removed from the address space.

The access method interface classifies routines for data manipulation as optional, hence

explicit read-only access modules may refuse to implement these routines. For achieving full

data modification functionality, an access module has to provide at least implementations of

the access method interface routines Insert() and Delete(). These two routines are able

to cover arbitrary data modification and also subsequently necessary access path reorganiza-

tions. Both routines will actively move the scan‟s position either onto the correct tuple to be

deleted or to a position where the tuple to be inserted shall be located. Therefore they are

using navigational capabilities for repositioning the scan that are similar to those provided by

the Next() routine. Technically this navigational component of data manipulation can be

implemented by reusing functionality from Next(). Since an access method is definitely

familiar with its own implementation, it is possible to use effective ad-hoc configuration for

dynamic navigation, without going through the negotiation process. If the access module also

implements the optional Reset() routine, then reuse of the access methods public interface

for efficient navigation during data manipulation becomes even more attractive. After moving

the scan onto the target location on the correct page, the scan will access the page using the

FixPage() routine, thereby acquiring a WRITE_LOCK. Finally, the contents of that page are

modified. If data insertion would exceed the page‟s storage capacity, then additional space is

allocated by using the AllocPage() method from the storage layer interface and the new

page is integrated into the logical structure of the access path. Therefore it might be necessary

to acquire additional WRITE_LOCKs on logically adjacent pages (e.g. parent and sibling pages

in tree-like structures), in order to redirect references to the newly allocated page. Finally,

data is inserted at the appropriate position. Conversely, data deletion may trigger restructuring

and merging of pages according to the logic of the particular access structure. Pages remain-

ing unoccupied after such reorganization are eventually removed using DeletePage().

Again, references from adjacent pages to a page to be deleted will be updated after fixing the

affected pages for acquiring necessary WRITE_LOCKs.

CHAPTER 4: ARCHITECTURE 145

In addition to Insert() and Delete(), the access method interface also provides the

optional Update() routine for direct modification of data. Since every update operation can

be simulated by deletion of original data followed by insertion of its replacement, the imple-

mentation of the Update() routine does not introduce additional functionality, yet it may

have performance-relevant implications. While insertions and deletions are strictly local

operations, an update may cause a tuple to leap from one position in the primary linearization

to another, and consequentially the tuple may move from one page to another. This happens if

the segment‟s linearization has a functional dependency on the modified data. As an example,

a tuple stored in a B-tree will leap if any of the fields constituting the B-tree‟s compound key

is altered, since the B-tree uses the lexicographical order on the composite key attributes as

primary linearization. Hence, we generally distinguish in-place updates and relocation up-

dates.

All data manipulation routines operate on open scans, using the context of that scan as input

parameter. The remaining parameters describe data to be inserted, deleted, or updated. The

scan operator entity (cf. Figure.28 on page 118) encapsulating an access path implementation

is responsible for retrieving this data from the modification operator‟s input stream and feed it

as parameters to the modification routines.

Insert(ScanContext, NewTuple)  InsStatus

 InsStatus ::= { Inserted | Duplicate }

Delete(ScanContext, OldTuple)  DelStatus

 DelStatus ::= { Deleted | NotFound }

Update(ScanContext, OldTuple, NewTuple)  UpdStatus

 UpdStatus ::= { Updated | NotFound | Duplicate }

All routines return diagnostics whether the operation succeeded. An insertion may fail be-

cause it would lead to duplicates of key, and analogously a deletion may fail if the data to be

deleted is not found. The access method merely indicates the result of the operation. The scan

operator entity will interpret this status and decide whether it indicates an error situation or if

the diagnostic is tolerated or even anticipated. Deletion initiated by a user query may well

result in a NotFound status, if the searched data is not present. On the other hand, if data was

successfully deleted from the base relation, then a successive deletion from a secondary index

must find and delete the corresponding index tuples. These diagnostics are also used when

aggregating the number of inserted, deleted, and modified tuples for returning the set manipu-

lation‟s result count, a task that is also handled by the enclosing scan operator.

146 4.3 ACCESS METHOD INTERFACE

Modification of data in a concurrent environment inevitably entails all sorts of ramifications.

Concurrency is used here in the sense that multiple scans are open on one segment at the same

time. The host DBMS query processor will call access method interface routines of different

scans in turns. However, the routines are still called in a mutual exclusive manner. Hence, the

scans operate concurrently, but not in parallel. Parallel query evaluation requires additional

synchronization, which will be discussed separately in the discourse on advances query

evaluation techniques of section 4.5.3 Parallel Query Processing. The biggest part of ramifi-

cations caused by concurrent scans, namely all necessary precautions for enabling multiple

transactions to conduct concurrent scan activities on the same segment, are covered by the

multi-version concurrency control of the host system. This mechanism provides reliable

isolation on page-level granularity for operations of independent transactions, relieving the

access method programmer from the necessity of any additional precautions. Therefore, only

interactions of concurrent scans of the same transaction require additional attention in an

access method implementation. We already mentioned the basic aspects of scan maintenance,

after acquiring a WRITE_LOCK on a page. Multi-version concurrency control requires that

locking with intention of modification creates a copy of the locked page. This copy henceforth

represents a new version of the page, the after-image. It will be used by all scans belonging to

the transaction that acquired the WRITE_LOCK, while scans of concurrent transaction continue

using the before-image. As a consequence, the modifying scan has to redirect concurrent

scans belonging to the same transaction to the after-image. This is accomplished by direct

manipulation of concurrent scans contexts, which becomes possible, since concurrent scans

on the same segment inevitably belong to the same access method type, and therefore they are

familiar with the semantics of concurrent scan contexts. All scan context adaptations neces-

sary for scan maintenance are performed by the scan that caused the creation of the new

version, immediately after acquiring the lock. This strategy of direct scan maintenance allows

other scans to continue their work, without consciously recognizing that version, location, and

contents of their fixed page have changed. The same strategy is always applied, when the

contents of a page are modified. If a concurrent scan is positioned on a page being modified,

the modification will insert, delete, or update tuples in the vicinity or at the exact position of

that scan. In case of a modification in the vicinity, the tuples in the page may shift positions

and the foreign scan has to be adapted in its scan position. On deletion of a scan‟s current

tuple, that scan has to be moved to a position before the logically successive tuple according

to that scan‟s effective configuration. In case of insertion, scan maintenance has to be

CHAPTER 4: ARCHITECTURE 147

conducted such that recent modifications will become visible to concurrent scans, if those

scans move towards the new tuple according to their configurations.

This strategy of active scan maintenance is not limited to altered tuples and scan positions, but

it applies also to all page modifications effectuated by data manipulation. In B-trees, for

example, modification on leaf-level have to be treated in the same way as their side-effects on

internal nodes of the index part of the tree, manifesting as page insertions, deletions, splits, or

merges. This includes in particular changes in the segment‟s description page, as these mod-

ifications also have to be reflected immediately in the scan contexts of concurrent scans

operating inside the same transaction. When a call to a data manipulation routine completes,

all tasks concerning modification on that segment must have concluded. The access structure

and the contexts of all concurrent scans have to be in a state enabling them to cope with

arbitrary subsequent calls to any of their access method interface routines. Manipulation of

redundant data stored in separate data structures (indexes) and possible referential constraints

to other tables will be discussed separately. This will be subject of the following section 4.3.8

Data Integrity.

The principles of singleton manipulations can be generalized, when dealing with mass inser-

tion, deletion, and updates. Mass manipulations essentially perform the basic operations

described before in a repetitive fashion. Therefore, the scan operator is fed with input streams

defining on which data the operation will be performed, i.e. a stream of tuples to be inserted

or a data stream identifying tuples to be deleted. The performance of such mass manipulations

can be significantly improved, if the input streams controlling the manipulation deliver their

data in an opportune sort order. For example, insertion of tuples arriving in a sort order that

resembles the primary linearization of the base relation will be significantly faster than ran-

dom insertion. This sort order facilitates modification in one single sweep over the base

relation, allowing „clustered‟ modifications, as opposed to perpetual random repositioning

within the data structure. This observation applies in the same way to mass deletion and mass

updates. The modification scan may actively request an opportune input order during negotia-

tion of its input requirements. In this case, the input sort order has only implication on the

operator‟s performance characteristics, but not on its functionality. Hence, such a supportive

sort order would be requested as an optional input requirement.

In some cases, mass manipulation has to be conducted under additional precautions. In partic-

ular circular references, where the modified relation serves as input for the modification, have

to be specially treated (e.g. INSERT INTO T SELECT a*2 FROM T). The same holds for self-

148 4.3 ACCESS METHOD INTERFACE

references in update statements that cause tuple relocations (UPDATE T SET a=a*2), and for

sub-queries in delete statements (DELETE FROM T WHERE a > (SELECT AVG(a) FROM T)).

This form of circular dependencies is automatically recognized by the host system‟s SQL

compiler, considered by the query optimizer, and finally resolved by employing an adequate

strategy in the query processor. The resolution of circular references is based on the principle

of deferred updates, there the modification is conceptually split in two phases. The first phase

will compute the complete information describing the planned modification (tuples to be

inserted, deleted, or updated) and retain it in a temporary storage area. The table to be mod-

ified remains unchanged. The actual modification is performed in the second phase, using

input streams from the temporary store and thereby eliminating all circular references. All this

is automatically handled by the host system, completely without any support from the affected

access module.

4.3.8. Data Integrity

Until now, we examined the effects of data manipulation on one single access path. But

manipulation on a base relation may trigger numerous side-effects for maintaining overall

data integrity in a database. These side-effects cover maintenance of secondary indexes,

checking and propagation of integrity constraints and the execution of automatic database

triggers. In the following, we will address each of these three topics separately and finally

discuss interactions between these individual tasks.

Indexes

The modification of data in a base relation implicates updates of redundant data stored in

secondary indexes. Insert and delete operations inevitably require a corresponding manipula-

tion on all secondary indexes, as indexes always maintain a strict one-to-one relationship

between base tuples and index tuples. Row updates on the other hand, do not necessarily

affect all indexes, since indexes typically constitute a lean projection of the base relation. If

the update modifies only columns that are not part of one particular index, then this index

remains unchanged.

There exist two general strategies for maintaining indexes. If a set of tuples is to be modified,

integrity can be preserved via singleton index maintenance, i.e. each individual base tuple

modification is immediately followed by maintenance of all indexes in a one by one fashion.

Alternatively, set-oriented index maintenance updates all base relation tuples in a first phase,

followed by accumulated maintenance of every separate index, each in an individual phase.

CHAPTER 4: ARCHITECTURE 149

Singleton index maintenance allows processing manipulations on-the-fly, without any re-

quirements for temporal storage. The modification of one individual tuple is processed com-

pletely on all affected access structures. Data from the input stream describing that modifica-

tion becomes obsolete and may be discarded as soon as the last index structure has been

updated (cf. Figure.33a). This form of index maintenance uses multiple modification scans at

the same time, one for the base relation (potentially accompanied by a separate scan on the

IK-tree) and one for every redundant segment. These scans are operated in turns, leading to

non-locality in index maintenance, which may cause severe performance penalties. We

already mentioned that manipulation will benefit if its input data arrives in a convenient sort

order, such that modifications on the base relation are performed in form of one single traver-

sal of the base relation, following an adequate linearization. This input sort order is negotiated

during query optimization phase and often matches the primary linearization of the base

relation. While the negotiated input order can be assumed to be optimal for handling the base

relation, it will surely have adverse effects on secondary index maintenance. Base relation and

all secondary indexes are inevitably based on pairwise distinct linearizations, otherwise they

cannot serve as expedient alternative access paths. Hence, tuplewise modification on indexes

provokes a random modification pattern, requiring frequent and potentially wide-spaced

repositioning. These access patterns may lead to a significant overhead, if different tuples on

the same page are modified in separate and nonconsecutive operations, with intermediate

repositioning to other pages. Ultimately, they will cause cache frame thrashing and unfavora-

ble random I/O profiles, where the same page is physically read, modified, and written mul-

tiple times. Especially in case of bulk operations on many secondary indexes, this effect is

likely to obliterate performance benefits gained through on-the-fly processing.

Figure.33 Data integrity maintenance across redundant data structures. A deletion from table S with

two secondary indexes SX1 and SX2 is being conducted using alternative strategies (a) and (b). In both

in
se

rt

d
e

le
te

S

Phase 1 Phase 2 Phase 3

in
se

rt

d
e

le
te

SX1

in
se

rt

d
e

le
te

SX2

in
se

rt

d
e

le
te

S

in
se

rt

d
e

le
te

SX1

in
se

rt

d
e

le
te

SX2

(a) (b)

SX2

SX1

SX2

SX1

so
rt

so
rt

SX1

so
rt

in
d

ex

SX1

so
rt

in
d

ex

150 4.3 ACCESS METHOD INTERFACE

cases, the input stream describing tuples to be deleted is retrieved from index SX1, enforcing some given

predicate . Singleton index maintenance (a) processes immediate deletion for every tuple on all participat-

ing data structures. Negotiation will install a beneficial sort order for modification on the base relation S.

Indexes are also maintained in the preset order . Set-oriented index maintenance (b) conclusively mod-

ifies one access structure at a time, while the input stream is retained in temporary storage, where it is

available for modification of redundant access structures in subsequent phases. Temporary storage opens

the opportunity to reorder input data. Thus, every access structure may install its preferred insertion order

 , , during negotiation.

In contrast, a set-oriented approach to index maintenance in multiple phases requires temporal

storage of the data set defining the planned modification. This allows repetitive processing of

identical data in each modification phase. Although temporal storage seems disadvantageous

at first glance, it opens the opportunity of reordering data to suit the preferences of a second-

ary index. Reordering becomes possible at the expense of additional computational complexi-

ty, with the prospect of return of investment through optimized locality in data manipulation.

The optimal manipulation order for every single index is determined via common negotiation

with scan operators on each index segment during query optimization phase. During query

evaluation, only one scan is open in each modification phase, using the configuration estab-

lished via negotiation. This allows manipulating every index in one single traversal, following

the index‟s preferred linearization.

We already discussed scenarios where data dependencies, such as self-references in data

manipulation queries, require employment of the deferred update mechanism for achieving

algorithmic correctness. This inevitably entails temporal storage of the input data set and

thereby appoints the strategy to be applied. In all other cases, the choice between the two

presented strategies offers a trade-off to be considered by the query optimizer. While tuple-

wise modifications show disadvantageous random behavior when maintaining secondary

indexes, they are able to conduct all operations without additional temporal storage or addi-

tional computational expenditures for reordering data sets. As a variant, it is also possible to

combine both approaches, by reordering updates for some secondary indexes, while others are

updated randomly. Finally, two indexes may share a common prefix in their preferred lexico-

graphic input order. Using that prefix sort order for both indexes might be sub-optimal for one

individual index operation, but it may lead to a superior evaluation plan by reducing overall

costs. The optimizer may decide for every single segment which strategy to apply, using

locally individualized negotiation with each scan operator and global cost-driven query

planning. This decision may be influenced by the number of involved indexes, the amount of

CHAPTER 4: ARCHITECTURE 151

available temporary storage, effective costs for reordering, and finally by the estimated costs

of modifications with and without optional input orders.

Hence, all functionality necessary for appointing efficient index maintenance is already

provided via standard negotiation. Yet, the access method must be aware that suggesting

optional input sort orders to the query optimizer may lead to beneficial alternative strategies.

The host system provides all prerequisites for facilitating these strategies, including temporary

storage, reordering, and other necessary precautions for guaranteeing correctness. The access

module must accept that this strategic decision is made by the optimizer, and support it by

providing ample flexibility and reliable cost estimation. During query evaluation „normal‟

data manipulation and index maintenance are indiscernible from the perspective of an access

module. It will experience a series of repositioning and manipulation on the segment‟s data

structure, using intermittent calls to its interface routines for navigation and data manipula-

tion. The logic controlling index maintenance is completely encapsulated inside the host

system‟s query processor.

Constraints

With the constraint mechanism, SQL provides a variety of instruments for preserving and

enforcing relational integrity. Check-constraints (often used as domain constraints) serve for

restricting the values of a column to a certain subset of the column data type domain. Key-

constraints and unique-constraints guarantee that individual columns, or a combination of

columns, do not contain duplicates. Referential constraints (also foreign key constraints)

ensure referential integrity between individual relations. All types of constraints have the

same general functionality. If data manipulation violates a constraint condition, then the

responsible data manipulation is cancelled, all its previously completed effects are undone,

and the system reports an integrity violation error.

This behavior is conducted by the host system‟s query execution engine, by interpreting the

diagnostics returned as ScanStatus, InsStatus, DelStatus, and UpdStatus by naviga-

tion and data manipulation routines. Besides acknowledging that insertion, deletion, or update

has succeeded, these diagnostics can also indicate integrity violations, namely the non-

existence of a searched tuple and duplicate of keys. But not every access path is able to

recognize duplicates in equally efficient manner. Therefore, an access method is intentionally

appointed to the purpose of enforcing a certain constraint and consequentially it must invaria-

bly check for violations and report them reliably. If an access structure is not able to enforce

152 4.3 ACCESS METHOD INTERFACE

the assigned constraint efficiently, then it may reject that constraint at table creation time. For

example, a simple linear access path, organized as linked list of pages, is only able to enforce

a unique constraint or primary key constraint by sequentially scanning its complete data set

for duplicates, before inserting new data. Such a data structure should reject these forms of

integrity constraints, thereby forcing a schema designer to install such constraints either via an

adequate secondary access path (e.g. a B-tree index) or to choose a more suitable access

method for the primary access path.

Referential constraints are validated by inspecting adequate access paths of referenced tables.

Propagation of data manipulation to referencing tables via referential constraints (e.g. ON

DELETE CASCADE), are accomplished via common data manipulation. All this is conducted by

the host system, using available mechanisms of negotiation, navigation, and manipulation.

The host system is also responsible for choosing efficient strategies when preserving referen-

tial integrity. Checking for integrity violations can involve considerable computational com-

plexity that may even exceed the costs of the actual modification. Hence, a general trade-off

exists between an optimistic approach, attempting inexpensive lazy constraint checking but

entailing possibly devastating undo operations, and a pessimistic approach, using early but

potentially more expensive constraint checking and thereby avoiding costly undo operations.

The strategy is chosen by the host system‟s query optimizer and an access method implemen-

tation may remain unaware of these considerations. An access module may however help

confining the effects of necessary undo operations to the current modification operation by

implementing the optional savepoint feature.

Database Triggers

Database triggers represent an additional means for preserving the integrity of a database.

Similar to constraints, which are validated whenever data is inserted, updated, or deleted,

triggers are used to execute procedural code in response to data manipulation events. In

contrast to constraints, whose primary scope is enforcement of integrity on a strictly relational

level, triggers allow automated enforcement of complex aspects of application logic and self-

management of data by execution of application-defined procedural SQL code. In addition,

triggers are useful for logging and auditing data manipulations, or for automated data replica-

tion.

The SQL standard distinguishes several general trigger types, namely statement-triggers that

are executed once for a DML statement, and row-triggers that are executed once for every

CHAPTER 4: ARCHITECTURE 153

row update, and therefore possibly multiple times per statement. In addition, it is possible to

define the exact chronology of data manipulation, by defining triggers that are executed

before or after the data is manipulated (before-trigger and after-trigger). Finally, it is possible

to discern the type of data manipulation (insert/ update/ delete) that will activate a trigger. As

a consequence, it becomes possible to define triggers for a multitude of data manipulation

events, as any possible combination of trigger types is permitted:

{row, statement} {before, after} {insert, update, delete}

Database triggers may execute arbitrary procedural SQL statements, including DML state-

ments, which in turn may activate other triggers. Therefore, it becomes possible to devise

transitive and even cyclic trigger dependencies. With this, database triggers represent a highly

dynamic and complex instrument for database schema designers. But this complexity affects

only the host system, which is able to insulate access method implementations completely

from the necessity of any special precautions for supporting fully-fledged database triggers.

Again, from the perspective of an access method, triggers effectuate just a succession of

access method interface calls, navigating and manipulating data. The complex logic of data-

base triggers is encapsulated inside the host system‟s query processor.

Interrelations

All the mechanisms described above are to be executed in an exact chronological sequence,

which is explicitly appointed by the SQL standard. These conventions ensure that possible

dependencies between individual tasks are resolved in a deterministic and comprehensible

way, as depicted in Figure.34.

Figure.34 Logical chronological sequence of integrity maintenance. The SQL standard appoints a strict

succession for integrity maintenance tasks, where individual tasks may again provoke side-effects, leading

Before-
Statement

Trigger

Before-Row
Trigger

Row
Manipulation

Check
Referential

Integrity

Index
Maintenance

After-Row
Trigger

After-
Statement

Trigger

Iterate on rows
Side-

effects

Side-
effects

Side-
effects

Side-
effects

Integrity
violation

Integrity
violation

154 4.3 ACCESS METHOD INTERFACE

to nested data manipulation. Violation of referential integrity is detected in dedicated checks, while unique

constraints are validated during manipulation of appointed primary or secondary access paths that have

been put in charge of enforcing these constraints. Occurrences of any form of integrity violation and other

dynamic errors trigger exhaustive undo operations revoking any dependant manipulation. Hence, the com-

plete manipulation process becomes one atomic operation.

In spite of this strict definition, the query plan optimizer is free to reorder individual tasks for

gaining performance benefits, as long as the outcome of the complete data manipulation

process is identical to that of the demanded schedule of operations. Devising valid and benefi-

cial strategies requires sophisticated query planning. The necessary logic is concentrated in

the host system‟s query optimization component, which is responsible for maintaining data

integrity on a global scale. Through negotiation and cost estimation, access modules are

participating actively in this process and thereby exert a certain influence on significant

aspects of the final query plan. According to this plan, the scan operator entity manipulates

the individual access modules affected by data manipulation through their access method

interface. During this process, the operational scope of access modules does never exceed that

of management of local data structures of its own segment, which covers manipulation of the

access structure and maintenance of concurrent scans of the same transaction. Hence, from the

perspective of an access module, maintaining data integrity is indiscernible from normal data

manipulation.

4.3.9. Savepoints

For sustaining data integrity, the SQL standard demands that data manipulation is a strictly

atomic operation. The existence of integrity constraints implicates that data manipulations

may fail in case of integrity violations. The same applies for other dynamic error situations

that may occur during these operations, including arithmetic exceptions, lock conflicts,

insufficiency of resources, etc. In these cases, the entire manipulation must be undone, along

with all dependant operations that have been triggered during its progression. In the transac-

tional environment of DBMSs, this can be accomplished thoroughly by aborting the transac-

tion enclosing the defective manipulation. However, this crude approach will exceed the

aspired goal in many cases, in particular if the affected transaction also covers other extensive

operations that have been conducted previously and did complete successfully. In these cases,

it is desirable to preserve uncommitted work and undo only the effects of the manipulation

that went awry. In order to accomplish such selective undo operations, the host system re-

quires support from all access structures involved into the data manipulation process. As

already indicated, this support is provided via the savepoint feature, which is optionally

CHAPTER 4: ARCHITECTURE 155

implemented by an access path module. Savepoints are based on the following lean interface

and a corresponding simple protocol.

DefineSavepoint(ScanContext) 

ApplySavepoint(ScanContext) 

The beginning of data manipulation on an access path is marked by defining a savepoint on an

open scan, before applying any changes. Consistent savepoint definition is guaranteed by the

host system, which is calling the corresponding access module‟s DefineSavepoint()

routine. Savepoints preserve the state of a scan before manipulation begins, which essentially

is accomplished by retaining a snapshot of the scan context. During the following data mani-

pulation, the scan may navigate freely and conduct a multitude of elementary update opera-

tions, where both activities will affect the scan‟s context.

By definition, any scan participates only in one single data manipulation at any time, and

consequentially it has to maintain at most one savepoint. If another savepoint is defined on

one particular scan, this denotes the beginning of a subsequent operation and the previous

savepoint becomes obsolete. Similarly, a savepoint is discarded when its scan is closed. The

host system will define additional savepoints on other access paths as required, as data mani-

pulation progresses and side-effects on other segments unfold. Thereby the host system

guarantees that all necessary savepoints are installed in due time. Whenever an access path

implementation becomes involved that does not support the optional savepoint feature, then

that scan‟s original state immediately before the manipulation cannot be reinstalled by these

means. An exception to this rule is represented by scans that were opened dedicatedly for the

current manipulation. In this case, a scan‟s original state is obviously reinstalled by simply

closing it, independently of the scan‟s support for savepoints. The availability of the savepoint

feature for undoing data manipulation is monitored by the host system. It will automatically

resort to abortion of the whole transaction, in the adverse case that savepoints are not availa-

ble and data manipulation fails due to a dynamic error. In other cases, where an error occurs

and all participating access modules support savepoints, ApplySavepoint() will be used to

reinstall the preserved scan contexts, thereby resetting all scans to their original states. This

particularly includes unfixing pages that are fixed in the current scan context, but were not

fixed at savepoint definition time, and reacquiring fixes on all initially fixed pages. The host

system‟s storage layer will actively participate in this operation by supplying pages with the

correct contents at savepoint definition time.

156 4.3 ACCESS METHOD INTERFACE

Although it is vital that all involved access module implementations support the savepoint

feature for its practicability, the bulk of the savepoint functionality is encapsulated in the host

system‟s multi-version concurrency control. At the beginning of a data manipulation, the

storage layer is informed via its own DefineSavepoint() interface that data manipulation

is about to begin in the context of a given transaction. Since data modifications are atomic

operations, they are serialized in one transaction, and consequentially at most one manipula-

tion per transaction may be in progress at any time. But in contrast to the data access layer,

the storage layer must be able to deal with multiple transactions at the same time, and conse-

quently it must be able to support as many savepoints, making savepoints a much more

sophisticated feature on this system layer. If a savepoint is applied, then all pages have to be

restored into their states before the modification. The storage layer accomplishes this by

applying logging information for undoing all page modifications issued by the defective

manipulation. Therefore, the essential information necessary for applying savepoints on the

storage level is an identification of the first log entry made by the current data manipulation,

determining how far the logs have to be processed in reverse until the savepoint is reached.

Hence, general savepoint information is quite compact, as it consists of snapshots of affected

scan contexts and the ID of the manipulation‟s first log entry. This assumption, and the fact

that any scan has to maintain at most one savepoint at any time, allows us to dispense with a

separate interface for explicitly releasing a previously defined savepoint. If data manipulation

succeeds, its savepoints technically remain installed, but the host system will make sure never

to apply such abandoned savepoints. As already discussed, these savepoint are eventually

cleared when new savepoints are installed as scans are reassigned to a different manipulation

within the same transaction, or when the corresponding scan is eventually closed. This proto-

col guarantees that at the end of a transaction all its savepoints are cleared, because all scans

are closed.

In case of some severe errors, for example if the connection to the client application is dis-

rupted, the DBMS will have no choice but to abort active transactions, even if the savepoint

feature is available, since the DBMS requires application logic in order to recover into a

consistent state when interrupted. The same applies to lock conflicts, since savepoints are not

adequate for resolving such contentions, i.e. even if a savepoint is successfully applied,

isolation necessitates to retain all locks acquired during the defective manipulation. Therefore,

it is inevitable to abort the complete transaction that caused the conflict, thereby releasing its

locks and eliminating the lock contention. As a general rule, the DBMS is free to decide what

CHAPTER 4: ARCHITECTURE 157

actions are to be taken in case of a dynamic error. Consequentially, the savepoint feature is

employed only in error situations where it is applicable, where selective undoing is reasona-

ble, and where all participating access modules support the savepoint feature. Otherwise, the

complete transaction is aborted. If a savepoint is applied successfully, then the original error

is reported to the database application. The application may then choose how to proceed in

this situation. Typical strategies include retrying the manipulation, proceeding to some alter-

native work, or manually aborting the transaction.

4.3.10. Locking & Concurrency

Locking and concurrency settings in a DBMS offer a certain trade-off, influencing lock

granularity, concurrency in form of expected conflict rates, and implementation and computa-

tional complexity. The following Figure.35 sketches dependencies between these conflicting

goals.

Figure.35 Trade-off in lock granularity. DBMSs generally allow a variety of lock granularity settings,

that enable the system to adjust to isolation and concurrency requirements of a particular application. Lock

granularities typically comprise global locking of the complete database, table locks managing access to

individual relations, page level locks and finally locks of singular data rows.

We already discussed how the host system‟s storage layer provides reliable locking on page

granularity, if the corresponding page fix operations are attributed with lock types describing

the intention to read or write during an imminent page access. Moreover, the host system‟s

multi-version concurrency control ensures that every fix operation is provided with the correct

version of a page, in accordance to the enclosing transaction‟s isolation settings. These me-

chanisms permit coarse table locking and fine granular page locks, while operating without

any functional requirements of direct support from access module implementations. If locking

on row level is desired, then the access module must actively participate in locking by expli-

citly operating the host system‟s lock manager interface.

Lock(SegID, PNO, OID, Lock) 

Object

Database

Relation

Page

Tuple

Granularity Complexity Conflict Rate

158 4.3 ACCESS METHOD INTERFACE

Unlock(SegID, PNO, OID, Lock) 

 Lock ::= {READ_LOCK | WRITE_LOCK | EXCLUSIVE_LOCK }

The lock interface extends the hierarchical locking facilities provided by the FixPage()

routine. It allows locking of arbitrary objects within a segment denoted by SegID and located

on the page identified by PNO. The access module is responsible to provide unique object IDs

(OID) for every lockable object in its segment. Any numeric ID may serve as OID, for exam-

ple the tuple‟s primary key, an arbitrary key surrogate, or simply the TID. A call to the lock

interface will acquire the necessary locks as required by the RAX protocol (Figure.25, page

110). When locking on row granularity, then FixPage() must be operated with the dedicated

INTENTION_READ, INTENTION_WRITE, INTENTION_EXCLUSIVE settings for installing

the hierarchical intention locks according to the RIX protocol (Figure.26, page 110).

As an alternative to this locking service provided by the host system, an access module may

operate the FixPage() routine with the NO_LOCK setting. This allows the access module to

implement its own lock mechanism, thereby completely bypassing the host system‟s lock

manager. The NO_LOCK mechanism is merely provided for completeness, but as a general rule

it is not advisable circumvent the host system‟s lock manager.

4.3.11. Transactions & Consistency

In principle, database consistency and transactional isolation is completely sustained by the

host system, without any intervention from access module implementations. Scans cannot

exist across transactional boundaries and the host system will ensure that all scans are duly

closed before a transaction ends. Hence, the transition of transaction contexts is irrelevant for

access modules. Still there might exist occasions where an access module wishes to be in-

formed that such a transition is in progress. For this purpose, the access method interface

possesses a collection of optional interface routines to be used as callback hooks. Whenever

the state of a transaction changes and the corresponding callback routine is implemented by

an access module, the routine will be called by the host‟s Access Manager. All routines have

the transaction‟s unique TaID as their only input parameter.

Begin(TaID) 

Prepare(TaID) 

Abort(TaID) 

Commit(TaID) 

CHAPTER 4: ARCHITECTURE 159

A practical example for these callback hooks exists in access modules operating as data

integration layers. These modules access remote data repositories that are not based on the

host system‟s internal storage facilities. If these repositories support transactions, then trans-

actional transitions must be propagated to remote sites. This can be accomplished in a natural

way by utilizing the respective callback hooks.

4.3.12. Logging & Recovery

The Access Manager framework makes no arrangements whatsoever for permitting interac-

tion of access module implementations with the storage layer‟s logging and recovery mechan-

isms. Any access method may rely on these system intrinsic services, as long as its persistent

storage is based on the host system‟s internal storage facility. In case of access modules acting

as data integration layers and accessing remote data repositories, similar services might be

provided by external information systems. If this is not the case, then it might become neces-

sary to provide a custom implementation of logging and recovery functionality inside the

access module.

4.3.13. Administrative Tasks

All remaining access method interface routines are optional and serve for diverse administra-

tive tasks. Since access modules physically exist as dynamically loadable libraries that are

mapped into the host system‟s address space, the interface provides routines for initializing

and releasing internal structures that might be necessary for the module‟s internal resource

management.

OnLoad() 

OnUnload() 

As its name indicates, OnLoad() is called after the library was loaded into the DBMS‟s

address space. It is typically executed when the first access path of a certain type is about to

be created or when that access method is accessed for the first time after the database service

was started. The inverse function OnUnload() is called if an operation on a segment termi-

nates. This happens if the last access path of the corresponding access method type is dropped

or if the database service shuts down.

Altering access paths

The SQL standard envisions a number of possibilities to change existing access structures.

160 4.3 ACCESS METHOD INTERFACE

ALTER {TABLE | INDEX} [(custom_spec)] <relation_name>

 {ADD | ALTER | DROP} {COLUMN | CONSTRAINT} <element_name>

 [<new_definition>]

Typical examples range from deferred adjustments of data type properties (e.g. precision,

scale, etc.), over changing data types and renaming columns, to addition or removal of com-

plete columns in base relations and indexes. Note that the SQL syntax above also allows

specification of an alternate custom_spec to be passed to the access module for interpreta-

tion. The provision of facilities for conducting such modifications is optional, and an access

method provides this feature by implementing the Alter() interface. If an access method

does not provide an implementation for this method, the Access Manager framework will

simulate it by creating a new access path according to the altered definition, filling it with data

from the original structure, which is subsequently discarded. As this approach necessitates

twice the storage requirements of an access structure in the database‟s permanent storage area

for a short time period, the Access Manager may alternatively choose to copy the access

structure‟s contents to its temporary storage area, thereby also allowing in-place modification

of access structures. All data to be inserted into the new access structure undergoes SQL‟s

automatic type adaptation, providing necessary adjustments to an altered table definition.

Missing values for recently added columns are filled in by SQL‟s default value mechanisms.

In contrast to the aforesaid, modifications of column names however will only affect the data

dictionary, but not the actual access structure.

Alter(TaID, DescPage, SegID, CreateSpec, CustomSpec)

  ScanContext

The routine‟s signature is identical to that of the Create() routine and it also exhibits a very

similar behavior. The task of Alter() is to compare the table definition provided as Crea-

teSpec and CustomSpec with the original table definition in DescPage. It has to detect

differences and apply them by altering the access structure correspondingly. Similar to the

Create() routine, the function call results in an open scan on the modified segment, which

is represented by the ScanContext result parameter.

Like any other data manipulation, the whole operation is executed within a transactional

context and dynamic errors that might occur in its progress will undo all modifications. In

contrast to normal writing manipulation on a segment, the Alter() operation is conducted

CHAPTER 4: ARCHITECTURE 161

under an exclusive relation lock that is automatically established by the host system at the

beginning of the operation.

Reorganization & Defragmentation

If a relation is populated using a mass insertion mechanism, then the arrangement of data on

the physical address space of a persistent storage device often corresponds to its logical

linearization. But all search structures based on page-oriented storage tend to fragment over

time, if the contained data is undergoing repeated modifications. Data modifications trigger

overflowing of pages which necessitates the allocation of new pages. These new pages extend

the logical address space between existing pages, but they are potentially allocated at remote

addresses in the physical address space. Also merging and releasing of formerly used pages is

a possible consequence of data manipulation. Reusing released pages will eventually cause

mingling of pages from different segments. Hence, the logical linearization of data is gradual-

ly dissociating from the physical linearization. Although this fragmentation of physical

address space does not cause any fundamental functional problems, retrieving data in an

ostensibly sequential logical order will actually entail reading from random physical ad-

dresses, generating significantly higher I/O costs than sequential reads and ultimately result-

ing in poor performance of a heavily restructured access path. On conventional hard drives,

and without further precautions, a fragmented search structure will be outperformed by one

order of magnitude compared to a non-fragmented counterpart containing identical data. This

effect is countered by reorganizing (defragmenting) the data structure. Defragmentation

involves physically moving data, usually page-wise, but also intra-page reorganization is

possible. In addition, the operation is accompanied with updates of potentially complex

networks of inter-page references and chaining. These extensive implications make data

reorganization a highly costly task, and therefore it is either initiated on explicit request from

the system administrator, or as an automatic maintenance task that utilizes hardware resources

during idle periods.

Since the host system cannot know how pages and inter-page references of a certain access

structure are organized, such reorganization must be provided by the access module itself.

This functionality is supported by the storage layer, allowing systematic allocation of new

pages through its generic AllocPage()routine. Defragmentation is triggered by the follow-

ing DML statement.

ALTER {TABLE | INDEX} <relation_name> MOVE <destination>

162 4.3 ACCESS METHOD INTERFACE

Here the <destination> clause defines the target area for the defragmented access structure,

either in form of a physical address interval whose boundaries are specified as page numbers

or via the name of a logical database extent. It is legal to specify a target area that overlaps

with the storage area occupied by the fragmented data structure, thereby requesting in-place

defragmentation. However, defragmentation is strictly limited to one single segment, i.e. the

specification of a target area that is known to be occupied by other access structures will

never move those pages out of the way, but it will merely attempt to move the specified

segment as close as possible to the target area.

In allusion to the representation of this functionality in SQL, defragmentation is accessible

through the optional Alter() interface routine. Another analogy to altering existing access

structures is the identical simulation of this optional functionality with mandatory access

method interface routines. Reorganization in absence of an Alter() routine is achieved by

building a defragmented access structure at its new target location and subsequently discard-

ing the original fragmented structure. If in-place defragmentation is requested, then the

Access Manager will automatically consider redirecting the access structure‟s contents to a

temporary storage area.

Checking & Reporting

Database systems offer several complementary, autonomous and redundant systems for

reliable safekeeping of data. Even in the presence of faulty hardware, data integrity can be

sustained to a certain degree. But database systems, like all complex systems, are not com-

pletely error-free and both software and hardware defects may ultimately compromise the

validity of a database. For a monolithic software system it is possible to maintain a constant

quality standard by effectively testing all involved components before releasing the product.

An extensible system on the other hand, has to trust in correctness and integrity of subse-

quently added components. To compensate for this shortcoming, the Access Manager is

equipped with an array of mechanisms for constantly verifying correctness, organized in three

major stages. As a first stage, the host system will perpetually conduct inexpensive integrity

checks during normal system operation. If some discrepancy is detected, the system will

immediately report the source of the problem, and depending on the fault‟s severity, the

system will either cancel the currently ongoing operation, or in case of grave errors, it will

abort the surrounding transaction. Therefore, this first stage of system verification is able to

provide protection against problems that are detectable instantly and inexpensively, and it

does also guarantee fail-safety through its ability to undo faulty work. If a problem is detected

CHAPTER 4: ARCHITECTURE 163

after the transaction enclosing some erroneous modification was already committed, then this

mechanism provides merely error detection. Monitoring of system activities is performed

during normal operation, and to this end, no particular extensions in the Access Manager

interface are required. However, each access module may voluntarily contribute to system

integrity by performing its own consistency checks during normal operation.

The remaining two stages of system verification operate in the course of dedicated checks, to

be invoked via an external maintenance tool. The second stage examines data integrity across

different segments by matching data from redundant or dependant access structures, e.g. base

relations, indexes, and referential constraints. This test is performed using the Iterator inter-

face of the access structures, and from the viewpoint of an individual access structure, this

check represents a normal retrieval operation. Actual integrity checking is performed on a

higher level, by the Access Manager framework, where the data from redundant access

structures is compared. During this operation, the access structure remains fully operational

and normal concurrency precautions apply for ensuring the required isolation from concurrent

operations. Only the third stage of checking requires an access module to implement supple-

mental functionality in form of an optional interface routine:

Check(ScanContext)  Report

When called, the access method will perform a series of consistency checks that are suitable

for validating the integrity of one isolated access tructure. In contrast to the online integrity

checks of the first two stages, where only comparatively inexpensive checks are reasonable,

the Check() routine‟s focus lies on thorough testing, using potentially complex algorithms

and accepting corresponding costs. The most important check to be initiated in this stage will

search for irregularities in the chaining of pages. This validation is typically accomplished by

traversing the search structure via redundant chaining, i.e. brother-chaining and parent-child-

chaining in tree structures. Other tests may survey the validity of invariants and assertions of a

particular access structure, such as compliance with guaranteed page fill levels, fan-out,

acyclicness, or comparison of the data‟s actual sort order with the expected linearization.

Generally, all these tests are executed while the database is fully operational. But concurrent

modifications of the data structure under examination may influence the test. Hence, the

access method itself may choose whether the access structure is online or offline while these

tests are conducted. An adequate measure to protect an access structure from concurrent

access during Check() operations is to establish an exclusive lock on the access structure‟s

description page.

164 4.4 RELATIONAL OPERATOR INTERFACE

The result of a Check() invocation is a comprehensive, textual report providing detailed

information in human-readable form. In case of uncovered integrity violations, the diagnosis

should contain rich information for analyzing the source of a problem and it should also

provide useful information for its resolution. The routine may also repair minor deficiencies,

if this can be accomplished in a reliable way. Nevertheless, such corrections are to be men-

tioned in the final report. If no errors are found, this report shall present conclusive informa-

tion on the status of an access path, e.g. current storage requirements, average page fill level,

degree of fragmentation, etc. This information is intended to support schema analysis and

refinement during the database design phase or schema revisions. The inefficiency and labo-

rious nature of structural integrity validation makes it generally unattractive for repeated,

automated monitoring in a productive environment, hence such reports are typically generated

only on explicit request of the database administrator.

4.4. Relational Operator Interface

The preceding section illuminated all important aspects of the access method interface for

integrating implementations of custom access methods into a host DBMS‟s query optimiza-

tion and query evaluation procedures. Access methods represent a specialization of general

relational operators and therefore they occupy a unique position among the set of relational

operators and their algorithmic implementations. In this section, we will address integration of

custom implementations of generic relational operators into the host DBMS. We will show

how these implementations are subsumed in the class of relational algorithmic modules and

we will demonstrate how a lean subset of the access method interface together with an ana-

logous protocol is sufficient for embracing the complete functional spectrum of arbitrary

relational operators.

Henceforth, we address this interface of algorithmic entities implementing generic relational

operators as the algorithmic module interface. Similarly to the access method interface, it is

based on the Iterator Model. But „ordinary‟ relational operators require no means for access

path creation, data manipulation, transaction handling, etc., and therefore their interface

consists only of the elementary Iterator routines Open(), Next(), and Close(). This

mandatory interface may be augmented with an optional Reset() routine. For active partici-

pation of such algorithmic modules in the query optimization process, the interface also

comprises all assets for negotiation, namely Apply(), Exploit(), Propagate(), and

CHAPTER 4: ARCHITECTURE 165

Cost(). The following Figure.36 illustrates the common interface for all algorithmic mod-

ules.

Figure.36 Algorithmic Module Interface. This interface provides the required abstraction of specialized

functionality of one individual algorithmic module implementing a relational operator. It allows combining

arbitrary Iterator-based relational algorithms to complex query execution plans.

We already encountered this particular interface definition in form of the scan operator‟s

external relational operator interface (cf. Figure.29 on page 119). Similar to a scan operator

encapsulating an access module, any algorithmic unit is embedded in a generic relational

operator entity (depicted in Figure.37), which is an integral part of the host system. As the

scan operator is a specialization of a generic relational operator, they both export the universal

relational operator interface, which allows handling arbitrary algorithmic implementations in

a uniform way during query evaluation.

Figure.37 Generic Relational Operators. The generic relational operator encapsulates an extensive func-

tional diversity of access module implementations. It is configured via negotiation for optimal interopera-

Open
Next
Close
Apply
Exploit
Propagate
Cost
Reset

Iterator

Create
Open
Close

Reset

Interface

Apply
Exploit
Propagate
Cost

Negotiation

Algorithmic
Module

Generic Relational Operator

Algorithmic
Module
Interface

Negotiation

Input Configurations:

Iterator

Iterator

Output Configuration:

Output Data

Input Data Input Data

166 4.4 RELATIONAL OPERATOR INTERFACE

bility within a query plan and the resulting configuration represents the detailed description of its planned

evaluation. During query evaluation, the algorithmic module‟s Iterator-based interface routines are operat-

ed by the generic relational operator in accordance to this configuration.

Owing to the congruence of algorithmic module interface and generic relational operator

interface, the functionality of the generic relational operator embedding an algorithmic mod-

ule is relatively simple. It has to manage and preserve negotiated configuration settings of the

algorithmic unit, forward all Iterator and negotiation calls to the embedded module and

contribute all necessary parameters for these calls. Access method interface and algorithmic

module interface are operated according to a common protocol. In the following, we will

provide separate surveys of the subtle differences between access methods and generic opera-

tors during iteration and negotiation.

4.4.1. Iteration

Although the interface routines names for iteration on access method interface and relational

operator interface are identical, the limited functionality of the latter allows omitting parame-

ters that are irrelevant for generic relational operators. The remaining interface is specified as:

Open(

,)  OpContext

Next(OpContext)  OutTup

Close(OpContext) 

Reset(OpContext,) 

The functionality of the individual routines is very similar to their counterparts in the access

method interface (cf. 4.3.4 Opening an Access Path on page 128). The Open() routine of an

algorithmic module creates a corresponding algorithmic entity associated with the resulting

OpContext and prepares it for evaluation. The configuration parameters
 and are

optional. Omitting configuration parameters allows opening an algorithmic unit for negotia-

tion. If valid configurations are available from a prior negotiation procedure, then they may be

used for opening an algorithmic unit and immediately presetting all input streams of an

arbitrary n-ary () relational operator and its single output stream. As its result, this

routine returns the context of an operator in OpContext, a private data structure similar to the

access method‟s ScanContext. This structure preserves an operator‟s internal state between

separate interface calls. In contrast to the corresponding access method routine, a relational

operator does not require a TaID as reference to a surrounding transaction, as it is never

CHAPTER 4: ARCHITECTURE 167

confronted with concurrency issues. It always operates on its private input relation, uses

private internal resources, and produces output dedicated to one single subsequent algorithmic

unit. Also the parameters DescPage and mode are irrelevant and therefore absent, as opera-

tors possess neither persistent descriptions, nor alternative operating modes. The Next()

routine is used for iteration, having the OpContext as its sole input parameter. The routine

iteratively computes and returns the next result tuple as OutTup. After the last valid result

was delivered, further calls to Next() will return an empty tuple, denoting end-of-data and

making a separate descriptive result parameter similar to the access method‟s ScanStatus

obsolete. Finally, Close() terminates the evaluation of an algorithmic unit and releases all

occupied resources, thereby invalidating the contents of its input parameter OpContext. The

optional Reset() routine functions similarly as for access methods. It is used for reinstalling

alternative configurations as an inexpensive replacement for Close() / Open() pairs,

while the algorithmic unit remains within the same logical operation. This is particularly

useful if the algorithmic unit accepted a correlated predicate as exploitable configuration

during negotiation. Note that reconfiguration via Reset() is limited to , while
 is

invariant while the operator is active. In contrast, the access method interface‟s Reset()

routine also accepts alternative
 settings when operated in conjunction with the optional

Suspend() routine.

4.4.2. Negotiation

Interface definition and protocol for negotiation in the algorithmic module interface resemble

negotiation of access methods very closely. The interface specifications can be derived from

each other by replacing the access method‟s dedicated ScanContext with the algorithmic

module‟s generic OpContext:

Apply(OpContext, , opt) 

 opt ::= 0,1,2,3,...

Exploit(OpContext,) 

Propagate(OpContext,) 

Cost(OpContext, InCosts, Stats)  OutCosts

Otherwise negotiation for access methods and generic algorithmic modules behaves identical,

enabling the query optimizer to handle both entities in the same way. For details on negotia-

168 4.5 ADVANCED QUERY EVALUATION TECHNIQUES

tion, please refer to the corresponding section on access methods (4.3.5 Negotiation and

Optimization, page 132).

4.5. Advanced Query Evaluation Techniques

Database management systems often operate in high-end hardware environments, capable of

massive parallel computation and attached to broadband storage appliances. And, although an

ideal extensible DBMS architecture should avoid any hardware specific considerations in its

extension modules, the demand for maximized performance and thorough exploitation of

available hardware resources makes it impossible to ignore them completely. Hence, this

chapter will focus on suitable strategies for improving interaction between access modules

and other custom algorithmic implementations with the host system‟s query evaluation engine

and storage layer for gaining additional performance benefits. We examine three possibilities

for effectively speeding up operations by exploiting general properties of modern computer

hardware. Prefetching and partitioning are two techniques that incorporate considerations on

typical performance characteristics of common storage technology into query processing. The

third aspect of advanced query evaluation techniques examines scalability of DBMS through-

put by utilization of parallel computation capabilities.

4.5.1. Prefetching

Despite rapidly growing main memory sizes and emerging alternative storage technologies,

such as solid state drives (SDD), conventional hard drives are still the prevalent storage

facility for persistent databases of considerable size. They represent a mature technology with

many advantageous properties but they also have some noteworthy drawbacks. One of their

most prominent properties is an asymmetry which is strongly favoring sequential I/O over

random I/O. DBMSs have to actively counter this effect by employing adequate I/O strate-

gies. Additional countermeasures have been developed on the hardware side. RAID (Redun-

dant Array of Independent Disks) appliances are nowadays commonplace technology in

computer systems running database servers. Their ability to distribute massive I/O workloads

on conventional disks working in parallel is capable of achieving a higher throughput, even

for random I/Os. However, the original problem is not fully overcome, and sequential I/Os

remain substantially faster on RAID systems. In addition, RAID technology demands ba-

lanced utilization of all disks in the array, in order to operate effectively, such that the confi-

guration of employed hardware again influences the behavior of the DBMS. SSD (Solid State

Drive) technology for random access on secondary memory is advancing quickly in the

CHAPTER 4: ARCHITECTURE 169

DBMS field. But the considerable higher price still makes them unattractive for large data-

bases. In addition, the SSD technology introduces a new asymmetry, favoring reading opera-

tions over writing, another hardware property to be a considered in DBMS operations. The

most important impact of hardware characteristics on DBMS performance is caused by the

divergence of rapidly gaining CPU power and stagnating storage throughput. While disk

performance literally remains on the same level since decades, additional CPU power was

made available in accordance to Moore‟s Law. The divergence is not only limited to second-

ary storage in form of hard drives, but also main memory is affected. The establishment of

multi-level hierarchies of hardware and software caches is clearly supporting this assumption.

Although poor I/O throughput is triggered by various reasons, originating from a diversity of

employed storage technology, they eventually all lead to the same general effect, namely a

memory stall, where the CPU cannot proceed with its tasks, because I/O operations on the

diverse memory levels has not yet completed. Memory stalls can be effectively countered

with prefetching and write-ahead techniques. Both techniques are based on the same funda-

mental premise. They try to request necessary I/O operations as early as possible, instead of

deferring them to the latest point in time. This gives the storage system the opportunity to

reorder requests within the resulting time interval and schedule them interspersed with re-

quests from other tasks for achieving optimal I/O hardware utilization. Moreover, these

techniques allow overlapping of I/O and computational efforts, leading to a superior overall

system utilization.

An access module may implement effective prefetching by means of the storage layer‟s

FixPage() routine. We already discussed how this routine is used during regular operations,

where it is attributed with the corresponding lock type for the intended operation (NO_LOCK,

READ_LOCK, WRITE_LOCK, EXCLUSIVE_LOCK). For enabling prefetching, we introduce

PREFETCH as a fifth attribute. This prefetch mechanism of the storage layer will initiate

transportation of the page with the requested page number (PNO) into main memory. As soon

as the transport is initiated, the routine will return immediately, allowing the access method to

pursue other tasks, before it will eventually access the requested page. Despite the routine‟s

name, the page is not fixed in main memory and no locks are acquired in this particular mode.

As soon as the page arrives in main memory, it is released into the system cache‟s LRU stack.

If the requested page is already resident in the system cache when the prefetch is requested,

then prefetch call will merely move that page on top of the LRU the stack, into MRU position.

In any case, the requested page is henceforth subjected to the cache‟s normal LRU strategy,

170 4.5 ADVANCED QUERY EVALUATION TECHNIQUES

and it begins to sink into the LRU stack while other pages are accessed. But during this period

it may be inexpensively fixed by the scan operation that issued the original prefetch request,

or by any other scan operation. The loose coupling of prefetching and fixing of pages via the

system cache demonstrates the asynchronous nature of the prefetch mechanism. The page fix

may be effectively issued within the time period before the page drops out of the cache. If the

page is not fixed in a timely manner, the page was prefetched in vain, and the cache frame

will be reused for another page.

The presented strategy raises several issues to be considered. The utilization of limited cache

resources for buffering prefetched pages must happen in a cooperative way, because without

further precautions the cache might be flooded with prefetch requests, making it unusable for

its primary purpose. This is prevented by the storage layer that will actively limit the number

of prefetched pages in the system. As a consequence, any prefetch request may be declined by

the host system‟s storage layer. This again raises the issue of starvation, i.e. the host system

must ensure that prefetching resources are shared in a fair way among concurrent scan opera-

tions. Finally, the access method itself must make prefetches in such way that it has a realistic

chance that all requested pages are fixed before they drop out of cache. On the other hand, it

must make sure that pages are not fixed too early, since a premature fix operation will block

until the I/O is completed. Hence, every access method must devise a prefetching strategy that

is actively balancing accepted prefetch calls of the storage layer and its own progress in

accessing and processing of pages.

The corresponding mechanism for asynchronous write-ahead is also integrated into the

storage layer‟s page access facilities. Whenever a data manipulation scan unfixes a modified

page, this page is released into the LRU stack. As soon as this happens, the page is beyond

control of the access method, and the page becomes a candidate for an immediate write

operation. The host system‟s cache manager will constantly analyze the current LRU situa-

tion, in search of modified pages. For these pages it will initiate required I/O operations

generating necessary log records and eventually it will write modified pages through to disk.

On some occasions, a modification scan might return later to the same page for conducting

another modification. If the first modification was already written to disk, the second modifi-

cation will necessitate a second write operation. To prevent this form of page thrashing, the

host system will employ a lazy write-through strategy, allowing scans to perform several

modifications before the systems attempts to write to disk. Ideally, a write operation on a

modified page is issued such that the write operation completes approximately at the time

CHAPTER 4: ARCHITECTURE 171

when page reaches the bottom of the LRU stack, making such a page immediately replacea-

ble.

Aside from these considerations, an access method that finds that a modified page should

remain in cache, because the page is likely to be modified again, may either fix that page,

which prevents its replacement altogether but binds cache resources. Alternatively, the access

method may periodically issue prefetch calls on such pages, in order to keep them inside the

upper part of the LRU stack, thereby preventing it from becoming a candidate for lazy write-

through. Only when a transaction is about to be committed, all its manipulated pages that are

still on cache must be written through to disk (more precisely, writing the logging information

suffices) in preparation of the transaction‟s termination.

Hence, the host system is able to provide powerful prefetching and write-ahead facilities

through the already established interface routines. Any access method may freely choose

whether to employ these facilities for possible performance improvements. Moreover, any

access method is free to make additional arrangements to improve its throughput by employ-

ing prefetching on other levels of the memory system hierarchy. As an example, [Che01]

presents such considerations for cache-conscious B-trees. This form of prefetching has to be

contemplated within access method implementations, and therefore it is beyond the scope of

the access manager framework.

4.5.2. Data partitioning

Apart from prefetching, data partitioning is a commonly used technique for enabling ad-

vanced query evaluation and exerting beneficial influence on DBMS I/O and query

processing performance. Data partitioning is used for two general purposes. Firstly, data may

be distributed across independent storage and processing devices, in order to achieve through-

put in an order of magnitude that is a multiple of the maximum throughput of one individual

device. Alternatively, related data may be concentrated on dedicated sites, which is particular-

ly useful for spatially distributing data of regional relevance, while allowing location transpa-

rent access to global data via federated or distributed DBMSs. Partitioning may be effectively

combined with redundancy, either for further promoting efficiency, or for improved system

availability and data security, or even for a combination of these two goals.

There exist a broad range of possible strategies for data partitioning. Relations may be hori-

zontally partitioned, i.e. individual rows of one relation are kept in different storage areas.

Alternatively, relations may be partitioned vertically, where projections of a relation are

172 4.5 ADVANCED QUERY EVALUATION TECHNIQUES

stored in different places. It is also possible to combine these two partitioning techniques. The

actual partitioning may be conducted according to various criteria. Data-driven partitioning is

a common technique, where data satisfying a given predicate is grouped together. Typical

predicates for this purpose are value ranges, value lists, hash functions, and compositions of

the aforementioned, factorizing data into individual partitions, where each partition is as-

signed to a dedicated storage area. Data-driven partitioning may be conveniently exploited by

the query plan optimizer when evaluating predicates that are similar to those used in data

partitioning. Alternatively, data may be partitioned implicitly and independently from its

actual datum, for example via random or round-robin assignment to different storage areas.

Such data striping cannot be exploited directly when processing predicates in query evalua-

tion, but partitioning may facilitate parallel query evaluation techniques, e.g. for generating

partial query results on independent sites. In contrast to data-driven partitioning, data striping

may also be conducted on the hardware-level, e.g. by RAID appliances. Finally, all forms of

partitioning, namely horizontal, vertical, data-driven, and data-independent, may be arbitrarily

combined, for achieving a desired overall system behavior of joint performance, availability,

and security characteristics.

Data partitioning within an access path is controlled to a large extent via the SQL CREATE

statement‟s PARTITION BY clause. The contents of PARTITION BY will be recorded within the

system‟s data dictionary, where they are supportive for the query plan optimizer during query

planning, in particular for effective exploitation of data-driven partitioning in predicate

evaluation. Partition specification may contain logical names of storage areas (often referred

to as table space or data space) or physical storage areas, e.g. extents, files, etc. Further

partitioning directives may be provided by an access method‟s dedicated custom_spec clause

(cf. 4.3.2 Access Path Creation on page 120). Hence, both partitioning specification are

available at access path creation time and the access method will integrate them into its

description page, where there are permanently available as guidance to be used for conducting

data manipulation accordingly.

On the low abstraction level of practical access method implementations, partitioned storage

areas are expressed as paired page numbers, denoting the lower and upper boundaries of

intervals on the database‟s physical address space. These intervals correspond to the logical

storage areas of the PARTITION BY clause. Under these preconditions, partitioning from the

perspective of an access module is a fairly easy task that is intrinsically tied to page allocation

strategies. After the affiliation of data to a particular partition is determined, the access me-

CHAPTER 4: ARCHITECTURE 173

thod may systematically acquire necessary storage area within the dedicated partition through

the storage layer‟s AllocPage() interface. In section 4.2.1 Storage of the built-in storage

layer (page 105), we already discussed how this routine allows selective memory allocation,

which is employed for preserving physical clustering (4.3.7 Data Manipulation, page 143)

and for reorganization (4.3.13 Administrative Tasks, page 159). Partitioning merely represents

another application of this versatile mechanism.

4.5.3. Parallel Query Processing

Until recently, all technical advancements for providing additional computational power were

achieved through higher integration of circuits, more sophisticated processing techniques, and

higher clock rates of single core CPUs. All existing applications were automatically benefit-

ing from these improvements, without the necessity of any adaptations on their parts. In

future, this is likely to change, since fundamental technical limitations inhibit further ad-

vancement at present rate in this direction. As an alternative, additional computational re-

sources are likely to be provided in form of multiple CPU cores. This significant change of

the basic technical principles of computational hardware profoundly affects all performance-

critical software to be run on such systems. The conception of a DBMS as a monolithic

service, transparently providing scalable performance, inevitably leads to the conclusion that

parallelism has to become an integral part of DBMS design in general and its relational

algorithms in particular. In the following, we will present how the Access Manager frame-

work provides all necessary precautions for supporting parallelism.

Conceptually, we distinguish three forms of parallelism, namely intra-query parallelism,

inter-query parallelism, and inter-transaction parallelism. The latter two items are very

common in multi-user DBMS technology, thus we will not elaborate on these topics and

concentrate on intra-query parallelism. This concept is again divided into intra-operator

parallelism, denoting parallel execution of one particular operator like parallel sorting, and

inter-operator parallelism, which describes functional decomposition of a query plan into

tasks that may be executed independently. In our conception, these concepts do not operate on

granularity of individual relational operators, but rather on granularity of the algorithmic

entities that implement these operators.

Transbase, as the host system for the Access Manager prototype, provides parallelism in

query processing transparently on the granularity of individual algorithmic units in a query

evaluation plan. Parallelism is encapsulated into one single operator, the async operator

174 4.5 ADVANCED QUERY EVALUATION TECHNIQUES

[Ack08]. This operator has no analogon in relational algebra and serves merely for optimizing

resource utilization and improving performance through parallelization. It provides a data

buffer, capable of temporarily retaining a small portion of its input data, and an asynchronous

thread of execution. This thread is responsible for evaluating the tree portion below the async

node, which functions as a producer in the classical producer/ consumer pattern. Its task is to

deliver input data and store it into the async node‟s intermediate buffer. The operator tree

above the async node runs independently in the parent thread of execution, representing the

consumer, which simultaneously retrieves data from the buffer. Naturally, access to the buffer

is controlled by synchronization primitives that are also integral parts of the async operator. In

correspondence to the well-known producer/ consumer scheme, the consumer thread will

block until data is available in the buffer, while the producer thread will block whenever the

buffer is full. When the lower part of the operator tree is exhausted, i.e. the last tuple was

delivered, the producer thread terminates. Figure.38 illustrates possible scenarios for employ-

ing the async operator.

Parallelization of sequential query execution plans using async operators is an integral part of

the query planning process and therefore lies in the responsibility of the query optimizer. The

optimizer identifies operator tree portions that are suitable for parallelization and separates

them from the main thread of execution by inserting an async operator. Therefore it examines

the possible impact of parallelization by evaluating the Cost() functions. But the optimizer

is also responsible for managing the costs induced by parallelization, i.e. synchronization,

memory consumption for async buffers, and overhead for copying tuples into these buffers for

exchanging data at thread boundaries. These costs effectively limiting the number of threads

in the system. In consequence, query optimization will try to minimize the number of thread

boundaries while maximizing the number of parallel operations within a query plan. In

addition to efficiency, the optimizer must guarantee that algebraic soundness and algorithmic

integrity of the query plan are not compromised by its parallelization efforts. Separated tree

portions are then executed independently from the main thread, thereby effectively accom-

plishing inter-operator parallelism. In addition, the optimizer identifies operator tree portions

that represent pipelines of parallelizable operators. Initially these pipelines run independently

in one dedicated thread, achieving mere inter-operator parallelism. But they may be replicated

dynamically during query evaluation, and a new thread is spawned for every copy, thereby

providing true intra-operator parallelism. The pipelines‟ input stream is partitioned among all

existing pipeline instances. This partitioning introduces the necessity to consider order preser-

vation of data within pipelines, in order to comply with present input directives of successive

CHAPTER 4: ARCHITECTURE 175

algorithmic units. Asyncs are capable of enforcing order-disrupting, order-preserving, or

order-establishing data flow within a pipeline, were each mode is attributed with different

performance characteristics. The query optimizer guarantees validity of input directives and

enforces them by adjusting asyncs to suitable operating modes. Pipelining provides intra-

operator parallelism, and its dynamics are able to eliminate congestions in a query plan by

adding processing capacities in form of additional pipelines as required. The objective of

these dynamics is to achieve a balance among all consumers and producers in a query plan,

effectuating load-balancing and self-tuning capabilities that ultimately strive for optimal

resource utilization and maximized throughput.

Figure.38 Parallel query execution in Transbase. A sequential query evaluation plan (a) is parallelized

by insertion of async nodes between algorithmic units, creating new thread boundaries (dashed boxes). All

communication between separate threads is conducted solely via the host system‟s async operator. Parti-

tioning of tree portions into threads is conducted such that each algorithmic unit is distinctly assigned to

one single thread of execution, thereby effectuating inter-operator parallelism (b, c). Replication of paralle-

lizable plan fragments (pipelines) allows intra-operator parallelism (d). In this case, the async operator is

responsible for partitioning input data among pipelines and for reintegration of pipeline output. For facili-

tating preservation of input directives, the async node is capable of operating in various modes

(PASS/FIFO/HASH/SORT), each influencing order preservation and performance characteristics different-

ly. (e) demonstrates how a relational scan on R is divided into two separate algorithmic units R’ and R”,

where R’ represent the sequential portion of the scan module‟s implementation, while R” comprises that

part of the code that may be used in pipelines.

Custom algorithmic implementations and custom access modules may participate in these

parallelization mechanisms, if they comply with a few basic requirements. The most impor-

tant property of any algorithmic unit is thread-safety, i.e. every algorithmic implementation

must assume that it is executed in multiple parallel incarnations within one or more query

(a)

R

aT .

aT .


group
aT .

(b)

R

aT .

group
aT .

aT .


async
FIFO

(c)

R

aT .

aT .


group
aT .

async
FIFO

async
PASS

(d)

R

aT .


aT .


aT .


aT .


group
aT .

async
SORT

async
PASS

(e)

R’

group
aT .

aT .


aT .


aT .


aT .


R” R”

async
PASS

async
SORT

aT .


aT .


aT .


aT .


aT .


176 4.5 ADVANCED QUERY EVALUATION TECHNIQUES

plans and that the host system will take no synchronization precautions of its own. Moreover,

every module must operate independently from neighboring entities and in a fully self-

contained way, as the optimizer will assume that inter-operator parallelism is generally

possible. Only the presence of compelling indicators prohibiting parallelization, such as

correlated predicates inducing non-local relationships between operators across thread boun-

daries, force the optimizer to refrain from parallelization. Otherwise, the optimizer is free to

introduce thread-boundaries between algorithmic units as it sees fit. In consequence, it is

illegal to maintain any cross-relations between individual algorithmic units. Intra-operator

parallelism, on the other hand, is not applied to an algorithmic unit without obtaining the

unit‟s explicit approval via its Cost() function. We already indicated in 2.4.6 Cost Function

(page 58) how an algorithmic unit will communicate its ability to scale when executed on

parallel hardware, by revealing a ratio of parallelizable code portions as compared to its total

sequential expenditure via its Cost() function. This allows the query optimizer to estimate

the algorithmic unit‟s performance in parallel execution by means of Amdahl‟s Law. If an

algorithmic unit is incapable of parallel execution, either because its algebraic equivalent

prohibits parallel processing, or due to an inadequate implementation, it will express this

property by returning a parallel cost indicator that will prevent parallelization. It is important

to note that the Cost() function is always applied to a completely configured algorithmic

unit, therefore the resulting cost estimation will include any impact of the configuration on the

unit‟s attainable degree of parallelism.

Figure.38 above also demonstrates one important peculiarity of this approach towards paralle-

lization. Since algorithmic units are strictly assigned to one thread of execution, it is impossi-

ble to separate sequential and parallelizable parts of one single algorithmic entity for improv-

ing scalability. This limitation is avoided by explicitly allowing any algebraic expression (this

explicitly includes primitive relational operators) to be implemented as a composition of

autonomous algorithmic entities. Figure.38(e) exemplifies this on a relational scan on R,

which is composed of two algorithmic entities R’ and R”. Both entities are participating

separately in the negotiation process, thereby obtaining the possibility to express differing

scaling abilities. In this example, R’ will use sequential code for performing necessary I/O

operations. The consecutive async operator will then partition the retrieved data among

various instances of R”, which represents the parallelizable part of the original scan operator

R. R” will conduct mostly computational work, e.g. decompression, extraction of tuples, or

possibly evaluation of predicates that were absorbed via exploitation. This concept may be

conveniently combined with prefetching, where R’ will issue asynchronous I/O requests.

CHAPTER 4: ARCHITECTURE 177

Instead of partitioning retrieved data, prefetch requests are distributed among the pipelines,

such that R” instances are able to wait for I/O competition and subsequently commence

processing.

4.6. Data Integration

Data integration serves as an instrument for incorporating data into a logical database schema,

which is physically stored outside the built-in storage layer of the host DBMS. We will

present two general approaches to data integration using the Access Manager framework and

we will evaluate implications and opportunities arising from each. Both approaches are direct

consequences of the Access Manager‟s primary interface layers, one using the high-level

tuple-oriented access method interface while the other is based on the low-level page oriented

storage layer interface.

4.6.1. Alternative Storage

The necessity to publish the host system‟s storage layer interface (Figure.22, page 102) as a

basis for building access methods also offers the opportunity to use it for an alternative

purpose. If a storage layer is considered as a pluggable software module, similar to the dy-

namically loadable libraries representing implementations of access methods and relational

operations, then it becomes immediately clear that the mere existence of the storage layer

interface definition allows to apply a similar approach for devising a concept for pluggable

custom storage components, providing page oriented storage facilities that are able to enhance

the technical capabilities of the overall system. Similar to the definition of a custom TABLE-

TYPE or INDEXTYPE, (4.3.1 Data Access Module Definition on page 119), it becomes possible

to integrate storage module implementations in form of dynamically loadable libraries. A

minor SQL extension will allow introduction of such modules into a database schema.

CREATE STORAGETYPE <stype_name> FROM <file>

Similar to the corresponding access module definitions, this DDL statement extends the

schema of one particular database, rather than globally extending the DBMS. Its purpose is to

provide the location of the dynamic library implementing a custom storage layer. It also

assigns a unique name (stype_name) to be recorded in the database‟s data dictionary for

referencing this storage module in subsequent DDL statements. Such references to

stype_name are used when creating new segments, e.g.

178 4.6 DATA INTEGRATION

CREATE TABLE <tname> <table_definition>

 USING STORAGETYPE <stype_name>[(custom_spec)]

This statement will cause the Access Manager framework to redirect all storage allocation

requests issued for the segment known as <tname> to the storage module referenced by

<stype_name>. This in particular includes the allocation of the new segment‟s description

page, hence the new segment is completely allocated in external storage, while the database‟s

data dictionary stores necessary information for accessing it. The purpose of the optional

custom_spec clause is similar as in the custom access path definition. It specifies additional

information to be parsed and processed by the storage module, e.g. a file name, connection

string, space allocation directives etc.

The inversion of this process is also required. Its purpose is the removal of a storage module

from the database schema. This is accomplished by deleting the corresponding entries from

the system catalog, after verifying that there are no active references, i.e. there must not exist

any access paths based on the storage module to be removed. The corresponding DDL exten-

sion has the form:

DROP STORAGETYPE <stype_name>

The storage layer interface (Figure.22 on page 102) does not provide the same flexibility as

the access method interface with its extensive optional interface routines. All routines, apart

from the optional savepoint feature, are mandatory. This rigidness maximizes the compatibili-

ty and reusability among different storage layer implementations as exchangeable foundations

for access method implementations, and it is owed to the completeness of functionality an

access module expects from a storage layer. We demonstrated how an access module will rely

on caching, multi-version concurrency control, locking, logging & recovery, savepoints, etc.,

to be implemented in the storage layer, thereby reducing the implementation complexity of

the access module. If a custom storage layer is to be used as an alternative to the built-in

storage layer, both layers will have to implement congruent functionality. However, the

rigidness of the access method interface does not imply that storage layers with limited

capabilities are prohibited. It is still possible to implement storage layers that operate in read-

only mode, without transactional isolation, without caching, (see also 3.2.5 MySQL on page

87 for practical examples). But to this end, it is necessary to implement routine stubs for

missing functionality that return error diagnostics when called, such that incompatibilities

between storage layer and access methods are detected reliably. This will ensure that a func-

CHAPTER 4: ARCHITECTURE 179

tionally limited storage layer will only cooperate with an access module implementation that

is aware of these limitations.

Apart from implementing complete replacements for the built-in storage layer, the storage

layer interface offers another interesting opportunity. Similar to the concept of intermediate

access modules (Figure.20 on page 97), it also becomes possible to stack storage layer im-

plementations, for combining their functionalities. As an example, imagine a thin interme-

diate storage layer, which is based on the functionally complete built-in storage layer, but

additionally provides custom encryption or compression capabilities on page level.

But given the immense functional complexity of storage layer implementations, we expect

that such endeavors are only of little practical relevance for data integration, in contrast to

data integration layers that are based on the tuple oriented access method interface.

4.6.2. Data Integration Layer

A data integration layer (cf. Figure.20 on page 97 for a classification in the overall system

architecture) is a software artifact that is capable of attaching an external data repository to a

database schema that is operated by a host DBMS housing the Access Manager framework.

Its main purpose is to bridge any discrepancies between the host system‟s and an external data

source‟s conception of data. These versatile discrepancies may involve incompatibilities of

data models and data representation, geographical distance, connectivity and authentication,

etc. Hence, data integration layers function as data access drivers, each dedicated to one

particular external data source, for providing a coherent, location transparent view on a

collection of remote data. The Access Manager allows extending its host system with such

modules, if they implement the access method interface. Consequentially, a data integration

module acts as any other access module, providing navigational and optionally manipulation

capabilities on data in its responsibility. The flexibility of the access method interface is

applied for tackling the possibly broad functional diversity of external data sources and

subsuming them in one comprehensible and manageable interface. Ultimately, external data is

integrated into the database schema such that the host system may access it as any other

ordinary relation though the access module interface. All implementation details are hidden

within the integration module controlling the access to that relation.

This encapsulation allows handling integration layers in exactly the same way as an access

module. An integration layer manifests itself as a dynamically loadable library, which is used

for extending the host system, similar to any other plug-in component implementing an access

180 4.6 DATA INTEGRATION

module (cf. 4.3.1 Data Access Module Definition, page 119). Subsequently, an access path to

remote data may be created, using the standard routines as described in 4.3.2 Access Path

Creation (page 120). This new access path will be represented by corresponding descriptive

entries in the database data dictionary, as a complete specification of the remote data as a

table, providing the host system with a relational view on this data, regardless of the data

source‟s actual data model. These data dictionary entries are established under the transac-

tional context of the DDL statement, creating a permanent link to external data in the database

schema. Moreover, the new relation will be associated with a segment located in the data-

base‟s internal storage area, consisting at least of the segment‟s description page. The integra-

tion module is free to allocate additional pages as required, as a storage area serves for persis-

tently archiving all necessary information for operating on the external data source, e.g.

connection information, credentials, data description, etc. The actual data however will

typically remain in the remote repository.

After creating such an access path, external data becomes accessible via SQL by referencing

the relation‟s name in a database query. The SQL compiler is able to resolve the name via the

system catalogue and associate it with its relational table definition. Eventually a scan is

opened on the remote data. Depending on the capabilities of the integration module‟s imple-

mentation and on the availability of optional interface routines, this scan may be used for

read-only access, but also for data manipulation. As the host system does not discern between

data integration layers and other access modules, it becomes possible to improve access to

external data by creating auxiliary internal or external access paths.

As any data integration module implements all assets for negotiation, access to external data

will participate in the host system optimizer‟s global optimization process. As a consequence,

it becomes possible to relocate necessary transformations to the remote repository, if that

system is capable of conducting relational operations. Such measures are suitable for achiev-

ing dramatically improved performance in query evaluation. For example, relocation of

restrictions and projections to the remote system is able to minimize the data transfer volume

between external repository and host system. Exploitation of pre-sortedness will reduce

computational costs and temporal storage requirements. Cost-based query optimization is

guided by assessments made by the integration module‟s Cost() function, allowing the

optimizer to deal reliably with index selection and join optimization challenges. Index selec-

tion chooses one or more access paths from multiple alternatives, considers index intersec-

tions, index unifications, and ultimately materialization if necessary. It operates globally, and

CHAPTER 4: ARCHITECTURE 181

evaluates all access path candidates that are registered in the central data dictionary, hence it

becomes possible to distribute secondary access paths to the one relation arbitrarily among all

attached repositories and the built-in storage facility. Join optimization covers cost-guided

selection from arbitrary join sequences for combining data from diverse external repositories

and internally stored data. Hence, this approach to data integration allows internally and

externally stored data to participate equally in the query optimization process.

But despite these expedient properties of data integration layers, one major shortcoming

remains. Limitation of exploitation to the set of basic unary operators prevents

propagation of more advanced relational operators to remote sites. As a consequence, joins

between two relations residing in the same repository must be conducted by the coordinating

host system, possibly provoking excessive and expensive shipment of data. Other relational

operations, like grouping and aggregation, capable of dramatically reducing the data transfer

volume, cannot be applied directly at the remote site. This fact is particularly unsatisfactory, if

the remote data repository happens to be a full-blown RDBMS, which would be perfectly

capable of handling such complex relational transformations. This limitation represents a

considerable handicap of the Access Manager‟s integration layer compared to some dedicated

data integration architectures, which claim to accomplish this task.

Our approach to circumvent this shortcoming capitalizes on the RDBMSs‟ general ability to

rewrite queries, a prerequisite for the prevalent materialized view concept. However, we do

not capitalize on pre-calculation aspects of materialized views, but on mere query rewriting.

As an example, let A, B be two relations that are located in an external data repository that is

also capable of performing a relational join operation. If we define a relation AB as a remote

view on the result of A B, and make AB accessible via the integration layer, then the host

system‟s query optimizer may choose for arbitrary queries joining relations A and B, whether

to perform the join locally after transferring necessary data from the remote repository, or to

access AB instead. In the latter case, the join is actually performed on the remote system. This

is further supported by the Access Manager‟s negotiation process, which is admitting reloca-

tion of arbitrary predicates to the remote site. As this in particular includes relocation of join

predicates from the original user query, this universal approach is capable of effectively

reducing the join result size and thereby minimizing communication overhead for arbitrary

ad-hoc queries.

The remote view concept may be extended to other relational operations, including pre-

defined aggregations in a remote view definition. But in contrast to the generic Cartesian

182 4.6 DATA INTEGRATION

product that is effectively refined by adding appropriate predicates, handling of aggregations

is restricted to the pre-defined grouping granularity from the remote view definition. Although

this may suffice for supporting a known set of aggregation queries through definition of

convenient remote views, this concept does not possess to necessary flexibility to cope with

ad-hoc analytic queries.

CHAPTER 5: PROOF OF CONCEPT 183

5. Proof of Concept

In this chapter, we will present a collection of plug-in implementations for extending the

Transbase RDBMS, which serves as the host system for the Access Manager framework

prototype. This survey will exemplify the framework‟s capabilities for integrating supplemen-

tal modules for data retrieval, data storage and data integration into an operational core

system. Some of the presented plug-ins are mature access module implementations, which

were originally built-in Transbase components, and now have been extracted, modularized

and adapted to the Access Manager framework, thereby making them available for interope-

rability with future plug-in implementations. Based on this reliable foundation, we developed

several new access modules, each exhibiting fundamentally different behavior compared to

Transbase‟s innate access methods, yet reuse of aforementioned well-tested components

helped significantly accelerating their development process, such that the new plug-ins

quickly reached a maturity comparable to their building blocks. Finally, other access methods

have been implemented completely from scratch, enriching Transbase with supplemental

access and storage technology. Some of these new implementations soon reached industrial

strength and, in fact, have already become part of the Transbase product, while others remain

in the stage of design concepts for fathoming the possibilities of the Access Manager frame-

work. All presented primary access methods generally permit combination with arbitrary

secondary indexes, and vice versa, even if full support is not implemented in every case. We

will provide an overview of interoperability of primary and secondary access paths when

introducing the diverse access module implementations.

The concepts of non-standard data models and abstract data types (ADTs) are omitted in this

chapter, and we concentrate on basic operations on standard relational data. Since non-

standard data has to be transformed into the relational model eventually, in order to be

processed with the standard relational operators provided by the host RDBMS, this omission

does not compromise the universality of the following study. The technical details of data

conversion between different data models are also beyond the scope of this work, but we will

discuss conversion of data between standard and non-standard representation within the

relational model.

The integration of custom relational operators, which is the secondary objective of the Access

Manager approach, will demonstrate tight coupling between access methods and supportive

consecutive transformations. We will present how the Access Manager framework will lend

184 5.1 TRANSBASE PROTOTYPE

itself to integration of sophisticated solutions for user-defined functions, predicates, aggre-

gates, and other operators, tailored for supporting a specific access method or for specializa-

tion of the universal host RDBMS towards a certain application domain.

5.1. Transbase Prototype

The Access Manager prototype was integrated into the commercial RDBMS Transbase.

Before discussing the details of its implementation, we will provide a short overview over its

designated host system.

5.1.1. The Transbase RDBMS

Transbase [Tra10] is a thriving commercial RDBMS, providing dependable and efficient

standard DBMS functionality and is equipped with rich additional features. It implements the

typical client-server architecture, and consequentially provides a broad variety of prevalent

client APIs. It is compliant with the ISO SQL Standard [ANSI99] (SQL-2, entry level) and

supports many SQL features which have been categorized as optional in SQL-2, SQL-3 and

subsequent revisions. Moreover, it provides unrestricted support for the ACID paradigm in all

DDL and DML operations. Transbase‟s key features are its compactness and high scalability,

as its comparatively small footprint allows providing the complete spectrum of DBMS func-

tionality at considerable performance, even under tight resource restrictions, while it is also

able to effectively exploit extensive hardware configurations for attaining maximum efficien-

cy. In addition, Transbase has a tradition of incorporating advanced indexing techniques. Its

Hypercube index for OLAP, which is based on the UB-tree technology, is tailored for access-

ing multidimensional and hierarchical data in data warehouse applications. Still, like in most

other RDBMSs, the B-tree [Bay72] is the prevalent access method in Transbase, and in fact, it

was the only access method for almost two decades. Over this time period, many B-tree

properties have established themselves in adjoining system components, like query planning,

query evaluation, locking, logging, and recovery. Consequently, Transbase components often

silently presumed B-tree peculiarities, e.g. the optimizer derives assumptions on clustering

and sort order directly from the B-tree‟s key specification. For the subsequent integration of

the UB-tree [Ram00], these assumptions posed considerable obstacles, making it necessary to

explicitly distinguish between these two alternatives. Now, the integration of the Access

Manager into Transbase provides an abstraction from the properties of particular access

methods, allowing a clean separation of Transbase‟s two innately built-in access methods. A

CHAPTER 5: PROOF OF CONCEPT 185

more detailed discussion on necessary adaptation of these existing access methods for integra-

tion into the Access Manager framework will be provided shortly.

5.1.2. Limitations of the Prototype

The Access Manager prototype is implemented as an optional feature in Transbase. It can be

deactivated via a configuration setting at compilation time. This allows switching back to the

original implementation by recompilation of the Transbase system. Hence, an unmodified

implementation of the original data access layer still exists within the system‟s code basis. It

serves as reference implementation for evaluating functional and performance-relevant

aspects in the behavior of the Access Manager implementation. In order to allow switching

between these two implementations, the Access Manager interface is hidden behind a facade

resembling the original access layer interface towards other system components. In particular,

the query processor still calls the access layer‟s original interface routines. From this fact arise

a number of minor limitations in the current state of the prototype implementation, the most

important being its restrained negotiation and configuration capabilities. The optimizer

assumes uniform applicability and exploitability for all access method types. These are

derived from the system‟s data dictionary and apply to the original B-tree implementation, the

prevalent access method in Transbase. In detail, this means that Transbase assumes that any

access method type is able to produce arbitrary projections of the attributes associated with a

relation in the data dictionary. For insertions and updates, the exact sequence of attributes

from the original table definition (DDL) is assumed as de-facto input projection to be en-

forced by applicability directives. Secondly, Transbase assumes that restrictions may be

efficiently exploited on the prefix of the primary key, as it is the case for B-trees. Transbase

already implements one exception to this rule for UB-tree handling, where restrictions on all

key attributes are evenly exploited. Thirdly, Transbase expects a relation‟s primary lineariza-

tion to be identical to a lexicographical sort order on the relation‟s primary key attributes,

also a property of the B-tree. This sort order is also used as applicable sort order for speeding

up set-oriented data insertion and manipulation. Again, Transbase implements a specific

exception to this rule for UB-trees, as those exhibit no exploitable sort order. All configura-

tion aspects for exploiting distinction and representation are missing completely.

Although these limitations appear severe at first glance, they have surprisingly little impact on

the evaluation of the prototype access methods described here. This is owed to the fact that all

prototypes were implemented in awareness of these characteristics of Transbase. All access

methods are equipped with the ability to produce arbitrary projections, they are capable of

186 5.1 TRANSBASE PROTOTYPE

effectively enforcing restrictions on their indexed attributes, and they expect the presence of a

lexicographical sort order on input data streams controlling modifications. This makes negoti-

ation of projection, selection, and sort order directives obsolete, as all configurations sug-

gested by the host system are invariably accepted. Regarding alternative data representation,

Transbase was adapted in selected places with minor modifications, providing required

functionality for the introduction of bitmap representation. For instance, instead of imple-

menting separate bitmapped versions of union and intersection operations on sets, the original

tuple-oriented operators were adapted for supporting both representations. These algorithmic

units choose dynamically between the available alternatives at query execution time, depend-

ing on the actual input representation as tuples or bitmaps. This is considered a temporary

solution, which is owed to the fact that Transbase is in permanent productive use. Any exten-

sive and fundamental modification, such as the introduction of the Access Manager frame-

work, must be conducted gradually for preserving the functional integrity of the overall

system. This workaround will be undone in favor of an implementation conforming to the

presented negotiation approach, as soon as the original access layer facade becomes obsolete

and the Access Manager framework is fully activated.

Hence, query evaluation of the prototype is fully operational, yet there remain deficiencies in

the field of query optimization, where temporary modifications are too extensive and there-

fore not a viable alternative for a prototype implementation. In these cases, we compensate for

missing autonomous query optimization capabilities by using Transbase‟s ability to process

fully specified query execution plans in textual representation. With this measure, it becomes

possible to circumvent all shortcomings of missing negotiation in the optimization phase, by

predefining optimal configurations in „handmade‟ query evaluation plans for measuring the

full potential of the access method interface. Whenever limitations of the current preliminary

implementation emerge in the following discussion of a specific access method implementa-

tion, we will indicate how the limitation was circumvented, together with an evaluation of

possible implications of this workaround on the presented results. We want to emphasize, that

these limitations will be resolved completely, as soon as the facade currently concealing the

Access Manager interface is removed from the host system, and negotiation becomes fully

available during query optimization.

CHAPTER 5: PROOF OF CONCEPT 187

5.1.3. Reference Database & System

In order to receive comparable results, we will conduct the following measurements on a

uniform data basis. Therefore, we will start with a simple database schema, consisting of one

single relation, as defined by the following SQL DDL statement:

CREATE TABLE R (a SMALLINT NOT NULL, b SMALLINT NOT NULL,

 c SMALLINT NOT NULL, d CHAR(80), PRIMARY KEY (a,b,c));

This table is populated with the reference data set using artificial data, where the three prima-

ry key attributes a, b, c are filled elements of the set 2 , i.e. the complete

data set stores 2 2 tuples. The textual field d serves as substitute for descrip-

tive information associated with the respective key values. In total, every tuple has a constant

payload of 86 bytes, and in Transbase‟s standard tuple representation each tuple amounts to a

fixed size of 89 bytes, and consequently R‟s total data volume is at least 1.5 Gbyte in standard

representation. The sample database uses a page size of 32 kbyte, hence the relation will

occupy roughly 45600 pages. We will continuously adapt this schema for incorporating the

currently discussed data access method as a separate access path Ti, which is structurally

identical to R, and load the reference data set. On this relation, we will then conduct a series of

scan operations:

(a) SELECT COUNT(*) FROM Ti;

(b) SELECT COUNT(*) FROM Ti WHERE a BETWEEN 100 AND 152;

(c) SELECT COUNT(*) FROM Ti WHERE a BETWEEN 100 AND 256

 AND b BETWEEN 100 AND 152 AND c BETWEEN 100 AND 152;

(d) SELECT COUNT(*) FROM Ti WHERE a = 100 AND b = 100 AND c = 100;

These queries represent the following operations: (a) 100% full table scan (FTS), (b) 10%

interval scan, (c) query box, (d) point access. We use the inex-

pensive aggregation COUNT(*) for eliminating the potentially time-consuming transfer of

result sets from the query‟s elapsed time. As of data manipulation, we conduct the following

operations in the presented sequence:

(e) INSERT INTO S SELECT a, b+1, c+1, d FROM R

 WHERE a mod 6 = 0 AND b mod 4 = 0 AND c mod 4 = 0;

(f) INSERT INTO Ti SELECT * FROM S;

(g) DELETE FROM Ti WHERE a mod 6 = 0 AND b mod 4 = 0 AND c mod 4 = 0;

(h) UPDATE Ti SET b = b-1, c = c-1 WHERE b mod 2 = 1;

188 5.2 B-TREES

Statement (e) serves as a mere preparation, as it selects a „scattered‟ subset of 33

 2 from the original relation R, applies some minor transformations, and inserts it

into a temporary relation S that will serve as source for the following insertion (f) into the

target relation Ti. After conducting the complete sequence of manipulations on Ti, it will hold

the same data as before the manipulation, but the access path will have been restructured into

a different physical layout.

Of course, these sample queries are only suitable for a very coarse comparison of access

methods, and the results cannot be easily transferred to arbitrary real-world database applica-

tions with genuine semantic on the stored data, non-uniform data distribution, and variable

sized tuples. Nevertheless, they are appropriate for demonstrating the most prominent distin-

guishing properties of every access method under examination.

All measurements in the following sections were conducted on a Dell PowerEdge T610

server, running a SUSE Linux 2.6.31.5 x86_64 kernel. The system is equipped with 24 Intel

Xeon 5650 CPUs operating at 2.67 GHz and 48 Gbyte RAM. Secondary storage is attached

via a Dell Perc H700 SCSI RAID Controller, transferring 6 Gbit/s over 2x4 internal SAS

connectors. It operates eight 160 Gbyte HDDs at 7200rpm in RAID-0 configuration with a

total capacity of 12 Tbyte. The exact version of the employed Transbase database system is

V6.9.1.1 (Build 555).

5.2. B-Trees

The B-tree [Bay72] (see also [Bay77a], and [Com79] for a survey), or more precisely the B
+
-

tree variant implemented in Transbase, is the prevalent data access structure in most DBMSs.

It efficiently supports all common usage patterns of access paths in data retrieval and manipu-

lation, namely full table scan, interval scan, point access, singleton data manipulation, posi-

tioned update and deletion, and mass-manipulation. Since the basic concepts of B-trees are

commonly known, we will henceforth concentrate on the technical aspects of their implemen-

tation in Transbase.

The present B-tree implementation is capable of indexing one or more attributes of arbitrary

SQL data types. We refer to this subset of indexed attributes as the B-tree‟s search key, which

is potentially non-unique and therefore it must not be confused with unique key constraints in

the relational sense. If the indexed attributes constitute the relation‟s primary key, then every

occurring value combination must be unique, and the B-tree is capable of efficiently enforcing

CHAPTER 5: PROOF OF CONCEPT 189

this constraint. Alternatively, Transbase‟s B-tree implementation may also operate in dupli-

cate mode using non-unique search keys. In addition to the search key, the B-tree may store

additional information, which is associated to the search key, in auxiliary attributes of arbi-

trary types as non-key data elements. The internal nodes of the B-tree store separators consist-

ing of prefixes of indexed attributes, stored in a compact representation similar to Prefix B-

trees [Bay77a], and serving as orientation when accessing the tree structure via search key

lookups. The leaf level contains plain relational data, consisting of index attributes and non-

index attributes. Leaf pages also possess a forward chaining, allowing immediate sequential

navigation on the leaf level. A sequential scan in reverse direction is also possible, but it will

resort to the backwards chaining provided by the lowest internal node level, since an explicit

reverse chaining on leaf level is not supplemented.

Although the B-tree technically guarantees a filling degree of 50%, practical experience

shows that typical page utilization is over 80%, and space utilization is further enhanced by

diverse packing techniques in this implementation. To this end, data is not compressed, but

arranged in a compact internal representation, allowing efficient data access and predicate

evaluation directly on this representation. Among other techniques, compactness is achieved

through unaligned storage of data, although some machine data types (e.g. the double preci-

sion floating-point format) require specific alignment in memory on some hardware plat-

forms, thereby introducing small gaps of unused memory in data structures representing

relational tuples. Unalignment is conducted whenever a tuple is inserted into a page for

persistent storage, while its inversion is applied to all tuples that are retrieved for query

processing. This technique is beneficially combined with attribute reordering, i.e. B-trees

store an internal projection of attributes that is different from the original table definition.

Attribute reordering allows space-optimal rearrangement of attributes, such that a priori

alignment is automatically achieved for efficient data access. Reordering also permits ar-

rangement of fixed-sized attributes into continuous memory blocks, simplifying memory

management and resulting in further reduction of storage requirements. Similar to head-

compression in Prefix B-trees, a special attribute suppression mechanism exploits the B-tree‟s

sort order, which forces tuples with common prefixes on indexed attributes onto one page

(intra-page clustering). Attribute suppression eliminates the requirement to store redundant

tuple prefixes repeatedly.

Data access is organized in concurrent scan operations on B-tree segments, where scans from

different transactions are isolated implicitly by the storage layer. Locking of B-tree operations

190 5.2 B-TREES

is conducted on page level, offering a good trade-off between concurrency and locking

complexity, but locking on relation level is also possible. Both variants use Transbase‟s

intrinsic locking facility. Naturally, the B-tree implementation is built on Transbase‟s internal

page-oriented storage layer, operating according to a multi-version concurrency protocol

(MVCC). Utilization of lock manager and storage layer provide transactional atomicity,

consistency, isolation, and durability to all B-tree operations. Consequentially, this B-tree

implementation qualifies as a full access method, as it bridges the functional mismatch be-

tween the page-oriented storage layer and tuple-oriented query processing.

Concurrent B-tree scans belonging to the same transaction use the scan maintenance tech-

nique described earlier, for adapting the internal status of foreign scans that are influenced by

data manipulation in the vicinity of their current scan position. In terms of negotiable evalua-

tion techniques, B-tree scans offer full support for arbitrary attribute projections and predicate

evaluation on a continuous prefix of the index attributes. The B-tree‟s lexicographical sort

order is fully exploitable for sequential scans in forward and backward direction. Conversely,

the B-tree is able to draw significant performance benefits during mass-manipulation from an

adequately presorted input stream. Implicit duplicate elimination is available, if the retrieved

projection covers all attributes of a key constraint that is enforced by that B-tree. Finally,

tuples are always retrieved in standard representation from B-trees. Although Transbase uses

rule-based query optimization, it uses cost estimations drawn directly from the B-tree access

method for justifying optimization decisions. Therefore, it uses a technique that probes the B-

tree‟s index pages with suitable predicates, typically intervals on an index attribute prefix.

Depending on the number of examined index levels, this approach allows highly accurate

selectivity estimation for predicates on indexed attributes, without the necessity of maintain-

ing separate statistical information. All available features are automatically exploited by query

optimization.

Besides these standard access method functionalities, Transbase‟s B-tree implementation

covers the complete functional spectrum of optional access method features for improved

performance characteristics. Therefore, it participates in the scan buffering protocol, enhanc-

ing the basic Access Manager protocol in selected operations for achieving higher efficiency

by eliminating the necessity to physically close reusable scans. Finally, it offers full support

for the optional savepoint feature, augmenting the storage layer‟s arrangements for concur-

rency and isolation, by providing graceful fail-safe behavior for revoking defective DML

operations.

CHAPTER 5: PROOF OF CONCEPT 191

Transbase employs B-trees as the default access method type for both primary and secondary

access paths, i.e. if no explicit index type is given in the DDL statement. For secondary access

paths, the necessary reference between index tuples and tuples in the base relation is main-

tained either via the relation‟s primary key or via the aforementioned IK-surrogate mechan-

ism. Explicit control over this decision is given to the schema designer via an optional clause

in the data definition syntax. If unspecified, a default mechanism will automatically choose

the space-optimal option at base table creation time.

In addition to their primary purpose as data access paths, B-trees are also used as default data

structure for implementing unique constraints, by establishing secondary access paths as

unique secondary indexes, and the query optimizer will automatically exploit constraint B-

trees for data access, if it finds them appropriate.

In addition, B-trees offer convenient properties for several advanced query evaluation tech-

niques. Their internal index nodes contain a dense accumulation of references to leaf pages,

which is highly suitable for effectuating prefetch operations, during full table scans and

interval scan operations. In particular, the tree structure allows prefetching on multiple hierar-

chical levels, thereby providing excellent look-ahead capabilities. The impact of prefetching

in B-trees is exemplified in Figure.39 at the end of this section. The B-tree‟s ability to eva-

luate predicates to a large extent solely by accessing index pages allows it to identify sets of

qualifying leaf pages. These leaf pages can be processed in parallel, by partitioning references

to these leaves among worker threads, which eventually retrieve the pages from disk, post-

filter any remaining predicates, unpack the qualifying tuples and apply a final projection to

result tuples in standard representation. Figure.39 demonstrates how prefetching and parallel

evaluation harmonize, as early identification of qualifying pages allows effective prefetching

of these pages, while the parallel worker threads handle the laborious task of extracting the

final results, thereby effectively overlapping computational and I/O operation for maximized

utilization of system resources.

Figure.39 summarizes the B-tree‟s performance characteristics as a primary access path to the

data set introduced in 5.1.3 Reference Database (page 187). These measurements will be used

as a reference for comparison against other indexing technologies. The B-tree index examined

here represents a primary access path to said data set, where all three dimensions are incorpo-

rated into the B-tree‟s composite search key, i.e.

192 5.2 B-TREES

CREATE TABLE B (a SMALLINT NOT NULL, b SMALLINT NOT NULL,

 c SMALLINT NOT NULL, d CHAR(80), PRIMARY KEY (a,b,c));

The B-tree demonstrates its balanced characteristics that endorse its position as the ubiquitous

indexing technique in DBMS technology. It is capable of rapid mass insertion (SPOOL), and

shows how data retrieval (SCAN) scales with the selectivity of the applied predicate, i.e.

100% for the full table scan (FTS), 10% interval scan, and point access. The only exception is

the 3-dimensional query box with a selectivity of , where the B-

tree is able to exploit mere 30% selectivity from the predicate on the first dimension, and

consequentially it has to conduct a relatively expensive interval scan on a 30% portion of the

table.

As to data MANIPULATION, the B-tree possesses balanced performance characteristics for

extensive operations altering about 8% of the data volume. These manipulations are uniformly

distributed across all dimensions, and as a consequence of the B-tree‟s clustering, every page

is affected by every operation. The DBMS‟s query processor actively supports these manipu-

lations by providing the scan operator with input streams in a sort order that is matching the

B-tree‟s primary linearization.

The remaining figures demonstrate the impact of selected implementations aspects on the

index performance. The first measurement (VARIANT) aims for quantification of the costs

incurred by the additional Access Manager layer during query evaluation. Therefore it com-

pares the original Transbase B-tree implementation without surrounding Access Manager to

that of the adapted B-tree access module accommodated in the Access Manager framework. It

shows that these costs are negligible, as the B-tree integration into the Access Manager

framework has actually a slightly better performance compared to the Transbase‟s original

implementation. This minimal improvement can be attributed to minor simplifications in the

B-tree interface that were conducted in preparation of its integration into the Access Manager.

The CLUSTERING group concentrates on the influence of physical inter-page clustering on

I/O throughput. It compares a FTS operation on a perfectly aligned B-tree structure, as con-

structed by the initial mass-insertion process, to a FTS on an artificially fragmented data

structure, where every 10
th

 page was moved to a random location within the DBMS address

space, simulating a B-tree after heavy restructuring through perpetual data modifications. The

diagram displays a massive disturbance in the sequential scan performance, a direct conse-

quence of fragmentation that now prevents a reliable prediction of the DBMS‟s scan behavior

CHAPTER 5: PROOF OF CONCEPT 193

by the underlying operation system and hardware. This effect is countered by the active

prefetching capabilities of the B-tree, such that the average I/O rate on the fragmented seg-

ment is significantly adjusted towards sequential behavior.

The final PARALLEL FTS measurement compares single-threaded and multi-threaded query

evaluation. This is the only benchmark in this scheme, where data is deliberately retrieved

from an appropriately prepared database cache, and not from disk, since it intends to focus on

CPU-relevant effects. As the query effectuates a simple FTS, it does not involve any expen-

sive data transformations. The savings in elapsed time are therefore predominantly resulting

from parallelization of the tuple-extraction process from B-tree leaf pages by parallel worker

threads. In this case, the speed-up of parallelization is not limited by the number of available

CPUs, but by necessary synchronization of concurrent access to the database cache and other

globally shared resources.

Figure.39 B-tree performance characteristics. The diagram accounts for overall characteristics of the B-

tree implementation. All measurements show evaluation times (orange) for the operation denoted on the

left, and refer to the lower horizontal axis. Some measurement also exhibit the volume (blue) of data af-

fected by this operation, plotted as number of touched pages, where one page is 32 kbyte in size, and the

complete B-tree occupies approximately 1.75 Gbyte. Data volume refers to the upper horizontal axis. Note

that values outside the range of the diagram are indicated by a broken bar.

407

1967

8862

30078

5742

5742

6256

22636

38267

14416

31

3120

968

5742

59878

56489
59878

1

17810

5960

56489

56489

0 10000 20000 30000 40000 50000 60000 70000

0 5000 10000 15000 20000 25000 30000 35000 40000

MULTITHREAD

SINGLETHREAD

PARALLEL FTS:

PREFETCH

FRAGMENTED

PERFECT

CLUSTERING:

ACCESS MGR

ORIGINAL

VARIANT:

DELETE

UPDATE

INSERT

MANIPULATION:

POINT ACCESS

0.3% 3D QBOX

10% INTERVAL

100% FTS

SCAN:

SPOOL

Volume (pages)

Time (ms)

52932

194 5.3 UB-TREES

In summary, the B-tree implementation is the most mature and most sophisticated access

structure available in Transbase. This makes B-trees particularly interesting for serving as a

reusable basis for functional indexes or as auxiliary search structure for custom intermediate

access method implementations. Its integration into the Access Manager framework allows

rapid adaptation of this technology for novel operational areas.

5.3. UB-Trees

The UB-tree ([Bay96], [Mar99a]) is a generalization of the B-tree for indexing multidimen-

sional data, i.e. multiple attributes of one relation. Its key feature is good responsiveness to a

combination of restrictions on arbitrary subsets of indexed attributes, such that the total

selectiveness of applied predicates correlates closely with the amount of data to be retrieved

from secondary storage. The classical B-tree also supports multidimensional indexing by

employing compound keys. However, restrictions on these attributes are not evenly exploited,

as an unbalanced prioritization favors index attributes in their order of appearance in the

search key. As a consequence, the B-tree performs excellently, if a sufficiently long prefix of

index attributes is subjected to highly selective restrictions by a query, but performance will

degrade strongly if restrictions on high priority attributes are weak or absent. In contrast to the

B-tree, the UB-tree uses a functional mapping of the indexed attributes as search key, which

results from interleaving the attribute values‟ binary representations to the so-called Z-

address. By applying conventional ordering to these interleaved keys, the UB-tree clusters its

data along the Z-curve or Lebesgue curve (Henri Léon Lebesgue, 1875–1941, French mathe-

matician), a space filling curve that is highly symmetrical in the weightings of individual

dimensions. From this symmetry arises the UB-tree‟s ability to conserve spatial vicinity of

multidimensional data in its physical clustering, and its robustness towards selections using

conjunctions of arbitrary restrictions on indexed dimensions. This makes the UB-tree the

superior indexing structure for multidimensional ad-hoc queries, such as are common in data

warehouse and OLAP applications.

Transbase possesses an industrial-strength UB-tree implementation [Ram00] under the prod-

uct name Hypercube index, and while its original integration necessitated several extensions

and adaptations in the DBMS‟s SQL compiler and query optimizer, the implementation of the

internal search structure is based on and is strongly coupled with the prevalent B-tree imple-

mentation. The UB-tree may be conceived as a classical B-tree using a functional mapping

from multiple plain indexed attributes to one singular calculated key. This conception allows

CHAPTER 5: PROOF OF CONCEPT 195

both implementations to share a common code basis, which deviates only in said functional

mapping of keys, and a corresponding predicate evaluation mechanism, the so-called Range

Query Algorithm [Mar99a], that is capable of operating directly on this special key represen-

tation. This inseparable integration of the UB-tree access method implementation with the B-

tree complicated the former‟s migration into the Access Manager framework as an autonom-

ous access module. In the current state, the UB-tree still exists as an attachment to the B-tree

implementation, yet the UB-tree is accessible via its own access method interface as an

independent access structure, ready to be used by other Access Manager modules.

In Transbase, UB-tree access paths are defined using a proprietary extension to SQL. It may

be used for defining both primary and secondary access paths, and similar to the underlying

B-trees, it is capable of indexing and storing data of arbitrary SQL data types and arity. For

optimized effectiveness of spatial clustering in UB-tree indexing, all table definitions must

exhibit compulsory check constraints on all indexed attributes, reducing the domains of

indexed attributes from the SQL base type to the actually used value range, e.g. longitude

NUMERIC(10,7) CHECK (longitude BETWEEN -180 AND 180). The corresponding DDL

statements have the following form, where HCKEY denotes a Hypercube key.

CREATE TABLE <table definition with check constraints>

 HCKEY IS <attributelist>

CREATE INDEX <index definition> HCKEY IS <attributelist>

In addition to these compiler extensions, the integration of the original UB-tree implementa-

tion necessitated several dedicated interfaces to Transbase‟s optimizer module and query

evaluation engine. In contrast to this present integration of the UB-tree, the Access Manager

framework allows to incorporate the UB-tree into Transbase in a more generic way, allowing

it to share a similar amount of code with the B-tree implementation, but resulting in cleanly

separated implementations. The UB-tree‟s strong dependency on B-tree functionality suggests

its implementation as an intermediate access method based on the B-tree. This approach

implicates that the UB-tree will receive input tuples for insertion or manipulation in standard

representation, subsequently transform them using the bit-interleaving technique for calculat-

ing the UB-tree‟s key, and finally forward the modified data to an internal B-tree that is

capable of accommodating data in this new representation. Similarly, predicate evaluation

using the Range Query Algorithm will process standard restrictions from a given SQL query

and translate them into corresponding navigational operations on the internal B-tree‟s calcu-

lated key. The resulting UB-tree is in essence a lightweight implementation of a functional

196 5.3 UB-TREES

index, based on the conventional B-tree. Yet it possesses all capabilities for attending multi-

dimensional operations efficiently. Integration of the UB-tree via the Access Manager permits

using the host system‟s SQL compiler without specific adaptations, e.g.:

CREATE HYPERCUBE TABLE <table definition with check constraints>

CREATE HYPERCUBE INDEX <index definition>

The enforcement of suitable check constraints is delegated to the module‟s Create() rou-

tine, which receives the constraint definitions via its function parameters, allowing it to

evaluate and validate them as prerequisites for a UB-tree definition. The query evaluation

engine may conduct all necessary operations on the UB-tree via the generic access method

interface. The negotiation interface will ensure that all query evaluation capabilities of this

access module are exploited thoroughly. The UB-tree is able to produce output tuples of

arbitrary projections in standard representation, but in contrast to the B-tree it is able to

enforce restrictions [Fen02] in a more flexible and effective manner. A direct exploitability of

sort orders is not possible, since the UB-tree uses a primary linearization that is not corres-

ponding to a lexicographical sort order. Transbase uses certain adjustments for speeding up

the initial loading phase of UB-trees, where the data spooler module adopts the capability of

pre-calculating the UB-tree key values for presorting the input relation and feeding this

prepared input set to the UB-trees Insert() routine. This custom adaptation of the data

spooler module for the UB-tree demonstrates the requirement for exploiting arbitrary sort

orders and also reveals the deficiency of the query interpreter to provide this functionality for

non-lexicographical sort orders. Yet, such custom adaptations as used in this case contradict

the generic Access Manager approach. A clean solution will request a lexicographically

presorted input stream on one single indexed attribute as input directive for insertion. The host

system is able to satisfy this simple requirement, allowing the UB-tree to employ its TempTris

Algorithm ([Zir99], [Zir04]), which is able to improve the loading process, using a moderate-

ly sized temporary storage area. An inverse technique, called the Tetris Algorithm [Mar99b],

enables the UB-tree to produce a data output stream exhibiting a sort order on one single

indexed attribute, for exploitation in a consecutive relational operation. However, neither

form of sort order exploitation is currently in use in the present implementation. Alternatively

to the Tetris/TempTris approach, the Access Manager allows to resort to non-standard repre-

sentation for addressing exploitation of sort orders. If a manipulation scan‟s data input stream

is extended with the UB-tree‟s calculated key, then it becomes possible to apply a conven-

tional lexicographical sort operation on this single artificial attribute for achieving optimal

CHAPTER 5: PROOF OF CONCEPT 197

input sort order for UB-tree mass insertions and manipulations. Finally, negotiation requires a

cost function for justifying decisions in query optimization, but although the theoretical

foundations of a cost function for accurately estimating the impact of predicate on the scan‟s

result set are available in [Mar00], the rule-based optimizer in Transbase currently decides on

employment of UB-tree access paths solely by means of heuristics.

With this, all functionality required for routine operations of the UB-tree is readily available.

These basic capabilities allow to employ the UB-tree in highly advanced scenarios, like

multidimensional data warehouse applications based on star schemata or hierarchical snow-

flake schemata. However, when considering such complex application scenarios and their

sophisticated query evaluation concepts, especially Transbase‟s Multidimensional Hierar-

chical Clustering (MHC) (cf. [Pie03] and [Pie01], [Kar02] for related topics), then the limited

functionality provided by the access method interface seems insufficient. But if we distinguish

between abstract query processing strategies, such as predicate evaluation on dimension

tables, fact table access, and residual joins, which are completely independent from the

employed indexing methods and the basic access method concepts that implement them,

namely interval scans, materialization, and lookups, then it becomes clear that the Access

Manager framework is well-prepared to accept these challenges.

The following Figure.40 compares the twin implementations of B-tree and UB-tree, both

storing the reference data set described earlier. The UB-tree is defined as:

CREATE TABLE UB (a SMALLINT NOT NULL CHECK(a BETWEEN 0 AND 511),

 b SMALLINT NOT NULL CHECK(b BETWEEN 0 AND 511), c SMALLINT NOT NULL

 CHECK(c BETWEEN 0 AND 511), D CHAR(80)) HCKEY IS a,b,c;

As expected, both access methods show many similarities with respect to evaluation times

and data volume. Bulk loading of an UB-tree is slower because of a difference in both imple-

mentations: the B-tree uses the highly efficient Wiper Algorithm for constructing the initial

data structure from a presorted input stream in one single sweep, using a process resembling

an upside-down windshield wiper. The UB-tree, on the other hand, is currently not able to

employ this technology on its internal B-tree and therefore suffers a performance penalty in

this direct comparison. Similarly, data manipulation on the UB-tree appears slower, but this is

caused mainly by different scattering effects of the actual data set on the alternative lineariza-

tions. In this special case, the applied manipulations possess a higher locality on the B-tree,

which is eventually resulting in its better performance. This effect is likely to tilt in favor of

the UB-tree for other data sets, such that in average, both structures will show similar overall

198 5.3 UB-TREES

performance. Query processing shows matching performance for FTS and point queries, but a

significant difference in handling of interval scan and query box processing. While

the UB-tree obviously has advantages with the small query box, as it is able to apply the given

restriction by retrieving a number of pages that correlates with the predicate‟s total selectivity,

the B-tree is only able to exploit a restriction on the first attribute. On the other hand, the

B-tree can clearly outperform the UB-tree in the interval scan. In this case, the B-tree can

fully exploit its space filling curve, which is contiguously traversing the requested interval,

such that almost all retrieved pages are filled completely with qualifying tuples. The UB-

tree‟s Z-curve, on the other hand, will frequently leap out and reenter the queries interval,

leading to a significantly lower hit ratio per page and consequently the UB-tree is forced to

retrieve more pages. In addition, the unsteadiness of the Z-curve inhibits efficient sequential

scanning, leading to an almost random I/O pattern. This and the higher complexity of the

Range Query Algorithm provoke a significantly higher evaluation time. But we must concede

that a 10% selectivity is empirically the worst-case scenario for a multidimensional index, and

a query optimizer will generally decide in favor of a FTS for restrictions with weaker selectiv-

ity. In this special case however, the restriction of the interval scan is very favorable for the B-

tree, as it can perfectly exploit restrictions on this particular attribute, but not on any other

dimension. In contrast, the UB-tree will always respond similarly to arbitrary 10% restric-

tions, regardless of their actual composition from restrictions on the available dimensions.

CHAPTER 5: PROOF OF CONCEPT 199

Figure.40 UB-tree performance characteristics. This diagram compares performance characteristics of

B-tree and UB-tree implementations. Evaluation times (orange) for the operation denoted on the left refer

to the lower horizontal axis. The volume of data (blue) affected by this operation, plotted as the number of

touched pages, where one page is 32 kbyte in size, and the complete UB-tree occupies approximately 1.75

Gbyte. Data volume refers to the upper horizontal axis. Note that values outside the range of the diagram

are indicated by a broken bar.

In general, the UB-tree is clearly the superior data structure for handling reasonable multi-

attribute restriction on vast multidimensional data sets, such as are common in data ware-

houses and OLAP applications. The final set of measurements in these series demonstrates the

UB-tree‟s capability to counter fragmentation of its physical layout with active prefetching, a

property that it actually inherits from the underlying B-tree implementation.

In its current implementation, Transbase employs much of the available knowledge on theo-

retical properties of UB-trees for taking practical advantage in query processing. In addition,

the employment of a cost function for supporting or even replacing heuristic-based query

optimization will lead to better query evaluation plans in future. Moreover, the Te-

tris/TempTris technology is capable of further improving bulk loading and query evaluation

in Transbase. A future integration of these currently unutilized resources of UB-tree technolo-

gy will be significantly facilitated, if conducted as a structured extension via the Access

Manager framework.

8862

29485

6147

37987

22636

47192

38267

32761

14416

47

31

344

3636

2090

968

6147

5742

52932

1

1

520

17745

8956

5960

57654

56489

57654

56489

0,00 10000,00 20000,00 30000,00 40000,00 50000,00 60000,00 70000,00

0 10000 20000 30000 40000 50000 60000 70000

PREFETCH

FRAGMENTED

PERFECT

CLUSTERING:

UB-TREE

B-TREE

DELETE:

UB-TREE

B-TREE

UPDATE:

UB-TREE

B-TREE

INSERT:

UB-TREE

B-TREE

POINT ACCESS:

UB-TREE

B-TREE

0.3% 3D QBOX:

UB-TREE

B-TREE

10% INTERVAL:

UB-TREE

B-TREE

100% FTS:

UB-TREE

B-TREE

SPOOL:

Volume (pages)

Time (ms)

91386

200 5.4 FLAT TABLE

5.4. Flat Table

The flat table is the first prototype of a Transbase access method that was designed and built

entirely for the Access Manager framework. It represents a complete, self-contained, and fully

integrated implementation of an access module. After a remarkably short development period,

it has reached the status of a technically mature, industrial-strength access method implemen-

tation and has already become an integral part of the Transbase product. Although very

minimalistic in its original design, it possesses a number of interesting properties that allows it

to match the functional and performance-related characteristics of the time-tested and stream-

lined B-tree implementation in many usage scenarios. It even manages to outperform the B-

tree in a number of important aspects.

Originally, the flat table was designed for dealing with massive, time-critical bulk loading

processes, especially in data staging and data transformation procedures (ETL), and for

inexpensive logging of data manipulations, e.g. conducted through database triggers for

documentation purposes or later auditing. Flat tables are organized as doubly-linked lists of

pages, stored in the host system‟s internal storage facility and functioning as containers for

tuples in standard representation. The central feature of the flat table is the absence of any

search keys and internal search structures. The segment‟s description page, which functions as

a gateway for accessing the data structure, only possesses references (page numbers) to the

list‟s head and tail elements, as depicted in the following Figure.41.

In contrast to the B-tree, which suffers a certain performance penalty when conducting ran-

domized mass-insertion due to necessary expenditure for preserving its linearization and

maintenance efforts on its search structure, the flat table simply appends data to the existing

data basis. Consequently, it uses the insertion order as its primary linearization, which in

general is data independent. The flat table is tailored for efficient insertion, primarily by one

single writing scan appending data at the tail of the list, although arbitrary concurrent writing

operations (i.e. insertion, deletion, and updates) are generally possible. In contrast to the B-

tree‟s multi-way search capabilities, the flat table does not possess a dedicated search struc-

ture, hence it does not offer any direct access capabilities and it is typically accessed by

sequentially scanning from the head of the list towards its tail. Beyond that, relative forward

and reverse navigation from a given scan position is also possible.

CHAPTER 5: PROOF OF CONCEPT 201

Figure.41 Organization of flat tables. Data is always accessed via the description page. If the page size

setting of a database should not suffice for storing all relevant data for accessing the table in one single

description page, then the access module will allocate auxiliary description pages and chain them to the

data structure. The description page maintains references to the head and tail page of the storage structure,

which is organized as a doubly linked list of pages. This data structure supports all necessary reorganiza-

tion procedures (split and merge), and also allows relative navigation forwards and backwards through the

stored data. The ends of the list may be optionally connected, such that the data structure becomes a cyclic

list. This variant of the flat table is able to function as a relational FIFO container.

Similar to the B-tree, the flat table stores individual tuples of any arity and arbitrary SQL data

types in an unaligned representation and uses attribute reordering for additional compactness,

yet in contrast to the intra-page clustering of the B-tree, the flat table cannot exploit attribute

suppression for common tuple prefixes. As a consequence of attribute suppression, a B-tree

with a compound search key but low selectivity on the key‟s prefix will exhibit a higher

capacity of tuples per page than a flat table storing an identical data set. But on the other hand,

the limitation to sequential access permits a significantly simplified page layout for flat tables,

leading to a constant reduction in storage requirements of 2 bytes per tuple compared to the

B-tree, which becomes significant when storing relatively small tuples. As consequence of

these two contrary effects, both data structures typically have approximately identical space

complexities for storing identical data.

Reading access to a flat table is granted to an arbitrary number of concurrent scans. Any scan

may also manipulate data at its current scan position. Manipulation always preserves the

original insertion order, i.e. updates are performed in-place. If the storage capacity of the

current page is exceeded after an update, then the page is split by allocating a new page and

the original page‟s contents are divided among the old and new page. Deletions and update

operations may reduce the fill level of the concerned pages, thereby degrading storage utiliza-

tion of the overall data structure. Therefore, flat tables are equipped with the ability for self-

AuxDescDescPage

DataPage

…

DataPage…

cycle (optional)

202 5.4 FLAT TABLE

reorganization, guaranteeing an average filling degree of at least 50%, and typically preserv-

ing a considerably higher fill level. Whenever the fill level of a page drops below 50%, then

neighboring pages are probed for potential merging. All these operations strictly preserve the

original insertion order, which is crucial for consistently repositioning of concurrent scans of

the same transaction when conducting scan maintenance. Scans belonging to other transac-

tions are not affected by such reorganization, since they are protected by the storage layer‟s

multi-version concurrency control.

In some cases an implicit functional dependency might exist between insertion order and

inserted data, for example in a continuous stream of sensor data exhibiting ascending time-

stamps. Although such additional semantics are not consciously maintained, verified, or

exploited by the flat table or by the host system‟s query evaluation engine, an application may

still exploit this property when performing relative scan operations and positioned manipula-

tion operations on this segment, as long as updates on the order-relevant attributes do not

invalidate this correlation.

Input order preservation is also used in a special variant of this data structure, the flat table

operates as a relational FIFO (First-In, First-Out) container of limited total size. The data

structure initially operates as normal flat table, until it reaches a predefined target size (i.e. a

maximum number of data pages) through insertions. At this point, head and tail of the list are

chained together, and the structure becomes a cyclic doubly-linked list (cf. Figure.41, page

201). In this state, the flat table will stop allocating further pages and start overwriting the

page containing the oldest data with newly inserted data, according to the FIFO strategy. Such

a data structure is suitable for storing event logs in a relation of limited total size, where

outdated records are automatically deleted. A sequential scan on this log always produces data

chronologically, and the host system‟s query engine allows applying arbitrary SQL transfor-

mations for analyzing the log information. One could also imagine another variation, operat-

ing a Flat table as LIFO (Last-In, First Out) container, or even as a LRU (Least Recently

Used) stack, again exploiting input order preservation, but without the space limiting con-

straint of the FIFO container. However, the current Flat table implementation supports only

FIFO functionality.

The absence of any direct access capabilities renders the flat table inapt for use as secondary

access path. Yet as a primary access path, this lightweight implementation is capable of

accomplishing all fundamental functionality, including the ability for indexation via suitable

secondary access paths. Therefore, the flat table must maintain some unique tuple identifica-

CHAPTER 5: PROOF OF CONCEPT 203

tion for associating base tuples with index tuples. As the flat table itself is not suitable for

maintaining an innate primary key in its data, because it cannot verify uniqueness of newly

inserted data efficiently, it has to be augmented with a separate data structure for generation

of unique keys. The present implementation uses the Access Manager‟s IK service (cf. 4.3.3

Tuple Identification and Indexing, page 125), for generating unique surrogate keys, which are

stored alongside the corresponding data tuple in the flat table pages. The Access Manager‟s

IK service automatically associates the number of the page inhabited by a new tuple with the

tuple‟s IK value, and stores this pair in the auxiliary IK-tree structure. Finally, the IK-tree

allows identification of the flat table page storing the tuple for any given IK, as required for

materialization of base tuples after data retrieval via secondary access paths.

Flat tables with secondary indexes provide direct access capabilities and efficient enforcement

of unique constraints, thereby acquiring two functionalities a bare flat table does not possess.

On the other hand, construction and maintenance of secondary indexes and auxiliary IK-tree

will severely compromise the flat table‟s superior performance characteristics for bulk-

insertion.

One major handicap of flat tables compared to B-trees is their missing look-ahead capabili-

ties. A flat table, being a linked list, can only know the page number of the immediate succes-

sor and predecessor pages relative to its current scan position. This massively impairs its

capabilities to exploit parallel asynchronous I/O operations on modern storage hardware,

because it cannot issue bulk I/O requests to be handled autonomously by the I/O subsystem.

Although the effect is often attenuated, if the flat table pages are arranged in a physically

adjacent way, such that a sequential scan operation on the flat table results in a sequential read

operation on the underlying file. In this case, the storage system and hardware will be able to

recognize this simple access pattern, allowing autonomous prediction and ahead-of-time

scheduling of future I/O requests. Thereby prefetching is delegated from the access layer to

the underlying operating system and hardware. However, if the address space of the database

system is already heavily fragmented, or if data is inserted in numerous smaller chunks over a

long period of time, allowing intermixed allocation of pages belonging to foreign segments, or

even more common, alternating allocation of base table and index pages belonging to the

same relation, then the probability that the operating system is capable of conducting effective

prefetch operations is declining rapidly. Especially if the storage system operates in direct I/O

mode, i.e. the operating system‟s file cache is bypassed for I/O operations, then automatic

prefetching is undermined completely, resulting in poor sequential scan performance on a flat

204 5.4 FLAT TABLE

table. To compensate these effects, the flat table can be optionally equipped with an auxiliary

data structure, the prefetch list, providing the required look-ahead capabilities. This data

structure is essentially a second, auxiliary flat table, and it is operated via the Access Manag-

er‟s access method interface, but it is significantly smaller than the main storage structure.

Instead of storing data tuples, the prefetch list merely stores page numbers of the main struc-

ture in exactly the same sequence as they are linked into the master list. The prefetch list has

to be maintained whenever the main structure is allocating or removing data pages during data

manipulation. Conceptually this structure is organized as an independent flat table, and it may

even have its own prefetch structure, permitting recursive look-ahead functionality, similar to

the B-tree. But since the prefetch list stores only page numbers, while the B-tree must also

store the corresponding search key separators, the former has a notably higher capacity for

page references, which is generally sufficient for conducting adequate prefetch batches.

In Figure.42 we compare performance characteristics of Transbase‟s B-tree with its flat table.

But before we can proceed to measurements, we must make one amendment for guaranteeing

fair comparison. By default, mass insertion will fill a B-tree‟s pages to a level of 80% of their

total capacity, such that subsequent insertions will not immediately lead to split operations.

On the other hand, all insertions into flat tables are conducted as append operations. Hence, it

is reasonable to use all available capacity of flat table pages when conducting mass insertion,

thereby reducing the overall size of the storage structure. As a consequence, direct compari-

son between B-trees and flat tables must compensate for different page utilization. In the

following, we circumvent this discrepancy by forcing the B-tree to fill its leaf pages complete-

ly.

The measurements in Figure.42 demonstrate the performance characteristics of a flat table

storing the reference data set, defined as:

CREATE FLAT TABLE F (a SMALLINT NOT NULL, b SMALLINT NOT NULL,

 c SMALLINT NOT NULL, d CHAR(80));

Obviously, the flat table is not suitable for efficient query evaluation, as it always has to

process the complete relation, independent of any selectivity of applied predicates. In fact, a

higher complexity of the applied predicate will necessitate more expensive post-filtering and

thereby increase query evaluation time. On the other hand, the flat table demonstrates good

robustness against massive restructuring operations, as it is able to outperform the B-tree in

initial spool operation and subsequent bulk insertion, where the B-tree suffers a performance

CHAPTER 5: PROOF OF CONCEPT 205

penalty for reordering the input set according to its primary linearization and for building and

maintaining its index structure. All insert operations on the flat table operate strictly locally at

the tail of its list. Similarly, update operations on a flat table are performed in-place, allowing

it to complete all required operations with one single sweep over the base relation, while the

B-tree is forced to process the update in two phases, since data must be moved as a conse-

quence of search key updates.

Figure.42 Flat table performance characteristics. This diagram compares performance characteristics of

B-tree and flat table implementations. Evaluation times (orange) for the operation denoted on the left refer

to the lower horizontal axis. Some measurement also exhibit the volume (blue) of data affected by this

operation, plotted as number of touched pages, where one page is 32 kbyte in size, and the complete flat

table occupies approximately 1.5 Gbyte. Data volume refers to the upper horizontal axis. Note that values

outside the range of the diagram are indicated by a broken bar.

Finally, even the delete operation on the flat table has a minor performance advantage, be-

cause in contrast to the B-tree, it has no index to maintain, only a very compact prefetch list.

The final measurement demonstrates the effectiveness of this prefetch list for providing

valuable look-ahead capabilities on a fragmented flat table segment.

In summary, flat tables are appropriate containers for volatile data, or as a temporary storage

container for data that has to undergo some extensive refinement process. After the manipula-

tion process has concluded, the contents of a flat table can either be transferred into a primary

6912

25741

4993

17473

19517

12825

1624

10546

10795

31

11935

3120

9969

781

4993

5742

21014

45229

3

45229

14257

45229

4771

45229

45255

45229

45255

0,00 5000,00 10000,00 15000,00 20000,00 25000,00 30000,00 35000,00 40000,00 45000,00 50000,00

0 5000 10000 15000 20000 25000 30000

PREFETCH

FRAGMENTED

PERFECT

CLUSTERING:

FLAT

B-TREE

DELETE:

FLAT

B-TREE

UPDATE:

FLAT

B-TREE

INSERT:

FLAT

B-TREE

POINT ACCESS:

FLAT

B-TREE

0.3% 3D QBOX:

FLAT

B-TREE

10% INTERVAL:

FLAT

B-TREE

100% FTS:

FLAT

B-TREE

SPOOL:

Volume (pages)

Time (ms)

52932

39188

206 5.5 BITMAPS

index structure, or alternatively a secondary index of arbitrary type may be built directly on

the flat table.

5.5. Bitmaps

Bitmap indexes are the prime example for the construction kit principle of the Access Manag-

er framework and its distinguished ability for encouraging and cultivating reuse of existing

components. Similar to flat tables, bitmap indexes reside completely inside the storage area

controlled by the host DBMS, but contrary to flat tables, they never interact directly with the

storage layer. They are entirely built on top of the DBMS B-tree layer, as an intermediate

access module. All required storage and data retrieval functionality is attended by inserting,

deleting, or accessing data from an auxiliary B-tree structure that serves as permanent storage

container for bitmaps. Hence, the B-tree functions as a mediator for mapping the tuple-

oriented storage requests of the bitmap index onto the page-oriented storage layer.

Using this approach, bitmap indexes can be implemented as a comparatively thin layer. As an

example, the bitmap module does not implement any search structures of its own. This func-

tionality is completely provided by its B-tree component. From the perspective of the object-

oriented programming paradigm, the bitmap index extends the B-tree structure, thereby

inheriting the bulk of its necessary functionality. Nevertheless, the bitmap module represents

a highly specialized access method implementation that shows fundamentally different

behavior compared to the properties of its central building block.

Before we start examining the properties of the present bitmap implementation, we will

establish the general concepts of bitmap indexes. A bitmap index is capable of storing and

efficiently retrieving data of the form (), where are attributes of a

base relation . We call the indexed attributes on which the bitmap index will

provide rapid predicate evaluation and direct access capabilities, while the attributes

 constitute a relational key on and serve as identification for locating the base

tuple corresponding to each index tuple. The prevalent form of bitmap indexes uses equality-

encoded bitmaps (cf. [Cha98] for more details on this and other encoding schemes). In other

words, for every distinct value of indexed fields that is actually appearing in the

base relation , the index will store one bitmap that is associated with . These bitmaps

provide a bijective mapping for every unique key to a bit position in each

bitmap, such that for every row in with key that exhibits the value on the indexed

CHAPTER 5: PROOF OF CONCEPT 207

fields, the bit in the bitmap is set to 1 (1-bit). Otherwise it remains 0 (0-bit). If

contains n tuples and the indexed fields contain c distinct values (including SQL NULLs),

then the bitmap index consists of c separate bitmaps, each of a length of at least n bits. If the

mapping is not dense, then the resulting bitmaps are correspondingly longer.

Using equality encoding, the sets of 1-bits in any two bitmaps are disjoint. Otherwise would

contain two tuples with key , exhibiting two different values of at the same time, thereby

violating the key constraint. Also, the total number of 1-bits in all bitmaps equals the number

of tuples in . The following figure exemplifies these relationships.

Figure.43 Equality encoded bitmaps. This example shows projections of a relation with 8 rows, having

a dense relational key , and a non-key column with four distinct values. An equality encoded bitmap

index on requires four bitmaps of length 8, in this case using the identity for mapping
.

Our implementation stores bitmaps in an auxiliary B-tree. As a B-tree arranges its data in

fixed sized pages of the DBMS‟s storage layer, e.g. 8 kbyte, and one B-tree tuple may not

exceed the size of a data page, bitmaps have to be compressed and eventually split-up for

permanent storage. Therefore bitmaps are partitioned into fixed length bitmap chunks, each

chunk covering 1 Mbit. Empty chunks containing only 0-bits are not stored but discarded

immediately, since they can be easily reconstructed on demand. The remaining chunks are

subjected to a multi-stage compression mechanism. The first stage uses an inexpensive run-

length encoding scheme, relying on low-level routines for optimal hardware support. It offers

best compression results for very sparse and very dense bitmaps. The second stage uses a

dictionary-based compression algorithm for further size reduction. Finally, if the compressed

chunks are still not fitting into pages, they are split into page-sized fragments. These frag-

ments are finally inserted into the auxiliary B-tree as tuples, having the general structure

 . Again represents indexed attributes from the base relation to be stored

redundantly in the secondary index. These attributes have the same types as in the base

relation and they possess the highest weight in the storage B-tree‟s compound key. The field

1
2
3
4
5
6
7
8

1
3

NULL
0
3
1
1
3

0
0
1
0
0
0
0
0

1
0
0
0
0
1
1
0

0
1
0
0
1
0
0
1

0
0
0
1
0
0
0
0

 () () 𝑁𝑈𝐿𝐿 0 1 3

208 5.5 BITMAPS

 is an integer number, describing the position of this bitmap fragment‟s first bit in the

bitmap. This field has also the lowest weight in the B-tree‟s compound search key. Finally,

„bulk‟ stores a binary array containing the fragment of an encoded and compressed bitmap

chunk as a descriptive field of the B-tree. The maximum size of the bulk fragment is chosen

such, that the complete tuple occupies at most the maximum payload of one data page. Due to

variable compression rates, the sizes of tuples may vary, yet the B-tree will guarantee a worst-

case page utilization of 50%.

This implementation possesses all typical properties of equality-encoded bitmap indexes. It

provides its highest compactness, if the indexed attributes exhibit a low selectivity. Owing to

bitmap encoding and compression, the compactness of bitmap indexes is substantially higher

than that of the corresponding standard B-tree, storing identical information in standard tuple

representation. But, in contrast to the underlying B-tree, bitmap indexes are not suitable for

storing additional, descriptive attributes besides and .

In SQL, a bitmap index is created using the standard DDL syntax for secondary index defini-

tion. The current implementation does not support creating bitmap tables as base relations,

because it lacks mandatory primary access pats functionality, i.e. it supports insert and delete

operations, which are necessary for secondary index maintenance, but it supports neither

searched nor positioned update operations. As soon as this functionality is implemented, it

will become possible to create bitmap tables.

CREATE BITMAP INDEX <indexname> ON <tablename>(<attributelist>);

This statement will create a secondary index for a base relation <tablename> on the columns

specified by <attributelist>. Generally, the host system will automatically incorporate the

base relation‟s primary key attributes into the bitmap index definition. Alternatively, it will

resort to the IK-surrogate mechanism, if the base table provides IK information.

Bitmap indexes are particularly well suited for indexing columns of low selectivity, hence

they are typically used for indexing single attributes representing some coarse classification.

Due to their native representation as bit arrays, bitmap indexes support efficient logical bit-

operations, in particular intersection and union of bitmaps, realized as low-level coded,

hardware-aided binary AND/ OR operation. As a consequence, building separate bitmap

indexes on several attributes offers an alternative approach for processing multidimensional

restrictions, where inexpensive combination of arbitrary bitmaps allows flexible mixing and

CHAPTER 5: PROOF OF CONCEPT 209

matching of multidimensional predicates in ad-hoc queries. Possible strategies for exploiting

bitmap operations in query processing will be discussed separately.

Equality-encoded bitmaps are capable of efficiently evaluating queries of the form:

SELECT , FROM WHERE = ();

The specification of the underlying B-tree immediately suggests how search operations on

this storage structure are conducted. Predicates on are applied unaltered to the B-tree‟s

search key. Therefore, the B-tree provides full support for equality queries, as well as for

arbitrary interval queries on . A minor additional arrangement in the bitmap index imple-

mentation allows extending the predicate to points or intervals on , e,g.

SELECT , FROM WHERE =() AND =();

This is accomplished by applying the aforementioned bijective mapping to the

given predicate and subsequently retrieving all qualifying bitmap fragments from the B-tree.

Obviously, such translation of predicates can be accomplished easily, if the mapping

 is monotonous, as it is the case in this implementation. Since the B-tree stores coarse

bitmap fragments, the result set retrieved from the B-tree is a superset of the actual query

result, and has to be post-filtered for compliance with the original predicate, i.e. 1-bits

representing keys that do not match the requested interval are purged from the result bitmap.

With this extension, the presented bitmap implementation offers efficient support for an

extensive class of predicates on all stored attributes.

Besides equality-encoding, a number of alternative bitmap encodings exist, with range-

encoding [Cha98] being the most popular among them. A range-encoded bitmap exhibits

1-bits at position , if the corresponding base tuple is smaller or equal to the bitmap‟s

associated value Range-encoding responds efficiently to interval queries of the form

SELECT , FROM WHERE BETWEEN () AND ();

The result is calculated by using an equivalent term that is easily mappable to efficient bitmap

operations:

SELECT , FROM WHERE NOT () AND ();

Hence, range-encoded bitmaps can answer simple interval queries by retrieving no more than

two bitmaps, while equality-encoded bitmaps must retrieve one bitmap for every value falling

210 5.5 BITMAPS

into the query interval and combine all bitmaps into one conjunct bitmap. On the other hand,

range-encoded indexes have to retrieve two bitmaps for answering a common point query. In

addition, maintenance of range-encoded bitmaps is expensive, because several bitmaps have

to be updated when one new tuple is inserted or deleted, making range-encoding less suitable

for frequent updates than equality-encoding.

The concept of range-encoding can be driven further towards bitmap binning [Rot04], suitable

for indexing attributes of high cardinality domains. Instead of storing a separate bitmap for

every single , bitmap binning partitions the domain of into intervals (bins) and stores only

one bitmap per bin, thus reducing storage complexity. Consequently, the results produced by

such bitmaps contain potential hits in bitmap bins at the margins of the query interval. For

these potential hits, the exact values of have to be materialized from the base-relation for

post-filtering. Although the current implementation supports only equality encoded bitmap,

the Access Manager framework is fundamentally capable of coping with the peculiarities of

the presented alternate bitmap encodings and it is suitable for their implementation.

Bitmap encoding and compression offer massive savings in storage requirements for bitmap

structures. At the same time, these techniques are the main reason why bitmaps respond

poorly to data manipulation and consequentially have acquired their reputation as read-mostly

search structures. This effect is caused by the non-locality of the bitmaps representation. An

update operation altering one single bit in the bitmap has to retrieve a compressed chunk from

the disk and expand it in main memory. Now the required operation is conducted, manipulat-

ing the single bit in the uncompressed bitmap representation. Afterwards, the chunk has to

pass again though the compression cycle and ultimately the compressed chunk is split into

page-sized portions and stored in the B-tree. Although this procedure describes roughly the

flow of operations in this particular implementation, we presume that some general conclu-

sions drawn from this example can be transferred to arbitrary bitmap index implementation.

Besides being already expensive in terms of I/O and CPU-intensive operations, this procedure

inevitably triggers additional performance penalties for concurrency, logging, and recovery.

For example, a bitmap implementation could simply rely on locking and concurrency precau-

tions provided by the underlying B-tree. But one must be aware that a one-bit-manipulation

will lock a complete chunk, potentially leading to locks on several B-tree pages. Moreover, a

lock on one chunk corresponds to locks on one million tuples, i.e. this form of locking on

bitmaps is very coarse and therefore clearly insufficient for data manipulation in high-

concurrency environments. As compression and encryption are conceptually equivalent,

CHAPTER 5: PROOF OF CONCEPT 211

changing one single bit in the uncompressed bitmap will possibly cause extensive changes in

the compressed bitmap representation, owing to diffusion, a property of encryption algorithms

that also applies to dictionary-based compression. Such diffusion of a small local change

across a complete chunk will inevitably have adverse effects on the performance of the

DBMS logging facility, where logs of page deltas are generated and retained as recovery

precaution.

These properties of compressed bitmaps make them unattractive for frequent modifications.

Without further precautions, mass-updates on relations with bitmap indexes may become that

expensive that dropping the bitmap indexes before performing the updates and rebuilding

them from scratch afterwards represents a viable strategy. To compensate for this shortcom-

ing, this bitmap implementation comprises its own caching facility. The goal is to gather as

many update operations as possible and perform them inexpensively on an uncompressed

bitmap chunk in main memory. Only if the update operation is completed or if the cache

memory is exhausted, modified chunks are eventually pushed to permanent storage. This

internal cache is organized as a LRU structure on bitmap chunks. In order to maximize

memory efficiency, this LRU is partitioned into four levels. Most recently used chunks are

held uncompressed, offering maximum affinity to updates. Chunks that have not been touched

for some time are compressed using inexpensive run-length-encoding. The next stage applies

additional dictionary-based compression, before the chunks are finally forced into a temporal

storage segment on disk. This persistent temporal storage segment is organized as a temporary

B-tree, which is structurally identical with the B-tree used as permanent storage facility.

Therefore temporal storage offers the same efficient lookup capabilities as the permanent

structure and both variants share a common code basis. The fundamental difference between

the two segments is the substantially lower I/O costs on the private temporary segment,

without concurrency, logging, and disk recovery provisions.

We already discussed how bitmap indexes are able to process predicates on all available

attributes. In addition, this implementation is able to produce arbitrary projections of present

attributes as result sets when operating in standard representation. But the bitmap indexes‟

unique feature is their natural ability to operate on bitmap representation, and this internal

representation opens several new opportunities in query evaluation. For example, a bitmap

index is capable to produce data in standard representation in ascending or descending lexico-

graphical sort order on , a property inherited from the underlying B-tree. Alternatively, it is

also able to inexpensively combine the final set of qualifying tuple identifiers into one result

212 5.5 BITMAPS

bitmap and then bitwise extract result tuples in ascending or descending order. As the

bijective mapping is monotonous, the result is correspondingly sorted on . In

addition, bitmap indexes are predestined for DISTINCT() queries, as this aggregation is

used internally for partitioning the stored relation into bitmaps. Finally, and probably most

important, bitmap indexes are able to deliver their result in bitmap representation , such

that algorithmic units accepting bitmap input are able to conduct further transformations in

this representation. These output configurations are negotiable during the query optimization

phase via the Access Manager protocol. Negotiation is supported by a simple cost function for

bitmap indexes, which mainly relies on the underlying B-tree‟s assessment for delegated scan

operations and finally adds local costs, e.g. for bitmap post-filtering or for conversion to

standard representation.

Some algorithmic units are able to accept input in bitmap representation, thereby reducing

costs for representation conversion between bitmap scan and successive algorithmic units.

Among these units, implementations of set intersection and set union conducted on bitmaps

are particularly promising, as they allow rapid calculation of conjunction and disjunction of

partial query results from different secondary bitmap indexes on the same base relation.

Consequentially, bitmap-enabled implementations of these two operators were added to

Transbase‟s pool of algorithmic units for exploiting bitmap representation. They distinguish

themselves from their standard counterparts in several important ways. First of all, they do not

require presorted input, but operate on streams of bitmap chunks in arbitrary order. This

becomes possible as a consequence of high compression rates, allowing to retain complete

bitmaps in the previously presented LRU structure for bitmap chunks. During query evalua-

tion, it suffices to decompress only the currently processed chunks into run-length encoding,

as many bitmap operations are conducted directly on this compact format. This form of

bitmap intersection and union proved itself highly efficient, so the bitmap algorithms were

extended to accept unsorted data streams in standard representation. In this mode, the algo-

rithmic unit will construct and manipulate bitmaps on-the-fly. Similar to the bitmap scan, a

bitmap operator is able to enforce selections, projections, distinct, and sort operations on its

internal bitmaps, before producing its result in standard representation. Of course it may also

produce its result in bitmap representation for further processing, e.g. in cascades of bitmap

intersections and unifications. Apart from these two implemented operators, bitmap represen-

tation allows for other interesting operators, for example aggregation of compact bitmaps,

CHAPTER 5: PROOF OF CONCEPT 213

where the frequently used COUNT(*) operator seems particularly promising, but also set

difference, set equality, etc are candidates for future implementations.

Figure.44 compares bitmap, UB-tree, and B-tree secondary indexes on the reference data set.

In each case, the base relation is a dedicated flat table storing IK surrogates for indexing. The

indexes cover all three dimensions of the reference data set in anticipation of arbitrary ad-hoc

queries, therefore we use three bitmap indexes and three B-trees, each one handling one single

attribute, while one UB-tree index is sufficient for handling all three dimensions. The result-

ing B-trees occupy approximately 112 Mbyte each, adding up to a total of 336 Mbyte, the

single UB-tree uses 224 Mbyte, and the three bitmap indexes are compressed to a total of 11

Mbyte. The index creation times are dominated by the sort operation establishing the input

sort order for optimal mass insertion. Consequentially, the UB-tree benefits from its ability of

using one single index structure requiring only one sort operation.

In the FTS and interval scan operations, the bitmap index is able to outperform the two other

candidates slightly in terms of evaluation time. Therefore it reads the smallest of three availa-

ble indexes completely, which has a compressed size of only 3 pages. This unnaturally high

compression rate is a consequence of the homogeneous structure of the artificial reference

data set. However, the bitmap index is only able to retain a comparatively small overall

performance benefit, because the complete data set has to be converted from bitmap represen-

tation into standard representation for further processing. The query box and point access

use-cases reveal the bitmap index‟s strengths for processing multidimensional queries. Al-

though the query processor has to retrieve intermediate result sets from three bitmap indexes,

it is able to combine them efficiently using direct bitmap intersection. The query processor

essentially uses the same strategy for B-tree indexes, but it has to use the more expensive sort-

merge algorithm for intersecting intermediate results in standard representation. Hence, the

ability of the bitmap index to dispense of this sort operation allows it to get close to the UB-

tree‟s performance in the latter‟s primary field of application.

The final two measurements shall give an impression of the various secondary indexes‟

response to massive data manipulation. The first measurement demonstrates how mass inser-

tion performs, if all indexes are maintained with an input set that is appropriately presorted to

match the indexes‟ internal linearizations. Mass deletion, on the other hand, was deliberately

conducted in the input order corresponding to the base relation‟s linearization, leading to

randomized deletions on secondary indexes. The bitmap index shows its ability for good

performance, if updates are applied in conveniently presorted batches, while it exhibits

214 5.6 FILE TABLE

massive performance degradation when operated in random mode, as it is likely to happen in

concurrent multi-user environments operating on transactional data.

Figure.44 Bitmap performance characteristics. This diagram compares performance characteristics of

three bitmaps, one UB-tree, and three B-trees, each index type operating as secondary indexes on three

dimensional data of separate flat tables. Evaluation times (orange) for the operation denoted on the left

refer to the lower horizontal axis. The volume of data (blue) affected by this operation is plotted as the

number of touched pages, where one page is 32 kbyte in size, and three bitmap indexes occupy approx-

imately 11 Mbyte while three B-tree indexes use 336 Mbyte. Data volume refers to the upper horizontal

axis. Note that values outside the range of the diagram are indicated by a broken bar.

Bitmap indexes show good performance in multidimensional query evaluation, comparable to

that of UB-trees, although UB-trees exhibit superior query evaluation times for a moderate

number of dimensions. But as the number of dimensions increases, they will ultimately suffer

from the „course of dimensionality’, where multidimensional clustering becomes ineffective.

This is the area where bitmap indexes have a true advantage over UB-trees, but only under the

prerequisite that all participating dimensions are appropriate for bitmap indexing.

5.6. File Table

The file table access module provides direct read-only access to external data, located in text

files outside the database. Therefore, the file table module qualifies as a simple data integra-

8739

16615

10540

47

15

125

422

125

2091

172

764

298

1545

2186

2107

10

7

57

44
62

1798

3

1356

367

3

6851

3426

336

6842

10269

0 2000 4000 6000 8000 10000 12000

0 2000 4000 6000 8000 10000 12000 14000 16000

BITMAP

UB-TREE

B-TREE

DELETE:

BITMAP

UB-TREE

B-TREE

INSERT:

BITMAP

UB-TREE

B-TREE

POINT ACCESS:

BITMAP

UB-TREE

B-TREE

0.3% 3D QBOX:

BITMAP

UB-TREE

B-TREE

10% INTERVAL:

BITMAP

UB-TREE

B-TREE

100% FTS:

BITMAP

UB-TREE

B-TREE

CREATE:

Volume (pages)

Time (ms)

45880
104195

106645

34507
158686

2876306

CHAPTER 5: PROOF OF CONCEPT 215

tion layer. It integrates plain files containing relational data, formatted in a predefined way,

e.g. rows are stored in one line and column values are separated by a delimiter character. CSV

(comma-separated values) is a popular format that is suitable for this purpose.

Due to its read-only limitations, the file table allows for a surprisingly simple implementation.

The module is in essence a scanner/parser, capable of reading text files and converting them

into data in standard representation. The current implementation offers two different parsers,

one for a delimiter-separated value (DSV) format and one for structured XML documents.

The formats are discerned using a FORMAT specification clause in the table definition state-

ment:

CREATE FILE(<path> [FORMAT DSV|XML]) TABLE <tablename>

 (<FieldDefinitions>)

The current implementation uses textual representation for data, i.e. numeric values are

represented as character strings, which in general is considerably less compact than the

corresponding binary representation. Using a binary format could be easily accomplished, as

it only requires the provision of an appropriate parser and a corresponding specification for

binary file formats as discriminator in the FORMAT clause.

As the file table possesses no search structure allowing for direct access capabilities, data is

always accessed sequentially in storage order. Consequently, no primary key declaration is

allowed in its DML statement. With file tables being read-only tables, there is no need to

check a primary key constraint for inserted or modified data. Instead a primary key constraint

serves as an assertion of a data property towards the database system, to be used by the query

optimizer for supporting planning decisions. In order to guarantee correctness of optimization

decisions and resulting plans, the system has to validate this assertion at table creation time.

However, the current implementation does not validate the data in any way, so it deliberately

chooses not to accept primary key declarations, i.e. the file table‟s Create() method will

actively decline a primary key declaration. Even if such a check was in place, its validity

could be compromised by editing or replacing the data file after table creation. There is no

way to prevent such tampering with the file, but on the other hand, data integrity is always at

risk if any database files are modified via non-standard methods. Therefore an external file

has to be considered an integral part of the database system from the moment it is integrated

into the database‟s system catalog until its removal via a standard drop table DML statement.

216 5.6 FILE TABLE

Having no direct access capabilities to individual tuples also impedes the creation of second-

ary indexes on file tables, because materialization is not feasible. Also, for supporting second-

ary indexes, an unambiguous tuple identifier is required, such as a primary key or an IK, to

map every index tuple to exactly one tuple in the base relation. But neither primary keys nor

direct access is available for file tables, and the employment of an IK table would require the

storage of IK values with every tuple in the base relation, which is impossible since the

relation is stored in a read-only file.

But file tables still possess one unique feature, which is not yet exploited. Even though files

do not possess search structures for direct access to individual tuples, they still allow random

access to their data. This capability can be used in two ways: The byte-offset of the beginning

of every line is a unique numeric identifier for each tuple. This recognition finally enables

creation of secondary indexes on file tables. Technically, these offsets are used as key surro-

gates, providing the identification and direct access functionality similar to IK values. As a

specific peculiarity of file tables, these values do not have to be stored explicitly in the base

relation, as they are embedded in the physical structure of the file. In addition to saving

storage space, these physical tuple addresses also relieve the file table from maintaining

dedicated IK tables, offering additional savings on storage and maintenance complexity over

traditional indexing. But exploitable physical tuple addresses in file tables are depending on

the file table‟s read-only restraint, as it guarantees constant tuple offsets. However, technically

this approach can be sustained for append-only file tables and a similar approach is also

feasible for flat tables, if these tables are operated in read-only or append-only mode.

The second consequence of random access to files is the possibility to perform binary

searches on the data. For this, the original DDL statement has to be augmented with an

ORDER BY specification in the file table‟s custom clause.

CREATE FILE(<filename> ORDER BY <FieldNames>) TABLE <tablename>

 (<FieldDefinitions>)

Similar to a primary key declaration, this specification represents an assertion of a data

property, which can be exploited by the file table module for performing binary searches on

its data, thereby permitting random access capabilities with logarithmic complexity. But since

the primary scope of file tables is data import rather than data retrieval, neither secondary

indexes nor binary search on file tables have been implemented yet.

CHAPTER 5: PROOF OF CONCEPT 217

Figure.45 compares the file table‟s behavior with the conventional storage structures B-tree

and flat table. The latter structures need to be created with a DDL statement and populated via

a spool process, before data becomes accessible. In this example, data is spooled from an

external ASCII file (1.6 Gbyte) that will also serve as data basis for the file table. Hence,

creation of these conventional structures involves reading the external data file once and

construction of data access structures. In case of the B-tree, data is additionally sorted for

rapid insertion. After the process concludes, both flat table and B-tree occupy approximately

1.5 Gbyte of the DBMS address space. At this point, the source file usually becomes obsolete

and may be deleted. Even so, this load process has momentary storage requirements of 3.1

Gbyte, and in case of the B-tree an additional temporary storage area of up to 1.5 Gbyte is

required for sorting. Creation of a file table on the other hand, does not move any data. The

DDL statement only allocates one single page in the DBMS‟s internal storage area for its

description page. During FTS operations, the conventional access structures perform signifi-

cantly better than the file table, but if the file table is accessed only once, even this superior

performance will not suffice for compensating for the expensive creation process. Only if data

is likely to be accessed repeatedly, then internal storage structures are able to amortize them-

selves.

Figure.45 File table performance characteristics. This diagram compares conventional data import from

an external file into internal B-tree and flat table structures with direct access to data residing in a file out-

side the database. In the latter case, data is retrieved via the file table data integration module. Evaluation

times (orange) for the operation denoted on the left refer to the lower horizontal axis. The volume of data

(blue) affected by this operation, plotted as the number of touched pages, where one page is 32 kbyte in

size. B-tree and flat table occupy approximately 1.5 Gbyte each, while the file table in ASCII format uses

almost 1.6 Gbyte on the file-system, which is equivalent to 47980 pages. Data volume refers to the upper

horizontal axis. Note that values outside the range of the diagram are indicated by a broken bar.

Although full table scans on file tables are significantly slower than similar operations on

internal structures, file tables represent an adequate instrument for alleviating and improving

data import, as they allow to process external data with the full functional scope of SQL. This

96315

4993

5742

12

101433

145735

47980

45229

45255

1

45229

45255

0 10000 20000 30000 40000 50000 60000

0 20000 40000 60000 80000 100000 120000 140000 160000

FILE

FLAT

B-TREE

100% FTS:

FILE

FLAT

B-TREE

CREATE:

Volume (pages)

Time (ms)

218 5.7 GENERIC FUNCTIONAL INDEXES

makes it possible to load data, apply necessary transformations, and conduct on-the-fly

integrity checks on the imported data in one single step.

As a consequence of these measurements, a general revision of the ASCII scanner implemen-

tation is planned, in order to clarify its apparently poor performance. But as possible im-

provements will affect spooling internal storage structures and reading external files equally,

all previously made conclusions will remain valid. An alternative scanner/parser implementa-

tion using a binary data format will further diminish the present performance deficiency of the

ASCII variant and it will also allow for more compact external files. Both ASCII and binary

variants can be effectively augmented with additional data compression and data encryption.

5.7. Generic Functional Indexes

In its current state, Transbase offers no support for functional indexing, and index definition is

only possible on the plain attribute values. To a certain degree, the UB-tree represents an

exception to this rule, as it uses an internal mapping from plain attributes to a calculated

search key. Still the UB-tree does qualify as a functional index in the classical sense, because

externally all restrictions operate strictly on the plain representation of indexed attributes, and

not on a functional mapping as defined by a selection . Before functional indexing can

be realized in Transbase, the host system must provide extensive support for such predicates.

This involves extensions to the SQL compiler for formulating functional index definitions and

it also necessitates precautions in the query optimizer module for deducing the applicability of

an available functional index to a given predicate. As soon as the host system complies with

these preliminaries, the Access Manager framework is able to support development of func-

tional indexes, resulting in a dramatic reduction of the expected implementation effort. There-

fore, we conceive functional indexes as lightweight alternative to intermediate access mod-

ules, where the main differences between two implementations are the functions providing

necessary mappings. Many common tasks of an access module, like storage, retrieval, and

manipulation are independent from the actual mapping, and therefore it is desirable to provide

a generic, reusable implementation for these recurring tasks.

A possible solution will supply reusable functionality as an intermediate access module,

which implements the complete access method interface, but allows for integration of two,

optionally three, user-defined functions. This first function provides the actual mapping of

input data to calculated values. These values are then stored in an auxiliary search structure,

CHAPTER 5: PROOF OF CONCEPT 219

e.g. a B-tree or any other available access module. The second function is responsible for

translating a given predicate from a user query into one or more predicates to be applied to the

auxiliary search structure. In some cases, the translation of search predicates might be inexact

and retrieve a superset of qualifying data from the auxiliary search structure. As an example,

consider bitmap indexes as functional indexes storing encoded bitmap chunks, where the

underlying B-tree will always produce complete bitmap chunks. Then an optional third

function is required, for post-filtering the intermediate result and delivering the exact result to

the query processor for further evaluation.

CREATE FUNCTIONAL(<custom_spec>) INDEX <indexname> ON (<expression>);

Example:

CREATE FUNCTIONAL(SOUNDEX.DLL ON B-TREE) INDEX emp_sndx

 ON employees(soundex(name));

SELECT * FROM employees WHERE soundex(name)

 BETWEEN soundex(‘SMITH’) AND soundex(‘SMYTHE’);

Functional indexes represent a lightweight approach, allowing very fast adaptation of a

universal DBMS towards an application domain. Only if the scope of functional indexes

should not suffice for satisfying specific requirements, then resorting to implementation of an

intermediate or full access module provides the necessary flexibility.

5.8. Main Memory DBMS

All presented search structures are designed for operating on large data sets residing on slow

secondary storage devices. But today‟s computer hardware possesses gigabytes of fast main

memory, and DBMSs are bound to incorporate these resources in effective query planning

and adjusted query evaluation techniques. This cannot be accomplished by simply using

bigger main memory caches, containing mere images of persistently stored data, but through

reorganization of data for efficient access in main memory. Pure main memory database

systems (MMDBs) and hybrid database systems therefore convert data that was retrieved

from disk into dedicated main memory search structures, such as binary trees, heaps, hash

tables, etc. The presented bitmap index implementation is an example for a hybrid access

structure, as it organizes its bitmap chunks in compact compressed representation, which is

appropriate for the DBMS‟s page-oriented cache and permanent storage, but at the same time

it uses run-length encoded or inflated bitmaps with fast direct access capabilities. Finally,

220 5.9 DATA PARTITIONING

other approaches are based on the observation that the volatile levels of today‟s memory

hierarchies, i.e. main memory with its numerous caches, are in essence block I/O devices, just

like hard disks. Even though access times to main memory are considerably faster, and it

possesses random access capabilities, memory transfer is conducted in blocks of up to 512

bytes, depending on the next cache level‟s cache-line size. Therefore Chen et al. [Che01]

argue, that B-trees are optimal main memory search structures, if their node size is adequately

dimensioned or if an appropriate prefetch mechanism is installed for preventing cache-misses

while navigation through the search structure. The Access Manager provides the necessary

flexibility for experimentally investigating such assumptions in the context of a complete

DBMS. Moreover, the bitmap example proves that the access method interface is capable of

effective accommodation of memory-aware access modules.

5.9. Data Partitioning

Horizontal and vertical data partitioning are popular instruments for improving DBMS per-

formance. Both allow physical distribution of one logical storage structure over several

physical storage devices, thereby reducing average access times and enhancing data transfer

rates. Data-dependant horizontal partitions also open new opportunities for parallel data

processing, while vertical partitioning introduces additional degrees of freedom to physical

data clustering. Preliminary experiments with both forms of partitioning, realized as interme-

diate access modules operating on several auxiliary B-trees, validate that the Access Manager

offers appropriate flexibility for implementing partitioned access methods. Especially its

modular approach allowing for quick and easy reuse of existing storage modules facilitated

rapid implementation of these access module prototypes. Yet, at the time of this writing, these

approaches have not been pursued any further than to a general study of feasibility.

CHAPTER 6: CONCLUSION 221

6. Conclusion

This work presented the Access Manager framework as an approach for systematic extension

of a universal host RDBMS with supplemental access method implementations and auxiliary

algorithmic units for query evaluation. Its goal is to overcome and invert the prevalent status

quo, where DBMS applications from a vast spectrum of specific application domains, like

customer relationship management, business intelligence, e-commerce, engineering, scientific

applications, etc., had to adapt to the peculiarities and functional capabilities of a standard

DBMS, instead of customizing the DBMS to the applications‟ needs. DBMS customization

inevitably involves the requirement of incorporating new, non-standard data types like video,

images, audio, documents (structured and unstructured) and text data, but also handling of

standard data with rich semantics, like spatial, temporal, genetic, ecological, meteorological

or geological information, describing complex interrelations in huge data sets, and necessitat-

ing specialized access methods for efficient exploration. There is unquestioned need and

potential for such DBMS extensibility, as [Gae97] describes over 50 alternative index struc-

tures for spatial indexing alone, while only a comparatively small number of access structures

is enjoying a significant acceptance in common DBMS technology. A database system must

be prepared to meet the particular requirements of an application domain, not only by provid-

ing tailored storage and retrieval functionality, but also by supporting analytical functionality

resembling natural operations on the entities modeled in the database schema, eventually

resulting in specialized forms of transformation, selection, aggregation, and other operations.

The primary objective of the Access Manager framework is to obtain a generic solution for

meeting customization requirements from diverse application domains. In addition, the

Access Manager approach provides direct access to external data sources for importing data,

or, if that is not possible, e.g. in a heterogeneous information infrastructure of a global enter-

prise or for WWW data, then it permits integration of complete external data repositories and

combination of their particular search capabilities „under one roof‟ of a common logical

database schema.

The currently prevalent approach to DBMSs, where one manufacturer is providing a com-

plete, monolithic system, is clearly not suitable for achieving the aspired goals, because the

task is far too complex for a satisfactory one-size-fits-all solution. The resulting system would

be cumbersome and overloaded with functionality, expensive because of surplus features, and

difficult to maintain and administrate. Moreover, the presumable lack of expertise of one

single manufacturer for addressing the huge field of possible application domains will inevit-

222 6.1 ACHIEVEMENTS

ably lead to insufficiencies in functionality and performance of the resulting system. There-

fore an operational DBMS with basic functionality and optional piecemeal extensibility

within a defined scope for embedding specialized functionality, to be provided by experts of a

particular application domain, seems a far more promising approach. But this approach also

has its pitfalls in form of possible functional and efficiency bottlenecks in the extensible

infrastructure, or risk of compromised system integrity through undesirable side-effects

between different extensions. It also may provoke a possible domino-effect, where extensibili-

ty of one DBMS module entails extensions to other modules, ultimately resulting in an overly

complex extension interface.

6.1. Achievements

The Access Manager framework promotes modular DBMS extensibility and addresses poten-

tial pitfalls of this approach with effective countermeasures. Therefore it opens the architec-

ture of an operational standard DBMS in a few selected areas, by introducing a concise yet

flexible and powerful interface to the DBMS‟s components. This DBMS will function as a

host system for accommodating application domain specific plug-ins, allowing well-defined

adaptation and customization of the host DBMS by introduction of alternative primary and

secondary access methods into the system, supported by custom algorithmic units implement-

ing auxiliary operations, and a powerful data integration layer. This interface particularly

emphasizes thorough integration of extension modules into the host system‟s intrinsic query

optimization process, by devising a fully-automated, negotiation-based technique for con-

structing, transforming, and assessing efficient query evaluation plans containing external

modules. This negotiation process promotes flexible substitution of partial query evaluation

plans in algebraic representation with their implementations as encapsulated algorithmic units

provided as opaque extension modules. It also allows an algorithmic unit to demand adapta-

tion to be applied to its input for optimizing the algorithm‟s internal operations and minimiz-

ing its implementation complexity. On the other hand, negotiation permits configuration and

exploitation of additional functionality an algorithmic unit provides beyond its primary

purpose. Finally it allows propagation of basic relational transformations across opaque

algorithmic units. All these activities aim for improving interoperability between independent

algorithmic units, where each unit may encapsulate the functionality corresponding to an

arbitrary algebraic expression. Every form of negotiation operates on the same uniform

functional scope at the joints between autonomous algorithmic entities, such that the resulting

CHAPTER 6: CONCLUSION 223

query evaluation plans are constructed from opaque algorithmic units that are bound together

using a common set of functionally limited connectors.

Basic query evaluation through the Access Manager framework uses a very concise interface,

thereby simplifying the development process of extension modules for elementary operations.

But the framework is also adaptive to operations of higher complexity and capable of meeting

performance challenges by provision of optional interface functionality. It particularly pro-

motes development of extension modules in short iteration cycles, by encouraging modularity

and reuse, and by providing supportive testing and debugging facilities. As a secondary goal,

the framework protects the host system components from mutual intrusion. It cleanly sepa-

rates autonomous extension modules and coordinates and supervises all interactions between

these independent components and the host system. Thereby it safeguards the stability and

consistency of the overall system and enforces data integrity by guaranteeing that all opera-

tions are carried out in a consistent way, within a transactional context, in strict adherence of a

global concurrency control mechanism, and in accordance to present access privileges.

The interface functions are tied together using a comprehensible yet flexible protocol. In its

basic scope, the protocol supports fundamental operations, such as query optimization and

query evaluation, for controlling essential configuration, navigation, and manipulation capa-

bilities of access method implementations. In addition to this rudimentary functionality, the

protocol permits alternative sequences of basic interface calls and incorporation of optional

interface functionality for achieving higher efficiency and for accomplishing more advanced

concepts. This alternative protocol allows perfecting the functional capabilities of an other-

wise complete access method implementation and maximizes its efficiency.

The Access Manager framework demonstrates its flexibility and universality in its ability to

consistently integrate data residing in heterogeneous information systems outside the host

DBMS‟s storage system into a homogeneous database schema, and thereby providing a

uniform, location transparent view on distributed data. In this conception, the Access Manager

framework accommodates pluggable extension modules, implementing access methods that

function as gateways to other information systems. The access module wraps an external data

repository and exposes only the Access Manager‟s abstract access method interface. The

ability of this interface for participating actively in query optimization permits global optimi-

zation across a heterogeneous infrastructure. Efficient query evaluation is achieved through

systematic exploitation of query evaluation capabilities of remote sites, and the Access Man-

ager ensures data integrity by integrating the remote repository into its transactional context.

224 6.2 FUTURE WORK

Practical experience with multiple access method implementations proves that the Access

Manager approach is capable of substantiating its functional claims and its pretension for

good performance with convincing results of available prototype implementations. Moreover,

the introduction of the Access Manager into Transbase, as its host system, confirms that the

additional layer does not induce significant costs. In this special case, the host system using

the Access Manager even shows slight performance benefits over the original system, which

can be attributed to the revision and unification of access method interfaces. Yet the most

significant approval for this approach represents its almost completed transition from a mere

research prototype to an intrinsic component of a productive DBMS.

In its present state, the Access Manager supports a remarkable subset of the extensive func-

tionality that the academia postulated for a hypothetical CDBMS [Dit01]. Still there remain

several interesting starting points to be pursued in future.

6.2. Future work

In accordance to the presented approach, the main focus for future work on the Access Man-

ager is likely to address several query optimization problems. The most pressing of which is

certainly the transfer from the current prototype, cooperating with a rule-based optimizer, to

cost-based query optimization. Transbase‟s optimization heuristics are clearly apt for generat-

ing query evaluation plans of high quality. Moreover, rule-based optimization is often supe-

rior to cost-based optimization for queries of low or moderate complexity, where heuristics

alone are sufficient for finding the optimal plan. Thereby, it allows evading all additional

costs for collecting, maintaining and evaluating statistical information. However, rule-based

optimization occasionally shows some vulnerability towards necessary code maintenance of

the optimization module, or adaptations for new functionality. Integration of new heuristics

into an extensive rule system is an intricate task, as it is likely to introduce conflicting rules or

other unwanted side-effects. These effects are generally hard to predict and automated testing

is often inappropriate for detecting them. Hence, cost-based validation of delicate rule-based

decisions, and purely cost-based optimization for queries of high complexity, seems a promis-

ing approach. Moreover, it would open the unique possibility to confront the Access Manager

framework with both optimization techniques at the same time.

Another interesting approach would examine the implications of integrating further unary

ERA operations into the negotiation process. In particular, when dealing with data integration,

CHAPTER 6: CONCLUSION 225

where fully-fledged DBMSs are serving as remote sites, then grouping and aggregation is a

very attractive candidate for reducing the data volume to be transferred. A more thorough

examination of the general problem of delegating joins on remote relations to the source

repository is also desirable. Perhaps this leads to a universal concept for partitioning query

execution plans into arbitrary fragments for distributed evaluation (cf. Garlic in [Haa97]).

Alternatively, a further pursuit of the remote view approach, as sketched in 4.6.2 Data Inte-

gration Layer (page 179), may open new query optimization opportunities.

Apart from query optimization, query evaluation is another interesting field for further im-

provements. The most promising concept for a future implementation is probably presented in

5.7 Generic Functional Indexes, (page 218). This concept is able to lower implementation

complexity for many application-domain indexes, since it represents a highly reusable frame-

work that will effectively avoid repeated implementation of many reoccurring tasks when

building functional indexes as intermediate access modules. Generic functional indexes

stringently require a generalization of predicate evaluation in the host system, possibly involv-

ing new query optimization challenges for resolving functional dependencies. But if these

preconditions are met, then a skeleton for generic functional indexes will be implemented as a

mere pluggable access module, rather than as integral part of the Access Manager framework.

Yet, this generic intermediate access module will possess a unique feature, allowing it to

choose from all available full access modules the one implementation that is most appropriate

for providing storage and retrieval functionality to a given functional index, thereby putting

the interchangeability of access method implementations and the robustness of the Access

Manager protocol to an ultimate test.

227

7. References

[Ack05] Ralph Acker, Roland Pieringer, and Rudolf Bayer, "Towards Truly Extensible

Database Systems," in Database and Expert Systems Applications (DEXA), 16th

International Conference, Copenhagen, Denmark, 2005, pp. 596-605.

[Ack08] Ralph Acker, Christian Roth, and Rudolf Bayer, "Parallel Query Processing in

Databases on Multicore Architectures," in 8th International Conference on

Algorithms and Architectures for Parallel Processing (ICA3PP 2008), Cyprus,

2008, pp. 2-13.

[ANSI99] American National Standards Institute (ANSI), "Information Technology -

Database Langunages - SQL," American National Standards Institute (ANSI),

ANSI/ISO/IEC 9075, 2008.

[Aok98] Paul M. Aoki, "Generalizing "Search'' in Generalized Search Trees," in ICDE,

Orlando, 1998, pp. 380-389.

[Bay72] Rudolf Bayer and Edward M. McCreight, "Organization and Maintenance of Large

Ordered Indices," in Acta Informatica, 1972, pp. 173–189.

[Bay77a] Rudolf Bayer and Karl Unterauer, "Prefix B-Trees," ACM Transactions on

Database Systems (TODS), vol. 2, no. 1, pp. 11-26, 1977.

[Bay80] Rudolf Bayer, Hans Heller, and Angelika Reiser, "Parallelism and recovery in

database systems," ACM Transactions on Database Systems, vol. 5, no. 2, June

1980.

[Bay96] Rudolf Bayer, "The Universal B-Tree for multidimensional Indexing," Technical

University of Munich, Technical Report TUM-I9637, 1996.

[Car95] Michael J. Carey et al., "Towards Heterogeneous Multimedia Information Systems:

The Garlic Approach," in 5th International Workshop on Research Issues in Data

Engineering-Distributed Object Management (RIDE-DOM'95), Taipei, Taiwan ,

1995, pp. 124-131.

228

[Cat00] R. G. G. Cattell and Douglas K. Barry, The Object Data Standard: ODMG 3.0,

Morgan Kaufmann, Ed., 2000.

[Cha98] Chee-Yong Chan and Yannis E. Ioannidis, "Bitmap Index Design and Evaluation,"

SIGMOD Rec., vol. 27, no. 2, pp. 355-366, 1998.

[Cha99] Surajit Chaudhuri and Kyuseok Shim, "Optimization of Queries with User-defined

Predicates," ACM Transactions on Database Systems (TODS), vol. 24, no. 2, pp.

177 - 228, June 1999.

[Che01] Shimin Chen, Phillip B. Gibbons, and Todd C. Mowry, "Improving Index

Performance through Prefetching," in ACM SIGMOD Conference, Santa Barbara,

CA, USA, 2001, pp. 235-246.

[Cod70] Edgar Frank Codd, "A relational model of data for large shared data banks,"

Communications of the ACM, vol. 13, no. 6, June 1970.

[Com79] Douglas Comer, "The ubiquitous B-Tree," ACM Computing Surveys, vol. 11, no. 2,

pp. 121-138, 1979.

[Dit01] Klaus R. Dittrich and Andreas Geppert, Eds., Component Database Systems.:

Morgan Kaufmann, 2001.

[Döl02] Mario Döller, "Enhancement of Oracle's Indexing Capabilities through GiST-

implemented Access Methods," University Klagenfurt- ITEC Institute, Klagenfurt,

TR/ITEC/02/2.09, 2002.

[Fen02] Robert Fenk, Volker Markl, and Rudolf Bayer, "Interval Processing with the UB-

Tree," in Proc. of IDEAS, Edmonton, Canada, 2002, pp. 12-22.

[Fuh99] You-Chin Fuh, Stefan Dressloch, Weidong Chen, and Nelson Mendonca Mattos,

"Implementation of SQL3 Structured Types with Inheritance and Value

Substitutability.," in VLDB, Edinburgh, Scotland, 1999, pp. 565-574.

[Gae97] Volker Gaede and Oliver Gunther, "Multidimensional Access Methods," ACM

Computing Surveys, vol. 30, pp. 170-231, 1997.

229

[GiST90] GiST Indexing Project, University of California, Berkeley. (1990) [Online].

http://gist.cs.berkeley.edu/

[Haa89] Laura M. Haas, Johann Christoph Freytag, Guy M. Lohman, and Hamid Pirahesh,

"Extensible Query Processing in Starburst," in SIGMOD Conference, Portland,

1989, pp. 377-388.

[Haa97] Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang,

"Optimizing queries across diverse data sources," in Proc. of the Conf. on Very

Large Data Bases (VLDB), Athens, Greece, 1997, pp. 276-285.

[Hel93] Joseph M. Hellerstein and Michael Stonebraker, "Predicate Migration: Optimizing

Queries with Expensive Predicates," in Proceedings of the 1993 ACM SIGMOD

International Conference on Management of Data, Washington, D.C., 1993, pp.

267-276.

[Hel95] Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer, "Generalized Search

Trees for Database Systems," in 21th International Conference on Very Large

Data Bases, Zurich, Switzerland, September 1995, pp. 562-573.

[IBM02a] IBM Corp., "DB2 SQL Reference, Version 8," IBM Corp., CT17RNA, 2002.

[IBM02b] IBM Corp., "DB2 Spatial Extender User's Guide and Reference, Version 8," IBM

Corp., CT19HNA, 2002.

[IBM03a] IBM Corp., "IBM Informix Virtual-Table Interface, Version 9.4," IBM Corp.,

CT1TDNA, 2003.

[IBM03b] IBM Corp., "IBM Informix Virtual Index Interface, Version 9.4," IBM Corp.,

CT1TCNA, 2003.

[Kar02] Nicos Karayannidis et al., "Processing Star Queries on Hierarchically-Clustered

Fact Tables," in 28th International Conference on Very Large Data Bases, VLDB,

Hongkong, China, 2002, pp. 730-741.

[Kle03] Carsten Kleiner and Udo W. Lipeck, "OraGiST - How to Make User-Defined

Indexing Become Usable and Useful," in Database Systems for Business,

http://gist.cs.berkeley.edu/

230

Technology, and the Web, Leipzig, Germany, 2003, pp. 324–334.

[Kor00] Marcel Kornacker, "Access Methods for Next-Generation Database Systems,"

University of California, Berkley, Ph.D. Thesis 2000.

[Kor97] Marcel Kornacker, C. Mohan, and Joseph M. Hellerstein, "Concurrency and

Recovery in Generalized Search Trees," in SIGMOD, Tucson, 1997, pp. 62-72.

[Kor99] Marcel Kornacker, "High-Performance Extensible Indexing," in 25th International

Conference on Very Large Data Bases, Edinburgh, Scotland, 1999, p. 699/708.

[Loh88] Guy M. Lohman, "Grammar-like Functional Rules for Representing Query

Optimization Alternatives," in SIGMOD Conference, Chicago, 1988, pp. 18-27.

[Mar00] Volker Markl and Rudolf Bayer, "A Cost Function for Uniformly Partitioned UB-

Trees," in International Database Engineering and Applications Symposium,

IDEAS, Yokohama, Japan, 2000, pp. 410-417.

[Mar99a] Volker Markl, "Mistral: Processing Relational Queries using a Multidimensional

Access Technique," Technische Universität München, Munich, Dissertation 1999.

[Mar99b] Volker Markl, Martin Zirkel, and Rudolf Bayer, "Processing Operations with

Restrictions in RDBMS without External Sorting: The Tetris Algorithm.," in ICDE

1999, Sydney, Australia, 1999, pp. 562-571.

[Obj95] Object Management Group, "CORBAservices: Common Object Services

Specification," 1995.

[Ora02] Oracle Corp., "Oracle9i Data Cartridge Developers Guide, Release 2 (9.2)," Oracle

Corp., A96595-01, 2002.

[Ora03] Oracle Corp., "Oracle Database SQL Reference, 10g Release 1 (10.1)," Oracle

Corp., B10759-01, 2003.

[Ora10] Oracle Corporation. (2010) MySQL. [Online]. http://www.mysql.com

[Pie01] Roland Pieringer, Volker Markl, Frank Ramsak, and Rudolf Bayer, "HINTA, A

http://www.mysql.com/

231

Linearization Algorithm for Physical Clustering of Complex OLAP Queries," in

Design and Management of Data Warehouses, DMDW, Interlaken, Switzerland,

2001, pp. 11-22.

[Pie03] Roland Pieringer, "Modeling and implementing multidimensional hierarchically

structured data for data warehouses in relational database management systems and

the implementation into Transbase," Fakultät für Informatik, Technische

Universität München, Munich, Dissertation 2003.

[Pir92] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan, "Extensible/Rule Based

Query Rewrite Optimization in Starburst," in SIGMOD Conference, San Diego,

1992, pp. 39-48.

[Ram00] Frank Ramsak et al., "Integrating the UB-Tree into a Database System Kernel," in

Proceedings of the Conference on Very Large Data Bases, VLDB, Cairo, Egypt,

September 2000, pp. 263-272.

[Ram02] Frank Ramsak, "Towards a general-purpose, multidimensional index: Integration,

Optimization, and Enhancement of UB-Trees," Fakultät für Informatik ,

Technische Universität München, 2002, München, Dissertation 2002.

[Rot04] Doron Rotem, Kurt Stockinger, and Kesheng Wu, "Efficient Binning for Bitmap

Indices on High-Cardinality Attributes," Berkeley Lab, Berkeley, USA, Technical

Report LBNL-56936, 2004.

[Sel79] Patricia Griffiths Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond

A. Lorie, and Thomas G. Price, "Access path selection in a relational database

management system," in ACM SIGMOD International Conference on Management

of Data, Boston, Massachusetts, May 1979, pp. 23-34.

[Sto03] K. Stolze and T. Steinbach, "DB2 Index Extensions by example and in detail," IBM

Developer works DB2 library, December 2003.

[Tor99] Mary Tork Roth, Fatma Ozcan, and Laura M. Haas, "Cost Models DO Matter:

Providing Cost Information for Diverse Data Sources in a Federated System," in

VLDB'99, Proceedings of 25th International Conference on Very Large Data

232

Bases, Edinburgh, Scotland, 1999, pp. 599-610.

[Tra10] Transaction Software GmbH. (2010) Transbase DBMS Documentation. [Online].

http://www.transaction.de/news/downloads/documentation

[Ube94] Michael Ubell, "The Montage Extensible DataBlade Achitecture," ACM SIGMOD

Record, vol. 23, no. 2, p. 482, June 1994.

[Zir04] Martin Zirkel, "Evaluation of the UB-Tree with consideration of sorting,"

Technische Universität München, Munich, Dissertation 2004.

[Zir99] Martin Zirkel, Volker Markl, and Rudolf Bayer, "Exploitation of Pre-sortedness for

Sorting in Query Processing: The TempTris-Algorithm for UB-Trees," in IDEAS

2001, Grenoble, France, 1999, pp. 155-166.

http://www.transaction.de/news/downloads/documentation

233

Appendices

Quick Reference

Definition.1: is a RA term. 6

Definition.2: is a RA term. 6

Corollary.1:
 is a RA term. 6

Definition.3: Generic n-ary Operator: :

 with n ≥ 2 and
 with and :

 7

Definition.4: { , , , , , , } are basic ERA operators. 11

Qualitative Equivalence: 13

Quantitative Efficiency: 13

Definition.5: Input Projection . We call a projection
 the i-th input projection of an n-

ary algorithmic entity, if it decomposes the entities i-th input stream such that all input

attributes are assigned to at least one of m reference blocks within the algorithmic entity‟s

algebraic equivalent, i.e.

. The entire projection for all input streams is

defined as

. 28

Definition.6: Algorithmic implementation. We call an algorithmic entity the algorithmic

implementation of all representatives of equivalence class . Correspondingly, we

define as the set of algorithmic implementations. 29

Definition.7: Algorithmic equivalent. Algorithmic units are algorithmic equivalents,

providing different implementations for representatives of equivalence class . 29

Definition.8: Equivalence Configuration. Two algebraic expressions are in equivalence

configuration , iff equivalence can be achieved by expansion of , using standard input

connectors
 and a standard output connector

 :

234

 n-ary :

 30

Corollary.2: Equivalent implementation. Supposing that ERA with , and there

exists an algorithmic implementation and implementations for

trary , then there also exists an equivalent implementation of all representatives of ,

because

 30

Definition.9: Sets of Connectors and . A standard connector
 is an ERA expres-

sion composed of the basic unary ERA operations
 , operating according

to specification , but strictly in standard representation. The set of all standard connectors

is . A generic connector has the form , and the set of generic

connectors is . It follows that 36

Definition.10: Applicability. We introduce three distinct qualities of applicability for

arbitrary ERA:

(1) An arbitrary algorithm implementation is strictly applicable in a query evaluation

plan, iff it possesses no input requirements, i.e.

(2) is regularly applicable, iff its input requirements are satisfied by applying standard

connectors to a given relational input. The operator „ ‟ denotes composition in

the presence of non-trivial input requirements. The host system is capable of supplying

strictly applicable implementations for every .

(3) is weakly applicable, iff it has input requirements . The host system

cannot provide an immediate implementation for .

 37

235

Definition.11: Apply function . For ERA, the algorithmic implementation

 is applied in a query plan as replacement for an n-ary with the function. The

mapping of attribute positions in input stream tuples to the attribute references in is pro-

vided as vector

. The function parameter is an integer choosing

an operational mode for from an enumeration of available modes. Each settings effec-

tuates different optional input requirements for . The result of are connectors

 defining input requirements for each input stream. The formal definition of

the is:

:

where

 is the implementation of , configured to the current input mapping and

optional input requirement setting . 38

Corollary.3: Coalescence and Decomposition. Two arbitrary can be coalesced

into one single , such that . In particular, for any

 exists

a
 , such that

 . Decomposition describes the inverse operation.

 40

Application & Exploitation: 42

 n n

 n

 n

 n

 n

 42

236

Definition.12: Exploitability. We introduce two distinct qualities of exploitability for

arbitrary :

(1) An algorithmic implementation is fully exploitable towards a connector iff

allows integration of such that

(2) An algorithmic implementation is partially exploitable towards a connector iff

 allows decomposition of such that an implementation exists in

[ERA] and can be integrated into :

 44

Definition.13: Exploit function . Let ERA, implemented as . The

connector represents coalesced transformations required for substitution and applica-

tion of and . The complexity of such a query evaluation plan can be reduced by inte-

grating functionality from into , using the function. The result of the

function represents the part of that was rejected by :

 :

 n

 45

Exploitation & Propagation: 48

Definition.14: Propagation. We introduce two distinct qualities of propagation for

arbitrary :

(1) A connector is fully propagatable through an algorithmic implementation , iff a

decomposition exists, such that

237

(2) A connector is partially propagatable through an algorithmic implementation , iff

 allows decomposition of such that an implementation exists in

[ERA] and can be integrated into , i.e.

 48

Definition.15: Propagate function . Let ERA, implemented as

 . The connector represents coalesced transformations required for substitution and

application of and . The complexity of such a query evaluation plan can be reduced by

propagating functionality from through , using the function , where

represents the part of that was rejected by :

 :

 n

 49

Definition.16: Streaming Cost Calculation. The cumulated costs of an n-ary algebraic

expression, concluded by a streaming algorithmic implementation of , calculate as:

 62

Definition.17: Blocking Cost Calculation. The cumulated costs of an n-ary algebraic expres-

sion, concluded by a blocking algorithmic implementation of , calculate as:

238

 62

List of Figures

Figure.1 Two equivalent sample QEPs. ... 7

Figure.2 Processing an SQL request in an extensible DBMS. ... 21

Figure.3 Exemplary decision process during DBMS query optimization. 24

Figure.4 Relationships between algebraic expressions and algorithmic entities. 25

Figure.5 Algebraic equivalent of algorithmic entities formulated in SQL. 27

Figure.6 Examples for various granularities of algorithmic replacements. 29

Figure.7 Implanting algorithmic units with applicability requirements. 33

Figure.8 Data representation in a cascade of bitmap operations. ... 43

Figure.9 Exploiting sort and projection capabilities of algorithmic units. 46

Figure.10 Propagation of configuration parameters. .. 51

Figure.11 Dependencies of configuration parameters. ... 53

Figure.12 Cost-based join optimization with configuration. .. 57

Figure.13 Costing blocking and streaming operations. .. 63

Figure.14 QEPs for retrieval and modification. ... 66

Figure.15 Linearization and exploitable sort orders. .. 69

Figure.16 Sort order compatibility. .. 71

Figure.17 Query box evaluation techniques. .. 74

Figure.18 Distinction and linearizations. ... 77

Figure.19 Classical layered DBMS architecture and the Access Manager. 96

Figure.20 Types of access method implementations. .. 97

Figure.21 Composition of the tuple-oriented access method interface. 100

Figure.22 Storage layer interface. .. 102

Figure.23 System utility interface. ... 103

Figure.24 Storage units on different layers. ... 106

Figure.25 RAX compatibility matrix. .. 110

Figure.26 RIX compatibility matrix. .. 110

Figure.27 Isolation levels as specified in the SQL standard. ... 111

Figure.28 Encapsulation of access modules in generic scan operators. 118

Figure.29 Generic Relational Operator Interface. .. 119

Figure.30 Information dissemination during access path creation. 123

Figure.31 TIDs in Transbase. ... 126

Figure.32 Transition of scan states. .. 142

239

Figure.33 Data integrity maintenance across redundant data structures. 149

Figure.34 Logical chronological sequence of integrity maintenance................................... 153

Figure.35 Trade-off in lock granularity. ... 157

Figure.36 Algorithmic Module Interface. .. 165

Figure.37 Generic Relational Operators. .. 165

Figure.38 Parallel query execution in Transbase. .. 175

Figure.39 B-tree performance characteristics. ... 193

Figure.40 UB-tree performance characteristics. .. 199

Figure.41 Organization of flat tables. ... 201

Figure.42 Flat table performance characteristics. .. 205

Figure.43 Equality encoded bitmaps. ... 207

Figure.44 Bitmap performance characteristics. .. 214

Figure.45 File table performance characteristics. .. 217

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1. Introduction
	1.1. Objective
	1.2. Structure

	2. Theory
	2.1. Relational Algebra
	2.1.1. Relations
	2.1.2. Operators
	2.1.3. Composition

	2.2. Query Planning
	2.2.1. Optimization
	2.2.2. Costs

	2.3. Interoperability
	2.3.1. Equivalence
	2.3.2. Compatibility
	2.3.3. Data Flow
	2.3.4. Sort Order

	2.4. Substitution
	2.4.1. Granularity
	2.4.2. Applicability
	2.4.3. Exploitability
	2.4.4. Propagation
	2.4.5. Negotiation
	2.4.6. Cost Function

	2.5. Scan Operator
	2.5.1. Sequential Access
	2.5.2. Sorted Access
	2.5.3. Selection
	2.5.4. Projection
	2.5.5. Distinction
	2.5.6. Representation

	2.6. Chapter Summary

	3. Related Work
	3.1. Overview
	3.2. Production Systems
	3.2.1. Informix
	3.2.2. Oracle
	3.2.3. IBM DB2
	3.2.4. Microsoft SQL Server
	3.2.5. MySQL

	3.3. Research Prototypes
	3.3.1. GiST
	3.3.2. Starburst
	3.3.3. Garlic

	3.4. Discussion

	4. Architecture
	4.1. Layered System Model
	4.2. Built-in Storage Layer
	4.2.1. Storage
	4.2.2. Caching
	4.2.3. Locking & Concurrency
	4.2.4. Transactions & Consistency
	4.2.5. Logging & Recovery

	4.3. Access Method Interface
	4.3.1. Data Access Module Definition
	4.3.2. Access Path Creation
	4.3.3. Tuple Identification and Indexing
	4.3.4. Opening an Access Path
	4.3.5. Negotiation and Optimization
	4.3.6. Elementary Navigational Access
	4.3.7. Data Manipulation
	4.3.8. Data Integrity
	Indexes
	Constraints
	Database Triggers
	Interrelations

	4.3.9. Savepoints
	4.3.10. Locking & Concurrency
	4.3.11. Transactions & Consistency
	4.3.12. Logging & Recovery
	4.3.13. Administrative Tasks
	Altering access paths
	Reorganization & Defragmentation
	Checking & Reporting

	4.4. Relational Operator Interface
	4.4.1. Iteration
	4.4.2. Negotiation

	4.5. Advanced Query Evaluation Techniques
	4.5.1. Prefetching
	4.5.2. Data partitioning
	4.5.3. Parallel Query Processing

	4.6. Data Integration
	4.6.1. Alternative Storage
	4.6.2. Data Integration Layer

	5. Proof of Concept
	5.1. Transbase Prototype
	5.1.1. The Transbase RDBMS
	5.1.2. Limitations of the Prototype
	5.1.3. Reference Database & System

	5.2. B-Trees
	5.3. UB-Trees
	5.4. Flat Table
	5.5. Bitmaps
	5.6. File Table
	5.7. Generic Functional Indexes
	5.8. Main Memory DBMS
	5.9. Data Partitioning

	6. Conclusion
	6.1. Achievements
	6.2. Future work

	7. References
	Appendices
	Quick Reference
	List of Figures

