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1 Introduction

The World Energy Council (WEC) has recently developed several energy policy

scenarios. All of them predict an increase of the world’s energy demand of 70

to 100 % in the next 40 years compared to today’s level [1]. At the same time,

it warns of the risks that go along with the climate change, most of all caused

by the emission of CO2 into the atmosphere. Considering this, research in the

sector of regenerative and ecofriendly technologies appears to be more important

than ever. One of these technologies is the production of energy by fusion of

light particles in a reactor. The concept of energy production by fusion is much

older than the insight that a change of thinking concerning the way we live and

produce energy is inevitable. Fortunately, it gains more relevance and attention

nowadays, a part of it surely owed to the closeness to reaching the goal and

the impressive milestones on that way (for example the construction of the large

fusion device ITER in Cadarache, France).

The principle of fusion is easily explained. The actual mass of an atomic nucleus

with the atomic number A is not the sum of the Z protons with the mass mp

and the A − Z neutrons with the mass mn of which it consists. It is slightly

lighter, which is described by the so-called mass defect

∆ = [Zmp + (A− Z)mn]−mz .

The mass defect has been converted to energy, following Einstein’s famous equa-

tion E = ∆c2 when the nucleus was formed. The energy that has to be converted

to mass when disassembling the nucleus to its constituents is called binding en-

ergy. Figure 1 shows the binding energy per nucleon. Processes that lead to

a higher amount of binding energy per nucleon lead to a conversion of mass to

energy. Nuclei with A < 56 (iron) have to merge to gain energy (fusion), those

with higher atomic numbers have to split (fission).

For two nuclei to merge the long range coulomb repulsion has to be overcome so

that the short-range nuclear attraction can lead to the formation of a compound

nucleus. To get over the so called Coulomb barrier, particles need high energies.

For a thermic ensemble, that means extremely high temperatures (about 108K

corresponding to ≈ 104eV ) . At this temperature, they are completely ionized

and constitute a plasma consisting of ions and electrons. As there is the same

1
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Figure 1.1: Binding energy per nucleon (taken from [2])

amount of protons and electrons in the plasma, it is macroscopically neutral.

Nevertheless, its constituents react to electromagnetic fields, which makes the

confinement of a plasma possible in the first place, as no wall material could

stand those temperatures without vaporizing and polluting the plasma. Instead,

magnetic fields force the ions and electrons on gyrating orbits. The most ad-

vanced concept to confine a plasma is a fusion reactor called tokamak, a toroidal

axisymmetric device in which currents in external conductors and in the plasma

keep the appearing electromagnetic and expansive forces in balance. The most

favorable fusion condition is achieved with Deuterium and Tritium:

2
1D + 3

1T → 4
2He + 1

0n + 17.6MeV

Among all reactions of interest, it has the largest reaction rate at temperatures

achievable in a reactor, as is shown in figure 1.2. A large fraction of the en-

ergy (14.1 MeV) goes to the neutrons, which heat a blanket that surrounds the

plasma. The transformation to electrical energy is accomplished by conventional

means. For an economically useful fusion reactor, the heat produced by fusion of

nuclei has to exceed the externally applied heat to initiate (and possibly sustain)

the fusion process by a significant factor Q (> 20-40). Therefore it is impor-

tant to find configurations of the system that enable to confine and thermally

isolate a hot plasma for a long time, i.e. there must exist an equilibrium of all

forces that is stable or can be stabilized by other means. While an equilibrium

of expanding and confining forces is relatively easy to find, its stability is still a
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Figure 1.2: Velocity averaged cross-sections for the D − T ,D − He3

and D −D reactions as a function of temperature. (taken from [2])

problem and topic of intensive research. There are many different kinds of in-

stabilities caused by a large variety of reasons and evolving both on microscopic

and macroscopic length and time scales. One of these macroscopic instabilities

affects the vertical position of the plasma column. Due to the external currents

that are necessary to give the plasma a desired D-shape (this issue is addressed

in detail in section 2.3), small deviations from the equilibrium position lead to a

force that accelerates the whole plasma column in essentially vertical direction.

If undamped, these movements can result in potentially dangerous mechanical

stresses and excessive localized heat loads which would damage the vessel. This

is an important concern in the design of ITER [15]. They can be counteracted

by externally applied magnetic fields (active feedback). However, as they take

place on the very fast magnetohydrodynamic time scale, passive conductors like

walls or other dedicated structures must be used to dampen the movement to a

slower time scale, which gives the active feedback system the time to calculate

and establish the necessary correction fields.

For small amplitudes and growth rates of these axisymmetric perturbations, ob-

servations on the fusion experiment ASDEX Upgrade agree well with predictions

made by an ad-hoc engineering expression. However, growth rates of configura-

tions with stronger destabilizing forces, which are of practical interest as they

allow more advantageous plasma parameters (confinement time, temperature,

thermal energy density, ...), exceed substantially the predictions by the engineer-
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ing model. The aim of this work is to develop a code that models the axisymmet-

ric time evolution of a given plasma configuration. Of particular interest is the

non-linear development of the instabilities, as it determines the limits of inter-

vention by a control system and the potential damage to the device. To analyze

the situation we chose to develop ab-initio an own code, as we wanted to have

full control over assumptions and flexibility to adjust to the specific experimental

conditions of ASDEX Upgrade. As this instability is very sensitive to the detailed

nature (shape, conductivity distribution, electrical connections) of the stabilizing

conducting structures, the capability to accurately model complex, 2-d structures

was deemed essential.

Contrary to the engineering model, the plasma motion is not restricted to a rigid

shift and both plasma and conducting structures have finite conductivity. All

quantities, e.g. magnetic flux, pressure and current distribution, can be modeled

accurately by using finite elements at each point of time.

There exist only two other codes which treat the non-linear axisymmetric dynam-

ics of toroidal plasmas: DINA[6] and the Tokamak Simulation Code (TSC)[11].

Like the code developed in this work, both model only cases for which plasma

inertia does not play a part: DINA calculates sequences of axisymmetric force

equilibria and TSC (like done here) assumes an artificially enhanced plasma mass,

making the problem numerically tractable (by reducing the Alfvén speed and

hence easing the constraints set by the Courant-Friedrichs-Lewy condition) with-

out affecting the numerical results.

This work is structured as follows: Chapter 2 deals with the theoretical back-

ground of plasma physics and the tokamak. A complete set of equations is de-

veloped that accounts for the special limitations and simplifications immanent to

the problem of axisymmetric instabilities. A simple wire model is also presented

that exhibits characteristic qualities of purely vertical instabilities and serves as

reference for comparison with code results. Chapter 3 describes in detail the

development of the code and the way the dependent variables are dealt with.

It shows the results of first applications to simple test cases, including growth

rates, current distributions and the comparison to the analytically expected be-

havior. Chapter 4 documents the comparison of the experimental data obtained

on ASDEX Upgrade with the code adapted to its specifications. Chapter 5 finally

concludes the work.



2 Theory

2.1 Magnetohydrodynamics (MHD)

A plasma is a gas consisting of free charged ions and electrons. Depending on

which information is of interest, several physical models exist to describe the

plasma that are valid on different space and time scales. For example, microin-

stabilities or fast particle transport require a kinetic model at some point, whereas

problems concerning the macroscopic equilibrium or stability are preferentially

treated with a fluid model. The scope of this work is to simulate the macroscopic,

predominantly vertical instability of a plasma column, hence the latter model is

an appropriate choice. The simplest fluid model is called magnetohydrodynamics

(MHD). It is a combination of the Navier-Stokes equation of fluid dynamics and

Maxwell’s equations of electrodynamics and contains electrodynamic, inertial and

pressure forces appearing in a plasma.

The governing equations of the resistive MHD are [33]

∂ρ

∂t
+∇ · ρv = 0 (Continuity equation) (2.1)

ρ
dv

dt
− J×B+∇p = 0 (Equation of motion) (2.2)

ρ
∂e

∂t
+ ρ(v · ∇) e+

(γ − 1) ρe ∇ · v +∇q = J · E+RRad (Energy balance) (2.3)

E+ v ×B = 1
σ
J (Ohm′s law) (2.4)

∇×E = −∂B
∂t

(Faraday′s law) (2.5)

∇×B = µ0J (Ampère′s law) (2.6)

∇ ·B = 0 (2.7)

where

5



2.1. Magnetohydrodynamics (MHD) 6

E = electric field B = magnetic field

J = current density ρ = mass density

v = velocity p = pressure

q = heat flux RRad = energy loss due to radiation

σ = conductivity e = internal energy

and the convective derivative d
dt

= ∂
∂t
+ v · ∇ .

Equations (2.1)-(2.3) describe the time evolution of mass, momentum and energy,

equations (2.4)-(2.7) govern the behavior of the electric and magnetic fields. In a

dynamic problem, eq. (2.7) has to be satisfied only by the initial condition, as in

the further evolution eq. (2.6) ensures that the magnetic field is divergence-free.

In this closed set of equations, some assumptions and simplifications are made,

the most important are:� The plasma is collision dominated: a fluid model requires a high collisional-

ity. The distribution function then becomes nearly Maxwellian and particles

stay close to each other on the time scale of interest.� The plasma is described as a single fluid: instead of using an equation for

ion and electron movement, the fluid is described as if it would consist of

only one species. The electron mass is neglected and since the ions carry

the momentum the fluid velocity is given by the velocity of the ions.� The displacement current can be neglected: all phase velocities of electro-

magnetic waves in the plasma are small compared to the velocity of light.

The displacement current does not play a role and is neglected in eq. (2.6).� The plasma is quasi-neutral: the electron and ion density are equal, i.e.

there are no macroscopic space charges. This assumption is justified as

we are considering space scales large compared to the Debye length and

frequencies low compared to the plasma frequency [12] .

The term describing the magnetic force on the left hand side of eq. (2.2) can be

transferred into an intuitive form when expressing the current by eq.(2.6):

J×B =
1

µ0
(∇×B)×B, (2.8)
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and using
1

2
∇(B ·B) = (B · ∇)B + B× (∇×B)

which leads to

J×B = −∇
(
B2

2

)

+B · ∇B (2.9)

The first term on the right hand side is called the magnetic pressure that applies

perpendicular to the field lines, the second is the magnetic tension and is directed

along magnetic field lines.

In static equilibrium, these forces balance the kinetic pressure of the plasma and

allow its containment.

Contrary to the so-called ”ideal MHD”, the resistivity of the plasma and sur-

rounding structures is taken into account. That means that currents and mag-

netic fields will dissipate due to ohmic losses and magnetic field lines can tear

apart, if that is energetically advantageous. The known phenomenon of the frozen

flux (the coupled movement of magnetic field and plasma) does not hold strictly

anymore in resistive MHD but the regions where reconnection takes place is typ-

ically only a small part of the plasma.

2.2 Tokamak

The aim of this work is to examine axisymmetric instabilities of toroidal plas-

mas. Preceding to a stability analysis, a state of stationary force equilibrium is

necessary. The simplest device to get a plasma in equilibrium not prone to end

losses (i.e. loss of plasma due to open ends of the device) is a so-called tokamak, a

transliteration of the Russian acronym for toroidal chamber with magnetic coils.

One of the biggest European tokamaks, asdex Upgrade (Axisymmetric Divertor

Experiment), is located at the Max-Planck-Institut für Plasmaphysik in Garch-

ing and the code described in the following was developed with emphasis on the

application to it. With simple adjustments (favoured by the finite element ap-

proach taken in it) it can, of course, be readily applied to other devices. In fact,

this is done in section 4.4.4, where simulations are carried out not for the present

ASDEX Upgrade, but a potential future ”upgrade” of it, which differs, apart from

the bigger plasma, essentially also in the structure of passive stabilizing elements.

The basic structure is shown in figure (2.1). Several sources of magnetic fields are

necessary to keep the plasma confined. In this way, an expansion of the plasma
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Figure 2.1: Tokamak Scheme (taken from [28])

and contact with wall structures is inhibited. The field in toroidal direction (see

figure 2.2),Bφ , which is generated by toroidal field coils, is the strongest. The

weaker poloidal field,Bp , is mainly generated by the toroidal plasma current

Itor , which in turn is induced by a large central solenoid. It acts as the primary

winding of a transformer, using the plasma itself as secondary winding (see figure

2.3).

poloidal

to
ro

id
a
l

R

z

Figure 2.2: Denotation of directions in a tokamak

Additionally to the magnetic field generated by the plasma current, a vertically

oriented magnetic field Bvert generated by external currents contributes to the

poloidal field. It counters the radially outward directed forces due to the toroidal

geometry and is described in more detail in chapter 2.3. The combination of

toroidal and poloidal fields results in helical field lines, in their center lies the

magnetic axis (see figure 2.4).

In cylindrical coordinates, R points radially outwards and is called major radius.
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Figure 2.3: transformer principle (taken from [10])

R0 is the distance of the torus axis to the magnetic axis. eφ and ez are the unit

vectors in toroidal and vertical direction, respectively.

For an axisymmetric, static equilibrium (i.e. there are no inertia terms) the

momentum balance (2.2) reads:

J×B−∇p = ρ
dv

dt
= 0 (2.10)

⇒ B · ∇p = 0, J · ∇p = 0.

B and J lie on surfaces of constant pressure that build nested tori (see fig. 2.5).

Figure 2.4: Magnetic field line and
current density on a flux surface.

Figure 2.5: Nested tori (taken from
[10])

These surfaces can be labeled with single-valued functions that define them
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uniquely. Possible labels beside the pressure p are the enclosed volume or the

enclosed poloidal flux Ψp with

Ψp =

∫

Bp dAp. (2.11)

Ψp describes the flux of the poloidal magnetic field through a poloidal surface

element shown in figure 2.6 (the toroidal analogon can be defined as well, shown

in the same figure). Due to the constancy of the flux integrals on the surfaces,

these are also called flux surfaces. The poloidal flux function Ψ is defined as the

total flux per radian and differs from Ψp only by a factor of 2π :

Ψ =
1

2π
Ψp.

Throughout the following work, only the definition for the flux per radian is used,

as it is the common definition in equilibrium literature. The poloidal magnetic

field can then be written as

Bp = − 1

R
eφ ×∇Ψ. (2.12)

Figure 2.6: Poloidal and toroidal surface elements dAp and dAt and line element dl
(taken from [9])

Analogously to the magnetic field, a function F related to the poloidal current

(with contributions of the plasma and the toroidal field coils) can be defined:

F = − 1

2π

∫

Jp dAp =
R Bφ

µ0
, (2.13)



2.2. Tokamak 11

Jp = − 1

R
eφ ×∇F . (2.14)

This definition allows for a different writing of the toroidal magnetic field:

Bφ = µ0
F (Ψ)

R
. (2.15)

Inserting 2.12 in Ampère’s law leads to the following representation of the current

density:

µ0J = −µ0
1

R
∆∗Ψ eφ +

1

R
∇(RBφ)× eφ, (2.16)

where the operator ∆∗ is given by

∆∗ = R2∇ ·
(

1

R2
∇
)

= R
∂

∂R

(
1

R

∂

∂R

)

+
∂2

∂z2
.

Using p = p(Ψ) and inserting the definition for F in the equation of motion

(2.2) leads to the Grad-Shafranov equation:

∆∗Ψ = −µ0R
2 dp

dΨ
− F

dF

dΨ
= −µ0RJφ. (2.17)

This equation is a semi-linear partial differential equation that governs Ψ and

gives the flux surface topology Ψ(R, φ, z) . Usually the poloidal current and

pressure profiles F (Ψ) and p (Ψ) are prescribed and the equation is solved nu-

merically.

Definition of β

A figure of merit associated with the plasma pressure is the ratio of the volume

averaged plasma pressure to the averaged magnetic energy, called β . It is useful

to define the following relation containing the plasma pressure and the poloidal

component of the magnetic field, called the poloidal β or βp :

βp =
2µ0p̄

< B2
p >

, (2.18)

where

p̄ =

∫

p dA
/∫

dA



2.2. Tokamak 12

is the average of the pressure over the plasma area in the poloidal plane and

< B2
p >=

∮

Ψb

RB2
p dl

|∇Ψ|
/∮

Ψb

R dl

|∇Ψ|

is the average value of B2
p on the outermost closed flux surface (flux surface

mean). In the remainder of this work, only the poloidal β will play a part.

The significance of β can be seen by taking a circular plasma and a large aspect-

ratio. The poloidal field on the surface can be written as

Bp,a =
µ0 Ip
2πa

where Ip is the plasma current and a the plasma radius. After partial integration

of the numerator of eq. (2.18) for a circular, large aspect-ratio plasma and using

the pressure balance, it follows [45]:

βp = 1 +
1

(aBp,a)2

∫ a

0

dB2
φ

dr
r2 dr, (2.19)

where r denotes a radial variable in direction of the plasma radius. If there

are no poloidal currents, the integrand of eq. (2.19) vanishes and βp = 1 . The

plasma does not change the toroidal field produced by the toroidal field coils. A

value of βp larger than one means that
∂B2

φ

∂r
is positive. In this case, the vacuum

toroidal field plays a part in confining the plasma, as the poloidal field is not

sufficient (the plasma is diamagnetic relative to the toroidal field) to balance the

kinetic pressure of the plasma. For βp smaller than one, the pressure cannot

compensate the magnetic pressure from the poloidal field, so that the toroidal

field is compressed and increased. The plasma is paramagnetic relative to the

toroidal field. All three cases, βp < 1, βp = 1, and βp > 1 are shown in figure

2.7.

The most extreme case for diamagnetic plasmas is for βp = 0 . Such a plasma

can be either extremely cold ( T = 0 ) or extremely thin ( ρ → 0 ) and hot. As

there are no pressure forces, the electromagnetic forces have to balance among

themselves, which implies J × B = 0, leading to the expression of ”force-free”

magnetic fields.
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Figure 2.7: Change of the toroidal field for different values of β . The dotted line shows
the toroidal field as it is generated by the toroidal field coils. The solid grey line is the
sum of toroidal field contributions from the coils and the plasma. The solid black line is a
measure for the plasma pressure. Taken from [47]

Definition of the safety factor q

The name safety factor derives from the fact that, in general, high values of q

lead to an increased stability of the plasma against current driven modes. In a

tokamak, field lines follow helical paths on flux surfaces due to the superposition

of toroidal and poloidal magnetic fields. A field line that starts at a toroidal angle

φ at a certain position in the poloidal plane will return to that poloidal position

after a change of toroidal angle ∆φ . The q value of this field line is defined as

q =
∆φ

2π
. (2.20)

q is a flux quantity, so this relation holds for any field line on a flux surface. If

a field line joins up on itself after m toroidal and n poloidal rotations, q = m/n

is rational and the connected flux surface is called resonant surface. If q is

irrational, the surface is called ergodic and the field lines cover the whole flux

surface when following their trajectories. To calculate q for a general, numerically

computed equilibrium, one starts from the field line equation for the magnetic

field in a torus
R dφ

dl
=
Bφ

Bp

and inserts this relation in eq. (2.21), which yields:

q(Ψ) =
1

2π

∮

Ψ

1

R

Bφ

Bp
dl. (2.21)
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2.3 Equilibrium and passive stabilization

The Grad-Shafranov equation describes a plasma equilibrium completely. It can

be split into contributions that would be present even in a straight cylinder (cor-

responding to an infinite aspect ratio) and such contributions which have their

origin in the toroidicity of the tokamak. The ”straight” part requires that the ex-

pansive kinetic pressure is balanced by compressing magnetic forces. The toroidal

contribution consists of three forces that are directed outward or inward in major

radius direction. The first one is the hoop force that can also be observed at a

current carrying loop of wire. Due to flux conservation, the magnetic pressure on

the inside of the plasma column is larger than on the outer area, leading to an

outward directed net force. The second one is the tire tube force. In the plasma,

the constant pressure lies on nested isocontour lines, but as the surface on which

the pressure is exerted is smaller on the inside than on the outer area, there is

a further net force in the same direction. It is the tire tube force that leads to

an outward shift of the inner flux surfaces in an equilibrium. The third force

applies to the plasma in the case of β 6= 1 , because this configuration allows

for poloidal currents that cross with the toroidal field. As the toroidal field gets

stronger towards the torus axis and the current has to close on a flux surface, a

net force results that is directed outwards ( β > 1 ) or inwards (β < 1 ).

Forces balancing the toroidal forces can be produced by either a conducting shell

or external toroidal currents. In the case of a conducting shell, any radial expan-

sion of the plasma column will lead to mirror currents in the shell that produce

a vertical magnetic field which crosses with the toroidal current. This way, it

generates an inward force so that the outward forces are balanced. In case of

an ideally conducting shell, these mirror currents remain ad infinitum. If the

wall has a finite resistivity, the mirror currents dissipate on the L/R -time of

the conductor (where L denotes the inductance and R the resistivity, respec-

tively). The other possibility, the usage of externally applied vertical fields, has

the advantage of being independent of any L/R -time and is quite simple to re-

alize. This method is mainly used in present tokamak experiments. A rough

estimation of the magnitude of the vertical field for large aspect ratios gives: [14]

Bv = − µ0Ip
4πR0

(

ln
8R0

r
+ βp +

li
2
− 3

2

)

(2.22)

where the new quantity li denotes the dimensionless internal inductance per unit

length of the plasma,

li =
8π2

∫
B2
prdr

µ2
0I

2
p

, (2.23)
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which is a measure for the ”peakedness” of the current distribution and lies

roughly between 0.5 and 1.5 for typical experimental plasmas.

So far, no attention was given to the stability of such an equilibrium. The question

that arises when asking for vertical stability is, how the system reacts when the

plasma moves an infinitesimal distance away from its equilibrium position. In the

case of a homogeneous vertical applied magnetic field, the equilibrium behaves

neutral (marginal stable) to the displacement, so there will neither be a restoring

nor an enhancing force. The situation changes when the applied field gets curved.

Curved field lines are the result of superimposing a quadrupole field to the vertical

field. The parameter describing the resulting field is the field index

n = −
(

R

Bvert

∂Bvert

∂R

)

. (2.24)

If n > 0 , the vertical field lines have convex curvature as shown in figure 2.8. It

is clear that a small upward (or downward) displacement will result in a restor-

ing downward (upward) force, as there is a non-vanishing component of the cross

product of the toroidal current and the radial magnetic field, that in both cases is

directed towards the equilibrium position. Hence, n > 0 corresponds to vertical

stability.

The argumentation in the case of a radial displacement is slightly more compli-

cated. as in this case, in addition to the radial variation of the applied vertical

field, also the conservation of poloidal flux has to be taken into account, leading

to a criterium for stability against this mode [14]

n <
3

2
.

A field index 0 < n < 3
2

means stability in vertical and horizontal direction.

Unfortunately, this condition is not fulfilled for plasmas in state-of-the-art toka-

maks. For several reasons, the plasma in modern tokamaks is D-shaped, which

includes a vertical elongation. A D-shape increases the energy confinement, as

for the same value of q a higher current can be achieved. It allows a higher β

value, that is a measure for the economical efficiency of the tokamak (see chapter

1), as it is more stable against pressure driven modes ([38]). Furthermore, as

the toroidal field coils are D-shaped for reasons of homogeneous load distribution

[16], the volume occupancy is optimized and finally, a divertor configuration in

which a separatrix lies between regions of closed and open flux contours leads

naturally to an elongation. To produce a vertically elongated plasma, there must

be currents above and below the plasma with the same direction or currents

beside the plasma with opposite direction (or both). The currents in the same
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Figure 2.8: Resulting vertical forces Fz as product of crossing Jφ and
BR for convex field lines. Taken from [9]

direction attract the plasma, whereas those of opposite direction repel it, leading

to a stretching or squeezing. The basic arrangement is shown in figures 2.9 and

2.10.

Figure 2.9: Basic arrangement of currents to elongate the plasma

+ + =

Figure 2.10: Superposition of vertical and quadrupole magnetic fields
lead to an elongated plasma and a negative field index n
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The radial components of the quadrupole field generate together with the vertical

field a concave curvature of the field lines. This leads to an unstable situation

for the vertical position, as will be shown in section 2.4. Figure 2.11 shows

the positions of the coils in ASDEX Upgrade that are necessary to create a

plasma equilibrium with elongation and triangularity. V denotes the coils that

are necessary for plasma shaping and balancing radial forces, OH -coils heat

the plasma via Ohmic heating and induce the toroidal current and Co -coils are

responsible for position control (active feedback).

Figure 2.11: Poloidal field (PF) coils at ASDEX
Upgrade

2.4 Current filament model and resistive wall

modes

An unstable vertical movement of the plasma is also called vertical displacement

event (VDE) or, as it concerns the whole plasma column and is axisymmetric,

n=0 mode (n is the toroidal mode number, that gives the periodicity of a distor-

tion when a spectral analysis is carried out; the analogous poloidal mode number

is denoted with m . In this terminology, the vertical displacement instability has

a dominant m = 1 component). The n = 0 mode has no resonant surface inside

the plasma, but the separatrix which divides closed field lines from open ones, is

a resonant surface. On it holds q = ∞ .
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If undamped, the movement of such a mode occurs on Alfvénic time scale (for a

realistic experiment in order of µs ) and can cause extreme stresses on the me-

chanical structures (in ASDEX Upgrade up to 1000kN). Besides the need of long

discharge times, these VDEs are also a potential threat to the integrity of the

device and must be suppressed.

Although the purpose of this thesis is a plasmaphysical description of axisymmet-

ric instabilities, at first a very simple electrotechnical model of them is described

in some detail. This allows to exhibit in a very transparent way the principle of

their reduction in growth rates into a range amenable to active feedback systems

(the concept of resistive wall modes), and the implications of a key plasma physics

assumption made in the code: the usage of an artificially enhanced plasma inertia.

In this model, circular current filaments (formed to a ring) represent the plasma

and the conducting structures, as shown in figure 2.12. The wire ring with index

p is movable in vertical direction and has the radius R0 . It represents a plasma

with infinite conductivity and is exposed to a curved external field whose direction

is chosen so as to lead to an inward directed force on the current ring. This

has no consequences in the wire model assuming a rigid ring, but simulates the

situation in a tokamak, where the external fields have to balance the outward

directed plasma expansion forces. The wires with index c are fixed in space and

represent the conducting structures that are connected and treated as a system.

The vertical force that acts on the ”plasma ring” reads:

Figure 2.12: wire model: the red point symbolizes the vertically movable
plasma, the smaller points the fixed passive conductors. The dashed lines
are the magnetic field and the arrow is the resulting J×B force.
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F = mp ·
∂2z

∂2t
= 2π R0 Ip BR. (2.25)

with mp and Ip the plasma mass and plasma current, respectively, z the devi-

ation of the plasma equilibrium position in vertical direction and BR the radial

component of the magnetic field. BR vanishes at z = 0 and has contributions

from the applied external field and from induced currents in the conducting wires

due to plasma movement. The external field leads, Taylor expanded and crossed

with the plasma current Ip , to a force that is destabilizing, due to the consider-

ations about the field index made above:

Fdestab = −2π R0
∂BR,0

∂z
Ip z. (2.26)

The second contribution has its origin in the induction of eddy currents in the

conductors. The vertical shift of the plasma wire leads to a change of the magnetic

flux through the conducting wire loop, which again results in an induced current

due to Faraday’s Law. Following Lenz’s rule, this current is directed in a way that

tries to dampen the movement of the plasma filament, similar to the stabilizing

effect of the conducting shell mentioned above. The magnetic field component

at the position of the plasma filament is given by the spatial derivative of the

(total) poloidal flux Ψ coupled to it :

Ψ = Lp · Ip +Mcp · Ic

BR = − 1

2πR

∂Ψ

∂z
= − 1

2πR

∂Mcp

∂z
Ic

with Ic the current in the fixed conductors and Mcp the mutual inductance be-

tween the plasma and the conductors. The plasma current crosses with the radial

magnetic field connected with the current in the conductor and the resulting force

has a restoring effect:

Fstab =
∂Mcp

∂z
IcIp. (2.27)

The circuit equation for the induction in the conductors reads (with İp=0 and

Lc denoting the self-inductance of the passive conductors):

∂Ψ

∂t
=
∂Mcp

∂z
Ipż + Lcİc = −RcIc, (2.28)
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For the moment, the resistance Rc is set to zero, describing ideal conductors.

Time integration of 2.28 leads to an expression for Ic :

Ic = −Ip
∂Mcp

∂z

z

Lc
. (2.29)

Insertion in eq. (2.27) results in

Fstab = −
(
∂Mcp

∂z

)2

I2p
z

Lc
.

Obviously, the stabilizing effect is the stronger, the closer the passive conductor is

positioned to the plasma (stronger coupling) and the smaller the self-inductance

of the conductor is.

The equation of motion for the ring with the mass mp reads:

mp ·
∂2z

∂2t
= −

(
∂Mcp

∂z

)2

I2p
z

Lc
+ 2πR0

∂BR,0

∂z
Ipz. (2.30)

As the vertical magnetic field necessary to counteract the toroidal expansive forces

will be of order µ0Ip
2πR0

, it ist convenient to normalize the appearing magnetic fields

to it, leading to the expressions:

dcurv =
2πR2

0

µ0Ip

(
∂BR,0

∂z

)

scond =
R0

(
∂Mcp

∂z

)2

µ0Lc

where dcurv and scond denote the destabilizing contribution from the externally

applied magnetic field and the stabilizing contribution due to the passive con-

ductors, respectively.

Inserting these definitions into the force balance together with the exponential

ansatz z, Ic ∼ eγt , where γ denotes the growth rate, yields

1

γ20
· γ2z = dcurv · z − scond · z
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with

γ0 =

√

µ0I2p
mpR0

.

The normalized growth rate γ∗ = γ/γ0 reads then:

γ∗ =
√
scond

√

dcurv
scond

− 1.

If dcurv
scond

< 1 , the growth rate gets imaginary and hence the position of the plasma

wire is stable and would oscillate if an external perturbation is applied. On the

other hand, a ratio larger than 1 will lead to an acceleration of the movement

on inertia (Alfvénic) time scale.

The inclusion of resistive effects gives a slightly more complicated picture. The

circuit equation (2.28) describing the current in the conductors has now to con-

sider a finite resistance of the filament, leading to an modified expression for

Ic :

Ic = −Ip
∂Mcp

∂z

z

Lc

(

γ

γ + Rc

Lc

)

. (2.31)

A new parameter consistent with the normalization can be introduced, that de-

scribes the resistive decay time of the eddy currents:

γ∗w =
Rc/Lc
γ0

.

The dispersion relation for the growth rate with resistive conductors becomes:

γ∗2 + scond ·
γ∗

γ∗ + γ∗w
− dcurv = 0 (2.32)

with instability setting in already for dcurv > 0 (rather than dcurv > scond for

the ideal case). That means that a configuration with unstable curvature, which

can be stabilized with ideal conductors, will inevitably be unstable when the

conductors are resistive. The reason for this behavior is as follows: as stated

above, a shift in the vertical position of the plasma leads to currents which flow

in a direction to counteract the movement. In ideal conductors these currents

could exist ad infinitum and plasma and conductors build a new equilibrium (if
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the configuration is not already unstable even for ideal conductors). For resis-

tive conductors, these currents dissipate on the resistive time scale τR = Lc/Rc

and allow the instability to grow. However, the growth rate can be significantly

reduced compared to the absence of any conductors, as the movement occurs on

the same time scale as the decay of the currents (which is of the order of mil-

liseconds for a realistic experiment). Due to the slow evolution of the instability,

it can be seen as transition through a series of equilibria, determined by plasma

position and currents in the inductors and inertia playing no role. As the growth

rate is exclusively determined by the resistivity of the conducting structures and

occur on the resistive time scale, these instabilities are also called resistive wall

modes. This slowdown is the great practical relevance of passive stabilization,

as it makes the usage of active feedback possible. Figure 2.13 shows the most

unstable solutions of eq.(2.32) for different values of γw against dcurv
scond

. It shows

that the transition from resistive to inertia dominated growth at dcurv
scond

= 1 is

quite abrupt for γw ≪ 1 , which is not surprising, considering that in the ideal

case instability sets in at this value (with growth rates on inertia time scale).

For small values of γ∗w and dcurv
scond

< 1 , the unstable solution of eq. (2.32) is

approximately given by

γ

γw
≈

dcurv
scond

1− dcurv
scond

. (2.33)

The same expression can be derived when neglecting the inertia term in the force

balance. These solutions are drawn in the figure with dashed lines. For small

γw , the approximation holds almost till dcurv
scond

= 1 .

2.5 Passive conductors in ASDEX Upgrade

The passive conductors in a tokamak are not idealized thin wires, but have a

significant extension, frequently taking the shape of a complete wall. In ASDEX

Upgrade, massive copper conductors formed to two loops connected in series build

the passive stabilizing loops (PSL). They were installed because the resistive time

of the conducting wall was too low (about 10 ms ) to enable active feedback.

The PSL have a resistive time of about 600 ms . Furthermore the inductive

coupling to the plasma is significantly increased due to the proximity of the PSL.

The intention of the PSL is to stabilize vertical movements of the plasma. Any

spatially constant change of the poloidal flux encircled by loops will induce a

current in both legs of the PSL of the same amount but different directions in a

poloidal cross section, due to the series connection of both PSL legs. This change

of flux can be the result of an vertical plasma movement which leads to opposite
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Figure 2.13: Normalized growth rates for different γ∗w as result of eq.
(2.32) (solid lines) and asymptotic solutions following equation (2.33)
(dashed lines) when inertia is neglected.

currents in the upper and lower PSL. Radial movement, current dissipation, and

compensation of Ohmic dissipation of the plasma current (by changing the flux

through the central solenoid over time to induce a voltage along the toroidal

circumference of the plasma) also lead to a change of flux through the loops.

However, as the PSL are connected and both legs see the same induced voltage

from the OH transformer, no current induction occurs. Figure 2.14 illustrates

the connection and the resulting current direction. In a cross section at fixed

toroidal angle φ , the currents flow in opposite direction, whereas currents in the

same direction are not possible.

As the PSL have a finite extension and are subject to the rules of induction, one

expects a current distribution inside of them that deviates from homogeneity.

This well-known phenomenon is called skin effect. Its origin is the induction of

eddy currents inside the conductors (see figure 2.15). These currents weaken the

original current in the middle and displace the current flow to a layer (’skin’) on

the surface. The skin depth is determined by

δ =

√
2

µ0σω
, (2.34)

where σ is the conductivity and ω the frequency of the current. For a circular

conductor, the skin depth is the distance to the surface at which the current den-
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Figure 2.14: Current directions in the PSL. Left: total view of the PSL in
ASDEX Upgrade. Red arrows mark an induced current. Right: poloidal
cross section of the torus. An upward shift of the plasma column leads
to induction of opposing currents in the upper and lower PSL.

sity drops by a factor of e−1 . The higher the frequency, the thinner is the layer;

the same holds for the conductivity. At the same time, the effective resistance of

the conductor increases, because the effective conducting cross section decreases.

Figure 2.15: Skin effect



3 Code description

3.1 Assumptions and adaption to the problem

At this point, all necessary theoretical background about MHD, axisymmetric

instability and passive stabilization is given. Theoretically, one could solve all

the equations of chapter 2.1 to get the state of the plasma and the whole system

around it at each point of time. But, of course, it is far too expensive to solve the

complete system of equations in this framework. As a consequence, the problem

is reduced to only those aspects that are relevant for the predominantly vertical

instability and its stabilization.

The most important simplification is the limitation to two dimensions, as the

vertical displacement is axisymmetric (n=0). Most plasma instabilities can be

stabilized by a sufficiently large toroidal magnetic field. Unfortunately, that does

not hold for the vertical instability, as a linear examination of the energy con-

tributions following the energy principle [7] shows. The energy principle states

in simple words, that any displacement ξ of the plasma which leads to a nega-

tive variation of the potential energy of the system describes an unstable mode.

The reason is energy conservation: as the sum of potential and kinetic energy

must be conserved (neglecting losses due to radiation, resistivity and so on), the

plasma must gain kinetic energy when lowering its potential energy. Generally,

it is sufficient to examine the contributions of the potential energy if there is no

need to determine exact growth rates. The total energy can be separated into

contributions of the plasma and the surrounding vacuum:

δW = δWp + δWv

δWp =
1

2

∫

P lasma

[

(∇× (ξ ×B))2 + (J× ξ) · ∇ × (ξ ×B) + (ξ · ∇p)∇ξ + 5

3
p (∇ξ)2

]

dV

δWv =
1

2

∫

V acuum

(δBv)
2 dV,

where ξ denotes the displacement from equilibrium and δBv the perturbed vac-

uum magnetic field.

25
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If now only the contributions involving the toroidal magnetic field are considered,

δWp reads [4]

δWp =
1

2
B2
φR

2

∫

P lasma

(

∇× (ξ × 1

R
eφ)

)2

dV

+
1

2
BφR

∫

P lasma

(

∇× (ξ × 1

R
eφ)

)

· (J× ξ)dV

where eφ denotes the unit vector in toroidal direction. The stabilizing vacuum

contribution δWv depends on Bφ only through

Bφ R∇Ψ · (∇× (ξ × 1

R
eφ)).

Thus, for all displacements ξ that fulfill the condition

∇× (ξ × 1

R
eφ) = 0 (3.1)

both contributions vanish and the toroidal field has no stabilizing contribution

to the energy balance, no matter how large it is. The plasma ”slips” through the

toroidal field without doing any work against it. This condition is called ”Slip

Motion Condition” by Rebhan and Salat [3]. For an elliptical plasma and in the

case of infinite aspect ratio, A = ∞ , the most unstable mode that fulfills this

condition has the poloidal mode number m = 1 , corresponding to a rigid vertical

shift [5] with ξ = ξz = const . Codes using the energy principle often use this test

function to check equilibria against vertical instability. Due to the finite aspect

ratio, the more general plasma shape and the influence of conducting structures

in a realistic tokamak configuration, the shift will not be strictly rigid, but also

include a component in radial direction.

By introducing a stream function η̃ for the displacement (quite analogous to the

flux function Ψ for the magnetic field) with

ξ = −R · (eφ ×∇η̃), (3.2)

the Slip Motion Condition is inherently fulfilled (see section A.3). Differentiation

with respect to time leads to a stream function η connected to the velocity:

v = −R · (eφ ×∇η). (3.3)
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3.2 Extension of an existing linear model

A first approach for calculating realistic growth rates was to extend the existing

linear eigenvalue code that has been developed in the framework of a diploma

thesis. By using the Slip Motion ansatz and the energy principle [7], the code

could calculate transitions from unstable to stable regimes in dependence on

several parameters (e.g. proximity to conducting walls, plasma current, position

of the PSL,etc.. for details see [39],[5]) but was constrained to ideally conducting

plasmas and ideally conducting passive stabilizing elements. Some basic results -

the reproduction of the transition point from stability to instability predicted by

Laval [5] and the influence of present PSL - are shown in figure 3.1. The abscissa

is the wall parameter α = (a′−b′)/(a−b) , where a and b denote the minor and

major half-axes of the plasma and a′ and b′ those of the surrounding elliptical

wall, respectively.

Figure 3.1: Eigenvalues (correlated to the growth rate) against the wall
parameter α . Left: analytical models predict point of marginal sta-
bility at α=0.577 for an elliptical plasma with βp = 0 , a flat current
distribution and an aspect ratio of A = 50 . This is reproduced by code
results. Right: The point of marginal stability for the same plasma
moves towards more distant walls when including PSL (their position is
shown in figure 3.2).

For an assumed variation of all perturbed quantities like ∼ eγt , the perturbation

has to satisfy an energy balance

δWp + δWv + γ2K = 0. (3.4)

δWp, δWv and K are quadratic expressions in (ξ, Aφ) measuring the change

in potential and kinetic energy of the system due to a virtual displacement. ξ

denotes the displacement of the plasma and Aφ is the toroidal component of the

magnetic vector potential in the vacuum. Due to the inclusion of the vacuum
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Figure 3.2: Plasma boundary for an elliptical plasma and position of the PSL in the code

into the calculations (where the density would ideally go to zero), K is replaced

there by a quadratic expression in Aφ with a small coefficient. Although γ

looses thereby its physical meaning of growth rate (or, if imaginary, Re(γ) that

of oscillation frequency), the sign of γ2 , and hence the question of existence of

unstable perturbations, will not be affected.

In the framework of the diploma thesis this was justified, as only a statement

of stability or not was aimed at and any passive structures were assumed to

have infinite electrical conductivity. Nevertheless the code can be applied to a

resistive case, and actually derive a true (though approximate) growth rate when

we consider the regime where resistivity in the conducting structures rather than

inertia determine the actual growth rate. In addition to the implementation

of pressure terms in the plasma energy expression, the conductors are in the

following assumed to be resistive. The energy balance is therefore extended by a

term that describes the dissipated energy in the conductors due to Ohmic losses

∂

∂t
δWc = RI2c ,

where R is the total resistance and Ic the current in the passive conductors.

These currents are assumed to flow on the boundaries of the PSL which corre-

sponds (following equation 2.34 for the calculation of the skin depth) to either

very high conductivity, very large growth rates or both. The currents are driven

by the variation of the flux linking them, i.e. determined by

2π
∂

∂t
(Ψ1 −Ψ2) = 2πγ(Ψ1 −Ψ2) = RIc (3.5)
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where Ψ1 and Ψ2 denote the value of the poloidal flux Ψ = R · Aφ on the

surfaces of the upper and lower PSL. In the former code version, this difference

is zero, as the PSL were ideal conductors and as both PSL form a closed loop

through which no change of flux was allowed to occur. However, the condition of

equal but opposed currents is kept.

The energy balance (still including inertia) from the perturbation would now read

δW = δWp + δWv +
R
2γ
I2c + γ2K = 0. (3.6)

Eigenvalues of this equation would be in general complex and could be derived

by suitable routines, taking note of the fact that, after substitution of Ic by

Ψ = R · Aφ , the third term in eq. (3.5) becomes ∼ γ . In the resistive wall

mode case, however, the energy freed by the plasma displacement is used only

to overcome the Ohmic dissipation in the conductors; we are thus interested in

solutions in which the kinetic energy vanishes. Considering this and the fact that

the model is only of transient interest, we adopt an approach allowing to use as

much as possible of the structure of the already existing ideal code. Eq. (3.6) is

therefore rewritten:

δWp + δWv +
λc
2
I2c − ΛK = 0, (3.7)

treating λc = R/γ as a parameter, appearing both in eq. (3.7) and in the

induction equation for the PSL (3.5). Equation (3.7) then becomes an eigenvalue

problem with λc an (assumed) input parameter, and Λ(λc) as eigenvalue. Of

relevance to us is only the result corresponding to Λ(λ∗c) =0, which is obtained

through parametric variation of λc as intersection (or via a suitable iterative

search). The physics model and the energy balance equation corresponds to

that used in the STARWALL code [46] for 3D resistive wall modes, although the

solution procedure applied here is different.

If Λ = 0 and λc > 0 , the configuration corresponds to a situation where the

plasma position is stable for ideal conductors but unstable if resistivity is taken

into account. The growth rate can be calculated with the equation

γ =
R
λ∗c
. (3.8)

If Λ is zero only for λ < 0 the plasma is stable even for resistive conductors.

As an example, shot number 23348 is shown which was created for the purpose to
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compare experimental with code results. The left picture in figure 3.3 shows the

z position of the current barycenter versus time. Active feedback is deactivated

in the red marked area and a vertical displacement event occurs.

Figure 3.3: Left: z position of the current barycenter for shot number
23348. Right: Eigenvalue Λ versus the normalized parameter λ∗ .

An exponential fit yields a growth rate of about 25 Hz. The right picture of figure

3.3 shows the transition of the sign of Λ . This point determines λc which yields,

inserted in eq. (3.8), a growth rate of about 3.6 Hz.

There are several possible explanations for the strong difference between the

experimental and theoretical value. First of all, the plasma is treated as if it would

be a perfect conductor and as a result, no electromagnetic field can penetrate the

separatrix. In reality, the plasma has a finite resistivity and following from that

a skin depth in which electromagnetic waves can penetrate. That’s why the

shape of the plasma must be modified for the calculations to an effective plasma

boundary. The skin depth is defined as δ =
√

2
µ0σω

(see section 2.5). Figure

3.4 shows the skin depth of copper and a plasma with different temperatures in

dependence on the growth rate.

For three different values of the temperature at the boundary (with the simpli-

fying assumption that the temperature is constant in this small boundary layer)

the resulting separatrix shapes and the corresponding values for γ are shown in

figure 3.5 .

The dependence on the choice of the ”cut off” plasma boundary is the most

critical one and the code exhibits numerical problems when including the x-point

into the calculations.

Furthermore the skin effect in the PSL has to be considered. The induced currents

do not flow on the surface, as it would be the case with high-frequency alternating
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Figure 3.4: Skin depth for a plasma with different temperatures and copper in dependence
on the growth rate (corresponding to a frequency).

Figure 3.5: Left: Effective plasma boundary considering the skin effect
(no change of total current). Right: Resulting growth rates for different
plasma boundaries

currents. In the contrary, the frequencies are relatively small (about 30 Hz in this

case), so that the currents are more localized in the inner part of the conductor.

This can be taken into account by reducing the size of the PSL which enhances

the self-inductance and reduces the coupling of the conductors to the plasma.

A third reason is the assumed resistance of the PSL. The value used here corre-

sponds to the steady state (dc) resistance. The ac-resistance is increased above
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this value by a factor dependent on the frequency, as the current flows only in

a part of the conductor. With all these corrections, it is possible to ”predict a

posteriori” the growth rates, i.e. reproducing the growth rate with reasonable pa-

rameters. Nevertheless, the constraint to know the growth rate before calculating

it is unsatisfying. That’s why another approach is pursued that is independent

of these corrections but covers the physics intrinsically. If doing so, the effort to

take the non-linearity into account is relatively small which makes its inclusion

obvious. This approach is described in the next sections.
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3.3 Non-linear resistive MHD code

The results of the preceding section show that several aspects of the linear model

lead to difficulties, which have a strong effect on the calculation of the growth

rate and other figures of merit. It was shown that the existence of an X-point in

the plasma has a severe impact, as well as the assumptions of surface currents

on passive conductors. Furthermore, experimental data shows that the growth

rate of an VDE is not constant during the time the instability grows (the growth

rate in figure 3.3 varies during the VDE). The most logical step to solve these

problems is the incorporation of resistivity in both plasma and passive structures

and to take the non-linear behavior of the instability into account, which makes

the solving of time evolution equations necessary. The MHD equations shown in

section 2.1 for an axisymmetric configuration build the basis for the treatment

of the problem. Two different approaches are followed for the treatment of the

problem. The first one makes the Slip Motion ansatz as it is described in section

3.1. This restricts this code version to β = 0 cases. The second approach takes

the effect of finite pressure into account.

3.3.1 Code version for β = 0

As mentioned above, the β = 0 version of the code uses the Slip Motion ansatz.

The condition for the plasma velocity (3.3) also could have been derived by

making a straightforward ordering ansatz of the relevant quantities. The MHD

equations are expanded in the inverse aspect ratio ǫ = a/R with a the small

and R the large plasma radius. Together with assumptions concerning density

and pressure, the resulting set of equations is called ”reduced MHD”, as many

terms of higher order in ǫ can be neglected and a smaller number of equations

has to be solved. For convenience, the MHD equations are repeated here:

∂ρ

∂t
+∇ · ρv = 0 (3.9)

ρ
dv

dt
− J×B+∇p = 0 (3.10)

ρ
∂e

∂t
+ ρ(v · ∇) e+ (γ − 1) ρe ∇ · v +∇q = J ·E+RRad (3.11)

E+ v ×B = 1
σ
J (3.12)
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∇× E = −∂B
∂t

(3.13)

∇×B = µ0J (3.14)

∇ ·B = 0 (3.15)

(3.16)

And the Slip Motion ansatz for the velocity

v = −R · (eφ ×∇η). (3.17)

Due to the restriction to β = 0 , no equation for the pressure (corresponding to

the energy balance (3.11)) has to be solved.

When inserting the Slip Motion ansatz into the continuity equation [52],[51], it

follows:
d(R2ρ)

dt
= 0.

The continuity equation is trivially fulfilled for the quantity τ = R2ρ , which is

initially assumed constant in space. An inward shift of the plasma will lead to

a higher density (which does not appear in the equations), as it is impossible to

keep both toroidal magnetic field and density incompressible. It can be shown

(see section A.4) that the Slip Motion ansatz with this assumption for the den-

sity eliminates all contributions of the toroidal magnetic field in the momentum

equation (3.10).

Although this is not a realistic assumption for the density variation, it is not

expected to influence the results in the regime of resistive wall modes, as there

the inertial forces are not important.

The magnetic field is described by

B = − 1

R
eφ ×∇Ψ+

R0Bφ,0

R
,

where R0 and Bφ,0 denote the major radius of the magnetic axis and the value

of the toroidal magnetic field on it, respectively. Equating the expressions for the

current in Ohm’s law (3.12)





JR
Jφ
Jz



 =
1

σ






ER + (v ×B)R
∂Aφ

∂t
+ (v ×B)φ

Ez + (v ×B)z




 =

1

σ






0
1
R
∂Ψ
∂t

+ (v ×B)φ
0




 (3.18)
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and Ampère’s law (3.14)





JR
Jφ
Jz



 =






0

− 1
µ0R

(
∂2Ψ
∂R2 − 1

R
∂Ψ
∂R

+ ∂2Ψ
∂z2

)

0




 (3.19)

leads to an equation that describes the time evolution of the poloidal magnetic

flux Ψ :

∂Ψ

∂t
+R

(
∂Ψ

∂z

∂η

∂R
− ∂Ψ

∂R

∂η

∂z

)

=
1

µ0σ

(
∂2Ψ

∂R2
− 1

R

∂Ψ

∂R
+
∂2Ψ

∂z2

)

=
1

µ0σ
∆∗Ψ(3.20)

The right hand side of this equation shows the dissipative character of the sys-

tem and is proportional to σ−1 (showing the difference to ideal MHD and the

linear code). The higher the conductivity, the smaller is the dissipation. The

conductivity treated as a surface quantity, its exact definition in the plasma is

given in section 3.4.3. At the plasma boundary and in the vacuum region it is

zero. The second term on the left hand side is the convective part, containing

the plasma velocity v and describing the movement of the plasma. Using Ψ as

evolving variable has the advantage that it is scalar and the poloidal magnetic

field Bp = − 1
R
eφ ×∇Ψ is divergence-free.

The force balance (3.10) gives a further scalar equation when applying the oper-

ator R · eφ (∇×) on it . One gets a time evolution equation for the vorticity

Ω = Reφ · (∇× v) (3.21)

which reads:

∂Ω

∂t
+ v∇Ω =

R4

τ

(

Bp · ∇
(
Jφ
R

)

+ 2
1

R2
JφBR

)

(3.22)

where some non-obvious vector identities have been used (shown in section A.4).

Note that in the case of an Grad-Shafranov equilibrium, the right hand side of

equation 3.22 vanishes. Again, the left hand side contains a convective part, but

there is no viscosity in this model.

For a given solution of Ω , the stream function η (and with it the velocity v ) is

obtained as the solution of the Poisson problem in cylindrical coordinates after

inserting the Slip Motion condition into (3.21):

∂2η

∂R2
+

1

R

∂η

∂R
+
∂2η

∂z2
= − Ω

R2
(3.23)
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From 8 independent variables in the ”standard” MHD model (three for the ve-

locity, three for the magnetic field, pressure, and temperature) only two remain:

the poloidal flux and the vorticity. So it remains to solve the equations (3.20)

and (3.22) and to use Ampere’s Law (3.19) and the relation (3.23) to obtain Jφ
(by differentiation) and η (by solution of the Poisson equation).

3.3.2 Extension to finite β

The model described in the preceding section is valid for only plasmas with β = 0

as it used the Slip Motion Condition. The model is now extended to treat con-

tributions from finite pressure. Under regular operating conditions of a tokamak

the energy balance (3.11) is governed by heat conduction and heat sources. How-

ever, non-linear VDEs occur mostly in anomalous conditions where other effects

(especially radiation losses) play a significant part, which can hardly be modeled.

The experimental reality could be matched by prescribing the evolution of the

plasma temperature profile (which is accessible with experimental means) via

p = 2 kT (Ψ, t)
ρ

mi
,

where T is the temperature, ρ the mass density and mi the ion mass. As we

are interested in instabilities growing on the relatively slow resistive time scale

(small compared to sonic, heat conducting and Alfvén time scale) and due to

the extremely high parallel heat conductivity (the parallel component is up to 10

orders of magnitude larger than the perpendicular component), the assumption

of T = T (Ψ) is reasonable. For the test cases shown in this work an adiabatic

law is used, as the exact choice of the temperature profile is considered to have

only a weak influence on the results. As consequence of the constancy of p and

T on flux surfaces, the density is a flux surface quantity as well.

The finite pressure leads to a modification of the vorticity equation (its derivation

is shown in section A.4):

∂Ω

∂t
+R

(
∂Ω

∂z

∂η

∂R
− ∂Ω

∂R

∂η

∂z

)

=
1

ρ

(

BR2∇
(
Jφ
R

)

− 2FF ′

R2

∂Ψ

∂z

)

.

Note that in the limit of β = 0 , FF ′/R is the total toroidal current density and

the equation is the same as (3.22) but with different treatments of the density.

Contrary to the β = 0 case, the density ρ is a flux surface quantity and the above

equation now depends on the pressure p and the function FF ′ , additionally to

the J×B terms that appear in both cases. The density at the beginning of the
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simulation, ρ0 , is chosen to be similar to experimental values. However, as long

as holds ρ = ρ(Ψ) , the exact density profile is not of high importance, as the cases

of interest are considered to be independent of inertia. Nevertheless, to avoid sin-

gularities when dividing by ρ , the ”vacuum” is assumed to have a density ρvac
(but no pressure or conductivity) to which the plasma density connects smoothly.

To model the time evolution of ρ , mass conservation is used:

M(Φ) =

∫

ρ(Φ)
dV (Φ)

dΦ
dΦ = const,

where V is the plasma volume inside a flux surface with Ψ = const and Φ is

the toroidal flux defined as the area integral

Φ(Ψ) =

∫

A(Ψ)

Btor dA.

The initial mass distribution M0(Φ) can be calculated with the given values for

ρ and dV (Φ)
dΦ

. Using the assumption that it doesn’t change during time evolution,

it follows that the density at the beginning and at every time step afterwards can

be calculated via

ρ(Φ) =

(
dV (Φ)

dΦ

)−1

· dM0(Φ)

dΦ
. (3.24)

To calculate dV (Φ)
dΦ

it is convenient to define an expression for the volume inside

a contour determined by the poloidal flux:

V (Ψ) = 2π

∫ ψ

Ψ0

dΨ

∮

Ψ

dlpol
Bpol

,

dV = V (Ψ + ∆Ψ)− V (Ψ) = 2πdΨ

∮

Ψ

R dlpol
|∇Ψ| ,

where dlpol is a line element on a contour of Ψ . Hence, with

dΦ(Ψ) =

∫

SΦ+δSΦ

BtordA−
∫

SΦ

BtordA = dψ

∮
1

|∇Ψ|
F

R
dlpol

and the chain rule
dV

dΦ
=
dV

dΨ
· dΨ
dΦ
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the desired expression is found.

As mentioned above, an adiabatic law is used to describe the pressure. It states

that the ratio p
ργ

, with γ denoting the adiabatic coefficient, does not change in

time. Hence at all times, the ratio has to correspond to the ratio at the beginning:

p(Φ, t)

p0(Φ)
=

(
ρ(Φ, t)

ρ0(Φ)

)γ

. (3.25)

The initial pressure profile p0 is given by the equilibrium and ρ0 can be fitted

to experimental data. As (3.24) determines ρ(Φ, t) , the time-dependent pressure

can be calculated.

The last remaining expression necessary for the vorticity equation is FF ′ . As

the net plasma motion damped by the resistive conductors evolves on a time scale

slow compared to the Alfvénic and the sound time scale, it can be assumed that

there is an equilibrium of forces due to pressure and J × B forces. Then, FF ′

can be calculated via the relation

R Jφ = R2p′ + FF ′. (3.26)

R Jφ is not constant on flux surfaces, hence a flux surface average is defined that

reads:

< f >=

∮

Ψ

fdl

|∇Ψ|
/∮

Ψ

dl

|∇Ψ| ,

where dl is a line element on a contour defined by the poloidal flux. For the

calculation of the integrals, a contouring routine is implemented (A.2). Applying

the average process on eq. 3.26 makes the quantities constant on flux surfaces

and yields

FF ′(Ψ) =

(

−
∮

Ψ

R2p′dl

|∇Ψ| +

∮

Ψ

RJΦdl

|∇Ψ|

)/∮

Ψ

dl

|∇Ψ|

p′ is given at the beginning of the simulation and then calculated at every time

step out of eq. (3.25) with
dp

dΨ
=
dp

dΦ

dΦ

dΨ
.
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3.3.3 Normalization

As the quantities vary strongly in their magnitude, it is useful and convenient to

normalize them. In absence of conductors, the vertical instability grows on the

Alfvénic time scale

τA =
R0

va
,

where R0 is a characteristic length of the system, usually the major radius of

the magnetic axis, and va the (poloidal) Alfvén velocity which is defined as

vA =
B0√
µ0ρ0

,

with µ0 the vacuum permeability, ρ0 the plasma mass density at the magnetic

axis and B0 a characteristic value for the poloidal field, e.g. at the last closed

flux surface on the high-field side of the torus. These definitions lead to the

normalization

t∗ = t/τA

v∗ = v/vA

where the asterisk symbolizes the lack of dimension. After a straight forward

normalization of the quantities and together with σ0 , the value for the plasma

conductivity at the magnetic axis, equations (3.22) and (3.20) become dimen-

sionless.

In the equation describing Ψ , the dimensionless Lundquist number

S = µ0 · σ0 · R0 · vA , which is the ratio of resistive time to Alfvén time, is

introduced.

∂Ψ∗

∂t∗
+R∗

(
∂Ψ∗

∂z∗
∂η∗

∂R∗
− ∂Ψ∗

∂R∗

∂η∗

∂z∗

)

=
1

Sσ∗

(
∂2Ψ∗

∂R∗2
− 1

R∗

∂Ψ∗

∂R∗
+
∂2Ψ∗

∂z∗2

)

(3.27)

Typical fusion plasmas1 have Lundquist numbers of the order 108 (often Lundquist

numbers based on the toroidal rather than on the poloidal magnetic field are

quoted which are typically one order of magnitude larger), whereas the code of

this work operates because of reasons explained in section 3.4.4 in the regime of

S ≈ 104 . Usually, equilibria of interest are stable if the conductors are ideally

conducting. The growth rate of an instability is then determined exclusively by

1 with a plasma current of about 1 MA , density ρ ≈ 1 · 10−7 kg

m3 and conductivity σ ≈
1 · 108 (Ωm)−1
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the resistivity of the passive conductors and their geometric properties, but not

by inertia, as outlined in section 2.4, and not by the plasma resistivity as shown

in section 4.3.1. In this regime, the mismatch of S can be compensated. The in-

stability evolves on the (normalized) resistive time scale on which the stabilizing

currents decay:

τ ∗w =
L

R
/

t0

introduced in section 2.4, or, expressed as growth rate:

γ∗w =
R
L

· t0 =
R
L

/

γ0. (3.28)

The resistance and inductance are those of the PSL and can be calculated (see

sections A.5 and 4.1.2 for details). Here, γ0 = 1/t0 = 1/tA is defined slightly dif-

ferent than in the current filament model. For a circular plasma, the expressions

can be transformed into each other, but the exact value is not important, as it

cancels out when calculating growth rates in absolute units.

Inserting the expressions for resistance, inductance and γ0 into eq. (3.28) leads

to

γ∗w = Γ∗
σ0

S · σPSL
,

where Γ∗ is a dimensionless factor dependent only on the geometry of the conduc-

tors. If now the growth rate depends only on the decay of the induced currents,

which is proportional to γw , the value of S is not important. Instead, for given

instability drive and coupling to the passive structures, the product S ·σ∗

PSL de-

termines the growth rate. As for the Lundquist number holds S ∼ 1
ρ
, low values

of S can be interpreted as enhanced plasma mass. That leads to a reduction of

frequency and growth rates of modes on the Alfvénic time scale but does not

influence the resistive wall modes.

3.4 Solving the system of equations

The set of equations cannot be solved analytically, hence a numerical method

has to be used. As mentioned at the beginning of this chapter, the finite element

method (FEM) is appropriate here for its good qualities concerning the inclusion

of conducting structures of arbitrary shape and its mature status of development

due to the broad applications in engineering problems. The basic mechanism of

the FEM is described in the appendix, to which is referenced as well for the more

detailed problems concerning the FEM. Essential for the FEM is the approxi-
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mation of all quantities through (mostly) polynomial functions on a mesh. In

this work, the mesh is irregular and constructed of triangles with an Delaunay

algorithm [25]. Triangles are the best choice when modeling irregular boundaries

and have some appealing qualities concerning the representation and integration

of quantities. The elements are superparametric quadratic triangles of second

order, i.e. the approximated quantities are represented by polynomials of second

order on straight-edged triangles (6-node-triangles). In principle, it would also be

possible to use curved (isoparametric) triangles without any change in the code

(however, the passive structures appearing in the applications do not make this

necessary). A picture of a typical mesh with about 6000 grid points is shown in

fig. 3.6. The number of points is significantly reduced to show the mesh struc-

ture. The code runs typically with meshes that have at least about 50.000 grid

points. In most of the applications shown here, the domain is rectangular and

1 1.5 2

−1

−0.5

0

0.5

1

R

z

Figure 3.6: Typical mesh used for the calculations

includes two subdomains, the upper and the lower PSL. The size of the elements

is quite homogeneous, except in the PSL, where the resolution is significantly in-

creased because of a potentially thin current layer due to the skin effect and the

subsidiary condition described in chapter 3.4.1 below. The discretization of the

domain transforms the equations to matrix equations. The rank of the matrices

is np , which is the number of grid points. The representation of the operators

and quantities is described in detail in section A.1. Both evolution equations

3.20 and 3.22 have to be linearized. This is done by solving each of the equation

at different stages of time. Starting with an initial solution for the poloidal flux

distribution, both equations for poloidal flux and vorticity evolution are solved.

Every n+ 1
2
time step, the equation for Ψ is solved and the current density j and

the magnetic field B is derivated from it. They are inserted in the right hand side
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of the equation for ω , which is solved every integer time step n . The velocity is

calculated and inserted in the convective terms of both evolution equations. Fig-

ure 3.7 shows schematically the solution pattern which is called leap-frog scheme.

This is an explicit time scheme, leading to a restriction concerning the maximum

time step ∆t (Courant-Friedrichs-Lewy-Condition, [50]) which is determined by

the ratio of the element size to the velocity, ∆t ≈ ∆x
va

. While the coupling of both

Figure 3.7: Leap frog scheme

equations is done explicitly, the equations themselves are solved implicitly. This

requires to solve a matrix equation every time step, involving the current state

of the system and the state of the next time step. This is more expensive than

explicit methods, where in principle only a matrix-vector-multiplication has to be

carried out. But as the time step restriction for the diffusion equation is propor-

tional to the inverse of the conductivity, ∆t ∼ 1
σ
, and the vacuum is considered

to be insulating (see section 3.4.3), the implicit method is chosen. Furthermore,

it is easily possible to impose subsidiary conditions for the solution as the system

of equations for each grid point is solved simultaneously. This advantage will be

used in the code and is described later in this chapter. Another reason speaking

against the explicit method is that it would require the inversion of the so-called

”mass matrix” (see section A.1.4). In many problems, this has to be done once

and afterwards, the simple matrix-vector-multiplication can be executed. As the

mass matrix depends in this case on a time dependent variable (the equation

for the time evolution of Ψ is multiplied by σ to avoid terms due to the partial

integration of the second order operator, see A.1), this inversion would have to be

done every time step. Even this would be possible with linear triangular elements,

because the mass matrix can be lumped, leaving only nonzero entries on the main
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diagonal. This is not the case for quadratic elements, where lumping leads to zero

entries and makes an inversion impossible (this can be circumvented by choosing

a different space for the finite element representation, that is ”enriched” by a

bubble function and dimensionally between quadratic and cubic elements [56];

nevertheless, this approach is not followed).

3.4.1 Passive Stabilizing Loops (PSL)

To model the connection of the both PSL legs, an potential difference δφ is

introduced that adds an electrostatic field to the electric field due to induction.

This field ensures the equality of the currents in the upper and the lower leg as

it leads to a compensating current. Inside the PSL, the equation describing the

poloidal flux takes the form

∂Ψ

∂t
− δφ =

1

σ · S∆
∗Ψ (3.29)

with δφ as new unknown variable. The current equality condition is implemented

via the condition: ∮

PSL1

Bpdl+

∮

PSL2

Bpdl = 0, (3.30)

where the ring integrals are the integral form of Ampère’s Law and encircle

the upper and lower PSL, respectively, and the magnetic field is expressed via

Bp = − 1
R
eφ × ∇Ψ . The gap in the PSL is treated as infinitely thin (to keep

axisymmetry) and inductance and resistivity of the bridge are neglected. As the

system is solved implicitly, the implementation of this constraint can easily be

done by extending the system of equations by one row, as the solution for each

grid point and the new variable δφ are calculated simultaneously. The physical

significance of δφ is the gap voltage, which forms across the gap if for example

net voltage is applied to the system (to maintain the plasma current against its

finite resistivity in a quasi stationary state).

3.4.2 Boundary conditions

As the problem dealt with includes elliptic operators in space for Ψ , one has

to specify boundary conditions for it on a curve enclosing the domain. The

computational domain is given by the data of an equilibrium solver and includes

the whole plasma, but not every coil that is necessary to generate the external
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fields (see figure 3.8).

Figure 3.8: Computational domain and position of the external coils

The simplest kind of boundary conditions is of Dirichlet type, i.e. the solution of

the problem has prescribed values on the boundary. If Ψ has prescribed time-

independent values, the boundary, which does not include the PSL surface but

only the border of the computational domain, behaves like an ideally conducting

wall, as ∂Ψ
∂t

= ∂R·A
∂t

= R Etangential = 0 . No flux can penetrate the wall, so it

has a stabilizing influence on the macroscopic motion of a plasma as mentioned

in previous chapters. The stabilizing effect of the wall depends crucially on its

distance to the plasma and is by far strongest for the m=1 mode (i.e. in the

axisymmetric case for a displacement of the plasma column) as a rigorous calcu-

lation of the energy contributions shows [9]. A way to treat the problem more

realistically is to impose Ψ(R = 0) = Ψ(R = ∞) = 0 (as the absolute value of

the poloidal flux has no meaning but only its derivatives, the choice of Ψ being

zero at infinity is arbitrary but convenient). The stabilization is then achieved

only by the PSL, but as the stabilizing effect of the real experimental wall is

rather small due to its large distance to the plasma and the very short resistive

time tR = L/R , this treatment of the problem is much more realistic than using

the ideal wall condition even when modeling the exact geometric wall of the de-

vice. As an ideal wall is strongly stabilizing, it would have to be placed far away

from the plasma, but this approach is impracticable due to its huge calculation

effort. So realistic results within reasonable computation times are possible only
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with a boundary that allows unhampered flux penetration. Its implementation

can be achieved with the help of Green’s functions. Imagine two domains I and

O , where I shall be totally included in O (see fig. 3.9) and δI (red) marks

the boundary between them. Any current distribution JI in I will generate a

Figure 3.9: Different domains I ,O , and δI and the poloidal flux Ψ
for different current distributions (marked blue). Left: filament. Right:

surface current.

magnetic field in I and O . In figure 3.9 on the left, this current distribution is a

filament (blue dot), the shown isocontour lines belong to the associated poloidal

flux. One can find a unique surface current distribution σδI on the boundary

for which the associated magnetic field in O and on the boundary δI is exactly

the same as if it was generated by the original current distribution JI [54]. This

case is shown in figure 3.9 on the right. For the moment, it is assumed that

this current distribution on the boundary σδI was known. Green’s function for

the Grad-Shafranov operator that relates the poloidal magnetic flux Ψ to the

generating toroidal current reads [17],[8]

G(r, r′) = −µ0

π

√
RR′

k

[(

1− k2

2

)

K(k)− E(k)

]

(3.31)

with K and E the complete elliptical integrals of first and second order and k

defined as

k =
4RR′

(R +R′)2 + (z − z′)2
,

with r and z the usual cylindrical coordinates and the prime denoting the source

points. Following the method of Green’s functions, multiplying the inhomogene-

ity (the surface current density) with G(r, r′) and integrating over the domain
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leads to the solution for Ψ , intrinsically using boundary conditions at infinity.

As this calculation is only necessary to define boundary conditions, this solution

is only needed on δI , hence:

Ψ(s) =

∮

δI

G(s, s′)σδI(s
′)ds′ (3.32)

with s a continuous coordinate on δI . The aim is to identify the region I

with the computational domain that is used in the code and mentioned above.

Then it is clear, that the boundary δI has no physical meaning and that there

is not any real surface current on it. One needs the values of the magnetic

flux on δI that would result, if there were a surface current equivalently to

the current distribution in I . For matching to the ”inner” solution, Ψ and

the tangential magnetic field inside and outside I have to be continuous. The

tangential magnetic field reads

Btan = et ·
(

− 1

R
eφ ×∇Ψ

)

= − 1

R
en∇Ψ = − 1

R
en ·

∮

δI

∇G(r, s′)
∣
∣
s
σδI(s

′)ds′,

with et and en the unit vectors in tangential and normal direction, respectively.

If now the quantities are discretized, the integral equations turn into matrix

equations. Hence, eq. (3.32) is written as

Ψi = Gik · σk,δI

and G can be inverted to get an discretized expression for the discretized surface

current density σk,δI ,

σk,δI = G−1
ik Ψi

which is inserted in the discretized equation for the tangential magnetic field:

− 1

R
en∇Ψ

∣
∣
l
= − 1

R
G∗

l,k σk,δI = − 1

R
G∗

lk G
−1
ik Ψi

with the matrix G∗

l,k as result of discretizing en ·
∮

δI
∇G(r, s′)

∣
∣
s
. This condi-

tion links the values of Ψ on the boundary with its normal derivative, ensuring

that the inner solution will satisfy the true boundary conditions at infinity. The

formulation is similar to Robin boundary conditions, but while these are defined

locally, here all values of Ψ on δI contribute to the value of the normal deriva-

tive.

As described above, the boundary condition applies only for currents inside the

computational domain. As shown in figure 3.8, several currents are positioned

beyond the computational domain, e.g. the currents in the shaping coils, but
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their fields contribute to the magnetic flux distribution of the initial plasma.

When applying the boundary condition, the ”external” contributions to Ψ on

the boundary must be subtracted, leading to

− 1

R
en (∇Ψ−∇Ψext)

∣
∣
l
= − 1

R
G∗

l,k σk,δI = − 1

R
G∗

lk G
−1
ik (Ψi −Ψext) .

A further change of the boundary conditions is necessary if time changes in cur-

rents in external conductors are to be included. A practically important case is

that of an applied loop voltage, necessary to keep the plasma current constant in

spite of resistive dissipation, which is treated mathematically in section 3.4.4.

The condition applied in the code for the velocity stream function on the bound-

ary (including the PSL boundary) reads η = 0 . This leads to vanishing normal

components of the velocity perpendicular to the boundary. The same condition

is used for the vorticity ω . Although this does not match the real conditions for

the outer boundary, where no wall shall exist, the introduced error is small as

long as the plasma is sufficiently far away from the border of the computational

domain. This condition is met for all considerations made in this work.

3.4.3 Remarks on the conductivity σ and the force term

Special attention is given to the conductivity. In the whole vacuum region σ is

zero so that no currents exist there. Inside the plasma, it is treated as a flux

quantity as it is a function of the temperature [10] for which holds T = T (Ψ)

following the considerations made above. The initial conductivity profile is cho-

sen to be consistent with the equilibrium current distribution, i.e. it is calculated

as flux surface average < R Jφ > , leading to a profile σ(Φ(Ψ)) . In regions in-

side the separatrix where the toroidal flux increases beyond its initial value (e.g.

caused by an increased plasma volume at the same position on the R-axis), the

conductivity is zero as well; if the toroidal flux decreases, the conductivity profile

is irreversibly cut off. This mechanism is illustrated in figure 3.10. The separatrix

(in a case of a divertor plasma) is found by searching a saddle point in Ψ , as

the absolute value of the poloidal magnetic field vanishes at the X-point. Having

located the X-point and knowing the value of Ψ at this position, the separatrix

can be identified by an tracing algorithm [58]. Inside the PSL, the conductivity

is finite again. In ASDEX Upgrade, its value is that of copper, which means that

the conductivity inside the PSL is about a third of the value at the center of a

typical plasma. Of a more numerical interest is the treatment of the representa-

tion of σ . As there is a large, abrupt jump between the conductivity inside and

outside the PSL, the question arises how to deal with the boundary nodes. Here,
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Figure 3.10: Exemplary initial conductivity profile (blue). If the toroidal
flu decreases (e.g. by shrinking), the profile is cut off irreversibly.

the boundary nodes are associated with two values for σ : one, if the operation

of interest happens inside the PSL, the other if operating outside. This is quite

similar to the method of Discontinuous Galerkin with the difference, that σ is

not a variable one is looking a solution for.

Another quantity that needs special treatment is the right hand side of the vor-

ticity equation as it contains the expression ∇Jφ . Usually, a derivative operation

on a quantity results in the reduction of the order of representation and as the

current density is essentially the second derivative of Ψ , it would be already a

0-th order representation (constant in an element). There exist schemes to con-

struct derivatives of such given distributions (similar to those used in the finite

volume method), but they lead to an inaccuracy one should be anxious to avoid.

A better way, which is used in this work, is the method of patch recovery, where

local least square fits are performed over several elements (”patch”) after each

derivation. Details can be found in section A.1.5. Figure 3.11 shows an compar-

ison of the result of ∆∗Ψ on a relatively coarse grid once using the ”standard”

procedure (left) and patch recovery (right).

3.4.4 Dissipation

Finite elements are advantageous when modeling irregular boundaries or struc-

tures and dealing with pure elliptic or parabolic problems. Convection-diffusion

and convection equations can be cumbersome, if the convective part becomes too

large compared to the ratio of finite element diameter to the time step (CFL cri-

terion). The procedure gets unstable and the solution is polluted by non-physical
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Figure 3.11: Result of ∆∗Ψ . Left: ”standard” procedure. Right: patch
recovery.

oscillations. Various techniques have been proposed for the stabilization (e.g.

exponential fitting, symmetrization, upwinding, least squares regularization, ..

[55]). Those approaches are not followed here but could be added at a later point

of time. Instead, it is ensured that the ratio of finite element diameter divided

by the time step ∆t to the velocities appearing is small enough to avoid those

oscillations as described in section 3.4.

For all results and examples shown in this work, the Lundquist number S (pro-

portional the inverse of the diffusion coefficient) used in the calculations never

exceeds 105 . Together with the remaining normalization factors, that means a

conductivity of the plasma of about 103 − 104 . As under these assumptions the

dissipation of the plasma current can proceed on a faster time scale than the ver-

tical instability, particularly when latter is strongly stabilized, the plasma current

would decay significantly. The plasma would shrink and, due to the constancy

of the external fields, move radially inward, making realistic statements about

the growth rates impossible. To avoid the resistive decay of the plasma current a

loop voltage simulating the action of the Ohmic transformer in the torus center

is externally applied. The same mechanism is used in the experiment to control

and maintain the current. The value of the loop voltage is, however, larger than

in a realistic experiment due to the unrealistically small plasma conductivity.

Because both dissipation and induction depend on σ , the current ”refreshes”

self-similarly, if the conductivity is chosen consistently with the initial current

distribution, which is ensured by the procedure described in section 3.4.3. The

time rate of change of flux (loop voltage) is prescribed as a further boundary

condition (additional to the boundary condition described in section 3.4.2), its
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value is given by the feedback condition

Ψ̈ind = const. · İP lasma,

where dots denote temporal derivatives. The condition ensures that a stationary

current results in a constant Ψ̇ , i.e. a constant loop voltage. The exact value

of the constant is not important, as the system will converge to a value of Ψ̇ind

that compensates exactly the loss of current. Because of the subsidiary condition

for the PSL, they are unaffected by the change of flux.



4 Application and results

4.1 Testing and validation

The first step after the development of the code is to check if its results are

physically reasonable. For the moment, only the general behavior of the code

is examined based on relatively simple test cases (quantitative results are dis-

cussed in section 4.3). To minimize deviations from the well-understood current

filament model, elliptical up-down-symmetric plasmas are used to show the ba-

sic phenomena. The degree of instability is varied by the ellipticity κ = b/a

of the plasma where b and a are the major and minor axis of the ellipse, re-

spectively. Figure 4.1 shows several plasma boundaries of equilibria that were

created by successively increasing the currents in the shaping coils and with it

the destabilizing force dcurv that acts on the plasma and is introduced in section

2.4. Another parameter that can be varied is the resistivity of the conducting

structures around it, which determines the growth rates of potential instabilities.

The plasma equilibria are calculated with the Garching Equilibrium Code ([42])
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Figure 4.1: Degree of ellipticity

that gives the poloidal flux function in dependence on the desired plasma shape,

51
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current, βp , position of the magnetic axis and the current and pressure profiles.

The currents in the poloidal field coils (see fig. 2.11) are adjusted by an iterative

procedure to create a plasma governed by the Grad-Shafranov equation.
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Figure 4.2: Poloidal fluxes for an equilibrium with βp =0 and li ≈ 1 .
a) Total flux for ( κ=1.33) b) Ψ due to plasma current for κ=1.33 c)
Ψ due to external currents for κ=1.33 d) Ψ due to external currents
for κ=1.09

Figure 4.2 a) shows Ψ contours of an example equilibrium which has like all

the other equilibria in this section βp=0, its magnetic axis at R = 1.62 m, z =

0 m and a virtual limiter at z = 0.4 m that determines the plasma boundary

(highlighted in red). The plasma current is Ip = 1.2 MA . Outside the plasma

region, the conductivity is zero as described in section 3.4.3 except in the PSL,
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where its value can be varied. The position of the PSL is almost identical to their

position in ASDEX Upgrade, however, they are up-down symmetric as well in

order to minimize sources of potential deviations from the simple model. Their

boundaries are marked with black lines. Figure 4.2 b) shows the poloidal flux that

is generated only by the plasma current. This figure also demonstrates the effect

that leads to the hoop force: the magnetic pressure on the inside is larger than

on the outside of the plasma torus (dense poloidal flux contours mean a stronger

magnetic field). Figure 4.2 c) shows the contributions to the flux of the external

conductors for the equilibrium with κ = 1.28 . In contrast to figure d), which

shows the contribution of the external conductors for the case with κ = 1.08 ,

there is a strong destabilizing component dcurv ∼ ∂BR

∂z
.

4.1.1 Vertical movement

At first, the case with the highest ellipticity (κ = 1.28 ) and without any stabiliz-

ing conductors (nor a conducting wall nor PSL) is discussed. As the plasma shape

differs significantly from a circular form, a quite strong instability is expected.

Figure 4.3 shows the position of current barycenter z∗c in dependence on the time

and the position of the plasma boundary at the beginning of the calculation and

at t∗ = 7 . The coordinates of the current barycenter are calculated via

(zc − z0)I =

∮

∂Ω

µ−1
0

(

−R log
R

R0

Bn + (z − z0)Bs

)

ds, (4.1)

(R2
c − R2

0)I =

∮

∂Ω

µ−1
0

(
2R(z − z0)Bn + (R2 −R2

0)Bs

)
ds, (4.2)

where quantities with index 0 refer to an in principle arbitrary reference point,

which in the following is chosen as the equilibrium position. Quantities with index

c to the position of the barycenter. R and z are the midpoints of line elements

ds which lie on a curve enclosing the whole plasma (but no other currents like

those in the PSL for the case with conductors, see [40]). Bn and Bs are the

magnetic field components which are perpendicular and tangential to ds .

As expected, the z position shows an exponential behavior,

(z∗c (t
∗)− z∗0) = z∗a · eγ

∗(t∗), (4.3)

where z∗0 denotes the equilibrium position (in these examples z∗0 = 0 ) and z∗a
is a small but non-zero initial displacement from the equilibrium. Due to the

up-down-symmetry of the equilibrium, it is impossible to predict whether the
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Figure 4.3: Left: Z position of the magnetic axis vs. time (note that the instability pro-
ceeds on Alfvénic time scale). Right: Plasma boundary at the beginning and at t∗ = 7 .

instability grows upwards or downwards. The initial perturbation here results

from the asymmetry of the finite element mesh. For convenience, all shown z-

positions of the plasma are positive. The linear growth rate is obtained by taking

the logarithm of eq. (4.3), leading to

ln(z∗c (t
∗)) = log(z∗a) + γ∗(t∗). (4.4)

If z∗0 is not zero at the beginning, another method described in section 4.4 is used.

Figure 4.4 shows the logarithm of z∗c for three cases with different elongations

( z∗0 = 0 ).

The phase of linear growth begins after short time (about two time units nor-

malized to Alfvén times after the most unstable mode has manifested) and ends

approximately at z∗c = 0.1 for these cases.

Figure 4.5 shows isocontours of the stream function η for an undamped axisym-

metric instability.

4.1.2 Passive conductors

1. Slowed growth

The most important quality of the passive conductors is that they slow

down the growth of an instability. Figure 4.6 shows an example of a plasma

which would be stabilized by ideal conductors. It shows the z-position of
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Figure 4.5: Stream function η for an undamped axisymmetric
instability.

the current barycenter for the case of no conductors (blue line) and resistive

PSL (red line). A detailed examination of their influence on growth rates
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is done in section 4.3.
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Figure 4.6: Effect of conductors on the growth rate.

2. Equality of currents

The test cases with elliptical equilibria are also suitable to examine the

behavior of the PSL. The most simple and obvious test is to check whether

the currents in the upper and lower PSL are equal but of opposite sign.

Figure 4.7 shows that this conditions is fulfilled exactly. It shows the PSL

currents versus time for the case with κ = 1.28 and σPSL = 0.01 , but the

condition holds for any case. As the equality is enforced via an additional

equation, the perfect match is not surprising. As the currents are always

the same in amount, in the further work only the positive current is shown.

Figure 4.7 also shows that the current grows exponentially similar to the

vertical position of the plasma.

3. Compensating voltage δφ

Due to the coupling of the PSL, there should be no currents due to symmet-

ric changes of the flux, i.e. a change of flux dΨ
dt

at the upper PSL does not

lead to a current induction inside of it, if the same change of flux occurs at

the lower PSL, because the currents would have the same toroidal direction

and cancel each other as described in section 3.4.1. Symmetric changes of

the flux can occur for homogeneous dissipation of the plasma or a radial

movement. A vertical movement will result in an asymmetric change and

leads to opposed currents in the PSL. Figure 4.8 shows the values of the

poloidal flux versus time at two points close to the inner side of the upper
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Figure 4.7: Currents in the upper (red) and lower (blue) PSL.

and lower PSL, respectively. At both points, Ψ decreases monotonically

Figure 4.8: Left: ∂Ψ
∂t for upper (red) and lower (blue) PSL Right: δφ

due the compensating flux that maintains the plasma current (as the de-

crease is symmetric, the lines are almost indistinguishable). No current

exists in the PSL. Equation 3.29 states, that the change of flux in time

must be compensated by the voltage δφ to guarantee equality of currents.

Indeed, ∂Ψ∗

∂t∗
≈ −2.4 · 10−4 equals the value for δφ as shown in figure 4.8.

If now, for the same parameters, movement is allowed and the typical ver-

tical displacement occurs, a different situation can be observed. The left

picture in figure 4.9 shows the change of flux at both PSL less the flux

due to ohmic heating discussed in the figure above. In this way, only the
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asymmetric change of flux is considered. While the divergence of Ψ at

Figure 4.9: Left: ∂Ψ
∂t for upper (red) and lower (blue) PSL Right: δφ

the end of the curve leads to the expected current increase (right picture

in the same figure), the oscillation at its beginning is not reflected. The

reason is that the oscillation of the flux reflects a radial oscillation of the

plasma position. It is a relatively small, damped movement because the

finite resolution of the mesh doesn’t resolve exactly the initial equilibrium.

The radial position of the plasma center and the voltage δφ are depicted

in figure 4.10. As can be seen, the change of flux due to radial movements

is caught by δφ . A purely vertical rigid shift leads to δφ = 0 .

Figure 4.10: Left: δφ Right: Radial position Rc of the plasma barycenter

4. Skin effect



4.1. Testing and validation 59

As the PSL have a finite extension, it is expected that the current distri-

bution inside differs from homogeneity for high growth rates and conduc-

tivities, according to eq.(2.34) and described in section 3.2. This is one

effect suspected to lead to differences between experimentally observed and

computed growth rates, particularly close to the limit of marginal stabi-

lization by infinitely conducting PSL. It can be illustrated when comparing

the current distributions in the PSL for two cases with different dcurv ,i.e.

different degrees of instability, but with similar growth rates and at the

same plasma position. In both cases, the total PSL current is roughly the

same, but their conductivity differs by a factor of 100.
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Figure 4.11: Left: low PSL conductivity Right: high PSL conductivity

As expected, in the case of high conductivity, the current flows in a thin

layer, whereas it is almost homogeneous if the conductivity is low. This

can be quantified by calculating the effective internal inductance li (which

was defined for the plasma in section 2.3) of the PSL. For an circular wire

with infinite aspect ratio, li is zero, when the current flows only on the

boundary, li=0.5 for a flat current distribution and it’s higher for peaked

current profiles. The PSL are not circular and have no infinite aspect ratio

leading to deviations from the known model, that can be calculated with

Green’s function for toroidal currents (see 3.4.2). A surface current leads

then to a value of li ≈ 0.16 and a flat current distribution to li ≈ 0.65 .

Figure 4.12 shows the internal inductances against the vertical displacement

zc∗ . The first values of z∗ are omitted, because small oscillations in the

first phase of the motion including zero-crossings in the PSL current lead

to extremely high values for the internal inductance. The dashed lines

show the inductance for the PSL, the plasma moves towards, the solid lines
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Figure 4.12: Left: z-position of the current barycenter for a relatively stable
case with low conductivity in the PSL and a relatively unstable case with high
conductivity in the PSL. The growth rates are almost the same. Right: Effective
internal inductance inside the PSL. Solid lines belong to the PSL from which the
plasma moves away, dashed lines to the other.

those for the PSL from which the plasma moves away. The latter remain

approximately constant during the displacement, while the former increases.

That occurs because the plasma ”overtakes” the PSL partly and a current of

opposed direction is induced to hold the plasma back, whereas the current

direction in the other PSL stays the same. Note that the plasma motion is

followed deep into the non-linear regime, where the growth rate cannot be

considered as constant anymore. For the case of low conductivity and flat

current distribution (blue lines), the value of li = 0.65 is matched very well

for both PSL after a small displacement. The case with high conductivity

exhibits a deviation from the value of 0.16 , because the current layer is

neither homogeneously distributed on the surface nor infinitely thin. It’s

worth mentioning, that even if the internal inductance for the ”towards”-

PSL in this case reaches a value of about 0.5, it does not mean that the

current distribution gets flat. Instead, the current begins to peak on the

surface and it is impossible to draw conclusions on the exact contributions.

5. Current decay time of the conductors

The nominal current decay time L/R can be calculated using the equations

(A.21) and (A.22) in section A.5 or determined ”experimentally” by the

code when the initial poloidal flux corresponds to homogeneous currents in

the PSL as it is shown in figure 4.13 on the left. Ψ can be calculated with

Green’s function introduced in section 3.4.2. The currents are equal but of

opposite direction, so no compensating currents to enforce this condition
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are necessary and δφ is zero. The right picture shows the value of the
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Figure 4.13: Left: Ψ distribution for test Rc Right: Current decay
in the PSL, resistive time L

/
R

normalized current in the PSL (logarithmic scale) versus time in seconds for

a resistance R = 0.96Ω . The decay time can be determined by measuring

the time it takes until the current reaches 1/e of its initial value I0 , as the

decay law reads

I(t) = I0 · e−
t

L/R .

Alternatively, the slope of the curve can be calculated. The result of the

of the analytical calculation is La ≈ 1.3 10−5H , the code yields Lc =

1.296 10−5H . This value agrees with the specifications written down in the

technical documentation of ASDEX Upgrade [24].

4.1.3 Plasma pressure

Until now, only equilibria with β = 0 were used for the calculations. Before

dealing with the effects of finite pressure, a comparison of the results of both

code versions (the first one with the Slip Motion ansatz, the second without it) is

done. Figure 4.14 shows the motion of the current barycenters for two different

ellipticities calculated with both code versions. The first case is very unstable

and the growth is inertia dominated whereas the second one is stable with ideal

conductors and evolves on the resistive time scale. Both cases have the same

mass but different density profiles. Picture a) corresponds to the first case and
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shows the growth versus time. The dependence on the density profile is obvious.

Picture b) shows that if the growth depends exclusively on the resistivity of the

conductors and not on inertia both code versions yield the same result. This

situation corresponds to the one we are interested in our practical applications.
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Figure 4.14: Left: Growth for an unstable plasma. The blue curve is the
result of the code version with the Slip Motion condition ( ρ = 1/R2 ),
the red curve is the result of the other code version with ρ = ρ(ψ) .
Right: Stabilized plasma with growth on the resistive time scale.

Now a set of three equilibria (stable for ideal conductors) with different values for

β (β=0, 0.5 and 1.0) is generated. All other characteristics like ellipticity, total

current and so on are kept constant (to obtain plasmas with the same ellipticity

but different values for β , the external currents to generate an equilibrium must

be adjusted). Figure 4.15 shows radial cross sections at z = 0 for the normalized

poloidal flux Ψ̂ (left picture) and the function R · Jφ . With increasing plasma

pressure both magnetic axis and current barycenter are shifted outwards.

As the current barycenter is closer to the PSL for higher β -values, the better

inductive coupling leads to decreased growth rates for such cases as figure 4.16

shows for the case of γw = 0.1 .

Figure 4.17 shows some typical profiles of the β = 0.5 case, figure 4.18 shows

the evolution of volume, density and total mass for the same case.
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Figure 4.15: a) Cross section of the normalized poloidal flux Ψ̂ for an
elliptical plasma along the z=0 axis. The blue line corresponds to β = 0 ,
red to β = 0.5 , and black to β = 1 . b) Profiles for the function R · Jφ
with the same color code.
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Figure 4.16: z-position of the current barycenter for β = 0 , β = 0.5
and β = 1 .

4.2 Effect of boundary conditions

The influence of the boundary conditions is now examined. First of all, the sta-

bilizing effect of an ideally conducting wall boundary condition is demonstrated.

Figure 4.19 shows an elliptical plasma with κ = 1.2 and β = 0 . Calculations are

done with different positions of the computational boundaries. The configuration

with the more distant boundary is called grid A, the other grid B. On the right,

the current barycenter of the plasma versus time is shown. The blue line (almost
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completely covered by the green line) shows the growth with the implemented

condition Ψ(R = ∞) = 0 on grid A. The red and black lines show the growth in

presence of a more distant and a closer ideal wall, respectively. The stabilizing

effect (the growth rate for the configuration with an ideal wall on grid A corre-

sponds approximately to a configuration without ideal wall but with PSL and

γ∗ = 0.05 ) and the dependence on the distance is clearly seen. The green line

corresponds to the same condition as the blue one, but on grid B. Obviously, the

position of the computational domain is not important for the calculation of the

growth rates, as they show almost identical behavior.
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Figure 4.19: Left: Ψ contours of an elliptical equilibrium. The red line denotes
the plasma boundary. The black lines mark the computational boundaries for the
larger grid A and the smaller grid B. Right: z-position of the current barycenters
for the case of Dirichlet boundary condition corresponding to an ideal wall on grid
A (red) and ideal wall on grid B (black), and no wall boundary condition (like
described in section 3.4.2) on grid A and grid B (green), respectively. The result
for the blue and green cases are indistinguishable on the scale of this plot.

As the wall geometry is not modeled appropriately and the stabilizing influence

in experiments is considered to be small on the present ASDEX Upgrade as

described in section 3.4.2, the choice of magnetically permeable walls is indicated.

Independent of the choice of boundary conditions, an spatially constant external

flux is impressed at the computational boundary, whose time variation simulates

the effect of an applied loop voltage as described in 3.4.2. Figure 4.20 shows the

evolution of the plasma current of an ideally stable plasma equilibrium for the
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case with (blue) and without (red) applied loop voltage to maintain the current.

In the absence of an applied loop voltage, the current decreases monotonically.
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Figure 4.20: Plasma current with (blue) and without (red) applied loop
voltage.

As a consequence, the lower current leads to an inward shift (shown in figure

4.21), as the currents in the external shaping coils do not change. Due to the

greater distance between plasma current and passive conductors, the inductive

coupling decreases, leading to axisymmetric instability (at a later stage).
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Figure 4.21: Left: Radial position of the current barycenter Rc Right: Plasma volume

That additionally to the total current the current profile remains the same de-

spite the applied voltage is shown in figure 4.22 (the reason is the choice of the

conductivity profile described in section 3.4.3). A cut at the z = 0 axis in radial



4.3. Comparison with current filament model 67

direction shows the current density profile ( β = 0 ) at the beginning (blue) and

after 40 Alfvén times (red).
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Figure 4.22: Current profile, cut at z = 0 for t∗ = 0 (blue) and t∗ =
40 (red).

4.3 Comparison with current filament model

After the testing procedures of the last chapter that served to show the qualitative

behavior of the code, the focus is now on concrete results. Therefore, growth rates

are calculated and compared to the results of the current filament model. For this

an experimental situation is chosen for which a good qualitative approximation

of the filament model is expected. To determine parameters appearing in the

filament model, full simulations with our model are carried out, using only the

linear stage of the development, and the equivalent values are calculated.

As first parameter, the effective value of the normalized destabilizing force dcurv
is determined for each configuration of the set of elongated plasma presented in

the last chapter. For the moment, it is assumed that no stabilizing conductors

exist that influence the growth of the instability. The movement is then governed

by inertia and γ∗w in eq. (2.32) can be treated as infinite. dcurv can then be

calculated for each case via

γ∗2undamped + scond ·
γ∗undamped

γ∗undamped + γ∗w
− dcurv ⇒ γ∗2undamped = dcurv (4.5)

where the growth rates are determined by the like described in the preceding

section. The blue curve in 4.23 shows the expected increase of dcurv with the
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elongation κ . It can be seen that for the aspect ratio and the current distribution
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Figure 4.23: Normalized destabilizing force dcurv versus ellipticity κ

used a plasma with an ellipticity smaller than about κ = 1.07 is stable even in the

absence of conducting structures. This agrees with former results (e.g. [44],[13])

and is caused by the stabilizing effect toroidicity has on vertical stability.

Now, the effect of resistive conductors is included. When the conductivity is

very high (ideal conductor), the plasma is stable until dcurv is larger than scond .

Beyond that point, the plasma is unstable despite the ideal conductors and the

resulting instability is inertia dominated. The calculated growth rates γ∗damped
are shown in figure 4.24.
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Figure 4.24: Normalized growth rate γ∗damped versus ellipticity κ

For high conductivities γ∗w = R/L
γ0

is very small compared to the growth rate
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γ∗damped and hence

γ∗2damped + scond ·
γ∗damped

γ∗damped + γ∗w
− dcurv = 0 ⇒ γ∗2damped = dcurv − scond (4.6)

As dcurv is known from the analysis without conductors, scond can be calculated

from eq. (4.6). Figure 4.25 shows the resulting values for scond . In the current

filament model, it is expected that scond is constant for all configurations, as the

position of the conductors is fixed and deviations in mass and mutual inductance

for the equilibrium configurations are considered to be negligible. Figure 4.25

shows that scond is not completely constant, but decreases towards lower values

of κ . The reason behind this is that the plasma has, contrary to a filament, an

extension and its movement is not restricted to a rigid vertical shift. As stated in

section 3.1, the movement has a radial component as well that causes a movement

away from the conductors and hence lowering their stabilizing influence. The

closer the configuration is to marginal stability (no restoring or enhancing forces

as reaction on a displacement), the stronger is the deviation from the rigid shift

towards a radial curving. A more detailed examination of these effects follow in

section 4.4.
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Figure 4.25: dcurv and scond

The knowledge of scond and dcurv allow for the reconstruction of figure 2.13 in

chapter 2.4. The parameter γ∗w = R
L
/γ0 is varied by changing the value of the

PSL conductivity σPSL , leading to different values for their resistivity R . The

normalized growth rates against the ratio dcurv/scond and γ∗w as parameter is

shown in figure 4.26.
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Figure 4.26: Analytical (left) and numerical (right) growth rates with γw as parameter.

scond is assumed to be constant, because it is known only for the cases of ideally

unstable plasmas. In this representation, this leads to small deviations in the

normalized growth rates compared to the analytical model. Nevertheless, the

code results can be fitted very well to the expected values. Note that for the

purpose of comparison the growth rates are determined in a region where they

can be treated as linear growth rates.

4.3.1 Resistive growth

To distinguish resistance and inertia dominated regimes, the growth rates for the

case dcurv
scond

= 0.5 in dependence on the PSL conductivity σ∗

PSL are examined.

This corresponds to a vertical cut in figure 4.26. The analytical prediction and

the numerical result is shown in figure 4.27 on the left. Until γw ≈ 0.1 the

growth rate increases linearly with the resistance of the passive conductors which

is typical for resistive wall modes. The value of γw until which this linear relation

holds is dependent on the value of dcurv
scond

: the more unstable a configuration is,

the smaller is this limiting value of γw .

The right picture in the figure shows the z-positions of the current barycenter for

increasing values of σPSL . The time on the abscissa is normalized to the resistive

time tR = L/R of each case. This leads to an universal curve for the growth

of vertical instabilities if it is determined only by the resistance of the passive

conductors.

This behavior is reflected as well when plotting the currents in the PSL versus

the z-position of the plasma as shown in figure 4.28. In the regime of resistive
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Figure 4.27: Left: analytical predictions and numerical results for the normalized growth
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Figure 4.28: Current in the passive conductors versus z position of the
plasma current barycenter

growth, the currents in the PSL depend only on the position of the plasma.

It remains to show that the growth rates does not depend on the value of S but

on the value of γw ∼ 1
S σ∗PSL

as outlined in section 3.3.3. Figure 4.29 shows

the time evolution of the plasma current barycenter for three cases which have

all γw = 0.1 . The red line corresponds to the reference case with Sref ≈ 3000

and σ∗

PSL,ref = 0.825 . The blue line has its value for S decreased by a factor of

five, whereas the conductivity in the PSL is increased by the same factor. These

parameters are reversed for the black line. The resulting growth rates are the

same.
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Figure 4.29: Current barycenter of the plasma versus time

4.4 Application to realistic plasma

configurations at ASDEX Upgrade

After the last sections showed that the code reproduces all expected phenomena

properly, it shall now be applied to realistic configurations as they appear in the

tokamak ASDEX Upgrade. In the past, several plasma discharges were created

exclusively to examine vertical displacement events and the code is run to check

whether the observed growth rates can be reproduced. For this purpose, for all

following results the PSL are positioned like they are in ASDEX Upgrade and

the boundary condition for the poloidal flux is Ψ = 0 at infinity.

4.4.1 Moderately unstable cases

The first comparison between the behavior of an experimental plasma and the

results of the developed code is done with the plasma discharges # 23127 and #

23124 which originate from a series of experiments to examine vertical displace-

ment events. At first, the plasma with shot number # 23127 is examined. It is

moderately elongated (κ=1.61, defined on the flux surface with Ψnorm = 95%),

the current is 0.8 MA and the poloidal βp is 0.26 . Active feedback is switched

off at t = 2.0s so the plasma is allowed to move vertically. Figure 4.30 shows the

current of the upper and lower control coils (CoIo and CoIu) and the observed

position of the plasma barycenter versus time. The plasma current barycenter is

calculated with the same formula (4.1) used in this code.

As initial configuration, for our simulation an equilibrium at t = 2.0s is cal-
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Figure 4.30: Upper box : Currents in the poloidal field coils for position control CoIo and
CoIu .Lower box : z position of the current barycenter measured in the experiment.

culated by the CLISTE code[43]. CLISTE uses data of experimental magnetic

fields measured by field probes outside the plasma and the external currents in-

cluding the PSL (see figure 4.31) to find an optimal match with the experimental

situation by changing iteratively the profiles for p′ and FF ′ .

Figure 4.32 shows the poloidal flux contours calculated by CLISTE. The red line

marks the separatrix, which defines the plasma boundary.

Both CLISTE and the GEC provide an utility that calculates the stabilizing

(with current filaments approximating the conducting structures) and destabi-

lizing forces for a rigid shift. The linear growth rate is determined applying the

formula [48]

γ = (
Fstab
Fdestab

− 1)−1γw, (4.7)

which is identical with eq. (2.33). However, the calculated forces take into

account only contributions from the volume force of the plasma and neglect con-

tributions from surface currents which also appear in a rigid displacement model

[44]. This procedure, which has been followed always on ASDEX Upgrade, was

justified by the assumption that in a more realistic situation the plasma shape
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Figure 4.31: Left: Positions of the Mirnov coils measuring the magnetic field . Right:
Filament representation of the poloidal field coils used by CLISTE (see also figure 2.11).
Red circles denote a single filament which represents several windings of a coil.

would deform in a way that would eliminate these contributions. Note that any

constraint on unstable displacements (like the restriction to rigid displacements)

will lead to an underestimate of growth rates, and the neglect of stabilizing sur-

face currents increases the expected growth rate. This is an assumption that

cannot be verified with a model that restricts the plasma movement to a pure

vertical shift (see section 4.4.3 for a more detailed discussion of this issue). For

the equilibrium # 23127 formula (4.7) predicts a linear growth rate of about

6 s−1 .

The growth rates of the experiment and the code are determined by an exponen-

tial fit [26] which takes the form

z(t) = z0 + δz eγ(t−t0), (4.8)

where the equilibrium position z0 , the amplitude of the perturbation δz are

free parameters and the growth rate γ is the independent variable. In the time

interval t − t0 , t0 is the point of time at which active feedback is switched off
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Figure 4.32: Left: poloidal flux Ψ as result of the CLISTE equilibrium reconstruction for
shot # 23127. Right: p′(Ψnorm) and FF ′(Ψnorm) profiles of the equilibrium.

(in case of the experimental curve) or the beginning of the simulation (in case of

code results). The initial values of z0 and δz are not known and a fit described

by equation (4.8) can yield growth that deviate from the real one if the time

interval is too short. That’s why the time interval is gradually enlarged until

the effect of potentially wrong values of z0 and δz gets small enough. However,

as the growth rate in the experiment or a nonlinear simulation will change in

time, this procedure will approach a constant asymptotic value only over a part

of the unstable event. Figures 4.33 and 4.34 show this procedure for an analytical

curve with z0 = 0.08 m , δz = 0.01 m , and γ = 8 s−1 , superimposed by a noise

function. The black dashed line in the upper plot shows the prescribed growth

rate, the blue line the result of the fit. The accuracy of the method increases for

larger time intervals, leading (in this case) to reliable results for t > 0.13 s .

If the growth rate changes with time, the fit yields an average growth rate which

does not necessarily match the instantaneous growth rate well. But nevertheless

an approximate initial growth rate can be obtained. Figure 4.35 shows the fit

result for a function with time-dependent growth rate, again superimposed by

a noise function. The initial growth rate is reproduced quite well, its accuracy

getting worse with time, as expected.
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Figure 4.33: Original values of z(t) versus time (blue line) and several exponential fits
with variable interval borders (marked with dots).
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Figure 4.34: Resulting values for the growth rate γ (the prescribed analytical growth rate
is shown as dashed black line), the amplitude of the perturbation δz and the equilibrium
position z0 in dependence on the time interval border for a test case with constant growth
rate.

This method can now be applied to z-position of the current barycenter zc as

it is measured in the experiment and as result of the code, shown in figure 4.36.

The vertical movement of the experimental plasma stops at z ≈ 0 because active

feedback is switched on again to stabilize the plasma (see figure 4.30).

Figure 4.37 shows the growth rate γ against zc . The reason for using zc rther

than time as abscissa is that the initial amplitude of the perturbation is unknown



4.4. Application to realistic plasma configurations at ASDEX Upgrade 77

0 0.05 0.1 0.15 0.2
0

10

20

time [s]

γ 
[1

/s
]

0 0.05 0.1 0.15 0.2
0

0.01

0.02

time [s]

δ 
z 

[m
]

0 0.05 0.1 0.15 0.2
0.06

0.08

0.1

time [s]

z 0 [m
]

Figure 4.35: Resulting values for the growth rate γ (the prescribed analytical growth rate
is shown as dashed black line) , the amplitude of the perturbation δz and the equilibrium
position z0 in dependence on the time interval border for a test case with time-dependent
growth rate.
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Figure 4.36: zc of the experimental plasma (blue) and as code result (red) for shot
#23127.

and generally not the same for code and experimental plasmas, so that in a plot

with the same growth rate experiment and code result would show a different

temporal behavior. As resistive wall modes describe a sequence of equilibria, the

growth rate depends on the position of the plasma and the currents in the PSL

rather than the time. Indeed, both experiment and code result yield good agree-

ment with the growth rate predicted by eq. (4.7) at the beginning (prediction
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Figure 4.37: Resulting values for the growth rate γ for shot # 23127. The blue line
corresponds to the experiment, the red line to code results.

of formula: ≈ 7.25 s−1 , initial growth rate of experiment: ≈ 7.5 s−1 , initial

growth rate of the code: ≈ 7 s−1 ). However, the growth rate increases during

the vertical movement, which is reproduced the code. This is shown in figure

4.38.
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Figure 4.38: Same as figure 4.36. Additionally, fits are shown (dashed lines) with a con-
stant growth rate as determined at zc = 0.06 . For both experiment and code results, the
fit matches the data well until zc = 0.06 . Afterwards both grow faster than corresponding
to a constant growth rate.

The plasma motion in the experiment is predominantly vertical, as figure 4.39

shows. The same behavior is reproduced by the code, but while the plasma

is ”caught” by active feedback in the experiment, it is allowed to continue its

movement in the code, which makes potential threats in the further evolution of

an instability visible. Now the radial component of the instability gets significant

and the plasma shape adapts to the PSL, lowering the stabilizing influence of the
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PSL. This effect is not observed for cases with no PSL where the growth is almost

purely vertical. An example which shows the described effects more clearly can

be found in section 4.4.3.
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Figure 4.39: Left: traces of the current barycenter of shot # 23127 in
the experiment (blue) and as results of the code (red). Right: plasma
shape and current barycenter at the beginning (blue) and at the end (red)
of the calculation.

The shape of the separatrices at the beginning and at the end show that the

plasma volume (with the separatrix as plasma boundary) decreases. The volume

versus the displacement of the magnetic axis is shown in figure 4.41 on the left for

both experiment and code result. Obviously the code reproduces the shrinking

well. The plasma shrinks because the it moves towards the x-point, whose posi-

tion is defined by the superposition of magnetic fields from external and plasma

currents. As the position of the x-point is relatively stiff, plasma is scraped off.

The right picture of figure 4.41 shows the current distribution of the plasma and

inside the PSL. The inhomogeneous current distribution inside the PSL is clearly

recognizable.



4.4. Application to realistic plasma configurations at ASDEX Upgrade 80

0 0.2 0.4 0.6 0.8
4

6

8

10

12

14

displacement ∆ z [m]

V
ol

um
e 

[m
3 ]

 

 

code
experiment

0 0.02 0.04 0.06 0.08

11.5

12

12.5

13

displacement ∆ z [m]

V
ol

um
e 

[m
3 ]

 

 

code
experiment

Figure 4.40: Left: Volume versus the z position of the magnetic axis for
the experiment (blue) and as result of the code (red). The code results are
piecewise constant because the position of the magnetic axis is obtained
only with an accuracy determined the element diameter. Right: same
plot, magnified to the range of the experiment.

Figure 4.41: Current distribution in the plasma and inside the PSL at ∆z = 0.16 m.

A second example of an experiment with a VDE is the plasma # 23124. It has

similar parameters and profiles as shot # 23127 and active feedback is switched

off again at t = 2.0s . However, the instability grows in upward direction for

both experiment and code result. Note that there is no preferred direction for
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the growth of an unstable equilibrium, it depends on the initial perturbation

including induced currents in the passive structures. The further evolution of an

instability, however, is different because both plasma and passive conductors are

not symmetric. Figure 4.42 shows zc and the growth rates for both experiment

and code results.
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Figure 4.42: Left: zc of the experimental plasma (blue) and as code
result (red) for shot # 23124. Right: resulting values for the growth rate
γ for shot # 23124. The blue line corresponds to the experiment, the
red line to code results.

Again, the growth rate is reproduced well (prediction of formula (4.7): ≈ 7 s−1 ,

code result: 10 s−1 , experiment ≈ 8.5 s−1 ). In this case, the code terminates

before the position at which active feedback is switched on again in the experiment

is reached. The reason is that the plasma collides with the PSL at this position

for the current barycenter, leading to abortion in several routines. Not only the

growth rate is reproduced well, also the deformation of the plasma is matched as

a comparison of code results and CLISTE reconstructions at different points of

time shows. Figure 4.43 documents the evolution of the plasma at four different

points of time. The plasma boundary, here defined as first flux surface (counted

from the magnetic axis) that contains the whole plasma current, is marked for

both experimental reconstruction with CLISTE and as result of the code. The

non-linear behavior of the plasma topology is matched well, the influence on the

plasma shape is even more obvious for the separatrix (see figure 4.44).

This time the volume inside the separatrix increases (shown in figure 4.45 on the

right) in both cases. The values for the CLISTE reconstruction are shown only

until the plasma boundary is not the separatrix anymore but defined as the last

closed flux surface (with the PSL acting as limiter).
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Figure 4.43: Comparison of CLISTE reconstruction (flux surfaces and
red plasma boundary) of measured data and code results (blue plasma
boundary). CLISTE reconstructions and code results are taken at the
same vertical position of the plasma. The poloidal flux, the plasma
boundaries and PSL positions for shot # 23124 of the experiment are
shown. Here, the plasma boundary is defined as the first flux surface
(counted from the magnetic axis) that contains the whole plasma cur-
rent. Time points: a) t = 2.0 s , b) t = 2.40 s , c) t = 2.42 s , d)
t = 2.45 s (no code result anymore).



4.4. Application to realistic plasma configurations at ASDEX Upgrade 83

1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

R [m]

z 
[m

]

1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

R [m]

z 
[m

]

Figure 4.44: Left: Separatrices and current barycenters of shot # 23124
at the beginning (blue) and at the end (red) of the calculation. Right:
Ψ -contour plot of shot # 23124 at the end of the calculation.
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Figure 4.45: Left: traces of the current barycenter in the experiment
(blue) and as results of the code (red) for shot # 23124. Right: Volume
enclosed inside the separatrix versus the z position of the magnetic axis
for the experiment (blue) and as result of the code (red).
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4.4.2 Strongly unstable cases

After the first series of experiments concerning VDEs was finished, another one

followed in which the plasmas were more elongated ( κ = 1.82 ), leading to

stronger instabilities. Their x-point is located above the magnetic axis and their

poloidal β is approximately 0.96 . One representative of this later series is shot

# 23350. Contrary to the examples treated above, this time the plasma is given

a ”kick” by applied currents in the Co -coils (the coils labelled CoIo and CoIu

in figure 2.11, used for fast control of the plasma position) in order to give the

plasma an initial perturbation and to accelerate the growth of the instability to

observable magnitude. Afterwards, active feedback is switched off. zc , the cur-

rent signal in the Co -coils and the signal of the PSL are shown in figure 4.46.

The current in the Co -coils displace the plasma and induce a current in the PSL.
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Figure 4.46: zc , current signal in the Co -coils and in the PSL for shot # 23350.

The equilibrium is calculated at t = 3.05 s , i.e. after the ”kick”. Ψ contours

and the profiles for p′ and FF ′ for the first case are shown in figure 4.47.

Figure 4.48 shows the same plots for zc and the growth rate as above. The

direction of the instability evolves differently; while the experimental plasma

moves downwards, it moves upwards in the code. The probable reason is that the

initial current distribution in the PSL is not known and CLISTE approximates it

only roughly by current filaments. Although the effect is small, it can be sufficient
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Figure 4.47: Left: poloidal flux Ψ as result of the CLISTE calculation for shot # 23350.
Right: p′(Ψnorm) and FF ′(Ψnorm) profiles of the initial equilibrium.

to change the direction. Whereas the true amplitude of the initial perturbation

amd the direction of motion should depend on all initial conditions (including

current distributions in passive elements, which are partly not measured) the

growth rate should just depend on the equilibrium and be robust with respect

to the excitation of the instability. In fact, our computed initial growth rate

25 s−1 is quite close to the experimentally measured one 30 s−1 . In particular,

however, in this case - closer to the limits of controllabilty of the mode by passive

elements - we observe a large difference between our code calculations and the

results of the simplified formula (4.7) which would give a growth rate of about

7 s−1 . In the course of the instability, the growth rate increases like in the other

cases. A more extensive comparison of growth rates predicted by formula (4.7)

and as result of code calculation is given section 4.4.3. Figure 4.49 shows again

the separatrices and current barycenters of the plasma #23350 at the beginning

and at the end of the calculation. Note that the plasma in the experiment is

caught again by active feedback, while the code continues the calculation until

the plasma reaches the computational domain.
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Figure 4.48: Left: zc of the experimental plasma (blue) and as code
result (red) for shot # 23350 Right: resulting values for the growth rate
γ for shot # 23350. The blue line corresponds to the experiment, the
red line to code results.
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Figure 4.49: Separatrices and current barycenters of shot # 23350 at the beginning (blue)
and at the end (red) of the calculation.
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4.4.3 Approach to marginal stability

From the examination of the preceding examples we can draw two conclusions:

1. The neglect of the stabilizing surface currents in formula (4.7) is well-

justified.

2. The applicability of this formula and the ”modified rigid displacement

model” is limited to plasmas that are far away from the point of marginal

ideal stability.

The calculations reported in figure 4.50 substantiates these conclusions. They

show the growth rates for a set of equilibria for which the currents in the PF-

coils controlling the ellipticity (and with it the destabilizing forces) is successively

increased by a factor. The blue line corresponds to the prediction of formula (4.7).

The black line is the result of the formula, if the stabilizing surface contributions

are taken into account. The red line shows the result of the code. Indeed, exper-

imentalists at ASDEX Upgrade observe a discrepancy of predicted and observed

growth rates, those of the experiment being systematically larger than the pre-

dicted ones [49].
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Figure 4.50: Growth rates predicted by formula (4.7) (blue) and as result of code calcula-
tion (red).

Differences to rigid displacement model

One of the key issues of this work is to take into account the influence of the

induced currents in conducting structures on the plasma movement. In order to
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emphasize that important effect, the evolutions of an unstable plasma with and

without PSL are compared. The plasma equilibrium is calculated by GEC, as

it is not important to match experimental conditions for this purpose. Figure

4.51 shows the trajectories of the current barycenters for absent and present PSL

(with γ∗w = 0.01 ).
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Figure 4.51: Left: traces of the current barycenter in the case of absent (blue) and present
(red) PSL. Right: Magnified section form z = 0 m to z = −0.2 m of the same plot.

It is obvious that the plasma moves radially inward to minimize the stabilizing

effect of the conductors, which leads to an enhanced growth rate compared to

the case of a rigid shift. From the left picture it is clear that that this effect gets

very large in particular during the later (nonlinear) phase of the instability, but a

zoom (richt picture of the same figure) reveals that an effect exists also during the

linear phase. Both in the case with and without PSL, the unstable motion differs

from the purely vertical displacement assumed in the model of rigid displacement

[44] and formula (4.7). The radial movement is inevitable after a certain distance,

as a purely vertical movement would lead to a collision with the PSL (like in the

case of shot # 23124). Not only the trajectory of the plasma is changed, but also

the plasma shape. Figure 4.52 shows the plasma boundaries if PSL are absent

(left) and present (right) for several displacements ∆z . Obviously, the plasma

shape adapts to the shape of the PSL to minimize their stabilizing influence.

Even after the plasma has passed the PSL, the shape remains deformated and

exhibits a significant difference to the plasma without PSL influence.
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Figure 4.52: Plasma boundaries in case of absent (left) and present PSL (right) after
displacements ∆z of 0.25, 0.5 and 1.0 m.

4.4.4 Stabilization by a continuous resistive wall

A future concept for ASDEX Upgrade is to remove the PSL and use the sur-

rounding resistive wall to stabilize the plasma. This allows a much larger plasma

current and plasma volume and the latter also increases the stabilizing coupling

to the wall. As outlined before, the PSL were initially installed because they have

a much longer L/R -time than the present wall. Since then, due to the advances

in the sector of high performance computing the time to calculate the necessary

voltages or currents in the control coils for active feedback decreased enormously,

allowing for smaller resistive times in the passive conducting structures. With

some small changes in our code, this wall can also be modeled. The subsidiary

condition for the current in the wall is in principle the same as in the case of

PSL: no net current shall exist, i.e. any induced current flowing locally in the

wall must be canceled out by another current of opposite direction anywhere else

in the wall (this refers to the case of a continuous wall, slitted once in toroidal

direction; in the absence of such a slit, the subsidiary condition would be substi-

tuted by the trivial realtion δφ = 0 ). As no closed contours encircling the wall

can be defined, the condition is expressed as

∫

wall

Jφ dA = 0,

where the integral includes the whole area of the wall in the poloidal plane. Fig-

ure 4.53 shows an GEC-equilibrium surrounded by the wall of ASDEX Upgrade

(marked red). Nothing changes for the boundary conditions at the border of the

computational domain (black lines).
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Figure 4.53: Ψ contours of an equilibrium inside a conducting wall. The contour belong-
ing to the separatrix value is thick. Red lines denote the wall, black lines the computational
boundary.

The resistance of the wall can be varied, either by changing the value of its

conductivity, its thickness or both. The resistive time of the present wall is

known from the experiment. It is about L/R ≈ 10 ms for the dominant wall

current mode induced by a vertical shift of the plasma column. The current

decay method presented in section 4.1.2 can be used here as well by prescribing

such a current distribution in a in the wall. In this way, L can be determined to

0.78 µH for a nominal conductivity and thicknes of the wall σw = 3.5 106 Sm−1

and ∆w = 3.5 cm .

Any movement of the plasma leads to a current induction in the walls that tries to

stabilize it. Figure 4.54 shows current distribution inside the wall at zc = −0.12m

as result of plasma movement.

The equilibrium shown in figure 4.53 has a total current of I = 2.5MA and

βp = 0.83 . The plasma current, magnetic fields and volume are much larger

than current experimental plasmas in ASDEX Upgrade, but as outlined above

the stabilizing effect of the wall is smaller compared to the situation with PSL

as stabilizing conductors. Figure 4.55 shows the code’s result for the z-position

of the current barycenter. As the wall is relatively close to the plasma boundary,

the column can move only about 15 cm before reaching the wall.

The prediction for the growth rate following formula (4.7) is approximately 50 s−1
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Figure 4.54: Current distribution inside the conducting wall as consequence of a vertical
movement of the plasma at zc = −0.12m .

compared to a linear growth rate determined by the code of about 80 s−1 . The

non-linear evolution is shown on the right of figure 4.55.
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Figure 4.55: Left: zc versus time. Right: growth rate γ .
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5 Summary and Outlook

In this work, a finite element based code is developed and applied that solves the

nonlinear, resistive, reduced MHD equations to simulate and understand axisym-

metric instabilities in tokamaks. This kind of instability takes shape of a pre-

dominantly vertical shift of the whole plasma column, leading to the expression

of vertical displacement event (VDE). Its origin lies in the shaping of the plasma

cross section in order to improve several figures of merit, above all the economical

efficiency of a fusion reactor serving as power plant. When not stabilized, VDEs

exert due to the large currents and temperatures involved tremendous forces and

heat loads on structural and first wall components that pose a threat for present

and future fusion devices.

In the practically relevant regime of operation of all modern tokamaks, this in-

stability takes the form of a resistive wall instability. This implies that it would

be stabilized by induced mirror currents in infinitely conducting walls (or other

structures), but grows for finite electrical resistance of the latter on the resistive

time scale which is determined by the conductivity and geometry of the conduc-

tors. The growth rate of the instability is thereby slowed down from the Alfvénic

time scale (of the order of µs ) to time scales of the order of ms . This gives the

active feedback system the time to calculate and establish the necessary currents

to completely stabilize the plasma movement.

In order to calculate the growth rate of an axisymmetric instability, as a first step

a linear eigenvalue code for an ideal (infinitely conducting) plasma developed in

the frame of a diploma thesis was extended to take into account the resistivity

of the passive conductors. As the passive stabilization of experimental plasmas

in ASDEX Upgrade (the experimental fusion device of the IPP in Garching) is

achieved almost completely by massive copper loops (PSL) and not by the sur-

rounding vessel wall, their geometry was taken into account for the calculations.

For strongly unstable cases - which were the main motivation of this effort -

the results of this approach deviated strongly from the growth rates observed in

experiment, and indicated an important dependence on the conductivity of the

plasma and in the passive conductors. Moreover, only a nonlinear code would be

able to follow the plasma during the later stages, where experimental indications

suggest a variation of the growth rate. Therefore the new code described in this

93
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work was developed, including finite conductivities and non-linearities.

In fact, two code versions have been developed and are described here. One is

restricted to plasmas with β = 0 and an unrealistic initial density distribution.

Under these constraints it allows formally to approach also the case of inertially

limited plasma motion, although numerical constraints prevent using realistic

plasma densities (and hence Lundquist numbers). The other version allows the

inclusion of finite pressure, but yields valid results only in the resistive wall mode

regime, i.e. on the resistive time scale. This is only a weak restriction, as the

resistive time scale is the relevant one for experimental realities. In case of van-

ishing plasma pressure and in the resistive wall regime, both versions yield the

same results. Except for the chapter describing the test cases, all shown results

were obtained by the version which includes finite plasma pressure.

Passive stabilizing structures, whose accurate description is very important, are

easy to model and modify due to the usage of triangular finite elements. Current

distributions inside the plasma and the conductors can be treated very realisti-

cally. For the present applications, a constraint is implemented on the PSL that

ensures the equality of the currents in the upper and lower leg due to their series

connection. A great effort was made into implementing a boundary condition

on the computational domain that simulates a vanishing poloidal perturbation

flux at infinity (i.e, as if no wall would exist at all) using Green’s function ap-

proach (which is a dynamic analogue to the approach of Lackner [8] and a two-

dimensional modification of the approach used by Merkel [46]; Jardin [11] used a

similar method). Indeed it was found, that this kind of treatment of the bound-

ary is very important for movements including a net displacement of the plasma

column (corresponding to an m = 1 component), as other boundary conditions

(e.g. Dirichlet) at the computational border would strongly influence (reduce)

the growth rate, unless the computational domain was extended leading to an

enormous increase in computation time.

The testing procedure of the code includes the comparison with a engineering

model in which plasma and conductors are modeled with current filaments. This

model is instructive to understand the role of wire (or plasma) inertia and the

resistive response of the conductor, and in particular the transition from iner-

tia limited motion (for strongly destabilizing equilibrium fields and insufficient

coupling between the wire (plasma) and the stabilizing conductors) to one cor-

responding to a sequence of static equilibria changing with the resistive decay of

the induced currents in the conductors.

A more quantitative, but still simplified engineering model used so far on AS-

DEX Upgrade to determine admissible plasma configurations and the settings

of control parameters was based on results of a code testing the plasma against

rigid vertical displacement, but omits stabilizing terms corresponding to surface
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currents, which are deemed to be suppressed by deformations of the plasma. One

of the motivations for the development of our code was to test the limits of valid-

ity of this ad-hoc model, which had performed satisfactorily during conservative

operation of the device, staying relatively distant from limits to the stable regime.

Closer to the ”ideal” stability limit, the plasma movement becomes more complex

and experimental results show a strongly increased growth rate (up to a factor

of 10 in the range experimentally explored).

Dedicated VDE experiments had been carried out only under a limited number

of cases, which were also studied with the code. These cases included two cases

with both moderate growth rate, but unstable plasma displacements in different

direction, and a strongly unstable situation, where the displacement was initi-

ated by a vertical kick given to the plasma by an impulsive radial field. In all

cases, the code reproduced well (within 20%) the experimentally observed growth

rates. The ad-hoc expression used previously did comparably well in the mod-

erately unstable cases, but gave - by a factor of 4 - smaller growth rates for the

strongly unstable case. When the direction of the unstable plasma motion (which

is sensitive to small differences in the initial conditions, e.g. the current distri-

bution inside the PSL, which cannot be measured) agrees between code results

and experiments, also the nonlinear stage and the deformation of the plasma in

it are well reproduced. When the directions differ, the growth rates agree well in

the linear regime (according to the theory), but differs, of course, at later stages.

As experimental campaigns to measure growth rates in the strongly unstable sit-

uations are associated with significant danger to the device (as an intentional,

temporary switching off of the feedback circuit can easily lead to an irrecoverable

loss of control), a sequence of calculations was carried out pushing beyond the

experimentally explored range of configurations and mapping the growing dis-

crepancy between the ad-hoc formula prediction and the developed code.

The code was developed for the application to ASDEX Upgrade, but it can be

easily adapted to other devices. The implementation of (rather unusual) dedi-

cated passive conductors like the PSL is an even more demanding situation than

the standard case with only conducting walls, as here no simplifying approxi-

mations like ”thin walls”, where a homogeneous current distribution across the

thickness of a conducting structure is assumed, are possible. With small changes,

the situation with a conducting wall (again without the thin wall approximation)

instead of the PSL can be simulated, which is a possible future concept of ASDEX

Upgrade and the standard scenario for ITER. The results are shown in section

4.4.4 and yield growth rates which would appear to be controllable by a suitably

upgraded feedback system. If passive stabilization is accomplished in this way,

the plasma has to be positioned much closer to the wall to increase the inductive
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coupling and active feedback has to react very fast.

In its present form, the code can predict growth rates and limits of controlla-

bility for a variety of different configurations and allows to analyze a posteriori

particularly interesting discharges. One immediately possible application would

be the development of a data bank, in which growth rates of a broad class of

equilibria are pre-calculated as it is already done with equilibria. This data bank

could be subjected to a similar function parametrization technique as it is done

for the equilibria, and the resulting fit-functions could be made available to ex-

perimentalists and engineers for the discharge planning and a fast analysis. An

estimate of the required computing time is given in appendix section A.6, which

shows that such a data base could be established with a modest effort requiring

approximately 10000 CPU hours.

Of course, there is still potential in the code for extending the spectrum of its

functionality. For example, an active feedback algorithm which calculates the

necessary currents in the poloidal field coils to stabilize the axisymmetric motion

could be included. Some of the simplifying assumptions made in the code, that

are expected to have only weak influence on the plasma behavior in the linear

phase of the evolution, could be dropped when focusing on later stages. That

would require an increased amount of experimentally measured data in this stage

to be in a position to compare experimental and code results. Relevant effects

are the inclusion of transport models of particles and energy across flux surfaces,

Ohmic heating and radiation losses. This would lead to a change of the equations

that govern the temporal evolution of density, pressure and conductivity, while

they continue to be flux surface averaged quantities. However, during the latest

stages of an VDE, non-axisymmetric effects can get important or even dominant

and it would have to be examined to what extent the code yields good agree-

ment.

In recent years, large international effort has been made to develop a three-

dimensional non-linear stability code. The Max-Planck-Institut für Plasmaphysik

is part of that collaboration and contributes the adaption to boundary conditions

at infinity and the inclusion of axisymmetric (n = 0 ) components of the pertur-

bation. Results of the code presented in this work and possible further runs in the

future can serve as benchmark of this more general code during the axisymmetric

phases.



A Appendix

A.1 Finite element method

The way we chose to solve our equations is the finite element method (FEM). It’s

origin lies already 150 ago when it was developed to solve minimization problems,

but first with the development of computers it’s popularity began to grow quickly.

Today it’s widely used for a large number of problems encountered in all areas of

science and industrial applications, but the idea is the same as at it’s beginning:

discretize a domain into elements to solve the problem there approximately.

A.1.1 Shape functions

When using the finite element method, one always looks for an approximate

solution on a discretized domain (grid) composed of smaller subdomains (finite

elements), mostly triangles or rectangles. If u is the real solution, one can find

in each element an approximate solution uh = ΣiNiui , where the Ni and ui
are the so-called shape functions and the values of the approximate solution on

a grid point i . First of all it is necessary to understand how quantities are

represented. Therefore the shape functions are of fundamental importance. The

form of the shape functions depends on the problem and its discretization. In

the vast majority of applications, polynomials are used, but e.g. trigonometric

functions are possible as well. The form of the polynomials for a triangle finite

element differ from those of a rectangle. As only triangles are used in the code,

the presentation of shape functions is limited to these shape functions. The linear

triangular element has straight sides and a node on each of it’s three corners i,j

and k. A scalar quantity can be interpolated with

φ = α1 + α2x+ α3y,
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which is complete as it contains one constant and every possible linear term. The

nodal conditions are:

φ = Φi at x = Xi, y = Yi

φ = Φj at x = Xj, y = Yj

φ = Φk at x = Xk, y = Yk

which yields combined the system of equations:

Φi = α1 + α2Xi + α3Yi

Φj = α1 + α2Xj + α3Yj

Φk = α1 + α2Xk + α3Yk

that again can be solved for α1, α2andα3 .

Inserting in the original interpolation equations leads to:

φ = NiΦi +NjΦj +NkΦk.

where the N are now the shape function for the respective node:

Ni =
1

2A∆

[ai + bix+ ciy] (A.1)

Nj =
1

2A∆

[aj + bjx+ cjy] (A.2)

Nk =
1

2A∆
[ak + bkx+ cky] (A.3)

with
ai = XjYk −XkYj, bi = Yj − Yk, ci = Xk −Xj

aj = XkYi −XiYk, bj = Yk − Yi, cj = Xi −Xk

ak = XiYj −XjYi, bk = Yi − Yj , ck = Xj −Xi

and A∆ the area of the triangle.

Some remarks to the shape functions: At each point in an element, the sum of

the values of the shape functions is one. Hence, the value of each shape function

on its own node is one, while it’s zero at each other node of the element (leading

to very sparse matrices describing the operators, as shown later). Between these

nodes the function interpolates linearly. Figure A.1 shows the value of the basis

function connected to the first node over the triangle.
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Figure A.1: Value of the basis function of the first node over the triangle,
taken from [41]

This representation of the shape functions is also called ’area coordinates’, be-

cause their values give the ratio of the area of a subtriangular region to the area

of the complete triangle (see figure A.2). The area coordinate L1 is the ratio of

the shaded area to the total area:

L1 =
A1

A∆

The same applies for the areas A2 and A3 , leading to L1 = N1, L2 = N2 and

L3 = N3 .

Figure A.2: Area coordinates, taken from [21].
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For the derivatives of φ holds

∂φ

∂x
=
∂Ni

∂x
Φi +

∂Nj

∂x
Φj +

∂Nk

∂x
Φk (A.4)

∂φ

∂y
=
∂Ni

∂y
Φi +

∂Nj

∂y
Φj +

∂Nk

∂y
Φk. (A.5)

The partial derivatives in global coordinates can be expressed by

(
∂N i

∂x
∂N i

∂y

)

= J−1

(
∂N i

∂L1

∂N i

∂L2

)

(A.6)

with J =

(
∂x
∂L1

∂y
∂L1

∂x
∂L2

∂y
∂L2

)

.

The third coordinate L3 does not appear because it is not independent of the

others: L3 = 1−L2 −L1 . In such a triangle, the Jacobian is constant and reads

J =

(
cj −bj
−ci bi

)

with detJ = 2A∆ .

The derivatives with respect to x and y read

∂Nβ

∂x
=

bβ
2A∆

,
∂Nβ

∂y
=

cβ
2A∆

, β = i, j, k (A.7)

Equation A.7 shows, that the representation of a derivative is one polynomial

degree smaller than the representation of the quantity itself. As second order

derivatives appear in the problem formulation, the need for approximations of

second order arises. The second derivative is then constant in an element (zeroth

order representation).

A second-order triangle (also called quadratic triangle) has six nodes instead of

three: additionally to the three vertex nodes, three nodes on the midpoints of the

edges get own shape functions and values for the solution uh . Figure A.3 shows

both kinds of shape functions.

The shape functions of the quadratic triangle fulfill the same conditions as these

for the linear one, but the interpolation inside an element is now quadratically.

In the code, all the triangular elements have straight edges, although this is not
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Figure A.3: Basis functions in the quadratic triangle, taken from [41]

mandatory. Indeed, it is possible to use triangles with curved boundaries to

match better to the geometry if necessary. The only difficulty arising is that

the determinant of the Jacobian connected with the mapping to the coordinate

system of the finite element is not constant anymore.

The shape functions read:

N1 = L1(2L1 − 1) (A.8)

N2 = 4L1L2 (A.9)

N3 = L2(2L2 − 1) (A.10)

N4 = 4L2L3 (A.11)

N5 = L3(2L3 − 1) (A.12)

N6 = 4L3L1 (A.13)

The derivatives of the shape functions can be computed with the same relation

as above.

A.1.2 Solving partial differential equations

One approach to solve a partial differential equation with the FEM is the weighted

residual method. Consider the equation below (which is similar to those equations

appearing in the code):

c1∆u+ c2∇u = −q

where c1 and c2 are for reasons of simplicity constant coefficients. The real

solution u is now expressed as approximate solution uh and in the terminology

of FEM q is a load. Hence

c1∆uh + c2∇uh + q = R 6= 0
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as in general the residual will not be zero. The residual is now multiplied by a

weighting function W and integrated over the whole domain and is required to

vanish: ∫

W ·R dA = 0

There are many possible choices for the weighting functions, the most popular is

to chose the same function that we used to express u by its approximate values

uh (shape functions), W = N . This choice of weighting functions is called

Galerkin’s method. These integrals can be evaluated elementwise, the complete

solution being the summation of all element contributions. For one element with

all quantities and operators in finite element representation, the equation reads:

∫

e

NT · (c1∆uh + c2∇uh + q)dA = 0,

where NT is the transposed of the 1× 6 vector containing the shape functions

N1 to N6 of the quadratic triangle. The second derivative can be integrated

partially, leading to

∫

e

NT·(∆uh)dA =

(∫

e

NT · n · ∇NdΓ

)

uh−
(∫

e

(
∂NT

∂x

∂N

∂x
+
∂NT

∂y

∂N

∂y

)

dA

)

uh

(A.14)

where the first integral is over the boundary ∂Γ of the element and n · ∇ is the

normal derivative. As the values of the unknown uh are unique on a node, this

contribution cancels for triangles in the inner of the domain. Only elements that

have edges on computational domain contribute to this integral, if a value for

the normal derivative is prescribed. Note that this representation leads to k × k

matrices for the operators and and k×1 vector for the load term, where k is the

number of nodes per element. The total equation for one element reads

R =

(∫

e

c1
(
∇NT∇N

)
dA

)

uh +

∫

e

c2N
T∇NdA+

∫

e

qNTdA = 0.

The evaluation of these integrals can be done analytically for simple cases or

numerically via Gauss integration, as it is done in the code. Numerical integration

converts the integrals to a sum of weighted contributions, evaluated at special

sampling points:

∫

A∆

f(x, y) dA =

∫ ∫
1

detJ
g(L1, L2) dL1dL2 = Σni=1g(L1i, L2i)wi
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where n is the number of sampling points of an element and the wi their asso-

ciated weight. The number of sampling points must match at least the largest

sum of the powers of L1 and L2 to integrate exactly.

The contributions of all elements are put together in a np × np matrix for the

operators, where np is the number of grid points, and a np × 1 vector for the

load, the position of the contributions depending on the global numbering of the

nodes of an element. This process is called assembling. Each row is the equation

for one grid point.

A.1.3 Boundary conditions

As the problem dealt with is a second order partial differential equation, there

must be boundary conditions specified on a curve Γ enclosing the computational

domain. The most common boundary conditions are those of Dirichlet, Neumann

or Robin type. In the first case, values of the solution on the boundary are given,

for example ui = bi , where the i denote the indices of points on the boundary.

This is implemented by substituting the respective rows associated with bound-

ary nodes by zeros, except where the column number equals the number of the

boundary node: the entry there is one. When now substituting the correspond-

ing entry of the right hand side (load vector), the equation for a boundary point

reduces to ui = bi as intended and there is no need to deal with the interelement

boundary term mentioned above.

Neumann boundary conditions prescribe values of the normal derivative of the

solution, n · ∇ui = bi . They are slightly more difficult to implement. Equation

A.14 already contains the formulation of the boundary condition:

(∫

e

NT · n · ∇NdΓ

)

ui.

The expression is simply substituted by the known values of the normal derivative:

(∫

e

NT ·NdΓ
)

bi.

The integration is now over a line element instead of an area. In principle, the

same mechanisms apply, only the shape functions and the numerical integration

differ. The resulting matrix (with only entries at indices that are connected to

the boundary) is then added to the right hand side of the equation (load vector).

Robin boundary conditions are a combination of Dirichlet and Neumann bound-
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ary conditions:

n · ∇NdΓ = cui + bi on Γ.

The additional term is treated similar to the Neumann term, but the matrix-

vector-multiplication cannot be executed as the ui are unknown. So the matrix
(∫

e
NT ·NdΓ

)
has to be added to the matrix describing all the operators on the

left hand side. In the code, the boundary condition imposed is similar to the

Robin type, but it is non-local.

A.1.4 Time-dependent problems

The time-dependent equations that appear in the code have the form

λ
∂u

∂t
+ c1 ∆u+ c2 ∇u+ q = 0. (A.15)

The only new term is λ ∂u
∂t

. The term is treated in the same way as described

above, leading to an expression for the contribution to the residual:

Rλ =

∫

e

λ
(
NT N dA

)
u̇

The matrix NTN is called mass matrix due to its origin in engineering appli-

cations. The temporal discretization is done with finite differences. Given the

function u(t) and the time interval [t1, t2] , one can use the mean value theorem.

It states that there is a value tp of t for that holds

u(t2)− u(t1) = (t2 − t1)
du

dt
(tp). (A.16)

Approximating u(t1) linearly and inserting leads to

u(tp) = (1− θ)u(t1) + θu(t2), (A.17)

with θ defined as θ = tp−t1
∆t

. The value of θ defines the way the equations is

solved. θ = 0 is called forward difference method and solves the system explicitly,

i.e. the solution for the time t2 is gained by multiplying the operator matrix with

the solution at the time t1 . Implicit methods have θ > 0 and at every time step

a matrix equation has to be solved. Explicit methods are constrained concerning

the maximal allowable time step whereas implicit methods do not suffer from

this condition (however, the solution gets inaccurate for too large time steps). In

the code, all equations are solved implicitly but they are coupled with an explicit
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time scheme (leap frog).

A.1.5 Patch recovery

In the finite element approach of this work, any quantity is represented by bi-

quadratic (or bi-linear) functions. When formulating derivatives these quantities,

one degree in approximation order is lost, so that a quantity that was represented

by six (three) nodes per element earlier, has now only three nodes (one node).

In the case of quadratic triangles, these values are not unique at nodes that are

shared by several triangles, as the shape function are by construction only C0 -

continuous, so that in different elements different values at the shared node can

appear. The most obvious way to deal with this problem is to calculate the deriva-

tives in each element separately and build the arithmetic or area weighted mean

of all participating nodes. Indeed, this is a often followed way. Unfortunately,

we lose an order in accuracy and especially in vicinity to domain boarders the

results are very unsatisfactory. A popular way of keeping the same representation

order and gaining better results are recovery methods. The most common is the

so-called ZZ-patch-recovery-technique ([59]). The derivatives are not calculated

elementwise but in an assembly of elements, a so called patch (see figure A.4).

Every internal node can be assigned a patch and the greater this patch is cho-

Figure A.4: Patch on which a least squares fit is calculated

sen, the more accurate the solution. Over this patch a least-squares smoothing

is carried out, which shall be shown on the simple example of bilinear triangle

elements. The finite element approximation is denoted by uh , the exact solution

by u and the nodal values by ū . uh is obtained by the standard Galerkin

procedure and reads:

uh = Nū.
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The gradients are

σh = D uh,

where D denotes the differential operator matrix. Of course, the σ have no

interelement continuity (and as said above, even for quadratic elements this would

in general not be given). The aim is now to find σ∗ , the smoothed and continuous

gradient field, defined by the same basis functions as u and nodal coefficients

σ̄∗ .

σ∗ = Nσ̄∗.

These nodal coefficients are assumed to belong to a polynomial expansion σ∗

P

of the same order as in the basis functions (one for linear triangles and two for

quadratic ones) and which is valid over the above defined element patch:

σ∗

P = Pa

where a are the unknown coefficients to determine and P contains the appropri-

ate polynomial expansion terms. For linear triangles, P reads

P = [1 x y]

while quadratic ones would need six entries of quadratic order. The least-squares

fit works by minimizing the following expression:

R =

n∑

i=1

(σh(xi, yi)− σ∗

P (xi, yi))
2

=

n∑

i=1

(σh(xi, yi)−P(xi, yi) ∗ a)2

where xi and yi are the coordinates of a group of sampling points of the element

patch and a the corresponding coefficients to the polynomial expansion. These

sampling points (Gauss points, see [59]) lead to superconvergent nodal values,

i.e. a convergence of O(h4) . It follows

n∑

i=1

P(xi, yi)
TP(xi,yi) ∗ a =

n∑

i=1

P(xi, yi)
Tσh

or, in matrix form:

a = A−1 ∗ b
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where

A =

n∑

i=1

P(xi, yi)
TP(xi,yi),b =

n∑

i=1

P(xi, yi)
Tσh.

The calculation is carried out only for vertex nodes on a constant grid, so the

matrix A does not change for a given patch and has to be computed only once

(which is quite inexpensive when solving time-dependent problems). For midside

and boundary nodes, the values are calculated with the approximation of the

respective patches. As these nodes can have several contributions, there has to

be an averaging.

A.2 Contouring

Two different contouring methods are implemented for the scalar quantities in

the code. Let Ψ be the scalar field and Ψc the value of the contour one is

interested in. The first one searches for an arbitrary point in the scalar field at

which the condition (Ψ−Ψc)
2 < ǫ holds. Starting from that point, the contour

is traced from element to element, calculating the point on the element boundary

at which the contour intersects ([58]). In this way, open and closed field lines can

be distinguished. For finding the separatrix, saddle points of Ψ are determined.

Usually, there are one or two saddle points in a computational domain. The

x-point with the Ψ value closer to that of the magnetic axis belongs to the

real separatrix within which all field lines are closed. The second contouring

routine uses the condition that flux surfaces are uniquely defined within the

separatrix. Any vertical or horizontal cut through the function Ψ− Psic within

the plasma region has exactly 2 roots. Many of these cuts are done and the

identified positions of the roots are ordered, resulting in coordinates of a contour.

As the mesh remains constant during the calculations, the time consuming parts

of the computation can be done once in advance for both contouring routines.

A.3 Slip Motion Condition

The Slip Motion Condition reads after temporal integration

∇× (v ×∇φ) = 0
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Inserting the expression for the velocity v = −R2∇φ×∇η on the left hand side

results in

∇×
(
(−R2∇φ×∇η)×∇φ

)
= 0

−∇×



(∇φ · ∇η)
︸ ︷︷ ︸

=0

·R2∇φ−∇η



 ≡ 0

A.4 Vorticity equation

The vorticity is defined as

Ω = R eφ · ∇ × v.

Applying the operation R eφ · ∇× on the force balance equation

ρ
dv

dt
− J×B+∇p = 0 (A.18)

leads to an equation with Ω as evolving variable. As a first step, eq. (A.18) is

transformed, using the convective derivative:

∂v

∂t
+ (v · ∇)v =

1

ρ
(J×B−∇p) .

With the operation described above, the equation reads

∂Ω

∂t
+Reφ∇× ((v · ∇)v) = Reφ∇×

(
1

ρ
(J×B−∇p)

)

It can be shown that

Reφ∇× ((v · ∇)v) = Reφ∇×
(∇v2

2
+ v× (∇× v)

)

= v∇Ω.

The right hand side reads

Reφ






∇1

ρ
× (J×B−∇p) + 1

ρ
∇× (J×B)− 1

ρ
∇×∇p
︸ ︷︷ ︸

=0






.
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It’s useful do distinguish two cases:

1. β = 0 Any terms involving the pressure vanish. Furthermore, there is no

contribution from poloidal currents or the toroidal magnetic field, if for the

density holds ρ = const
R2 , as the following calculation shows:

R · eφ [∇× (1/ρ · (Jp ×Bφ))]

= R · eφ [∇1/ρ× (Jp ×Bφ) + 1/ρ · ∇ × (Jp ×Bφ)]

= R · eφ
[

∇1/ρ×−jzBφeR + jRBφez + 1/ρ · ∇ ×
((

− 1

R
eφ ×∇F

)

× F

R
eφ

)]

= R · eφ
[

∇1/ρ× (− 1

2R2

∂F 2

∂R
− 1

2R2

∂F 2

∂z
+ 1/ρ · ∇ ×

(

−F∇F
R2

eφ

)]

= R · eφ
[

∇1/ρ× (− 1

2R2
∇F 2 + 1/ρ ·

(
1

R3
~eR ×∇F 2

)]

Inserting the expression for ρ results in

=
1

const.
· R · eφ

[
1

R

∂F 2

∂z
eφ −

1

R

∂F 2

∂z
eφ

]

= 0

The remaining terms are

r.h.s. = Reφ

(

∇1

ρ
× (Jφ ×Bp) +

1

ρ
×∇× (Jφ ×Bp)

)

Using the identity ∇ × (Jφ ×Bp) = BpR∇ jφ
R
, where jφ = eφ · J , and

inserting again the expression for the density leads to:

r.h.s. =
R4

const

(

Bp · ∇
(
jφ
R

)

+ 2
1

R2
jφBR

)

. (A.19)

2. β 6= 0

The density and the pressure are now arbitrary functions of Ψ . The left

hand side is transformed in the same way as in the previous case. for

the right hand side, no separation in poloidal and toroidal contributions is

performed. Instead, the following identities are used:



A.5. Resistance and inductance of the PSL 110

r.h.s. = Reφ










∇1

ρ
× (J×B−∇p)

︸ ︷︷ ︸

=0

+
1

ρ
∇× (J×B)
︸ ︷︷ ︸

= 1

ρ

(

BR∇
jφ
R
−

2FF ′

µ0R
3

∂Ψ
∂z

)

−1

ρ
∇×∇p
︸ ︷︷ ︸

=0










r.h.s. =
1

ρ

(

BR2∇jφ
R

− 2
FF ′

µ0R2

∂Ψ

∂z

)

. (A.20)

For β = 0 , the equations (A.19) and (A.20) are the same.

A.5 Resistance and inductance of the PSL

The resistance can be calculated

R =
l

σA
=

2 · 2π RPSL

σA
, (A.21)

where l denotes the PSL circumference,A the cross area of one leg and RPSL

the radial center of the PSL defined as

RPSL =

∫
R dA
∫
dA

.

The inductance is twice the sum of the self-inductance Lc and the (negative)

mutual inductance

L = 2 · (Lc −M) = 2 · µ0 RPSL log

(
RPSL

rPSL

)

− 2 · µ0

4π

∮

1

∮

2

ds1 · ds2
r12

, (A.22)

where rPSL is the radius of a circle with the same area as the cross section of one

PSL leg, ds1 and ds2 are line elements on the upper and lower PSL and r12 is

the distance between these line elements. The mutual inductance can simply be

subtracted because the current in the upper PSL is the same as the current of

the lower PSL with opposite sign.
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A.6 Estimate of required computer resources

for building up a data base of VDE growth

rates

If only a linear growth rate is of interest, as it would be for a data bank similar to

the one already existing at ASDEX Upgrade (FP), it is sufficient to run the code

during the linear stage of the instability. The growth rate can be determined from

the observed displacement of the plasma current barycentre (the most accurately

monitored quantity), using essentially the equation τ = γ−1log z(τ)−z0
δz

, where

z, z0 and δz are the instantaneous position, the equilibrium position and the

amplitude of the perturbation, respectively. Initial equilibria are calculated by a

separate code with a different grid and both the uncertainty of the equilibrium

position and the amplitude of the perturbation will be proportional to the grid

spacing. Assuming this to be the major source of uncertainty, it follows that the

relative error in γ will be proportional to log z(τ)−z0
δz

. The request for a certain

maximum error implies to carry calculations to a fixed value of the argument,

i.e. to a fixed ratio of the displacement to grid size - independently of the growth

rate. As the time step is determined by the CFL condition, and hence does not

depend on the growth rate, faster growing modes would require fewer time steps.

However, faster growth rates imply the need for a finer grid to resolve the skin

layers in the conductor and the plasma boundary. This allows on the one hand

to reduce the interval of z(τ) − z0 over which calculations need to be executed,

but enhances of course the numerical effort of each individual step. Overall, the

effect of growth rate on the needed computing time is modest. We can therefore

estimate the total CPU hours requirement from a run with modest growth rate

and corresponding resolution which takes about 4 hours to sufficient convergence

in single core use of a computer. Arguing that by relatively simple programming,

the parallel execution of cases on the individual cores of a node should be possible,

a 2500 case data base (considered necessary to span the interesting operating

regime of AUG equilibria) should be computable within a few thousand CPU

hours.
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