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Abstract—This paper investigates pricing mechanisms for util-
ity maximization in interference coupled systems. An axiomatic
framework of interference functions similar to the one proposed
by Yates is utilized to capture interference coupling in wireless
systems. Pricing mechanisms are used as a design tool to shift
the solution outcome of a utility maximization problem to a
desired point in the region. The paper explores the restrictions
required on the class of utility functions and the restrictions on
the class of interference functions such that a pricing mechanism
can always guarantee the designer the ability of being able to
shift the solution outcome to any desired point in the region, i.e.
it is a universal pricing mechanism.

I. INTRODUCTION

Utility maximization problems are frequently encountered
in wireless systems. Game theoretic tools have often been
used to analyze such problems. An interesting aspect of
such problems is the ability to shift the solution outcome
of the utility maximization problem to a desired point in the
region. Pricing can be one possible tool for a system designer
to shift the operating point of a wireless communication
system to a desired region/point. Furthermore pricing could
also be utilized for implementing a certain cost function for
utilizing a resource, e.g. enforcing power constraints, energy
efficiency, interference coordination and management etc. A
variety of pricing schemes have been proposed in literature
aiming to improve the performance of the Nash equilibrium
in communication and wireless systems with respect to a
particular setting and a particular criterion [1]–[5]. The topic
of efficiency of such a Nash equilibrium has recently aroused
interest [6], [7]. There exists a lot of literature in the economics
community, which are occupied with finding the fundamental
bounds for certain games where the outcome satisfies certain
given criteria, e.g. [8] and references therein. Our reference list
is by no means comprehensive and we have provided a brief
overview of the vast literature available on the topic. In our
work we differentiate ourselves from the rest of the literature
by hunting for a universal pricing mechanism for the case
of utility maximization for interference coupled systems. By
a universal pricing mechanism we mean, that a mechanism
which under certain requirements can achieve any operating
point in a desired region.

The main contributions of our paper are as follows.

1) Theorem 1 shows that linear pricing in power pk of user
k is not sufficient for achieving all points in a desired
region if we have interference coupled systems.

2) Theorem 2 and Theorem 3 establish the largest class
of utility functions (the class of exponentially concave
utility functions, described later in Definition 4), given
linear interference functions, such that a pricing mech-
anism which is linear in βk and logarithmic in pk, the
power of the kth user is a universal pricing mechanism,
i.e. the pricing mechanism can achieve all points in a
desired region.

3) Theorem 4 and Theorem 5 establish the largest class of
interference functions (the class of log–convex interfer-
ence functions), described later in Definition 5, given
utility functions from the class of exponentially concave
utility functions, such that a pricing mechanism which
is linear in βk and logarithmic in pk, the power of the
kth user is a universal pricing mechanism.

II. INTERFERENCE COUPLED SYSTEMS

A. Preliminaries and Notation

Matrices and vectors are denoted by bold capital letters and
bold lowercase letters, respectively. Let y be a vector, then
yl = [y]l is the lth component. The notation y ≥ 0 implies that
yl ≥ 0 for all components l. x 	 y implies component-wise
inequality with strict inequality for at least one component.
Similar definitions hold for the reverse directions. x 6= y
implies that the vector differs in at least one component.
Finally, let U imply a family of functions. The set of non–
negative reals is denoted as R+. The set of positive reals is
denoted as R++.

B. Interference Functions

In a wireless system, the users’ utilities can strongly depend
on the underlying physical layer. An important measure for
the link performance is the signal-to-interference(-plus-noise)
(SINR) ratio. Consider K users with transmit powers p =
[p1, . . . , pK ]T and K := {1, . . . ,K}. The noise power at each
receiver is σ2. Hence the SINR at each receiver depends on
the extended power vector p = [p, σ2]T = [p1, . . . , pK , σ

2]T .

2010 European Wireless Conference

978-1-4244-6001-4/10/$26.00 ©2010 IEEE 661



The resulting SINR of user k is

SINRk(p) =
pk
Ik(p)

= γk, (1)

where Ik is the interference (plus noise) as a function of
p. In order to model interference coupling, we shall follow
the axiomatic approach proposed in [9], [10]. The general
interference functions possess the properties of conditional
positivity, scale invariance and monotonicity with respect to
the power component and strict monotonicity with respect to
the noise component. For further details, kindly refer to the
Appendix VII. Certain examples, where the interference func-
tion framework has been utilized are as follows: beamforming
[11]–[13], CDMA [14], base station assignment, robust design
[15], [16], transmitter optimization [17], [18] and character-
ization of the Pareto boundary [19]. The framework can be
used to combine power control [20] and adaptive receiver
strategies. Certain examples, where this has been successfully
achieved are as follows. In [21] it was proposed to incorporate
admission control to avoid unfavorable interference scenarios.
In [22] it was proposed to adapt the quality of service (QoS)
requirements to certain network conditions. In [23] a power
control algorithm using fixed-point iterations was proposed for
a modified cost function, which permits control of convergence
behavior by adjusting fixed weighting parameters.

C. Impact of Interference Coupling

Users in wireless systems coupled by interference are in-
trinsically competitive. Each of them is principally interested
in maximizing their own utility and have little or no regard
for the utilities of the other users and for the entire system
utility. Such neglect of course does not come for free. Such a
characterization is accompanied by a pre–condition that there
must be at least one user k ∈ K who sees interference from
another user j ∈ K and j 6= k, i.e. it must not be possible
to completely orthogonalize all the users in the system. If the
users are completely orthogonal, then they are coupled only
by the constraints on the resource allocation strategy and there
is no “competition” in the sense we describe in this section.

Example 1. Consider the function gk(p) = log(p
k
/Ik(p)).

The function

u(p,ω) =
∑
k∈K

ωkgk(p), (2)

for all ω > 0 is not jointly concave with respect to p.
Furthermore the problem of maximizing the function u(p,ω)
specified in (2) is not a convex optimization problem even for
linear interference functions, e.g. Ik(p) =

∑
l∈K vklpl + σ2

k,
where vkl is the link–gain between transmitter l and receiver
k.

[24] implies that if gk is the rate of user k, then the
following sum of weighted rate maximization problem cannot
be jointly concave in its current form.

III. PRICING MECHANISMS

In this section we shall formally introduce what we mean
by a pricing mechanism and elaborate on the topic before
presenting universal pricing mechanisms and investigating
classes of utility functions and classes of interference functions
where such universal pricing mechanisms are permissible.
Consider the function u(p,ω), where

u(p,ω) =
∑
k∈K

ωkgk

(
pk
Ik(p)

)
. (3)

The function presented in (3) is a general utility maximiza-
tion problem as a function of SINR. Such a problem is
frequently encountered in wireless systems. In our paper,
“utility” can represent certain arbitrary performance measures,
which depend on the SINR by a strictly monotonic increasing
continuous function gk defined on R+. The utility of user k
is

gk(γk) = gk(
pk
Ik(p)

), k ∈ K. (4)

An example of the above case is capacity: gk(x) = log(1+x)
and effective bandwidth gk(x) = x/(1+x) [25]. With respect
to the utility maximization problem presented in (3) we present
two pricing mechanisms below.

1) Linear pricing in βk and linear pricing pk: u(p,ω) −∑
k∈K βkpk

2) Linear pricing in βk and logarithmic pricing in pk:
u(p,ω)−

∑
k∈K βk log(pk)

Let U represent a family of functions u(p,ω). Let F represent
a family of functions

u(p,ω)−
∑
k∈K

fk(βk, pk). (5)

We now present a formal definition of what we mean by a
pricing mechanism.

Definition 1. Pricing Mechanism: A pricing mechanism is a
mapping from U to F .

In each of the pricing mechanisms presented above: f is a
function of a certain scalar parameter βk and the power pk
for user k. In each of these cases the pricing mechanism is
a tool, which the designer could utilize to shift the operating
point of the system to a desired point. An example of such a
framework for the purpose of energy–efficiency is [26].

We now explain what me mean by the pricing problem.
Given u(p,ω) ∈ U and given a power vector p, the pricing
problem is to choose a vector β̂ = β̂(p) and a K–tuple f =
[f1, . . . , fK ], such that

sup
p̃∈RK

+

(
u(p̃,ω)−

∑
k∈K

fk(β̂k, p̃k)
)

=

u(p,ω)−
∑
k∈K

fk(β̂k, pk). (6)

For the purpose of solving the pricing problem, such that every
possible point can be an operating point we introduce the
definition of a universal pricing mechanism below.
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Definition 2. Universal pricing mechanism: A pricing mecha-
nism is said to be a universal pricing mechanism, if it chooses
the same point in the range F , independent of the choice of
u(p,ω) ∈ U .

In our paper we consider an interference coupled wireless
system, where the users always report their true utilities to the
game designer (system designer). The system works as a two
step process:

1) The users report their utilities g1, . . . , gK to the system
designer.

2) The system designer wants to achieve a certain objective,
e.g. maxp∈P u(p,ω), where u(p,ω) is as defined in (3)
and P is a set which is result of certain power constraints
on the system. The system designer now allocates the
resources. In this case the powers p to the users.

We now introduce two families of utility functions, which we
shall utilize while analyzing pricing mechanisms.

Definition 3. Conc is the family of all strictly monotonic
increasing, continuous functions g, such that g(x) is concave.

If g is strictly monotonic increasing, then g(x) is also
concave, i.e. the concavity of the function g(ey) is a stronger
requirement. To utilize this requirement, we introduce the the
family of functions EConc below.

Definition 4. EConc is the family of all strictly monotonic
increasing, continuous functions g, such that g(ex) is concave.

Based on the system model described above and the intro-
duced classes of utility functions, we are interested in tackling
the following problems.

Problem 1. For a given family of utility functions and for
a certain structure of interference coupling in the system, is
it possible to design a pricing mechanism, such that every
possible point can be an operating point?

Problem 2. For a system with linear interference functions,
what is the largest class of utility functions, such that we can
have a universal pricing mechanism?

Problem 3. For a system with utility functions in the family
EConc, are there restrictions on the interference coupling of
the systems systems

1) orthogonal or non–orthogonal systems and
2) dependency (classes of interference functions),

such that we can have a universal pricing mechanism?

Equipped with the necessary definitions and concepts we
now go about investigating the Problems 1, 2 and 3 presented
above.

IV. UNIVERSAL PRICING MECHANISMS – LINEAR
INTERFERENCE FUNCTIONS

The work in [27] states, that a pricing mechanism, which
is linear in pk and linear in βk, is sufficient to achieve every
possible operating point in multiuser orthogonal systems. We
investigate the possibility of extending the result from [27]

to the case of non–orthogonal systems when we have utility
functions from the class EConc.
A. Universal Pricing Mechanism – Non–orthogonal Systems

In this section we begin with utility functions in the class
EConc and a non–orthogonal system with linear interference
functions. We check if for such a system a pricing mechanism,
which is linear in pk and linear in βk is a universal pricing
mechanism.

Theorem 1. Let utility functions g1, . . . , gK ∈ Conc be
arbitrary (not constant). Let I1, . . . , IK be arbitrary linear
interference functions, such that the system is not orthogonal.
There exists a vector ω > 0, such that not every power vector
p > 0 is supportable by a pricing mechanism, which is linear
in βk and linear in pk for all users k ∈ K.

Proof: Assume that Theorem 1 is not true, i.e. there
exists utility functions g1, . . . , gK ∈ Conc and linear inter-
ference functions I1, . . . , IK (non–orthogonal system), such
that for all weight vectors ω > 0 the following state-
ment holds. For every power vector p > 0 there exists

a p̂ = β(p) such that
∑
k∈K

(
ωkgk( pk

Ik(p) ) − βkpk

)
=

supp̃>0

(∑
k∈K ωkgk(

p̃k

Ik(p̃) )−
∑
k∈K βkp̃k

)
= Gω(β). Then,

we have that∑
k∈K

ωkgk(
pk
Ik(p)

) = inf
β∈RK

(
Gω(β) +

∑
k∈K

βkpk
)
.

Let us choose power vectors p(1),p(2) > 0 arbitrarily and
choose p(λ) = (1− λ)p(1) + λp(2). We have∑
k∈K

ωkgk
( pk(λ)
Ik(p(λ))

)
= inf

β∈RK

(
Gω(β)

+(1− λ)
∑
k∈K

βkp
(1)
k

+λ
∑
k∈K

βkp
(2)
k

)
= inf

β∈RK

(
(1− λ)

(
Gω(β)

+
∑
k∈K

βkp
(1)
k

)
+λ
(
Gω(β) +

∑
k∈K

βkp
(2)
k

))
≥ (1− λ) inf

β∈RK

(
Gω(β)

+
∑
k∈K

βkp
(1)
k

)
+λ inf

β∈RK

(
Gω(β) +

∑
k∈K

βkp
(2)
k

)
= (1− λ)

∑
k∈K

ωkgk
( pk
Ik(p(1))

)
+λ

∑
k∈K

ωkgk
( p

(2)
k

Ik(p(2))
)
,
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i.e. the function
∑
k∈K ωkgk(

pk

Ik(p) ) is jointly concave for all
weight vectors ω > 0, i.e. gk( pk

Ik(p) ) is jointly concave. This
is in direct contradiction to reference [24, Theorem 4].

The above result shows that linear pricing in βk and linear
pricing in pk is a universal pricing mechanism only for
orthogonal systems. The above result partly addresses Problem
1 and partly addresses Problem 3. We shall now investigate in
the next section the possibility of having a universal pricing
mechanism for the largest class of utility functions, given
systems with linear interference functions.

B. Universal Pricing Mechanisms – Largest Class of Utility
Functions

We now present Lemmas 1 and 2 (these results are part
of [28] and have been presented here for completeness of the
analysis), which we shall require to answer Problem 2.

Lemma 1. ψ(s) = c1exp(µs), with c1, µ > 0 is a transfor-
mation such that the function g

(
ψ(sk)/Ik(ψ(s))

)
is jointly

concave with respect to s ∈ RK+1, for all linear interference
functions I1, . . . , IK and for all utility functions g ∈ EConc.

In [28] it was shown, that under certain intuitive restrictions,
for all linear interference functions I1, . . . , IK and for all
utility functions g ∈ EConc, the function g

(
ψ(sk)/Ik(ψ(s))

)
is jointly concave with respect to s ∈ RK+1, if and only if
ψ(s) = c1exp(µs), with c1, µ > 0.

Lemma 2. For all ω > 0, ω = [ω1, . . . , ωK ]T with∑
k∈K ωk = 1, the function

∑
k∈K ωkgk

(
pk/Ik(p)

)
is jointly

concave with respect to p, if and only if the utility functions
g1(p), . . . , gK((p)) are all jointly concave.

Theorem 2. Linear pricing in βk and logarithmic pricing in
pk, for all users k ∈ K, is a universal pricing mechanism
for all utility functions g1, . . . , gK ∈ EConc, for all linear
interference functions and for all weight vectors ω > 0.

Proof: From Lemmas 1 and Lemma 2, we have that the
function

∑
k∈K ωkgk(pk/Ik(p)) only after the transformation

pk = esk is jointly concave with respect to s. By applying
our pricing mechanism, which is linear in βk and logarithmic
in pk (linear in sk) we have the following expression:∑

k∈K

ωkgk(
esk

Ik(es)
)−

∑
k∈K

βksk, gk ∈ EConc. (7)

It can be easily observed in (7), for each sk by an appropriate
choice of βk every point s in the above can be achieved.
Hence, we have our desired result.

Theorem 2 has completely answered Problem 2 and partly
addressed Problem 1 for the class of utility functions EConc.
In Theorem 2 we have proved that a pricing mechanism, which
is linear in βk and logarithmic in pk, for all users k ∈ K is a
universal pricing mechanism with the following two conditions
being sufficient for the result:

1) The utility functions g1, . . . , gK are in EConc.
2) I1, . . . , IK are linear interference functions.

Our next result will show that these two conditions are not only
sufficient, however also necessary for the pricing mechanism,
which is linear in βk and logarithmic in pk to be a universal
pricing mechanism.

Theorem 3. Let utility functions g1, . . . , gK ∈ Conc, such
that at least one of the gk, for k ∈ K is not in EConc. Then,
there exist linear interference functions and a weight vector
ω > 0 such that the following statement holds: not every
power vector p > 0 is supportable by linear pricing in βk
and logarithmic pricing in pk, for all k ∈ K.

Proof: Assume for the sake of obtaining a contradiction
that Theorem 3 is not true, i.e. for all utility functions
g1, . . . , gK ∈ Conc, such that at least one gk, with k ∈ K is
not in EConc, for all linear interference functions for all ω > 0
all power vectors p > 0 are supportable by linear pricing in
βk and logarithmic pricing in pk, for k ∈ K. Exactly as in the
proof of Theorem 1 we conclude, that

∑
k∈K

esk

Ik(es) is jointly
concave for all linear interference functions for all ω > 0.
Then, we conclude that for all linear interference functions,
for all users k ∈ K the function gk( esk

Ik(es) ) is jointly concave.
However, this implies that gk ∈ EConc for all k ∈ K. This is
in contradiction to the assumptions of Theorem 3.

We observe that the largest class of utility functions, such
that the corresponding pricing problem is solvable – is the
class EConc. Hence, we have concluded that Problem 1 is not
solvable for utility functions outside the class EConc.

V. UNIVERSAL PRICING MECHANISM – BEYOND LINEAR
INTERFERENCE FUNCTIONS

In the previous section we have established the largest class
of utility functions, namely EConc which along with linear
interference functions permit a universal pricing mechanism,
which is linear in βk and logarithmic in pk, for all users k ∈ K.
In this section we shall fix our class of utility functions to
EConc and look for the largest possible class of interference
functions, which permit a universal pricing mechanism, which
is linear in βk and logarithmic in pk, for all users k ∈ K.
Before we begin searching for the largest class of interference
function, we introduce the property of log–convexity, which we
shall exploit in this section. Log–convexity is a useful property
that allows one to apply convex optimization techniques to
certain non–convex problems.

Definition 5. Log–convex interference function: An interfer-
ence function I : RK+1

+ 7→ R+ is said to be a log–convex
interference function if A1 − A4 (appendix VII) are fulfilled
and I(exp{s}) is log-convex on RK+1.

Linear interference functions are also log–convex interfer-
ence functions.

Let f(s) := I(exp{s}). The function f : RK+1 7→ R+ is
log–convex on RK if and only if log f is convex or equiv-
alently f(s(λ)) ≤ f(s(1))1−λf(s(2))1−λ, for all λ ∈ (0, 1),
s(1), s(2) ∈ RK , where s(λ) = (1−λ)s(1)+λs(2), λ ∈ (0, 1).
Note that the log–convexity in Definition 5 is based on a
change of variable p = exp{s} (component-wise exponential).
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Such a technique has been previously used to exploit a “hidden
convexity” of functions, which are otherwise non-convex.

We shall now present a Lemma 3 (this results is part of
[28] and have been presented here for completeness of the
analysis), which we shall require to answer the question posed
in Problem 3.

Lemma 3. The function
∑
k∈K ωkg

(
esk/Ik(es)

)
is jointly

concave with respect to s, for all weight vectors ω > 0,
for all g ∈ EConc, if and only if I1, . . . , IK are log–convex
interference functions.

Theorem 4. Let utility functions g1, . . . , gK ∈ EConc be
arbitrarily chosen. Let I1, . . . , IK be arbitrary log–convex
interference functions. Then, for all ω > 0 the pricing
mechanism, which is linear in βk and logarithmic in pk, for
all k ∈ K solves the pricing problem for

∑
k∈K ωkgk

(
pk

Ik(p)

)
.

Proof: From Lemmas 1 and 3 and following the same
arguments as in the proof of Theorem 2.

In Theorem 4 we have proved that a pricing mechanism,
which is linear in βk and logarithmic in pk, for all users k ∈
K is a universal pricing mechanism with the following two
conditions being sufficient for the result:

1) The utility functions g1, . . . , gK are in EConc.
2) I1, . . . , IK are log–convex interference functions.

Our next result will show that these two conditions are not only
sufficient, however also necessary for the pricing mechanism,
which is linear in βk and logarithmic in pk to be a universal
pricing mechanism.

Theorem 5. Let utility functions g1, . . . , gK ∈ EConc be
arbitrarily chosen. Let I1, . . . , IK be arbitrary interference
functions, such that at least one interference function Ik, for
k ∈ K is not a log–convex interference function. Then, for
all weight vectors ω > 0 the following statement holds: not
every power vector p > 0 is supportable by linear pricing in
βk and logarithmic pricing in pk, for all k ∈ K.

Proof: The proof follows in a similar manner as in the
proof of Theorem 3.

Theorems 4 and 5 have completely addressed Problem 3.

VI. DISCUSSION

We have shown, that a pricing mechanism, which is linear
in the power of the kth user pk and is linear in βk is a
universal pricing mechanism only for orthogonal systems,
however is not restricted by the class of utility functions. We
have shown, that linear pricing in βk and logarithmic pricing
in pk is a universal pricing mechanism for utility functions
from the class EConc and for log–convex interference func-
tions. Furthermore, we have shown that these are the largest
classes of utility functions and interference functions, which
allow this particular pricing mechanism as a universal pricing
mechanism. As further work, we would like to show that under
certain mild restrictions on the interference coupled system
the only possible universal pricing mechanism is one which is
linear in βk and logarithmic in pk for all users k ∈ K, namely
the converse direction of the results proved in our paper.

VII. APPENDIX: INTERFERENCE FUNCTIONS

Definition 6. Interference functions: We say that I : RK+1
+ 7→

R+ is an interference function if the following axioms are
fulfilled:

A1 conditional positivity I(p) > 0 if p > 0

A2 scale invariance I(αp) = αI(p),∀α ∈ R+

A3 monotonicity I(p) ≥ I(p̂) if p ≥ p̂
A4 strict monotonicity I(p) > I(p̂) if p ≥ p̂,

p
K+1

> p̂
K+1

.

Note that we require that I(p) is strictly monotone with
respect to the last component p

K+1
. An example is I(p) =

vTp+σ2, where v ∈ RK+ is a vector of interference coupling
coefficients. The axiomatic framework A1-A4 is connected
with the framework of standard interference functions [9]. The
details about the relationship between the model A1-A4 and
Yates’ standard interference functions were discussed in [10].
For the purpose of this paper it is sufficient to be aware that
there exists a connection between these two models and the
results of this paper are applicable to standard interference
functions.
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