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Abstract— This paper studies the problem of Overdetermined
Blind Source Separation (OdBSS), a challenging problem in
signal processing. It aims to recover desired sources from
outnumbered observations without knowing either the source
distributions or the mixing process. It is well-known that
performance of standard BSS algorithms, which usually utilize
a whitening step as a pre-process to reduce the dimensionality
of observations, might be seriously limited due to its blind
trust on the data covariance matrix. In this paper, we develop
efficient OdBSS algorithms without dimensionality reduction.
In particular, our algorithms solve a problem of simultaneous
diagonalization of a set of symmetric matrices. By exploiting the
appropriate underlying manifold, namely the so-called oblique
manifold, intrinsic Newton’s method is developed to optimize
two popular cost functions for the simultaneous diagonalization
of symmetric matrices, i.e., the off-norm function and the log-
likelihood function. Performance of the proposed algorithms is
investigated by several numerical experiments.

I. INTRODUCTION

Linear Blind Source Separation (BSS) addresses the prob-
lem of recovering linearly mixed sources from only several
observed mixtures without knowing either the source dis-
tributions or the mixing process. A popular assumption of
the sources being mutually statistically independent leads
to the concept of linear Independent Component Analysis
(ICA), which has become a prominant statistical method
for solving the linear BSS problem. A common linear BSS
model, usually refered to as the determined linear BSS model,
assumes that the number of sources is equal to the number of
observations. In this work, we are interested in the problem
of extracting a fewer number of signals from a number of
observations, i.e. the problem of overdetermined linear ICA.
Its applications can be found in image analysis and bio-
medical data analysis.

A widely-used linear ICA procedure consists of two steps
[1]: (i) the observations are firstly whitened, usually by
Principal Component Analysis (PCA), and (ii) a number of
desired signals are extracted from the whitened observations
according to mutual statistical independence. Step (i) reduces
complexity of step (ii) and meanwhile copes with uniqueness
of source extraction [2]. Such a procedure results in the so-
called whitened linear ICA problem. It is well-known [3]
that, in real applications, i.e. problems with only a finite
number of samples, performance of linear ICA methods with
whitening is limited due to statistical inefficiency. Recent
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work in [4] shows that the so-called oblique manifold is the
suitable setting for doing non-whitened linear ICA.

A popular category of ICA algorithms involve a joint
diagonalization of a set of matrices, which are derived from
certain statistics of the observations [2], [5]. Recently, several
efficient simultaneous diagonalization based ICA algorithms
have been developed in [6], [7], for the determined linear
ICA problem, i.e. extracting all sources. Unfortunately, these
works do not handle the current overdetermined situation.
Moreover, we are aware of gradient descent algorithms on
the non-compact Stiefel manifold for non-whitened overde-
termined linear ICA without considering convergence pro-
perties of the proposed algorithms [8], [9]. In this work, we
develop an intrinsic Newton’s method for solving the OdBSS
problem on an appropriate oblique manifold.

This paper is organized as follows. In Section II, we
briefly introduce the overdetermined blind source separation
problem. Section III presents some basic results about the
oblique manifold, which are needed in our later analysis
and development. Critical point analysis of two studied cost
functions is provided in Section IV, followed by a quick
formulation of intrinsic Newton’s method on the oblique
manifold. Finally in Section V, performance of the proposed
algorithms is investigated by several numerical experiments.

II. OVERDETERMINED BSS PROBLEM

Mixing model of an instantaneous OdBSS problem is
given as

w(t) = As(t) + n(t), (1)

where s(t) ∈ Rn denotes the time series of n statistically
independent signals, A ∈ Rm×n with m > n is the mixing
matrix of full rank, w(t) ∈ Rm denotes m observed linear
mixtures, and n(t) ∈ Rm are certain noises. We denote by
si(t) ∈ R and wi(t) ∈ R the i-th components of s(t) and
w(t), respectively. By the construction of linear ICA, the
source signals s(t) are assumed to be mutually statistically
independent and, without loss of generality, to have zero
mean and unit variance, i.e.,

E[s(t)] = 0, and E[s(t)s(t)>] = In, (2)

where In ∈ Rn×n is the identity matrix. The task of OdBSS
is to extract k source signals with k ≤ n, by finding a
demixing matrix X ∈ Rm×k based only on the observations
w(t) via the demixing model

y(t) = X>w(t), (3)



where y(t) ∈ Rk denotes k extracted source signals.
It is well-known that under certain conditions, the OdBSS

problem can be solved effectively by only using second-order
statistics. The first scenario studied in this work assumes
that sources s(t) are nonstationary, namely, covariance of
s(t), and thus consequently, w(t) as well, is time-varying. A
simple approach to separate nonstationary sources [10] is to
simultaneously diagonalize a set of covariance matrices of
w(t) at different time periods, which are symmetric positive
semi-definite. A more general approach of using second-
order statistics is to simultaneous diagonalize a set of time-
lagged covariance matrices, constructed as follows,

R(τ) := E
[
w(t)w(t+ τ)>

]
(4)

where τ > 0 is a time lag. Note that R(τ) is symmetric
indefinite in general. In this paper, we are interested in
solving the following problem. Given a set of matrices
{Ci}Ni=1 ⊂ Rm×m, constructed as second-order statistics of
the observations w(t), the task is to find a matrix X ∈ Rm×k
being of full rank, such that

X>CiX, for all i = 1, . . . , N, (5)

are simultaneously diagonalized, or approximately simulta-
neously diagonalized subject to certain diagonality measure.

It is well-known [2], [11] that, if an X∗ ∈ Rm×k
extracts k desired sources, the demixing matrix X∗ can
only be identified up to arbitrary column-wise scaling and
permutation of columns, i.e., any X∗DP , where D is a
k×k invertible diagonal matrix and P a k×k permutation
matrix, extracts the same k sources. It is known that the
ambiguity due to column-wise scaling can be eliminated
by a pre-whitening process. For a non-whitened approach,
one needs an appropriate setting to handle the column-wise
scaling, namely the oblique manifold [12]. Now let us denote
the m×k oblique manifold by

O(m, k) :=
{
X∈Rm×k|ddiag(X>X)= Ik, rkX=k

}
, (6)

where rk is the rank, and ddiag(Z) forms a diagonal matrix,
whose diagonal entries are just those of Z.

Straightforwardly, two popular cost functions of measuring
diagonality of matrices, namely, the off-norm function [13]
and the log-likelihood based cost function [10], are adapted
to the present overdetermined scenario as follows

f1 : O(m, k)→ R,

X 7→ 1
4

n∑
i=1

∥∥∥ off(X>CiX)
∥∥∥2

F
,

(7)

where off(Z) = Z − ddiag(Z) is a matrix by setting the
diagonal entries of Z to zero and ‖ · ‖F is the Frobenius
norm, and

f2 : O(m, k)→R,

X 7→1
2

n∑
i=1

log
det ddiag

(
X>CiX

)
det (X>CiX)

.
(8)

It is important to notice that the off-norm function (7) is
column-wise scale invariant with respect to the matrix X ,

only if the OdBSS problem is noiseless. Performance of both
functions in terms of separation quality is out of scope of
this paper.

III. STRUCTURE OF OBLIQUE MANIFOLD

In order to formulate an intrinsic Newton’s method on
the oblique manifold O(m, k), we introduce the Riemannian
gradient and the Riemannian Hessian on O(m, k). We endow
O(m, k) with the Riemannian metric inherited from Rn×k
by the inner product

g : Rn×k × Rn×k → R, g(A,B) := tr(A>B). (9)

It will be useful for understanding the upcoming formulas,
if we recall the fact that O(m, k) is an open and dense
Riemannian submanifold of the well understood k-times
product of the (m−1)-sphere with the usual Euclidean metric

O(m, k) = Sm−1 × · · · × Sm−1︸ ︷︷ ︸
k−times

=: (Sm−1)k. (10)

Here, O(m, k) denotes the closure of O(m, k). It follows,
that

dimO(m, k) = k dimSm−1 = k(m− 1) (11)

and, the tangent spaces and the geodesics for O(m, k) and
(Sm−1)k coincide. In other words, a geodesic on O(m, k) is
exactly the connected component of a geodesic on (Sm−1)k

restricted to O(m, k). Concretely, the tangent space at some
X ∈ O(m, k) is given by

TXO(m, k) = {Ξ ∈ Rm×k | ddiag(X>Ξ) = 0}, (12)

and the normal space by

NXO(m, k) = {XΓ | Γ ∈ Rk×k is diagonal}. (13)

Lemma 1: The orthogonal projection onto the tangent
space TXO(m, k) at X ∈ O(m, k) is given by

pr: Rm×k → TXO(m, k),

pr(A) := A−X ddiag(X>A). (14)

Proof: We first show that for pr(A) ∈ TXO(m, k),

ddiag(X> pr(A))

= ddiag(X>(A−X ddiag(X>A))

= ddiag(X>A)− ddiag(X>X(ddiagX>A))

= ddiag(X>A)− ddiag(X>X)(ddiagX>A)
= 0,

(15)

because ddiag(X>X) = Ik. For orthogonality of the pro-
jection, let Ξ ∈ TXO(m, k), i.e. ddiag(Ξ>X) = 0. We
compute

tr(Ξ> pr(A)) = tr(Ξ>A)− tr(Ξ>X ddiag(X>A))

= tr(Ξ>A),
(16)

following the fact that ddiag(Ξ>X) = 0 implies
ddiag(Ξ>XΓ) = 0 for any diagonal matrix Γ, thus,
tr(Ξ>X ddiag(X>A)) = 0. The result follows.



Now, let us recall the great circle µx of Sm−1 at x ∈ Sm−1

for a given tangent direction ξ ∈ TxSm−1, defined as follows

µx,ξ : R→ Sm−1,

µx,ξ(t) :=

{
x, ‖ξ‖ = 0;
x cos t‖ξ‖+ ξ sin t‖ξ‖

‖ξ‖ , otherwise.
(17)

Clearly, µx,ξ(0) = x and µ̇x,ξ(0) = ξ. Geodesics of O(m, k)
are given as follows.

Lemma 2: Geodesics γX,Ξ : R → O(m, k) through X =
[x1, . . . , xk] ∈ O(m, k) in direction Ξ = [ξ1, . . . , ξk] ∈
TXO(m, k) on (Sm−1)k and hence, by restriction, on
O(m, k) are given by

γX,Ξ(t)=[µx1,ξ1(t), . . . , µxk,ξk
(t)]. (18)

Proof: Since x>i xi = 1 and ξ>i xi = 0 for i = 1, . . . k,
we have γ̇X,Ξ(0) = Ξ. Moreover, it can be shown that
γ̈X,Ξ(0) lies in the normal space of X since

γ̈X,Ξ(0) = X diag(−‖ξ1‖2, . . . ,−‖ξk‖2), (19)

hence the result follows.

IV. INTRINSIC NEWTON’S METHOD

In this section, we firstly provide a critical point analysis
of the two cost functions defined in (7) and (8), followed by
development of an intrinsic Newton’s method for optimizing
both functions.

We compute the first derivative of f1 as defined in (7) at
X ∈ O(m, k) in direction Ξ ∈ TXO(m, k) as

D f1(X)Ξ = tr
(
Ξ>CiX off(X>CiX)

)
. (20)

Let X∗ ∈ O(m, k) be an exact joint diagonalizer, obviously

D f1(X∗)Ξ = 0, (21)

i.e., any exact diagonalizer of the simultaneous diagonal-
ization problem (5) is a critical point of f1. By taking
the second derivative of f1 at X ∈ O(m, k) in direction
Ξ ∈ TXO(m, k), it gives

D2 f1(X)(Ξ,Ξ) = d2

d t2 (f1 ◦ γX,Ξ)(t)
∣∣∣
t=0

=
N∑
i=1

tr
(
Ξ>CiΞ off

(
X>CiX

))
− tr

(
ddiag(Ξ>Ξ)X>CiX off

(
X>CiX

))
+ tr

(
Ξ>CiX

(
off
(
X>CiΞ

)
+ off

(
Ξ>CiX

)))
.

(22)

where γX,Ξ is the geodesic on O(m, k) as defined in (18). It
is easy to see that the first two terms on the right-hand side
in (22) evaluated at a joint diagonalizer X∗ ∈ O(m, k) are
equal to zero. Let Ξ = [ξ1, . . . , ξk] ∈ TX∗O(m, k). Then we
evaluate the third term at X∗ as

tr
(
Ξ>CiX∗

(
off
(
X∗>CiΞ + Ξ>CiX∗

)))
=

k∑
p,q=1

N∑
i=1

ξ>p Cix
∗
qx
∗>
q Ciξp + ξ>p Cix

∗
qx
∗>
p Ciξq.

(23)

A direct computation shows that the second summation on
the right-hand side of (23) is equal to zero as well. By the
construction of OdBSS, i.e. the second-order statistics Ci’s
are not of full rank, we conclude the following result.

Lemma 3: Any exact joint diagonalizer X∗ ∈ O(m, k) of
the noiseless OdBSS problem as defined in (5) is a critical
point of the off-norm function f1, defined in (7). The Hessian
of f1 at X∗ is positive semidefinite.

Remark 1: Obviously, the semidefiniteness of the Hessian
of f1 at desired critical point will cause troubles for Newton’s
method to converge. Nevertheless, noiseless OdBSS problem
can be efficiently solved by a pre-whitened BSS approach.
When noises are present, in general, it is reasonable to
assume that the Hessian of f1 at X∗ is positive definite.

In what follows, we quickly derive a critical point analysis
of the log-likelihood based cost function f2, defined in (8),
in the same manner as for f1. The first derivative of f2 at
X ∈ O(m, k) in direction Ξ ∈ TXO(m, k) is computed by

Df2(X)Ξ =
N∑
i=1

tr
(

Ξ>CiX
((

ddiag(X>CiX)
)−1

− (X>CiX)−1
))
.

(24)

It can be easily shown that an exact joint diagonalizer X∗ ∈
O(m, k) is a critical point of f2. A tedious computation
leads to the the second derivative of f2 at X ∈ O(m, k)
in direction Ξ ∈ TXO(m, k) as follows

D2 f2(X)(Ξ,Ξ) = d2

d t2 (f2 ◦ γX,Ξ)(t)
∣∣∣
t=0

=
N∑
i=1

tr
(((

ddiag(X>CiX)
)−1

−(X>CiX)
−1
)
·

·
(

Ξ>CiΞ− ddiag(Ξ>Ξ)X>CiX
))

+ tr
(

Ξ>CiX
(

(X>CiX)
−1 (

Ξ>CiX +X>CiΞ
)
·

· (X>CiX)
−1
−
(
ddiag(X>CiX)

)−1

·

· ddiag
(
Ξ>CiX +X>CiΞ

)(
ddiag

(
X>CiX

) )−1))
.

(25)

The first term on the right-hand side from above can be
shown to be equal to zero at X∗ ∈ O(m, k). Let us denote

Λ := diag (λ1, . . . , λk)

=
(
X∗>CiX

∗)−1

=
(
ddiag(X∗>CiX∗)

)−1

,
(26)

with λj > 0 for all j = 1, . . . , k. Then the second term in
(25) evaluated at X∗ is computed as

tr
(
Ξ>CiX∗Λ off

(
X∗>CiΞ + Ξ>CiX∗

)
Λ
)

=
k∑

p,q=1

N∑
i=1

λpλqξ
>
p Cix

∗
qx
∗>
q Ciξp

+
k∑

p,q=1

N∑
i=1

λpλqξ
>
p Cix

∗
qx
∗>
p Ciξq.

(27)



By the same argument, the second summation on the right-
hand side of (27) is equal to zero. Following the fact that
λj > 0, we conclude a similar result as Lemma 3 as follows

Lemma 4: Any exact joint diagonalizer X∗ ∈ O(m, k) of
the noiseless OdBSS problem as defined in (5) is a critical
point of the off-norm function f2, defined in (8). The Hessian
of f2 at X∗ is positive semidefinite.

In the rest of the section, we quickly develop an intrinsic
Newton’s method for minimizing...

V. NUMERICAL EXPERIMENTS

The task of our experiment is to jointly diagonalize a set
of symmetric matrices {C̃i}Ni=1, constructed by

C̃i = AΛiA> + εEi, i = 1, . . . , N, (28)

where A ∈ Rm×m is a randomly picked matrix in O(m, k),
diagonal entries of Λi are drawn from a uniform distribution
on the interval (9, 11), Ei ∈ Rm×m is the symmetric part of
an m×m matrix, whose entries are generated from a uniform
distribution on the unit interval (−0.5, 0.5), representing
additive noise, and ε ∈ R is the noise level. We set m = 5,
n = 20, and run six tests, for both the Gauss-Newton-
Jacobi algorithm and Pham’s algorithm, in accordance with
increasing noise, by using ε = t× 10−2 where t = 0, . . . , 5.

The convergence of algorithms is measured by the distance
of the accumulation point X∗ ∈ O(m, k) to the current
iterate Xk ∈ O(m, k), i.e., by ‖Xk − X∗‖F. According to
Fig. ?? and ??, it is clear that both algorithms converge
locally quadratically fast to a joint diagonalizer under the
Exact NoJD setting, i.e., ε = 0. Although Pham’s algorithm
was claimed in [10] to converge locally quadratically fast
to a joint diagonalizer under the Approximate NoJD setting,
such a property indeed holds no longer for both algorithms
with the presence of noise. They appear to converge only
linearly fast.
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