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Summary Considering absolute log returns as a proxy for stochastic volatility, the influ-
ence of explanatory variables on absolute log returns of ultra high frequency data is analysed.
The irregular time structure and time dependency of the data is captured by utilizing a con-
tinuous time ARMA(p,q) process. In particular we propose a mixed effect model for the
absolute log returns. Explanatory variable information is used to model the fixed effects,
whereas the error is decomposed in a non-negative Lévy driven continuous time ARMA(p,q)
process and a market microstructure noise component. The parameters are estimated in a
state space approach. In a small simulation study the performance of the estimators is inves-
tigated. We apply our model to IBM trade data and quantify the influence of bid-ask spread
and duration on a daily basis. To verify the correlation in irregularly spaced data we use the
variogram, known from spatial statistics.
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1. INTRODUCTION

Efficient estimation of stochastic volatility is vital for risk management and option pricing. We
are interested in providing such estimates using all available data, allowing for explanatory
variables and accounting for market micro structures. For this we use ultra high frequency
(uhf) financial data. The term uhf data was defined by Engle (2000). He calls financial data
uhf data, if they consist of all transactions and quotes recorded during the trading day. The
recorded transactions of course do not take place at regularly spaced time points, i.e. we have
to analyse irregularly spaced time series. One way would be to sample it at a given frequency,
but this results in a loss of information. Therefore we set up a model directly dealing with
this irregular time spacing. Our object of interest will be the absolute log return, which is a
proxy for the unobservable instantaneous standard deviation σti

, where ti is the time of the
i-th trade, of the log price Sti

= log(Pti
). By modeling the mean of the absolute log returns,

we get a model-based estimate of the instantaneous standard deviation. This could then be
used for example, like in Jungbacker and Koopman (2005), to estimate actual volatility of the
interval [ti, tj ], j > i, given by

σ∗2(ti, tj) =

∫ tj

ti

σ2
t dt

based on all available information. Here it is important to account for microstructure noise,
when dealing with ultra high frequencies. The problem of market microstructure noise at this
frequency is for example explained in Aı̈t-Sahalia,et al. (2005). It is more common to account
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for microstructure effects on the return level, while we will account for these effects on the
absolute log return scale. This is more appropriate in the context of the regression setup we
follow for the absolute log returns. The absolute log-return |Sti

− Sti−1
| will be modeled in

this paper given the past information Gti−1
= σ(Stj

, dtj
; j ≤ i − 1) and current duration

dti
= ti − ti−1. Since the duration process is a stochastic process itself one also needs a model

for this regularly spaced (measured in tick time) time series. A popular model for the dura-
tions given the past information, called Autoregressive Conditional Duration (ACD) model,
has been proposed by Engle and Russell (1997). There are a number of modifications of the
ACD model, which are described for example in Bauwens et al. (2004).
To cope with the problem of unequally spaced data, we will assume a continuous time parame-
ter price process. The absolute log returns will be the response in a regression framework with
the current duration as one of the explanatory variables and correlated residuals. They have
the correlation structure of a continuous time ARMA process. The estimation of correlation
for unequally spaced time series is problematic, since e.g. the sample autocorrelation function
can not be estimated directly. We compute the sample variogram, which is defined in terms
of increments and therefore adequate for irregularly spaced observations. We have already
said, that the absolute log return is viewed in this paper as a noisy measure of instantaneous
volatility. It can be decomposed into a fixed effect, a random effect and a measurement error.
The fixed effect describes the time dependent mean of the data, whereas the random effect
specifies the correlation structure. Since the fixed effect is a function of time varying explana-
tory variables it allows for time of day effects (see for example Bauwens and Giot (2001)).
The measurement error accounts for the market microstructure noise on this absolute return
level. The presence of microstructure effects also allows us to assume the mean function to be
a continuous variable, despite the fact that the prices are multiple of one cent of a US dollar.
The return of irregularly spaced transaction data is also modeled as a continuous variable for
example in Meddahi et al. (1998), whereas Engle and Russel (2005) or Liesenfeld and Pohlmeier
(2003) assume that it takes on only countably many values. The influence of the explanatory
variables will be modeled in a parametric way, which allows us to compute predictions based
on past information and current duration in a very easy way. By using the mean squared error
as scoring rule, we are able to quantify the loss in predictive power, when duration is not
used as an explanatory variable. Here we would like to mention that initially we are interested
in detecting certain dependencies between the response and the explanatory variables. In a
further step one could think about additionally applying an ACD model to compute predic-
tions in real applications. Visualisation of the explanatory variable effect on the absolute log
returns on a daily basis is also possible. Renault and Werker (2004) studied the instantaneous
causality effect from transaction durations to price volatility and found significant empirical
evidence for it. There are also further regression models with measures of volatility as response.
Corsi (2004), Anderson et al. (2003) and Ghysels et al. (2002) have setup different kinds of
linear regression models with for example realized volatility (see Barndorff-Nielsen and Shep-
hard (2002)) as response. An overview over these three models can be found in Forsberg and
Ghysels (2004). As we have already mentioned, Jungbacker and Koopman (2005) estimated
actual volatility of ultra-high frequency data in a model-based approach. They considered a
state space model for the return process, which is defined for every second. This leads to a
missing values problem. We also used a state space approach, but rather prefer to work with
time dependent matrices, to account for the irregular time spacing, than to deal with a large
number of missing values per day.
The paper is organized as follows. In Section 2 we will setup our model for absolute log-returns.
The estimation of the model parameters will be explained in Section 3. The performance of
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the estimates from Section 3 will be tested in a simulation study in Section 4. Section 5 shows
an application of our model to IBM transaction data from the NYSE. The last section gives a
summary and draws conclusions.

2. A MIXED EFFECT REGRESSION MODEL FOR IRREGULARLY

SPACED DATA

The main characteristic of the data we deal with is that we have observations at irregularly
spaced time points. Therefore we think it is natural to assume, that these observations are
observations from a continuous time model. It is common practice to model the volatility of
high frequency data as a continuous time linear process (see for example Barndorff-Nielsen
and Shephard (2001) or Jungbacker and Koopman (2005)). Since the absolute log return is
a measure of the instantaneous standard deviation, we will model them in such a way, that
they have the autocorrelation structure of a continuous time linear process. To be precise,
we assume the autocorrelation structure of a continuous time ARMA(p,q) process, henceforth
called CARMA(p,q) process.

2.1. Second order Lévy driven CARMA(p,q) process

A second order Lévy driven CARMA(p,q) process Y := (Yt)t≥0 is defined (see Brockwell and
Marquardt (2005)) in terms of the following state-space representation of the formal equation,

a(D)Yt = b(D)DLt, t ≥ 0, (2.1)

in which D denotes differentiation with respect to t, L := (Lt)t≥0 is a Lévy process (see for
example Applebaum (2004)) with Var(L1) < ∞,

autoregressive polynomial: a(z) := zp + a1z
p−1 + · · · + ap,

moving-average polynomial: b(z) := 1 + b1z + · · · + bp−1z
p−1,

and the coefficients bj satisfy bq 6= 0 and bj = 0 for q < j < p. It is assumed that a(z) and b(z)
have no common factors. The state-space representation consists of the

observations equation: Yt = bT Wt, (2.2)

and

state equation: dWt − AWtdt = 1pdLt, (2.3)

where

A =





0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−ap −ap−1 −ap−2 · · · −a1




, 1p =





0
0
...
0
1




, b =





1
b1

...
bp−2

bp−1




.

The state equation is therefore a system of linear stochastic differential equations (see for
example Applebaum (2004) for details on stochastic differential equations).

Definition 2.1.

If the real part of the roots λ1, . . . , λp of the autoregressive polynomial a(z) is negative and
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W0 is independent of the driving Lévy process L, with E(L2
1) < ∞, then the process

Yt = bT Wt,

where

Wt = eAtW0 +

∫ t

0

eA(t−u)1pdLu,

i.e.

Yt = bT eAtW0 +

∫ t

0

bT eA(t−u)1pdLu, (2.4)

is called CARMA(p,q) process with finite second moment.

Remark 2.2.

(a) The exponential matrix eAu is defined by eAu :=
∑∞

k=0
(Au)k

k! .

(b) If W0 has the same distribution as
∫ ∞

0
eAu1pdLu, then the CARMA(p,q) process (2.4)

is a strictly stationary process.
(c) The CARMA(p,q) process (Yt)t≥0 is a weakly stationary process, if W0 has the mean and

covariance matrix of
∫ ∞

0
eAu1pdLu. The mean and autocovariance function of a weakly

stationary CARMA(p,q) process (Yt)t≥0 are

E(Yt) = −bT A−11pE(L1) (2.5)

and

Cov(Yt, Yt+h) = Var(L1)b
T eAhΣb, (2.6)

where Σ :=
∫ ∞

0
eAs1p1p

T eAT sds.
(d) For a proof of (ii) and (iii) see Brockwell and Marquardt (2005).
(e) Let M be a Lévy process independent of L, but with the same distribution, and define the

following extension of L:

L∗
t = Ltχ[0,∞)(t) − M−t−χ(−∞,0)(t), −∞ < t < ∞,

where Mt− denotes the left limit of M at t and χA is the indicator function of the set A.
Then the process Y := (Yt)t∈R defined by

Yt =

∫ ∞

−∞

g(t − u)dL∗
u,

where

g(t) :=

{
bT eAt1p if t > 0

0 otherwise
, (2.7)

is a solution to (2.2) and (2.3) (with L replaced by L∗). The function g is referred to as
the kernel of the CARMA(p,q) process Y . For more details see Brockwell and Marquardt
(2005).

(f) Discrete time observations (Yti
) := (Yti

)i=1,...,n follow the discrete time state space model

Yti
= bT Wti

Wti
= eA(ti−ti−1)Wti−1

+

∫ ti

ti−1

bT eA(ti−u)1pdLu.
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Example 2.3. As an example consider the Lévy driven CARMA(2,1) process Y , where the
driving Lévy process L is a compound Poisson process with gamma distributed jumps, i.e.

Lt =

Nt∑

k=1

Xk.

Here (Xk) are i.i.d. with density f(x) = 1002

Γ(2) xe−100x and Nt ∼ Pois(t).

Since E(X1) = 0.02 and Var(X1) = 0.0002 we have Var(L1) = E(X1)
2 + Var(X1) = 0.0006.

As autoregressive and moving-average polynomial of this CARMA(2,1) process we choose

a(z) = z2 + 8z + 4 and b(z) = 1 + z.

1000 observations at integer times of a simulated sample path can be seen in Figure 1.
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Figure 1. 1000 equidistant observations of the CARMA(2,1) process with a(z) = z2 + 8z + 4
and b(z) = 1 + z from Example 2.3

2.2. Regression mean specification

Ultra high frequency data exhibit some time of day effects (see for example Bauwens and Giot
(2001)), which result in a nonstationary time series. We try to explain these effects as being
influenced by explanatory variables, which have time of day dependent values. In our setup
these explanatory variable information is used to model the mean of the data,

µti
:= E(|rti

|),
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with

|rti
| := | log(Pti

) − log(Pti−1
)| · 100, i = 1, . . . , n, (2.8)

where Pti
is the stock price observed at time ti, like in a typcial regression setup. There will be

no assumption made about a stock price model, except that we assume, that it is a continuous
time process. To assure positivity of the mean we will use a log-link, i.e.

log(µti
) := xT

ti
β, i = 1, . . . , n, (2.9)

with xT
ti
∈ R

1×s+1 the i-th row of the design matrix

X =




xT

t1
...

xT
tn



 ∈ R
n×s+1

and parameter vector βT := (β0, . . . , βs)
T ∈ R

s+1×1. As can be seen from (2.9), a paramet-
ric approach is taken. The specific structure of the design matrix will be discussed in the
applications. Potential explanatory variables are

bti
:= the last bid-ask spread before time ti

dti
:= the duration ti − ti−1

vti
:= the volume of the the last trade before time ti.

The choice of explanatory variables will be discussed in the applications. The explanatory
variable dti

is unknown before time ti and has therefore to be estimated, by some autoregressive
conditional duration model, if the model is used for prediction.

2.3. Correlated residuals

As we have said in the beginning we model the absolute log returns as an autocorrelated
process. The question is if autocorrelation is really present in this uhf data. The answer to this
question is part of the analysis. The problem with empirically estimating the autocorrelation
in uhf data is the irregularly time structure. Therefore the empirical autocorrelation function
can not be computed. One way out is to consider the variogram (it will be introduced and
discussed in the appendix), which is defined for irregularly spaced data. But the variogram is
also not defined for (|rti

|), because the mean of the increments is not a linear function of the
time lag, i.e. E(|rt| − |rs|) 6= C · (t − s), which has to be the case. The variogram is however
defined, when we consider the residuals

εti
:= |rti

| − µti
, i = 1, . . . , n, (2.10)

with E(εti
) = 0 and Var(εti

) =: σ2
ε . The εti

are autocorrelated because of the following
assumption

εti
=: Yti

+ ε̃ti
, i = 1, . . . , n, (2.11)

where Y is a CARMA(p,q) process and (ε̃ti
) is an i.i.d. sequence and uncorrelated with (Yti

).
To motivate (2.11) think of (Yti

) as the random effect of the absolute log returns, which
describes their correlation structure. The mean, as we have already said, will be accounted
for by µti

. But since we will not observe µti
+ Yti

due to some microstructure noise, like for
example the fixed tick size of the log returns, we will make some measurement error ε̃ti

. To
assure that Y is non-negative, the driving Lévy process L of the CARMA(p,q) process Y has
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to be non-decreasing and the kernel of Y has to be non-negative. By substituting (2.11) into
(2.10) we get

ε̃ti
= |rti

| − µti
− Yti

,

which leads to

E(ε̃ti
) = −E(Yti

) = bT A−11pE(L1).

The variance of εti
decomposes into

σ2
ε = Var(Yti

) + Var(ε̃ti
),

=: Var(L1)b
T Σb + σ2

ε̃ ,

and the autocovariance function of (εti
) is equal to that of (Yti

), i.e.

Cov(εti
, εti−1

) = Var(L1)b
T eA(ti−ti−1)Σb.

2.4. A generalised regression model with CARMA(p,q) random effects

The above considerations have led us to the model

|rti
| = exp(xT

ti
β) + Yti

+ ε̃ti
, i = 1, . . . , n. (2.12)

In (2.12) we will understand exp(xT
ti

β) as some fixed effect, Yti
as some random effect and ε̃ti

as a measurement error. The parameters which have to be estimated are

θ := (a1, . . . , ap, b1, . . . , bq, σ
2, β0, . . . , βs, σ

2
ε̃),

with σ2 := Var(L1). This is done by an iterated estimation algorithm, which will be described
in the next section.

3. PARAMETER ESTIMATION

The actual parameter estimation can be done in two ways. The first one (henceforth called
direct approach) works directly on the linear regression model approximation to model (2.12),
which will be introduced in the following, and the second one (henceforth called state space
approach) on the associated state space model with application of the Kalman filter. Both
estimation procedures will be explained in Section 3.1 and 3.2, respectively. But first we start
by describing the general estimation algorithm. Therefore consider equation (2.10) in vector
notation

|r| = µ + ε, (3.13)

with |r| = (|rt1 |, . . . , |rtn
|)T ,µ and ε similarly. Since we chose the logarithm as link function,

we have the relationship

log(µ) = Xβ =: η. (3.14)

The covariance matrix of ε shall be denoted by

V (ξ) = Cov(Y) + σ2
ε̃In,

with ξ := (a1, . . . , ap, b1, . . . , bq, σ
2, σ2

ε̃) and Y = (Yt1 , . . . , Ytn
)T . Equation (3.13) is just a

nonlinear regression model with correlated errors. Therefore the parameters can be estimated
by maximizing

G(θ, |r|) := −(|r| − µ)T V (ξ)−1(|r| − µ). (3.15)
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Applying the Fisher scoring algorithm to maximize (3.15) leads to an iterative generalised least
squares problem. The linear model, occurring in each iteration step, can be constructed as in
generalised linear models ( McCullagh and Nelder (1989) p.40) by applying the link function
g(·) := log(·) to the data |r| and linearise to the first order. The estimation algorithm, which
can also be found e.g. in Schall (1991) , is described in the following.

General Estimation Algorithm:

(a) Linearize g(|r|) := (g(|rt1 |), . . . , g(|rtn
|)T to the first order

g(|r|) = g(µ) +

(
∂

∂µ
g(µ)

)
(|r| − µ),

where
(

∂
∂µ

g(µ)
)

is a diagonal matrix with elements ( ∂
∂µt1

g(µt1), . . . ,
∂

∂µtn
g(µtn

)), and

define the new dependent variable

z := g(µ) +

(
∂

∂µ
g(µ)

)
(|r| − µ)

= η +

(
∂

∂µ
g(µ)

)
ε

= η + e,

where e :=
(

∂
∂µ

η
)

ε. Now we have a linear regression model with correlated errors

z = Xβ + e, (3.16)

where E(z) = Xβ and Cov(e) = ( ∂
∂µ

η)V (ξ)( ∂
∂µ

η)T .

(b) To get starting values η̂0, ẑ0 we fit a generalised linear model to (3.13) assuming uncor-
related errors, i.e. Cov(ε) = σ2

εIn.

(c) Start Iteration k = 1

(d) The parameters β and ξ in (3.16) are then estimated in the direct or state space approach
giving parameter estimates

β̂
k

and ξ̂
k
,

respectively.

(e) Construct new estimates of η, i.e. define

η̂
k := Xβ̂

k
.

Check if

||η̂k − η̂
k−1|| < TOL

is satisfied. If not set

µ̂
k := g−1(η̂k)

ẑk := η̂
k +

(
∂

∂µ
η̂

k|µ=µ̂k

)
(|r| − µ̂

k)

k = k + 1 and go to (iv).
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Both estimation approaches will perform quasi maximum likelihood (QML) estimation (see
for example White (1994)) of the parameters, which requires only the knowledge of the first
two moments of the model for the data. In particular the quasi maximum likelihood estimate
(QMLE) θ̂ of an arbitrary parameter vector θ is defined, in this case, to maximizes the QML-
estimation criterion

Qn(θ, z) := −
1

n

[
log(|Λ(ξ)|) + (z − Xβ)T Λ(ξ)−1(z − Xβ)

]
(3.17)

where

Λ(ξ) :=

(
∂

∂µ
η

)
V (ξ)

(
∂

∂µ
η

)T

.

Therefore

θ̂ := argmaxθ∈ΘQn(θ, z), (3.18)

where Θ := Θ̃ × R+ × R
s+1 × R+, with

Θ̃ := {(a1, . . . , ap, b1, . . . , bq) | a(z) 6= 0 if Re(z) ≥ 0; b(z) 6= 0 if Re(z) > 0 :

the kernel of Y is non-negative }.

Conditions for the kernel of Y to be non-negative are given in Tsai and Chan (2004).

3.1. Direct approach

The estimation of parameters in (3.16) is a generalised least squares problem. It can be solved in
the following way. Since Λ(ξ) is positive definite there exists a positive definite lower triangular
matrix K(ξ) with ones on the leading diagonal, and a positive definite diagonal matrix F (ξ),
such that

Λ(ξ)−1 := K(ξ)T F (ξ)−1K(ξ).

If we transform the data

z∗(ξ) := K(ξ)z, X∗(ξ) := K(ξ)X, e∗(ξ) := K(ξ)e,

we get the heteroscedastic regression model

z∗(ξ) = X∗(ξ)β + e∗(ξ) with Cov(e∗) = F (ξ). (3.19)

If we assume that ξ is known and fixed, we get the generalised least squares estimate of β by
solving an ordinary least-squares problem:

β̂(ξ) = [(F (ξ)−1/2X∗(ξ))T F (ξ)−1/2X∗(ξ)]−1(F (ξ)−1/2X∗(ξ))T F (ξ)−1/2z∗(ξ)

= [XT Λ−1(ξ)X]−1XT Λ−1(ξ)z. (3.20)

Replacing β in (3.17) by the above estimate on gets the reduced QML-estimation criterion

Qn(ξ, z) :=
1

n

n∑

i=1

[
− log(Fti

(ξ)) −
v2

ti
(ξ)

Fti
(ξ)

]
, (3.21)

with vti
(ξ) = z∗ti

(ξ)−x∗T

ti
(ξ)β̂(ξ) and Fti

(ξ) = (F (ξ))i,i. QMLE of the parameters are therefore

obtained by first maximizing (3.21) with respect to ξ to get ξ̂. Afterwards one replaces ξ in

β̂(ξ) by ξ̂ to get the generalised least squares estimate of β.
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Remark 3.1. The estimation of the parameters in the direct approach includes the computa-
tion of the inverse of Λ(ξ). In the application, which we have in mind, the dimension of Λ(ξ)
2000 to 3000. Λ(ξ)−1 will also be a full matrix in comparison to regularly spaced observation,
where Λ(ξ)−1 will be sparse (see Jones (1993) for details). Computationally it is not efficient
to compute this inverse, and therefore we reformulate (3.16) as a state space model and apply
the Kalman filter to compute (3.21). The idea to rewrite a regression model in state space form
is explained for example in Durbin and Koopman (2001) and Jones (1993).

3.2. State space approach

Consider again the linear regression model with correlated errors

z = Xβ +

(
∂

∂µ
η

)
ε.

Since ε = Y + ε̃, where Yti
= bT Wti

is a CARMA(p,q) process, and
∂

∂µ
η = diag (1/µt1 , . . . , 1/µtn

), because of the log-link, we get the following state space

representation of (3.16).

(a) Observation equation:

zti
= xT

ti
β + Gti

αti
+

1

µti

ε̃ti
, (3.22)

where

Gti
:=

1

µti

bT and αti
:= Wti

.

with xT
ti

the i-th row of X ∈ R
n×s+1.

(b) State equation:

αti+1
= Tti

αti
+ ζti

, (3.23)

where

Tti
:= eA(ti+1−ti) and ζti

:=

∫ ti+1

ti

eA(ti+1−u)1pdLu.

One standard assumption for state-space models is the zero mean of the noise processes.
This assumption is not fullfilled in (3.22) and (3.23). But we can construct a second state-space
model, which has the same first and second moment structure for the observations as the first
model. Since we will use a quasi-likelihood approach to estimate the parameters ξ, only the
first two moments are required. Because of the assumption E(ε̃ti

) = −E(Yti
), a zero mean

CARMA(p,q) process (Y ∗
t )t≥0 = (bT W∗

t )t≥0, with Cov(Y ∗
t , Y ∗

s ) = Cov(Yt, Ys), together with
an i.i.d. noise sequence(ε̃∗ti

), with E(ε̃∗ti
) = 0, Var(ε̃∗ti

) = σ2
ε̃ and uncorrelated with Y ∗,will lead

to the same first and second order structure of zti
. Let L∗ be a Lévy process with E(L∗

1) = 0
and Var(L∗

1) = Var(L1). Then we get the state-space model:

(a) Observation equation:

zti
= xT

ti
β + Gti

α∗
ti

+
1

µti

ε̃∗ti
, (3.24)
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where

Gti
=

1

µti

bT and α∗
ti

:= W∗
ti

.

with xT
ti

the i-th row of X ∈ R
n×s+1.

(b) State equation:

α∗
ti+1

= Tti
α∗

ti
+ ζ∗

ti
, (3.25)

where

Tti
= eA(ti+1−ti) and ζ∗

ti
:=

∫ ti+1

ti

eA(ti+1−u)1pdL∗
u.

An augmented Kalman filter (see e.g. Durbin and Koopman (2001)) will be applied to
(3.24) and (3.25). The idea of this filter is to apply the Kalman filter with observation matrix
Gti

and state matrix Tti
to the variables zti

, xT
ti,1, . . . , x

T
ti,s+1 consecutively. xT

ti,k
is the k-th

element of the row vector xT
ti

. For each of the variables xT
ti,1, . . . , x

T
ti,s+1 a new state vector

αk
ti

, k = 1, . . . , s+1 is taken, but the variance elements in the Kalman filter are the same as for
zti

. The Kalman filter computes best linear predictions ẑti
, x̂T

ti,1, . . . , x̂
T
ti,s+1 based on all past

observations {ztj
, xT

tj ,1, . . . , x
T
tj ,s+1; 1 ≤ j < i}. In each step of the filter we store the one-step

forecast errors z∗ti
(ξ) := zti

− ẑti
, x∗T

ti,1(ξ) := xT
ti,1 − x̂T

ti,1, . . . , x
∗T

ti,s+1(ξ) := xT
ti,s+1 − x̂T

ti,s+1.

These forecast errors can then be used to calculate the generalised least square estimates β̂,
given by

β̂(ξ) :=

(
n∑

i=1

X∗T

ti
(ξ)F−1

ti
(ξ)X∗

ti
(ξ)

)−1 n∑

i=1

X∗T

ti
(ξ)F−1

ti
(ξ)z∗ti

(ξ), (3.26)

where x∗T

ti
(ξ) := (x∗T

ti,1(ξ), . . . , x∗T

ti,s+1(ξ)) and Fti
(ξ) := Var(z∗ti

(ξ) − x∗T

ti
(ξ)β). To see that

(3.26) is equal to (3.20) one has to recall that

Λ−1(ξ) = KT (ξ)F−1(ξ)K(ξ). (3.27)

Inserting (3.27) into (3.20) yields

β̂(ξ) = [(K(ξ)X)T F−1(ξ)K(ξ)X]−1(K(ξ)X)T F−1(ξ)K(ξ)z.

Since the Kalman filter performs the Cholesky decomposition (3.27) ( Harvey (1990)), we
see that applying the Kalman filter is equivalent to the multiplication by the matrix K(ξ).
For more details on the augmented Kalman filter see Durbin and Koopman (2001) or Harvey
(1990).

The procedure to estimate the parameters is then exactly the same as in the direct approach.
First ξ is estimated by maximizing

Qn(ξ, z) =
1

n

n∑

i=1

[
− log(Fti

(ξ)) −
(v∗

ti
(ξ) − X∗

ti
(ξ)β̂(ξ))2

Fti
(ξ)

]

=
1

n

n∑

i=1

[
− log(Fti

(ξ)) −
v2

ti
(ξ)

Fti
(ξ)

]
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with respect to ξ. This estimate is denoted by ξ̂. Afterwards ξ in (3.26) is replaced by ξ̂ to
get the generalised least squares estimate of β.

4. SIMULATION RESULTS

The performance of the QML estimator using the state space approach is going to be analysed
in a small simulation study. The parameters are estimated in two setups. One with regularly
spaced observations and the other with irregularly spaced ones. For the regularly spaced obser-
vations we created 2000 equidistant time points in the interval (0, 400). In case of irregularly
sampling the durations are exponentially distributed, with a mean value of 0.2, to assure that
time points are also in the interval (0, 400).
In each of the 100 simulations the sample size was 2000. As a explanatory variable we took
real bid ask spreads from the IBM stock. The regression coefficient β was taken equal to
0.3. We did not include an intercept in the regression. The correlation was simulated by
a CARMA(1,0) process with parameter a = 0.8. As driving Lévy process L wwe chose a
compound Poisson process with jumps (Xk) i.i.d. expo(100) (E(Xk) = 0.01, Var(Xk) = 0.0001)
and Nt ∼ Pois(3t). The jump rate of the Poisson process N was taken equal to 3. The mean
and variance of L1 are then 0.0375 and σ2 = 0.0006, respectively. The choice of the parameter
values was motivated by similar parameter values obtained in the application presented later.
The measurement noise ε̃ was simulated as a Gaussian i.i.d. noise with mean −0.0375 and
variance σ2

ε̃ = 0.0001, respectively.
For the resulting estimates we computed estimates of mean, bias, mean absolute error (MAE),
mean squared error (MSE) and the estimated standard errors of these estimates. The results
can be seen in Table 1 and 2 showing satisfying performance for both settings.

â β̂ σ̂2 σ̂2
ε̃

true value 0.8000 3.0000e-01 6.0000e-04 1.0000e-04
mean 0.8122 2.9881e-01 6.1091e-04 9.9395e-05

(0.0095) (1.1341e-03) (6.9019e-06) (7.8563e-07)
median 0.8106 2.9972e-01 6.0989e-04 9.9384e-05

(0.0095) (1.1341e-03) (6.9019e-06) (7.8563e-07)
bias 0.0122 -1.1903e-03 1.0916e-05 -6.0439e-07

(0.0095) (1.1341e-03) (6.9019e-06) (7.8563e-07)
MAE 0.0781 8.8016e-03 5.7419e-05 6.2597e-06

(0.0056) (7.1971e-04) (3.9417e-06) (4.7446e-07)
MSE 0.0092 1.2875e-04 4.8352e-09 6.1470e-11

(0.0013) (1.8454e-05) (6.0478e-10) (7.7510e-12)

Table 1. Mean, median, bias, mean absolute error (MAE) and mean squared error (MSE) for

â, β̂, σ̂2 and σ̂2
ε̃ together with their estimated standard errors in parentheses in case of regularly

spaced observations.

5. APPLICATION

The data,which we will use, comes from the Trades and Quotes (TAQ) database of the New
York Stock Exchange (NYSE). We will work with IBM trade data from September 30, 2002
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â β̂ σ̂2 σ̂2
ε̃

true value 0.8000 3.0000e-01 6.0000e-04 1.0000e-04
mean 0.8015 2.9844e-01 6.0974e-04 9.8657e-05

(0.0092) (9.4843e-04) (6.9191e-06) (5.4509e-07)
median 0.7944 2.9764e-01 6.0357e-04 9.9198e-05

(0.0092)b (9.4843e-04) (6.9191e-06) (5.4509e-07)
bias 0.0015 -1.5541e-03 9.7488e-06 -1.3423e-06

(0.0092) (9.4843e-04) (6.9191e-06) (5.4509e-07)
MAE 0.0696 8.1259e-03 5.5842e-05 4.4295e-06

(0.0059) (5.0689e-04) (4.1634e-06) (3.4225e-07)
MSE 0.0082 9.1468e-05 4.8344e-09 3.1220e-11

(0.0014) (1.1264e-05) (6.8064e-10) (4.2670e-12)

Table 2. Mean, median, bias, mean absolute error (MAE) and mean squared error (MSE) for â,

β̂, σ̂2 and σ̂2
ε̃ together with their estimated standard errors in parentheses in case of irregularly

spaced observations.

up to October 31, 2002. The NYSE market opens 9:30 am and closes at 4:00 pm. Tradings
outside these official trading hours have been deleted. Since we want to concentrate on real
price changes we also excluded all zero returns and the corresponding explanatory variables.
We also eliminated all multiple trades. Trades for the same transaction price were treated as
a single trade by adding up the volumes. Different transaction prices were averaged and the
volumes totalled. The resulting data set consists of transaction, bid and ask prices (all measured
in cents of US dollars), transaction times (measured in seconds) and volumes (measured in the
number of shares) realised over the specified time period. No further data manipulations have
been carried out. Exemplary the absolute log returns of six trading days have been plotted in
Figure 2.
In Section 2 we have said, that a parametric approach is used. But up to now we have not
specified the parametric setup. To get an idea how the absolute log return may depend on
the explanatory variables, we perform some kind of explorative data analysis by fitting a
Generalized Additive Model (see Hastie and Tibshirani (1990)) with uncorrelated errors to
the data. The functional relationship displayed by the model, will then be used to set up a
parametric model. The aim of the analysis in this section is to fit our model to the data. Then
to check if the fitted correlation structure can be justified and investigate the predictive power
of the explanatory variables. The one step ahead predictions of the absolute log return for
October 14th until October 31st, 2002, will be computed using the information corresponding
to each of the following four setups:

(a) the last day

(b) the last three days

(c) the last day and the same day one week ago

(d) the same day one and two weeks ago.

The different forecasts are then compared using the mean squared error as criterion. Exemplary
we will present the estimation results for the days needed to predict October 25th, 2002.
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9:30am 11:00am 12:00am 1:00pm 2:00pm 3:00pm 4:00pm
0

0.2

0.4
October 22, 2002
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October 23, 2002
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October 24, 2002
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October 25, 2002

Figure 2. Absolute log returns of the 11th (first row), 18th (second row), 22nd (third row),
23rd (fourth row), 24th (fifth row) and 25th (last row) of October 2002. The time is measured
in real time.

5.1. Explorative data analysis

Initially we chose only the bid-ask spread and the duration as explanatory variables. The
influence of the volume will be analysed in a further study. Therefore the generalised additive
model under consideration is the following one

log(µti
) = s1(bti

) + s2(dti
),

where si(), i = 1, 2, are smoothing splines and bti
(bid-ask spread) and dti

(durations) are
the explanatory variables. This model is fitted using the Splus function gam() under the
assumption of uncorrelated errors. The results of this estimation procedure can be seen in
Figure 3.
For the bid-ask spread as well as the duration one can recognize a relatively smooth functional
relationship. We decided, that a polynomial of third order has enough flexibility to model both
explanatory variables. This led us to consider a model with design matrix X, where

xT
ti

β := β0 + β1bti
+ β2b

2
ti

+ β3b
3
ti

+ β4dti
+ β5d

2
ti

+ β6d
3
ti

,

with bid-ask spread bti
and duration dti

.
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5.2. Estimation results

The application of the augmented Kalman filter, which was described in Section 3.2, and the
quasi maximum likelihood estimation of the remaining parameters resulted in the parameter
estimates, which can be seen in Table 3. The coefficients β̂k,
k = 4, 5, 6, correspond to durations measured in one-hundredth of a second, whereas the
time was measured in seconds. The plots of the absolute log returns together with their fitted
mean values are shown in Figure 4 demonstrating no obvious lack of fit.
The regression coefficients lead to estimates of the two polynomials

pb(bti
) := β0 + β1bti

+ β2b
2
ti

+ β3b
3
ti

(5.28)

pd(dti
) := β4dti

+ β5d
2
ti

+ β6d
3
ti

. (5.29)

The estimated polynomials of the m-th day are denoted by

p̂m
b (x) := β̂m

0 (bm,dm) + β̂m
1 (bm,dm)x + β̂m

2 (bm,dm)x2 + β̂m
3 (bm,dm)x3

and

p̂m
d (x) := β̂m

4 (bm,dm)x + β̂m
5 (bm,dm)x2 + β̂m

6 (bm,dm)x3

and the observations on the m-th day by

bm := (bm
t1 , . . . , b

m
tnm

) and dm := (dm
t1 , . . . , d

m
tnm

)

where nm is the number of observations on day m. These estimated polynomials are shown in
Figure 3.

5.3. Analysis of the correlation structure

In the end we want to take a look at the sample variograms of the residuals, and see if the
assumed correlation structure can be justified. The variogram is defined in the appendix, where
we also present four examples of sample variograms of simulated CARMA(p,q) processes.

Day β̂0 β̂1 β̂2 β̂3 β̂4

October 11, 2002 -4.2726 18.0106 -48.9357 49.1082 1.8313
October 18, 2002 -4.4576 18.0729 -27.0261 -42.8318 2.6261
October 22, 2002 -4.6144 24.0957 -113.1130 253.7693 2.1601
October 23, 2002 -4.3120 17.2861 -38.7623 22.5341 1.3981
October 24, 2002 -4.4129 15.7375 -27.6543 16.4028 2.8124
October 25, 2002 -4.6366 26.6262 -117.5710 228.4430 1.8190

Day β̂5 β̂6 â σ̂2 σ̂2
ε̃

October 11, 2002 -2.1036 0.7714 0.3942 1.1e-03 2.6e-09
October 18, 2002 -4.7253 2.6941 0.5942 7.4e-04 9.1e-13
October 22, 2002 -3.8395 3.2206 0.9886 2.1e-04 4.1e-04
October 23, 2002 -0.2093 -0.7194 0.7301 1.3e-03 2.1e-10
October 24, 2002 -3.4322 -0.0021 0.5253 7.1e-04 4.0e-08
October 25, 2002 -1.4558 0.2407 0.8991 9.8e-04 1.4e-04

Table 3. QMLE based on the augmented Kalman filter.
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Figure 3. Smoothing spline estimates and estimated bid-ask and duration polynomials p̂m
b (·)

and p̂m
d (·) for the days 11th (first row), 18th (second row), 22nd (third row), 23rd (fourth row),

24th (fifth row) and 25th (last row) of October 2002. The marks represent the observed values
of the explanatory variables.

Figure 4 contains the sample variograms and variograms of the estimated models for all six
residual processes.
The rough structure of the sample variogram is due to the irregularly spaced observations,
because the irregular spacing leads to greater changes in the number of observations for con-
secutive lags. For October 11, 2002 the estimated model proposes stronger correlation than the
sample variogram, but despite this fact, the shape of the sample variogram and the variogram
based on the estimated model is quite similar. The reason for this might be a numerical impre-
cison or a misspecified correlation structure, which has to be further analysed. The other days
show less correlation in the residuals, which can be seen by the faster increasing variograms.
The sample variograms represent the proposed structure of the model variogram quite well.
Only for the first few lags we see consistently smaller values of the sample variogram γ̂(h)
compared to the model variogram γ(h). This may be due to the fact that γ(h) → σ2

ε̃ but
γ̂(h) → 0 as h → 0 (see also the appendix). This effect is known in the geostatistics litera-
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ture as a nugget effect and appears because of the superposition of independent noise on an
underlying process. The nugget effect can be seen on all six days. Therefore one could try to
fit CARMA processes of higher order to the data on October 11th to see, if the fit could be
improved. For the remaining days the proposed correlation could be justified.

5.4. Prediction

Since we have shown how to estimated the polynomials, we want to explain now how to predict
the mean of the absolute log return of the next trading day. Imagine that we have estimates for
m = 1, . . . ,M days. Using these 2M polynomials we construct two mean piecewise polynomials
by averaging over the observed data points

pM
b (x) :=

1

|M b(x)|

∑

m∈Mb(x)

p̂m
b (x) (5.30)

pM
d (x) :=

1

|Md(x)|

∑

m∈Md(x)

p̂m
d (x), (5.31)

where

M b(x) := {m ∈ {1, . . . ,M}| x ∈ [0,max
i

bm
ti

]}

|M b(x)| := card M b(x)

and

Md(x) := {m ∈ {1, . . . ,M}| x ∈ [0,max
i

dm
ti

]}

|Md(x)| := card Md(x).

A smoothed version of these two piecewise polynomials for day M + 1 we get by fitting two

smoothing splines at pM
b (·) and pM

d (·) over the intervals [0,maxm bm
tnm

] and [0,maxm dm
tnm

].
The smoothing splines pb(·) and pd(·) minimise

n∑

i=1

(
pM

b (xb
ti

) − pb(x
b
ti

)
)2

+ λb

∫ Tb

0

[
∂2pb(x)

∂2x

]2

dx, xb
ti
∈ [0,max

m
bm
tnm

], (5.32)

and
n∑

i=1

(
pM

d (xd
ti

) − pd(x
d
ti

)
)2

+ λd

∫ Td

0

[
∂2pd(x)

∂2x

]2

dx, xd
ti
∈ [0,max

m
dm

tnm
] (5.33)

respectively, where λb, λd > 0 are smoothing parameters, Tb := maxm bm
tnm

and Td similarly.
λb and λd are maximum likelihood estimates. Maximum likelihood estimation of smoothing
parameters for spline smoothing is explained in Durbin and Koopman (2001).
The predicted mean values of the absolute log returns |r̂ti

| of the M +1-th day are then defined
like this

P (|rM+1
ti

|) := exp(pb(b
M+1
ti

) + pd(d
M+1
ti

)). (5.34)

Remark 5.1. Observe that dti
is unknown up to time ti. Since we mainly want to investigate

the dependence on the explanatory variables, we will assume in a first step, that the durations
are known. In a second step an ACD model could be fitted to the durations, to get forecasts
also for the durations.
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Figure 4. Left column: Absolute log returns (dashed line) together with the fitted values (solid line )
for the days 11th (top row ), 18th (second row), 22nd (third row), 23rd (fourth row), 24th (fifth row)
and 25th (bottom row) of October 2002. Right column: Model (dashed line) and sample variogram of
the residuals εti

(solid line) for the days 11th (top row ), 18th (second row), 22nd (third row), 23rd
(fourth row), 24th (fifth row) and 25th (bottom row) of October 2002.
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5.5. Prediction results

As we mentioned at the beginning of this section, the one step ahead predictions of the absolute
log return for the days October 14th-31st, 2002, will be computed using the data of:

(a) the last day

(b) the last three days

(c) the last day and the same day one week ago

(d) the same day one and two weeks ago.

Performing the steps described in Section 5.4 produced for each day the smoothing spline
estimates pb

k(·), k = 1, . . . , 4 and pd
k(·), k = 1, . . . , 4. In the first prediction setup (i) the

smoothing splines are equal to the estimated polynomials for the last day, since we have
only one polynomial observation in each case. For the 25th of October, the smoothing splines
together with the mean piecewise polynomials are shown in Figure 5. The absolute log returns
together with corresponding predictions can also be seen.
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Figure 5. Smoothing spline (solid line) and mean piecewise polynomials (dashed line) in rows
1,2,4 and 5, absolute log returns (dashed line) and mean value predictions (solid line) in rows
3 and 6 for the prediction setup (i) (top left 3 panels), (ii) (top right 3 panels), (iii) (bottom
left 3 panels) and (iv) (bottom right 3 panels).
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The different forecast are now compared using the mean squared errors

MSEk,j :=
1

nj

nj∑

i=1

(|rj
ti
| − P k(|rj

ti
|))2, k = 14, . . . , 4, j ∈ I,

where

P k(|rj
ti
|) := exp(pb

k(bj
ti

) + pd
k(dj

ti
)), k = 1, . . . , 4, j ∈ I,

and I is the index set of the sample including October 14th to 31st, as criterion. These MSE
are shown in Table 5.4. In parentheses one can see the rank of the prediction within each
day. For October 14th the random effect could not be described by a CARMA(1,0) process.

Day setup (i) setup (ii) setup (iii) setup (iv)
October 14 1.3872e-03 (3) 1.3565e-03 (1) 1.3683e-03 (2) 1.3894e-03 (4)
October 15 6.8258e-04 (2) 6.8303e-04 (3) 6.8049e-04 (1) 7.7766e-04 (4)
October 16 9.5416e-04 (1) 9.6394e-04 (2) 9.7708e-04 (3) 1.0133e-03 (4)
October 17 4.5386e-04 (1) 5.1570e-04 (2) 5.6619e-04 (3) 8.8701e-04 (4)
October 18 6.4535e-04 (3) 6.2039e-04 (1) 6.2105e-04 (2) 6.4852e-04 (4)
October 21 5.5981e-04 (1) 5.9419e-04 (3) 5.6657e-04 (2) 8.3658e-04 (4)
October 22 5.2608e-04 (3) 5.2541e-04 (2) 5.2283e-04 (1) 5.9528e-04 (4)
October 23 9.3108e-04 (2) 8.7059e-04 (1) 3.8468e-03 (4) 1.4754e-03 (3)
October 24 7.6446e-04 (4) 7.5806e-04 (3) 7.5375e-04 (2) 7.3782e-04 (1)
October 25 7.0539e-04 (4) 7.0106e-04 (3) 6.9328e-04 (2) 6.9282e-04 (1)
October 28 1.0484e-03 (4) 8.1573e-04 (2) 8.0485e-04 (1) 8.7461e-04 (3)
October 29 8.5291e-04 (2) 8.4212e-04 (1) 8.5606e-04 (3) 8.8279e-04 (4)
October 30 2.6574e-03 (4) 1.8290e-03 (3) 1.2266e-03 (1) 1.3234e-03 (2)
October 31 5.4630e-04 (1) 5.5581e-04 (2) 5.7003e-04 (3) 6.8218e-04 (4)
average rank (2.50) (2.07) (2.14) (3.28)

Table 4. MSE of the one step ahead predictions on the next trading day for the setup (i), (ii),
(iii) and (iv) together with the corresponding rank in parentheses.

Therefore we fitted a CARMA(2,1) process to the data. To compare the different prediction
setups we calculated average ranks over the days. For this data the best strategy would be
to use the information of the last three days for prediction. Setup (iii) is the second best
strategy and setup (i) and (iv) are third and fourth. This presents a method which allows
to empirically investigate the performance of different prediction strategies. The predictive
power of the duration can be seen, when we recompute the predictions for the setup with the
smallest MSE without using the duration. We observed an increase in the MSE between 5
and 20 percent. For October 25th the resulting predictions are shown in Figure 6. The mean
squared error in this case is equal to 8.1874e − 04, showing a significant increase of about 18
percent.

6. CONCLUSIONS AND FURTHER WORK

We have proposed a model for ultra high frequency data to investigate the influence of explana-
tory variables on the mean of the absolute log return. In contrast to other regression analyses
of volatility characteristics we worked on a tick-by-tick level. As a result no information is
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Figure 6. Absolute log returns on October 25th (dashed line) and mean value predictions (solid
line) for prediction setup (iv) using bid ask and duration (top) and using only bid ask (bottom).

lost in contrast to working with interpolated data of lower frequency. The problem of market
microstructure noise of tick-by-tick data will be accounted for on the one hand by the mea-
surement noise and on the other by the fact that we do not accumulate data, but analyse it
at every time point. In Section 5 we have seen how to predict the mean value of uhf absolute
log returns. To get predictions, which do not depend on unknown explanatory variables, we
could use an autoregressive conditional duration model. Another way of predicting absolute
log returns could be to compute some kind of online prediction. This means computing fore-
casts between two trades for every second, that would display some kind of trend of ”inter
trade” volatility. These forecasts are then independent of a duration model. One could also
think of taking this model as a reference model and trying to replicate the achieved fit with
explanatory variables known before the next trade occurs. Here we think of a model with last
available bid ask spread, volume of the last trade and the last transaction time as explanatory
variables. The MSE as scoring rule has the disadvantage, that it does not take into account
the variance of the predictions. Therefore we want to specify the variance of the predictions
and use scoring rules like the average ignorance (see for example Gneiting and Raftery (2004)),
which take into account this variance, to compare predictions.
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APPENDIX

A. Variogram for irregularly spaced time series

The variogram is mainly used in geostatistics. Applications for time series data are rare, despite
the fact that it has the advantage to be defined for irregularly spaced and even non-stationary
time series in comparison to the autocovariance function (see Haslett (1997)).

Definition A.1. (variogram)
Let (Zt)0≤t<∞ be a process, such that

E(Zt+h − Zt) = Ch,

with a constant C, and

Var(Zt+h − Zt) =: 2γ(h), (A.1)

where γ(h) is a conditionally negative definite function. Then γ(h) is called the variogram.

Remark A.2. The requirement that γ(h) be conditionally negative definite means that Var(
∑

i aiYti
)

(which is equal to −
∑

i,j aiajγ(ti− tj) when
∑

i ai = 0) be non-negative definite when
∑

i ai =
0.

For observations Zt1 , . . . , Ztn
, with C = 0, the variogram can be estimated through the

sample variogram

γ̂(h) :=
1

2
(n − |Nh|)

−1
∑

(i,j)∈Ih

(Zti
− Ztj

)2, (A.2)

where Nh := {(i, j), i, j ∈ {1, . . . , n}| |ti − tj | = h}.
To compare the sample variogram of the residuals (ε̂ti

) in (2.12) with the theoretical one, we
have to compute the variogram of (εti

). It is given by the following expression

γε(h) = Var(L1)b
T (Ip − eAh)Σb + σ2

ε̃ . (A.3)

Example A.3. As an example consider a Lévy driven CARMA(p,q) process (Yt). Here the
driving Lévy process (Lt) is chosen to be a compound Poisson process with exponentially dis-
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tributed jumps, i.e.

Lt =

Nt∑

k=1

Xk,

where (Xk) i.i.d.with density f(x) = 100e−100x and Nt ∼ Pois(15t). The simulated sample
path has 2000 equidistant observations. The variogram γ(h) and sample variogram γ̂(h) for
the following parameter sets:

(a) p = 1, q = 0, a(z) = z + 0.1, b(z) = 1
(b) p = 2, q = 1, a(z) = z2 + 0.9z + 0.5, b(z) = 1 + z
(c) p = 2, q = 1, a(z) = z2 + 0.09z + 0.5, b(z) = 1 + z
(d) p = 3, q = 2, a(z) = z3 + 1.1z2 + 2.8174z + 0.2717, b(z) = 1 + 5z + z2.

are shown in Figure 7. They are all computed for a maximal lag of 30. Figure 7 shows the flexi-
bility of the CARMA(p,q) process to model a wide variety of correlation structures, represented
by a slowly, fast increasing or oscillating variogram.
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Figure 7. The variogram γ(h) (dashed line) and sample variogram γ̂(h) (solid line) for the
following processes: (i) CAR(1) with a(z) = z +0.1 and b(z) = 1 (top left), (ii) CARMA(2,1)
with a(z) = z2 + 0.9z + 0.5 and b(z) = 1 + z (top right), (iii) CARMA(2,1) with a(z) =
z2 + 0.09z + 0.5 and b(z) = 1 + z (bottom left), (iv) CARMA(3,2) with a(z) = z3 + 1.1z2 +
2.8174z + 0.2717 and b(z) = 1 + 5z + z2 (bottom right)


