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Abstract

We suggest moment estimators for the parameters of a continuous time
GARCH(1,1) process based on equally spaced observations. Using the fact that the in-
crements of the COGARCH(1,1) process are strongly mixing with exponential rate, we
show that the resulting estimators are consistent and asymptotically normal. We invest-
igate the empirical quality of our estimators in a simulation study based on the variance
gamma driven COGARCH(1,1) model. The estimated volatility with corresponding resid-
ual analysis is also presented. Finally, we fit the model to high-frequency data.
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1 Introduction

The GARCH(1,1) process is a model widely used by practitioners in the financial industry. It
is defined as

Yi = σi εi with σ2
i = β + λY2

i−1 + δσ2
i−1 , i ∈ N, (1.1)

where β > 0, λ, δ ≥ 0 and (εi)i∈N is an i.i.d. innovation sequence. This model captures
some of the most prominent features in financial data, in particular in the volatility process.
Empirical studies show that volatility changes randomly in time, has heavy or semi-heavy
tails and clusters on high levels. These stylized features are modelled by the GARCH family
as has been shown for the GARCH(1,1) process in detail in [14].

The modern treatment of stochastic volatility models is mostly in continuous time aiming
at the analysis of high-frequency data. Approaches to create a continuous time GARCH
model go back to [16] and we refer to [3] for an overview. Such processes are diffusion limits
to discrete time GARCH models, where, unfortunately, many of the above features of the
GARCH process are wiped out in the limit; see [5]. Since empirical work indicates upwards
jumps in the volatility, a model driven by a Lévy process seems a natural approach. In [9, 10]
such a model was suggested by iterating the volatility equation in (1.1) and replacing the noise
variables εi by the jumps ∆Lt = Lt − Lt− of a Lévy process L = (Lt)t≥0. A reparameterization,
setting η = − log δ and ϕ = λ/δ, yields the following continuous time GARCH(1,1) model,
where the parameter space is given by β, η > 0 and ϕ > 0 (the degenerate case ϕ = 0 will not
be considered in this paper).

The COGARCH(1,1) process G = (Gt)t≥0 is defined as the solution to the SDEs

dGt = σt dLt , (1.2)

dσ2
t+ = (β− ησ2

t ) dt + ϕ σ2
t d[L, L](d)t , (1.3)

Key words and phrases: continuous time GARCH process, GARCH process, Lévy process, moment estimator,
stochastic volatility, volatility estimation
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where [L, L](d)t = ∑0<s≤t(∆Ls)2, t ≥ 0, is the discrete part of the quadratic variation process
([L, L]t)t≥0 of the Lévy process L; we define G0 := 0, and σ2

0 is taken to be independent of L.
Throughout we assume that L is càdlàg, and we denote by νL the Lévy measure of L, which
is assumed to be non-zero, and by τ2

L ≥ 0 the variance of the Brownian motion component
of L (see [18] for the basic definitions and notations concerning Lévy processes). Whereas the
process G is taken as being càdlàg, for the volatility process we assume càglàd sample paths.

The quantity σ2
t is called the instantaneous volatility or spot volatility, which is assumed to be

stationary and latent. In contrast to classical stochastic volatility models, it is not independent
of the process, which drives the price process. On the contrary, L drives both, the volatility and
the price process. Note that G jumps at the same times as L does with jump size ∆Gt = σt∆Lt,
and that ∆Lt is independent of σt = σt−.

If our data consist of returns over time intervals of fixed length r > 0, we denote

G(r)
t := Gt − Gt−r =

∫
(t−r,t]

σs dLs , t ≥ r , (1.4)

and (G(r)
ri )i∈N describes an equidistant sequence of such non-overlapping returns. Calculating

the corresponding quantity for the volatility yields

σ
2(r)
ri := σ2

ri − σ2
r(i−1) =

∫
(r(i−1),ri]

(
(β− ησ2

s ) ds + ϕ σ2
s d[L, L](d)s

)
= βr− η

∫
(r(i−1),ri]

σ2
s ds + ϕ

∫
(r(i−1),ri]

σ2
s d[L, L](d)s . (1.5)

It is also worth noting that the stochastic process

Rt = ∑
0<s≤t

σ2
s (∆Ls)

2 =
∫
(0,t]

σ2
s d[L, L](d)s , t ≥ 0 ,

is the discrete part of the quadratic variation [G, G]t =
∫ t

0 σ2
s d[L, L]s, t ≥ 0, of G, so that∫

(r(i−1),ri] σ2
s d[L, L](d)s in (1.5) corresponds to the jump part of the quadratic variation of G

accumulated during (r(i− 1), ri].
The goal of this paper is to estimate the model parameters β, η, ϕ. Moreover, we shall

present a simple estimate of the volatility. This estimation approach was first presented in a
preliminary form in the diploma thesis of [20]. We would like to mention that [15] developed
an MCMC estimation procedure for the COGARCH(1,1) model, which works also for irreg-
ularly spaced observations. The approach is, however, restricted to finite variational driving
processes L.

The paper is organised as follows. In the next section we present some preliminary res-
ults regarding the moment structure of the COGARCH(1, 1) process. Then, in Section 3, we
introduce a moment estimator for the parameter vector and derive its asymptotic properties.
The estimator is applied in Section 4 to a simulated COGARCH(1, 1) process driven by an
(infinite-activity) variance gamma process, and a method for estimating the volatility process
is outlined. Finally, Section 5 is concerned with an empirical data analysis, and concludes
with some extension of the model to include leverage effects. Longer proofs are presented in
the appendices.

2 Preliminary results

An important role is played by the auxiliary process

Xt = ηt− ∑
0<s≤t

log(1 + ϕ (∆Ls)
2) , t ≥ 0 . (2.1)
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The stationary volatility process has, for instance, the representation

σ2
t =

(
β
∫ t

0
eXs ds + σ2

0

)
e−Xt− , t ≥ 0 , (2.2)

with β > 0 and σ2
0

d
= β

∫ ∞
0 e−Xt dt, independent of L. The auxiliary process (Xt)t≥0 itself is a

spectrally negative Lévy process of bounded variation with drift η, no Gaussian component
(i.e. τ2

X = 0), and Lévy measure νX given by

νX [0, ∞) = 0, νX (−∞,−x] = νL

(
{y ∈ R : |y| ≥

√
(ex − 1)/ϕ}

)
, x > 0.

We shall also need the Laplace transform Ee−sXt = etΨ(s) with Laplace exponent

Ψ(s) = −ηs +
∫
R
((1 + ϕ x2)s − 1) νL(dx) , s ≥ 0 . (2.3)

The Laplace exponent was calculated in Lemma 4.1 in [9]. For fixed s ≥ 0 the Laplace trans-
form Ee−sXt is finite for one and hence all t > 0, if and only if the integral appearing in (2.3)
is finite. This is equivalent to E|L1|2s < ∞. In particular, there exists a stationary version of
the volatility process, if Ψ(s) ≤ 0 for some s > 0 (cf. [10], Section 3).

One of the advantages of the COGARCH(1,1) is that its second order structure is well-
known. In the following result we present the moments of G(r)

t , which are independent of
t by stationarity: expressions (2.4) and (2.6) have been already proved in Proposition 5.1 of
[9], however, under additional assumptions such as bounded variation of L for (2.6). In Ap-
pendix A we shall give a different proof under less restrictive assumptions and also calculate
the fourth moment of G.

Proposition 2.1. Suppose that the Lévy process (Lt)t≥0 has finite variance and zero mean, and that
Ψ(1) < 0. Let (σ2

t )t≥0 be the stationary volatility process, so that (Gt)t≥0 has stationary increments.
Then E(G2

t ) < ∞ for all t ≥ 0, and for every t, h ≥ r > 0 it holds

E(G(r)
t ) = 0 , E(G(r)

t )2 =
βr
|Ψ(1)|E(L2

1) , Cov(G(r)
t , G(r)

t+h) = 0. (2.4)

If further E(L4
1) < ∞ and Ψ(2) < 0, then E(G4

t ) < ∞ for all t ≥ 0 and, if additionally the Lévy
measure νL of L is such that

∫
R

x3νL(dx) = 0, then it holds for every t, h ≥ r > 0

E(G(r)
t )4 = 6E(L2

1)
β2

Ψ(1)2 (
2η

ϕ
+ 2τ2

L −E(L2
1))

(
2

|Ψ(2)| −
1

|Ψ(1)|

)(
r− 1− e−r|Ψ(1)|

|Ψ(1)|

)

+
2β2

ϕ2

(
2

|Ψ(2)| −
1

|Ψ(1)|

)
r + 3

β2

Ψ(1)2 (E(L2
1))

2r2 (2.5)

and

Cov((G(r)
t )2, (G(r)

t+h)
2) = E(L2

1)
β2

|Ψ(1)|3

(
2η

ϕ
+ 2τ2

L −E(L2
1)

)(
2

|Ψ(2)| −
1

|Ψ(1)|

)
×
(

1− e−r|Ψ(1)|
) (

er|Ψ(1)| − 1
)

e−h|Ψ(1)| > 0 . (2.6)

Lemma 2.2. Under the conditions of Proposition 2.1 the process ((G(r)
ri )2)i∈N has for each fixed r > 0

the autocorrelation structure of an ARMA(1,1) process.
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Proof. Denote by γ(h) = Cov((G(r)
ri )2, (G(r)

r(i+h))
2), h ∈ N0, the autocovariance function and

by ρ(h) = Corr((G(r)
ri )2, (G(r)

r(i+h))
2), h ∈ N0, the autocorrelation function of the discrete time

process ((G(r)
ri )2)i∈N as defined in (1.4). Then

ρ(h)
ρ(1)

=
γ(h)
γ(1)

= e−(h−1)r|Ψ(1)| , h ≥ 1 .

Moreover, for h = 1 we get

ρ(1) =
γ(1)

Var(G2
r )

.

Recalling the autocorrelation function of an ARMA(1,1) process (see e.g. [1], Exercise 3.16), we
identify e−r|Ψ(1)| as the autoregressive root φ. The moving average root θ can be determined
by matching ρ(1) = (1 + φθ)(φ + θ)/(1 + θ2 + 2φθ).

Remark 2.3. From Corollary 4.1 of [9] we know for k ∈ N the moment E(σ2k) of the stationary
volatility process, which exists if and only if E(L2k

1 ) < ∞ and Ψ(k) < 0. In particular, if
E(L4

1) < ∞ and Ψ(2) < 0, then for t, h ≥ 0

E(σ2
t ) =

β

|Ψ(1)| and E(σ4
t ) =

2β2

|Ψ(1)Ψ(2)| , (2.7)

Cov(σ2
t , σ2

t+h) = β2
(

2
|Ψ(1)Ψ(2)| −

1
Ψ(1)2

)
e−h|Ψ(1)| = Var(σ2

t ) e−h|Ψ(1)| . (2.8)

Econometric literature suggests that volatility is quite persistent, which would imply that
e−|Ψ(1)| is close to 1; i.e. Ψ(1) < 0 near 0. This should be kept in mind, when estimating the
model parameters.

3 Method of moment estimation

3.1 Identifiability of the model parameters

We aim at estimation of the model parameters (β, η, ϕ) from a sample of equally spaced re-
turns by matching empirical autocorrelation function and moments to their theoretical coun-
terparts given in Proposition 2.1. In our next result we show that the parameters are iden-
tifiable by this estimation procedure for driving Lévy processes L as in Proposition 2.1. We
assume throughout that E(L1) = 0 and Var(L1) = 1; furthermore, we assume that the vari-
ance τ2

L of the Brownian motion component in L is known. This last assumption is crucial for
our analysis and we will comment on it in Section 4, when setting up our simulation study.
For the sake of simplicity we set r = 1.
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Theorem 3.1. Suppose (Lt)t≥0 is a Lévy process such that E(L1) = 0, Var(L1) = 1, the variance
τ2

L of the Brownian motion component of L is known with 0 ≤ τ2
L < Var(L1) = 1, E(L4

1) < ∞ and∫
R

x3 νL(dx) = 0. Assume also that Ψ(2) < 0, and denote by (G(1)
i )i∈N the stationary increment

process of the COGARCH(1,1) process with parameters β, η, ϕ > 0. Let µ, γ(0), k, p > 0 be constants
such that

E((G(1)
i )2) = µ,

Var((G(1)
i )2) = γ(0),

ρ(h) = Corr((G(1)
i )2, (G(1)

i+h)
2) = ke−hp , h ∈ N .

Define

M1 := γ(0)− 2µ2 − 6
1− p− e−p

(1− ep)(1− e−p)
k γ(0) , (3.1)

M2 :=
2kγ(0)p

M1(ep − 1)(1− e−p)
. (3.2)

Then M1, M2 > 0, and the parameters β, η, ϕ are uniquely determined by µ, γ(0), k and p and are
given by the formulas

β = p µ , (3.3)

ϕ = p
√

1 + M2 − p, (3.4)

η = p
√

1 + M2 (1− τ2
L) + p τ2

L = p + ϕ(1− τ2
L) . (3.5)

Proof. Since r = E(L2
1) = 1, we obtain from Proposition 2.1

µ =
β

|Ψ(1)| , (3.6)

γ(0) = 6
β2

|Ψ(1)|3

(
2η

ϕ
+ 2τ2

L − 1
)(

2
|Ψ(2)| −

1
|Ψ(1)|

)(
|Ψ(1)| − 1 + e−|Ψ(1)|

)
+

2β2

ϕ2

(
2

|Ψ(2)| −
1

|Ψ(1)|

)
+

2β2

Ψ(1)2 (3.7)

=: β2γ̃(0),
p = |Ψ(1)|, (3.8)

k =
γ̃−1(0)
|Ψ(1)|3

(
2η

ϕ
+ 2τ2

L − 1
)(

2
|Ψ(2)| −

1
|Ψ(1)|

)(
1− e−|Ψ(1)|

) (
e|Ψ(1)| − 1

)
(3.9)

Then (3.6) and (3.8) immediately give (3.3). Inserting (3.9) in (3.7) and using (3.6) and (3.8) we
obtain

γ(0) = 6
p− 1 + e−p

(1− e−p)(ep − 1)
kγ(0) +

2µ2 p2

ϕ2

(
2

|Ψ(2)| −
1
p

)
+ 2µ2.

By definition of M1 and (A.5) we see that

M1 =
2µ2 p2

ϕ2

(
2

|Ψ(2)| −
1
p

)
=

2µ2 p2

ϕ2
ϕ2

|Ψ(2)|p

∫
R4

x4 νL(dx) > 0,

so that
2

|Ψ(2)| −
1
p
=

M1ϕ2

2µ2 p2 .
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Inserting this in (3.9) and using (3.3) gives

kγ(0) =
2ηϕ−1 + 2τ2

L − 1
p3

M1ϕ2

2
(1− e−p)(ep − 1),

so that

0 < pM2 =
2kγ(0)p2

M1(ep − 1)(1− e−p)
=

2ηϕ−1 + 2τ2
L − 1

p
ϕ2 =

(
2 +

ϕ

p

)
ϕ,

where we used
p = |Ψ(1)| = η − ϕ(E(L2

1)− τ2
L) (3.10)

from (2.3). Solving this quadratic equation for ϕ gives (3.4), which together with (3.10) implies
(3.5).

We conclude from (3.3)–(3.5) that our model parameter vector (β, η, ϕ) is a continuous
function of the first two moments µ, γ(0) and the parameters of the autocorrelation function p
and k. Hence, by continuity, consistency of the moments will immediately imply consistency
of the corresponding plug-in estimates for (β, η, ϕ).

3.2 The estimation algorithm

The parameters are estimated under the following assumptions:

(H1) We have equally spaced observations Gi, i = 0, . . . , n, giving return data
G(1)

i = Gi − Gi−1, i = 1, . . . , n.

(H2) E(L1) = 0 and Var(L1) = 1, i.e. σ2 can be interpreted as the volatility.

(H3) The variance τ2
L of the Brownian motion component of L is known and in [0, 1).

(H4)
∫

R
x3 νL(dx) = 0, E(L4

1) < ∞ and Ψ(2) < 0.

Define the parameter vectors θ := (k, p) and ϑ := (β, ϕ, η), where k and p are as in
Theorem 3.1.

Remark 3.2. In Theorem 3.1, under the chosen conditions, ρ(h) > 0 for all h ∈ N. Further-
more, it was shown that M1 and M2 are strictly positive. However, this does not imply that the
corresponding empirical estimates are strictly positive. As we shall prove in Theorem 3.8 the
above estimators are strongly consistent, this implies for almost all sufficiently large sample
paths that the empirical estimates will be strictly positive and all parameter estimates are
well-defined.

Algorithm 1

(1) Calculate the moment estimator

µ̂n :=
1
n

n

∑
i=1

(G(1)
i )2

of µ and for fixed d ≥ 2 the empirical autocovariances γ̂n := (γ̂n(0), γ̂n(1), . . . , γ̂n(d))T

as

γ̂n(h) :=
1
n

n−h

∑
i=1

(
(G(1)

i+h)
2 − µ̂n

) (
(G(1)

i )2 − µ̂n

)
, h = 0, . . . , d .
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(2) Compute the empirical autocorrelations ρ̂n := (γ̂n(1)/γ̂n(0), . . . , γ̂n(d)/γ̂n(0))T.

(3) For fixed d ≥ 2 define the mapping H : Rd+2
+ → R by

H(ρ̂n,θ) :=
d

∑
h=1

(log(ρ̂n(h))− log k + ph)2 .

Compute the least squares estimator

θ̂n := argminθ∈R2
+

H(ρ̂n,θ) . (3.11)

(4) Define the mapping J : R4
+ → [0, ∞)3 by

J(µ, γ(0),θ) :=

{
(pµ, p

√
1 + M2 − p, p

√
1 + M2 (1− τ2

L) + p τ2
L) if p, M2 > 0 ,

(0, 0, 0) otherwise,
(3.12)

where M2 is defined as in (3.2). Compute the estimator

ϑ̂n = J(µ̂n, γ̂n(0), θ̂n) .

In part (3), alternatively, we could also have based the least squares estimation on the
autocovariance function. It turned out, however, that the estimators chosen as above are
considerably more accurate. The reason for this is that k is independent of β (see (3.9)) in
contrast to kγ := Cov((G(1)

i )2, (G(1)
i+1)

2) ep.
In addition to Remark 3.2 we emphasize that for a stationary model the parameter p has

to be strictly positive. But if we compute the unrestricted minimum of H(ρ̂n,θ) we get

p̂∗n := −
∑d

h=1

(
log(ρ̂n(h))− log(ρ̂n)

) (
h− d+1

2

)
∑d

h=1

(
h− d+1

2

)2 (3.13)

k̂n := exp
{

log(ρ̂n) +
d + 1

2
p̂∗n

}
, (3.14)

with log(ρ̂n) := 1
d ∑d

h=1 log(ρ̂n(h)), and p̂∗n may be negative. As a remedy we define the
estimator of p as

p̂n := max{ p̂∗n, 0} (3.15)

and take p̂n = 0 as an indication that the data is non-stationary.
Defining the mapping S : Rd+1

+ → R2
+ by the equations (3.13)–(3.15) and noting that

ρ̂n(h) = γ̂n(h)/γ̂n(0) presents the least squares estimator θ̂n := (k̂, p̂) as a function of γ̂n:

θ̂n = S(γ̂n) . (3.16)

3.3 Asymptotic properties of the moment estimators

Strong mixing properties guarantee strong consistency and asymptotic normality of the em-
pirical moments. In this section we summarize the necessary results, which we prove in Ap-
pendix B. The definition of the strong mixing coefficient can also be found in the Appendix.
The following remark is the starting point of our analysis.
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Remark 3.3. Let σ2 := (σ2
t )t≥0 be the strictly stationary volatility process given by (2.2). Then

σ2
+ falls into the class of generalised Ornstein-Uhlenbeck processes; see [11], Section 5. Con-

sequently, the result of [4] applies giving that σ2 is exponentially β-mixing. This implies in
particular that σ2 is strongly mixing (also called α-mixing) with exponentially decreasing rate.

In the following theorem we show that also the COGARCH(1,1) process satisfies a strong
mixing condition.

Theorem 3.4. Suppose that (Lt)t≥0 is such that E(L4
1) < ∞ and the parameters of the COG-

ARCH(1,1) process satisfy Ψ(2) < 0. Let (σ2
t )t≥0 be the strictly stationary volatility process given as

solution to (1.3). Then for every r > 0 the process (G(r)
ir )i∈N is α-mixing with exponentially decreasing

rate.

Since we assumed in the above theorem that σ2 is strictly stationary, the return process is
also strictly stationary and together with the strong mixing property this implies that (G(r)

ir )i∈N
is ergodic. This enables us to apply Birkhoff’s ergodic theorem to give strong consistency of
the empirical moments and autocovariance function of ((G(1)

i )2)i∈N:

Corollary 3.5. Under the same conditions as in Theorem 3.4 we obtain for n→ ∞

µ̂n
a.s.→ E((G(1)

t )2) , γ̂n
a.s.→ γ . (3.17)

Corollary 3.5 will imply strong consistency of the estimators (ϑ̂n)n∈N, as stated in (3.21)
below. To obtain asymptotic normality of the empirical estimates we want to apply a central
limit theorem for strongly mixing processes.

Proposition 3.6. Let the same conditions hold as in Theorem 3.4. Assume further

(H5) There exists a positive constant δ > 0 such that E
(

G8+δ
1

)
< ∞.

Then as n→ ∞,

√
n
([

µ̂n
γ̂n

]
−
[

µ
γ

])
d−→ Nd+2 (0, Σ) , (3.18)

where the covariance Σ has components

Σk+2,l+2 = Cov((G(1)
1 )2(G(1)

1+k)
2, (G(1)

1 )2(G(1)
1+l)

2)

+2
∞

∑
j=1

Cov((G(1)
1 )2(G(1)

1+k)
2, (G(1)

1+j)
2(G(1)

1+l+j)
2)

for k, l = 0, . . . , d,

Σ1,k+2 = Cov((G(1)
1 )2, (G(1)

1 )2(G(1)
1+k)

2) + 2
∞

∑
j=1

Cov((G(1)
1 )2, (G(1)

1+j)
2(G(1)

1+k+j)
2)

for k = 0, . . . , d and Σ1,1 = γ(0) + 2 ∑∞
h=1 kγe−ph.

Proof. We will first concentrate on the asymptotic behaviour of (µ̂n,γ∗n), where γ∗n = (γ∗n(0), . . . ,
γ∗n(d)) and γ∗n(h) =

1
n ∑n

i=1[(G
(1)
i+h)

2 − µ][(G(1)
i )2 − µ], h = 0, . . . , d. Denote

Yi := ((G(1)
i )2, [(G(1)

i )2 − µ]2, [(G(1)
i )2 − µ][(G(1)

i+1)
2 − µ], . . . , [(G(1)

i )2 − µ][(G(1)
i+d)

2 − µ])T.
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For (3.18) to hold for (µ̂n,γ∗n) in place of (µ̂n, γ̂n), by the Cramér-Wold device, we have to
show that as n→ ∞,

√
n

(
1
n

n

∑
i=1
λTYi − λT

[
µ
γ

])
d−→ N(0,λTΣλ) , (3.19)

for all vectors λ ∈ Rd+2 such that λTΣλ > 0. But as strong mixing is preserved under
linear transformations as well as the rate, the sequence (λTYi)i∈N is strongly mixing with
exponentially decaying rate. Hence we get ∑∞

k=1{αλTY(k)}c < ∞ for every c > 0, and since
E|Yi|2+δ < ∞ for some δ > 0 by (H5), the central limit theorem for strongly mixing processes
is applicable (see Theorem 18.5.3 in [8]).

Therefore, as n→ ∞,

√
n

(
1
n

n

∑
i=1
λTYi − λT

[
µ
γ

])
d−→ N(0, σ2) ,

with

σ2 := Var(λTY1) + 2
∞

∑
i=1

Cov(λTY1,λTY1+i) . (3.20)

Evaluation of (3.20) and rearranging with respect to λ shows σ2 = λTΣλ. Observing that
√

n
(

n−1 ∑n
i=1 λ

TYi − λT(µ̂n
γ̂n
)
)

converges in probability to zero as n → ∞ for every λ ∈ Rd+2

such that λTΣλ > 0 (see e.g. the proof of Proposition 7.3.4 in [1]), it follows that (µ̂n, γ̂n) has
the same asymptotic behaviour as (µ̂n,γ∗n), giving (3.18).

Applying the delta method (see Theorem 3.1 in [19]), we obtain:

Corollary 3.7. Let the same conditions hold as in Proposition 3.6. Then as n→ ∞,

√
n(ρ̂n − ρ)

d→ Nd(0, Σæ) .

The following theorem gives asymptotic normality of our parameter estimates. The true
parameter vector and the corresponding moments are form now on indicated by ϑ0, µ0 and γ0
respectively. We shall also denote by Pϑ0 the probability with respect to the parameter vector
ϑ0.

Theorem 3.8. Let the same conditions hold as in Theorem 3.4. Assume that (H1)–(H4) are satis-
fied. For S(γ) as in (3.16), define the mapping Q : Rd+2 → R3 by (µ,γT) 7→ Q((µ,γT)) :=
J(µ, γ(0), S(γ)). Then as n→ ∞,

ϑ̂n
a.s.→ ϑ0 . (3.21)

Assume additionally (H5). Then, under Pϑ0 , as n→ ∞,

√
n(ϑ̂n −ϑ0)

d−→ ∂(µ,γ)Q((µ0,γ0)) Nd+2 (0, Σ) , (3.22)

where Σ is as in Proposition 3.6.

Proof. Strong consistency of ϑ̂n follows from (3.17) and the fact that the mapping Q is con-
tinuous in (µ,γ). Since (µ̂n, γ̂n) is asymptotically normal and Q is differentiable at (µ0,γ0),
we can apply the delta method and the asymptotic normality of ϑ̂n follows from (3.18).
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4 Simulation study

In this section we investigate the small sample behaviour of the moment estimators of Al-
gorithm 1. As the driving Lévy process L we choose a variance gamma (VG) process which
has infinite activity and justifies the choice of τL = 0, i.e. we assume that L has no Gaussian
component. This seems reasonable since the VG process itself is used to model stock log-
prices, cf. [12]. Consequently, (H3) is satisfied. Assumption (H2) requires that the mean of
L is zero and the variance is equal to one, so that the characteristic function at time t ≥ 0 is
given by

E(eiuLt) =

(
1 +

u2

2C

)−tC

for C > 0. The Lévy measure of L has the Lebesgue density

νL(dx) =
C
|x| exp

(
− (2C)1/2 |x|

)
dx , x 6= 0 . (4.1)

Inserting (4.1) into (??) we obtain

Ψ(1) = −η + ϕ and Ψ(2) = −2η + 2ϕ + 3ϕ2C−1 . (4.2)
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−10
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50
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Figure 1: Simulated VG driven COGARCH(1,1) process (Gt)0≤t≤5 000 with parameters β = 0.04, η = 0.053 and

ϕ = 0.038 (first), the differenced COGARCH(1,1) process (G(1)
t ) of order 1 (second), the volatility process (σ2

t )
(third), the driving VG process (Lt) with parameter C = 1 (last).

The first condition of (H4) is satisfied by symmetry. The only delicate point for choosing
the parameters β, η and ϕ is the last condition of (H4). As indicated in Remark 1.5 the
autocovariance function of (G(1))2 should not decrease too fast as is observed in empirical
observations. From Proposition 2.1 we know that this is implied by Ψ(1) < 0 close to zero.
Setting β = 0.04, η = 0.053 and ϕ = 0.038 gives Ψ(1) = −0.015 and Ψ(2) = −0.0257 which
are satisfactory values. Condition (H5) requires for G a finite moment of higher order than
the eighth, which is the case if E(L8+2δ

1 ) < ∞ and the (4 + δ)-moment of the volatility is finite
i.e. ψ(4 + δ) < 0. The VG process has finite moments of all orders for every C > 0, but for
given η and ϕ the finiteness of E(σ8+2δ

1 ) depends on C, since

Ψ(4) = −4η + 4ϕ + 18ϕ2C−1 + 120ϕ3C−2 + 630ϕ4C−3
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has to be strictly negative (this then implies Ψ(4 + δ) < 0 for some δ > 0 by continuity of Ψ,
cf. [18], Lemma 26.4). Therefore we choose C = 1, resulting in Ψ(4) = −0.0261.

We will perform the estimation procedure for two different sample sizes, namely 5 000
and 20 000. The estimates p̂n (3.13) and k̂n (3.14) are sensitive to the choice d of lags used and
to outliers in the empirical autocorrelation function. Based on experience for linear models
(recall Lemma 2.2), it seems reasonable to choose d ≈

√
n. Numerical experiments have indeed

shown that d equal to 50 is sufficient for both our sample sizes. Moreover, we performed
a robust linear regression (see e.g. Chapter 7 in [7]) to estimate the parameters, i.e. they
are estimated by an iteratively reweighted least squares algorithm instead of ordinary least
squares. The resulting estimates are not only less sensitive to outliers in the data, but also to
the number of lags d taken into account.

4.1 Estimation results

We first simulate 1 000 samples of n = 5 000 equidistant observations of G(1). Table 1 sum-
marizes the estimation results of our simulation study concerning the parameters β, η and
ϕ.

The empirical mean of all the estimated parameter values β̂n, η̂n and ϕ̂n is shown in the
first line, with the empirical standard deviations in brackets. We also estimated mean square
error (MSE) and mean absolute error (MAE), again with the standard deviation in brackets.
The corresponding results for a sample size of n = 20 000 observations are reported in the last
three lines of Table 1.

n=5 000 β̂ η̂ ϕ̂

Mean 0.04172 (0.00073) 0.04897 (0.00068) 0.03329 (0.00046)
MSE 0.00053 (0.00003) 0.00048 (0.00002) 0.00023 (0.00001)
MAE 0.01772 (0.00046) 0.01724 (0.00043) 0.01208 (0.00029)

n=20 000 β̂ η̂ ϕ̂

Mean 0.04309 (0.00043) 0.05311 (0.00038) 0.03689 (0.00026)
MSE 0.00019 (9 · 10−6) 0.00015 (8 · 10−6) 0.00007 (4 · 10−6)
MAE 0.01089 (0.00028) 0.00954 (0.00024) 0.00651 (0.00017)

Table 1: Estimated mean, MSE and MAE for β̂, η̂ and ϕ̂ and corresponding estimated standard deviations in
brackets. The true values are β = 0.04, η = 0.053 and ϕ = 0.038.

The three estimators η̂n, ϕ̂n and β̂n show a similar power. This is not surprising since they
are all mappings of (µ̂n, γ̂n). Actually β̂n seems to have the largest small sample variance.
Whereas for n = 5 000 the estimated bias of β̂n is the smallest, for n = 20 000 estimated
bias and variance of β̂n are the largest among the three estimators. When one compares
the estimates for the different sample sizes it can be seen that the MSE reduces for all three
estimators, when the sample size is increased, and the reduction is roughly of a factor of four
which would correspond to the asymptotic properties of the estimators.

From (4.2) we know that Ψ(1) is equal to Ψ(1) = −η + ϕ. Thus these two parameters give
important characteristics of the model concerning stationarity and the rate p of decrease of the
autocovariance and autocorrelation function. In case of p̂n > 0, which indicates that the data
is stationary, it is also clear from (3.12), that the estimated parameters will always correspond
to a stationary model, since p > 0 implies Ψ(1) = −η + ϕ < 0 and the same identity holds for
the estimated parameters.
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4.2 Estimation of the volatility σ2
t

Recall from (1.5) for r = 1,

σ2
i = σ2

i−1 + β− η
∫
(i−1,i]

σ2
s ds + ϕ ∑

i−1<s≤i
σ2

s (∆Ls)
2 , i ∈ N . (4.3)

Since σs is latent and ∆Ls is usually not observable, we have to approximate the integral and
the sum on the right hand side. For the integral we use a simple Euler approximation∫

(i−1,i]
σ2

s ds ≈ σ2
i−1 , i ∈ N .

As we observe G only at integer times we approximate

∑
i−1<s≤i

σ2
s (∆Ls)

2 ≈ (Gi − Gi−1)
2 = (G(1)

i )2 , i ∈ N .

An estimate of the volatility process (σ2
t )t≥0 can therefore be calculated recursively by

σ̂2
i = β̂ + (1− η̂)σ̂2

i−1 + ϕ̂ (G(1)
i )2 , i ∈ N . (4.4)

Note that σ̂i defines the conditional variance of a discrete time GARCH(1,1) model, which
implies that we have to require 0 < η < 1. The estimator (4.4) is plotted in Figure 2 together
with the theoretical (σ2

t )t≥0 for one simulation.
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Figure 2: Sample paths of σ2
t (solid line) and σ̂2

t (dotted line) of one simulation.

Next we investigate the goodness of fit of our estimation method by a residual analysis.
The estimated residuals are given by G(1)

i /σ̂i−1 for i = 1, . . . , n. Since we assumed a symmetric
jump distribution with zero mean, the residuals should be symmetric around zero and their
mean should be close to zero. Furthermore, if the volatility has been estimated correctly, we
expect the standard deviation to be close to one.

Consequently, we estimated mean, MSE, MAE and the corresponding standard deviations
for the mean, the standard deviation and the skewness of the residuals G(1)

i /σ̂i−1 based on
1 000 simulations. The results for both sample sizes are reported in Table 2 and indicate a
reasonable fit.

The correlation of the squared residuals was checked by performing a Ljung-Box test for
each sample. For n = 5 000 we computed the test statistic based on 70 ≈

√
5 000 lags and had

to reject the null hypothesis of no correlation 140 times out of 1 000 simulations at the 0.05
level. Whereas for n = 20 000 the test statistics were computed using 140 ≈

√
20 000 lags and

the null hypothesis was rejected 137 times out of 1 000 simulations again at the 0.05 level.
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n=5 000 mean(G(1)
n /σ̂n−1) std(G(1)

n /σ̂n−1) skewness(G(1)
n /σ̂n−1)

Mean 0.00011 (0.00044) 1.00931 (0.00021) -0.00152 (0.00428)
MSE 0.00019 (9 · 10−6) 0.00012 (8 · 10−6) 0.01838 (0.00098)
MAE 0.01110 (0.00027) 0.00945 (0.00020) 0.10671 (0.00264)

n=20 000 mean(G(1)
n /σ̂n−1) std(G(1)

n /σ̂n−1) skewness(G(1)
n /σ̂n−1)

Mean 0.00018 (0.00022) 0.01078 (0.00014) -0.00285 (0.00205)
MSE 0.00005 (2 · 10−6) 0.00013 (4 · 10−6) 0.00422 (0.00019)
MAE 0.00577 (0.00013) 0.01079 (0.00014) 0.05119 (0.00126)

Table 2: Estimated mean, MSE and MAE for the mean, standard deviation and skewness of the residuals with
corresponding estimated standard deviations in brackets.

5 Real data analysis

The COGARCH(1,1) model will be fitted to five minutes log-returns of three different stocks,
which are General Motors (GM), Cisco and Intel. We have tick-by-tick data of the Trades and
Quotes database of the New York Stock Exchange (NYSE) and Nasdaq. The GM stock is from
NYSE, whereas Cisco and Intel belong to Nasdaq. The data spans over 4 months starting in
February 2002. We considered only the prices between 9.35am and 4pm to compute the five
minutes log-returns based on previous tick interpolation. There were 83 trading days between
the beginning of February and the end of May 2002. Hence each of the series has a total length
of 6 391 data points. This is part of a data set, which was analysed in [2] with respect to the
extreme dependence structure of the three stocks.

The effect of seasonality is common in high frequency data and also appears in the raw
data. Therefore, the data was deseasonalised by a median filter, which is explained in Section
4.2 in [2]. The resulting time series are shown in Figure 3.
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Figure 3: Deseasonalised 5 minutes log-returns of GM (top), Cisco (middle) and Intel (bottom).

An application of Algorithm 1 produces moment estimates of β, η and ϕ under the as-
sumption that the driving Lévy process es of each stock have no Brownian component. The
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results are shown in Table 3.

β̂ η̂ ϕ̂

GM 0.1091 0.1625 0.1357
Cisco 0.0621 0.0328 0.0126
Intel 0.0180 0.0396 0.0336

Table 3: β̂, η̂ and ϕ̂ for the GM, Cisco and Intel data.

To investigate the model fit, we performed a Ljung-Box test for squared residuals of all
three data sets. The test statistics used 80 lags of the corresponding empirical autocorrelation
function. The null hypothesis was not rejected for GM and Intel at the 0.05 level. For the GM
squared residuals the p-value was 0.35, whereas for Intel it was only 0.27. The test statistic for
the Cisco squared residuals was equal to 202.62, which led to a rejection of the null hypothesis,
since the test had a critical value of 101.87 at the 0.05 level. This result is also obvious from
Figure 4 were the empirical autocorrelation function of the squared residuals are plotted on
the right, showing significant correlations of the Cisco residuals.
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Figure 4: Empirical acf of the squared 5 minutes log-returns (left) and the squared residuals (right) of GM (top),
Cisco (middle) and Intel (bottom).

The estimated mean, standard deviation and skewness of the residuals are summarized
in Table 4. The numbers show that the mean and variation of the residuals are according to
our model, but that the residuals are significantly skewed. This skewness can also be seen in
Figure 5 showing estimates of the log density for all three datasets.

mean(G(1)
n /σ̂n−1) std(G(1)

n /σ̂n−1) skewness(G(1)
n /σ̂n−1)

GM -0.0143 1.0785 -0.3714
Cisco -0.0015 0.9832 -0.2082
Intel -0.0002 1.0100 -0.0626

Table 4: Mean, standard deviation and skewness of the GM, Cisco and Intel residuals.

It does not come as a surprise as it is a well-known fact that financial data are skewed.
Although we will not deal with the problem in this first paper on COGARCH(1,1) estima-
tion, we want to discuss the assumptions, which prevent the modelling of skewness and also
indicate some remedy to be worked out in detail in future work.

The observed skewness indicates that the first condition of (H4) requiring that∫
R

x3νL(dx) = 0 is violated. This introduces a bias into our estimates as in the calculation
of E(G4

t ) the last term in (A.2) does not disappear.
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Figure 5: Kernel estimates of the log density (solid line) of the squared GM (left), Cisco (middle) and Intel (right)
residuals together with a normal log density (dashed line) with mean and variance of the corresponding residual
series.

Instead of including the term
∫
R

x3νL(dx) in a statistical analysis we suggest to extend
the model by an extra term in a similar fashion as [6] for the discrete time GARCH process,
to model the leverage in the market explicitly; thus taking care of the effect directly. Con-
sequently, we extend the volatility model (1.3) for ρ > 0 to

dσ2
t+ = (β− ησ2

t ) dt + ϕ σ2
t d[L, L](d)t + ρ σ2

t dUt , (5.1)

where
Ut := ∑

0<s≤t
∆Ls<0

(∆Ls)
2

and ρ is a positive constant. Then

∆σ2
t =

{
ϕσ2

t (∆Lt)2, if ∆Lt > 0,
(ϕ + ρ)σ2

t (∆Lt)2, if ∆Lt < 0,

so that a negative jump of L gives rise to a higher increase of the volatility than a positive
jump of the same modulus does. Note that (Ut)t≥0 is a subordinator, and so is

Mt := ϕ[L, L](d)t + ρUt = ∑
0<s≤t
∆Ls>0

ϕ(∆Ls)
2 + ∑

0<s≤t
∆Ls<0

(ϕ + ρ)(∆Ls)
2,

so that (5.1) can be rewritten as

dσ2
t+ = (β− ησ2

t ) dt + σ2
t dMt,

an expression similar to (1.3).
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Appendix

A Calculating the moments

Proof of Proposition 2.1. Since L has finite variance and zero mean, it is a square integrable
martingale. Further, Ψ(1) < 0 implies E(σ2

t ) =
β

|Ψ(1)| < ∞ by (2.7), and it follows easily from
the properties of the stochastic integral that

µ := E(G2
t ) = E[G, G]t = E

∫ t

0
σ2

s d[L, L]s = E[L, L]1
∫ t

0
E(σ2

s ) ds ,

giving that E(G2
t ) is finite and has the form specified in (2.4). The remaining equations in (2.4)

are shown as in Proposition 5.1 of [9].
Suppose that E(L4

1) < ∞ and Ψ(2) < 0. Then E(G4
t ) is finite by the Burkholder-Davis-

Gundy inequality, cf. [17], p. 222, since

E
(
[G, G]2t

)
= E

(∫ t

0
σ2

s d[L, L]s

)2

is finite as a consequence of E(σ4
t ) < ∞ and E(L4

1) < ∞.
Now suppose additionally that

∫
R

x3 νL(dx) = 0. To calculate the value of E(G4
t ), observe

that by integration by parts,

G2
t = 2

∫ t

0
Gs− dGs + [G, G]t = 2

∫ t

0
Gs−σs dLs +

∫ t

0
σ2

s d[L, L]s, (A.1)

G4
t = 2

∫ t

0
G2

s− dG2
s + [G2, G2]t

= 4
∫ t

0
G3

s−σs dLs + 2
∫ t

0
G2

s−σ2
s d[L, L]s

+4
∫ t

0
G2

s−σ2
s d[L, L]s +

∫ t

0
σ4

s d
[
[L, L], [L, L]

]
s

+4
∫ t

0
Gs−σ3

s d
[
[L, L], L]s. (A.2)

Taking expectations in (A.2), the first and the last summand vanish due to the assumptions
EL1 = 0 and

∫
R

x3 νL(dx) = 0, respectively, so that

E(G4
t ) = 6E(L2

1)
∫ t

0
E(G2

s−σ2
s ) ds +

∫
R

x4 νL(dx)
∫ t

0
E(σ4

s ) ds. (A.3)

The expression E(G2
s−σ2

s ) was already calculated in the proof of Proposition 5.1 in [9], how-
ever, under additional assumptions which required in particular bounded variation of L. The
following calculations do not require these restrictions.

Let Yt :=
∫ t

0 Gs−σs dLs, t ≥ 0. Then E(Yt) = 0 for all t ≥ 0, and integration by parts and
substituting from (1.3) give

Ytσ
2
t+ =

∫ t

0
Ys− dσ2

s+ +
∫ t

0
σ2

s dYs + [σ2
+, Y]t

=
∫ t

0
Ys−(β− ησ2

s ) ds +
∫ t

0
Ys−ϕσ2

s d[L, L](d)t

+
∫ t

0
σ3

s Gs− dLs +

[∫ ·
0
(β− ησ2

s ) ds +
∫ ·

0
ϕσ2

s d[L, L](d)s ,
∫ ·

0
Gs−σs dLs

]
t
.
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Taking expectations gives

E(Ytσ
2
t+) =

(
ϕ(E(L2

1)− τ2
L)− η

) ∫ t

0
E(Ys−σ2

s ) ds + E

∫ t

0
ϕσ3

s Gs− d ∑
0<u≤s

(∆Lu)
3

=
(

ϕ(E(L2
1)− τ2

L)− η
) ∫ t

0
E(Ysσ

2
s+) ds,

where we used that
∫

R
x3 νL(dx) = 0 and that Ys−σ2

s = Ysσ
2
s+ almost surely for fixed s. Solving

this integral equation and using that Y0 = 0 implies E(Y0σ2
0+) = 0, it follows that E(Ytσ

2
t+) = 0

for all t ≥ 0. Substituting∫ t

0
σ2

s d[L, L]s =
∫ t

0
σ2

s τ2
L ds + ϕ−1

(
σ2

t+ − σ2
0 −

∫ t

0
(β− ησ2

s ) ds
)

from (1.3), equations (A.1) and (2.8) now give

E(G2
t σ2

t+) = E

(
σ2

t+

∫ t

0
σ2

s d[L, L]s

)
= (τ2

L + ϕ−1η)
∫ t

0
E(σ2

t σ2
s ) ds + ϕ−1E(σ4

t )− ϕ−1E(σ2
t σ2

0 )− ϕ−1βE(σ2
t )t

= (τ2
L + ϕ−1η)Var(σ2

0 )
1− e−t|Ψ(1)|

|Ψ(1)| + ϕ−1Var(σ2
0 )(1− e−t|Ψ(1)|)

+
(
(τ2

L + ηϕ−1)(E(σ2
0 ))

2 − βϕ−1E(σ2
0 )
)

t. (A.4)

Using (2.7), (2.8) and Ψ(1) = −η + ϕ
(
E(L2

1)− τ2
L
)

then leads to

E(G2
t σ2

t+) =
β2

ψ(1)2

(
2

|Ψ(2)| −
1

|Ψ(1)|

)
(

2η

ϕ
+ 2τ2

L −E(L2
1))(1− e−t|Ψ(1)|) +

β2

Ψ(1)2 E(L2
1)t.

This then implies (2.5), where we used (A.3), (2.8) and the fact that by (2.3)∫
R

x4 νL(dx) =
Ψ(2)− 2Ψ(1)

ϕ2 . (A.5)

For the autocorrelation of the squared increments, observe that by equation (5.4) of [9] we
have

Cov((G(r)
t )2, (G(r)

t+h)
2) =

(
er|Ψ(1)| − 1
|Ψ(1)|

)
E(L2

1)Cov(G2
r , σ2

r ) e−h|Ψ(1)| (A.6)

(in [9] this was stated under the additional assumption that L is a quadratic pure jump process
(i.e. τ2

L = 0), but it can be seen that the proof given there holds true also for L having a
Brownian motion component). This then implies (2.6) by (A.4), (2.4) and (2.7).

B Strong mixing property of (G(r)
ir )i∈N

We want to show that the sequence (G(r)
ir )n∈N is α-mixing with exponentially fast decreasing

mixing coefficients. Recall the following definitions.

Definition B.1. For a stationary process Y = (Ys)s∈R define the σ-algebrasF1 = FY
(0,u] := σ((Ys)0≤s≤u)

and F2 = FY
[u+t,∞) := σ((Ys)s≥u+t) for any u ≥ 0.
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(a) Y is called α-mixing (or strongly mixing), if as t→ ∞

α(t) = α(F1,F2) := sup
A∈F1 , B∈F2

|P(A ∩ B)− P(A)P(B)| → 0 .

Y is called α-mixing with exponential rate, if α(t) ≤ Ke−at for K, a > 0 for all t ≥ 0.

(b) For t ≥ 0 denote by bFY
[t,∞) the set of bounded FY

[t,∞)-measurable random variables. Let ‖ · ‖L1(P)

and ‖ · ‖∞ be the L1-norm under P and the supremum norm, respectively. Then Y is called α̃-mixing,
if as t→ ∞

α̃(t) = α̃(F1,F2) := sup
f∈bF2 , ‖ f ‖∞≤1

‖E( f |F1)−E( f )‖L1(P) → 0 .

Y is called α̃-mixing with exponential rate, if α̃(t) ≤ K̃e−ãt for K̃, ã > 0 for all t ≥ 0.

The following result shows that any α-mixing property is equivalent to the corresponding
α̃-mixing property.

Lemma B.2. α(F1,F2) ≤ α̃(F1,F2) ≤ 6α(F1,F2) holds for all F1,F2 ⊂ F .

For the left-hand inequality assume A∗ ∈ F1 and B∗ ∈ F2 are such that α(F1,F2) =
|P(A∗ ∩ B∗)− P(A∗)P(B∗)|. Then take f = χB∗ as the indicator of the set B∗, which implies
|P(A∗ ∩ B∗)− P(A∗)P(B∗)| ≤ ‖E(χB∗ |A∗)−E(χB∗)‖L1(P). See Lemma 3.5 in [13] for the right-
hand inequality.

Proof of Theorem 3.4. We show that (G(r)
ir )i∈N is α̃-mixing. Define the σ-algebra F dL

I :=
σ(Lt − Ls : s, t ∈ I) for I ⊂ R; i.e. generated from all increments of L over the interval
I. Using similarly notation as in Definition B.1 for the σ-algebras generated by the return
process (G(r)

ir )i∈N and volatility process (σ2
t )t≥0, we can formulate the following inclusions

FG(r)

{1,...,l} ⊂ F
dL
[0,lr] ∨ F

σ2

[0,lr] =: F dL,σ2

[0,lr] ,

where ∨ denotes the σ-algebra generated by the union of the two σ-algebras, and

FG(r)

{k+l,k+l+1,... } ⊂ F
dL
[(k+l−1)r,∞) ∨ F

σ2

[(k+l−1)r,∞) =: F dL,σ2

[(k+l−1)r,∞)
.

Using these relations we get

α̃G(r)(k) := sup
{
‖E( f |FG(r)

{1,...,l})−E( f )‖L1(P) : f ∈ bFG(r)

{k+l,k+l+1,... }, ‖ f ‖∞ ≤ 1
}

≤ sup
{
‖E( f |F dL,σ2

[0,lr] )−E( f )‖L1(P) : f ∈ bF dL,σ2

[(k+l−1)r,∞)
, ‖ f ‖∞ ≤ 1

}
= sup

{
‖E( f |F dL,σ2

[0,lr] )−E( f )‖L1(P) : f ∈ bF dL
[(k+l−1)r,∞) ∨ bF σ2

{(k+l−1)r}, ‖ f ‖∞ ≤ 1
}

= sup
{
‖E( f |Fσ2

[0,lr])−E( f )‖L1(P) : f ∈ bF dL
[(k+l−1)r,∞) ∨ bF σ2

{(k+l−1)r}, ‖ f ‖∞ ≤ 1
}

= sup
{
‖E( f |Fσ2

[0,lr])−E( f )‖L1(P) : f ∈ bF d[L,L]d

[(k+l−1)r,∞)
∨ bF σ2

{(k+l−1)r}, ‖ f ‖∞ ≤ 1
}

= α̃σ2((k− 1)r).

The first equality (in the third line) holds since the driving process of σ2 is the discrete part
of the quadratic variation of L. F dL

[0,lr] and bF dL
[(k+l−1)r,∞) ∨ bF σ2

{(k+l−1)r} are conditionally in-

dependent given F σ2

[0,lr], which is due to the Markov property of σ2 (see Theorem 3.2 in
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[9]) and the independence between F dL
[0,lr] and bF dL

[(k+l−1)r,∞). This gives the second equal-

ity. The third one follows from the independence of bF dL
[(k+l−1)r,∞) and bF d[L,L]d

[(k+l−1)r,∞)
from

F σ2

[0,lr] and again the Markov property of σ2, whereas the last one is due to the fact that

bF σ2

[(k+l−1)r,∞) = bF d[L,L]d

[(k+l−1)r,∞)
∨ bF σ2

{(k+l−1)r}.

Consequently, (G(r)
ir )i∈N inherits the mixing properties from the volatility process σ2. It has

been shown in [4] that σ2 is α-mixing with exponential rate, i.e. there exist constants K, a > 0
such that

α̃G(r)(k) ≤ α̃σ2((k− 1)r) ≤ 6ασ2((k− 1)r) ≤ 6Ke−a(k−1)r ,

implying that (G(r)
ir )i∈N is α-mixing with exponential rate.
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