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Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München zur
Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Seidl
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Abstract

Software is widely used and hard to make reliable. Researchers have been exploring new ways
to ensure software reliability including software verification, i.e., mathematical reasoning about
software. The current technology for software verification is not sufficiently efficient to be used
in industrial software production. In this thesis, we present novel constraint based verification
methods and algorithms for constraint solving that increase the efficiency of software verification.

In the direction of constraint based verification methods, we first present an algorithm that
improves the efficiency of an important verification method, namely template based invariant
generation [16]. Then, we extend the template based invariant generation method to compute
bounds on consumption of a resource by a program. In particular, we apply our bound compu-
tation algorithm on computing bounds of heap consumption of C programs.

In the direction of algorithms for constraint solving, we first present a novel simplex
based proof production algorithm that is compatible with the simplex algorithm employed
in CLP(Q) [52]. Secondly, we present algorithm for solving recursion-free Horn clauses over
LI+UIF. We use these algorithms for refinement procedures in model-checkers to verify multi-
threaded programs, programs with procedures, and higher order functional programs.
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Chapter 1

Introduction

Software is widely used. A personal computer may be executing millions of lines of source code to process the
complex interactions of different components of the computer. Designing reliable software is very hard due to
its high complexity and size. Currently, engineers in the software industry are applying many techniques to
increase the reliability of software, e.g., testing and code review. However, these techniques have limitations,
hence researchers have been exploring new ways to ensure software reliability. For example, mathematical
reasoning about software, which is known as software verification, has the potential to improve software
reliability. The methods for software verification are designed by composing the algorithms for constraint
solving as building blocks.

Current technology for software verification is not sufficiently efficient to apply to large programs. In
this thesis, we will present novel constraint based verification methods and algorithms for constraint solving
that increase the efficiency of software verification. We only consider safety verification for programs that
are constructed using updates and condition expressions that are represented using conjunction of linear
(in)equalities. Along with this thesis, this class of programs has been focus of a large body of research
because many software applications are in this class and mathematical properties of the linear operations
leads to the development of verification methods with practical computation complexities.

Our contribution is separated in the two parts: constraint based verification methods and algorithms for
constraint solving.

Part I : Constraint based verification methods

In this part, we first present an algorithm that improves the efficiency of an important verification method,
namely template based invariant generation [16]. Then, we extend the template based invariant generation
method to compute bounds on consumption of a resource by a program. In particular, we apply our bound
computation algorithm on computing bounds of heap consumption of C programs.

From tests to proofs: We first present an algorithm that improves the efficiency of template based
invariant generation [16]. An invariant of a program is a super set of the reachable program states. Templates
are assertions over the program variables and parameters. By choosing values for the template parameters,
we select an assertion over program variables. Here, templates are used to represent the unknown invariants.
Using the program and a template, constraints are generated whose solutions are the invariants. The
generated constraints are non-linear, which are hard to solve.

Our algorithm is a heuristic approach that accelerates the non-linear constraint solving by taking advan-
tage of executions of the program. First, our algorithm collects test executions for the program. The program
states visited by the test executions must satisfy every correct instantiation of the invariant templates since
reachable states must satisfy the instantiation of the invariant templates. For each program state visited
by test executions, we replace program variables occurring in template by their values as determined by
the program state and obtain simpler constraints over template parameters. Then, we collect these linear
constraints for each visited program state. We conjoin these linear constraints with the original non-linear

9



constraints and solve the result. The additional linear constraints are helpful in guiding a constraint solver
towards a solution of the non-linear constraints. As a result, the constraints are solved faster.

We designed and implemented a tool called InvGen that implements this heuristic and tested InvGen
on benchmarks. Results of the tests show that this heuristic is helpful for many examples. If the heuristic
fails to help then it does not slow down the overall solving either. We applied InvGen for computing ‘path
invariants’ [5] for counter examples in a CEGAR based tool Blast [45]. InvGen helps Blast to terminate
for some examples on which Blast did not terminate without InvGen.

Bound Synthesis: We extend template based invariant generation [16] to compute bounds on consumption
of a program resource, e.g., time, memory, or network bandwidth. We add an auxiliary variable and updates
on the variable to represent consumption of the resource. Together with an invariant template for each
program location, our bound synthesis method also assumes a template that expresses a space of linear
upper bounds over other program variables. Using these templates, we apply the algorithm of template
based invariant generation. A solution of the templates provides the symbolic expressions that bound the
consumption variable. We implemented this technique in a tool BoundGen.

C-to-Gates synthesis using BoundGen: We applied our bound synthesis algorithm for computing
bounds of heap consumption of C programs. We instantiated the resource as heap in the bound synthesis
algorithm. We combined BoundGen with a shape analysis tool Thor [63] and a hardware synthesis
toolchain. Using this combined toolchain, we directly synthesized hardware circuits from C programs that
allocate memory dynamically.

Part II : Constraint solving algorithms

In this part, we first present a novel simplex based proof production algorithm that is compatible with
the simplex algorithm employed in CLP(Q) [52]. Secondly, we present algorithm for solving recursion-free
Horn clauses over LI+UIF. We use these algorithms for refinement procedures in model-checkers to verify
multi-threaded programs, programs with procedures, and higher order functional programs.

Proof producing CLP(LI+UIF): For many path based constraint generation and solving methods of
verification, the significant cost of verification goes into solving constraints obtained from symbolic execution
of program paths. The constraints are solved by interpolation procedures [66]. An efficient interpolation
procedure can reduce the verification time. We use CLP(Q) [52] for manipulating and solving constraints,
which is a simplex based tool. We instrument CLP(Q) in order to compute interpolants. CLP(Q) requires
eager equality propagation, which is beneficial for dealing with interpolation queries for program paths, since
they may contain a large number of variables together with a large number of equality constraints between
them. The existing simplex based interpolation algorithms [14] require a proof of the unsatisfiability from
the simplex. The proof producing algorithms [14, 23] instrument input constraints, which adds many slack
variables, and forbid equality propagation in the employed simplex algorithm, which increases cost of equality
detection. Therefore, these algorithms are sub-optimal for our application. We address this deficiency by
developing a variation of simplex based proof producing algorithm that maintains additional information
required for proof production alongside the simplex tableau.

Programs that involve non-linear arithmetic operations can be verified by approximating these operations
using uninterpreted functions. We also designed and implemented a tool CLP(LI+UIF) that can find
contradiction in formulas in theory of linear arithmetic with uninterpreted function symbols and returns
a proof tree for the found contradiction. Using this proof tree and algorithms in [65, 72], we compute
interpolants efficiently.

Solving recursion-free Horn clauses over LI+UIF: The path constraints obtained from multi-
threaded programs, program with procedures, and higher order functional programs are sets of Horn clauses.
We have developed an algorithm for solving Horn clauses over linear arithmetic with uninterpreted function
symbols. Our algorithm extends [65, 72] by taking branching structure of Horn clauses into account. We
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have designed and implemented a tool based on this algorithm. Using this tool, we have designed and imple-
mented model-checkers for multi-threaded programs, programs with procedures, and higher order functional
programs.

Contributions

This thesis makes the following contributions.

• An algorithm for efficient template based invariant generation using test data.

• Design and implementation of the InvGen tool that implements the above algorithm.

• A template based algorithm for resource bound synthesis.

• A tool for C-to-Gates synthesis using the resource bound synthesis algorithm.

• Design and implementation of a proof producing CLP(LI+UIF).

• An algorithm for solving recursion-free Horn clauses over LI+UIF.

• Design and implementation of model checkers for multi-threaded programs, programs with procedures,
and higher order functional programs using the above Horn clauses solving algorithm.

Chapter 3 is based on [36, 40]. Chapters 4 and 5 are based on [17]. Chapters 7 is under submission.
Chapter 8 is based on [38]. A refinement tool based on chapter 8 is used for [37,39].
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Chapter 2

Basic notation and programs

In this chapter, we describe the mathematical notation used in this thesis.

2.1 Basic notation

Let N be the set of natural numbers. For i, j ∈ N, let i..j = {x|i ≤ x ≤ j}. Let Q be the set of rational
numbers. We use the standard definition of relations <, ≤, and = over N and Q. Let +∞ and −∞ be
positive and negative infinity respectively. We extend < to Q ∪ {+∞,−∞} in following way. Let c ∈ Q.

−∞ < c := true

+∞ < c := false

c < +∞ := true

c < −∞ := false

−∞ < +∞ := true

+∞ < −∞ := false

+∞ < +∞ := undefined

−∞ < −∞ := undefined

We also extend arithmetic operation as follows (−∞) + c = −∞, (+∞) + c = +∞, (+∞) − (−∞) = +∞,
(−∞)− (+∞) = −∞, (+∞)− (+∞) = undefined, and (−∞)− (−∞) = undefined.

Let sequence be an abstract data type. Let • be an operator that contact two sequences or a sequence
and an element. Let denote an existentially quantified anonymous variable in a formula.

2.2 Theory of linear arithmetic and uninterpreted functions

This section presents the syntax and semantics of the theory of linear arithmetic and uninterpreted functions.
Let TLI+UIF denote this theory.

Syntax

We assume countable sets of variables X , with x ∈ X , and function symbols F , with f ∈ F . Let the
arity of function symbols be encoded in their names. In addition, we assume a set of rational numbers Q,
with {0, c} ⊆ Q, and an inequality symbol ≤. Following grammar defines a quantifier-free class of formulas
in TLI+UIF.

terms 3 t ::= c | x | ct | t+ t | f(t, . . . , t)

atoms 3 A ::= t ≤ 0

conjunctive constraints 3 C ::= A | C ∧ C
constraints 3 F ::= A | ¬F | F ∧ F | F ∨ F

Semantics

For abbreviation, let |= denote |=TLI+UIF
in the part II of the thesis. Then, a constraint F is valid if it is

satisfied by every assignment of its free variables with rational numbers. We write |= F when F is valid.
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Auxiliary definitions

Let subterms(F ) be the subterms occurring in a constraint F and atoms(F ) be the atoms occurring in F .
We assume that t is in a minimized form when Smb(t) is evaluated. For example, Smb(x+ y − x) = {y}.

2.3 Program

We assume an abstract representation of programs by transition systems [64]. A program P =
(V,L, `init , T , `err ) consists of a set V of variables, a set L of control locations, an initial location `init ∈ L,
a set T of transitions, and an error location `err ∈ L. Each transition τ ∈ T is a tuple (`, ρ, `′), where
`, `′ ∈ L are control locations, and ρ is a constraint over variables from V ∪V ′. The variables from V denote
values at control location `, and the variables from V ′ denote the values of the variables from V at control
location `′. The error location `err is used to represent assertion statements. Each failed assertion leads
to `err . We assume that the error location `err does not have any outgoing transitions. The sets of locations
and transitions naturally define a directed graph, called the control flow graph (CFG) of the program, which
puts the transition constraints at the edges of the graph.

A state of the program P is a valuation of the variables V . We shall represent sets and binary relations
over states using constraints over V and V ′ in the standard way. A computation of P is a sequence of location
and state pairs 〈`0, s0〉, 〈`1, s1〉, . . . such that `0 is the initial location and for each consecutive 〈`i, si〉 and
〈`i+1, si+1〉 there is a transition (`i, ρ, `i+1) ∈ T such that (si, si+1) |= ρ. A state s is reachable at location `
if 〈`, s〉 appears in some computation. The program is safe if the error location `err does not appear in
any computation. A path of the program P is a finite or infinite sequence π = (`0, ρ0, `1), (`1, ρ1, `2), . . . of
transitions, where `0 is the initial location. The path π is feasible if there is a computation 〈`0, s0〉, 〈`1, s1〉, . . .
such that each consecutive pair of states (si, si+1) is induced by the corresponding transition, i.e., (si, si+1) |=
ρi, otherwise π is called infeasible. A path that ends at the error location is called an error path (or
counterexample path).

An invariant of P at a location ` ∈ L is a super-set of states that are reachable at `, which we represent
by an assertion over V . An inductive invariant map assigns an invariant to each program location such that
for each transition (`, ρ, `′) ∈ T the implication η(`) ∧ ρ → (η(`′))′ is valid, where (η(`′))′ is the assertion
obtained by substituting variables V with the variables V ′ in η(`′). We observe that due to the invariance
condition we have η(`init) = true. An invariant map is safe if it assigns an empty set to the error location,
i.e., η(`err ) = false.

A safe inductive invariant map serves as a proof that the error location cannot be reached on any program
execution, and hence that the program is safe. The invariant-synthesis problem is to construct such a map
for a given program.

Some program analysis techniques solve invariant synthesis problem by computing super set of reachable
states along an (in)feasible path at a time. For an finite infeasible path π = (`0, ρ0, `1), . . . , (`n, ρn, `n+1), let
I1, . . . , In−1 be a sequence assertions over V that satisfy

true ∧ ρ0 → I ′1 I1 ∧ ρ1 → I ′2 . . . In−1 ∧ ρn−1 → I ′n In ∧ ρn → false.

The above constraints are known as interpolation constraints for π. By solving the interpolation constraints,
we can compute the super set of reachable states along π. The problem of solving interpolation constraints
is easier than invariant-synthesis problem because there are no circular dependencies between unknown
assertions.
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Chapter 3

From tests to proofs

Programmers make mistakes, and much time and effort is spent on finding and fixing these mistakes. While
it has long been known that program invariants are the key to proving a program correct with respect to a
safety property [27, 48], their applicability has been limited in practice since they often require explicit and
expensive programmer annotations. To circumvent this problem, there has been considerable research effort
in program analysis for automatic inference of program invariants [2, 4, 7, 47, 76]. In these algorithms, a set
of constraints is generated from the program text whose solution provides an inductive invariant proof of
program correctness.

In the abstract interpretation based approach [7, 19, 67] to inductive invariant inference, one computes
the fixpoint of the program semantics relative to an abstract domain. In case the abstract domain has
infinite height (for example, the domain of polyhedra), termination of the fixpoint computation is enforced
by a widening operator. In the counterexample-guided abstraction refinement (CEGAR) approach [2,47], one
starts with a set of predicates, and uses spurious counterexamples produced by model checking to dynamically
discover new predicates that serve as building blocks for the proof of program correctness. Finally, in the
constraint-based approach [16, 35, 76], a parametric representation of an invariant map serves a starting
point. Then, inductiveness and safety conditions are encoded as constraints on the parameters. Once these
constraints have been determined, any satisfying assignment is guaranteed to yield an inductive invariant of
the program. For example, an invariant template in linear arithmetic will specify for each program point an
expression of the form α0 + α1x1 + . . .+ αnxn ≤ 0, where x1, . . . , xn are program variables, and α0, . . . , αn
are unknown parameters. The control flow graph of the program will specify constraints on the parameters
at each program point, such that a global solution for all the α’s produces an invariant.

While these techniques hold the potential for extremely sophisticated reasoning about programs, each

File State-of-the-art techniques This chapter
InterProc Blast InvGen InvGen+Z3

Seq × diverge 23s 1s 0.5s
Seq-z3 × diverge 23s 9s 0.5s
Seq-len × diverge T/O T/O 2.8s
nested × 1.2s T/O T/O 2.3s
svd(light) × 50s T/O T/O 14.2s
heapsort × 3.4s T/O T/O 13.3s
mergesort × 18s T/O 52s 170s
SpamAssassin-loop* X 22s T/O 5s 0.4s
apache-get-tag* × 5s 0.4s 10s 0.7s
sendmail-fromqp* × diverge 0.3s 5s 0.3s

Table 3.1: Comparison of invariant-based verification tools on benchmark problems.
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technique by itself often fails to verify programs, since in practice reasoning about correctness often requires
combining the strength of each individual approach. In this chapter, we demonstrate the potential of such a
combination. We describe the design and implementation of a constraint-based invariant generator for linear
arithmetic invariants. In our implementation, we use information from static abstract interpretation-based
techniques as well as from dynamic testing to aggressively simplify constraints. Our experimental results
demonstrate that using these optimizations our invariant generator can automatically verify many problems
for which all the existing approaches we tried are unsuccessful.

It is important to mention that for each of our examples there is (in theory) a polyhedral abstract
domain equipped with a suitable widening operator that can successfully prove the desired assertion. Our
approach targets the cases for which the existing abstract interpreters fail due to heuristic choices made in
the implementation that trade off precision for speed. For example, Figure 3.1(a) shows a program from [33]
for which an abstract interpreter implementing the standard convex hull-based widening cannot prove the
assertion. In our experiments, the abstract interpretation tool InterProc finds the invariants z = 10w and
y ≤ 100x at line 2 but not the crucial y ≥ x. We observed that our approach finds the missing fact y ≥ x

which together with the invariants found by InterProc, is sufficient to prove the assertion.
Table 3.1 shows the results of running a collection of state-of-the-art program verification tools on a

set of common benchmark programs for software verification, including some challenge programs from [59],
which are marked with the star symbol “*”. InterProc [60] is a tool based on abstract interpretation
(we used the PPL library together with the octagon domain when applying InterProc). Blast [47] is
a software model checker based on counterexample refinement. InvGen is our previous implementation of
constraint-based invariant generation using constraint logic programming (CLP) as a constraint solver [4].
InvGen+Z3 is the same constraint-based invariant generator but using the Z3 decision procedure [21] as
the constraint solver, which applies the Boolean satisfiability-based encoding proposed in [35]. As is evident
from Table 3.1, the results we obtained for the existing tools on the benchmark examples are disappointing.
In Column 2, there is a “×” mark for each program for which InterProc was too imprecise to verify the
assertion. In Column 3, the counterexample refinement procedure of Blast diverges on several examples. In
Columns 4 and 5, the invariant generation procedures time out, denoted by “T/O”, on most examples as
the constraints become too hard to solve (both for CLP and for SAT). In contrast, our technique is able to
efficiently solve all the examples, as shown in the last column.

While our invariant generator can be used in isolation, we have also integrated it with the Blast software
model checker and have used it as the counterexample refinement engine using path programs [5]. Invariants
for path programs provide additional predicates that refine the abstraction for the software model checker,
and can produce better refinement predicates than usually available with current techniques, e.g. [46]. Soft-
ware model checkers with path program-based counterexample analysis are well-suited for our techniques
because they (automatically) generate small program units to either test for bugs or provide invariants.
Using this integration, we have applied our implementation to verify a set of software verification benchmark
programs [59] recently introduced as a challenge to the community. The examples in the benchmark set are
extracted from common security-critical code, and contain assertions related to buffer bounds checking. Our
implementation was able to verify all the (correct) programs in the benchmark in about 10s of total time.

Related Work This chapter is based on the conference version [36] and extends it with a directed symbolic
execution technique that supports the dynamic strengthening, see Section 3.4, and a description of the
InvGen tool, see Section 3.5.

Our work is influenced by recent advances in automatic static inference of inductive invariants using
constraint solving [18, 35, 75] as well as by the use of dynamic analysis to estimate and infer likely system
properties [24].

Constraint-based invariant synthesis techniques using templates in linear [4,16,35] and polynomial [58,75]
arithmetic have been extensively studied, but their application has been limited by the cost of the constraint
solving process. As we demonstrate in our experiments, even on quite small examples the constraint solver is
likely to time-out. Our static and dynamic constraint simplification techniques limit the search space for the
constraint solvers. Our experiments demonstrate orders of magnitude improvements over existing making it
feasible to apply these techniques to larger programs.
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1 int x=0; y=0; z=0 w=0;

2 while(*){

3 if(*){

4 x++; y+=100;

5 }else if(*){

6 if (x>=4){ x++; y++; }

7 }else if(y>10*w && z>=100*x){

8 y=-y;

9 }

10 w++; z+=10;

11 }

12 if( x>=4 && y <=2) error();

1 int i,j,k,n,m;

2

3 assume(n<=m);

4 for (i=0;i<n;i++)

5 for (j=0;j<n;j++)

6 for (k=j; k<n+m;k++)

7 assert(i+j<=n+k+m);

(a) (b)

Figure 3.1: (a) Example from [33]. (b) Example nested.c.

Software model checking tools, e.g. [2, 47, 56], have previously used invariants from abstract
interpretation—most notably alias analysis, but also octagonal constraints [56]—to strengthen the tran-
sition relation of the program. The contribution of this work to the research on software model checking is
a powerful predicate inference engine using invariant generation. We also perform detailed comparisons of
the benefits of combining invariant generation with abstract interpretation, as well as combining invariant
generation with CEGAR-based software verification.

Pure dynamic analysis has been used to identify likely, but not necessarily correct, program invariants [24].
The technique uses program tests to evaluate candidate predicates from some a priori fixed database. The
predicates that evaluate to true on all test runs are returned as likely invariants. The basic technique is not
sound, as the test suite could be inadequate. Hence in a second step, the inferred invariants are provided
to a verification-condition based program verifier. If the verifier succeeds, the combination of the dynamic
step and the verification ensures program safety, while removing the need for providing manual invariants.
However, there are some shortcomings of this technique. First, since the predicates are chosen from some
fixed set (usually for efficiency in evaluation), the required program invariants may not fall into this fixed
class. Second, the generated invariants are not in general inductive, therefore if the verifier fails, it is not
evident if either a guessed invariant is wrong (that is, more tests should be generated to remove it from the
discovered set), or if the guessed invariant does represent all reachable states, but is too weak to allow the
verifier to complete the proof.

3.1 Example

We illustrate our idea using the example program nested.c shown in Figure 3.1(b). We want to construct
an invariant that proves the assertion in line 7.

The core idea of our tool is to perform constraint-based invariant synthesis. Our algorithm automati-
cally discovers, through an iterative process, that we need an invariant template to be a conjunction of four
inequalities for each loop head. The invariants for intermediate locations (between loop heads) can be com-
puted from assertions for these locations by propagating strongest postconditions (or weakest preconditions).
For clarity of presentation, we shall only show details relevant to the first conjunct in each template. We use
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the template map η such that

η(4) = α+ αii + αjj + αkk + αmm + αnn ≤ 0 ∧
· · · ∧ · · · ∧ . . . ,

η(5) = β + βii + βjj + βkk + βmm + βnn ≤ 0 ∧
· · · ∧ · · · ∧ . . . ,

η(6) = γ + γii + γjj + γkk + γmm + γnn ≤ 0 ∧
· · · ∧ · · · ∧ . . . .

To obtain an invariant map from these templates, we need to instantiate the set of parameters

{ α, αi, αj, αk, αm, αn,

β, βi, βj, βk, βm, βn,

γ, γi, γj, γk, γm, γn } .

We proceed by constructing a system of constraints, say Ψ, over the set of template parameters that imposes
the invariant conditions on the template map, following a classical approach from the literature [16,77]. We
omit the details for brevity. Unfortunately, even for this small example, we obtain a system of non-linear
arithmetic constraints which exceeds the capacity of our constraint solver. Our idea is to scale the invariant
generation engine by using information obtained from abstract interpretation as well as from concrete and
symbolic runs of the program.

We first observe that for this example, some components of the required invariants can be generated
by techniques based on abstract interpretation, e.g., by using octagon and polyhedral domains [19, 67]. By
running InterProc (using PPL) on this example, we obtain the following invariant map ηα that annotates
the loop locations with valid assertions:

ηα(4) = n ≤ m ∧ i ≥ 0 ,

ηα(5) = n ≥ j ∧ n ≤ m ∧ i ≥ 0 ∧ j ≥ 0 ∧ n ≥ 1 ,

ηα(6) = n + m ≥ k ∧ n ≥ j + 1 ∧ n ≤ m ∧
k ≥ j ∧ i ≥ 0 ∧ j ≥ 0 .

While theoretically the analysis could have found all polyhedral relationships, in practice tools like In-
terProc employ several heuristics that sacrifice precision for speed. In this case, InterProc misses the
inequality n+m ≥ i valid at lines 5 and 6 and crucial for proving the assertion. Our algorithm takes the out-
put generated by the abstract interpreter and uses it as an initial, static strengthening to support constraint
based invariant generation.

In the second step, our algorithm collects dynamic information by executing the program. We first
present a direct approach that uses program states to compute additional constraints that support invariant
generation. Then, we show an extension that can handle unbounded collections of states. The extended
method uses symbolic execution to collect such sets of states. We formalize these direct and symbolic
approaches in Section 3.3.

Direct approach Our direct approach starts with a collection of some reachable program states, which
can be obtained by applying test generation techniques. We only track states at the head locations of the
loops. Suppose we get the following set of states {s1, . . . , s4} by running the program on test inputs:

s1 = (pc = 4, i = j = k = 0, m = n = 1) ,

s2 = (pc = 4, j = 3, i = k = 0, m = n = 1) ,

s3 = (pc = 5, i = j = k = 0, m = n = 1) ,

s4 = (pc = 6, i = j = k = 0, m = n = 1) .
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Here, the variable pc represents the control location. We shall use these states to simplify the constraints
for invariant generation.

We observe that since template expressions must be true for all reachable program states, in particular,
they must hold for the states collected by testing. That is, for each reachable state we can substitute program
variables appearing in the template by their values determined by the states and use this information to
strengthen the constraint Ψ.

Thus, we can conjoin the following set of linear inequalities to the system of constraints Ψ, which deter-
mines the invariant map:

α+ αm + αn ≤ 0 , from s1

α+ 3αj + αm + αn ≤ 0 , from s2

β + βm + βn ≤ 0 , from s3

γ + γm + γn ≤ 0 . from s4

These additional constraints are linear. They can be applied by the solver to trigger a series of simplification
steps. After the solving succeeds, we obtain the following invariant map:

η(4) = n ≤ m ∧ i ≥ 0 ,

η(5) = n + m ≥ i ∧ n ≤ m ∧ i ≥ 0 ,

η(6) = n + m ≥ i ∧ k ≥ j ∧ n ≤ m ∧ i ≥ 0 .

Symbolic approach We observe that we can simulate the effect of dynamic simplification using a large/un-
bounded set of reachable states. For this purpose we use symbolic execution, which computes assertions
representing sets of reachable program states. We assume the example discussed so far and three reachable
symbolic states below:

ϕ1 = (pc = 4 ∧ i = 0 ∧ n ≤ m) ,

ϕ2 = (pc = 5 ∧ i = 0 ∧ j = 0 ∧ n ≥ 1 ∧ n ≤ m) ,

ϕ3 = (pc = 6 ∧ i = 0 ∧ j = 0 ∧ k = 0 ∧ n ≥ 1 ∧ n ≤ m) .

These symbolic states can be applied to derive additional linear constraints on the template parameters.
Due to the reachability of ϕ1, ϕ2, and ϕ3 the implications

ϕ1 → η(4) , ϕ2 → η(5) , ϕ3 → η(6)

hold for all valuations of program variables. The validity of these implications can be translated into a
linear constraint, say Φ, over template parameters. (See Section 3.3 for details.) We conjoin the constraint
Φ with the constraint Ψ that encodes the invariance condition. As a result, the solver performs additional
simplifications that lead to improved running time.

Relevant strengthening In fact, after running our algorithm we can discover which inequalities computed
using abstract interpretation and added as strengthening to the program were actually useful for finding the
invariant that proves the assertion. This information is crucial for keeping minimal the number of facts
reported to the software model checker as refinement predicates. For this purpose, we examine the solutions
that the constraint solver assigned to the variables encoding the implication validity. For our example, the
following inequalities found by InterProc were useful: n ≤ m∧ i ≥ 0 at line 4, n ≤ m∧ i ≥ 0 at line 5, and
k ≥ j ∧ n ≤ m ∧ i ≥ 0 at line 6.

3.2 Constraint-based invariant generation

We start by describing the invariant-based approach for the verification of temporal safety properties and
illustrate constraint-based invariant generation.
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In the constraint-based approach [18,58,74,75,76] to invariant generation, the computation of an invariant
map is reduced to a global constraint solving problem over the program locations. The approach consists of
three steps. First, a template assertion that represents an invariant for each location is fixed in an a priori
chosen language. A template assertion refers to the program variables V as well as a set of parameters. A
parameter valuation determines an invariant. Second, a set of constraints over these parameters is defined in
such a way that the constraints correspond to the definition of the invariant. This means that every solution
to the constraint system yields a safe inductive invariant map. Third, a valuation of parameters is obtained
by solving the resulting constraint system.

The language of arithmetic has been widely used to specify invariant templates [58, 74, 75]. A linear
inequality over the variables V = (x1, . . . , xn) is an expression of the form a0 + a1x1 + . . . + anxn ≤ 0
if a0, . . . , an are rational numbers. The language of linear arithmetic consists of conjunctions of linear
inequalities. An invariant template in linear arithmetic treats α0, . . . , αn as unknown parameters. For
example, the template α+ αxx+ αyy + αzz ≤ 0 represents a linear inequality term over the variables x, y,
and z. Here, the parameters are α, αx, αy, and αz. A possible template instantiation is −4 +x+ 2y− z ≤ 0.

An invariant template and its expressiveness are determined by the number of conjuncts that appear in
the template for each program location. Adding more conjuncts increases the expressive power at the cost
of a more expensive constraint solving task. Usually, templates are constructed incrementally, by starting
with the weakest template that assigns a single conjunct to each program location and then refining it by
adding additional conjuncts if the constraint solving fails to instantiate the template.

Given a template specification for an invariant map, we generate a set of constraints that encode the
inductiveness and safety conditions. To encode the inductiveness condition, we generate a constraint η(`) ∧
ρ→ (η(`′))′ for each transition (`, ρ, `′). Note that this implication is implicitly universally quantified over V
and V ′. Furthermore, the conjunction of such implications for all transitions is existentially quantified over
the template parameters. Using Farkas’ lemma [77], we eliminate universal quantification. The result is a set
of existentially quantified non-linear constraints over the template parameters as well as over the parameters
introduced by Farkas’ lemma (see [74] for the technical details). Techniques involving Gröbner bases and real
quantifier elimination can be used similarly to generate and solve constraints for more general polynomial
constraints [58,75], and for the combined theory of linear arithmetic and uninterpreted functions [4].

We assume a function InvGenSystem that computes constraints from programs and templates. An appli-
cation of InvGenSystem on a program and templates for each program location produces a constraint over the
template parameters that encodes the invariant map conditions. For the implementation details see [4, 16].
In this chapter, we present a constraint encoding that takes into account the assumption that only the error
location can be unreachable. Thus, we only consider the case of the Farkas’ lemma that deals with the
implication between a satisfiable system of inequalities and an additional inequality.

We illustrate InvGenSystem using a single transition between location ` and `′ with the transition relation
x ≤ y ∧ x′ = x+ 1∧ y′ = y. We assume a template ϕ = (α+αxx+αyy ≤ 0∧ β + βxx+ βyy ≤ 0) consisting
of two conjuncts at the location `, and a singleton conjunction ψ = (γ + γxx + γyy ≤ 0) at the location `′.
The starting point is the implication ϕ ∧ ρ → ψ′. To simplify the exposition, we first eliminate the primed
program variables and obtain ϕ ∧ x ≤ y → ψ[x+ 1/x], which we present in matrix form below.(

αx αy

βx βy

1 −1

)( x
y

)
≤
(−α
−β
0

)
→
(
γx γy

) ( x
y

)
≤ −γ − γx

Now, we apply Farkas’ lemma to encode the validity of implication and obtain the following constraint:

∃λ ≥ 0. λ

(
αx αy

βx βy

1 −1

)
=
(
γx γy

)
∧ λ

(−α
−β
0

)
≤ −γ − γx

This constraint determines the values of template parameters and the additional parameter λ. It contains
non-linear terms that result from the multiplication of λ with (αx βx) and (αy βy).

Constraint Solving The constraints generated above are non-linear, since they contain multiplication
terms over the parameters from the invariant templates, as well as the additional parameters introduced by
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Farkas’ lemma. The existing solving approaches include symbolic techniques based on instantiations and
case splitting, e.g. [16], and using SAT solvers by applying an appropriate propositional encoding, e.g. [35].
Unfortunately, in all but the most basic programs, constraint-based invariant synthesis using the above
technique is too expensive.

For the rest of the chapter, we assume a tool Solve that takes as input a set of non-linear constraints and
returns either a satisfying assignment to the constraints, or that the constraint set is unsatisfiable, or times
out. In this chapter we present techniques to increase the efficiency of solving by simplifying constraints that
are passed to Solve.

3.3 Constraint simplification

We now describe how we can use additional static and dynamic information to restrict the search space
determined by the set of static constraints. Technically, we do this by computing additional constraints on the
program transition relation and on the template parameters and conjoining them with the constraint system
defining invariant map. Program computations provide a source of such additional dynamic constraints.

InvGen+AbsInt: simplification from abstract interpretation

Our first simplification uses an abstract interpreter to compute program invariants, and uses the result of the
abstract interpretation algorithm to strengthen the program transition relation. That is, suppose that ηα is
an inductive invariant map computed by an abstract interpretation algorithm. In our constraint generation,
we replace the constraint η(`)∧ ρ→ (η(`′))′ for a transition (`, ρ, `′) with the constraint η(`)∧ (ηα(`)∧ ρ)→
(η(`′))′.

The following lemma formalizes the strengthening property of ηα.

Lemma 1. For a given invariant template map η for the program P, if an inductive invariant map η∗ is
obtained by strengthening of the transition relation of P with an inductive invariant map ηα then the map

λ` ∈ L. (η∗(`) ∧ ηα(`))

is an inductive invariant map for P.

Proof. The proof follows from the definition of inductive invariant maps.

InvGen+Test: simplification from tests

Individual program computations can be used to simplify the constraints for invariant generation. The crux
of the algorithm InvGen+Test lies in the observation that an invariant template must hold when partially
evaluated on a reachable state of the program.

Let t(V ) be a template over the program variables V and s be a reachable program state. We write
t(s/V ) to denote a template expression that is obtained from t by substituting each variable x ∈ V with its
value s(x ) in the state s. Then, the constraint t[s/V ] imposes an additional constraint over the template
parameters. Note that this constraint is linear, i.e., its processing does not require application of expensive
non-linear solving techniques.

We show the algorithm InvGen+Test in Figure 3.2. The algorithm takes as input a program P and an
invariant template map η with parameters P. It can return an invariant map for P, output that no invariant
map exists for the given invariant templates, or find a counterexample to the program safety. There are
three conceptual steps of the algorithm. The first step (line 1) constructs a set Ψ of constraints on the
invariant template parameters that encode the initiation, inductiveness, and safety conditions. The second
step (lines 2–9) runs a set of tests and generates additional constraints on the parameters based on the test
executions. Finally, the third step (line 10) solves the conjunction of the static constraints from line 1 and
the additional constraints generated during testing.

The loop in lines 3–9 executes the program on a set of tests. We instrument the program so that for each
program location ` reached in the test, the concrete values of all the program variables that appear in the
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input
P: program;
η: invariant template map with parameters P

vars
Ψ : static constraint;
Φ : dynamic constraint

begin
Ψ := InvGenSystem(P, η)
Φ := true
repeat
〈`1, s1〉, . . . , 〈`n, sn〉 := GenerateAndRunTest(P)
if `n = `err then

return “counterexample 〈`1, s1〉, . . . , 〈`n, sn〉”
else

Φ := Φ ∧
∧n
i=1(η(`i))[si/V ]

until no more tests
if P∗ := Solve(Ψ,Φ) succeeds then

return “inductive invariant map η[P∗/P]”
else

return “no invariant map for template”
end.

Figure 3.2: Algorithm InvGen+Test for invariant generation supported by dynamic simplification using
program executions. InvGenSystem creates a constraint over the template parameters that encodes invariant
map conditions for the program P, see Section 3.2. The function GenerateAndRunTest selects program
computations.

template η(`) are recorded. If a test hits the error location, then of course, we have found a bug, and we
return this error (lines 5,6). Otherwise, the recorded values provide an additional constraint on the template
parameters. For example, if the template for a location is αx+βy+γ ≤ 0, and a dynamic execution reaches
this location with the concrete state x = 35, y = −9, we know that the parameters α, β, and γ must satisfy
the constraint 35α−9β+γ ≤ 0. We call this a dynamic constraint on the parameters and add this constraint
to the auxiliary constraint Φ.

The testing loop terminates due to an externally supplied coverage criterion. At this point, the constraint
solver is invoked to find a satisfying assignment for the parameters in P that satisfy both the static constraints
in Ψ and the dynamic constraints in Φ. If there is no such solution, the algorithm returns that there is no
invariant map for the program using the current template map. On the other hand, any satisfying assignment
provides an invariant map. Our algorithm maintains the invariant that at any point in lines 3–13, a satisfying
assignment to the constraints Ψ ∧ Φ is guaranteed to be a valid invariant map.

The following lemma formalizes the strengthening from tests.

Lemma 2. Algorithm InvGen+Test computes constraints Ψ and Φ such that Ψ implies Φ.

Proof. By definition, Ψ constraints template parameters such that the resulting inductive invariant holds for
every reachable state, i.e.,

∀P. Ψ→
∧
{η(`)[s/V ] | s is reachable at `} .

Since Φ only considers a finite set of reachable states, it is implied by Ψ.

InvGen+Symb: simplification from symbolic execution

We observe that the basic algorithm conjoins dynamic, linear constraints for each state that is reached by
the test generator. A large number of such constraints may overwhelm the constraint solver, despite their
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repeat
π := GeneratePath(P)
(∗ π = (`1, ρ1, `2), . . . , (`n, ρn, `n+1) ∗)
if `n+1 = `err and π is feasible then

return “counterexample π”
else
ϕ := ∃V ′′. (ρ1 ◦ · · · ◦ ρn[V ′′/V ][V/V ′])
Φ := Φ ∧ Encode(ϕ→ η(`n+1))

until no more paths

Figure 3.3: Algorithm InvGen+Symb. It can be obtained by replacing lines 3–9 of the algorithm In-
vGen+Test with the above statements. The function GeneratePath selects program paths. Encode creates
linear constraints over template parameters that encode the validity of the given implication.

low processing cost. We improve the basic algorithm by taking into account sets of reachable states using a
single strengthening constraint.

We assume a template t(V ) and a set of reachable states represented by an assertion ϕ(V ). We can
obtain such sets of states by performing symbolic execution along a collection of program paths. Then, the
implication ϕ(V )→ t(V ) must hold for all valuations of V since every state in ϕ is reachable.

Following the method in Section 3.2, we encode the validity of the implication by a constraint over the
template parameters. In this case, the encoding yields linear constraints. In contrast to the cases when the
left-hand side of the implication contains template assertions, in the above implication program variables
have constant coefficients. Thus, when multiplying additional parameters (appearing due to the application
of Farkas’ lemma) with coefficients attached to the program variables we obtain linear terms, which, in turn,
result in linear constraints.

For example, we consider a template t(x, y, z) that consists of two conjuncts α + αxx + αyy + αzz ≤
0 ∧ β + βxx+ βyy + βzz ≤ 0 . We assume a set of states ϕ = (−x ≤ 0 ∧−y ≤ 0 ∧ x+ y − z ≤ 0) reached by
symbolic execution. The encoding of the implication ϕ→ t yields the constraint

∃Λ ≥ 0. Λ
(−1 0 0

0 −1 0
1 1 −1

)
=
( αx αy αz

βx βy βz

)
∧ Λ

(
0
0
0

)
≤
(−α
−β
)
,

which is clearly linear.
We assume a function Encode that translates an implication between an assertion representing a set

of states and a template into a linear constraint over template parameters. Our extended algorithm In-
vGen+Symb applies Encode on sets of reachable states computed by symbolic execution of the program.
The algorithm is presented in Figure 3.3. Since it extends the basic algorithm InvGen+Test by adding
the symbolic treatment of reachable states, we only present the modified part.

The algorithm InvGen+Symb interleaves symbolic execution and collection of constraints. It relies on an
external function GeneratePath that selects paths through the control flow graph of the program, see line 4.1.
For a given path, we compute an assertion representing states that are reachable by executing its transitions,
see line 8.1. We use the relational composition operator ◦, which is defined by ρ ◦ ρ′ = ∃V ′′. ρ[V ′′/V ′] ∧
ρ′[V ′′/V ] , to compute the transition relation of the whole path. The existential quantification in line 8.1
projects this relation to the successor states ϕ, i.e., it computes the range of the relation. We use variable
renaming to keep the resulting assertion consistent with the templates over program variables. We conjoin
the constraint resulting from the translation of the implication between the reachable states ϕ and the
corresponding template η(`n+1) to the dynamic constraint Φ before proceeding with the next path. We
assume an external procedure that selects a finite set of paths. In our implementation, we apply directed
symbolic execution that attempts to unroll loops at least one time.

The following lemma formalizes the strengthening from reachable symbolic states.

Lemma 3. Algorithm InvGen+Symb computes constraints Ψ and Φ such that Ψ implies Φ.
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Proof. By definition, Ψ constraints template parameters such that the resulting inductive invariant holds for
every reachable state, i.e.,

∀P. Ψ→
∧
{η(`)[s/V ] | s is reachable at `} .

Since Φ only considers (a subset of) reachable states, it is implied by Ψ.

Correctness

We discuss the correctness of the algorithms InvGen+AbsInt, InvGen+Test, and InvGen+Symb.
These algorithms are sound, i.e., they compute inductive invariant maps, since the constraint produces
by invGenConstraint guarantees to restrict template parameters such that each satisfying valuation yields
an inductive invariant map [16]. The soundness of InvGen+AbsInt also relies on the fact that the employed
abstract interpretation tool computes inductive invariant maps.

The following theorem formalizes the completeness guarantees offered by InvGen+Test
and InvGen+Symb. Lemma 1 discusses the completeness under strengthening from abstract interpretation.

Theorem 1. [Correctness] Given program P, if there is an inductive invariant map η∗ that is an instanti-
ation of the template map η then η∗ satisfies the conjunction of constraints Ψ ∧ Φ computed by Algorithms
InvGen+Test and InvGen+Symb.

Proof. The proof follows from Theorem 2 in [16], which states the completeness of the constraint Ψ, together
with Lemmas 2 and 3, which state that the strengthening is not eliminating any solutions of Ψ.

3.4 Template-guided coverage

We implement GenerateAndRunTest using both random test input generation and systematic test input
generation using concolic execution [28, 29, 79]. We assume a location ` with a corresponding template
α0+

∑n
i=1 αixi ≤ 0. Our goal is to compute states at the location ` that produce as many linearly independent

constraints on the parameters α0, . . . , αn as possible.
Simple location or branch coverage is inadequate, as it only guarantees one constraint on the template

parameters. Discovery of too many states at the same program location can be not effective either. For
example, consider a set of reachable valuations of program variables x and y, which is characteristic for
loop unrolling sequences: {(1, 2), (2, 3), . . . , (9, 10)}. When executing the algorithm InvGen+Test, this set
yields dynamic constraints

α+ αx· 1 + αy· 2 ≤ 0 ,

α+ αx· 2 + αy· 3 ≤ 0 ,

. . . ,

α+ αx· 9 + αy· 10 ≤ 0 ,

which is equivalent to the conjunction

α+ αx + 2αy ≤ 0 ∧ 1

9
α+ αx +

10

9
αy ≤ 0 .

Thus, this example demonstrates that a large number of states does not necessarily provide a constraint that
leads to a strong simplification (in a the sense of logical implication). Next, we present a coverage criterion
that can be used for the selection of interesting paths through the control flow graph such that the resulting
states deliver undiscovered simplifications, when available.

Given a location ` and a template α0 +
∑n
i=1 αixi ≤ 0 we say that a set of states S = {s1, . . . , sk} forms

a basis at ` for the template if 1) the size of the set is equal to the number of variables in the template, i.e.,
k = n, and 2) the states in S are linearly independent. The second condition is defined by the implication

∀λ1, . . . , λk.

k∑
i=1

λisi = 0→ λ1 = · · · = λk = 0 .
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Then, the theoretical goal of full basis coverage is to generate a basis for each location and each template in
the invariant template map. While the number of reachable states or paths of the program can be unbounded,
the minimal number of tests to provide basis coverage is bounded by |L| · |η| · (|V |+ 1), where |η| gives the
number of templates in the invariant template map.

Next, we show how a state-of-the-art test input generator based on symbolic execution, e.g. [28, 29, 79]
can be extended to account for basis coverage. In such test input generator schemes, the program is executed
on symbolic inputs, and a set of constraints on the symbolic inputs is maintained. The constraints encode
the conditionals visited along the path. A satisfying assignment to the constraints guarantees a test input
that produces a computation along the path taken by the symbolic execution.

Suppose that a location ` of the program has been visited by the states s1, . . . , sk. We wish to find an
additional state s that is linearly independent of the states s1, . . . , sk. We accomplish this task by providing
an additional constraint to the path constraint collected by the symbolic execution. This additional constraint
gives the most general condition for an state s to be linearly independent of s1, . . . , sk. It is generated using
elementary linear algebra.

First, we find a state v in the orthogonal complement of the subspace spanned by s1, . . . , sk. This is any
non-zero state that is orthogonal to each of states in the set s1, . . . , sk. We encode this condition by the
following constraint:

v · s1 = 0 ∧ · · · ∧ v · sk = 0 ∧ v 6= 0 ,

where · represents vector dot product, and the dimension of each vector is n. The constraints with product
terms enforce that v is orthogonal to each vector si. The last conjunct enforces v to be non-zero, which is
equivalent to

v1 6= 0 ∨ · · · ∨ vn 6= 0 .

These constraints form a linear system and can be solved using Gaussian elimination.
Given a vector v that satisfies the constraints above, we add the constraint that the new state s is not

orthogonal to v. That is, we require that the new state has a non-zero projection on the vector v. This is
formalized by the constraint

s · v 6= 0 ,

which is a linear constraint, since v is constant and the only unknown values are the components of s. This
guarantees that the new state is linearly independent of all the previous ones.

Example 1. [Basis coverage] We illustrate the computation of additional states increasing the basis coverage
for the set of states {s1, s2} over the variables x, y, and z such that s1 = (1, 2, 0) and s2 = (0, 1, 2).

We constrain the orthogonal state v = (v1, v2, v3):

v1 + 2v2 = 0 ∧ v2 + 2v3 = 0 ∧ (v1 6= 0 ∨ v2 6= 0 ∨ v3 6= 0) ,

which has a satisfying assignment v = (1,− 1
2 ,

1
4 ). Then, we find the additional state s by solving the

constraint

s1 −
1

2
s2 +

1

4
s3 6= 0 .

We obtain the state s = (0,−2, 1).
Assume that the path relation leading to the location under consideration is

ρ = x ≥ 0 ∧ x′ = x− 2 ∧ y′ = y ∧ z′ = z + 1 .

Then, solving the conjunction of the above constraints together with ρ[s/V ] yields an initial state (2,−2, 0)
that leads to the additional state that increases the basis coverage.
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Figure 3.4: (a) InvGen design. (b) InvGen implementation.

3.5 InvGen: invariant generator

Design

We present the design of InvGen in Figure 3.4(a). The input program is passed to the dynamic and static
analyzers. The results of each analysis together with the program and the templates are passed to the
constraint generator. The generated constraints are solved by a constraint solver. If the solver succeeds then
InvGen returns a safe invariant.

Implementation

Figure 3.4(b) outlines the implementation of InvGen. It is divided into two executables, frontend and
InvGen. The frontend executable contains a CIL [69] based interface to C and an abstract interpreter
InterProc [60]. The frontend takes a program procedure written in C language as an input, and applies
InterProc on the program three times using the interval, octagon, and polyhedral abstract domains. Then,
the frontend outputs the transition relation of the program that is a annotated with the results computed
by InterProc. See [41] for the output format.

Next, we describe the components of InvGen, following Figure 3.4(b).

Program minimizer InvGen minimizes the transition relation of the program to reduce the complexity
of constraint solving. InvGen computes a minimal set of cut-point locations, and replaces each cut-point free
path by a single, compound program transition. The unsatisfiable and redundant transitions are eliminated.
At this phase, the invariants obtained from InterProc can lead to the elimination of additional transitions.

Dynamic analysis InvGen collects dynamic information for the minimized program using concrete and
symbolic execution. In case of concrete execution, InvGen collects a finite set of reachable states by using
a guided testing technique. Otherwise, InvGen performs a bounded, exhaustive symbolic execution of the
program. By default, the bound is set to the number of cut-points in the program. The user can limit the
maximum number of visits for each cut-point during the symbolic execution.
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Seq × 23.0s 1s 0.5s 6s 0.5s
Seq-z3 × 23.0s 9s 0.5s 6s 0.5s
Seq-len × T/O T/O T/O 4s 2.8s
nested × T/O T/O 17.0s 3s 2.3s
svd(light) × T/O T/O 10.6s T/O 14.2s
heapsort × T/O T/O 19.2s 48s 13.3s
mergesort × T/O 52s 142s T/O 170s
SpamAssassin-loop X T/O 5s 0.28s 1s 0.4s
apache-get-tag × 0.4s 10s 0.6s 3s 0.7s
sendmail-fromqp × 0.3s 5s 0.3s 5s 0.3s
Example1(b) × T/O T/O 0.4s 1s 0.35s

Table 3.2: Comparison of variations of invariant verification techniques and InterProc on additional
benchmark problems inspired by [59]. “X” and “×” indicate whether the invariant computed by InterProc
proves the assertions, and “T/O” stands for time out.

Simplifier InvGen simplifies all arithmetic constraints locally at each step of the algorithm. InvGen also
simplifies constraints obtained by the concrete execution and abstract interpretation.

Constraint solver The inductiveness conditions result in non-linear arithmetic constraints. In practice,
the existentially quantified variables range over a small domain, typically they are either 0 or 1. InvGen
leverages this observation in order to solve the constraints by performing a case analysis on the variables
with small domain. Each instance of case analysis results in a linear constraint over template parameters,
which can be solved using a linear constraint solver. This approach is incomplete, since InvGen does not
take all possible values during the case analysis, however it is effective in practice.

Multiple paths to error location A program may have multiple cut-point free paths that lead to the
error location, which we refer to as error paths. InvGen deals with multiple error paths in an incremen-
tal fashion for efficiency reasons. Instead taking inductiveness conditions for all error paths into account,
InvGen computes a safe invariant for one error path at a time. Already computed invariants are used as
strengthening when dealing with the remaining error paths.

3.6 Experiments

Implementation We implemented the algorithms InvGen+Test and InvGen+Symb using SICStus
Prolog [82], the linear arithmetic solver clp(q,r) [52] and the Z3 solver [21] as the backend to solve non-linear
constraints. When describing the application of InvGen together with Z3, we shall write InvGen+Z3. We
apply the InterProc [60] tool for abstract interpretation over numeric domains, and use the PPL backend
for polyhedra, mainly due to its source code availability. In principle, a variety of other tools could be used
instead, e.g., the ASPIC tool implementing the lookahead widening and acceleration techniques [31, 32].
InvGen provides a frontend for C programs, which relies on the CIL infrastructure for C program analy-
sis and transformation and abstracts from non-arithmetic operations appearing in the input program. We
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File Blast Blast + InvGen + InterProc + Symb
Seq diverge 8
Seq-len diverge 9
fregtest diverge 3
sendmail-fromqp diverge 10
svd(light) 144 43
Spamassassin-loop 51 24
apache-escape 26 20
apache-get-tag 23 15
sendmail-close-angle 19 15
sendmail-7to8 16 13

Table 3.3: InvGen + InterProc + Symb for predicate discovery in Blast. We show the number of
refinement steps required to prove the property.

implement the following additional variable elimination optimization. The additional constraints obtained
from dynamic and static strengthening are linear. In particular, the additional variables that encode impli-
cation between symbolic states and templates, Λ in the previous section, can be eliminated. We perform
this simplification step before applying the (expensive) techniques for solving non-linear constraints. For
our constraint logic programming-based implementation, this results in a reduction of the number of calls to
the linear arithmetic solver. When using the SAT approach, it allows us to avoid applying the propositional
search to constraints that can be solved symbolically.

In our experimental evaluation, we observed that InvGen+Test and InvGen+Symb offer similar
efficiency improvement, with a few exceptions when InvGen+Symb was significantly better. To keep the
tables with experimental data compact, we only describe evaluation of the strengthening that uses symbolic
execution InvGen+Symb.

Software Verification Challenge Benchmarks We applied InvGen on a suite of software verification
challenge programs described in [59]. The examples in this benchmark are extracted from large applications
by mining a security vulnerability database for buffer overflow problems. We use the corrected versions of
these programs, using the buffer access checks as assertions. The suite consists of 12 programs.1 Using a
polyhedral abstract domain, InterProc computes invariants that are strong enough to prove the assertion
for half of them. The constraint based invariant generation together with the SAT-based encoding, i.e.,
InvGen+Z3, generates invariants for all programs within 36.5 seconds of total time. Using the CLP
backend, InvGen handles 11 examples within 6.3 seconds, and times out on one program, which is handled
by InvGen+Z3 in 5 seconds. Using the static and dynamic strengthening described in this chapter, we obtain
the following running times. The combination InvGen+Z3+InterProc+Symb solves all examples in 29.5
seconds, while InvGen+InterProc+Symb handles all examples within 9.6 seconds. These experiments
demonstrate that the various optimizations can have an effect on verification, but the running times were
too short to draw meaningful conclusions.

Impact of Dynamic Strengthening The collection from [59] did not allow us to perform a detailed
benchmarking of our algorithm, since the running times on these examples were too short. We obtained a
set of more difficult benchmarks inspired by [59] by adding additional loops and branching statements, and
provide a detailed comparison that describes the impact of static and dynamic strengthening in isolation in
Table 3.2. InterProc computes 50 inequalities for each loop head, which results in a significant increase
in the number of variables in the constraint system. While being an obstacle for the propositional search
procedure in Z3, the increased number of variables does not significantly affect the CLP-based backend since

1Due to short running times, we present the aggregated data and do not provide any table containing entries for individual
programs.
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the additional variables appear in linear terms. In summary, the performance of InvGen+Z3 decreases and
the performance of InvGen goes up by adding facts from InterProc.

Integration with Blast We have modified the abstraction refinement procedure of the Blast software
model checker [46] by adding predicate discovery using path invariants [5]. Table 3.3 shows how constraint
based invariant generation can be effective for refining abstractions. The number of counterexample re-
finement iterations required is reduced in all examples. For several examples we achieved termination of
previously diverging abstraction refinement, and for others the reduction ranges between 25 and 400 per-
cent.

Summary Our experimental evaluation leads to the following observations:

• For complex constraint solving problems, the additional strengthening facilitates significant improve-
ment. It ranges from reducing the running time by two orders of magnitude to making timing out
examples solvable within seconds.

• If the constraint solving is already fast in the purely static case, then the strengthening does not cause
any significant running time penalty.
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Chapter 4

Bound synthesis

During an execution, a program may consume various kinds of resources such as time, memory, or network
bandwidth. Excessive resource consumption may affect the usability of the program. Static bounds on
resource consumption can be a useful source of information when ensuring the program usability.

In this chapter, we present a constraint-based method for computing symbolic bounds on consumption
of a resource. Our method takes a parameterized program as input. A parameterized program contains a
set of parameters that are read only variables and a consumption variable that represents consumption of
the resource. The parameters get a constant value during execution. We also assume that the parameterized
program is instrumented with updates on the consumption variable such that value of the consumption
variable represents consumption of the resource at each program step. Our method returns a linear expression
over parameters that is an upper bound over the consumption variable in all possible executions of the
program.

Our method is a modification of the template based invariant generation presented in Chapter 3. For
each program location, we aim to compute an invariant and a upper bound on the consumption variable such
that the invariant implies the upper bound. Along with a template for invariant at each program location,
our method also assumes a template that expresses a space of linear upper bounds over parameters. Using
these templates, we generate constraints and solve them as we presented in Chapter 3. A solution of the
templates provides the symbolic expressions that bounds consumption variable. The generated constraints
are very hard to solve. To gain efficiency in solving, we consider different paths in the program separately.
We compute bounds for each path using the above method. We combine bounds for different paths and
produce bound for the entire program.

In the next chapter, we apply the above method to develop a tool for C-to-gates hardware synthesis.
C programs are widely written with the use of dynamically allocated memory. Dynamically allocated and
manipulated data structures cannot be translated into hardware unless there is a constant upper bound
on the amount of memory that the program uses during all executions. This bound can depend on the
parameters to the program, i.e., program inputs that are instantiated at hardware synthesis time. We use
the constraint based method for the discovery of memory usage bounds, which leads to the first-known
C-to-gates hardware synthesis supporting programs with non-trivial use of dynamically allocated memory,
e.g., linked lists maintained with malloc and free. We illustrate the practicality of our tool on a range of
examples.

4.1 Resource bound analysis

Preliminaries For a program P = (V,L, `init , T , `err ), parameters S ⊂ V , and a resource consumption
variable h ∈ V \ S, a parameterized program P̂ = (P, S, h). Each transition relation preserves the values of
parameters, i.e., for each (`, ρ, `′) ∈ T we have

∀V ∀V ′ : ρ→ S′ = S .
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procedure BoundGen
input
P̂ = ((V,L, `init , T , `err ), S, h): parameterized program
ηT : invariant template map with ηT (`init) = true
BndT : bound template map with BndT (`init) = h ≤ 0

vars
Q: template parameters in ηT and BndT

Ψ: auxiliary constraint over Q
begin

Ψ := true
for each ` ∈ L do

Ψ := Ψ ∧ ∀V : ηT (`)→ BndT (`)
for each (`, ρ, `′) ∈ T do

Ψ := Ψ ∧ ∀V ∀V ′ : (ηT (`) ∧ ρ)→ ηT (`′)′

Q := free variables in Ψ
if exists M such that Ψ[M/Q] then

return BndT [M/Q]
else

throw “no bound found”
end

Figure 4.1: BoundGen discovers bounds on the value of the variable h, which keeps track of the amount of
consumption of a resource.

We are interested in a parametric invariant map Bnd that bounds the consumption variable. Formally,
we will search for Bnd such that for each ` ∈ L we have

∀S ∃c ∈ N ∀V \ S : Bnd(`)→ h ≤ c .

For given values of parameters in S, the minimum constant c that satisfies above equation for all program
locations determines the maximal amount of resource used during the program execution. For proving that
Bnd is valid we will need an inductive invariant map η. Formally, we require that for each ` ∈ L the following
holds:

∀V : η(`)→ Bnd(`) .

Bounds analysis algorithm Fig. 4.1 presents our constraint-based procedure BoundGen for discover-
ing bounds on consumption variable. The procedure takes as parameters a parameterized program P̂, an
invariant template map ηT , and a bound template map BndT . It returns either a valid bound map or an
exception if no such map can be found.

The template maps used by BoundGen are reminiscent of those used in in Section 3.2. The bound
template map BndT given to BoundGen as input assigns to each program location a bound template of
the form

h ≤ δ1p1 + · · ·+ δmpm + δ ,

where δ1, . . . , δm, δ are template parameters and S = {p1, . . . , pm} are parameters of P̂. Since BndT only
refers to S and h, it guarantees to yield parametric bound invariants only.

BoundGen collects a conjunction of constraints Ψ over template parameters for both template maps in
lines 1–5. These constraints encode the condition that the computed bounds must be valid. Lines 2–3 state
that the bounds hold for all reachable states, which are represented by an invariant map induced by the
invariant template map ηT . Lines 4–5 encode the condition that ηT in fact represents all reachable program
states.
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procedure PathBound
input
P̂ = ((V,L, `init , T , `err ), S, h): parameterized program
ηT : invariant template map
BndT : bound template map

var
Bnd : bound map
`err : distinguished error location
TE : transitions for bound assertion checking

function PathProgram
input
π : sequence of transitions

begin
return (V,L, `init , {τ | τ = (`, ρ, `′) occurs in π and `′ 6= `err}, `err )

end;
begin

Bnd := λ` ∈ L.h ≤ 0
repeat
TE := {(`,¬Bnd(`) ∧ V ′ = V, `err ) | ` ∈ L}
if exists π ∈ (T ∪ TE)∗ from `init to `err such that ρπ 6= ∅ then
Pπ := PathProgram(π)
try

Bndπ := BoundGen((Pπ, S, h), ηT , BndT )
catch

return “unbounded consumption path π”
Bnd := λ` ∈ L.Bnd(`) ∨ Bndπ(`)

else
return “bound assertion map Bnd”

done
end

Figure 4.2: PathBound performs an incremental boundedness analysis using guidance from spurious coun-
terexamples.

We collect all template parameters in line 6. If our constraint solving procedure can find a satisfying
assignment to Ψ, then this assignment defines a bound map in line 8. Otherwise, BoundGen raises an
exception.

The transition relations in the program P produced during the shape analysis phase are conjunctions
of linear inequalities over V and V ′. For our templates consisting of linear inequalities, we eliminate the
universally quantification over V and V ′ in lines 3 and 5 of BoundGen by applying a standard technique, see
e.g. [16], based on Farkas’ lemma [26]. The resulting constraint Ψ is a conjunction of non-linear inequalities
and can be efficiently solved using InvGen. We implemented our algorithm in the ARMC model checker [71].

The soundness and completeness of BoundGen is formalized in the following theorem.

Theorem 2. The procedure BoundGen is complete for bound expressions in linear arithmetic provable
using linear arithmetic invariants, i.e., in this case it computes a bound map. The procedure BoundGen is
also sound, i.e., it computes a bound map that represents an upper bound on the resource consumption.

Proof. We rely on the soundenes and completeness of the translation of the bounds synthesis problem
to constraint solving. The translation follows the classical scheme applied for the synthesis of inductive
invariants using constraint solving.
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Path bounds analysis The constraint-based procedure BoundGen performs an expensive computation—
non-linear constraint solving—and does not scale beyond medium-sized programs. We improve the scalability
of BoundGen by performing the boundedness analysis in an incremental fashion using the idea of path
invariants [5]. We apply the expensive, constraint-based procedure only to certain program fragments,
which are determined automatically.

Fig. 4.2 presents our BoundGen-based procedure PathBound for an incremental discovery of bounds
on consumption variable for the entire program from its fragments. Initially, the bound map states that
no consumption variable is zero, see line 2. Then, this claim is verified in line 5 using a verification tool
for proving program safety. Such a tool is applied on an augmented program that is obtained from P̂ by
adding a distinguished error location `err that is reachable if the consumption bound claimed by Bnd is not
valid. In the case of a false bound, the algorithm will return a counterexample in the form of a sequence of
transitions π that leads to consumption beyond the claimed bound.

In case a counterexample π is found, we identify a fragment of P̂ that is traversed by the transitions
occurring in π. This code fragment is defined by a path program Pπ for π [5], see line 1. In particular, the
path program Pπ contains the same loops of P̂ that are visited by π.

We compute an adjustment Bndπ for the bound map by applying the procedure BoundGen on the path
program, see line 8. The adjustment is used to weaken the claimed bound, see line 11.

This sequence of incremental adjustments continues until either the full program P̂ satisfies the claimed
bound map or a path that for which no bound on consumption can be found is discovered.

The soundness and completeness properties of PathBound are inherited from the procedure BoundGen
and the notion of path invariants.

Theorem 3. The procedure PathBound is complete for bound expressions in linear arithmetic provable
using linear arithmetic invariants, i.e., in this case it computes a bound map and terminates. The procedure
PathBound is also sound, i.e., it computes a bound map that represents an upper bound on the resource
consumption.

Proof. We rely on the fact that the computed path programs grow by at least one transition at each iteration.
Once all program transitions appear in the path program, Theorem 2 applies.
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Chapter 5

C-to-gates synthesis using BoundGen

C-to-gates synthesis promises to bring the power of hardware based acceleration to mainstream program-
mers and to radically increase the productivity of digital designers [42]. However, today’s C-to-gates syn-
thesis tools do not support one of the most powerful and widely used features of high-level programming in
C—dynamically allocated data structures. This leads to the use of arrays and significantly more complicated
code for modelling naturally dynamic data structures with static data structures, which in turns incurs extra
cost due to the extra complexity of design, verification, and maintenance. The support for dynamic memory
abstraction remains an on-going research problem because of the need to efficiently and accurately determine
a bound on heap consumption.

This work advances the state-of-the-art in hardware synthesis by providing support for programs that
dynamically allocate, deallocate, and manipulate heap-based data structures. First, our approach for finding
symbolic bounds uses shape analysis (e.g. [22, 61, 63]) and abstraction methods based on the introduction
of new variables (e.g. [55, 62]) to produce a numerical program. Then, we use the above constraint-based
method for finding a symbolic bound on the maximum heap size at compile time. This symbolic bound
is expressed as a linear function on the generic parameters to the circuit description. The term generic
parameter is used in hardware design languages to describe variables whose values will be known at compile-
time. These generic parameters are simply referred as parameters in our method. With our method for
computing symbolic bounds we can then automatically translate C programs with dynamic memory usage
into equivalent programs that operate over statically allocated arrays. That is, when circuit descriptions are
instantiated in their surrounding designs, the symbolic bounds can be used to compute concrete bounds for
use during hardware synthesis.

Our method increases the expressive power available to the users of synthesis systems. For example, with
our new C-to-gates synthesis flow, a designer can think in terms of a tree-based data structure, yet generate
hardware that operates on a flat fixed sized array. Furthermore, off-the-shelf libraries can now be used as
subroutines by digital designers. This leads to better re-use, as well as new avenues of adapting software
verification techniques for use in hardware systems.

Our experiments show that it is possible to produce viable circuits from C programs that use dynamic
data structures. By viable we mean that the synthesized circuits have performance that is good enough so
that we see a possibility to significantly improve it with future work. This claim needs empirical justification
by producing and analyzing the hand-coded equivalents. However, the generated circuits have a size and
operating frequency which seems quite plausible.

Related work C-to-gates synthesis is a maturing field with notable systems—see [10,12,30,43,54,68,80,84].
Some existing C-to-gates synthesis systems already support pointers and pointer aliasing, see e.g. [78], but
they do not deal with dynamically allocated data structures.

Synthesis tools for other general purpose programming languages also exist (e.g. tools supporting
Scheme [73], or Haskell [6]). In a few rare instances (e.g. [9]) tools have been used not only to generate
hardware but also the circuit’s correctness proof as well. These tools usually require the user to estimate
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the maximal amount of memory allocated by the program and take this quantity as an input parameter to
the synthesis routine. Thus, the results of our work can perhaps be used with these existing tools.

In the domain of pure functional programming languages, the topic of heap-bounds analysis has been
extensively investigated, see e.g. [49]. For imperative programs, [50] develops a type system which tracks
memory consumption. The Java memory-bounds tool described in [1] uses a heap abstraction and applies
heuristics based on arithmetic simplification to find a memory bound. In contrast, our method uses a
more precise numerical abstraction for dealing with heap, as we keep track of the size of intermediate list
segments identified by the shape analysis when dissecting the heap, which was crucial for dealing with our
examples. Furthermore, instead of using heuristics for finding the bound expression, we apply a constraint
based boundedness analysis which is complete for linear bound expressions provable using linear invariants.

The semi-manual technique proposed in [8] uses Daikon [25] to collect likely program invariants—including
facts about memory consumption—and uses them to derive an initial set of bound candidates.

In principle, the existing techniques for proving computational complexity, e.g. [34], can be used as a
basis to design an algorithm for discovery of memory usage bounds. However, since we are only interested in
bounds expressed over generic parameters, a major challenge is to bias the bound discovery method towards
such well-formed bounds. Our constraint based procedure solves this challenge.

5.1 From heaps to arrays

In this section we describe an analysis that automatically discovers symbolic bounds on the heap usage.
We will assume that the size parameters passed to malloc are fixed constants. Through the use of static
analysis, we annotate each call to free with the amount of memory the call is freeing. For example, we would
transform the call free(tmp) from Fig. 5.1 to free(tmp,sizeof(LINK)). For simplicity of presentation we
will assume that programs allocate and free heap cells of a single fixed size. We can support multiple size
allocations through the use of compile-time partial evaluation, but at the cost of complexity in the notation
in this section. We currently do not support arbitrary DAGs or hash-tables, due to the limitations of existing
separation logic based shape analysis tools [13,22,61,63] of which we are dependent.

Our procedure is divided into the following steps.

Numerical heap abstraction First, we augment the program with a new variable h, which is used to
track the amount of heap that is currently allocated. The variable h is incremented when malloc is called,
and decremented when free is called. For memory-safe programs such behavior of h is correct. We use the
shape analysis tool Thor [63] to determine the shape of the data structures used during the program’s
execution, and to prove memory safety. Using techniques from [62], Thor can be used to produce a new
program without heap that is a sound abstraction of the original program—additional integer variables are
added by Thor to summarize the sizes of data-structures. Thus, bounds found on h in the abstraction
imply bounds in the original program. Note that the new program variables range over integers of arbitrary
size (i.e. they cannot be represented in 32 or 64 bits).

The new abstract program is used for computing bounds on heap consumption only, and does not play
any role during the hardware synthesis step.

Numerical bounds analysis Next, we apply our constraint-based boundedness analysis to the numeric
program to find a symbolic bound f on the maximum value of h. For improved scalability we combine
our constraint-based synthesis approach with a counterexample-guided method of checking and refining
candidate bounds as presented in Section 4.1.

Array-based heap management and synthesis Once we have computed a symbolic bound (assuming
that a bound can be found) we throw away the abstraction and then convert the original program into
an array-based program operating over a pre-allocated shared array and then apply off-the-shelf synthesis
tools to produce a gate-level design. Note that, although we may sometimes compute a conservative over-
approximation for a bound on memory usage, it is often the case that a downstream synthesis tool can
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void prio(int n,in_signal i,out_signal o) {

LINK *tmp,*c,*buffer;

assert( n>0 );

while (1) {

buffer = NULL;

//Build up an n-sized sorted buffer

for (int k=0;k<n;k++) {

buffer = sorted_insert(input(i),buffer);

}

//Send the sorted list to the output and

//deallocate the buffer as we walk it

c=buffer;

while(c!=NULL) {

output(o,c->data);

tmp = c;

c = c->next;

free(tmp);

}

}

}

(a)

LINK * sorted_insert(int data, LINK *l){

LINK * elem = l;

LINE * prev = NULL;

LINK * x = (LINK*)malloc(sizeof(LINK));

assert(x!=NULL);

x->data = data;

while (elem != NULL){

if (elem->data >= x->data){

x->next = elem;

if (prev == NULL){l = x; return l;}

prev->next = x;

return l;

}

prev = elem;

elem = elem->next;

}

x->next = elem;

if (prev == NULL){l = x; return l;}

prev->next = x;

return l;

} (b)

Figure 5.1: (a) Priority queue circuit specification in C, using off-the-shelf implementation of sorted insert.
The generic parameter n is assumed to be specified at compile-time. (b) Off-the-shelf implementation of
incremental insertion sort procedure.

perform further pruning to yield a gate level implementation that does indeed have a better (or even ideal)
bound. A simple case of this scenario is when a list is used to represent a bit-vector which is used in
arithmetic expressions with known range at synthesis time allowing some of the upper bits to be pruned.

5.2 Example

Imagine that we would like to build an n-size priority queue circuit that reads integers from an input signal
and returns every n input integers on an output signal in sorted order. See the function prio in Fig. 5.1(a)
for an example of how we might wish to write a specification of the desired hardware in C. Our intention is
that the variable n in Fig. 5.1(a) is a parameter, whereas i and o should be thought of as signal names. Our
synthesis tool treats these in a special way as standard C, of course, does not make this distinction. In this
example we assume that the circuit uses input() and output() as primitives for I/O on the signal variables
i and o. LINK is a C struct used to represent singly-linked lists (with fields data and next). We make use of
an existing off-the-shelf insertion-sort implementation, sorted_insert. See Fig. 5.1(b) for the source code
of sorted_insert.

Note that in order to convert this program into hardware we must first find an a priori bound on the
amount of heap during the execution of prio, for any input or parameter. The problem is that sorted insert

does not guarantee a concrete bound on the amount of heap allocated during its execution, instead it preserves
a bound – it takes a state where k heap cells have been allocated and returns a state in which k + 1 have
been allocated. Thus we must hope to find a bound on the amount of heap used by sorted insert from
states limited to those reachable from prio.

If we can find this bound, then we can convert the program’s operations on the heap into operations on
statically-allocated arrays, thus facilitating synthesis. We aim to find a bound that holds across the entire
program, but is expressed symbolically using only the generic parameters to the top-level function (i.e. the
parameter n of the circuit prio). This allows us to pre-allocate a shared array when creating instances of
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assume(n>0);

h=0;

kb=0;

k=0;

assume(kc==0);

assume(k>=n);

kc=kb;

assume(k<n);

k++;

kb++;

h++;

assume(kc>0);

kc--;

h--;

Figure 5.2: Numerical abstraction of procedure prio shown from Fig. 5.1(a).

the circuit prio.

The method given in Section 5.1 is designed to find a function f such that it is a program invariant that
f(n) is larger than the number of heap cells allocated at any given time during its execution. In this case
the procedure described later will find the function f(n) = n ∗ 8, assuming that sizeof(LINK) = 8 in the
encoding.

With f we can now re-encode the program using a pre-allocated array. In essence, when we know the
valuations to the input parameters we can then pre-allocate an array using f . We then convert dereferences
like *c into a[c]. Field offsets are explicitly encoded: c->data is encoded as a[c+0], and c->next is encoded
as a[c+4].

From this program (and via a translation into VHDL) we then used the Altera Quartus II 9.0 tools to
construct an implementation for the Stratix III FPGA architecture. Using default synthesis and implemen-
tation options and with n = 10, the generated circuit uses 5859 adaptive look-up tables, 4598 logic registers
and 8192 block memory.

The following subsections apply the three steps of our method on the example and describe our method
in detail.

Numerical heap abstraction

A shape analysis tool is designed to take a program and compute an invariant for each program location
describing the shape of the heap. The invariant describes the data structures stored in the heap during
the program’s execution. Shape analysis tools are based on symbolic simulation together with abstraction
techniques.

Using techniques described in [62], the shape analysis tool Thor can be used to introduce new variables
which soundly track the sizes of data structure shapes inferred by the shape analysis. In the example
of the function prio, Thor would introduce a variable kb recording the length of the linked list starting
from buffer. At the command buffer = NULL, we initialize kb to zero. At the lines prev->next = x

within sorted_insert, the length of that linked list is increased; therefore the abstraction will increment
kb. Similarly, Thor will introduce another variable kc recording the length of the linked list from c.
Corresponding to the assignment c=buffer, the abstraction will set kc=kb, and at the assignment c=c->next,
the abstraction decrements kc. Also, when we exit the while(c!=NULL) loop, we know that c==0, and hence
also kc=0.
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Fig. 5.2 shows the control-flow graph (CFG) of the resulting abstraction of prio. The CFG contains
three nodes corresponding to the three loops in the prio function. These nodes are connected by the edges
which are annotated with the code occurring between the locations. The transitions between locations come
in two forms: assignments v=e; and assumption checks [e];. The assumptions prune executions in which
the condition e does not hold.

For brevity, calls to the function sorted insert in Fig. 5.2 have been summarized as the transition
{kb++;h++;} from location 7 to 7, but our technique is designed to work for a fully expanded CFG of the
code.

Numerical bounds analysis

Numerical heap abstraction produces program in Fig. 5.2 over the variables n, h, k, kb, and kc. The only
parameter is the variable n. We consider a template map ηT that assigns to each program location a
conjunction of three linear inequalities. For example, for the location `7 we have

ηT (`7) : αnn + αhh+ αkk + αkbkb + αkckc ≤ α ∧
βnn + βhh+ βkk + βkbkb + βkckc ≤ β ∧
γnn + γhh+ γkk + γkbkb + γkckc ≤ γ

The bound template at this location is

BndT (`7) : h ≤ δnn + δ .

Next, BoundGen creates a conjunction of constraints Ψ over the template parameters from all program
locations. We only present two constraints from Ψ that are created at lines 3 and 5 for the location `7 and
the loop transition at the location `7 respectively. The first constraint is the implication

∀n ∀h ∀k ∀kb ∀kc : ηT (`7)→ BndT (`7) .

The second constraint involves the transition relation of the loop:

∀n ∀h ∀k ∀kb ∀kc ∀n′ ∀h′ ∀k′ ∀k′b ∀k′c :

(ηT (`7) ∧ k < n ∧ n′ = n ∧ h′ = h+ 1 ∧ k′ = k + 1 ∧ k′b = kb + 1 ∧ k′c = kc)→ ηT (`7)′

We solve Ψ and obtain δn = 1 and δ = 0 for the bound template parameters occurring in the location `7,
i.e., we have

BndT (`7) = (h ≤ n) .

The corresponding invariant map assigns h ≤ kb ∧ kb ≤ k ∧ h ≤ n to the location `7. In our example, the
bound occurs in the corresponding inductive invariant; in general, however, this need not be the case.

In the algorithm from Fig. 4.2 we start with a candidate bound h ≤ 0 at each location. We can then
attempt to prove that h ≤ 0 at every location using a symbolic model checker (this corresponds to lines 5-7
of Fig. 4.2. In this case h ≤ 0 is not necessarily true at location 7 in Fig. 5.2, in which case the symbolic
model checker will return a witness counterexample path. Imagine that we get the path π = 4 → 7. In
this case PathProgram(π) will return a sub-program of Fig. 5.2, as found in Fig. 5.3. We can then find a
bound on this sub-program, resulting in h ≤ n. Thus, we refine the candidate whole-program bound to be
h ≤ 0 ∨ h ≤ n. Repeating the steps from lines 5-7 allows us to prove that h ≤ 0 ∨ h ≤ n is a valid bound for
the whole program. After simplification, we return h ≤ n.

Array-based heap management

Numerical boundedness analysis computes a bound on the maximal amount of memory that is dynamically
allocated during program computation, and represents this bound as a function of generic parameters. When

41



4

7

13

assume(n>0);

h=0;

kb=0;

k=0;

assume(k>=n);

kc=kb;

assume(k<n);

k++;

kb++;

h++;

Figure 5.3: Path program for the program from Fig. 5.2 and a path consisting of transitions between the
locations (`init , `4), (`4, `7), (`7, `7), and (`7, `13).

synthesizing a hardware implementation, the generic parameters are instantiated. Hence we obtain a concrete
bound, say N .

Next, we replace all heap operations in the program P by operations on a statically allocated array a

of size N . Each pointer to the heap becomes an array index. Field accesses are converted into arithmetic
operations over array indices. For example, the statement c = c->next; from the program in Fig. 5.1
becomes c = a[c+4];, where the offset 4 is due to the four byte size of an array cell.

We use a list of array indices that is embedded into the array a to keep track of free array cells. Each
list element is an index of a free cell. We introduce a global variable m that stores the head of the list, and
hence the cell at index m is free. Then, the value of a[m] is the next list element, which is the index of the
second free cell stored in the list. We obtain the third element by accessing a[a[m]] and so on. Initially
m = 0 and the array a is initialized in the following way:

∀0 ≤ i < N : a[i] = i+ 1 .

A call to malloc() consumes the head of the list. That is, x = malloc() is implemented by the sequence
of instructions x = m; m = a[m];, where the first assignment delivers the free cell and the second assignment
ensures that the subsequent call to malloc will return the next free cell in the list. We do not need to check
whether the free list empty because the boundedness analysis guarantees that it will never happen, i.e., we
have m ≤ N .

Fig. 5.4 illustrates the array-based treatment of malloc. We assume that the heap stores data structure
LINK, whose size is two integers, and that each array cell is of size one integer. The array on the left is free
starting at the index 7, as represented by the valuation m = 7, a[7] = 9, etc. After executing x = malloc(2);,
assigning x->data = 12;, the cell at index 7 is no longer free. It stores the data value 12. The next free cell
becomes the first one available, i.e., we have m = 9. After identifying the predecessor and successor of x, i.e.,
inserting x into the sorted heap, we obtain the array shown on the right in Fig. 5.4.

A call to free(x) pushes x onto the free list. That is, this call translates to a pair of statements
a[x] = m; m = x;. The last freed cell will be the first free cell in the list of free cells, i.e., the subsequent
call to malloc will return the last freed cell.
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Figure 5.4: Creation of a new LINK structure in the array-based heap implementation.

5.3 Experimental results

In this section we discuss the results of our experiments with the proposed synthesis procedure on a number
of real-world examples. Before discussing the outputs of our tool, we first describe the problems solved by
the C-based software models.

Priority queue – This is our running example from Figure 5.1. The design has one input signal and one
output signal. The implementation repeatedly inputs n elements, sorts them, and outputs them in a sorted
order. For the sake of experimental evaluation we chose n = 10.

Merge sort – This example implements a merger of two sorted sequences. The design has two input
signals and one output signal. The implementation repeatedly receives n1 sorted elements through the first
input signal and n2 sorted elements through the second input signal. Using the merge sort it combines the
two sequences into one sorted sequence, which is then output. For the sake of experimental evaluation we
chose n1 = 10 and n2 = 10.

Packet sorting – This example implements a simple network element. The design has two input signals
and one output signal. The implementation repeatedly inputs packet data through the first input signal
and packet identifier through the second input signal. It inserts these packets into a buffer while ignoring
duplicate identifiers, until it fills a buffer with n packets. It then sorts the received packets by their identifier
and outputs them. For the sake of experimental evaluation we chose n = 10.

Binary search tree dictionary – This example implements a data structure for storing a set of elements
with a test for membership. The design has two input signals and one output signal. The implementation
repeatedly inputs n1 elements through the first input signal and builds a binary search tree out of them.
This is followed by receiving n2 queries through the second input signal and producing the correct response
through the output signal. For the sake of experimental evaluation we chose n1 = 10 and n2 = 10.

Each of these models was succesfully run through the sequence of procedures described in this paper:
shape analysis, bounds analysis, and array transformation.

Table 5.1 lists the symbolic bounds for our examples in bytes.1 These symbolic bounds were then
concretized using the aforementioned values and run through our translation tool which inputs a C program
and a concrete bound and generates a functionally equivalent VHDL program. Table 5.1 also lists lines of
code (LOC) for both the hand-written C models and their automatically generated VHDL counterparts.
The running time ranges from minutes to hours depending on the example.

Our VHDL generation step is carefully crafted to work well with FPGA synthesis tools. The generated
VHDL files were synthesized using the Altera Quartus II 9.0 tools (build 184 04/29/2009 SP1 SJ Web
Edition) targeting Stratix III FPGAs. The results are shown in Table 5.2. The ALUT (Altera’s adaptive
look-up tables) column gives an indication of the size of the combinational elements in the generated design.
The registers column indicates how many flip-flops in the logic fabric were used for registers. The block

1The size of data types and structure alignment of a 32-bit architecture (e.g. 4-byte pointers) is assumed.
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Program Bound C LOC VHDL LOC Bound
synthesis time

merge 8 ∗ n1 + 8 ∗ n2 80 1927 600m
prio 8 ∗ n 56 1475 4s
packet 12 ∗ n+ 8 95 2430 6s
bst dict 24 ∗ n1 142 2703 80s

Table 5.1: Computed bounds and lines of code.

Program ALUTs Registers Block Mem Blocks Speed
merge 5,157 4,694 8,192 2 90MHz
prio 5,859 4,598 4,096 1 83MHz
packet 9,413 9,158 8,192 2 76MHz
bst dict 5,786 5,660 8,192 2 125MHz

Table 5.2: Synthesis and implementation results.

mem column indicates how many memory bits in the generated design were implemented using embedded
memory blocks and the following column shows how many independent memories were synthesized. The last
column shows the maximum speed. In all cases the tools automatically picked the smallest EP3SL50F484C2
FPGA and package and the timing results are given for this part.

Most of the synthesized circuits occupy only a small portion of the smallest Stratix-III FPGA. The
largest design is packet which utilizes 25% of the combinational ALUTs but less than 1% of the available
block memory and only 24% of the available logic registers. The smallest design is prio which occupies 15%
of the available combinational ALUTs, 12% of the available logic registers and less than 1% of the available
block memory. The operating frequency of these circuits is in a range which is typical for FPGA circuits
used as co-processing circuits. We have tested several of our examples running on a Cyclone II FPGA on
the Altera DE2 board. For example, the priority encoder circuit was synthesized, implemented and run
on the Altera Cyclone II EP2C35F672C6 FPGA (supporting 33,216 logic elements) and we have observed
the correct behavior on actual hardware using the SignalTap logic analyzer. Our conclusion from these
preliminary results is that we have identified a viable approach for translating heap-based C programs into
VHDL designs which have acceptable area utilization and performance.

Our bounds computation algorithm was able to compute useful bounds. However, at the moment we do
not have enough experimental data to provide an thorough estimate for the quality of bounds computation.

Examples of failure Our approach for symbolic bounds synthesis can fail in various ways. For example,
the input program might operate over DAGs (e.g. BDDs) or hash tables; in which case, we would currently
fail to produce an arithmetic abstraction. Note that—even in the case of programs with simple linked data
structures—improving the scalability and accuracy of shape analysis is an area of active research. When
we successfully generate arithmetic abstractions, our constraint-based synthesis algorithm can also fail. The
abstraction may be too coarse, or the problem may be too complex (e.g. highly non-linear).
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Constraint solving algorithms
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Chapter 6

Introduction to interpolation

For many path based constraint generation and solving methods of verification [66], the significant cost of
verification goes into solving interpolation constraints obtained from symbolic execution of program paths.
An efficient interpolation procedure can significantly reduce the verification time. In this chapter, we present
interpolation and an interpolation procedure for the theory of linear arithmetic and uninterpreted functions.

6.1 Interpolation

We are going to use the following result in the first order logic.

Theorem 4 (Craig interpolation theorem [20]). Let A and B be first order logical formulas such that A→ B
is valid. Then, there exist a first order logical formula I containing only predicate symbols, function symbols
and constants occurring in both A and B such that A→ I and I → B are valid.

The above theorem is not in the form in which the above theorem is used in program verification.
The following equivalent theorem captures the need of over-approximating reachable program states at an
intermediate point of an infeasible program path.

Theorem 5. Let A and B be first order logical formulas such that A∧B → false is valid. Then, there exist
a first order logical formula I containing only predicate symbols, function symbols and constants occurring
in both A and B such that A→ I and I ∧ B → false are valid. I is called an interpolant of A and B.

When verifying programs, we are interested in computing interpolants in a given first order theory and
for a given class of formulas. Let T be a theory with signature Σ, and ΣT ⊆ Σ be the set of symbols that are
interpreted in T . All the other symbols in Σ \ΣT are considered to be uninterpreted. A class of Σ-formulas
is a subset of all Σ-formulas. For a Σ-formula A, |=T A denotes that A is true in all models of T . For a
term t, let Smb(t) be the set of uninterpreted symbols and free variables appearing in t. Smb is canonically
extended to formulas and sets of formulas.

Definition 1 (Theory specific interpolant [85]). Let C and CI be classes of Σ-formulas. Let formulas A and
B in C such that |=T A∧B → false. We say that formula I is theory specific interpolant of A and B if (1)
|=T A→ I , (2) |=T I ∧ B → false, (3) I ∈ CI , and (4) Smb(I ) ⊆ Smb(A) ∩ Smb(B).

The requirement of I ∈ CI implies that a theory specific interpolant may not exist.
We will present an algorithm for computing theory specific interpolants for the combined theory of linear

arithmetic and uninterpreted functions. The algorithm depends on a notion of partial interpolants, which is
more general concept than theory specific interpolants.

Definition 2 (F -partial interpolant [85]). Let C and CI be classes of Σ-formulas. Let F be a Σ-formula.
Let A and B be formula in C such that |=T A ∧ B → F . We say that formula I is F -partial interpolant of
A and B if (1) |=T A→ I , (2) |=T I ∧ B → F , (3) I ∈ CI , and (4) I ⊆ (Smb(A) ∩ Smb(B)) ∪ Smb(F ).

If |=T F → false and Smb(F ) = ∅ then F -partial interpolant is a theory specific interpolant.

47



6.2 Proof rules and proof trees for TLI+UIF

Our interpolation algorithm relies on unsatisfiability proofs [65]. We use a standard set of proof rules for the
combination of linear arithmetic and uninterpreted functions. The implementation of the corresponding proof
search procedure is irrelevant for the interpolation algorithm, yet we assume that this procedure is complete
and use an existing tool for this task, e.g. [11, 21, 52]. In Chapter 7, we will present an implementation of a
proof search procedure based on simplex.

For a conjunctive constraint C, Figure 6.1 presents the proof rules. The rule PHyp states that atoms
appearing in C are provable from C. The rule PComb infers that a set of inequalities implies a positively
weighted sum thereof. The congruence rule PCong represents a form of the functionality axiom that states
that equal inputs to a function lead to equal results. We are only interested in one inequality part of this
axiom. The side condition of PCong is taken from the interpolating proof rules of [65], and simplifies the
proof tree annotation in a way similar to [65].

Proof tree

A proof tree is produced by applying the proof rules and inferring atomic formulas. We assume that there
exists a mechanism that uniquely identifies the nodes of the proof tree, even in the presence of nodes that
are labeled by equal atoms, for example by numbering them. For clarity of exposition, we omit any details
of such mechanism and assume that the node label carries all necessary information.

Formally, a label l is an application of a proof rule defined as

labels 3 l ::= PHyp | PComb(c, . . . , c) | PCong
labeled edges 3 e ::= (A, l, (A, . . . , A)).

Recall A is an atom and c is a rational number in TLI+UIF (section 2.2).
A proof tree P is a finite subset of labeled edges. For each (t ≤ 0, l, (t1 ≤ 0, . . . , tn ≤ 0)) ∈ P , t ≤ 0 is

called a parent node, l is label of the parent node, and t1 ≤ 0, . . . , tn ≤ 0 are called child nodes. A proof
tree P is inferred from a conjunctive constraints C if

• ∀(t ≤ 0, PHyp, () ) ∈ P : t ≤ 0 ∈ C,

• ∀(t ≤ 0,PComb(λ1, . . . , λn), (t1 ≤ 0, . . . , tn ≤ 0)) ∈ P :
t = λ1t1 + · · ·+ λntn ∧ λ1, . . . , λn > 0 ∧ ∀i ∈ 1..n : (ti ≤ 0, , ) ∈ P , and

• ∀(f(t1, . . . , tn)−f(s1, . . . , sn) ≤ 0,PCong, (t1−s1 ≤ 0, s1−t1 ≤ 0, . . . , tn−sn ≤ 0, sn−tn ≤ 0)) ∈ P :
(∀i ∈ 1..n : (ti − si ≤ 0, , ) ∈ P ∧ (si − ti ≤ 0, , ) ∈ P ).

For a proof tree P , a conjunctive constraint C, and an atom t ≤ 0, P proves |= C → t ≤ 0 if P is inferred
from C, and contains (t ≤ 0, , ). If a proof tree P proves |= C → 1 ≤ 0 then C is unsatisfiable.

PHyp
t ≤ 0

t ≤ 0 ∈ atoms(C) PComb
t1 ≤ 0 . . . tn ≤ 0

λ1t1 + · · ·+ λntn ≤ 0
λ1, . . . , λn > 0

PCong

t1 − s1 ≤ 0 s1 − t1 ≤ 0
...

...
tn − sn ≤ 0 sn − tn ≤ 0

f(t1, . . . , tn)− f(s1, . . . , sn) ≤ 0
f(t1, . . . , tn), f(s1, . . . , sn) ∈ subterms(C)

Figure 6.1: Standard [65], complete proof rules PHyp, PComb, and PCong for the combination of linear
rational/real arithmetic and uninterpreted functions. C is a conjunction of atoms.
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PComb

PCong

PHyp
y − x ≤ 0

PHyp
x− y ≤ 0

f(y)− f(x) ≤ 0
PHyp

f(x)− f(y) + 1 ≤ 0

1 ≤ 0

Figure 6.2: An example of a proof tree.

Example 2. Consider the following conjunctive constraint.

y − x ≤ 0 ∧ x− y ≤ 0 ∧ f(x)− f(y) + 1 ≤ 0

Figure 6.2 presents a proof tree inferred from the above conjunctive constraint. This proof tree proves that
the above conjunction is unsatisfiable.

6.3 Algorithm for interpolation in TLI+UIF

Our algorithm computes a theory specific interpolant of conjunctive constraints A and B by annotating a
proof tree that proves |= A ∧ B → 1 ≤ 0. The algorithm annotates each node t ≤ 0 with a t ≤ 0-partial
interpolant. Each partial interpolant is of the following form, called solution constraints.

solution constraints 3 S ::= t ≤ 0 | C ∧ (C → S)

Recall C is a conjunctive constraint in TLI+UIF (section 2.2). To simplify the presentation, we write a solution
constraint

C1 ∧ (D1 → . . . Cr ∧ (Dr → p ≤ 0) . . . )

as a pair consisting of a corresponding sequence and a term 〈((C1, D1), . . . , (Cr, Dr)), p〉. A solution constraint
p ≤ 0, i.e. when r = 0, is represented by 〈(), p〉.

Given the proof tree that proves |= A∧B → 1 ≤ 0, we annotate its nodes with partial interpolants using
the rules shown in Figure 6.3. For each node t ≤ 0, the annotation is t ≤ 0-partial interpolant in the form
of solution constraints and is enclosed by a pair of square brackets. These rules apply different annotations
for different cases of antecedents of each rule from Figure 6.1. So rules PHyp and PCong lead to multiple
annotation rules. AHyp-A annotates a leaf node t ≤ 0 if t ≤ 0 ∈ A. AHyp-B annotates a leaf node t ≤ 0 if
t ≤ 0 ∈ B. The rule AComb annotates a parent node when provided with the annotations of its children in
case when the parent was obtained by a positively weighted sum. The congruence rule PCong leads to four
annotation rules ACong-BB, ACong-BB, ACong-BB, and ACong-BB. These rules annotate parent
nodes obtained by applications of the congruence rule depending on where antecedents of the congruence
come from.

The annotation of the node 1 ≤ 0 is a theory specific interpolant of A and B.

6.4 Correctness

We need to prove that annotations of proof rules are partial interpolants. We will demonstrate that our
annotation algorithm maintains the following invariant at each node of proof tree.

Definition 3 (t ≤ 0-annotation invariant). Let t ≤ 0 be an atom and let A and B be conjunctive constraints
such that |= A ∧ B → t ≤ 0. A solution constraint 〈((C1, D1), . . . , (Cr, Dr)), p〉 satisfies t ≤ 0-annotation
invariant if

(1) for each k ∈ 1..r, |= A ∧
∧k−1
i=1 Di → Ck,

(2) for each k ∈ 1..r, |= B ∧
∧k
i=1 Ci → Dk,
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AHyp-A
t ≤ 0 [〈(), t〉] t ≤ 0 ∈ A

AHyp-B
t ≤ 0 [〈(), 0〉] t ≤ 0 ∈ B

AComb
t1 ≤ 0 [〈L1, p1〉] . . . tn ≤ 0 [〈Ln, pn〉]

λ1t1 + · · ·+ λntn ≤ 0 [〈L1 • . . . • Ln, λ1p1 + · · ·+ λnpn〉]
0 < λ1, . . . , λn

ACong-BB

t1 − s1 ≤ 0 [〈L1, p1〉] s1 − t1 ≤ 0 [〈L′
1, p

′
1〉]...

...
tn − sn ≤ 0 [〈Ln, pn〉] sn − tn ≤ 0 [〈L′

n, p
′
n〉]

f(t1, . . . , tn)− f(s1, . . . , sn) ≤ 0
[〈 L1 • · · · • Ln • L′

1 • · · · • L′
n •

∧n
i=0(pi ≤ 0 ∧ p′i ≤ 0), true), 0 〉]

Smb(f(t1, . . . , tn)) ⊆ Smb(B)
Smb(f(s1, . . . , sn)) ⊆ Smb(B)

ACong-AB

t1 − s1 ≤ 0 [〈L1, p1〉] s1 − t1 ≤ 0 [〈L′
1, p

′
1〉]...

...
tn − sn ≤ 0 [〈Ln, pn〉] sn − tn ≤ 0 [〈L′

n, p
′
n〉]

f(t1, . . . , tn)− f(s1, . . . , sn) ≤ 0
[〈L1 • · · · • Ln • L′

1 • · · · • L′
n•

(
∧n

i=0 pi + p′i ≤ 0,
∧n

i=0−pi − p
′
i ≤ 0),

f(s1 + p1, . . . , sn + pn)− f(s1, . . . , sn) 〉]

Smb(f(t1, . . . , tn)) ⊆ Smb(B)
Smb(f(s1, . . . , sn)) * Smb(B)

ACong-BA

t1 − s1 ≤ 0 [〈L1, p1〉] s1 − t1 ≤ 0 [〈L′
1, p

′
1〉]...

...
tn − sn ≤ 0 [〈Ln, pn〉] sn − tn ≤ 0 [〈L′

n, p
′
n〉]

f(t1, . . . , tn)− f(s1, . . . , sn) ≤ 0
[〈 L1 • · · · • Ln • L′

1 • · · · • L′
n•

(
∧n

i=0 pi + p′i ≤ 0,
∧n

i=0−pi − p
′
i ≤ 0),

f(t1, . . . , tn)− f(t1 + p′1, . . . , tn + p′n) 〉]

Smb(f(t1, . . . , tn)) * Smb(B)
Smb(f(s1, . . . , sn)) ⊆ Smb(B)

ACong-AA

t1 − s1 ≤ 0 [〈L1, p1〉] s1 − t1 ≤ 0 [〈L′
1, p

′
1〉]...

...
tn − sn ≤ 0 [〈Ln, pn〉] sn − tn ≤ 0 [〈L′

n, p
′
n〉]

f(t1, . . . , tn)− f(s1, . . . , sn) ≤ 0
[〈 L1 • · · · • Ln • L′

1 • · · · • L′
n•

(true,
∧n

i=0(ti − si − pi ≤ 0 ∧ si − ti − p′i ≤ 0)),
f(t1, . . . , tn)− f(s1, . . . , sn) 〉]

Smb(f(t1, . . . , tn)) * Smb(B)
Smb(f(s1, . . . , sn)) * Smb(B)

Figure 6.3: Annotation rules for computing an interpolant of A and B [65].
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(3) |= A ∧
∧r
i=1Di → p ≤ 0,

(4) |= B ∧
∧r
i=1 Ci → t− p ≤ 0,

(5) Smb({C1, . . . , Cr, D1, . . . , Dr, p ≤ 0}) ⊆ Smb(A), and

(6) Smb({C1, . . . , Cr, D1, . . . , Dr, t− p ≤ 0}) ⊆ Smb(B).

The following theorems entail the correctness of the interpolation procedure, i.e., the annotation of the
node 1 ≤ 0 is a theory specific interpolant of conjunctive constraints A and B.

Theorem 6. If a solution constraint I = 〈((C1, D1), . . . , (Cr, Dr)), p〉 satisfies t ≤ 0-annotation invariant
then I is a t ≤ 0-partial interpolant.

Theorem 7. Annotation rules in Figure 6.3 compute annotations that satisfy Definition 3.

The algorithm for computing interpolants is a special case of a algorithm for solving Horn clauses. So we
defer proofs of the above theorems until Chapter 8.
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Chapter 7

Proof producing CLP(LI+UIF)

CLP(Q) [52] is a useful building block for verification tools. However, CLP(Q) does not currently produce
proofs, which are needed to compute interpolants, and does not deal with the theory of uninterpreted
functions, which is useful for modelling complex operations when verifying programs. In this chapter, we
present a tool CLP(LI+UIF) that checks unsatisfiability of conjunctive constraints in the theory of linear
arithmetic and uninterpreted functions and also produces a proof tree when unsatisfiability is detected.

The existing simplex based proof producing algorithms [14, 23] use a version of simplex that does not
apply constant propagation. These algorithms construct proofs by relying on an instrumentation of the
input constraints. This instrumentation leads to the creation of many additional variables. In this chapter,
we present an alternative proof producing simplex based algorithm that relies on an instrumentation of an
incremental, constant propagating simplex. Our instrumentation does not require incremental simplex to
introduce additional variables for proof construction and does not prohibit constant propagation.

In following sections, first we will present the algorithm used in CLP(Q) and its extension for supporting
uninterpreted functions. Second, we will discuss the incompatibility of existing algorithms for proof tree
generation with CLP(Q). Third, we will present our instrumentation of the algorithm in CLP(Q).

7.1 CLP(Q)

CLP(Q) [52] is a linear programming tool. Since, We are only interested in the unsatisfiability of conjunctive
constraints, we will only consider phase 1 of simplex. In CLP(Q), this phase is implemented as a version of
incremental simplex.

The incremental simplex takes as input a sequence of linear atoms. At any instant, the input so far is
stored in a so called solved form that represents the input in a normal form. Given the next input from
the input sequence and the current solved form, the incremental simplex computes the next solved form. A
solved form of a conjunctive constraint exists if and only if the conjunctive constraint is satisfiable. Therefore,
failure to compute a solved form indicates that the input considered so far is unsatisfiable. In practice, the
incremental simplex is more efficient than a non-incremental one for satisfiablity checking [53].

The algorithm of the CLP(Q) solver is described in [51] and is an optimized version of algorithm presented
in [70]. We will now reformulate this algorithm in the notation that is convenient to us. The CLP(Q) solver
has the following important optimizations that affect proof tree extraction.

• The CLP(Q) solver avoids introduction of as many slack variables as possible.

• If the input implies that a variable is equal to a constant then the CLP(Q) solver replaces this variable
with the constant.
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Solved form

In general, a solved form is a variant of the standard simplex tableau [77]. There are various kinds of
solved forms with different properties regarding data structure representation, ability to detect equalities
and disequalities, and efficiency of transforming a conjunctive constraints into the solved form [53]. The
CLP(Q) uses a solved form in which equality detection is most efficient and therefore the treatment of
disequalities is trivial, but the cost of computing the solved form is high. Equality detection is also very
significant for us since congruence checker for uninterpreted functions depends on equality detection.

Formally, the solved form in CLP(Q) is a tuple (X ,Basis,Def ,Low ,Up,Active,Val) where

• X = {x1, . . . , xn} is a finite ordered set of rational variables,

• Basis ⊆ X is called a basis,

• Def : X → linear terms, Def assigns definitions to variables and we require that for each k ∈ 1..n,

Def (xk) = c +
∑
j∈J

cjxj ,

where c ∈ Q, J ⊆ 1..n and ∀j ∈ J. cj ∈ Q \ {0},

• Low : X → Q ∪ {−∞}, Low defines lower bounds on variables,

• Up : X → Q ∪ {+∞}, Up defines upper bounds on variables,

• Active : X → {none, lower, upper},

• Val : X → Q,

• and the conditions listed below are satisfied.

Let k ∈ 1..n. xk is undefined if Def (xk) = xk and is defined otherwise. xk is unbounded if Low(xk) = −∞
and Up(xk) = +∞, otherwise xk is bounded. xk is active if Active(xk) 6= none, and is inactive otherwise. A
solved form must satisfy the following conditions:

(1) Def (xk) only contains undefined variables.

(2) If xk ∈ Basis then xk is defined, bounded, inactive, and all variables appearing in Def (xk) are active.

(3) If xk /∈ Basis and xk is defined then xk is unbounded and inactive.

(4) If xk is active then xk is bounded, undefined, and there is xb ∈ Basis such that xk occurs in Def (xb).

(5) Low(xk) < Up(xk).

(6) If Active(xk) = lower then Low(xk) 6= −∞, and if Active(xk) = upper then Up(xk) 6= +∞.

(7) If xk is undefined then

Val(xk) =

Low(xk) if Active(xk) = lower,
Up(xk) if Active(xk) = upper,
0 if Active(xk) = none.

(8) If xk is defined and Def (xk) = c +
∑
j∈J cjxj then Val(xk) = c +

∑
j∈J cjVal(xj).

(9) If xk ∈ Basis then Low(xk) ≤ Val(xk) ≤ Up(xk).

54



Kind Condition Basis Defined Active Bounded Remark

1 xk ∈ Basis X X* ×* X*
If Def (xk) = c +

∑
j∈J cjxj then

∀j ∈ J. xj is undefined and active*

2
xk /∈ Basis
xk is defined

× X ×* ×*
If Def (xk) = c +

∑
j∈J cjxj then

∀j ∈ J. xj is undefined*

3 xk is active ×* ×* X X* ∃xb ∈ Basis. xk ∈ Smb(Def (xb))*

4
xk is undefined
xk is inactive

×* × ×

Figure 7.1: Solved form implicitly induces above four kinds of variables. * denotes the property is a restriction
imposed by a condition of solved form.

Conditions (1)–(4) impose a syntactic restriction, while (5)–(9) require arithmetic evaluation of solved form.
Def represents a set of linear equations and condition (1) states that these equations are in a triangular
form, which is usually obtained by Gaussian elimination. Conditions (2)–(4) induce four kinds of variables
in the solved form that are presented in Figure 7.1. Note that variables of the fourth kind vacuously satisfy
(2)–(4), since they violate the respective if-conditions.

A solved form is equivalent to the conjunctive constraint.

n∧
k=1

( xk = Def (xk) ∧ Low(xk) ≤ xk ≤ Up(xk) ) (7.1)

The conditions (1)–(9) imply that conjunctive constraints in Equation (7.1) are satisfiable. For a given
solved form, we can construct a satisfying assignment Val ′ in following way. We choose assignments for
variables in order of first kind, third kind, fourth kind, and second kind.

• For each xk variable of first or third kind, let Val ′(xk) = Val(xk).

• Let xk be a variable of fourth kind. xk can only appear in the definition of variables of the second
kind. The second kind variables are unbounded, therefore, we can choose any value for Val ′(xk) that
is between Low(xk) and Up(xk).

• Let xk be a variable of the second kind such that Def (xk) = c +
∑
j∈J cjxj . We have assigned Val ′

map for all the undefined variables therefore we can evaluate Def (xk) under assignments of Val ′. Let
Val ′(xk) = c +

∑
j∈J cjVal ′(xj).

Due to conditions (5)–(9), Val ′ is a satisfying assignment.
A satisfiable conjunctive constraint can always be transformed into an equisatisfiable solved form. The

resulting solved form may contain more variables than the original constraint due to the introduction of
slack variables in the process of transformation. The solved form may not be unique.

Example 3 (Solved form). The constraints shown in Figure 7.2(a) are satisfiable. In figure 7.2(b), we show
a solved form for the constraints. Variables x1, x2, x3, and x4 appear in the original constraints. Variables u,
v, and w are slack variable that are introduced during the transformation to the solved form. x4 and x2 are
variables of the first kind. x3 is variable of the second kind. x1, u, w, and v are variables of the third kind.
There is no fourth kind of variable in this solved form therefore Val is satisfying assignment to the original
constants.

CLP(Q) algorithm

Figures 7.3, 7.4, and 7.5 present incremental simplex in CLP(Q) [51]. This algorithm takes linear atoms as
input sequence. Given an input and the current solved form, CLP(Q) computes the next solved form. If
CLP(Q) fails to compute the next solved form then it throws an exception “Unsatisfiable”.

If the input is an equation then AddEquality is called. If the input is an inequality then
AddInequality is called. We refer to these two procedures as entry procedures.
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x1 − x2 + 2x3 − 2 ≤ 0
x2 − x1 − x3 + 3 ≤ 0

x4 + x3 − 2 ≤ 0
2− x4 ≤ 0

x1 − 10 ≤ 0
2− x2 ≤ 0

(a)

Variable Def Low Up Active Val
x4 3 + u+ v − w 2 +∞ none 3
x2 −4 + x1 − u− 2v 2 +∞ none 6

x3 −1− u− v −∞ +∞ none -1
x1 x1 −∞ 10 upper 10
u u 0 +∞ lower 0
v v 0 +∞ lower 0
w w 0 +∞ lower 0

︸︷︷
︸

d
efi

n
ed

︸
︷︷

︸
a
ct

iv
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︷︸︸
︷

(b)

Figure 7.2: (a) An example input to the CLP(Q) solver. (b) Solved form computed by CLP(Q) for the
input. x4 and x2 are variables of first kind. x3 is variable of second kind. x1, u, w, and v are variables of
third kind.

Global data structures The global maps X ,Def , Low , Up, Active, and Val are components of the solved
form. They are initialized to be empty. So initially the solved form is empty. Note that when we pick a fresh
variable xk at line 11 of AddInequality that means xk is not referred by any of the input constraints, and
xk is not in current X . During the run of CLP(Q), some variables are detected to be equal to a constant.
Such equalities are stored in queue and these equalities are added to the solved form at the end of execution
of the entry procedures (In AddInequality, lines 13–15 and in AddInequality lines 21–23).

Now we will describe procedures of the algorithm.

Procedures Deref and Initialize Both the entry procedures call Deref to de-reference the term of the
input atom. Deref replaces each variable appearing in the input term with its definition in the solved form.
If a variable in not yet part of the solved form then the procedure Initialize is called to add the variable in
the solved form as a non-basis, undefined, inactive, and unbounded variable. Deref eliminates all defined
variables from the input term and returns a term over undefined variables.

Procedure Substitute This procedure takes an undefined variable xm and a term over other undefined
variables as input. Substitute replaces each occurrence of xm in the definitions by the given input term.
These replacements may leads to violation of condition (8). So Substitute also updates Val such that
condition (8) holds at the end of this procedure. As a result, Substitute turns xm into a defined variable.

Procedure Pivot The inputs of this procedure are a basis variable xb, an activation direction act, and
an undefined and active variable xi that appears in the definition of xb. Pivot removes xb from the basis
and adds xi to the basis using Substitute at lines 1–3. xb is now an undefined variable that appears in the
definition of the basis variable xi, so xb has to be made active. Pivot activates xb in the direction act by
calling procedure Activate at line 5. Since xi is added to the basis, xi is made inactive at line 6.

Procedures Activate and AddBasis Activate activates an inactive variable. It also has to update
Val to satisfy condition (7) and (8). The inputs of AddBasis are a defined variable xm and an activation
direction act. This procedure add xm to basis and makes it inactive. Each variable xj appearing in the
definition of xm is activated at lines 4–13. If either of the bounds of xj does not exist then the other bound is
activated at lines 6–9. Otherwise, if cj is positive then xj is activated in the direction act and if cj is negative
then xj is activated in the direction opposite to act at lines 10–13. ⊕ denotes the logical xor operator.

Procedure AddEquality This procedure takes a linear equality t = 0 as input. At line 1, t is de-
referenced using the solved form. If the solved form implies t = 0 then the condition at line 2 is true and
procedure continues at line 13. If the condition at line 4 is true then the conjunction of the solved form and
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global variables
X = ∅ : set of variables Basis = ∅ : set of variables
Def = ∅ : X → linear terms
Low = ∅ : X → Q ∪ {−∞} Up = ∅ : X → Q ∪ {+∞}
Active = ∅ : X → {none, lower, upper} Val = ∅ : X → Q

 : solved form

queue = ∅: set of linear atoms

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

procedure AddEquality
input
t = 0 : linear constraint

begin
c +

∑
j∈J cjxj := Deref(t)

if c = 0 ∧ J = ∅ then
skip

elsif c 6= 0 ∧ J = ∅ then
throw “Unsatisfiable”

elsif ∃i ∈ J. Low(xi) = −∞∧Up(xi) = +∞ then
Substitute(xi,− 1

ci
(c +

∑
j∈J\{i} cjxj))

else
pick i ∈ J
Substitute(xi,− 1

ci
(c +

∑
j∈J\{i} cjxj))

AddBasis(xi, lower)
RepairBasis()

if s = 0 ∈ queue then
queue := queue \ {s = 0}
AddEquality(s = 0)

end

1

2

3

procedure Initialize
input

xi : uninitialized variable
begin
X := X ∪ {xi}
(Def (xi),Active(xi),Val(xi)) := (xi, none, 0)
(Low(xi),Up(xi)) := (−∞,+∞)

end

1

2

3

4

5

6

7

8

9

10
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14

15

16

17

18

19

20

21

22

23

procedure AddInequality
input
t ≤ 0 : linear constraint

begin
c +

∑
j∈J cjxj := Deref(t)

if c ≤ 0 ∧ J = ∅ then
skip

elsif c > 0 ∧ J = ∅ then
throw “Unsatisfiable”

elsif t = a + aixi then
UpdateBound(a + aixi ≤ 0)

elsif J = {j} then
UpdateBound(c + cjxj ≤ 0)

else
pick fresh xk (∗ slack variable ∗)
Initialize(xk)
Low(xk) := 0
if ∃i ∈ J.Low(xi) = −∞∧Up(xi) = +∞ then
Substitute(xi,− 1

ci
(c+

∑
j∈J\{i} cjxj+xk))

else
Def (xk) := −(c +

∑
j∈J cjxj)

Val(xk) := −(c +
∑
j∈J cjVal(xj))

AddBasis(xk, lower)
RepairVar(xk)

if s = 0 ∈ queue then
queue := queue \ {s = 0}
AddEquality(s = 0)

end

1

2

3

4

5

6

procedure Deref
input
c+
∑
j∈J cjxj : linear term

begin
t := c
for each j ∈ J do

if Def (xj) = ⊥ then
Initialize(xj)

t := t+ cjDef (xj)
return t

end

1

2

3

4

5

procedure Substitute
input
xm : undefined variable
c +

∑
j∈J cjxj : linear term

begin
d := c +

∑
j∈J cjVal(xj)−Val(xm)

for each xk ∈ X :
a +

∑
i∈I aixi = Def (xk) ∧m ∈ I do

Val(xk) := Val(xk) + amd
Def (xk) := a+

∑
i∈I\{m} aixi+

am(c +
∑
j∈J cjxj)

end

1

2

3

4

5

6

procedure Pivot
input
xb : basis variable
act : activation direction
xi : undefined and active variable

begin
c +

∑
j∈J cjxj := Def (xb)

t := − 1
ci

(c +
∑
j∈J\{i} cjxj − xb)

Substitute(xi, t)
Basis := (Basis \ {xb}) ∪ {xi}
Activate(xb, act)
Active(xi) := none

end

Figure 7.3: Algorithm in CLP(Q) page 1
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procedure UpdateBound
input

c + cjxj ≤ 0 : single variable linear inequality
begin

if cj > 0 then
Status := UpdateUpper(xj ,−c/cj)
act := lower

else
Status := UpdateLower(xj ,−c/cj)
act := upper

if Status = updated ∧Def (xj) 6= xj then
if xj /∈ Basis then

a +
∑
i∈I aixi := Def (xj)

if ∃k ∈ I Low(xk) = −∞∧Up(xk) = +∞ then
Substitute(xk,− 1

ak
(a +

∑
i∈J\{k} aixi − xj))

else
AddBasis(xj , act)

if xj ∈ Basis then
RepairVar(xj)

end

1

2

3

4

5

6
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8

9

10

11

12

procedure UpdateLower
input

xj : variable
lb : Q

begin
if Up(xj) < lb then
throw “Unsatisfiable”

elsif Up(xj) = lb then
EnQueue( xj = lb )

else Low(xj) < lb then
if Active(xj) = lower then

:= PushUp(xj)
Low(xj) := lb
if Active(xj) = lower then
Activate(xj , lower)

return updated

return noChange

end
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procedure UpdateUpper
input

xj : variable
ub : Q

begin
if Low(xj) > ub then
throw “Unsatisfiable”

elsif Low(xj) = ub then
EnQueue( xj = ub )

else Up(xj) > ub then
if Active(xj) = upper then

:= PushLow(xj)
Up(xj) := ub
if Active(xj) = upper then
Activate(xj , upper)

return updated

return noChange

end
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procedure AddBasis
input

xm : variable entering in basis
act : preferred activation

begin
Basis := Basis ∪ {xm}
Active(xm) := none

c +
∑
j∈J cjxj := Def (xm)

for each j ∈ J : Active(xj) = none

do
if Low(xj) = −∞ then

Activate(xj , upper)
elsif Up(xj) = +∞ then

Activate(xj , lower)
elsif act = upper⊕cj > 0 then

Activate(xj , lower)
else

Activate(xj , upper)
end

1

2

3

4

5

6

7

8

procedure Activate
input
xm : variable
act : activation direction

begin
Active(xm) := act
match act with
| lower -> new := Low(xm)
| upper -> new := Up(xm)
d := new −Val(xm)
for each xk ∈ X :
c +
∑
i∈I cixi = Def (xk)∧m ∈ I do

Val(xk) := Val(xk) + cmd
end

1

procedure EnQueue
input

xk = c : variable equality
begin

queue := queue ∪ {xk − c = 0}
end

Figure 7.4: Algorithm in CLP(Q) page 2
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procedure RepairBasis
begin
LocalBasis := Basis
for each xb ∈ LocalBasis ∧ xb ∈ Basis do

RepairVar(xb)
end
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procedure RepairUp
input

xb : basis variable
begin

if Val(xb) < Up(xb) then return
c +

∑
i∈I cixi := Def (xb)

if ∃i ∈ I. ci > 0 ∧Active(xi) = upper then
Status := PushLow(xi)

elsif ∃i ∈ I. ci < 0 ∧Active(xi) = lower then
Status := PushUp(xi)

else
Status := optimum
if Val(xb) = Up(xb) then
EnQueue( xb = Up(xb) )

else
throw “Unsatisfiable”

match Status with
| applied -> RepairUp(xb)
| nobound(xi) -> Pivot(xb, upper, xi)

end
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procedure PushLow
input

xi : undefined and active variable
begin

(lb, k) := (Low(xi)−Up(xi), i)
for each xb ∈ Basis : (∗ Pick xb in order ∗)
Def (xb) = c +

∑
j∈J cjxj ∧ i ∈ J do

if ci > 0 ∧ Low(xb)−Val(xb)
ci

> lb then

(lb, k, act) := (Low(xb)−Val(xb)
ci

, b, lower)

if ci < 0 ∧ Up(xb)−Val(xb)
ci

> lb then

(lb, k, act) := (Up(xb)−Val(xb)
ci

, b, upper)
done
if k = i ∧ Low(xi) = −∞ then

return nobound(xi)
elsif k = i then

Activate(xi, lower)
else

Pivot(xk, act, xi)
return applied

end

1

2

procedure RepairVar
input

xb : basis variable
begin

if Val(xb) ≥ Up(xb) then RepairUp(xb)
if Val(xb) ≤ Low(xb) then RepairLow(xb)

end

1
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procedure RepairLow
input

xb : basis variable
begin

if Val(xb) > Low(xb) then return
c +

∑
i∈I cixi := Def (xb)

if ∃i ∈ I. ci > 0 ∧Active(xi) = lower then
Status := PushUp(xi)

elsif ∃i ∈ I. ci < 0 ∧Active(xi) = upper then
Status := PushLow(xi)

else
Status := optimum
if Val(xb) = Low(xb) then
EnQueue( xb = Low(xb) )

else
throw “Unsatisfiable”

match Status with
| applied -> RepairLow(xb)
| nobound(xi) -> Pivot(xb, lower, xi)

end
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procedure PushUp
input

xi : undefined and active variable
begin

(ub, k) := (Up(xi)− Low(xi), i)
for each xb ∈ Basis : (∗ Pick xb in order ∗)
Def (xb) = c +

∑
j∈J cjxj ∧ i ∈ J do

if ci > 0 ∧ Up(xb)−Val(xb)
ci

< ub then

(ub, k, act) := (Up(xb)−Val(xb)
ci

, b, upper)

if ci < 0 ∧ Low(xb)−Val(xb)
ci

< ub then

(ub, k, act) := (Low(xb)−Val(xb)
ci

, b, lower)
done
if k = i ∧Up(xi) = +∞ then

return nobound(xi)
elsif k = i then

Activate(xi, upper)
else

Pivot(xk, act, xi)
return applied

end

Figure 7.5: Algorithm in CLP(Q) page 3
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t = 0 is unsatisfiable, and we throw an exception “Unsatisfiable”. If the de-referenced term contains an
undefined and unbounded variable then this variable is substituted by the rest of de-referenced term in the
solved form at line 7 and we get a solved form. Otherwise, we pick a variable appearing in the de-referenced
term and the variable is substituted by the rest of de-referenced term in the solved form. Since, the variable
is bounded and defined, we add the variable in basis at line 11. Note that we pass lower as the activation
direction in the second argument of AddBasis, which is an arbitrary choice. These modifications of the
solved form may leads to violation of condition (9), which is fixed by calling RepairBasis. The code after
line 13 is already discussed in description of the global data structures.

Procedure AddInequality This procedure takes a linear inequality t ≤ 0 as input. At line 1, t is
de-referenced using the solved form. If the solved form implies t ≤ 0 then the condition at line 2 is true
and procedure continues at line 21. If the condition at line 4 is true then the conjunction of the solved
form and t ≤ 0 is unsatisfiable, and we throw an exception “Unsatisfiable”. If either the input term
or de-referenced term contains a single variable then UpdateBound is called at line 7 or 9, respectively.
Otherwise, we introduce a slack variable xk and initialize the lower bound of xk with 0 at lines 11–13. Now
we need to add an equality between xk and the negation of the de-referenced term in the solved form. If the
de-referenced term contains an undefined and unbounded variable then this variable is substituted by the
rest of de-referenced term added with xk in the solved form at line 15 and we get a solved form. Otherwise,
AddInequality sets definition of xk to negation of the de-referenced term and add xk to the basis at line
17 and 19. Only xk can violate condition (9). So RepairVar is called to fix the violation at line 20. The
code after line 21 is already discussed in description of the global data structures.

Procedures RepairBasis and RepairVar RepairBasis iteratively changes the basis by pivot operations
until condition (9) is satisfied. RepairBasis keeps a local copy of the current basis and then iterate over
the variables that will remain in the basis after the call to RepairVar in each iteration. RepairVar takes
a basis variable xb as input, checks if Val(xb) violates any of its bounds, and calls accordingly RepairUp or
RepairLow, accordingly.

Procedures RepairUp, RepairLow, PushLow, and PushUp We only discuss RepairUp and
PushLow. The descriptions of RepairLow and PushUp are similar, respectively.

RepairUp takes a basis variable xb as input. RepairUp recursively attempts to decrease Val(xb) such
that Val(xb) < Up(xb) or moves xb out of the basis. The condition (8) defines Val(xb) in terms of values
of variables appearing in Def (xb). The condition at line 3 holds if a variable xi appears in Def (xb) with a
positive coefficient and is activated with the direction upper. We can decrease Val(xb) by decreasing Val(xi).
Since Val(xi) is taking the maximum allowed value, it can be decreased. At line 4, procedure PushLow
is called to decrease value of Val(xi). The code at line 5 and 6 is symmetric therefore we will not discuss
it. If both conditions at line 3 and 5 fail then we can not decrease Val(xi) any further, and the execution
continues at line 8. If Val(xb) is equal to Up(xb) then we have detected an equality and this equality is
pushed into queue. Otherwise, the solved form is unsatisfiable and exception “Unsatisfiable” is thrown.
The return value of the call to PushLow at line 4 is stored in Status. Status equals to applied indicates
that a progress in decreasing Val(xb) has been made. Then, we decrease Val(xb) further. Status equals to
nobound(xi) indicates that xi can be decreased without any bound and by doing a pivot operation between
xb and xi we can satisfy the conditions of the solved form.

In procedure PushLow at line 1, k is set equal to i and lb records the maximum change in value of
Val(xi) allowed by Low(xi). Then at lines 2–8, PushLow iterates over the basis variables and finds a basis
variable xk that may impose maximum bound on smallest value of lb, i.e., change in value of Val(xi). There
are three possible cases at lines 9–14. The first and second case occur when no bounding basis variable exists
and k remains equal to i at line 9. The first case occurs if there is no lower bound of xi. In this case, a
value nobound(xi) is returned indicating that Val(xi) can be decreased without any bound at line 10. The
second case occurs if there is a lower bound on xi. In this case, the activation direction of xi is changed
from upper to lower at line 12. This change leads to a decrease of Val(xb). The third case occurs if xk is a
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basis variable. xk is leaves the basis and xi enters the basis at line 14. After the second and third cases, the
execution continues at line 15 where applied is returned indicating to the caller that Val(xb) is decreased
by some amount.

Procedures UpdateBound, UpdateLower, and UpdateUpper The procedure UpdateBound takes
an inequality that contains only one variable as input and updates bounds of this variable. Depending on
the variable coefficient in the input inequality, upper or lower bound is updated by calling UpdateUpper
or UpdateLower, respectively.

We will discuss UpdateUpper. The description of UpdateLower is symmetric. UpdateUpper takes
a variable xj and a new upper bound ub for xj as input. If ub is strictly lower than the lower bound of xj then
UpdateUpper throws an exception “Unsatisfiable” at line 2. If ub is equal to the lower bound of xj then
we have detected that xj to be constant and the corresponding constant equality is stored in queue at line 4.
If Up(xj) > ub > Low(xj) then we update Up(xj). Due to conditions (7)–(9), updating an active bound is a
difficult case. If Active(xj) = upper then PushLow is called at line 7. If PushLow moves xj into the basis
or changes its activation direction then the difficulty is eliminated. Otherwise, PushLow makes no changes
in solved form and solved form imposes no limit in decrease of upper bound. In both case, we update Up(xj)
at line 8 without violating conditions (7)–(9) for any other variable. If Active(xj) is still equal to upper

at line 9 then we update Val by calling Activate to satisfy condition (9). UpdateUpper returns value
updated only upper bound is changed otherwise noChange is returned to the caller, i.e., UpdateBound.

In UpdateBound at line 7, if a bound of xj is updated and xj is a defined variable then lines 8–13 are
executed to maintain condition (2) and (3). At line 14, if xj is in the basis then we check and repair any
violation of condition (9).

CLP(LI+UIF) using CLP(Q)

Figure 7.6 presents the CLP(LI+UIF) as an extension of CLP(Q). CLP(LI+UIF) solver extends CLP(Q)
solver with a congruence checker for uninterpreted functions. The CLP(LI+UIF) contains an additional
data structure TermDef that is a function from pairs of uninterpreted function symbols and lists of linear
terms to a variable. TermDef is used to purify input atoms to produce linear atoms, and to check if a
congruence axiom can be applied on input constraints and to produce new equalities. CLP(LI+UIF)
takes TLI+UIF atoms as the input sequence. Given an input, the current solved form, the current TermDef ,
CLP(LI+UIF) computes the next solved form and TermDef . If CLP(LI+UIF) fails to compute the next
solved form and TermDef then it throws an exception “Unsatisfiable”. CLP(LI+UIF) adds the following
three procedures.

Procedure AddConstraint At line 1, Purify is called to remove uninterpreted functions from the
input term and to produce a linear term. Next, the purified atom is added to CLP(Q) solver using its
entry procedures at lines 2–4. If the call to an entry procedure of CLP(Q) does not throw an exception
“Unsatisfiable” then CongChk is called at line 5 to check if congruence rules can be applied between any
two of the terms stored in TermDef .

Procedure Purify This procedure takes a term in TLI+UIF. Purify recursively traverses the input term
in the bottom up order. During the traversal, Purify replaces each subterm whose top function symbol
is uninterpreted with a variable. If the subterm is already seen before then the variable corresponding to
the subterm is retrieved from TermDef at line 12. Otherwise, a fresh variable is chosen to replace for the
subterm, and TermDef is updated accordingly at lines 9 and 10.

Procedure CongChk This procedure recursively executes until no new equality is detected from the
solved form and TermDef . At lines 1–5, the new equalities are detected by the following if-condition. Let
two variables xj and xk be in the range of TermDef . Assuming that in TermDef , xj and xk are mapped by
the same function symbol f and lists of subterms s1, . . . , sm and t1, . . . , tm, respectively. For all i ∈ 1..m, if
the solved form implies si = ti, which is checked by call to Deref, then due to the congruence rule, xj = xk.
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global variables
TermDef ∅: Function symbols × linear term lists → X

1

2

3

4

5

procedure AddConstraint
input
t ./ 0 : atom in TLI+UIF

begin
s := Purify(t)
match ./ with
| = -> AddEquality(s = 0)
| ≤ -> AddInequality(s ≤ 0)
CongChk()

end

1

2
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4

5

6

7

8

procedure CongChk
begin

if ∃xj , xk :
xj = TermDef (f, [t1, . . . , tm]) ∧
xk = TermDef (f, [s1, . . . , sm]) ∧
∀i ∈ 1..m. Deref(ti − si) = 0 ∧
Deref(xj − xk) 6= 0

then
AddEquality(xj − xk = 0)
CongChk()

end
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6

7

8

9

10

11

12

13

procedure Purify
input
t : term in TLI+UIF

begin
match t with
| xk -> return xk
| c t1 -> return c Purify(t1)
| t1 + t2 -> return Purify(t1) + Purify(t2)
| f(t1, . . . , tm) ->

for each i ∈ 1..m do
si := Purify(ti)

if TermDef (f, [s1, . . . , sm]) = ⊥ then
pick fresh variable xk
TermDef (f, [s1, . . . , sm]) := xk

else
xk := TermDef (f, [s1, . . . , sm])

return xk
end

Figure 7.6: The extension for CLP(LI+UIF)

If xj = xk is not already implied by the solved form, then we add this equality to the solved form. Note
that equality detection algorithm is complete in our choice of solved form [53], therefore, CLP(LI+UIF) is
complete as an unsatisfiability checker.

7.2 Cimmati et al.’s algorithm for proof production

In this section, we will first present an algorithm of Cimmati et al. [14], which we call CGS below, for
extracting proof from an incremental simplex based satisfiablity checker. CGS is based on [23]. We will also
show that this method can not be directly applied in the variant of incremental simplex algorithm used in
our CLP(Q) solver.

CGS algorithm takes an unsatisfiable set of linear (in)equalities as input. This algorithm first pre-
processes input constraints. Pre-processing involves two steps. First, equalities are removed from the input
constraints. Each equality t = 0 is replaced with the conjunction of 0 ≤ t and t ≤ 0. Second, for each
inequality c +

∑
j∈J cjxj ≤ 0 with |J | > 1, a slack variable xk is introduced1 and c +

∑
j∈J cjxj ≤ 0 is

replaced with an equality xk = c +
∑
j∈J cjxj and inequality xk ≤ 0.

CGS algorithm runs the incremental simplex on these pre-processed constraints. We presented the solved
form in previous section that is a variation of simplex tableau. We will use the notation of previous sections,
but the conditions of solved form are not applicable in this section2.

The initial simplex tableau is setup in the following way. Def of a slack variable is initialized using the
equality generated due to its introduction and the original variables of input are initialized undefined. Basis
is initialized with the set of slack variables. Variables are initialized as unbounded. We will use Def 0 to
denote the initial value of Def .

1CGS [14] introduce slack variables even for single variable inequalities. This is not necessary for their algorithm.
2CGS uses a different version of simplex tableau as compare to CLP(Q) solved form. See [23] for details.
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Now the rest of the constraints, which are only inequalities containing a single variable, are added to the
simplex tableau one after another. The incremental simplex must terminate with unsatisfiable tableau be-
cause original constraints were unsatisfiable. The incremental simplex detects an unsatisfiablity by observing
that a row in simplex tableau can not be made satisfiable by changing Val .

By analyzing the unsatisfiable row, a linear combination of input constraint that produces 1 ≤ 0 is
derived. The pre-processing of CGS algorithm ensures that each variable appearing in the unsatisfiable row
maps to an original inequality. Let

Def (xk) = c + a1xk1 + · · ·+ aixki + b1xki+1
+ · · ·+ bjxki+j

be the unsatisfiable row, where a1, . . . , ai < 0 and b1, . . . , bj > 0. We assume that the upper bound of xk is
violated. We consider the following proof of unsatisfiability of the input constraints.

[
1 −a1 . . . −ai b1 . . . bj

]


Def 0(xk) ≤ Up(xk)

Def 0(xk1) ≤ Up(xk1)
...

Def 0(xki) ≤ Up(xki)

−Def 0(xki+1
) ≤ −Low(xki+1

)
...

−Def 0(xki+j ) ≤ −Low(xki+j )


= d ≤ 0,

where d > 0. Inequalities appearing in the column vector must be in the input constraints or implied by
one of the equalities in the input constraints. Note that Up or Low values are used from the unsatisfiable
tableau. In the case of violation of the lower bound, Up and Low are interchanged.

See theorem 1 in [14] for the correctness of the above algorithm.

Example 4 (CGS algorithm). We will apply CGS algorithm on the following unsatisfiable linear constraints.

x1 + x2 + 1 ≤ 0 ∧ −x1 + x3 ≤ 0 ∧ x2 = 0 ∧ x3 = 0

Pre-processing: Equalities are replaced with conjunctions of two linear inequalities as follows.

x1 + x2 + 1 ≤ 0 ∧ −x1 + x3 ≤ 0 ∧ x2 ≤ 0 ∧ x2 ≥ 0︸ ︷︷ ︸
x2=0

∧ x3 ≤ 0 ∧ x3 ≥ 0︸ ︷︷ ︸
x3=0

In our example, there are two linear inequalities where slack variables u and v are introduced. Following
constraints are the result of introduction of slack variables.

u = x1 + x2 + 1 ∧ u ≤ 0︸ ︷︷ ︸
x1+x2+1≤0

∧ v = −x1 + x3 ∧ v ≤ 0︸ ︷︷ ︸
−x1+x3≤0

∧ x2 ≤ 0 ∧ x2 ≥ 0 ∧ x3 ≤ 0 ∧ x3 ≥ 0

Executing incremental Simplex: Slack variable equalities are used to initialize the tableau. The basis of the
tableau is initialized with the set of slack variables. In Figure 7.7(a), at the top initialized simplex tableau is
displayed and a subsequent execution of the incremental simplex is also presented. After adding each single
variable linear inequality, the figure displays the resulting tableau. At the end, incremental simplex fails to
find satisfiable tableau. The gray row corresponding to x3 is responsible for failure. Val(x3) = −1, which
violates the lower bound on x3 and Val of variables appearing in Def (x3) can not be changed in order to
increase Val(x3).
Deriving unsatisfiablity proof: The unsatisfiability proof derived from the unsatisfiable row is

[
1 1 1 1

]

−Def 0(x3) ≤ −Low(x3)

−Def 0(x2) ≤ −Low(x2)

Def 0(u) ≤ Up(u)

Def 0(v) ≤ Up(v)

 =
[

1 1 1 1
]


−x3 ≤ 0

−x2 ≤ 0

x1 + x2 + 1 ≤ 0

−x1 + x3 ≤ 0

 = 1 ≤ 0.
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Initial tableau

Def 0 Low Up Val
u = x1 + x2 + 1 −∞ +∞ 1
v = −x1 + x3 −∞ +∞ 0
x1 = x1 −∞ +∞ 0
x2 = x2 −∞ +∞ 0
x3 = x3 −∞ +∞ 0

b
a
si

s ︷︸︸︷

Def Low Up Val
x1 = u− x2 − 1 −∞ +∞ −1
v = −u+ x2 + x3 + 1 −∞ +∞ 1
u = u −∞ 0 0
x2 = x2 −∞ +∞ 0
x3 = x3 −∞ +∞ 0

u ≤ 0 pivot(u,x1)

Def Low Up Val
x1 = u− x2 − 1 −∞ +∞ −1
x3 = u+ v − x2 − 1 −∞ +∞ −1
v = v −∞ 0 0
u = u −∞ 0 0
x2 = x2 −∞ +∞ 0

v ≤ 0 pivot(v,x3)

Def Low Up Val
x1 = u− x2 − 1 −∞ +∞ −1
x3 = u+ v − x2 − 1 −∞ 0 −1
v = v −∞ 0 0
u = u −∞ 0 0
x2 = x2 0 0 0

0 ≤ x2 ≤ 0
x3 ≤ 0

No pivot needed

Def Low Up Val
x1 = u− x2 − 1 −∞ +∞ −1
x3 = u+ v − x2 − 1 0 0 −1
v = v −∞ 0 0
u = u −∞ 0 0
x2 = x2 0 0 0

0 ≤ x3 No pivot possible

(a)

Initial tableau is empty

Def Low Up Active Val
x2 = −x1 − u− 1 −∞ +∞ none −1
x1 = x1 −∞ +∞ none 0
u = u 0 +∞ none 0

x1 + x2 + 1 ≤ 0

Def Low Up Active Val
x2 = −x1 − u− 1 −∞ +∞ none −1
x3 = x1 − v −∞ +∞ none −1
x1 = x1 −∞ +∞ none 0
u = u 0 +∞ none 0
v = v 0 +∞ none 0

−x1 + x3 ≤ 0

Def Low Up Active Val
x3 = −u− v − 1 −∞ +∞ none −1
x1 = −u− 1 −∞ +∞ none 0
x2 = 0 −∞ +∞ none 0
u = u 0 +∞ none 0
v = v 0 +∞ none 0

x2 = 0 Substitute(x1,−u− 1)

Def Low Up Active Val
u = −v − 1 0 +∞ none −1
x1 = v −∞ +∞ none 0
x3 = 0 −∞ +∞ none 0
x2 = 0 −∞ +∞ none 0
v = v 0 +∞ lower 0

x3 = 0

Substitute(u,−v − 1)
AddBasis(u, lower)

No pivot possible

(b)

Figure 7.7: (a) Execution incremental simplex on the constraints obtained by pre-processing x1 + x2 + 1 ≤
0 ∧ −x1 + x3 ≤ 0 ∧ x2 = 0 ∧ x3 = 0. (b) Execution of CLP(Q) on the same constraints.
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Note that linear inequalities appearing in the proof are either appear in the input or implied by an equality
in input constraints.

Why CGS algorithm cannot be used with our CLP(Q) solver? CGS algorithm does not require
any modification in the incremental simplex. It pre-processes the input constraints in a way such that
resulting unsatisfiable tableau directly represents the unsatisfiability proof. However, there is an implicit
assumption in the algorithm. The algorithm assumes that if a variable is detected to have a constant value
then incremental simplex must not propagate the constant value in the tableau. Equality propagation leads
to the violation of the correctness of the algorithm. Our CLP(Q) solver does propagate equalities and
moreover does not introduce slack variables for equalities, which are important optimizations of the solver.
If we pre-process input constraints to split equalities into two inequalities and introduce slack variables then
CLP(Q) will internally detect that the slack variables are equal to zero and they will be removed from the
tableau.

In Figure 7.7(b), we show an execution of our CLP(Q) solver. At the last tableau, we find that only
slack variables u and v are left in the unsatisfiable row. x2 and x3 are set to zero and propagated to the
definitions of all other variables therefore the unsatisfiable row does not contain x2 and x3. Hence, we cannot
construct unsatisfiability proof using unsatisfiable row anymore.

7.3 Our algorithm for proof production

In this section, we present our method of instrumenting CLP(LI+UIF) to extract unsatisfiability proofs.
The instrumentation records how input facts are used to obtain the solved form. First we will discuss this
idea in detail. Then, we will present the full instrumentation of CLP(LI+UIF). Finally for the efficiency
of the instrumentation, we will discuss lazy instrumentation that evaluates the recorded information on
demand.

Main idea

Each conjunct of Equation (7.1) is implied by the input constraints. Hence, each conjunct can be obtained
by a linear combination of the input constraints. We record the linear combination that produces each linear
inequality in the solved form. We introduce a reason variable corresponding to each input inequality. We
call a linear term over these variables a reason term. A reason term represents a linear combination of the
input inequalities. We also have equalities as input, which represent two inequalities. Therefore, for each
equality we introduce a pair of reason terms.

We can rewrite Equation (7.1) as the following equation.

n∧
k=1

( 0 ≤ Def (xk)− xk ≤ 0 ∧ Low(xk) ≤ xk ≤ Up(xk) )

Note that there are four linear inequalities for a variable xk. In our instrumentation, we store a pair of reason
terms ∆(xk) that records derivation of 0 ≤ Def (xk)− xk ≤ 0. We also store reason terms ∆l(xk) and ∆u(xk)
that record derivations of Low(xk) ≤ xk ≤ Up(xk) respectively. We update these reason terms each time the
solved form is updated.

Example 5 (Instrumentation). Let us consider the input constraints in Example 4. We introduce reason
variables α1 for x1 + x2 + 1 ≤ 0 and α2 for −x1 + x3 ≤ 0. We introduce pairs of reason terms (−α3, α3) for
x2 = 0 and (−α4, α4) for x3 = 0. Note that α3 represents x2 ≤ 0 and −α3 represents −x2 ≤ 0. After adding
x1 +x2 +1 ≤ 0 and −x1 +x3 ≤ 0 as input using instrumented CLP(Q), we obtain the following instrumented
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solved form.
Def Low Up Active Val ∆ ∆l ∆u

x2 = −x1 − u− 1 −∞ +∞ none −1 (0, 0) 0 0
x3 = x1 − v −∞ +∞ none −1 (0, 0) 0 0
x1 = x1 −∞ +∞ none 0 (0, 0) 0 0
u = u 0 +∞ none 0 (0, 0) α1 0
v = v 0 +∞ none 0 (0, 0) α2 0

In the above solved form, we introduced slack variables u and v and equalities x2 + x1 + 1 + u = 0 and
−x1 + x3 + v = 0. These equalities are introduced by CLP(Q) internally therefore we do not assign a reason
variable for them. The lower bounds of u and v are obtained by a linear combination of the input constraints
and the above introduced equalities. ∆l(u) and ∆l(v) reflect only the contributions of the input constraints.3

After adding x2 = 0, we obtain the following solved form.

Def Low Up Active Val ∆ ∆l ∆u

x3 = −u− v − 1 −∞ +∞ none −1 (−α3, α3) 0 0
x1 = −u− 1 −∞ +∞ none 0 (−α3, α3) 0 0
x2 = 0 −∞ +∞ none 0 (α3,−α3) 0 0
u = u 0 +∞ none 0 (0, 0) α1 0
v = v 0 +∞ none 0 (0, 0) α2 0

After adding x3 = 0, we obtain the following solved form.

Def Low Up Active Val ∆ ∆l ∆u

u = −v − 1 0 +∞ none −1 (−α3 − α4, α3 + α4) α1 0
x1 = v −∞ +∞ none 0 (α4,−α4) 0 0
x3 = 0 −∞ +∞ none 0 (α4,−α4) 0 0
x2 = 0 −∞ +∞ none 0 (α3,−α3) 0 0
v = v 0 +∞ lower 0 (0, 0) α2 0

The gray row in the above solved form is unsatisfiable. By analyzing the row, we conclude that reason term
first(∆(u)) + ∆l(u) + ∆l(v) = α1 + α2 − α3 − α4 derives the unsatisfiability.

CLP(LI+UIF) with instrumentation

Figures 7.8, 7.9, and 7.10 present the instrumented CLP(Q) that implements the above idea of producing
proofs. Figure 7.11 presents the instrumentation of CLP(LI+UIF) extension. The entry procedure is
ProofGen that takes an unsatisfiable conjunction in TLI+UIF as input and outputs a unsatisfiablity proof
as a proof tree, which is introduced in Section 2.2. We have added * in the name of the original procedures to
obtain name for instrumented version. The instrumented version of any procedure does all the operations as
the original procedures along with the additional instrumentation code. We will only discuss the additional
code. If we do not need to add any instrumentation in a procedure then it is not reproduced. If such
procedures are called then the reader must refer to the presentation of CLP(LI+UIF) in Section 7.1.

Global data structures In instrumented CLP(Q), the global data structures also includes ∆, ∆l, and
∆u as defined above. In the instrumented CLP(LI+UIF) extension, the additional global data structures
are a set of reason variables Υ, a map from Υ to the corresponding inequality Π, and a proof tree P . All
these additional data structures are initialized to be empty.

The reason variables are introduced in CLP(LI+UIF) extension. The second parameters of entry
procedures of instrumented CLP(Q) are the reason terms that derives the linear atoms passed passes as a
first parameters.

3We do not record contribution of equalities introduced for slack variables because we only want to output proof for inequal-
ities that do not contain slack variables.
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global variables
X = ∅ : set of variables Basis = ∅ : set of variables
Def = ∅ : X → linear terms
Low = ∅ : X → Q ∪ {−∞} Up = ∅ : X → Q ∪ {+∞}
Active = ∅ : X → {none, lower, upper} Val = ∅ : X → Q

 : solved form

queue = ∅: set of linear constraints{
∆ = ∅ : X → reason term pair
∆l = ∅ : X → reason term ∆u = ∅ : X → reason term

}
: instrumentation
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procedure AddEquality*
input
t = 0 : linear constraint
δp : reason term pair

begin
(δl, δu) := DeReason(t, δp)
c +

∑
j∈J cjxj := Deref(t)

if c = 0 ∧ J = ∅ then
skip

elsif c < 0 ∧ J = ∅ then
throw “Proof(δl/− c)”

elsif c > 0 ∧ J = ∅ then
throw “Proof(δu/c)”

elsif ∃i ∈ J. Low(xi) = −∞∧Up(xi) = +∞ then
δpi := ScaleReasonPair((δl, δu),− 1

ci
)

Substitute*(xi,−
c+

∑
j∈J\{i} cjxj

ci
, δpi )

else
pick i ∈ J
δpi := ScaleReasonPair((δl, δu),− 1

ci
)

Substitute*(xi,−
c+

∑
j∈J\{i} cjxj

ci
, δpi )

AddBasis(xi, lower)
RepairBasis()

if (s = 0, δps ) ∈ queue then
queue := queue \ {(s = 0, δps ))}
AddEquality*(s = 0, δps )

end
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procedure AddInequality*
input
t ≤ 0 : linear constraint
δ : reason term

begin
( , δu) := DeReason(t, (0, δ))
c +

∑
j∈J cjxj := Deref(t)

if c ≤ 0 ∧ J = ∅ then
skip

elsif c > 0 ∧ J = ∅ then
throw “Proof(δu/c)”

elsif t = a + aixi then
UpdateBound*(a + aixi ≤ 0, δ)

elsif J = {j} then
UpdateBound*(c + cjxj ≤ 0, δu)

else
pick fresh xk (∗ slack variable ∗)
Initialize*(xk)
Low(xk) := 0
∆l(xk) := δu
if ∃i ∈ J.Low(xi) = −∞∧Up(xi) = +∞ then

Substitute*(xi,−
c+

∑
j∈J\{i} cjxj+xk

ci
, (0, 0))

else
Def (xk) := −(c +

∑
j∈J cjxj)

Val(xk) := −(c +
∑
j∈J cjVal(xj))

AddBasis(xk, lower)
RepairVar(xk)

if (s = 0, δps ) ∈ queue then
queue := queue \ {(s = 0, δps )}
AddEquality*(s = 0, δps )

end
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procedure Initialize*
input

xi : fresh variable
begin
if Def (xi) = ⊥ then
Initialize(xj)
∆(xi) := (0, 0)
∆l(xi) := 0
∆u(xi) := 0

end

1

2

procedure Substitute*
input

xm : variable
c +

∑
j∈J cjxj : linear term

δp : reason term pair
begin
Substitute(xm, c+

∑
j∈J cjxj)

ReasonSubstitute(xm, δ
p)

end
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4

procedure Pivot*
input
xb : basis variable
act : activation direction
xi : undefined and active variable

begin
Pivot(xb, act, xi)
c +

∑
j∈J cjxj := Def (xb)

δp := ScaleReasonPair(∆(xb),− 1
ci

)
ReasonSubstitute(xl, δ

p)
end

Figure 7.8: Instrumented version of CLP(Q)
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procedure UpdateBound*
input

c + cjxj ≤ 0 : single variable linear inequality
δ : reason term

begin
if cj > 0 then
Status := UpdateUpper*(xj ,−c/cj , δ/cj)
act := lower

else
Status := UpdateLower*(xj ,−c/cj ,−δ/cj)
act := upper

if Status = updated ∧Def (xj) 6= xj then
if xj /∈ Basis then

a +
∑
i∈I aixi := Def (xj)

if ∃k ∈ I Low(xk) = −∞∧Up(xk) = +∞ then
δp := ScaleReasonPair(∆(xj),− 1

ak
)

Substitute*(xk,− 1
ak

(a +
∑
i∈J\{k} aixi − xj), δ

p)
else

AddBasis(xj , act)
if xj ∈ Basis then
RepairVar(xj)

end
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procedure UpdateLower*
input

xj : variable
lb : Q
δ : reason term

begin
if Up(xj) < lb then

throw “Proof(
δ+∆u(xj)
lb−Up(xj) )”

elsif Up(xj) = lb then
EnQueue*( xj = lb,

(δ,∆u(xj)) )
else Low(xj) < lb then
if Active(xj) = lower then

:= PushUp(xj)
Low(xj) := lb
if Active(xj) = lower then

Activate(xj , lower)
return updated

return noChange

end
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procedure UpdateUpper*
input
xj : variable
ub : Q
δ : reason term

begin
if Low(xj) > ub then

throw “Proof(
δ+∆l(xj)

Low(xj)−ub )”

elsif Low(xj) = ub then
EnQueue*( xj = ub,

(∆l(xj), δ) )
else Up(xj) > ub then
if Active(xj) = upper then

:= PushLow(xj)
Up(xj) := ub
if Active(xj) = upper then

Activate(xj , upper)
return updated

return noChange

end
procedure EnQueue*
input

xk = c : variable equality
δp : reason term pair

begin queue := queue ∪ {(xk − c = 0, δp)} end
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procedure ScaleReasonPair
input

(δl, δu) : reason term pair
λ : Q

begin
if λ < 0 then (δl, δu) := (δu, δl)
return (|λ|δl, |λ|δu)

end
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procedure ReasonSubstitute
input

xj : variable
δp : reason term pair

begin
for each xk ∈ X :
c +
∑
i∈I cixi = Def (xk)∧j ∈ I do

(δl, δu) :=
ScaleReasonPair(δp, cj)

(µl, µu) := ∆(xk)
∆(xk) := (δl + µl, δu + µu)

end
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procedure DeReason
input
c +

∑
j∈J cjxj : linear term

(δl, δu) : initial reason term pair
begin
for each j ∈ J do

Initialize*(xj)
(µl, µu) :=
ScaleReasonPair(∆(xj), cj)

(δl, δu) := (δl + µl, δu + µu)
return (δl, δu)

end
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procedure OptimaReason
input

xb : basis variable
act : bounding direction

begin
c +

∑
i∈I cixi := Def (xb)

match act with
| lower -> (δ, ) := ∆(xb)
| upper -> ( , δ) := ∆(xb)

for each i ∈ I do
if act = lower⊕ ci < 0 then
δ := δ + ∆l(xi)

then
δ := δ + ∆u(xi)

return δ
end

Figure 7.9: Instrumented version of CLP(Q) page 2
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procedure RepairBasis*
begin
LocalBasis := Basis
for each xb ∈ LocalBasis ∧ xb ∈ Basis do

RepairVar*(xb)
end
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procedure RepairUp*
input

xb : basis variable
begin

if Val(xb) < Up(xb) then return
c +

∑
i∈I cixi := Def (xb)

if ∃i ∈ I. ci > 0 ∧Active(xi) = upper then
Status := PushLow*(xi)

elsif ∃i ∈ I. ci < 0 ∧Active(xi) = lower then
Status := PushUp*(xi)

else
Status := optimum
δ := OptimaReason(xb, lower)
if Val(xb) = Up(xb) then
EnQueue*( xb = Up( xb), (δ,∆u(xb)) )

else
throw “Proof( δ+∆u(xb)

Val(xb)−Up(xb) )”

match Status with
| applied -> RepairUp(xb)
| nobound(xi) -> Pivot(xb, upper, xi)

end
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procedure PushLow*
input

xi : undefined and active variable
begin

(lb, k) := (Low(xi)−Up(xi), i)
for each xb ∈ Basis : (∗ Pick xb in order ∗)
Def (xb) = c +

∑
j∈J cjxj ∧ i ∈ J do

if ci > 0 ∧ Low(xb)−Val(xb)
ci

> lb then

(lb, k, act) := (Low(xb)−Val(xb)
ci

, b, lower)

if ci < 0 ∧ Up(xb)−Val(xb)
ci

> lb then

(lb, k, act) := (Up(xb)−Val(xb)
ci

, b, upper)
done
if k = i ∧ Low(xi) = −∞ then

return nobound(xi)
elsif k = i then

Activate(xi, lower)
else

Pivot*(xk, act, xi)
return applied

end
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procedure RepairVar*
input

xb : basis variable
begin

if Val(xb) ≥ Up(xb) then RepairUp*(xb)
if Val(xb) ≤ Low(xb) then RepairLow*(xb)

end
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procedure RepairLow*
input

xb : basis variable
begin

if Val(xb) > Low(xb) then return
c +

∑
i∈I cixi := Def (xb)

if ∃i ∈ I. ci > 0 ∧Active(xi) = lower then
Status := PushUp*(xi)

elsif ∃i ∈ I. ci < 0 ∧Active(xi) = upper then
Status := PushLow*(xi)

else
Status := optimum
δ := OptimaReason(xb, upper)
if Val(xb) = Low(xb) then
EnQueue*( xb = Low(xb), (∆l(xb), δ) )

else
throw “Proof( δ+∆l(xb)

Low(xb)−Val(xb) )”

match Status with
| applied -> RepairLow(xb)
| nobound(xi) -> Pivot(xb, lower, xi)

end
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procedure PushUp*
input

xi : undefined and active variable
begin

(ub, k) := (Up(xi)− Low(xi), i)
for each xb ∈ Basis : (∗ Pick xb in order ∗)
Def (xb) = c +

∑
j∈J cjxj ∧ i ∈ J do

if ci > 0 ∧ Up(xb)−Val(xb)
ci

< ub then

(ub, k, act) := (Up(xb)−Val(xb)
ci

, b, upper)

if ci < 0 ∧ Low(xb)−Val(xb)
ci

< ub then

(ub, k, act) := (Low(xb)−Val(xb)
ci

, b, lower)
done
if k = i ∧Up(xi) = +∞ then

return nobound(xi)
elsif k = i then

Activate(xi, upper)
else

Pivot*(xk, act, xi)
return applied

end

Figure 7.10: Algorithm in instrumented CLP(Q) page 3
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global variables
TermDef := ∅ : Function symbols × linear term lists → XΥ := ∅ : set of reason variables
Π := ∅ : Υ→ inequalities
P := ∅ : atoms× labels× atoms∗

 : instrumentation
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procedure ProofGen
input

Γ : conjunction of atoms in TLI+UIF

begin
try

for each t ./ 0 from Γ do
AddConstraint*(t ./ 0)

catch “Proof(δ)”
return P ∪ReasonComb(1 ≤ 0, δ)

end
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procedure AddConstraint*
input
t ./ 0 : atom in TLI+UIF

begin
pick fresh reason variable α
Υ := Υ ∪ {α}
Π(α) := t ≤ 0
s := Purify(t)
P := P ∪ (t ≤ 0,Hyp, ())
match ./ with
| = ->

P := P ∪ (−t ≤ 0,Hyp, ())
AddEquality*(s = 0, (−α, α))

| ≤ ->

AddInequality*(s ≤ 0, α)
CongChk*()

end
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procedure ReasonComb
input
t ≤ 0 : inequality
λ1α1 + · · ·+ λnαn : reason term

begin
for each i ∈ 1..n do
ti ≤ 0 := Π(αi)
if λi < 0 then (λi, ti) := (−λi,−ti)

return ( t ≤ 0, PComb(λ1, . . . , λn),
(t1 ≤ 0, . . . , tn ≤ 0) )

end
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procedure CongChk*
begin

if ∃xj , xk :
xj = TermDef (f, [t1, . . . , tm]) ∧
xk = TermDef (f, [s1, . . . , sm]) ∧
∀i ∈ 1..m. Deref(ti − si) = 0 ∧
Deref(xj − xk) 6= 0

then
for each i ∈ 1..m do

(δl, δu) := DeReason(ti − si, (0, 0))
pi := DePurify(ti − si)
P := P ∪ ReasonComb(pi ≤ 0, δu)

∪ ReasonComb(−pi ≤ 0, δl)
t := DePurify(xj − xk)
P := P ∪ ( t ≤ 0,PCong,

(p1 ≤ 0,−p1 ≤ 0, . . . , pn ≤ 0,−pn ≤ 0) )
∪ ( −t ≤ 0,PCong,
(−p1 ≤ 0, p1 ≤ 0, . . . ,−pn ≤ 0, pn ≤ 0) )

pick fresh reason variable α
Υ := Υ ∪ {α}
Π(α) := t ≤ 0
AddEquality*(xj − xk = 0, (−α, α))
CongChk*()

end
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procedure DePurify
input

c +
∑
i∈I cixi : linear term

begin
t := c
for each i ∈ I do

if xi = TermDef (f, [t1, . . . , tm]) then
for each j ∈ 1..m do
sj := DePurify(tj)

t := t+ cif(s1, . . . , sm)
else
t := t+ cixi

end

Figure 7.11: Instrumented version of CLP(LI+UIF)
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Procedures Initialize*, Substitute*, Pivot*, and EnQueue* These procedures also update instru-
mented data structures along with the actions performed by the corresponding original procedures. If a
variable is not yet part of the solved form then Initialize* calls Initialize to add the variable in the
solved form and initialize all the reason terms corresponding to the variables to 0. Substitute* takes
three parameters. The first two parameters are used to call Substitute, which does the substitution. The
last one is a reason term pair δp that encodes the linear combinations of input inequalities that derives the
substitution term. ReasonSubstitute is called to update ∆ to reflect of the changes in the solved form.
Pivot* calls Pivot along with the same input parameters and then updates ∆ to reflect of the changes in
the solved form by calling ReasonSubstitute at lines 2–4. EnQueue* takes as input a reason term pair
along with the linear equality to be added into solved form. Now queue stores a pairs of linear equalities
and reason term pairs.

Procedures ScaleReasonPair, ReasonSubstitute, DeReason, and OptimaReason These proce-
dures are added to instrumented CLP(Q) to process reason terms. ScaleReasonPair takes a reason term
pair (δl, δu) and a rational number λ and returns the scaler product of λ and the reason term pair. If λ is
negative then δl and δu exchange their places and are scaled by the absolute value of λ.

ReasonSubstitute is called each time a variable xm is substituted with a term. The reason term pair
δp that derives the equality between xm and the substituted term is also passed as the second parameter to
ReasonSubstitute. This procedure iterate over all variables of the solved form and updates ∆ to reflect
changes in the solved form.

DeReason is called along with Deref by the entry procedures of instrumented CLP(Q). Deref
returns a term that is less than or equal to zero and is implied by input atom to the entry procedures and
the solved form. DeReason returns a reason term pair that derives the (in)equality returned by Deref.

If RepairUp* or RepairLow* finds that a bound is imposed on a basis variable xb by the variables
appearing in its definition then OptimaReason is called to obtain the reason term that derives the bound.

Procedures AddEquality* and AddInequality* These procedures are entry procedures of the instru-
mented CLP(Q). At the tail of the entry procedures the code for adding equalities into solved form that are
stored in queue is modified to also pass the reason term pairs that derives the equalities to AddEquality*
at lines 20 and 25 respectively.

AddEquality* takes a linear equality and a reason term pair as input. At line 1, DeReason is called
to compute a reason term pair that derives dereferenced equality. If the dereferencing leads to unsatisfiability
detection then at lines 6 or 8 an exception is thrown. This exception contains a reason term that derives 1 ≤ 0.
At lines 11 and 15, a call to Substitute* is made. Just before these calls at lines 10 and 14, we compute
the reason term pairs that derives the substitutions.

AddInequality* takes a linear inequality and a reason term as input. At line 1, DeReason is called
to compute a reason term δu that derives the dereferenced inequality. DeReason returns a pair but we are
only interested in the second component of the pair and the first component is not used. If the dereference
inequality implies unsatisfiability then at lines 6 an exception containing a reason term that derives 1 ≤ 0
is thrown. At line 8 and 10, UpdateBound* is called with a linear inequality passed as first parameter
and a reason term as the second parameter that derives the linear inequality. At line 12, a slack variable is
introduced and we set reason of its lower bound as δu at line 15. We also introduced an equality between
the slack variable and negation of dereferenced term and added to the solved form at lines 16–22. For this
equality, we introduce the reason term pair (0, 0) as discussed earlier.

Procedures UpdateBound*, UpdateLower*, and UpdateUpper* UpdateBound* takes an addi-
tional reason term as the second parameter along with the linear inequality that it derives. At lines 2 and 5,
UpdateUpper* and UpdateLower* are called with additional third parameter that is a scaled value of
the input reason term and derives the new bound. At line 12, Substitute* is called. So, we compute at line
11 the reason term pair that derives this substitution and pass it to the Substitute* as second parameter.
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We will only discuss instrumentation in UpdateUpper*. The instrumentation in UpdateLower* is
similar. UpdateUpper* takes a reason term that derives the new lower bound as an additional parameter.
If the unsatisfiability at line 1 is true then an exception is thrown containing a reason term that derives that
the new lower bound is greater than already existing upper bound in the solved form at line 2. If the new
lower bound and the already existing upper bound are equal then an equality is added along with a reason
term pair that derives the equality at line 4. The rest of the procedure is unmodified.

Procedures RepairBasis*, RepairVar*, RepairUp*, RepairLow*, PushLow*, and PushUp*
There are no significant modifications in RepairBasis*, RepairVar* PushLow*, and PushUp*. They
are reproduced because they call the procedures that are modified.

We will only discuss instrumentation in RepairUp*. The instrumentation in RepairLow* is similar.
At line 9, OptimaReason is called to compute the reason term that implies the lower bound on the input
basis variable by the variables appearing in its definition. If the upper bound on the input basis variable is
equal to this lower bound then an equality is added along with a reason term pair that derives the equality
at line 11. Otherwise, an exception containing the reason term that derives 1 ≤ 0 is thrown.

Instrumentation of CLP(LI+UIF) extension ProofGen takes a conjunction of atoms and adds them
into the solved form by calling AddConstraint*. If the input conjunction is unsatisfiable, the one of the
calls to AddConstraint* throws an exception containing a reason term that derives 1 ≤ 0. This exception
is caught at line 4 and a proof tree the proves unsatisfiability is returned at line 5.

ReasonComb and DePurify are additional procedures to support proof generation. ReasonComb
takes an inequality and a reason term that derives the inequality as input and returns an edge of the proof
tree. DePurify is an inverse of Purify. DePurify takes a linear term as input and replaces variables
appearing in the term with the corresponding term definitions from TermDef .

AddConstraint* takes an atom t ./ 0 as input. AddConstraint* introduces a fresh reason variable α,
adds this fresh reason variable to Υ, and updates Π(α) with t ≤ 0 at lines 1–3. At line 5, AddConstraint*
adds an edge in the proof tree expressing that t ≤ 0 is derived by PHyp rule. If ./ is an equality then
AddConstraint* also adds an edge in the proof tree expressing that −t ≤ 0 is derived by PHyp rule
at line 8. The calls to AddEquality* and AddInequality* are instrumented with second parameters
containing the reason terms that derive the atoms passed as first parameters.

If the condition for applying PCong rule is true then at lines 7–16 CongChk* update the proof tree
by recording the application of PCong rule. In the loop at line 7, proof edges that derive antecedents of
PCong rule are added to the proof tree and then at line 13 the proof tree is added with the proof edges
corresponding to application of the proof rule. Due to the application of PCong rule, a fresh equality will be
added to the solved form and we need to track its contributions in subsequent derivations. So CongChk*
introduces a fresh reason variable and passes it to the AddEquality* at lines 17–20.

Lazy instrumentation

The instrumentation adds extra computation that may lead to significant increase in running
time of CLP(LI+UIF). All operations of the instrumentation are done by ScaleReasonPair,
ReasonSubstitute, and DeReason. These procedures can be implemented lazily since their results
are not required for any decision in the instrumented CLP(LI+UIF). If an unsatisfiability is detected only
then we may need to evaluate the results of these procedures. So, we can have a CLP(LI+UIF) that does
not have addition running time and if we need a proof of the unsatisfiability only then we do extra work.
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Chapter 8

Solving recursion-free Horn clauses
over LI+UIF

Constraint solving is a vehicle of software verification that provides symbolic reasoning techniques for dealing
with assertions describing program behaviors. In particular, abstraction and refinement techniques greatly
benefits from applying constraint solving, where interpolation techniques [3,15,44,46,65,66] play a prominent
role today.

Certain abstraction refinement tasks cannot be directly expressed as an interpolation question. For ex-
ample, abstraction refinement for imperative programs with procedures [46], for higher order functional pro-
grams [57,81], require additional pre-processing that splits discovered spurious counterexamples in multiple
ways and applies interpolation on each splitting. Alternatively, as exemplified by an abstraction refinement
procedure for multi-threaded programs [37], this preprocessing and series of interpolation computations can
be expressed using a single constraint that consists of a finite set of recursion-free Horn clauses interpreted
over the logical theory that is used to describe program behaviors.

In this chapter, we present an algorithm for solving Horn clauses over a combination of linear arith-
metic, uninterpreted functions, and queries. Our algorithm opens new possibilities for the development of
abstraction refinement schemes by providing the verification method designer an expressive, declarative way
to specify what the refinement procedure needs to compute using Horn clauses. Several existing abstraction
refinement schemes can directly benefit from our algorithm, e.g., for programs with procedures [44, 46], for
multi-threaded programs [37], and for higher-order functional programs [57,81,83].

Technically, we present a generalization of partial interpolants, which are presented in chapter 6, to
partial solutions for recursion-free Horn clauses, i.e., clauses that do not have cyclic dependencies between
the occurring queries. Our algorithm follows a general scheme of combining interpolation procedures for
different theories [85].

This chapter is organized as follows. Section 8.1 provides a formal definition of recursion-free Horn
clauses and their solutions. We present the solving algorithm in Section 8.2 and discuss its correctness and
complexity in Section 8.3. Section 8.4 illustrates how abstraction refinement tasks yield sets of Horn clauses
and Section 8.5 illustrates how these sets of clauses are solved using our algorithm.

8.1 Recursion-free Horn clauses

We present auxiliary functions and recursion-free Horn clauses over linear arithmetic and uninterpreted func-
tions. We use the notation for the theory of linear arithmetic and uninterpreted functions from Section 2.2.
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Syntax

We assume countable sets of variables X , with x ∈ X , and predicate symbols P, with p ∈ P. Let the arity
of predicate symbols be encoded in their names. Recall A is an atom in TLI+UIF. The following grammar
defines Horn clauses.

queries 3 Q ::= p(x , . . . , x )

bodies 3 B ::= A | Q | B ∧B
heads 3 H ::= A | Q | false

Horn clauses 3W ::= B → H

Each Horn clause is implicitly universally quantified over the variables that appear in the clause.
A set of Horn clauses defines a binary dependency relation on predicate symbols. A predicate symbol

p ∈ P depends on a predicate symbol pi ∈ P if there is a Horn clause

· · · ∧ pi(. . . ) ∧ · · · → p(. . . ) ,

i.e., when p appears in the head of a clause that contains pi in its body. A set of Horn clauses is recursion-free
if the corresponding dependency relation does not contain any cycles. A set of Horn clauses is tree-like if 1)
each predicate symbol appears at most once in the set of bodies and at most once in the set of heads of the
given clauses, 2) there is no clause with an atom in its head, 3) there is one clause whose head is false.

For the rest of the chapter, we consider a finite set of Horn clauses HC that satisfies the following
conditions. We assume that each variable occurs in at most one clause and that all variables occurring
in each query are distinct. These assumptions simplify our presentation and can be established by an
appropriate variable renaming and additional (in)equality constraints. Furthermore, we assume that HC is
recursion-free and tree-like. The recursion-free assumption is critical for ensuring termination of the solving
algorithm presented in this paper. The tree-like assumption simplifies our presentation without imposing
any restrictions on the algorithm’s applicability. Any finite set of recursion-free clauses can be transformed
into the tree-like form. The solution for the computed tree-like form can be translated into the solution for
the original set of clauses.

Auxiliary definitions

We assume the following standard functions. For dealing with trees, let nodes(T ) be the nodes of a tree T ,
root(T ) be the root node of T , leaves(T ) be the leaves of T , and subtree(o, T ) be the subtree of T rooted in
its node o.

Let mgu((Q1, . . . , Qn), (Q′1, . . . , Q
′
n)) be the most general unifier between two sequences of queries if it

exists, where a unifier is a solution to the conjunction of equations Q1 = Q′1 ∧ · · · ∧Qn = Q′n. We write tσ
for the application of a unifier σ on a term t, and we assume a canonical extension of the unifier application
to constraints and their combination into sequences and sets.

Semantics

Let Γ be a function from queries to constraints. We assume that no two queries in the domain of Γ have
an equal predicate symbol. We use this function to transform the set of Horn clauses containing queries
into a set of query-free clauses as follows. In each clause W ∈ HC we replace each query Q in W with the
constraint Γ(Q′)σ where Q′ is in the domain of Γ, queries Q′ and Q have an equal predicate symbol, and
σ = mgu(Q,Q′). Let HCΓ be the resulting set of clauses. Γ is a solution for HC if each clause in HCΓ is
a valid implication, and the following condition holds for the uninterpreted function symbols occurring in
the range of the solution function. An uninterpreted function symbol f can occur in the solution Γ(Q) for
a query q if f appears in a Horn clause from HC whose head depends on Q and in a Horn clause from HC,
whose head does not depend on Q.

8.2 Algorithm

Our goal is an algorithm for computing solutions for recursion-free Horn clauses over linear arithmetic,
uninterpreted functions, and queries. This section presents our solving algorithm HcSolve.
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algorithm HcSolve
input
HC : Horn clauses

vars
R : resolution tree
C : conjunctive constraint
P : proof tree
A : annotated proof tree

output
Γ : solution

begin
R := exhaustively apply RInit and RStep on HC
C :=

∧
leaves(R)

if exists P inferred from C such that P proves |= C → 1 ≤ 0 then
A := exhaustively apply HcHyp, HcComb, and HcCong on P
false [ Π ] := root(A)
Γ := {(o, S) | (o, S) ∈ Π ∧ o 6∈ leaves(R) ∪ {false}}
return Γ

else
return “no solution exists”

end.

Figure 8.1: Solving algorithm HcSolve. Line 5 extracts the partial solution Π annotating the root node of
A. Line 6 obtains Γ by restricting the domain of Π to intermediate nodes of R, which are labeled by queries.

See Figure 8.1. The algorithm HcSolve consists of the following main steps. First, we compute a
resolution tree R on the given set of Horn clauses. Next, we take a conjunction C of the leaves of the
resolution tree and attempt to find a proof of its unsatisfiability. If no such proof can be found, then we
report that there is no solution for the given set of Horn clauses. Otherwise, we proceed with the given proof
by annotating its steps. Each intermediate atom occurring in proof tree is annotated by a function that
assigns constraints to nodes of the resolution tree. Finally, the annotation of the root of the proof yields a
solution for the given set of Horn clauses.

In the rest of this section we present the main steps of HcSolve.

Resolution tree

We put together individual Horn clauses from HC by applying resolution inference. A resolution tree keeps
the intermediate results of this computation. An edge of a resolution tree is a sequence of queries and atoms
that is terminated by a query or false. Each edge consists of n > 2 elements. The first n − 1 elements
represent the children nodes and the n-th element represents the parent node.

Given the set of Horn clauses HC, we compute the corresponding resolution tree by applying the inference
rules shown in Figure 8.2. Each rule takes as a premise a set of resolution trees together with a Horn clause
and infers an extended resolution tree.

The rule RInit initiates the resolution tree computation by inferring a tree from each clause A1 ∧ · · · ∧
Am → H that does not have any queries in its body. The atoms A1, . . . , Am become the children of the
node H. The rule RStep extends a set of trees computed so far using a Horn clause. The extension is only
possible if the root nodes of the respective trees can be unified with the queries occurring in the body of
the clause. This restriction is formalized by the side condition requiring the existence of the most general
unifier σ. The computed unifier is applied on the trees and the clause before they are combined into an
extended resolution tree.

The resolution tree computation terminates since HC is recursion-free. Let R be the resulting tree. We
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RInit
A1 ∧ · · · ∧Am → H

{(A1, . . . , Am, H)}

RStep

R1 . . . Rn
Q1 ∧ · · · ∧Qn ∧A1 ∧ · · · ∧Am → H

R1σ ∪ · · · ∪Rnσ ∪
{(Q1, . . . , Qn, A1, . . . , Am, H)}σ

σ = mgu((root(R1), . . . , root(Rn)), (Q1, . . . , Qn))

Figure 8.2: Resolution tree inference rules RInit and RStep.

consider the set of leaves of the tree, and take their conjunction C =
∧

leaves(R).

For a node o of the resolution tree, we define InSmb(o) to be variables and uninterpreted function symbols
that occur in atoms in the leaves of the subtree of o, and let OutSmb(o) be variables and uninterpreted
function symbols that occur in the leaves outside of the subtree of o. Formally, we have

InSmb(o) =
⋃
{Smb(o′) | o′ ∈ leaves(subtree(o,R))} ,

OutSmb(o) =
⋃
{Smb(o′) | o′ 6∈ leaves(subtree(o,R))} .

The following theorem allows a transition from the clausal structure to the conjunction of atoms. Its
proof follows directly from the definition of RInit and RStep.

Theorem 8. The set of Horn clauses HC is satisfiable if and only if the conjunction C is not satisfiable.

Proof tree

Our algorithm attempts to compute a proof tree P that proves unsatisfiability of C using the proof rules
presented in Section 2.2. If no proof can be found then our algorithm reports that no solution exists.

Annotated proof tree

We construct a solution for the given Horn clauses through an iterative process, where the intermediate
results are called partial solutions. Each partial solution is parameterized by a constraint F . An F -partial
solution Π for the resolution tree R is a function from nodes of the resolution tree, nodes(R), to constraints
that satisfies the following conditions.

(∀o ∈ leaves(R) : |= o→ Π(o)) ∧ (PS1)

(∀(o1, . . . , om, o) ∈ R : |= Π(o1) ∧ · · · ∧Π(om)→ Π(o)) ∧ (PS2)

(|= Π(false)→ F ) ∧ (PS3)

(∀o ∈ nodes(R) : Smb(Π(o)) ⊆ (InSmb(o) ∩OutSmb(o)) ∪ Smb(F )) (PS4)

Given the proof tree P , we annotate its nodes with partial solutions using the rules and auxiliary functions
shown in Figure 8.3. Our annotation uses constraints of the form of solution constraints, introduced in
Section 6.3. The rule HcHyp annotates each leaf of the proof tree with the result of applying the func-
tion SolHyp. The annotation is enclosed by a pair of square brackets. The rule HcComb shows how
to annotate a parent node when provided with an annotation of its children in case when the parent was
obtained by a non-negatively weighted sum. The parent annotation is computed by SolComb. Similarly to
HcComb, the rule HcCong annotates parent nodes obtained by the congruence rule.

We annotate P and obtain an annotated proof tree A. Our algorithm HcSolve uses the annotation of
the root of A to derive a solution for the Horn clauses HC.
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HcHyp
t ≤ 0 [ SolHyp(t ≤ 0) ]

HcComb
t1 ≤ 0 [ Π1 ] . . . tn ≤ 0 [ Πn ]

λ1t1 + · · ·+ λntn ≤ 0 [ SolComb(Π1, . . . ,Πn, λ1, . . . , λn) ]

HcCong

t1 − s1 ≤ 0 [ Π1 ] s1 − t1 ≤ 0 [ Π′1 ]
...

...
tn − sn ≤ 0 [ Πn ] sn − tn ≤ 0 [ Π′n ]

f(t1, . . . , tn)− f(s1, . . . , sn) ≤ 0 [SolCong(f(t1, . . . , tn), f(s1, . . . , sn),Π1, . . . ,Πn,Π
′
1, . . . ,Π

′
n)]
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function SolHyp
input
t ≤ 0 : inequality term/node in R

begin
for each o ∈ nodes(R) do

if t ≤ 0 ∈ leaves(subtree(o,R)) then
Π(o) := 〈[], t〉

else
Π(o) := 〈[], 0〉

return Π
end
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function SolComb
input

Π1, . . . ,Πn : partial solutions
λ1, . . . , λn : constants

begin
for each o ∈ nodes(R) do

for each i ∈ 1..n do
〈Li, ti〉 := Πi(o)

Π(o) := 〈L1 • · · · • Ln, λ1t1 + · · ·+ λntn〉
return Π

end
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function SolCong
input
f(t1, . . . , tn), f(s1, . . . , sn) : terms
Π1, . . . ,Πn, Π′1, . . . ,Π

′
n : partial solutions

begin
for each o ∈ nodes(R) do

for each i ∈ 1..n do
〈Li, pi〉 := Πi(o)
〈L′i, p′i〉 := Π′i(o)

(C,D, p) :=
match Smb(f(t1, . . . , tn)) ⊆ OutSmb(o),Smb(f(s1, . . . , sn)) ⊆ OutSmb(o) with

| true, true -> (
∧n
i=1(pi ≤ 0 ∧ p′i ≤ 0), true, 0 )

| true, false -> (
∧n
i=1 pi + p′i ≤ 0,

∧n
i=1−pi − p′i ≤ 0, f(s1 + p1, . . . , sn + pn)− f(s1, . . . , sn) )

| false, true -> (
∧n
i=1 pi + p′i ≤ 0,

∧n
i=1−pi − p′i ≤ 0, f(t1, . . . , tn)− f(t1 + p′1, . . . , tn + p′n) )

| false, false -> ( true,
∧n
i=1(ti − si − pi ≤ 0 ∧ si − ti − p′i ≤ 0), f(t1, . . . , tn)− f(s1, . . . , sn) )

Π(o) := 〈L1 • · · · • Ln • L′1 • · · · • L′n • (C,D), p〉
return Π

end

Figure 8.3: Rules for annotating a resolution tree R.
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8.3 Correctness and complexity

This section presents the correctness and complexity properties of our algorithm and provides the corre-
sponding proofs.

The correctness of our algorithm follows from Proposition 1 and Theorems 9–11 below. First, we establish
that a 1 ≤ 0-partial solution, which satisfies Equations (PS1)–(PS4), defines a solution for the given Horn
clauses.

Theorem 9. 1 ≤ 0-partial solution defines a solution of the Horn clauses.

Proof. Due to (PS1)–(PS3), a 1 ≤ 0-partial solution satisfies the Horn clauses. Since, Smb(1 ≤ 0) is empty,
(PS4) is equivalent to the restriction on symbols appearance for a solution of the Horn clauses.

Now, we show that the annotations computed by the rules in Figure 8.3 satisfy the partial solution
conditions in Equations (PS1)–(PS4). This step relies on the following inductive invariant.

Definition 4 (t ≤ 0-annotation invariant). Π is t ≤ 0-annotation invariant for the resolution tree R if there
exists r ≥ 0 such that for each o ∈ nodes(R) the following conditions hold.

• Π(o) is a solution constraint such that

Π(o) = 〈((C1, D1), . . . , (Cr, Dr)), p〉. (AI-1)

• If o ∈ leaves(R) then (
∀i ∈ 1..r : |= o ∧

i−1∧
k=1

Dk → Ci

)
∧ (AI-2a)

(
|= o ∧

r∧
k=1

Dk → p ≤ 0

)
. (AI-2b)

• If (o1, . . . , om, o) ∈ R and ∀j ∈ 1..m : Π(oj) = 〈((Cj1 , D
j
1), . . . , (Cjr , D

j
r)), p

j〉 then(
∀i ∈ 1..r : |=

(
i∧

k=1

m∧
l=1

Clk

)
∧

i−1∧
k=1

Dk → Ci

)
∧ (AI-3a)

 ∀i ∈ 1..r
∀j ∈ 1..m

: |=

(∧
l∈1..m\{j} C

l
i

)
∧(∧i−1

k=1

∧m
l=1 C

l
k

)
∧
∧i
k=1Dk → Dj

i

 ∧ (AI-3b)

(
|=

(
r∧

k=1

m∧
l=1

Clk

)
∧

r∧
k=1

Dk → p− p1 − · · · − pm ≤ 0

)
. (AI-3c)

• If o = false then

p = t ∧ ∀i ∈ 1..r : Di = Ci = true. (AI-4)

• Conditions on symbol appearance:

Smb({C1, . . . , Cr, D1, . . . , Dr, p ≤ 0}) ⊆ InSmb(o) ∧ (AI-5)

Smb({C1, . . . , Cr, D1, . . . , Dr, t− p ≤ 0}) ⊆ OutSmb(o). (AI-6)

Theorem 10. Each t ≤ 0-annotation invariant is a t ≤ 0-partial solution.

Proof. Let Π be a t ≤ 0-annotation invariant and let o ∈ nodes(R). Then, Π(o) satisfies (AI-1)–(AI-6). We
will prove that Π is t ≤ 0-partial solution by showing (PS3),(PS4), (PS1), and (PS2).
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(PS3): If o = false then (AI-4) directly implies (PS3).

(PS4): Due to (AI-5), Smb(Π(o)) ⊆ InSmb(o). Due to (AI-6), Smb(t− p ≤ 0) ⊆ OutSmb(o). Now, let us
assume there is a subterm s in p such that Smb(s) * OutSmb(o)∪ Smb(t ≤ 0) and s does not have + as the
outermost function symbol. Therefore, s must be a subterm of t−p. Therefore, Smb(t−p ≤ 0) * OutSmb(o).
Hence, we obtain a contradiction. Therefore, Smb(p ≤ 0) ⊆ OutSmb(o) ∪ Smb(t ≤ 0). So we deduce
Smb(Π(o)) ⊆ InSmb(o) ∩ (OutSmb(o) ∪ Smb(t ≤ 0)). Hence, (PS4) holds.

(PS1): Let o ∈ leaves(R). First, we will prove the following validity for all i ∈ 0..r by induction.

|= o ∧
∧r−i
k=1Dk → 〈( (Cr−i+1, Dr−i+1), . . . , (Cr, Dr) ), p〉

Base case: i = 0. (AI-2b) implies |= o ∧
∧r
k=1Dk → 〈(), p〉.

Induction step: r > i > 0. By induction hypothesis, we have

|= o ∧
∧r−i
k=1Dk → 〈( (Cr−i+1, Dr−i+1), . . . , (Cr, Dr) ), p〉.

By separating Dr−i, we obtain

|= o ∧
∧r−i−1
k=1 Dk → (Dr−i → 〈( (Cr−i+1, Dr−i+1), . . . , (Cr, Dr) ), p〉).

Due to the (AI-2a), |= o ∧
∧r−i−1
k=1 Dk → Cr−i. Therefore,

|= o ∧
∧r−i
k=1Dk → (Cr−i ∧ (Dr−i → 〈( (Cr−i+1, Dr−i+1), . . . , (Cr, Dr) ), p〉)),

which is equivalent to

|= o ∧
∧r−i−1
k=1 Dk → 〈( (Cr−i, Dr−i), . . . , (Cr, Dr) ), p〉.

From our proved validity, we obtain for i = r:

|= o→ 〈( (C1, D1), . . . , (Cr, Dr) ), p〉.

Hence, (PS1) holds.

(PS2): Let (o1, . . . , om, o) ∈ R. First, we will prove the following validity for all i ∈ 0..r by induction.

|=
∧m
j=1〈( (Cjr−i+1, D

j
r−i+1), . . . , (Cjr , D

j
r) ), pj〉 ∧(∧r−i

k=1

∧m
l=1 C

l
k

)
∧
∧r−i
k=1Dk → 〈( (Cr−i+1, Dr−i+1), . . . , (Cr, Dr) ), p〉

Base case: i = 0. (AI-3c) implies

|=
∧m
j=1〈(), pj〉 ∧

(∧r
k=1

∧m
l=1 C

l
k

)
∧
∧r
k=1Dk → 〈(), p〉,

which is the base case.
Induction step: r > i > 0. Consider the left hand side of induction step i+ 1,∧m

j=1〈( (Cjr−i, D
j
r−i), . . . , (C

j
r , D

j
r) ), pj〉 ∧

(∧r−i−1
k=1

∧m
l=1 C

l
k

)
∧
∧r−i−1
k=1 Dk.

By unfolding definition of a solution constraint once,∧m
j=1(Dj

r−i → 〈( (Cjr−i+1, D
j
r−i+1), . . . , (Cjr , D

j
r) ), pj〉) ∧(∧r−i

k=1

∧m
l=1 C

l
k

)
∧
∧r−i−1
k=1 Dk.
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Due to (AI-3a), the above formula implies Cr−i.
Now lets take conjunction of the above formula and Dr−i,∧m

j=1(Dj
r−i → 〈( (Cjr−i+1, D

j
r−i+1), . . . , (Cjr , D

j
r) ), pj〉) ∧(∧r−i

k=1

∧m
l=1 C

l
k

)
∧
∧r−i
k=1Dk.

Due to (AI-3b), the above formula implies∧m
j=1(Dj

r−i → 〈( (Cjr−i+1, D
j
r−i+1), . . . , (Cjr , D

j
r) ), pj〉) ∧(∧r−i

k=1

∧m
l=1 C

l
k

)
∧
∧r−i
k=1Dk ∧

∧m
j=1D

j
r−i.

Therefore, ∧m
j=1〈( (Cjr−i+1, D

j
r−i+1), . . . , (Cjr , D

j
r) ), pj〉 ∧(∧r−i

k=1

∧m
l=1 C

l
k

)
∧
∧r−i
k=1Dk.

Due to the induction hypothesis, the above formula implies

〈( (Cr−i+1, Dr−i+1), . . . , (Cr, Dr) ), p〉.

So, we have proven that the left hand side of the induction step at i+ 1 implies

Cr−i ∧ (Dr−i → 〈( (Cr−i+1, Dr−i+1), . . . , (Cr, Dr) ), p〉),

which is the right hand side of the induction step at i+ 1.
From our proved validity, we obtain for i = r,

|=
∧m
j=1〈( (Cj1 , D

j
1), . . . , (Cjr , D

j
r) ), pj〉 → 〈( (C1, D1), . . . , (Cr, Dr) ), p〉.

Hence, (PS2) holds.

The following three lemmas will be used to prove Theorem 11.

Lemma 4. Let Π be t ≤ 0-annotation invariant and let Π′ be t′ ≤ 0-annotation invariant. Let Π1 and Π1

be a function from R to constraints such that

∀o ∈ nodes(R) : Π(o) = 〈L, p〉 ∧Π′(o) = 〈L′, 〉 → Π1(o) = 〈L • L′, p〉

and
∀o ∈ nodes(R) : Π(o) = 〈L, p〉 ∧Π′(o) = 〈L′, 〉 → Π2(o) = 〈L′ • L, p〉.

Π1 and Π2 are t ≤ 0-annotation invariants.

Proof. We will only deal with Π1. The proof for Π2 is similar.
Let o ∈ nodes(R), Π(o) = 〈( (C1, D1), . . . , (Cn, Dn) ), p〉, and Π′(o) =

〈( (Cn+1, Dn+1), . . . , (Cn+m, Dn+m) ), 〉. Then, Π1(o) = 〈( (C1, D1), . . . , (Cn+m, Dn+m) ), p〉. Π1(o)
maps to a solution constraint that has prefix sequence of length n + m. Therefore, (AI-1) holds.
(AI-2a)–(AI-3c) for Π1(o) are satisfied since these conditions have stronger left hand sides compare to the
corresponding conditions for Π(o) and Π′(o). (AI-4)–(AI-6) are directly holds.

The above lemma can be applied multiple times on a t ≤ 0-annotation invariant satisfying Π to show
that a prefix extension in the above way does not violate t ≤ 0-annotation invariant.

Lemma 5. Let (o1, . . . , om, o) ∈ R. If Smb(f(t1, . . . , tn)) ⊆ OutSmb(o) then ∀l ∈ 1..m :
Smb(f(t1, . . . , tn)) ⊆ OutSmb(ol).

The proof of above lemma is left for the reader to verify.
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Lemma 6. Let (o1, . . . , om, o) ∈ R. If Smb(f(t1, . . . , tn)) * OutSmb(o) then either of the following cases is
true.

(1) ∀l ∈ 1..m : Smb(f(t1, . . . , tn)) ⊆ OutSmb(ol)

(2) ∃j : Smb(f(t1, . . . , tn)) * OutSmb(oj) ∧
∀l ∈ 1..m \ {j} : Smb(f(t1, . . . , tn)) ⊆ OutSmb(ol).

Proof. Since PComb does not allow introduction of terms that are not present in the input atoms, if
Smb(f(t1, . . . , tn)) * OutSmb(o) then Smb(f(t1, . . . , tn)) ⊆ InSmb(o) and there exist at least one child
node oj such that Smb(f(t1, . . . , tn)) ⊆ InSmb(oj).

If there are at least two children oj1 and oj2 such that Smb(f(t1, . . . , tn)) ⊆ InSmb(oj1) and
Smb(f(t1, . . . , tn)) ⊆ InSmb(oj2) then first case will be true.

If there is exactly one child oj such that Smb(f(t1, . . . , tn)) ⊆ InSmb(oj1) then second case will be
true.

Theorem 11. The annotation rules in Figure 8.3 compute annotation invariants.

Proof. We will proof that HcHyp computes annotation invariants as base case and HcComb and HcCong
inductively compute the annotation invariants.

HcHyp rule: Let Π = SolHyp(t ≤ 0). For each o ∈ R, Π(o) is 〈[], p〉, which implies r = 0 in the
Definition 4 with respect to Π. Therefore, (AI-1), (AI-2a), (AI-3a), and (AI-3b) hold, trivially.

Let o ∈ leaves(R). (AI-2b) holds since if o = (t ≤ 0) then p = t else p = 0.
Let (o1, . . . , om, o) ∈ R. If (t ≤ 0) is in the subtree of the node o then p = t. Since R is a tree, there

is j ∈ 1..m such that the subtree of oj contains (t ≤ 0). Therefore, pj = t and ∀l ∈ 1..m \ {j} : pl = 0.
Therefore, the right hand side of (AI-3b) is 0 ≤ 0. In other case,i.e., t ≤ 0 is not in subtree of node o, p = 0
and ∀j ∈ 1..m : pl = 0. Again the right hand side of (AI-3b) is 0 ≤ 0. Therefore, in both the cases (AI-3b)
holds.

Since all leaves are in the subtree rooted at the node false, (AI-4) is satisfied.
If (t ≤ 0) is in the subtree of o then p = t. Hence, p−t = 0. Therefore (AI-5) and (AI-6) hold. Otherwise,

i.e., if (t ≤ 0) is not in the subtree of o, then p = 0. Hence, p− t = −t. Therefore (AI-5) and (AI-6) holds.

HcComb rule: By the induction hypothesis, Πi is ti ≤ 0-annotation invariant for each i ∈ 1..n. Let
Π = SolComb(Π1, . . . ,Πn, λ1, . . . , λn). We show that Π is λ1t1 + · · ·+ λntn ≤ 0-annotation invariant. For
each i ∈ 1..n, we first construct Πi such that

∀o ∈ nodes(R) :


Π1(o) = 〈L1, p1〉

∧
...
∧

Πn(o) = 〈Ln, pn〉

→ Πi(o) = 〈L1 • · · · • Ln, pi〉.

Due to Lemma 4, Πi is ti ≤ 0-annotation invariant. SolComb constructs Π such that

∀o ∈ nodes(R) :


Π1(o) = 〈L, p1〉

∧
...
∧

Πn(o) = 〈L, pn〉

→ Π(o) = 〈L, λ1p1 + · · ·+ λnpn〉.

(AI-1), (AI-2a), (AI-3a), (AI-3b), and (AI-4) w.r.t. λ1t1 + · · ·+ λntn ≤ 0-annotation invariant are trivially
satisfied.
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Let o ∈ leaves(R). The left hand sides of (AI-2b) w.r.t. Π1(o), . . . ,Πn(o) are equal and they also equal to
the left hand side of (AI-2b) w.r.t. Π(o). The right hand side of (AI-2b) w.r.t. Π(o) is a linear combination
of the right hand sides of (AI-2b) w.r.t. Π1(o), . . . ,Πn(o). Therefore, (AI-2b) w.r.t. Π(o) holds. A similar
argument proves (AI-3c). Smb({p1 ≤ 0, . . . , pn ≤ 0}) ⊆ InSmb(o), therefore Smb(λ1p1 + · · · + λnpn) ⊆
InSmb(o). Hence, (AI-5) holds. A similar argument proves (AI-6).

HcCong rule: By the induction hypothesis, Πi is ti − si ≤ 0-annotation invariant and Π′i is ti − si ≤ 0-
annotation invariant for i ∈ 1..n. Let Π = SolCong(f(t1, . . . , tn), f(s1, . . . , sn),Π1, . . . ,Πn,Π

′
1, . . . ,Π

′
n).

We prove that Π is f(t1, . . . , tn)− f(s1, . . . , sn) ≤ 0-annotation invariant. For each i ∈ 1..n, we construct Πi

and Π′n such that

∀o ∈ nodes(R) :



Π1(o) = 〈L1, p1〉
∧
...
∧

Πn(o) = 〈Ln, pn〉
∧

Π′1(o) = 〈L′1, p′1〉
∧
...
∧

Π′n(o) = 〈L′n, p′n〉



→


Πi(o) = 〈 L1 • · · · • Ln•

L′1 • · · · • L′n, pi 〉
∧

Π′i(o) = 〈 L1 • · · · • Ln•
L′1 • · · · • L′n, p′i 〉

 .

Due to Lemma 4, Πi satisfies ti−si ≤ 0-annotation invariant and Π′i satisfies si−ti ≤ 0-annotation invariant
for i ∈ 1..n.

Let o ∈ nodes(R). Let Πi(o) = 〈( (C1, D1), . . . , (Cr, Dr) ), pi〉 and let Π′i(o) =
〈( (C1, D1), . . . , (Cr, Dr) ), p′i〉 for each i ∈ 1..n. SolCong returns Π such that Π(o) =
〈( (C1, D1), . . . , (Cr, Dr), (Cr+1, Dr+1) ), p〉, where Cr+1, Dr+1 and p are computed at line 5. At line
6 of function SolCong, match has four cases which we will lead to four or more cases distinction for
proving (AI-1)–(AI-6) w.r.t. f(t1, . . . , tn)− f(s1, . . . , sn) ≤ 0-annotation invariant. Now rest of the proof is
divided into proving each of the conditions.

(AI-1): Since Π maps all nodes of R to solution constraints that have prefix sequence of length r + 1,
(AI-1) holds.

(AI-5) and (AI-6): We show in the following four cases that Cr+1, Dr+1, and p satisfy (AI-5) and (AI-6).

(1) Smb(f(t1, . . . , tn)) ⊆ OutSmb(o) ∧ Smb(f(s1, . . . , sn)) ⊆ OutSmb(o) :

Let i ∈ 1..n. Due to the condition of this case, Smb(ti − si) ⊆ OutSmb(o). (AI-6) w.r.t. Πi(o) implies
Smb(ti − si − pi) ⊆ OutSmb(o). Therefore, Smb(pi) ⊆ OutSmb(o). Due to (AI-5) w.r.t. Πi(o),
Smb(pi) ⊆ InSmb(o). A similar argument proves Smb(p′i) ⊆ OutSmb(o) and Smb(p′i) ⊆ InSmb(o).
Therefore, Cr+1 satisfies (AI-5) and (AI-6) w.r.t. Π(o). Since, Dr+1 = true and p = 0, we do not need
to prove anything for them.

(2) Smb(f(t1, . . . , tn)) ⊆ OutSmb(o) ∧ Smb(f(s1, . . . , sn)) * OutSmb(o) :

Let i ∈ 1..n. Due to (AI-5) w.r.t. Πi(o) and Π′i(o), Smb(pi + p′i) ∈ InSmb(o). Due to (AI-6),
Smb(ti−si−pi) ∈ OutSmb(o) and Smb(si−ti−p′i) ∈ OutSmb(o) therefore Smb(−pi−p′i) ∈ OutSmb(o).
Therefore, Cr+1 and Dr+1 satisfy (AI-5) and (AI-6) of Π.

Smb(f(s1, . . . , sn)) * OutSmb(o) implies Smb(f(s1, . . . , sn)) ⊆ InSmb(o). Therefore,
Smb(si) ⊆ InSmb(o). Therefore, Smb(si + pi) ⊆ InSmb(o). Therefore, Smb(f(s1 + p1, . . . , sn + pn)−
f(s1, . . . , sn)) ⊆ InSmb(o). Hence, (AI-5) w.r.t. Π(o) holds. Due to conditions (AI-6) w.r.t. Πi(o),
Smb(ti − si − pi) ⊆ OutSmb(o). Since Smb(ti) ⊆ OutSmb(o), Smb(si + pi) ⊆ OutSmb(o). Therefore,
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Smb(f(t1, . . . , tn)− f(s1 + p1, . . . , sn + pn)) ⊆ OutSmb(o). Hence, (AI-6) w.r.t. Π(o) holds.

(3) Smb(f(t1, . . . , tn)) * OutSmb(o) ∧ Smb(f(s1, . . . , sn)) ⊆ OutSmb(o) :
A similar argument as in the previous case.

(4) Smb(f(t1, . . . , tn)) * OutSmb(o) ∧ Smb(f(s1, . . . , sn)) * OutSmb(o) :
Due to the condition of this case, Smb(f(t1, . . . , tn) − f(s1, . . . , sn)) ⊆ InSmb(o). Hence, p
satisfies (AI-5) and (AI-6) w.r.t. Π(o). Let i ∈ 1..n. Due to (AI-6) w.r.t. Πi(o) and
Π′i(o), Smb(ti − si − pi, si − ti − p′i) ⊆ OutSmb(o). Due to (AI-5) w.r.t. Πi(o) and Π′i(o),
Smb(pi, p

′
i) ⊆ InSmb(o). Due to the condition of this case, Smb(ti − si) ⊆ InSmb(o). Therefore,

Smb(ti − si − pi, si − ti − p′i) ⊆ InSmb(o). Hence, Dr+1 satisfies (AI-5) and (AI-6) w.r.t. Π(o). Since
Cr+1 = true, we do not have to prove anything for it.

(AI-2a) and (AI-2b): Let o ∈ leaves(R). In (AI-2a) w.r.t. Π(o), the implications for i ∈ 1..r are satisfied
due to (AI-2a) w.r.t. Π1(o) and we only prove r + 1th instantiation of the implications, i.e.,

|= o ∧
∧r
k=1Dk → Cr+1. (8.6)

We also prove condition (AI-2b) w.r.t. Π(o). There are again four cases.

(1) Smb(f(t1, . . . , tn)) ⊆ OutSmb(o) ∧ Smb(f(s1, . . . , sn)) ⊆ OutSmb(o)
Since Cr+1 =

∧n
i=1(pi ≤ 0 ∧ p′i ≤ 0), (AI-2b) w.r.t. Πi(o) and Π′i(o) imply (8.6). (AI-2b) w.r.t. Π(o)

is trivially satisfied.

(2) Smb(f(t1, . . . , tn)) ⊆ OutSmb(o) ∧ Smb(f(s1, . . . , sn)) * OutSmb(o)

Since Cr+1 =
∧n
i=1(pi + p′i ≤ 0), (AI-2b) w.r.t. Πi(o) and Π′i(o) imply (8.6). In this case,

Dr+1 =
∧n
i=1(−pi − p′i ≤ 0). Let i ∈ 1..n. The left hand side of (AI-2b) w.r.t. Π(o) im-

plies −pi − p′i ≤ 0 ∧ p′i ≤ 0 ∧ pi ≤ 0. So, pi = 0. Therefore, si + pi = si. Therefore,
f(s1 + p1, . . . , sn + pn)− f(s1, . . . , sn) ≤ 0, which is the right hand side of (AI-2b) w.r.t. Π(o). Hence,
(AI-2b) w.r.t. Π(o) holds.

(3) Smb(f(t1, . . . , tn)) * OutSmb(o) ∧ Smb(f(s1, . . . , sn)) ⊆ OutSmb(o)
A similar argument as in the previous case.

(4) Smb(f(t1, . . . , tn)) * OutSmb(o) ∧ Smb(f(s1, . . . , sn)) * OutSmb(o)
In this case, Cr+1 = true and Dr+1 =

∧n
i=1(ti−si−pi ≤ 0∧si− ti−p′i ≤ 0). (8.6) is trivially satisfied.

Left hand sides of (AI-2b) w.r.t. Πi and Π′i are equal, and their conjunction with Dr+1 is equal to
the left hand side of (AI-2b) w.r.t. Π(o). Therefore, the left hand side of (AI-2b) w.r.t. Π(o) implies∧n
i=1(ti−si−pi ≤ 0∧si− ti−p′i ≤ 0)∧

∧n
i=1(pi ≤ 0∧p′i ≤ 0). Therefore,

∧n
i=1(ti−si ≤ 0∧si− ti ≤ 0).

Therefore,
∧n
i=1 ti = si. Therefore, f(t1, . . . , tn) − f(s1, . . . , sn) ≤ 0, which is the right hand side of

(AI-2b) w.r.t. Π(o). Hence, (AI-2b) w.r.t. Π(o) holds.

(AI-3a), (AI-3b) and (AI-3c): Let (o1, . . . , om, o) ∈ R. For each l ∈ 1..m, let

Πi(o
l) = 〈( (Cl1, D

l
1), . . . , (Clr, D

l
r) ), pli〉, Π′i(o

l) = 〈( (Cl1, D
l
1), . . . , (Clr, D

l
r) ), p

l′
i 〉, and Π(ol) =

〈( (Cl1, D
l
1), . . . , (Clr, D

l
r) ), pl〉. In (AI-3a) w.r.t. Π(o), the implications for i ∈ 1..r are satisfied due to

(AI-3a) w.r.t. Π1(o). We only prove r + 1th instantiation of the implications, i.e.,(∧r+1
k=1

∧m
l=1 C

l
k

)
∧
∧r
k=1Dk → Cr+1
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By reorganizing the above formula,∧m
l=1 C

l
r+1 ∧

((∧r
k=1

∧m
l=1 C

l
k

)
∧
∧r
k=1Dk

)
→ Cr+1

Due to (AI-3b) w.r.t. Π1(o), . . . ,Πn(o) and Π′1(o), . . . ,Π′n(o), we need to prove the following formula in order
to prove the formula above.∧m

l=1 C
l
r+1 ∧

∧n
i=1

(
pi − p1

i − · · · − pmi ≤ 0 ∧
p′i − p

1′
i − · · · − p

m′
i ≤ 0

)
→ Cr+1 (8.7)

In (AI-3b) w.r.t. Π(o), the implications for i ∈ 1..r are satisfied due to (AI-3b) w.r.t. Π1(o). We only
prove r + 1th instantiations of the implications, i.e.,

∀j ∈ 1..m : |=
(∧

l∈1..m\{j} C
l
r+1

)
∧(∧r

k=1

∧m
l=1 C

l
k

)
∧
∧r+1
k=1Dk → Dj

r+1.

By reorganizing the above formula,

∀j ∈ 1..m : |=
(∧

l∈1..m\{j} C
l
r+1

)
∧Dr+1 ∧((∧r

k=1

∧m
l=1 C

l
k

)
∧
∧r
k=1Dk

)
→ Dj

r+1.

Due to (AI-3b) w.r.t. Π1(o), . . . ,Πn(o) and Π′1(o), . . . ,Π′n(o), we need to prove the following formula in order
to prove the formula above.

∀j ∈ 1..m : |=
(∧

l∈1..m\{j} C
l
r+1

)
∧Dr+1 ∧∧n

i=1

(
pi − p1

i − · · · − pmi ≤ 0 ∧
p′i − p

1′
i − · · · − p

m′
i ≤ 0

)
→ Dj

r+1

(8.8)

(AI-3c) w.r.t. Π(o) is

|=
(∧r+1

k=1

∧m
l=1 C

l
k

)
∧
∧r+1
k=1Dk → p− p1 − · · · − pm ≤ 0

By reorganizing the above formula,

|=
∧m
l=1 C

l
r+1 ∧Dr+1 ∧

((∧r
k=1

∧m
l=1 C

l
k

)
∧
∧r
k=1Dk

)
→ p− p1 − · · · − pm ≤ 0

Due to (AI-3b) w.r.t. Π1(o), . . . ,Πn(o) and Π′1(o), . . . ,Π′n(o), we need to prove the following formula in order
to prove the formula above.

|=
∧m
l=1 C

l
r+1 ∧Dr+1 ∧∧n

i=1

(
pi − p1

i − · · · − pmi ≤ 0 ∧
p′i − p

1′
i − · · · − p

m′
i ≤ 0

)
→ p− p1 − · · · − pm ≤ 0

(8.9)

We prove (8.7), (8.8), and (8.9) for the following ten cases, which are consequence of Lemmas 5 and 6.
In each case, we will present the table of values of Cr+1, Dr+1, p, and, for each l ∈ 1..m, Clr+1, Dl

r+1 and
pl. Then, provide proves of (8.7), (8.8), and (8.9) for the given values.

(1) Smb(f(t1, . . . , tn)) ⊆ OutSmb(o) ∧ Smb(f(s1, . . . , sn)) ⊆ OutSmb(o) :

∀l ∈ 1..m

Cr+1 =
∧n
i=1(pi ≤ 0 ∧ p′i ≤ 0) Clr+1 =

∧n
i=1(pli ≤ 0 ∧ pl′i ≤ 0)

Dr+1 = true Dl
r+1 = true

p = 0 pl = 0

(8.8) and (8.9) are trivially satisfied. Placing values of Clr+1 in left hand side of (8.7), we obtain

∧m
l=1

∧n
i=1(pli ≤ 0 ∧ pl′i ≤ 0) ∧

∧n
i=1

(
pi − p1

i − · · · − pmi ≤ 0 ∧
p′i − p

1′
i − · · · − p

m′
i ≤ 0

)
.
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By taking linear combination of above atoms, we obtain∧n
i=1

(
pi ≤ 0 ∧ p′i ≤ 0

)
,

which is right hand side of (8.7).

(2) Smb(f(t1, . . . , tn)) ⊆ OutSmb(o) ∧ Smb(f(s1, . . . , sn)) * OutSmb(o) ∧(
∀j ∈ 1..m :

Smb(f(t1, . . . , tn)) ⊆ OutSmb(oj) ∧
Smb(f(s1, . . . , sn)) ⊆ OutSmb(oj)

)
:

∀l ∈ 1..m

Cr+1 =
∧n
i=1(pi + p′i ≤ 0) Clr+1 =

∧n
i=1(pli ≤ 0 ∧ pl′i ≤ 0)

Dr+1 =
∧n
i=1(−pi − p′i ≤ 0) Dl

r+1 = true
p = f(s1 + p1, . . . , sn + pn)− f(s1, . . . , sn) pl = 0

(8.8) is trivially true. The left hand side of (8.7) is equal to the previous case, therefore, it implies∧n
i=1

(
pi ≤ 0 ∧ p′i ≤ 0

)
. By taking linear combination of inequalities, we obtain

∧n
i=1 (pi + p′i ≤ 0),

which is the right hand side of (8.7).

In the right hand side of (8.9), p− p1 − · · · − pn = f(s1 + p1, . . . , sn + pn)− f(s1, . . . , sn). Left hand
side of (8.9) implies

m∧
l=1

n∧
i=1

(pli ≤ 0 ∧ pl′i ≤ 0) ∧Dr+1 ∧
n∧
i=1

(
pi − p1

i − · · · − pmi ≤ 0 ∧
p′i − p

1′
i − · · · − p

m′
i ≤ 0

)
.

By taking linear combinations, we obtain

Dr+1 ∧
∧n
i=1 (pi ≤ 0 ∧ p′i ≤ 0) .

After placing value of Dr+1,∧n
i=1(−pi − p′i ≤ 0) ∧

∧n
i=1 (pi ≤ 0 ∧ p′i ≤ 0) .

By taking linear combinations, we obtain
∧n
i=1(−pi ≤ 0 ∧ pi ≤ 0). So for all i ∈ 1..n, pi = 0. There-

fore, si+pi = si. Therefore, f(s1+p1, . . . , sn+pn)−f(s1, . . . , sn) ≤ 0, which is right hand side of (8.9).

(3) Smb(f(t1, . . . , tn)) ⊆ OutSmb(o) ∧ Smb(f(s1, . . . , sn)) * OutSmb(o)∧(
∃j ∈ 1..m :

Smb(f(t1, . . . , tn)) ⊆ OutSmb(oj) ∧
Smb(f(s1, . . . , sn)) * OutSmb(oj)

)
:

∀l ∈ 1..m \ {j}
Cr+1 =

∧n
i=1(pi + p′i ≤ 0) Clr+1 =

∧n
i=1(pli ≤ 0 ∧ pl′i ≤ 0)

Dr+1 =
∧n
i=1(−pi − p′i ≤ 0) Dl

r+1 = true
p = f(s1 + p1, . . . , sn + pn)− f(s1, . . . , sn) pl = 0

Cjr+1 =
∧n
i=1(pji + p

j′
i ≤ 0)

Dj
r+1 =

∧n
i=1(−pji − p

j′
i ≤ 0)

pj = f(s1 + pj1, . . . , sn + pjn)− f(s1, . . . , sn)

Left hand side of (8.7) implies

(
∧
l∈1..m\{j}

∧n
i=1(pli ≤ 0 ∧ pl′i ≤ 0)) ∧

∧n
i=1(pji + p

j′
i ≤ 0) ∧∧n

i=1

(
pi − p1

i − · · · − pmi ≤ 0 ∧
p′i − p

1′
i − · · · − p

m′
i ≤ 0

)
.

By taking linear combinations, we obtain
∧n
i=1 pi + p′i ≤ 0, which is right hand side of (8.7).
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For (8.8), we only need to prove the instance of implications in which, Dj
r+1 is equal to

∧n
i=1(−pji−p

j′
i ≤

0). Lets consider left hand side of (8.8), which implies

n∧
i

 (∧
l∈1..m\{j}(p

l
i ≤ 0 ∧ pl′i ≤ 0)

)
∧(

pi − p1
i − · · · − pmi ≤ 0 ∧ p′i − p

1′
i − · · · − p

m′
i ≤ 0

)
∧ −pi − p′i ≤ 0

 .

By by adding above linear inequalities, we can obtain
∧n
i=1−p

j
i − p

j′
i ≤ 0, which is right hand side

of (8.8).

In the right hand side of (8.9), p − p1 − · · · − pm = f(s1 + p1, . . . , sn + pn) − f(s1 + pj1, . . . , sn + pjn).

So for proving (8.9), we need to show that the left hand side implies
∧n
i=0 si + pi = si + pji . By further

simplification,
∧n
i=0 pi − p

j
i = 0. Now, lets consider the left hand side, which implies

n∧
i=1


∧
l∈1..m\j p

l
i ≤ 0 ∧ pi − p1

i − · · · − pmi ≤ 0∧∧
l∈1..m\j p

l′
i ≤ 0 ∧ p′i − p

1′
i − · · · − p

m′
i ≤ 0∧

(pji + p
j′
i ≤ 0) ∧ −pi − p′i ≤ 0


By adding inequalities of each row, we obtain

n∧
i=1

 pi − pji ≤ 0∧
p′i − p

j′
i ≤ 0∧

pji + p
j′
i − pi − p′i ≤ 0

 .

By adding 2nd and 3rd row, we obtain
∧n
i=1(pi− pji ≤ 0∧ pji − pi ≤ 0), which we were aiming to prove.

(4) Smb(f(t1, . . . , tn)) * OutSmb(o) ∧ Smb(f(s1, . . . , sn)) ⊆ OutSmb(o)∧(
∀j ∈ 1..m :

Smb(f(t1, . . . , tn)) ⊆ OutSmb(oj)∧
Smb(f(s1, . . . , sn)) ⊆ OutSmb(oj)

)
:

Argument is similar to case 2.

(5) Smb(f(t1, . . . , tn)) * OutSmb(o) ∧ Smb(f(s1, . . . , sn)) ⊆ OutSmb(o)∧(
∃j ∈ 1..m :

Smb(f(t1, . . . , tn)) * OutSmb(oj)∧
Smb(f(s1, . . . , sn)) ⊆ OutSmb(oj)

)
:

Argument is similar to case 3.

(6) Smb(f(t1, . . . , tn)) * OutSmb(o) ∧ Smb(f(s1, . . . , sn)) * OutSmb(o)∧(
∀j ∈ 1..m :

Smb(f(t1, . . . , tn)) ⊆ OutSmb(oj)∧
Smb(f(s1, . . . , sn)) ⊆ OutSmb(oj)

)
:

Cr+1 = true
Dr+1 =

∧n
i=1(ti − si − pi ≤ 0 ∧ si − ti − p′i ≤ 0)

p = f(t1, . . . , tn)− f(s1, . . . , sn)

For each l ∈ 1..m

Clr+1 =
∧n
i=1(pli ≤ 0 ∧ pl′i ≤ 0)

Dl
r+1 = true

pl = 0

(8.7) and (8.8) are trivially true. In the right hand side of (8.9), p − p1 − · · · − pm =
f(t1, . . . , tn) − f(s1, . . . , sn). So, we only need to prove that left hand side of (8.9) implies∧n
i=1 ti = si. By placing values of Clr+1 and Dr+1, the left hand side implies∧n

i=1(pi ≤ 0 ∧ p′i ≤ 0 ∧ ti − si − pi ≤ 0 ∧ si − ti − p′i ≤ 0).

By taking linear combinations, we obtain
∧n
i=1(ti−si ≤ 0∧si−ti ≤ 0), which we were aiming to prove.
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(7) Smb(f(t1, . . . , tn)) * OutSmb(o) ∧ Smb(f(s1, . . . , sn)) * OutSmb(o) ∧(
∃j ∈ 1..m :

Smb(f(t1, . . . , tn)) * OutSmb(oj) ∧
Smb(f(s1, . . . , sn)) ⊆ OutSmb(oj)

)
∧(

∀j′ ∈ 1..m \ {j} :
Smb(f(t1, . . . , tn)) ⊆ OutSmb(oj′) ∧
Smb(f(s1, . . . , sn)) ⊆ OutSmb(oj′)

)
:

Cr+1 = true
Dr+1 =

∧n
i=1(ti − si − pi ≤ 0 ∧ si − ti − p′i ≤ 0)

p = f(t1, . . . , tn)− f(s1, . . . , sn)

For each l ∈ 1..m \ {j}
Clr+1 =

∧n
i=1(pli ≤ 0 ∧ pl′i ≤ 0)

Dl
r+1 = true

pl = 0

Cjr+1 =
∧n
i=1(pji + p

j′
i ≤ 0)

Dj
r+1 =

∧n
i=1(−pji − p

j′
i ≤ 0)

pj = f(s1 + pj1, . . . , sn + pjn)− f(s1, . . . , sn)

(8.7) is trivially true. For (8.8), we only need to prove the instance of implications in which, Dj
r+1 is

equal to
∧n
i=1(−pji − p

j′
i ≤ 0). Lets consider left hand side of (8.8), which is

(
∧
l∈1..m\{j} C

l
r+1) ∧Dr+1 ∧

n∧
i=1

(
pi − p1

i − · · · − pmi ≤ 0 ∧
p′i − p

1′
i − · · · − p

m′
i ≤ 0

)
.

After placing values of Clr+1 and Dr+1,

n∧
i=1

(
ti − si − pi ≤ 0∧
si − ti − p′i ≤ 0

)
∧

n∧
i=1

(
pi − pji ≤ 0 ∧
p′i − p

j′
i ≤ 0

)
.

After adding all inequalities above, we obtain
∧n
i=1

(
−pji − p

j′
i ≤ 0

)
, which is right hand side of (8.8).

In the right hand side of (8.9), p− p1 − · · · − pm = f(t1, . . . , tn)− f(s1 + pj1, . . . , sn + pjn). So, we only

need to prove that left hand side of (8.9) implies
∧n
i=1 ti = si + pji . By placing values of Clr+1 and

Dr+1, the left hand side implies

∧n
i=1(pji + p

j′
i ≤ 0) ∧

n∧
i=1

(
ti − si − pi ≤ 0∧
si − ti − p′i ≤ 0

)
∧

n∧
i=1

(
pi − pji ≤ 0 ∧
p′i − p

j′
i ≤ 0

)

by taking linear combination of above equations,

n∧
i=1

(
ti − si − pj′i ≤ 0∧
si − ti − pji ≤ 0

)
∧

n∧
i=1

(
ti − si − pji ≤ 0∧
si − ti − pj′i ≤ 0

)

Therefore,
∧n
i=1 ti = si + pji , which we were aiming to prove.

(8) Smb(f(t1, . . . , tn)) * OutSmb(o) ∧ Smb(f(s1, . . . , sn)) * OutSmb(o) ∧(
∃j ∈ 1..m :

Smb(f(t1, . . . , tn)) ⊆ OutSmb(oj) ∧
Smb(f(s1, . . . , sn)) * OutSmb(oj)

)
∧(

∀j′ ∈ 1..m \ {j} :
Smb(f(t1, . . . , tn)) ⊆ OutSmb(oj′) ∧
Smb(f(s1, . . . , sn)) ⊆ OutSmb(oj′)

)
A similar argument as in previous case.
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(9) Smb(f(t1, . . . , tn)) * OutSmb(o) ∧ Smb(f(s1, . . . , sn)) * OutSmb(o) ∧(
∃j1 ∈ 1..m :

Smb(f(t1, . . . , tn)) ⊆ OutSmb(oj1) ∧
Smb(f(s1, . . . , sn)) * OutSmb(oj

1

)

)
∧(

∃j2 ∈ 1..m :
Smb(f(t1, . . . , tn)) * OutSmb(oj

2

) ∧
Smb(f(s1, . . . , sn)) ⊆ OutSmb(oj2)

)
∧(

∀j′ ∈ 1..m \ {j1, j2} :
Smb(f(t1, . . . , tn)) ⊆ OutSmb(oj′) ∧
Smb(f(s1, . . . , sn)) ⊆ OutSmb(oj′)

)
Cr+1 = true
Dr+1 =

∧n
i=1(ti − si − pi ≤ 0 ∧ si − ti − p′i ≤ 0)

p = f(t1, . . . , tn)− f(s1, . . . , sn)

For each l ∈ 1..m \ {j1, j2}
Clr+1 =

∧n
i=1(pli ≤ 0 ∧ pl′i ≤ 0)

Dl
r+1 = true

pl = 0

Cj
1

r+1 =
∧n
i=1(pj

1

i + p
j1′
i ≤ 0)

Dj1

r+1 =
∧n
i=1(−pj

1

i − p
j1′
i ≤ 0)

pj
1

= f(s1 + pj
1

1 , . . . , sn + pj
1

n )− f(s1, . . . , sn)

Cj
2

r+1 =
∧n
i=1(pj

2

i + p
j2′
i ≤ 0)

Dj2

r+1 =
∧n
i=1(−pj

2

i − p
j2′
i ≤ 0)

pj
2

= f(t1, . . . , tn)− f(t1 + p
j2′
1 , . . . , tn + p

j2′
n )

(8.7) is trivially true. In (8.8), there are two non trivial implications, when j = j1 and j = j2. For
j = j1, the left hand side of implication is

(
∧
l∈1..m\{j1} C

l
r+1) ∧Dr+1 ∧

n∧
i=1

(
pi − p1

i − · · · − pmi ≤ 0 ∧
p′i − p

1′
i − · · · − p

m′
i ≤ 0

)
.

After placing values of Clr+1 other than l = j2, we obtain

Cj
2

r+1 ∧Dr+1 ∧
n∧
i=1

(
pi − pj

1

i − p
j2

i ≤ 0 ∧
p′i − p

j1′
i − p

j2′
i ≤ 0

)
.

After placing values of Cj
2

r+1 and Dr+1, we obtain∧n
i=1(pj

2

i + p
j2′
i ≤ 0) ∧

∧n
i=1

(
ti − si − pi ≤ 0∧
si − ti − p′i ≤ 0

)
∧

∧n
i=1

(
pi − pj

1

i − p
j2

i ≤ 0 ∧
p′i − p

j1′
i − p

j2′
i ≤ 0

)
.

By taking linear combinations, we obtain
∧n
i=1

(
−pj

1

i − p
j1′
i ≤ 0

)
, which is the right hand side. A

similar argument proves j = j2 instantiation of (8.8).

The left hand side of (8.9) is

(
∧
l∈1..m\{j1,j2} C

l
r+1) ∧ Cj

1

r+1 ∧ C
j2

r+1 ∧Dr+1∧∧n
i=1

(
pi − p1

i − · · · − pmi ≤ 0 ∧
p′i − p

1′
i − · · · − p

m′
i ≤ 0

)
.

By placing values of Cjr+1 for j ∈ 1..m \ {j1, j2}, we obtain

Cj
1

r+1 ∧ C
j2

r+1 ∧Dr+1 ∧
n∧
i=1

(
pi − pj

1

i − p
j2

i ≤ 0 ∧
p′i − p

j1′
i − p

j2′
i ≤ 0

)
.

After placing value of Dr+1, we obtain

Cj
1

r+1 ∧ C
j2

r+1 ∧
n∧
i=1

(
ti − si − pj

1

i − p
j2

i ≤ 0∧
si − ti − p

j1′
i − p

j2′
i ≤ 0

)
.
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After placing values of Cj
1

r+1 and Cj
2

r+1, we obtain

n∧
i=1

(
pj

1

i + p
j1′
i ≤ 0

pj
2

i + p
j2′
i ≤ 0

)
∧

n∧
i=1

(
ti − si − pj

1

i − p
j2

i ≤ 0∧
si − ti − p

j1′
i − p

j2′
i ≤ 0

)
.

By taking linear combinations of above inequalities, we obtain

n∧
i=1

(
ti − si + p

j1′
i − p

j2

i ≤ 0∧
si − ti − p

j1′
i + pj

2

i ≤ 0

)
.

Therefore,
n∧
i=1

(
ti + p

j1′
i = si + pj

2

i

)
Therefore,

f(t1 + p
j2′
1 , . . . , tn + pj

2′
n )− f(s1 + pj

1

1 , . . . , sn + pj
1

n ) ≤ 0,

which is right hand side of (8.9).

(10) Smb(f(t1, . . . , tn)) * OutSmb(o) ∧ Smb(f(s1, . . . , sn)) * OutSmb(o) ∧(
∃j ∈ 1..m :

Smb(f(t1, . . . , tn)) * OutSmb(oj) ∧
Smb(f(s1, . . . , sn)) * OutSmb(oj)

)
∧(

∀j′ ∈ 1..m \ {j} :
Smb(f(t1, . . . , tn)) ⊆ OutSmb(oj′) ∧
Smb(f(s1, . . . , sn)) ⊆ OutSmb(oj′)

)
:

Cr+1 = true
Dr+1 =

∧n
i=1(ti − si − pi ≤ 0 ∧ si − ti − p′i ≤ 0)

p = f(t1, . . . , tn)− f(s1, . . . , sn)

For each l ∈ 1..m \ {j}
Clr+1 =

∧n
i=1(pli ≤ 0 ∧ pl′i ≤ 0)

Dl
r+1 = true

pl = 0

Cjr+1 = true

Dj1

r+1 =
∧n
i=1(ti − si − pji ≤ 0 ∧ si − ti − pj′i ≤ 0)

pj
1

= f(t1, . . . , tn)− f(s1, . . . , sn)

(8.7) and (8.9) are trivially true. For (8.8), we only need to prove the instance of implications in which,

Dj
r+1 is equal to

∧n
i=1(ti − si − pji ≤ 0 ∧ si − ti − pj′i ≤ 0). Lets consider left hand side of (8.8), which

implies
n∧
i=1

(
ti − si − pi ≤ 0∧
si − ti − p′i ≤ 0

)
∧

n∧
i=1

(
pi − pji ≤ 0 ∧
p′i − p

j′
i ≤ 0

)
.

By taking linear combinations, we obtain

n∧
i=1

(
ti − si − pji ≤ 0∧
si − ti − pj′i ≤ 0

)
,

which is the right hand side.

(AI-4): Let o = false. The node false is root of the resolution tree therefore Smb(f(t1, . . . , tn)) *
OutSmb(o) and Smb(f(s1, . . . , sn)) * OutSmb(o). Therefore, Cr+1 = true and Dr+1 =

∧n
i=1(ti − si − pi ≤

0∧ si − ti − p′i ≤ 0). Since, for each i ∈ 1..n, pi = ti − si and p′i = si − ti, Dr+1 = true. Hence, (AI-4) w.r.t.
Π(o) holds.

Theorem 12 (Complexity). Application of annotation rules in Figure 8.1 takes linear time in proportion
to the size of the proof tree.

Proof. The annotation of the rules are computed in linear pass by depth first traversal of a proof-tree.
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// take_lock : multi-thread program

int f[N];

int p, q;

// Thread1(int c)

a1: assume(p <= c <= q);

a2: take_lock(f, c);

a3: // critical

// Thread2(int d)

b1: assume(q <= d <= p);

b2: take_lock(f, d);

b3: // critical

(a)

int p, q;

int main() {

m1: int c = ..;

m2: assume(p <= c <= q);

m3: if (f(c) == 1) { foo(); }

m4: assert(false);

}

void foo() {

n1: int d = ..;

n2: assume(q <= d <= p);

n3: if (f(d) == 0)

n4: return;

n5: ...

}

(b)

Figure 8.4: Two example programs take lock and main. (a) take lock illustrates how Horn clauses can
represent an abstraction refinement task in presence thread interaction. (b) main illustrates a formalization
the abstraction refinement for programs with procedures using Horn clauses.

8.4 Illustration: obtaining Horn clauses from refinement

This section presents examples of Horn clauses obtained during the abstraction refinement step when verifying
multi-threaded programs and programs with procedures.

Abstraction refinement for multi-threaded programs

See Figure 8.4(a) for a program take lock that consists of two threads. These threads attempt to access
a critical section and synchronize their accesses using a lock stored in the global array f. The two threads
receive the identifier of the lock as an integer argument c for the first thread and d for the second thread.
The assume statements at labels a1 and b1 ensure that the two integer indices, c and d , are equal. The
calls at labels a2 and b2 ensure that the two threads cannot both enter the critical section, i.e., the assertion
¬(pc1 = a3∧ pc2 = b3) holds for all executions of the program. We write V = {f, p, q, c, d, pc1, pc2} for the
set of all program variables, where pc1 and pc2 are local program counter variables of the first and second
thread, respectively. Let G = {p, q} be the set of global program variables.

To verify the program take lock, the method described in [37] performs abstract reachability compu-
tations for each thread considering both local thread transitions and environment transitions that capture
updates of program state done by the other thread. Let us assume that the abstract reachability procedure
finds a spurious error state following an interleaving of the statements from the two threads represented by
two assertions ρ1 and ρ2 .

The results computed by the abstract reachability are an abstract state s and an environment transition
e such that:

s = α̇(post(ρ1, true)),
e = α̈(ρ2),

where post denotes the successor function and by α̇ and α̈ denote abstraction functions for over-approximation
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of sets of states and sets of pairs of states, respectively. The constraint ρ1 represents program statements at
location a1 and a2 from the first thread, while ρ2 represents the program statements at locating b1 and b2

from the second thread. Both transitions are over unprimed and primed program variables. We only show
the critical part of these constraints that is relevant to the infeasibility of the interleaving:

ρ1 = (p ≤ c ∧ c ≤ q ∧ f(c) = 1 ∧ p = p′ ∧ q = q′ ∧ c = c′) ,

ρ2 = (q ≤ d ∧ d ≤ p ∧ f(d) = 0 ∧ p = p′ ∧ q = q′ ∧ d = d′) .

We model the fact that the first thread acquires the lock indexed by c using f(c) = 1. The constraint f(d) = 0
from ρ2 represents the requirement that the lock indexed by d must be released in order to complete the call
to take lock at program location b2 .

Following the reachability of an abstract state that intersects the error states (pc1 = a3∧ pc2 = b3) , an
abstraction refinement constraints are derived. We obtain a set of Horn clauses where the unknown query
S(V ) represents the refined abstract state s and E(G,G′) represents the refined environment transition e :

HCtake lock = { ρ1 → S(V ′), ρ2 → E(G,G′), S(V ) ∧ E(G,G′)→ false } .

The third clause requires that the intersection of the set of states S(V ) and the environment transition is
empty. While solutions for the refined environment transitions can be expressed in terms of the whole set of
program variables V , an efficient verification procedure relies on using thread-modular solutions whenever
they exist. In particular, we consider in our example E(G,G′).

Each Horn clause is implicitly universally quantified over the variables that appear in the clause, i.e., V
and V ′. The set of clauses HCtake lock is satisfiable if and only if the abstraction can be refined to exclude
the spurious interleaving.

Abstraction refinement for programs with procedures

We use the second program in Figure 8.5 to illustrate refinement constraints for proving the infeasibility of
an interprocedural path that is expressed using Horn clauses. This program has the same set of program
variables V and program global variables G as take lock.

The procedure main establishes at line m2 that the value of the local variable c is in a required range of
integer values. At line m3 , foo is called if an unspecified function f returns the integer value 1. Due to the
conditions at lines n2 and n3 , the procedure foo cannot return at line n4 from the calling context at line m3.
However, due to over-approximation, an abstract reachability computation may result in a summary for the
foo procedure that is too imprecise. Assuming that the constraint ρ1 represents the calling context of foo
at line m3.

ρ1 = (p ≤ c ∧ c ≤ q ∧ f(c) = 1 ∧ p = p′ ∧ q = q′ ∧ c = c′) ,

An abstract state s is computed as follows:

s = α̇(post(ρ1, true)) .

Further, using a transition abstraction function α̈ , a summary transition e is computed for the foo procedure:

ρ2 = (q ≤ d ∧ d ≤ p ∧ f(d) = 0 ∧ p = p′ ∧ q = q′) ,

e = α̈(ρ2) .

In order to show the infeasibility of the interprocedural path denoted by the sequence of program labels
m1, m2, m3, n1, n2, n3, n4, m4 , abstraction refinement constraints are expressed by the following Horn clauses:

HCfoo = { ρ1 → S(V ′), ρ2 → E(G,G′), S(V ) ∧ E(G,G′)→ false } .

We require that the solution for the procedure summary refers only to global variables p and q, but not to
the local variable d. Therefore, E(G,G′) refers to only global variables.
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8.5 Illustration: solving Horn clauses

We constructed the above examples such that HCtake lock = HCfoo. We further simplify the Horn clauses
and drop the variables from the queries that do not contribute to the satisfiablity of the set of Horn clauses.
After the simplification, we obtain

HC = { ρ1 → S(p, q, c), ρ2 → E(p, q), S(p, q, c) ∧ E(p, q)→ false } .

In Figure 8.5(a), expanded version of HC is presented and, since our algorithm we assume that no two Horn
clauses share a variable, we have added a different subscripts in variables in each Horn clause. This section
illustrates how our Horn clauses solving algorithm applies to HC.

Resolution tree

Our solving algorithm starts by constructing from HC a resolution tree R shown in Figure 8.5(b). We label
nodes of R with indices for easy reference. The root of the tree is labeled with the atom false, prefixed
by an index 1 used to refer to the node. For each clause from HC , we add edges to R between the node
corresponding to the head of the clause and the nodes corresponding to the body of the clause. For example,
the first clause leads to an edge between the node 2 corresponding to the head S(p, q, c) and the nodes
labeled 3–6 corresponding to a conjunction of atomic predicates from the body of the same clause.

Proof tree

Next, our algorithm constructs a proof tree that proves unsatisfiability of the constraints from the leaves
of the resolution tree, using proof rules presented in Section 2.2. The resulting proof tree P is shown in
Figure 8.5(c). The linear combination rule PComb is applied to derive the constraint (c− d ≤ 0) from the
premises (c−q ≤ 0) and (q−d ≤ 0) . PComb is also used to derive (d−c ≤ 0) from the premises (p−c ≤ 0)
and (d− p ≤ 0) . The congruence rule PCong derives (f(c)− f(d) ≤ 0) from the premises (c− d ≤ 0) and
(d−c ≤ 0) . Lastly, (1 ≤ 0) is derived by applying PComb on three premises, (f(d) ≤ 0) , (f(c)−f(d) ≤ 0) ,
and (−f(c) + 1 ≤ 0) .

Annotated trees and solution

For each node in P , our algorithm creates an annotated version of R. These annotation trees are partial
solutions, as we have discussed earlier. Figure 8.5(d) presents a part of the annotated proof tree and Figure 8.6
presented expanded view of some of the annotations. In P , c− d ≤ 0 is derived by adding (c− q ≤ 0) and
(q− d ≤ 0). Therefore, annotations Π3 for node c− d ≤ 0 is result of procedure call SolComb(Π1,Π2, 1, 1).

Following the derivation of the proof tree P , annotation rules are used to combine annotated trees until
those corresponding to the rule applied at the bottom of the proof tree. Π from Figure 8.6 shows the final
solution computed by the last application of an inference rule. The node labeled “2” contains the solution
for S(p, q, c) and it can be simplified to S(p, q, c) = (p < q∨ p ≤ q∧ f(p) ≥ 1) . The solution from the node
labeled “7” can be simplified to E(p, q) = (p > q ∨ p ≥ q ∧ f(p) ≤ 0) .

The existence of a solution for the set of Horn clauses HC indicates that the counterexamples discovered
for the programs take lock and foo are spurious. Refining the abstraction with the atomic predicates that
appear in the solutions of S(p, q, c) and E(p, q) guarantees that the same spurious counterexample will not
appear during subsequent abstract reachability computations.
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HC = { p1 ≤ c1 ∧ c1 ≤ q1 ∧ −f(c1) + 1 ≤ 0 ∧ f(c1)− 1 ≤ 0→ S(p1, q1, c1),

q2 ≤ d2 ∧ d2 ≤ p2 ∧ f(d2) ≤ 0 ∧ −f(d2) ≤ 0→ E(p2, q2),

S(p3, q3, c3) ∧ E(p3, q3)→ false }

(a)

1 : false

2 : S(p, q, c) 7 : E(p, q)

3 : p− c ≤ 0

4 : c− q ≤ 0 5 : −f(c) + 1 ≤ 0

6 : f(c)− 1 ≤ 0 8 : q− d ≤ 0

9 : d− p ≤ 0 10 : f(d) ≤ 0

11 : −f(d) ≤ 0

(b)

PComb

PHyp
f(d) ≤ 0

PCong

c− q ≤ 0 q− d ≤ 0

c− d ≤ 0

p− c ≤ 0 d− p ≤ 0

d− c ≤ 0

f(c)− f(d) ≤ 0
PHyp

−f(c) + 1 ≤ 0

1 ≤ 0

(c)

PComb

PHyp
f(d) ≤ 0[. . . ]

PComb

c− q ≤ 0[Π1] q− d ≤ 0[Π2]

c− d ≤ 0[Π3]
. . .

f(c)− f(d) ≤ 0[. . . ]
. . .

1 ≤ 0[Π]

(d)

Figure 8.5: (a) A set of Horn clauses HC . (b) Corresponding resolution tree R . (c) Proof of unsatisfiability
P for the constraints from the leaves of the resolution tree. For abbreviation, we did not mark nodes of
subtree of f(c) − f(d) ≤ 0 with the applied proof rules. (d) A part of the annotated proof tree. The
annotations Π1, Π2,Π3, and Π are presented in Figure 8.6.
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1 : c− q ≤ 0

2 : c− q ≤ 0 7 : 0 ≤ 0

3 : 0 ≤ 0

4 : c− q ≤ 0 5 : 0 ≤ 0

6 : 0 ≤ 0 8 : 0 ≤ 0

9 : 0 ≤ 0 10 : 0 ≤ 0

11 : 0 ≤ 0

Π1

1 : q− d ≤ 0

2 : 0 ≤ 0 7 : q− d ≤ 0

3 : 0 ≤ 0

4 : 0 ≤ 0 5 : 0 ≤ 0

6 : 0 ≤ 0 8 : q− d ≤ 0

9 : 0 ≤ 0 10 : 0 ≤ 0

11 : 0 ≤ 0

Π2

1 : c− d ≤ 0

2 : c− q ≤ 0 7 : q− d ≤ 0

3 : 0 ≤ 0

4 : c− q ≤ 0 5 : 0 ≤ 0

6 : 0 ≤ 0 8 : q− d ≤ 0

9 : 0 ≤ 0 10 : 0 ≤ 0

11 : 0 ≤ 0

Π3

1 : 1 ≤ 0

2 : (p− q ≤ 0) ∧ (q− p ≤ 0→ 1 ≤ f(p)) 7 : (q− p ≤ 0) ∧ (p− q ≤ 0→ f(q) ≤ 0)

3 : . . .

4 : . . . 5 : . . .

6 : . . . 8 : . . .

9 : . . . 10 : . . .

11 : . . .

Π

Figure 8.6: Four annotated trees Π1 , Π2 , Π3 , and Π . Π1 and Π2 are annotations of nodes (c − q ≤ 0)
and (q − d ≤ 0) in P , respectively. Π3 is obtained by applying the combination rule HcComb to Π1 and
Π2. Π annotates 1 ≤ 0 in P . Therefore, the final solution of HC can be derived from Π: the node labeled
“2” contains the solution for S(p, q, c) , while the node labeled “7” contains the solution for E(p, q) .
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