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∫∞
−∞ f(t−s) dL(s) for t ∈ R, where f is a

deterministic function and L is a Lévy process whose increments, represented

by L(1), are subexponential and in the maximum domain of attraction of the
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of Y and thus properly chosen discrete-time points are sufficient to specify the
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behavior of Y completely by a weak limit of marked point processes. A com-

plementary result guarantees the convergence of running maxima of Y to the

Gumbel distribution.
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1 Introduction

We investigate the extremal behavior of a stationary continuous-time moving average

(MA) process

Y (t) =

∫ ∞

−∞

f(t− s) dL(s) for t ∈ R , (1.1)

where the kernel function f : R → R is measurable, and the driving process

L = {L(t)}t∈R is a Lévy process. Recall that a Lévy process L has independent and

stationary increments, L(0) = 0, and L is stochastically continuous. Moreover, L

is characterized by the Lévy-Khinchine representation E(exp(iuL(t))) = exp(tψ(u))

for t ≥ 0, u ∈ R with

ψ(u) = ium−
1

2
u2σ2 +

∫

R

(
eiux − 1 − iuκ(x)

)
ν(dx), (1.2)

and κ(x) = x1[−1,1](x). The quantities (m, σ2, ν) are called the generating triplet

of the Lévy process L. Here m ∈ R, σ2 ≥ 0 and ν is a measure on R, called

Lévy measure, satisfying ν({0}) = 0 and
∫

R
(1 ∧ |x|2) ν(dx) < ∞; we refer to the

monographs of Applebaum [1] and Sato [23] for background on Lévy processes.

Prominent examples of MA processes are CARMA processes (cf. Brockwell [4]) and

stochastic differential delay equations (cf. Gushchin and Küchler [14]). Both families

include Ornstein-Uhlenbeck-processes.

We concentrate in this paper on increments of the Lévy process L in the maxi-

mum domain of attraction of the Gumbel distribution (MDA(Λ)): a distribution func-

tion F ∈ MDA(G), where G is a non-degenerate distribution function (d. f.), if there

exist constants aT > 0, bT ∈ R for T > 0 such that limT→∞ T (1 − F (aTx + bT )) =

− logG(x) for x ∈ R. The symbol Λ stands for Gumbel distribution. Without precise

referencing we use results from classical extreme value theory; we refer to Embrechts

et al. [9], Chapter 3 for more details.

Complementary results for MA processes in the maximum domain of attraction

of the Fréchet distribution have been investigated in the early work of Rootzén [21]

for stable processes and for regularly varying mixed MA processes in Fasen [11].

Throughout the paper we assume the following condition, which is sufficient

for the existence and the infinitely divisibility of Y . Firstly, we define L
δ := {f :

R → R measurable,
∫∞

−∞
|f(s)|δ λ(ds) < ∞}, δ > 0, where λ denotes the Lebesgue

measure on R.

Condition (M). Let Y be a MA process as given in (1.1). The Lévy measure ν

of L satisfies ν (1, · ∨ 1] /ν(1,∞) ∈ MDA(Λ) with infinite right endpoint, and tail

balance condition

lim
x→∞

ν (−∞,−x)

ν (x,∞)
=

1 − p

p
(1.3)
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for some p ∈ (0, 1]. The kernel function f : R → R is bounded, and one of the

following conditions hold:

(M1) f ∈ L
1.

(M2) f ∈ L
2 and EL(1) = 0.

If the support of ν is bounded below, we assume w. l. o. g. ν(−∞,−1) = 0.

We can also replace p ∈ (0, 1] and ν (1, · ∨ 1] /ν(1,∞) ∈ MDA(Λ) with infinite right

endpoint by p ∈ [0, 1) and ν [−(· ∨ 1),−1) /ν(−∞,−1) ∈ MDA(Λ) with infinite right

endpoint. Embrechts et al. [9], Corollary 3.3.32 and Sato [23], Corollary 25.8, imply

that L(1) has moments of all order and the tails of ν decrease faster than polynomial.

Furthermore, the right tail of ν is rapidly varying, i. e. limx→∞ ν(xt,∞)/ν(x,∞) = 0

for t > 1. Notice, if f is bounded, then f ∈ L
1 implies f ∈ L

2.

This paper is on the extremal behavior of subexponential Lévy driven MA pro-

cesses. Subexponentiality is a property of the right tail of a distribution. Conse-

quently, it has been defined originally for positive r. v. s. In the context of this paper

L(1) has a distribution on the whole of R, which has a subexponential right tail.

The definition of a subexponential r. v. has been extended from a positive r. v. to a

r. v. on R by Willekens [24] and we start with the definition.

Throughout the paper we use the following standard notation: we write F = 1−F

for the right tail of the d. f. F , F 2∗ for the convolution F ∗ F and F 2∗ = 1 − F 2∗.

X
d
= Y , if the distributions of the random variables (r. v. s) X and Y coincide.

The abbreviation i. d. stands for infinitely divisible. For real functions g and h we

write g(t) ∼ h(t) for t → ∞, if g(t)/h(t) → 1 as t → ∞, and we denote g+(t) =

max{0, g(t)}, g−(t) = max{0,−g(t)}, g+ = supt∈R
g+(t), g− = supt∈R

g−(t) and∫∞

−∞
ν(x/g(s),∞)λ(ds) =

∫
g(s)6=0

ν(x/g(s),∞)λ(ds). The symbol
T→∞
=⇒ stands for

weak convergence for T → ∞.

Definition 1.1 Let F be a d. f. on R with F (x) < 1 for every x ∈ R. Then F

belongs to the class of subexponential distributions, denoted by S, if the following

conditions hold:

(i) F ∈ L, which means for all y ∈ R locally uniformly lim
x→∞

F (x+ y)/F (x) = 1.

(ii) lim
x→∞

F 2∗(x)/F (x) exists and is finite.

If F ∈ S and Z is a r. v. with d. f. F , then we write Z ∈ S. The class S is closed

under tail-equivalence, i. e. if F ∈ S and G is a d. f. with limx→∞ F (x)/G(x) =

q ∈ (0,∞), then also G ∈ S. A survey of the class of subexponential distributions

with support on R+ is provided by Goldie and Klüppelberg [12], see also Embrechts

et al. [9], Section A3. The following result summarizes mostly known properties of

3



Vicky Fasen

subexponentials on R needed for this paper, which can be found in Cline [5], Cline

and Samorodnitsky [6] and Pakes [18]. Only (vi) is a new and easy consequence of

the other results.

Proposition 1.2

(i) If F ∈ L, then F (x/2)2 = o(F (x)) for x→ ∞ and lim
x→∞

eǫxF (x) = ∞ for ǫ > 0.

(ii) If F ∈ S, then limx→∞ F 2∗(x)/F (x) = 2.

(iii) Suppose F ∈ S, Fi are d. f. s with limx→∞ Fi(x)/F (x) = qi ≥ 0 for i = 1, 2 and

G = F1 ∗ F2. Then, limx→∞G(x)/F (x) = q1 + q2. If qi > 0 for some i ∈ {1, 2},

then also Fi, G ∈ S. Moreover, for q1 > 0,

lim
x→∞

∫ x/2

−∞

F 2(x− u)

F 1(x)
F1(du) =

q2
q1
, lim

x→∞

∫ x/2

−∞

F 1(x− u)

F 1(x)
F2(du) = 1.

(iv) Let F be an i. d. distribution function with Lévy measure ν. Then,

F ∈ S ⇐⇒
ν (1, · ∨ 1]

ν (1,∞)
∈ S ⇐⇒ F (x) ∼ ν(x,∞) for x → ∞.

(v) If X ∈ S has only support on R+ and Y is a bounded r. v., then XY ∈ S.

(vi) If X, Y are i. d., X ∈ S and νY (x,∞)/νX(x,∞) → 0 as x→ ∞. Then,

P(Y > x) = o(P(X > x)) for x→ ∞.

The class of subexponential distributions includes all distributions with regularly

varying tails, the loggamma distribution and the heavy-tailed Weibull distribution.

A prominent example in the context of this paper is the following:

Example 1.3 (Extended heavy-tailed Weibull model) Let the right tail of

the d. f. F behave like F (x) ∼ exp(−u(x)) for x → ∞, where there exists a v > 1

such that u(tx) ≤ xαu(t) for all t ≥ v, x > 1 and some α ∈ (0, 1), then F ∈ S

(cf. Baltrunas et al. [2], Proposition 3.7, Lemma 3.8). If u is twice differentiable

with 0 < −u′′(x)/u′(x)2 x→∞
−→ 0, then F ∈ MDA(Λ) (cf. Embrechts et al. [9], Exam-

ple 3.3.23). Thus, the heavy-tailed Weibull distribution F (x) = K exp (−xα), x > 0,

α ∈ (0, 1), K > 0, belongs to S ∩ MDA(Λ). �

For the main results of this paper, presented in Section 4, about extremes of subex-

ponential Lévy driven MA processes, we are imposing the following more restrictive

condition.
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Condition (G). Let Y be a measurable and separable version of the MA process

as given in (1.1) satisfying Condition (M) and P(|Y (t)| <∞ for all t ∈ R) = 1. Let

L(1) ∈ S ∩ MDA(Λ) with aT > 0, bT ∈ R, uT = aTx+ bT for x ∈ R such that

lim
T→∞

TP(f+L(1) > uT ) = exp(−x).

We suppose f ∈ L
1, f+ ≥ f−, and for i = 1, 2, P (i) := card Oi <∞, where

Oi :=
{
α ∈ R : f(α) = (−1)(i+1)f+

}
= {α

(i)
1 , . . . , α

(i)

P (i)},

O1 6= ∅ and, if f− = f+ and p < 1, then also O2 6= ∅. If p = 1, then O2 := ∅.

Note, (1.3), L(1) ∈ S and Proposition 1.2 imply P(|L(1)| > x) ∼ p−1
P(L(1) > x)

for x → ∞. Condition (G) excludes kernel functions, which are piecewise constant

in their extremes.

The paper is organized as follows. In Section 2 we give conditions for the station-

arity of Y and calculate the tail behavior of the Lévy measure of Y under Condition

(M). If L(1) ∈ S and if −L(1) satisfies weak conditions, we can transfer the results

to the tail behavior of Y . Furthermore, we present the most important example,

namely Poisson shot noise processes. Poisson shot noise processes form the basic

structure for our results.

In Section 3 we derive results on weak convergence of point processes of subex-

ponential sequences in a general setup. These are fundamental results for our con-

tinuous-time process as its extreme behavior is governed by a discrete-time skeleton.

Furthermore, we derive path properties if a high level exceedance occurs. Such results

apply also immediately to discrete-time MA processes.

Such results of Sections 2 and 3 are applied in Section 4 to subexponential Lévy

driven MA processes in MDA(Λ), which means that (G) is satisfied. As can be seen

from (1.1) if △L(t∗) = L(t∗) − L(t∗−) for some t∗ ∈ R is extremely large then

Y (t) behaves roughly like f(t− t∗)△L(t∗) for any t ∈ R. Thus, our investigation on

the extremal behavior of Y is based on a discrete-time skeleton {Y (tn)}n∈N, where

the discrete-time random sequence {tn}n∈N is chosen as to incorporate those times,

where big jumps of the Lévy process and extremes of the kernel function occur. We

embed the process {Y (tn)}n∈N in a sequence of point processes and derive the weak

limit of this sequence. Not surprisingly, we find a strong analogy to the point pro-

cess behavior of discrete-time MA processes and corresponding results of Davis and

Resnick [8] and Rootzén [22]. We model the path behavior of the continuous-time

process near high level excursions by a mark on the point process. Obviously marks

are influenced by the kernel function and its local extremes. High level excursions

of Y are, in contrast to regularly varying models, no longer persistent; in the limit

they collapse into singular time points, where also extremes of the kernel function
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occur. Choosing another normalization we show, that the marks behave asymptot-

ically like the deterministic functions f(·)/f+ or −f(·)/f+. Our findings point out

that our discrete-time skeleton reflects local extremes of Y . Finally, we derive the

limit distribution of running maxima. We conclude with the proofs of our results in

Section 5.

2 Stationarity and tail behavior

Under certain conditions the integral given in (1.1) is well-defined as a limit in

probability of integrals of step functions approximating f . This has been shown by

Rajput and Rosinski [19], Theorem 2.7. They give necessary and sufficient condi-

tions, which are formulated in terms of the kernel function f and the generating

triplet of L(1). Under these assumptions Y is i. d., and by the structure of a MA

process Y is stationary. The following Proposition gives sufficient conditions to en-

sure that these assumptions are satisfied. For the proof of Proposition 2.1 we refer

to Proposition 1.1.7 of Fasen [10] and of Proposition 2.2 to Section 5.

Proposition 2.1 (Existence) Let Y be a MA process as given in (1.1) satisfying

Condition (M). Then Y is well-defined, i. d. and stationary. The generating triplet

of the marginal distribution of Y is (mY , σ
2
Y , νY ), where

mY =

∫ ∞

−∞

mf(s) +

∫ ∞

−∞

(κ(xf(s)) − f(s)κ(x)) ν(dx)λ(ds),

σ2
Y = σ2

∫ ∞

−∞

f 2(s)λ(ds), (2.1)

νY (x,∞) =

∫ ∞

−∞

ν

(
x

f+(s)
,∞

)
λ(ds) +

∫ ∞

−∞

ν

(
−∞,

−x

f−(s)

)
λ(ds) for x > 0.

Proposition 2.2 Let Y be a MA process as given in (1.1) satisfying Condition (M).

Suppose Z(1) is a r.v. having d. f. ν (1, · ∨ 1] /ν(1,∞), and Z(2) is a r.v. having d. f.

ν [−(· ∨ 1),−1) /ν(−∞,−1). Let A be a Borel set on R such that there exist a Borel

set By = {t ∈ R : |f(t)| ≥ y} ⊆ A, where By has a finite positive Lebesgue measure

and By ⊆ By−δ ⊆ A for some δ > 0. Moreover, we assume f− ≤ f+ and UA is a

uniform r. v. on A independent of Z(1) and Z(2).

(a) Then for x→ ∞,

νY (x,∞) ∼ λ(A)ν(1,∞)P(f+(UA)Z(1) > x) + λ(A)ν(−∞,−1)P(f−(UA)Z(2) > x).

(b) Let L(1) ∈ S, and if f− = f+ and L(1) has an infinite left endpoint, we

suppose −L(1) ∈ S. Then f(UA)L(1) ∈ S if and only if Y (t) ∈ S for t ∈ R. In this

6



Extremes of Subexponential MA Processes

case

P(Y (t) > x) ∼ λ(A)P(f(UA)L(1) > x) for x→ ∞.

If |f(t)| → 0 for |t| → ∞, then there exists a t0 > 0 such that we can choose A =

(−s, s) for any s ≥ t0. The interval (−t0, t0) contains all time points, where f achieves

its maxima and minima. In this case UA = sU , where U is a uniform r. v. on (−1, 1).

If the kernel function f is positive, then f(sU)L(1) ∈ S by Proposition 1.2 (vi);

further conditions can be found in Fasen [10], Remark 1.3.5. The next Lemma is the

basis for the results in Section 4.

Lemma 2.3 Let Y be a MA process as given in (1.1) satisfying Condition (M)

with L(1) ∈ S and f− ≤ f+. Suppose for every ǫ > 0 there exists a Borel set

By = {t ∈ R : |f(t)| ≥ y} with 0 < λ(By) ≤ ǫ. Then

P(|Y (t)| > x) = o(P(f+|L(1)| > x)) for x→ ∞.

Lemma 2.3 does not hold if f is piecewise constant in a local extreme. For this

reason, we need cardOi <∞, i = 1, 2, in Condition (G).

Example 2.4 (Poisson shot noise process) Consider in (1.1) as driving process

a compound Poisson process L with

L(t) =

N(t)∑

j=1

Zj and L(−t) =

−N(−t−)∑

j=1

Z−j for t ≥ 0, (2.2)

where {N(t)}t∈R is a Poisson process on R with intensity µ > 0 and jump times

{Γk}k∈Z\{0}, · · · < Γ−1 < 0 < Γ1 < · · · , which is independent of the i. i. d. sequence

{Zk}k∈Z. Favorably for such a Y under Condition (M), is the representation

Y (t) =

∞∑

j=−∞
j 6=0

f(t− Γj)Zj for t ∈ R. (2.3)

We call Y given in (2.3) a Poisson shot noise process. If additionally f is positive

and Z1 has only support on R+, we call Y a positive Poisson shot noise process.

In particular, for a non-increasing f : [0,∞) → [0,∞) the positive Poisson shot

noise process is non-increasing between successive jumps of L, and thus Y has a

local maximum in t if and only if t ∈ {Γk}k∈N. This means {Y (Γk)}k∈N are the local

extremes of Y on R+ and characterize the extremal behavior of Y .

The Lévy measure ν of L is ν (x,∞) = µP(Z1 > x) for x ∈ R (cf. Sato [23],

Theorem 4.3). Proposition 1.2 (iv) gives L(1) ∈ S if and only if Z1 ∈ S, and in that

case,

P(L(1) > x) ∼ µP(Z1 > x) for x → ∞. (2.4)
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If Y is a positive Poisson shot noise process and |f(t)| → 0 for |t| → ∞, then by

Proposition 2.2 and Lemma 2.3 there exists a t0 > 0 such that for s ≥ t0 and x→ ∞,

P(Y (t) > x) ∼ 2sP(f(sU)L(1) > x) = o(P(f+|L(1)| > x)),

where U is a uniform r. v. on (−1, 1) independent of L(1). �

Example 2.5 (Discrete-time MA process) Let {ξk}k∈Z be an i. i. d. sequence of

r. v. s and {ck}k∈Z be a sequence of real constants with c− ≤ c+. Then

Yn =
∞∑

k=−∞

cn−kξk for n ∈ Z (2.5)

is called a discrete-time MA process. Let ξ1 ∈ S∩MDA(Λ) be i. d. with infinite right

endpoint. Let additionally the tail balance condition limx→∞ P(ξ1 < −x)/P(ξ1 >

x) = p−1(1 − p) for p ∈ (0, 1] holds. This model can be considered as a special case

of Y in (1.1): choose f(t) =
∑∞

k=−∞ ck 1[k−1,k)(t) for t ∈ R. The continuous-time MA

process Y viewed at discrete-time points Y (n) =
∑∞

k=−∞ cn−k[L(k + 1) − L(k)] for

n ∈ Z, is a discrete-time MA process with ξk = L(k+ 1)−L(k). By Proposition 2.2

the process Y and, hence also the discrete-time MA process {Yn}n∈Z is well-defined

and stationary, if either
∑∞

k=−∞ |ck| < ∞, or Eξk = 0 and
∑∞

k=−∞ |ck|
2 < ∞. In

particular, MA processes with the long memory property
∑∞

k=−∞ γ(k) = ∞, where

γ denotes the covariance function, are included. Write P (1) = #{k : ck = c+} and

P (2) = #{k : ck = −c+}. Then we have by Proposition 2.2,

P(Yn > x) ∼
(
P (1) + p−1(1 − p)P (2)

)
P(c+ξ1 > x) for x→ ∞.

3 Extremal behavior of subexponential sequences

In this section we investigate the extremal behavior of processes, not necessarily

stationary with marginals in S ∩MDA(Λ). Throughout this section, we continue the

example of a discrete-time MA process as it provides a good intuition.

We follow Resnick [20] and introduce point processes to describe the extremal

behavior precisely. Let S denote the locally compact and separable Hausdorff space

[0,∞)×R with the Borel σ-field B(S), andMP (S) denotes the class of point measures

on S with metric ρ that generates the topology of vague convergence. A measure

of the form
∑

k∈I εxk
, where xk ∈ S, I is at most countable and εxk

denotes the

Dirac measure in xk, is a point measure. The space (MP (S), ρ) is a complete and

separable metric space provided with the Borel σ-field MP (S). A point process in S

is a random element in (MP (S),MP (S)), i. e. a measurable map from a probability

space (Ω,A,P) into (MP (S),MP (S)). Given a Radon measure ϑ on B(S), a point
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process κ is called Poisson random measure with intensity measure ϑ, denoted by

PRM(ϑ), if κ(A) is Poisson distributed with intensity ϑ(A) for every A ∈ B(S) and if

for mutually disjoint sets A1, . . . , An ∈ B(S), n ∈ N, the r. v. s κ(A1), . . . , κ(An) are

independent. More about point processes can be found in Daley and Vere-Jones [7]

and Kallenberg [16].

First we study the extremal behavior of discrete-time processes via point pro-

cesses. This result will be used in Section 4 to derive the point process behavior of

the discrete-time sequence {Y (tn)}n∈N, where Y is the MA process as given in (1.1)

and {tn}n∈N is a properly chosen discrete-time random sequence.

Proposition 3.1 Let {Zk}k∈N be identically distributed r. v. s in S ∩MDA(Λ) and

{θk}k∈N be a sequence of r. v. s. Suppose aT > 0, bT ∈ R and uT = aTx + bT are

constants such that

lim
T→∞

TP(Z1 > uT ) = exp(−x) for x ∈ R

holds. Furthermore, assume there exists a sequence {Θk}k∈N with Θk
d
= Θ1 for k ∈ N

such that θk ≤ Θk a. s., Θk is independent of Zk for every k ∈ N, and

P(Θ1 > x) = o(P(Z1 > x)) for x→ ∞.

Let {Γk}k∈N be the points of a Poisson process with intensity µ > 0, and for α ∈ R

arbitrary let sk ∈ [Γk−1 + α,Γk+1 + α) for k ∈ N, setting Γ0 := 0. Denote by

κ̃T =

∞∑

k=1

ε(k/T,a−1
T

(Zk−bT )) and κT =

∞∑

k=1

ε(skµ/T,a−1
T

(Zk+θk−bT )) for T > 0

point processes in MP (S). Suppose there exists a point process κ in MP (S) with

κ([s, t)× {x}) = 0 a. s. for s, t ≥ 0 such that κ̃T
T→∞
=⇒ κ. Let I = [s, t)× (x,∞) ⊆ S.

Then

lim
T→∞

P(κT (I) 6= κ̃T (I)) = 0 and κT
T→∞
=⇒ κ.

In particular, if {Zk}k∈N is an i. i. d. sequence, then κ is a PRM(ϑ) with intensity

measure ϑ(dt× dx) = dt × exp(−x) dx.

Example 3.2 (Continuation of Example 2.5) Let ci1 = · · · = ci
P (1)

= c+, cj1 =

· · · = cj
P (2)

= −c+, and else |ck| < c+. In the case p = 1 set P (2) := 0. Furthermore,

let aT > 0, bT ∈ R and uT = aTx+ bT for x ∈ R such that limT→∞ TP(c+ξ1 > uT ) =

exp(−x). For k ∈ Z define the stationary processes

ξk = −ξk−j1 − . . .− ξk−j
P (2)

+ ξk−i1 + . . .+ ξk−i
P (1)

and θk = Yk − c+ξk.
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Let
∑∞

k=1 ε(ski,Pki) be independent PRM(ϑi), i = 1, 2, with ϑ1(dt × dx) = dt ×

exp(−x) dx and ϑ2(dt× dx) = dt × p−1(1 − p) exp(−x) dx respectively. On the one

hand
∞∑

k=1

ε(k/T,a−1
T

(c+ξk−bT ))
T→∞
=⇒ P (1)

∞∑

k=1

ε(sk1,Pk1) + P (2)
∞∑

k=1

ε(sk2,Pk2). (3.1)

On the other hand P(|θk| > x) ∼ KP(c̃ξ1 > x) = o(P(c+|ξ1| > x)) for x → ∞ and

some K > 0 by Example 2.5 and the rapidly varying tails of ξ1, where c̃ is the second

largest value of {|ck|}k∈Z. Hence, by Proposition 3.1, for I = [s, t) × (x,∞) ⊆ S we

have

P

(
∞∑

k=1

ε(k/T,a−1
T

(Yk−bT ))(I) 6=
∞∑

k=1

ε(k/T,a−1
T

(c+ξk−bT ))(I)

)
T→∞
−→ 0, (3.2)

and by (3.1) we obtain

∞∑

k=1

ε(k/T,a−1
T

(Yk−bT ))
T→∞
=⇒ P (1)

∞∑

k=1

ε(sk1,Pk1) + P (2)

∞∑

k=1

ε(sk2,Pk2).

This result extends Theorem 3.3 of Davis and Resnick [8], who proved it under the

condition
∑∞

k=−∞ |ck|
δ <∞ for some δ ∈ (0, 1). �

Proposition 3.1 gives a criterion for point process convergence of a discrete-time

subexponential sequence with marginals in MDA(Λ). In the continuous-time setting

of a MA process as given in (1.1), we apply the results to a properly chosen discrete-

time skeleton {Y (tn)}n∈N. But then also the behavior of the continuous-time process

between the discrete-time points matters. The question arises how long the sample

paths of Y stays on a high level, and how it reverts to its mean after exceeding a

high threshold. The following Lemma is essential for describing the sample path of

Y after a high level exceedance.

Lemma 3.3 Let Y = {Y (t)}t∈R be a stochastic process in R with decomposition

Y (t) = f̃(t)Z + Ỹ (t) for t ∈ R,

where Z ∈ S ∩ MDA(Λ) is a r. v. independent of Ỹ = {Ỹ (t)}t∈R, and f̃ : R → R

is a deterministic function with f̃− ≤ f̃+ < ∞. Furthermore, assume there exist

constants aT > 0, bT ∈ R and uT = aTx+ bT for x ∈ R such that

lim
T→∞

TP(f̃+Z > uT ) = exp(−x).

Define τ = f̃+Z + θ, where θ is independent of Z and satisfies

P(θ > x) = o(P(f̃+Z > x)) for x→ ∞. (3.3)

Then the following assertions hold:

10
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(a) Let J ⊆ R and P(supt∈J |Ỹ (t)| <∞) = 1. Then, we have

lim
T→∞

P

(
sup
t∈J

∣∣∣∣∣
Y (t)

bT
−
f̃(t)

f̃+

∣∣∣∣∣ > ǫ

∣∣∣∣∣ τ > uT

)
= 0.

(b) Let O = {α1, . . . , αP} be a finite set in R such that f̃(t) = f̃+ for t ∈ O. For

y1, . . . , yP ∈ R, and y = max{0, y1, . . . , yP} we have

lim
T→∞

P (Y (α1) > uT + aT y1, . . . , Y (αP ) > uT + aTyP | τ > uT ) = exp(−y).

(c) Let t ∈ R with f̃(t) < f̃+ and P(Ỹ (t) > x) = o(P(f̃+Z > x)) for x → ∞.

Then,

lim
T→∞

P (Y (t) > uT + aT y| τ > uT ) = 0 for y ∈ R.

Remark 3.4 Let α ∈ R with f̃(α) = f̃+, P(Ỹ (α) > x) = o(P(f̃+Z > x)) for

x → ∞ and τ = Y (α), where we suppose Ỹ is a. s. bounded on every compact set

on R. Then, Lemma 3.3 (a) describes the sample paths behavior of Y , if it has an

exceedance over the threshold uT at time point α. More precisely, let XT for T > 0

be processes in some measurable metric space (D̃, D̃), where uniform convergence

on compacta is sufficient for convergence. The process XT is defined to have the

distribution

P(XT ∈ D) = P(Y ∈ D|Y (α) > uT ) for D ∈ D̃.

Then Lemma 3.3 (a) states that XT/bT converges weakly to the deterministic func-

tion f̃(·)/f̃+. Thus, the sample path of Y/bT after an exceedance of Y (α) above uT

is asymptotically f̃(·)/f̃+. For P = 1, the exponential limit in (b) corresponds to

the limiting generalized Pareto distribution for scaled excesses in MDA(Λ). �

Example 3.5 (Continuation of Example 3.2) Suppose P (1) = 1, P (2) = 0 and

c0 = c+. Let k ∈ Z be fixed. Define the discrete-time process Y (n) = Yn, f̃(n) = cn−k,

Ỹ (n) = Yn − f̃(n)ξk for n ∈ Z and Z = ξk. Let XT be a stochastic process with

P(XT ∈ D) = P(Y ∈ D|Yk > uT ) for D ∈ B(RZ). Then Lemma 3.3 (a) implies

XT/bT
T→∞
=⇒ {cn−k/c

+}n∈Z. Applying Rootzén [22], Lemma 3.4, yields

∞∑

k=1

ε(k/T,a−1
T

(Yk−bT ),(Yn/bT )n∈Z)

T→∞
=⇒

∞∑

k=1

ε(sk1,Pk1,(ck−n/c+)n∈Z).

For a subclass of the extended heavy tailed Weibull distribution with the specific

tail P(ξ1 > x) ∼ Kxβ exp(−xα) for x → ∞, K > 0, β ∈ R, α ∈ (0, 1), this result

can be found in Rootzén [22], Theorem 8.6. �

11
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4 Extremal behavior of a Lévy driven MA process

In this section we study the extremal behavior of a subexponential Lévy driven MA

process Y as given in (1.1) satisfying Condition (G). To this end we use a discrete-

time skeleton. This means we investigate the extremal behavior of a discrete-time

sequence {Y (tn)}n∈N, where the discrete-time random sequence {tn}n∈N is chosen

properly by the jump times of the driving Lévy process and the extremes of the

kernel function. We shall show that the extremes of {Y (tn)}n∈N coincide with the

extremes of Y on high levels.

Therefore, we decompose L in two independent Lévy processes according to its

jump sizes: L = L1 + L2 with Lévy measure

ν1 (A) = ν(A ∩ (1,∞)) + ν(A ∩ (−∞,−1)) for A ∈ B(R)

and generating triplet (0, 0, ν1) of L1. The Lévy process L2 has generating triplet

(m, σ2, ν − ν1). Then L1 is a compound Poisson process whose jumps have mod-

ulus larger than 1, and L2 has jumps with modulus only smaller than 1. Hence,

L1(t) =
∑N(t)

j=1 Zj for t ≥ 0, where N = {N(t)}t∈R is a Poisson process with inten-

sity µ = ν1(R), and jump times Γ = {Γk}k∈Z\{0}, · · · < Γ−1 < 0 < Γ1 < · · · . The

sequence Z = {Zk}k∈Z consists of i. i. d. random variables with d. f. s ν1 (−∞, ·] /µ.

Furthermore, N and Z are independent. This decomposition of L induces a decom-

position of Y giving Y = Y1 + Y2, where for i = 1, 2,

Yi(t) =

∫ ∞

−∞

f(t− s) dLi(s) for t ∈ R (4.1)

are independent MA processes. Then Y1 has the modification

Y1(t) =
∞∑

j=−∞
j 6=0

f(t− Γj)Zj for t ∈ R, (4.2)

where the right hand side is defined pathwise. First we give a short motivation for

the choice of the discrete-time random sequence {tn}n∈N. Consider the Poisson shot

noise process Y1 given in (4.2), then

Y1(Γk + t) = f(t)Zk +
∞∑

j=−∞
j 6=k,0

f(t+ Γk − Γj)Zj for k ∈ N, t ∈ R.

For subexponential {Zk}k∈Z some Zk is likely to be large in comparison to other

terms of the sequence. Then Y1(Γk + t) behaves roughly like f(t)Zk. The process

{f(t)Zk}t∈R achieves a maximum only for some t ∈ O1. Similar results hold for large

12
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negative jumps and a minimum t ∈ O2 of the kernel function. This suggests that

Y1(tn) with

tn ∈ {Γk + α
(1)
l : k ∈ N, l = 1, . . . , P (1)} ∪ {Γk + α

(2)
l : k ∈ N, l = 1, . . . , P (2)}

is a local extreme value of Y1, if the absolute value of the jump of L is large.

Theorem 4.1 Let Y be a MA process as given by (1.1) satisfying Condition (G),

where Y has the decomposition (4.1) with (4.2). For i = 1, 2, l = 1, . . . , P (i), define

point processes in MP (S) by

κ
(i,l)
T =

∞∑
k=1

ε(
(Γ

k
+α

(i)
l

)/T,a−1
T

(Y (Γ
k
+α

(i)
l

)−bT )
), κ̃

(i)
T =

∞∑
k=1

ε(k/(Tµ),a−1
T

((−1)(i+1)f+Z
k
−bT )).

Let
∑∞

k=1 ε(ski,Pki) = κ(i) be a PRM(ϑi), i = 1, 2, with intensity measure ϑ1(dt×dx) =

dt×exp(−x) dx and ϑ2(dt×dx) = dt ×p−1(1−p) exp(−x) dx respectively. Suppose

κ(1) and κ(2) are independent. Furthermore, define the point processes

κT =

P (1)∑

l=1

κ
(1,l)
T +

P (2)∑

l=1

κ
(2,l)
T , κ̃T = P (1)κ̃

(1)
T + P (2)κ̃

(2)
T , κ = P (1)κ(1) + P (2)κ(2).

Let I = [s, t) × (x,∞) ⊆ S. Then for i = 1, 2, l = 1, . . . , P (i), we have

lim
T→∞

P(κ
(i,l)
T (I) 6= κ̃

(i)
T (I)) = 0 and κT

T→∞
=⇒ κ.

The limit process of the point process of exceedances κT (· × (x,∞)) for x > 0 fixed,

is the sum of two independent compound Poisson random measures with constant

cluster sizes P (1) and P (2) respectively. If f has at most one maximum and at most

one minimum the limit process κ is a Poisson random measure. This case reflects

no clusters on high levels.

The sample paths behavior near high level excursions is modelled by marked

point processes. For our model a marked point process is a point process in S ×

[−∞,∞]m for m ∈ N. The coordinates higher than three describe the behavior of

the continuous-time process in the neighborhood of an exceedance over the threshold

uT in the second coordinate. More about the concept of marked point processes can

be found in Daley and Vere-Jones [7], Section 6.4. The following corollary describes

the behavior of marked point processes.

Corollary 4.2 Let the assumptions of Theorem 4.1 hold. Suppose t1, . . . , tm ∈ R,

i ∈ {1, 2} is fixed and α(i) ∈ Oi. Then the following statements hold.

13
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(a) Let KT =
∞∑

k=1

ε((Γk
+α(i))/T,a−1

T
(Y (Γ

k
+α(i))−bT ),{a−1

T
(Y (Γ

k
+tj)−bT )}j=1,...,m),

K =
∞∑

k=1

ε(ski,Pki,{Pki 1{f(tj)=(−1)(i+1)f+}
+ε−∞ 1

{f(tj) 6=(−1)(i+1)f+}
}j=1,...,m)

be point processes in MP (S × [−∞,∞]m). Then KT
T→∞
=⇒ K.

(b) Let KT =
∞∑

k=1

ε((Γk
+α(i))/T,a−1

T
(Y (Γ

k
+α(i))−bT ),{Y (Γ

k
+tj)/bT }j=1,...,m),

K =
∞∑

k=1

ε(ski,Pki,{(−1)(i+1)f(tj)/f+}j=1,...,m)

be point processes in MP (S × R
m). Then KT

T→∞
=⇒ K.

(c) Define P = P (i), αl = Γk + α
(i)
l , l = 1, . . . , P , and α = Γk + α(i) for some

k ∈ N. For y1, . . . , yP ∈ R, y = max{0, y1, . . . , yP}, θ1 = 1 and θ2 = p−1(1− p)

we have

lim
T→∞

P (Y (α1) > uT + aT y1, . . . , Y (αP ) > uT + aTyP | Y (α) > uT ) = exp(−θiy).

(d) Let t /∈ Oi and y ∈ R. Then

lim
T→∞

P(Y (Γk + t) > uT + aTy|Y (Γk + α(i)) > uT ) = 0.

Remark 4.3

(i) Theorem 4.1 states that exceedances of {Y (Γk +α
(i)
l )}k∈N above the threshold

uT behave like the exceedances of {(−1)(i+1)f+Zk}k∈Z above uT for T → ∞. Hence,

the influence of small jumps of the Lévy process, represented in Y2, are negligible for

the extremal behavior of {Y (Γk +α
(i)
l )}k∈N, since Zk represents the jumps of L with

modulus larger than 1. Furthermore, this result means that extremely large jumps of

the Lévy process cause extremely large jumps of the MA process. Fasen [10], Theo-

rem 1.4.5 shows the converse that under more restrictive assumptions on the kernel

function extreme large jumps of the MA process can only be caused by extreme

large jumps of the Lévy process.

(ii) The discrete-time skeleton {Y (tn)}n∈N reflects the local maxima of the process

on high levels; see Corollary 4.2 (b). Notice that in the last coordinate of KT in (b)

the normalization bT represents the behavior of Y (Γk + α
(i)
l ).

(iii) The extremal behavior of a continuous-time MA process is similar to the

extremal behavior of a discrete-time MA processes, cf. Examples 3.2 and 3.5. In

both cases the cluster behavior depends on the number of extremes of the kernel

function. �

In the following theorem we calculate the normalizing constants of running maxima

of Y .
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Theorem 4.4 Let Y be a MA process as given in (1.1) satisfying Condition (G),

where Y has the decomposition (4.1) with (4.2). Assume the kernel function f

satisfies
∫∞

−∞
sup0≤t≤1 |f(t+ s)| λ(ds) <∞. Write M(T ) = sup0≤t≤T Y (t) for T > 0.

Then,

lim
T→∞

P
(
a−1

T (M(T ) − bT ) ≤ x
)

= exp(−[1 + p−1(1 − p) 1{f− = f+}] e−x) for x ∈ R.

We impose a stronger condition on the kernel f than in (G), because we compute an

upper bound for Y , which only exists under this additional assumption. For a Poisson

shot noise process with non-negative, non-increasing kernel function, the normalizing

constants of running maxima have already been calculated by Lebedev [17].

Remark 4.5 If f is flat in its maximum and either f− < f+ or f is also flat

in its minimum with value −f+, the convergence of running maxima of Y is also

ensured. Following the proof of Theorem 4.4 line by line and replacing the suprema

in X
(i)
n by the infima, a lower bound for supt∈[n−1,n) Y (t) can be found, without using

Theorem 4.1. �

5 Proofs

Proof of Proposition 2.2. (a). Using Davis and Resnick [8], Proposition 1.1,

there exist x0, K > 0, ω : (x0/f
+,∞) → R+ absolutely continuous with density ω′,

limx→∞ ω′(x) = 0 and limx→∞ ω(x) = ∞ such that for x ≥ x0:∫
Ac ν(x/f

+(s),∞)λ(ds) +
∫

Ac ν(−∞,−x/f−(s))λ(ds)

ν(x/y,∞)

≤
K

δ2

(
ω(x/y)

x/y

)2 ∫

Ac

|f(s)|2 λ(ds). (5.1)

By the rule of L’Hospital lim
x→∞

ω(x)/x = lim
x→∞

ω′(x) = 0. Hence, by (5.1) and f ∈ L
2,

we have

0 ≤

∫
Ac ν(x/f

+(s),∞)λ(ds) +
∫

Ac ν(−∞,−x/f−(s))λ(ds)∫
A
ν(x/f+(s),∞) + ν(−x/f−(s),∞)λ(ds)

≤ C

∫
Ac ν(x/f

+(s),∞)λ(ds) +
∫

Ac ν(−∞,−x/f−(s))λ(ds)

λ(By)ν(x/y,∞)

x→∞
−→ 0.

This means with µ1 = ν(1,∞) and µ2 = ν(−∞,−1) for x→ ∞,
∫ ∞

−∞

ν(x/f+(s),∞)λ(ds) +

∫ ∞

−∞

ν(−∞,−x/f−(s))λ(ds)

∼

∫

A

ν(x/f+(s),∞)λ(ds) +

∫

A

ν(−∞,−x/f−(s))λ(ds)

= λ(A)µ1P(f+(UA)Z(1) > x) + λ(A)µ2P(f−(UA)Z(2) > x). (5.2)
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(b). If L(1) ∈ S and −L(1) ∈ S respectively, we obtain by Proposition 1.2 (iv)

for x→ ∞,

P(L+(1) > x) ∼ µ1P(Z(1) > x) and P(L−(1) > x) ∼ µ2P(Z(2) > x)

respectively. Thus, standard arguments (for details see Fasen [10], Lemma 1.3.4) and

(a) yields for x→ ∞,

νY (x,∞) ∼ λ(A)P(f+(UA)L+(1) > x) + λ(A)P(f−(UA)L−(1) > x)

= λ(A)P(f(UA)L(1) > x). (5.3)

If ν has a finite left endpoint, also the support of the Lévy measure of f−(UA)L−(1)

is bounded below. Moreover f+(UA)L+(1) ∈ S by Proposition 1.2 (v). We have by

Theorem 26.1 of Sato [23], and Proposition 1.2 (i),

P(f−(UA)L−(1) > x) = o(P(f+(UA)L+(1) > x)) for x→ ∞.

Then (5.3) follows again with P(f−(UA)Z(2) > x) = 0 for large x and (a).

Thus, by (5.3) and Proposition 1.2 (iv) we obtain the r. v. Y (t) ∈ S if and only

if f(UA)L(1) ∈ S. In this case P(Y (t) > x) ∼ νY (x,∞) ∼ λ(A)P(f(UA)L(1) > x)

for x→ ∞. �

Proof of Lemma 2.3. Let ǫ > 0 and 0 < λ(By) ≤ ǫ. Similarly to (5.1), there exist

Ky, x0 > 0, ω : (x0/f
+,∞) → R+ absolutely continuous with limx→∞ ω(x)/x = 0

such that for x > x0,

νY (x,∞)

ν(x/f+,∞)
=

∫ ∞

−∞

ν (x/f+(s),∞)

ν(x/f+,∞)
λ(ds) +

∫ ∞

−∞

ν (−∞,−x/f−(s))

ν(x/f+,∞)
λ(ds)

≤ Ky

(
ω(x/y)

x/y

)2 ∫

Bc
y

|f(s)|2 λ(ds) + ǫ,

which tends to 0 as x→ ∞ and ǫ ↓ 0. On a similar way we obtain

lim
x→∞

νY (−∞,−x)

ν(x/f+,∞)
= 0.

The statement follows by Proposition 1.2 (vi). �

The main step of proving Proposition 3.1 is the following Lemma.

Lemma 5.1 Let Z ∈ S ∩ MDA(Λ) be independent of the r. v. s θ and X. Suppose

there exist constants aT > 0, bT ∈ R, such that for uT = aTx+ bT with x ∈ R,

lim
T→∞

TP(Z > uT ) = exp(−x). (5.4)
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For ǫ > 0 define vT = aT ǫ.

(a) Suppose P(θ > x) = o(P(Z > x)) for x→ ∞. Then,

lim
T→∞

TP(θ + Z > uT , Z ≤ uT − vT ) = 0, (5.5)

lim
A↑∞

lim
T→∞

TP (θ + Z > uT , |Z − uT | > aTA) = 0. (5.6)

(b) Then, lim
T→∞

TP(θ + Z ≤ uT , Z > uT + vT ) = 0.

(c) Suppose P(X > x) ∼ q P(Z > x) for x → ∞ and q > 0. Then,

lim
T→∞

TP(X + Z > uT , X ≤ uT − vT , Z ≤ uT − vT ) = 0.

Proof of Lemma 5.1. Let FZ , Fθ and FX be the d. f. s of Z, θ and X respectively.

(a) Note that uT → ∞, vT → ∞, aT/bT → 0 and also uT/2−vT = (x/2− ǫ)aT +

bT /2 → ∞ for T → ∞. Hence, we can assume that uT/2 < uT − vT . Now, suppose

for the moment that for T → ∞,
∫ uT −vT

uT /2

F θ(uT − y)FZ(dy) = o(FZ(uT )), (5.7)

∫ uT /2

−∞

F θ(uT − y)FZ(dy) = o(FZ(uT )), (5.8)

FZ (uT/2)F θ (uT/2) = o(FZ(uT )). (5.9)

Then we obtain for T → ∞,

P (θ + Z > uT , Z ≤ uT − vT , θ ≤ uT/2) ≤

∫ uT−vT

uT /2

F θ(uT − y)FZ(dy) = o(FZ(uT )),

P (θ + Z > uT , Z ≤ uT/2) =

∫ uT /2

−∞

F θ(uT − y)FZ(dy) = o(FZ(uT )).

Hence, the last two inequalities and (5.9) give

P(θ + Z > uT , Z ≤ uT − vT )

≤ P (θ + Z > uT , Z ≤ uT − vT , θ ≤ uT/2) + . . .

. . .+ P (θ + Z > uT , Z ≤ uT/2) + P (Z > uT/2, θ > uT/2)

= o(FZ(uT )) for T → ∞.

Applying (5.4) yields (5.5). On the other hand, we estimate

P(θ + Z > uT , |Z − uT | > aTA)

P(Z > uT )

=

∫ uT−aT A

−∞

F θ(uT − y)

FZ(uT )
FZ(dy) +

∫ ∞

uT +aT A

F θ(uT − y)

FZ(uT )
FZ(dy)

≤ sup
z>aT A

F θ(z)

FZ(z)

F 2∗
Z (uT )

FZ(uT )
+
FZ(uT + aTA)

FZ(uT )
. (5.10)
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For the first summand in (5.10) the assumption P(θ > x) = o(P(Z > x)) for x→ ∞,

Proposition 1.2 (ii) and the fact that uT , aT → ∞ for T → ∞ gives

lim
T→∞

sup
z>aT A

F θ(z)

FZ(z)

F 2∗
Z (uT )

FZ(uT )
= 0. (5.11)

Applying (5.4) again gives for the second summand in (5.10),

lim
T→∞

FZ(uT + aTA)

FZ(uT )
= lim

T→∞

FZ (aT (x+ A) + bT )

FZ (aTx+ bT )
=

exp(−x− A)

exp(−x)
A→∞
−→ 0. (5.12)

The result (5.6) follows then by (5.10)-(5.12).

Next we prove (5.7)-(5.9). By the same argument as used for (5.11) and the fact

uT , vT → ∞ for T → ∞ we obtain (5.7):

∫ uT−vT

uT /2

F θ(uT − y)

FZ(uT )
FZ(dy) ≤ sup

z≥vT

F θ(z)

FZ(z)

F 2∗
Z (uT )

FZ(uT )

T→∞
−→ 0.

Moreover, we obtain (5.8) by Proposition 1.2 (iii). Finally, (5.9) follows from Propo-

sition 1.2 (i), which gives

0 ≤ lim
T→∞

F θ (uT/2)FZ (uT/2)

FZ(uT )
= lim

T→∞

F θ (uT/2)

FZ (uT/2)
lim

T→∞

FZ (uT/2)FZ (uT/2)

FZ(uT )
= 0.

Statement (5.9) also holds, if θ and Z are tail-equivalent.

(b) We have again by (5.4) and vT → ∞ as T → ∞,

lim
T→∞

TP(Z > uT + vT , θ + Z ≤ uT ) ≤ lim
T→∞

TP(Z > uT + vT )P(θ ≤ −vT ) = 0.

(c) Since FX ∈ S, we know that FX(uT − y)/FZ(uT ) → q for T → ∞ locally

uniformly in y. Moreover, by Proposition 1.2 (iii),

lim
T→∞

∫ uT /2

−∞

FX(uT − y)

FZ(uT )
FZ(dy) = q.

Thus by Pratt’s Lemma (Resnick [20], Exercise 5.4.2.4),

lim
T→∞

P(X + Z > uT , X ≤ uT − vT , Z ≤ uT/2)

P(Z > uT )
= lim

T→∞

∫ uT /2

vT

FX(uT − y)

FZ(uT )
FZ(dy)

=

∫ ∞

−∞

lim
T→∞

FX(uT − y)

FZ(uT )
1[vT ,uT /2](y)FZ(dy) = 0.
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By symmetry also P(X+Z > uT , X ≤ uT/2, Z ≤ uT −vT ) = o(FZ(uT )) for T → ∞.

Hence, by (5.9),

P (X + Z > uT , X ≤ uT − vT , Z ≤ uT − vT )

≤ P (X + Z > uT , X ≤ uT − vT , Z ≤ uT/2) + . . .

. . .+ P (X + Z > uT , X ≤ uT/2, Z ≤ uT − vT ) + P (X > uT/2) P (Z > uT/2)

= o(FZ(uT )) for T → ∞. �

Proof of Proposition 3.1. Denote by ζT =
∑∞

k=1 ε(k/T,a−1
T

(Zk+θk−bT )) for T > 0

point processes in MP (S). Let ǫ > 0 be arbitrary. Write Iǫ = [s, t) × (x− ǫ, x+ ǫ].

Then,

{ζT (I) 6= κ̃T (I)} ⊆
⋃

k∈[Ts,T t)

{θk + Zk > uT , Zk ≤ uT − vT} ∪ . . .

. . .
⋃

k∈[Ts,T t)

{θk + Zk ≤ uT , Zk > uT + vT} ∪ {κ̃T (Iǫ) > 0}.

Hence, by Lemma 5.1 (a,b) and the independence of Θ1 and Z1 we obtain

P (ζT (I) 6= κ̃T (I)) ≤ T (t− s)P(Θ1 + Z1 > uT , Z1 ≤ uT − vT ) + P(κ̃T (Iǫ) > 0) + . . .

. . .+ T (t− s)P(Θ1 + Z1 ≤ uT , Z1 > uT + vT )
T→∞
−→ P(κ(Iǫ) > 0)

ǫ↓0
−→ 0.

By a modification of an argument of Hsing and Teugels [15] (see the proofs of their

Theorem 4.2, Lemma 2.1 and for more details Fasen [10], Corollary 1.2.2) we have

limT→∞ P(κT (I) 6= ζT (I)) = 0. Thus the assertion

lim
T→∞

P(κT (I) 6= κ̃T (I)) ≤ lim
T→∞

P(κT (I) 6= ζT (I)) + lim
T→∞

P(ζT (I) 6= κ̃T (I)) = 0

follows. We conclude κT
T→∞
=⇒ κ by Rootzén [22], Lemma 3.3. �

Proof of Lemma 3.3. Let ǫ > 0 be arbitrary.

(a) We decompose the probability:

P

(
sup
t∈J

∣∣∣∣∣
Y (t)

bT
−
f̃(t)

f̃+

∣∣∣∣∣ > ǫ

∣∣∣∣∣ τ > uT

)
(5.13)

= P

(
sup
t∈J

∣∣∣∣∣
Y (t)

bT
−
f̃(t)

f̃+

∣∣∣∣∣ > ǫ, |f̃+Z − uT | > aTA

∣∣∣∣∣ τ > uT

)
+ . . .

. . .+ P

(
sup
t∈J

∣∣∣∣∣
Y (t)

bT
−
f̃(t)

f̃+

∣∣∣∣∣ > ǫ, |f̃+Z − uT | ≤ aTA

∣∣∣∣∣ τ > uT

)
.
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The first term in (5.13) satisfies the inequality

P

(
sup
t∈J

∣∣∣∣∣
Y (t)

bT
−
f̃(t)

f̃+

∣∣∣∣∣ > ǫ, |f̃+Z − uT | > aTA

∣∣∣∣∣ τ > uT

)

≤
P

(
|f̃+Z − uT | > aTA, τ > uT

)

P(τ > uT )
. (5.14)

Furthermore, by (3.3) and Proposition 1.2 (iii),

lim
T→∞

TP(τ > uT ) = lim
T→∞

TP(f̃+Z + θ > uT ) = exp(−x). (5.15)

Then, by using Lemma 5.1 (a) we conclude

lim
A↑∞

lim
T→∞

P

(
|f̃+Z − uT | > aTA, τ > uT

)

P(τ > uT )
= 0. (5.16)

For the second term in (5.13) we have

P

(
sup
t∈J

∣∣∣∣∣
Y (t)

bT
−
f̃(t)

f̃+

∣∣∣∣∣ > ǫ, |f̃+Z − uT | ≤ aTA

)

≤ P

(
sup
t∈J

|Ỹ (t)| > bT ǫ− aT (A + x)

)
P

(∣∣∣f̃+Z − uT

∣∣∣ ≤ aTA
)
, (5.17)

where we used the independence of Ỹ and Z in the last step. Furthermore,

TP

(∣∣∣f̃+Z − uT

∣∣∣ ≤ aTA
)
≤ TP

(
f̃+Z > uT − aTA

)
T→∞
−→ e−x+A for T → ∞ (5.18)

holds. Thus, by (5.15), (5.17), (5.18) and bT ǫ − aT (A + x) → ∞ for T → ∞ (cf.

Embrechts et al. [9], p. 149) we obtain

P

(
sup
t∈J

∣∣∣∣∣
Y (t)

bT
−
f̃(t)

f̃+

∣∣∣∣∣ > ǫ, |f̃+Z − uT | ≤ aTA

∣∣∣∣∣ τ > uT

)
T→∞
−→ 0. (5.19)

Combining (5.13), (5.14), (5.16) and (5.19) yields the assertion.

(b) First we show

lim
T→∞

P

(
sup
t∈O

|Y (t) − τ | > aT ǫ

∣∣∣∣ τ > uT

)
= 0. (5.20)

Define vT = aT ǫ. We proceed as in (a) and decompose the probability

P

(
sup
t∈O

|Y (t) − τ | > vT

∣∣∣∣ τ > uT

)
(5.21)

= P

(
sup
t∈O

|Ỹ (t) − θ| > vT , f̃
+Z > uT − vT

∣∣∣∣ τ > uT

)
+ . . .

. . .+ P

(
sup
t∈O

|Ỹ (t) − θ| > vT , f̃
+Z ≤ uT − vT

∣∣∣∣ τ > uT

)
.
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For the first summand of (5.21) we get by the independence of Ỹ − θ and Z

P

(
sup
t∈O

|Ỹ (t) − θ| > vT , f̃
+Z > uT − vT

∣∣∣∣ τ > uT

)
(5.22)

≤
P

(
supt∈O |Ỹ (t) − θ| > vT

)
P

(
f̃+Z > uT − vT

)

P(τ > uT )

T→∞
−→ 0.

The last term tends to zero, since aT → ∞, TP(f̃+Z > uT − vT ) → exp(−x+ ǫ) for

T → ∞ and (5.15) holds.

Using Lemma 5.1 (a) and (5.15) we get for the second summand of (5.21)

P

(
sup
t∈O

∣∣∣Ỹ (t) − θ
∣∣∣ > vT , f̃

+Z ≤ uT − vT

∣∣∣∣ τ > uT

)

≤
P

(
τ > uT , f̃

+Z ≤ uT − vT

)

P (τ > uT )

T→∞
−→ 0. (5.23)

Therefore (5.20) is proven by (5.21)-(5.23). Invoking again (5.15) we see that

P (τ > uT + aTyi| τ > uT )
T→∞
−→ exp(−max{yi, 0}). (5.24)

Taking (5.20) into account we obtain the second statement of (b).

(c) By considering Proposition 1.2 (iii) we have for |f̃(t)| < f̃+,

P (Y (t) > aT (x+ y) + bT ) = o
(
P

(
f̃+Z > aT (x+ y) + bT

))
for T → ∞.

With (5.15) we conclude

P (Y (t) > uT + aTy| τ > uT ) ≤
P (Y (t) > aT (x+ y) + bT )

P (τ > aTx+ bT )

T→∞
−→ 0.

If f̃(t) = −f̃+, then with Lemma 5.1 (a) we have

lim
T→∞

P(Y (t) > uT + aTy|τ > uT )

≤ lim
T→∞

P(−f̃+Z + Ỹ (t) > uT + aTy, f̃
+Z > uT − vT )

P(τ > uT )

≤ lim
T→∞

P(Ỹ (t) > uT + aTy)

P(τ > uT )
= 0.

�

For the proofs of Theorem 4.1 and Corollary 4.2 we first show the following Lemma.
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Lemma 5.2 Suppose the assumptions of Theorem 4.1 hold. Then for t ∈ R, k ∈ N,

there exists a sequence {Θk(t)}k∈N with Θk(t) independent of Zk and

|Y (Γk + t) − f(t)Zk| ≤ Θk(t) a. s. (5.25)

Furthermore there exists a r. v. Θ with Θk(t)
d
= Θ for k ∈ N, t ∈ R, and

P(Θ > x) = o(P(f+|Z1| > x)) for x→ ∞.

Proof of Lemma 5.2. Choose k > 0 fixed, and define the shifted compound Poisson

process {L̃(t)}t∈R with jump times {−Γ̃−j}j∈Z\{0}, where

Γ̃j =

{
Γk for j = k,

Γk − Γk−j for j ∈ Z\{k},

with corresponding jump sizes |Zk+j| at time −Γ̃−j and intensity µ. Then,

Y1(Γk + t) =
∞∑

m=−∞
m6=0

f(t+ Γ̃k−m)Zm =
∞∑

j=−∞
j 6=−k

f(t+ Γ̃−j)Zk+j for t ∈ R,

and we obtain

|Y1(Γk + t) − f(t)Zk| ≤
∞∑

j=−∞
j 6=0

|f(t+ Γ̃−j)||Zk+j| =: Ỹ1(t), (5.26)

where Ỹ1(t) is a modification of the MA process
∫∞

−∞
|f(t− s)| dL̃(s). Thus,

|Y (Γk + t) − f(t)Zk| ≤ Ỹ1(t) + |Y2(Γk + t)| =: Θk(t). (5.27)

Note, that Θk(t) is independent of Zk. Choose Θ
d
= Ỹ1(0)+ |Y2(0)|. By the indepen-

dence of Γ, Z and Y2 as well as the stationarity of Ỹ1 and Y2 we obtain

P(|Y (Γk + t) − f(t)Zk| > x) ≤ P(Θk(t) > x) = P(Θ > x) for k ∈ N, x > 0. (5.28)

Using Proposition 2.2 (b) and Proposition 1.2 (v) we have |f(UA)|L̃(1), Ỹ1(0) ∈ S,

and by Lemma 2.3 also P(Ỹ1(0) > x) = o(P(f+|Z1| > x)) for x → ∞. Since νY2

has a bounded support, applying Theorem 26.1 of Sato [23] and Proposition 1.2 (i)

yields

P(|Y2(0)| > x) = o(P(Ỹ1(0) > x)) for x→ ∞.

Hence, with Proposition 1.2 (iii) we conclude

P(Θ > x) = P(Ỹ1(0) + |Y2(0)| > x) = o(P(f+|Z1| > x)) for x→ ∞. (5.29)

�
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Proof of Theorem 4.1. Recall that by (2.4) the normalizing constants of Zk are

aT/µ, bT/µ and, if p < 1, the normalizing constants of −Zk are a(1−p)T/(pµ), b(1−p)T/(pµ).

Considering Lemma 5.2 the assumptions of Proposition 3.1 are satisfied, and thus,

lim
T→∞

P(κ
(1,l)
T/µ(I) 6= κ̃

(1)
T/µ(I)) = lim

T→∞
P(κ

(2,l)
T/µ(I) 6= κ̃

(2)
T/µ(I)) = 0.

Hence,

P(κT (I) 6= κ̃T (I)) ≤
P (1)∑

l=1

P(κ
(1,l)
T (I) 6= κ̃

(1)
T (I)) +

P (2)∑

l=1

P(κ
(2,l)
T (I) 6= κ̃

(2)
T (I))

T→∞
−→ 0.

By Proposition 3.1 of Davis and Resnick [8] also κ̃T
T→∞
=⇒ κ. A conclusion of

Rootzén [22], Lemma 3.3, is κT
T→∞
=⇒ κ. �

Proof of Corollary 4.2. For statement (a) we consider w. l. o. g. the case m = 2,

t1 = α
(i)

l̃
with f(t1) = (−1)(i+1)f+ and f(t2) 6= (−1)(i+1)f+. Let I = I0×I1×I2×I3 =

(s, t]× (x1, y1]× [x2, y2]× [x3, y3] be relatively compact sets on S× [−∞,∞]2. Define

the point processes

K
(1)
T =

∞∑

k=1

ε(
(Γ

k
+α(i))/T,a−1

T
(Y (Γ

k
+α(i))−bT ),a−1

T
(Y (Γ

k
+α

(i)

l̃
)−bT ),ε−∞

),

K
(2)
T =

∞∑

k=1

ε(k/(Tµ),a−1
T

((−1)(i+1)f+Zk−bT ),a−1
T

((−1)(i+1)f+Zk−bT ),ε−∞)

in MP (S × [−∞,∞]2). Thus,

P(KT (I) 6= K
(2)
T (I)) ≤ P(KT (I) 6= K

(1)
T (I)) + P(K

(1)
T (I) 6= K

(2)
T (I)). (5.30)

On the one hand we have by (5.27), (5.29), Lemma 3.3 (c) for some ǫ > 0, and

x̃ = x3 if x3 > −∞, and x̃ = y3 if x3 = −∞,

P(KT (I) 6= K
(1)
T (I)) (5.31)

≤ T (ǫ+ t− s)P(f(t2)Zk + Θk(t2) > aT x̃+ bT , (−1)(i+1)f+Zk + Θk(α
(i)) > aTx1 + bT )

T→∞
−→ 0,

and on the other hand by Theorem 4.1 we have for x2 > −∞,

P(K
(1)
T (I) 6= K

(2)
T (I)) (5.32)

≤ P(κ
(i,l)
T (I0 × I1) 6= κ̃

(i)
T (I0 × I1)) + P(κ

(i,l̃)
T (I0 × I2) 6= κ̃

(i)
T (I0 × I2))

T→∞
−→ 0.

If x2 = −∞ similar arguments as in (5.31) show limT→∞ P(K
(1)
T (I) 6= K

(2)
T (I)) = 0.

By Proposition 3.1 of Davis and Resnick [8] also K
(2)
T

T→∞
=⇒ K. Again reasoning as

in Rootzén [22], Lemma 3.3, and (5.30)-(5.32) we obtain KT
T→∞
=⇒ K.
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Statement (b) is a conclusion of Lemma 3.3 (a), Lemma 5.2 and similar argu-

ments as in (a) (cf. Rootzén [22], Lemma 3.4). The statements (c) and (d) follow by

Lemma 3.3 (b, c), and Lemma 5.2. �

Proof of Theorem 4.4. Let cn = supt∈[n−1,n+1) f
+(t) and dn = supt∈[n−1,n+1) f

−(t)

for n ∈ Z. Since
∫∞

−∞
sup0≤t≤1 |f(t + s)| λ(ds) < ∞ we conclude

∑∞
n=−∞ cn < ∞

and
∑∞

n=−∞ dn < ∞. Now, we use the decomposition L = L̃1 − L̃2 + L̃3, where

L̃1 and L̃2 respectively are positive compound Poisson processes with character-

istic triplet (0, 0, ν̃1) and (0, 0, ν̃2) respectively, where ν̃1(A) = ν(A ∩ (1,∞)) and

ν̃2(A) = ν(A ∩ (−∞,−1)) for A ∈ B(R), and L̃3 = L2 has characteristic triplet

(m, σ2, ν − ν̃1 − ν̃2). Define

X(1)
n =

∞∑

k=−∞

cn−kξ
(1)
k , X(2)

n =

∞∑

k=−∞

dn−kξ
(2)
k , X(3)

n = sup
t∈[n−1,n)

∫ ∞

−∞

f(t− s) dL̃3(s)

for n ∈ N, where ξ
(i)
k = L̃i(k) − L̃i(k − 1) for k ∈ Z, i = 1, 2. Both X

(1)
n and X

(2)
n

are finite a. s. by Example 2.5, and since P(|Y (t)| < ∞ for every t ∈ R) = 1 also

|X
(3)
n | <∞ a. s. As L̃1 and L̃2 respectively, are increasing, we have

sup
t∈[n−1,n)

Y (t) ≤ X(1)
n +X(2)

n +X(3)
n =: Xn. (5.33)

Since {ξ
(i)
k }k∈N is an i. i. d. sequence with ξ

(i)
k

d
= L̃i(1) and X(i) = {X

(i)
n }n∈N is a

discrete-time MA process, which satisfies the assumptions of Example 3.2, we obtain

for i = 1, 2, (only i = 1 in the case f− < f+ or p = 1)

κ
(i)
T =

∞∑

k=1

ε(
k/T,a−1

T
(X

(i)
k

−bT )
) T→∞

=⇒ P̃ (i)κ(i)

with κ(i) as given in Theorem 4.1. Furthermore, P̃ (1) = card{k : ck = f+} and

P̃ (2) = card{k : dk = f+}. The processes X(1) and X(2) are independent. By the

use of Example 2.5 we have P(X
(i)
n > x) ∼ P̃ (i)

P(f+L̃i(1) > x) for x → ∞, i = 1, 2

(only i = 1 in the case f− < f+ or p = 1). Regarding Goldie and Resnick [13],

Theorem 2.3, (if f− = f+ and p < 1) and Proposition 3.1 (if f− < f+ or p = 1) we

conclude

∞∑

k=1

ε(
k/T,a−1

T
(X

(1)
k

+X
(2)
k

−bT )
) T→∞

=⇒ P̃ (1)κ(1) + P̃ (2)κ(2).

The sample path of Y1 are a.s. càdlàg so that Y2 is also separable. Using Braverman

and Samorodnitsky [3], Lemma 2.1, and the Markov-inequality we obtain P(|X
(3)
k | >
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x) = O(exp(−x)) for x → ∞ such that by Proposition 1.2 (i) we also have P(|X(3)
k | >

x) = o(P(f+|L(1)| > x)) for x→ ∞. Applying Proposition 3.1 yields

∞∑

k=1

ε(
k/T,a−1

T
(X

(1)
k

+X
(2)
k

+X
(3)
k

−bT )
) T→∞

=⇒ P̃ (1)κ(1) + P̃ (2)κ(2).

Thus, for I = (0, 1] × (x,∞) we have on the one hand with (5.33)

lim
T→∞

P(a−1
T (M(T ) − bT ) ≤ x) ≥ lim

T→∞
P

(
∞∑

k=1

ε(
k/T,a−1

T
(X

(1)
k

+X
(2)
k

+X
(3)
k

−bT )
)(I) = 0

)

= P(κ(1)(I) = 0)[1{f−<f+} + 1{f−=f+} P(κ(2)(I) = 0)]. (5.34)

On the other hand, Theorem 4.1 gives

lim
T→∞

P(a−1
T (M(T ) − bT ) ≤ x) ≤ P(P (1)κ(1)(I) + P (2)κ(2)(I) = 0) (5.35)

= P(κ(1)(I) = 0)[1{f−<f+} + 1{f−=f+} P(κ(2)(I) = 0)].

Taking P(κ(1)(I) = 0) = exp(−e−x) and P(κ(2)(I) = 0) = exp(−p−1(1 − p)e−x) into

account we obtain by (5.34) and (5.35) the result. �
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