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Abstract. The copula of a multivariate distribution is the distribution transformed so that
one dimensional marginal distributions are uniform. We review a different transformation of
a multivariate distribution which yields standard Pareto for the marginal distributions and
the resulting distribution we call the Pareto copula. Use of the Pareto copula has a certain
claim to naturalness when considering asymptotic limit distributions for sums, maxima and
empirical processes. We discuss implications for aggregation of risk and offer some examples.

1. Introduction

Religious Copularians take as basic orthodoxy the desirability of transforming a multi-
variate distribution to have uniform marginals. Despite the shortcomings pointed out by
the skeptic Mikosch (Mikosch, 2005, 2006), this practice has become a fairly standard proce-
dure. We argue that when ones objective is the study of limit distributions and asymptotic
approximations, if ones religion requires transformation of marginal distributions, one would
do better to transform marginals to the standard Pareto distribution. The resulting trans-
formed distribution, which we call the Pareto copula, has natural interpretations for limit
theory and heavy tail analysis. This point of view will also show that several results attrib-
uted to be properties of special copulas, are in fact, examples of more general properties of
distributions.

Our transformation to Pareto marginals is not new and has been used in the study of
multivariate domains of attraction to characterize these domains by means of multivariate
regular variation. The method consists of transforming a domain of attraction condition to
standard regular variation in which all components of the transformed vector are normalized
by the same linear function. The technique dates at least to de Haan and Resnick (1977)
and has been explained in de Haan and Ferreira (2006), Resnick (1987, 2007).

Section 2 outlines the definition and basic properties of the Pareto copula in the context
of a triangular array of random vectors {Xn,j; j ≥ 1, n ≥ 1}, where rows consist of iid
d dimensional random vectors. We discuss the role of the Pareto copula in the study of
asymptotic properties of empirical measures, extremes, and sums of entries in the nth row
of the array as n→ ∞.
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Then in Section 3, we specialize the triangular array setup to regular variation where
Xn,j = Xj/b(n) for suitable scaling function b(·) and iid random vectors {Xj}.

We also consider cases where the distribution of {Xj} is in a maximal domain of attraction
and study aggregation of risks: the asymptotic properties of the distribution of the sum of
the components of {Xj}. We do this when the vector’s distribution is multivariate regularly
varying and also when the distribution of X1 is in a maximal domain of attraction with
equal one dimensional marginals in a Gumbel domain and the distribution does not possess
asymptotic independence. For this case, we obtain without further assumptions, a reasonably
explicit expression for the tail probabilities of the sum of the components.

1.1. Vector notation. Vectors are denoted by bold letters, capitals for random vectors
and lower case for non-random vectors. For example: x = (x(1), . . . , x(d)) ∈ R

d. Operations
between vectors should always be interpreted componentwise, so that for two vectors x

and z, x < z means x(i) < z(i) for i = 1, . . . , d, with analogous notations for x ≤ z and

x = z. If xj for j = 1, . . . , n are vectors,
∨n

j=1 xj = (
∨n

j=1 x
(i)
j , i = 1, . . . , d). Also, if

α = (α(1), . . . , α(d)) ≥ 0, we write xα =
(

(x(1))α(1)
, . . . , (x(d))α(d))

for x ≥ 0. Further, we
define 0 = (0, . . . , 0), 1 = (1, . . . , 1) and ∞ = (∞, . . . ,∞). For a real number c, we write as
usual cx = (cx(1), . . . , cx(d)). We denote the rectangles (or the higher dimensional intervals)
by [a, b] = {x ∈ R

d : a ≤ x ≤ b} with analogous notation for rectangles with one or both
endpoints open.

To fix ideas, suppose for now that E = [0,∞] \ {0}. Complements are taken with respect
to E, so that for x > 0,

[0,x]c = E \ [0,x] = {y ∈ E :
d
∨

i=1

y(i)

x(i)
> 1}.

1.2. Symbol and concept list. Here is a glossary of miscellaneous symbols and nomen-
clature used throughout the paper.

RVρ The class of regularly varying functions on [0,∞) with index ρ ∈ R.

f← The left continuous inverse of a monotone function f defined by
f←(x) = inf{y : f(y) ≥ x}.

b(t) Usually the quantile function of a distribution function F (x),
defined by b(t) = F←(1 − 1

t
) but usage can vary somewhat by context.

v
→ Vague convergence of measures.

⇒ Convergence in distribution.

ǫx The probability measure consisting of all mass at x.

M+(E) The space of non-negative Radon measures on E.

Mp(E) The space of Radon point measures on E.

PRM(µ) Poisson random measure on E with mean measure µ.
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2. The Pareto copula

2.1. Basics. Consider a triangular array of random vectors {Xn,j, n ≥ 1, j ≥ 1} in which
rows are iid. The distribution of Xn,1 is Fn. We suppose random vectors are R

d-valued

and, for simplicity, assume the one dimensional marginal distributions F
(i)
n are continuous.

If Xn,j = (X
(i)
n,j; i = 1, . . . , d), we indicate the one dimensional marginal distributions by

F (i)
n (x) = P{X

(i)
n,1 ≤ x}.

Let K be a closed, compact cone contained in [−∞,∞] and for some a ∈ [−∞,∞) set

E = K \ {a}

so that E is a one-point uncompactification of K (see Resnick (2007, page 170)). Our interest
is in the cases

• E = [0,∞] \ {0},
• E = [−∞,∞] \ {−∞},
• E = [−∞,∞] \ {0}.

Assume temporarily, for illustration, that E = [−∞,∞] \ {−∞}. Our basic assumption
is that there exists a Radon measure ν on Borel subsets of E such that

(2.1) nFn(·) = nP{Xn,1 ∈ ·}
v
→ ν(·)

in M+(E). This entails

(2.2) nF̄ (i)
n (x) = nP{X

(i)
n,1 > x}

v
→ ν(i)(x,∞], i = 1, . . . , d,

in M+(−∞,∞], where

ν(1)(x,∞] = ν
(

(x,∞] × [−∞,∞]d−1
)

.

Define the random vectors

(2.3) Pn,j = (P
(1)
n,j , . . . ,P

(d)
n,j ) =

( 1

1 − F
(i)
n (X

(i)
n,j)

, i = 1, . . . , d
)

,

and note that P
(i)
n,j is standard Pareto distributed; for i = 1, . . . , d:

P{P
(i)
n,j > x} = x−1, x ≥ 1.

Definition 2.1 (Pareto copula). Suppose Xn,1 has distribution Fn with continuous marginals.
Define Pn,j as in (2.3). Then we call the distribution ψn of Pn,j a Pareto copula.

A variant of (2.2) obtained by taking reciprocals is

(2.4)
1

n(1 − F
(i)
n (x))

→
1

ν(i)(x,∞]
, i = 1, . . . , d

and inverting yields

(2.5)
( 1

1 − F
(i)
n

)←

(ny) →
( 1

ν(i)(·,∞]

)←

(y), i = 1, . . . , d; y > 0.
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To save writing, we define the non-decreasing functions

(2.6) V (i)(y) =
( 1

ν(i)(·,∞]

)←

(y), i = 1, . . . , d; y > 0.

We summarize some properties of a Pareto copula; cf. de Haan and Resnick (1977),
Resnick (1987, pages 265, 277) or Resnick (2007, page 204).

Proposition 2.2. Let Xn,1 be a random vector with distribution Fn such that (2.1) holds.
Let ψn be its Pareto copula. Then the following holds.

(a) There exists a Radon measure ψ∞ on the Borel subsets of [0,∞] \ {0} such that

(2.7) nψn(n·)
v
→ ψ∞(·)

in M+([0,∞] \ {0}).
(b) For i = 1, . . . , d,

(2.8) ψ(i)
∞ (x,∞] = ψ∞

(

[0,∞]i−1 × (x,∞] × [0,∞]d−i
)

= x−1, x > 0.

(c) ψ∞ is a Lévy measure on R
d
+.

Proof. (a) From Lemma 6.1 in Resnick (2007, page 174), it is enough to consider regions
[0,x]c for x ≥ 0. Then

nψn

(

[0, nx]c
)

=nP{[Pn,1 ≤ nx]c}

=nP{[X
(i)
n,1 ≤

( 1

1 − F
(i)
n

)←

(nx(i)); i = 1, . . . , d]c}

=nFn

(

[−∞,
( 1

1 − F
(i)
n

)←
(nx(i)); i = 1, . . . , d]c

)

(2.9)

and from (2.1) and (2.5), this converges to

ν

(

[

−∞, (V (i)(x(i)); i = 1, . . . , d)
]c
)

=: ψ∞([0,x]c),(2.10)

(b) This follows from Pn,1 having Pareto marginal distributions.
(c) Suppose for simplicity that d = 2. With ‖x‖ = |x(1)| ∨ |x(2)| we have

∫

{‖x‖≤1}

‖x‖2ψ∞(dx) =

∫∫

0≤x(1)<x(2)≤1

(x(2))2ψ∞(dx) +

∫∫

0≤x(2)≤x(1)≤1

(x(1))2ψ∞(dx)

≤2

∫ 1

0

s2s−2ds = 2 <∞.

�
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2.2. Point process interpretation. Continue to suppose for illustration that E = [−∞,∞]\
{−∞}. Condition (2.1) is equivalent to (cf. Resnick (2007, page 179, 180) or Resnick (1987))
point process convergence:

(2.11)
n
∑

j=1

ǫXn,j
⇒ PRM(ν) =

∑

k

ǫJk
in Mp(E),

or

(2.12)
∞
∑

j=1

ǫ(
j/n,Xn,j

) ⇒ PRM(Leb × ν) =
∑

k

ǫ(
tk ,Jk

) in Mp([0,∞) × E),

where recall PRM(ν) means Poisson random measure with mean measure ν and Leb stands
for Lebesgue measure. Similarly, (2.7) is equivalent to

(2.13)
n
∑

j=1

ǫPn,j/n ⇒ PRM(ψ∞) =
∑

k

ǫjk
in M+([0,∞] \ {0}),

or

(2.14)

∞
∑

j=1

ǫ(
j/n,Pn,j/n

) ⇒ PRM(Leb × ψ∞) =
∑

k

ǫ(
tk,jk

) in M+([0,∞) × [0,∞] \ {0}),

From (2.3), (2.5), (2.11) and (2.13), we obtain the following result, which also explains the
transformation of the points jk to Jk.

Proposition 2.3. When E = [−∞,∞] \ {0} and (2.1) holds,
n
∑

j=1

ǫXn,j

d
=

n
∑

j=1

ǫ(( 1

1−F
(i)
n

)

←

(nP
(i)
n,j/n);i=1,...,d

)

⇒
∑

k

ǫ
(V (i)(j

(i)
k

);i=1,...,d)

d
=
∑

k

ǫJk
= PRM(ν).(2.15)

An analogous result holds when a time component is included.

2.3. Partial sum convergence. As usual we denote by D([0,∞),Rd) the space of R
d-

valued càdlàg functions on [0,∞). Since P
(i)
n,1 has a standard Pareto distribution for i =

1, . . . , d, it follows that

(2.16) lim
ǫ↓0

lim sup
n→∞

nE
(

(P
(i)
n,1

n

)2
1

[|P
(i)
n,1|≤nǫ]

)

= 0.

Thus, by a standard result reviewed in Resnick (2007, page 214), we get from (2.13) or (2.14)
the following.

Proposition 2.4. Let {Pn,j, n ≥ 1, j ≥ 1} be a triangular array of random vectors with
standard Pareto marginals, in which rows are iid. Then

(2.17)
∑

j≤nt

(

Pn,j

n
− E

(

Pn,1

n
1[‖Pn,1‖]/n≤1

))

⇒ X1(t)

in D([0,∞),Rd), and where X1(·) is a Lévy process with Lévy measure ψ∞.
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Definition 2.5 (Pareto Lévy copula). Let {X1(t), t ≥ 0} be the limit process in (2.17).
Then we call its Lévy measure ψ∞ a Pareto Lévy copula.

Be aware that others have attached meaning to the phrase Lévy copula to indicate Lebesgue
marginals. See Barndorff-Nielsen and Lindner (2006), Böcker and Klüppelberg (2007), Breg-
man and Klüppelberg (2005), Cont and Tankov (2004), Kallsen and Tankov (2006). Our
Pareto Lévy copula was also considered in Barndorff-Nielsen and Lindner (2006).

Remark 2.6. Marginally, for i = 1, . . . , d, {X
(i)
1 (t), t ≥ 0} is a 1-stable process with only

positive jumps. However, the multivariate process {X1(t), t ≥ 0} is not stable unless ψ∞ has
the homogeneity property ψ∞(t·) = t−1ψ∞(·).

Now suppose (2.1) holds with E = [0,∞]\{0}. We restrict attention to the first quadrant
for the convenience of having only one multivariate tail specifying probabilities near ∞.
The full case of partial sum convergence for vectors in R

d and associated transformations
to Pareto copulas can be considered in [−∞,∞] \ {0} but we would have to specify 2d

quadrants corresponding to the neighborhoods of the 2d vertices of [−∞,∞] which could
be labelled {a · ∞ : a ∈ {−1, 1}d}. (See the comments in Section 6.5.5 of Resnick (2007,
page 201).) The following is a consequence of Section 7.2.1, Resnick (2007, page 214).

Proposition 2.7. With Xn,j ≥ 0 and E = [0,∞] \ {0} suppose (2.1) holds in M+(E) and
also that

(2.18) lim
ǫ↓0

lim sup
n→∞

nE(X
(i)
n,1)

21
[|X

(i)
n,1|≤ǫ]

= 0.

Then

(2.19)
∑

j≤nt

(

Xn,j − E
(

Xn,11[‖Xn,1‖≤1]

)

)

⇒ X2(t)

in D([0,∞),Rd), where X2(·) is a Lévy process with Lévy measure ν.

The following result links the processes X1(·) and X2(·). It is a consequence of Proposi-
tion 2.3

Theorem 2.8. If the Itô representation of X1(·) in (2.17) is

(2.20) X1(t) =
∑

tk≤t

jk1[‖jk‖>1] + lim
ǫ↓0

[

∑

tk≤t

jk1[ǫ<‖jk‖≤1] − t

∫

{ǫ<‖x‖≤1}

xψ∞(dx)
]

which is consistent with the notation used in (2.14), then the Itô representation for X2(·) is
given by

(2.21) X2(t) =
∑

tk≤t

Jk1[‖Jk‖>1] + lim
ǫ↓0

[

∑

tk≤t

Jk1[ǫ<‖Jk‖≤1] − t

∫

{ǫ<‖x‖≤1}

xν(dx)
]

where

Jk = (V (1)(j
(1)
k ), . . . , V (d)(j

(d)
k )).
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2.4. Extremes. Assume again for simplicity that E = [−∞,∞] \ {−∞}. From (2.14) it is
immediate that (Resnick, 1987)

(2.22) Y n(t) :=
∨

j

n
≤t

Pn,j ⇒
∨

tk≤t

jk =: Y (t),

in D([0,∞),Rd), where Y is the multivariate extremal process associated with the limit in
(2.14).

Proposition 2.9. Set

Zn(t) =
∨

j

n
≤t

Xn,j

and assume that (2.1) holds in M+

(

[−∞,∞] \ {−∞}
)

. Then

Zn(t)
d
=

(

( 1

1 − F
(i)
n

)←(∨

j≤nt

P
(i)
n,j

)

; i = 1, . . . , d
)

)

⇒
(

V (i)
(

Y (i)(t)
)

; i = 1, . . . , d
)

=: Z(t)

in D([0,∞),Rd), where Z is the multivariate extremal process associated with the limit in
(2.12).

3. Regular variation

Suppose X ≥ 0 is a random vector in R
d
+ with distribution F and one dimensional

marginal distributions F (i), i = 1, . . . , d. Define

(3.1) P =
( 1

1 − F (i)(X(i))
; i = 1, . . . , d

)

.

Set

(3.2) bi(t) :=
( 1

1 − F (i)

)←

(t), i = 1, . . . , d,

so

(3.3) X =
(

bi(P
(i)); i = 1, . . . , d

)

.

Theorem 3.1. Suppose the distribution of X is regularly varying (Resnick, 2007, page 204);
that is, for i = 1, . . . , d, as t→ ∞,

(3.4) tP
{(X(i)

bi(t)
; i = 1, . . . , d

)

∈ ·
}

v
→ ν(·)

in M+([0,∞] \ {0}), where ν is a Radon measure. This implies marginal distributions F (i)

have regularly varying tails 1−F (i) ∈ RV−α(i) and we assume 0 < α(i) <∞, for i = 1, . . . , d.
Consider the Pareto copula ψ of X, that is, the distribution of P in (3.1). Then ψ is
standard regularly varying,

(3.5) tψ(t·) = tP
{

P

t
∈ ·
}

v
→ ψ∞(·)
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in M+([0,∞] \ {0}), with

(3.6) ψ∞(t·) = t−1ψ∞(·),

and
ν([0,x1/α]c) = ψ∞([0,x]c), x > 0.

Conversely, suppose X is a random vector in R
d
+ with Pareto copula ψ. If ψ is standard

regularly varying; i.e. (3.5) holds and additionally we have marginal regular variation

1 − F (i) ∈ RV−α(i) , ∞ > α(i) > 0, i = 1, . . . , d,

then X is regularly varying and (3.4) holds.

Proof. The functions bi(·) ∈ RV1/α(i) where α(i) > 0, i = 1, . . . , d and for x > 0,

tP{[P ≤ tx]c} =tψ([0, tx]c) = tP{[X(i) ≤ bi(tx
(i)); i = 1, . . . , d]c}

=tP{[
X(i)

bi(t)
≤
bi(tx

(i))

bi(t)
; i = 1, . . . , d]c}

→ν([0,
(

(x(i))1/α(i)

; i = 1, . . . , d
)

]c) = ν([0,x1/α]c) = ψ∞([0,x]c)(3.7)

by (2.10). �

Suppose {X,Xn, n ≥ 1} is iid with the regularly varying distribution F on R
d
+. To link

with the notation of Section 2, set

Fn(x) = F (b1(n)x(1), . . . , bd(n)x(d)) in M+([0,∞] \ {0})

and
F (i)

n (x) = F (i)(bi(n)x), i = 1, . . . , d.

In the notation of Section 2,

nFn(·)
v
→ ν(·)

is equivalent to (3.4). Furthermore,

P
(i)
n,j =

1

1 − F (i)(bi(n)X
(i)
j /bi(n))

=
1

1 − F (i)(X
(i)
j )

= P
(i)
j , i = 1, . . . , d,

independent of n. The one dimensional variables are standard Pareto distributed.
This allows us to rephrase Proposition 2.4 and Theorem 2.8 for the case of regular variation.

Corollary 3.2. Suppose {Xj, j ≥ 1} is iid on R
d
+ with equal continuous univariate marginal

distributions F (1). Set

P
(i)
j =

( 1

1 − F (1)

)←

(X
(i)
j ), b(t) =

( 1

1 − F (1)

)←

(t).

The following are equivalent:

(a) With Xn,j = Xj/b(n), (2.19) holds where X2(·) is α-stable Lévy motion (0 < α < 2)
with Lévy measure ν satisfying ν(t·) = t−αν(·).

(b) X1 has a multivariate regularly varying distribution on R
d
+ with index α ∈ (0, 2).

(c) F̄ (1) ∈ RV−α, 0 < α < 2 and with Pn,j = Pj/n, (2.17) holds with X1(·) 1-stable
Lévy motion and Lévy measure ψ∞. The Pareto Lévy copula of X2(·) in (a) is ψ∞.
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(d) F̄ (1) ∈ RV−α, 0 < α < 2 and the Pareto copula of the random vector X1 is standard
regularly varying.

The equivalence of (a) and (b) is discussed in Resnick (2007, page 214) and the rest follows
from previous discussion.

3.1. Aggregation of risks. Assume E = [0,∞]\{0}. As before, suppose bi(t), i = 1, . . . , d,
is defined by (3.2). When the regular variation (3.4) holds, we get as t→ ∞, (Resnick, 2007,
Section 7.3.1, page 227)

(3.8) tP
{

d
∑

i=1

X(i)

bi(t)
> x

}

→ ν
{

x ∈ E :

d
∑

i=1

x(i) > x
}

.

If in (3.4)
bi(t) ∼ b(t) ∈ RV1/α, i = 1, . . . , d, α > 0, t→ ∞,

then

(3.9) ν(t·) = t−αν(·)

and therefore from (3.8) we have

tP
{

d
∑

i=1

X(i) > b(t)y
}

→ ν
{

x ∈ E :

d
∑

i=1

x(i) > y
}

.

By (3.9) this limit is

y−αν
{

x ∈ E :

d
∑

i=1

x(i) > 1
}

.

Thus

tP
{

d
∑

i=1

X(i) > b(t)
}

→ ν
{

x ∈ E :

d
∑

i=1

x(i) > 1
}

and

(3.10)
P{
∑d

i=1X
(i) > t}

P{X(1) > t}
→ ν{x ∈ E :

d
∑

i=1

x(i) > 1},

since ν{x ∈ E : x(1) > 1} = limt→∞ tP [X(1) > b(t)] = 1. The evaluation of the limit depends
on the specific form of ν.

3.2. An interesting special case. An interesting case of the regular variation result in
the previous section is discussed from the copula point of view by Alink et al. (2004) and

reviewed in Albrecher et al. (2006). Suppose d = 2 and X = (X(1), X(2)) where X(1) d
= X(2)

so F (1) = F (2). Write P in the following way:

U (i) = F (1)(X(i)); i = 1, 2 and P(i) =
1

1 − U (i)
; i = 1, 2.

Then for x > 0.

ψ([0,x]) =P{P ≤ x} = P{
1

1 − U (i)
≤ x(i); i = 1, 2}
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=P{1 − U (i) ≥ (x(i))−1; i = 1, 2}

=1 − P{[1 − U (i) ≥ (x(i))−1; i = 1, 2]c}

=1 − P{[1 − U (1) ≤ (x(1))−1] ∪ [1 − U (2) ≤ (x(2))−1]}

=1 −
(

(x(1))−1 + (x(2))−1 − Ĉ
(

(x(1))−1, (x(1))−1
)

)

.

Thus, to summarize,

(3.11) ψ([0,x]c) = (x(1))−1 + (x(2))−1 − Ĉ
(

(x(1))−1, (x(2))−1
)

where Ĉ, often called the survival copula, is the copula

Ĉ
(

x(1), x(2)
)

= P{1 − U ((i) ≤ x(i); i = 1, 2}.

Now suppose the copula Ĉ is Archimedean so that

Ĉ
(

x(1), x(2)
)

= φ̂−1
(

φ̂(x(1)) + φ̂(x(2))
)

where φ̂ is the proper generator of the copula so that φ̂ is continuous, convex and strictly
decreasing from [0, 1] 7→ [0,∞] such that φ̂(1) = 0. Here φ̂−1 is the inverse function of φ̂.

(See Albrecher et al. (2006), Alink et al. (2004).) Suppose additionally that φ̂ is regularly
varying at 0 with index −ξ for ξ > 0. Then

R(t) := φ̂(
1

t
) ∈ RVξ

at ∞ and

R←(x) = inf{s : φ̂(
1

s
) ≥ x} =

1

φ̂−1(x)
∈ RV1/ξ

at ∞. Therefore, with this assumption we get from (3.11)

nψ([0, nx]c) = (x(1))−1 + (x(2))−1 − nφ̂−1
(

φ̂((nx(1))−1) + φ̂((nx(2))−1)
)

.

The last term is

n

R←
(

R(nx(1)) +R(nx(2))
) =

(

R←
(

R(n)
(R(nx(1))

R(n)
+ R(nx(2))

R(n)

))

R←(R(n))

)−1

∼

(

lim
n→∞

(R(nx(1))

R(n)
+
R(nx(2))

R(n)

)

)−1/ξ

=
(

(x(1))ξ + (x(2))ξ
)−1/ξ

.

Thus

(3.12) lim
n→∞

nψ([0, nx]c) = (x(1))−1 + (x(2))−1 −
(

(x(1))ξ + (x(2))ξ
)−1/ξ

= ψ∞([0,x]c).

Note that in this model P does not possess asymptotic independence (Resnick, 2007, page
192) since

λ := lim
t→∞

P{P(2) > t|P(1) > t} = lim
t→∞

tP{P > t(1, 1)} = ψ∞((1,∞])
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where 1 = (1, 1). Observe

ψ∞((x,∞]) = (x(1))−1 + (x(2))−1 − ψ∞([0,x]c)

and so we get from (3.12)

λ := ψ∞(1,∞]) =
(

1 + 1 −
(

1 + 1 − (1ξ + 1ξ)−1/ξ
)

)

= 2−1/ξ.

The measure ψ∞ has a density ψ′∞(u, v) which after differentiating ψ∞([0, (u, v)]c) is seen
to be

ψ′∞(u, v) =(1 + ξ)
(

uξ + vξ
)−1/ξ−2

(uv)ξ−1(3.13)

=(1 + ξ)u−2−ξ
(

1 +
(v

u

)ξ
)−1/ξ−2

vξ−1,(3.14)

for u > 0, v > 0. Calculating the limit in (3.10), we get

ψ∞{(u, v) ∈ E : u+ v > 1} =

∫ ∞

u=1

∫ ∞

v=0

ψ′∞(u, v)du dv +

∫ 1

u=0

∫ ∞

v=1−u

ψ′∞(u, v)du dv

=ψ∞((1,∞] × [0,∞]) +

∫ 1

u=0

(1 + ξ)u−2−ξ

(

∫ ∞

v=1−u

(

1 +
(v

u

)ξ
)−1/ξ−2

vξ−1dv

)

du

and after some changes of variables this reduces to

=1 +

∫ ∞

0

(1 + vξ)−1/ξ−1dv = 1 + 1 = 2,

since the integrand in the second term is a probability density (Alink et al., 2004, Lemma
2.4). This is an interesting limit because although this model does not possess asymptotic
independence, the limit in (3.10) is the one predicted by asymptotic independence.

Next set α = (α, α), α > 0, and following (3.7) we suppose

ν([0,x]c) = ψ∞([0,xα]c)

so that with x = (u, v) we have

ν([0, (u, v)]c) = u−α + v−α −
(

uαξ + vαξ
)−1/ξ

.

Observe
ν((1,∞] × [0,∞]) = 1.

Furthermore, ν has a density ν ′(u, v) given by

ν ′(u, v) =α2(1 + ξ)
(

uαξ + vαξ
)−1/ξ−2

(uv)αξ−1

=α2(1 + ξ)u−α(1+ξ)−1
(

1 +
(v

u

)αξ
)−1/ξ−2

vαξ−1,

for u ≥ 0, v ≥ 0.
We may now compute the limit in (3.10) for this model. We have the limit

ν{x ∈ E : x(1)+x(2) > 1} =

∫ ∞

u=1

∫ ∞

v=0

ν ′(u, v)dudv +

∫ 1

u=0

∫ ∞

v=1−u

ν ′(u, v)dvdu
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=1 +

∫ 1

0

α2(1 + ξ)u−α(1+ξ)−1

(

∫ ∞

v=1−u

(

1 +
(v

u

)αξ
)−1/ξ−2

vαξ−1

)

du

and after changes of variables this is

=1 +

∫ ∞

0

α
(

1 + vαξ
)−1/ξ−1(

1 + v)α−1dv

=1 +

∫ ∞

0

(

1 + sξ
)−1/ξ−1(

1 + s−1/α
)α−1

ds,

If Yξ has the probability density
(

1+ s−1/ξ
)α−1

, s > 0, this can be expressed as (Alink et al.,
2004)

=1 + E
(

1 + Y
−1/α
ξ

)α−1
.

Thus, for d = 2 with equal marginals, whenever F ∈ RV−α for α > 0, and ψ∞ is given by
(3.12), we have

lim
t→∞

P{X(1) +X(2) > t}

P{X(1) > t}
= 1 + E

(

1 + Y
−1/α
ξ

)α−1
.

4. The Pareto copula and distributions in the multivariate maximal domain

of attraction

Suppose {X,Xn, n ≥ 1} are iid random vectors with common distribution F . Then X

or F is in a multivariate maximal domain of attraction if there exist

b(t) = (b(1)(t), . . . , b(d)(t)) ∈ R
d, a(t) = (a(1)(t), . . . , a(d)(t)) ∈ R

d
+,

such that

P n
[X − b(n)

a(n)
≤ x

]

= F n
(

a(n)x + b(n)
)

=
(

P
[X(i) − b(i)(n)

a(i)(n)
≤ x(i); i = 1, . . . , d

])n

→ G(x),(4.1)

where G is a non-degenerate distribution called a max-stable or extreme value distribu-

tion. The marginal distributions G
(i)

γ(i) , i = 1, . . . , d of G are one dimensional extreme value

distributions of the type

G
(i)

γ(i)(x
(i)) = exp

{

−
(

1 + γ(i)x(i)
)−1/γ(i)

}

, 1 + γ(i)x(i) > 0,

and G
(i)

γ(i)(x
(i)) concentrates on {u ∈ R : 1 + γ(i)u > 0}. See, for example, de Haan and

Ferreira (2006), Embrechts et al. (1997), Resnick (1987).
In the notation of Section 2, we may write

Fn(·) = P
[X − b(n)

a(n)
∈ ·
]

= F (a(n)(·) + b(n))
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and then after the customary logarithmic transformation, it is seen that (4.1) is equivalent
to (2.1). Further using the matchup with the notation of Section 2 we set

Xn,j =
X j − b(n)

a(n)
.

The transformation given in (2.3) becomes

P
(i)
n,j =

1

1 − F
(i)
n (X

(i)
n,j)

=
1

1 − F (i)(a(i)(n)X
(i)
n,j + b(i)(n))

=
1

1 − F (i)
(

a(i)(n)
(X

(i)
j −b(i)(n)

a(i)(n)

)

+ b(i)(n)
)

=
1

1 − F (i)(X
(i)
j )

independent of n.
As in Section 3, write for x > 0,

ψ([0,x]) = P{Pn,1 ≤ x} = P{
1

1 − F (i)(X
(i)
1 )

≤ x(i); i = 1 . . . , d}.

Then (4.1) is equivalent to ψ being standard regularly varying

nψ(n·)
v
→ ψ∞(·) in M+([0,∞] \ {0}),

as n → ∞ with ψ∞(t·) = t−1ψ∞(·) for t > 0 and for every i = 1, . . . , d the random variable

X
(i)
1 is in a one dimensional maximal domain of attraction of a univariate extreme value

distribution Gγ(i) . See de Haan and Resnick (1977), Resnick (1987, Chapter 5), de Haan and
Ferreira (2006, Chapter 6).

4.1. Aggregation of risks when marginals are in the maximal domain of attraction

of the Gumbel. We now discuss aggregation of risks when (4.1) holds with γ(i) = 0 for
i = 1, . . . , d so that each marginal is in the domain of attraction of the Gumbel distribution.
This is equivalent to supposing for i = 1, . . . , d that there exists a self-neglecting function
e(i)(t) with derivative converging to 0 such that

(4.2)
F̄ (i)

(

t+ xe(i)(t)
)

F̄ (i)(t)
→ e−x, x ∈ R,

as t converges to the right endpoint of F (i) (de Haan (1970), de Haan and Ferreira (2006),
Embrechts et al. (1997), Resnick (1987)). An acceptable choice of e(i) is the mean excess
function (Bingham et al., 1987, de Haan, 1970, Geluk and de Haan, 1987). Then we may
take

(4.3) b(i)(t) =
( 1

1 − F (i)(·)

)←

(t), a(i)(t) = e(i)(b(i)(t)), i = 1, . . . , d.
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To get attractive formulae, it is necessary to assume all marginals of F are the same so we
proceed under the assumption

(4.4) F (i)(·) = F (1)(·), i = 1, . . . , d.

Formulae for aggregation of risks may be readily obtained when F does not possess as-
ymptotic independence.

4.1.1. Asymptotic independence is absent. Special cases of this result have been given in
Maulik et al. (2002, Proposition 3.1), Albrecher et al. (2006), Alink et al. (2004). We assume
condition (4.4) of equal marginal distributions and write b(t) = b(t)1 and a(1)(t) = a(t).

Set E = [−∞,∞] \ {−∞}. When the marginal distributions of F are in the maximal
domain of attraction of a Gumbel distribution, (4.1) is equivalent to (see, for example,
Resnick (2007, page 138))

(4.5)

n
∑

j=1

ǫa(n)−1(Xj−b(n)1) ⇒ ǫjk

in Mp(E). Pick a large M . The restriction map E 7→ E
M := (−M1,∞] is almost surely

continuous so we get from (4.5) the same convergence restricted to Mp(E
M). Define the

addition map T : E
M := (−∞,∞] 7→ (−∞,∞] by

Tx =
d
∑

i=1

x(i).

The map T is almost surely continuous from E
M 7→ (−∞,∞] and applying it to the restricted

version of (4.5) we get

(4.6) NM
n :=

n
∑

j=1

1[(Xj−b(n)1)/a(n)≥−M1]ǫ(
Pd

i=1 X
(i)
j −db(n))/a(n)

⇒ NM
∞ :=

∑

k

1[jk>−M1]ǫPd
i=1 j

(i)
k

.

Note that asymptotic independence would require all points of the limit Poisson process to
be on the lines through −∞ which would render the limit in (4.6) identically zero and hence
useless. However, asymptotic independence has been excluded.

We now proceed with a converging together argument (cf. Resnick (2007, Theorem 3.5,
page 56) or Billingsley (1999)). Define

(4.7) Nn :=
n
∑

j=1

ǫ
(
Pd

i=1 X
(i)
j −db(n))/a(n)

.

We make two claims. First we have, as M → ∞,

(4.8) NM
∞ ⇒ N∞ :=

∑

k

1[jk>−∞]ǫPd
i=1 j

(i)
k

,

considered as convergence in Mp(−∞,∞]. Second, we claim that if d(·, ·) is the vague metric
on Mp(−∞,∞], then for any η > 0,

(4.9) lim
M→∞

lim sup
n→∞

P{d(NM
n , Nn) > η} = 0.
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We are now in the position to state the following Proposition.

Proposition 4.1. Suppose (4.1) holds where all marginals of F (x) are equal and all marginals
of G(x) are Gumbel and (4.2) and (4.4) hold. Suppose F does NOT possess asymptotic in-
dependence and define ν(·) by

(4.10) ν
(

[−∞,x]c
)

= − logG(x), x 6= −∞.

Then

(4.11) Nn :=

n
∑

j=1

ǫ
(
Pd

i=1 X
(i)
j −db(n))/a(n)

⇒
∑

k

1[jk>−∞]ǫPd
i=1 j

(i)
k

,

in Mp(−∞,∞], where the limit N∞ is Poisson random measure with mean measure

(4.12) ν{x ∈ (−∞,∞] :

d
∑

i=1

x(i) ∈ ·}.

Therefore (Resnick, 2007, page 138), as n→ ∞,

(4.13) nP{

∑d
i=1X

(i) − db(n)

a(n)
> y} → ν{x ∈ (−∞,∞] :

d
∑

i=1

x(i) > y}.

Corollary 4.2. Under the conditions of Proposition 4.1, we have from (4.13) that

(4.14) lim
t→∞

P{
∑d

i=1X
(i) > dt}

P{X(1) > t}
= ν{x ∈ (−∞,∞] :

d
∑

i=1

x(i) > 0}.

To verify (4.14), set y = 0 in (4.13) and note from (4.3) that P{X(1) > b(t)} ∼ t−1 as
t→ ∞.

We now give the proof of Proposition 4.1.

Proof. The convergence in (4.8) is clear as it occurs almost surely. To prove (4.9), it suffices
to take an arbitrary test function g(·) which is continous with compact support in (−∞,∞]
and show for any η > 0,

lim
M→∞

lim sup
n→∞

P{|Nn(g) −NM
n (g)| > η} = 0,

which resolves to showing

(4.15) lim
M→∞

lim sup
n→∞

P{

n
∑

j=1

1
[a−1(n)

(

∧d
i=1X

(i)
j −b(n)

)

≤−M ]
ǫ
a−1(n)(

Pd
i=1 X

(i)
j −db(n))

(g) > η} = 0.

Suppose the compact support of g is contained in [−K,∞] for some fixed K. Then the
probability on the left side of (4.15) is bounded by

nP{a−1(n)
(

∧d
i=1X

(i)
1 − b(n)

)

≤ −M, a−1(n)(

d
∑

l=1

X
(l)
1 − db(n)) > −K}.
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We drop the subscript ”1” for typographical simplicity. For the minimum to be less than
−M , at least one of the terms must be less than −M , so the previous probability is bounded
by

≤

d
∑

i=1

nP{a−1(n)
(

X(i) − b(n)
)

≤ −M, a−1(n)(

d
∑

l=1

X(l) − db(n)) > −K}.

For the sum in the line above to be big when a−1(n)(X(i) − b(n)) is small requires the sum
of the d− 1 other terms with l 6= i to be big which yields the next upper bound,

≤

d
∑

i=1

nP{a−1(n)
(

X(i) − b(n)
)

≤ −M, a−1(n)(
∑

l 6=i

X(l) − db(n)) > −K +M},

and for the sum of d − 1 terms to be bigger than (-K+M), at least one summand must be
bigger than (−K +M)/(d− 1). This leads to the bound

≤

d
∑

i=1

∑

l 6=i

nP{a−1(n)
(

X(i) − b(n)
)

≤ −M, a−1(n)X(l) − db(n)) >
(−K +M)

d− 1
}

and as n→ ∞, this converges to

→
d
∑

i=1

∑

l 6=i

ν{x ∈ [−∞,∞] \ {−∞} : x(i) ≤ −M, x(l) >
−K +M

d− 1
}

≤

d
∑

i=1

∑

l 6=i

ν{x ∈ [−∞,∞] \ {−∞} : x(i) ≤ −1, x(l) >
−K +M

d− 1
}

As M → ∞, this converges to 0 since all bivariate marginals of the limit distribution G(x)
in (4.1) being proper precludes the limit from being positive. �

Remark 4.3. Note the notion of copula played no role here. What was crucial to this
argument was absence of asymptotic independence.

4.2. Back to our interesting special case. Consider again the example in Subsection
3.2, where the standard ψ∞(·) is given in (3.12). Since G has Gumbel marginals, we have
ν(i)(x,∞] = exp{−x} which makes V (i)(x) = log x for x > 0. From the analogue of (2.10)
with −∞ replacing 0 we have

ν(−∞, (V (i)(x(i); i = 1, 2]c) = ψ∞([0,x]c)

and thus
ν([−∞,x]c) = ψ∞([0, ex]c),

for x 6= −∞ and where ex = (ex(1)
, ex(2)

). So ν has a density, which we call ν ′(u, v), and
from (3.13),

ν ′(u, v) = ψ′∞(eu, ev)euev = (1 + ξ)
(

eξu + eξv
)−1/ξ−2

eξueξv,
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for (u, v) ∈ R
2. For this example, the limit in (4.14) is

ν{(u, v) ∈ R
2 : u+ v > 0} =

∫∫

{(u,v)∈R2:u+v>0}

ν ′(u, v)du dv

which we may evaluate as follows: Write s = eξu, t = eξv and the integral becomes

=

∫∫

{(s,t)∈R
2
+,st>1}

(1 + ξ

ξ2

)

(

s + t
)−1/ξ−2

ds dt

and writing the double integral as
∫∞

s=0

∫

t>1/s
and doing the inner integral we get

=

∫ ∞

0

1

ξ

(

s+
1

s

)−1/ξ−1
ds.

Factor out 1/s from s+ 1/s to get

=

∫ ∞

0

1

ξ
s1/ξ+1

(

1 + s2
)−1/ξ−1

ds.

With the intent to convert this to a beta integral, we now substitute y = 1/(1 + s2) ∈ (0, 1)
to get

=

∫ 1

0

1

2ξ
y1/(2ξ)−1

(

1 − y
)1/(2ξ)+1−1

dy =
1

2ξ
B(

1

2ξ
,

1

2ξ
+ 1)

where B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt. Expressing this in terms of the Gamma function yields

=

1
2ξ

Γ( 1
2ξ

)Γ( 1
2ξ

+ 1)

Γ(1
ξ

+ 1)
=

Γ( 1
2ξ

+ 1)2

Γ(1
ξ

+ 1)
.

To summarize this example: Suppose d = 2 and F is in a maximal domain of attraction
as in (4.1) with the limit G having Gumbel marginals. Suppose further ψ∞ has the form
given in (3.12). Then Corollary 4.2 gives

lim
t→∞

P{X(1) +X(2) > 2t}

P{X(1) > t}
=

Γ( 1
2ξ

+ 1)2

Γ(1
ξ

+ 1)
.

5. Concluding remarks

Religious Copularians have unshakable faith in the value of transforming a multivari-
ate distribution to its copula. For the skeptics who believe the Emperor wears no clothes
(Mikosch, 2006), perhaps use of the Pareto copula convinces some of them that the Emperor
at least wears socks.

Constructing Lévy measures by transforming to the case of Lebesgue marginals seems, to
us, uncritical transferrence of the copula philosophy to the domain of Lévy processes and we
believe that our our transformation of random vectors to those having Pareto marginals has
much stronger probabilistic interpretation.
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Adding dependent random variables in the domain of attraction of the Gumbel distri-
bution as discussed in Proposition 4.1 produces a specific tail behavior when asymptotic
independence is absent. When the random variables are independent, the result requires a
generalization of the concept of subexponentiality. We are actively thinking about the case
of asymptotic independence specifically ruled out by Proposition 4.1 and Corollary 4.2.
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Y. Bregman and C. Klüppelberg. Ruin estimation in multivariate models with Clayton dependence

structure. Scand. Actuar. J., 2005(6):462–480, 2005. ISSN 0346-1238.
R. Cont and P. Tankov. Financial Modelling With Jump Processes. Chapman & Hall/CRC Finan-

cial Mathematics Series. Chapman & Hall/CRC, Boca Raton, FL, 2004. ISBN 1-5848-8413-4.
L. de Haan. On Regular Variation and Its Application to the Weak Convergence of Sample Extremes.

Mathematisch Centrum Amsterdam, 1970.
L. de Haan and A. Ferreira. Extreme Value Theory: An Introduction. Springer-Verlag, New York,

2006.
L. de Haan and S. I. Resnick. Limit theory for multivariate sample extremes. Z. Wahrschein-

lichkeitstheorie und Verw. Gebiete, 40(4):317–337, 1977.
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