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Abstract

In order to capture the dependency among exchange rates we construct semiparametric
multivariate copula models with ARMA-GARCH margins. As multivariate copula models we
utilize pair-copula constructions (PCC) such as regular and canonical vines. As building blocks
of the PCC’s we use bivariate t-copulas for different tail dependence between pairs of exchange
rates. Alternatively we also consider a non Gaussian directed acyclic graph (DAG) model which
can be imbedded as a special PCC. We apply these models to Euro exchange rates. A nonnested
model comparison technique is developed to compare DAG, regular and canonical vine based
models. This provides a modeling framework for constructing high dimensional joint models
and allows extensions to asymmetric marginal models and time varying dependence models.

Keywords: multivariate copula, GARCH-ARMA margins, exchange rates, pair-copula con-
struction, vines, directed acyclic graphs

1 Introduction

Copulas (see for example the books by Joe (1997), Nelsen (1999) and Cherubini, Luciano, and
Vecchiato (2004)) are important tools to model dependence. While there are many bivariate
copulas available for modelling bivariate dependence, the catalogue of multivariate copulas is
less rich. It includes the multivariate Gauss, t-copula and more general elliptical copulas (see
Frahm, Junker, and Szimayer (2003)) as well as Archimedian copulas (see for example Joe (1997)
and McNeil and Nestlehova (2007)).

Recently Aas et al. (2007) have discovered the power of pair-copula constructions (PCC)
for constructing highly flexible multivariate copulas. These constructions are based on early
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work by Joe (1996). Bedford and Cooke (2001) and Bedford and Cooke (2002) systemized
these constructions and the book by Kurowicka and Cooke (2006) contains an overview on the
subject. Aas et al. (2007) were the first to provide statistical inference procedures for these
multivariate copulas. They used a maximum likelihood (ML) approach, while Min and Czado
(2008) follow a Bayesian approach. The Bayesian approach using Markov chain Monte Carlo
(MCMC) methods naturally gives credible intervals for the parameters and data sets of all
sample sizes. In contrast to the Bayesian approach only asymptotic confidence intervals can be
constructed using the asymptotic normality of the estimators. However the Fisher information
is difficult to obtain and one has to resort as is done in this paper to utilizing a numerical
approximation of the Hessian matrix.

PCC’s consist of a cascade of arbitrary bivariate copulas modelling the dependence and
conditional dependence between pairs of variables. In a first application to a four dimensional
financial returns data set Aas et al. (2007) showed that this modelling approach is superior to a
multivariate t-copula approach, where there is only a single parameter to model tail dependence
between pairs. In contrast PCC’s allow for different parameters for the tail dependence of
each pair. A grouped t-copula (see Demarta and McNeil (2005)) can provide some flexibility
in terms of modeling tail dependence, however the approach of Aas et al. (2007) is still more
flexible. Archimedian copulas have also been extended to allow for more modeling flexibilities
(see McNeil (2008) and Hofer (2007)). These nested Archimedian copulas however require
parameter restrictions. In recent papers by Berg and Aas (2007) and Fischer et al. (2007)
PCC’s compare very well to a variety of other multivariate copulas. PCC’s have also been
utilized by Chollete et al. (2008) in a regime switching setup.

This paper considers semi-parametric dynamic models based on PCC’s constructed in a
similar fashion as Chen and Fan (2006a) with an application to foreign exchange rates. Esti-
mation is based on two step estimation procedure, where first the marginal dynamic models
are estimated and corresponding standardized residuals are computed. These are transformed
non parametrically (see for example Andreou and Ghysels (2003), Chen and Fan (2006a) or
Chen and Fan (2006b)) to the n-dimensional unit cube. Alternatively one can use a paramet-
ric transformation (see Engle and Sheppard (2001), Patton (2006) or Rockinger and Jondeau
(2006)). In the second step the dependence between the transformed foreign exchange rates
are modeled using a PCC copula. Here exploratory data analysis (EDA) helped to choose two
different PCC’s. Additionally the EDA also gave rise to a stochastic model on a directed acyclic
graph where conditional distributions were modeled using PCC’s. As pair-copulas in the PCC
we chose bivariate t-copulas. Finally we compare the three model specifications.

2 Pair-copula constructions for high dimensional copulas

The starting point for constructing multivariate distribution is the well known recursive decom-
position of a multivariate density into products of conditional densities. For this let (X1, ..., Xd)
be a set of variables with joint distribution F and density f , respectively. Consider the decom-
position

f(x1, ..., xd) = f(xd|x1, · · · , xd−1)f(x1, · · · , xd−1) = · · · =
d∏

t=2

f(xt|x1, · · · , xt−1)×f(x1). (2.1)
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Here F (·|·) and f(·|·) denote conditional cdf’s and densities, respectively. Using Sklar’s theorem
for conditional bivariate densities we can reexpress f(xt|x1, · · · , xt−1) as

f(xt|x1, · · · , xt−1) =
f(xt−1, xt|x1, · · · , xt−2)
f(xt−1|x1, · · · , xt−2)

= ct−1,t|1,··· ,t−2 × f(xt|x1, · · · , xt−2), (2.2)

where we use for arbitrary distinct indices i, j, i1, · · · , ik with i < j and i1 < · · · < ik the
following abbreviation for a bivariate conditional copula density evaluated at conditional cdf’s:

ci,j|i1,··· ,ik := ci,j|i1,··· ,ik(F (xi|xi1 , · · · , xik), (F (xj |xi1 , · · · , xik)).

Using (2.2) we can write the following recursion for (2.1)

f(x1, ..., xd) = f(x1)×
d∏

t=2

t−1∏
k=1

ct−k,t|1,··· ,t−k−1 × f(xt)

=
d∏

r=1

f(xr)×
d∏

t=2

t−1∏
k=1

ct−k,t|1,··· ,t−k−1

=
d∏

r=1

f(xr)×
d−1∏
j=1

d−j∏
i=1

cj,j+i|1,··· ,j−1 (j = t− k, j + i = t). (2.3)

Note that for i = 1, · · · d−1 we need to define c1,i+1|10 , which contains an impossible conditioning
set. In this case we set c1,i+1|10 := c1,i+1.

Bedford and Cooke (2001) and Bedford and Cooke (2002) noticed that they can represent
this pair-copula decomposition (2.3) in a sequence of nested trees with undirected edges, which
they call a vine. Edges in the trees denote the indices used for the conditional copula densities.
Following Kurowicka and Cooke (2006) we recall for the convenience of the reader the definition
of a regular vine. A regular vine on d variables consists of connected trees T1, · · ·Tn−1 with
nodes Ni and edges Ei for i = 1, · · · , d− 1, which satisfy the following

1. T1 has nodes N1 = {1, ·, d} and edges E1.

2. For i = 2, · · · , d− 1 the tree Ti has nodes Ni = Ei−1.

3. Two edges in tree Ti are joined in tree Ti+1 if they share a common node in tree Ti

The edges in tree Ti will be denoted by jk|D where j < k and D is the conditioning set. Note
that in contrast to Kurowicka and Cooke (2006) we order the conditioned set {j, k} to make the
order of the arguments in the bivariate copulas unique. If D is the empty set, we denote the
edge by jk. The notation of an edge e in Ti will depend on the two edges in Ti−1, which have a
common node in Ti−1. Denote these edges by a = j(a), k(a)|D(a) and b = j(b), k(b)|D(b) with
V (a) := {j(a), k(a), D(a)} and V (b) := {j(b), k(b), D(b)}, respectively. The nodes a and b in
tree Ti are therefore joined by edge e = j(e), k(e)|D(e), where

j(e) := min{i : i ∈ V (a) ∪ V (b) \D(e)} and k(e) := max{i : i ∈ V (a) ∪ V (b) \D(e)}
D(e) := V (a) ∩ V (b).

In Kurowicka and Cooke (2006) it is proven that these quantities are uniquely defined for regular
vine trees.
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The vine representation of the PCC (2.3) for d = 5 is given in Figure 1. These PCC’s are
called canonical vines and can be characterized by requiring that each tree Tj has a unique node
of degree n − j. The node in T1 with maximal degree is called the root. In Figure 1 node 1 in
T1 is the root. Note that tree T1 uniquely defines all subsequent trees in canonical vines. These
multivariate distributions are especially useful, if one suspects that there exist a variable which
influences all the others variables. In modeling foreign exchange rates the US dollar exchange
rates might represent such a variable.

Figure 1: Five dimensional canonical vine representation using four nested trees

Kurowicka and Cooke (2006) showed in Theorem 4.2 that the joint density corresponding to
a regular vine can be expressed as

f(x1, ..., xd) =
d∏

r=1

f(xr)×
d−1∏
i=1

∏
e∈Ei

cj(e),k(e)|D(e)(F (xj(e)|xD(e)), F (xk(e)|xD(e))), (2.4)

where xD denotes the subvector of x indicated by the indices contained in D.
Using (2.4) it is straight forward to construct the likelihood for an i.i.d sample from a regular

vine once conditional cdf’s can be evaluated. Joe (1996) showed that for v ∈ D and D−v := D\v

F (xj |xD) =
∂ Cxj ,xv |D−v

(F (xj |xD−v), F (xv|xD−v))
∂F (xv|xD−v)

. (2.5)

For the special case where D = {v} it follows that

F (xj |xv) =
∂ Cxj ,xv(F (xj), F (xv))

∂F (xv)
.

In the case of uniform margins (i.e F (x) = x) this simplifies further for the parameterized copula
cdf Cjv(xj , xv) = Cjv|θjv

(xj , xv|θjv) to

h(xj |xv,θjv) :=
∂ Cj,v|θjv

(xj , xv|θjv)

∂xv
. (2.6)
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We can use (2.6) to express conditional cdf’s where D contains more than one element. In
particular we have for v ∈ D

F (xj |xD) =

xj∫
−∞

cjv|D−v
(F (uj |xD−v), F (xv|xD−v)) f(uj |xD−v) duj

=

xj∫
−∞

∂2Cjv|D−v
(F (uj |xD−v), F (xv|xD−v))

∂F (uj |xD−v) ∂F (xv|xD−v)
∂F (uj |xD−v)

∂uj
duj

=
1

∂F (xv|xD−v)

xj∫
−∞

∂2Cjv|D−v
(F (uj |xD−v), F (xv|xD−v))
∂F (uj |xD−v)

∂F (uj |xD−v)
∂uj︸ ︷︷ ︸

∂
∂uj

Cjv|D−v
(F (uj |xD−v

),F (xv |xD−v
))

duj

=
∂

∂F (xv|xD−v)
Cjv|D−v

(F (xj |xD−v), F (xv|xD−v))

=
∂

∂η
Cjv|D−v

(F (xj |xD−v), η)|η=F (xv |xD−v
)

= h(F (xj |xD−v)|F (xv|xD−v),θjv|D−v
).

This shows that the conditional cdf’s with conditioning set D can be build up recursively using
the h-function from conditional cdf’s with lower dimensional conditioning set. For canonical
vines these recursions can be explicitly derived and Aas et al. (2007) give exact algorithmic
expression for calculating the likelihood in this case.

Since we would like to allow for tail dependence we will use the bivariate t-copula as a
building block for the PCC’s, therefore we need the corresponding h function. For the bivariate
t-copula with parameters ρ and ν the h-function is given by

h(xj |xv, ρ, ν) = tν+1


t−1
ν (xj)− ρ t−1

ν (xv)√
(ν+(t−1

ν (xv))2)(1−ρ2)

ν+1

 (2.7)

and its inverse by

h−1(uj |xv, ρ, ν) = tν

t−1
ν+1(uj)

√(
ν + (t−1

ν (xv))2
)
(1− ρ2)

ν + 1
+ ρ t−1

ν (xv)

 , (2.8)

where t−1
ν (·) is the quantile function of the univariate standard t distribution with ν degrees

of freedom zero mean and variance ν
ν−2 for ν > 2. Note that ρ is the correlation between

t−1
ν (U) and t−1

ν (V ) and not between U and V . Here the random vector (U, V )′ is assumed to
have a bivariate t-copula distribution with association parameter ρ and and degree of freedom
parameter ν.

If one uses bivariate Gaussian copulas as building blocks for the PCC model, then we arrive
at a multivariate Gauss copula. This follows from the facts that partial and conditional corre-
lations are equal for elliptical distributions (see Baba and Sibuya (2005)) and that conditional
distributions of normals are normal with a covariance independent of the conditioning value.
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Bedford and Cooke (2002) provided a one-to-one relationship between unconditional and partial
correlations for Gaussian distributions.

For multivariate t-distributions we also have that conditional distributions are again t dis-
tributed (see for example Chapter 5 of DeGroot (1970)), however the conditional covariance
matrix depends on the conditioning value. This dependency however quickly disappears as the
degree of freedom parameter increases and only involves a scaling factor. Further the conditional
correlations of a multivariate t-distribution are independent of the conditioning value and are
equal to the conditional correlations of a multivariate Gauss distribution. However since cop-
ula’s are scaling invariant, it follows that a copula based on the PCC approach using bivariate
conditional t-copulas cj(e),k(e)|D(e) with parameters (ρj(e),k(e)|D(e), νj(e),k(e)|D(e)) and satisfying
νj(e),k(e)|D(e) = ν + |D(e)|∀e is the multivariate t-copula with common degree of freedom ν and
association matrix R. Here |·| denotes the cardinality of a set and R is determined by the one-to-
one-relationship between unconditional and partial correlations for the corresponding Gaussian
distribution, i.e. νj(e),k(e)|D(e) = ∞ . Therefore the Gauss and multivariate t-copula are both
nested with the class of copulas constructed using the PCC approach.

3 Semiparametric PCC copula-based multivariate dynamic mod-

els with ARMA-GARCH margins

In this paper we follow a two step estimation approach as for example taken by Chen and Fan
(2006a). First we assume for each margin a dynamic model, which we estimate separately.
Then we form standardized residuals and use the empirical distribution function to transform
the standardized innovations to approximately i.i.d uniform variables for each margin. This
allows for uncertainty in the distribution of the standardized residuals. Across margins these
unit interval variables are dependent and we model their dependence structure using the PCC
based vine copulas discussed in Section 2. In a second step the copula parameters are estimated.
To be more precise consider a multivariate time series Xt = (X1t, · · · , Xdt)′ for t = 1, · · · , n.
Each marginal time series {Xk1, · · · , Xkn} follows a ARMA(P,Q)-GARCH(p,q) model, i.e. for
each k = 1, · · · , d and t = 1, · · · , n

Xkt − µk =
P∑

i=1

ψki(Xk,t−i − µk) + εkt −
Q∑

j=1

θkjεk,t−j

εkt = σ2
ktηkt (3.1)

σ2
kt = wk +

q∑
i=1

αkiε
2
k,t−i +

p∑
j=1

βkjσ
2
k,t−j ,

where {ηkt, k = 1, · · · , d; t = 1, · · · , n} are i.i.d. with E(ηkt) = 0 and V ar(ηkt) = 1. Further ηkt

are independent of {Xks∀s ≤ t}. Copula-GARCH models were also considered by Rockinger and
Jondeau (2006). Using quasi MLE we obtain parameter estimates for the marginal ARMA(P,Q)-
GARCH(p,q) models and let {Zkt, k = 1, · · · , d; t = 1, · · · , n} the corresponding standardized
residuals. Transform these standardized residuals nonparametrically to

Ukt = F̂ (k)
n (Zkt) ∀k, t where F̂ (k)

n (x) :=
1

n+ 1

n∑
t=1

χ(−∞,x](Ztk), x ∈ R (3.2)

and χ(a,b](y) denotes the indicator function of y to the interval (a, b]. For the dependence model
we assume now that the Ukt variables is an i.i.d sample of size n from a vine PCC copula on d
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variables with joint density specified in (2.4). Note that one can use arbitrary bivariate copulas
as building blocks for the construction. In the application we use bivariate t copulas to allow
for different tail behavior of pairs of variables. Each bivariate copula term in (2.4) has its own
parameters.

Parameter estimation for the copula parameters is facilitated using ML. For higher dimen-
sional problems the number of parameters to be estimated can be substantial. Therefore we
determine as in Aas et al. (2007) sensible starting values for the optimization required to de-
termine the MLE’s. In a first step consider all pairs of variables, which are identified in the
first tree of the vine. Estimate the parameters corresponding to these pairs using any method
you prefer. For example a bivariate t-copula pair the correlation parameter ρ is estimated using
Kendall’s τ and in second step the df parameter ν is maximized using the estimated ρ. For the
copula parameters identified in the second tree, one first has to transform the data with the
h function needed for the appropriate conditional cdf using estimated parameters to determine
realizations needed in the second tree. For example we want to estimate the parameters of
copula c13|2. For this transform {U1,t, U2,t, U3,t, t = 1, · · · , n} to U1|2,t := h(U1,t|U2,t, θ̂12) and
U3|2,t := h(U3,t|U2,t, θ̂23), where θ̂12 and θ̂23 are the estimated parameters in the first tree. Now
estimate θ13|2 based on {U1|2,t, U3|2,t; t = 1, · · · , n}. Continue sequentially with this procedure
until all copula parameters of all trees are estimated. Note for trees Ti with i ≥ 2 recursive
applications of h functions are needed to transform to the appropriate conditional cdf.

Under the usual regularity conditions the MLE of the copula parameters based on (2.4)
using the transformed data defined in (3.2) and assuming uniform margins are asymptotically
unbiased and normally distributed with variance-covariance matrix given by the inverse of the
Fisher information. However how to determine the Fisher information for PCC models efficiently
is an open research question. In a first approach we use a numerical evaluation of the Hessian
matrix to approximate the Fisher information for the foreign exchange data.

4 Statistical models for directed acyclic graphs

Stochastic models on directed acyclic graphs (DAG) have been used to describe dependencies
between variables. For an introduction see the book by Edwards (2000) and for more advanced
material see Cox and Wermuth (1996) and Lauritzen (1996). To fix ideas let (X1, ..., Xn) be a
set of variables with joint distribution F and density f . As for PCC’s we decompose the joint
density into a product of conditional densities given by

f(x1, ..., xn) = f(xn|x1, · · · , xn−1)f(x1, · · · , xn−1) = · · · =
n∏

i=1

f(xi|x1, · · · , xi−1), (4.1)

Now we assume that for some i the conditional density f(xi|x1, · · · , xi−1) does not depend on
all predecessors x1, · · ·xi−1 but only on some. We denote the index subset of predecessors which
influence the conditional density by pa(i). Therefore we can rewrite (4.1) as

f(x1, ..., xn) =
n∏

i=1

f(xi|xpa(i)), (4.2)

where f(xi|xpa(i)) = f(xi) for pa(i) = ∅. This recursive dependence structure can be represented
as a DAG by drawing an directed arrow from each vertex in pa(i) to i. It is common for
continuous variables to assume a joint Gaussian distribution for F . In the foreign exchange
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example we assume t-distributions for certain conditional densities. This allows more generally
to build up DAG’s with non-Gaussian joint distribution.

5 Application: Foreign exchange rates

We consider seven time series of daily log-returns of foreign exchange rates of the British pound
(GBP), US dollar (USD), Malaysian ringgit (MYR), Swiss franc (CHF), Japanese yen (JPY),
Danisch crona (DKK) and Swedish krona (SEK) between May 13, 1985 and June 22, 2004
against the Euro. Before the introduction of the Euro, the exchange rate to the German mark
was used and translated into Euro’s with a rate of 1.95583 Euro for 1 German mark.

5.1 Marginal models for each foreign exchange rate

For each exchange rate series we first determined the appropriate ARMA(P,Q)-GARCH(p,q)
model specified in (3.1). We used Ljung-Box tests to test for the independence of the estimated
standardized residuals. This shows that a ARMA(1, 1)−GARCH(1, 1) is sufficient to remove
the time dependence in each of the marginal foreign exchange time series. However normal-QQ
plots (see Figure 2) of the standardized residuals show that these are fat tailed, therefore normal
margins are not appropriate. This indicates that the empirical transform (3.2) is more appro-
priate to achieve approximate uniform margins than a parametric normal transformation. The
marginal heavy tailness might also be an indicator that a Gaussian copula on the transformed
data is not appropriate. This will be verified later.

5.2 Dependence models for transformed foreign exchange rates

In the second step we remove the effect of the marginals by transforming the standardized resid-
uals for each exchange rate series to approximately i.i.d uniform random variables by applying
the probability integral transform based on the empirical distribution function (see transforma-
tion (3.2)). Figure 3 gives scatter plots of all pairs of transformed exchange change rates. For
example we see that the the Malaysian ringgit - Euro exchange rate is highly dependent on the
US dollar - Euro exchange rate.

To further explore the dependency structure we assume a bivariate t-copula for each pair of
exchange rates. In particular we estimate Kendall’s tau τ for each pair using the transformed
data and estimate ρ by the relationship ρ = sin(πτ

2 ), which is valid for elliptical distributions (see
Lindskog, McNeil, and Schmock (2003)). Finally we estimate the corresponding df parameter
by maximizing the bivariate t-copula density with ρ fixed to its estimated value.

The results are given in Table 1. We see that the df parameters vary considerably between
pairs indicating that a multivariate t-copula with a common df parameter is not sufficient.
Therefore we consider different vine specifications. The first one is based on using the six
pairs with smallest df values (bolded in Table 1) as edges in the first tree of the vine. The
corresponding regular vine using its tree representation is given in Figure 4. Here we use the
following abbreviations W1 for GBP, W2 for USD, W3 for MYR, W4 for CHF, W5 for JPY, W6

for DKK and W7 for SEK. We denote this model by R-vine.
As second alternative we consider a canonical vine where the USD-Euro exchange rate is

the root knot in the top tree. Recall that the identification of the canonical vine is completely
determined by the first tree, which is given in Figure 5. Here the order is determined from the
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Figure 2: Normal-QQ-plots of standardized residuals for each exchange rate

smallest to the largest estimated pairwise df with the USD Euro exchange rate. For both models
we use the procedure given before to determine starting values for maximizing the likelihood
numerically. The starting values and the final MLE’s with estimated standard errors for both
models are given in Tables 2 and 3. They show that the starting values are quite close to the
final ML values and that one is also quite close to the maximum log likelihood.

As already mentioned we estimate standard errors by using a numerical approximation of
the Hessian matrix. They show that for the R-vine the MYR and SEK Euro exchange rates are
independent given the USD and CHF Euro exchange rates, since ρW3,W7|W2,W4

is nonsignificant
at the 1 % level and ν̂W3,W7|W2,W4

> 30 indicating a Gaussian copula for this conditional pair
copula. Similar the MYR and DEK Euro exchange rates are independent given the USD, CHF
and SEK Euro exchange rate. In the C-vine we can conclude that the USD and SEK Euro
exchange rate are independent given the CHF Euro exchange rate. In both vine models we
see that ρW2,W4 is nonsignificant but ν̂W2,W4 < 6 indicating that the USD and CHF Euro
exchanges are uncorrelated but tail dependent.

Finally we consider a third model specification using DAG’s. For this specification we con-
sider again Table 1. We use the three highest correlations with the USD-Euro exchange rate
and rank the remaining European countries according to their economic power. Figure 6 gives
the corresponding DAG.
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Figure 3: Scatter plots of the unit interval transformed standardized residuals for each exchange
rate

USD MYR CHF JPY DKK SEK
GBP 4.80 6.18 4.79 5.87 5.81 6.16
USD 2.00 4.40 3.59 8.27 6.19
MYR 5.33 5.19 11.46 8.95
CHF 7.24 6.12 5.05
JPY 10.70 5.27
DKK 5.19

USD MYR CHF JPY DKK SEK
GBP .48 .41 .08 .28 .01 .28
USD .81 -.01 .46 .08 .42
MYR .00 .45 .06 .33
CHF .17 .25 .09
JPY .14 .25
DKK .26

Table 1: Estimated df (top) and estimated correlations (bottom) in a bivariate t-copula model
for pairs of the transformed exchange rates
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Figure 4: Tree structure for R-vine model for the exchange rate data

Figure 5: First tree of the canonical vine for the Euro exchange data
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Parameter start final std. error
ρW2,W3 0.85 0.86 0.005
ρW2,W5 0.49 0.50 0.012
ρW2,W4 -0.01 -0.01 0.016
ρW4,W1 0.09 0.09 0.016
ρW4,W7 0.09 0.11 0.015
ρW7,W6 0.28 0.28 0.014
ρW3,W5|W2

0.15 0.14 0.014
ρW3,W4|W2

0.03 0.03 0.014
ρW2,W1|W4

0.50 0.50 0.011
ρW2,W7|W4

0.45 0.44 0.012
ρW4,W6|W7

0.24 0.24 0.015
ρW5,W4|W2,W3

0.21 0.21 0.014
ρW3,W1|W2,W4

0.06 0.05 0.014
ρW3,W7|W2,W4

-0.05 -0.03 0.014
ρW2,W6|W4,W7

-0.02 -0.03 0.015
ρW5,W1|W2,W3,W4

0.05 0.05 0.015
ρW5,W7|W2,W3,W4

0.07 0.06 0.015
ρW3,W6|W2,W4,W7

-0.02 -0.01 0.014
ρW1,W7|W2,W3,W4,W5

0.11 0.10 0.015
ρW5,W6|W2,W3,W4,W7

0.07 0.05 0.014
ρW1,W6|WV \{1,6} -0.09 -0.10 0.015
νW2,W3 2.00 2.00 0.103
νW2,W5 3.59 3.64 0.237
νW2,W4 4.40 5.79 0.519
νW4,W1 4.79 5.81 0.566
νW4,W7 5.05 6.56 0.709
νW7,W6 5.19 5.63 0.566
νW3,W5|W2

19.92 20.31 3.825
νW3,W4|W2

24.28 24.39 6.398
νW2,W1|W4

5.46 4.94 0.419
νW2,W7|W4

8.13 7.24 0.905
νW4,W6|W7

8.71 8.34 1.296
νW5,W4|W2,W3

19.62 19.71 5.173
νW3,W1|W2,W4

32.23 32.30 9.812
νW3,W7|W2,W4

300.00 300.00 438.419
νW2,W6|W4,W7

18.68 18.66 5.804
νW5,W1|W2,W3,W4

20.14 20.23 5.088
νW5,W7|W2,W3,W4

14.01 14.24 2.720
νW3,W6|W2,W4,W7

300.00 300.00 270.102
νW1,W7|W2,W3,W4,W5

15.77 15.89 3.455
νW5,W6|W2,W3,W4,W7

300.00 300.00 617.258
νW1,W6|WV \{1,6} 13.25 13.39 2.703
Log-Likelihood 6471.22 6487.56

Table 2: Estimated start and final ML parameters with estimated standard errors of R-vine

12



parameter start final std. error
ρW2,W3 0.85 0.86 0.005
ρW2,W5 0.49 0.50 0.012
ρW2,W4 -0.01 -0.01 0.016
ρW2,W1 0.51 0.50 0.011
ρW2,W7 0.45 0.44 0.012
ρW2,W6 0.09 0.09 0.015
ρW3,W5|W2

0.15 0.14 0.014
ρW3,W4|W2

0.03 0.03 0.014
ρW3,W1|W2

0.06 0.05 0.014
ρW3,W7|W2

-0.04 -0.02 0.014
ρW3,W6|W2

-0.02 -0.01 0.014
ρW5,W4|W2,W3

0.21 0.20 0.014
ρW5,W1|W2,W3

0.08 0.07 0.015
ρW5,W7|W2,W3

0.09 0.08 0.015
ρW5,W6|W2,W3

0.13 0.12 0.014
ρW4,W1|W2,W3,W5

0.10 0.10 0.015
ρW4,W7|W2,W3,W5

0.11 0.11 0.015
ρW4,W6|W2,W3,W5

0.25 0.25 0.014
ρW1,W7|W2,W3,W4,W5

0.11 0.10 0.015
ρW1,W6|W2,W3,W4,W5

-0.06 -0.07 0.015
ρW6,W7|WV \{6,7} 0.27 0.26 0.017
νW2,W3 2.00 2.00 0.103
νW2,W5 3.59 3.61 0.231
νW2,W4 4.40 4.51 0.342
νW2,W1 4.80 5.59 0.710
νW2,W7 6.19 5.41 0.463
νW2,W6 8.27 8.55 1.234
νW3,W5|W2

19.92 20.74 4.020
νW3,W4|W2

24.28 24.82 5.288
νW3,W1|W2

25.49 25.80 6.668
νW3,W7|W2

77.26 77.31 38.992
νW3,W6|W2

55.42 55.54 23.671
νW5,W4|W2,W3

19.62 19.66 5.512
νW5,W1|W2,W3

14.28 14.88 2.870
νW5,W7|W2,W3

12.20 12.67 2.330
νW5,W6|W2,W3

38.91 38.92 19.611
νW4,W1|W2,W3,W5

9.77 9.70 1.553
νW4,W7|W2,W3,W5

9.83 10.19 1.709
νW4,W6|W2,W3,W5

9.67 8.53 1.381
νW1,W7|W2,W3,W4,W5

16.57 16.84 3.874
νW1,W6|W2,W3,W4,W5

11.72 12.19 2.428
νW6,W7|WV \{6,7} 8.84 9.42 2.123
Log-Likelihood 6465.81 6475.54

Table 3: Estimated start and final ML parameters with estimated standard errors of C-vine
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Figure 6: DAG model investigated for the exchange rate data

According to equation (4.2) the corresponding joint density for (W1, ...,W7) is given by

f(w1, ...,w7) = f(w2) · f(w3|w2) · f(w5|w2) · f(w1|w2)

·f(w4|w1) · f(w7|w4) · f(w6|w7).

Using Sklar’s theorem we can rewrite the conditional densities using pair copula densities and
obtain

f(w1, ...,w7) = f(w1) · f(w2) · f(w3) · f(w4) · f(w5) · f(w6) · f(w7)

·c23(F (w2), F (w3)) · c25(F (w2), F (w5)) · c12(F (w1), F (w2))

·c14(F (w1), F (w4)) · c47(F (w4), F (w7)) · c67(F (w7), F (w6)). (5.1)

Considering Figure 6 and the joint density (5.1) we see that we can imbed this DAG into a
regular vine, where the top tree is given by Figure 6 with undirected edges. The corresponding
pair copula terms in the trees below are set identically to 1, which corresponds to conditional
independence. In particular the density specified in (5.1) assumes the following conditional
independencies:

W 3 ⊥ W 5|W 2;W 1 ⊥ W 3|W 2;W 2 ⊥ W 4|W 1;W 1 ⊥ W 7|W 4;W 4 ⊥ W 6|W 7

W 1 ⊥ W 5|W 2,W 3;W 3 ⊥ W 4|W 1,W 2;W 2 ⊥ W 7|W 1,W 4;W 1 ⊥ W 6|W 4,W 7

W 4 ⊥ W 5|W 1,W 2,W 3;W 3 ⊥ W 7|W 1,W 2,W 4;W 2 ⊥ W 6|W 1,W 4,W 7

W 5 ⊥ W 7|W 1,W 2,W 3,W 4;W 3 ⊥ W 6|W 1,W 2,W 4,W 7

W 5 ⊥ W 6|W 1,W 2,W 3,W 4,W 4

Note that not all stochastic models on directed acyclic graphs can be embedded in a single
regular vine. For an example where this does not work see Chapter 5 of Kurowicka and Cooke
(2006) and Hanea et al. (2006).

For parameter estimation we determine again starting values for the ML estimation of Model
(5.1) and optimize the log likelihood. The results are given in Table 4. Here all parameters are
highly significant and all df parameters are less than 6 indicating high tail dependence between
all pairs occuring in the DAG specification (5.1). It remains to investigate whether this simple
specification is sufficient enough to fit the data well. This question is studied in the next section.

Finally we investigate if the fit of the PCC copula models such as the R-vine or C-vine
are superior to a standard multivariate Gaussian or t-copula with a common degree of freedom
(df). The Gauss copula model gives a loglikelihood of 4908.31 while a multivariate t-copula with
common df gives a value of 5903.37. Since the Gauss copula is nested within the multivariate
t-copula with common df, we see using the likelihood ratio test (LRT) that the t-copula with
common df is preferred over the Gauss copula. Since also the t-copula with common df is nested
within the R-vine (loglikelihood = 6487.56) and C-vine (loglikelihood = 6475.54) model LRT’s
show that the t-copula with common df is inferior to both the R-vine and the C-vine model.
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Parameter start final std. error
ρW2,W3 0.85 0.86 0.01
ρW2,W5 0.49 0.49 0.01
ρW2,W1 0.51 0.51 0.01
ρW1,W4 0.09 0.09 0.02
ρW4,W7 0.09 0.10 0.02
ρW7,W6 0.28 0.28 0.02
νW2,W3 2.00 2.00 0.11
νW2,W5 3.59 3.54 0.23
νW2,W1 4.80 4.76 0.40
νW1,W4 4.79 4.77 0.41
νW4,W7 5.05 5.03 0.44
νW7,W6 5.19 5.17 0.48
Log-Likelihood 5428.76 5432.41

Table 4: Estimated start and final ML estimates with estimated standard errors for the DAG
model of the exchange rate data

5.3 Model selection among the dependency models

We focus on model selection among the dependency models, i.e. the two vine specifications and
the DAG model. One difficulty is that the dependency models are based on the transformed
exchange rate data, i.e. in the following we neglect the estimation error for the marginals.
Another difficulty is that all considered dependency models are nonnested. Therefore we follow
the approach by Vuong (1989). Consider two non-nested parametric models Pθ := {F (·|θ),θ ∈
Θ ⊂ Rp} and Pγ := {F (·|γ),γ ∈ Γ ⊂ Rq} with densities f(X|θ) and g(X|γ), respectively.
Determine the likelihood ratio statistics based on the sample (X1, · · · ,Xn) with parameter
estimates θ̂n and γ̂n

LRn(θ̂n, γ̂n) :=
n∑

t=1

log
f(Xt|θ̂n)
g(Xt|γ̂n)

and variance estimate

ω̂n :=
1
n

n∑
t=1

[
log

f(Xt|θ̂n)
g(Xt|γ̂n)

]2

−

[
1
n

log
f(Xt|θ̂n)
g(Xt|γ̂n)

]2

.

Vuong (1989) considered the following hypotheses

H0 : E(log
f(X|θ)
g(X|γ)

) = 0

meaning Pθ and Pγ are equivalent, against

Hf : E(log
f(X|θ)
g(X|γ)

) > 0

meaning Pθ is better than Pγ or

Hg : E(log
f(X|θ)
g(X|γ)

) < 0
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H0 : equivalence of R-vine and C-vine C-vine and DAG R-vine and DAG
test statistic 0.0227 1.005 3.3580
test decision accept H0 accept H0 reject H0 and

R-vine better than DAG

Table 5: Test statistic and decision for pairwise comparison of the dependence models for the
exchange rate data set

R-vine C-vine DAG
D 0.0015 0.0017 1.32

Table 6: Sum of squared differences between simulated and empirical pairwise correlations for
each dependency model of the exchange rate data

meaning Pθ is worse than Pγ . Here the expectation is to be taken under the true unknown
model. He showed that an asymptotic α adjusted level test is given as follows

• Accept H0 if −qα/2 + n−
1
2

(p−q)
ω̂n

≤ n−
1
2

LRn(
ˆθn,γ̂n)
ω̂n

≤ qα/2 + n−
1
2

(p−q)
ω̂n

• Accept Hf if n−
1
2

LRn(
ˆθn,γ̂n)
ω̂n

> qα/2 + n−
1
2

(p−q)
ω̂n

• Accept Hg if −qα/2 + n−
1
2

(p−q)
ω̂n

< n−
1
2

LRn(
ˆθn,γ̂n)
ω̂n

Here qα is the 1− α quantile of the standard normal distribution. Considering three nonnested
models we make three pairwise comparisons using the regular vine density (2.4) together with
the tree structure given in Figure 4 (R-vine), the canonical vine density (2.3) (C-vine) and
finally the density (5.1) for the DAG model. The corresponding results are given in Table 5.
This clearly shows the preference for the R-vine specification over the DAG specification, while
the two vine specification cannot be distinguished at α = .05. The C-vine and DAG formulation
also have to be considered equivalent at α = .05, however the positive value of the test statistics
points to a slightly better fit for the C-vine specification.

As a final model comparison we simulate 100 data sets from each dependency model using the
corresponding ML parameter estimates. Based on these 100 simulations we determine the mean
values of the simulated pairwise correlations Ĉi for dependency model i. As model comparison
measure we use the sum of squared distance of all mean simulated to the empirical pairwise
correlations Ĉor(W))k,j , given by

Di =
6∑

k=1

7∑
j=k+1

[
Ĉor(W)k,j − Ĉi

k,j

]2
.

The results are given in Table 6 showing that the vine specifications are preferable over the DAG
specification. There is a very slight preference for the R-vine specification.

6 Summary and discussion

This paper presents an analysis of Euro exchange rates using PCC copula based multivariate
models with ARMA(P,Q)-GARCH(p,q) margins. Parameter estimation is facilitated in two
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steps, first using separate QMLE for each ARMA(P,Q)-GARCH(p,q) margin, then using the
probability integral transformation to transform the estimated standardized innovations to ob-
servations with approximately uniform margins. The dependency among these uniform margin
observations is modelled using three different PCC copula specifications including a first ap-
plication of a non-Gaussian regular vine specification and a DAG model built on conditional
t-distributions demonstrating the usefulness of PCC’s.

Model selection among these non-nested models was done based on tests constructed using
the approach taken by Vuong (1989) ignoring the separate estimation of the margins. One can
adjust for the marginal estimation using the methods developed in Chen and Fan (2006a) since
ARMA(P,Q)-GARCH(p,q) margins are allowed in their class of SCOMDY models. The adjust-
ment however requires the efficient determination of derivatives with respect to all variables and
parameters of the copula density. For the PCC specification given in (2.4) this is subject of
current research.

The main contribution of this paper is to provide a modeling framework to construct high
dimensional copulas, which can be extended to capture further data features such as marginal
asymmetry and time varying dependency. For marginal asymmetries one can allow for nonsym-
metric GARCH effects, as being considered in Dias and Embrechts (2007). Chollete et al. (2008)
use for example the the skewed-t-GARCH of Hansen (1994). There exits many models for time
varying dependency effects such as the BEKK model of Engle and Kroner (1995), the DCC
model of Engle and Sheppard (2001) or the TVC model of Tse and Tsui (2002). In contrast to
Patton (2006) and Dias and Embrechts (2007) this would allow to investigate more than two
time series jointly. Again these extensions and model selection among these PCC copula-based
models is a subject of ongoing research.
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