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Abstract

The assessment of performance and potential is central to decisions pertaining

to the location of bank branches. A common method for evaluating branch perfor-

mance is data envelope analysis in which in-branch variables are typically considered.

This paper adopts an alternate methodology that quantifies the influence of local

socio-economic variables on bank deposits (a common measure of performance) using

linear mixed models (LMM). It also illustrates the potential of using LMM to build

a predictive model to support branch location decisions.

1 Introduction Commercial banks can operate as a single unit bank or develop a

network of bank branches, which act as the key contact point between customers and the

central bank. As such, branches occupy key positions in banking organizations and their

locations reflect important strategic decisions and operating policies. The rationale for

developing a branch network, beyond the significant effect it has on banks’ market shares

[15], is threefold: diversification of risk, customer convenience and market knowledge.

∗Key words and phrases: Bank performance, branching, linear mixed models.

AMS 2000 subject classifications. Primary 90B50; secondary 62J05, 62-07.
†Mailing Address: Zentrum Mathematik, Technische Universität München, Boltzmannstr. 3, D-85747

Garching, Germany. E–mail: eike.brechmann@mytum.de.
‡Mailing Address: Zentrum Mathematik, Technische Universität München, Boltzmannstr. 3, D-85747

Garching, Germany. E–mail: cczado@ma.tum.de.
§Mailing Address: School of Administrative Studies, York University, 4700 Keele Street, Toronto,

Canada. E–mail: peggyng@yorku.ca.



2 Brechmann, E. C., Czado, C. and Ng, P.

Branching facilitates geographic diversification, which allows banks to diversify their

assets by improving access to different industries that may respond to shocks differently

[13]. However, the extent to which geographic diversification reduces the risk depends on

how economically diverse the different geographic areas are (see for example [20]).

Through their local branches banks are able to better obtain and process market-specific

knowledge. Jayaratne and Strahan in [14] have shown that real growth in bank income can

emanate from the improved loan screening and monitoring that is facilitated by branch

network proliferation. These banks may have local information about certain borrowers,

local economic conditions or market trends that they may not have had without their local

branches and this can insulate certain branches from competitive forces (see [9]).

The optimum number of branches and their optimum locations are interrelated issues

that have to be addressed by bank managers. Chelst, Schultz and Sanghvi in [7] provide a

general procedure to facilitate this task. One central topic is the performance evaluation of

the current branch network. Yet, such assessments are complex multidimensional processes.

In fact, Doyle, Fenwick and Savage in [10] found 38 independent variables needed to fully

describe branch performance. Boufounou in [4] analyzed a similar number of variables for

a commercial bank in Greece while Avkiran in [1] tested 91 potential variables and six

performance variables for evaluating branch performance.

A common measure of branch performance is budgeting, which is however criticized

for its emphasis on expenses rather than profitability. Measuring the performance of a

branch by its profit, which includes earnings from a wide range of services such as loans

and mortgages, suffers from problems of suitably allocating revenues and expenses [8]. In

this paper we consider the performance measure of total deposits as in [4]. Drawbacks of

this simple measure are that it does not distinguish the different kinds of deposits which

bring various profit margins and it ignores revenues which are generated from loans (see

[1]). However it is certainly one of the main business drivers of banks and easily collected

and amenable for a statistical analysis.

Traditional methods for evaluating branches are the performance index (see [19]), econo-

metric methods (see for example [11]) and the commonly used data envelope analysis

(DEA). DEA is a non-parametric linear programming technique used to compute a com-

parative ratio of inputs to outputs for each unit. See [2] for a demonstration of DEA and

[16] for a summary of research conducted using DEA. The analysis can incorporate in-

branch (discretionary) as well as out-of-branch (non-discretionary) variables (see e.g. [18]).
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However often the variables under consideration are all in-branch variables (see [16] and

[3]), such as employees space, branch expenses (rent, marketing, operating costs, etc.) and

acquired equipment.

The focus of our study is to quantify the influence of out-of-branch variables such as

geographical and macroeconomic variables on the performance measure total deposits of a

branch. We are especially interested in investigating the effect of local wealth (as measured

by county unemployment rates and county income per capita) and local bank competition.

For local bank competition a variable depending on the sum of distances of a branch to other

branches of other banks is constructed and shown to influence the branch total deposit. For

this we build an adequate statistical model, which allows the adjustment of longitudinal

and cluster effects. The statistical model chosen is from the class of linear mixed models.

We will show that the inclusion of interaction effects significantly improves the model fit.

A non-hierarchical model specification with interaction effects is shown to be preferred over

a standard linear model as well as a hierarchical specification. The presence of interaction

effects points to complex multidimensional influences on the total deposits of a branch.

Finally the predictive capabilities of the models are investigated.

The paper is organized as follows: in Section 2 an introduction to the theory of linear

mixed models is given as they are used extensively in Section 3 in order to model the

determinants for total branch deposits. Section 3 develops and analyzes our main model

and evaluates its goodness compared to other models. Finally Section 4 summarizes the

main findings and discusses our approach with respect to other methods.

2 Linear mixed models Introductions to the theory and the use of linear mixed

models can be found e.g. in [22] and in [17]. The latter also describes the R-library nlme

which is designed for statistical analyses with mixed models. An illustrative approach of

fitting linear mixed models using the nlme library is given in [12].

The well-known standard linear model can be written as

Y = Xβ + ε,

where Y ∈ R
n denotes the response vector, X ∈ R

n×p is the design matrix, β ∈ R
p are

the regression coefficients, and ε ∈ R
n is the vector of random errors. Usually one assumes

ε ∼ Nn(0, σ
2In), where Nn(µ,Σ) denotes the n-dimensional normal distribution with mean

vector µ and covariance matrix Σ.
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However such linear models are not always appropriate to deal with data sets. In linear

models independent response variables are assumed, but often this is not the case. Data

could be clustered, i.e. the response is measured once for each subject and each subject

belongs to a group of subjects (cluster), or longitudinal, i.e. the response is measured at

several time points and the number of time points is not too large (the repeated measure-

ments then form a group of dependent observations). For such dependent data structures

the linear model has to be extended by allowing group-specific random effects in so-called

linear mixed models which can easily be formulated for each group i as an extension of the

standard linear model:

Yi = Xiβ + Zibi + εi, (2.1)

where Yi ∈ R
ni denotes the ni observations in group i, Xi ∈ R

ni×p is the design matrix

for the fixed effects, β ∈ R
p are the fixed-effect coefficients, and εi ∈ R

ni indicates the

errors. Moreover, Zi ∈ R
ni×q is the design matrix for the random effects with q ≤ p and

bi ∈ R
q being the random-effect coefficients. Since random effects and errors are random,

distributions for them have to be specified. A common choice is:

εi ∼ Nni
(0, Ri)

bi ∼ Nq(0, G),
(2.2)

where εi and bi are independent. Here Ri ∈ R
ni×ni and G ∈ R

q×q are the covariance

matrices for the errors and the random effects, respectively. Usually Ri = σ2Ini
with

σ2 > 0 and Ini
the ni-dimensional identity matrix is assumed. Also note that G is assumed

to be the same for all groups i.

Sometimes it is more illustrative to express linear mixed models in a hierarchical (nested)

form which is easier to interpret (see e.g. [12]). This will be done and explained in Section

3.3. However, note that such a hierarchical model specification will not always be possible

for linear mixed models, since effects can be ’crossed’ (e.g. variables might have a time and

a geographical level but these levels are not nested, i.e. the geographical variables might

not be measured over time but only once).

In linear mixed models the fixed-effect coefficients and the covariance parameters of Ri

and G have to be estimated. This is usually done using restricted maximum likelihood

(REML) estimation which is preferred to standard maximum likelihood (ML) estimation

because it produces unbiased estimates [22]. Random effects can be predicted (rather than

’estimated’ as they are random variables) using conditional expectations and the estimated
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covariances. The predicted values are referred to as empirical best linear unbiased predictors

(EBLUPs).

As in linear models, one often wants to test certain hypotheses in order to determine

the goodness of fit of a model. Since a linear mixed model incorporates random effects,

the choice of an appropriate covariance model for them is crucial. Likelihood ratio tests

(LRTs) can be used to test hypotheses with regard to covariance parameters (e.g. to test

the assumption of heterogeneous error variances). As usual, models have to be nested to

conduct an LRT, i.e. there is a full and a reduced model: the reduced model has less

parameters than the full model which incorporates all parameters of the reduced model.

Then the LRT statistic is given as 2(ℓfull − ℓreduced) where ℓ denotes the estimated log-

likelihood in the respective models. However, the usual null distribution of the LRT statistic

is no longer valid in the context of linear mixed models, since null hypotheses are often

on the boundary of the parameter space. In particular, it is of interest to compare two

nested models with a different number of random effects (and the same fixed effects). In

the simple case of one model with q random effects and the other with q+1 random effects,

the difference in the number of covariance parameters is q + 1. The corresponding null

hypothesis is on the boundary of the parameter space and the null distribution can be

determined as a 50:50 mixture of chi-squared distributions with q and q + 1 degrees of

freedom. In general, when comparing models with q and q + k (k > 1) random effects (or

other specifications of covariance parameters), the determination of the null distribution

is more complicated (see [21]). We like to note that the corresponding method which

is implemented in the R-library nlme does not use the correct null distributions, but is

more conservative, i.e. a null hypothesis is not as easily rejected as under the correct null

distribution [17].

Model selection regarding fixed effects is often done using t − tests (H0 : βi = 0 vs.

H1 : βi 6= 0) with test statistic t = β̂i

ŝe(β̂i)
, where ŝe(β̂i) denotes the estimated asymptotic

standard error of β̂i. Unlike in standard linear model theory the null distribution is in

general no longer an exact t distribution [22]. LRTs are not appropriate for testing hy-

potheses regarding fixed effects when using REML estimation, since they are based on ML

estimation.

3 Geographical and macroeconomic determinants for total branch deposits
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3.1 Data The data considered in our study consists of 2,988 branch-year records of

a major US bank in the state of New York with multiple branches. 506 branches are

included with observations over the period from 1994 to 2002. The data is clustered (the

branches within a county form a cluster) and also longitudinal, since it is observed over

a period of nine years. Therefore, a mixed model approach seems to be appropriate to

model the dependencies in the data that arise from the clusters (counties) and from the

measurements taken on the same subjects (branches, counties, state). Figure 4.1 illustrates

the hierarchical structure of the data.

Because of the clustered data, there are three types of variables: variables on the state,

county and branch level. All variables are measured over time, but some measurements on

the branch level are not taken in all years, since branches closed or opened. To achieve a

more homogeneous error variance the logarithm of the total deposits, log.dep, is used as

dependent variable. The precise definition of variables is given in Table 4.1.

Note that the set of explanatory variables is intentionally chosen rather small to demon-

strate the usability of the hierarchical modeling technique for the research purpose. In ad-

dition, the chosen variables capture the gist of the population demography. Other variables

such as schooling or occupation could be considered, but these effects are correlated with

per capita income and unemployment rates (see e.g. [6]). An inclusion of these variables

might therefore lead to multicollinearities among the variables and thus to computational

problems. For similar reasons we decided to focus on five variables on the macroeconomic

level that are closely related the bank’s overall performance and therefore closely linked

to the performance of single branches. As we aim at building a rather simple illustrative

model, we refrained as well from considering local business variables such as number and

size of companies.

An impression of the relationship between log.dep and all three levels of covariates can

be obtained by examining the corresponding scatter plots (see Figure 4.2). The first plot

shows that there is a weak positive overall influence of comp on log.dep, but variation is

high for a high level of competition. The panels in Figure 4.2 corresponding to pop and

inc.pc indicate weak positive influences on log.dep, whereas unemp shows no clear influence

on log.dep. Individual examinations of the influences per branch and per county show that

the effects on log.dep vary a lot across branches and counties. However, individual linear

regression fits per county do not show a need for random slopes on the county level (see

[5]). Finally, the remaining panels of Figure 4.2 do not show a clear influence of any of
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the state variables on log.dep. There are possibly weak positive influences of mshare and

av.dep on the response log.dep.

Interactions between the variables may also be present as the effects on different levels

are likely to be interrelated with each other and therefore important information would be

omitted if interactions were not taken into account. Possible interactions are thus examined

in [5]. To reduce the complexity of the model, only second order interactions are considered.

The analyses underlying this case study are performed with R using the libraries nlme

and lattice for the data examination. R-commands and -outputs can be found in [5].

3.2 Statistical analysis In contrast to [4] and [1] we fit a regression model with mixed

effects as described in Section 2. Thus our initial mixed model includes not only fixed effects

for all branch, county and state variables, and their interactions, but also random intercepts

and slopes on the branch level as well as random intercepts on the county level. It is stated

as in the definition of a linear mixed model (2.1) for branch i in county j in year t. The

effects in bold face in equation (3.1) indicate those which will prove to be significant at the

5% level in the final model.

log.depijt = β0 + β1compijt + β2popjt + β3inc.pcjt + β4unempjt

+ β5compijtpopjt + β6compijtinc.pcjt + β7compijtunempjt

+ β8no.failt + β9msharet + β10branch.totalt + β11dep.totalt

+ β12av.dept + β13no.failtcompijt + β14no.failtpopjt

+ β15no.failtinc.pcjt + β16no.failtunempjt + β17msharetcompijt

+ β18msharetpopjt + β19msharetinc.pcjt + β20msharetunempjt

+ β21branch.totaltcompijt + β22branch.totaltpopjt

+ β23branch.totaltinc.pcjt + β24branch.totaltunempjt

+ β25dep.totaltcompijt + β26dep.totaltpopjt + β27dep.totaltinc.pcjt

+ β28dep.totaltunempjt + β29av.deptcompijt + β30av.deptpopjt

+ β31av.deptinc.pcjt + β32av.deptunempjt

+ bij0 + bij1compijt + bj + εijt

(3.1)
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As in definition (2.2), the following independent distributions for the errors and the random

effects are assumed (where ni denotes the number of observations of branch i):

εij = (εij1, ..., εijni
)T ∼ Nni

(0, σ2Ini
) (3.2)

bj ∼ N(0, g200) (3.3)

bij = (bij0, bij1)
T ∼ N2(0, G) with G =

(

g20 g01

g01 g21

)

(3.4)

This model is not hierarchical (nested) because the random effects bij0 and bij1 are crossed

with the fixed effects of the county variables (e.g. popjt). A hierarchical model is considered

in Section 3.3.

In order to improve the model fit, the structure of the random effects is examined at

first by testing whether the random effects specified in model (3.1)-(3.4) should be included

as described in the introduction. Whereas the random effects for the branch level intercept

(bij0) and slope of comp (bij1) are significant (p−value < .0001), the random effects for the

county level intercept (bj) were found to be not significant. They are subsequently removed

from the model. Indeed according tests show that both branch level random effects stay

significant.

Since the number of observations and the values of log.dep in each year are varying, the

within-group errors might be varying for each year, too. Therefore, heterogeneous residual

variances σ2
t for each year t, t = 1994, . . . , 2002 are considered; i.e. we assume

εijt ∼ N(0, σ2
t ). (3.5)

In order to achieve identifiability of the parameters σ2
t , it is assumed that σ2

t = δ2t σ
2 for

each year t, t = 1994, . . . , 2002 and δ1994 = 1 (see [17]). The test of this variance structure

(H0 : σ2
t = σ2, i.e. δt = 1 for each year t, t = 1994, . . . , 2002 at the 5% level) shows that

there is a significant improvement in the model fit (p− value < .0001).

The above variance structure can be extended further: since the observations are taken

longitudinally on the same subjects, the within-group (i.e. within-branch) errors are prob-

ably autocorrelated. Considering the few time points available (9 time points for the years

1994-2002) only the first three or four lags should be considered. Because the empirical

autocorrelation function from the residuals of the previous model shows that the auto-

correlation of the first lag is significantly not equal to zero, an AR(1) model is chosen as

correlation structure. An additional moving average term is also included, i.e. we allow for



Geographical and macroeconomic effects on bank branch deposits 9

a ARMA(1, 1) model as correlation structure:

εijt = φ1εijt−1 + θ1at−1 + at, (3.6)

where {at, t ≥ 1} is a zero mean white noise process with constant variance σ2
a. Testing

H0 : φ1 = θ1 = 0 at the 5% level confirms the significance of this extended variance structure

(p−value < .0001). As a result this heterogeneous autoregressive variance structure of the

errors is included in the model.

Finally the model is reduced by a stepwise approach based on t − tests of the fixed

effects at 5% level (H0 : βi = 0). In the resulting model all fixed effects are significant at

the 5% level or left in the model in order to maintain the hierarchical structure of the fixed

effects. All significant effects are marked in the initial model formulation (3.1) using bold

face and displayed with their estimated regression coefficients in Table 4.2.

Having assumed specific error distributions in this final model it has to be checked

whether these assumptions are appropriate. At first, the assumptions on the within-group

(i.e within-branch) errors are checked (compare (3.2), (3.5) and (3.6)), and subsequently

the random effects are examined.

The within-group (i.e. within-branch) errors are assumed to have a heterogeneous au-

toregressive variance structure: εijt ∼ N(0, σ2
t ) and εijt = φ1εijt−1 + θ1at−1 + at, where

{at, t ≥ 1} is a zero mean white noise process with constant variance σ2
a. Therefore the

errors depend on those of the years before and on t. Since φ̂1 = 0.73, one expects approxi-

mately similarly distributed standardized within-group residuals per year. In fact 93.1% of

the residuals lie in the [−2, 2]-band, i.e. the approximate 95% confidence band. Checking

the assumption of normality, QQ-plots for each year (Figure 4.3) show that the model fit is

quite good for some years (e.g. in 1997), but there are also some deviations from normality

(e.g. in 2001).

The final model includes random effects for the intercept and for the slope of comp on

the branch level with distribution given by (3.4). A look at the EBLUPs of the random

effects for each branch confirms the zero-mean assumption (left panel in Figure 4.4), while

the marginal normality of the random effects can be investigated by QQ-plots (right panel

in Figure 4.4). These show that the assumption is approximately appropriate.

The final model also contains five interactions of county variables with state variables.

Among those, four are interactions with unemp and one with inc.pc. The interactions

complicate the interpretation of the different effects, but include important additional in-

formation. We therefore have to examine these interactions, since we cannot interpret the
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main effect solely when interaction terms are present. In order to facilitate this, Table 4.3

gives the expected deposits at different levels of the covariates: in the left part of the table

each county variable is considered at its observed 25%- and its 75%-quantile (denoted by

’low’ and ’high’), the state variables are taken at their respective empirical medians, while

in the right part of the table it is the other way around and, for reasons of clarity, only

the best four and the worst four combinations of the variables are displayed. This shows

that the influence of pop is the strongest. The effect of inc.pc is also clearly positive. The

interaction with av.dep is important to understand this overall effect: if we consider a 3D

interaction plot (Figure 4.5), which displays the effect of inc.pc and av.dep on the deposits

while the remaining covariates are set to their respective mean values, we see a weak pos-

itive overall influence of inc.pc on the deposits. The influence of unemp is positive, but

not as strong as those of the other two county variables. 3D interaction plots of the four

interactions between state variables and unemp can be found in [5]. In total, the effect of all

three covariates together at their 75%-quantiles is a 25% increase in the deposits compared

to the value with all covariates at their 25%-quantiles. These results reflect the findings of

the explorative data analysis. Among the state variables, the examination of all 32 possible

combinations of covariate levels showed that the influence of the av.dep is naturally very

strong but slightly weaker than the effect of branch.total. The effect of dep.total is fairly

negative though. Furthermore, the effect of no.fail is weakly negative and the effect of

mshare is moderately positive.

The model fitted above is useful, but may not be correct. As a next step we investigate

if the linear mixed model is an improvement in the model fit or if a standard linear model

is sufficient to model the influences on log.dep. The comparison to a linear model with the

same fixed effects shows that the AIC of the mixed model is much smaller: 531 vs. 7937 of

the linear model. Now one could argue that this is possibly because the variance structure

of the linear model is not as sophisticated as in the mixed model. However a so-called

generalized least squares (GLS) model which allows to fit heteroscedastic and correlated

within-group errors (but no random effects) also has a larger AIC than the mixed model:

531 vs. 3675 of the GLS model. Thus the additional fitted random effects in a mixed

model, modeling the variability and dependency, lead to a considerable improvement in the

model fit.
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3.3 Hierarchical model Since the model developed in Section 3.2 is not hierarchical,

it is of interest to consider a hierarchical model as well. To do this the branch and county

variables have to be averaged over time in order to eliminate the time effect, i.e. we define

av.compij =
1

No. of obs. of branch i

∑

t compijt and av.popj =
1
9

∑

t popjt (analogously for inc.pc

and unemp). With these adjusted variables the following three-stage model can be fit:

first, the time effects are represented by the state variables.

log.depijt = αij0 + αij1no.failt + αij2msharet + αij3branch.totalt

+ αij4dep.totalt + αij5av.dept + εijt
(3.7)

Second, the intercepts and slopes depend on branch-specific effects. A random effect is

included for the intercept.

αij0 = γ0j0 + γ1j0av.compij + bij

αijk = γ0jk + γ1jkav.compij k = 1, . . . , 5

Third, the county-specific effects are modeled:

γ0j0 = δ000 + δ010av.popj + δ020av.inc.pcjt + δ030av.unempjt + b0j

γ1j0 = δ100 + δ110av.popj + δ120av.inc.pcjt + δ130av.unempjt + b1j

γ0jk = δ00k + δ01kav.popj + δ02kav.inc.pcjt + δ03kav.unempjt, γ1jk = δ10k, k = 1, . . . , 5

We assume that errors are distributed as in (3.2). Similar to (3.3) and (3.4) the following

independent distributions of the random effects are assumed (where ni denotes the number

of observations of branch i):

bij ∼ N(0, g200)

bj = (b0j , b1j)
T ∼ N2(0, G) with G =

(

g20 g01

g01 g21

)

Note that random effects are included only for γ0j0 and γ1j0 to reduce the model complex-

ity. The coefficients γ1j1, . . . , γ1j5 are modeled only by an intercept because third-order

interactions are not considered.

All these equations can be substituted into (3.7) and then the initial hierarchical model

can also be written in the standard notation of linear mixed models (2.1). The resulting

model is similar to the non-hierarchical one: it incorporates the same main effects and
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interactions (substitute av.pop for pop, etc.) but two random effects on the county level

and just one on the branch level.

A similar model analysis as in Section 3.2 shows that random effects are only needed for

the branch level intercept and that a heterogeneous autoregressive variance structure for

the errors is also appropriate (for more details see [5]). Finally using a stepwise approach

based on t − tests at the 5% level, the following main effects and interactions are kept

in the model: an intercept and all branch, county and state variables except for no.fail

as well as the interactions av.comp × mshare, av.pop × mshare, av.unemp × mshare,

av.unemp× branch.total and av.unemp× dep.total.

Model diagnostics for this final hierarchical model show that the distributional assump-

tions on the errors are probably not accurate (QQ-plots show clear deviations from nor-

mality), but nevertheless the residuals show some good characteristics. The distributional

assumptions on the random effects are approximately appropriate.

3.4 Prediction In order to compare and evaluate the two models, the predictive capa-

bility is checked by taking the following approach: the final hierarchical and non-hierarchical

models are estimated with the data of 1994 to 2001, i.e. the same fixed and random effects

as well as the same variance structures for the errors as in the respective final models are

chosen, but the time period is restricted. Then the values of 2002 are predicted using these

restricted models. Certainly, the estimated parameters of the models change, but no new

model reduction and diagnostics are performed, since the restricted models are supposed

to represent the unrestricted ones (note that this is no complete cross-validation but a

computationally less demanding approach).

A comparison of predicted and observed values of 2002 (Figure 4.6) shows that the

predictive capability of the non-hierarchical model is quite good and better than that

of the hierarchical model which underestimates the observed values. The sum of squared

residuals of the hierarchical model is much larger: 126 vs. 18 of the non-hierarchical model.

This reflects the loss of time information when variables are averaged over time.

3.5 Interpretation of results from the statistical analysis Since the previous

analyses showed that the non-hierarchical model’s predictive capability is superior to that

of the hierarchical model, the following interpretation regarding the influences on the de-
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posits of a bank branch is mainly based on the results of the non-hierarchical mixed model

as developed in Section 3.2. Nevertheless, the hierarchical model allows for an easy repre-

sentation of the effects in the hierarchical three-stage structure (see [5]).

The examination of the data showed that the deposits of a bank branch significantly

depend on geographic effects such as local wealth and local competition as well as on bank-

performance effects on the macroeconomic level. As expected an increase of market share,

the average deposit per bank and the share of the number of branches in NY compared

to the USA have a positive influence on the bank branch deposits. Only the effect of the

share of branches is somewhat surprising. Perhaps an increase in the number of branches

in NY compared to the USA means enforced marketing activities in NY, i.e. the bank

concentrates on its branches in NY. At the same time, there are negative influences of

the number of branches that closed during a year and the share of the total deposits in

NY compared to the USA. While the first effect is easy to explain (closures of branches

are probably a result of a bad market environment), the second effect is not. Note that

these effects interact with geographic effects and that a useful statistical model aimed at

determining a good locality for bank branches should include these variables for statistical

control.

Geographically the deposits depend positively on the county’s population and on the per

capita income, since it is obvious that there are more deposits if there are more people and

if people earn more. However the overall effect of the unemployment rate is unclear, since it

interacts with other effects. Obviously unemployed people have less cash flow and therefore

one might expect less deposits in an area with high unemployment, but people, who recently

lost their job, possibly save more money in the short term because of the financial insecurity

of the next months and who live in an area with an increasing unemployment rate, might

also save more money because they feel threatened by unemployment as well and thus they

want to be financially prepared.

Likewise there is no uniform influence of the local competition on bank deposits, since

there are probably opposing trends if the competition increases: on the one hand, competi-

tion stimulates business and if for example the population in an area increases, the number

of branches in that area increases in order to get new customers and more deposits. On

the other hand, if there is more competition, each branch cannot have as much deposits as

if there were less branches. This shows that it would be too easy just to give competition

effects a negative sign as most might expect it.
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To investigate these influences the following approach is helpful: all branches are clas-

sified as being in a ’rural’/’urban’, ’poor’/’rich’ area with a low/high unemployment rate

(the classification is done using the empirical medians of the respective variables). For all

branches in a specific area the branch-specific effects of the competition are averaged and

then compared.

The comparison of branches in rural and urban areas shows that the effect of the

competition is slightly stronger in rural areas than in urban areas. A possible explanation

for this observation is that the market environment in rural areas is less developed. Thus a

higher competition might have a stronger impact than in urban areas, since e.g. marketing

activities can influence people to a greater extent, while urban people are more used to

such activities. They have a broad choice of banks and have chosen their bank deliberately.

Comparing the effect of the competition in rich and poor areas it can be said that rich

people, who have more deposits than poor people anyway, have more deposits if there is

more competition, i.e. they possibly think more about where to put their money and like

to chose their bank deliberately. More competition in a rich area therefore increases the

deposits in a branch. This effect is much smaller in poor areas because people living there

do not have much more money to increase their deposits. They are happy if they have

some deposits at the bank and do not care much about which bank it is.

At last, the comparison of the competition effects in areas with high and low unem-

ployment rates shows that people in areas with a high unemployment rate more strongly

increase their deposits if the competition increases than people in areas with a low unem-

ployment rate do. This can possibly be explained by the fact that unemployed people or

people that are threatened by unemployment are much more worried about their money

than employed people are. Therefore such people are easier to be influenced by marketing

activities and new offers which may be a result of an increasing competition, while em-

ployed people worry less about small differences in offers in order to earn a few cents or

dollars more of interest.

Besides these dependencies there is an additional branch-specific effect: some branches

have more deposits than others if all other influences are disregarded. This can be explained

by specific characteristics of a branch such as a long-term customer loyalty or a particular

good location in an area.

In the Figure 4.7 one can see the influence of the branch-specific effects for four randomly

chosen branches from Rockland (533, rural and poor area with a low unemployment rate),
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Suffolk (657, urban and poor area with a low unemployment rate), Nassau (5052, rural and

rich area with a low unemployment rate) and New York (435, urban and rich area with a

high unemployment rate).

4 Summary and discussion Our approach illustrates the potential of linear mixed

models in the context of measuring branch performance and deciding about the location

of new branches. Compared to DEA, regression analysis indicates directly causes of low

performance, gives performance information about all branches in the sample and can be

used to forecast deposits of new branches [4]. It therefore allows an easy evaluation of a

single existing branch and of the potential of a new location. In contrast to [1] and [4] we

include interactions and random effects in our models in order to take into account differ-

ent local market environments and thus make the model more reliable. On the one hand,

geographic effects such as local wealth (as measured by county unemployment rates and

county income per capita) and local competition are found to significantly influence the

branch performance, while, on the other hand, bank-performance effects on the macroeco-

nomic level such as the number of branches that close and the bank’s market share also

have to be considered in order to asses the performance accurately.

The specific performance measure of deposits is easily available for a statistical analysis.

Since the study is longitudinal, it also considers new business of a branch to some extent.

However, the flexibility of the mixed-effects regression model easily allows for the use of

other performance variables such as fee income or the number of new deposit and/or lend-

ing accounts. Multiple performance measures at once could be included e.g. by a weighted

sum of these measures with weights possibly determined by banking executives. More inde-

pendent variables such as in-branch variables or other competitive situation features could

also be included in the modeling but would further increase the computational complexity.

A detailed explorative data analysis is therefore crucial to identify potential random effects

and interactions before fitting an initial model. Now that we know the aptness of the

mixed-effects regression method, a more computationally intense effort could be utilized to

model the bank wealth on a holistic set of variables reflecting the banking environment.
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Figure 4.1: Map of New York State and the hierarchical structure of the data.
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Figure 4.3: QQ-plots of the standardized residuals of the final model.
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branches (observed and estimated values).
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Level Name Description

State no.fail number of branches that closed in NY during the year

mshare market share in NY

branch.total share of the number of branches in NY compared to the USA

dep.total share of the total deposits of the bank in NY compared to the

USA

av.dep average deposit per bank in NY

County pop population in the county (in 1000)

inc.pc per capita income (in 1000)

unemp unemployment rate in the county

Branch branch branch identity number (constant over the years)

log.dep total deposits (in USD) in the branch in log form

comp1 measure of geographical competition of the branch (different for

each year; values between 0 and 100, where a value of 100 is an

indication of a high geographical competition)

Table 4.1: Variable description classified by state, county and branch level.

1The sum of all distances between the branch and all branches of other banks which have only one single

branch or multiple branches, respectively, are given by the variables SingleDensity and MMCDensity.

Since these variables are not easy to interpret and highly correlated (94%), they are merged, standardized

by their medians, and scaled in order to have values between 0 and 100: a = SingleDensity
median(SingleDensity) +

MMCDensity
median(MMCDensity) , b = a−min(a), and finally comp = (1− b

max(b) ) · 100.
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Variable Estimate Std. Error p-value

Intercept 1.12 E+1 4.41 E−1 0.0000

pop 5.77 E−4 8.83 E−5 0.0000

inc.pc −7.32 E−4 1.44 E−3 0.6121

unemp −2.69 E−1 6.91 E−2 0.0001

no.fail 5.50 E−4 2.95 E−4 0.0624

mshare −6.23 E+0 2.23 E+0 0.0054

branch.t −3.90 E+0 1.80 E+0 0.0303

dep.total 3.44 E+0 1.68 E+0 0.0410

av.dep 1.70 E−6 2.87 E−7 0.0000

Interact. Estimate Std. Error p-value

unemp×

no.fail

−1.04 E−4 4.39 E−5 0.0184

unemp×

mshare

1.37 E+0 3.67 E−1 0.0002

unemp×

branch.t

1.05 E+0 2.82 E−1 0.0002

unemp×

dep.total

−9.43 E−1 2.66 E−1 0.0004

inc.pc×

av.dep

1.05 E−8 3.94 E−9 0.0078

Table 4.2: Significant effects with their estimates, standard errors and p-values in the final

model (branch.total = branch.t) (α = 0.05).

pop inc.pc unemp Deposits

high high high 77,368

high high low 75,756

high low high 73,061

high low low 71,539

low high high 66,975

low high low 65,580

low low high 63,248

low low low 61,930

no.f msh branch.t dep.t av.dep Deposits

low high high low high 139,487

high high high low high 139,043

low low high low high 118,323

high low high low high 117,947

low high low high low 58,184

high high low high low 57,999

low low low high low 49,356

high low low high low 49,199

Table 4.3: Expected deposits at different levels of the county and state variables, respec-

tively, using the abbreviations no.fail = no.f , mshare = msh, branch.total = branch.t

and dep.total = dep.t.


