
Asymptotic Results for Sample Autocovariance

Functions and Extremes of Integrated

Generalized Ornstein-Uhlenbeck Processes

Vicky Fasen ∗

August 12, 2008

Abstract

We consider a positive stationary generalized Ornstein-Uhlenbeck process

Vt = e−ξt

(∫ t

0
eξs− dηs + V0

)
for t ≥ 0,

and the increments of the integrated generalized Ornstein-Uhlenbeck process Ik =∫ k
k−1

√
Vt− dLt, k ∈ N, where (ξt, ηt, Lt)t≥0 is a three-dimensional Lévy process inde-

pendent of the starting random variable V0. The genOU model is a continuous time

version of a stochastic recurrence equation. Hence, our models include, in particular,

continuous time versions of ARCH(1) and GARCH(1, 1) processes. In this paper

we investigate the asymptotic behavior of extremes and the sample autocovariance

function of (Vt)t≥0 and (Ik)k∈N. Furthermore, we present a central limit result for

(Ik)k∈N. Regular variation and point process convergence play a crucial role in es-

tablishing the statistics of (Vt)t≥0 and (Ik)k∈N. The theory can be applied to the

COGARCH(1, 1) and the Nelson diffusion model.
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1 Introduction

In this paper we develop limit results for stationary positive generalized Ornstein-Uhlenbeck

(genOU) processes

Vt = e−ξt

(∫ t

0

eξs− dηs + V0

)
for t > 0, (1.1)

and integrated genOU (IgenOU) processes

I∗
t =

∫ t

0

√
Vs− dLs for t ≥ 0, (1.2)

where (ξt, ηt, Lt)t≥0 is a three-dimensional Lévy process independent of the starting ran-

dom variable V0, (ηt)t≥0 is a subordinator and (−Lt)t≥0 is not a subordinator. Here and

in general
∫ b

a
means the integral over (a, b]. A three-dimensional Lévy process is charac-

terized by its Lévy-Khinchine representation E(ei〈Θ,(ξt,ηt,Lt)〉) = exp(−tΨ(Θ)) for Θ ∈ R3,

where

Ψ(Θ) = −i〈γ, Θ〉 +
1

2
〈Θ, Σ Θ〉 +

∫

R3

(
1 − ei〈Θ,(x,y,z)〉 + i〈(x, y, z), Θ〉

)
dΠξ,η,L(x, y, z)

with γ ∈ R3, Σ a non-negative definite matrix in R3×3 and Πξ,η,L a measure on R3,

called Lévy measure, which satisfies
∫

R3 min{x2 + y2 + z2, 1} dΠξ,η,L(x, y, z) < ∞ and

Πξ,η,L((0, 0, 0)) = 0. Further, 〈·, ·〉 denotes the inner product in R3. A subordinator is a

positive Lévy process; we refer to the monographs of Sato [48] and Applebaum [1] for more

details on Lévy processes. A fundamental contribution to the probabilistic properties of

genOU processes is the recent paper of Lindner and Maller [35].

GenOU processes are applied in various areas, e. g., in financial and insurance math-

ematics, or mathematical physics; we refer to Carmona et al. [9, 10] and Donati-Martin

et al. [17] for an overview of applications. Processes of this class are used as stochastic

volatility models in finance (cf. [2]) and as risk models in insurance (cf. [23,32,43]). Con-

tinuous time processes are in particular appropriate models for irregularly-spaced and

high-frequency data. A genOU process is a continuous time version of a stochastic re-

currence equation; see de Haan and Karandikar [14]. Practical applications of stochastic

recurrence equations are given in Diaconis and Freedman [16]. This means in particular

that the ARCH(1) process, as solution of a stochastic recurrence equation, can be inter-

preted as a discrete time version of a genOU process. A typical example of an IgenOU

process is the continuous time GARCH(1, 1) (COGARCH(1, 1)) process introduced by

Klüppelberg et al. [30] (cf. Example 2.4). On the other hand, Nelson [40] suggested to

approximate a diffusion by GARCH(1, 1) models (cf. Example 2.3). The diffusion model

is again an IgenOU process and its volatility process is a genOU process.
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We investigate the asymptotic behavior of extremes and the sample autocovariance

function, respectively, of

Hk = sup
(k−1)h≤t≤kh

Vt for k ∈ N (1.3)

and some h > 0, of (Vt)t≥0 and of the stationary increments

Ik = I∗
kh − I∗

(k−1)h =

∫ kh

(k−1)h

√
Vt− dLt for k ∈ N, (1.4)

of (I∗
t )t≥0. Including continuous time versions of ARCH(1) and GARCH(1, 1) processes,

we derive similar results, as in Davis and Mikosch [13], and Mikosch and Stărică [39] who

investigated the asymptotic behavior of extremes and the sample autocovariance functions

of ARCH(1) and GARCH(1, 1) processes, for (Vt)t≥0 and (Ik)k∈N.

In this paper we present only theoretical results. One reason is that financial time series

often have finite variance but infinite fourth moment. If the IgenOU or the genOU process,

respectively, have these properties, then the normalized sample autocovariance functions

of (Ik)k∈N and (Vt)t≥0, respectively, converge to an infinite variance stable distribution

(see Section 4.3). The structure of these stable distributions is complex, and it is not clear

how to compute them analytically. Hence, it is also difficult to calculate any confidence

intervals from these results. Further, we restrict our attention to only qualitative results,

since the inference, estimation and testing of a genOU and an IgenOU process, is not fully

developed. First steps in estimation procedures of the COGARCH(1, 1) process are given

in Haug et al. [22] and Maller et al. [37].

The paper is organized as follows. We start, in Section 2, with a detailed analysis of

the genOU and the IgenOU model used in this paper. This analysis includes sufficient

conditions for model assumptions and examples. The regular variation of these processes,

stated in Section 3.1, is crucial to proving the convergence of relevant point processes.

These conclusions agree with the empirical findings of heavy tailed logarithmic returns

of financial time series. Section 3.2 concerns mixing properties of (Vt)t≥0, (Hk)k∈N and

(Ik)k∈N.

First, we derive in Section 4 the convergence of point processes based on (Hk)k∈N and

(Ik)k∈N. These results we use to develop the extremal behavior of (Hk)k∈N in Section 4.1,

the asymptotic behavior of (I∗
t )t≥0, in the form of a central limit result, in Section 4.2,

and the asymptotic behavior of the sample autocovariance functions of (Vt)t≥0 and (Ik)k∈N

in Section 4.3. One important conclusion is that (Hk)k∈N and (Ik)k∈N exhibit extremal

clusters, which are often observed in financial time series. Finally, the proofs of the results

are included in Appendix A-B.

We shall use the following standard notations: R+ = (0,∞). For real functions g and

h we abbreviate g(t) ∼ h(t) for t → ∞, if g(t)/h(t) → 1 for t → ∞. For x ∈ R we

3



set x+ = max{x, 0} and x− = max{0,−x}. For a vector x ∈ Rk we also denote by

|x|∞ = max{|x1|, . . . , |xk|} the maximum norm. We write X
d
= Y , if the distributions of

the random variables X and Y coincide. Provided that E(e−vξ1) is finite for v > 0 we set

Ψξ(v) = log E(e−vξ1).

Then E(e−vξt) = etΨξ(v) is finite for all t ≥ 0; see Sato [48], Theorem 25.17.

2 Model Assumptions and Examples

2.1 Model Assumptions

Throughout the paper we assume that the genOU process satisfies at least condition (A)

as below.

Condition (A). The stochastic process (Vt)t≥0 is a stationary positive càdlàg version of

the genOU process in (1.1). Further, the stationary distribution V0 has a Pareto like tail

with index α > 0, i. e. P(V0 > x) ∼ Cx−α as x → ∞ for some C > 0.

This is a natural condition; see Proposition 2.1 below for a precise formulation of sufficient

assumptions. We will assume either condition (B) or (C) hereafter depending on whether

we investigate probabilistic properties of the genOU process or the IgenOU process.

Condition (B). There exist α > 0 and d > α such that

Ψξ(α) = 0 and Ψξ(d) < ∞. (2.1)

Furthermore, for some h > 0,

E

∣∣∣∣e
−ξh

∫ h

0

eξs− dηs

∣∣∣∣
d

< ∞. (2.2)

Condition (B) stems from the idea to apply results for stochastic recurrence equations

of Kesten [29] and Goldie [21] to the equation V(k+1)h = Akh
(k+1)hVkh + Bkh

(k+1)h for k ∈ N,

where

As
t = e−(ξt−ξs) and Bs

t = e−ξt

∫ t

s

eξu− dηu for 0 ≤ s < t.

A conclusion of de Haan and Karandikar [14] (see also Carmona et al. [9]) is that (Vt)t≥0

is a time-homogenous Markov process and (Akh
(k+1)h, B

kh
(k+1)h)k∈N is an i. i. d. sequence.

Condition (C). Suppose condition (B) is satisfied. Furthermore, for k ∈ N, E|L1| < ∞,

E

∣∣∣∣
∫ h

0

e−ξt−/2 dLt

∣∣∣∣
2max{1,d}

< ∞, E

∣∣∣∣∣

∫ kh

(k−1)h

e−ξt−/2

(∫ t−

0

eξs− dηs

)1/2

dLt

∣∣∣∣∣

2max{1,d}

< ∞. (2.3)
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This condition arises from the following decomposition of

Ik =

∫ kh

(k−1)h

√
A

(k−1)h
t− V(k−1)h + B

(k−1)h
t− dLt.

Thus, assumption (2.3) is equivalent to

E

∣∣∣∣
∫ kh

(k−1)h

√
A

(k−1)h
t− dLt

∣∣∣∣
2max{1,d}

< ∞ and E

∣∣∣∣
∫ kh

(k−1)h

√
B

(k−1)h
t− dLt

∣∣∣∣
2max{1,d}

< ∞.

Theorem 4.5 of Lindner and Maller [35] presents sufficient conditions for (A), which

is included in the next proposition .

Proposition 2.1 Let (Vt)t≥0 be the genOU process in (1.1). When ξ is of finite variation,

we assume additionally that the drift of ξ is non-zero, or that there is no r > 0 such that

the support of the Lévy measure of ξ is concentrated on rZ.

(a) Suppose there exist α > 0, d > α, p, q > 1 with 1/p + 1/q = 1 such that

Ψξ(α) = 0, E(e−max{1,d}pξ1) < ∞ and E|η1|q max{1,d} < ∞. (2.4)

Then their exists a version of V satisfying condition (A), and (B) holds.

(b) Suppose there exist pi, qi > 1 with 1/pi + 1/qi = 1, i = 1, 2, α > 0 and d > α such

that

Ψξ(α) = 0, E
(
e−p1p2 max{1,d}ξ1

)
< ∞, E|η1|q1p2 max{1,d} < ∞, E|L1|2q2 max{1,d} < ∞. (2.5)

Then there exist a version of V satisfying condition (A), and (C) holds.

2.2 Examples

Example 2.2 (Ornstein-Uhlenbeck process) The Lévy-driven Ornstein-Uhlenbeck

process

Vt = e−λt

(∫ t

0

eλs dηs + V0

)
for t ≥ 0,

is a simple example of a genOU process. Since Ψξ(s) = −sλ < 0 for s > 0 the assumption

(2.1) cannot be satisfied. Hence, this process is not included in the framework of this

paper; we refer to Fasen et al. [18] for more details on extreme value theory of Lévy

driven Ornstein-Uhlenbeck processes. �

Example 2.3 (Nelson’s diffusion model) In the diffusion model of Nelson [40] the

volatility process is the stationary solution of the SDE

dVt = λ(a − Vt) dt + σVt dW
(1)
t for t ≥ 0, (2.6)
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where λ, a, σ > 0 and (W
(1)
t )t≥0 is a Brownian motion. Then [40] modles logarithmic asset

prices of financial time series by

I∗
t =

∫ t

0

√
Vt dW

(2)
t for t ≥ 0,

where (W
(2)
t )t≥0 is a Brownian motion independent of (W

(1)
t )t≥0. Theorem 52 in Prot-

ter [44], p. 328, gives that (Vt)t≥0 is a genOU process with representation

Vt = e−ξt

(
λa

∫ t

0

eξs ds + V0

)
for t ≥ 0,

where ξt = −σW
(1)
t +(σ2/2 + λ) t. In this case (ξt, ηt, Lt) = (−σW

(1)
t +(σ2/2 + λ) t, λat, W

(2)
t ).

Here, we do not take left limits of ξ (or V , respectively) in the representation of the genOU

process, since ξ has continuous sample paths from the Brownian motion. Furthermore,

Ψξ(v) = −
(

1

2
σ2 + λ

)
v +

σ2

2
v2 for v ∈ R,

so that for α = 1 + 2λ/σ2 we have Ψξ(α) = 0. Hence, there exist a version of V and I

satisfying assumptions (A)-(C) for any d > α, pi, qi > 1 with 1/pi + 1/qi = 1, i = 1, 2. �

Example 2.4 (COGARCH(1, 1) model) Let (ξt)t≥0 be a spectrally negative Lévy

process with representation

ξt = ct −
∑

0<s≤t

log(1 + λec(∆Ls)
2) for t ≥ 0,

where c > 0, λ ≥ 0 and (Lt)t≥0 is a Lévy process. Then the volatility process of the

COGARCH(1, 1) process as defined in Klüppelberg et al. [30] (we use only the right

continuous version) is given by

Vt = e−ξt

(
β

∫ t

0

eξs− ds + V0

)
for t ≥ 0 (2.7)

and β > 0. With this definition the COGARCH(1, 1) process has the representation

I∗
t =

∫ t

0

√
Vt− dLt for t ≥ 0.

In contrast to the Nelson diffusion model, here, ξ and L are dependent.

(a) If there exists an α > 0 and d > α such that

Ψξ(α) = 0 and E|L1|2d < ∞, (2.8)

then a stationary version of V exists, whose marginal distribution is regularly varying

with index α; see Klüppelberg et al. [31], Theorem 6. Hence, (A) and also (B) follow.

(b) If we assume that there exist an α > 0 and some d > α such that

Ψξ(α) = 0 and E|L1|max{4d,1} < ∞, (2.9)

then additionally (C) is satisfied. �
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3 Preliminary Results

3.1 Regular Variation

The tail behavior of the stationary distribution has a crucial impact on the extremes of

a stationary process. But the dependence of large values in successive variables also has

an influence on the extremal behavior of stochastic processes. A possible model for large

values in different components is, in our case, regular variation of the continuous time

process V . Regular variation of stochastic processes was studied by de Haan and Lin [15],

and Hult and Lindskog [25]. Before we present the definition we require some notation.

Let D be the space of all càdlàg functions on [0, 1] equipped with the J1-metric which

gives the Skorohod topology (cf. Billingsley [5]) and SD = {x ∈ D : |x|∞ = 1} is the unit

sphere in D equipped with the subspace topology, where |x|∞ = sup0≤t≤1 |xt|. The symbol

B denotes the Borel σ-Algebra and
u→∞
=⇒ weak convergence as u → ∞.

Definition 3.1 A stochastic process X = (Xt)0≤t≤1 with sample paths in D is said to be

regularly varying with index α > 0, if there exists a probability measure σ on B(SD) such

that for every x > 0,

P(|X|∞ > ux,X/|X|∞ ∈ ·)
P(|X|∞ > u)

u→∞
=⇒ x−ασ(·) on B(SD).

In this section we consider the tail behavior of (Hk)k∈N and (Ik)k∈N described by multi-

variate regular variation, and we will use these results to derive the convergence of point

processes based on these sequences in Section 4. More details and properties on multi-

variate regularly varying random vectors can be found, e. g., in Jessen and Mikosch [27]

and Resnick [45, 46].

Definition 3.2 A random vector X = (X1, . . . , Xk) on Rk is said to be regularly varying

with index α > 0, if there exists a random vector Θ with values on the unit sphere

Sk−1 = {x ∈ Rk : |x|∞ = 1} such that for every x > 0,

P(|X|∞ > ux,X/|X|∞ ∈ ·)
P(|X|∞ > u)

u→∞
=⇒ x−αP(Θ ∈ ·) on B(Sk−1).

The next theorem shows that the regular variation of V0 has consequences on the processes

(Vt)t≥0, (Hk)k∈N and (Ik)k∈N.

Theorem 3.3 (Regular variation) Let (Vt)t≥0 be a genOU process satisfying (A). Fur-

ther, let (Hk)k∈N and (Ik)k∈N, respectively, be the stationary processes in (1.3) and (1.4).

(a) Suppose (B) is satisfied. Let V = (Vt)0≤t≤1. Then for every x > 0,

P(|V|∞ > ux,V/|V|∞ ∈ ·)
P(|V|∞ > u)

u→∞
=⇒ x−α E (|U|α∞ 1{U/|U|∞ ∈ ·})

E|U|α∞
on B(SD),
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where U = (e−ξt)0≤t≤1.

(b) Suppose (B) is satisfied. Let Hk = (H1, . . . , Hk) for k ∈ N. Then for every x > 0,

P(|Hk|∞ > ux,Hk/|Hk|∞ ∈ ·)
P(|Hk|∞ > u)

u→∞
=⇒ x−α E (|mk|α∞ 1{mk/|mk|∞ ∈ ·})

E|mk|α∞
on B(Sk−1),

where

mk =

(
sup

0≤t≤h
e−ξt , . . . , sup

(k−1)h≤t≤kh

e−ξt

)
.

Furthermore,

P(H1 > x) ∼ E

(
sup

0≤s≤h
e−αξs

)
P(V0 > x), as x → ∞.

(c) Suppose (C) is satisfied. Let Ik = (I1, . . . , Ik) for k ∈ N. Then for every x > 0,

P(|Ik|∞ > ux, Ik/|Ik|∞ ∈ ·)
P(|Ik|∞ > u)

u→∞
=⇒ x−2α E (|rk|2α

∞ 1{rk/|rk|∞ ∈ ·})
E|rk|2α

∞

on B(Sk−1),

where

rk =

(∫ h

0

e−ξt−/2 dLt, . . . ,

∫ kh

(k−1)h

e−ξt−/2 dLt

)
.

Furthermore,

P(I1 > x) ∼ E

[(∫ h

0

e−ξt−/2 dLt

)+
]2α

P(V0 > x2), as x → ∞.

3.2 Mixing Properties

The mixing property of a stochastic process describes the temporal dependence in data.

Different kinds of mixing properties have been defined, which are summarized, e. g., in

the survey paper of Bradley [7]. For the derivation of limit results of point processes in

Section 4, one assumption is the asymptotic independence in extrema. Further, mixing is

used to prove consistency and asymptotic normality of estimators.

Let (Xt)t≥0 be a stationary process, Ft = σ(Xs : s ≤ t) and Gt = σ(Xs : s ≥ t). If

α(t) := sup
A∈Fv,B∈Gv+t

|P(A ∩ B) − P(A)P(B)| −→ 0, as t → ∞,

then (Xt)t≥0 is called α-mixing. (Xt)t≥0 is called β-mixing, if

β(t) := sup
Ai∈Fv,Ai∩Aj=∅

Bi∈Gv+t,Bi∩Bj=∅
⋃I

i=1
Ai=

⋃J
j=1

Bj=Ω

1

2

I∑

i=1

J∑

j=1

|P(Ai ∩ Bj) − P(Ai)P(Bj)| −→ 0, as t → ∞.

The following inequality holds: 2α(t) ≤ β(t). Hence, β-mixing implies α-mixing. (Xt)t≥0

is called exponentially β-mixing, if β(t) ≤ Ke−at for some K, a > 0 and all t ≥ 0. Analog

is the definition of exponentially α-mixing.
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Proposition 3.4 (Mixing) Let (Vt)t≥0 be a genOU process satisfying (A) and (B). We

assume that (Vt) is simultaneously ϕ-irreducible (for some σ-finite measure ϕ). Further,

let (Hk)k∈N and (Ik)k∈N, respectively, be the stationary processes in (1.3) and (1.4).

(a) Then (Vt)t≥0 is exponentially β-mixing and geometrically ergodic.

(b) Then (Hk)k∈N is exponentially β-mixing and geometrically ergodic.

(c) Suppose (Lt)t≥0 is a Brownian motion independent of (ξt, ηt)t≥0. Then (Ik)k∈N is

exponentially β-mixing and geometrically ergodic.

Example 3.5 (a) Consider the COGARCH(1, 1) model of Example 2.4, which satisfies

(2.8). Then (Vt)t≥0 is simultaneously λ-irreducible, where λ denotes the Lebesgue measure

(cf. Paulsen [42], p. 142, and Nyrhinen [41]). Hence, (Vt)t≥0 and (Ik)k∈N are exponentially

β-mixing and geometrically ergodic by Proposition 3.4 and Haug et al. [22], Theorem 3.5.

(b) In the Nelson diffusion model (Example 2.3) (Vt)t≥0 and (Ik)k∈N are exponentially

β-mixing and geometrically ergodic; see Genon-Catalot et al. [20]. �

For the derivation of point process results we need the asymptotic independence in ex-

tremes as below. It is satisfied for α-mixing and in particular β-mixing sequences (Bas-

rak [3], Lemma 3.2.9).

Condition A(cn). Let (Yk)k∈Z be a strictly stationary sequence of regularly varying

random vectors and 0 < cn ↑ ∞ be a sequence of constants satisfying

lim
n→∞

nP(|Y1|∞ > cn) = C (3.1)

for some C > 0. There exists a set of positive integers (rn)n∈N such that rn → ∞, rn/n → 0

as n → ∞ and

E exp

(
−

n∑

j=1

f(Yj/cn)

)
−
[
E exp

(
−

rn∑

j=1

f(Yj/cn)

)]⌊n/rn⌋

n→∞−→ 0 for all f ∈ Fs,

where Fs is the collection of bounded non negative step functions on R
d\{0} with bounded

support.

Thus, (Hk)k∈N and (Ik)k∈N of Example 2.3 and 2.4, respectively, satisfy condition A by

Theorem 3.3 and Example 3.5.

4 Point Process Convergence and Conclusions

In this section we study the weak convergence of point processes of exceedances associated

with (Hk)k∈N and (Ik)k∈N. Point processes are prominent tools to precisely describe the

extremal behavior of stochastic processes (see Resnick [45, 46]). They can be used to
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determine the limit distributions of sample maxima, to compute the extremal index, to

describe the behavior of extremal clusters, and to derive central limit theorems, as we will

do in this section. We will also apply the asymptotic point process results to calculate the

limit distributions of the normalized sample autocovariance and autocorrelation functions

of the genOU and the increments of the IgenOU process in Section 4.3. The theory which

we use goes back to Davis and Hsing [12] and Davis and Mikosch [13].

We continue with the definition of a point process. Let the state space S be [0,∞) ×
R\{0}, where R = R∪{−∞}∪{+∞}. Furthermore, MP (S) is the class of point measures

on S, where MP (S) is equipped with the metric ρ that generates the topology of vague

convergence. The space (MP (S), ρ) is a complete and separable metric space with Borel σ-

field MP (S). A point process in S is a measurable map from a probability space (Ω,A, P)

into (MP (S),MP (S)). A typical example of a point process is a Poisson random measure,

i. e., given a Radon measure ϑ on B(S), a point process κ is called Poisson random measure

with intensity measure ϑ, denoted by PRM(ϑ), if

(a) κ(A) is Poisson distributed with mean ϑ(A) for every A ∈ B(S),

(b) for all mutually disjoint sets A1, . . . , An ∈ B(S), κ(A1), . . . , κ(An) are independent.

More about point processes can be found in Daley and Vere-Jones [11], and Kallen-

berg [28]. In our setup we obtain the following result.

Theorem 4.1 (Point process convergence) Let (Vt)t≥0 be a genOU process satisfy-

ing (A). Further, let (Hk)k∈N and (Ik)k∈N, respectively, be the stationary processes in (1.3)

and (1.4). Let 0 < an ↑ ∞ be a sequence of constants such that

lim
n→∞

nP(V0 > anx) = x−α for x > 0.

(a) Suppose (B) is satisfied and A(an) holds for (Hk)k∈N. Then

∞∑

k=1

ε(k/n,a−1
n Hk)

n→∞
=⇒

∞∑

k=1

∞∑

j=0

ε
(s

(1)
k ,Q

(1)
kj P

(1)
k )

in MP (S),

where
∑∞

k=1 ε
(s

(1)
k ,P

(1)
k )

is PRM(ϑ) with

ϑ(dt × dx) = dt × αhE

(
sup

0≤s≤1
e−αξs − sup

s≥1
e−αξs

)+

x−α−1 1(0,∞)(x) dx.

Moreover,
∑∞

j=0 ε
Q

(1)
kj

for k ∈ N are i. i. d. point processes independent of
∑∞

k=1 ε
(s

(1)
k ,P

(1)
k )

with 0 ≤ Q
(1)
kj ≤ 1, and for each k exactly one Q

(1)
kj is equal to 1, and P(Q

(1)
kj = 0) < 1 for

j ∈ N. The sequence (Q
(1)
kj )j∈N0 is a. s. unique.
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(b) Suppose (C) is satisfied and A(a
1/2
n ) holds for (Ik)k∈N. Then

∞∑

k=1

ε
(k/n,a

−1/2
n Ik)

n→∞
=⇒

∞∑

k=1

∞∑

j=0

ε
(s

(2)
k ,Q

(2)
kj P

(2)
k )

in MP (S),

where
∑∞

k=1 ε
(s

(2)
k ,P

(2)
k )

is PRM(ϑ) with

ϑ(dt × dx)

= dt × 2αE



[(∫ h

0

e−ξt−/2 dLt

)+
]2α

− max
k≥2

[(∫ kh

(k−1)h

e−ξt−/2 dLt

)+
]2α



+

x−2α−1 1(0,∞)(x) dx.

Furthermore,
∑∞

j=0 ε
Q

(2)
kj

for k ∈ N are i. i. d. point processes independent of
∑∞

k=1 ε
(s

(2)
k ,P

(2)
k )

with |Q(2)
kj | ≤ 1, and for each k exactly one Q

(2)
kj is equal to 1, and P(Q

(2)
kj = 0) < 1 for

j ∈ N. The sequence (Q
(2)
kj )j∈N0 is a. s. unique.

4.1 Extremal Behavior

In particular we obtain from Theorem 4.1 the limit behavior of the sequence of partial

maxima of the continuous time process (Vt)t≥0.

Proposition 4.2 Let the assumptions of Theorem 4.1 (a) hold. Define M(n) := sup0≤t≤n Vt

for n > 0. Then

lim
n→∞

P(a−1
n M(n) ≤ x) = exp

(
−E

(
sup

0≤s≤1
e−αξs − sup

s≥1
e−αξs

)+

x−α

)
for x > 0.

Definition 4.3 Let (Xt)t≥0 be a stationary process. Define for h > 0 the sequence

Mk(h) = sup(k−1)h≤t≤kh Xt, k ∈ N. If there exist sequences of constants a
(h)
n > 0, b

(h)
n ∈ R,

a constant θ(h) ∈ [0, 1] and a non degenerate distribution function G such that

lim
n→∞

nP(M1(h) > a(h)
n x + b(h)

n ) = − log(G(x)) and

lim
n→∞

P

(
max

k=1,...,n
Mk(h) ≤ a(h)

n x + b(h)
n

)
= G(x)θ(h) ∀ x in the support of G,

then we call the function θ : (0,∞) → [0, 1] extremal index function.

For fixed h the constant θ(h) is the extremal index (see Leadbetter et al. [34], pp. 67) of

(Mk(h))k∈N which is a measure of extremal clusters. The reciprocal of the extremal index

can be interpreted as the mean of the cluster size of high level exceedances: the value 1

reflects no clusters, and values less than 1 reflect clusters.

11



Corollary 4.4 (a) Let the assumptions of Theorem 4.1 (a) hold. Then

θ(h) = h
E
(
sup0≤s≤1 e−αξs − sups≥1 e−αξs

)+

E(sup0≤s≤h e−αξs)
for h > 0

is the extremal index function of (Vt)t≥0.

(b) Let the assumptions of Theorem 4.1 (b) hold. Then

θ(h) =

E

([(∫ h

0
e−ξt−/2 dLt

)+
]2α

− maxk≥2

[(∫ kh

(k−1)h
e−ξt−/2 dLt

)+
]2α
)+

E

([(∫ h

0
e−ξt−/2 dLt

)+
]2α
)

is the extremal index of (Ik)k∈N.

One conclusion is that the processes (Vt)t≥0, (Hk)k∈N and (Ik)k∈N exhibit extremal clusters.

In Fasen et al. [18], the extremal behavior of a COGARCH(1, 1) process driven by a

compound Poisson process was derived. The next lemma shows that their Theorem 4.5,

which says

lim
n→∞

P(a−1
n M(n) ≤ x) = exp

(
µ(E(e−αcΓ1))−1E

(
1 − sup

s≥Γ1

e−αξs

)+

x−α

)
for x > 0

with the notation of Lemma 4.5 below, and our Proposition 4.2 are consistent.

Lemma 4.5 Let (Vt)t≥0 be the volatility process of the COGARCH(1, 1) model in (2.7)

satisfying (2.8). Let (Lt)t≥0 be a compound Poisson process with jump arrivals (Γk)k∈N

and intensity µ. Then

E

(
sup

0≤s≤1
e−αξs − sup

s≥1
e−αξs

)+

= µ(E(e−αcΓ1))−1E

(
1 − sup

s≥Γ1

e−αξs

)+

. (4.1)

4.2 Asymptotic Behavior of the IgenOU Process

The last conclusion of Theorem 4.1 is a central limit theorem for (I∗
t )t≥0.

Proposition 4.6 Let (I∗
t )t≥0 be the IgenOU process in (1.2), and (Ik)k∈N as in (1.4)

satisfies (A) and (C). Let 0 < an ↑ ∞ be a sequence of constants such that

lim
n→∞

nP(V0 > anx) = x−α for x > 0.

(a) If α ∈ (0, 0.5) and (Ik)k∈N satisfies A(a
1/2
n ), then

t−1/(2α)I∗
t

t→∞
=⇒ S, where S is (2α)-stable.
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(b) If α ∈ (0.5, 1), (Ik)k∈N satisfies A(a
1/2
n ), and

lim
ǫ↓0

lim sup
n→∞

Var

(
n−1/(2α)

n∑

k=1

Ik 1{|Ik|≤ǫn1/(2α)}

)
= 0, (4.2)

then

t−1/(2α)(I∗
t − E(I∗

t ))
t→∞
=⇒ S, where S is (2α)-stable.

(c) If α > 1 and (Ik)k∈N is exponentially α-mixing, then

t−1/2(I∗
t − E(I∗

t ))
t→∞
=⇒ N ,

where N is normal distributed with E(N ) = 0 and Var(N ) = Var(I∗
1 ).

This Proposition is a consequence of Davis and Hsing [12], Theorem 3.1 and Ibragimov

and Linnik [26], Theorem 18.5.3.

Remark 4.7 (i) Condition (4.2) is satisfied, if (ξt, ηt, Lt)t≥0
d
= (ξt, ηt,−Lt)t≥0 since Ik

then is symmetric. Thus, (4.2) stems from the uncorrelation of (Ik)k∈N and Karamata’s

theorem (see Feller [19], VIII.9, Theorem 1). A necessary but not sufficient condition of

(ξt, ηt, Lt)t≥0
d
= (ξt, ηt,−Lt)t≥0 is L symmetric. For example, let L1 be symmetric and

independent of the subordinator η. Then (Lt, ηt, Lt)t≥0
d
= (−Lt, ηt,−Lt)t≥0, but the dis-

tribution differs from the distribution of (Lt, ηt,−Lt)t≥0.

(ii) Let us consider the COGARCH(1, 1) model in Example 2.4 and suppose that L1 has a

symmetric distribution. Then (ξt, t, Lt)t≥0
d
= (ξt, t,−Lt)t≥0, and (4.2) holds. In particular

(4.2) also holds for the Nelson diffusion model.

(iii) The boundary cases α = 0.5, 1 are here neglected, since the analysis is tedious and

lengthy, and it does not lead to interesting statistical insight. �

4.3 Convergence of the Sample Autocovariances

The next section is devoted to the asymptotic behavior of the sample autocovariance and

autocorrelation function of (Vt)t≥0, and (Ik)k∈N.

Theorem 4.8 Let (Vt)t≥0 be a genOU process satisfying (A) and (B). Suppose (Vt)t≥0 is

exponentially α-mixing. Further, let γV (t) = E(V0Vt) and ρV (t) = γV (t)/γV (0) for t > 0.

Define for h > 0 the empirical versions

γn,V (lh) =
1

n

n−l∑

k=1

VkhV(k+l)h and ρn,V (lh) = γn,V (lh)/γn,V (0) for l ∈ N0.
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(a) If α ∈ (0, 2), then

(
n1−2/αγn,V (lh)

)
l=0,...,m

n→∞
=⇒ (S

(1)
l )l=0,...,m, (4.3)

(ρn,V (lh))l=1,...,m
n→∞
=⇒ (S

(1)
l /S

(1)
0 )l=1,...,m, (4.4)

where the vector (S
(1)
0 , . . . , S

(1)
m ) is jointly (α/2)-stable in Rm+1.

(b) If α ∈ (2, 4) and d > 4 in condition (B), then

(
n1−2/α(γn,V (lh) − γV (lh))

)
l=0,...,m

n→∞
=⇒ (S

(2)
l )l=0,...,m, (4.5)

(
n1−2/α(ρn,V (lh) − ρV (lh))

)
l=1,...,m

n→∞
=⇒ γ−1

V (0)(S
(2)
l − ρV (lh)S

(2)
0 )l=1,...,m, (4.6)

where (S
(2)
0 , . . . , S

(2)
m ) is jointly (α/2)-stable in Rm+1.

(c) If α > 4, then (4.5) and (4.6) hold with normalization n1/2, where the limit

(S
(3)
1 , . . . , S

(3)
m ) is multivariate normal with mean zero, covariance matrix
(

∞∑

k=−∞

Cov(V0Vih, VkhV(k+j)h)

)

i,j=1,...,m

and S
(3)
0 = E(V 2

0 ).

Remark 4.9 (i) The stable random vector (S
(1)
0 , . . . , S

(1)
m ) is a functional of the limit

point process based on (Vkh)k∈N in (B.12). The explicit representation of (S
(1)
0 , . . . , S

(1)
m )

is given in (B.19). Similarly we can derive the representation of (S
(2)
0 , . . . , S

(2)
m ).

(ii) If α ∈ (0, 2) the autocovariance function does not exist. Hence, γn,V and ρn,V are not

consistent estimators.

(iii) For α > 2 the sample autocovariance function is a consistent estimator, where for

α ∈ (2, 4) the convergence rate n1−2/α will be faster, if α increases. The convergence to

an infinite variance stable distribution in (b) and the slower convergence rate than in (c)

cause the confidence bands in (b) to be wider than in (c).

(iv) The mean corrected versions of the sample and the autocovariance function can also

be considered; the limit theory does not change.

(v) The proof of Theorem 4.8 shows that (b) is valid under more general assump-

tions. Let (Ṽk)k∈N be the stationary solution of the stochastic recurrence equation Ṽk+1 =

ÃkṼk + B̃k, where (Ãk, B̃k)k∈N is an i. i. d. sequence, and (Ãk, B̃k) is independent of Ṽk.

Let (ÃkB̃kṼk)k∈N be exponentially α-mixing. Furthermore, we suppose that the finite di-

mensional distributions of (Ṽk)k∈N are multivariate regularly varying of index α ∈ (2, 4),

and E|Ãk|d < ∞ and E|B̃k|d < ∞ for some d > 4. If finally (Ṽk)k∈N satisfies (B.12) with

Vk replaced by Ṽk, then Theorem 4.8 (b) holds. �

The following result is a straightforward conclusion of Theorem 3.3, Theorem 4.1 and

Davis and Mikosch [13], Theorem 3.5.
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Theorem 4.10 Let (Ik)k∈N be the stationary process in (1.4) satisfying (A) and (C).

Suppose (Ik)k∈N is exponentially α-mixing. Further, let γI(l) = E(I1I1+l) and ρI(l) =

γI(l)/γI(0) for l ∈ N. Define the empirical versions

γn,I(l) =
1

n

n−l∑

k=1

IkIk+l and ρn,I(l) = γn,I(l)/γn,I(0) for l ∈ N0.

(a) If α ∈ (0, 1) then

(
n1−1/αγn,I(l)

)
l=0,...,m

n→∞
=⇒ (S

(1)
l )l=0,...,m, (4.7)

(ρn,I(l))l=1,...,m
n→∞
=⇒ (S

(1)
l /S

(1)
0 )l=1,...,m, (4.8)

where the vector (S
(1)
0 , . . . , S

(1)
m ) is jointly α-stable in Rm+1.

(b) If α ∈ (1, 2) and

lim
ǫ↓0

lim sup
n→∞

Var

(
n−1/α

n−l∑

i=1

IiIi+l 1{|IiIi+l|≤n1/αǫ}

)
= 0 , l = 0, . . . , m, (4.9)

then

(
n1−1/α(γn,I(l) − γI(l))

)
l=0,...,m

n→∞
=⇒ (S

(2)
l )l=0,...,m, (4.10)

(
n1−1/α(ρn,I(l) − ρI(l))

)
l=1,...,m

n→∞
=⇒ γ−1

I (0)(S
(2)
l − ρI(l)S

(2)
0 )l=1,...,m, (4.11)

where (S
(2)
0 , . . . , S

(2)
m ) is jointly α-stable in Rm+1.

(c) If α > 2 then (4.10) and (4.11) hold with normalization n1/2, where the limit

(S
(3)
1 , . . . , S

(3)
m ) is multivariate normal with mean zero, covariance matrix

(
∞∑

k=−∞

Cov(I1I1+i, IkIk+j)

)

i,j=1,...,m

and S
(3)
0 = E(I2

1 ).

As in Remark 4.7, a sufficient condition for (4.9) is (ξt, ηt, Lt)t≥0
d
= (ξt, ηt,−Lt)t≥0.

A Proofs of Sections 2 and 3

Remark A.1 Let condition (B) be satisfied.

(i) By Sato [48], Lemma 26.4, we know that Ψξ is strictly convex and continuous. Hence,

Ψξ(α) = 0 implies that there exist 0 < α̃ < α such that

Ψξ(α̃) < 0. (A.1)
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(ii) The process (e−vξt−tΨξ(v))t≥0 is a martingale for every v ∈ R where |Ψξ(v)| < ∞. A

conclusion of Doob’s martingale inequality (cf. Revuz and Yor [47], p. 54) is that Kv,h :=

E
(
sup0≤t≤h e−vξt

)
< ∞ for k ∈ N, h > 0, and hence, by the independent and stationary

increments of a Lévy process

E

(
sup

(k−1)h≤t≤kh

e−vξt

)
= E

(
sup

(k−1)h≤t≤kh

e−v(ξt−ξ(k−1)h)

)
E(e−vξ(k−1)h)

≤ Kv,he
Ψξ(v)(k−1)h < ∞. (A.2)

(iii) Let 0 < u ≤ d. Then there exist a 0 < v < min(u, α) such that ((e−ξt
∫ t

0
eξs− dηs)

v)t≥0is

a positive submartingale. Doob’s submartingale inequality, Hölder’s inequality and (2.2)

result in

E

(
sup

0≤t≤h
e−ξt

∫ t

0

eξs− dηs

)u

≤ K̃u,h

(
E

(
e−ξh

∫ h

0

eξs− dηs

)d
)u

d

< ∞ (A.3)

for some constant K̃u,h > 0. �

Proof of Proposition 2.1 (a) Condition (A) follows by Lindner and Maller [35], The-

orem 4.5. Hence, it remains only to prove (2.2). Since η is a subordinator we have

E

∣∣∣∣e
−ξh

∫ h

0

eξs− dηs

∣∣∣∣
d

≤ E

∣∣∣∣ sup
0≤s≤h

e−(ξh−ξs)ηh

∣∣∣∣
d

.

Applying Hölder’s inequality and (A.2) we obtain

E

∣∣∣∣e
−ξh

∫ h

0

eξs− dηs

∣∣∣∣
d

≤ C
(
E(e−pdξh)

) 1
p
(
E|ηh|qd

) 1
q < ∞. (A.4)

(b) By (a) we have only to check (2.3). We assume E(L1) = 0, or else we decompose L into

two independent Lévy processes where one process has mean 0 and the other is a drift term.

Then (
∫ u

0
e−ξt−/2(

∫ t−

0
eξs− dηs)

1/2 dLt)u≥0 is a local martingale by Protter [44], Theorem 29,

p. 173. Further, we define d̃ = max{1, d}. By the Burkholder-Gundy inequality (cf. Liptser

and Shiryaev [36], p.75), Hölder’s inequality and (A.3) we obtain

E

∣∣∣∣∣

∫ h

0

e−ξt−/2

(∫ t−

0

eξs− dηs

)1/2

dLt

∣∣∣∣∣

2d̃

≤ K1E

∣∣∣∣
∫ h

0

e−ξt−

(∫ t−

0

eξs− dηs

)
d[L, L]t

∣∣∣∣
d̃

≤ K2

(
E

∣∣∣∣ sup
0≤t≤h

e−ξt−

∫ t−

0

eξs− dηs

∣∣∣∣
d̃p2
)1/p2 (

E|Lh|2d̃q2

)1/q2

< ∞.

The finiteness of the first factor is again a conclusion of (A.3), (A.4) and (2.5).

Similarly, we can prove that E

∣∣∣
∫ h

0
e−ξt−/2 dLt

∣∣∣
2d̃

< ∞. �
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Proof of Theorem 3.3. (a) Step 1. Let V = (e−ξtV0)0≤t≤1. Since the tail of the proba-

bility distribution of V0 is regularly varying, the process V is a regularly varying process

by Hult and Lindskog [25], Theorem 3.1, and

P(|V|∞ > ux,V/|V|∞ ∈ ·)
P(|V|∞ > u)

u→∞
=⇒ x−α E (|U|α∞ 1{U/|U|∞ ∈ ·})

E|U|α∞
on B(SD). (A.5)

Step 2. We will show that V is a regularly varying process. By (A.3) we know that

E|V − V|d∞ < ∞. Markov’s inequality, regular variation of P(|V|∞ > u) as u → ∞ (by

Step 1) and Potter’s Theorem (cf. Bingham et al. [6], Theorem 1.5.6) give

P(|V − V|∞ > u)

P(|V|∞ > u)
≤ u−d

P(|V|∞ > u)
E|V − V|d∞ −→ 0 , as u → ∞.

Hence, as in Jessen and Mikosch [27], Lemma 3.12,

P(|V|∞ > ux,V/|V|∞ ∈ ·)
P(|V|∞ > u)

∼ P(|V|∞ > ux,V/|V|∞ ∈ ·)
P(|V|∞ > u)

, as u → ∞.

With Step 1 part (a) follows.

(b) Analogous to (a), we have V(kh) = (Vt)0≤t≤kh is a regularly varying process in D[0, kh].

The functional T : D[0, kh]\{0} → Rk with

x = (xt)0≤t≤kh 7→
(

sup
0≤s≤h

|xs|, . . . , sup
(k−1)h≤s≤kh

|xs|
)

is continuous, |x|∞ = |T (x)|∞ and T (λx) = λT (x) for λ > 0,x ∈ D[0, kh]. Let U(kh) =

(e−ξt)0≤t≤kh. Then

Hk = T (V(kh)), |Hk|∞ = |V(kh)|∞ and T (V(kh)/|V(kh)|∞) = Hk/|Hk|∞,

and similarly

mk = T (U(kh)), |mk|∞ = |U(kh)|∞ and T (U(kh)/|U(kh)|∞) = mk/|mk|∞.

We conclude by the continuous mapping theorem (cf. Billingsley [5], Theorem 2.7, and

Hult and Lindskog [24], Theorem 8, for regularly varying stochastic processes) and (a)

that on B(Sk−1),

P(|Hk|∞ > ux,Hk/|Hk|∞ ∈ ·)
P(|Hk|∞ > u)

=
P(|V(kh)|∞ > ux, T (V(kh)/|V(kh)|∞) ∈ ·)

P(|V(kh)|∞ > u)

u→∞
=⇒ E

(
|U(kh)|α∞ 1{T (U(kh)/|U(kh)|∞) ∈ ·}

)

E|U(kh)|α∞
,
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which gives the desired result.

(c) We define

I
(1)
k =

√
V0

∫ kh

(k−1)h

e−ξt−/2 dLt and I
(2)
k = Ik − I

(1)
k =

∫ kh

(k−1)h

Rt dLt,

where Rt =
√

Vt− − e−ξt−/2
√

V0. Note that

R2
t ≤ e−ξt−

∫ t−

0

eξs− dηs.

We assume E(L1) = 0, or else we decompose L into two independent Lévy processes

where one process has mean 0 and the other is a drift term. Then (
∫ u

0
Rt dLt)u≥0 is a local

martingale by Protter [44], Theorem 29, p. 173. Further, we define d̃ = max{1, d}. By the

Burkholder-Gundy inequality (cf. Liptser and Shiryaev [36], p.75) and (A.3) we obtain

E|I(2)
k |2d̃ ≤ K1E

(∫ kh

(k−1)h

R2
t d[L, L]t

)d̃

≤ K1E

(∫ kh

(k−1)h

(
e−ξt−

∫ t−

0

eξs− dηs

)
d[L, L]t

)d̃

≤ K2E

∣∣∣∣∣

∫ kh

(k−1)h

e−ξt−/2

(∫ t−

0

eξs− dηs

)1/2

dLt

∣∣∣∣∣

2d̃

< ∞, (A.6)

where the finiteness follows from (2.3). Thus, the classical result of Breiman [8] and

Klüppelberg et al. [31], Lemma 2, lead to

P(I1 > x) ∼ P(I
(1)
1 > x) ∼ E

[(∫ h

0

e−ξt−/2 dLt

)+
]2α

P(
√

V0 > x) , as x → ∞.

With Basrak et al. [4], Proposition A.1, which is a multivariate version of Breiman’s result,

we can extend this result to the multivariate case of Ik. �

Proof of Proposition 3.4. (a) follows along the same lines as the proof of Theorem 4.3

in Masuda [38], where the result was derived for the classical Ornstein-Uhlenbeck process.

(b) follows from (a).

(c) follows from (a) and Genon-Catalot et al. [20], Proposition 3.1. The arguments are the

same as in Theorem 3.1 and Proposition 3.2 of Genon-Catalot et al. [20], who investigate

a slightly different model. �

B Proofs of Section 4

The proof of Theorem 4.1 uses the next Lemma.
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Lemma B.1 Let (ξt)t≥0 be a Lévy process satisfying E(e−αξ1) = 1. Then

E

(
sup

0≤s≤h
e−αξs − sup

s≥h
e−αξs

)+

= hE

(
sup

0≤s≤1
e−αξs − sup

s≥1
e−αξs

)+

for any h > 0.

Proof. For f : [0,∞) → R holds
(

sup
s≤kh

f(s) − sup
s≥kh

f(s)

)+

(B.1)

=

(
sup
s≤h

f(s) − sup
s≥h

f(s)

)+

+

k−1∑

l=1

(
sup

lh≤s≤(l+1)h

f(s) − sup
s≥(l+1)h

f(s)

)+

.

This can be proved by induction, since
(

sup
s≤kh

f(s) − sup
s≥kh

f(s)

)+

=

(
sup

s≤(k−1)h

f(s) − sup
s≥(k−1)h

f(s)

)+

+

(
sup

(k−1)h≤s≤kh

f(s) − sup
s≥kh

f(s)

)+

.

One way to see this is to distinct the different cases where the maximum and the second

largest maximum of sups≤(k−1)h f(s), sup(k−1)h≤s≤kh f(s) and sups≥kh f(s) lie. Taking the

independent increments of (ξt)t≥0 into account we obtain

E

(
sup

lh≤s≤(l+1)h

e−αξs − sup
s≥(l+1)h

e−αξs

)+

= E

(
e−αξlh

(
sup

lh≤s≤(l+1)h

e−α(ξs−ξlh) − sup
s≥(l+1)h

e−α(ξs−ξlh)

))+

= E
(
e−αξlh

)
E

(
sup

lh≤s≤(l+1)h

e−α(ξs−ξlh) − sup
s≥(l+1)h

e−α(ξs−ξlh)

)+

.

Since E(e−αξ1) = 1 by assumption we also have E(e−αξlh) = 1. Thus, the stationary

increments property of (ξt)t≥0 give

E

(
sup

lh≤s≤(l+1)h

e−αξs − sup
s≥(l+1)h

e−αξs

)+

= E

(
sup

0≤s≤h
e−αξs − sup

s≥h
e−αξs

)+

. (B.2)

Hence, (B.1) and (B.2) result in

E

(
sup

0≤s≤kh
e−αξs − sup

s≥kh
e−αξs

)+

= kE

(
sup

0≤s≤h
e−αξs − sup

s≥h
e−αξs

)+

for k ∈ N.

Thus,

E

(
sup

0≤s≤hq
e−αξs − sup

s≥hq
e−αξs

)+

= qE

(
sup

0≤s≤h
e−αξs − sup

s≥h
e−αξs

)+

for q ∈ Q ∩ R+.

Since (ξt)t≥0 has a. s. càdlàg paths, the claim follows. �
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Proof of Theorem 4.1. (a) Davis and Hsing [12] derived sufficient assumptions for

the convergence of point processes formed by a stationary regularly varying sequence. We

apply their Theorem 2.7. This theorem requires that the finite dimensional distributions of

(Hk)k∈N are multivariate regularly varying, which is satisfied by Theorem 3.3 (b). Finally,

we must check

lim
l→∞

lim
n→∞

P

(
∨

l≤k≤rn

|Hk| > anx

∣∣∣∣∣ |H1| > anx

)
= 0. (B.3)

for a sequence rn = o(n) as n → ∞, and x > 0. Thus, define A∗
k = sup(k−1)h≤t≤kh e−(ξt−ξh)

and B∗
k = sup(k−1)h≤t≤kh e−ξt

∫ t

h
eξs− dηs for k ≥ 2. Let x > 0 be fixed. Hence,

Hk ≤ A∗
kH1 + B∗

k for k ≥ 2 and (A∗
k, B

∗
k) are independent of H1. Then we obtain

P

(
∨

l≤k≤rn

|Hk| > anx, |H1| > anx

)

≤
rn∑

k=l

[P(B∗
k > anx/2)P(H1 > anx) + P(A∗

kH1 > anx/2, H1 > anx)]

≤ rnP(H1 > anx/2)2 +
rn∑

k=l

P(A∗
kH1 > anx/2, H1 > anx). (B.4)

Let α̃ be given as in (A.1). Markov’s inequality and the independence of H1 and A∗
k for

k ≥ 2 lead to

P(A∗
kH1 1{H1>anx} > anx/2) ≤ (anx/2)−α̃E(A∗ α̃

k )E
(
H α̃

1 1{H1>anx}

)
. (B.5)

Since P(H α̃
1 > x) is regularly varying with index α/α̃ > 1, we apply Feller [19], Theorem 1

in Chapter VIII.9, such that

E
(
H α̃

1 1{H1>anx}

)
∼ α̃

α − α̃
(anx)α̃P(H1 > anx) , as n → ∞. (B.6)

Hence, (B.5), (B.6) and (A.2) result in

P(A∗
kH1 1{H1>anx} > anx/2) ≤ K1E(A∗ α̃

k )P(H1 > anx) ≤ K2e
Ψξ(α̃)khP(H1 > anx), (B.7)

for n ≥ n0 and some constants K1, K2, n0 > 0. We conclude from (B.4) and (B.7) that

lim
l→∞

lim
n→∞

P




∨

l≤|k|≤rn

|Hk| > anx

∣∣∣∣∣∣
|H1| > anx


 ≤ lim

l→∞
K2

∞∑

k=l

(eΨξ(α̃)h)k = 0.

Note that (cf. Theorem 2.7 and Lemma 2.9 in Davis and Hsing [12]) the extremal index

θ of (Hk)k∈N has value

θ = lim
l→∞

lim
u→∞

P(|H1| > u) − P

(
min{|H1|,

∨l
k=2 |Hk|} > u

)

P(|H1| > u)
.
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By Theorem 3.3 (b) the right hand side is equal to

lim
l→∞

E
(
sup0≤s≤h e−αξs

)
− E

(
min

{
sup0≤s≤h e−αξs , suph≤s≤lh e−αξs

})

E
(
sup0≤s≤h e−αξs

)

=
E
(
sup0≤s≤h e−αξs − sups≥h e−αξs

)+

E
(
sup0≤s≤h e−αξs

) .

Finally, Lemma B.1 leads to

θ = h
E
(
sup0≤s≤1 e−αξs − sups≥1 e−αξs

)+

E
(
sup0≤s≤h e−αξs

) , (B.8)

which proves (a).

(b) We study the point process behavior of (Ik)k∈N as in (a) by proving that the

assumptions of Davis and Hsing [12], Theorem 2.7, are satisfied. The finite dimensional

distributions of (Ik)k∈N are multivariate regularly varying by Theorem 3.3 (c). At the end

we will show that condition (B.3) for (Ik)k∈N is satisfied. We define

Gk =
√

V(k−1)h−eξ(k−1)h−/2

∫ kh

(k−1)h

e−ξt−/2 dLt,

A∗
k = e−(ξ(k−1)h−−ξh−)

(
eξ(k−1)h−/2

∫ kh

(k−1)h

e−ξt−/2 dLt

)2

,

B∗
k = e−ξ(k−1)h−

(∫ (k−1)h−

h

eξs− dηs

)(
eξ(k−1)h−/2

∫ kh

(k−1)h

e−ξt−/2 dLt

)2

, k ≥ 2,

and G∗
1 = max{Vh, G

2
1, I

2
1}. Then G2

k ≤ A∗
kG

∗
1 + B∗

k . Next, let 0 < ǫ < x, then

P

(
∨

l≤k≤rn

|Ik| > a1/2
n x, |I1| > a1/2

n x

)

≤
∑

l≤k≤rn

P(G2
k > an(x − ǫ)2, I2

1 > anx2) +
∑

l≤k≤rn

P((Ik − Gk)
2 > anǫ2, I2

1 > anx2)

=: I(n) + II(n).

First, we investigate I(n). Note that G∗
1 is independent of (A∗

k, B
∗
k) for k ≥ 2, and G∗

1 is

regularly varying with index α and tail behavior

P(G∗
1 > x) ∼ E

(
max

{
e−αξh ,

∣∣∣∣
∫ h

0

e−ξt−/2 dLt

∣∣∣∣
2α
})

P(V0 > x) , as x → ∞.

This is a conclusion of

G∗
1 = max

{
e−ξh

(
V0 +

∫ h

0

eξt− dηt

)
,

(∫ h

0

e−ξt−/2 dLt

)2

V0, . . .

. . . ,

(∫ h

0

√

e−ξt−

(
V0 +

∫ t−

0

eξs− dηs

)
dLt

)2


 ,
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and similar arguments as in Theorem 3.3 (c). Furthermore,

E(A∗ v
k ) = E

∣∣∣∣
∫ h

0

e−ξt−/2 dLt

∣∣∣∣
2v

eΨξ(v)(k−2)h for v ≤ d, k ≥ 2.

Thus,

P

(
∨

l≤k≤rn

G2
k > an(x − ǫ)2, I2

1 > anx2

)

≤
rn∑

k=l

[
P(B∗

k > an(x − ǫ)2/2)P(G∗
1 > anx2) + P(A∗

kG
∗
1 > an(x − ǫ)2/2, G∗

1 > anx2)
]
.

The remainder of the proof is as in (a) and we obtain

lim
l→∞

lim
n→∞

I(n)

P(I2
1 > anx2)

= 0.

Next, we study II(n). By Markov’s inequality we have for d̃ = max{1, d},

P((Ik − Gk)
2 > anǫ2, I2

1 > anx2) ≤ (anǫ2)−d̃E((Ik − Gk)
2d̃ 1{I2

1>anx2}).

Then similar computations as in (A.6) lead to

P((Ik − Gk)
2 > anǫ2, I2

1 > anx2)

≤ K1(anǫ2)−d̃E

(∫ kh

(k−1)h

e−ξt−

(∫ t−

(k−1)h

eξs− dηs

)
d[L, L]t

)d̃

P(I2
1 > anx2)

≤ K2(anǫ2)−d̃E

∣∣∣∣∣

∫ kh

(k−1)h

e−ξt−/2

(∫ t−

(k−1)h

eξs− dηs

)1/2

dLt

∣∣∣∣∣

2d̃

P(I2
1 > anx2).

Thus, also

lim
l→∞

lim
n→∞

II(n)

P(I2
1 > anx2)

= 0.

Hence, Theorem 2.7 in Davis and Hsing [12] proves the statement. �

Proof of Lemma 4.5. Let (Zk)k∈N be the jump sizes of L. We define Z̃k = log(1+λecZ2
k)

for k ∈ N and Z̃ as a random variable with Z̃
d
= Z̃1. Then ξt = ct −∑Nt

k=1 Z̃k, where (Nt)

is a Poisson process with jumps (Γk)k∈N, and by (4.1) in Klüppelberg et al. [30],

Ψξ(s) = −(µ + sc) + µE(esZ̃) for s ≤ α.

Thus, we obtain with Ψξ(α) = 0 that

E(eαZ̃) =
µ + αc

µ
and E(e−

µ
c
Z̃) =

1

µ
Ψξ

(
−µ

c

)
. (B.9)
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Let (ξ̃t)t≥0 be a Lévy process independent of ξ and identically distributed as ξ. We write

ξ̃
t

= inf0≤s≤t ξ̃s, and et for an exponentially distributed random variable with mean 1/t

for t > 0, which is independent of ξ and ξ̃.

First, we investigate the right hand side of (4.1). The following equality holds:

E

(
1 − sup

s≥Γ1

e−αξs

)+

= E

((
1 − e−αξΓ1e−αξ̃

∞

)+

1{ξΓ1
>0}

)
.

Kyprianou [33], Exercise 1.8 (iii), says that

P(ξΓ1 1{ξΓ1>0} > x) = E(e−
µ
c
Z̃)P(eµ/c > x) for x > 0.

If we use (B.9), this leads to

E

(
1 − sup

s≥Γ1

e−αξs

)+

= E(e−
µ
c
Z̃)E

(
1 − e−αeµ/ce−αξ̃

∞

)+

=
1

µ
Ψξ

(
−µ

c

)
E

(
1 − e−αeµ/ce−αξ̃

∞

)+

. (B.10)

Next, we look at the left hand side of (4.1). Let q > 0. By Lemma B.1 we have

E

(
sup
s≤1

e−αξs − sup
s≥1

e−αξs

)+

= qE

(
sup
s≤eq

e−αξs − sup
s≥eq

e−αξs

)+

= qE

(
e
−αξ

eq

(
1 − e

−α(ξeq−ξ
eq

)
e−αξ̃

∞

))+

.

By the Wiener-Hopf decomposition (cf. Kyprianou [33], Theorem 6.16), ξ
eq

and ξeq − ξ
eq

are independent such that

E

(
sup
s≤1

e−αξs − sup
s≥1

e−αξs

)+

= qE(e
−αξ

eq )E
(
1 − e

−α(ξeq−ξ
eq

)
e−αξ̃

∞

)+

.

Then (8.2) in Kyprianou [33] results in

E

(
sup
s≤1

e−αξs − sup
s≥1

e−αξs

)+

= Ψξ

(
−µ

c

) µ + αc

µ
E

(
1 − e−αeµ/ce−αξ̃

∞

)+

= Ψξ

(
−µ

c

) (
E(e−αcΓ1)

)−1
E

(
1 − e−αeµ/ce−αξ̃

∞

)+

. (B.11)

The comparison of (B.10) and (B.11) gives the proof. �

We need the following lemma for the investigation of the convergence of the sample

autocovariances.

Lemma B.2 Let (Vt)t≥0 be a genOU process satisfying (A) and (B), and define for h > 0,

Vk = (Vkh, . . . , V(k+m)h), k ∈ N0. Let 0 < an ↑ ∞ be a sequence of constants such that

lim
n→∞

nP(|V0|∞ > anx) = x−α for x > 0.
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Suppose (Vk)k∈N satisfies A(an). Then

∞∑

k=1

ε(k/n,a−1
n Vk)

n→∞
=⇒

∞∑

k=1

∞∑

j=0

ε(sk,QkjPk), (B.12)

where
∑∞

k=1 ε(sk,Pk) is PRM(ϑ) with

ϑ(dt × dx) = dt × α
E

(∨m
j=0 e−αξjh −∨∞

j=1 e−αξjh

)+

E

(∨m
j=0 e−αξjh

) x−α−1 1(0,∞)(x) dx.

Furthermore,
∑∞

j=0 εQkj
for k ∈ N are i. i. d. point processes independent of

∑∞
k=1 ε(sk,Pk)

with 0 ≤ |Qkj|∞ ≤ 1, for each k exactly one |Qkj|∞ is equal to 1, and P(|Qkj|∞ = 0) < 1

for j ∈ N. The sequence (Qkj)j∈N0 is a. s. unique.

One can either interpret (Vk)k∈N as a multivariate stochastic recurrence equation and

apply Theorem 2.10 of Basrak, Davis and Miksoch [4] to obtain the proof of Lemma B.2,

or one proceed as in the proof of Theorem 4.1.

Proof of Theorem 4.8. Without loss of generality we can assume that h = 1.

(a, c) are conclusions of Lemma B.2, and Davis and Mikosch [13], Theorem 3.5 and

arguments presented on p. 2069 there.

(b) The proof is similar to the proof in Mikosch and Stărică [39], p. 1441 ff., so that we

present only a sketch of it. Let xk = (x
(0)
k , . . . , x

(m)
k ) ∈ R

m+1\{0}. We define the mappings

Tj,ǫ : M → R by

T0,ǫ

(
∞∑

k=1

nkεxk

)
=

∞∑

k=1

nk(x
(0)
k )2 1

{|x
(0)
k |>ǫ}

,

T1,ǫ

(
∞∑

k=1

nkεxk

)
=

∞∑

k=1

nk(x
(1)
k )2 1

{|x
(0)
k |>ǫ}

,

Tj,ǫ

(
∞∑

k=1

nkεxk

)
=

∞∑

k=1

nkx
(0)
k x

(j−1)
k 1

{|x
(0)
k |>ǫ}

, j ≥ 2.

Furthermore, we define Ak = Ak
k+1 and Bk = Bk

k+1 so that Vk+1 = AkVk + Bk for k ∈ N,

and (Ak, Bk)k∈N is an i. i. d. sequence. First, we derive the asymptotic behavior of the

sample variance

n1−2/α(γn,V (0) − γV (0)) = n−2/α

n∑

k=1

(
V 2

k+1 − E(V 2
k )
)

+ op(1)

= n−2/α
n∑

k=1

V 2
k (A2

k − E(A2
k)) + E(A2

1)n
−2/α

n∑

k=1

(
V 2

k − E(V 2
k )
)

+

+2n−2/α
n∑

k=1

(AkBkVk − E(AkBkVk)) + n−2/α
n∑

k=1

(
B2

k − E(B2
k)
)

+ op(1).
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Using the central limit theorem (CLT) for exponentially α-mixing sequences (cf. Ibragimov

and Linnik [26], Theorem 18.5.3) (where we require d > 4 such that by Hölder’s inequality

E(A2
kB

2
k) ≤ (E(A4

k))
1/2(E(B4

k))
1/2 < ∞) we obtain

(1 − E(A2
1))n

1−2/α(γn,V (0) − γV (0)) = n−2/α
n∑

k=1

(
V 2

k (A2
k − E(A2

k))
)
1{Vk>n1/αǫ} +

+n−2/α

n∑

k=1

(
V 2

k (A2
k − E(A2

k))
)
1{Vk≤n1/αǫ} +op(1)

=: I(1)
ǫ,n + II(1)

ǫ,n + op(1). (B.13)

We proceed with the investigation of the behavior of II
(1)
ǫ,n , which is the sum of uncorre-

lated random variables. Hence, according to Karamata’s theorem (see Feller [19], VIII.9,

Theorem 1) for n → ∞ holds

Var(II(1)
ǫ,n) = n−4/αnE((A2

k − E(A2
k))

2)E(V 4
k 1{Vk≤n1/αǫ}) ∼ Kǫ4−α ǫ↓0−→ 0. (B.14)

Let κ and κn be as in Lemma B.2. We denote by (S∗
0 , . . . , S

∗
m) the weak limit of

(
T1,ǫκn − E(A2

1)T0,ǫκn, T2,ǫκn − E(A1)T1,ǫκn, . . . , Tm+1,ǫκn − E(A1)Tm,ǫκn

)
=: Tǫκn

as first n → ∞ and then ǫ ↓ 0, which exists due to Lemma B.2, an extended version of

(B.14) and the arguments presented in [12], proof of Theorem 3.2 (ii), i. e.

Tǫκn
n→∞,ǫ↓0

=⇒ (S∗
0 , . . . , S

∗
m). (B.15)

For summand I
(1)
ǫ,n we obtain

I(1)
ǫ,n = n−2/α

n∑

k=1

(
(AkVk + Bk)

2 − E(A2
k)V

2
k

)
1{Vk>n1/αǫ}− (B.16)

−n−2/α
n∑

k=1

(B2
k 1{Vk>n1/αǫ}−E(B2

k 1{Vk>n1/αǫ})) −

−2n−2/α
n∑

k=1

(AkBkVk 1{Vk>n1/αǫ}−E(AkBkVk 1{Vk>n1/αǫ})) −

−n−2/αE(B2
1)nP(V0 > n1/αǫ) − 2n−2/αE(A1B1)nE(V1 1{V1>n1/αǫ}).

A consequence of the CLT and the regular variation of E(V1 1{V1>x}) with index α − 1 as

x → ∞ is that

I(1)
ǫ,n = n−2/α

n∑

k=1

(
V 2

k+1 − E(A2
k)V

2
k

)
1{Vk>n1/αǫ} +op(1)

= T1,ǫκn − E(A2
1)T0,ǫκn + op(1)

n→∞
=⇒ T1,ǫκ − E(A2

1)T0,ǫκ
ǫ↓0
=⇒ S∗

0 . (B.17)
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Equations (B.13), (B.14), (B.17) and Billingsley [5], Theorem 3.1, lead to

n1−2/α(γn,V (0) − γV (0))
n→∞
=⇒ (1 − E(A2

1))
−1S∗

0 =: S0. (B.18)

In the same way it is possible to extend the result to sample autocovariance functions of

a higher order, where

n1−2/α(γn,V (l) − γV (l))
n→∞
=⇒ S∗

l + E(A1)Sl−1 =: Sl for l ≥ 1. (B.19)

This results in (4.5).

We obtain the asymptotic behavior of the sample autocorrelation function from the

behavior of the sample autocovariance function and the continuous time mapping theorem

as in Davis and Mikosch [13], p. 2061. �
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