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Abstract

Dynamic risk measures play an important role for the acceptance or non-acceptance of risks

in a bank portfolio. Dynamic consistency and weaker versions like conditional and sequential

consistency guarantee that acceptability decisions remain consistent in time. An important set

of static risk measures are so-called distortion measures. We extend these risk measures to a

dynamic setting within the framework of the notions of consistency as above. As a prominent

example, we present the Tail Value-at-Risk (TVaR).
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1 Introduction

Risk measures are used by risk managers and regulators to calculate the risk capital of a company,

that is the amount of capital which has to be safely invested to compensate for the risk of holding

assets and liabilities. Risk modeling is required under the supervisory frameworks of Basel III for

banks, and Solvency II for insurances. An influential approach to measure risk was the definition of

the axiomatic system of coherent risk measures by Artzner et al. (1999). One of the most popular

risk measures is the Value-at-Risk (VaR), which is unfortunately not coherent; in general, it lacks

subadditivity. A natural extension of the VaR are distortion measures, which are again coherent

and contain the popular Tail-Value-at-Risk (TVaR) also known as Expected Shortfall used in the

Swiss Solvency Test for the determination of the so called target capital. Distortion measures were

introduced by Denneberg (1990, 1994) and Wang et al. (1997), respectively. They are essentially

the same as the spectral risk measures of Wang (1996) and Acerbi (2002).

In the last ten years, starting with the work of Wang (1996) and Wang (1999), dynamic risk

measures have become more and more important, because there is a need to update the risk capital

if new information is available such that the risk capital can be computed for more than one moment

in time. This is necessary, in particular, if the risk is measured over longer time horizons. Dynamic

risk measures, which are an extension of static (one-period) risk measures, calculate the risk at

every time step until a terminal time T , taking into account the information available at that time.

Similarly to the one-period case, where static risk measures satisfy some axioms as coherence

and convexity, respectively, there is also an axiomatic system for dynamic risk measures. Besides the

discussion on convex and coherent dynamic risk measures as in the static case, the most important

axiom for dynamic risk measures is consistency, which means that the acceptability of a risk shall be

consistent in some way over time. The most popular definition of consistency is dynamic consistency

sometimes called time-consistency. Dynamically consistent coherent risk measures in discrete time

have been discussed by Roorda et al. (2005), Roorda and Schumacher (2007) and Artzner et al.

(2002, 2007); dynamically consistent convex risk measures are studied in Detlefsen and Scandolo

(2005), Cheridito and Kupper (2006), Pflug and Römisch (2007) and Jobert and Rogers (2008) to

name only a few; see Acciaio and Penner (2011) for an overview. Stadje (2010) extends static convex

risk measures from a particular discrete time market to continuous time and shows that for coherent

risk measures on a large time horizon scaling is necessary.

Not to confuse the notation, the expression ”dynamic” is also used for risk measures of processes,

which describe random cashflows and evaluate processes at time 0, e.g., Cheridito et al. (2004, 2005,

2006). In particular, Cherny and Madan (2009) define performance measures satisfying a set of

axioms by distortion measures and apply them in Madan and Cherny (2010) to model the cone of

marked cash flows of traders and providers of liquid assets. This work is extended in Madan et al.

(2010) to construct dynamically consistent bid and ask price sequences by Markov chains. However,

in the present paper we investigate dynamic coherent risk measures in a discrete time set-up.

Dynamic consistency is a strong assumption. There exist several examples where static risk

measures cannot be extended (updated) to dynamic risk measures in a consistent way. For example
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Kupper and Schachermayer (2009) show that the only law-invariant dynamically consistent and

relevant risk measures are the dynamic entropic risk measures (cf. also Example 3.6 and 3.7 in Schied

(2007)). Hence, also weaker notions of consistency are necessary. Various alternative definitions

of consistency have been proposed in the literature; see for instance Tutsch (2006), Roorda and

Schumacher (2007), Penner (2007).

In this paper we also use the weaker consistency axioms of conditional and sequential consistency

as introduced in Roorda and Schumacher (2007). To the best of our knowledge there is not much

literature about conditionally consistent risk measures except for Roorda and Schumacher (2007,

2010). Roorda and Schumacher (2010) deduce that coherent risk measures can always be updated

in a conditionally consistent way. However, the VaR in general does not allow for a conditionally

consistent update. In contrast sequential consistency corresponds to the notion of weak time consis-

tency in Burgert (2005) and Föllmer and Penner (2006), a combination of acceptance and rejection

consistency in Weber (2006), and weak acceptance consistency in Tutsch (2006), where updating

is always possible. Dynamic consistency is the strongest version of the consistency conditions in-

vestigated in this paper implying sequential consistency and conditional consistency. Conditional

consistency can also be deduced from sequential consistency under some mild assumptions.

In the context of dynamic risk measurement as studied here it is more convenient and established

to work with acceptability measures (risk adjusted valuations) φ of financial positions instead of

risk measures ρ, which are negative risk measures, i.e. φ(X) = −ρ(X). Then φ(X) describes the

maximum amount of money, which can be subtracted from the current position keeping it acceptable.

The paper is structured in the following way. First, we start with preliminaries on single and

multi-period acceptability measures and distortion measures in Section 2. In particular, this includes

the different definitions of time-consistency for coherent multi-period acceptability measures. To

prepare the ground for the new results to be presented in Section 3 we show examples to illustrate

the different notions, their limitations and differences. Section 3 contains the main results of this

paper. We derive conditionally, sequentially and dynamically consistent versions of multi-period

distortion measures and present representation theorems with global test sets (sets of probability

measures). In particular, the TVaR is a special case. Both, our conditionally and dynamically

consistent versions are more conservative than the sequential version. However, it is not possible to

compare the conditionally consistent and dynamically consistent multi-period acceptance measures

in general. For different distortion measures we present examples of financial positions, which are

acceptable in the conditional (static) case, but not in the dynamic case and vice versa. Finally, the

Appendix contains some proofs.

Throughout the paper we use the following notation. Let T ∈ N denote a finite time horizon. All

financial positions are defined on the probability space (ST ,P(ST ),P), where S is a finite set and

P(ST ) is the power set on ST . We assume that any scenario ω ∈ ST has a positive probability, i.e.,

P(ω) := P({ω}) > 0. Then the set of financial positions X is the collection of all random variables on

(ST ,P(ST ),P). For X ∈ X we interpret X(ω) as the discounted net worth of a position at the end

of the holding period T , if scenario ω ∈ ST happens. Note that for convenience elements of ST will

always be denoted by ω, whereas for t ∈ {0, . . . , T} elements of St will be denoted by ωt reflecting
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the information available until t with S0 := {0}. Finally, P denotes the collection of all probability

measures on (ST ,P(ST )) and PS is the collection of all probability measures on (S,P(S)).

2 Preliminaries

2.1 Single-period acceptability measures

First, we give a short introduction into single-period acceptability measures. We deal with future

values of financial positions as random variables defined on (S,P(S)) where T = 1.

Definition 2.1 A map φ : X → [−∞,∞) is called a coherent acceptability measure, if the following

conditions are satisfied:

(i) Translation-invariance: For any X ∈ X and η ∈ R we have φ(X + η) = φ(X) + η.

(ii) Monotonicity: If X, Y ∈ X with X(ω) ≤ Y (ω) ∀ ω ∈ S then φ(X) ≤ φ(Y ).

(iii) Superadditivity: For any X, Y ∈ X we have φ(X + Y ) ≥ φ(X) + φ(Y ).

(iv) Positive homogeneity: For any X ∈ X and λ ≥ 0 we have φ(λX) = λφ(X).

A position X ∈ X is called acceptable if φ(X) ≥ 0.

Translation-invariance gives the interpretation of φ(X) as capital reserve. It is also called cash-

invariance. Monotonicity postulates that if a position X pays not more than Y , then Y should be

considered at least as valuable as X. The positive homogeneity and superadditivity axioms may be

relaxed to a concavity axiom (cf. Föllmer and Schied (2004)). We do not consider this generalization

here. A general motivation of the above axiomatic system is provided by Artzner et al. (1999).

In our setting, a coherent acceptability measure has the following representation.

Proposition 2.2 (Artzner et al. (1999), Proposition 4.1) A map φ : X 7→ (−∞,∞] is a co-

herent acceptability measure if and only if there exists a set of probability measures Q ⊆ P such

that

φ(X) = min
Q∈Q

EQ(X) for X ∈ X .

2.2 Distortion measures

Single-period distortion measures are a subclass of coherent acceptability measures.

Definition 2.3

(a) An increasing concave function ψ : [0, 1] → [0, 1] such that ψ(0) = 0, ψ(1) = 1 and

limε→0 ψ(ε) = 0 is called distortion function.

(b) Let ψ be a distortion function. Define

Qψ = {Q ∈ P : Q(B) ≤ ψ(P(B)) ∀ B ⊆ S}. (2.1)
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Then the induced distortion measure φψ is defined as

φψ(X) = min
Q∈Qψ

EQ(X) for X ∈ X .

Remark 2.4

(a) A direct conclusion from Proposition 2.2 is that φψ is a coherent acceptability measure.

(b) The definition of φψ is equivalent to

φψ(X) =

∫ ∞

0
(1− ψ(P(X < x))) dx−

∫ 0

−∞
ψ(P(X < x)) dx for X ∈ X ;

see Föllmer and Schied (2004), Theorem 4.88.

(c) The TVaRλ is a typical example for a distortion measure with ψ(z) = min(z/λ, 1) (see Föllmer

and Schied (2004), Example 4.65). Also the minmaxVaR with ψ(z) = 1 − (1 − z
1

1+γ )1+γ for some

γ > 0 used in conic finance (cf. Madan and Cherny (2010)) belongs to that class. Further examples

are given in Example 3.9 below. �

Properties of distortion measures on non-atomic probability spaces, e.g., coherence, can be found

in Föllmer and Schied (2004), Chapter 4.6, and on atomic probability spaces in Denneberg (1994).

The objective is to derive a formula for the explicit calculation of the distortion measure φψ.

To this end, we fix a position X ∈ X . Obviously, for any Q ∈ P the expected value of X with

respect to Q is uniquely determined by the distribution of X with respect to Q, denoted as QX ,

which is a probability measure on the measurable space (X,P(X)) with X = {X(ω) : ω ∈ S}, i.e.

EQ(X) =
∫
X
xQX(dx).

Proposition 2.5 Let X ∈ X . Then the probability measure Q∗
X defined as

Q∗
X(x) := ψ(P(X ≤ x))− ψ(P(X < x)) for x ∈ X,

is an element of Qψ,X := {QX ∈ PX : QX(B) ≤ ψ(PX(B)) ∀ B ⊆ X} and

EQ∗(X) = min
{Q∈P:QX∈Qψ,X}

EQ(X).

For the proof of Proposition 2.5 the reader is referred to the Appendix. A similar theorem is given in

Carlier and Dana (2003) and Föllmer and Schied (2004), Corollary 4.74, for non-atomic probability

spaces.

At this point, we want to illustrate the above theorem by the TVaR. We will come back to this

example in Section 3, where it will be the leading example.

Example 2.6 (Tail Value-at-Risk (TVaR)) Assume that S = {u1, u2, u3, u4} and for ω ∈ S,

P(ω) = 0.552 δu1(ω) + 0.028 δu2(ω) + 0.4 δu3(ω) + 0.02 δu4(ω),

X(ω) = 1000 δu1(ω) + 100 δu2(ω) + 100 δu3(ω)− 100 δu4(ω).
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Moreover, let the distortion function be ψ(z) = min(z/0.05, 1) which is the distortion function of

the TVaR0.05. To be able to apply Proposition 2.5, note that X = {−100, 100, 1000} and

PX(x) = 0.02 δ−100(x) + 0.428 δ100(x) + 0.552 δ1000(x) for x ∈ X.

Then, we obtain

Q∗
X(x) = 0.4 δ−100(x) + 0.6 δ100(x) for x ∈ X,

and hence, it follows that

TVaR0.05(X) = 0.4 · (−100) + 0.6 · 100 = 2 > 0 .

By Definition 2.1 it follows that X is acceptable. �

2.3 Multi-period acceptability measures

In this section we give an overview of the main results on multi-period acceptability measures, which

are required for the construction of multi-period extensions of distortion measures. Single-period

acceptability measures have the disadvantage that they cannot take into account new information

which arrives over time. Multi-period acceptability measures consider this shortcoming by measuring

the risk at every time step {0, . . . , T} over the time horizon from 0 to T .

Throughout the paper we need some further notation. For ω ∈ ST and t ∈ {0, . . . , T} let ω|t be

the temporal restriction of ω, i.e. the sequence of the first t elements of ω reflecting the information

available at time t. The set of scenarios starting with ωt ∈ St is defined as F (ωt) = {ω ∈ ST :

ω|t = ωt}, whereas F (ω0) = F (0) = ST . This means that F (ωt) is the set of evolutions of the state

of the world until time T if we have at time t the state ωt. Moreover, we denote by X (F (ωt)) the

collection of all random variables on (F (ωt),P(F (ωt))) with X (F (ω0)) = X , which are the possible

outcomes if we start in t with information ωt, and we define the σ-algebra Ft = σ(F (ωt) : ωt ∈ St)

for t ∈ {0, . . . , T}. Finally, for ωt ∈ St and α ∈ S we have (ωt, α) ∈ St+1. For simplicity we write

F (ωt, α) instead of F ((ωt, α)).

Definition 2.7 A coherent multi-period acceptability measure φ consists of a sequence of mappings

(φt)t∈{0,...,T} where φt : X ×St → [−∞,∞) and (X,ωt) 7→ φt(X,ωt) such that for any t ∈ {0, . . . , T}

and ωt ∈ St the following holds:

(i) φt(·, ωt) is a coherent acceptability measure on X (F (ωt)),

(ii) φt(X,ωt) = φt(X1F (ωt), ωt) ∀ X ∈ X (soundness property),

(iii) if X ≤ 0 and X1F (ωt) 6= 0 then φt(X,ωt) < 0 (relevance property).

One interprets φt(X,ωt) as the risk assessment at date t under the information ωt for the holding

period T . Definition 2.7 immediately implies that φT (X,ω) = X(ω) for all ω ∈ ST . Hence, it is

sufficient to define multi-period acceptability measures for t ∈ {0, . . . , T − 1}.
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In the definition of coherent multi-period acceptability measures, the single period acceptability

measures φt(·, ω|t), t ∈ {0, . . . , T}, are not related over time and thus, ”consistency over time” makes

no sense. The idea behind the notion of time consistency is now that risk-adjusted values shall not

contradict one another across time. We will use the following three kinds of time consistency.

Definition 2.8 Let φ be a coherent multi-period acceptability measure.

(i) If for any t ∈ {0, . . . , T}, ωt ∈ St and X ∈ X the following holds:

φt(X,ωt) ≥ 0 ⇐⇒ φ0(X1F (ωt), 0) ≥ 0.

Then we call φ conditionally consistent.

(ii) φ is called sequentially consistent if the following both conditions are satisfied:

– For any t ∈ {0, . . . , T}, ωt ∈ St and X ∈ X with φt(X,ωt) ≥ 0 there exist αt+1, . . . , αT ∈ S

such that φt+s(X, (ωt, αt+1, . . . , αt+s)) ≥ 0 for any s ∈ {1, . . . , T − t}.

– For any t ∈ {0, . . . , T}, ωt ∈ St and X ∈ X with φt(X,ωt) ≤ 0 there exist αt+1, . . . , αT ∈ S

such that φt+s(X, (ωt, αt+1, . . . , αt+s)) ≤ 0 for any s ∈ {1, . . . , T − t}.

(iii) If for any t ∈ {0, . . . , T}, ωt ∈ St and X, Y ∈ X with φt+1(X, (ωt, α)) = φt+1(Y, (ωt, α))

for every α ∈ S we can conclude that φt(X,ωt) = φt(Y, ωt), then we call φ dynamically

consistent.

This definition of dynamic consistency was introduced in Roorda et al. (2005), whereas conditional

and sequential consistency were introduced in Roorda and Schumacher (2007). Note that dynamic

consistency implies conditional and sequential consistency (see Roorda and Schumacher (2007),

Theorem 5.1). Moreover, under the additional condition of strong relevance, sequential consistency

implies conditional consistency (see Roorda and Schumacher (2007), Theorem 5.1).

The intuition behind the three notions of consistency goes as follows:

(i) Let t ∈ {0, . . . , T}, ωt ∈ St and X ∈ X . Define X̃ = X1F (ωt). Then conditional consistency

says that the risk X̃ at the initial time point t = 0 without any information is acceptable if and

only if X at time t with information ωt is acceptable. Conditional consistency implies also the lower

bound minα∈S φt(X, (ω,α)) for φt(X,ω) (cf. Roorda and Schumacher (2007), Lemma 4.4).

0

u

d

X(uu)

X(ud)

0

0

u

d

d

u

u

d

Figure 1: The figure shows a two-periodic binomial tree. Let at t = 1 the information ω1 = u be given.

Then conditional consistency means that the evaluation of the encircled information at t = 1 leads to the

same decision as the evaluation at time t = 0 of the complete tree.
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(ii) On the other hand, sequential consistency means that, if a position is acceptable given the

information ωt at time t, then there exists a succeeding path, where it remains acceptable at all

nodes.

φ0(X, 0) ≥ 0

φ1(X,u) ≥ 0

φ1(X, d) < 0

φ2(X,uu) < 0

φ2(X,ud) < 0

φ2(X, du) ≥ 0

φ2(X, dd) ≥ 0

u

d

d

u

u

d

Figure 2: The figure shows a counterexample for sequential consistency in a two-periodic binomial tree.

There exists no path starting at 0 such that at any node the evaluation of X is non-negative and hence,

acceptable.

(iii) Finally, the idea behind dynamic consistency is that the acceptability measure of X with

information ωt at time t depends completely on the evaluations of X at the succeeding points. An

equivalent definition is given by the recursion φt(X,ωt) = φt(φt+1(X, ·|t+1), ωt) (see Roorda and

Schumacher (2007), Theorem 4.1) widely used in the literature.

φ0(X, 0)

φ1(X,u) = φ1(Y, u)

φ1(X, d)

φ2(X,uu) = φ2(Y, uu)

φ2(X,ud) = φ2(Y, ud)

φ2(X, du)

φ2(X, dd)

u

d

d

u

u

d

Figure 3: The figure considers once again the two-periodic binomial tree with X,Y ∈ X and φ2(X,ω) =

φ2(Y, ω) for ω ∈ {uu, ud}. Then a consequence of dynamic consistency is that φ1(X,u) = φ1(Y, u).

Now we present equivalent definitions for sequential and dynamic consistency used in this paper.

Proposition 2.9 (Roorda and Schumacher (2007), Theorem 4.2) A coherent multi-period

acceptability measure is sequentially consistent if and only if for any t ∈ {0, . . . , T − 1}, ωt ∈ St

and X ∈ X with φt+1(X, (ωt, α)) = 0 for any α ∈ S we conclude that φt(X,ωt) = 0.

In the single-period case, coherent acceptability measures have the representation as given in Propo-

sition 2.2. Roorda et al. (2005) proved an analog representation theorem for dynamically consistent

coherent acceptability measures. For this, we introduce further notation.

For a measure Q ∈ P, t ∈ {0, . . . , T − 1} and ωt ∈ St the single-step probability measure is
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defined as

Qs
t,ωt

(C) =
Q({ω ∈ ST : ∃ α ∈ C such that ω|t+1 = (ωt, α)})

Q(F (ωt))
for C ⊆ S,

which is an element of PS . The next definition was introduced in Roorda et al. (2005).

Definition 2.10 For any t ∈ {0, . . . , T − 1} and ωt ∈ St let Qs
t,ωt

be a set of probability measures

on (S,P(S)). Then the collection of probability measures

Q = {Q ∈ P| ∀ t ∈ {0, . . . , T − 1}, ωt ∈ St with Q(F (ωt)) > 0 : Qs
t,ωt

∈ Qs
t,ωt

}

is called of product type. We shortly write Q is generated by {Qs
t,ωt : ωt ∈ St, t ∈ {0, . . . , T − 1}}.

Now we are able to present a representation theorem for multi-period coherent and dynamically

consistent acceptability measures in analogy to the static case of Proposition 2.2.

Proposition 2.11 (Roorda et al. (2005), Theorem 2.2)

Let Q be generated by {Qs
t,ωt : ωt ∈ St, t ∈ {0, . . . , T − 1}}. Define φT (X,ω) := X(ω) for ω ∈ ST

and

φt(X,ωt) := min
{Q∈Q: Q(F (ωt))>0}

EQ(X | F (ωt)) for ωt ∈ St, t ∈ {0, . . . , T − 1}, X ∈ X .

Furthermore, define the random variable ϕt,ωt(X) : S → [−∞,∞) as α 7→ φt+1(X, (ωt, α)) on

(S,P(S)). Then

φt(X,ωt) = min
Qs∈Qst,ωt

EQs(ϕt,ωt(X)) for ωt ∈ St, t ∈ {0, . . . , T − 1}, X ∈ X .

Furthermore, φ is a coherent and dynamically consistent multi-period acceptability measure.

In our setting of a finite scenario set the stability property introduced in Artzner et al. (2007) is

equivalent to product type and hence, to dynamic consistency (cf. Artzner et al. (2007), Theo-

rem 5.1).

3 Multi-period distortion measures

In this section, we present conditionally, sequentially and dynamically consistent versions of multi-

period distortion measures and derive representation theorems similar to Proposition 2.11, where

we characterize completely the set of probability measures. Throughout, ψ will denote a distortion

function.

3.1 Conditionally consistent multi-period distortion measures

Theorem 3.1 Let Qψ be given as in (2.1). Then the measure φCψ defined as φCψ,T (X,ω) := X(ω)

for ω ∈ ST and

φCψ,t(X,ωt) := min
{Q∈Qψ :Q(F (ωt))>0}

EQ(X | F (ωt)) for ωt ∈ St, t ∈ {0, . . . , T − 1}, X ∈ X ,

is a coherent multi-period acceptability measure and conditionally consistent.
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Proof. Let X ≤ 0 and X1F (ωt) 6= 0, i.e. there exists an ω∗ ∈ F (ωt) such that X(ω∗) < 0. Since

P ∈ Qψ and P(F (ωt)) ≥ P(ω∗) > 0 it follows that φt(X,ωt) ≤ EP(X | F (ωt)) < 0. Hence, φCψ,t is

relevant. Obviously, φCψ is a coherent multi-period acceptability measure. The global representation

of φCψ yields conditional consistency by Roorda and Schumacher (2007), Theorem 7.1. �

This means that at the beginning of the planing horizon in t = 0 the conditionally consistent

multi-period distortion measure φCψ and the single-period distortion measure φψ demand for the

same risk capital. The dynamic structure of the model has no influence on the risk valuation in 0.

The acceptability measure φCψ is in general neither sequentially nor dynamically consistent as

the following proposition shows. However, it is not possible to make this conclusion in general since,

e.g., for the trivial case that ψ(P(ω)) = P(ω) for every ω ∈ ST , the set Qψ contains only P and

hence, φCψ is sequentially consistent.

Proposition 3.2 Let the two-periodic binomial tree S2 = {uu, ud, du, dd} be given and ψ(z) =

min(z/λ, 1) be the distortion measure of the TVaRλ for some λ ∈ (0, 1). Suppose that

ψ(P(ud)) > P(ud) and ψ(P(uu)) + ψ(P(ud)) + ψ(P(dd)) < 1 .

Then φCψ is neither sequentially nor dynamically consistent.

Proof. Let Qu,Qd ∈ Qψ with Qu(F (u)) > 0 and Qd(F (d)) > 0. For any Q∗
S ∈ PS define

Q∗(·) = Q∗
S(u)Qu(· | F (u)) +Q∗

S(d)Qd(· | F (d)). (3.1)

If we find Qu,Qd ∈ Qψ such that for any Q∗
S ∈ PS the probability measure Q∗ is not contained

in Qψ, then Qψ is not a juncted test set (see Definition 6.4 in Roorda and Schumacher (2007))

and hence, by Roorda and Schumacher (2007), Theorem 7.1, neither sequentially nor dynamically

consistent.

We define the following two probability measures

Qu(ω) =





ψ(P(uu)) for ω = uu,

P(ud) for ω = ud,

P(du) for ω = du,

1− ψ(P(uu)) − P(ud)− P(du) for ω = dd,

and

Qd(ω) =





ψ(P(uu)) for ω = uu,

ψ(P(ud)) for ω = ud,

1− ψ(P(uu)) − ψ(P(ud)) − ψ(P(dd)) for ω = du,

ψ(P(dd)) for ω = dd.

Indeed Qu,Qd ∈ Qψ (in the case of a TVaR it holds that Qψ = {Q ∈ P : Q(ω) ≤ ψ(P(ω))∀ ω ∈

ST }), and Qu(F (u)) > 0 and Qd(F (d)) > 0, respectively. Let Q∗
S ∈ PS and Q∗ as in (3.1). The
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following two cases are possible:

Case 1: Let Q∗
S(u) > ψ(P(uu)) + P(ud). Then

Q∗(uu) = Q∗
S(u)

ψ(P(uu))

ψ(P(uu)) + P(ud)
> ψ(P(uu)),

which means Q∗ /∈ Qψ.

Case 2: Let Q∗
S(u) ≤ ψ(P(uu)) + P(ud). Then

1−Q∗
S(u) ≥ 1− ψ(P(uu))− P(ud) > 1− ψ(P(uu)) − ψ(P(ud)).

Thus,

Q∗(dd) = (1−Q∗
S(u))

ψ(P(dd))

1− ψ(P(uu)) − ψ(P(ud))
> ψ(P(dd)).

Again Q∗ /∈ Qψ. �

Example 3.3 If P(ω) = 1
4 for ω ∈ S2 and ψ(z) = min(8z7 , 1), then the assumptions of Proposi-

tion 3.2 are satisfied. �

3.2 Sequentially consistent multi-period distortion measures

Our next goal is to modify Qψ such that we obtain a sequentially consistent acceptability measure.

Theorem 3.4 Let

QS
ψ = {Q ∈ P : Q(B ∩ F (ωs)) ≤ Q(F (ωs))ψ(P(B|F (ωs))) ∀ B ⊆ ST ,∀ ωs ∈ Ss,∀ s ∈ {0, . . . , T − 1}}.

Then the measure φSψ defined as φSψ,T (X,ω) := X(ω) for ω ∈ ST and

φSψ,t(X,ωt) := min
{Q∈QS

ψ
: Q(F (ωt))>0}

EQ(X | F (ωt)) for ωt ∈ St, t ∈ {0, . . . , T − 1}, X ∈ X

is a coherent multi-period acceptability measure and sequentially consistent.

Proof. As in the proof of Theorem 3.1 we can show that φSψ is a coherent and relevant multi-period

acceptability measure.

We will prove the alternative characterization of sequential consistency as stated in Proposi-

tion 2.9. Hence, let t ∈ {0, . . . , T − 1}, ωt ∈ St and X ∈ X such that φSψ,t+1(X, (ωt, α)) = 0 for any

α ∈ S. Then by the definition of φSψ,t+1 we have on the one hand,

EQ(X | F (ωt, α)) ≥ 0 for Q ∈ QS
ψ, Q(F (ωt, α)) > 0, α ∈ S,

and on the other hand, that for any α ∈ S there exists a measure Q̃ωt,α ∈ QS
ψ with Q̃ωt,α(F (ωt, α)) >

0 and

φSψ,t+1(X, (ωt, α)) = E
Q̃ωt,α

(X | F (ωt, α)) = 0. (3.2)
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Step 1. First, we have to show that EQ(X | F (ωt)) ≥ 0 for any Q ∈ QS
ψ with Q(F (ωt)) > 0. But

since φSψ has a global representation and is relevant it follows that φSψ is conditionally consistent.

Therefore we can conclude from Lemma 4.4 from Roorda and Schumacher (2007) that

φSψ,t(X,ωt) ≥ min
α∈S

φSψ,t+1(X, (ωt, α)) = 0,

i.e. EQ(X | F (ωt)) ≥ 0 for any Q ∈ QS
ψ with Q(F (ωt)) > 0.

Step 2. Now, we are left to prove that there exists a Q̃ωt ∈ QS
ψ with Q̃ωt(F (ωt)) > 0 and E

Q̃ωt
(X |

F (ωt)) = 0. Therefore we define Q̃ωt as

Q̃ωt(·) :=
∑

α∈S

P(F (ωt, α))Q̃ωt ,α(· | F (ωt, α)) + P(F (ωt)
c ∩ ·),

where Q̃ωt,α satisfies (3.2) for any α ∈ S. Note that Q̃ωt ∈ P, Q̃ωt(F (ωt)) = P(F (ωt)) > 0 and

E
Q̃ωt

(X | F (ωt)) =
∑

α∈S

P(F (ωt, α))

P(F (ωt))
E
Q̃ωt,α

(X | F (ωt, α)) = 0.

Let B ⊆ ST and ωs ∈ Ss, s ∈ {0, . . . , T − 1}. Only the following three cases are possible:

Case 1: F (ωs) ⊂ F (ωt). Then there exists an α∗ ∈ S such that F (ωs) ⊆ F (ωt, α
∗). Hence,

Q̃ωt(F (ωs)) = P(F (ωt, α
∗))Q̃ωt,α∗(F (ωs) | F (ωt, α

∗)) and

Q̃ωt(B | F (ωs)) =
P(F (ωt, α

∗))Q̃ωt,α∗(B ∩ F (ωs) | F (ωt, α
∗))

P(F (ωt, α∗))Q̃ωt,α∗(F (ωs) | F (ωt, α∗))

= Q̃ωt,α∗(B | F (ωs)) ≤ ψ (P(B | F (ωs))) ,

where for the last inequality we used that Q̃ωt,α∗ ∈ QS
ψ.

Case 2: F (ωt) ⊆ F (ωs). Then Q̃ωt(F (ωs)) = P(F (ωs)) and by the concavity of ψ we have

Q̃ωt(B | F (ωs)) =
∑

α∈S

P(F (ωt, α))

P(F (ωs))
Q̃ωt,α(B ∩ F (ωs) | F (ωt, α)) +

P(F (ωt)
c ∩B ∩ F (ωs))

P(F (ωs))

≤
∑

α∈S

P(F (ωt, α))

P(F (ωs))
ψ(P(B ∩ F (ωs) | F (ωt, α))) +

P(F (ωt)
c ∩B ∩ F (ωs))

P(F (ωs))
ψ(1)

≤ ψ

(
∑

α∈S

P(F (ωt, α))

P(F (ωs))
P(B ∩ F (ωs) | F (ωt, α)) +

P(F (ωt)
c ∩B ∩ F (ωs))

P(F (ωs))

)

= ψ(P(B|F (ωs))).

Case 3: F (ωs) ∩ F (ωt) = ∅. Then

Q̃ωt(B | F (ωs)) = P(B | F (ωs)) ≤ ψ(P(B | F (ωs))).

Therefore, Q̃ωt ∈ QS
ψ. �
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Since QS
ψ ⊆ Qψ we have

φCψ,t(X,ωt) ≤ φSψ,t(X,ωt). (3.3)

This means that the conditionally consistent acceptance measure is more conservative than the

sequential one.

The set QS
ψ is a polytope such that our sequentially consistent version of the multi-period

distortion measure can be computed via linear programming. Roorda (2010) presents an algorithm

for path-independent payoffs.

To end this section, we want to explain why this acceptability measure is in general not dynam-

ically consistent.

Proposition 3.5 Let the two-periodic binomial tree S2 = {uu, ud, du, dd} be given and ψ(z) =

min(z/λ, 1) be the distortion measure of the TVaRλ for some λ ∈ (0, 1). Suppose that

ψ(P(F (u))) < 1.

Then φSψ is not dynamically consistent.

Proof. We will show that QS
ψ is not of product type and hence, φSψ is not dynamically consistent

by Roorda and Schumacher (2007), Theorem 7.1.

Define

Q∗
S(ω) =





ψ(P(uu)) for ω = uu,

ψ(P(F (u))) − ψ(P(uu)) for ω = ud,

ψ(P(F (u) + P(du)))− ψ(P(F (u))) for ω = du,

1− ψ(P(F (u)) + P(du)) for ω = dd,

which is in QS
ψ. Then Q∗

S(F (u)) = ψ(P(F (u))). Furthermore, we define for some properly chosen

Qu,Qd ∈ QS
ψ the probability measure

Q∗(·) = Q∗
S(F (u))Qu(· | F (u)) +Q∗

S(F (d))Qd(· | F (d)).

If we can show that Q∗ /∈ QS
ψ, then QS

ψ is not of product type and the proof is finished.

To this effect, we distinguish the following two cases:

Case 1: Suppose P(F (u)) ≤ ψ(P(uu)). We define

Qu(ω) =





ψ(P(uu)) for ω = uu,

0 for ω = ud,

(P(F (u)) + P(du)− ψ(P(uu)))+ for ω = du,

1− ψ(P(uu))− (P(F (u)) + P(du)− ψ(P(uu)))+ for ω = dd

in QS
ψ and Qd ∈ QS

ψ is arbitrary.
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Since ψ(P(F (u))) < 1 and P(ω) > 0 for any ω ∈ S2 it follows by the structure of ψ that

ψ(P(F (u))) > ψ(P(uu)). Hence,

Q∗(uu) = Q∗
S(F (u))Qu(uu | F (u)) = ψ(P(F (u))) > ψ(P(uu)) ,

which means Q∗ /∈ QS
ψ.

Case 2: Suppose P(F (u)) > ψ(P(uu)). We define

Qu(ω) =





ψ(P(uu)) for ω = uu,

P(F (u))− ψ(P(uu)) for ω = ud,

P(du) for ω = du,

P(dd) for ω = dd,

in QS
ψ and Qd ∈ QS

ψ is arbitrary. By the structure of ψ and ψ(P(F (u))) < 1 also ψ(P(F (u))) >

P(F (u)). Finally,

Q∗(uu) = ψ(P(F (u)))
ψ(P(uu))

P(F (u))
> ψ(P(uu)).

Again Q∗ /∈ QS
ψ. �

Example 3.6 If P(ω) = 1
4 for ω ∈ S2 and ψ(z) = min(3z2 , 1), then the assumptions of Proposi-

tion 3.5 are satisfied. �

3.3 Dynamically consistent multi-period distortion measures

Theorem 3.7 Let

QD
ψ = {Q ∈ P : Q(B ∩ F (ωs)) ≤ Q(F (ωs))ψ(P(B | F (ωs))) ∀ B ∈ Fs+1, ∀ ωs ∈ Ss, ∀ s ∈ {0, . . . , T − 1}}.

Furthermore, define

Q
D,s
ψ,t,ωt

= {Qs ∈ PS : Qs(C) ≤ ψ(Pst,ωt(C)) ∀ C ⊆ S} for t ∈ {0, . . . , T − 1}, ωt ∈ St,

and

Q̃D
ψ = {Q ∈ P| ∀ s ∈ {0, . . . , T − 1}, ∀ ωs ∈ Ss with Q(F (ωs)) > 0 : Qs

s,ωs ∈ Q
D,s
ψ,s,ωs

}.

Then the following hold:

(a) Q̃D
ψ = QD

ψ .

(b) The measure φDψ defined as φDψ,T (X,ω) := X(ω) for ω ∈ ST and

φDψ,t(X,ωt) := min
{Q∈QD

ψ
:Q(F (ωt))>0}

EQ(X | F (ωt)) for ωt ∈ St, t ∈ {0, . . . , T − 1}, X ∈ X ,

is a coherent multi-period acceptability measure and dynamically consistent.
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Proof.

(a) Let s ∈ {0, . . . , T − 1}, ωs ∈ Ss, B ∈ Fs+1 with B ∩ F (ωs) 6= ∅ and let Q ∈ P such that

Q(F (ωs)) > 0. Define C = {α ∈ S : B ∩ F (ωs, α) 6= ∅}. Note that C 6= ∅. Then

B ∩ F (ωs) =
⋃

α∈C

F (ωs, α) = {ω ∈ ST : ∃ α ∈ C such that ω|s+1 = (ωs, α)}

and hence,

Q(B | F (ωs)) =
Q({ω ∈ ST : ∃ α ∈ C such that ω|s+1 = (ωs, α)})

Q(F (ωs))
= Qs

s,ωs(C).

On the other hand, for any C ⊆ S the set B =
⋃
α∈C F (ωs, α) is in Fs+1. Therefore, for Q ∈ P:

∀ s ∈ {0, . . . , T − 1} , ∀ ωs ∈ Ss : Q(B ∩ F (ωs)) ≤ Q(F (ωs))ψ(P(B | F (ωs))) ∀ B ∈ Fs+1

⇔ ∀ s ∈ {0, . . . , T − 1} , ∀ ωs ∈ Ss with Q(F (ωs)) > 0 : Q(B | F (ωs)) ≤ ψ(P(B | F (ωs))) ∀ B ∈ Fs+1

⇔ ∀ s ∈ {0, . . . , T − 1}, ∀ ωs ∈ Ss with Q(F (ωs)) > 0 : Qs
s,ωs

(C) ≤ ψ(Pss,ωs(C)) ∀ C ⊆ S

⇔ ∀ s ∈ {0, . . . , T − 1}, ∀ ωs ∈ Ss with Q(F (ωs)) > 0 : Qs
s,ωs ∈ Q

D,s
ψ,s,ωs

.

Finally, it follows that (a) holds.

(b) By (a) we have that QD
ψ is of product type (Definition 2.10). From this we already get

dynamic consistency by Proposition 2.11. �

It is not hard to see that our results, which can be applied to the TVaR itself, lead to exactly

the same multi-period TVaR as the multiperiod TVaR in Roorda and Schumacher (2007).

The representation of φDψ by the global test set QD
ψ has the advantage that we are able to compare

our sequential and dynamical versions of multi-period acceptance measures. Since QS
ψ ⊆ QD

ψ the

inequality

φDψ,t(X,ωt) ≤ φSψ,t(X,ωt) (3.4)

holds for any ωt ∈ St, where t ∈ {0, . . . , T}. Consequently the dynamic consistent update is stronger

than the sequential consistent update.

An advantage of our dynamic version is that it can be evaluated by dynamic programming as

below; cf. also Roorda et al. (2005).

Example 3.8 (Continuation of Example 2.6)

Let S = {u, d} and T = 2. We consider the dynamically consistent version of the TVaR at the 5%

confidence level, i.e. ψ1(z) := min(z/0.05, 1). Moreover, let P and X ∈ X be defined as

P(ω) = 0.552 δuu(ω) + 0.028 δud(ω) + 0.4 δdu(ω) + 0.02 δdd(ω),

X(ω) = 1000 δuu(ω) + 100 δud(ω) + 100 δdu(ω)− 100 δdd(ω)
(3.5)

for ω ∈ S2.
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Figure 4: The graph shows model (3.5).

The aim is to calculate φDψ1,0
(X, 0). Therefore we use that by Proposition 2.11 and Theorem 3.7

φt(X,ωt) = min
Qs∈QD,s

ψ,t,ωt

EQs(ϕt,ωt(X)) for ωt ∈ St, t ∈ {0, . . . , T − 1}, X ∈ X ,

with Q
D,s
ψ,t,ωt

as given in Theorem 3.7 and ϕt,ωt as given in Proposition 2.11. First, we calculate

φDψ1,1
(X,u) and φDψ1,1

(X, d). Thus, define ϕ1,u : S → R as ϕ1,u(u) := 1000 and ϕ1,u(d) := 100.

Furthermore,

Pϕ1,u
(y) = Ps1,u(u) δ1000(y) + Ps1,u(d) δ100(y) = 0.9517 δ1000(y) + 0.0483 δ100(y).

Hence, it follows that

φDψ1,1(X,u) = ψ1(Pϕ1,u
(100)) ϕ1,u(d) + (1− ψ1(Pϕ1,u

(100))) ϕ1,u(u) = 131.03.

Analogously, we observe that φDψ1,1
(X, d) = −90.48. In the next step, we define ϕ0,0 : S → R as

ϕ0,0(u) := 131.03 and ϕ0,0(d) := −90.48. Moreover, it follows that

Pϕ0,0
(y) = Ps0,0(d) δ−90.48(y) + Ps0,0(u) δ131.03(y) = 0.42 δ−90.48(y) + 0.58 δ131.03(y),

which finally leads to φDψ1,0
(X, 0) = −90.48.

The example shows that the information ωt about the state of the word influences the risk

capital of the company. At t = 1 with information ω1 = u, the acceptability measure is very high

and hence, the position is acceptable. On the other hand, evaluated at d it is not acceptable. This

behavior is not surprising, since if d occurs, the position will fall with almost probability 0.05 very

low. At the initial time point, however, the acceptability measure is positive and hence, the position

is acceptable.

Moreover, we compute the sequentially consistent version φSψ1,0
(X, 0). The global test set QS

ψ is

given by

QS
ψ = {Q ∈ P : Q(dd) ≤ 0.4, Q(ud) ≤ 0.56, Q(ud) ≤ Q(u)

28

29
, Q(dd) ≤ Q(d)

20

21
}

= {Q ∈ P : Q(dd) ≤ 0.4, Q(ud) ≤ 0.56, Q(ud) ≤ 28Q(uu), Q(dd) ≤ 20Q(du)}.

The aim is to put as much weight as possible on dd and less weight on uu, where the minimum

and maximum, respectively, of X is attained. Thus, a possible choice for the optimal probability

measure QS with φSψ,0(X, 0) = EQS(X) (in this example the probability measure is not unique) is

QS(·) = 0.02δuu(·) + 0.56δud(·) + 0.02δdu(·) + 0.4δdd(·), (3.6)
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which gives φSψ1,0
(X, 0) = 38.

Furthermore, note, that we are in the setup of Example 2.6 with u1 = uu, u2 = ud, u3 = du,

u4 = dd, such that

φDψ1,0(X, 0) < φψ1
(X) = φCψ1,0(X, 0) < φSψ1,0(X, 0).

We already know (3.3) and (3.4). However, in this example φDψ1,0
(X, 0) is more conservative than

φCψ1,0
(X). The reason is the following.

Let X = {−100, 100, 1000}. The probability measure QD
X ∈ PX with φDψ1,0

(X, 0) =
∑

x∈X xQ
D
X(x)

is given by

QD
X(x) =

20

21
δ−100(x) +

1

21
δ100(x) for x ∈ X.

We know from Example 2.6 that the probability measure QC
X ∈ PX with φCψ1,0

(X, 0) = φψ1
(X) =

∑
x∈X xQ

C
X(x) is given by

QC
X(x) =

2

5
δ−100(x) +

3

5
δ100(x) for x ∈ X.

Obviously, the probability which is assigned to the lowest value −100 plays an important role in the

calculation. Comparing the two probabilities we see that QC
X(−100) = 2

5 <
20
21 = QD

X(−100). The

higher probability of −100 in the dynamic case results in the unacceptability of X.

On the other hand, consider

Z(ω) = 2005 δuu(ω)− 50 δud(ω) + 1055 δdu(ω)− 50 δdd(ω) for ω ∈ S2.

Then X = {−50, 1055, 2005},

φDψ1,0(Z, 0) = 2.619 , φSψ1,0(Z, 0) = 13.2 and φCψ1,0(Z, 0) = φψ1
(Z) = −5.8.

Hence, Z is considered less risky regarding the dynamic evaluation than in the conditional evalua-

tion. To see the reason for this we once again calculate the probability measure QD
Z which satisfies

φDψ1,0
(Z, 0) =

∑
x∈X xQ

D
Z (x) and QC

Z which satisfies φCψ1,0
(Z) =

∑
x∈X xQ

C
Z (x), respectively. We

obtain

QD
Z (x) =

20

21
δ−50(x) +

1

21
δ1055(x) for x ∈ X,

and

QC
Z (x) =

24

25
δ−50(x) +

1

25
δ1055(x) for x ∈ X.

In this case, the lowest value of Z gets a higher probability in the conditional case than in the

dynamic case, which is due to the fact that the lowest value of Z is attained in dd and in ud. �

The example of the TVaR0.05 shows that we cannot say in general whether the conditional or

the dynamic version of the TVaR0.05 assigns a higher risk capital. The same phenomenon is reflected

by other risk measures.
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Example 3.9 To see this, let ψ2 : [0, 1] → [0, 1] be the exponential distortion measure introduced

in Delbaen (1974) as

ψ2(z) =
1− exp(−λ2z)

1− exp(−λ2)
for z ∈ [0, 1],

where λ2 > 0 is a constant. Further, let ψ3 : [0, 1] → [0, 1] be given by

ψ3(z) = Φ(Φ−1(z) + λ3) for z ∈ [0, 1],

where λ3 ≥ 0 is a risk-aversion constant, Φ is the the standard normal distribution function with

inverse Φ−1. This distortion function was introduced by Wang (2000). If X ∼ N (µ, σ2) then

−φψ3
(−X) = µ + λ3σ = E(X) + λ3σ(X) is the standard deviation premium principle in insur-

ance context. If Y ∼ log-N (µ, σ2) and X0 ∼ N (0, 1) then φψ3
(Y ) = E(exp(µ − λ3σ + σX0)), the

mean of a log-N (µ − λ3σ, σ
2) distribution. This means that if stocks are modeled by a log-normal

distribution, as in the Black-Scholes model, then measuring the risk via the stock prices or the re-

turns results in a consistent measurement. For stop-loss reinsurance covers, this distortion operator

resembles a risk-neutral valuation of financial options.

In our example we choose λ2 = 45 and λ3 = 3. The parameters are chosen on such a way that

the distortion functions are similar (cf. Figure 5).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0
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1

Figure 5: The distortion functions of the TVaR0.05 (green), the exponential distortion function with λ2 = 45

(blue) and Wang’s distortion function with λ3 = 3 (red).

ψ ψ1 ψ2 ψ3

φCψ,0(X, 0) 2 −18.68 −63.75

φDψ,0(X, 0) −90.48 −76.51 −81.02

ψ ψ1 ψ2 ψ3

φCψ,0(Z, 0) −5.8 77.43 50.29

φDψ,0(Z, 0) 2.62 79.74 51.35

Table 1: The left table shows the risk assigned to X for the conditional (top) and the dynamic (bottom)

acceptability measures with distortion function ψ1, ψ2 and ψ3, respectively. The right table shows the analog

for Z.

A conclusion from Table 1 is that for all three distortion measures ψ1, ψ2 and ψ3, respectively,

X is less risky in the conditional evaluation than in the dynamic evaluation. But Z requires a
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higher risk capital in the conditional case than in the dynamic case. Hence, for the three distortion

measures ψ1, ψ2 and ψ3, there exist examples, where the conditional case is more conservative than

the dynamic case and vice versa. �

A Appendix

A.1 Proof of Proposition 2.5

We use the following proposition, which can be found in Föllmer and Schied (2004) for atomless

probability spaces.

Proposition A.1 Let ψ be a distortion function, and let φψ be the induced distortion measure.

Let X ∈ X with distribution function FX . Write qX(z) = inf{x ∈ R : FX(x) ≥ z}, z ∈ (0, 1) for the

quantile function and q+X(z) = inf {x ∈ R : FX(x) > z}, z ∈ (0, 1), for the upper quantile function.

Then

φψ(X) = −
∫ 1
0 q−X(z)ψ

′
+(1− z) dz =

∫ 1
0 q

+
X(z)ψ

′
+(z) dz.

Note that ψ′
+ always exists by the concavity of ψ.

Proof. Step 1. Let X ≤ 0. Then

−φψ(X) =

∫ 0

−∞
ψ(P(X < x)) dx =

∫ ∞

0
ψ(P(−X > x)) dx =

∫ ∞

0

∫ 1

F−X(x)
ψ′
+(1− z) dz dx,

by properties of concave functions (see Föllmer and Schied (2004), Proposition A.4). In the next

step we use Fubini and the fact that z > F−X(x) if and only if q−X(z) > x to observe that

−φψ(X) =

∫ 1

0

∫ ∞

0
1(0,q−X(z))(x) dx ψ

′
+(1− z) dz =

∫ 1

0
q−X(z)ψ

′
+(1− z) dz

as desired.

Step 2. Let X ∈ X be arbitrary. Then there exists a constant K ∈ [0,∞) such that X −K ≤ 0.

Thus, by translation-invariance and Step 1

−φψ(X) +K =

∫ 1

0
q−X+K(z)ψ

′
+(1− z) dz.

Since q−X+K(z) = q−X(z) +K and
∫ 1
0 ψ

′
+(1− z) dz = 1 we obtain

−φψ(X) +K =

∫ 1

0
q−X(z)ψ

′
+(1− z) dz +K,

which results in the statement.

For the second equality, note that −q−X(z) = q+X(1− z) and hence, the second claim follows by

a substitution. �
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Proof of Proposition 2.5. We assume without loss of generality that X = {x1, . . . , xn} with

xi < xj for i < j. Moreover, let FX denote the distribution function of X with respect to P. Hence,

Q∗
X(xi) =





ψ(FX(x1)) for i = 1,

ψ(FX(xi))− ψ(FX(xi−1)) for 1 < i ≤ n.

First, we will show that Q∗
X is a probability measure. Since ψ is increasing it follows immediately

that Q∗
X(xi) ≥ 0 for i ∈ {1, . . . , n}. Moreover, since ψ(1) = 1 we have

Q∗
X(X) =

n∑

i=1

Q∗
X(xi) = ψ(FX (x1)) +

n∑

i=2

ψ (FX(xi))− ψ (FX(xi−1)) = ψ(FX (xn)) = 1,

which proves that (X,P(X),Q∗
X ) is a probability space.

Next, we prove Q∗
X ∈ Qψ,X . Let B ⊆ X. In particular, B is then finite. The proof goes by

induction over the number m of elements in B.

Step 1: m = 1. Assume that B = {xi} for some i ∈ {1, . . . , n}. If B = {x1} then it follows by

definition that Q∗
X(x1) = ψ(FX (x1)) as desired. Hence, let i ≥ 2. Then

Q∗
X(xi) = ψ (FX(xi))− ψ (FX(xi−1)) = ψ

(∑i
j=1 PX(xj)

)
− ψ

(∑i−1
j=1 PX(xj)

)

=
∫ PX(xi)
0 ψ′

+(
∑i−1

j=1 PX(xj) + z) dz ≤
∫ PX(xi)
0 ψ′

+(z) dz = ψ(PX(xi)),

since ψ′
+ is decreasing.

Step 2: m→ m+1. Assume that Q∗
X(B) ≤ ψ(PX(B)) holds for any B ⊆ X with |B| = m. Let

C ⊆ X with |C| = m + 1. Then there exists k ∈ {1, . . . , n} such that xk is the largest value of C.

We define B := C\{xk}. Then |B| = m. In particular, this implies B ⊆ {x1, . . . , xk−1} and

k−1∑

j=1

PX(xj) ≥
k−1∑

j=1

PX(xj)1B(xj) = PX(B). (A.1)

Then we observe by the induction hypothesis and (A.1) that

Q∗
X(C) = Q∗

X(B) +Q∗
X(xk) ≤ ψ(PX(B)) +Q∗

X(xk)

= ψ(PX(B)) +
∫ PX(xk)
0 ψ′

+(
∑k−1

j=1 PX(xj) + z) dz

≤ ψ(PX(B)) +
∫ PX(xk)
0 ψ′

+(PX(B) + z) dz = ψ(PX(C)),

which concludes the proof of the induction step.

Finally, we have to show that the infimum is attained in Q∗
X . First, we know by Proposition A.1

that φψ(X) =
∫ 1
0 q

+
X(z) ψ

′
+(z) dz. Furthermore, q+X(z) = xi for z ∈ [FX(xi−1), FX (xi)). Thus,

φψ(X) =
∫ 1
0 q

+
X(z) ψ

′
+(z) dz =

∑n
i=1 xi

∫
[FX(xi−1),FX(xi))

ψ′
+(z) dz

=
∑n

i=1 xi (ψ(FX (xi))− ψ(FX (xi−1))) =
∑n

i=1 xiQ
∗
X(xi) = EQ∗(X),

which finally proves the theorem. �

20



References

Acciaio, B. and Penner, I. (2011). Dynamic risk measures. In: G. Di Nunno and B. Øksendal (Eds.),

Advanced Mathematical Methods for Finance, pages 1–34. Springer, Berlin. To appear.

Acerbi, C. (2002). Spectral measures of risk: A coherent respresentation of subjective risk aversion.

J. Bank. & Finance, 26, 1505–1518.

Artzner, P., Delbaen, F., Eber, J.M. and Heath, D. (1999). Coherent measures of risk. Math.

Finance, 9, 203–228.

Artzner, P., Delbaen, F., Eber, J.M., Heath, D. and Ku, H. (2002). Coherent multiperiod risk

measurement. Preprint, available at http://www.math.ethz.ch/ delbaen/.

Artzner, P., Delbaen, F., Eber, J.M., Heath, D. and Ku, H. (2007). Coherent multiperiod risk

adjusted values and Bellman’s principle. Ann. Oper. Res., 152, 5–22.

Burgert, C. (2005). Darstellungssätze für statische und dynamische Risikomaße mit Anwendungen.

Ph.D. thesis, Universität Freiburg.

Carlier, G. and Dana, R.A. (2003). Core of convex distortions of a probability. J. Econom. Theory,

113, 199–222.

Cheridito, P., Delbaen, M. and Kupper, M. (2004). Coherent and convex risk measures for bounded

càdlàg processes. Stoch. Proc. Appl., 112, 1–22.

Cheridito, P., Delbaen, M. and Kupper, M. (2005). Coherent and convex risk measures for un-

bounded càdlàg processes. Finance Stoch., 9, 1713–1732.

Cheridito, P., Delbaen, M. and Kupper, M. (2006). Dynamic monetary risk measures for bounded

discrete-time processes. Electronic J. Probab., 11, 57–106.

Cheridito, P. and Kupper, M. (2006). Composition of time-consistent dy-

namic monetary risk measures in discrete time. Preprint, available at

http://www.vif.ac.at/kupper/?view=publications.inc.php.

Cherny, A. and Madan, D.B. (2009). New measures for performance evaluation. Rev. Finan. Studies,

22, 2571–2606.

Delbaen, F. (1974). Convex games and extreme points. J. Math. Anal. Appl., 45, 210–233.

Denneberg, D. (1990). Distorted probabilities and insurance premiums. Meth. Opera. Res., 63, 3–5.

Denneberg, D. (1994). Non-Additive Measure and Integral. Kluwer Academic Publishers, Dodrecht.

Detlefsen, K. and Scandolo, G. (2005). Conditional and dynamic convex risk measures. Finance

Stoch., 9, 539–561.

21



Föllmer, H. and Penner, I. (2006). Convex risk measures and the dynamics of their penalty functions.

Statist. Decisions, 24, 61–96.

Föllmer, H. and Schied, A. (2004). Stochastic Finance: An Introduction in Discrete Time. 2nd edn.

Walter de Gruyter, Berlin.

Jobert, A. and Rogers, L.C.G. (2008). Valuations and dynamic convex risk measures. Math. Finance,

18, 1–22.

Kupper, M. and Schachermayer, W. (2009). Representation results for law invariant time consistent

functions. Math. Financ. Econ., 2, 189–210.

Madan, D.B. and Cherny, A. (2010). Markets as a counterparty: An introduction to conic finance.

Internat. J. Theoret. Appl. Finance, 13, 1149–1177.

Madan, D.B., Pistorius, M. and Schoutens, W. (2010). The valua-

tion of structured products using Markov chain models. Available at

http://papers.ssrn.com/sol3/papers.cfm?abstract id=1563500.

Penner, I. (2007). Dynamic convex risk measures: time consistency, prudence, and sustainability.

Ph.D. thesis, Humboldt Universität Berlin.

Pflug, G.C. and Römisch, W. (2007). Modelling, Measuring and Managing Risk. World Scientific

Publishing Co, Singapore.

Roorda, B. (2010). An algorithm for sequential tail value at risk for path-independent payoffs in a

binomial tree. Ann. Oper. Res., 181, 463–483.

Roorda, B. and Schumacher, H. (2007). Time consistency conditions for acceptability measures

with an application to Tail Value at Risk. Insurance Math. Econom., 40, 209–230.

Roorda, B. and Schumacher, J.M. (2010). When can a risk measure be updated consistently?

Preprint, available at http://center.uvt.nl/staff/schumach/papers/updating.pdf.

Roorda, B., Schumacher, J. and Engwerda, J. (2005). Coherent acceptability measures in multi-

period models. Math. Finance, 15, 589–612.

Schied, A. (2007). Optimal investments for risk- and ambiguity-averse preferences: a duality ap-

proach. Finance Stoch., 11, 107–129.

Stadje, M. (2010). Extending dynamic convex risk measures from discrete time to continuous time:

A convergence approach. Insurance Math. Econom., pages 391–404.

Tutsch, S. (2006). Konsistente und konsequente dynamische Risikomaße und das Problem der Ak-

tualisierung. Ph.D. thesis, Humboldt Universität Berlin.

Wang, S. (1996). Premium calculation by transforming the layer premium density. ASTIN Bulletin,

26, 71–92.

22



Wang, S. (2000). A class of distortion operators for pricing financial and insurance risks. J. Risk

Insur., 67, 15–36.

Wang, S.S., Yang, V.R. and Panjer, H.H. (1997). Axiomatic characterization of insurance prices.

Insurance Math. Econom., 21, 173–183.

Wang, T. (1999). A class of dynamic risk measures. Preprint, avaiable at

http://web.cenet.org.cn/upfile/57263.pdf.

Weber, S. (2006). Distribution-invariant risk measures, information, and dynamic consistency. Math.

Finance, 16, 419–441.

23


