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The basic contracts traded on energy exchanges involve fixed-rate pay-
ments for the delivery of electricity over a certain period of time. It has
been shown that options on these electricity swaps can be priced efficiently
using a Hilbert space-valued time-inhomogeneous jump-diffusion model
for the forward curve. We consider the mean-variance hedging problem
for European options under this model. We use portfolios containing only
traded contracts. The computation of hedging strategies leads to quadratic
optimization problems whose parameters depend on the solution of an
infinite-dimensional partial integro-differential equation. The main objec-
tive of this article is to find an efficient numerical algorithm for this task.
Using proper orthogonal decomposition (a dimension reduction method),
approximately optimal strategies are computed. We prove convergence of
the corresponding hedging error to the minimal achievable error in the
incomplete electricity market. Numerical experiments are performed to
analyze the resulting hedging strategies.
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1 Introduction

There are several important differences between electricity and other traded commodi-
ties [2]. Most of them are related to the fact that electricity cannot be stored efficiently.
Not only does this break the close relation of spot and forward prices, it also changes
the type of contracts which are available on energy exchanges. Usually, electricity
contracts are of swap type. These are agreements on the constant delivery of a certain
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amount of electricity (usually 1 MW) during a delivery period for fixed-rate payments.
Options written on such swaps are known as electricity swaptions.

While this type of contracts bears some similarity to interest rate markets, there
are major differences concerning the hedging problem for electricity. There are no
contracts similar to bonds, which imply delivery at a single point in time. Moreover,
the driving factors of the forward curve are not necessarily related to the short rates
and thus the discounting factors. In particular, we will assume a constant interest rate
for simplicity. Electricity options can be interpreted as basket options on a continuum
of (correlated) assets. Each “asset” corresponds to a single time of maturity in the
delivery period. The challenge here is that we cannot trade in each of the “assets” but
only in various averages, the swaps. We may, for example, want to hedge a monthly
option with the monthly swap and four weekly swaps. Consequently, the market is
inherently incomplete, even under a pure diffusion model.

We will use a Hilbert space-valued stochastic process to model the forward curve of
electricity prices. Such infinite-dimensional models have been studied in the context
of interest rate markets in [3, 4, 7]. Forward curve models have also been proposed
for the electricity market [1]. The jump-diffusion model we consider here has been
presented in [10].

Based on this model, we propose an algorithm to solve the quadratic hedging prob-
lem for European options. In [9], it has been shown that the mean-variance hedging
strategy in this setting is obtained by solving linear equation systems. The parameters
of these equations, however, depend on the solution of an infinite-dimensional par-
tial integro-differential equation (PIDE) for the swaption price. The main goal of this
article is to present an efficient numerical method for the actual computation of an
optimal hedging strategy.

Outline of the Article We start with a short introduction to electricity swaps and
options in Section 2. We also state the Hilbert space-valued forward curve model
there. For a more detailed analysis of the model, we refer to [9].

Section 3 is concerned with the quadratic hedging problem for a swaption. Given
an arbitrary portfolio of swaps, we state the quadratic optimization problem which
characterizes the optimal hedging strategy. The computational solution of this prob-
lem is based on dimension reduction. Using proper orthogonal decomposition, which
is in many respects similar to principal component analysis, we derive a projected
problem. Thus, we obtain a finite-dimensional approximation. We show convergence
of the approximation error.

Finally, we demonstrate the effectiveness of the algorithm with numerical experi-
ments in Section 4. We discuss the resulting hedging strategies for a test problem,
using various sets of traded swaps. Residual hedging errors are evaluated by Monte
Carlo simulations of the forward curve. The error is shown to decrease with the num-
ber of available underlyings. Given a sufficiently diverse portfolio of traded swaps, a
very precise hedge is achieved.
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2 A Hilbert Space-Valued Model for Electricity Swaps

This section contains a short introduction of forward curves, swap prices, and options
in the electricity market. We also give a compact overview of the function-valued
stochastic process which we use to model the forward curve. This model has been
discussed in detail in [9].

2.1 Electricity Swaps and Options

The typical contract on an energy exchange is an electricity swap. At time t ≥ 0, two
parties agree on the constant delivery of 1 MW of electricity over a certain future pe-
riod of time [T1, T2], while in return a fixed rate F(t; T1, T2) is paid during this delivery
period. For every maturity u ∈ [T1, T2], let

(1) f (t, u) := lim
v→u

F(t; u, v)

be the corresponding value of the forward curve at time t ≤ u. Let r be the constant
risk free interest rate. Due to no-arbitrage considerations, the swap rate F can be
written as the weighted integral

(2) F(t; T1, T2) =
∫ T2

T1

ω(u) f (t, u) du,

with the nonnegative discounting factor

(3) ω(u) := ω(u; T1, T2) :=
e−ru∫ T2

T1
e−rv dv

.

Since no initial payment is needed to enter a swap contract, the swap rate F(t; T1, T2)
is a martingale under the risk neutral measure.

Figure 1 illustrates the different prices and concepts from the energy market and
their relation. One year worth of daily spot prices on the German Energy Exchange
EEX are displayed. The seasonality function is a truncated Fourier series fitted to the
spot. Each traded swap contract is represented by a single horizontal line; these are
market data, too. The longest lines correspond to contracts with a delivery period of
one year, shorter lines represent quarterly and monthly products. Finally, the forward
curve is obtained by smooth interpolation of the swap data, taking also the seasonality
into account. For an overview of the fitting methods confer, e.g., [1, 12].

Consider now a European call option with maturity T and strike rate K, with the
underlying being a swap. The value of such an option at time t ≤ T is given by

(4) E
[( ∫ T2

T1

e−r(u−T)F(T; T1, T2) du−
∫ T2

T1

e−r(u−T)K du
)+∣∣∣Ft

]
= κ(T; T1, T2) E

[(
F(T; T1, T2)− K

)+∣∣∣Ft

]
,

3



 0

 20

 40

 60

 80

 100

 120

 140

-365  0  365  730

p
ri
c
e

 [
E

U
R

]

time [days]

(today)

spot

seasonality

swaps

forward curve

Fig. 1: EEX spot price data, fitted seasonality, traded swaps, and interpolated forward
curve.

where

(5) κ := κ(T; T1, T2) :=
∫ T2

T1

e−r(u−T) du.

2.2 Forward Curve Model

In order to model the forward curve, we employ an exponential additive process (also
known as exponential time-inhomogeneous Lévy process) of jump-diffusion type. The
model is assumed to be stated under the risk neutral pricing measure.

Hilbert Space-Valued Exponential Jump-Diffusion We consider forward curves which
are elements of a separable Hilbert space H. Usually, we will choose functions defined
on a settlement period D := [T1, T2], setting

(6) H := L2([T1, T2]; µD),

with µD denoting the Lebesgue measure on D. For every h ∈ H we denote the corre-
sponding norm by

(7) ‖h‖H :=

√∫ T2

T1

[
h(u)

]2
µD(u).
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The basic driving stochastic process for our model is the H-valued additive process

(8) Xt := X(t) =
∫ t

0
γ(s) ds +

∫ t

0
σ(s) dW(s) +

∫ t

0

∫
H
[η(s)](ξ) M̃(dξ, ds), t ≥ 0.

The diffusion part is driven by an H-valued Wiener process W whose covariance is a
symmetric nonnegative definite trace class operator Q. The jumps are characterized
by M̃, the compensated random measure of an H-valued compound Poisson process

(9) J(t) =
N(t)

∑
i=1

Yi, t ≥ 0,

which is independent of W. Here, N denotes a Poisson process with intensity λ and
Yi ∼ PY (i = 1, 2, . . .) are iid on H (and independent of N). The corresponding Lévy
measure is denoted by ν = λPY. We denote by L(H, H) the space of all bounded linear
operators on H. We assume the drift γ : [0, T]→ H, the volatility σ : [0, T]→ L(H, H),
and the jump dampening factor η : [0, T]→ L(H, H) to be deterministic functions.

Subsequently, we will write ft(u) := [ f (t)](u) for every function f : [0, T] → H,
u ∈ D, and similarly gt(h) := [g(t)](h) for every g : [0, T] → L(H, H), h ∈ H. The
following hypothesis is assumed to hold.

Assumption 2.1. We assume that the second exponential moment of the jump distribution Y
exists:

(10) E[e2‖Y‖H ] =
∫

H
e2‖ξ‖H PY(dξ) < ∞.

We assume further ‖ηt‖L(H,H) ≤ 1 for a.e. t ∈ [0, T],

(11) γ ∈ L2(0, T; H), and σ ∈ L2(0, T; L(H, H)).

By Assumption 2.1, (Xt)t≥0 is an additive process with finite activity jump part and
finite expectation. The covariance operator

(12) CX(T) :

{
H → H′ ∼= H,
h 7→ E

[
〈XT − E[XT], h〉H 〈XT − E[XT], ·〉H

]
is a symmetric nonnegative definite trace class operator by [10, Thm. 2.4].

The forward curve ft ∈ H is modeled as the exponential of the driving process X in
the following sense. Let {ek}k∈N be an arbitrary orthonormal basis of H and set

(13) ft := ∑
k∈N

〈 f0, ek〉H e〈Xt,ek〉H ek

for t ≥ 0, with f0 ∈ H. By [9, Thm. 2.3],
(

ft
)

0≤t≤T is an H-martingale in the sense of
Kunita [13] if and only if

(14) γt = ∑
k∈N

[
− 1

2

〈[
σtQσ∗t

]
(ek), ek

〉
H
−
∫

H

(
e〈ηt(ξ),ek〉H − 1− 〈ηt(ξ), ek〉H

)
ν(dξ)

]
ek

for a.e. t ∈ [0, T]. Since forward prices are martingales under the risk neutral measure,
we will subsequently assume that γ is defined by (14).
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Swap Rates and Option Prices The swap rate F(t; T1, T2) (for a fixed delivery period
[T1, T2]) defined in (2) is the real-valued martingale

(15)
(

F(t; T1, T2)
)

0≤t≤T =
(
〈ω, ft〉H

)
0≤t≤T

The forward curve is a deterministic function of the process X, defined in (13). We
may thus define

(16) F :

H → R,

x 7→
〈

ω, ∑k∈N 〈 f0, ek〉H exp
(
〈x, ek〉H

)
ek

〉
H

and obtain (with slight abuse of notation)

(17) F(Xt) = F(t; T1, T2), t ∈ [0, T].

The function F is twice continuously Fréchet differentiable by [9, Thm. 4.1].
We will now consider the price process of an option. To this end, it is useful to

introduce a centered version of X, which we denote by

(18) Zt := Xt − E[Xt] =
∫ t

0
σs dWs +

∫ t

0

∫
H

ηs(ξ) M̃(dξ, ds).

The price of the option at time t ≤ T, discounted to time 0, is

(19) V̂(t, z) := e−rTE
[
G(ZT)

∣∣Zt = z
]
,

where G is the payoff function of the option in terms of ZT. We denote the trace of a
nuclear operator A by tr(A), and the space of Hilbert-Schmidt operators defined on H
by LHS(H, H) ⊂ L(H, H). The following assumptions are adopted from [9].

Assumption 2.2. Suppose that the payoff function G is Lipschitz continuous on H with Lip-
schitz constant KG. Suppose further that V̂ ∈ C1,2((0, T) × H, R) ∩ C([0, T] × H, R), i.e.
V̂ is continuously differentiable with respect to t and twice continuously Fréchet differentiable
with respect to z. Moreover, assume that D2

zV̂(t, z) ∈ LHS(H, H) for every (t, z) ∈ [0, T]×H,
and the mapping D2

z : (t, z)→ LHS(H, H) is locally uniformly continuous.

Applying Itô’s formula on Hilbert spaces, we obtain the following proposition con-
cerning V̂. We denote by E0(CX(T)) the eigenspace of the covariance operator CX(T)

corresponding to eigenvalue 0 (the kernel). Its orthogonal complement is E0(CX(T))
⊥.

Proposition 2.1. The discounted option price V̂ defined in (19) satisfies

(20) dV̂(t, Zt) = DzV̂(t, Zt−)σt dWt +
∫

H

[
V̂(t, Zt− + ηt(ζ))− V̂(t, Zt−)

]
M̃(dζ, dt).

Moreover, it is a classical solution of the partial integro-differential equation

−∂tV̂(t, z) =
1
2

tr
[
D2

zV̂(t, z)σtQσ∗t
]

+
∫

H

{
V̂(t, z + ηt(ζ))− V̂(t, z)−

[
DzV̂(t, z)

]
ηt(ζ)

}
ν(dζ),

(21)
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with terminal condition

(22) V̂(T, z) = e−rTG(z),

for a.e. t ∈ (0, T), z ∈ E0(CX(T))
⊥.

Proof. These results were shown in [9, Thm. 3.5].

3 Computing an Optimal Hedging Strategy

In this section, we propose a numerical algorithm which can be used to compute the
mean-variance hedging strategy for an option. We start with a formal description of
the portfolio of swaps and the hedging problem. It has been shown in [9] that every
optimal strategy solves a linear equation system for each point in time.

There are two numerical issues when solving these equations. The first is their
dependence on the solution of the infinite-dimensional PIDE (21), which cannot be
solved directly. Secondly, the matrix corresponding to the linear equations is possi-
bly semi-definite and thus singular. We solve the first and more important issue by
applying a dimension reduction technique called proper orthogonal decomposition.
This is closely related to principal component analysis. The method enables us to
compute an approximate hedging strategy. We show that the corresponding hedging
error converges to the minimal possible error (the market is inherently incomplete).
The issue of singularity is easier to remedy. Depending on the portfolio, either another
projection, or an additional regularization can be used to obtain a solution.

3.1 Optimal Hedging Strategies

We consider a European option with delivery period [T1, T2], maturity T ≤ T1, and
strike rate K. We are looking for a hedging strategy using a portfolio of swaps with
various delivery periods. We may for example want to hedge a quarterly option by
trading in the quarterly swap itself as well as three monthly swaps. More generally,
there are n swap contracts available for trading whose delivery periods are given by
[Ti

1, Ti
2], i = 1, . . . , n. The corresponding swap rates satisfy

F(t; Ti
1, Ti

2) =
∫ Ti

2

Ti
1

ωi(u) f (t, u) du,(23)

where

ωi(u) := ω(u; Ti
1, Ti

2) =
e−ru∫ Ti

2
Ti

1
e−ru du

(24)

is the discounting factor defined in (3). Since we cannot hedge with swaps whose
delivery periods start before maturity of the option, we will assume T ≤ Ti

1 for every
i = 1, . . . , n. Similar to (16), we define Fi(Xt) := F(t; Ti

1, Ti
2), t ∈ [0, T].
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A trading strategy is given by
(
θ0(t), θ(t)

)
, 0 ≤ t ≤ T, where θ0 ∈ R is the risk-free

investment, and θ(t) =
(
θ1(t), . . . , θn(t)

)
∈ Rn describes the investment in each swap

at time t. The value S0 of the risk free asset solves the differential equation

(25) dS0(t) = rS0(t)dt.

The value of the portfolio at time t is denoted by Vθ(t). Since a swap has no inherent
value (you can enter the contract without paying anything), we have

(26) Vθ(t) = θ0(t)S0(t).

Nevertheless, changes of the swap rates affect the wealth of the investor. In order
to be self-financing, the discounted value of the portfolio must satisfy the following
equation:

dV̂θ(t) =
n

∑
i=1

θi(t)e−rtκi dFi(t),(27)

where

κi := κ(T; Ti
1, Ti

2) =
∫ Ti

2

Ti
1

e−r(u−T) du.(28)

The discounting factor κ has been introduced in (5). A strategy
(
θ0(t), θ(t)

)
is admis-

sible, if it is predictable, càglàd, and satisfies

(29) E

∣∣∣∣∣
∫ T

0

n

∑
i=1

θi(t)e−rtκi dFi(t)

∣∣∣∣∣
2

< ∞.

Mean-variance hedging consists in minimizing the expected global quadratic hedging
error

(30) J(θ) := E
∣∣∣V̂θ(T)− V̂(T)

∣∣∣2 .

The following hypothesis guarantees that the driving stochastic processes do have
influence on at least one of the traded swaps. To this end, we define the matrix valued
process M, which will play an essential role in our algorithm.

mij(t) := e−2rtκiκj

(
DxFi σtQσ∗t DxFj +

∫
H

δFiδFj ν(dζ)
)

, i, j = 1, . . . , n,

M(t) := (mij(t))n
i,j=1 ∈ Rn×n.

(31)

Assumption 3.1. We assume that M(t) 6= 0 for almost every t ∈ [0, T].

The following proposition states a representation of the optimal hedging strategy
which will be the basis of the numerical algorithm. In order to simplify and shorten
notation, we define abbreviations for the jumps of swap rates and option price:

δFi(t, ξ) := Fi
(
Xt− + ηt(ξ)

)
− Fi(Xt−), i = 1, . . . , n,

δV̂(t, ζ) := V̂
(
t, Zt− + ηt(ζ)

)
− V̂(t, Zt−).

(32)
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Moreover, we will omit some of the more obvious function arguments and write, e.g.,
DxFi for DxFi(Xt−) and DzV̂ for DzV̂(t, Zt−).

Proposition 3.1. Let M(t) ∈ Rn×n be the matrix valued process defined in (31). Define
further

(33) bi(t) := e−rtκi

(
DxFi σtQσ∗t DzV̂ +

∫
H

δFi δV̂ ν(dζ)
)

, i = 1, . . . , n.

An investment strategy θ minimizes the hedging error if and only if it solves the quadratic
program

θ = argminθ(t) θ(t)T M(t)θ(t)− 2b(t)Tθ(t), for a.e. t ∈ [0, T].(34)

This is equivalent to the linear equation system

(35) M(t)θ(t) = b(t) for a.e. t ∈ [0, T].

There is at least one solution to this equation, i.e. b(t) is in the range of M(t).

Proof. This result is taken from [9, Thm. 3.9].

Note that the solution of the equation system (35) is a vector θ ∈ Rn. In contrast
to hedging strategies for single stocks, it does not necessarily satisfy θ ∈ [0, 1]n. In
fact, arbitrary positive and negative values may occur, which means that short-selling
swaps may be part of an optimal strategy. It is of course possible to add constraints
on θ to the optimization problem. Instead of the linear system, one then solves, e.g.,
the quadratic program

θ = argminθ(t) θ(t)T M(t)θ(t)− 2b(t)Tθ(t), t ∈ [0, T],

subject to θ(t) ≥ 0,
(36)

where the inequality is interpreted component-wise. As we will see in the numerical
experiments in section 4, however, the restriction to nonnegative hedging strategies
may lead to considerably higher hedging errors.

3.2 Proper Orthogonal Decomposition (POD)

We will now discuss the numerical approximation of the optimal hedge θ(t) in Propo-
sition 3.1. Since the functions Fi and their derivatives are known analytically (compare
[9, Thm. 4.1]), the main task here is to approximate DzV̂ and δV̂. These are elements
of the Hilbert space H, so we will construct finite-dimensional approximations. To this
end, we apply the dimension reduction method based on proper orthogonal decompo-
sition (POD) presented in [10]. The basic idea is to find an orthonormal basis of H such
that a small number of basis elements is sufficient to obtain a good approximation for
the terminal value Z(T).
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Definition 3.2. A sequence of orthonormal elements {pl}l∈N ⊂ H is called a POD-basis for
Z(T), if it solves the minimization problem

(37) min
〈pi ,pj〉H

=δij

E
[∥∥∥Z(T)−

d

∑
l=1

pl 〈Z(T), pl〉H
∥∥∥2

H

]
for every d ∈N.

The following theorem shows how to obtain such an orthonormal POD basis by
computing eigenvectors of the covariance operator CX(T).

Theorem 3.3. A sequence of orthonormal eigenvectors (pl)l∈N of operator CX(T), ordered by
the size of the corresponding eigenvalues µ1 ≥ µ2 ≥ ... ≥ 0, solves the maximization problem

(38) max
〈pi ,pj〉H

=δij

d

∑
l=1

〈
CX(T)pl , pl

〉
H

for every d ∈N. The maximum value is

(39)
d

∑
l=1

〈
CX(T)pl , pl

〉
H
=

d

∑
l=1

µl .

Moreover, the eigenvectors are a POD basis in the sense of Definition 3.2, and the expectation
of the projection error is

(40) E
[∥∥∥ZT −

d

∑
l=1

pl 〈ZT, pl〉H
∥∥∥2

H

]
=

∞

∑
l=d+1

µl .

Proof. This is an application of [15, Thm. 2.7 and Prop. 2.8].

Subsequently, let (pl)l∈N and (µl)l∈N denote the orthonormal basis and eigenvalues
from Theorem 3.3. Further, let

(41) Ud := span{p1, p2, . . . , pd} ⊂ H

be the d-dimensional subspace spanned by the eigenvectors corresponding to the
largest eigenvalues. We will assume that µ1 ≥ . . . ≥ µd > 0, as there is no need
to include eigenvectors of the covariance operator corresponding to eigenvalue 0. We
define the projection operator

(42) Pd :

{
H → Ud

∼= Rd,
z 7→ x := ∑d

l=1 〈z, pl〉H pl

and identify Ud with Rd via the isometry

(43) ι :

{(
Ud, ‖·‖H

)
→
(
Rd, ‖·‖

)
,

x 7→ (〈x, pl〉H)
d
l=1 .
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We introduce

(44) V̂d(t, x) := e−rTE
[
G
(
x + Pd(Z(T)− Z(t)

)]
,

a finite-dimensional approximation of the discounted option price for x ∈ Ud
∼= Rd.

It is possible to show that V̂d is the unique solution of a d-dimensional PIDE, which
can be solved numerically using sparse grid finite difference methods. The following
theorem summarizes some results from [10]. Note that PIDEs used only for pricing can
be constructed to have time constant coefficients. This can be achieved by introducing
a Lévy process with the same terminal distribution as the driving time-inhomogeneous
jump-diffusion. Here, we state a PIDE with time dependent coefficients, since hedging
is path dependent.

Theorem 3.4. Suppose that there is a constant c > 0 such that

(45) 〈σtQσ∗t p, p〉H ≥ c ‖p‖2
H for every p ∈ span{p1, . . . , pd}, a.e. t ∈ [0, T].

Then V̂d satisfies V̂d ∈ C1,2((0, T)×Ud, R) ∩ C([0, T]×Ud, R). It is the unique solution of
the PIDE

−∂tV̂d(t, x) =
1
2

d

∑
i,j=1

aij(t) ∂i∂jV̂d(t, x)

+
∫

H

{
V̂d(t, x + Pdηt(ζ))− V̂d(t, x)−

d

∑
i=1
〈ηt(ζ), pi〉H ∂iV̂d(t, x)

}
ν(dζ),

(46)

with time-dependent coefficients

(47) aij(t) :=
〈
σtQσ∗t pi, pj

〉
H , i, j = 1, . . . , d,

and terminal condition

(48) V̂d(T, x) = V̂(T, x) = e−rTG(x),

for t ∈ (0, T), x ∈ Ud. Moreover, there exists a constant C > 0 such that

(49)
∣∣∣V̂d(0, 0)− V̂(0, 0)

∣∣∣ ≤ C

√
∞

∑
l=d+1

µl .

Proof. The proofs can be taken almost without modification from [10, Thms. 3.6-3.13]
and are therefore omitted. The only difference is that we are working with time vary-
ing coefficients aij(t) here. The uniform positive definiteness of σtQσ∗t in the hypothe-
sis of the present theorem, however, enables us to show Gårding’s inequality in exactly
the same way as with time constant coefficients.
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3.3 Approximate Hedging with POD

The matrix M(t) in the linear equation system (35) is determined by the swap rate
functions Fi, i = 1, . . . , n, and their derivatives, which are known in closed form.
Hence, they can be calculated directly, using a (possibly high-dimensional) discretiza-
tion of the Hilbert space H. In contrast, the right-hand side b(t) of (35) depends on the
unknown option price V̂ and its derivatives. Since it is not feasible to solve the corre-
sponding PIDE with a high-dimensional discretization, we will apply the dimension
reduction method presented in the previous section.

The goal of this section is to compute the optimal hedge with equation (35) by
replacing all expressions depending on V̂ with similar expressions depending on V̂d.
Note that applying the chain rule yields

(50) DzV̂d(t,PdZt−) =
∂

∂Zt−
V̂d(t,PdZt−) = DxV̂d(t,PdZt−) ◦ Pd ∈ L(H, R).

The derivative DxV̂d is a finite-dimensional object, which we can approximate numer-
ically by solving the PIDE for V̂d. Similarly, the jump term

(51) δV̂d(t,Pdζ) := V̂d(t,Pd(Zt− + ζ))− V̂d(t,PdZt−)

can be evaluated numerically for every ζ ∈ H.
To simplify subsequent notation, we further introduce

(52) 〈h1, h2〉σtQσ∗t
:= h1 σtQσ∗t h2 and ‖h1‖σtQσ∗t

:=
√
〈h1, h1〉σtQσ∗t

for every h1, h2 ∈ H. Because of the fact that the Cauchy–Schwarz inequality holds not
only for scalar products, but also for symmetric nonnegative definite bilinear forms
(see, e.g., [6, Thm. 6.2.1]), ‖·‖σtQσ∗t

defines a semi-norm on H.
In order to approximate b, we define

(53) b̃i(t) := e−rtκi

(〈
DxFi, DzV̂d(t,PdZt−)

〉
σtQσ∗t

+
∫

H
δFi δV̂d(t,PdZt−) ν(dζ)

)
,

for i = 1, . . . , n, where V̂d and δV̂d are the approximations defined in (44) and (51),
respectively. For t ∈ [0, T], we consider a (not necessarily unique) solution θ̃ of

(54) M(t)θ̃(t) = b̃(t),

which is an approximation for an optimal strategy θ(t). Similar to (35), the linear
equation for θ̃(t) has at least one solution, although M might be singular.

Lemma 3.5. The vector b̃(t) defined in (53) satisfies

(55) ∀y ∈ Rn : (yT M(t) = 0⇒ yT b̃(t) = 0)

for every t ∈ [0, T]. In particular, b̃(t) is an element of the range of M(t).
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Proof. The proof is identical to the proof of [9, Lem. 3.8]. Compare also the proof of
Lemma 3.6 below for a very similar argument.

In contrast to θ, the expression for θ̃ contains only expressions which are either
analytically known or can be approximated numerically. We will show, that the ad-
ditional hedging error introduced by using θ̃ converges to 0 for increasing dimension
d of the approximating problem. (The unhedgeable part of the hedging risk remains
unchanged by definition.)

Before we can show the convergence result, we need to analyze the relation of b(t)
and b̃(t) in more detail. For all subsequent computations, let t ∈ [0, T] be arbitrary,
but fixed. Since the matrix M(t) is positive semi-definite, we can find an orthonormal
basis of eigenvectors A = (a1| . . . |an) ∈ Rn×n with corresponding eigenvalues λi,
i = 1, . . . , n, such that

(56) M(t) = A diag(λ1, . . . , λn)AT,

with diag(. . .) denoting a diagonal matrix. The following lemma states an upper
bound for the projection of the difference b(t)− b̃(t) onto each of the eigenvectors ai
of M(t).

Lemma 3.6. For every l ∈ {1, 2, . . . , n}, the following estimate holds:[
(b̃(t)− b(t))Tal

]2

≤ 2λl

[∥∥DzV̂d(t,PdZt−)− DzV̂
∥∥2

σtQσ∗t
+
∫

H
(δV̂d(t,PdZt−)− δV̂)2 ν(dζ)

]
.

(57)

Proof. By definition of b(t) and b̃(t), we have[
(b̃(t)− b(t))Tal

]2
=

[
e−rt

[〈 n

∑
i=1

al(i)κi DxFi , DzV̂d(t,PdZt−)− DzV̂
〉

σtQσ∗t

+
∫

H

( n

∑
i=1

al(i)κi δFi

) (
δV̂d(t,PdZt−)− δV̂

)
ν(dζ)

]]2(58)

Applying the inequalities by Young and Cauchy–Schwarz yields[
(b̃(t)− b(t))Tal

]2

≤ 2e−2rt
∥∥∥ n

∑
i=1

al(i)κiDxFi

∥∥∥2

σtQσ∗t

∥∥∥DzV̂d(t,PdZt−)− DzV̂
∥∥∥2

σtQσ∗t

+ 2e−2rt
( ∫

H

( n

∑
i=1

al(i)κiδFi

)2
ν(dζ)

)( ∫
H

(
δV̂d(t,PdZt−)− δV̂

)2
ν(dζ)

)(59)

On the other hand, the eigenvalues of M(t) satisfy

(60) λl = aT
l M(t)al = e−2rt

∥∥∥ n

∑
i=1

al(i)κiDxFi

∥∥∥2

σtQσ∗t
+ e−2rt

∫
H

( n

∑
i=1

al(i)κiδFi

)2
ν(dζ).

Combined, we obtain (57).
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We can now prove our main convergence result. It gives a bound on the additional
hedging error caused by the approximation of the optimal strategy.

Theorem 3.7. There is a constant C > 0 such that the additional hedging error when using
θ̃, defined in (54), instead of an optimal hedging strategy θ, defined in (35), satisfies

(61) 0 ≤ J(θ̃)− J(θ) ≤ Ce−2rT
∞

∑
l=d+1

µl .

As before, µl are the eigenvalues of the covariance operator CX(T).

Proof. Since θ is an optimal strategy, we have 0 ≤ J(θ̃)− J(θ). Using [9, Thm. 3.7], we
obtain

(62) J(θ̃)− J(θ) = E
∫ T

0

[
θ̃T Mθ̃(t)− 2bT θ̃(t)− θ

T
Mθ(t) + 2bTθ(t)

]
dt.

By construction, θ̃ and θ are solutions of

(63) M(t)θ̃(t) = b̃(t) and M(t)θ(t) = b(t),

respectively. Since M(t) might be singular, we cannot invert it. Instead, we introduce
the Moore-Penrose pseudo-inverse M+(t) of M(t). Suppose without loss of generality
that the eigenvalues of M(t) satisfy 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn. Suppose further that
λm > 0 is the lowest non-zero eigenvalue. Then M+(t) is given by

(64) M+(t) = A diag
(

0, . . . , 0,
1

λm
, . . . ,

1
λn

)
AT.

Every pair of solutions (θ̃(t), θ(t)) to (63) yields the same additional hedging er-
ror. Thus, we may replace θ̃(t) with the specific solution M+(t)b̃(t) and θ(t) with
M+(t)b(t) in (62). Since the pseudo-inverse satisfies M+MM+(t) = M+(t), we obtain

J(θ̃)− J(θ) = E
∫ T

0

[
b̃T(t)M+(t)b̃(t)− 2bT(t)M+b̃(t) + bT(t)M+(t)b(t)

]
dt

= E
∫ T

0
(b̃(t)− b(t))T M+(t) (b̃(t)− b(t)) dt.

(65)

Plugging in the definition of M+(t) yields

(66) J(θ̃)− J(θ) = E
∫ T

0

n

∑
i=m

1
λi

[
(b̃(t)− b(t))Tai

]2
dt.
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Applying Lemma 3.6, we find

J(θ̃)− J(θ) ≤ 2(n−m)E
∫ T

0

[∥∥DzV̂d(t,PdZt−)− DzV̂
∥∥2

σtQσ∗t

+
∫

H
(δV̂d(t,PdZt−)− δV̂)2 ν(dζ)

]
dt.

= 2(n−m)E
∣∣∣∣ ∫ T

0

(
DzV̂d(t,PdZt−)− DzV̂

)
σt dWt

+
∫ T

0

∫
H
(δV̂d(t,PdZt−)− δV̂) M̃(dζ, dt)

∣∣∣∣2,

(67)

where, for the last equality, we have used [5, Cor. 4.14] for the Brownian part, [14,
Thm. 8.23] for the jump part, and in addition the independence of W and M̃.

The very same arguments as in the proof of Proposition 2.1 yield

(68) dV̂d(t,PdZt) = DzV̂d(t,PdZt−)σt dWt +
∫

H
δV̂d(t,Pdζ) M̃(dζ, dt).

Hence, we have

J(θ̃)− J(θ) ≤ 2nE
∣∣∣∣∫ T

0
dV̂d(t,PdZt) dt−

∫ T

0
dV̂(t, Zt) dt

∣∣∣∣2
= 2nE

∣∣∣[V̂d(T,PdZT)− V̂d(0, 0)
]
−
[
V̂(T, ZT)− V̂(0, 0)

]∣∣∣2 .

(69)

Using Young’s inequality and the definition of V̂ and V̂d, we see that

(70) J(θ̃)− J(θ) ≤ 4n
∣∣∣V̂(0, 0)− V̂d(0, 0)

∣∣∣2 + 4ne−2rTE |G(ZT)− G(PdZT)|2 .

From Assumption 2.2 and Theorem 3.3 we finally obtain

(71) J(θ̃)− J(θ) ≤ 8ne−2rTK2
G E ‖ZT −PdZT‖2

H = 8ne−2rTK2
G

∞

∑
l=d+1

µl .

Theorem 3.7 shows that every solution of (54) is a good approximation to an optimal
hedging strategy, if the dimension d is chosen appropriately. Note that although hedg-
ing errors are path-dependent, choosing a POD basis which minimizes the projection
error for the terminal value ZT is sufficient for the computation of θ̃. We do not need
to approximate the whole path of the process.

3.4 Semi-Definite Quadratic Optimization

Due to the results in the previous section, the numerical hedging algorithm will be
based on solving the linear equation

(72) M(t)θ̃(t) = b̃(t).
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By Lemma 3.5, there is always at least one solution. In practice, however, finding such
a solution yields numerical issues, since the matrix M(t) is not strictly positive definite.
Even small discretization or rounding errors in the computation of M(t) and b̃(t) may
result in an unsolvable equation, where b̃(t) is no longer an element of the range of
M(t). For the remainder of the section, let once again t ∈ [0, T] be arbitrary but fixed.

Depending on the eigenvalues of M(t), there are two possible remedies for this
situation. Suppose as before that the eigenvalues satisfy 0 ≤ λ1 ≤ . . . ≤ λn, with λm >
0 being the lowest non-zero eigenvalue. The corresponding matrix of orthonormal
eigenvectors is A = (a1| . . . |an). We first consider the case when the ratio λn

λm
is small,

i.e. λm is well separated from 0. Instead of looking for an arbitrary solution of (72), we
look for the one with the smallest norm

∥∥θ̃(t)
∥∥

Rn . Equation 72 is equivalent to

(73) diag(0, . . . , 0, λm, . . . , λn)AT θ̃(t) = AT b̃(t).

Since

(74)
∥∥θ̃(t)

∥∥
Rn =

m−1

∑
i=1

〈
θ̃(t), ai

〉2
Rn +

n

∑
i=m

〈
θ̃(t), ai

〉2
Rn ,

minimizing the norm of θ̃(t) is equivalent to θ̃ being orthogonal to every ai, i =
1, . . . m− 1. Consequently, we may project (72) to the orthogonal complement of the
kernel of M(t). Hence, we solve

(75) diag(λm, . . . , λn)ϕ(t) = (am| . . . |an)
T b̃(t)

for ϕ ∈ Rn−m+1, and set

(76) θ̃(t) = (am| . . . |an)ϕ(t).

Note that the condition number of the linear system (75) is given by λn
λm

, which is small
by our hypotheses. Thus, the unique solution ϕ can be computed in a numerically
stable way.

We consider now the case λn
λm
� 1. The projected equation (75) is then badly con-

ditioned. Moreover, it is difficult to identify the eigenvalues of M(t) which are equal
to 0 numerically. In this case, we can either change our portfolio and include swaps
which are less correlated, or we can apply regularization to the equation. Tikhonov
regularization proved to be very effective in the numerical experiments. We replace
(34) with the minimization problem

θ(t) = argminθ(t) θ(t)T(M(t) + δ ‖M‖ In)θ(t)− 2b(t)Tθ(t), for a.e. t ∈ [0, T],(77)

where In ∈ Rn×n denotes the unit matrix, and δ� 1 is a small regularization parame-
ter. Just like the projection method discussed above, the regularization approach also
gives preference to solutions with smaller norms. For convergence results concerning
the Tikhonov regularization, we refer to [8, Ch. 6.4.3].
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4 Numerical Experiments

The computation of the optimal mean-variance hedging strategy relies on the dimen-
sion reduction presented in Section 3.2 as well as on the numerical solution of the
PIDE (46) and the optimization problem (34). In order to analyze the resulting hedg-
ing strategies, these algorithms have been implemented in C++. In this final section,
we will discuss the results obtained from numerical experiments with different sets of
traded swaps. The test problem is described in detail below.

For each set of swaps, the average hedging error is computed by Monte Carlo (MC)
simulations. To this end, a large number of stochastic paths for the forward curve are
simulated. Along each path, the option prices and hedging strategies are calculated
by solving the corresponding PIDEs. The values of the portfolios (defined as the initial
option value plus the increments given by the dynamics (27)) are then compared to the
true terminal option values. The average of their differences is a good approximation
for the unhedgeable component of the option price.

4.1 Test Problem

We consider the test problem presented in [10]. We would like to hedge a European
electricity call option with a delivery period of 28 days maturing in one year, i.e.
T = T1 = 1, T2 = T1 + 28/365. We use the exponential additive model described in
Section 2. The corresponding Hilbert space is H = L2([T1, T2], µD), where D = [T1, T2]
is the delivery period of the swap and µD is the Lebesgue measure. The underlying
stochastic process is

X(t, u) =
∫ t

0
γ(s, u)ds +

nW

∑
k=1

∫ t

0
σk(s, u)dWk(s) +

∫ t

0

∫
R

ηk(s, u)y M̃(dy, ds),(78)

u ∈ [T1, T2], t ∈ [0, T]. Here, Wk (k = 1, . . . , nW ∈ N) denote scalar Brownian motions
and M̃ denotes a compensated random jump measure, all of them independent. For
the diffusive part of the model, we use two factors similar to [11]. The volatilities are
given by

(79) σ1(s, u) ≡ 0.15, σ2(s, u) = 0.3 e−1.4(u−s).

Moreover, we use a compound Poisson process with intensity λ = 12 and N (0.1, 0.1)-
distributed jump heights, which yields a Merton model. Note that, since we consider
the exponential process, a mean of 0.1 for the jump distribution corresponds to an
average jump of slightly over 10 percent of the current value. The additional factor for
dampening the jumps is

(80) η(s, u) = 0.5− 0.5
u− T1

T2 − T1
.

The drift term is

(81) γ(s, u) = −1
2

2

∑
k=1

σ2
k (s, u)− λ

∫
R
(eη(s,u)y − 1− η(s, u)y)PY(dy).
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It remains to specify the discretization of the delivery period [T1, T2]. Since we have
a continuous forward curve model, we may use an arbitrary number of discretization
points. On energy markets, monthly swaps on electricity are usually based on daily
prices. Consequently, we will use exactly n = 28 components. The forward curve
process is defined by

(82) f (t, ui) = exp[X(t, ui)], t ∈ [0, T],

where ui = T1 + (i − 1) T2−T1
28 , i = 1, . . . , 28. Since an electricity swap requires no

payment before the delivery period starts, it is a martingale under the risk neutral
measure. Therefore, the drift γ defined in (81) was chosen such that f (t, ui), i =
1, . . . , 28, are martingales (compare (14)). We will further assume that there are 8
delivery hours per day. This implies

(83) V̂(t) = e−rT · 8 · 28 · E
[( 28

∑
i=1

w(ui; T1, T2) f (T, ui)− K
)+∣∣∣Ft

]
for the price of the option discounted to time 0, without any discretization error. The
risk free interest rate is assumed to be constant at r = 0.02. The initial forward curve
at time t = 0 is f0(ui) ≡ 50, i = 1, . . . , 28, the strike is K = 50.

In order to make use of the easily parallelized methods (MC simulations as well
as PIDE solver), the experiments were run on a Linux workstation with 6 Opteron
processors at 2.7 GHz. The number of POD components was set to d = 2, which is
sufficient for precise calculation of the option prices in this test setting according to
[10]. Models containing more driving factors need more POD components to achieve
similar accuracy.

Since we are interested in the residual risk of the hedging strategy rather than the
discretization error of the PIDE solver, a sufficiently small mesh width was chosen.
With at most 211 grid points per coordinate (this number varies due to the application
of a sparse grid combination method), the discretization error is negligible compared
to the residual hedging error. The optimal hedging strategy presented in Section 3 is
based on continuous rebalancing. Hence the time steps were also chosen to be very
small (∆t = 365

3000 ). Because of the fine discretization, the solution of the time dependent
PIDE takes up to 40 minutes. Note that if one is only interested in the hedging strategy
at a finite number of time steps (and possibly also on a less fine spatial grid), compu-
tations can be sped up considerably. The current hedging portfolio at time t = 0 can
in fact be obtained from the solution of the PIDE with time independent coefficients
which is also used for pricing. This can be done within a few seconds.

4.2 Results

The monthly option described above can be hedged with any set of traded swaps. We
start with a single swap with a delivery period covering the whole month (28 days).
Then we add further swaps whose delivery periods equal the weeks of the month.
To simplify the notation, the corresponding strategies are denoted by capital letters as
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shown in Table 1. Finally, we add the index “n-n” to the letter, if we consider only
nonnegative strategies. Thus, e.g., Bn-n denotes the nonnegative strategy using the
monthly and the first weekly swap.

delivery periods of included swaps
month week 1 week 2 week 3 week 4

A x
B x x
C x x x
D x x x x
E x x x x
F x x x x x

Table 1: Hedging portfolios used for numerical experiments.

The corresponding average hedging errors are computed from 10000 MC paths for
each portfolio. The Tikhonov regularization parameter described in Section 3.4 is set to
δ = 10−10. The results are shown in Table 2. These errors equal the unhedgeable part
of the risk, which is caused by two effects: the jumps in the model (which render even
a one-dimensional market incomplete) and the fact that we use only a finite number
of assets to hedge the infinite-dimensional forward curve. As was to be expected, the
error decreases substantially, if we add more swaps to the portfolio. A set of 4 swaps,
however, is sufficient to obtain a very small error. This is of course due to the rather
low number of driving factors in the test model. We also compare the terminal error
with the initial option value for our test problem. (A relative error comparing with
the option value at time T is ill-defined, since the option might be out of the money,
yielding a division by zero.) Apparently, the cost for the additional nonnegativity
constraint on the portfolio is high for portfolios which contain several swaps.

portfolio A An-n B Bn-n C Cn-n

absolute error 215.81 217.58 173.01 178.75 30.90 175.74
error / initial value 0.132 0.133 0.106 0.109 0.019 0.108

portfolio D Dn-n E En-n F Fn-n

absolute error 18.86 176.70 18.77 160.47 18.87 161.88
error / initial value 0.012 0.108 0.011 0.098 0.012 0.099

Table 2: Average hedging errors for different portfolios. The bottom rows show the
ratio of the terminal hedging error at time T and the option value (1633.64) at
time 0.

We now have a look at the influence of the regularization parameter δ. Table 3 shows
the average hedging error with portfolio E for different values of δ. The error decreases
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monotonously with decreasing ε, until the regularizing effect is no longer sufficient
and the error increases again at δ = 10−15 (which is close to machine precision). The
error when using the projection method described in Section 3.4 is 18.25, which is
about the same size as the best result achievable with Tikhonov regularization. We will
continue to use regularization, however, since it is the more general concept, which
also works for very bad conditioned matrices M. We set δ = 10−10 for the remaining
experiments.

δ 10−6 10−7 10−8 10−9 10−10 10−11 10−12 10−13 10−14 10−15

error 30.24 28.14 21.36 18.77 18.78 18.71 18.56 18.47 18.38 18.78

Table 3: Average hedging errors for different regularization parameters in portfolio E.

We will now examine the hedging strategies in more detail. In order to illustrate
some of their features, we pick two sample paths from the MC simulation: one where
the option is in the money (ITM) at maturity and one where it ends up out of the
money (OTM). We first analyze the ITM case. The hedging strategy for portfolio A is
shown in Figure 2, together with the swap rate of the underlying monthly contract.
This case is similar to that of hedging a single stock in that the quantity of swaps held
in the portfolio is a number in [0, 1]. The investment jumps simultaneously with the
swap rate and in the same directions. There is, e.g., a jump of the swap rate at day 243.
Since the option changes from OTM to ITM with this jump, this has a large impact
on the optimal investment. The strategy approaches 1 when time goes to T, since the
option ends in the money.

Figure 3 displays the strategy for portfolio E. The optimal investments in the weekly
swaps are now real numbers, sometimes negative and of large absolute value. When
approaching maturity, however, the strategy satisfies |θi| < 1, i = 1, . . . , 5.

The chronological development of the hedging errors corresponding to different
portfolios in the ITM case is shown in Figure 4. When adding more swaps to the
portfolio, two effects can be seen. The error gets smaller, and it evolves more smoothly.
Both the diffusion and the jump part of the error decrease for more diverse portfolios.
While the value of the hedge portfolio is visibly different from the true option value
for portfolio A, these two curves are almost indistinguishable for portfolio E. One can
also observe the Samuelson effect of increasing volatility in the option price closer to
maturity. The volatility of the hedging error, however, is very small during the last
month before maturity. This is due to the fact that after a significant jump at day
318 the swap rate is far above the strike. The option will thus very likely end in the
money. The hedging investment is then almost equal to 1 and no further hedging error
is accumulated.

The strategies in the OTM case approach 0 close to maturity. This holds for the
investment in the monthly swap as well as any weekly swaps. Once again, the cor-
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Fig. 2: Swap rate and hedging strategy for portfolio A when the option ends ITM.
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Fig. 3: Hedging strategy for portfolio E when the option ends ITM.
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relation between hedging strategy θ0 and swap rate is clearly visible, as shown in
Figures 5 and 6. The terminal value of portfolio A is negative and thus slightly below
the targeted value 0 (Figure 7). The behavior of the hedging errors is very similar to
the ITM case. In particular, the error gets smaller and smoother when more swaps are
included and is almost constant 0 for portfolio E.

5 Conclusion

This article is concerned with the numerical computation of hedging strategies for
European electricity options. Trading in a portfolio of electricity contracts with var-
ious delivery periods, we look for an optimal mean-variance strategy. We consider
an infinite-dimensional forward curve model, driven by an exponential time-inhomo-
geneous jump-diffusion process. Similar to a classical delta hedge, the strategy de-
pends on partial derivatives of the option price, which can be obtained from the solu-
tion of a partial integro-differential equation (PIDE). Using a dimension reduction
method, the infinite-dimensional problem can be approximated with finite-dimen-
sional, possibly semi-definite, quadratic optimization problems. Tikhonov regular-
ization is used to overcome numerical issues corresponding to the semi-definiteness.
Convergence of the hedging error corresponding to the approximating strategy to the
error of an optimal strategy is shown.

Numerical experiments are performed to analyze the resulting hedging strategies.
The unhedgeable part of the risk, which is due to the inherent incompleteness of the
market, is evaluated by Monte Carlo simulations. The hedging strategy along each
simulated path is computed from a finite-dimensional PIDE solution.
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A, B, and E (top to bottom) when the option ends ITM.

23



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  30  60  90  120  150  180  210  240  270  300  330  360

 20

 40

 60

 80
h

e
d

g
in

g
 p

o
rt

fo
lio

s
w

a
p

 r
a

te

time [days]

hedging investment

swap rate month

Fig. 5: Swap rate and hedging strategy for portfolio A when the option ends OTM.
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Fig. 7: Option value, hedging portfolio value, and absolute hedging error for portfolio
A, B, and E (top to bottom) when the option ends OTM.
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