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Abstract

In recent years analyses of dependence structures using copulas have become more popular

than the standard correlation analysis. Starting from Aas, Czado, Frigessi, and Bakken

(2009) regular vine pair-copula constructions (PCCs) are considered the most flexible

class of multivariate copulas. PCCs are involved objects but (conditional) independence

present in data can simplify and reduce them significantly. In this paper the authors detect

(conditional) independence in a particular vine PCC model based on bivariate t−copulas

by deriving and implementing a reversible jump Markov chain Monte Carlo algorithm.

However the methodology is general and can be extended to any regular vine PCC and

to all known bivariate copula families. The proposed approach considers model selection

and estimation problems for PCCs simultaneously. The effectiveness of the developed algo-

rithm is shown in simulations and its usefulness is illustrated in two real data applications.

Keywords: copula, D-vine, Metropolis-Hastings algorithm, pair-copula construction, re-

versible jump Markov chain Monte Carlo.

1 Introduction

Over the past decade there has been a large interest in copulas as a tool for capturing

the dependence structure between random variables. Since Frees and Valdez (1998), Li

(2000) and Embrechts, McNeil, and Straumann (2002), copulas have been widely used in

economics, finance and risk management and subsequently applied to other fields. For a

comprehensive review on this topic we refer readers to Genest and Favre (2007), Genest,

Gendron, and Bourdeau-Brien (2009) and Patton (2009).

Most copula applications deal with bivariate data while examples involving multivari-

ate copulas of dimension d ≥ 3 are often restricted to Archimedean copulas, elliptical

(usually Gaussian or t) copulas or their extensions (see e.g. Song, 2000; Frahm, Junker,
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and Szimayer, 2003; Demarta and McNeil, 2005; Fischer, Köck, Schlüter, and Weigert,

2009; McNeil and Neslehova, 2009; Berg and Aas, 2009). In this paper we focus on multi-

variate copulas known as pair-copula constructions (PCCs), which have gained popularity

recently. Here a multivariate copula density is factorized as a product of bivariate copula

densities called pair-copulas or building blocks. This construction was first discovered by

Joe (1996) mainly in terms of copula distribution functions. Bedford and Cooke (2001,

2002) systemized the approach of Joe (1996) in terms of copula densities by introduc-

ing the notion of regular vines. An excellent introduction to regular vines as well as a

statistical inference for Gaussian regular vines is given by Kurowicka and Cooke (2006).

Aas, Czado, Frigessi, and Bakken (2009) recognized the flexibility and generality of reg-

ular vine constructions and moved beyond the Gaussian case by employing bivariate t,

Clayton and Gumbel copulas as building blocks for PCCs. In addition they considered

statistical inference for PCCs based on maximum likelihood (ML). According to recent

empirical investigations of Berg and Aas (2009) and Fischer, Köck, Schlüter, and Weigert

(2009), the vine constructions based on bivariate t−copulas dominate other multivariate

copulas in fitting multivariate financial data.

There is a variety of estimation procedures for copulas. For independent identically

distributed (i.i.d) multivariate data, copulas are usually estimated using a semiparametric

(SP) approach of Genest, Ghoudi, and Rivest (1995) or a parametric inference for margins

(IFM) approach of Joe (2005). These methods are two-stage estimation procedures, where

at the first step marginal cumulative distribution functions (CDFs) are fitted and at the

second step a parametric copula is fitted by ML. In the SP approach, marginal CDFs

are fitted non-parametrically and this results in copula estimation based on empirical

ranks. In contrast, the IFM approach assumes parametric marginal CDFs and therefore

it is a sequential two-step ML estimation. While these approaches can be used to over-

come computational difficulties and numerical instabilities that may be encountered in

a joint ML estimation, there is a trade-off as the SP and IFM estimates are generally

less efficient than joint ML estimates. In financial applications univariate marginal data

is hardly ever i.i.d. Chen and Fan (2006) and Chan, Chen, Chen, Fan, and Peng (2009)

combine univariate time series models and copulas to obtain flexible copula-based models

for multivariate time series. Further they propose a semiparametric estimation procedure
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for copula parameters and show that it leads to consistent and asymptotic normal esti-

mates. Using regular vine PCCs, Min and Czado (2010b) consider copula-based models

for multivariate time series with PCCs and use the minimal Kullback-Leibler divergence

to estimate copula parameters. The asymptotic variance of estimates for copula param-

eters does not have a closed analytical form and therefore its computation is based on

bootstrap and/or numerically evaluated partial derivatives of the log-likelihood function.

For high dimensional data this is very computationally expensive.

In the past decade Markov chain Monte Carlo (MCMC) methods have been suc-

cessfully used for estimation and inference problems of highly parameterized models.

They have first been introduced by Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller

(1953) and Hastings (1970) and nowadays they become standard statistical tools for data

analysis. Since a reversible jump MCMC (RJ MCMC) was introduced by Green (1995),

MCMC applications become even more widespread as non-nested models of variable di-

mension can be compared. Nevertheless the Bayesian literature on copulas has, until

recently, been sparse. Most Bayesian treatments on copulas have focused either on bi-

variate families (see Huard, Évin, and Favre, 2006; Silva and Lopes, 2008; Arakelian and

Dellaportas, 2009) or multivariate Gaussian and t copulas (see Pitt, Chan, and Kohn,

2006; Dalla Valle, 2009). Moreover Bayesian model selection has only been considered for

the bivariate case.

In this paper we approach model selection for D-vine PCCs by identifying (conditional)

independence present in data, which can reduce them significantly. This corresponds to

identifying whether individual pair-copulas in the D-vine PCC are identical to the in-

dependence copula or not. In Min and Czado (2010a) we focused on developing MCMC

estimation of D-vine PCCs based on bivariate t copulas and made a first attempt at

model selection using the easy to implement approach of Congdon (2006). Since Cong-

don’s approach is biased (see Robert and Marin, 2008), we now make use of more advanced

Bayesian model selection methods. Even when a specific D-vine PCC for a d dimensional

data and parametric family for bivariate copula building blocks are chosen, there remain

2d(d−1)/2 PCC models allowing for (conditional) independencies to compare. These mod-

els are generally non-nested and as d becomes large comparison of these models is only

tractable using computationally intensive methods such as RJ MCMC. Here we derive a
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RJ MCMC algorithm for selecting the best model for a chosen D-vine PCC (see Section 3

for definition) when building pair-copulas are bivariate t−copulas. However the method-

ology is generic and applicable to any regular vine as well as to other families of bivariate

copulas.

The remainder of the paper is organized as follows. In Section 2 we define copulas

and D-vine PCCs. Section 3 presents our RJ MCMC algorithm. It describes the key

steps of our algorithm and gives the acceptance probability of birth and death moves.

Section 4 contains two simulation studies investigating the small sample performance of

the proposed algorithm. In Section 5.1 we revisit the Euro swap data from Min and Czado

(2010a). In Section 5.2 we apply our methodology to data from Flury and Riedwyl (1988)

on the counterfeit old Swiss 1000-franc bank notes. The paper closes with a conclusion

and discussion section.

2 Multivariate copulas and D-vine PCC

Copulas are d-dimensional multivariate distributions with uniformly distributed marginal

distributions on [0, 1]. According to Sklar’s theorem (see Sklar (1959)) any continuous

multivariate cumulative distribution function (CDF) F (x1, . . . , xd) is determined by its

unique copula C(u1, . . . , ud) and marginal CDF Fi(xi), i = 1, . . . , d through the relation-

ship

F (x1, . . . , xd) = C(F1(x1), F2(x2), ...., Fd(xd)). (2.1)

Excellent introductions to copulas are given in the books by Joe (1997) and Nelsen (1999).

From now on we consider only absolutely continuous distributions F (x1, . . . , xd) with a

joint density function f(x1, . . . , xd) and marginal density functions fi(xi) for i = 1, . . . , d.

Then relationship (2.1) implies that

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd)) · f1(x1) · . . . · fd(xd), (2.2)

where c(u1, . . . , ud) is the density function of C(u1, . . . , ud). One of the main attraction

of copulas is that they allow for the construction of multivariate distributions with given

marginal distributions. In addition the dependence structure is captured by the copula
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independently of margins since the copula is invariant with respect to increasing trans-

formations of marginal variables.

Any multivariate copula can be represented as a regular vine PCC and in particular

as a D-vine PCC. To illustrate this point for D-vines, let us first introduce some notation.

Consider a random vector U = (U1, . . . , Ud)
′ with uniformly U(0, 1) distributed margins

Ui, i = 1, . . . , d. Let C(u1, . . . , ud) be a copula ofU and c(u1, . . . , ud) be the copula density.

For a pair of integers r and s (1 ≤ r ≤ s ≤ d) the set r : s denotes all integers between

r and s inclusively, i.e. r : s := {r, . . . , s}. If r > s then r : s = ∅. Let Ur:s denote the

set of variables {Ur, . . . , Us}. Further ui|r:s denotes the conditional CDF Fi|r:s(ui|ur:s) and

ci|r:s(ui|ur:s) is the corresponding conditional density of Ui given Ur:s. In our notation a set

of subindices after the vertical line always corresponds to a set of conditioning variables.

Using a well known recursive decomposition for any d−dimensional density f

f(x1, . . . , xd) = f(x1) ·
d∏

k=2

f(xk|x1, . . . , xk−1),

for the copula density c we obtain

c(u1, . . . , ud) = 1 ·

d∏

k=2

ck|1:(k−1)(uk|u1:(k−1)), (2.3)

where 1 stands for the marginal density of U1. Now consider each factor on the right hand

side of (2.3). For k = 2 and using U1 ∼ U(0, 1) the conditional density c(u2|u1) is given

by

c2|1(u2|u1) = c(u1, u2). (2.4)

Starting for k = 3 we use Sklar’s theorem for bivariate conditional densities (see Patton,

2004) and obtain

c3|1:2(u3|u1, u2) =
c(u1, u2, u3)

c(u1, u2)
=

c(u1, u3|u2)

c1|2(u1|u2)

=
c13|2

(
F (u1|u2), F (u3|u2)

)
· c1|2(u1|u2) · c3|2(u3|u2)

c1|2(u1|u2)

= c13|2
(
u1|2, u3|2

)
· c(u2, u3), (2.5)

where c13|2 is a conditional copula density of U1 and U3 given U2 = u2.
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By induction, the kth factor (k = 4, . . . , d) in (2.3) can be now factorized as

ck|1:(k−1)(uk|u1:(k−1)) =
c(u1, uk|u2:(k−1))

c1|2:(k−1)(u1|u2:(k−1))

= c1k|2:(k−1)(u1|2:(k−1), uk|2:(k−1)) · ck|2:(t−1)(uk|u2:(k−1))

=
k−2∏

t=1

ctk|(t+1):(k−1)(ut|(t+1):(k−1), uk|(t+1):(k−1))

× c(k−1)k(uk−1, uk). (2.6)

Substituting the right hand sides of (2.4)–(2.6) into (2.3) and applying convention i(i +

1)|∅ := i(i+ 1), we obtain

c(u1, . . . , ud) =

d∏

k=2

k−1∏

t=1

ctk|(t+1):(k−1)(ut|(t+1):(k−1), uk|(t+1):(k−1)) (2.7)

=
d−1∏

j=1

d−j∏

i=1

ci(i+j)|(i+1):(i+j−1)

(
ui|(i+1):(i+j−1), ui+j|(i+1):(i+j−1)

)
. (2.8)

Thus, the copula density c(u1, . . . , ud) is factorized as the product of d(d − 1)/2 uncon-

ditional and conditional bivariate copula densities called pair-copulas. There are (d − 1)

unconditional copulas with subindices i(i+1), i = 1, . . . , d−1. Remaining (d−1)(d−2)/2

pair-copulas are conditional and they are evaluated at univariate conditional distribution

functions Fi|(i+1):(i+j−1)(ui|u(i+1):(i+j−1)) and Fi+j|(i+1):(i+j−1)(ui+j|u(i+1):(i+j−1)).

Equation (2.8) provides a D-vine PCC representation for an arbitrary multivariate

copula density and is clearly invariant with respect to any permutation of the variable

labels. Since the index j indicates the number of conditioning variables, it is convenient

to work with (2.8) while (2.7) is easy to derive. Further pair-copulas on the right hand

size of (2.8) can be easily determined with a help of a D-vine, whose edge labels represent

subindices of the pair-copulas. For a graphical representation of a d−dimensional D-vine

we refer the reader to Kurowicka and Cooke (2006), Aas, Czado, Frigessi, and Bakken

(2009) or Min and Czado (2010a). To illustrate, the five dimensional D-vine copula density

c(u1, . . . , u5) is given by

c(u1, . . . , u5) = c12 · c23 · c34 · c45 · c13|2 · c24|3 · c35|4 · c14|23 · c25|34 · c15|234, (2.9)

where we omit arguments of the pair-copulas for clearness.

Aas, Czado, Frigessi, and Bakken (2009) have first noticed the power of PCCs for

designing flexible multivariate copulas when a restriction on conditional pair-copulas is
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imposed. In particular, the pair-copulas ci(i+j)|(i+1):(i+j−1)’s in (2.8) generally depend on

the conditioning values u(i+1):(i+j−1), which makes (2.8) not feasible in its all generality

for statistical applications. However the right hand side of (2.8) defines still a valid copula

density if we assume that cci(i+j)|(i+1):(i+j−1)
(·, ·) are independent of u(i+1):(i+j−1). Under this

restriction Aas, Czado, Frigessi, and Bakken (2009) show how arguments of conditional

pair-copulas can be computed (see e.g. Section 3.1). Further Hobæk Haff, Aas, and Frigessi

(2010) discuss the above simplification of Aas, Czado, Frigessi, and Bakken (2009) in

examples and illustrate that it is not severe. In particular they show that elliptical (e.g.

Gaussian or t) copulas meet this assumption of pair-copula independence on conditioning

values and therefore the corresponding regular vine PCC representations are equivalent

and invariant with respect to variable labeling. Note that under the above restriction

the arguments of the conditional pair-copulas still depend on conditioning values and a

different variable labeling gives no longer the same multivariate copula density.

3 RJ MCMC

3.1 D-vine PCCs based on t−copulas

In this paper we specify the building pair-copulas of the D-vine PCC model (2.8) as

bivariate t−copulas. However the methodology is generic and is applicable much more

widely. The bivariate t−copula (see Embrechts, Lindskog, and McNeil, 2003) has 2 pa-

rameters: the association parameter ρ ∈ (−1, 1) and the degrees of freedom (df) parameter

ν ∈ (0,∞) and its density is given by

c(u1, u2|ρ, ν) =
Γ
(
ν+2
2

)
Γ
(
ν
2

)
√
1− ρ2

[
Γ
(
ν+1
2

)]2 ·

([
1 +

(t−1
ν (u1))

2

ν

] [
1 +

(t−1
ν (u2))

2

ν

]) ν+1
2

(
1 +

(t−1
ν (u1))

2
+(t−1

ν (u2))
2
−2ρt−1

ν (u1)t
−1
ν (u2)

ν(1−ρ2)

) ν+2
2

, (3.1)

where t−1
ν (·) is a quantile function of a t−distribution with ν degrees of freedom. Here

Γ(a) denotes the gamma function given by Γ(a) :=
∫∞

0
xa−1e−xdx. If the df parameter

ν of a bivariate t−copula c(·, ·|ρ, ν) converges to infinity then a Gaussian copula (see

Song, 2000) with parameter ρ is obtained in the limit. Figure 1 compares contour plots
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Figure 1: Contour plots of bivariate t and Gaussian copula densities for different param-

eters. Each contour plot also displays a scatter plot of a random sample of size 400 from

the corresponding copula density.

of bivariate t and Gaussian copula densities and indicates that starting from ν = 20 the

both copula families are very close to be distinguish numerically.

Specifying the pair-copulas as bivariate t-copulas given in (3.1), the conditional CDF

of U1 given U2 = u2 is given by

h(u1|u2, ρ, ν) := tν+1




t−1
ν (u1)− ρ t−1

ν (u2)√
(

ν+(t−1
ν (u2))

2
)

(1−ρ2)

ν+1


 , (3.2)

where tν+1 denotes the CDF of a t−distribution with ν + 1 df. Following Aas, Czado,

Frigessi, and Bakken (2009) we call h(u1|u2, ρ, ν) as the h−function for the t−copula with

parameters ρ and ν. The h−function (3.2) is essential for any D-vine PCC based on t
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pair-copulas since it is needed in the computation of the arguments for the conditional

pair-copula. Namely, it turns out that the conditional CDF in (2.8) with k conditioning

variables (2 ≤ k < d−1) is the kth fold nested superposition of the h−function (3.2) (see

e.g. Aas, Czado, Frigessi, and Bakken, 2009; Min and Czado, 2010a). For example, the

first argument u1|23 of the pair-copula c14|23 in the D-vine PCC (2.9) based on bivariate

t−copulas is given by

h
[
h(u1|u2, ρ12, ν12)

∣∣∣h(u3|u2, ρ23, ν23), ρ13|2, ν13|2

]
,

where (ρ12, ν12)
′, (ρ23, ν23)

′ and (ρ13|2, ν13|2)
′ are the parameter vectors of pair-copulas c12,

c23 and c13|2, respectively.

We define θi(i+j)|(i+1):(i+j−1) := (ρi(i+j)|(i+1):(i+j−1), νi(i+j)|(i+1):(i+j−1))
′ as the parameter

vector of ci(i+j)|(i+1):(i+j−1)(·, ·), where j = 1, . . . , d−1 and i = 1, . . . , d−j (d ≥ 3). To con-

struct the joint parameter vector θ of the D-vine PCC, we group pair-copula parameters

according to the number of conditioning variables of pair-copulas and then order them

within each group according to their first subindices, i.e. θ := (θ′
12, θ

′
23, . . . , θ

′
1d|2:(d−1))

′

(cf. (2.9)). Now a joint D-vine PCC density of i.i.d. d−dimensional observations u :=

{u1, . . . ,uN} for θ is given by

c(u|θ) :=

N∏

n=1

c(un|θ) =

N∏

n=1

c(u1,n, . . . , ud,n|θ) (3.3)

with

c(un|θ) :=
d−1∏

i=1

c
(
ui,n, ui+1,n|θi(i+1)

)
(3.4)

×
d−1∏

j=2

d−j∏

i=1

c
(
vj−1,2i−1,n, vj−1,2i,n|θi(i+j)|(i+1):(i+j−1)

)
.

Arguments vj−1,2i−1,n’s and vj−1,2i,n’s of the conditional copulas c
(
·, ·|θi(i+j)|(i+1):(i+j−1)

)

for n = 1, . . . , N have a complex structure. However simple but tedious calculations show

(see e.g. Aas, Czado, Frigessi, and Bakken, 2009; Min and Czado, 2010a) that using the

h−function (3.2), they can be recursively determined as:

v1,1,n := h(u1,n|u2,n, θ12)

v1,2i,n := h(ui+2,n|ui+1,n, θ(i+1)(i+2)) for i = 1, . . . , d− 3,
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v1,2i+1,n := h(ui+1,n|ui+2,n, θ(i+1)(i+2)) for i = 1, . . . , d− 3,

v1,2d−4,n := h(ud|ud−1, θd(d−1)),

vj,1,n := h(vj−1,1,n|vj−1,2,n, θ1(1+j)|2:j) for j = 2, . . . , d− 2,

vj,2i,n := h(vj−1,2i+2,n|vj−1,2i+1,n, θi(i+j)|(i+1):(i+j−1)) for d > 4,

j = 2, . . . , d− 3 and i = 1, . . . , d− j − 2

vj,2i+1,n := h(vj−1,2i+1,n|vj−1,2i+2,n, θi(i+j)|(i+1):(i+j−1)) for d > 4,

j = 2, . . . , d− 3 and i = 1, . . . , d− j − 2

vj,2d−2j−2,n := h(vj−1,2d−2j,n|vj−1,2d−2j−1,n, θ(d−j)d|(d−j+1):(d−1))

for j = 2, . . . , d− 2.

D-vine PCCs based on bivariate t copulas extend the class of multivariate t− copulas.

In particular for any labeling of variables, a multivariate t−copula density with association

matrix Σ and df parameter ν > 2 (see Embrechts, Lindskog, and McNeil, 2003) can

be represented as a D-vine PCC with t pair-copulas, whose ρ parameters are partial

correlations (see Yule and Kendall, 1965) computed from Σ and df parameters are equal to

ν+j, where j is the number of conditioning variables in a pair-copula. Thus a multivariate

t−copula density has d!/2 different D-vine PCC representations. Therefore, in the sequel

we fix one chosen variable labeling and consider the resulting D-vine PCC to avoid the

model identifiability problem taking place for multivariate t copulas. In applied work

different strategies for variable labeling in D-vine PCCs can be considered and we discuss

this point in Section 5.

3.2 Model indicator

If independence or conditional independence in the data is present then the decomposition

on the right hand side of (3.4) may be simplified to a sub-decomposition since some factors

on the right hand side of (3.4) can be replaced with the density of the independence copula,

i.e. with 1. The novelty of this paper consists in detecting this independence, conditional

or not, in a chosen D-vine PCC model fully within the Bayesian framework. In other

words we determine pair-copula factors in (3.4) which are not the independence copula.

We call these copula pairs present. At each MCMC iteration we consider a model vector
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m. The model indicator m will contain information on present pair-copulas and may vary

from iteration to iteration.

To define the model indicator m, we have to fix an ordering of pair-copulas in (3.4)

as above for the joint parameter vector θ in (3.3). Further let nc denote the number of

pair-copula factors in (3.4), i.e. nc = d(d − 1)/2. First we define the model vector mf

for the full decomposition (3.4) as a vector of dimension nc containing subindices of the

ordered pair-copulas in (3.4), i.e.

mf :=
(
12, 23, . . . , (d− 1)d︸ ︷︷ ︸
(d−1) components

, 13|2, . . . , (d− 2)d|d− 1︸ ︷︷ ︸
(d−2) components

, . . .︸︷︷︸
...

, . . .︸︷︷︸
...

, 1d|2, . . . , d− 1︸ ︷︷ ︸
1 component

)
.

This allows to avoid identifiability problems since the decomposition (3.4) is invariant with

respect to permutation of pair-copula factors. A model vector m of a sub-decomposition is

obtained frommf by replacing components ofmf , which correspond to pair-copula factors

ci,i+j|(i+1):(i+j−1)(u, v) ≡ 1, ∀ u, v ∈ (0, 1), with 0. This can be interpreted as conditional

independence of Ui and Ui+j given Ui+1, . . . , Ui+j−1. Further the s−th component of a

model vector m is denoted by ms, i.e. m = (m1, . . . , mnc
).

The model vector m completely describes the corresponding decomposition. It helps us

to determine which pair-copula factors could be reduced or which factors could be added.

We exclude from our consideration the trivial case when all margins are independent.

Therefore the model vectormmay move among all possible (2nc−2) sub-decompositions of

(3.4) and decomposition (3.4) itself. In our RJ MCMC algorithm we put a noninformative

proper uniform prior on m, i.e. π(m) = 1/(2nc−1) for ∀ m. Thus, RJ MCMC allows us to

travel within this large model space without having to fit all possible model specifications.

Figure 2 illustrates how model vector m may move along all possible sub-decompositions

when d = 3. Further the parameter vector corresponding to mf is θ
mf

:= θ and it

contains 2nc components. Similarly to m, a parameter vector θ
m

of m is obtained from

θ
mf

by replacing two dimensional θi(i+j)|(i+1):(i+j−1)’s in θ
mf

, which correspond to unit

pair-copulas, with (0, 0).

3.3 Prior distributions

In the Bayesian framework unknown parameters are assumed to be random. Available

information on the parameters is incorporated through the prior distributions. We use
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Figure 2: Graph of all possible PCCs for d = 3 with the corresponding model switching

probabilities

non-informative proper priors for ρ’s, i.e. the uniform distribution on (−1, 1). Further

we restrict ν’s to be between 1 and U . The lower limit is imposed to avoid numerical

problems. The upper limit is chosen in such a way that the dependence of bivariate t−

copulas on ν for ν > U is negligible. For ν in (1, U) we also use a noninformative proper

prior, i.e. the uniform distribution on (1, U). The upper bound U will be specified later.

Finally we assume that all ν’s and ρ’s are jointly independent a priori which results in

the product of prior distributions. Thus the prior distribution of θ
m

in model m is given

by

π(θ
m
) := π(θ|m) =

∏

ms∈m:ms 6=0

(
1

2
1l(−1,1)(ρms

) ·
1

U − 1
1l(1,U)(νms

)

)
. (3.5)

Note that in the prior specification we have followed Min and Czado (2010a).

3.4 Move types.

For our RJ MCMC algorithm we consider three types of moves of current model m:

S – “stay” move in the current model m. The parameters of m are updated.

B – “birth” of factor cms
in model m, where ms /∈ m. This corresponds to “birth ” of

θms
.

12



D – “death” of factor cms
in model m, where ms ∈ m. This corresponds to “death ” of

θms
.

An update of parameters takes place in the stay move S. In the full decomposition (3.4)

the death move D, the stay move S and no birth move B are possible while in sub-

decompositions consisting of only one pair-copula the birth move B, the stay move S and

no death move D are possible. Thus we want to exclude the trivial case where all marginal

variables are independent. In all other decompositions all three type of moves are possible.

Note that the dimension of a parameter vector without zero components changes in the

sense that the number of factors in decomposition may vary. Thus in our case the maximal

dimension of the parameter vector with non-zero components is known while in many

applications of the RJ MCMC this may not be the case. Further all three moves require a

Metropolis-Hastings (MH) step. The MH-step for the stay move is performed similarly to

Min and Czado (2010a) and is therefore omitted here. We update parameters individually

using a random walk normal proposal truncated to the supports of the parameters and

tune proposal variances to achieve an acceptance rate for parameters between 20% and

80%. In the next two sub-sections we derive the acceptance probabilities for the birth and

death moves, respectively.

3.5 Model switching probabilities

At each MCMC iteration a decision on the type of moves needs to be taken. In general,

we do not have any preference of models, therefore we suppose that each model can be

left for another one or can be kept with equal probability. For the full model mf there

are nc possibilities to leave the model and there is one possibility to stay and update the

parameters. This implies that when the number of non-zero components p
m

of m is equal

to nc (i.e. m = mf) then the probability of leaving for a some sub-model or staying at the

full model is equal to 1/(nc + 1). In particular the probability g(mf → m(new)) to move

from mf to any m(new) with nc−1 non-zero components is equal to 1/(nc+1). For p
m
= 1

the model vector m contains only one non-zero component. This means that m cannot

be reduced any more. Further there are nc − 1 possibilities to enlarge m and there is one

possibility to stay at m. Therefore the probability g(m → m(new)) of enlarging the model

13



m to m(new) is equal to 1/nc if pm = 1. It is not difficult to see that in all other cases the

probability g(m → m(new)) of enlarging or reducing m to m(new) is equal to 1/(nc + 1).

Thus

g(m → m(new)) =





1
nc+1

, if 1 < p
m

≤ nc;

1
nc
, if p

m
= 1.

(3.6)

Figure 2 displays model switching probabilities for d = 3.

3.6 Acceptance probability for birth and death move

First we derive the Metropolis-Hastings step for the birth move B. Let m be an actual

model vector with q
m

zeroes, i.e. the corresponding decomposition has p
m

= nc − q
m

pair-copula factors. Therefore there are q
m

states to which model vector may move and

we fix one of them, further denoted by m(new). The model vectors m = (m1, . . . , mnc
)′ and

m(new) = (m(new)

1 , . . . , m(new)
nc

)′ differ only in one component, let say in the s−th component

ms. Thus, in contrast to m, the s−th component of m(new) is not 0 and m(new)

i = mi for

i 6= s.

According to the reversible jump MCMC algorithm (see Green, 1995), we have to

propose a new value for θ
(new)

m
(new)
s

= (ρ(new)
s , ν(new)

s )′. We do this by generating a ran-

dom vector η
m

(new)
s

from a bivariate normal distribution N2(θ̂
MLE

m
(new)
s

,Σ
m

(new)
s

) truncated

to (−1, 1) × (1, U) independently of θ
m
. Here θ̂

MLE

m
(new)
s

= (ρMLE
s , νMLE

s )′ denotes the corre-

sponding two dimensional sub-vector of the maximum likelihood estimate (MLE) θ̂
MLE

mf

in the full model mf . Aas, Czado, Frigessi, and Bakken (2009) derive an algorithm to

determine the likelihood in a PCC necessary for the MLE. Note that there are nc covari-

ance matrices Σ
m

(new)
s

’s, which govern the reversible jump mechanism. They are taken of

the form Σms
= diag(σ2

ms,ρ, σ
2
ms,ν), where diag(a, b) denotes a two dimensional diagonal

matrix with a and b on the main diagonal. The choice of the variances σ2
ms,ρ’s and σ2

ms,ν ’s

for ρ(new)
s ’s and ν(new)

s ’s will be discussed in the next section. The next step for the RJ

MCMC algorithm is to determine a bijection between (θ
m
,η

m
(new)
s

) and θ
(new)

m
(new). This can

be done in an obvious way by setting for i = 1, . . . , nc

θ
(new)

m
(new)
i

:=





θmi
, when m(new)

i = mi;

η
m

(new)
s

, when m(new)
s 6= ms.
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It is not difficult to see that the Jacobian of the above bijection is equal to 1. According

to Green (1995), the acceptance probability for the birth move is now given by

αB := min

{
1,

c(u|θ(new)

m
(new))

c(u|θ
m
)

·
π(θ(new)

m
(new))

π(θ
m
)

·
g(m(new) → m)

g(m → m(new))ϕ2(ηm
(new)
s

)
· 1

}
, (3.7)

where ϕ2(ηm
(new)
s

) is the bivariate density of the normal distribution N2(θ̂
MLE

m
(new)
s

,Σ
m

(new)
s

)

truncated to (−1, 1)×(1, U) and 1 corresponds to the Jacobian. Since (3.5) holds the prior

ratio π(θ(new)

m
(new))/π(θm

) results in 2(U−1). Note that prior model probabilities cancel out.

The death move D, where some θms
should be replaced with (0, 0)′, is the reverse move

to the birth move. Now the model vector m(new) moves to m. Therefore the acceptance

probability is obtained here by reverting the fractions on the right hand side of (3.7), i.e.

αD := min

{
1,

c(u|θ
m
)

c(u|θ(new)

m
(new))

·
π(θ

m
)

π(θ(new)

m
(new))

·
g(m → m(new))ϕ2(θ

(new)

ms
)

g(m(new) → m)
· 1

}
.

4 Simulation study

In this simulation study we want to investigate the performance of the RJ MCMC algo-

rithm with regard to its ability to identify the true underlying model. Further we want to

study the influence of U and Σ on the performance. We present results for two simulated

five-dimensional data sets of sample size n = 1000. The copula data are simulated from

two D-vine specifications. The first D-vine PCC model (Data 1) consist of 4 bivariate

t−copulas and 6 bivariate Gaussian copulas with zero correlation and is given by

c(u1, u2, u3, u4, u5) = ct12 · c
t
23 · c

t
34 · c

t
45 · c

G
13|2 · c

G
24|3 · c

G
35|4 · c

G
14|23 · c

G
25|34 · c

G
15|234. (4.1)

Here the upper indices t and G indicate on t− and Gaussian copula, respectively. In the

first specification we consider the following parameters ρ12 = ρ23 = ρ34 = ρ45 = 0.7 and

ν12 = ν23 = ν34 = ν45 = 5 for bivariate t−copulas. The second D-vine PCC model (Data

2) consist of 5 bivariate t−copulas and 5 bivariate Gaussian copulas with zero correlation

and is given by

c(u1, u2, u3, u4, u5) = ct12 · c
t
23 · c

G
34 · c

t
45 · c

G
13|2 · c

G
24|3 · c

t
35|4 · c

G
14|23 · c

t
25|34 · c

G
15|234. (4.2)

The following parameters of bivariate t−copulas ρ12 = −0.25, ρ23 = 0.47, ρ45 = 0.3,

ρ35|4 = −0.2, ρ25|34 = 0.7, ν12 = 4, ν23 = 15, ν45 = 7, ν35|4 = 5 and ν25|34 = 10 are chosen
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in the second specification. Since a bivariate Gaussian copula with association parameter

ρ = 0 is the independence copula with density 1, in both cases the true decomposition is

reduced and our RJ MCMC algorithm should detect this.

According to any RJ MCMC procedure the most visited model (decomposition) is

considered as the best model. We present results only on model (decomposition) selection

since Bayesian estimates within the best model exhibit high quality. Model visits are

quantified by posterior model probabilities. A posterior probability estimate of a model

is given by the relative frequency of the number of RJ MCMC iterations, at which the

model has been visited, with respect to the total number of RJ MCMC iterations. Thus

the best model has the highest estimated posterior model probability.

We consider two choices of U , namely U = 20 and U = 300, for each data set. The first

choice U = 20 is justified by the fact that the bivariate t− copula with parameters ρ and

ν > 20 does not differ much from the Gaussian copula with parameter ρ (see e.g. Figure

1). If ν < 20 then a difference between bivariate Gaussian and t copulas is numerically

more pronounced. This allows the independence copula (or the Gaussian copula with

ρ = 0) and t−copula to be well separated. For the second choice U = 300 a density of the

bivariate t-copula with ρ = 0 can be made much closer to 1, the density of independence

copula, to be distinguished numerically.

First we run the MH algorithm of Min and Czado (2010a) to tune proposal variances

for the full PCC in (4.1) to achieve acceptance rates of the MH algorithm between 20%

and 80% as suggested by Besag, Green, Higdon, and Mengersen (1995). Further they are

used in the stay move to update the corresponding parameters. It is worth to note that

we have observed only a negligible influence of the proposal variances, chosen according

to Besag, Green, Higdon, and Mengersen (1995), for the stay move on the posterior

probabilities. For the birth move we propose new values for θms
(s = 1, . . . , 10) according

to a N2(θ̂
MLE

ms
,Σ) distribution truncated to (−1, 1) × (1, U), where θ̂

MLE

mf
is the MLE for

θ restricted to be in [(−1, 1)× (1, 20)]10. Thus we use the same covariance matrix Σ

for all 10 pair-copulas. For each choice of U we consider two choices for Σ. In the first

case we consider Σ1 = diag(1002, 150002). This choice of the covariance matrix actually

corresponds to a nearly uniform distribution on (−1, 1)× (1, U). In contrast to the first

case we also consider Σ2 = diag(0.22, 52). This gives more weight to the proposal means.
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Further we use the ML estimate θ̂
MLE

mf
and the model vector mf of the full decomposition

(4.1) as initial values for θ and m, respectively.

There are 10 copula terms in (4.1) and in (4.2), which can be present or not in a model.

This implies that there are 1023 = 210 − 1 models to be explored by the RJ MCMC al-

gorithm. In order to enumerate them we treat their corresponding model vectors m as

a binary representation of a decimal number. If a pair-copula is present (not present)

in the decomposition than the corresponding entry of m is 1 (0). Thus the full decom-

position (4.1) has the model vector m = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) and it corresponds to

1023. The decomposition with four pair-copulas c12, c23, c34 and c45 has the model vector

m = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0) corresponding to 960. There is a one-to-one correspondence

between all possible models and the sequence of 1, . . . , 1023. Now we can enumerate

all possible submodels as M1, . . . ,M1023 by using a decimal representation of m as the

sub-index of M . The true model vector of the second D-vine PCC specification (4.2) is

m = (1, 1, 0, 1, 0, 0, 1, 0, 1, 0) and corresponds to M842.

For each data set we performed 4 RJ MCMC runs for each combination of Σ and U .

Each run consists out of 100,000 iterations. Using trace plots (not shown) for parameters

of visited models we see that 10,000 iterations are sufficient for burn-in. The resulting

posterior probability estimates P̂k := P̂ (Mk|data) are presented in Table 1. We identify

only models with
∑

k P̂k > 0.9 at least. From these we see that in all choices of U and

Σ, the true models M960 for Data 1 and M842 for Data 2 have the highest estimated

posterior model probability. However these estimates are considerable higher for U = 20

compared to U = 300 for both data sets and both choices of Σ. This is to be expected

since for U = 300 we are much closer to an identifiability problem than for U = 20. For all

cases considered the true model is detected with at least 0.8855 probability for U = 20,

while for U = 300 this value is only 0.5460. Therefore U = 20 provides a reasonable

choice for upper prior limit U . In the following applications we therefore choose U = 20.

The influence of the proposal covariances for the birth/death moves on P̂ks is minimal

indicating robustness of the RJ MCMC algorithm with regard to this choice.

Table 1 also displays proportions in % of accepted birth-death moves for each of the

simulated data. They vary between 1.38% and 5.52% and are of order or lower than ones

(4%, 7% and 18%) reported by Richardson and Green (1997). This is to be expected since
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Table 1: Estimated posterior model probabilities P̂k = P̂ (Mk|data) of all 1023 models

using different birth proposal covariances and upper prior limits for df’s for simulated

Data 1 and Data 2.
Data 1

Model Model indicator P̂k

Σ1 = diag(102, 15002) Σ2 = diag(0.22, 52)

U = 20 U = 300 U = 20 U = 300

M960 (1, 1, 1, 1, 0, 0, 0, 0, 0, 0) 0.8855 0.5460 0.9000 0.5743

M992 (1, 1, 1, 1, 1, 0, 0, 0, 0, 0) 0.0292 0.1748 0.0191 0.2069

M968 (1, 1, 1, 1, 0, 0, 1, 0, 0, 0) 0.0533 0.0878 0.0535 0.0545

M964 (1, 1, 1, 1, 0, 0, 0, 1, 0, 0) 0.0169 0.0363 0.0138 0.0397

M1000 (1, 1, 1, 1, 1, 0, 1, 0, 0, 0) 0.0013 0.0288 0.0015 0.0254

M976 (1, 1, 1, 1, 0, 1, 0, 0, 0, 0) 0.0026 0.0227 0.0034 0.0190

M962 (1, 1, 1, 1, 0, 0, 0, 0, 1, 0) 0.0060 0.0207 0.0055 0.0224

13 Mk’s with 44 Mk’s with 13 Mk’s with 28 Mk’s with∑
k
P̂k < 0.01

∑
k
P̂k < 0.1

∑
k
P̂k < 0.01

∑
k
P̂k < 0.1

% of accepted birth-death moves 1.57% 4.90% 1.89% 5.52%

Data 2

M842 (1, 1, 0, 1, 0, 0, 1, 0, 1, 0) 0.9582 0.8288 0.9758 0.8379

M970 (1, 1, 1, 1, 0, 0, 1, 0, 1, 0) 0.0088 0.0239 0.0112 0.0454

M874 (1, 1, 0, 1, 1, 0, 1, 0, 1, 0) 0.0057 0.0807 0.0064 0.0768

16 Mk’s with 23 Mk’s with 14 Mk’s with 15 Mk’s with∑
k
P̂k < 0.01

∑
k
P̂k < 0.1

∑
k
P̂k < 0.01

∑
k
P̂k < 0.1

% of accepted birth-death moves 1.38% 1.97% 1.93% 2.28 %

we have a multivariate problem, where not only the number of pair-copulas but also which

pair-copulas are chosen is very important. In general, proportions of accepted birth-death

moves are higher for D-vine PCC models capturing more (conditional) independencies

present in data (see also Section 5). Further it seems that using Σ2 as the proposal

covariance leads to a RJ MCMC scheme that traverses the model space slightly more

efficiently, as highlighted by a higher percentage of accepted birth/death moves.
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5 Applications

5.1 Swap data

As a first application we consider daily Euro swap rates with maturity of 2, 3, 5, 7 and

10 years, respectively, from Min and Czado (2010a). Swap rates are based on annually

compounded zero coupon swaps. The data covers the time slot from December 7, 1988

until May 21, 2001 containing 3182 working days. Following Min and Czado (2010a) each

margin of the original data has been filtered using an ARMA(1,1)-GARCH(1,1) to ob-

tain standardized independent residuals. Further the marginally independent residuals

are transformed with their empirical distribution function in order to achieve approxi-

mately uniform i.i.d. margins as advocated by Genest, Ghoudi, and Rivest (1995). Our

algorithm is applied to these transformed data which are denoted by S2, S3, S5, S7 and

S10, respectively. Note that for convenience the subindices indicate the maturity years of

swaps.

Deciding to fit a D-vine PCC model in a practical application, the variable labeling

for a D-vine PCC should be fixed. Aas, Czado, Frigessi, and Bakken (2009) originally

advocated to choose a bivariate dependence measure such as a tail dependence coefficient

(TDC) and reflect the most bivariate dependence in unconditional pair-copulas. However

one can also label variables according to some hypotheses one wants to check or even

do this somewhat arbitrarily. Here we follow Aas, Czado, Frigessi, and Bakken (2009) to

fix the variable labeling for the swap data. In Min and Czado (2010a) we looked at all

bivariate TDC of bivariate t copulas and found out that the ordering (S2, S3, S5, S7, S10)

reflects the most bivariate tail dependence in unconditional pair-copulas of a D-vine PCC.

Therefore the investigated full D-vine PCC with t pair-copulas contains 10 pair-copulas

and is given by

c(uS2, uS3, uS5, uS7, uS10) = c
S2S3

c
S3S5

c
S5S7

c
S7S10

c
S2S5|S3

c
S3S7|S5

c
S5S10|S7

(5.1)

× c
S2S7|S3S5

c
S3S10|S5S7

c
S2S10|S3S5S7

,

where for brevity we drop the arguments and the parameters of the pair-copulas. Min

and Czado (2010a) estimated parameters of Model (5.1) in a Bayesian framework and

came to conclusion that (5.1) could be reduced by the pair c
S2S10|S3S5S7

. In particular the
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Table 2: Estimated posterior model probabilities P̂k = P̂ (Mk|data) of all 1023 models for

the swap data. The upper prior limit U for ν is equal to 20.

Model PCC Formula P̂k

Σ1 = diag(102, 1502) Σ2 = diag(0.12, 52)

M1023: with all pairs c
S2S3

c
S3S5

c
S5S7

c
S7S10

×c
S2S5|S3

c
S3S7|S5

c
S5S10|S7

0.2866 0.3017

×c
S2S7|S3S5

c
S3S10|S5S7

c
S2S10|S3S5S7

M1022: without c
S2S3

c
S3S5

c
S5S7

c
S7S10

c
S2S10|S3S5S7

×c
S2S5|S3

c
S3S7|S5

c
S5S10|S7

0.7134 0.6983

×c
S2S7|S3S5

c
S3S10|S5S7

Mi for i 6= 1022, 1023

0 0

% of accepted birth-death moves 0.96% 1.53%

95% credibility interval for ρ
S2S10|S3S5S7

included zero and the corresponding estimated df

is large.

We run 100,000 RJ MCMC iterates for upper prior limit U = 20 for the df ν and

consider the first 10,000 iterations as burn-in. In (5.1) we tune proposal variances for the

stay move. Proposal covariance matrices Σ1 = diag(102, 1502) and Σ2 = diag(0.12, 52) are

used for the birth of new components. Further the MLE’s restricted to (−1, 1)×(1, 20) are

chosen as the starting values and mf = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)′ is chosen as the starting

model indicator. Note that there are a total of 210 − 1 = 1023 models to be compared.

Table 2 gives posterior model probability estimates for all models. Only two models have

been visited and this a consequence of high dependence present in data. As result a low

proportion of accepted birth and death moves is observed (see Table 2). Nevertheless RJ

MCMC iterates showed acceptable mixing. Note that the models are enumerated as in

Section 4. Model M1023 corresponds to the full decomposition (5.1) and Model M1022 is

associated with (5.1) reduced by the pair c
S2S10|S3S5S7

. Since Model M1022 has been visited

in 71.34% and 69.83% cases for the covariance matrix Σ1 and Σ2, respectively, we conclude

that the influence of the proposal distribution for birth components of the RJ mechanism

is negligible. Thus, M1022 is the best model and we restrict ourself now to its RJ MCMC

iterates.
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Having chosen the best model, its parameters can be estimated from those iterations

which belong to this best model. The estimated autocorrelation for each parameter in RJ

MCMC iterations for the best model is very high while the cross-correlation is of order

10−2. This high autocorrelation is to be expected since at each iteration the model can

move to nc − 1 or nc models, or stay in the current model resulting in a update of the

parameters. It will take some time, especially for large values of nc, before a possibility

to move in a “right” direction is given. Then the RJ mechanism will decide whether a

change of model should be performed.

For the best model M1022 we subsample corresponding MCMC iterations for each

margin. Each 200-th iteration has been recorded and this ensures low autocorrelation in

all marginal MCMC iterations. Figure 3 shows posterior kernel density estimates for the

parameters of M1022 and for both choices of the covariance matrices Σ1 (solid lines) and

Σ2 (dashed lines) based on every 200-th iterations. We see that both choices of Σ result

in very close posterior density estimates. Further the estimated posterior density of the

ρ’s are close to normal densities. Posterior mode estimates for ν are very low. Taking

into account high posterior estimates of ρs, this demonstrates heavy tail dependence

of the swap data. Finally note that Figure 3 also displays posterior density estimates

(dotted line) for the Bayesian analysis of the full decomposition (5.1) without model

selection based on each 20-th iteration of overall 10,000 iterations with burn-in 1000. It

should be also mentioned that numerical estimates of standard errors for MLE’s of PCC

(5.1) are only partially available since the numerical evaluation of the Hessian matrix

leads to a nonpositive variance estimate. In particular numerical variance estimates of

ρ̂MLE

S2S3
, ρ̂MLE

S3S5
, ρ̂MLE

S5S7
and ρ̂MLE

S7S10
are found to be negative.

5.2 Swiss counterfeit bank notes data

Following the Associate Editor’s suggestion to consider i.i.d. multivariate data, we apply

our RJ MCMC algorithm to part of the data set on genuine and counterfeit old Swiss 1000-

franc bank notes from Flury and Riedwyl (1988). The analyzed data represent geometric

measurements (in mm) on 100 Swiss 1000-franc counterfeit bank notes and a short variable

description is given in Table 3. Ignoring marginal models, we utilize empirical probability

transformation to create the copula data for our analysis. In contrast to the previous
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Figure 3: Estimated posterior densities of the parameters in Model M1022 for the swap

rate data based on each 200-th iterations and obtained with the covariance matrices Σ1

(solid lines) and Σ2 (dashed lines) for birth move. The corresponding estimated posterior

densities and posterior mode estimates of MCMC for the full decomposition are shown as

dotted lines. Vertical lines (solid, dashed or dotted) indicate posterior mode estimates.

application, we do not label variables to reflect highest tail dependencies. Instead we

consider just the original labeling of variables and the corresponding D-vine PCC model

for the six dimensional copula data with 15 pair-copulas is given by

c(u1, . . . , u6) = c12 · c23 · c34 · c45 · c56 · c13|2 · c24|3 · c35|4 · c46|5 (5.2)

× c14|23 · c25|34 · c36|45 · c15|234 · c26|345 · c16|2345.
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Table 3: Variables of the data on Swiss counterfeit bank notes.

Notation Short description

“1” – Length in mm of the bank note

“2” – Height in mm of the bank note, measured on the left

“3” – Height in mm of the bank note, measured on the right

“4” – Distance in mm of inner frame to the lower border

“5” – Distance in mm of inner frame to the upper border

“6” – Length in mm of the diagonal

As in the preceding application we run 100,000 RJ MCMC iterates for upper prior

limit U = 20 for the df ν and consider the first 10,000 iterations as burn-in. For the stay

move we tune proposal variances in the full model (5.2). The proposal covariance matrices

Σ1 = diag(102, 1502) and Σ2 = diag(0.12, 52) are used for the birth of new components.

Further the MLE’s restricted to (−1, 1) × (1, 20) are chosen as the starting values and

mf = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)′ is chosen as the starting model indicator. Note

that there are a total of 215 − 1 = 32767 models to be compared. Table 4 summarizes

posterior model probability estimates for all models. In contrast to the previous example,

this data set contains more conditional independencies and therefore significantly more

models have been visited and relatively high acceptance rate of birth-death moves is

observed (see Table 4). Models M26728 and M26729 possess the highest estimated posterior

model probabilities and are of equal magnitude. Estimated posterior model probabilities

of all other visited models are smaller or even significantly smaller than 0.03.

From Table 4 we see that depending on the RJ mechanism (i.e. on the birth proposal

covariance matrix) the superiority of the models alternates slightly. Thus we cannot dis-

tinguish between Models M26728 and M26729. However if we apply our algorithm in the

same setup as above but with the upper prior limit U = 10 then we obtain the estimated

posterior model probabilities of order 0.36 for M26728 and 0.24 for M26729 independently of

both choices of the covariance matrices. As our simulation study, this application clearly

illustrates the influence of the upper prior limit U for the df parameter ν on model selec-

tion results. In general a lower value of U is preferred since this allows to separate models
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Table 4: Estimated posterior model probabilities P̂k = P̂ (Mk|data) of all 32767 models

for the data on Swiss counterfeit bank notes. The upper prior limit U for ν is equal to 20.

Model Model indicator P̂k

Σ1 = diag(102, 1502) Σ2 = diag(0.12, 52)

M26728: (1,1,0,1,0,0,0,0,1,1,0,1,0,0,0)

0.2731 0.2449

M26729: (1,1,0,1,0,0,0,0,1,1,0,1,0,0,1)

0.2427 0.2660

Mk P̂k < 0.0300 P̂k < 0.0300

for 372 Models for 427 Models

% of accepted birth-death moves 6.54% 9.08%

more.

Note that models M26728 and M26729 are actually in some sense very close. They only

disagree on the conditional independence between “1” (banknote length) and “6” (diag-

onal length) given “2”, “3”, “4” and “5” and assume the same eight (conditional) inde-

pendencies. In particular it seems that the height of the banknote (“3”) on the right and

the distance of inner frame to the lower border (“4”) are independent. This could indicate

on a nonstable (nonprofessional) process of frame stamping. To check this hypothesis, we

have analyzed the data on genuine old Swiss 1000-franc bank notes and found that there

is no unconditional independencies (i.e all unconditional copulas are present) even among

the four most visited D-vine PCC models for any choice of the covariance matrices.

6 Conclusions and discussions

This paper considers a RJ MCMC algorithm for D-vine PCCs based on bivariate t cop-

ulas to simplify them by detecting (conditional) independence in data. The proposed RJ

MCMC algorithm consists of only birth and death moves since so-called split and com-

bine moves (see e.g. Richardson and Green, 1997) do not have sense in our setup. RJ

MCMC iterates visit only those models which are important for data. It should be noted
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that naive model selection for D-vine PCCs based on credibility interval from MCMC is

always possible but our approach is more advanced and the first one, which considers RJ

MCMC in the context of copulas. Further the proposed RJ MCMC algorithm estimates

a D-vine PCC model and its parameters simultaneously.

The simulation study shows that the prior upper limit U for df ν has a significant

impact on estimates of posterior model probabilities. The reason is that for large U a

near identifiability problem between a t−copula and the independence copula can occur.

Therefore we suggest to use U = 20, for which RJ MCMC identified true models of

artificial data with high posterior model probability. Further we have observed that the

results of RJ MCMC are robust with regard to the choice of proposal distribution for the

birth move. We have used other bivariate truncated normal distributions with different

magnitude of marginal variances and obtained very similar results. We have even employed

a uniform distribution on (−1, 1) × (1, 20) and the corresponding results hardly deviate

from the results presented here. As a rule of thumb we propose to use the covariance

matrix Σ = diag(1, 102) for U = 20 since the support intervals of ρ (−1, 1) and of ν (1, 20)

are always covered by the corresponding 95% probability intervals of the N(ρ̂MLE
s , 12) and

N(ν̂MLE
s , 102) distributions whatever the MLE’s ρ̂MLE

s and ν̂MLE
s are. Min and Czado (2010a)

observed that the full Bayesian estimation of D-vine PCCs is robust with respect to prior

distributions. Therefore we believe that any reasonable choice of the proposal distribution

and prior distributions for the proposed RJ MCMC algorithm will give similar results if

there is one dominating model behind data. Finally note that computational time of our

RJ MCMC algorithm for the presented analyses vary between 5 and 24 hours on a single

core machine, which makes them practical and usable.

A richer family of multivariate copulas can be obtained by using pair-copulas from a

catalogue of bivariate copulas including the independence copula. For model selection one

can address now the choice of a copula family through the choice of each bivariate copula

in a PCC. We envision here that appropriate RJ MCMC algorithms can be developed

and implemented to address this model selection problem. Further recent econometric

research work on copula models (e.g. Patton (2004)) show that copulas with parameters

having time varying structure can capture the dependence structure better than copulas

with constant parameters. Naturally a generalization for PCCs emerges here. These are
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topics of future research.

Joint estimation of marginal and copula parameters has recently been found to be

important. Thus Kim, Silvapulle, and Silvapulle (2007) have shown that a separate es-

timation of the marginal parameters may have an essential influence on the parameter

estimation of multivariate copulas. Therefore inference based on joint estimates might

be lead to quite different results compared to the inference ignoring estimation errors in

the marginal parameters. For financial applications, one usually starts with multivariate

time series and in a first step, one estimates for each marginal time series its structure

as for example an ARMA or GARCH structure. In a second step, one determines stan-

dardized residuals, which are assumed to form an i.i.d marginal sample. Depending on

whether the distribution of the residuals are known or unknown, one uses a parametric

or empirical probability transform to transform to data with approximate uniform mar-

gins. This separates the marginal distribution from the dependence structure. In a final

step, this dependency is modelled using a multivariate copula and copula parameter are

estimated. The statistical properties of such two step estimation procedures are inves-

tigated by Joe (2005) for a known standardized residual distribution and by Chen and

Fan (2006) for unknown standardized residual distribution, respectively. Czado, Gärtner,

and Min (2010) have solved the above joint estimation problem in a Bayesian frame-

work when marginal models are described by AR(1) models. Joint Bayesian estimation of

more general marginal models such as ARMA-GARCH or stochastic volatility and PCC

parameters is another topic of future research.
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