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Multivariate Lévy-driven mixed moving average (MMA) processes of the
type Xt =

∫ ∫
f(A, t − s)Λ(dA, ds) cover a wide range of well known and

extensively used processes such as Ornstein-Uhlenbeck processes, superpo-
sitions of Ornstein-Uhlenbeck (supOU) processes, (fractionally integrated)
CARMA processes and increments of fractional Lévy processes. In this pa-
per, we introduce multivariate MMA processes and give conditions for their
existence and regular variation of the stationary distributions. Furthermore,
we study the tail behavior of multivariate supOU processes and of a stochas-
tic volatility model, where a positive semidefinite supOU process models the
stochastic volatility.
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1. Introduction

In many areas of application Lévy-driven processes are used for modeling time series.
One elementary example of the processes used is the Lévy-driven Ornstein-Uhlenbeck
(OU) type process

Xt =

t∫
−∞

e−a(t−s)dLs,

where L is a Lévy process (see Sato (2002) for a detailed introduction). These processes
are used, for instance, to model the variance (i.e., the volatility in the terminology of
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mathematical finance) in the OU type stochastic volatility model of Barndorff-Nielsen
and Shephard (2001), which has been extended to the multivariate setting by Pigorsch
and Stelzer (2009). Even though this model has many nice properties (e.g. stochastic
volatility with jumps and clustering, heavy tails etc.) it does not account for the long
memory effects that can often be found in real data. This problem can be bypassed by
the superposition of OU type processes which leads to supOU processes of the type

Xt =

∫
ℝ

t∫
−∞

ea(t−s)Λ(da, ds),

where Λ is a so-called Lévy basis. These processes have been introduced by Barndorff-
Nielsen (2001), extended to a multivariate setting by Barndorff-Nielsen and Stelzer
(2010) and are used in the multivariate supOU type stochastic volatility model of
Barndorff-Nielsen and Stelzer (2009). Bayesian estimation of univariate supOU stochas-
tic volatility models is e.g. carried out in Griffin and Steel (2010).
The aim of this paper is to analyze the tail behavior of the multivariate mixed moving
average (MMA) processes

Xt =

∫
M−

d

∫
ℝ

f(A, t− s)Λ(dA, ds)

that allow for a general kernel function f : M−d × ℝ 7→ Mn,d (Λ is an ℝd-valued Lévy
basis in this setting). They reach back to Surgailis et al. (1993) and they cover both, OU
and supOU processes, as well as CARMA processes, fractionally integrated CARMA
processes (cf. Brockwell (2004), Marquardt (2007)) and increments of fractional Lévy
processes (cf. Marquardt (2006), Bender et al. (2010) and references therein). The tail
behavior of univariate MMA processes has already been studied by Fasen (2005) and
Jacobsen et al. (2009) and we extend the results to a multivariate setting and analyze
also the special case of supOU processes and the related stochastic volatility model
given by

dXt = atdt+ Σ
1/2
t dWt + Ψ(dLt)

X0 = 0,

where a is an ℝd-valued predictable process, W is the standard d-dimensional Brownian
motion, L is the Lévy process associated with Λ, Ψ : Sd 7→ ℝd is a linear operator
and the stochastic volatility process (Σt)t∈ℝ is a matrix-valued positive semidefinite
supOU process. The multivariate extension is non-trivial, since the definition of regular
variation is considerably more involved in the multivariate setting and we have to take
the peculiarities created by the use of matrices into account.
In finance understanding the tail behavior is of great importance for risk assessment and
risk management. Moreover, our results allow one to understand how one can model
the so-called “correlation breakdown” effect (viz. in times of extreme crisis basically all
correlations get close to one) which is regarded by econometrics to be typically present
in observed financial data.
The paper is structured as follows. We start by giving some general notation in Section
2.1. In Section 2.2 we will give a short excursion to multivariate regular variation that
we need when we analyze the tail behavior of the processes given. An introduction to
Lévy bases and conditions for the existence of integrals with respect to Lévy bases will
be given in Section 2.3. Based on these preliminaries, we can then define and analyze
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multivariate mixed moving average processes in Section 3. We give sufficient conditions
for the mixed moving average processes to be regularly varying given that the driving
Lévy basis is regularly varying. Furthermore, we examine the restrictiveness of the
conditions by establishing closely related necessary conditions. In Section 4 we apply
these results to multivariate supOU processes and give some more accessible conditions
for this special case. Finally, we consider a stochastic volatility model that is based on
positive semidefinite supOU processes and analyze its tail behavior in Section 5, which
is very important for risk assessment.

2. Preliminaries

2.1. Notation

Given the real numbers ℝ we use the notation ℝ+ for the positive real numbers and
ℝ− for the negative real numbers, both without 0. The Borel sets are denoted by ℬ,
where ℬb are the bounded Borel sets and ℬ� := {B ∈ ℬ : �(∂B) = 0} describes all
Borel sets with no �-mass at the boundary ∂B. The closure of a set B is given by B. S
is the unit sphere, � is the Lebesgue measure on ℝ and N(0, Id) is the standard normal
distribution in ℝd.
For matrices, Mn,d is the set of all n× d matrices and Md the set of all d× d matrices.
M−d is the set of all d×d matrices with eigenvalues having strictly negative real part. Id
is the d×d identity matrix, Sd denotes the symmetric d×d matrices and S+

d the positive
semidefinite d× d matrices. We write AT for the transposed of a matrix A and ∥A∥ for
its matrix norm. Since all norms are equivalent, the type of norm is not important for
our results, but if we make no further specifications, we use the operator norm induced
by the Euclidean norm. j(A) := min∥x∥=1 ∥Ax∥ is the modulus of injectivity of A.
vec(A) is the well known operation that creates a vector by stacking the columns of an
n × n matrix A below each other to obtain an ℝn2

-valued vector and ⊗ is the tensor
product of two matrices.
Vague convergence is denoted by

v−→. It is defined on the one-point uncompactification

ℝd∖{0}, which assures that the sets B ⊆ Vr := {x : ∥x∥ > r}, r > 0, that are bounded
away from the origin can be referred to as the relatively compact sets in the vague
topology. In this topology, the compact sets shall be denoted by K and the open sets
by G.

2.2. Multivariate Regular Variation

For the analysis of the tail behavior of multivariate stochastic processes, we use the well
established concept of regular variation. However, there is not only one single definition
of multivariate regular variation, but many different equivalent ones. For detailed and
very good introductions into the different approaches to multivariate regular variation,
we refer the reader to Resnick (2007) and Lindskog (2004). We start with a definition
of multivariate regular variation from Hult and Lindskog (2006).

Definition 2.1 (Multivariate Regular Variation). A random vector X ∈ ℝd is
called regularly varying with index � > 0, if there exists a slowly varying function

l : ℝ 7→ ℝ and a nonzero Radon measure � defined on ℬ(ℝd∖{0}) with �(ℝd∖ℝd) = 0
such that, as u→∞,

u�l(u)P (u−1X ∈ ⋅) v−→ �(⋅)

on ℬ(ℝd∖{0}). We write X ∈ RV (�, l, �).
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Similarly, we call a Radon measure � regularly varying, if �, l and � exist as above with

u�l(u)�(u⋅) v−→ �(⋅)

for u→∞ and we write � ∈ RV (�, l, �).
A stochastic process (Xt)t∈ℝ ∈ ℝd is called regularly varying with index �, if all its finite
dimensional distributions are regularly varying with index �.

In Appendix A alternative definitions, which are very intuitive and widely used, are
discussed. From the proof of Theorem A.1 we easily see that the relation

�(tB) = t−��(B)

holds for the measure � in Definition 2.1. We make use of this property throughout
this paper.
In this paper, we will deal with infinitely divisible random variables and processes. For
those, the following very useful connection between regular variation of the random
variable and its Lévy measure exists.

Theorem 2.2 (Hult and Lindskog (2006), Proposition 3.1). Let X ∈ ℝd be an
infinitely divisible random vector with Lévy measure �. Then X ∈ RV (�, l, �) if and
only if � ∈ RV (�, l, �).

Furthermore, we will also need regular variation of matrix-valued random variables and
processes. If we take into account the well known vec operation that creates a vector
by stacking the columns of a matrix below each other, we can simply apply the above
definition. This allows us to use all known results for the ℝd-valued case also in the
matrix-valued case.

2.3. Lévy Bases and Integration

In this chapter we recall ℝd-valued Lévy bases, which are generalizations of Lévy pro-
cesses, and the related integration theory. For a general introduction to Lévy processes
and infinitely divisible distributions see Sato (2002). Lévy bases are also called infinitely
divisible independently scattered random measures (i.d.i.s.r.m.) in the literature. For
more details on Lévy bases see Rajput and Rosiński (1989) and Pedersen (2003).

Definition 2.3 (Lévy basis). An ℝd-valued random measure Λ = (Λ(B)) with B ∈
ℬb(M−d × ℝ) is called a Lévy basis, if:

∙ The distribution of Λ(B) is infinitely divisible for all B ∈ ℬb(M−d × ℝ).

∙ For any n the random variables Λ(B1), . . . ,Λ(Bn) are independent for pairwise
disjoint sets B1, . . . , Bn ∈ ℬb(M−d × ℝ).

∙ For any pairwise disjoint sets (Bi)i∈N ∈ ℬb(M−d ×ℝ) with
∪
n∈N Bn ∈ ℬb(M

−
d ×ℝ)

we have Λ(
∪
n∈N Bn) =

∑
n∈N Λ(Bn) almost surely.

In this paper we restrict ourselves to time-homogeneous and factorisable Lévy bases,
i.e. Lévy bases with characteristic function

E
(
eiu

T Λ(B)
)

= e'(u)Π(B) (2.1)
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for all u ∈ ℝd and B ∈ ℬb(M−d × ℝ), where Π = � × � is the product of a probability
measure � on M−d (ℝ) and the Lebesgue measure � on ℝ and

'(u) = iuT − 1

2
uTΣu+

∫
ℝd

(
eiu

T x − 1− iuTx1[−1,1](∥x∥)
)
�(dx)

is the cumulant transform of an infinitely divisible distribution with characteristic triplet
(,Σ, �). By L we denote the underlying Lévy process associated with (,Σ, �) and
given by Lt = Λ(M−d × (0, t]) and L−t = Λ(M−d × [−t, 0)) for t ∈ ℝ+. The quadruple
(,Σ, �, �) determines the distribution of the Lévy basis completely and therefore it is
called the generating quadruple. A definition of Sd-valued Lévy-bases follows along the
same lines.
The main focus of this paper, the mixed moving average processes, are defined by
integrating over a function f with respect to a Lévy basis. Regarding the existence of
these integrals we recall the following multivariate extension of Rajput and Rosiński
(1989, Theorem 2.7).

Theorem 2.4. Let Λ be an ℝd-valued Lévy-Basis with characteristic function of the
form (2.1) and let f : M−d ×ℝ 7→Mn,d be a measurable function. Then f is Λ-integrable
as a limit in probability in the sense of Rajput and Rosiński (1989), if and only if∫

M−
d

∫
ℝ

∥∥∥∥f(A, s) +

∫
ℝd

f(A, s)x
(
1[0,1] (∥f(A, s)x∥)− 1[0,1] (∥x∥)

)
�(dx)

∥∥∥∥ds�(dA) <∞,

∫
M−

d

∫
ℝ

∥f(A, s)Σ f(A, s)T ∥ds�(dA) <∞ and

∫
M−

d

∫
ℝ

∫
ℝd

(
1 ∧ ∥f(A, s)x∥2

)
�(dx)ds�(dA) <∞.

If f is Λ-integrable, the distribution of X0 =
∫
M−

d

∫
ℝ+ f(A, s)Λ(dA, ds) is infinitely

divisible with characteristic triplet (int,Σint, �int) given by

int =

∫
M−

d

∫
ℝ

⎛⎝f(A, s) +

∫
ℝd

f(A, s)x
(
1[−1,1] (∥f(A, s)x∥)− 1[−1,1] (∥x∥)

)
�(dx)

⎞⎠ ds�(dA),

Σint =

∫
M−

d

∫
ℝ

f(A, s)Σ f(A, s)T ds�(dA) and

�int(B) =

∫
M−

d

∫
ℝ

∫
ℝd

1B(f(A, s)x)�(dx)ds�(dA) for all Borel sets B ⊆ ℝd.

We give now some more accessible sufficient conditions for the special case of a regular
varying driving Lévy-measure �. Therefore, we define the set

L�(�× �) :=

⎧⎨⎩f : M−d × ℝ 7→Mn,d measurable,

∫
M−

d

∫
ℝ

∥f(A, s)∥�ds�(dA) <∞

⎫⎬⎭ .

The following theorem is a multivariate analogue of Fasen (2005, Proposition 3.1.),
which is non-trivial due to the peculiarities arising from the used matrices.
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Theorem 2.5. Let Λ be a Lévy-Basis with values in ℝd and characteristic quadruple
(,Σ, �, �), let � be regularly varying with index � and let f : M−d × ℝ 7→ Mn,d. Then
f is Λ-integrable in the sense of Rajput and Rosiński (1989) and X0 is well defined
and infinitely divisible with the characteristic triplet given in Theorem 2.4, if one of the
following conditions hold:

(i) L1 is �-stable with � ∈ (0, 2)∖{1} and f ∈ L� ∩ L1.

(ii) f is bounded and f ∈ L� for some � < �, � ≤ 1.

(iii) f is bounded, EL1 = 0, � > 1 and f ∈ L� for some � < �, � ≤ 2.

Proof. We will prove the result by validating the three conditions given in Theorem 2.4
in each of the three settings.
(i). From Sato (2002, Theorem 14.3) we know that in the �-stable case Σ = 0 and
there is a finite measure � on the unit sphere S such that

�(B) =

∫
S

∞∫
0

1B(r�)

r1+�
dr�(d�) for B ∈ ℬd.

This yields∫
M−

d

∫
ℝ

∥∥∥∥f(A, s) +

∫
ℝd

f(A, s)x
(
1[0,1] (∥f(A, s)x∥)− 1[0,1] (∥x∥)

)
�(dx)

∥∥∥∥ds�(dA)

=

∫
M−

d

∫
ℝ

∥∥∥∥f(A, s) +

∫
S

∞∫
0

f(A, s)�
(
1[0,1] (∥f(A, s)r�∥)− 1[0,1] (∥r�∥)

) dr
r�
�(d�))

∥∥∥∥ds�(dA)

=

∫
M−

d

∫
ℝ

∥∥∥∥f(A, s) + f(A, s)

∫
S

�

∥f(A,s)�∥−1∫
1

r−�dr�(d�))

∥∥∥∥ds�(dA)

=

∫
M−

d

∫
ℝ

∥∥∥∥f(A, s) + f(A, s)

∫
S

�
1

1− �
(
∥f(A, s)�∥�−1 − 1

)
�(d�))

∥∥∥∥ds�(dA)

≤
∫
M−

d

∫
ℝ

(
∥f(A, s)∥  +

∥f(A, s)∥�

1− �
�(S) +

∥f(A, s)∥
1− �

�(S)

)
ds�(dA)

<∞,

where we used f ∈ L� ∩ L1. For the third condition in Theorem 2.4 we get∫
M−

d

∫
ℝ

∫
ℝd

(
1 ∧ ∥f(A, s)x∥2

)
�(dx)ds�(dA) =

=

∫
M−

d

∫
ℝ

∫
ℝd

1{∥f(A,s)x∥≥1}�(dx)ds�(dA)+ (2.2)

+

∫
M−

d

∫
ℝ

∫
ℝd

∥f(A, s)x∥21{∥f(A,s)x∥≤1}�(dx)ds�(dA).

The first term on the right hand side can be bounded by∫
M−

d

∫
ℝ

∫
ℝd

1{∥f(A,s)x∥≥1}�(dx)ds�(dA) =
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=
1

�

∫
M−

d

∫
ℝ

∫
S

∥f(A, s)�∥��(d�)ds�(dA)

≤ �(S)

�

∫
M−

d

∫
ℝ

∥f(A, s)∥�ds�(dA) <∞

and for the second term on the right hand side we get∫
M−

d

∫
ℝ

∫
ℝd

∥f(A, s)x∥21{∥f(A,s)x∥≤1}�(dx)ds�(dA) =

=
1

2− �

∫
M−

d

∫
ℝ

∫
S

∥f(A, s)�∥��(d�)ds�(dA)

≤ �(S)

2− �

∫
M−

d

∫
ℝ

∥f(A, s)∥�ds�(dA) <∞.

(ii) and (iii).The second condition∫
M−

d

∫
ℝ

∥f(A, s)Σ f(A, s)T ∥ds�(dA) ≤ ∥Σ∥
∫
M−

d

∫
ℝ

∥f(A, s)∥2ds�(dA) <∞

follows from the boundedness of f together with f ∈ L� for some � ≤ 2. For the third
condition we use (2.2) again. For the first term on the right hand side of (2.2) we use
the inequality

∥f(A, s)∥ ∥x∥ ≥ ∥f(A, s)x∥ ≥ 1

which implies

∥x∥ ≥ 1

∥f(A, s)∥
.

This yields∫
M−

d

∫
ℝ

∫
ℝd

1{∥f(A,s)x∥≥1}�(dx)ds�(dA) ≤
∫
M−

d

∫
ℝ

�

({
∥x∥ ≥ 1

∥f(A, s)∥

})
ds�(dA).

Now we can apply the Potter bounds (Resnick (2007, Proposition 2.6. (ii))), giving the
existence of some t0 such that for all t ≥ t0 a regular varying function (in our case �) can
be bounded. Therefore, we distinguish the cases 1/∥f(A, s)∥ > t0 and 1/∥f(A, s)∥ < t0.
For the first case we set C̃ := sup{∥f(A, s)∥ : ∥f(A, s)∥ < 1/t0} ≤ 1/t0. Then we can
apply the Potter bounds for t = 1/C̃ ≥ t0 to get∫

M−
d

∫
ℝ

1{1/∥f(A,s)∥>t0} �

({
∥x∥ ≥ 1

∥f(A, s)∥

})
ds�(dA) ≤

≤ (1 + �− �)
∫
M−

d

∫
ℝ

1{1/∥f(A,s)∥>t0} �

({
∥x∥ ≥ 1

C̃

})(
∥f(A, s)∥

C̃

)�
ds�(dA)

<∞.
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In the other case we set C := sup ∥f(A, s)∥ <∞ and obtain∫
M−

d

∫
ℝ

1{1/∥f(A,s)∥≤t0} �

({
∥x∥ ≥ 1

∥f(A, s)∥

})
ds�(dA) ≤

≤
∫
M−

d

∫
ℝ

1{1/∥f(A,s)∥≤t0} �

({
∥x∥ ≥ 1

C

})
ds�(dA)

= �

({
∥x∥ ≥ 1

C

})
� × �

({
(A, s) : ∥f(A, s)∥ ≥ 1

t0

})
<∞,

since f ∈ L�. The second term on the right hand side of (2.2) can be bounded by∫
M−

d

∫
ℝ

∫
ℝd

∥f(A, s)x∥21{∥f(A,s)x∥≤1}�(dx)ds�(dA) =

=

∫
M−

d

∫
ℝ

∫
∥x∥<1

∥f(A, s)x∥21{∥f(A,s)x∥≤1}�(dx)

+

∫
∥x∥≥1

∥f(A, s)x∥21{∥f(A,s)x∥≤1}�(dx)ds�(dA)

≤
∫
M−

d

∫
ℝ

∥f(A, s)∥2ds�(dA)

∫
∥x∥<1

∥x∥2�(dx)

+

∫
M−

d

∫
ℝ

∥f(A, s)∥�ds�(dA)

∫
∥x∥≥1

∥x∥��(dx)

<∞,

where we used the fact that for bounded functions f the assumption f ∈ L�, � < 2,
implies f ∈ L2. Moreover, note that

∫
∥x∥≥1 ∥x∥

��(dx) < ∞ by Sato (2002, Corollary

25.8), since 0 < � < � and hence the underlying Lévy process has a finite �th moment.
The first condition in Theorem 2.4 can be reformulated as∫

M−
d

∫
ℝ

∥∥∥∥f(A, s) +

∫
ℝd

f(A, s)x
(
1[0,1] (∥f(A, s)x∥)− 1[0,1] (∥x∥)

)
�(dx)

∥∥∥∥ds�(dA) =

=

∫
M−

d

∫
ℝ

∥∥∥∥f(A, s) +

∫
∥x∥>1

f(A, s)x1{∥f(A,s)x∥≤1}�(dx)

−
∫

∥x∥≤1

f(A, s)x1{∥f(A,s)x∥>1}�(dx)

∥∥∥∥ds�(dA) =: T.

In case (ii) we use ∥f(A, s)∥ ≤ C and thus T can be bounded by

T ≤
∫
M−

d

∫
ℝ

∥f(A, s)∥�
(
C1−�∣∣+

∫
∥x∥>1

∥x∥��(dx) + C1−�
∫

∥x∥∈( 1
C ,1]

∥x∥��(dx)

)
ds�(dA).
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In case (iii), we know  = −
∫
∥x∥>1 x�(dx). Since � > 1 and � < �, we can arbitrarily

choose a � ∈ (�, �) with � > 1. This yields

T =

∫
M−

d

∫
ℝ

∥∥∥∥− ∫
∥x∥>1

f(A, s)x�(dx) +

∫
∥x∥>1

f(A, s)x1{∥f(A,s)x∥≤1}�(dx)

−
∫

∥x∥≤1

f(A, s)x1{∥f(A,s)x∥>1}�(dx)

∥∥∥∥ds�(dA)

≤
∫
M−

d

∫
ℝ

∫
ℝd

∥f(A, s)x∥1{∥f(A,s)x∥>1}�(dx)ds�(dA)

≤
∫
M−

d

∫
ℝ

∫
ℝd

∥f(A, s)x∥�1{∥x∥> 1
C
}�(dx)ds�(dA)

≤ C�−�
∫
M−

d

∫
ℝ

∥f(A, s)∥�ds�(dA)

∫
∥x∥> 1

C

∥x∥��(dx) <∞.
□

3. Mixed Moving Average Processes

Mixed Moving Average (short MMA) processes have been first introduced by Surgailis
et al. (1993) in the univariate stable case. As we have already mentioned in the previous
chapters, they are integrals over a given kernel function with respect to a Lévy basis.

Definition 3.1 (Mixed Moving Average Process). Let Λ be an ℝd-valued Lévy
basis on M−d ×ℝ and let f : M−d ×ℝ 7→Mn,d be a measurable function ( kernel function).
If the process

Xt :=

∫
M−

d

∫
ℝ

f(A, t− s)Λ(dA, ds)

exists in the sense of Theorem 2.4 for all t ∈ ℝ, it is called an n-dimensional mixed
moving average process (short MMA process).

Note that we could also define “generalized MMA” processes by integrating over a
slightly more general function g : M−d × ℝ× ℝ 7→Mn,d, which gives us

Xt =

∫
M−

d

∫
ℝ

g(A, t, s)Λ(dA, ds).

However, the extension of all upcoming results is trivial, so we stated the results for
the notationally easier case of Definition 3.1. Moreover, an MMA process is obviously
always stationary and this needs not to be true for generalized MMA processes. Note
also that M−d can obviously be replaced by Md or basically any other Borel set. Again
we state everything for M−d , because this eases notation and is the canonical choice in
the supOU case.
Existence of the MMA processes follows directly from Theorem 2.4 and Theorem 2.5.
Especially Theorem 2.5 turns out to be very useful in this setting, since it is based on
similar conditions compared to the key conditions of the following theorem: Regular
variation of the driving Lévy measure � and f ∈ L�(�× �).

9



3. Mixed Moving Average Processes

Theorem 3.2. Let Λ be an ℝd-valued Lévy basis on M−d ×ℝ with generating quadruple
(,Σ, �, �) and let � ∈ RV (�, l, ��). If X0 =

∫
M−

d

∫
ℝ+ f(A, s)Λ(dA, ds) exists (in the

sense of Theorem 2.4), f ∈ L�(�×�) and ��(f−1(A, s)ℝn) = 0 does not hold for �×�
almost-every (A, s), then X0 ∈ RV (�, l, �X) with

�X(B) :=

∫
M−

d

∫
ℝ

∫
ℝd

1B (f(A, s)x)��(dx)ds�(dA).

Proof. From Theorem 2.4 we know that the distribution of X is infinitely divisible.
Following Theorem 2.2 it is sufficient to prove that its Lévy measure �X is regularly
varying. The concrete representation

�X =

∫
M−

d

∫
ℝ

∫
ℝd

1B(f(A, s)x)�(dx)ds�(dA)

is also known from Theorem 2.4. Regular variation of � then yields the existence of

a constant � > 0, a slowly varying function l and a Radon measure �� on ℬ(ℝd∖{0})
with ��(ℝd∖ℝd) = 0 such that, as u→∞,

u�l(u)�(u ⋅) v−→ ��(⋅).

Using Resnick (2007, Theorem 3.2) and Fatou’s Lemma, we have that for all compact
sets B ∈ K

lim sup
u→∞

u�l(u)

∫
M−

d

∫
ℝ

∫
ℝd

1uB (f(A, s)x) �(dx)ds�(dA) ≤

≤
∫
M−

d

∫
ℝ

lim sup
u→∞

u�l(u)

∫
ℝd

1uB (f(A, s)x) �(dx)ds�(dA)

≤
∫
M−

d

∫
ℝ

∫
ℝd

1B (f(A, s)x)��(dx)ds�(dA)

and conversely for all open sets B ∈ G that are relatively compact

lim inf
u→∞

u�l(u)

∫
M−

d

∫
ℝ

∫
ℝd

1uB (f(A, s)x) �(dx)ds�(dA) ≥

≥
∫
M−

d

∫
ℝ

lim inf
u→∞

u�l(u)

∫
ℝd

1uB (f(A, s)x) �(dx)ds�(dA)

≥
∫
M−

d

∫
ℝ

∫
ℝd

1B (f(A, s)x)��(dx)ds�(dA).

Note here that for any set B ∈ K (resp. G) also the preimage f(A, s)−1(B) ∈ K (resp.
G) for all A, s, since f(A, s) is for fixed A, s a linear mapping. This yields the vague
convergence

u�l(u)�X(u ⋅) = u�l(u)

∫
M−

d

∫
ℝ

∫
ℝd

1u ⋅ (f(A, s)x) �(dx)ds�(dA)

10



3. Mixed Moving Average Processes

v−→
∫
M−

d

∫
ℝ

∫
ℝd

1(⋅) (f(A, s)x)��(dx)ds�(dA) = �X(⋅).

It remains to prove that �X is again a Radon measure with �X(ℝn∖ℝn) = 0. The
second property follows directly from the observation

1(ℝ
n∖ℝn)(f(A, s)x) ≤ 1(ℝ

n∖ℝn)(x).

For the local finiteness of �X , take some compact B ∈ ℬ(ℝd∖{0}), i.e. there exists some
finite r > 0 such that B ⊆ Vr := {x : ∥x∥ > r}. For all x with f(A, s)x ∈ B ⊆ Vr we
have r < ∥f(A, s)x∥ ≤ ∥f(A, s)∥ ∥x∥. By using f ∈ L�(� × �) and the local finiteness
of �� , we get

�X(B) ≤
∫
M−

d

∫
ℝ

∫
ℝd

1(r,∞) (∥f(A, s)∥ ∥x∥)��(dx)ds�(dA)

=

∫
M−

d

∫
ℝ

��(
{
x : ∥x∥ ≥ ∥f(A, s)∥−1r

}
)1ℝ∖{0}(∥f(A, s)∥) ds�(dA)

= ��(Vr)

∫
M−

d

∫
ℝ

∥f(A, s)∥�ds�(dA) <∞.
□

The theorem shows that the tail behavior of the driving Lévy measure determines the
tail behavior of the MMA process. Since the Lévy measure is related only to the jumps
of the underlying Lévy process, we see that the regular variation of the MMA process is
caused by the jumps of the underlying Lévy process. Furthermore, we intuitively have
that the extremes of the MMA process are caused by a single extremely big jump in
the Lévy basis.

Remark 3.3. Another important consequence of the theorem is that we know the
concrete measure �X of regular variation. This is useful to describe the location or mass
of the extremes in ℝn. It is similar to the spectral measure in an analogue definition
of regular variation, see Theorem A.1 3. See also Example 4.4 for some calculations of
these measures in the Ornstein-Uhlenbeck case.

As mentioned before, Theorem 3.2 uses two crucial conditions. The first one is the
regular variation of the driving Lévy measure, meaning that the tail behavior of the
input determines the tail behavior of the resulting MMA process. The second condition
f ∈ L�(�×�) is a restriction on the function f . We will now analyze its restrictiveness
by looking at necessary conditions. Therefore, we define the set

J�(�× �) :=

⎧⎨⎩f : M−d × ℝ 7→Mn,d measurable,

∫
M−

d

∫
ℝ

j(f(A, s))�ds�(dA) <∞

⎫⎬⎭ ,

where j(A) is the modulus of injectivity of A.

Theorem 3.4. Let Λ be an ℝd-valued Lévy basis on M−d ×ℝ with generating quadruple
(,Σ, �, �) and let � ∈ RV (�, l, ��). If X0 =

∫
M−

d

∫
ℝ+ f(A, s)Λ(dA, ds) exists and

��(f−1(A, s)ℝn) = 0 does not hold for �× � almost-every (A, s), then f ∈ J�(�× �) is
a necessary condition for X0 ∈ RV (�, l, �X) with

�X(B) :=

∫
M−

d

∫
ℝ

∫
ℝd

1B (f(A, s)x)��(dx)ds�(dA).

11



3. Mixed Moving Average Processes

Proof. We use a simple contradiction. Suppose f ∕∈ J�(�× �), i.e.∫
M−

d

∫
ℝ

j(f(A, s))�ds�(dA) =∞.

Since �� is nonzero there is a positive number r > 0 such that ��(Vr) > 0. Then we
use the relation

j(f(A, s)) ≤ ∥f(A, s)x∥
∥x∥

for all x ∈ ℝd and get

�X(Vr) =

∫
M−

d

∫
ℝ

∫
ℝd

1Vr (f(A, s)x)��(dx)ds�(dA)

≥
∫
M−

d

∫
ℝ

∫
ℝd

1(r,∞) (j(f(A, s)) ∥x∥)��(dx)ds�(dA)

= ��(Vr)

∫
M−

d

∫
ℝ

j(f(A, s))�ds�(dA) =∞

and this is a contradiction to �X being a Radon measure.
□

Now we have necessary conditions as well as sufficient conditions and both lie close
together. Since j(f(A, s)) ≤ ∥f(A, s)∥ we immediately have L�(�× �) ⊆ J�(�× �). In
the univariate case we even have L�(�× �) = J�(�× �) and thus we get necessary and
sufficient conditions. This extends even the univariate work by Fasen (2005), where
necessary conditions are not considered. Note that our focus is on necessary conditions
on f whereas Jacobsen et al. (2009) considered whether regular variation of a moving
average implies regular variation of the driving Lévy process in the univariate case.
Having proved the regular variation of the random vector, we can now easily get the
regular variation of the process Xt.

Corollary 3.5. Given the conditions of Theorem 3.2, the MMA process (Xt)t∈ℝ+ is
also regularly varying with index � as a process.

Proof. We have to show that the results also hold for the finite dimensional distributions
of Xt. For m ∈ ℕ and t = (t1, . . . , tm) ∈ ℝm we have

⎛⎜⎝ Xt1
...

Xtm

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝

∫
M−

d

∫
ℝ
f(A, t1 − s)Λ(dA, ds)

...∫
M−

d

∫
ℝ
f(A, tm − s)Λ(dA, ds)

⎞⎟⎟⎟⎟⎟⎠ =

∫
M−

d

∫
ℝ

⎛⎜⎝ f(A, t1 − s)
...

f(A, tm − s)

⎞⎟⎠Λ(dA, ds)

=

∫
M−

d

∫
ℝ

g(A, t, s) Λ(dA, ds)

with the function g : M−d × ℝm × ℝ 7→Mnm,d defined by

g(A, t, s) :=

⎛⎜⎝ f(A, t1 − s)
...

f(A, tm − s)

⎞⎟⎠ .
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3. Mixed Moving Average Processes

Next we show that f ∈ L�(� × �) implies g ∈ L�(� × �) for all � > 0. Therefore, we
choose the matrix norm

∥A∥ := max
i,j
{∣aij ∣}.

We get ∫
M−

d

∫
ℝ

∥g(A, t, s)∥� ds �(dA) =

=

∫
M−

d

∫
ℝ

∥∥∥∥∥∥∥
⎛⎜⎝ f(A, t1 − s)

...
f(A, tm − s)

⎞⎟⎠
∥∥∥∥∥∥∥
�

ds �(dA)

=

∫
M−

d

∫
ℝ

max {∥f(A, t1 − s)∥, . . . , ∥f(A, tm − s)∥}� ds �(dA)

≤
∫
M−

d

∫
ℝ

∥f(A, t1 − s)∥� + . . .+ ∥f(A, tm − s)∥� ds �(dA) <∞,

since f ∈ L�(�× �).
If the existence of Xt is ensured by Theorem 2.5 (ii) or (iii), this implies that for the
existence and regular variation of (XT

t1 , . . . , X
T
tm)T a simple application of Theorem

3.2 and Theorem 2.5 conclude. However, in general we note that assuming existence
of Xt in the sense of Theorem 2.4 implies that each of the m individual integrals of
(XT

t1 , . . . , X
T
tm)T exists as a limit of approximating sums in probability. From these

individual approximating sums one easily constructs a sequence of approximating sums

for
∫
M−

d

∫
ℝ

∥∥∥(f(A, t1 − s)T , . . . , f(A, tm − s)T
)T∥∥∥� Λ(dA, ds) converging in probability.

Hence, the necessary and sufficient existence conditions of Theorem 2.4 are satisfied
and Theorem 3.2 shows the regular variation of (XT

t1 , . . . , X
T
tm)T .

□

A very important class of heavy tailed distributions are �-stable distributions with � ∈
(0, 2). See Samorodnitsky and Taqqu (1994) for a detailed introduction. In Theorem
2.5 we have already given a criterion for the existence of MMA processes with stable
driving Lévy process. Similar to Theorem 3.2, there is also a well-known link between
stability of the driving Lévy measure and stability of the MMA process.

Lemma 3.6. If the driving Lévy process of an MMA process Xt is �-stable and its
Lévy measure is non-degenerate, then Xt is also �-stable.

Proof. From Sato (2002, Theorem 14.3) we have the result that �-stability of an in-
finitely divisible distribution is equivalent to

Σ = 0 and �(⋅) = b−� �(b−1 ⋅) for all b > 0.

Using the assumption together with Theorem 2.4, we immediately have ΣXt = 0 and
�Xt(⋅) = b−� �Xt(b

−1 ⋅).
□

Now we apply this result to multivariate continuous-time autoregressive moving average
(MCARMA) processes.
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3. Mixed Moving Average Processes

Example 3.7 (MCARMA Processes). Univariate Lévy-driven CARMA processes
have been introduced by Brockwell (2001) and they have been extended to multivariate
CARMA (MCARMA) processes by Marquardt and Stelzer (2007). A d-dimensional
MCARMA(p,q) process, p > q, driven by a two-sided square integrable Lévy process
(Lt)t∈ℝ with E (L1) = 0 and E (L1L

T
1 ) = ΣL can be formally interpreted as the stationary

solution to the p-th order d-dimensional differential equation

P (D)Yt = Q(D)DLt,

where D denotes the differentiation operator with respect to t. The autoregressive and
moving average polynomials are given by

P (z) = Idz
p +A1z

p−1 + . . .+Ap and Q(z) = B0z
q +B1z

q−1 + . . .+Bq

with A1, . . . , Ap, B0, . . . , Bq ∈ Md such that Bq ∕= 0 and {z ∈ ℂ : det(P (z)) = 0} ⊂
ℝ∖{0}+ iℝ. The MCARMA process Yt can be represented as a moving average process

Yt =

∫
ℝ

f(t− s)dLs

with kernel function f : ℝ 7→Md given by

f(t) =
1

2�

∫
ℝ

eiutP (iu)−1Q(iu)du.

Obviously, MCARMA processes are MMA processes and thus we can apply Lemma 3.6
to obtain an �-stable MCARMA process by using an �-stable driving Lévy process.
Furthermore, by Marquardt and Stelzer (2007, Proposition 3.32) we know that in the
case p > q+1 MCARMA processes have continuous sample paths and these are p−q−1
times differentiable. This shows that in the case � ∈ (0, 2) and p > q + 1 we can get
heavy tailed MCARMA processes, where the heavy tails come from the jumps of the
underlying Lévy process, but the paths of the observed process are continuous and may
even be differentiable.
To illustrate this, we simulated several univariate CARMA(3,1) processes. They are
given by the autoregressive and moving average polynomials

p(z) = z3 + 4.5z2 + 6.5z + 3 and q(z) = z.

The CARMA(3,1) process can then given in its state space representation (see Mar-
quardt and Stelzer (2007, Theorem 3.12))

G(t) =

t∫
−∞

eA(t−u) � dLu,

where

A =

⎛⎝ 0 1 0
0 0 1
−3 −6.5 −4.5

⎞⎠ and � =

⎛⎝ 0
1
−4.5

⎞⎠ .

This representation has the advantage that it applies also in the multivariate setting and
it directly includes the derivatives of the CARMA process, as long as they exist. In our
case, we have Yt = G1(t) and d

dtYt = G2(t). Due to our foregoing results G is regularly
varying with index � (resp. �-stable), if L is so.
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Figure 3.1: CARMA(3,1) processes and driving Lévy processes
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4. Application to supOU Processes

For the driving Lévy process Lt we used a symmetric �-stable Lévy motion without
skewness and with �-values of 2 (Brownian Motion), 1.5 and 1 (both heavy-tailed).
Furthermore, we plotted the simulated values after a burn-in period of 1000 to ensure
stationarity. The results can be seen in Figure 3.1. In all three cases, one can see
nicely, how the tail behavior of the driving Lévy process determines the tail behavior
of the continuous CARMA(3,1) process. In case � = 2 the integrator is a light tailed
Brownian Motion and the resulting CARMA process is also light tailed. In the heavy
tailed cases � = 1.5 and � = 1 the driving process is heavy tailed and determined by
only a few very large jumps. The respective CARMA process is also heavy tailed and
oscillates around the mean except for some large, but continuous shocks. For these two
cases we also plotted the first derivatives of the paths of the CARMA process, which are
not continuous anymore, but jointly �-stable together with the process itself.

4. Application to supOU Processes

One example of MMA processes are superpositions of Ornstein-Uhlenbeck processes, or
supOU processes for short. They are especially useful in modeling the stochastic volatil-
ity in continuous time models or long range dependent time series. For an introduction
to univariate supOU processes see Barndorff-Nielsen (2001) and for the extension to
multivariate supOU processes we refer to Barndorff-Nielsen and Stelzer (2010).

Definition 4.1 (ℝd-valued supOU process). Let Λ be an ℝd-valued Lévy basis on
M−d × ℝ. If the process

Xt :=

∫
M−

d

t∫
−∞

eA(t−s)Λ(dA, ds)

exists for all t ∈ ℝ, it is called ℝd-valued supOU process.

We easily see that supOU processes are MMA processes with special kernel function

f(A, s) = eAs 1[0,∞)(s).

Consequently, existence of supOU processes is covered by Theorem 2.4. But if we take
the special properties of supOU processes into account, some more accessible sufficient
conditions for the existence can be given.

Theorem 4.2 (Barndorff-Nielsen and Stelzer (2010), Theorem 3.1). Let Xt

be an ℝd-valued supOU process as defined in Definition 4.1. If∫
∥x∥>1

ln(∥x∥)�(dx) <∞

and there exist measurable functions � : M−d 7→ ℝ+∖{0} and � : M−d 7→ [1,∞) such that

∥∥eAs∥∥ ≤ �(A)e−�(A)s ∀s ∈ ℝ+ �-almost surely and

∫
M−

d

�(A)2

�(A)
�(dA) <∞,

then the supOU process Xt =
∫
M−

d

∫ t
−∞ e

A(t−s)Λ(dA, ds) is well defined for all t ∈ ℝ
and stationary. Furthermore, the stationary distribution of Xt is infinitely divisible with
characteristic triplet (X ,ΣX , �X) given by Theorem 2.4.
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4. Application to supOU Processes

Now we want to go one step further and analyze the tail behavior, but regular variation
of the supOU processes follows directly from Theorem 3.2.

Corollary 4.3. Let Λ ∈ ℝd be a Lévy basis on M−d × ℝ with generating quadruple
(,Σ, �, �) and let � ∈ RV (�, l, ��). If the conditions of Theorem 4.2 hold and addi-
tionally ∫

M−
d

�(A)�

�(A)
�(dA) <∞,

then X0 =
∫
M−

d

∫
ℝ+ e

AsΛ(dA, ds) ∈ RV (�, l, �X) with Radon measure

�X(⋅) :=

∫
M−

d

∫
ℝ+

∫
ℝd

1(⋅)
(
eAsx

)
��(dx)ds�(dA).

Proof. Using the given conditions, we have∫
M−

d

∫
ℝ+

∥∥eAs∥∥� ds�(dA) ≤
∫
M−

d

∫
ℝ+

�(A)�e−��(A)sds�(dA)

= �−1

∫
M−

d

�(A)�

�(A)
�(dA) <∞

and thus eAs ∈ L�(� × �). It is left to show that ��(f−1(A, s)ℝn) = 0 does not hold
for � × � almost-every (A, s), but since

��

(
e−As ℝd

)
= ��

(
ℝd
)

for any (A, s), this follows simply from �� being a nonzero measure.
□

For illustration, let us now calculate the measures �X of regular variation in some
special cases.

Example 4.4 (Measure of regular variation of OU Processes). SupOU pro-
cesses with probability measure � being a one-point measure (i.e. �(A) = 1 for some
A ∈ M−d ) are called Ornstein-Uhlenbeck (OU) processes and their measure of regular
variation is given by

�X(B) :=

∫
ℝ+

��
(
e−AsB

)
ds.

We consider several examples in the case d = 2. Let us first assume that the mass
of the measure �� is concentrated on a straight line, i.e. on the points of the form
ℎ = (a(1, b)T )a∈ℝ∖{0} for b ∈ ℝ, see Figure 4.1 for an example with b = 0.5.

1. If A = c Id, c ∈ ℝ−, is a multiple of the identity matrix, then

�X(B) =

∫
ℝ+

��
(
e−csB

)
ds =

∫
ℝ+

ec�s�� (B) ds = −��(B)

c �
.

Consequently, �X has its mass in the same directions as �� and thus its mass is
also concentrated on ℎ.
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Figure 4.1: Mass of the measures �� and �X in case 1.

2. If A = diag(a1, a2) is a diagonal matrix, then the mass of �X is concentrated on
the cones between the straight line ℎ and one of the two axes, see Figure 4.2. The
mass is drawn to the horizontal axis, if a2 > a1, and to the vertical axis, if a1 > a2

(i.e. to the axis associated with the slower exponential decay rate). Intuitively this
happens as follows. An extreme jump (x1, x2)T occurred at some time u in the
past and had direction s. This causes an extreme value (ed1(t−u)x1, e

d2(t−u)x2)T

at a later time t. Since one of the components decays slower, this extreme event
is now in a direction closer to the direction with the slowest exponential decay.

3. If A is real diagonalizable, i.e. A = UDU−1 with D = diag(d1, d2), then the mass
is drawn to the eigenspace e that belongs to the biggest eigenvalue max(d1, d2).
This means that the mass is concentrated on the cone between e and ℎ, see Figure
4.3. This follows immediately by a change of the basis from the last case.
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Figure 4.2: Mass of the measure �X
in case 2.
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Figure 4.3: Mass of the measure �X
in case 3.

However, if the support of �� is the whole space ℝd, then the support of �X is also ℝd,
regardless of the choice of A in any of the three cases above.

Like in the general MMA case, we shall again have a closer look at the essential condition∫
M−

d

�(A)�

�(A)
�(dA) <∞.
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5. Stochastic Volatility Model

Using the modulus of injectivity, we can derive necessary conditions similar to the previ-
ous chapter, see also Barndorff-Nielsen and Stelzer (2010, Prop. 3.3), where comparable
necessary conditions are given for the existence of supOU processes.

Corollary 4.5. Let Λ ∈ ℝd be a Lévy basis on M−d × ℝ with generating quadruple
(,Σ, �, �), let � ∈ RV (�, l, ��) and let X0 =

∫
M−

d

∫
ℝ+ e

AsΛ(dA, ds) exist following

Theorem 4.2. Furthermore, assume there exist measurable functions � : M−d 7→ ℝ+∖{0}
and # : M−d 7→ [1,∞) such that

j
(
eAs
)
≥ #(A)e−�(A)s ∀s ∈ ℝ+ �-almost surely.

Then ∫
M−

d

#(A)�

�(A)
�(dA) <∞

is a necessary condition for X0 ∈ RV (�, l, �X) with

�X(⋅) :=

∫
M−

d

∫
ℝ+

∫
ℝd

1(⋅)
(
eAsx

)
��(dx)ds�(dA).

Proof. Suppose ∫
M−

d

#(A)�

�(A)
�(dA) =∞.

Then ∫
M−

d

∫
ℝ+

j
(
eAs
)�
ds�(dA) ≥

∫
M−

d

∫
ℝ+

#(A)�e−��(A)sds�(dA)

= �−1

∫
M−

d

#(A)�

�(A)
�(dA) =∞.

Consequently eAs /∈ J�(�× �) and Theorem 3.4 yields the result.
□

Finally, as a consequence of Theorem 3.5, we also have regular variation of the process.

Corollary 4.6. Given the conditions of Corollary 4.3, the supOU process (Xt)t∈ℝ is
also regularly varying with index � as a process.

5. Stochastic Volatility Model

In this section we review and analyze the supOU type stochastic volatility model intro-
duced in Barndorff-Nielsen and Stelzer (2009). We consider a d-dimensional logarithmic
stock price process (Xt)t∈ℝ given by an equation of the form

dXt = Σ
1/2
t dWt (5.1)

X0 = 0,

where W is a d-dimensional Brownian motion and Σ1/2 denotes the unique positive
semidefinite square root. The stochastic volatility process (Σt)t∈ℝ is given by an S+

d -
valued supOU process that is independent of the Brownian Motion W .
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5. Stochastic Volatility Model

Definition 5.1 (Positive semi-definite supOU process). Let Λ be a Lévy basis on
M−d × ℝ with values in Sd. If the process

Σt :=

∫
M−

d

t∫
−∞

eA(t−s)Λ(dA, ds)eA
T (t−s)

exists for all t ∈ ℝ, it is called a positive semi-definite (or S+
d -valued) supOU process.

The process (Xt)t∈ℝ+ being given by equation (5.1) with volatility process (Σt)t∈ℝ given
by a positive semi-definite supOU process is called multivariate supOU type stochastic
volatility model or SVsupOU.
The introduced model is of course only the most basic version of a SVsupOU. We can
easily enhance the model by adding a stochastic or deterministic drift a and a leverage
term Ψ, see Barndorff-Nielsen and Stelzer (2009) for details. The model is then given
by the equation

dXt = atdt+ Σ
1/2
t− dWt + Ψ(dLt)

X0 = 0,

where a is an ℝd-valued predictable process, W is the d-dimensional Brownian motion,
L is the Lévy process associated with Λ and Ψ : Sd 7→ ℝd is a linear operator. The
stochastic volatility process (Σt)t∈ℝ is again a matrix-valued supOU process.
However, the drift term and the leverage term are usually dominating the tail behavior,
if they are non-vanishing. The leverage term is determined by the behavior of the Lévy
process L and as we always assume the driving Lévy measure to be regularly varying
with index �, the leverage term is also regularly varying with index �. A popular choice
for the drift term is

at = �+ �Σt

with � : Sd 7→ ℝd being a linear operator and in this case at is regularly varying with
index �, as we will show below. This means that if such a drift or leverage term exists,
they dominate the Brownian term, which will turn out to be regularly varying with
index 2�. For this reason, we will only consider the simple model in this chapter.
Let us start with analyzing the volatility process. Existence of the positive semi-definite
supOU processes is given similarly to the existence of ℝd-valued supOU processes.

Theorem 5.2 (Barndorff-Nielsen and Stelzer (2010), Theorem 4.1). Let Λ be
an Sd-valued Lévy basis with generating quadruple (, 0, �, �) and with 0 :=  −∫
∥x∥≤1 x�(dx) ∈ S+

d , �(Sd∖S+
d ) = 0,∫

∥x∥>1

ln (∥x∥) �(dx) <∞ and

∫
∥x∥≤1

∥x∥�(dx) <∞.

Furthermore, assume the existence of measurable functions � : M−d 7→ ℝ+ and � :
M−d 7→ [1,∞) such that

∥∥eAs∥∥ ≤ �(A)e−�(A)s ∀s ∈ ℝ+ �-almost surely and

∫
M−

d

�(A)2

�(A)
�(dA) <∞.
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5. Stochastic Volatility Model

Then the positive-semidefinite supOU process

Σt =

∫
M−

d

t∫
−∞

eA(t−s)Λ(dA, ds)eA
T (t−s)

is well-defined for all t ∈ ℝ, has values in S+
d for all t ∈ ℝ and its distribution is

stationary and infinitely divisible. Moreover, the vector representation has the form

vec (Σt) =

∫
M−

d

t∫
−∞

e(A⊗Id+Id⊗A)(t−s)vec(Λ)(dA, ds).

Note that in the above theorem vec(Λ) is defined by vec(Λ)(A) := vec((Λ(A)) and it is
a Lévy basis in ℝd2 .
Based on this theorem, we can now analyze the tail behavior of the volatility process.
Therefore, we have to define regular variation in a matrix-valued setting, which is just
a translation of ℝd-valued regular variation. A random matrix X ∈ Md is said to be
regularly varying with index � > 0, if there exists a slowly varying function l : ℝ 7→ ℝ
and a nonzero Radon measure � defined on ℬ(Md∖{0}) with �(Md∖Md) = 0 such that,
as u→∞,

u�l(u)P (u−1X ∈ ⋅) v−→ �(⋅)

on ℬ(Md∖{0}) and we write X ∈ RV (�, l, �). Of course, for a random matrix X ∈Md

there exists the straightforward connection that X ∈ RV (�, l, �) if and only if vec(X) ∈
RV (�, l, �v), where �v(vec(A)) = �(A). Given this relationship, we can then analyze
the tail behavior of the volatility process, where regular variation can be derived using
the results of the previous chapters.

Corollary 5.3. Let Λ ∈ Sd be a Lévy basis on M−d × ℝ with generating quadruple
(, 0, �, �) and let � ∈ RV (�, l, ��). If the conditions of Theorem 5.2 hold and addition-
ally ∫

M−
d

�(A)2�

�(A)
�(dA) <∞,

then Σ0 =
∫
M−

d

∫
ℝ+ e

AsΛ(dA, ds)eA
T s ∈ RV (�, l, �Σ) with Radon measure

�Σ(⋅) :=

∫
M−

d

∫
ℝ+

∫
ℝd

1(⋅)

(
eAsxeA

T s
)
��(dx)ds�(dA).

Furthermore, the supOU process (Σt)t∈ℝ is also regularly varying with index � as a
process.

Proof. From Theorem 5.2 we have

vec (Σt) =

∫
M−

d

t∫
−∞

e(A⊗Id+Id⊗A)(t−s)vec(Λ)(dA, ds)

and thus the vectorized volatility process vec(Σt) is an MMA process with kernel func-
tion f(A, s) = e(A⊗Id+Id⊗A)s1[0,∞)(s). In order to apply Theorem 3.2, it is left to show
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5. Stochastic Volatility Model

that f ∈ L�(� × �). For that purpose, we make use of the relations e(A⊗Id+Id⊗A)s =
eAs⊗eAs and ∥eAs⊗eAs∥ = ∥eAs∥2 (see Horn and Johnson (1991), Chapter 4.2, Problem
28, and Chapter 6.2, Problem 14) and obtain∫

M−
d

∫
ℝ+

∥e(A⊗Id+Id⊗A)s∥�ds�(dA) ≤
∫
M−

d

∫
ℝ+

∥eAs∥2�ds�(dA)

≤
∫
M−

d

∫
ℝ+

�(A)2�e−2��(A)sds�(dA)

=
1

2�

∫
M−

d

�(A)2�

�(A)
�(dA) <∞.

□

Now we want to go one step further and analyze the tail behavior of the logarithmic
stock price process. Therefore, we use the independence between W and Λ, which yields
the equality

t∫
0

Σ1/2
s dWs

d
=

⎛⎝ t∫
0

Σsds

⎞⎠1/2

Wt. (5.2)

We immediately see that it is necessary to analyze the integrated volatility

Σ+
t :=

t∫
0

Σsds

in order to obtain regular variation of the stock price process. We start with its exis-
tence.

Theorem 5.4 (Barndorff-Nielsen and Stelzer (2010), Th. 4.3). Let Σ be a pos-
itive semi-definite supOU process as given in Definition 5.1 that exists according to
Theorem 5.2. Then Σt(!) is measurable as a function of t ∈ ℝ and ! ∈ Ω. If also∫

M−
d

�(A)2�(dA) <∞,

then the paths of Σ are uniformly bounded in t and the integrated process Σ+
t exists for

all t ∈ ℝ+.

Another important and closely related characteristic of a time series are observed log
returns over given time periods of length Δ ∈ ℝ+ (representing for example observation
intervals, trading periods etc.) given by

Zn := XnΔ −X(n−1)Δ =

nΔ∫
(n−1)Δ

Σ1/2
s dWs

d
=

⎛⎜⎝ nΔ∫
(n−1)Δ

Σsds

⎞⎟⎠
1/2

WΔ. (5.3)

Existence of the related integrated volatilities

Σ+
n :=

nΔ∫
(n−1)Δ

Σsds

is given by the previous theorem and conditions for regular variation of Σ+
n and of the

integrated volatility Σ+
t can be derived simultaneously.
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5. Stochastic Volatility Model

Corollary 5.5. Let Λ ∈ Sd be a Lévy basis on M−d × ℝ with generating quadruple
(, 0, �, �) and let � ∈ RV (�, l, ��). If the conditions of Theorem 5.4 hold and addition-
ally ∫

M−
d

�(A)2�

�(A)�+1
�(dA) <∞,

then Σ+
n ∈ RV (�, l, �Σ+

n
) with Radon measure

�Σ+
n

(B) :=

∫
M−

d

∫
ℝ

∫
ℝd

1B

⎛⎜⎝ nΔ∫
u∨(n−1)Δ

eA(s−u)xeA
T (s−u)1(−∞,nΔ](u)ds

⎞⎟⎠��(dx)du�(dA)

and Σ+
t ∈ RV (�, l, �Σ+

t
) with

�Σ+
t

(B) :=

∫
M−

d

∫
ℝ

∫
ℝd

1B

⎛⎝ t∫
u∨0

eA(s−u)xeA
T (s−u)1(−∞,t](u)ds

⎞⎠��(dx)du�(dA).

Furthermore, the process (Σ+
t )t∈ℝ+ is also regularly varying with index � as a process.

Proof. Again, we use the vector representation of the process and get from the proof of
Theorem 3.12 in Barndorff-Nielsen and Stelzer (2010)

vec
(
Σ+
n

)
=

nΔ∫
(n−1)Δ

∫
M−

d

s∫
−∞

e(A⊗Id+Id⊗A)(s−u)vec(Λ)(dA, du)ds

=

∫
ℝ

∫
M−

d

g(A, t, u)vec(Λ)(dA, du)

with

g(A, t, u) :=

nΔ∫
u∨(n−1)Δ

e(A⊗Id+Id⊗A)(s−u)1(−∞,nΔ](u)ds.

As before, it is left to show that g(A, t, u) ∈ L�(�× �) in order to apply Theorem 3.2.
Therefore, we estimate

∥g(A, t, u)∥ ≤ 1(−∞,nΔ](u)

nΔ∫
u∨(n−1)Δ

∥∥∥e(A⊗Id+Id⊗A)(s−u)
∥∥∥ ds

≤ 1(−∞,nΔ](u)

nΔ∫
u∨(n−1)Δ

�(A)2e−2�(A)(s−u)ds

=
�(A)2

−2�(A)

(
e−2�(A)(nΔ−u)1(−∞,nΔ](u)− 1((n−1)Δ,nΔ)(u)

− e−2�(A)((n−1)Δ−u)1(−∞,(n−1)Δ](u)
)
.

For the first term of the sum we get∫
M−

d

nΔ∫
−∞

∣∣∣∣∣�(A)2e−2�(A)(nΔ−u)

−2�(A)

∣∣∣∣∣
�

du �(dA) =
1

2�+1�

∫
M−

d

�(A)2�

�(A)�+1
�(dA) <∞.

23



5. Stochastic Volatility Model

The second summand is in L�(�× �), since the function has bounded support, and for
the last term in the sum we simply substitute n by (n− 1) in the first term. The result
for Σ+

t follows directly setting Δ = t and n = 1.
□

Note that this result also gives us regular variation with index � of a possible drift term
at = �+ �Σt.
The next step is to derive the tail behavior of the square root (Σ+)1/2 of the integrated
volatility process.

Lemma 5.6. Let Σ be a random variable with values in S+
d and let Σ1/2 be its square

root. Then Σ ∈ RV (�, l, �Σ), if and only if Σ1/2 ∈ RV (2�, l1/2, �
1/2
Σ ) with l1/2(x) :=

l(x2) and �
1/2
Σ (B) := �(B2).

Proof. Note that the square root of a matrix in S+
d is a bijective mapping and is thus

well defined. Since both functions, the square as well as the square root, map compacts
to compacts, we can apply Resnick (1987, Proposition 3.18).

□

Now we can consider the log-returns and the logarithmic stock price process regarding
their tail behavior.

Theorem 5.7. Let (Xt)t∈ℝ be the stock price process given by equation (5.1), let Zn be
the log-returns given by (5.3) and let Σ+

n be the increments of a positive semi-definite
supOU process (Σt)t∈ℝ+. Furthermore, let the conditions of Corollary 5.5 hold. Then
Zn ∈ RV (2�, l1/2, �Z) with Radon measure

�Z(B) := E
(
�

1/2

Σ+
n

(
W−1

Δ (B)
))

and Xt ∈ RV (2�, l1/2, �X) with

�X(B) := E
(
�

1/2

Σ+
t

(
W−1
t (B)

))
,

where WΔ : M−d 7→ ℝd is considered to be a random linear mapping with WΔ(x) :=

x ⋅WΔ
d
= ΔxN(0, Id) (likewise for Wt). Furthermore, (Xt)t∈ℝ is also regular varying

with index 2� as a process.

Proof. Since W and Λ are independent, we have

Zn
d
=

⎛⎜⎝ nΔ∫
(n−1)Δ

Σsds

⎞⎟⎠
1/2

WΔ and

t∫
0

Σ1/2
s dWs

d
=

⎛⎝ t∫
0

Σsds

⎞⎠1/2

Wt.

From Corollary 5.5 we know that

Σ+
n ∈ RV (�, l, �Σ+

n
) and Σ+

t ∈ RV (�, l, �Σ+
t

)

and, together with Lemma 5.6, this yields

(Σ+
n )1/2 ∈ RV (2�, l1/2, �

1/2

Σ+
n

) and (Σ+
t )1/2 ∈ RV (2�, l1/2, �

1/2

Σ+
t

).

Finally, we use the fact that the Brownian Motion has finite moments to apply the
multivariate version of Breiman’s Lemma (see Basrak et al. (2002), Proposition A.1),
which yields the result.

□
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Let us conclude with some final remarks. First, we easily see that the model allows
for heavy tails, in the volatility as well as in logarithmic stock prices and log-returns.
This is a useful fact, since observed marked data often shows heavy tails. Furthermore,
we see that there is a direct connection between the indexes of regular variation of the
driving Lévy measure on the one hand and the volatility, log-prices and log-returns on
the other hand. We can also calculate the concrete measure � of regular variation in
order to describe the spatial structure of the extremes.
Second, we note that all the results given above hold also in the case of an Ornstein-
Uhlenbeck type stochastic volatility model, where the volatility is modeled by an S+

d -
valued OU process. This is obvious, since OU processes are special cases of supOU
processes with � being a Dirac measure.
In a financial context, the results can now be used for a statistical analysis of observed
data. We can use one of the well established estimators (see Embrechts et al. (1997) or
Resnick (2007)) to estimate the index of regular variation of the given data (logarithmic
stock prices or log-returns). The result can then be compared with the estimated index
of regular variation of the integrated volatility. If they do not match by the factor of 2,
this is a hint for the existence of a leverage or drift term of the form specified in this
paper. Yet, there is still some future work to be done to analyze and estimate the (index
of regular variation of the) integrated volatility, since it cannot be observed directly. If
we make additional assumptions on the different terms (leverage, drift) to exist or not,
we can calculate the index of regular variation of the log-prices or log-returns from the
index of the volatility and vice versa.
It would also be very interesting to generalize the stochastic volatility model by substi-
tuting the Brownian motion Wt by a more general Lévy process L̃t. However, as there
is then no analogue of (5.2) available, it will be much more difficult to get results for
this case and different methods will be needed.

Modelling the correlation breakdown

Applied research in financial mathematics and econometrics has often noted that one
typically encounters what has been dubbed “correlation breakdown” in times of severe
crisis. This notion means that when extreme negative events potentially affecting the
whole (or large parts of the) economy occur, basically all traded stocks are loosing
tremendously in value simultaneously and the correlations between them are seemingly
more or less one. Moreover, after such an event the variances are typically extremely
high. Models employed in financial institutions (for risk management) clearly need to
include this feature in order to be realistic and provide accurate predictions.
Our results on the (sup)OU stochastic volatility model allow us to understand how
to incorporate such effects into the model. Clearly, the most extreme movements in
crisis can typically not come from the Brownian term but have to come from jumps.
Hence, Ψ needs to be chosen non-zero and such that when all variances have a jump
upwards all prices have jumps downwards. Assume now that the positive semidefinite
Lévy basis is regularly varying with index � and the measure �� is concentrated on the
rank one matrices with all diagonal elements being non-zero and all correlations being
1. The extremes of Σ are now caused by a single big jump which will be such that
it is (almost) a rank one matrix with all diagonal elements being non-zero. After the
occurrence of the jump the process Σ will be almost equal to the value of this jump
and hence all correlations will be very close to one for quite some time afterwards.
Moreover, by the choice of parameters the prices will simultaneously have a huge jump
downward. Clearly, this would model the “correlation breakdown”. Our results actually
show that Σ would be regularly varying with index � and �Σ would be concentrated
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on the rank one matrices with all diagonal elements being non-zero as this class of
matrices is preserved by the mappings X 7→ eAsXeA

T s for all A ∈ Md(ℝ) and s ∈ ℝ+.
Likewise the log prices would be regularly varying with index � (unless we had a drift
with heavier tails which seems not reasonable) and the measure of regular variation for
the log prices follows easily, because what matters is only the linear transformation Ψ of
the driving positive semidefinite Lévy basis. Note that the measure of regular variation
of the log prices will in general still have a completely non-degenerate support (in the
positive d-dimensional cone).
In practice the above explained model can only form an important building block of
a realistic and suitable model, since not all extreme events affect the whole economy,
some only affect individual sectors of industry or companies. However, also for such
extensions (which basically demand regular variation of Λ with appropriate �Λ) our
results provide the necessary insight into the resulting tail behavior.

A. Appendix

As mentioned in Section 2.2, there are several different equivalent definitions for mul-
tivariate regular variation. We want to recall two of them here, which are widely used
and give a nice interpretation of multivariate regular variation. Moreover, we prove the
equivalence to our definition, since this is not to be found in the literature to the best
of our knowledge.

Theorem A.1. Let X be a random vector in ℝd. Then the following characterizations
are equivalent.

1. X is regular varying with index � in the sense of Definition 2.1.

2. There exists a Radon measure � on ℝd∖{0} with �(ℝd∖ℝd) = 0. Furthermore,

there is a relatively compact Borel set E ⊂ ℝd∖{0} such that tE ∈ ℬ�, t ∈ T , for
a dense set T ⊂ (0,∞) and, as t→∞,

�t(⋅) :=
P (X ∈ t⋅)
P (X ∈ tE)

v−→ �(⋅).

3. There exists a random vector Θ ∈ Sd−1 such that for some � ≥ 0, as t→∞,

P (∣X∣ > tu,X/∣X∣ ∈ ⋅)
P (∣X∣ > t)

v−→ u−�P (Θ ∈ ⋅)

for every u > 0.

Proof. 2. ⇒ 1.
Let X be regularly varying in the sense of Definition 2.1. According to Basrak (2000),
p. 27, if the condition in 2. holds for one E ∈ ℬ�, it also holds for all E ∈ ℬ�. Choose

E := {x : ∥x∥ ≥ 1}.

Then by definition, there exists some Radon measure � with �(ℝd∖ℝd) = 0 such that,
as t→∞,

P (X ∈ t⋅)
P (X ∈ tE)

v−→ �(⋅).

From Basrak (2000), p. 27, we know that tE ∈ ℬ� for all t > 0. Furthermore, we define

f(x) := P (∥X∥ ≥ t).
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We have

f(tx)

f(x)
=

P (∥X∥ ≥ tx)

P (∥X∥ ≥ xE)

P (∥X∥ ≥ xE)

P (∥X∥ ≥ x)

x→∞−−−→ �(t {∥X∥ ≥ 1})
�({∥X∥ ≥ 1})

= t−�,

since �(tB) = t−��(B) (see Basrak (2000), p. 27). It follows that f is (univariate)
regularly varying and thus

P (X ∈ tE) = P (∥X∥ ≥ t) = t−�l(t)

for some slowly varying function l. It is easy to show that

l̃(t) :=
1

l(t)

is again slowly varying. Putting things together, we obtain

u� l̃(u)P (u−1X ∈ ⋅) =
P (u−1X ∈ ⋅)
u−�l(u)

=
P (X ∈ u⋅)
P (X ∈ uE)

v−→ �(⋅).

1. ⇒ 2.
Let � be positive, l be a slowly varying function and � a nonzero Radon measure defined

on ℬ(ℝd∖{0}) with �(ℝd∖ℝd) = 0 and, as u→∞,

u�l(u)P (u−1X ∈ ⋅) v−→ �(⋅)

on ℬ(ℝd∖{0}). As � is nonzero and locally finite, there exists a constant r > 0 such
that, for E := {x : ∥x∥ > r}, we have 0 < �(E) <∞ and �(∂E) = 0. It follows

P (X ∈ u⋅)
P (X ∈ uE)

=
u−�l(u)P (u−1X ∈ ⋅)
u−�l(u)P (u−1X ∈ E)

v−→ �(⋅)
�(E)

=: �̃(⋅).

Obviously, �̃ is again a Radon measure with �̃(ℝd∖ℝd) = 0.
2. ⇔ 3.
See Basrak (2000, Theorem 2.1.8).

□
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www.maphysto.dk.

C. Pigorsch and R. Stelzer (2009). A multivariate Ornstein-Uhlenbeck type stochastic
volatility model. Submitted for publication.

28



References
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