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Abstract

In insurance applications yearly claim totals of different coverage fields are often
dependent. In many cases there are numerous claim totals which are zero. A marginal
claim distribution will have an additional point mass at zero, hence this probability
function will not be continuous at zero and the cumulative distribution functions
will not be uniform. Therefore using a copula approach to model dependency is not
straightforward. We will illustrate how to express the joint probability function by
copulas with discrete and continuous margins. A pair copula construction will be
used for the fit of the continuous copula allowing to choose appropriate copulas for
each pair of margins.
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1 Introduction

Dependencies in insurance data may occur in many fields. Claim frequencies and sizes
are likely to be dependent. A copula approach to this issue applied to car insurance data
has been developed by Kastenmeier (2008). Specifically in the field of health insurance,
dependencies between inpatient and outpatient treatments are considered by Frees et al.
(2007). Pitt et al. (2006) discuss multi-dimensional measures of health care utilization.
They model the dependency between six measures of medical care demand, which are
categorized numbers of visits to physicians. Zimmer & Trivedi (2006) use a copula for
three simultaneously determined outcomes, i.e. the health insurance status for married
couples and their individual health care demand. Dependencies between the number of
visits of insured and uninsured persons per year have been considered by Deb et al.
(2006). Spatial clustering is investigated by Brezger & Lang (2006) where treatment costs
are assumed to be influenced by time, age, sex and spatial effects. A longitudinal model
for normalized patient days per year in Wisconsin nursing homes from 1995 through 2001
using copulas was developed by Sun et al. (2008).
The aim of this paper is to develop a collective model of yearly claim totals capable of re-
flecting the dependency between different coverage fields. This will allow to appropriately
predict which yearly total amount an insurer needs to reserve in order to cover expendi-
tures for an insured person depending on age, sex and other attributes. This is crucial for
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the pricing of premiums and for risk management. Neglecting dependency between depen-
dent fields may result for example in a misspecification of significant policy characteristics
or in false reserving calculus, since diversification effects are neglected. Applications for
such a model abound: in operational risk, losses of different dependent types occur very
seldom, hence many loss totals are zero. Whenever policies cover different risks claim to-
tals may be zero for some risk and positive for other risks: a car insurance contract may
cover vehicle damages of different subclasses or third-party liabilities.
Claim frequency and claim size models are standard tools in non-life actuarial science.
For claim frequencies often many zeros are observed caused for example by deductibles.
Specifically in private health insurance there is an additional incentive for excess zeros:
the policyholder receives a premium refund by the end of the year when not claiming a
single reimbursement. Based on claim frequency and claim size models one can construct
models for the yearly total claim which will be a continuous random variable only given
that at least one claim occured. The interest, however, often lies in modelling claims in
general. If one allows for claim frequencies of zero, the yearly total claim distribution will
have an additional point mass at zero. Using a copula approach to model dependency
of the yearly total claims thus requires the use of discrete as well as continuous copula
properties. We will develop such an approach and estimate parameters using maximum
likelihood.
In this paper, we also utilize pair-copula constructions (PCC’s) of general multivariate
distributions. We model multivariate data using a cascade of pair-copulas, acting on two
variables at a time. Pair-copula decompositions build on the work on vines of Joe (1996),
Bedford & Cooke (2001a), Bedford & Cooke (2001b) and Bedford & Cooke (2002). For
high-dimensional distributions there are many possible pair-copula decompositions for the
same multivariate distribution. Bedford & Cooke (2001b) introduced a graphical model
called regular vine to help organize them. They also identified two important subclasses
of regular vines, which they called C- and D-vines. Pair-copula decomposed models also
represent a very flexible class of higher-dimensional copulas. While Kurowicka & Cooke
(2006) considered nonstandard estimation methods, Aas et al. (2009) used maximum like-
lihood for statistical inference and explored the flexibility to model financial time series.
There are several advantages of using PCC’s: a T -dimensional multivariate density of
continuous margins will be expressed as a product of marginal densities and bivariate
copulas with individual parameters each. Therefore, in high dimensions T the numerical
evaluation of the joint density is very tractable. Each pair of margins can be modelled
separately, i.e. the copula class and hence tail dependence properties can be chosen indi-
vidually. Also, since Archimedean copulas (see e.g. Nelsen (2006, Chapter 4)) are capable
only of modelling exchangeable correlation structures, PCC’s provide a possibility for
generalizing the correlation structure. Finally, model selection in the sense of eliminating
weakly correlated copula densities from the joint density can be facilitated.
The paper is innovative with regard to the following aspects: first of all, we present a novel
opportunity for modeling the joint density of total claims including zero claims based on
copulas for binary and continuous margins. We illustrate how PCC’s can be utilized under
marginals. Finally we present a novel approach to choose the copula when the margins
are discrete. Our model will allow to model the dependency of large claim portfolios in
the presence of zero observations.
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This paper is organized as follows: in Section 2 we will give a short review of the concept
of copulas and illustrate how multivariate distributions can be constructed using pair-
copula constructions. In Section 3 an appropriate model for dependent yearly total claims
including the zero will be developed: while Subsection 3.1 deals with the aggregation to
yearly totals, Subsection 3.2 addresses the problem of specifying a copula based model
dependent for claim totals and zero-claim events. An application to health insurance
including a detailed illustration of how to deal with the copula choice problem will be
given in Section 4. We conclude with a summary and discussion.

2 Copulas and multivariate distributions

A J-dimensional copula CJ is a multivariate cdf CJ : [0, 1]J → [0, 1] whose univariate
margins are uniform on [0, 1], i.e. CJ(1, . . . , 1, uj , 1, . . . , 1) = uj ∀j ∈ {1, . . . , J}. For J
continuous random variables (rv) X := (X1, . . . , XJ)

′ with marginal distributions F1, . . . ,
FJ and densities f1, . . . , fJ , all transformed rv’s Uj := Fj(Xj), j = 1, . . . , J are uniform on
[0, 1], hence while Fj reflects the marginal distribution of Xj, CJ reflects the dependency.
Sklar (1959) shows that

FX(x1, . . . , xJ) = CJ(F1(x1), . . . , FJ(xJ)|ζ), (1)

where ζ are the corresponding copula parameters. If a multivariate cdf of X exists, there
also exists a copula CJ which separates the dependency structure from the marginal
distributions. If the margins are continuous, CJ is unique. Vice versa, according to (1)
we can construct a multivariate cdf from J marginal distributions using a J-dimensional
copula CJ . For a more detailed introduction to copulas, see for instance Joe (1997) or
Nelsen (2006). Definitions of some elliptical and Archimedean copulas together with their
bivariate densities can be found in Appendix A.
While in this paper we use J dimensional copulas to model dependent discrete margins,
a pair-copula construction (PCC) of the joint density will be utilized to describe the
dependence of continuous margins. A PCC consists of a cascade of pair-copulas, acting
on two variables at a time. In high dimensions there are many different PCC’s possible.
Bedford & Cooke (2001b) and Bedford & Cooke (2002) show that they can represent
such a PCC in a sequence of nested trees with undirected edges, which they call regular
vine. One distinguishes between the classes of C and D vines where in the trivariate case
these classes coincide. In the following we will illustrate the construction of a C-vine: a
multivariate density can be expressed as a product of conditional densities, i.e.

f(x1, ..., xJ) = f(xJ |x1, · · · , xJ−1)f(x1, · · · , xJ−1) =
J
∏

j=2

f(xj|x1, · · · , xJ−1) · f(x1). (2)

Here F (·|·) and f(·|·) denote conditional cdf’s and densities, respectively. Using Sklar’s
theorem applied to conditional bivariate densities we can express f(xJ |x1, · · · , xJ−1) as

f(xJ |x1, · · · , xJ−1) =
f(xJ−1, xJ |x1, · · · , xJ−2)

f(xJ−1|x1, · · · , xJ−2)
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= cJ−1,J |1,··· ,J−2 · f(xJ |x1, · · · , xJ−2). (3)

Here we use for arbitrary distinct indices i, j, i1, · · · , ik with i < j and i1 < · · · < ik the
following abbreviation for a bivariate conditional copula density evaluated at conditional
cdf’s:

ci,j|i1,··· ,ik := ci,j|i1,··· ,ik(F (xi|xi1 , · · · , xik), F (xj|xi1 , · · · , xik)).
Joe (1996) showed that for a d-dimensional vector ν and a reduced vector ν−j equal to
ν but without component j the conditional cdf can be obtained recursively by

F (x|ν) = ∂C (F (x|ν−j), F (νj|ν−j))

∂F (x|ν−j)
. (4)

A detailed proof of this can be found for example in Czado et al. (2009). For the special

case where ν = {ν} it follows that F (x|ν) = ∂C(F (x),F (ν))
∂F (ν)

. For the uniform margins

U := F (x) and V := F (v) we define a function

h(u|v) := ∂ C(u, v)

∂v
. (5)

This h function has been derived explicitly for many copulas by Aas et al. (2009). A
summary of the ones used in this paper is given in Table 12 in Appendix A. By recursive
use of (3) one can express the product of conditional densities (2) by

f(x1, ..., xJ) = f(x1) ·
J
∏

j=2

j−1
∏

k=1

cj−k,j|1,··· ,j−k−1 · f(xj)

=
J
∏

r=1

f(xr) ·
J
∏

j=2

j−1
∏

k=1

cj−k,j|1,··· ,j−k−1. (6)

For k = j − 1 the conditioning set in cj−k,j|1,··· ,j−k−1 is empty, i.e. we set c1,j|10 := c1,j.
In the trivariate there are only three theoretical decompositions of f (x1, x2, x3) (ignoring
the possibility of choosing different bivariate copula classes), whereas in higher dimensions,
there are many more. On possible decomposition is obtained by using f (x1, x2, x3) =
f1(x1)f2|1(x2|x1)f3|12(x3|x1, x2). Then the PCC is given by

f (x1, x2, x3) = c12(F1(x1), F2(x2)) c23|1(F2|1(x2|x1), F3|1(x3|x1))

·c13(F1(x1), F3(x3))
3
∏

j=1

fj(xj). (7)

The joint density of pairs of margins corresponding to the PCC in (7) can be written as

f(x1, x2) =

∫

f1(x1)f2|1(x2|x1)f3|12(x3|x1, x2)dx3 = f1(x1)f2|1(x2|x1)

= c12(F1(x1), F2(x2))
2
∏

j=1

fj(xj),
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and similarly f(x1, x3) = c13(F1(x1), F3(x3)) · f1(x1)f3(x3). The final margin requires in-
tegration, i.e.

f(x2, x3) =

∫

f1(x1)f2|1(x2|x1)f3|12(x3|x1, x2)dx1

=

∫

c12(F1(x1), F2(x2)) · c23|1(h(F2(x2)|F1(x1)), h(F3(x3)|F1(x1)))

·c13(F1(x1), F3(x3))
3
∏

j=1

fj(xj)dx1

=

∫ 1

0

c12(u1, u2) · c23|1(h(u2|u1), h(u3|u1)) · c13(u1, u3)

·
3
∏

j=2

fj(F
−1
j (uj))du1, (8)

where we substitute uj = Fj(xj) and transform dx1 =
1

f1(xj)
du1. For most copula choices,

the integral in (8) can only be calculated numerically.

3 A model for dependent yearly claim totals

In this section we aim to develop a joint model for yearly dependent total claims including
zero claims. One possible approach to this has been developed by Frees & Valdez (2008)
and has been applied to car accident claims where payments may occur in three different
correlated random classes. They point out that this is a nonstandard problem since all
three claim types are rarely observed simultaneously. In their approach, the combination
of claims and zero claims is modelled by a multinomial logit model. We will model yearly
total claims for a certain claim type and utilize a copula to obtain a joint model. In general,
we assume that we have J dependent yearly claims available. For a population of insured
individuals this may be J different treatment fields. A zero claim may arise for different
reasons: first of all, a healthy patient simply had no need to see a physician. Secondly, the
invoice may be below a deductible. Thirdly, the insured person will get a premium refund
when not recovering a single bill throughout the year and opts for this when expecting
the refund to be higher than the invoice. In health insurance we consider the dependence
betweeen ambulant, inpatient and dental treatments. Zero claim events will certainly be
dependent due to the health status of an insured person. The deductible will not have
an impact on the dependency of the zero claim events since they apply separately for
the three fields. The premium refund, however, will only be paid if no reimbursement is
claimed in either of these fields. Therefore, it will also influence the dependence.

3.1 Aggregation of claim frequencies and sizes to yearly totals

We will express the yearly total claim Tj in field j as

Tj := Wj · 0 + (1−Wj)NjS̄j = (1−Wj)T
+
j ≥ 0.
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Here Wj is a binary indicator for the zero claim event, i.e. Wj = 1 if the claim is zero
and Wj = 0 else. Also, W := (W1, . . . ,WT )

′ and W−j := (W1, . . . ,Wj−1,Wj+1, . . . ,WT )
′.

Further, Nj is the positive number of claims and S̄j the average claim size (also strictly
positive). In general we will observe only S̄j|{Wj = 0} but we assume that S̄j|{Wj = 1}
exists. Let the total claim T+

j := NjS̄j > 0 ifWj = 0 and unknown but positive ifWj = 1.
A more general case is given when the single claims Skj, k = 1, . . . , Nj, which contribute

to the yearly total, are known and are i.i.d., i.e. if T+
j :=

∑Nj
k=1 Skj. Then the distribution

of T+
j will be obtained by convolution and can be approximated for example using the

methods summarized in the R package ’actuar’ (see Dutang et al. (2008)). This paper,
however, will focus on average claims but apart from the expression for total claims all
approaches carried out in this paper apply in a similar way.
We denote probability mass functions (pmf) by p and their cumulative distribution func-
tions (cdf) by P . Probability density functions (pdf) and cdf of continuous random vari-
ables are denoted by f and F , respectively. The following distributions for the zero claim
event, claim frequencies and sizes are assumed:

Wj ∼ binary(pWj
(1)), with pmf pWj

, cdf PWj
,

Nj|{Wj = 0,W−j} ∼ PNj |{Wj=0,W−j}, positive no. of claims, pmf pNj |{Wj=0,W−j},

S̄j|{Nj,Wj = 0,W−j} ∼ FS̄j |{Nj ,Wj=0,W−j}, average claim size, pdf fS̄j |{Nj ,Wj=0,W−j}.

For data following these distributions regression models may be fitted. Then the realiza-
tions w−j of W−j are used as regressors in the latter two models and additionally the
realizations nj of Nj in the last one. It follows that T+

j := NjS̄j is conditionally indepen-
dent of W−j. Note that one only fits these two regression models to data with Wj = 0.
The distribution of Nj may be modelled using a zero-truncated count distribution (see for
example Zuur et al. (2009, Chapter 11)) which can be constructed based on any count dis-
tribution. For example, let Nc follow some count distribution (Poisson, Negative-Binomial
etc.) with pmf pc, then N ∼ PN with pmf

pN(n) :=
pc(n)

1− pc(0)
, n = 1, 2, . . .

will be the zero-truncated representative of this count distribution.

Example 3.1. For the Negative Binomial (NB) distribution with mean parameter µ >
0, shape parameter r > 0 and variance µ

(

1 + µ
r

)

a zero-truncated Negative Binomial
(ZTNB) distribution has the pmf

pN(n) :=
1

1−
(

r
µ+r

)r ·
Γ(n+ r)

Γ(r)Γ(n!)
·
(

r

µ+ r

)r

·
(

µ

µ+ r

)n

, n = 1, 2, . . . .

We can now model and quantify the dependency of the vectors W and T . On the one
hand, the number of zero claimsW reflects the impact of the health insurancer’s incentives
for not having a single claim throughout the year, which the insurer wants to know about
in order to arrange its deductibles and premium refund policy. On the other hand, the
dependence of T can be used for premium and risk capital calculation.
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Let FTj the cdf of Tj, then a derivative at t = 0 does not exist and therefore only the
derivative conditional on {Wj = 0} may be called a density function. Similar to Heller
et al. (2007) we simply refer to fTj as the probability function (pf) of Tj. Jørgensen
& de Souza (1994) and Smyth & Jørgensen (2002) consider models for continuous claim
sizes including zero claims. These are based on the class of Tweedie distributions (Tweedie
(1984)), which are members of the exponential family. In particular they use a compound
Poisson-gamma distribution which is contained in the class of the Tweedie distributions.
Belasco & Ghosh (2008) develop a model based on the Tobit model (Tobin (1958)) in
which a zero outcome arises from left-censoring. The marginal distributions of T+

j given
Nj, Wj = 0 and W−j will be denoted by

T+
j |{Nj,Wj = 0,W−j} ∼ FT+

j |{Nj ,Wj=0,W−j}, with pdf fT+
j |{Nj ,Wj=0,W−j}.

For the moment, we drop the index j for field j and also the dependency on W−j.

Lemma 3.2. For average claims S̄, cdf and pdf of T+|{W = 0} are given by

FT+|{W=0}(t
+) =

∞
∑

k=1

FS̄|{N,W=0}

(

t+

k
|{N = k}

)

pN |{W=0}(k)

fT+|{W=0}(t
+) =

∞
∑

k=1

fS̄|{N,W=0}

(

t+

k
|{N = k}

)

pN |{W=0}(k).

Proof. See Appendix B.

Lemma 3.3. The cdf of the yearly total claim T at t is

FT (t) = pW (0) + 1l{t>0}(1− pW (0))FT+|{W=0}(t). (9)

Proof. See Appendix B.

3.2 A joint distribution of yearly total claims based on copulas

In this section we develop a joint distribution of T := (T1, . . . , TJ)
′. Utilizing copulas in

order to model dependency between T := (T1, . . . , TJ)
′ is nonstandard since according to

Lemma 3.3, Uj := FTj(Tj) will have a point mass at 0 and hence Uj will not be uniform
on [0, 1]. Nevertheless, we will develop a joint distribution of Tj, j = 1, . . . , J , based on
two copula constructions, one with discrete margins W := (W1, . . . ,WJ)

′ and one with
continuous margins T+ := (T+

1 , . . . , T
+
J )

′. We allow W and T+ to be dependent random
vectors and use the conditional independence between W and T |W , i.e. we use

P (Tj ≤ tj,Wj = wj, ∀j) = P ((1−Wj)T
+
j ≤ tj|{Wj = wj}, ∀j) · P (Wj = wj, ∀j).

Here pW := P (Wj = wj, ∀j = 1, . . . , J) can be obtained by constructing PW by a J
dimensional copula and using the formula of Song (2007)[p. 128] to obtain the joint pmf.
For T+ a joint pdf fT+|W and hence a joint cdf FT+|W may be constructed using a PCC.

We stress that the PCC is utilized for T+, which is unobserved for some observations
of t+j but nevertheless we use the conditional independence of W and T |W . The joint
distribution of yearly total claims T and zero claim events W will be given in Proposition
3.4.
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Proposition 3.4. Let Tj = (1 −Wj) · T+
j and J0(w) :=

{

j ∈ {1, . . . , J} : Wj = 0
}

=
{j1(w), . . . , jn(w)} with n(w) the cardinality of J0(w). Then the joint probability function
of T and W is given by

fT ,W (t,w) = pW (w)fT+
1(w)

,...,T+
n(w)

|W (t+1(w), . . . , t
+
n(w)|w)

where fT+
1(w)

,...,T+
n(w)

|W (t+1(w), . . . , t
+
n(w)|w) is the joint pdf of T+ where all margins with

Wj = 1, j = 1, . . . , J are integrated out.

Proof. We consider

P (Tj ≤ tj, j = 1, . . . , J,W = w) = P ((1−Wj)T
+
j ≤ tj, ∀j|W = w) · pW (w)

= P (T+
jk

≤ tjk , jk ∈ J0(w)|W = w) · pW (w).

The joint probability function is obtained by deriving for tjk , jk ∈ J0(w), i.e.
fT+

1(w)
,...,T+

n(w)
|W (t+1(w), . . . , t

+
n(w)|w) = ∂

∂t1(w)
. . . ∂

∂tn(w)
P (T+

jk
≤ tjk , jk ∈ J0(w)|W = w).

So whenever an observation T+
j |{Wj = 1} is unknown, the margin in the corresponding

PCC is integrated out. Hence the distribution of the vector T |W is defined for strictly
positive numbers.

Example 3.5. For J = 3,

fT ,W (t1, t2, t3, w1, w2, w3) = pW (w1, w2, w3) ·
[

1l{w=(1,1,1)′} + 1l{w=(1,1,0)′}fT+
3
(t3)

+1l{w=(1,0,1)′}fT+
2
(t2) + 1l{w=(0,1,1)′}fT+

1
(t1)

+1l{w=(1,0,0)′}fT+
2 ,T

+
3
(t2, t3) + 1l{w=(0,1,0)′}fT+

1 ,T
+
3
(t1, t3)

+1l{w=(0,0,1)′}fT+
1 ,T

+
2
(t1, t2) + 1l{w=(0,0,0)′}fT+(t1, t2, t3)

]

.

We define PW (w1, . . . , wJ |ζW ) := CJ(PW1(w1), . . . , PWJ
(wJ)|ζW ) by a copula cdf CJ in

dimension J with copula parameters ζW . For binary margins,

pW (w1, . . . , wJ |ζW ) =

w1
∑

j1=0

. . .

wJ
∑

jJ=0

(−1)
∑J
k=1(jk+wk)

·CJ(PW1(j1), . . . , PWJ
(jJ)|ζW ). (10)

Proof. According to Song (2007)[p. 128]

pW (w1, . . . , wJ |ζW ) =
1
∑

k1=0

. . .
1
∑

kJ=0

(−1)k1+...+kJCJ
(

u1k1(w1), . . . , uJkJ (wJ)|ζW
)

,

where ut0(wt) := PWt
(wt) and ut1(wt) := PWt

(wt − 1). Now ut0(1) = PWt
(1) = 1, ut1(1) =

PWt
(0) and ut0(0) = PWt

(0). Since ut1(0) = PWt
(−1) = 0 and CJ(. . . , 0, . . . |ζW ) = 0 we

only need to consider kt ≤ wt. By transforming jt := wt − kt ≥ 0 we obtain the required
result.
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Note that PWj
(1) = 1, j = 1, . . . , J . In this case and given we use an elliptical or

Archimedean copula, the copula in (10) at such a marginal probability will be of the
same class only with decreased dimension. On the other hand, for the continuous random
vector T+ we define FT+(t+1 , . . . , t

+
J |ζT

+

) by a PCC introduced in (7).
We return to the trivariate case (J = 3). The bivariate marginal distributions are de-
fined according to (8), where fT+

2 ,T
+
3
(t+i2, t

+
i3) requires numerical integration. Let ζW the

parameters of the copula of W and ζT
+

:= (ζT
+

12 , ζ
T+

13 , ζ
T+

23|1)
′ the parameters of the PCC

of T+. Since the expression depending on ζW is independent of the expression depending
on ζT

+

, i.e. for ζ := (ζW , ζT
+

)′, the log-likelihood is l(ζ) = l(ζW ) + l(ζT
+

), which in a
maximum likelihood context can be fitted separately over those two parameter sets. For
observations i = 1, . . . , I,

l(ζW ) =
I
∑

i=1

log(pW (wi1, wi2, wi3))

=
I
∑

i=1

log

(

wi1
∑

j1=0

wi2
∑

j2=0

wi3
∑

j3=0

(−1)
∑3
k=1(jk+wik)CJ(PW1(j1), PW2(j2), PW3(j3)|ζW )

)

,

l(ζT
+

) =
I
∑

i=1

[

1l{wi1=1,wi2=0,w3=0} · log(fT+
2 ,T

+
3
(t+i2, t

+
i3|ζT

+

))

+1l{wi1=0,wi2=1,wi3=0} · log(c13(FT+
1
(t+i1), FT+

3
(t+i3)|ζT

+

13 ))

+1l{wi1=0,wi2=0,wi3=1} · log(c12(FT+
1
(t+i1), FT+

2
(t+i2)|ζT

+

12 ))

+1l{wi1=0,wi2=0,wi3=0} ·
[

log(c12(FT+
1
(t+i1), FT+

2
(t+i2)|ζT

+

12 ))

+ log(c23|1(h(FT+
2
(t+i2)|FT+

1
(t+i1), ζ

T+

12 ), h(FT+
3
(t+i3)|FT+

1
(t+i1), ζ

T+

13 )|ζT
+

23|1))

+ log(c13(FT+
1
(t+i1), FT+

3
(t+i3)|ζT

+

13 ))
]

]

+ const. independent of ζT
+

.

4 Application to health insurance data

We will consider data from a German private health insurer. Each record represents one
out of 37 819 insured persons. Claim frequencies will be the number of benefits received
by an insured person, where a benefit may be any treatment or prescription balanced to
a patient, i.e. a patient usually gets charged for several benefits during one visit. Claim
sizes will be the average invoice, i.e. the yearly total amount divided by the number of
benefits. Responses as well as explanatory variables have been observed in the ambulant
(i.e. outpatient), inpatient and dental field over three years from 2005 to 2007. We will
abbreviate the treatment fields by ’A’ for ambulant, ’I’ for inpatient and ’D’ for dental
or indices j = 1, . . . , 3, respectively. Around 76% of the insured persons are male, which
is typical for the policy line considered. All policyholders in the population are covered
in all three fields. The private German health care system allows for deductibles, which -
depending on policy type and treatment - may be a specific amount for a certain benefit or
a percentage of the amount invoiced. Policyholders not handing in a single bill for a whole
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Variable Description

Responses

Wijt Zero claim event (1 if zero claim) by patient i in treatment field j
and year t.

Nijt|{Wijt = 0} Total positive number of benefits received by patient i in treatment field
j and year t.

Tijt Total invoice for patient i in treatment field j and year t
(including deductibles).

S̄ijt|{Wijt = 0} Tijt/Nijt, average invoice of patient i in treatment field j and
year t.

Covariates

categorical

SEXi Dummy for gender of patient i.
discrete

AGEit Age of patient i at December, 31 in year t.
continuous

DEDijt Total of all deductibles of S̄ijt of patient i in treatment field j
and year t.

DEDijt Average deductible of patient i in treatment field j and year t
spatial

ZIPi ZIP code of the home address of patient i as of Dec. 31, 2007.
D(i) Dummy for home district of patient i as of Dec. 31, 2007. There

are 439 German districts. Individuals are spread over all districts.
continuous with spatial information

PHY S.INHD(i) (number of physicians in district D(i) listed in the yellow pages as

of April 15, 2008 divided by the number of inhabitants in district
D(i) in 2007) ·100.

URBAND(i) Number of inhabitants per square kilometer in district D(i) in 2007

BPD(i) Average buying power in Euro in 2007 in district D(i) on a scale of

nine scoring levels. Buying power has been determined as the average
net income per district + public transfer payments.

Table 1: Description of variables considered for claim frequencies and claim size models
for the health insurance data

year in any of the three fields will get a premium refund. Therefore, we might not see
the actual treatment numbers and amounts invoiced in the data. A variable description
including responses and explanatory variables will be given in Table 1. The data has been
supplemented by data from different sources:

• a mapping of ZIP codes to 439 districts not including corporate ZIP codes
(http://www.manfrin-it.com/postleitzahlen/plz.html), completed by single queries
for missing ZIP codes from http://w3logistics.com/infopool/plz/index.php,

• number of physicians per ZIP code listed in the yellow pages from 8233 automated
web requests searching for ’Arzt’ (physician) to http://web2.cylex.de,
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• number of inhabitants and area in square kilometers of each of the 439 German
districts according to the GfK GeoMarketing GmbH
(http://www.gfk-geomarketing.de/marktdaten/samples.php),

• data transcribed from a map displaying the buying power per district by the GfK
GeoMarketing GmbH
http://www.gfk-geomarketing.de/presse/bdm/html/01 2007.html,
reference Grafik: GfK GeoMarketing.

Fitting marginal distributions first and fitting the copula parameters for fixed margins
afterwards is known as inference functions for margins or the IFM method (see for example
Joe (1997, Section 10.1)). In the following subsections we will briefly summarize the
regression models chosen for Wjt, Njt and S̄jt, j, t = 1, 2, 3.

4.1 Marginal zero claim event models

Consider a logistic regression model for Wij, i = 1, . . . , n, j = 1, . . . , J , i.e.

Wij ∼ binary

(

exp(xWt
ij βj)

1 + exp(xWt
ij βj)

)

.

We choose variables by backward selection based on the Wald test with a 5% significance
level. The model equations of the reduced designs are given in Table 2. An exemplary
summary of the regression model for WA7 is given in Table 3.

Model equations

WA5 ∼ 1 + 1lDEDA5≤100 + 1lAGE5≤32 ·AGE5 + 1lAGE5>32 ·AGE5 + SEX +BP
WA6 ∼ 1 + 1lDEDA6≤100 + 1lAGE6≤32 ·AGE6 + 1lAGE6>32 ·AGE6 + SEX +BP
WA7 ∼ 1 + 1lDEDA7≤100 + 1lAGE7≤32 ·AGE7 + 1lAGE7>32 ·AGE7 + SEX +BP

WI5 ∼ 1 + 1lDEDI5=0 + 1lAGE5≤32 ·AGE5 + 1lAGE5>32 ·AGE5 + SEX
WI6 ∼ 1 + 1lDEDI6=0 + 1lAGE6≤32 ·AGE6 + 1lAGE6>32 ·AGE6 + SEX
WI7 ∼ 1 + 1lDEDI7=0 + 1lAGE7≤32 ·AGE7 + 1lAGE7>32 ·AGE7 + SEX + PHY S.INH

WD5 ∼ 1 + 1lDEDD5=0 + 1lAGE5>32 ·AGE5 + SEX + PHSY.INH +BP
WD6 ∼ 1 + 1lDEDD6=0 + 1lAGE6≤32 ·AGE6 + 1lAGE6>32 ·AGE6 + SEX +BP
WD7 ∼ 1+1lDEDD7=0+1lAGE7≤32 ·AGE7+1lAGE7>32 ·AGE7+SEX+PHY S.INH+BP

Table 2: Reduced model equations for each of the nine logistic regression models for Wjt,
j = 1, 2, 3 = A, I,D; t = 5, 6, 7 after applying sequential backward selection based on the
Wald test

4.2 Marginal claim frequency models

Let Nij, i ∈ Ij := {i = 1, . . . , n,Wij = 0}, j = 1, . . . , J follow the zero-truncated
negative binomial distribution (ZTNB) defined in Example 3.1. Further let wi(−j) :=
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Estimate Std. Error z value Pr(>|z|)
(Intercept) −9.4914 0.9951 −9.54 < 2 · 10−16

1lDEDA7≤100 10.9182 0.9945 10.98 < 2 · 10−16

1lAGE7≤32 · AGE7 0.3480 0.0284 12.26 < 2 · 10−16

1lAGE7>32 · AGE7 −0.6850 0.0354 −19.35 < 2 · 10−16

SEX 0.1965 0.0425 4.63 3.7 · 10−6

BP −0.0795 0.0169 −4.71 2.5 · 10−6

Table 3: Model summary for the reduced logistic regression model of WA7.

(wi1, . . . , wi(j−1), wi(j+1), . . . , wiJ)
′. Then a ZTNB regression model (see e.g. Cruyff &

van der Heijden (2008)) is given by

Nij|{xNij ,wi(−j)} ∼ ZTNB
(

µij(x
N
ij ,wi(−j)), rj

)

,

µij(x
N
ij ,wi(−j)) = exp(xNtij γ

1
j +wi(−j)γ

2
j).

We utilize the Wald test for backward selection. Thereby we use the observed Fisher

Model equations

NA5 ∼ 1 + DEDA5 + poly(AGE5)[, 1] + poly(AGE5)[, 2] + SEX + DEDA5 :
poly(AGE5)[, 1] + DEDA5 : poly(AGE5)[, 2] + SEX : poly(AGE5)[, 1] + SEX :
poly(AGE5)[, 2] +WI5 +WD5

NA6 ∼ 1+DEDA6+poly(AGE6)[, 1]+poly(AGE6)[, 2]+SEX+URBAN +DEDA6 :
poly(AGE6)[, 1] + DEDA6 : poly(AGE6)[, 2] + SEX : poly(AGE6)[, 1] + SEX :
poly(AGE6)[, 2] +WI6 +WD6

NA7 ∼ 1 + DEDA7 + poly(AGE7)[, 1] + poly(AGE7)[, 2] + SEX + URBAN + BP +
DEDA7 : poly(AGE7)[, 1]+DEDA7 : poly(AGE7)[, 2]+SEX : poly(AGE7)[, 1]+SEX :
poly(AGE7)[, 2] + URBAN : BP +WI7 +WD7

NI5 ∼ DEDI5 +AGE5 + SEX + URBAN +BP + SEX : URBAN +WA5 +WD5

NI6 ∼ 1 +DEDI6 +AGE6 +BP +WA6

NI7 ∼ DEDI7 +AGE7 +BP +DEDI7 : AGE7 +WA7

ND5 ∼ 1 + log(DEDD5) + poly(AGE5)[, 1] + poly(AGE5)[, 2] + SEX + URBAN +
log(DEDD5) : poly(AGE5)[, 1] + log(DEDD5) : poly(AGE5)[, 2] + SEX :
poly(AGE5)[, 2] + poly(AGE5)[, 1] : URBAN +WA5 +WI5

ND6 ∼ 1 + log(DEDD6) + poly(AGE6)[, 1] + poly(AGE6)[, 2] + SEX + log(DEDD6) :
poly(AGE6)[, 1] + log(DEDD6) : poly(AGE6)[, 2] + SEX : poly(AGE6)[, 1] + SEX :
poly(AGE6)[, 2] +WA6 +WI6

ND7 ∼ 1 + log(DEDD7) + poly(AGE7)[, 1] + poly(AGE7)[, 2] + SEX + URBAN +
BP + log(DEDD7) : poly(AGE7)[, 1] + log(DEDD7) : poly(AGE7)[, 2] + SEX :
poly(AGE7)[, 1] + SEX : poly(AGE7)[, 2] + poly(AGE7)[, 1] : URBAN +WA7

Table 4: Reduced model equations for each of the nine ZTNB claim frequency models
after applying sequential backward selection based on the Wald test

information based on the numerical Hessian matrix obtained by the R routine optim. The
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reduced model equations are given in Table 4. For NA7, a summary of the reduced design
is given in Table 5.

Estimate Std. Error z value Pr(> |z|)
Intercept 2.216 0.015 151.123 < 2 · 10−16

DEDA7 0.469 0.006 72.379 < 2 · 10−16

poly(AGE7)[, 1] 52.296 1.705 30.672 < 2 · 10−16

poly(AGE7)[, 2] 9.455 1.908 4.955 7.2 · 10−7

SEX −0.286 0.012 −23.794 < 2 · 10−16

URBAN 0.007 0.005 1.307 0.191
BP 0.003 0.005 0.641 0.521

DEDA7 : poly(AGE7)[, 1] −8.003 1.148 −6.972 3.1 · 10−12

DEDA7 : poly(AGE7)[, 2] −6.585 1.202 −5.477 4.3 · 10−8

SEX : poly(AGE7)[, 1] −14.489 1.887 −7.680 1.6 · 10−14

SEX : poly(AGE7)[, 2] 21.686 1.992 10.884 < 2 · 10−16

URBAN : BP −0.009 0.004 −2.359 0.018
WI7 0.618 0.014 45.614 < 2 · 10−16

WD7 0.237 0.011 21.081 < 2 · 10−16

Table 5: Model summary for the reduced ZTNB regression model of the claim frequencies
for treatment field ambulant in 2007 with dispersion parameter θ is estimated to be 2.15.

4.3 Marginal claim size models

As marginal models for the claim sizes S̄ij, i ∈ Ij := {i = 1, . . . , n,Wij = 0}, j = 1, . . . , J
we aim to use weighted log normal models given by

S̄ij|{xS̄ij,wi(−j), nj} ∼ lognormal(xS̄tij α
1
j +wi(−j)α

2
j + njα

3
j , σj , weights ω

S̄
ij). (11)

Since we model average claims rather than actual claim sizes we observe high heteroscedas-
ticity in S̄ij which will depend on the number of claims per year for each observation. As
for the logarithmic transformation of the responses in the linear model the exact the-
oretical influence of N on the heteroscedasticity cannot be determined. We perform a
three step approach based on ordinary least square (OLS) regression and weighted least
square (WLS) regression (DeMaris (2004, p.201)) with unknown weights. First we fit a
log normal OLS regression model based on {xS̄ij,wi(−j), nj}. Now we want to allow for

heteroscedasticy using a WLS approach. In order to determine weights ωS̄ij , we regress
the OLS squared residuals (as responses) on the model’s predictors in another lognormal
OLS regression model and use fitted values from this run as variance estimates (see De-
Maris (2004, p.205)). In a third step, we replace the OLS model from the first step by the
weighted regression (11). Variable selection is carried out using backward selection based
on the Wald test. For every design which we consider new weights are determined, i.e. we
update the estimated coefficients in order to predict variances. The choice of regressors
for determining the weights, however, is not changed throughout the backward selection
procedure. The model equations of the reduced fitted models are given in Table 6. A
model summary for S̄A7 is given in Table 7.
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Model equations

S̄A5 ∼ 1 + DEDA5 + poly(AGE5)[, 1] + poly(AGE5)[, 2] + SEX + URBAN + BP +
DEDA5 : SEX + URBAN : BP +WI5 +WD5 +NA5

S̄A6 ∼ 1 + DEDA6 + poly(AGE6)[, 1] + poly(AGE6)[, 2] + SEX + PHY S.INH +
URBAN +BP + URBAN : BP +WI6 +WD6 +NA6

S̄A7 ∼ 1 + DEDA7 + poly(AGE7)[, 1] + poly(AGE7)[, 2] + SEX + PHY S.INH +
URBAN +BP +DEDA7 : SEX + PHY S.INH : URBAN +WI7 +WD7 +NA7

S̄I5 ∼ 1 + poly(DEDI5)[, 1] + poly(DEDI5)[, 2] + poly(AGE5)[, 1] + poly(AGE5)[, 2] +
BP +WA5

S̄I6 ∼ 1+poly(DEDI6)[, 1]+poly(DEDI6)[, 2]+poly(AGE6)[, 1]+SEX+BP +SEX :
BP +WA6 +NI6

S̄I7 ∼ 1 + poly(DEDI7)[, 1] + poly(DEDI7)[, 2] + poly(AGE7)[, 1] + SEX +
PHY S.INH + URBAN +BP + SEX : BP

S̄D5 ∼ 1+ log(DEDD5) + poly(AGE5)[, 1] + poly(AGE5)[, 2] + SEX +PHY S.INH +
URBAN +BP +WA5 +ND5

S̄D6 ∼ 1 + log(DEDD6) + poly(AGE6)[, 1] + poly(AGE6)[, 2] +BP +WA6 +ND6

S̄D7 ∼ 1+log(DEDD7)+poly(AGE7)[, 1]+poly(AGE7)[, 2]+PHY S.INH+URBAN+
BP + URBAN : BP +WA7 +WI7 +ND7

Table 6: Reduced model equations for each of the nine average claim size models after
applying sequential backward selection based on the Wald test

Estimate Std. Error z value Pr(> |z|)
Intercept 3.4401 0.0093 369.23 < 2 · 10−16

DEDA7 0.1445 0.0057 25.51 < 2 · 10−16

poly(AGE7)[, 1] 19.5573 0.6597 29.65 < 2 · 10−16

poly(AGE7)[, 2] −6.4546 0.6748 −9.56 < 2 · 10−16

SEX 0.0263 0.0084 3.13 0.0018
PHY S.INH −0.0057 0.0042 −1.36 0.1732

URBAN 0.0315 0.0038 8.26 < 2 · 10−16

BP 0.0291 0.0037 7.92 < 2 · 10−16

DEDA7 : SEX −0.0140 0.0067 −2.09 0.0369
PHY S.INH : URBAN −0.0057 0.0025 −2.34 0.0195

WI7 0.0952 0.0101 9.40 < 2 · 10−16

WD7 −0.0166 0.0069 −2.39 0.0167
NA7 0.0066 0.0003 22.36 < 2 · 10−16

Table 7: Model summary for the reduced ZTNB regression model of the claim frequencies
for treatment field ambulant in 2007, θ estimated to be 2.41.

4.4 Results of fitting copulas to the binary and continuous mar-
gins

We model the dependency between the three treatment fields ambulant, inpatient and
dental. The years 2005 to 2007 will be investigated separately.



4 APPLICATION TO HEALTH INSURANCE DATA 15

4.4.1 Binary margins

The distribution of eight combinations of zero-claims over the three fields in 2005 to 2007
is listed in Table 8. More than 40% of the insured persons in every year did not claim
any reimbursement whatsoever. Recall that {Wj = 0} refers to not having a zero claim.

The copula arguments for (10) will be determined using predicted cdf P̂ (Wij ≤ 0|xWij ) =

A I D 2005 2006 2007

1 1 1 44.12% 41.27% 40.22%
1 1 0 2.49% 2.54% 2.55%
1 0 1 0.46% 0.39% 0.46%
0 1 1 13.73% 14.60% 13.73%
1 0 0 0.05% 0.04% 0.04%
0 1 0 30.20% 31.84% 33.40%
0 0 1 3.22% 3.35% 3.28%
0 0 0 5.74% 5.97% 6.32%

Table 8: Distribution of outcomes of W in the data for 2005 - 2007

1
1+exp(xWt

ij β̂j)
and P̂ (Wij ≤ 1|xWij ) = 1. In Table 9 the fitted copula parameters for the

independence copula as well as the trivariate Gaussian, Student t, Clayton and Gumbel
copulas are given. Note that we are not using a PCC for modelling the dependency
between the binary margins. This would imply multiple integration of the PCC with
different upper boundaries in order to obtain joint cdfs of these margins, which would
then be used in (10) for calculating the joint pmf. In order to compare those fits we
utilize a test proposed by Vuong (1989) and the distribution-free test (Clarke (2007)) for
nonnested model comparison. Vuong defines the statistics

mi := log

(

p1W (wi1, . . . , wiJ |ζ̂
1
)

p2W (wi1, . . . , wiJ |ζ̂
2
)

)

, i = 1, . . . , n, (12)

where p1W (·) and p2W (·) are the pmf of two different (copula) models for W and ζ̂
1
and

ζ̂
2
the copula parameter estimates, respectively. For details we refer to Vuong (1989). Let

m = (m1, . . . ,mn)
t and E(m) := µm

0 = (µm1 , . . . , µ
m
n ). Model 1 (2) is closer to the true

model if µm
0 > 0 (< 0) and falls together with the true model if µm

0 > 0. Hence, we
can test the null hypothesis H0 : µm

0 = 0 against H1 : µm
0 6= 0. Using the central limit

theorem Vuong (1989) shows that under H0

ν :=

√
n
[

1
n

∑n
i=1mi

]

√

1
n

∑n
i=1 (mi − m̄)2

D→ N (0, 1), as n→ ∞

where m̄ := 1
n

∑n
i=1mi. Then an asymptotic α-level test rejects H0 if and only if |ν| ≥

z1−α
2
, where z1−α

2
is the (1 − α

2
)-quantile of the standard normal distribution. The test

chooses model 1 over 2, if ν ≥ z1−α
2
. Similarly, model 2 is chosen if ν ≤ −z1−α

2
. No model

is preferred for −z1−α
2
< ν < z1−α

2
. Clarke (2007) proposes a distribution-free test based



4 APPLICATION TO HEALTH INSURANCE DATA 16

on a modified paired sign test to the differences in the individual log-likelihoods. Clarke
considers as test statistic the number of positive differences, i.e. B :=

∑n
i=1 1l{0,+∞}(mi).

Let Mi a rv with value mi, then the null hypothesis of the distribution-free test is

HDF
0 : P [Mi > 0] = 0.5 ∀i = 1, . . . , n.

Hence under the null hypothesis B is Binomial distributed with parameters n and prob-
ability 0.5. For the test problem HDF

0 versus HDF
1+ : P [Mi > 0] > 0.5, i = 1, . . . , n, the

corresponding α - level upper tail test rejects HDF
0 versus HDF

1+ if and only if B ≥ cα+,
where cα+ is the smallest integer such that

∑n
c=cα+

(

n
c

)

0.5n ≤ α. If the upper tail test

rejects HDF
0 we decide that model 1 is preferred over model 2. For the alternative HDF

1− :
P [Mi > 0] < 0.5, i = 1, . . . , n, the α - level lower tail test rejects HDF

0 versus HDF
1− if

and only if B ≤ cα−, where cα− is the largest integer such that
∑cα−

c=0

(

n
c

)

0.5n ≤ α. If HDF
0

versus HDF
1− is rejected, then model 2 is preferred over model 1. If HDF

0 cannot be rejected,
no model is preferred. The test decisions applied to our data are given in Table 10. Note

Year MLE

Gaussian (τ̂WAI , τ̂
W
AD, 2005 (0.373, 0.886, 0.420)′

τ̂WID)
′ 2006 (0.319,0.816,0.384)′

2007 (0.382,0.886,0.410)′

Student t (ψ̂WAI , ψ̂
W
AD, 2005 (0.329,0.908,0.366,19.86)′

ψ̂WID, ν̂
W )′ 2006 (0.408, 0.759, 0.382, 18.73)′

2007 (0.405, 0.771, 0.387, 18.84)′

Clayton θ̂W 2005 0.642
2006 0.623
2007 0.640

Gumbel λ̂W 2005 1.917
2006 1.837
2007 1.838

Table 9: Fitted copula parameters for different trivariate copula families with binary
margins in 2005 - 2007. The preferred models according to Vuong and Clarke tests (see
Table 10) are highlighted in boldtype.

that we also apply the Schwarz correction described in these papers for the number of
parameters. In each cell the decisions toward model (I) labelled row-wise or (II) labelled
column-wise are given. The decision of the Vuong test together with its p value is given
in the first row of each cell. The decision of the Clarke test with the p value in brackets
are given in the second row. We see that the independence copula is not preferred over
any other copula for both the Vuong and the Clarke test in any year. Also the Clayton
and Gumbel are not preferred over the Gaussian and Student t copula fit. Between these
two classes the Student t copula is preferred according to the Clarke test in 2005, whereas
the Vuong test decision is less significant. For 2006 and 2007 the Clarke test chooses
the Gaussian model with very low p-value. For all three years we see in Table 9 strong
correlation between the binary margins. It is driven not only by the health status of the
insured person but also by the incentive the insurer sets: if no bill is refunded in any of
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the three fields throughout the year, the policyholder will receive a premium refund. The
more policyholders can ”optimize” their medical treatment patterns, the higher the cor-
relation between these fields will be. This explains the high correlation between ambulant
and dental treatments. Since the policyholders’ influence on whether or not they have
to go to a hospital (inpatient treatments) will be very low, the correlations between the
ambulant/ dental field and the inpatient field are relatively low.

H
H
H

H
H
H

(I)
(II) 2005

Gaussian Student t Clayton Gumbel
Indep. V: (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16

C: (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16

Gaussian (II) 0.0004 (I) < 2 · 10−16 (I) < 2 · 10−16

(II) < 2 · 10−16 (I) < 2 · 10−16 (I) < 2 · 10−16

Student t (I) < 2 · 10−16 (I) < 2 · 10−16

(I) < 2 · 10−16 (I) < 2 · 10−16

Clayton (II) < 2 · 10−16

(II) < 2 · 10−16

H
H
H

H
H
H

(I)
(II) 2006

Gaussian Student t Clayton Gumbel
Indep. V: (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16

C: (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16

Gaussian (II) 0.2063 (I) < 2 · 10−16 (I) < 2 · 10−16

(I) < 2 · 10−16 (I) < 2 · 10−16 (I) < 2 · 10−16

Student t (I) < 2 · 10−16 (I) < 2 · 10−16

(I) < 2 · 10−16 (I) < 2 · 10−16

Clayton (II) < 2 · 10−16

(II) < 2 · 10−16

H
H
H

H
H
H

(I)
(II) 2007

Gaussian Student t Clayton Gumbel
Indep. V: (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16

C: (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16 (II) < 2 · 10−16

Gaussian (II) 0.0001 (I) < 2 · 10−16 (I) < 2 · 10−16

(I) < 2 · 10−16 (I) < 2 · 10−16 (I) < 2 · 10−16

Student t (I) < 2 · 10−16 (I) < 2 · 10−16

(I) < 2 · 10−16 (I) < 2 · 10−16

Clayton (I) < 2 · 10−16

(I) < 2 · 10−16

Table 10: Preferred model according to the tests proposed by Vuong (”V”, first row of
each cell) and Clarke (”C”, second row) followed by p-values for different copula choices
modeling the dependence structure of the binary margins W . The preferred models are
highlighted in boldtype.
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4.4.2 Continuous margins

The arguments of the PCC model given in (7) will be estimated using Lemma 3.2, i.e. for
i ∈ Ij

F̂T+
ij
(t+ij|xNij ,xS̄ij,wi(−j), nij) :=

∞
∑

k=1

F̂S̄

(

t+ij
k
|xNij ,xS̄ij,wi(−j), nij

)

p̂N(k). (13)

Two additional choices have to be made in order to fully specify the PCC. First one
needs to determine which pairs of margins will be modelled by the unconditional copulas
c12 and c13 and which by c23|1, i.e. the problem of choosing a good permutation of the
margins. Further one needs to pick appropriate copula families to describe the dependency
structure between pairs of margins. The first problem may be addressed for example by
performing a simple a priori fit. Thereby we fit three arbitrary but identical bivariate
Gaussian copulas on the subset of the data, where all observations with at least one zero
claim in either of the two margins have been taken out. The two pairs of margins with
the strongest fitted correlation parameter will be modelled by c12 and c13. For the data at
hand, there is no permutation necessary for any of the three years, i.e. we choose treatment
fields A, I and D to be the margins 1, 2 and 3, respectively, hence c12 = cAI , c13 = cAD and
c23|1 = cID|A. The second problem may be addressed by looking at scatterplots for the same
reduced data subsets. Since it is hard to detect typical copula structures from scatterplots
based on marginally transformed uniform margins uij := F̂T+

ij
(t+ij|xNij ,xS̄ij,wi(−j), nij), j =

1, 2, 3, i ∈ Ij, we consider scatterplots of zij := Φ−1 (uij)), where Φ−1(·) is the quantile
of the standard normal distribution. We will compare these plots to contour plots of
the corresponding theoretical copulas with standard normal margins at the maximum
likelihood estimate of the empirical data. In Figure 1 scatterplots of Zj1 and Zj2 are
plotted for the pairs of margins AI and AD in 2005 to 2007. Additionally kernel density
estimates are added to these scatterplots. The theoretical contour plots for an appropriate
copula choice are plotted to the right of each scatterplot. The copula parameters are the
MLE obtained from the corresponding data conditional on {Wj1 = 0} and {Wj2 = 0}.
Based on these copula choices the conditional arguments of c23|1 can be calculated. For

example, for 2005 we have to determine uiI|A5 := hC(uiI5|uiA5, θ̂ = 0.33) and uiD|A5 :=
hGa(uiD5|uiA5, ρ̂ = 0.10), i ∈ IA ∩ II ∩ ID, where hC and hGa are the h functions w.r.t.
to the Clayton and the Gaussian copula, respectively (see Appendix A), and 0.33 and
0.10 are the MLE of these copulas determined in the previous step. We will plot ziI|A5 :=
Φ−1(uiI|A5) and ziD|A5 := Φ−1(uiD|A5) in Figure 2 and proceed similarly as before in order
to choose appropriate copulas. The maximum likelihood estimates when jointly estimating
the copula parameters for the PCC’s are given in Table 11. Since in 2006 the parameter
of c23|1 of the Gumbel copula is close to 1 and the parameter of the Gaussian copula for
c23|1 in 2007 is close to 0, we replace these copulas by the independence copulas. The
optimal model choices are typed bold. For these copulas there is a one-to-one relationship
to Kendall’s τ , i.e. we can determine theoretical Kendall’s τ corresponding to the ML
copula parameters and compare them to the empirical Kendall’s τ . For the Gaussian and
the Student t copulas we transform τ := 2/π·sin−1(ρ), for the Clayton we need to calculate
τ := θ/(2 + θ) and for the Gumbel we have τ := 1− 1/λ (see for instance Frees & Valdez
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Copulas Year ζ̂
T+

AI ζ̂
T+

AD ζ̂
T+

ID|A
C / C / Ga 2005 0.333 0.096 −0.041
C / C / Gu 2006 0.346 0.176 1.010
C / C / Ind 0.345 0.176
t / C / Ga 2007 0.272, df = 20.9 0.144 −0.005
t / C / Ind 0.272, df = 20.9 0.144

corresponding Kendall’s τ
theor. 2005 0.143 0.061 −0.026
empir. 0 .171 0 .058 −0 .027
theor. 2006 0.147 0.081 0.010
theor. 0.147 0.081
empir. 0 .178 0 .082 0 .027
theor. 2007 0.175 0.067 −0.003
theor. 0.175 0.067

empir. 0 .173 0 .066 −0 .013

Table 11: Maximum likelihood estimates of the copula parameters for the Gaussian (Ga),
Student t (t), Clayton (C) and Gumbel copula (Gu). Corresponding theoretical Kendall’s
τ and empirical Kendall’s τ of copula data. Updated fit using the independence copula
for ID|A in 2006 and 2007.

(1998, Appendix B)). The empirical Kendall’s τ is based on the uniformely transformed
margins. The results concerning Kendall’s τ are given in the lower panel of Table 11:
the theoretical and empirical Kendall’s τ are quite close which confirms the results of
our fitting approach. There is a positive correlation between ambulant and inpatient as
well as for ambulant and dental treatments for all three years, which is driven by the
health status of the insured person. Given ambulant treatments, the correlation between
inpatient and dental treatments is close to zero and is set to zero for 2006 and 2007.

4.5 Model interpretation

For the year 2007 we aim to investigate the influence of AGE on the predicted probability
of a refund P̂W (1, 1, 1|xWj ). Thereby we fix all other covariates, i.e. we fix the applied
deductible DEDA7 at its median value 34.85, whereas DEDI7 and DEDD7 will be fixed
at 0. The buying power will be fixed at its mode 19499.40 and the urbanity at its median
396.35. The number of physicians per inhabitants we set to its mode 0.223. Modes are
estimated using kernel density estimates of histograms of the covariates. For men and
women, the influence of AGE on P̂W (1, 1, 1|xWj ) both under the joint model and assuming
independence are graphed in the left panel of Figure 3.
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Figure 1: Scatterplots of pairs of zij := Φ−1
(

F̂T+
ij
(t+ij|xNij ,xS̄ij ,wi(−j), nij)

)

, j = 1, 2, 3 with

contour plots of bivariate kernel density estimates for ambulant / inpatient margins (first
column) and for ambulant / dental margins (third column). In column two (four) we show
theoretical contour plots based on a chosen pair copula family for ambulant / hospital
(ambulant / dental) margins.
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Figure 2: Scatterplots of conditional pairs of zij1|j2 := Φ−1 (h(uij1|uij2)), jk = 1, 2, 3 with
contour plots of bivariate kernel density estimates for inpatient / dental margins given the
ambulant margin (first column). In column two we show theoretical contour plots based
on a chosen pair copula family for each year.

Male insured persons have a higher refund probability in general. Since AGE was taken
into our models as a piecewise linear function there is a jump at 32. Whereas earlier
than 32 the refund probability slightly increases, it rapidly falls when the person gets
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Figure 3: Influence of AGE on the refund probability when assuming independence and
using the joint fitted probability pW (w) while fixing other covariates; density estimates
of sums of claims.

older, hence it becomes increasingly difficult to get the premium refund. In a second step
we are interested in estimating the density of T+

1 + T+
2 + T+

3 , therefore we additionally
fix AGE at its mode of 40.79. Further we assume we have a rather sick person and set
W := (0, 0, 0)′, i.e. we assume a claim occured in each treatment field. The arguments
of the PCC will be predictive cdfs of T+

j , j = 1, 2, 3 determined according to (13). We
approximate quantile functions for T+

j using the R function ”approxfun” in package stats.
Then we proceed by sampling (t+r1, t

+
r2, t

+
r3)

′, r = 1, . . . , 100 000 from T . Sampling from a
C-vine is straightforward, we refer to Aas et al. (2009) for details. Finally we compute
t+r := t+r1+t

+
r2+t

+
r3 and plot its density estimate using the stats function ”density”. On the

right panel of Figure 3 we see that the highest predicted density of T+
1 + T+

2 + T+
3 when

using the joint model for males lies around 1600 Euro (1750 Euro for females). Under the
independence assumption the peaks of the estimated densities are even higher, therefore
the joint model also reflects diversification effects.

Summary and Discussion

For the first time, a multivariate analysis of claims including zero claims based on PCC’s
was carried out. We have fitted separately a joint distribution for total claims given zero
claim events and for the zero claims. The total claims given zero claim events can be
expressed as a PCC under margins. Whatever combination of zero claims occurs one
gains knowledge in terms of a likelihood contribution either on the correlation of the total
positive claims or on the correlation of the zero claims. Even if the percentage of positive
claims in one or more margins is very low, our approach yet allows to fit these data. In
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higher dimensional problems, however, the computational effort of numerically integrating
margins out, increases. Other approaches for approximating high-dimensional integrals
may be more efficient for the problem at hand and may decrease the computational time.
Such approaches might also allow to efficiently approximate the joint cdf of the PCC and
hence to model the dependency of the binary margins also based on PCC’s. The choice of
the bivariate copula families of such a PCC with binary margins is still an open question.
In an application to health insurance we saw that the zero claim events between ambulant
and dental treatments show a large positive correlation. There is a positive correlation
also for the positive claims fitted by the pair-copula construction. The correlation is driven
by the health status of the insured person. Given ambulant treatments, the correlation
between inpatient and dental treatments is very low and needs not be fitted by a copula
for 2006 and 2007, i.e. we may assume independence between the conditional margins.
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Appendix

A Definition of selected copulas

Definition A.1 (Gaussian copula). The J-dimensional Gaussian copula with association
matrix Σ = (τij)i,j=1,...,J is given by

CG
J (u1, . . . , uJ |Σ) := ΦJ

(

Φ−1(u1), . . . ,Φ
−1(uJ)|Σ

)

, (14)

where ΦJ(·|Σ) is the cdf of the J-dimensional normal distribution with mean µ = 0J
and covariance Σ, φJ(·|Σ) its density and Φ−1(·) is the quantile of the standard normal
distribution.

In the special case of J = 2 we use notation CG
12(u1, u2|τ12) = Φ2(Φ

−1(u1),Φ
−1(u2)|τ12)

instead of (14).
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Definition A.2 (Student t copula). The J-dimensional t copula with parameters ν and
Ψ = (ψij)i,j=1,...,J is given by

Ct
J(u1, . . . , uJ |ν,Ψ) := FJ(t

−1
ν (u1), . . . t

−1
ν (uJ)|ν,Ψ) (15)

=

∫ t−1
ν (u1)

−∞
. . .

∫ t−1
ν (uJ )

−∞

Γ(ν+J
2
)

Γ(ν
2
)
√

(πν)J |Ψ|

(

1 +
x′Ψ−1x

ν

)− ν+J
2

dx,

where FJ(·|ν,Ψ) is the joint cdf of a t distributed random vector with mean 0, covariance
Ψ and ν degrees of freedom, fJ(·|ν,Ψ) its density, and t−1

ν denotes the quantile function
of a standard univariate tν distribution.

For J = 2 we write Ct
12(u1, u2|ν, ψ12) instead of (15).

Definition A.3 (Archimedean copula). Archimedean copulas are defined as

CJ(u1, . . . , uJ |θ) = ϕ−1
(

J
∑

j=1

ϕ(uj)
)

, (16)

where function ϕ is called generator. Further ϕ : [0, 1] → [0,∞) is a continuous, strictly
monotonic decreasing convex function with ϕ(1) = 0.

We consider in particula the Clayton and the Gumbel copula. The generator for the
J-dimensional Clayton copula with parameter θ > 0 is ϕC(u) := 1

θ
(u−θ − 1). For the J-

dimensional Gumbel copula with parameter λ ≥ 1 is ϕGu(u) := (− log(u))λ. The bivariate
copula densities (for the Clayton and Gumbel see Venter (2001)) together with h functions
defined in 4 (see Aas et al. (2009)) are given in Table 12.

Bivariate copula density h(u1|u2)
Gaussian φ2

(

Φ−1(u1),Φ
−1(u2)|τ12

)

· ∏2
j=1

1
φ(Φ−1(uj))

Φ
(

Φ−1(u1)−τ12Φ−1(u2)√
1−τ122

)

Student t f2(t
−1
ν (u1), t

−1
ν (u2)|ν, ψ12)·

∏2
j=1

1
fν(t

−1
ν (uj))

tν+1







t−1
ν (u1)−ψ12t

−1
ν (u2)√

ν+(t−1
ν (u2))

2
(1−(ψ12)

2)
ν+1







Clayton (1 + θ)(u1u2)
−1−θ(u−θ1 + u−θ2 − 1

)−1/θ−2
u−θ−1
2

(

u−θ1 + u−θ2 − 1
)−1−1/θ

Gumbel C12(u1, u2) (u1u2)
−1 ((− log u1)

λ +
(− log u2)

λ)−2+2/λ(log u1 log u2)
λ−1

[

1 + (λ− 1)((− log u1)
λ + (− log u2)

λ)−1/λ
]

,

where C12(u1, u2) = exp

(

−
[

(− log u1)
λ +

(− log u2)
λ
]1/λ

)

C12(u1, u2)
1
u2
(− log u2)

λ−1

[

(− log u1)
λ + (− log u2)

λ
]1/λ−1

Table 12: Bivariate copula densities and h functions for selected copulas
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B Proofs of Lemmas and Propositions

Proof. (Lemma 3.2)

FT+|{W=0}(t
+) = P (NS̄ ≤ t+|{W = 0})

=
∞
∑

k=1

P (NS̄ ≤ t+|{N = k,W = 0})P (N = k|{W = 0})

=
∞
∑

k=1

P (S̄ ≤ t+

k
|{N = k,W = 0})P (N = k|{W = 0})

=
∞
∑

k=1

FS̄|{N,W=0}

(

t+

k
|{N = k}

)

pN |{W=0}(k).

Proof. (Lemma 3.3) For t ≥ 0

FT (t) = P (T ≤ t)

= P (T ≤ t|{W = 1}) · P (W = 1) + P (T ≤ t|{W = 0}) · P (W = 0)

= P ((1−W )T+ ≤ t|{W = 1}) · P (W = 1)

+P (W = 0) · P ((1−W )T+ ≤ t|{W = 0})
= P (0 ≤ t|{W = 1}) · P (W = 1) + P (W = 0) · P (T+ ≤ t|{W = 0})
= P (W = 1) + 1l{t>0}P (W = 0) · FT+|{W=0}(t)

= pW (0) + 1l{t>0}(1− pW (0)) · FT+|{W=0}(t).


