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Abstract. We introduce a random matrix model where the entries are dependent across both rows and
columns. More precisely, we investigate matrices of the form X = (X(i−1)n+t)it ∈ R

p×n derived from a
linear process Xt =

∑
j c jZt− j, where the {Zt} are independent random variables with bounded fourth

moments. We show that, when both p and n tend to infinity such that the ratio p/n converges to a finite
positive limit y, the empirical spectral distribution of p−1XXT converges almost surely to a deterministic
measure. This limiting measure, which depends on y and the spectral density of the linear process Xt, is
characterized by an integral equation for its Stieltjes transform. The matrix p−1XXT can be interpreted as
an approximation to the sample covariance matrix of a high-dimensional process whose components are
independent copies of Xt.

1. Introduction

Random matrix theory studies the properties of large random matrices A = (Ai, j)i j ∈ K
p×n, for

some field K. In this article, the entries Ai j are real random variables unless otherwise specified.
Commonly, the focus is on asymptotic properties of such matrices as their dimensions tend to infinity.
One particularly interesting object of study is the asymptotic distribution of their singular values.
Since the squared singular values of A are the eigenvalues of AAT, this is often done by investigating
the eigenvalues of AAT, which is called a sample covariance matrix. The spectral characteristics of
a p × p matrix S are conveniently studied via its empirical spectral distribution, which is defined
as FS = p−1 ∑p

i=1 δλi ; here, {λ1, . . . , λp} are the eigenvalues of S , and δx denotes the Dirac measure
located at x. For some set B ⊂ R, the figure FS (B) is the number of eigenvalues of S that lie in B. The
measure FS is considered a random element of the space of probability distributions equipped with the
weak topology, and we are interested in its limit as both n and p tend to infinity such that the ratio p/n
converges to a finite positive limit y.

The first result of this kind can be found in the remarkable paper of Marchenko and Pastur [14]. They
showed that F p−1AAT

converges to a non-random limiting spectral distribution F̂ p−1AAT
if all Ai j are

independent, identically distributed, centred random variables with finite fourth moment. Interestingly,
the Lebesgue density of F̂ p−1AAT

is given by an explicit formula which only involves the ratio y and
the common variance of Ai j and is therefore universal with respect to the distribution of the entries
of A. Subsequently [22, 24], the same result was obtained under the weaker moment condition that
the entries Ai j have finite variance. The requirement that the entries of A be identically distributed has
later been relaxed to a Lindeberg-type condition, cf. Eq. (3). For more details and a comprehensive
treatment of random matrix theory we refer the reader to the text books Anderson et al. [1], Bai and
Silverstein [5], Mehta [16].
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Recent research has focused on the question to what extent the assumption of independence of the
entries of A can be relaxed without compromising the validity of the Marchenko–Pastur law. In Aubrun
[3] it was shown that for random matrices A whose rows are independent Rn-valued random variables
uniformly distributed on the unit ball of lq(Rn), q > 1, the empirical spectral distribution F p−1AAT

still
converges to the same law as in the i. i. d. case. The Marchenko–Pastur law is, however, not stable with
respect to more substantial deviations from the independence assumptions.

A very useful tool to characterize the limiting spectral distribution in random matrix models
with dependent entries is the Stieltjes transform which, for some measure µ, is defined as the map
sµ : C+ → C+, sµ(z) =

∫
R

(t − z)−1µ(dt). A particular, very successful random matrix model exhibiting
dependence within the rows was investigated already by Marchenko and Pastur [14] and later in
greater generality by Pan [17], Silverstein and Bai [20]: they modelled dependent data as a linear
transformation of independent random variables which led to the study of the eigenvalues of random
matrices of the form AHAT, where the entries of A are independent, and H is a positive semidefinite
population covariance matrix whose spectral distribution converges to a non-random limit F̂H . They
found that the Stieltjes transform of the limiting spectral distribution of p−1AHAT can be characterized
as the solution to an integral equation involving only F̂H and the ratio y = lim p/n. Another approach,
suggested in Bai and Zhou [4] and further pursued in Pfaffel and Schlemm [18], is to model the rows
of A independently as stationary linear processes with independent innovations. This structure is
interesting because the class of linear processes includes many practically relevant time series models,
such as (fractionally integrated) ARMA processes, as special cases. The main result of Pfaffel and
Schlemm [18] shows that for this model the limiting spectral distribution depends only on y and the
second-order properties of the underlying linear process.

All results for independent rows with dependent row entries also hold with minor modifications for
the case where A has independent columns with dependent column entries. This is due to the fact that
the matrices AAT and ATA have the same non-zero eigenvalues.

In contrast, there are only very few results dealing with random matrix models where the entries are
dependent across both rows and columns. The case where A is given as the result of a two-dimensional
linear filter applied to an array of independent complex Gaussian random variables is considered in
Hachem et al. [10]. They use the fact that A can be transformed to a random matrix with uncorrelated,
non-identically distributed entries. Because of the assumption of Gaussianity the entries are in fact
independent, and so an earlier result by the same authors [11] can be used to obtain the asymptotic
distribution of the eigenvalues of p−1AA∗. In the context of operator-valued free probability theory,
Rashidi Far et al. [19] succeeded in characterizing the limiting spectral distribution of block Wishart
matrices through a quadratic matrix equation for the corresponding operator-valued Stieltjes transform.

A parallel line of research focuses on the spectral statistics of large symmetric or Hermitian square
matrices with dependent entries, thus extending Wigner’s [23] seminal result for the i. i. d. case. Models
studied in this context include random Toeplitz, Hankel and circulant matrices [6, 8, 15, and references
therein] as well as approaches allowing for a more general dependence structure [2, 12].

In Pfaffel and Schlemm [18], the authors considered sample covariance matrices of high-dimensional
stochastic processes, the components of which are modelled by independent infinite-order moving
average processes with identical second-order characteristics. In practice, it is often not possible to
observe all components of such a high-dimensional process, and the sample covariance matrix can then
not be computed. To solve this problem when only one component is observed, it seems reasonable
to partition one long observation record of that observed component of length pn into p segments of
length n, and to treat the different segments as if they were records of the unobserved components.
We show that this approach is valid and leads to the correct asymptotic eigenvalue distribution of the
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sample covariance matrix if the components of the underlying process are modelled as independent
moving averages.

We are thus led to investigate a model of random matrices X whose entries are dependent across both
rows and columns, and which is not covered by the results mentioned above. The entries of the random
matrix under consideration are defined in terms of a single linear stochastic process, see Section 2 for a
precise definition. Without assuming Gaussianity we prove almost sure convergence of the empirical
spectral distribution of p−1XXT to a deterministic limiting measure and characterize the latter via an
integral equation for its Stieltjes transform, which only depends on the asymptotic aspect ratio of the
matrix and the second-order properties of the underlying linear process. Our result extends the class of
random matrix models for which the limiting spectral distribution can be identified explicitly by a new,
theoretically appealing model. It thus contributes to laying the ground for further research into more
general random matrix models with dependent, non-identically distributed entries.
Outline. In Section 2 we give a precise definition of the random matrix model we investigate and state
the main result about its limiting spectral distribution. The proof of the main theorem as well as some
auxiliary results are presented in Section 3. Finally, in Section 4, we indicate how our result could be
obtained in an alternative way from a similar random matrix model with independent rows.
Notation. We use E and Var to denote expected value and variance. Where convenient, we also write
µ1,X and µ2,X for the first and second moment, respectively, of a random variable X. The symbol 1m, m
a natural number, stands for the m × m identity matrix. For the trace of a matrix S we write tr S . For
sequences of matrices (S n)n we will suppress the dependence on n where this does not cause ambiguity;
the sequence of associated spectral distributions is denoted by FS , and for their weak limit, provided it
exists, we write F̂S . It will also be convenient to use asymptotic notation: for two sequences of real
numbers (an)n, (bn)n we write an = O(bn) to indicate that there exists a constant C which is independent
of n, such that an ≤ Cbn for all n. We denote by Z the set of integers and by N, R, and C the sets
of natural, real, and complex numbers, respectively. =z stands for the imaginary part of a complex
number z, and C+ is defined as {z ∈ C : =z > 0}. The indicator of an expression E is denoted by I{E}
and defined to be one if E is true and zero otherwise.

2. A new random matrix model

For a sequence (Zt)t∈Z of independent real random variables and real coefficients (c j) j∈N∪{0}, the
linear process (Xt)t∈Z and the p × n matrix X are defined by Xt =

∑∞
j=0 c jZt− j and

X = (Xi,t)it = (X(i−1)n+t)it =


X1 . . . Xn

Xn+1 . . . X2n
...

...
X(p−1)n+1 . . . Xpn

 ∈ Rp×n. (1)

The interesting feature about this matrix X is that its entries are dependent across both rows and
columns. In contrast to models considered in [4, 11, 18], not all entries far away from each other are
asymptotically independent, e. g., the correlation between the entries Xi,n and Xi+1,1, i = 1, . . . , p − 1,
does not depend on n. We will investigate the asymptotic distribution of the eigenvalues of p−1XXT as
both p and n tend to infinity such that their ratio p/n converges to a finite, positive limit y. We assume
that the sequence (Zt)t satisfies

EZt = 0, EZ2
t = 1, and σ4 B sup

t
EZ4

t < ∞, (2)
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and that the following Lindeberg-type condition is satisfied: for each ε > 0,

1
pn

pn∑
t=1

E
(
Z2

t I{Z2
t ≥εn}

)
→ 0, as n→ ∞. (3)

Condition (3) is satisfied if all {Zt} are identically distributed, but that is not necessary. As it turns out,
the limiting spectral distribution of p−1XXT depends only on y and the second-order structure of the
underlying linear process Xt, which we now recall: its auto-covariance function γ : Z→ R is defined
by γ(h) = EX0Xh =

∑∞
j=0 c jc j+|h|; its spectral density f : [0, 2π] → R is the Fourier transform of γ,

namely f (ω) =
∑

h∈Z γ(h)e−ihω. The following is the main result of the paper.

Theorem 1. Let Xt =
∑∞

j=0 c jZt− j, t ∈ Z, be a linear stochastic process with continuously differentiable
spectral density f , and let the matrix X ∈ Rp×n be given by Eq. (1). Assume that

i) the sequence (Zt)t satisfies conditions (2) and (3),
ii) there exist positive constants C, δ such that |c j| ≤ C( j + 1)−1−δ, for all j ∈ N ∪ {0}.

Then, as n and p tend to infinity such that the ratio p/n converges to a finite positive limit y, the empirical
spectral distribution of p−1XXT converges almost surely to a non-random probability distribution
F̂ with bounded support. The Stieltjes transform z 7→ sF̂(z) of F̂ is the unique mapping C+ → C+

satisfying
1

sF̂(z)
= −z + y

∫ 2π

0

f (ω)
1 + f (ω)sF̂(z)

dω. (4)

Remark 1. The assumption that the coefficients (c j) j decay at least polynomially is not very restrictive;
it allows, e. g., for Xt to be an ARMA or fractionally integrated ARMA process, which exhibits long-
range dependence [9, 13]. In the latter case the entries of the matrix X are long-range dependent as
well.

Remark 2. It is possible to generalize the proof of Theorem 1 so that the result also holds for non-causal
processes, where Xt =

∑∞
j=−∞ c jZt− j. The required changes are merely notational, the only difference

in the result is that the auto-covariance function is then given by
∑∞

j=−∞ c jc j+|h|.

The distribution F̂ can be obtained from sF̂ via the Perron–Frobenius inversion formula [5, The-
orem B.8], which states that for all continuity point 0 < a < b of F̂, it holds that F̂([a, b]) =

limε→0+

∫ b
a =sF̂(x + εi)dx. In general, the analytic determination of this distribution is not feasible. It

is, however, easy to check that for the special case of independent entries one recovers the classical
Marchenko–Pastur law.

3. Proof of Theorem 1

The strategy in the proof of Theorem 1 is to show that the limiting spectral distribution of p−1XXT

is stable under modifications of X which reduce the sample covariance matrix to the form p−1ZHZT,
for a matrix Z with i. i. d. entries, and some positive definite H. To this end we will repeatedly use
the following lemma which presents sufficient conditions for the limiting spectral distributions of two
sequences of matrices to be equal.

Lemma 2 (Trace criterion). Let A1,n, A2,n be sequences of p × n matrices, where p = pn depends on n
such that pn → ∞ as n→ ∞. Assume that the spectral distribution F p−1A1,nAT

1,n converges almost surely
to a deterministic limit F̂ p−1A1,nAT

1,n as n tends to infinity. If there exists a positive number ε such that

i) p−4E
[
tr

(
A1,n − A2,n

) (
A1,n − A2,n

)T
]2

= O(n−1−ε),
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ii) p−2E tr Ai,nAT
i,n = O(1), i = 1, 2, and

iii) p−4Var tr Ai,nAT
i,n = O(n−1−ε), i = 1, 2,

then the spectral distribution of p−1A2,nAT
2,n is convergent almost surely with the same limit F̂ p−1A1,nAT

1,n .

Proof. The claim is a direct consequence of Chebyshev’s inequality, the first Borel–Cantelli lemma,
and Bai and Silverstein [5, Corollary A.42] �

With the constants C and δ from assumption ii) of Theorem 1 we define c j B C( j + 1)−1−δ, such that
|c j| ≤ c j for all j. Without further reference we will repeatedly use the fact that j 7→ c j is monotone,
that

∑∞
j=1 cαj is finite for every α ≥ 1, and that

∑∞
j=n cαj is of order O(n1−α(1+δ)). Since it is difficult to

deal with infinite-order moving averages processes directly, it is convenient to truncate the entries of the
matrix X by defining X̃t =

∑n
j=0 c jZt− j and X̃ = (X̃(i−1)n+t)it; this is different from the usual truncation

of the support of the entries of a random matrix.

Proposition 3 (Truncation). If the empirical spectral distribution of p−1X̃X̃T converges to a limit, then
the empirical spectral distribution of p−1XXT converges to the same limit.

Proof. The proof proceeds in two steps in which we verify conditions i) to iii) of Lemma 2.
Step 1. The definitions of X and X̃ imply that

∆X,X̃ B
1
p2 tr

(
X − X̃

) (
X − X̃

)T
=

1
p2

p∑
i=1

n∑
t=1

[
Xit − X̃it

]2
=

1
p2

p,n∑
i,t=1

∞∑
k,k′=n+1

Z(i−1)n+t−kZ(i−1)n+t−k′ckck′ .

We shall show that the second moment of ∆X,X̃ is of order at most n−2−2δ. Since

∞∑
k,k′

m,m′=n+1

E
∣∣∣Z(i−1)n+t−kZ(i−1)n+t−k′Z(i′−1)n+t′−mZ(i′−1)n+t′−m′

∣∣∣ |ck||ck′ ||cm||cm′ | ≤ σ4

 ∞∑
k=0

|ck|

4

< ∞, (5)

we can apply Fubini’s theorem to interchange expectation and summation in the computation of

µ2,∆X,X̃
B E∆2

X,X̃
=

1
p4

p,n∑
i,i′
t,t′=1

∞∑
k,k′

m,m′=n+1

E
[
Z(i−1)n+t−kZ(i−1)n+t−k′Z(i′−1)n+t′−mZ(i′−1)n+t′−m′

]
ckck′cmcm′ . (6)

Since the {Zt} are independent, the expectation in that sum is non-zero only if all four Z are the same or
else one can match the indices in two pairs. In the latter case we distinguish three cases according to
which factor the first Z is paired with. This leads to the additive decomposition

µ2,∆X,X̃
= µ2,∆X,X̃

+ µ2,∆X,X̃
+ µ2,∆X,X̃

+ µ2,∆X,X̃
, (7)

where the ideograms indicate which of the four factors are equal. For the contribution from all four Z
being equal it holds that k = k′, m = m′, and (i − 1)n + t − k = (i′ − 1)n + t′ − m, so that

µ2,∆X,X̃
=
σ4

p4

p∑
i,i′

n∑
t,t′=1

∞∑
m=max{n+1,n+1−(i−i′)n−(t−t′)}

c2
(i−i′)n+(t−t′)+mc2

m.

If we introduce the new summation variables δi B i − i′ and δt B t − t′, we obtain

µ2,∆X,X̃
=
σ4

p4

p−1∑
δi=1−p

(p − |δi|)︸    ︷︷    ︸
≤p

n−1∑
δt=1−n

(n − |δt|)︸   ︷︷   ︸
≤n

∞∑
m=max{n+1,n+1−δin−δt}

c2
m+δin+δt

c2
m.
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If δi is positive, then δin + δt is positive as well; the fact that |c j| is bounded by c j and the monotonicity
of j 7→ c j imply that c2

m+δin+δt
≤ c(δi−1)ncδt+n so that the contribution from δi ≥ 1 can be estimated as

µ ,+
2,∆X,X̃

≤
σ4n
p3︸︷︷︸

=O(n−2)

p−1∑
δi=1

c(δi−1)n︸      ︷︷      ︸
=O(n−1−δ)

2n−1∑
δt=1

cδt︸ ︷︷ ︸
=O(1)

∞∑
m=n+1

c2
m︸   ︷︷   ︸

=O(n−1−2δ)

= O(n−4−3δ).

An analogous argument shows that the contribution from δi ≤ −1, denoted by µ ,−
2,∆X,X̃

, is of the same

order of magnitude. The contribution to µ2,∆X,X̃
from δi = 0 is given by

µ ,∅
2,∆X,X̃

=
σ4n
p3

n−1∑
δt=1−n

∞∑
m=max{n+1,n+1−δt}

c2
mc2

m+δt
≤

σ4n
p3︸︷︷︸

=O(n−2)


2

n−1∑
δt=1

c2
δ︸︷︷︸

=O(1)

∞∑
m=n+1

c2
m︸   ︷︷   ︸

=O(n−1−2δ)

+

∞∑
m=n+1

c4
m︸   ︷︷   ︸

=O(n−3−4δ)


= O(n−3−2δ).

By combining the last two displays, it follows that µ2,∆X,X̃
is of order O(n−3−2δ). The second term in

Eq. (7) corresponds to k = k′, m = m′, and (i − 1)n + t − k , (i′ − 1)n + t′ − m. The restriction that not
all four factors be equal is taken into account by subtracting µ2,∆X,X̃

; consequently,

µ2,∆X,X̃
=

1
p4

p∑
i,i′=1

n∑
t,t′=1︸         ︷︷         ︸

=O(1)

∞∑
k,m=n+1

c2
kc2

m︸        ︷︷        ︸
=O(n−2−4δ)

−µ2,∆X,X̃
= O(n−2−4δ).

It remains to analyse µ2,∆X,X̃
which, by symmetry, is equal to µ2,∆X,X̃

. If the first factor is paired with the
third, the condition for non-vanishment becomes k = m + (i − i′)n + t − t′, k′ = m′ + (i − i′)n + t − t′,
and m , m′. Again introducing the new summation variables δi B i − i′ and δt B t − t′, we obtain that

µ2,∆X,X̃
=

1
p4

p−1∑
δi=1−p

(p − |δi|)︸    ︷︷    ︸
≤p

n−1∑
δt=1−n

(n − |δt|)︸   ︷︷   ︸
≤n

∞∑
m,m′=max{n+1,n+1−δin−δt}

cmcm′cm+δin+δt cm′+δin+δt − µ2,∆X,X̃
.

As in the analysis of µ2,∆X,X̃
we obtain the contribution from δi , 0 as

∣∣∣∣∣µ ,+
2,∆X,X̃

∣∣∣∣∣ =

∣∣∣∣∣µ ,−
2,∆X,X̃

∣∣∣∣∣ ≤ n
p3︸︷︷︸

=O(n−2)

p−1∑
δi=1

c(δi−1)n︸      ︷︷      ︸
=O(n−1−δ)

2n−1∑
δt=1

cδt︸ ︷︷ ︸
=O(1)

∞∑
m,m′=n+1

cmcm′︸           ︷︷           ︸
=O(n−2δ)

+µ2,∆X,X̃
= O(n−3−2δ). (8)
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Finally, for the contribution from δi = 0 one finds that∣∣∣∣∣µ ,∅
2,∆X,X̃

∣∣∣∣∣ ≤ n
p3

n−1∑
δt=1−n

∞∑
m,m′=max{n+1,n+1−δt}

|cmcm′cm+δt cm′+δt | + µ2,∆X,X̃

≤
n
p3︸︷︷︸

=O(n−2)


2

n−1∑
δt=1

c2
δt︸ ︷︷ ︸

=O(1)

∞∑
m,n′=n+1

cmcm′︸          ︷︷          ︸
=O(n−2δ)

+

∞∑
m,n′=n+1

c2
mc2

m′︸          ︷︷          ︸
=O(n−2−4δ)


+ µ2,∆ = O(n−2−2δ). (9)

The last two displays (8) and (9) imply that µ2,∆X,X̃
= µ ,−

2,∆X,X̃
+ µ ,∅

2,∆X,X̃
+ µ ,+

2,∆X,X̃
= O(n−2−2δ). Thus,

µ2,∆X,X̃
is of order O(n−2−2δ), as claimed.

Step 2. Next we verify assumptions ii) and iii) of Lemma 2, which means that we show that both
ΣX B p−2 tr XXT and ΣX̃ B p−2 tr X̃X̃T have bounded first moments and variances of order n−1−ε , for
some ε > 0; in fact, ε will turn out to be one. For ΣX we obtain

µ1,ΣX B EΣX =
1
p2

p∑
i=1

n∑
t=1

∞∑
k,k′=0

E
[
Z(i−1)n+t−kZ(i−1)n+t−k′

]
ckck′ =

n
p

∞∑
k=0

c2
k ,

where the change of the order of expectation and summation is valid by Fubini’s theorem. Using Eq. (5)
and Fubini’s theorem, the second moment of ΣX becomes

µ2,ΣX B EΣ2
X =

1
p4

p∑
i,i′=1

n∑
t,t′=1

∞∑
k,k′

m,m′=0

E
[
Z(i−1)n+t−kZ(i−1)n+t−k′Z(i′−1)n+t′−mZ(i′−1)n+t′−m′

]
ckck′cmcm′ .

This sum coincides with the expression analysed in Eq. (6), except that here the k, k′,m,m′ sums start
at zero, and not at n + 1. A straightforward adaptation of the arguments there show that µ2,ΣX equals

n2 p−2
(∑∞

k=0 c2
k

)2
+ O(n−2), and, consequently, that Var ΣX = µ2,ΣX −

(
µ1,ΣX

)2
= O(n−2). Analogous

computations show that EΣX̃ is bounded, and that Var ΣX̃ = O(n−2). Thus, conditions ii) and iii) of
Lemma 2 are verified, and the proof of the proposition is complete. �

Because of Proposition 3 the problem of determining the limiting spectral distribution of the sample
covariance matrix p−1XXT has been reduced to computing the limiting spectral distribution of p−1X̃X̃T,
where now, for fixed n, the matrix X̃ depends on only finitely many of the noise variables Zt. The fact
that the entries of X̃ are finite-order moving average processes and therefore linearly dependent on the
Zt allows for X̃ to be written as a linear transformation of the i. i. d. matrix Z B (Z(i−2)n+t)i=1,...,p+1,t=1,...,n.
We emphasize that Z, in contrast to X and X̃, is a (p + 1) × n matrix; this is necessary because the
entries in the first row of X̃ depend on noise variables with negative indices, up to and including Z1−n.
In order to formulate the transformation that maps Z to X̃ concisely in the next lemma, we define

the matrices Kn =

(
0 0

1n−1 0

)
∈ Rn×n, as well as the polynomials χn(z) = c0 + c1z + . . . + cnzn and

χ̄n(z) = znχ (1/z) = cn + cn−1z + . . . + c0zn.

Lemma 4. With X̃, Z, Kn and χn, χ̄n defined as before it holds that

X̃ =
[

0 1p 1p 0
] ( Z 0

0 Z

) [
χn

(
KT

n

)
χ̄n (Kn)

]
. (10)
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Proof. Let sN : RN → RN be the right shift operator defined by sN(v1, . . . , vN) = (0, v1, . . . , vN−1) and
for positive integers r, s denote by vecr,s : Rr×s → Rrs the bijective linear operator that transforms a
matrix into a vector by horizontally concatenating its subsequent rows, starting with the first one. The
operator S r,s : Rr×s → Rr×s is then defined as S r,s = vec−1

r,s ◦srs ◦ vecr,s. This operator shifts all entries
of a matrix to the right except for the entries in the last column, which are shifted down and moved
into the first column. For k = 1, 2, . . ., the operator S k

r,s is defined as the k-fold composition of S r,s. In
the following, we write S B S p+1,n. With this notation it is clear that X̃ =

[
0 1p

]
χn(S )Z. In order

to obtain Eq. (10), we observe that the action of S can be written in terms of matrix multiplications
as S Z = Kp+1ZE + ZKT

n , where the entries of the n × n matrix E are all zero except for a one in the
lower left corner. Using the fact that E(KT

n )mE is zero for every non-negative integer m it follows by
induction that S k, k = 1, . . . , n, acts like

S kZ =Z
(
KT

n

)k
+ Kp+1Z

k∑
i=1

(
KT

n

)k−i
E
(
KT

n

)i−1
=

[
1p+1 Kp+1

] ( Z 0
0 Z

)  (
KT

n

)k

Kn−k
n

 .
This implies that

X̃ =
[

0 1p
] [

1p+1 Kp+1
] ( Z 0

0 Z

) n∑
k=0

ck

 (
KT

n

)k

Kn−k
n

 =
[

0 1p 1p 0
] ( Z 0

0 Z

) [
χn

(
KT

n

)
χ̄n (Kn)

]
and completes the proof. �

While the last lemma gives an explicit description of the relation between Z and X̃, it is impractical
for directly determining the limiting spectral distribution of p−1X̃X̃T. The reason is that Z appears
twice in the central block-diagonal matrix and is moreover multiplied by some deterministic matrices
from both the left and the right. The LSD of the product of three random matrices has been computed
in the literature [25], but this result is not applicable in our situation due to the appearance of the
random block matrix in Eq. (10). Sample covariance matrices derived from random block matrices
have been considered in Rashidi Far et al. [19]. However, they only treat the Gaussian case and, more
importantly, do not cover the case of a non-trivial population covariance matrix. We are thus not aware
of any result allowing to derive the LSD of p−1X̃X̃T directly from Lemma 4.

The next proposition allows us to circumvent this problem. It is shown that, at least asymptotically
and at the cost of slightly changing the size of the involved matrices, one can simplify the structure of
X̃ so that Z appears only once and is multiplied by a deterministic matrix only from the right.

Proposition 5. Let Z, Kn and χn, χ̄n be as before and define the matrix X̂ B ZΩ ∈ R(p+1)×(n+1), where

Ω =
[

0 1n 1n 0
] [ χn+1

(
KT

n+1

)
χ̄n+1 (Kn+1)

]
∈ Rn×(n+1). (11)

If the empirical spectral distribution of p−1X̂X̂T converges to a limit, then the empirical spectral
distribution of p−1X̃X̃T converges to the same limit.

Proof. In order to be able to compare the limiting spectral distributions of p−1X̃X̃T and p−1X̂X̂T in

spite of their dimensions being different, we introduce the matrix X =

[
0 0
0 X̃

]
∈ R(p+1)×(n+1). Clearly,

F p−1XX
T

= (p+1)−1δ0 + p(p+1)−1F p−1X̃X̃T
, which implies equality of the limiting spectral distributions

provided either of the two, and hence both, exists. It is therefore sufficient to show that the LSD of
p−1X̂X̂T and p−1XX

T
are identical; this will be done by verifying the three conditions of Lemma 2.
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The remainder of the proof will be divided in two parts. In the first part we check the validity of
assumption i) about the difference X̂ − X, whereas in the second one we consider the terms tr X̂X̂T and
tr XX

T
, which appear in conditions ii) and iii).

Step 1. Using the definitions of X̂ and X, it follows that

∆X̂,X B
1
p2 tr

(
X̂ − X

) (
X̂ − X

)T
=

1
p2

p+1∑
i=1

n+1∑
j=1

[
X̂i j − Xi j

]2

≤
2
p2

p+1∑
i=2

n+1∑
j=2

 n∑
k,k′= j

Z(i−2)n+kZ(i−2)n+k′c j−k+n+1c j−k′+n+1 +

n∑
k,k′= j−1

Z(i−3)n+kZ(i−3)n+k′c j−k+n−1c j−k′+n−1


+

1
p2

p+1∑
i=1

n∑
k,k′=1

Z(i−2)n+kZ(i−2)n+k′cn−k+2cn−k′+2 +
2
p2

n+1∑
j=2

j−1∑
k,k′=1

Z−n+kZ−n+k′c j−k−1c j−k′−1

+
2
p2

n+1∑
j=2

n∑
k,k′= j

Z−n+kZ−n+k′c j−k+n+1c j−k′+n+1 C
5∑

i=1

∆
(i)
X̂,X

, (12)

where the elementary inequality (a+b)2 ≤ 2a2 +2b2 was used twice. In order to show that the variances
of expression (12) are summable, we consider each term in turn. For the second moment of the first
term of Eq. (12) we obtain

µ2,∆(1)
X̂,X
B E

(
∆

(1)
X̂,X

)2
=

4
p4

p+1∑
i,i′=2

n+1∑
j, j′=2

n− j+1∑
k,k′=1

n− j′+1∑
m,m′=1

E
[
Z(i−1)n−k+1Z(i−1)n−k′+1Z(i′−1)n−m+1Z(i′−1)n−m′+1

]
×

c j+kc j+k′c j′+mc j′+m′ .

As before we consider all configurations where above expectation is not zero. The expectation equals
σ4 if i = i′ and k, k′,m,m′ are equal, and, hence,

µ
2,∆(1)

X̂,X

≤
4σ4

p4

p+1∑
i=2

n∑
k=1

n+1∑
j=2

c2
j+k


2

≤
4σ4

p3

n∑
k=1

c2
k

n+1∑
j=2

c j


2

= O(n−3).

The expectation is one if the four Z can be collected in two non-equal pairs. The first term equals the
second, and the third equals the fourth if k = k′ and m = m′, and thus

µ
2,∆(1)

X̂,X

=
4
p4

p+1∑
i,i′=2

n+1∑
j, j′=2

n− j+1∑
k=1

n− j′+1∑
m=1

c2
j+kc2

j′+m − µ2,∆(1)
X̂,X

=
4
p2

n+1∑
j=2

n− j+1∑
k=1

c2
j+k


2

− µ
2,∆(1)

X̂,X

= O(n−2).

Likewise, the contribution from pairing the first factor with the third, and the second with the fourth,
can be estimated as∣∣∣∣∣∣µ2,∆(1)

X̂,X

∣∣∣∣∣∣ ≤ 4
p4

p+1∑
i′=2

n+1∑
j, j′=2

n∑
k,k′=1

|c j+kc j+k′c j′+kc j′+k′ | + µ
2,∆(1)

X̂,X

≤
4
p3

n+1∑
j=1

c j


4

+ µ
2,∆(1)

X̂,X

= O(n−3).

Obviously, the configuration µ
2,∆(1)

X̂,X

can be handled the same way as µ
2,∆(1)

X̂,X

above. Thus we have

shown that the second moment of ∆
(1)
X̂,X

, the first term in Eq. (12), is of order n−2. This can be shown
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for the second term in Eq. (12) in the same way. We now consider the second moment of the third term
in Eq. (12):

µ2,∆(3)
X̂,X
BE

(
∆

(3)
X̂,X

)2
=

1
p4

p+1∑
i,i′=1

n∑
k,k′

m,m′=1

E
[
Z(i−2)n+kZ(i−2)n+k′Z(i′−2)n+mZ(i′−2)n+m′

]
cn−k+2cn−k′+2cn−m+2cn−m′+2.

Distinguishing the same cases as before, we have µ
2,∆(3)

X̂,X

= σ4
p+1
p4

∑n
k=1 c4

n−k+2 = O(n−3) and, thus,

µ
2,∆(3)

X̂,X

=
(p + 1)2

p4

 n∑
k=1

c2
n−k+2

2

− µ
2,∆(3)

X̂,X

= O(n−2),

as well as µ
2,∆(3)

X̂,X

= µ
2,∆(3)

X̂,X

= O(n−3). Thus, the second moment of the third term in Eq. (12) is of order

O(n−2); repeating the foregoing arguments, it can be seen that the second moments of ∆
(4)
X̂,X

and ∆
(5)
X̂,X

,

the two last terms in Eq. (12), are of order O(n−2) as well, so that we have shown that

1
p4E

[
tr

(
X̂ − X

) (
X̂ − X

)T
]2

= E
(
∆X̂,X

)2
≤ 5

5∑
i=1

µ2,∆(i)
X̂,X

= O(n−2).

Step 2. In this step we shall prove that both ΣX̂ B p−2 tr X̂X̂T and ΣX B p−2 tr XX
T

have bounded first
moments, and that their variances are summable sequences in n, i. e. we check conditions ii) and iii) of
Lemma 2. Since tr XX

T
is equal to tr X̃X̃T, the claim about ΣX has already been shown in the second

step of the proof of Proposition 3. For the first term one finds, by the definition of X̂, that

ΣX̂ =
1
p2

p+1∑
i=1

n+1∑
j=1

 j−1∑
k=1

Z(i−2)n+kc j−k−1 +

n∑
k= j

Z(i−2)n+kc j−k+n+1


2

≤
2
p2

p+1∑
i=1

n+1∑
j=1

j−1∑
k,k′=1

Z(i−2)n+kc j−k−1Z(i−2)n+k′c j−k′−1

+
2
p2

p+1∑
i=1

n+1∑
j=1

n∑
k,k′= j

Z(i−2)n+kc j−k+n+1Z(i−2)n+k′c j−k′+n+1 C Σ
(1)
X̂

+ Σ
(2)
X̂
.

Clearly, the first two moments of Σ
(1)
X̂

are given by

µ1,Σ(1)
X̂
B EΣ

(1)
X̂

=
2
p2

p+1∑
i=1

n+1∑
j=1

j−1∑
k,k′=1

E
[
Z(i−2)n+kZ(i−2)n+k′

]
c j−k−1c j−k′−1 =

2(p + 1)
p2

n+1∑
j=1

j−1∑
k=1

c2
k−1,

and

µ2,Σ(1)
X̂
BE

(
Σ

(1)
X̂

)2
=

4
p4

p+1∑
i,i′=1

n+1∑
j, j′=1

j−1∑
k,k′=1

j′−1∑
m,m′=1

E(Z(i−2)n+kZ(i−2)n+k′Z(i′−2)n+mZ(i′−2)n+m′)×

c j−k−1c j−k′−1c j′−m−1c j′−m′−1.
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We separately consider the case that all four factors are equal, and the three possible pairings of the
four Z. If all four Z are equal, it must hold that i = i′, k = k′ = m = m′, with contribution

µ
2,Σ(1)

X̂

=
4σ4

p4

p+1∑
i=1

n+1∑
j, j′=1

min{ j, j′}−1∑
k=1

c2
j−k−1c2

j′−k−1

≤
4σ4(p + 1)

p4

n+1∑
j, j′=1

c j−min{ j, j′}c j′−min{ j, j′}

min{ j, j′}−1∑
k=1

c2
k−1 ≤

4σ4(p + 1)
p4

n+1∑
j, j′=1

c0c| j− j′ |

n∑
k=1

c2
k−1.

Introducing the new summation variable δ j B j − j′, one finds that

µ
2,Σ(1)

X̂

≤
4σ4(p + 1)(n + 1)

p4 c0

c0 + 2
n∑

δ j=1

cδ j

 n∑
k=1

c2
k−1 = O(n−2). (13)

The first factor being paired with the second, and the third with the fourth, means that k = k′, m = m′,
and m , (i − i′)n + k, so that the contribution of this configuration is given by

µ
2,Σ(1)

X̂

=
4
p4

p+1∑
i,i′=1

n+1∑
j, j′=1

j−1∑
k=1

j′−1∑
m=1

c2
j−k−1c2

j′−m−1 − µ2,Σ(1)
X̂

=

(
µ1,Σ(1)

X̂

)2
+ O(n−2). (14)

For the pairing, the constraints are i = i′, k = m, k′ = m′, k , k′, and the corresponding contribution
is

µ
2,Σ(1)

X̂

=
4
p4

p+1∑
i=1

n+1∑
j, j′=1

min{ j, j′}−1∑
k,k′=1

c j−k−1c j−k′−1c j′−k−1c j′−k′−1 − µ2,Σ(1)
X̂

≤
4(p + 1)

p4

n+1∑
j, j′=1

c j−min{ j, j′}c j′−min{ j, j′}

min{ j, j′}−1∑
k,k′=1

ck−1ck′−1 + O(n−2)

≤
4(p + 1)(n + 1)

p4 c0

c0 + 2
n∑

δ j=1

cδ j

 n∑
k,k′=1

ck−1ck′−1 + O(n−2) = O(n−2). (15)

Renaming the summation indices shows that µ
2,Σ(1)

X̂

= µ
2,Σ(1)

X̂

. Combining this with the displays (13)

to (15), it follows that Var Σ
(1)
X̂

= µ2,Σ(1)
X̂
−µ2

1,Σ(1)
X̂

= O(n−2). Since a very similar reasoning can be applied

to Σ
(2)
X̂

, and p−4Var tr X̂X̂T is smaller than 2Var Σ
(1)
X̂

+ 2Var Σ
(2)
X̂

, we conclude that p−4Var tr X̂X̂T is

of order O(n−2). �

The intention behind Proposition 5 was to allow the application of results about the limiting spectral
distribution of matrices of the form ZHZT, where Z is an i. i. d. matrix, and H is a positive semidefinite
matrix. Expressions for the Stieltjes transform of the LSD of such matrices in terms of the LSD of H
have been obtained by Marchenko and Pastur [14], Silverstein and Bai [20], and, in the most general
form, by Pan [17]. The next lemma shows that in the current context the population covariance matrix
H has the same LSD as the auto-covariance matrix Γ of the process Xt, which is defined in terms of
the auto-covariance function γ(h) =

∑∞
j=0 c jc j+|h| by Γ = (γ(i − j))i j; this correspondence is used to

characterize the LSD of H by the spectral density f associated with the coefficients (c j) j.



12 OLIVER PFAFFEL AND ECKHARD SCHLEMM

Lemma 6. Let Ω be given by Eq. (11). The limiting spectral distribution of the matrix ΩΩT exists and
is the same as the limiting spectral distribution of the auto-covariance matrix Γ. It therefore satisfies∫

h(λ)F̂ΩΩT
(dλ) =

1
2π

∫ 2π

0
h( f (ω))dω, (16)

for every continuous function h.

Proof. The first claim follows by standard computations from the fact that Ω is, except for one missing
row, a circulant matrix with entries Ωi j = cn+ j−i mod (n+1), and Bai and Silverstein [5, Corollaries A.41
and A.42]. The second claim is an application of Szegő’s limit theorem about the LSD of Toeplitz
matrices; see Szegő [21, Theorem XVIII] for the original result or, e. g., Böttcher and Silbermann [7,
Sections 5.4 and 5.5] for a modern treatment. �

Proof of Theorem 1. According to Proposition 5, the matrix X̂X̂T is of the form ZΩΩTZT, where Ω

is given by Eq. (11). Using Pan [17, Theorem 1] and the fact that, by Lemma 6, the limiting spectral
distribution of ΩΩT exists, it follows that the limiting spectral distribution F̂ p−1X̂X̂T

exists. Therefore,
the combination of Propositions 3 and 5 shows that the limiting spectral distribution of p−1XXT also
exists and is the same as that of p−1X̂X̂T. Pan [17, equation (1.2)] thus implies that the Stieltjes
transform of F̂ p−1XXT

is the unique mapping sF̂ p−1XXT : C+ → C+ which solves

1
sF̂ p−1XXT (z)

= −z + y
∫
R

λ

1 + λsF̂ p−1XXT (z)
F̂ΩΩT

(dλ),

and Eq. (16) from Lemma 6 completes the proof. �

4. Sketch of an alternative proof of Theorem 1

In this section we indicate how Theorem 1 could be proved alternatively using the methods employed
in Pfaffel and Schlemm [18]. We denote by X̃(α) the matrix which is defined as in Eq. (1) but with the
linear process being truncated at bnαc with 0 < α < 1, i. e. X̃(α) =

(∑bnαc
j=0 c jZ(i−1)n+t− j

)
it
. If 1 − α is

sufficiently small, then an adaptation of the proof of Proposition 3 to this setting shows that p−1XXT

and p−1X̃(α)X̃T
(α) have the same limiting spectral distribution almost surely. The next step is to partition

X̃(α) into two blocks of dimensions p × bnαc and p × (n − bnαc), respectively. If we denote these two

blocks by X̃1
(α) and X̃2

(α), i. e. X̃(α) =
[
X̃1

(α) X̃2
(α)

]
, then clearly X̃(α)X̃T

(α) = X̃1
(α)

(
X̃1

(α)

)T
+ X̃2

(α)

(
X̃2

(α)

)T
,

and an application of Bai and Silverstein [5, Theorem A.43] yields that

sup
λ∈R≥0

∣∣∣∣∣F p−1XXT
([0, λ]) − F p−1X̃2

(α)

(
X̃2

(α)

)T

([0, λ])
∣∣∣∣∣ ≤ 1

p
rank

(
X̃1

(α)

(
X̃1

(α)

)T
)
≤

1
p

min
(
bnαc, p

)
= O

(
p−1nα

)
→ 0.

It therefore suffices to derive the limiting spectral distribution of p−1X̃2
(α)

(
X̃2

(α)

)T
. Since the matrix X̃2

(α)
has independent rows, this could be done by a careful adaptation of the arguments given in Pfaffel and
Schlemm [18]. We chose, however, to provide a self-contained proof, which also provides intermediate
results of independent interest like Proposition 5, and we therefore omit the lengthy details of this
alternative proof.
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