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Abstract

Over the last decades, speed and data storage capabilities of computers have
steadily increased, allowing to process ever more data in less time and to ful-
fill ever more complex tasks. However, the tools users rely on to specify the task
have hardly changed during that period. Traditionally, keyboard, mouse, screen
and speakers are used for communication between user and machine. Unfortu-
nately, those tools are frequently considered unintuitive and uncomfortable, espe-
cially by technically inexperienced persons. Therefore, recent research considers
more advanced human-machine communication, often inspired by well-known
human-human communication techniques.

In this thesis, facial expressions, especially those conveying basic human emo-
tions, are investigated to improve human-machine interaction, since they are one
of the most important communication modalities for humans. Automated facial
expression recognition systems face a number of characteristic challenges. Firstly,
in contrast to artificial objects, which have a well-defined structure, human faces
differ a lot with respect to appearance and shape. Secondly, obtaining natural
training data is difficult, especially for facial configurations expressing emotions
like sadness or fear. Therefore, publicly available databases consist of acted facial
expressions and are biased by the author’s design decisions. Finally, evaluating
trained algorithms towards real-world behavior is challenging, again due to the
artificial conditions of available image data.

We tackle each of these challenges separately: We propose a novel image pre-
processing procedure that highlights facial components like face skin, eyebrows
and lips, rendering it specifically suitable for face image analysis tasks. Further-
more, we propose a novel face model fitting strategy that is applied to a three-
dimensional face model, which is highly suitable for facial expression recognition.
Our fitting strategy is evaluated on images that have been collected from the media
and therefore have not been taken with a computer vision in mind. Finally, rather
than training our classifier from only a single database, we use several databases in
our evaluation. We present a novel evaluation strategy that trains classifiers on one
database and tests them on another to ward against overspecialization. We present
applications of our technique in the area of cognitive technical systems. We em-
bed facial expression recognition a vivid dialog with a robot head and demonstrate
the advantage compared to a non-emotional dialog via a user study.



Zusammenfassung

Verarbeitungsgeschwindigkeit und Speicherkapazitit von Rechnern sind iiber die
letzten Jahrzehnte stetig gewachsen und gestatten die Verarbeitung von immer
mehr Daten in immer kiirzerer Zeit um immer komplexere Aufgaben zu erfiillen.
Auf der anderen Seite haben sich die Hilfsmittel, welche Benutzern zur Verfiigung
stehen, um die Aufgaben zu spezifizieren, in derselben Zeit kaum verindert. Tra-
ditionell werden Tastatur, Maus, Bildschirm und Lautsprecher fiir die Kommu-
nikation zwischen Mensch und Maschine benutzt. Leider werden diese Hilfs-
mittel, gerade von technisch unerfahrenen Benutzern, oft als unintuitiv und un-
komfortabel wahrgenommen. Daher untersucht neuere Forschung hoher entwick-
elte Methoden zur Mensch-Maschine Kommunikation, die oft von klassisch men-
schlicher Kommunikation inspiriert sind.

In dieser Arbeit werden Mimiken, speziell jene, welche Information iiber
grundlegende Emotionen vermitteln, untersucht, um die Mensch-Maschine Kom-
munikation zu verbessern. Systeme zur automatisierten Erkennung menschlicher
Mimik werden mit einer Anzahl von charakteristischen Herausforderungen kon-
frontiert. Erstens variieren menschliche Gesichter, im Gegensatz zu kiinstlich
hergestellten Objekten, die eine definierte Struktur haben, in Bezug auf Ausse-
hen und Form. Zweitens ist es schwierig, natiirliche Trainingsdaten zu erhal-
ten, besonders fiir Mimiken die Trauer oder Furcht widerspiegeln. Daher besteht
zugingliches Trainingsmaterial aus geschauspielerten Mimiken und ist durch De-
signentscheidungen der Datenbankauthoren vorbelastet. Zuletzt ist die Evaluation
von gelernten Algorithmen hinsichtlich Verhalten in der wirklichen Welt wegen
der Kiinstlichkeit dieser Daten schwierig.

Diese Herausforderungen werden separat in Angriff genommen: Eine neue
Bildvorverarbeitung hebt Gesichtskomponenten wie die Gesichtshaut, Augenbrauen
und Lippen hervor. Weiterhin wird eine neue Strategie zur Anpassung eines
Gesichtsmodells, welches besonders gut fiir den Einsatz zur Mimikerkennung
geeignet ist, angewendet. Diese Strategie wurde mit Hilfe von Bildern evaluiert,
welche aus den Medien gesammelt wurden und deshalb nicht mit der Absicht
aufgenommen wurden, fiir automatisierte Bildinterpretation verwendet zu wer-
den. Weiterhin werden mehrere Datenbanken zum Trainieren des Klassifikators
genutzt, anstatt sich nur auf eine einzelne zu verlassen. Die Klassifikatoren wer-
den mittels eines neuen Verfahrens evaluiert, welches darauf beruht, Klassifika-
toren auf einer Datenbank zu trainieren und auf einer Anderen auszuwerten um
Uberspezialisierung zu vermeiden. Anwendungen dieser Techniken werden im
Bereich kognitiver technischer Systeme vorgestellt. Mimikerkennung wird in



einen Dialog mit einem Roboterkopf eingebunden, um die Vorteile gegeniiber
einem Dialog ohne Mimiken durch eine Umfrage darzustellen.

Acknowledgments

Although I created this document on my own, I received much support in con-
ducting the research that led to its creation. First of all, I would like to thank my
supervisor, Prof. Dr. Bernd Radig, for his mentoring and helpful assistance in my
scientific work. I got to know him as a person of great acumen who often provided
well-thought advice and who always established a good working atmosphere. He
provided me with the opportunity to work on a fascinating topic in a challenging
research area.

Furthermore, I would like to thank Dr. Matthias Wimmer and Dr. Freek Stulp
for introducing me to this interesting research topic and to scientific work pro-
cesses in general. They both helped me a lot, especially at the start of my work. I
would also like to thank several colleges with whom I spent many hours inside and
outside the lab, and who I consider not only as fellow workers but also as friends:
Zahid Riaz, with whom I shared an office for almost two years of work. I greatly
enjoyed the long discussions on face image analysis. Martin Eggers, who became
my office mate later, and who helped me greatly with his English language skills.
Stefan Sosnowski, with whom some of the most fascinating work has been de-
veloped. Tobias Rehrl, who often inspired me with fruitful discussions. Finally,
Jiirgen Blume and Alexander Bannat, for their friendship and support. Addition-
ally, I would also like to thank all the other colleges from the CoTeSys Central
Robotics Lab and Intelligent Autonomous Systems Group, who are too many to
be personally addressed here.

Many thanks are also directed to the persons who helped me with proofread-
ing this thesis, namely Martin Eggers, Tobias Rehrl, Jiirgen Blume and Stefan
Sosnowski. Finally, I would like to thank my family, my parents Gerhard and
Christine, my sister Judith and my brother Philip, for supporting me steadily dur-
ing my work and my writing.



Contents

1 Introduction

1.1
1.2

Contributions . . . . . . .. ... ...
Outline . . ... .. .. ... .....

2 Problem Statement and Solution Idea

2.1
2.2

Problem Statement . . . . .. ... ..
SolutionIdea . .. ... .. ... ...

3 Related Work

3.1
3.2

Facial Action Recognition . . . . . ..
Facial Expression Recognition . . . . .
32.1 Conclusion . . .........

4 Low-level feature extraction

4.1
4.2
4.3

4.4

4.5
4.6

Problem Statement . . . ... ... ..
SolutionIdea . ... ..........
Related Work . . . ... ... ... ..
4.3.1 Extracting Skin Color . . . . .

4.3.2 Identifying Facial Components from Color . . . . .. ..

433 Conclusion . ... ... ....

Computing the Adjusted Pixel Features

4.4.1 Facial Component Masks . . . .
4.42 Image Characteristics . . . . . .
4.43 Adjusted Pixel Features . . . .
4.44 Regional Pixel Features . . . .
Classification . . . . ... .. ... ..
Experimental Evaluation . . . . .. ..

4.6.1 Evaluation of the Probability Masks . . . . .. ... ...

5

12
13

15
15
17

19
21
22
24



CONTENTS

4.6.2 Evaluation of the Image Characteristics . . . . . ... .. 42

4.6.3 Classifying Facial Components Using Different Features . 44

4.6.4 Evaluation of Face Locater Robustness Dependency . . . 45

477 DiscusSion . . . . . . ... e e e 46

Model Fitting 49

5.1 Problem Statement . . . .. ... ... ... ... ... .. 52

5.2 SolutionIdea . . ... ... ... ... oL 52

5.3 RelatedWork . . . .. ... .. 53

53.1 FaceModels ... ... ... ... ... ......... 53

5.3.2 ModelFitting . . . . ... ... ... ........... 54

533 Conclusions . . . . . ... ... Lo 58

54 SystemOverview . . . . . .. ..o 59

5.5 Training Displacement Experts . . . . . . ... ... ... .... 62

5.5.1 Image Annotation. . . .. .. ............... 63

5.5.2 Training Data Generation . . . . . . . .. ... ...... 63

5.5.3 Feature Extraction . . . ... .. ... .......... 65

5.5.4 Displacement Expert Training . . . . ... ... ..... 66

5.6 Application To A Different Model . . . . .. ... ... ..... 68

5.7 Common Refinements . . . ... ... ... ........... 69

5.7.1 Common Refinements on Displacement Expert . . . . . . 70

5.7.2 Common Refinements on Objective Function . . . . . . . 72

5.8 Experimental Evaluation . . . . ... ... .. .. ........ 72
5.8.1 Evaluation of Common Refinements on Displacement Ex-

PEIS . . . . o e e 73

5.8.2 Evaluation of The Derived Objective Function . . . . . . 74

5.8.3 Absolute Fitting Accuracy . . . . .. ... .. ... ... 77

5.8.4 Impact of Provided Image Bands . . . . . ... ... ... 79

5.8.5 Evaluation On A Different Model . . . . ... ... ... 81

5.9 DiIscussion . . . ... 84

Facial Expression Recognition 87

6.1 Problem Statement . . . .. ... ... ... .. ... 91

6.2 SolutionlIdea . ... ... ... . ... .. L. 92

6.3 RelatedWork . . . . ... .. ... 92

6.3.1 Cross-database Evaluation . . . . ... ... ....... 93

6.3.2 Conclusion . . . . ... .. ... o 94

6.4 Databases . . . . . . . ... e 95



CONTENTS 7

6.4.1 Cohn-Kanade Database . . . . . .. ... ... ...... 95

6.4.2 MMI Facial Expression Database . . . . . ... ... .. 96

6.4.3 FEEDTUM Database . . . . . ... ... ......... 96

6.5 DataAnnotation . . . . . . .. .. ... 97
6.5.1 Automatically Labeling Single Images . . . . . .. .. .. 97

6.5.2 Selecting Observation Weights . . . . . . ... ... ... 99

6.6 Facial Expression Recognition . . . . ... .. ... ....... 99
6.6.1 Feature Extraction . . . ... ... ... ......... 100

6.6.2 Classification . . . . . .. ... ... ... ........ 100

6.7 Experimental Evaluation . . . ... ... ... .......... 101
6.7.1 Traditional Approach . . . . . . .. ... ... ...... 101

6.7.2 Cross-database Comparison . . . . . ... .. .. .... 102

6.7.3  Evaluation of Weighting Functions . . . . . . . ... ... 103

6.7.4 Evaluation of Feature sets . . . . . ... ... ...... 105

6.7.5 Specialization properties . . . . . . . . ... ... ... 105

6.8 Regression. . . . . . ... ... 108
6.9 Across Facial Expressions . . . . ... ... ... ... 109
6.10 Discussion . . . . . . .. ... 110
7 Applications 113
7.1 Problem Statement . . . .. ... ... ... ... 115
7.2 SolutionIdea . . .. ... ... ... Lo 115
7.3 RelatedWork . . .. ... ... ... o 115
7.3.1 Conclusion . . . ... .. .. ... 117

7.4 Communication Framework . . . ... ... ... ... ... .. 117
7.5 Head Gesture Recognition . . . . . ... .. ... ........ 118
7.5.1 Feature Extraction . . . .. ... ... .......... 118

7.52 Evaluation . ... ... ... ... ... .. 118

7.6  Facial Expression Mirroring on a RobotHead . . . . . . . .. .. 118
7.6.1 Model Tracking and Facial Action Units Analysis . . . . . 120

7.6.2  Facial Expression Synthesis . . . . . ... ... ..... 121

7.6.3 Experimental validation . .. ... ... ......... 121

7.6.4 Experiment Realization. . . . . . ... ... ....... 122

7.65 Results . ... ... ... 124

7.7 Facial Expressions in a Human-Robot Dialog . . . . . ... . .. 126
7.7.1 Dialogand Akinator . . . .. ... ... ......... 126

7772 SocialModel . . ... ... ... L 127

7.7.3 Experiment Conduction . .. ... ............ 128



774 Results . ... .........
7.8 Discussion . . . . . . . .. ...

8 Discussion and Future Work

9 Appendix

CONTENTS



Chapter 1

Introduction

The ability to communicate is, without doubt, of utmost importance to humans
and animals alike. Psychologist and philosopher Paul Watzlawick defined five
axioms of communication, of which the first states that ’One cannot not com-
municate” [141]. What Watzlawick refers to here, is that humans transmit infor-
mation passively even when they do not actively communicate. Humans are not
aware of all signals that they transmit and do not actively know all rules they ap-
ply to interpret these signals. However, communication also plays a major role in
linking technical systems. In contrast to human-human communication, machine-
machine communication relies on predefined, designed and therefore well-known
rules and specifications. Other than the often black-boxed human communication,
machine-machine communication is, given appropriate knowledge, completely
transparent. Considering the most obvious application of machine-machine com-
munication, the Internet, it can not be denied that both, human-human commu-
nication and machine-machine communication, are integrated parts of our daily
live.

Metcalfe’s law states that the usefulness of a network can be approximated
by n? with n being the number of communication nodes [143]. Although measur-
ing usefulness might be a difficult endeavor, its core idea, to measure the number
of connections that can be established with a number of network components, is
an intuitive approach. One of the conclusions of the law is that by fusing two sep-
arate networks into one, the resulting network is more useful than the simple sum.
On the other hand, one of the critics on Metcalfe’s law is that one should measure
the number of active connection rather than the number of theoretically possible
connections, which again directly leads to the question of interfacing between the
two networks. The current drawback of machine communication is that, in order

9



10 CHAPTER 1. INTRODUCTION

to use it, one has to learn its rules. We learn human communication mechanisms
intuitively during childhood, but to understand machine communication reading
often lengthy manuals is required for a single machine and studies of years to get
a more general view.

Therefore, research has started to consider not only improving machine ca-
pacity, but also the way of communication between humans and machines. Fus-
ing machine-machine and human-human communication techniques offers many
challenges, since humans are not fully aware of all communication they use them-
selves. Although humans are able to learn machine communication protocols,
it is more desirable that machines adapt or ’learn” human communication pro-
tocols, since, in the end, machines are invented to serve humans, not the other
way around. It is of high importance to humans to pass information about their
emotional state, since it provides important context to verbal communication and
heavily influences the behavior of both interaction partners. Psychology and In-
tercultural Communication investigate the influence of subconsciously passed sig-
nals in human-human communication and offer a wide variety of examples of how
communication that works perfectly fine on the verbal level can be ruined by such
non-verbal signals through seemingly small details.

In this thesis, we inspect one of the most important human communication
modalities, facial expressions, and demonstrate, how machines can understand or
at least recognize them from video images. Facial expression recognition refers
to the task of automatically determining the facial expression of a human from
camera images, see Figure 1.1 for two example images. Often, facial expression
recognition is performed in a three-step approach: face detection, feature extrac-
tion from the located face region and classification of the facial expression visible.
We follow the same steps as the overview of our approach in Figure 1.2 shows.

Face detection refers to the challenge of determining the face position within
the image, usually by a bounding box. We apply the approach of Viola et al.
for this task to determine the face bounding box and the position of eyes in the
image [136]. This approach is known for its speed and robustness, and publicly
available implementations exist that have been trained on a large number of exam-
ple images. A preprocessing step extracts meaningful low-level features to support
subsequent high-level image interpretation. This step highlights important image
content, specific facial components, and is especially helpful in real-world appli-
cations with cluttered background and difficult lighting conditions. Knowledge
about the location of the face components provides a more profound basis than
pure pixel information.

For facial expression feature extraction, we fit a face model, which provides
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Figure 1.1: We present a system that recognizes facial expressions from camera
images.

an abstract representation of valuable information about important face proper-
ties, onto the image. The Candide-III face model contains information about the
face position in 3D space rather than appearance in the image [2]. Starting with
a default parameterization of the model, regression algorithms refine the model
parameters iteratively. To obtain representative evaluations, we integrate the ”La-
beled Faces In The Wild’ database, which consists of images that have been taken
outside lab or office environments. This database offers face images with a wide
variety in head pose, lighting, ethnic background and facial expression.

In the human face, eight muscles are used to generate a large number of facial
expressions. However, only a few facial expressions correspond to emotional reac-
tions. Ekman and Friesen found six universal facial expressions that are expressed
and interpreted independent of cultural background, age or country of origin all
over the world and correspond to a set of emotional states: happiness, surprise,
fear, anger, sadness and disgust. The Facial Action Coding System (FACS) pre-
cisely describes the muscle activity within a human face that appears during the
display of facial expressions. To automatically recognize facial expressions, one
either has to infer them directly from the image data, or has to determine the
activation of action units in the face and compare them to the list specified by Ek-
man and Friesen. In both cases, a database of exemplary image data is required to
evaluate the algorithm. Today, a number of such databases is available to the com-
munity. However, due to the fact that obtaining real image data is difficult, and
that humans often find it difficult to act certain facial expressions, the image ma-
terial is often biased by the expectations or instructions of the authors, rendering
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an evaluation of how accurate the algorithms perform in out-of-the-lab scenarios
difficult. Therefore, we include multiple databases in our evaluation for a fair
comparison.

1.1 Contributions

The contributions of this thesis are three-fold and we state them explicitly:

We present a system for facial expression recognition from camera im-
ages. We follow the three main steps proposed by Pantic et al. [99] and present
algorithms for the most challenging steps: The feature extraction step and the
facial expression classification step. Preprocessing of images to highlight impor-
tant facial components allows for a robust face model fitting. We integrate a face
model, which is highly suitable for for facial expression recognition. Classifiers
are trained to determine the facial expression from the parameters of the fitted face
model.

Furthermore, we present evaluations for implementations of those two
steps that are tuned to reflect robustness in real-world scenarios. Machine
learning techniques in computer vision require data that reflects the variety of
image content. To assure comparability, most approaches for facial expression
recognition are evaluated on standard databases. These databases, as far as model
fitting is concerned, often restrict the image content with respect to face size, light-
ing, background or similar context conditions. In contrast, we present evaluations
based on images that have been captured in real world conditions without a com-
puter vision application in mind, and that are publicly available for comparison.
As far as facial expression recognition is concerned, most approaches are eval-
uated on a single database. Therefore, algorithms are often tuned towards high
recognition rates on this specific database and obtain them at the cost of gener-
alization to other databases. In contrast, we evaluate our algorithms on different
databases to obtain evaluations that are not biased by database properties.

Finally, we present practical applications of our algorithms. Although
they also contain scenarios for facial expression classification, not all of them di-
rectly refer to this topic. Instead, we highlight the role of the proposed approaches
to work as a subsystem in a more complex system with a determined functionality,
taken from the field of human-machine communication. Furthermore, the require-
ment for different techniques of evaluation, such as user studies, is demonstrated
and an example of such an evaluation is shown.
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1.2 Outline

The remainder of this thesis is structured as follows:

e Chapter 2 summarizes challenges, which automated facial expression recog-
nition is confronted with, and that separate it from other computer vision
tasks. These challenges are tackled one by one to present solution ideas in
several processing steps.

e Chapter 3 outlines related work on facial expression recognition. It provides
a categorization of related approaches, identifies open research questions
and links the work presented in this thesis to existing research.

e Chapter 4 introduces our novel preprocessing procedure, that creates multi-
band images from the raw image data. This image representation is specifi-
cally tuned towards face image analysis tasks, because it highlights impor-
tant facial components like eyebrows or lips.

e Chapter 5 presents our model fitting strategy, that integrates mentioned
multi-band images. We train displacement experts that propose parame-
ter updates on single model parameters and evaluate our approach on the
“Labeled Faces in the Wild” database, which offers challenging data.

e Chapter 6 details the determination of facial expressions from model pa-
rameters. We include three publicly available databases and train classifiers
to recognize seven facial expressions. Our classifiers are evaluated in cross-
database evaluation to inspect their generalization capabilities.

e Chapter 7 demonstrates applications of the methods introduced in previous
chapters. We establish a human-machine dialog that is guided by facial
expression analysis and synthesis. Evaluation is conducted with user studies
on human experiment participants.

e Chapter 8 provides a conclusion of this work and hints future work. It
reviews and summarizes the conclusions drawn in the other chapters to
demonstrate how this work contributes to the state-of-the-art.
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Chapter 2

Problem Statement and Solution
Idea

The automated analysis of human faces is confronted with many characteristic
challenges compared to other computer vision tasks. Therefore, no other object
has received such interest from the community, specifically, since face analysis
inherently holds large opportunities for interdisciplinary research with psycholo-
gists and neurologists. In this chapter, we will highlight these specific challenges
and present approaches that tackle them at different processing steps, starting with
the raw image data until the facial expression classification itself.

2.1 Problem Statement

Face image analysis considers the task of automatically obtaining high-level in-
formation from images of human faces. The most prominent applications in this
area are face identification and facial expression recognition. Face identification
determines the identity of the person visible in the image, or determines whether
two images refer to the same person. Facial expression recognition estimates the
face state according to a semantic interpretation, either regarding the complete
face (laughing, crying or talking) or only facial components (closed eyes, opened
mouth). There are several characteristics to this area of research that have to be
considered.

In contrast to many artificial objects, faces differ in their size, appearance and
aspect ratios severely. This holds several benefits for computer vision applica-
tions, but at the same time induces several challenges. One of the benefits is that

15
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faces are unique which allows to determine a person’s identity from their face.
Since artificial objects often look alike, other means to distinguish them are re-
quired, like product numbers or license plates for cars. Although faces also might
look similar, no two faces are exactly the same. We intuitively make use of this
fact when using a person’s face to identify this person.

On the other hand, from a computer vision point of view, this also requires a
certain flexibility and robustness of algorithms for the interpretation of face im-
ages. Although some properties of faces are known (they have two eyes, one nose,
one mouth etc.), the structure and texture of a specific face has to be extracted on-
line. Often, face models serve as a tool to provide this flexibility while ensuring
robustness at the same time. Face models represent the depicted face in a small
number of descriptive model parameters and provide an abstraction of the image
content. However, model parameters that match the image content have to be cal-
culated in order to provide useful information, a process referred to as ’face model
fitting” or "face alignment”. Further challenges exist due to environment aspects,
such as lighting or background. Many applications that involve face image anal-
ysis are considered in unstructured or uncontrolled environments. Unfortunately,
most publicly available data is not captured in such realistic surroundings, but de-
picts face images taken in labs and offices, in which the lighting is controllable
and the human is always looking straight to the camera. Therefore, training robust
algorithms from such data or determining the robustness of an algorithm is not a
trivial problem.

Furthermore, facial expressions are used by humans on a very subconscious
level. Therefore, specifying them explicitly or providing explicit models for their
appearance and context dependency is a difficult endeavor and is often subject
to subjective decisions. Research demonstrates, that even humans are capable
of classifying short sequences without any context information only at a rate of
roughly 75% [146]. Additionally, obtaining natural or real-world data is difficult,
especially for facial expressions referring to emotions like sadness or fear. Fa-
cial expressions often do not occur pure, but in combinations such as a surprised
smile. However, available data mainly consists of acted facial expression, where
people are instructed to display facial expression according to database author in-
structions. Summing up, in contrast to artificial objects, where the appearance and
behavior is specified in technical terms during the production and which therefore
follow these rules, the recognition and interpretation of facial expressions requires
taking several uncertainties into account.

As a consequence, the core challenge when considering face images in com-
puter vision applications is three-fold: Obtaining representative data, creating ro-
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bust calculation rules and conducting fair evaluations of the algorithms. In the
context of face model fitting, these core challenges manifest in the large variety
of faces’ visual appearance, either due to person-specific aspects, like complex-
1on, hair color or facial hair, or due to facial expressions. In the context of facial
expression recognition these core challenges manifest in the variety with which
persons depict facial expressions and in the fact that facial expressions are often
highly context-related.

2.2 Solution Idea

To compensate for these varieties, in the object of interest as well as in the sur-
rounding, robust calculation rules in the three main processing steps are required.
Defining explicit calculation rules in any of these steps manually can be a difficult
if not impossible task. Therefore, machine learning is applied in all three steps,
allowing to define positive or negative examples. This is often much easier for
humans than specifying the calculation rules directly, which is then done by the
computer.

We follow a multi-step approach that transforms the raw image data into in-
formation about the face visible in the image. Each step is intended to create a
more abstract representation of the image, neglecting irrelevant information. In
each step, we integrate data for training and testing, that is specifically chosen to
reflect the variety of real-world scenarios.

The first step creates multi-band images, that highlight specific facial compo-
nents. This image representation serves two purposes: It separates the background
from the visible face and it provides rough structural information about the face.
Since execution time is highly important, we rely on boosted tree stumps.

The second step fits a face model onto the image which reduces the multi-band
image data to a number of model parameter values. Parameters that describe face
aspects like the opening of eyes or mouth. To fit the model, parameter updates
are calculated to the initial parameterization and therefore we face a regression
problem rather than a classification task. We integrate image data in this step, that
has been captured in a large number of different occasions with various persons,
backgrounds and lighting conditions.

In the third step, this information is further reduced and combined to deter-
mine the facial expression visible in the image. To compensate for author bias in
the training images, we integrate multiple databases and conduct our evaluation
cross-database. Cross-database evaluation is an evaluation strategy that obtains
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the training and test data from different databases, instead of acquiring both as
different subset from the same database. We integrate Support Vector Machines

for this classification task.



Chapter 3

Related Work

An important step in facial expression research has been taken by Ekman et al. in
the 70s, who identified six universal facial expressions that correspond to specific
emotions and that are expressed in the same way independent of age, gender or
cultural background all over the world [31]. To precisely describe the structure of
facial expressions, the same authors published the Facial Action Coding System
(FACS), which describes facial expressions by activations of so-called “action
units” in the face. Each action unit refers to a single intra-face movement and to
the contraction of specific facial muscles [34]. Much research has been conducted
on automatically identifying either the activation of single action units or universal
facial expressions.

Systems for face image analysis are divisible in two categories: Systems that
determine single facial action (rising a single eyebrow, closing the eyes, opening
the mouth, ...) and systems that determine a complete facial expression, usu-
ally with a specific semantic meaning (happiness, confusion, sleeping, ...). Ap-
proaches in the first category usually propose single facial actions or a set of states
for facial components of which some are semantically exclusive and some are in-
dependent. For instance, the eyes are either widened or closed, but either state
may be combined with an opened mouth. These approaches provide a face state
space, yet without any semantic meaning. Approaches in the second category fol-
low a different idea: they provide a description that involves the complete face,
usually with a semantic meaning. The semantics mostly refers to a set of mind
states, like emotions (happiness, sadness, surprise,...), boredom, stress or even
pain. In literature, the detection of facial actions is sometimes also referred to as
“facial expression recognition”. However, we will refer to them as systems for
facial action recognition, in order to provide a consistent terminology.
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Furthermore, approaches are divided to be either image-based or model based.
Image-based approaches rely on the extraction of image features like gradient
direction, local binary patterns, Haar-like features or Gabor wavelet responses.
Model-based approaches integrate an additional step by fitting a model to the im-
age and inspecting the parameters of the fitted model instead of the image content
directly. Models represent a-priori knowledge about the face and allow to form an
abstraction of the image content that neglects unimportant image properties.

A very early survey on the topic of face recognition and facial expression
recognition is presented by Samal and Iyengar [113]. Their work is focused on
human capabilities in this area and presents automated approaches in several sub-
tasks, like face detection, identification and representation. Almost ten years later,
Pantic et al. authored one of the most frequently referred to surveys [99]. They
also identify some important steps that most available approaches rely on, and
already present a selection of systems that tackle all of them. The approaches pre-
sented cover model-based approaches and image-based approaches alike. Since,
at this time, no database for facial expression analysis with wide acceptance had
been published, different approaches are presented but not compared for their ac-
curacy. Only a few years later, Fasel et al. present another survey of this field that
very explicitly considers the difference between facial expression recognition and
emotion recognition [38]. They still recognize the need for a widely accepted im-
age database but already mention the Cohn-Kanade Facial Expression Database
(CK database), which will evolve into one of the most utilized databases in this
area [63]. Furthermore, they mention that all systems presented still require man-
ual interference by the user for face detection or initialization. This issue is only
a minor challenge today, as many approaches for robust face detection have been
proposed and this can be considered an (almost) solved problem. A very recent
survey is presented by Zeng et al. [155]. They focus on multi-modal affect recog-
nition and present approaches for facial expression recognition, affect recognition
from audio or the integration of gestures. They review a large number of ap-
proaches on several important, publicly available databases, among them the most
often used ones: The Cohn-Kanade Facial Expression Database and the MMI Face
Database [63, 96]. Evaluation is usually conducted by sampling training and test
data from the same database. Rarely, cross-database evaluation is performed.
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3.1 Facial Action Recognition

Mostly, the FACS is used to determine single facial actions by determining the
activation of single action units. Manually labeled databases, like the CK database
serve as training and test data to evaluate such systems. Their advantage is their
flexibility, since combinations of activated action units are indicative for many
states of mind, not only emotions but also confusion, fatigue or boredom [155].
However, because manually labeling image sequences is a tedious task, much
effort has been taken to automatize this task. One example is presented in our
earlier work, which determines the intensity of action unit activations [16, 44].

Another example is presented by De la Torre et al., who aim at assisting pro-
fessional FACS coders in their work [69]. They take a model-based approach
and create person-specific face models, which renders the approach inapplicable
to previously unseen data, unless a face model is created for this person. This,
however, requires manually labeling image data, again. Since facial actions are
inherently dynamic in their movement, they extract temporal segmentation of fa-
cial behavior from image data. They demonstrate that their approach works well
on image data that has not been taken with a computer vision application in mind
and therefore induces challenging context conditions.

An approach that is not person-specific is proposed by Bartlett et al. Their
image-based system recognizes the activation of 27 different facial action units
by applying Gabor-wavelets to the face region and utilizes SVMs and AdaBoost
for classification [78]. They evaluate their system on different databases that have
been manually FACS-annotated. One of the databases contains images taken dur-
ing a real conversation and therefore depicts real instead of acted facial expres-
sions. Participants were asked to convince a neutral person of a specific opinion
on a political or social subject. This opinion was either their real opinion or the
opposite, and the neutral person had to determine, which was the case.

These systems work on the believe that action unit activations appear inde-
pendent of each other, or at least do not model the dependencies explicitly. Since
this is not a realistic assumption, Tong et al. model the dependencies of action
units in a Bayesian Network. They expect that some combinations of action units
appear more likely linked than independent [149]. Taking these dependencies into
account increases the detection accuracy significantly.

All of the mentioned systems so far consider frontal-view images, since this
represents the usual dialog situation and is therefore an intuitive assumption. How-
ever, Pantic et al. demonstrate that breaking this assumption might be beneficial
to the detection of certain action units and propose a system that uses profile view
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images for facial action detection [98]. They argue that several facial actions, like
pushing the tongue under the lips, are not observable in frontal view images. 15
anatomical landmarks are tracked with a particle filtering method to detect the ac-
tivation of 27 action units. Most probably inspired by this work, the authors pub-
lish the MMI database, which contains frontal-view and profile-view images [96].
In a more recent work, they investigate the temporal dynamics of action unit ac-
tivations [114, 66]. Boosted Gabor-wavelet features and Hidden Markov Models
are combined to determine the neutral, onset, apex and offset stage. They eval-
uate their approach on the MMI and CK database and also conduct one cross-
database evaluation where the MMI database serves as training database and the
CK database is used for testing. Observed accuracy are higher on the CK database
than across databases.

3.2 Facial Expression Recognition

Much work in recognizing predefined facial expressions rather than single facial
actions is dedicated to classifying the six universal facial expression of Ekman et
al. [110, 150, 67, 100, 148, 5, 74]. Facial expressions can be considered static, as
a fixed face state, or dynamic, as intra-face movement. An example for the first
approach is given by Kotsia et al., who determine the facial expression by detect-
ing the activation of several action units and then applying the rules of Ekman et
al. [67]. They utilize the CK database and fit a face model to the neutral image
in the beginning of each sequence. Then, they track it through the sequences to
obtain model parameters for the strongly exaggerated expressions in the end of
the sequences. Modified SVMs are trained to determine the activation of certain,
selected action units to obtain the facial expression from the rules stated by Ekman
and Friesen.

An approach that follows the opposite idea in many aspects is presented by
Anderson et al. [4]. Their approach is inspired by the dynamics of facial ex-
pressions and they utilize an image-based method to determine face motion from
optical flow. Furthermore, they strongly emphasize the real-time capability of
their system and also present some example applications like an interactive chat
client. However, similar to the approach of Kotsia et al., they train and evaluate,
both fully automatized, on the CK database. Inspired by the insight that standard
databases are known for its strongly exaggerated facial expressions, Park et. al.
aim at determining subtle facial expressions by artificially enhancing the face mo-
tion to produce an exaggerated facial expression [100]. They use a face model to
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extract facial motion vectors for 27 facial feature points and artificially enhance
this face motion to produce an exaggerated facial expression. Training and eval-
uation is conducted on a database that contains four facial expressions (neutral,
smile, anger, surprise) of Asian people.

In earlier work, we also presented a similar approach for real-time facial ex-
pression recognition in a live demonstration [83]. Evaluation of this system is
conducted on the CK database only. A more detailed description and evaluation
on two databases, the CK database and the MMI database, is given in [127]. Our
current work presented in this thesis extends the approach by presenting an eval-
uation on three databases and in cross-database evaluation.

Practical application is also a major focus of interest in the work of Whitehill
et al. [55]. They focus on one facial expression only and follow an image-based
approach to determine whether a person is smiling or not. In previous work, they
present a system for smile detection that has been evaluated on two databases,
but not in cross-database evaluation [74]. The system relies on AdaBoost and
Support Vector Machines to determine the facial expression from convolutions of
image data with Gabor energy filters. However, when they test their system in
real-world condition, they recognized a large drop in accuracy. Inspired by this
observation, they collect a very large database for practical smile detection and
train two different classifiers on three different feature sets. They recognize that
providing evaluations, which are valid not only on a set of predefined datasets
but reflect real-world behavior, is difficult. Recognition of facial expressions on
a low resolution, as it might appear in real-world data, is the focus of Shan et
al. [121]. They extract local binary patterns from the image data and evaluate
their approach on several databases. Mainly, the CK database is used, but results
are also reported on the MMI database and meeting recordings. Furthermore,
they evaluate their approach across databases, training on the CK database and
evaluating on the MMI database and observe a severe loss in accuracy.

Intensive comparison also inspired the work of Sebe et. al. [119], but they in-
spect the classification technique rather than the training data. In their evaluation,
they train 24 different types of classifiers on facial expression data received from
a specially designed database to determine which type of classifier is best suited
for facial expression classification. They test their results on the CK as well as on
a specifically designed Authentic Facial Expression Database.

Estimating the facial expression intensity is considered less frequently in liter-
ature, but some research has been conducted. Yang et al. present facial expression
intensity estimation with boosted ranking [150]. The core idea of this approach
is to determine the intensity by boosted ranking rather than traditional regression
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techniques. Instead of specifying explicit intensity values for single images, im-
ages are only compared for their intensity difference. Therefore, the algorithm is
trained to decide for two example images which of the images depicts the stronger
facial expression. However, although they report high classification rates, they
evaluate their approach only on the CK database, which is known for its exagger-
ated facial expressions.

Facial expressions that do not directly link to one of the universal emotions
have also been considered. Automatic detection of pain has been considered in
medical applications [3]. Traditionally, skilled human raters assign labels between
0 (no pain) and 5 (strong pain) to single images. Ashraf et al. use the same
rating and obtain human-labeled training data to train SVMs and sequence-based
classification.

3.2.1 Conclusion

Almost all of the above mentioned approaches utilize either information extracted
from complete image sequences or apex expressions only. While this is very well
applicable to database sequences, there are difficulties to be expected if these ap-
proaches are applied in real-world conditions, when people express facial expres-
sions in more varying intensity or length. For instance if people are in a relaxed
conversation, they might show a smiling face over an extended time, which will
not be recognized by sequence-based classification, since no change in the facial
expression occurs. Similar problems might occur with approaches that consider
apex expressions only. If the system is trained on strongly laughing faces only, it
might consider the mentioned smiling face to be still neutral.

Therefore, image-based classification is required that decides for a single im-
age, which facial expression is depicted. Furthermore, the whole variance of in-
tensity of facial expression has to be considered, in order to ensure that the point
of transition as it is determined by the classifier matches the intuitive perception
of a human. Considering this data is more challenging than focusing on the apex
expressions only, but is also a more realistic approach.

In this thesis, we take the next logical step in following these conclusions:
Instead of training algorithms that perform well on test images with constrained
content, we aim at determining the system performance when these restrictions are
released. We specify facial expression labels for single images and consider facial
expressions at varying intensities. Furthermore, we conclude that images captured
in controlled environments do not reflect the variability of real-world data very
well, neither for model fitting nor for facial expression recognition. Therefore,
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we propose to confront systems with data that helps warding against specializ-
ing on single databases instead of rewarding it. Whitehill et al. state that "It is
conceivable that by evaluating performance on these data sets the field of auto-
matic expression recognition could be driving itself into algorithmic ’local max-
ima’. ” [55]. In this thesis, we propose approaches that aim at avoiding this local
maximum, following the roadmap that is depicted in Section 2.2. We propose a
novel evaluation strategy that aims at obtaining results that are representative for
real-world conditions, instead of achieving ever higher results on well-structured,
artificial data.
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The interpretation of image data is often arranged in multiple steps with every
step providing more abstract information to subsequent processing steps. Low-
level feature extraction supports the extraction of higher-level information to in-
crease speed and accuracy. Extracted low-level features might include edge inten-
sity [20], Haar-like features [136], optical flow [67], pixel value differences [8] or
SIFT features [95, 76] to detect facial expressions [67], fit or track models [95, 20,
67], determine person identity [8] or detect complex objects in image data [95].

In this chapter, we present an image preprocessing procedure, which is specif-
ically tuned to the task of interpreting human face images. Its application supports
subsequent image interpretation by segmenting facial components from the rest of
the face and the image background. This information is represented in so-called
“multi-band images”. Image-bands can be thought of as additional image chan-
nels, but we refrain from this nomenclature in order to avoid confusions. Although
most face image interpretation approaches utilize standard image representations
in the red-green-blue color space or in the hue-saturation-value color space, more
complex image representations have been proposed, already. We take our nomen-
clature from Stegmann et al., who compute an image representation, which con-
tains a mixture of pixel values in different color spaces and call this a multi-band
image representation [128]. Cootes et al. present an image representation based
on image edges, in which the additional image bands reflect edge direction and
intensity [20]. Our image bands highlight specific facial components, like lips or
eye brows, and provide more semantic information than simple image filtering.
Figure 4.1 depicts an example image with its image bands.

The creation of these multi-band images is based on two components: char-
acteristics of human faces and characteristics of a single image. From this infor-
mation an intermediate step calculates descriptive feature values for single image
pixels. They represent the pixel’s spatial location and color value with respect
to the pre-estimated spatial distributions and color distributions of various facial
components. Therefore, they inherently represent information about the surround-
ing image and form descriptive information for subsequent classification tasks.

Figure 4.1: Image bands highlight the position of facial components in the image.
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We call these pixel features “adjusted pixel features”, because, in addition to the
raw image data, they also take characteristics of the complete image into account.
After calculating adjusted pixel features for all image pixels, classifiers are trained
on them to decide for a single pixel, which facial components this pixel depicts.
Applying these classifiers to all pixels of an image segments facial components
from the rest of the face and the image background. Please see Figure 4.2 for an
overview of the complete process. The advantage of pixel-based classifiers is that
they provide high runtime performance, and, since we provide them with adjusted
pixel features, achieve high accuracy at the same time.

/ probability masks \.

H o

|:> adjusted pixel
characteristics features

pixel
values
(RGB, HSV,...)

Figure 4.2: The probability masks are determined off-line in the first step. In
the second step image characteristics are computed to calculate adjusted pixel
features in the third step. Pixel-based classifiers are trained on them in the fourth
step. Finally, multi-band image are created in the fifth step.
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4.1 Problem Statement

Classifiers for pixel-based segmentation of human faces often rely on we call
static pixel features. These features consist of information that is extracted from
single pixels and raw image data, like the pixel coordinates in the image and the
pixel color values. Therefore, they are independent of the surrounding image con-
tent. Since only the information of a single pixel is considered in pixel-based
approaches, the mapping of the pixel features to the facial component must be
robust in order to achieve satisfactory results for the complete image.

Unfortunately, the color of a specific facial component varies significantly
throughout a set of random images. The reason is that varying context condi-
tions, such as lighting, camera type and settings, and the person’s complexion and
ethnic group, make the color of a facial component occupy a large cluster within
any color space. Furthermore, color clusters of different facial components may
overlap. The pure spatial location of a pixel does not provide any useful informa-
tion at all, because human faces potentially appear anywhere in the images.

4.2 Solution Idea

In this thesis we propose to calculate so-called adjusted pixel features that are
adapted to the image content. The basic idea is that, if combined and compared to
the surrounding image content, static pixel features still provide useful informa-
tion. For instance, in a single image all pixels of a certain facial component look
similar and share certain color statistics, which eases the task of finding potential
pixel candidates for this facial component. Furthermore, the color clusters of dif-
ferent facial components are less likely to overlap, and pixels of the same facial
component are located in a small area rather than in the whole image.

Inspired by this insight, we utilize static pixel features to calculate another
set of pixel features, which specifically take the image context into consideration.
Face properties are represented by a set of probability matrices that provide spatial
estimations of facial components. They are calculated inside a square region of
interest (ROI), which surrounds the face and is determined by applying a face
locater. Then, the entries of the probability masks are computed to reflect the
probability that a certain facial components is visible at a specific position in the
ROI. We utilize this information to estimate a set of image characteristics, such
as an estimation of the color cluster of certain facial components within the given
face region. Finally, from the static pixel features and the image characteristics we
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calculate additional pixel features, the mentioned adjusted pixel features that are
adapted to the context conditions. Therefore, they are more suitable to determine
facial components, by training classifiers that determine for a single pixel which
facial component is depicted.

4.3 Related Work

Often, sophisticated mathematical methods are applied to locate facial compo-
nents, varying from template matching to model fitting. Although, this chapter
rather provides a preprocessing to support such methods, we will still shortly re-
view them as alternatives to find facial components. A straightforward idea is to
use templates or shape information [70, 133, 21, 94, 37, 84]. A model of the face
or facial component is fit to the image, or component candidates are detected and
verified. The models and candidate determination algorithms incorporate the ge-
ometric structure of the facial component or the appearance in the image, which
guides search for this structure within the face areas, we will see more about that
in Chapter 5. These methods tend to show high accuracy but also high execution
time. In contrast, our algorithm allows for identifying facial components using
simple and quick computation schemes, and rather provides beneficial informa-
tion for subsequent model fitting. We refer to our earlier work for a summary
of our approach [17]. The recent version utilizes AdaBoost instead of SVMs for
classification to increase the execution speed.

Classifying skin color is addressed more frequently in the literature than other
facial components. Therefore, we review related approaches individually.

4.3.1 Extracting Skin Color

A large region of the human face is covered by skin and therefore, skin color
represents an important source of information to various computer vision applica-
tions considering human faces. For a recent survey we refer to Phung et al. [102]
and Vezhnevets et al. [135]. Vezhnevets et al. categorize the detection techniques
as follows:

Nonparametric skin color distribution modeling individually inspects every
element of the color space to determine whether it represents skin or not. Rules to
make this decision are learned from comprehensive training data, which require a
lot of memory, both for learning and for storing the rules. The advantage of these
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algorithms is that they perform at very high speed. An example of this approach
is presented by Jones et al. [59].

Parametric skin color distribution modeling models skin color to be located
within a cluster with a specific shape defined by a set of parameters, which limits
the required memory to these parameters. The computation of the parametric
cluster increases classification time. However, the accuracy decreases because
the predefined shape of the cluster does not represent the true color distribution
exactly. Common approaches model skin color distribution via a single Gaussian
or a mixture of Gaussians [59, 53].

Explicit definition of the skin color cluster uses a set of rules that explicitly
define the color cluster without sticking to a predefined geometric shape. Memory
requirements are limited by the chosen rules. Most often, this task is accomplished
by rule induction algorithms that learn the rules from an annotated training set.
Features that are well associated with skin color often allow to obtain accurate
rules. An example approach is presented in [102]

Dynamic skin color distribution modeling extends the previously mentioned
techniques by additionally considering further image conditions rather than rely-
ing on the color of the pixel only. In consequence, the cluster’s shape is adapted to
the processed image, which improves the skin detection accuracy. The skin color
cluster of Soriano et al. looks like the crescent of the moon [126]. They call it
skin locus and this shape is image-specific.

4.3.2 Identifying Facial Components from Color

There are several applications, in which detailed information about single facial
components is required. For instance, lip classifiers provide useful information
for speech recognition, speaker authentication and lip tracking [105, 111, 112].
The approach of Leung et al. is very similar to our lip classification approach,
estimating clusters that exactly localize the lips in the face [71]. Liew et al. also
consider color and spatial features for lip segmentation [73]. However, detecting
facial components may also support the detection of the complete face to reduce
the error rate. This idea is followed by Hsu et al. [53]. They construct eye and
mouth maps to verify each face candidates. In contrast, our approach uses the
previously estimated location of the face in order to precisely determine the loca-
tion of the facial components. A similar approach has recently been published by
Beigzahed et al. [84]. They manually define rules to construct the eye and mouth
maps for determining mouth and eye candidates. In contrast, our approach ap-
plies automatically trained classifiers. Manually annotating images is much more



4.4. COMPUTING THE ADJUSTED PIXEL FEATURES 33

a) static pixel features (color information)

T, \ color information of the pixel.

b) static pixel features (spatial information)

T The coordinates of the pixel within
the image.

Table 4.1: Color and spatial information of the static pixel features.

straightforward and therefore less error-prone than manually constructing the de-
cision rules. Furthermore, including other facial components than eye and mouth,
such as iris or eye brows, merely requires annotating the data instead of defining
a new set of rules.

4.3.3 Conclusion

All presented approaches rely on color distributions that are determined from a set
of example images, but they mostly rely on manually constructed decision rules,
in which only the parameters are estimated. For instance, skin color is often ex-
pected to cover a small cluster in the HSV color space, or lips are known to be red
and separated by an image edge from the surrounding image. The main disadvan-
tage of this approach is that it is difficult to extend to other facial components. An
approach that requires only labeling facial components and constructs the deci-
sion rules how to locate this component on its own would be preferable, since it is
more objective and easier to extend. Furthermore, only a few of the presented ap-
proaches adapt the color distribution to the specific image [126]. However, taking
the characteristics of a specific image into account, instead of assuming that one
set of decision rules works for any image, would greatly increase the robustness.
Therefore, we present an approach that refrains from manually constructing deci-
sion rules and determines them fully automatically from annotated images. The
drawback of this approach is that it requires more annotated data, since not only
test data but also training data is needed. However, this is easily compensated for
by the gain in robustness.

4.4 Computing the Adjusted Pixel Features

This section details the computation of adjusted pixel features from off-line gener-
ated probability masks, image characteristics and static pixel features. Static pixel
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Figure 4.3: Facial components are manually annotated in training images.

features consist of the pixel coordinates and color values of a pixel as summarized
in Table 4.1. The static pixel feature, the image characteristics and the adjusted
pixel features are categorized to being either spatial or color-related. Color-related
features are represented in different color spaces at the same time, such as RGB,
NRGB, HSV. However, in order not to overstrain the mathematical notation, the
explanation below only handles one color space. Similarly, we consider spatial
information in different representations, such as Cartesian coordinates and polar
coordinates with different origins.

Both, generating the probability masks and training the pixel-based classifiers,
requires annotated training data. Therefore, we collect a large number of images
from the internet, depicting person of different age, gender, complexion and back-
ground, and manually annotate facial components. Please see Figure 4.3 for some
example images and annotations.

4.4.1 Facial Component Masks

To estimate the ROI around the visible face, we apply the face locater of Viola and
Jones [136]. We generate a set of matrices from training images, one matrix A/
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per facial component f, that contain the probability for each pixel within the ROI
to depict a specific facial component. The matrix values are calculated from the
relative frequency of occurrence in the training images. This requires to map every
pixel of the mask to the corresponding area of the ROI in all training images.
By counting, how often this area depicts the facial component and dividing this
number by the total number of training images, we obtain an estimation of the
likelihood that the facial component is visible at this location in test images. The
idea of these masks is to represent structural properties of the human face: Firstly,
they provide a rough estimation of where certain facial components are located
within the ROI, for instance that the eyebrows are always located in the upper
area or the lips are always located on the lower area. Secondly, they provide
information about the relative location of facial components to each other, for
instance that the eyebrows are always located above the lips.

After the generation of the masks, we are able to predict the spatial distribution
of facial components within the ROI of test images by scaling A/ to the size of
the ROI of the given test image. For each pixel x, we estimate its probability bfm
to depict the facial component f from the the matrix entry corresponding to the
pixel position within the ROI. Figure 4.4 presents probability masks for a set of
facial components f € F = {skin, lips, brows, retina}. The generation of the
probability masks refers to Step 1 in Figure 4.2.

4.4.2 Image Characteristics

The image characteristics model properties of a single, given image rather than
single pixels and therefore have to be calculated only once per image. Since the
rough position of the face is an important information, the parameters of the ROI
determined by the face locater are directly considered in the image characteristics.
Furthermore, we determine the position of the eyes within the ROI to provide in-
formation more robust against turned faces, please see Figure 4.5 for a visualiza-
tion in an example image. Their position within the image as well as their distance
also characterize the image content.

Further image characteristics are obtained by exploiting the probability masks.
Each computation considers pixel color information . or pixel coordinates &,
a pixel’s probability bfa3 to be part of the facial component f, and the number
of pixel |ROI| within the ROI. We model the spatial distribution of every facial
component to be Gaussian and compute the distribution parameters (m/, S/) as
in Equation 4.1.

The color distribution of facial components is also modeled to be Gaussian
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a) image characteristics (spatial information)
m/, | The predicted spatial distribution of
St the facial component f within the
image. We assume this distribution
to be Gaussian. Its computation is
illustrated in Equation 4.1.

[ The  landmark  index  from
the set of landmarks L =
{NE,SE,NW ,NE,C,E}  pro-
vided by the face locater.

b) image characteristics (color information)
w, The predicted color distribution of
»/ the facial component f within the
entire image. We assume this dis-
tribution to be Gaussian. Its compu-
tation is illustrated in Equation 4.2.

Table 4.2: Color and spatial information of the image characteristics.

with the distribution parameters (u/, ¥/). The pixel values of all pixels that are
predicted to be covered by a single facial component according to the probabil-
ity masks are considered for this computation. As with the spatial distributions,
the color distribution parameters (u/, $/) calculated from Equation 4.2 of all fa-
cial Components contribute to the image characteristics. Table 4.2 summarizes
all extracted image characteristics. The calculation of the image characteristics
corresponds to Step 2 in Figure 4.2.

Figure 4.4: We train a set of probability masks that reflect the frequency of occur-
rence of a specific facial component within the region of interest. In this example,
the probability masks for skin, lips, eyebrows and retinas are depicted.
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Figure 4.5: Several landmarks in the image serve as reference points for the spatial
image characteristics.

1
ml = —— Z T, bfw
|R? | 2o
st = RO > (m! —z)(m! —z,)" (b)) (4.1)
LcROI

1
s = 1RO > (W —z) (W —2)" (0) (4.2)

LcROI

4.4.3 Adjusted Pixel Features

This section presents the calculation of adjusted pixel features from static pixel
features and image characteristics. As presented in Equation 4.3, the adjusted
spatial pixel features 7, contain the pixel coordinates relative to the image’s facial
landmark positions x; € L = {NE,SE, NW, NE, C, E} defined by the ROI. The
distance is calculated as the Euclidean distance, normalized by the ROI’s side size,



38 CHAPTER 4. LOW-LEVEL FEATURE EXTRACTION

as well as the angle difference from polar coordinates. Two reference coordinate
systems are used, one defined by the ROI and one defined by the eye positions, see
Figure 4.5. The distance measurement is normalized by the interocular distance
(the distance between the eyes). Furthermore, adjusted spatial pixel features k'
and ¢/ represent the location of the pixel relative to the spatial distribution of
the facial component f. Again, the Euclidean &/ and the Mahalanobis ¢/ distance
between the pixel’s location x, and the spatial mean m/ of the facial component f
are is calculated as given in Equation 4.4 and in Equation 4.5.

il = |$5 — $l|. (43)
k' = |z, — m7). (4.4)
=/ (x, —mI)T(S) " (z, — m]). (4.5)

The calculation of the adjusted color-related pixel features is conducted on the
color-related image characteristics. They contain the pixel’s color relative to the
skin color distribution (%" 335%™ the brow color distribution (pbrov, Ytrow)
and the lip color distribution (!, $%P) of the current image. They are again rep-
resented by the Euclidean distance g/ and by the Mahalanobis distance h/ to the
mean g/ of color distribution of the facial component f, see Equations 4.6 and 4.7
. Table 4.3 provides an overview of all extracted features. The calculation of the
adjusted pixel features corresponds to Step 3 in Figure 4.2.

g = |w. — 1| (4.6)
W =/ (e — )T (5) N (@e — ) (4.7)

4.4.4 Regional Pixel Features

The idea of regional pixel features is to contribute information about the surround-
ing of a pixel. The core idea is that pixel in a certain area share common properties
and that observing which properties are shared, provides information on the type
of the pixel. For instance, the eyebrows are usually darker than the surround-
ing skin and therefore pixels located in a dark area in the upper face region are
probably depicting eyebrows.

To integrate this information, we calculate an intermediate image that depicts
the distance of every pixel’s color value from the estimated skin color of the image
characteristics. Intuitively, this provides an estimation of a skin color image and
facial components, such as the mentioned eyebrow, will be determinable by their
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a) Adjusted pixel features (color information)
g’ The Euclidean distance between the
pixel’s color and the mean color
value p/ of the facial component f
that has been determined for the en-
tire image. It is computed as in
Equation 4.6.

h' The Mahalanobis distance between
the pixel’s color and the mean color
value p/ of the facial component f.
It is computed as in Equation 4.7.

b) Adjusted pixel features (spatial information)
bfm The probability of the pixel x to be
part of the facial component f.

k! The Euclidean distance between the
pixel’s location and the predicted
center m/ of the facial compo-
nent f. It is computed as in Equa-
tion 4.4.

o The Mahalanobis distance between
the pixel and the center of the facial
component f. It is computed as in
Equation 4.5.

U The distance between the pixel loca-
tion and a landmark position x;.

Table 4.3: Color and spatial information of the adjusted pixel features.

larger distance to the skin color estimation. For each pixel, we calculate a set of
Haar-like features with the pixel in the center. Please note that the position of
these Haar-like features depends on the pixel position within the image, which is
part of the static image features. To link these feature to a specific position within
the face region, the adjusted pixel features have to be considered. The feature size
is linked to the ROI size and we extract features ranging for 0.03 to 0.3 ROI side
size. Haar-like features consist of rectangular region, usually colored in white
and black for visualization. They are specified by their position within the image,
their scaling and their style, which refers to the arrangement of the regions. They
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are calculated by summing the pixel values in both regions and then subtracting
one sum from the other. The feature styles used by our approach are depicted in
Figure 4.6.

4.5 Classification

We train classifiers from extracted adjusted pixel features that determine the facial
component depicted by single pixels. First, the face locater is applied to a set of
training images in order to determine the ROIs. Then, in each image, the prob-
ability matrices are applied to calculate image characteristics. Finally, adjusted
pixel features are sampled from all images. One classifier is trained per from the
collected data per facial components to determine whether a single pixel depicts
that specific facial component or not. We chose to train tree stumps boosted with
AdaBoost, because this approach selects relevant features and reject less relevant
features from the large number of provided features, which contributes to the ex-
ecution performance of the algorithm. Training the classifiers corresponds to step
4 in Figure 4.2.

Edge features

-

@ b (© (@

Center-surround features

.
(a) (b

Figure 4.6: Haar-like features are extracted to describe the sorrounding of a pixel.
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By applying a single classifier to all pixel of an image we obtain an estimation
which pixels depict a specific facial component. We highlight these pixels in white
to obtain a multi-band image I. The underlying image-bands are denoted by Zy.
For instance, a multi-band image I = {Iskin, Lip, Iyrow } highlights face skin, lips
and brows. Determining the multi-band image corresponds to step 5 in Figure 4.2.

4.6 Experimental Evaluation

Our evaluation is conducted on a data set of 376 face images that were collected
from various Web pages. Each pixel is manually annotated with the facial compo-
nent it depicts. The images have not been taken with a Computer Vision applica-
tion in mind and therefore, the images include large variation with respect to pose,
expression, age, gender, etc. We train our classifiers on 67% of the images and
utilize the remaining 33% as test images to evaluate the accuracy of our approach.
The training data is split, again, and half of it is utilized to generate the proba-
bility mask. The second half is utilized to train the facial component classifiers.
The size of the probability masks is chosen to be Af € R'%*190  Qur evaluation
inspects the accuracy of each component separately: the probability masks, the
image characteristics, and the classification of the facial components based on the
adjusted pixel features.

4.6.1 Evaluation of the Probability Masks

The first evaluation inspects the reliability of the the probability masks entries.
The evaluation is conducted on all images that were not utilized to generate the
probability masks.

Applying a mask A’ to an image, each mask element al

i,
ber of image pixels, of which a certain fraction d{ ; depicts the facial component f.

Our evaluation compares d{ ; to the mask element afi ;- We compute the mean rel-

ative error d.,.. in this estimation according to Equation 4.8. Table 4.4 presents
results for different facial components.

; covers a small num-

1 ’a L — Qs
~ f o j : 1] %
aerror - |RO[| f (48)

Since the size of the facial components differs, they cover a different area | ROT/|
within the corresponding probability masks. Table 4.4 shows this area as well. Re-
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facial component f skin lips eyebrows | retina sclera
mean error of all mask entries a7, 3.86% | 0.66% 0.64% 0.18% | 0.18%
size of the mask [in pixels] |[ROI/| 5860 238 213 71 42
mean error of foreground mask entries /... | 6.59% | 27.73% | 30.05% | 25.35% | 42.86%

Table 4.4: We evaluate the probability masks by inspecting the suggested proba-
bilities on test images. The mean difference between the measured probabilities
in the test images and suggested probabilities of the masks vary from 6.59% for
skin and 42.86% for sclera.

lating the error of the entire mask to the area that a facial component covers yields
the mean error of foreground pixels in this mask as given in Equation 4.9. Ac-
cording to Table 4.4, the skin color pixels are much more precisely estimated by
Askin than all the other facial component. The reason is that skin color covers
a much more compact area within the face ROI and its shape is much less af-
fected by facial expressions and head rotations than the area of the smaller facial
components.

5 _.r ROl

error aerror ’ ‘RO[” (49)

4.6.2 Evaluation of the Image Characteristics

As mentioned in Section 4.4.2, the image characteristics model the spatial and
color distribution of facial components. We evaluate the estimation of these dis-
tributions by calculating the relative error in the distribution parameters. Thereto,
we determine distribution parameters from manual annotations in the test image
and compare them with the distribution parameters gained by applying the proba-
bility masks.

To inspect the spatial image characteristics, we consider the facial compo-
nent’s estimated center location calculated from the manual labeling ! and
the estimation m/ gained from the probability masks, normalized by the ROI side
size. Equation 4.10 presents the computation of the error m/, . Table 4.5 de-
picts this error for several facial components. For instance, the center location of
the lips m'"?* estimated by A'”* in test image is shifted by 0.06 of the side size of

the ROI compared to its computed position from manual annotation.
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facial component lips | eyebrows | retina
m/ ___in ROI side size | 0.066 0.059 0.062

error

Table 4.5: The estimated location of the center location of facial components is
compared with manual annotations. Distances are given in ROI side size. Since
this is roughly the face size, the distance estimation for all facial components
shows an average error of below 8% of the face size.

s f
m - m
Mo = (4.10)

The color-related image characteristics (p% Red> uﬁGreen, p,£ Buue) Tefer to the
mean value for normalized red, green and blue color channel. Furthermore, the
image characteristics consider their variances in (E£ Red? EfLGreen, Ef; Blue)- Again,
we calculate their relative error and present it in Table 4.6. We observe that the
estimation of g/ Red> ! een and pf o) is very accurate for skin, lip and brow in
the test images, see Table 4.6. Therefore, these image characteristic form a robust
basis for the computation of adjusted pixel features. However, the estimation
of Zz Red’zizG’reen and 27{ Blues Which are important to calculate the Mahalanobis
distance, are less robust. Please note that the Euclidean distance is not influenced
by that. The estimation for the retina is the most inaccurate because these facial
components occupy a small area of the face and are therefore more influenced by

head movement.

color channel l""szed l’l’fLGreen l’l"{LBlue Eszed ZfLGreen ZfLBlue
skin color 2.8% 3.7% 1.8% | 414% | 652% | 74.8%
brow color 3.7% 5.2% 23% | 445% | 63.0% | 70.7%
lip color 11.6% | 7.0% | 14.1% | 489% | 52.2% | 59.2%

retina color 16.5% | 20.4% | 13.7% | 208.3% | 245.4% | 437.6%

Table 4.6: Due to the small errors in the parameters of the skin, lip and eye-
brow distribution estimation, they are utilized to compute the color-related ad-
justed pixel features.
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4.6.3 Classifying Facial Components Using Different Features

This experiment inspects the impact of provided adjusted pixel features on classi-
fication accuracy. We train five example classifiers per facial component (Clyqyic,
Ceolor adj.» Cspatial adj.» Cail adj.» Cregional) and provide the classifiers with different
sets of features. Clqyc 18 trained with the color information of the pixel only. It
represents the traditional approach of considering the pixels’ static color infor-
mation only. Cior q;. additionally takes the color information of adjusted pixel
features into account. Cipariar aqj. US€S the static color features and adjusted spa-
tial features. Cyy qq;. considers all features of the previously introduced classifiers.
Finally, C,cgiona additionally takes the regional image features into consideration.
Please see Table 4.7 for a complete overview of the features provided.

Our evaluation applies the five classifiers to all pixels within the test images’
ROIs. Table 4.8 and Table 4.9 illustrate the accuracy of each classifier. In Ta-
ble 4.8 the number of correctly classified pixels (true positives and true negatives)
is divided by the total number of pixels within the ROI. In Table 4.9 the number
of pixels correctly classified as depicting the facial component is divided by the
ground truth number of pixels depicting that facial component.

Please note that the number of pixels reflecting a facial component is only a
small part of the complete region of interest and there are more negative examples
than positive examples. Therefore, we down-sample the negative examples to
have a comparable number of training and test examples for both classes.

As Table 4.8 indicates, C,.cgiona; Obtains the highest accuracy and clearly out-
performs the other classifiers. It may be surprising that classifying skin shows the
lowest accuracy in comparison to the other facial components. However, this is
expected since skin covers a large area of the face and its appearance includes the

static pixel features adjusted pixel features
color [ space color | space | regional
Cstatic | provided — - — —
Ccolor adj. PI'OVided - prodived - —
Cspatial agj. | provided - - provided -
Cuil agj. | provided - provided | provided -
Clregionai | provided - provided | provided provided

Table 4.7: The five classifiers of our evaluation consider a different set of features.
None of them uses the static coordinate values, because they do not bear any useful
information.
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facial Component Cstatic C(color adj. Cspatial adj. C(all adj. Cregional
skin 79.6 86.1 84.9 89.6 90.3
brow 67.9 75.8 88.5 93.2 93.6
lip 84.8 92.0 95.4 96.5 97.0
retina 81.8 83.8 95.3 954 96.1

Table 4.8: The accuracy of classifying facial components significantly rises con-
sidering the adjusted pixel features.

facial Componeﬂt Cstatic C’color adj. Cspatial adj. C’all adj. Cregional
skin 83.3 87.9 83.9 90.6 90.1
brow 52.8 67.4 81.6 92.5 91.7
lip 80.6 90.4 93.8 96.2 96.8
retina 88.5 86.5 95.9 96.7 95.4

Table 4.9: This Table inspects the fraction of pixels depicting a specific component
that are recognized by the classifier.

larges variations due to shadows, one-sided lighting, specular points etc. Similar
results are observable with classifying eye brows, but in this case varieties are in-
duced by facial hair partly overlapping the forehead and the brows, rendering a
clear separation between brows and environment difficult. These results illustrate
that classifiers considering the adjusted features outperform static approaches. In
general, providing the spatial-related features shows greater impact than provid-
ing the color-related features. Some example classification results are visualized
in Figure 4.8 at the end of this chapter.

We utilize the chi-square test of significance to determine whether the influ-
ence of features is significant. Unfortunately, this is not the case for all classifiers
with Cyyy qg.and Cregionai- Furthermore, there was no significant difference be-
tween Ceolor agj.a0d Copatial ag5.fOr the skin classifier.

4.6.4 Evaluation of Face Locater Robustness Dependency

In this experiment, we inspect the impact of the face detection accuracy by the face
locater on the feature extraction. We randomly move and scale the detected face
region in the image, changing position and size at the same time. The magnitude
of change is normalized by the size of the ROI. We move the located eye points
with the ROI, but do not change their distance. The accuracy is calculated from the
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Figure 4.7: The degree to which the face locater accuracy influences the clas-
sification of the various facial components varies because the classifiers rely on
different adjusted features.

fraction of correctly classified pixels, similar to the results presented in Table 4.8

As Figure 4.7 demonstrates, the degree to which the facial component classi-
fication is influenced varies greatly. Since the classifiers rely on the extracted fea-
tures, the change in the classification accuracy reflects the feature robustness. The
classification of the lips benefits from color-related features that are influenced
less by the error induction, especially if depending on the skin color distribution.
The classification of brows and retina, in contrast, relies on spatial-related features
and therefore is heavily influenced by the induced error.

4.7 Discussion

In this section, we introduced pixel-based classifiers to segment the face from the
background and facial components from the rest of the face. The advantage of
our pixel-based classifiers is their balancing between speed and robustness. More
complex approaches determine facial components region-based or fit a model to
the face or face components. Although these approaches are usually more ro-
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bust to image noise and context conditions like lighting or makeup, they are also
computationally more expensive. Furthermore, we consider this approach as a
preprocessing to subsequent model fitting rather than an alternative to model fit-
ting. However, approaches that determine a pixel label only from color statistics,
an approach typically applied to skin estimation, are usually faster due to our
pixel feature adaption process. On the other hand, these approaches are not able
to handle as large changes in lighting as our approach does.

Furthermore, although we applied our approach on face segmentation, it is not
limited to this area. It is applicable to any task where the object of interest follows
some characteristics in shape or texture that the classifier is able to exploit. Two
requirement have to be met: It is required to provide annotated training images,
which is usually a straightforward process. Furthermore, a detector for the object
must be available, to restrict the search space and calculate the image characteris-
tics. Other applications considered might involve the detection of license signs on
cars, buildings on a landscape or segmentation of animal body parts.
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eyebrows i retinas

Figure 4.8: Image bands highlight the position of facial components in the image.
Here, the original image data and different image bands are depicted in the same
picture for demonstration.
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The human face is a very important tool in everyday human communication.
Humans obtain a lot of information from their fellow humans’ faces, for example
their identity, their emotional state via the facial expression or the focus of atten-
tion via the gaze direction. Therefore, the interpretation of human face images is
a traditional topic also in computer vision research. The analysis of human faces
provides information about person identity [137], facial expression [99] or head
pose [90]. Face models, which represent the depicted face in a small number of
descriptive model parameters that are collected in a parameter vector, are often
applied for such tasks. However, an important step in doing so is to determine
model parameters that match the image content without prior knowledge about
the face visible in the image. This process is referred to as “face model fitting” or
“face alignment”. In this chapter, we present our approach to take this step, see
Figure 5.1 for some example images, on which a face model has been fit automat-
ically.

The first challenge to be solved is the detection of faces within the image, a
task also sometimes referred to as face location or face localization. Human capa-
bility in this regard are very high, as they are able to compensate for the effects of
partial occlusion by perceiving the face as a whole, with visual imagination cover-
ing for the lack of visual perceivability. With regard to images of actual faces, it is
a common assumption that the threshold for the detection of faces within images
by human observers is at 100 to 200 pixels consisting of two gray-levels [109, 14].
The human brain is trained to actually recognize patterns of faces where in real-
ity none exist, such as within clouds, a phenomenon know as pareidolia [7]. To
perform this step automatically, different approaches have been suggested, rang-
ing from IR-illumination of the eyes to sliding window-based approaches or color
statistics [53, 60, 136, 50]. The approach of Viola et al. is often relied on, since it
is known for its robustness and speed [136]. Face detection constitutes a challenge
that becomes especially tough whenever vital parts of the face are occluded. Both,
head pose and scenery, might lead to occlusion of facial features, up to the point
where recognition of the face becomes impossible. Automatic approaches to face
detection are usually based on the detection of a certain fixed pattern in the im-
age, e.g. finding salient facial features like eyes, nose and mouth whose geometric
relation towards each other is known, and are therefore often much less robust as
far as partial occlusion of the face is concerned.

The second challenge is obtaining a numerical representation of the face struc-
ture, which is the main focus of this chapter. Although the general structure of
human faces is independent of gender, age or ethnic background, human faces
vary from one person to another with respect to (face) size, facial hair, hair color,



51

Ty

Figure 5.1: We fit a face model on image of the “Labeled Faces in the Wild”
database [54].

wrinkles or complexion. Furthermore, the specific appearance of a face is, as in
any vision application, influenced by context conditions like lighting or head pose.
Therefore the raw image data offers large varieties, even if only the face region
is inspected. To handle these varieties, face models provide an abstract represen-
tation of the image content. Depending on the application in mind, they consider
the position of specific landmarks in the image [22], the face texture [9, 18], the
face pose in 3D space [9, 2] or the 3D face structure [18] in their parameters. Of-
ten, face models are created by calculating statistics on a large number of training
images [9, 18, 20, 22].
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Since our application in mind is facial expression recognition, we apply a
three-dimensional face model that considers face pose and face shape in 3D space.
Although approaches that additionally take the face texture into consideration are
usually more robust, they also require a magnitude of additional calculation time,
which currently prevents them from reaching real-time capability in 3D space.
Therefore, instead of integrating texture information in the face model, we provide
the fitting algorithm not only with the raw image data, but with multi-band images
that have been obtained as described in Chapter 4.

5.1 Problem Statement

Face models and related model fitting strategies determine landmarks with a spe-
cific semantic interpretation, such as the corners of the eyebrows, eyes, lips, or
the face contour. However, most face models obtain the dependencies between
these points from statistics in a set of training images, and thus model parameters
do not refer to any semantic interpretation. One example for extracting these de-
pendencies is learning them via Principal Component Analysis (PCA). Therefore,
for instance to infer whether a person’s mouth is opened, statistical or rule-based
methods have to be applied, since this information is not directly available in a
single model parameter. The reason is that model parameters refer to face ap-
pearance in the image rather than the real-world face state. Unfortunately, such
information is very important for our target application. Furthermore, most mod-
els are 2D models and do not represent the face shape in 3D space but in image
coordinates.

5.2 Solution Idea

Therefore, we chose to integrate the Candide-III face model, which is publicly
available, offers parameters with semantic interpretations and represents the face
structure in 3D [2]. Its model parameters refer to standard face descriptors, like
the FACS [34] or the mpeg4 standard. Since face model fitting algorithms are
often tuned towards a specific face model, this also calls for a novel face model
fitting approach, which is specifically tuned to this model. We will provide such
an approach with the integration of multi-band images. Since recent research has
demonstrated the superiority of displacement expert based over objective function
based approaches, we will construct displacement experts for fitting.
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5.3 Related Work

Face models have proven to be a powerful tool in computer vision for a number
of face image analysis applications. In this section, we will present the most im-
portant face models available to the community. Usually, model fitting algorithms
are tied to a single model. Therefore, we will also introduce the most important
model fitting strategies.

5.3.1 Face Models

Face models are discriminable into modeling the face shape only or taking the
face texture into consideration, as well. The advantage of models in the sec-
ond category is that they can be rendered to reproduce the face appearance in the
image, which provides application opportunities, like creating realistic faces in
movies [10].

An example for the first category are Active Shape Models (ASMs), which
have been proposed already in the early 90s by Cootes et al. [19]. They are gen-
erated by extracting statistics on manually specified landmarks in a set of training
images, usually learned via PCA. Therefore, the model parameters are projected
to a set of model points in the image. Several years later, the research group
introduced the most famous representative of the second category, the Active Ap-
pearance Model (AAM) [18]. In addition to the face shape, the face texture is also
integrated in the PCA.

Two further ideas emerged from AAMs: Firstly, Blanz et al. generate a 3D
model of human faces from laser scans and colorize them with parameterizable
texture [9]. This model is called ”3D Morphable Model”’(3DMM) and is rendered
with a lighting model taken from computer graphics to obtain highly realistic face
images. An advantage of this model is that real-world information like the head
pose or gaze direction is directly available without any further interpretation. Sec-
ondly, Cristinacce et al. propose representing the appearance of single templates
around model points rather than the holistic face appearance and call this a "Con-
strained Local Model” (CLM) [22]. This models does not inherently constrain
relative model point locations, but consider them independent in their very basic
formulation.

The Candide-III face model has been proposed by Ahlberg for image and
video coding [2]. It models the face structure with 113 manually specified 3D
vertices. Its parameter vector refers to established description methodologies of
the human face, like the FACS or the mpeg-4 video codec standard.
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Very recently, Wu et al. introduced the Boosted Ranking Model [147]. It
represents face texture in Haar-like feature values instead of pixel color values
and is fitted with boosted ranking. Therefore, although it takes the face texture
into consideration, this model can not be rendered to the image. Please note that
except for the 3DMM and the Candide-III face model, all models presented are
2D models and do not consider the real face structure or face pose but only the
face shape or texture in the image.

5.3.2 Model Fitting

Most fitting strategies fall in one of two categories, utilizing either objective func-
tions or displacement experts. These fitting strategies are sometimes also termed
“discriminative fitting” (displacement experts) and “generative fitting” (objective
functions) [116, 144]. Objective functions f(Z,p) yield a comparable value that
determines how accurately a parameterized model p fits to an image Z, and are op-
timized to determine the optimal parameterization p;. In contrast, displacement
experts g(Z, p) propose a parameter update directly to calculate the optimal pa-
rameterization p; = p + g(Z, p). Since objective functions have been proposed
earlier, and newly proposed face models are usually considered with objective
function-based fitting first, there is more work available on objective functions
than on displacement experts.

Objective Functions

Typical examples of objective function based fitting are presented with applica-
tion to ASMs [19, 145] and to AAMs [18, 81, 93]. Objective functions for ASMs
are computed from extracted image features around the model points. Early pro-
posed fitting strategies used simple features and manually designed rules. For
instance, the first proposed fitting simply considered the distance to the nearest
image edge [19]. More complex features have been proposed by Romdhani et
al. [108]. Since this has been proven to be not very robust, especially in the con-
text of face models, Wimmer et al. propose to learn the objective function from
annotated images instead of manually designing its calculation rules [145]. The
idea is that annotating images with examples of well-fit face models is much more
intuitive than designing the rules to obtain such a parameterization, and is there-
fore less error prone. Their approach is evaluated on the BiolD database. Recently,
Ding et al. proposed an approach that detects the face and several facial features
in the image with a combination of machine-learned and manually designed cal-
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culation rules [28]. Although they consider this a detection approach, its idea is
more related to what is considered model fitting in this thesis due to the level of
detail and since the detection of facial components is restricted by previous face
detection. The novelty of their approach is that they propose to include misaligned
detection examples in the training data. Evaluation is conducted on the XM2VTS
database.

Determining the fitness of AAMs is straightforward, simply by comparing the
rendered face model with the original image data, which allows for a high accu-
racy given a good initialization. Since the formulation of the objective function is
simple with AAMs, the question arises how this function is optimized in a fast and
accurate way. Matthews et al. present a comprehensive survey on this topic and in-
troduce a novel idea that has found much interest, since it provides a fast optimiza-
tion [81]. Unfortunately, their evaluation is not conducted on a standard database,
but on data that is made public on their homepage. However, a remaining major
drawback of AAMs is that they tend to get stuck in local optima during fitting.
Therefore, Nguyen et al. recognize the objective function rather than the opti-
mization strategy to be the weakness of this strategy [93]. They propose to learn
the objective function in order to fulfill properties desirable for optimization. They
aim at increasing the convergence radius and accuracy, similar to the approach that
has been proposed by Wimmer et al. for ASMs. Evaluation is presented on the
CMU Multi-PIE database. The typical fitting of 3DMMs is also based on render-
ing the model to the image and computing an error image [9, 8]. The disadvantage
with these models is that the fitting is computationally very expensive and a good
initial estimation of the model parameters is required. To obtain a larger region of
convergence, Hamsici et al. extend AAMs and 3D Morphable Models with rota-
tion invariant kernels that are fit applying the kernel-trick [47]. A similar approach
is presented by Kemelmacher et al. [64].

Displacement Experts

Displacement expert-based fitting for AAMs has been proposed by Saragih et
al. [116]. They train boosted regressors on Haar-like features from the error im-
age to determine parameter updates. Comparing it to the objective function-based
approach of Matthews et al. [81], they recognize their approach comparable in
terms of speed and significantly superior in terms of accuracy when tested on the
XM2VTS database. In their subsequent work, they present a sophisticated dis-
placement expert training strategy that simulates the model fitting on the training
data. This allows for adapting the update function to the fitting iteration and cir-
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cumvents the requirement to compute the complete error image [115]. In addition
to the XM2VTS database, they also include the CMU Multi-PIE database for eval-
uation. Their former strategy is outspeeded by this novel idea. Similar conclusions
are drawn by Cristinacce et al., who compare an objective function-based fitting
with a displacement expert-based fitting for ASMs on the BiolD database [23].
They train local detectors for each model point with slightly different behavior:
Their first approach is to train classifiers, which decide whether a single model
point is well-fit at a specific location and determine the fitting via exhaustive
search. Their second approach is to train local regressors, which provide a po-
sition update directly. This already very much reminds of CLMs and therefore it
might have inspired the work of Wang et al., who derive CLM fitting based on
displacement experts. They compare them to exhaustive search and experience
a significant gain in speed and accuracy, tested on the Multi-PIE database [151].
We refer to our earlier work for a preliminary version of our current work [82].

Recent Work

CLMs are fit by evaluating response maps for every model point, which state the
probability that this model point is well-aligned at a specific image location. Fit-
ting these models is mainly concerned with determining, which position results in
the highest probability. Often, parametric approximations of these response maps
are calculated for this task. A recent work by Saragih et al. provides a short sur-
vey and proposes a different approach that constructs a displacement expert from
a nonparametric representation of response maps [118]. They also consider the
idea to utilize multiple local experts for fitting, an idea that is applicable to other
fitting strategies as well [117]. Evaluations are conducted on the CMU Multi-PIE
and the XM2VTS database.

An image based method that is neither objective function-based nor displace-
ment expert-based, since it does not rely on a classical face model, is presented by
Zhu et al. [156]. Instead of fitting a face model to the face, they compute a warp-
ing of the image face region to a template face. The downside of this approach is
that no specific information about face structure, like mouth opening, is available.
On the other hand their algorithm shows great accuracy with respect to the image
registration. They compare their method with the method presented by Gu et al.
on example images taken from the “Labeled Faces in the Wild” database [152].
They show that Gu’s method has severe inaccuracies when confronted with non-
frontal images, which is mainly to the fact that the method has been trained and
evaluated on frontal faces only. Gu et al. propose a fitting strategy for a shape
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model that relies on the expectation-maximization algorithm [152]. They assign
weights to single model points that reflect the estimation robustness, which allows
for handling even large occlusions. They evaluate their approach on frontal-view
images specifically considering large occlusions and strong facial expressions.

Candide-III Model

Since we explicitly evaluate our approach on the Candide-III model, we will re-
view some of the published work considering this face model separately. Dor-
naika et al. utilize it for face tracking and simultaneous facial expression recog-
nition [26]. However, the model fitting is conducted manually. They add this
missing component in their subsequent work and provide an automatic texture-
based fitting [29]. However, their texture model is person-specific and requires
person-specific and manually annotated training data. Unfortunately, no evalua-
tion on standard database data is conducted. Another automatic fitting approach is
proposed by Sheng et al. [123]. They extract several facial landmarks in the image,
like the eyebrow corners, and approximate model parameters so that model points
match the landmark positions. However, comparable evaluations are not provided.
Kotsia et al. utilize the Candide-III face model for facial expression recognition
on a standard database but fit the model manually, too [67]. Chen et al. present
a model tracking approach for the Candide-III face model, which requires only a
single annotated frontal image of the person for training [15]. However, they also
obtain this annotation manually. All mentioned approaches rely on a subset of the
full parameter set only, which are selected to suit the specific application.

Multi-band Image Based Fitting

Cootes et al. [20] propose to utilize images with two image bands for creating
and fitting face appearance models. These image bands reflect edge directions
in two dimensions, where the magnitude indicates the degree of reliance in the
orientation estimation. Therefore, the appearance model is not rendered as in-
tensity values but as edge directions. This approach is similar to ours because
not only the raw image data but an image representation with various additional
image bands is considered. Similarly, Stegmann et al. [128] propose to utilize
a multi-band image representation instead of raw intensity values for fitting ac-
tive appearance models. Their so-called VHE image considers conversions of the
original image data in three different color spaces. They experience a significant
gain in accuracy. Kahmaran et al. [62] also follow this idea but rely on a different
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color conversions. In contrast to these approaches, our representation adapts to
image conditions and the characteristics of the visible person. Similar approaches
are described in [23, 144, 145].

5.3.3 Conclusions

Usually, approaches are evaluated on standard image databases that restrict the
image content with respect to background, lighting, head pose or facial expres-
sion. Most image data is captured in controlled lab or office environments. The
BiolD database offers 1521 gray-scale images from 23 subjects that are taken
inside an office environment [57]. The XM2VTS database depicts 295 people
in 1180 images, therefore the person variability is much higher [86]. However,
the background in most images is very neutral and the images are also taken in
controlled lighting. The FERET database includes images with controlled head
rotation and facial expressions to increase the data variability [101]. A similar
approach is taken in the assembly of the CMU Multi-PIE database [45], the suc-
cessor of the CMU PIE database [130], but lighting changes are induced, addition-
ally. However, all these database consist of images that have been captured with
a computer vision application in mind in a structured environment. Although, ar-
tificial induced illumination and head pose changes create challenging data, they
do not necessary reflect the variability of real-world scenarios. For instance, most
images are taken with a plane background. Artificially induced variations again
follow a pattern based on author assumptions and expectations. Figure 5.2 depicts
some example images from several databases.

In contrast, we propose to evaluate face model fitting algorithms in an uncon-
strained environment. We use the "Labeled Faces In The Wild” database, which
contains images that have been taken in real-world conditions [54]. These images
depict persons of public life and have been collected from the media, spanning a
large variety of ethnic backgrounds, age, facial expressions, lighting and image
backgrounds.

Comparison of displacement expert based fitting and objective function based
fitting leads to the conclusion that displacement experts are faster and more ro-
bust [116, 23, 115]. The reason for their superiority in speed is that they have to
be evaluated less often due to their basic formulation. The reason for their su-
periority in accuracy is their robustness against local optima. The disadvantage
is, however, that formulating the objective function is often easier. Therefore, we
rely on displacement experts for fitting, but provide a short comparison to objec-
tive functions based fitting, as well.
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BiolD database

_\‘

FERET database

Figure 5.2: Some example images taken from four databases. The images are
chosen to reflect the variety in the databases’s image content. Unfortunately, no
examples of the XM2VTS database may be depicted here, since it is not free of
charge.

5.4 System Overview

The goal of face model fitting is to calculate model parameters p; that approx-
imate the preferred model parameters p7 for a given image Z. These preferred
model parameters are usually specified manually, assuming that the human an-
notator provides ideal model parameters. Therefore, a perfect model fitting algo-
rithm would result in p; = p7. Fitting starts with an initial parameter estimate
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p. Although p can be chosen arbitrarily, we propose to apply a face detector
to calculate an initial estimation of the model pose. As has been mentioned al-
ready, there are two major fitting strategies, utilizing either objective functions or
displacement experts. Both approaches are formalized in Equations 5.1 and 5.2,
respectively. We denote displacement experts as g and objective functions as f.
An important difference between these approaches is that the displacement ex-
pert is evaluated only once, whereas the objective function is usually evaluated
more often, depending on the implementation of the argmzin operator. Therefore,
displacement experts consider only a single model parameterization whereas ob-
jective functions inspect a large number of model parameterizations. Figure 5.3
visualizes the application of a displacement expert and an objective function for
fitting.

pr=p+9(Z,p) displacement expert (5.1)
py = argmin(f(Z,p)) objective function (5.2)
b

Please note that the output of f(Z,p) is always a scalar value whereas the
output of g(Z,p) is in the domain of model parameters. The accuracy of ob-
jective function-based fitting approaches depends on the accuracy of f and on
the accuracy of the optimization algorithm. In contrast, with displacement ex-
perts the accuracy of the fitting solemnly depends on the accuracy of g(Z, p). To
increase the accuracy of the underlying functions f and g, we propose to pro-
vide them not only with the original image Z but with a multi-band image rep-
resentation I as shown in Equations 5.3 and 5.4, consisting of the image-bands

I= {Ia Iskinu ]lipu ]browa ]Tetina}-

pr=p+g(,p) displacement expert (5.3)
pr = argmin(f(I,p)) objective function (5.4)
b

Basically, a displacement expert can always be converted to an objective func-
tion, because the parameter update is essentially a parameter error and the dis-
placement expert an error function. Since most optimization strategies require a
real-valued function, the displacement expert output has to be converted to real
values, for instance by computing |Ap|. The definition of an objective function is
straightforward: f(Z,p) = |g(Z, p)|. This approach has been taken in Figure 5.3,
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Figure 5.3: Displacement experts are evaluated only once, since they directly pro-
pose a parameter update. Objective functions are evaluated more often, here, vi-
sualized with search-based optimization. Blue lines indicate function evaluations.

even if in this example the displacement experts also resulted only in a single pa-
rameter value. Please note that a displacement expert can not be obtained from an
objective function. For this reason, and because displacement experts are much
faster in their execution, we will mainly focus on the generation of displacement
experts in the remainder of this chapter and derive objective functions from them,
if required.

We apply our fitting strategy on the Candide-III face model. This manually
designed 3D face model consists of X' = 116 model points that are arranged in
184 triangles [2]. Please see Figure 5.4 for some visualized example parameter-
izations. It does not inherently include face texture, which allows for a faster
fitting. Model parameters specify relative model point positions to influence the
model shape. Vertex coordinates are calculated by applying the shape deforma-
tion vVspepe = S8 + Aa and a scaling factor c to the basic model structure vp,sic.
The difference between the parameters in s and a is that A contains motion that
may appear due to facial expressions whereas .S contains vertex motions to adapt
the general face structure to the face structure of a specific person. The advan-
tage of this model is that its parameters model face shape changes with semantic
meaning, which renders it highly suitable for facial expression recognition. How-
ever, its drawback is that some parameters describe very similar face deformations
with only little semantic difference, like the Upper lid raiser and the Eye close
parameter. Furthermore, some parameters model face deformations that are very
difficult to detect, even for humans, like the C'heek Z — extension parameter.
Finally, a rotation matrix R and a translation ¢ specify the model pose. The 3K
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Figure 5.4: Model parameters change point positions to reflect face pose or shape
change

dimensional vector v contains the vertex x-, y- and z-coordinates. In total, the
model vertex coordinates are computed according to Equation 5.5. Table 9.2 in
the Appendix summarizes the model parameters considering facial expressions
and the face shape.

V= CR(vbasic + ’Ushape) +t
= cR(vpusic + Ss+ Aa) + t (5.5)

We denote the single vector elements, i.e. single parameters by p;. The pa-
rameter vector is assembled according to Equation 5.6.

pP= [Ca tT7rzary7TZ7aTasT] = [plv oy Pn,s 7PN] (56)

5.5 Training Displacement Experts

In this section, we describe our proposed approach to train displacement experts
from manually specified annotations. Our approach is based on the idea of a per-
fect displacement expert, which always determines the correct parameter update.
Therefore, applying it always results in a perfect model fit p7. Obviously, if the
correct model parameterization p7 is known, such a displacement expert is easy
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to construct, as Equation 5.7 depicts. Unfortunately, the ideal model parameter-
ization is usually not known, unless it is specified manually, which prevents this
approach from being practically applied. However, it will be applied to generate
training data to train a further displacement expert g‘(I, p) that is independent
of p7, as presented in Equation 5.8.

9" (p7,p) =P — D7 (5.7)
g'(I,p" + Ap) = Ap = g'(1,p) (5.8)

5.5.1 Image Annotation

Since the perfect displacement expert relies on manually annotated model parame-
ters, the first step is to provide p7 in a set of training images. Unfortunately, this is
a laborious step. However, it is the only step involving manual work, and several
databases provide annotation with the image data like the BiolD database [57].
Annotating a single image takes an experienced person 2 — 4 minutes. Never-
theless, we capture a set of images ourself with changing facial expression, head
pose, person identity and lighting. The reason is that annotating the images is eas-
ier when multiple views of the scene are visible. Therefore, we capture training
data with a calibrated system of three cameras to obtain three different views of a
single scene as demonstrated in Figure 5.5. Please note that these images are used
only for training, not for evaluation. We integrate publicly available data for eval-
uation. In total, the dataset consisted of 87 scenes, which sums up to 3 - 87 = 261
images. Obviously, for all these images it is desirable to have g'(I,p%) = 0,
since no parameter update is required in this case. However, we also need training
examples that reflect cases, when a parameter update is required.

5.5.2 Training Data Generation

This training data is acquired automatically, by inducing random model parameter
variations Ap to obtain new model parameterization p = p; + Ap. In later exe-
cution, the displacement expert will determine these induced parameter variations
according to Equation 5.8.

Therefore, training data consists of pairs of images and example parameter-
izations < I,p > that are labeled with the induced parameter error Ap. The
displacement expert will be trained to perform a mapping < I, p >— Ap, which
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Figure 5.5: The face is visible in multiple camera images that are captured si-
multaneously. To the annotating person, the face position in 3D space is easier to
estimate than in image data taken by a monocular camera.

allows to fit the model according to Equation 5.3. For training purpose, this col-
lected training data can be thought of as being sampled from a perfect displace-
ment expert. In order to simplify this learning problem, we train single displace-
ment experts for each single parameter separately. Therefore, instead of training
one displacement expert that determines an update for the complete parameter
vector, we train a set of displacement experts, each proposing a parameter update
for a single element of the parameter vector only and we refer to them as “local
displacement experts”. Equation 5.9 formalizes this step.

Ap; = gi(I,p; + Ap:) (5.9)
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5.5.3 Feature Extraction

To train the displacement expert, it needs to be provide with a set of features that
link the image annotation and the image content. Theoretically, a set of single
pixel values or even the raw image data would provide this information. However,
the learning algorithm will have a hard time generalizing well from such noisy
data. Therefore, we extract descriptive low-level image features. In this thesis, we
gather Haar-like features in different styles and sizes [72]. Please see Figure 5.6
for a the Haar-like features utilized in our approach.

As mentioned, model parameters change the relative positions of model points.
However, most model parameters influence only a small subset of model points.
For instance, the parameter that represents rising eye brows has no influence on
model points at the chin. Therefore, we extract image features only in the neigh-
borhood of model points influenced by a single model parameter p;. Feature val-
ues are calculated by h¥(I,p) with k denoting the feature index. The feature
index specifies, in which image band and style, and at which position and scaling
a feature is extracted. Features are extracted at model point positions and at po-

Edge features
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Figure 5.6: Haar-like features are extracted from the image as specified by the
model parameters to link the image annotations to the image content.
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sitions along the model point motion defined by the model parameter. We denote
the number of features that are extracted for a single model parameter ¢ by H;.
However, in the remainder of this section we will refer to H; simply by H for
improved readability of equations.

Usually, Haar-like features are calculated from single channel images to ob-
tain numerical values. Therefore, we split our multi-band image to its under-
lying image bands and calculate feature values from every image band sepa-
rately. The same set of positions, styles and scalings is used for the feature
extraction in every image band. Please note that the amount of features varies
with the number of model points influenced by the model parameter. We choose
to extract Haar-like features at 3 different positions in 2 different sizes, in 6
different styles and from 5 different image bands, summing up to 180 features
per model point. For instance, parameter p7, the “Jaw drop” parameter, influ-
ences the spatial location of 10 model points, and we extract / = 1800 fea-
tures (hi(I,p), h3(I,p), ..., hi%°(I,p)). All extracted features are assembled in
an image feature vector h;(I, p) as shown in Equation 5.10.

hi(I,p) = (h{(I,p),hZ(I,p),....h{"(I,p)) (5.10)

Please see Figure 5.7 for a visualization of the feature extraction for two example
annotations.

5.5.4 Displacement Expert Training

In previous steps, we assembled a list of feature vectors with corresponding in-
duced model parameter errors. In this step, the displacement expert §! (h;(I, p)) is
trained on that list to map feature values to the required parameter update as shown
in Equation 5.11. Please note that in contrast to g/, the displacement expert g is
trained on the extracted image features rather than the image data. Therefore, the
selection of image features has influence on g, but not on g°.

Ap;i = g;(I,p;) = G (hi(I,p))
= gilhi(I,p), h{(I,p), ... hi' (I,p)] (5.11)
Since we have generated training data and corresponding training data labels,

this is a traditional machine learning task and theoretically any regression algo-
rithm is applicable. However, due to the large amount of training features, we
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original image

extract features
S

Figure 5.7: Features are extracted at all points influenced by changing a single
parameter. Additional features are extracted along the direction of point motion
from all image bands. Due to space limitations, only selected image bands are
presented here. Top: image bands of the original image with manually fit model.
a) error induced in the eye brow raiser parameter. b) error induced in the jaw drop
parameter.

choose to integrate model trees to create a mapping of these feature values to
the model parameter error [140]. Model trees are similar to well-known deci-
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sion trees, but replace the class label in the leaf nodes by linear functions. Their
strength lies in their capability to select the most relevant features from a large
set of training features, therefore no additional feature selection is required. Fur-
thermore, they are very fast at execution time. Equation 5.12 formulates the cal-
culation of the parameter update Ap for a previously unseen image. Please note
again, that i depends on the parameter.

Ap = g(Z,p) = (Ap1, Aps, ..., Apn)
= (91[hi (I, p), K3 (I, p), ..., h{' (I, p)],
g5[hs(I,p), B3(I,p), ..., k¥ (I, p)],

TN

gnIENIp), Ky (I, p), ..., KR (I, p))).
(5.12)

5.6 Application To A Different Model

Trained displacement experts are applicable not only to the Candide-III face model,
but also to other shape-based face models. As an example, we demonstrate train-
ing a displacement experts to fit an ASM in this section, please see Figure 5.8 for
a visualization of the model. The common fitting strategy for ASMs is to search
for the best hypothesis &,, of each model point «,, individually. Our approach
calculates a position update Ax,, = g,,(I, x,) from a displacement expert, again
splitting the global displacement expert to local displacement experts. However,
these local displacement experts will consider model point positions rather than
model parameters. The model parameters are calculated afterwards by minimiz-
ing the Euclidean distances between the model points of the projected model and
the model points estimated by the displacement experts.

The best hypothesis of each point is computed by &, = x, + Azx,. Again,
the core idea is that an ideal displacement expert for fitting a single model point
should always determine the correct position update, i.e. it should exactly “know”
the distance to the optimal location, similar to the parameter update in Section 5.5.
Therefore, the optimal local displacement experts simply compute the difference
between the correct location z¥ of the n'" model point and the current position x,,
of the model in the image, see Equation 5.13. If we restrict the choice of x,,, for
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Figure 5.8: We apply our fitting to a ASM as an alternative demonstration.

instance to be located on a straight line or curve, the difference is a single scalar.

g.(Z,z,) =z, —x, (5.13)

n

Again, the first step is to manually annotate images with the preferred model
parameters p* to specify the preferred model points ;. Then, each model point is
moved along a line perpendicular to the model contour. The real-valued displace-
ment at each of the positions on this line is computed by Ax,, = x,, — ;. These
known displacements yield the training data for the regression step. We com-
pute image features around the displaced model point. Again, we use Haar-like
features of varying size, style and orientation. Finally, for each of the N model
points, a regression from image features to known displacements is trained with
support vector regression. We chose to integrate a different regression algorithm
to demonstrate that our approach is not dependent on the choice of the regression
algorithm. However, this choice influences the time required during execution and
training. Furthermore, support vector regression requires more memory storage
than tree-based induction during training, which restricts its applicability if the
number of features is large and not enough memory storage is available.

5.7 Common Refinements

A number of strategies have been proposed with both, objective functions and
displacement experts, to increase the fitting accuracy by compensating for local
noise. With displacement experts, several measurements are combined to obtain
a joint parameter update. With objective functions, optimization refers to the re-
alization of the argmin operator. In this section we briefly introduce the most
important strategies for both, objective functions and displacement experts. Note
that all strategies “collapse” to the canonical one if n=1, with n referring to the
total number of function evaluations.
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5.7.1 Common Refinements on Displacement Expert

As local inaccuracies in Equation 5.1 can lead to large errors, the common idea
is to obtain a more stable estimation by combining several measurements. Some
common strategies to improve the estimate of Ap are depicted in Figure 5.9. In
Section 5.8.5 we evaluate the effects of these common refinements to the displace-
ment expert approach.

Canonical

In contrast to objective functions, displacement experts provide a straightforward
canonical application: To use one evaluation of g to compute Ap. This is the
direct application of Equation 5.1. Although it is not an refinement, it is mentioned
here for the sake of completeness. Please note again, that if perfectly accurate
displacement experts could be acquired, the canonical version would always lead
to the desired result (p7).

Sequential

This approach updates the parameters n times sequentially: Step 1: p;, = p +
g(I,p), Step 2: Ap, = p; + g(I,py), ..., Stepn: pr = pn_1y + 9L, Pn1))-
The assumption here is that the model parameters “drift” towards the preferred
model parameters with every iteration, i.e. that |p% — (p + Ap)| < |p% — p|. This
also implies that the displacement expert is more accurate near the preferred model
parameters. Several example applications have been proposed in literature [61,
116, 77, 145].

Multi-evaluation

This approach computes several Ap for n different initial parameterizations p.
More specifically, it creates additional initial model parameterizations p, ..., p,,,
by sampling around p. Then, it calculates the fitted model parameters:

_lptgd.p)+p+9,p)+ .. +[p,+9I,p,)
pPr = (5.14)
n+1
The assumption in this refinement is that the estimation of Ap is prone to
inaccuracies due to local noise. By combining several estimations, this local noise
is compensated for and the combined estimation is more accurate. This approach

is used in Particle Filters, such as [131] or [1].
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Figure 5.9: Displacement expert refinement strategies evalute the displacement
expert multiple times to ward against local noise. In these examples, n = 3 except
for canonical.
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5.7.2 Common Refinements on Objective Function

The term “refinements” in the context of objective functions is a bit misleading,
since it does not focus on how the function itself is evaluated or applied, but its
intent is reducing the number of required evaluations to determine the optimum.
As a general rule, search strategies that are computationally more efficient have
the disadvantage that they get frequently stuck in local optima. We consider two
extreme representatives here to reflect both ends of the spectrum.

Exhaustive Search

This strategy applies the objective function to a densely sampled set of examples
and determines the global optimum to fit the model. The advantage is that this
strategy is robust against local optima and will determine the global optimum
even if the objective function is prone to local noise. On the other hand, if the
global optimum is not located correctly or if there are multiple strong optima, this
approach is unable to decide, which to chose. Therefore, a small image patch
might induce large errors in the fitting.

Gradient Descent

This strategy is applied iteratively to determine the optimum, and is based on nu-
merically calculating the objective function gradient in each step to determine the
location of the nearest optimum. The advantage of this approach is that it will de-
termine the optimum must faster than the exhaustive search strategy, specifically,
if the initial guess is near the optimum. On the other hand, it is not guaranteed to
determine the global optimum but might get stuck in a local optimum.

5.8 Experimental Evaluation

This section presents an evaluation of our approach, which inspects the accuracy
of trained displacement experts in several scenarios. We annotate images taken
from the "Labeled Faces in the Wild” database [54] with the ideal model parame-
ters p* to serve as test data. Due to the size of the database, only images of persons
starting with the letter ”A” are considered as a representative subset of 446 images.
These images have not been taken with a computer vision application in mind and
include many challenges that have to be faced in real-world conditions. Since
we capture the training images ourselves, as mentioned in Section 5.5.1, training
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images and test images are taken from two different data sets, which prevents the
displacement experts from specializing on data set properties. To measure the
accuracy of the trained displacement experts, we create erroneous model param-
eterizations p“"" = p* + Ap%"°" by inducing errors Ap$ " in the manually
specified model parameters p*. Then, we apply the fitting algorithm to compute
model parameters p; = p“"" +g*(I, p®"°"). The distance |p* — p;| between the
preferred parameters p* and the suggested parameters p; serves as a measurement
of accuracy. We denote the remaining error after fitting of a parameter 7 in the k"
image with an artificially induced error of d by p; i 4.

A similar approach is taken to evaluate objective function based fitting with
the gradient descent strategy. We induce errors in the model parameters in the
same way, but then determine the nearest objective function optimum. The model
parameters that correspond to this optimum are chosen as p;. However, this ap-
proach is not feasible to evaluate the exhaustive search strategy, since their result is
independent of the induced error. Therefore, no error is induced in this evaluation
and the search algorithm is applied directly to determine the objective function
optimum and p;.

Please note that we do not determine the model pose with learned displace-
ment experts in the same manner as we determine the other model parameters.
Instead, we first fit an ASM to the image to determine the face contour and posi-
tions of eyes and mouth, and calculate the face pose from these reference points.

5.8.1 Evaluation of Common Refinements on Displacement Ex-
perts

This section conducts an evaluation of both refinement strategies for displace-
ment experts. The fitting accuracy is visualized in a chart, where the horizontal
axis represents the induced error Ap5 " and the vertical axis represents the av-
erage remaining error |p* — p;| in all images after fitting. Therefore, a single
measurement in these charts refers to the average of p; ;. 4 for a fixed 7 and fixed d.

For the sake of readability, we present only a subset of the model parameters
here, since our evaluation creates one chart per parameter. The parameters are
chosen to reflect the whole face area and neither stress nor neglect certain face
regions, providing a representative subset of all parameters. Furthermore, some
of the model parameters reflect changes that have been proven difficult to annotate
in the test images, such as parameter po4(Cheeks Z extension), parameter p4(Lid
tightener) or parameter p;5(Nose wrinkler). Therefore, the evaluation would be
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conducted against erroneous training or test data annotations and would not reflect
the fitting approach accuracy.

Figure 5.10 demonstrates that most parameters do not gain much from iterated
application of the fitting. The two notable exceptions are parameters pyg and poy.
Even in these cases, the accuracy is not improved further after the second iteration.
The reason is that the fitting accuracy is not influenced by the induced error to a
large extend. Even when the induced error is small, there is a constant remaining
error after fitting, which contradicts the underlying assumption of this refinement
strategy. Therefore, the first iteration reduces the fitting error beneath this thresh-
old and further applications do not increase the accuracy any more. Once the
error is within this threshold region, the local displacement expert either suggests
slightly wrong updates or no update at all. A further observation is that with pa-
rameter p;7 each additional iteration reduces the accuracy rather than increasing
it. This is caused by a small number of images, in which the estimation of the
induced error fails due to covered facial components, and the local displacement
expert suggests random parameter updates. This causes the induced error to in-
crease instead of decrease. With each additional iteration, these errors increase
ever more. The same effect is observable with parameters pyy and py7. According
to the chart of parameter po, the error is expected to be 0.64 after one iteration,
when the initial error is 1.0. Fitting with an initial error of 0.64 is expected to
result in an error of 0.3 in turn. Therefore, the fitting result after 2 iterations with
an initial error of 1.0 is expected to result in an error of 0.3. However, this is not
the case. Again, the reason is that some images induce highly erroneous fitting
results.

In contrast, the multi-evaluation strategy proves much more beneficial, as the
charts in Figure 5.11 demonstrate. There is a significant gain in accuracy be-
tween n = 1 and n = 2 for all example parameters. The accuracy is increased
further with any additional multi-evaluation. However, the benefit decreases with
every additional application. Furthermore, already with n = 2 even large initially
induced errors are compensated, especially for parameters poy and por.

5.8.2 Evaluation of The Derived Objective Function

This section provides an evaluation of fitting the model with an objective function
that is obtained from a local displacement expert, as demonstrated in Section 5.4.
There is a large number of optimization algorithms available to the community,
but the most accurate result is always obtained by exhaustive search, when ap-
plicable. Since in our application the search space is limited by the semantic
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Figure 5.10: The sequential approach does not improve the fitting results very
much even after several iterations.

interpretation of the model parameters, we apply heuristic search to determine the
optimal objective function value. Please note that this approach is not dependent
on the initially induced error. Since this approach is very time-consuming we
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Figure 5.11: The multi-evaluation fitting strategy improves the fitting accuracy

significantly with each step.

integrate gradient descent as a faster optimization algorithm for comparison.
In this evaluation, we do not present single charts for single parameters, but
summarize the results for the gradient descent strategy in a single chart in Fig-
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Figure 5.12: Objective Functions with gradient descent for selected parameters.

ure 5.12. This approach is very accurate when the induced error is small. How-
ever, this is rather the result of local noise since the optimization is caught in a
local optimum after only a few iterations. Results for the exhaustive search are
provided in Table 5.1. This strategy results in an accuracy that is comparable to
or slightly larger than the threshold value of the displacement expert approach.

5.8.3 Absolute Fitting Accuracy

To compare the fitting accuracy of different model parameters, we chose a differ-
ent visualization that is independent of the induced error. Our evaluation measures
the fraction of models that have at most a specific error in a specific parameter af-
ter fitting, i.e. we visualize the cumulative error distribution of |p* — p;| in all
images as shown in Figure 5.13. Therefore, this evaluation considers all p; ;. 4 with
i being fixed. For instance, 70% of all models are fitted with an error of 0.2 or
less in the ”Jaw drop” parameter. The local displacement experts are provided the
complete set of image bands and a multi-evaluation with n = 4 is applied in this
evaluation. Induced parameter errors range from —1.0 to 1.0. Again, we present
only a subset of the complete parameter vector. Parameters are chosen that are
especially important for facial expression recognition.

We observe that the local displacement experts significantly compensate the
induced error. However, there is a strong gap between the two parameters “Eye lid
raiser and “’Lip stretcher” and the other facial expression related parameter. The
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Jaw drop p; 0.28
Lip corner depressor pg | 0.24
Brow raiser p1q 0.29

Head height p; 0.36
Eyes height po 0.31
Mouth vertical po; 0.23

Table 5.1: The fitting accuracy of objective function with exhaustive search strat-
egy is independent of the initial error.

reason is that these parameters cause the smallest variations in the face and are
difficult to observe due to the image size. Therefore, estimating the correct value
is difficult, not only for the computer but also for the human annotator. Please note
that the automatic fitting is limited by the accuracy of the manual annotations in
the training data and the evaluation is limited by the manual annotation of the test
data. Another observation is that, in a few cases, the initial error is even increased
by the fitting algorithm. This is represented by the models with errors larger
than 1.0. These errors occur because of heavy occlusions of facial components
due to glasses or large beards that cause the calculation of image bands to fail,
and cause the fitting approach to behave unpredictably. However, again, human
annotators are also unable to specify the exact location of these facial components.
Figure 5.14 depicts some example images with covered facial components that
occur in the test data.

1. 1.
- 08 3 08
st s
g 0.6 g 06 — Jaw drop
o — Head height o —— Lip stretcher
© 0.4- —— Eyebrows vertical © 04- Brow lowerer
g Eyes vertical g — Lip corner
502 — Eyes height $02 depressor
ﬁ —— Mouth vertical Qg —— Eye lid raiser
0.0 04 08 1.2 16 2.0 0.0 04 08 12 16 2.0
error after fitting error after fitting

Figure 5.13: These graphs visualize the cumulative error after model fitting. Initial
errors induced range from —1.0 to 1.0 with eleven evaluations per test image.



5.8. EXPERIMENTAL EVALUATION 79

5.8.4 Impact of Provided Image Bands

In this experiment, the impact of provided image bands on the fitting accuracy is
inspected. A displacement expert that is trained on the original image data only
serves as a fixed reference baseline for comparison. Then, displacement experts
are trained from the same training data utilizing additional image bands. Please
note that displacement experts are applied to the same image representation that
they have been trained on. To determine the accuracy of a single displacement
expert, the experimental setup described in Section 5.8.3 is used. However, instead
of creating a cumulative error distribution, the error is computed as the average of
all single parameter error values of all parameters utilized in Figure 5.13 and for
all test images. Therefore, this evaluation calculates the average of all p; ;. 4 with
i€{7,8,9,10,16,17,18,19,21,27}.

Errors in Table 5.2 are given with respect to the baseline displacement expert.
The first row shows, which image band has been added to train the displacement
expert. Image bands are added subsequently and single displacement experts are
represented by table columns. Since every displacement expert is provided one
additional image band, the number of image bands provided increases with the
table column index. For instance, the displacement expert represented by the
third column has been provided Z, sy, Lii,, and its error is 80.7% of the baseline
error. Please note that not all local displacement experts rely on all available
image bands. Instead, only those image bands that add valuable data for the local
displacement expert are integrated.

Since error values are reduced with increasing table column index, providing
additional image bands increases the fitting accuracy. The largest impact is ob-
served when [;;, is added to the image representation. The reason is that many pa-
rameters benefit from this information, since many parameter describe the mouth

>

N

Figure 5.14: Covered facial components, for instance due to glasses or beards,
cause the computation of image bands in the multi-band image representation to
fail.
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image bands A skin | Hiip | Horow | retina
error rate 100.0% | 92.5% | 80.7% | 79.0% | 78.5%

Table 5.2: Providing additional image bands reduces the fitting error. One image
band is added per column.

position and shape. Theoretically, this information is also present in /;,, since
the mouth results in a black area within the face region. However, inspecting Ta-
ble 4.7 shows that classification of skin also has the smallest accuracy compared
to the other image bands and therefore contains a large amount of noise. As a
result, when other image bands are added to the image representation, they are
chosen by the model tree training since they are less noisy, which increases the
fitting accuracy.

A second experiment inspects the benefit of specific image bands on single
parameters. The assumption is that a model parameter referring to the shape of
the lips does not benefit from ,,,, as much as from [;;,. To verify this assump-
tion, Table 5.3 provides a comparison of four displacement experts on different
combinations of image-bands. Most local displacement experts gain from provid-
ing Ign,. However, the image bands [j;, and [, are beneficial only to those
displacement experts that model corresponding facial components. For instance,
the Jaw drop parameter gains heavily from I;;,, but not from I3,,,. This is rea-
sonable, because [, does not provide any valuable information to determine the
degree of opening of the mouth.

parameter A L, Lpin | L, Lskin, Liip | Z, Lskins Lorow
jaw drop 100.0% | 81.2% 46.7 % 84.1%
lip stretcher 100.0% | 72.1% 62.3% 72.9%
lip corner depressor | 100.0% | 100.0% 86.6% 100.0%
brow lowerer 100.0% | 93.4% 95.8% 90.4%
head height 100.0% | 100.0% 78.2% 74.4%

Table 5.3: Local displacement experts gain more from image bands that refer to
the modeled facial component than from other image bands.
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Figure 5.15: The two different refinement strategies for displacement experts.
Left: iteration. Right: multi-evaluation.

5.8.5 Evaluation On A Different Model

This section demonstrates that integrating multi-band images is beneficial to fit-
ting other shape-based models, as well. We change the face model in this experi-
ment and integrate an ASM [19].

Test images are again taken from the ”Labeled Faces in the Wild” database and
errors are artificially induced into manually specified model annotations. How-
ever, to follow the common evaluation strategy for these models, errors are in-
duced by displacing model points directly instead of inducing errors in the model
parameters. Then the fitting algorithm is applied and we again calculate a cumula-
tive histogram of errors. However, in this evaluation, the error is not measured in
parameter differences, since this is not an intuitive error measure with this model,
but in model point distances. We calculate the average distance of the fitted model
points to the corresponding manually annotated model points. To compensate for
varying face size in the images, all distances are computed in interocular distance
measure, which refers to the distance between the pupils in the image. To inspect
the fitting accuracy, again a cumulative error histogram is calculated.

Refinements on Displacement Experts

This evaluation determines the impact of the refinements presented in Section 5.7.1
on the fitting accuracy. In Figure 5.15, the average error after fitting is plotted
against the initially induced error, similar to Figures 5.10 and 5.11. Each final
displacement is an average taken over all local displacements and test images, i.e.
the global fitting error of a model is computed to be the average of all local fitting
errors.
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From these graphs, we draw the following conclusions: First of all, perform-
ing several iterations of the sequential approach only has a significant effect if the
initial displacement is large (Ax,, >0.2 ), and this effect levels off after n=2 iter-
ations. This finding is consistent with the observations presented in Section 5.8.1.
To inspect the reason for this, we calculate the standard deviation of the errors
after fitting for n = 1 in Figure 5.16. Although it decreases with the induced
error, it is always larger than 0, which leads to the conclusion that there is always
some noise in the estimation, even if the error is small. If the error is below this
threshold, iterated applications of the displacement experts merely suggests pa-
rameter updates that cause an oscillation around ). This explains why further
iterations have no significant effect, as the second iteration already often ends up
in this area.

Clearly, multi-evaluation benefits the most from increasing n, again. The rea-
son is that the different evaluations of the displacement expert are independent of
each other, and with more samples at different locations, the noise in the estima-
tion of Az, is reduced as is indicated by the findings presented in Figure 5.16.
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Figure 5.16: The standard deviation of the displacement expert predictions in-
creases with larger initial displacements.

Refinements on Objective Functions

As depicted in Figure 5.17, the gradient descent strategy provides high accuracy
for small values of Ax,,. Exhaustive search always determines the global mini-
mum and therefore represents the best possible result that can be achieved with
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an objective function. These findings are similar to those for applying objective
function to fitting the Candide-III face model in Section 5.8.2.

Impact of Provided Image Bands

This experiment demonstrates that not only fitting the Candide-III face model, but
also the ASM benefits from providing additional image bands. As can be seen
in Table 5.4, including additional image bands increases the accuracy with every
image band added. In Table 5.4, again one image band is added per column.
The largest impact is observed when I, is added. However, adding additional
image bands again increases the accuracy by approximately 7%. Therefore, not
only fitting the Candide-III face model but also the ASM fitting benefits from
integrating multi-band images.

03 [— exhaustive search

0225 — gradient descent

0.15

0.075

o
o

[

0.06 0.12 0.18 024 03
distance before fitting

(in interocular distance measure)

distance after fitting
(in interocular
distance measure)

Figure 5.17: Comparison of gradient descent and exhaustive search in fitting with
objective functions.

image bands T +lopin | +hip | Horow | +retina
error rate 100.0% | 91.4% | 89.0% | 86.7% | 84.9%

Table 5.4: Providing additional image bands reduces the fitting error also for the
ASM. Again, one image band per table column is added.
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5.9 Discussion

We presented an approach to fit the Candide-III face model to previously unseen
images. Multi-band images and trained displacement experts are applied for this
task. Our fitting strategy has been evaluated on the “Labeled Faces in the Wild”
database, which contains images in unstructured environments. Furthermore, we
directly compare model fitting with objective functions and with displacement
experts on two representatives.

Our approach offers two benefits: Firstly, the Candide-III model is indepen-
dent of training data, which is not the case with face models like ASMs and
AAMs. The Candide-1II model is hand-designed and therefore its parameters
provide semantic information, without the need for further interpretation. In con-
trast, the parameters of ASMs and AAMs refer to variations in manually annotated
training data and to not necessarily provide a semantic interpretation. This ren-
ders it specifically applicable in scenarios where no information about the person
in front of the camera is available or a large number of different persons have to
be considered. An example for such a situation will be presented in Chapter 7,
where an experiment with a large number of participants is conducted and no pre-
vious information on the participants is available for training. Another imaginary
example would be an application in a public place, like a store window.

Secondly, in direct comparison, displacement experts are clearly superior to
objective functions. They are more robust to local noise, due to the multi-evaluation
refinement, and are much faster, since they are evaluated less often. However, al-
though our fitting strategy has been developed with the Candidie-III face model in
mind, it is not restricted to this face model. With shape-based models, annotating
training images is straightforward. Furthermore, there is no restriction towards
the modeled object, but if other objects than faces are considered the consequence
is that new classifiers for multi-band image have to be created.

The drawback of the Candide-III face model is that it is not objectively guar-
anteed that it reflects human face shapes or face motions well. This assumption
is based on the believe in the designer’s experience. Furthermore, the same draw-
back that has been mentioned for ASMs and AAMs, is true also for trained dis-
placement experts. Care must be taken, that the images annotated for training
offer a wide variety of different faces. If the training images do not reflect the
variety of human faces well, for instance if they are trained only on male per-
sons or no bearded men are included, the algorithm will not be able to work well
if confronted with random images. We fell for this trap when taking images to
train displacement experts in the evaluation. Although we took care to take im-
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ages with changing lighting, background, gender, complexion, facial hair, facial
expression and head pose, the images did not include covered facial components.
The integration of multi-band images compensates this effect to some extend, but
places the same requirement on the images that are used to train the pixel-based
classifiers.



86

CHAPTER 5. MODEL FITTING



Chapter 6

Facial Expression Recognition

87



88 CHAPTER 6. FACIAL EXPRESSION RECOGNITION

Already Charles Darwin in the nineteenth century conducted scientific re-
search on facial expressions and published his book The Expression of the Emo-
tions in Man and Animals in 1871. He already noted commonalities in facial
expression between humans, independent of age and ethnicity, stating that “the
young and the old of widely different races, both with man and animals, express
the same state of mind by the same movements” [25, p. 352]. However, Dar-
win himself was inspired in his research by previous work, conducted by French
neurologist Guillaume Duchenne and his book Mcanisme de la Physionomie Hu-
maine. He described mimetic muscles and stimulated muscle contractions by
electrical current, artificially generating facial expressions, such as depicted in
Figure 6.1 [30]. Duchenne also distinguished smiles, which do not include activ-
ity of the muscle orbiting the eye from those that do. These genuine smiles have
later been termed Duchenne smiles in his honor by Ekman et al. [33].

This research lead to the idea of facial action units, atomic facial activities
formed by combinations of muscle contractions. Although, the idea was first in-
troduced by Hjrts [51], it became popular with the work of Ekman and Friesen.
Their Facial Action Coding System (FACS) is the most comprehensive explana-
tory system for facial activity devised so far [32]. Action units describe combi-
nations of muscle contractions and combinations of action units describe facial
expressions. The FACS has a total of 32 action units involving facial muscles,
and another 23 action descriptors, which include actions like turning and tilting
of the head that do not directly involve facial muscles. Table 9.1 in the Appendix
comprehensively lists the 32 action units and their corresponding muscles, based
on the 2002 edition of FACS [35]. Action units may vary in intensity, with the in-
tensity score given as a Latin letter ranging from A (least discernible intensity) to
E (maximum intensity). For example, a notation of AU 1E would signify a brow
raised to maximum possible intensity. Every individual has its own specific max-
imum intensity for every action unit, therefore these intensities cannot be directly
translated into metric measurements.

To link between facial expressions and emotions, Ekman and Friesen describe
six universal facial expressions - happiness, sadness, anger, disgust, fear and sur-
prise - that are expressed and interpreted in the same way by humans of any origin
all over the world, independently of ethnic or cultural background, and that corre-
spond to specific emotions [31]. Examples for these universal facial expressions,
taken from a standard database, are depicted in Figure 6.2. Precise definitions
for the facial action inherent to these universal facial expressions are given by the
same authors in the Emotional FACS (EmFACS) [39].

Although these facial expressions themselves are universal, their intensity, i.e.
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the degree of muscular facial activity, may vary between individuals, dependent
on cultural background and personal emotional baselines. For instance, the fa-
cial expression regarding disgust is generally performed with greater intensity for
people with Japanese cultural background when compared to people with U.S.
American cultural background, while the other universal facial expressions are
performed comparatively less intense [80].

In the late sixties, psychological interest in non-verbal communication led to

a number of publications concerning facial expressions. Studies conducted by
Mehrabian indicate that facial expression is the major factor in face-to-face verbal

Figure 6.1: Facial expression created artificially by electrical stimulation of the
facial muscles, taken from [30, p. 277].
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happiness

surprise

anger sadness disgust

Figure 6.2: Example images of the six universal facial expressions, taken from the
MMI database.

communication, conveying 55 percent of the total message effect, with intonation
(38 percent) and wording (7 percent) contributing the remainder [85].

In nature, facial expressions occur as a process, developing from the neutral
face or a previously shown expression into the facial expression apex, i.e. the
moment of greatest expression intensity. The process of facial expression there-
fore consists of three phases: onset, apex, and offset [97]. With regard to visual
data, humans are able to recognize facial expressions from still images as well as
video sequences, indicating that for human facial expression recognition temporal
aspects of facial expressions are redundant.

In this chapter, we apply a model-based approach to automatically recognize
facial expressions from single images. We determine model parameters for single
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images to obtain a numeric representation of the face state. Model parameters
are gained by fitting the Candide-III face model as described in Chapter 5 and
manually correcting failed fitting.

6.1 Problem Statement

Traditionally, facial expression algorithms are trained and evaluated on a set of
standard databases to test their performance. Mostly, these databases are struc-
tured to depict examples of the universal facial expressions or activation of sin-
gle action units. Since it is well-known that the accuracy measured on training
data is not representative for the classifier quality, most approaches are evaluated
with stratified cross-validation or leave-one-out-validation [42]. Such techniques,
which use different subsets of a database for training and testing, are referred to
as self-classification evaluation techniques. Since the universal facial expres-
sions are, as their name implies, universal, the choice of the actual training and
test database should not have any influence on the classifier quality and classifiers
should generalize well even across databases. Unfortunately, this is not the case.

Following this idea, we draw the conclusion that good performance of an al-
gorithm on a specific test-set does not guarantee that this algorithm will perform
well also on other test sets (or real-world applications). The reason is that mislead-
ing information might be included in the database itself due to design decisions
that were taken during the database assembly. This has been confirmed in several
research fields in- and outside of computer vision, raising doubt on using self-
classification evaluation as the only measure of quality. However, this is still the
predominant strategy for empirical evaluations in computer vision.

A well-known challenge when applying any machine-learning technique is to
avoid overfitting. This describes a process, in which the classifier focuses on mem-
orizing the training data rather than determining the underlying function. In doing
so, the classifier looses its capability to generalize on data not explicitly provided
in the training data set [104]. Comparing self-classification evaluation and cross-
database evaluation can also be considered as observing a kind of overfitting on
a more complex level. In this case the classifier does not memorize the training
data itself but properties of the training database and therefore structures in the
data that were not intended by the database author. Cross-database evaluation is
an alternative to self-classification evaluation, and obtains training and test data
from different databases, instead of sampling them from the same database.
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6.2 Solution Idea

Instead of aiming for high recognition results in self-classification evaluation,
which is prone to lead to specialized classifiers that are tuned towards single
databases, we instead inspect and evaluate classifiers for facial expression recog-
nition across databases. In this approach one database is used for training and
another database is used for testing. This procedure helps spotting classifiers
with superior generalization properties and separates them from algorithms, which
achieve high accuracies for self-classification evaluation because of their ability
to learn special characteristics of the training database. Our goal is to determine,
which classifier leads to the best generalization over multiple databases and to
balance between recognition accuracy and generalization. Therefore, when con-
fronted with a choice between alternative approach, instead of selecting the one
with the highest accuracy in self-classification evaluation, we compare them in
cross-database evaluation. In doing so, we take an important step towards ob-
taining a robust facial expression classification algorithm with high generalization
properties.

6.3 Related Work

Benchmarking and comparison is an important part of (computer vision) research.
This fact is contributed to by publishing surveys, comparisons of different algo-
rithms and databases. For instance, Neilon et al. compare algorithms for corre-
spondence matching in stereo images [92]. They find that evaluation in this area
is usually based on determining error rates on example image pairs and assum-
ing the algorithm with higher accuracy to be superior. However, inspection of
the statistical significance shows that this measurement might be misleading and
might not reflect the correct accuracy ranking of the algorithms. Similar con-
clusions are drawn by research groups in the area of image segmentation, where
quality measurement is a difficult task due to the fact that everybody has his/her
own demands on the result and no general measurement exists [154, 41]. Most
approaches work well on specific groups of images only. Therefore, Zhang et al.
propose to combine basic evaluation techniques with machine learning to generate
a domain independent framework. Similar to the recognition of facial expressions,
image segmentation or automatic image retrieval is often a subjective manner and
defining objective quality measurements is difficult [125]. Go et al. tackle this by
relying on the labeling of multiple persons during their approach.
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For the purpose of face image analysis, a number of publicly available databases
have been proposed [96, 153, 45, 87, 63, 138]. An overview of the databases that
are important for this thesis will be presented in Section 6.4. Mostly, evaluation of
(facial expression recognition) algorithms is conducted on these databases in self-
classification evaluation. Example facial expression recognition approaches that
are evaluated in this manner are: [67, 150, 153, 100]. Several research groups ex-
tend this evaluation strategy by conducting self-classification evaluation on mul-
tiple databases [148, 155, 5]. However, each database is inspected separately. For
more details on the methodologies utilized in these approaches and the technical
details, we refer to Section 3.2.

We also took this approach in our earlier work, and presented facial expression
recognition from a live camera stream and from database images [83, 127]. The
approach taken is similar to the one presented in this thesis, as it uses the Candide-
III face model and is trained on the complete database instead of neutral and apex
images only. However, evaluation is conducted only on the CK database and
MMI database and is very tuned towards these databases, since stratified cross-
validation is performed on image level. In contrast, we evaluate our approach
in cross-database evaluation in this thesis, which serves two purposes: Firstly, to
obtain more representative results, secondly, to create classifiers that generalize
well. In contrast to our earlier work, cross-database evaluation is a major step of
improvement.

6.3.1 Cross-database Evaluation

Some research groups have already further extended the idea of including multi-
ple separate databases by conducting cross-database evaluation. The conclusion
drawn from such experiments is that getting good results in self-classification
evaluation is not indicative of achieving a good performance in general. An
early example outside computer vision is the work of Livshin et al [75]. They
conducted an experiment with five established sound databases, and find that ac-
curacy drops from 98% in self-classification evaluation to only 20% when tested
on another database. Similar results have been demonstrated for emotion recog-
nition in speech [120].

A very recent example for this insight is given by Whitehill et al. who state
a warning from relying too much on self-classification on established databases.
They state that "It is conceivable that by evaluating performance on these data
sets the field of automatic expression recognition could be driving itself into al-

9

gorithmic ’local maxima’. ” [55]. They gained this insight by applying the algo-
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rithm they presented in earlier work [74] in real-world environment. Since they
achieved high accuracy in self-classification evaluation, they assumed robustness
in real-world, as well. However, their recent work concludes that this expectation
was misleading, although they pointed out already in their earlier work that re-
sults in cross-database evaluation were not as promising as in self-classification
evaluation. The same observation is confirmed by Shan et al. [121]. Again, high
accuracies are reported in self-classification evaluation as well as a sever loss
of recognition rate in cross-database setups. Similar examples are presented by
Koelstra et al. [114, 66]. Although the difference between self-classification eval-
uation and cross-database evaluation is not so severe in their work, it is still
notable.

6.3.2 Conclusion

Several research groups have demonstrated that results gained in self-classification
evaluation are not representative for the accuracy obtained in a more unstruc-
tured setup [114, 55, 121, 120]. However, most approaches are evaluated in self-
classification evaluation, sometimes mentioning reduced results in cross-database
evaluation without paying much attention to this effect. In contrast, we propose
to evaluate algorithms in cross-database evaluation rather than self-classification
evaluation, since this is a better indicator of the generalization capabilities of a
classifier. We conclude that although 98% is an impressive result, a classifier that
scores 80% across databases would be preferable.

Some research groups present recognition results that are significantly higher
than the ones presented in this work, however, these results are mostly tuned to-
wards a single database, which raises doubt on their capability to generalize. Kot-
sia et al. present high recognition rates on the CK database, but their feature
extraction is heavily tuned towards this database, since they manually specify
small sets of FACS action units that occur only with a single expression in the
database [67]. Hong et al. report very high recognition results on the CK database
and MMI database when they include neutral images in the recognition [52].
However, since they do not mention any image weighting or selection criterion
of images, it is very unclear on which subsets of the database their algorithm has
been trained and evaluated. Martin et al. present high recognition results on the
FEEDTUM database with an AAM-based approach [79]. However, the AAM
has been generated from the very images that are used for training and evaluating
the classifiers, which tunes their approach towards this image data.
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6.4 Databases

Several databases have been proposed containing face images for computer vision
purposes. These databases consist either of single images or image sequences,
mainly captured in lab or office environments. Mostly, several images or image
sequences per subject are available. Usually, information on the database con-
tent is provided by the database authors. Depending on the database purpose,
this so-called “meta-data” includes person identity, facial expression, action unit
activation, annotated facial components or landmarks.

The database content is selected with a specific application in mind. Facial
expressions are a known challenge in face identification and therefore databases
intended for face identification often also depict facial expressions. They offer
a large number of different subjects. However, those databases usually consist
of single images rather than image sequences and the facial expression depicted
is not necessarily given in the meta-data. Therefore, these databases mostly do
not provide good data to train facial expression recognition systems. In con-
trast, databases intended for facial expression recognition provide single images
or image sequences that are labeled with one of the universal facial expressions or
FACS action unit activations. Usually, this labeling is provided on a per-sequence
basis. Figure 6.3 depicts some example images from the three databases that have
been used in this thesis.

6.4.1 Cohn-Kanade Database

The first applied database is the Cohn-Kanade Facial Expression Database (CK
database), consisting of 2105 video sequences taken from 182 adult subjects, both
male and female and of varying complexion[63]. All video sequences were shot
from frontal views with uniform lighting conditions and little or no out-of-plane
movement. The sequences are digitized into a format of 640 x 480 pixels and range
from 6 to 90 frames in length. The subjects were asked to perform various facial
actions, including the six universal facial expressions as described by Ekman et al.
The video sequences have been annotated by experts according to the EmFACS.
This database is the most often referred to collection of image data for facial
expression recognition.
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Figure 6.3: Some randomly chosen images from each of the three databases.

6.4.2 MMI Facial Expression Database

The MMI Facial Expression Database (MMI) contains more than 184 sequences
of images showing facial expressions or single action units, taken from a total
of 19 subjects [96]. It contains both frontal and profile-view sequences of facial
expressions, as well as some sequences depicting both frontal and profile view
simultaneously. In contrast to the image sequences in the CK database, these se-
quences do not solely show facial expressions developing from neutral faces to
maximum intensity, but also show the subsequent phase of expressions declining
from maximum intensity to neutral faces, with sequence length varying from 40
to 520 frames. In our evaluation, we use a subset of the MMI database consisting
of 108 sequences. The selection criterion is that only frontal-view images are de-
picted. Concerning metadata, expert annotations are provided on a per-sequence
basis, similar to the annotations provided for the CK database.

6.4.3 FEEDTUM Database

The FEEDTUM database was captured in 2006 at the Technische Universitét
Miinchen and contains image sequences depicting the six universal facial expres-
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sions as they have been defined by Ekman et al [138]. Furthermore, example
image sequences that depict neutral faces are included, however they were not
considered in this thesis, since the other databases do not provide neutral image
sequences. The image data is captured from a total of 18 subjects, each displaying
each of the seven facial expressions (six universal facial expressions and a neutral
face) three times. Instead of asking the participants to completely act the facial
expressions, short movie clips and still images were used to induce emotions and
provoke more natural facial expressions.

6.5 Data Annotation

Because the databases provide their meta-information on a per-sequence basis,
but we will train image-based classifiers, facial expression labels for single im-
ages have to be specifically derived. We use the construct of facial expression
expressiveness to determine this label.

6.5.1 Automatically Labeling Single Images

In the CK database, the final frame is always the apex. Since the index of the apex
frame is not given in the MMI and FEEDTUM database, we annotate it manually.
The class label Cs € {surprise, happiness, sadness, fear, anger, disgust} is
the annotation for the entire image sequence S. To acquire class labels for single
images we apply a heuristic: We define the expressiveness £ of a frame as the
linear interpolation between the closest apex frame (with £=1) and neutral frame
(with £=0). For instance, if frame I; is neutral, and frame I, ., is the closest apex,
then an intermediate frame I with ¢ < k < (i + n) has an expressiveness of
&k = (k — 1) /n. The class label Cj, is determined by applying a threshold:

Cs, if& >0

Cr = { neutral, if & < 6. 6.1)

Since the point of transition from neutral face to facial expression is not well-

defined, choosing the value of ¢ is left to the designer. For the classifiers presented

in this thesis we apply a threshold of # = 0.33. Some example images with

an expressiveness of approximately 0.33 are presented in Figure 6.4. For every

image, we extract a feature vector that is labeled with the image’s expression class

label. We refer to this labeled feature vector as a training or test “observation”.
However, the feature extraction itself will be detailed later in Section 6.6.1.
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MMI

FEEDTUM

Figure 6.4: The point of transition marks the image in an image sequence when a
neutral face changes to a displayed facial expression. These images depict facial
expressions with an expressiveness of = 0.33.
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6.5.2 Selecting Observation Weights

If there are different costs for misclassifying observations, different weights can
be associated with each observation. Usually, the machine learning algorithm
treats every observation in the same manner, not preferring any observation over
another or trying to maximize its parameters on a subset of observations only. In
this case, all observations have the same, constant weight.

Wgenstant — 1., (6.2)

However, more complex weighting schemes are applicable as well. For in-
stance, if only neutral and apex frames are of interest, we are able to remove the
remainder from training and classification by adjusting their weights to 0. The
constant weight is granted to neutral and apex images, only. The advantage of this
weighting scheme is that the neutral and apex frames have expert-based labels
that are provided with the meta-data of the database. On the other hand, a large
amount of available data is not used in this approach.

1.0, if&, =1.0
Wewtremes — &0 1.0, if & = 0.0 . (6.3)
0.0, else

This leads to the idea of weighting images according to the clarity of facial
expression display. Since the facial expression is most difficult to determine at
the point of transition between the neutral face and the facial expression, images
near this point in the image sequence get smaller weights than images near the
neutral or apex frame. Intermediate images are weighted by linearly interpolating
between these images in the image sequence. Please note that the second line
is important only if decreasing expressiveness is depicted, too. We visualize the
different weighting Functions in Figure 6.5.

Ex, if & >0

linear __
Wi _{1—5k~¥, ifE <0 ©4

6.6 Facial Expression Recognition

In this section, we describe the procedure to recognize facial expression from
database images. We fit the face model to every image of the databases and ex-
tract the face model parameters to obtain a single observation. Then, we train a



100 CHAPTER 6. FACIAL EXPRESSION RECOGNITION

classifier on a collection of these observations. Please see Section 5.4 for more
information on the face model.

6.6.1 Feature Extraction

The only features relevant to facial expression classification are the facial expres-
sion parameters a of the face model. Therefore, we extract these features directly
from the model parameters as a subset of p; and call them the feature set p?*~.
The features p”7 are person-specific. For example, the degree, to which a person
presses the lips together in a neutral face differs among individuals. To acquire
more person-independent features p?*!, we compute the difference between the

features p. 7% of the k' image in the sequence, and those of the first image in the

sequence pi %, which is given to be neutral: pi ! = pl'tS — pl'PS The union
of both feature sets is pi 7 = pl'PS U pI'P1. Please note again, that features

are extracted for all images of each database and that every image is inspected
individually for the extraction of the features p™*.

6.6.2 Classification

We utilize Support Vector Machines (SVMs) with radial basis function kernels for
classification. The optimal parameters are determined by an extensive search over
possible parameter settings.

Since SV Ms calculate a single separating hyperplane, they are not directly ap-
plicable to problems with more than two classes. However several extensions have
been proposed to apply them also to multi-class problems. A very straightforward
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Figure 6.5: Different observation weights are computed from the image expres-
siveness.
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idea is to train several SVMs, each designed to distinguish between two classes
only. A test observation is presented to all SVMs and voting on the classification
results determines the final class assignment. We rely on a further improvement of
this idea, which was proposed by Hastie [48]. Instead of applying a simple voting
algorithm to the classification results, a joint probability distribution of all classes
is constructed from the single SVM results and the class label with the highest
probability is selected.

6.7 Experimental Evaluation

This section presents an evaluation of the facial expression classification and in-
spects different weighting schemes and feature sets. We use three databases, three
feature sets and three observation weighting schemes. Since the databases differ in
size a lot, we extract two randomly chosen subsets of each database, one to serve
as training and one as test data. The random samples are chosen that way that
images in the training and test split are not taken from the same image sequences.
Furthermore, the size of the sampled subsets does not depend on the database size
but is the same for all databases. Accuracy values for classifiers are calculated
by dividing the summed weights of all correctly classified observations in the test
split by the summed weights of all observations in the test split, see Equation 6.5.
In this equation, Cp refers to the class label of the observation O, Wy, refers to
its weight and Co refers to the classifier prediction of the observation. The results
presented are obtained by calculating the average of five randomized splits. We
conduct a chi-square test of significance with a significance level o = 0.05 on all
experiment including classification to determine the impact of feature set selec-
tion and weighting scheme selection. Results that are not significantly different
are marked in the following way: Both results are marked with **, where z is a
number that references non-significant pairings.

>, Wo

_ —505% — (6.5)

6.7.1 Traditional Approach

A common way to determine class labels for single images from the sequence
label is to ignore non-apex images. Therefore, this experiment focuses on apex
expressions only, and ignores all other images completely. Please note that the
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disadvantage of this approach is that any facial expression is interpreted to be one
of the universal facial expressions, since there is no neutral class. The fact that
there is a significant gap in accuracy between the CK database, the MMI database
and the FEEDTUM database already hints to differences in the database struc-
ture, an observation experienced by other research groups as well [148]. The
CK and the MMI databases are assembled by persons that are very familiar with
the FACS, the apex images in these databases are in general depicting stronger fa-
cial expressions and in a more structured manner than in the FEEDTUM database.
Furthermore, the fraction of data used from a single database differs. Since two
images per sequence are selected, the ratio of sequence length and number of se-
quences determines the fraction of data rejected. Since the CK database offers a
large number of short sequences, the fraction of data accepted from this database
is highest.

The results presented in Table 6.1 are comparable to results published by var-
ious researches earlier, mostly published on the CK and MMI database [150, 13,
122, 4, 114, 148, 5], which demonstrates that our approach is within state-of-the-
art techniques

6.7.2 Cross-database Comparison

According to the theory of universal facial expressions, they are depicted simi-
lar in all databases, since they are independent of age or culture. Therefore, a
classifier trained on any of the databases should determine facial expressions in-
dependent of context conditions, even across databases.

Unfortunately, as the results presented in Table 6.2 demonstrate, this is not the
case. The reason is that the database data is biased by expectations of the database
designer and influenced by design decisions, like sequence length, number of par-
ticipants or participant instructions. Classifiers trained from such biased data rely
on database properties, preventing them from generalizing across databases. Ac-
curacy values are significantly higher when training data and test data is taken
from the same database than when they are taken from different databases. We
will apply cross-database evaluation in the remainder of this chapter and refer to
a combination of training and test databases as scenario”.

Another drawback of this approach is that we are not able to model the transi-
tion between neutral faces and those depicting a facial expression even if neutral
images are included. This decision is taken by the classifier training, based on the
provided training data.
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Table 6.1: Approaches that are trained and evaluated on apex images only achieve

CK

MMI

FEEDTUM

84.1%

79.8 %

67.2%

high accuracy values.

training test database
database CK MMI | FEEDTUM
CK 84.1 % | 60.3 % 33.9%
MMI 66.2% | 79.8 % 36.6%
FEEDTUM | 56.6% | 58.9 % 67.2%

Table 6.2: Accuracy values across databases are significantly lower that in self-
classification evaluation.

6.7.3 Evaluation of Weighting Functions

In this experiment, we integrate the neutral class and model facial expression in-
tensity to increase linearly from neutral images to apex images, as presented in
Section 6.5.2. We assume all images with & < 0.33 to depict a neutral face and
all other images to depict the facial expression provided in the database meta-data.

This increases the amount of data for training and evaluation by a great extend,
since there are no more observations with Wy = 0. The factor by which the
data is increased depends on the average sequence length of the database’s image
sequences. It is roughly 15 for the CK database and even more for the other
databases. However, this also induces fuzzy image labellings that correspond to
images at the point of transition from a neutral faces to facial expressions, which
are more likely to be misclassified. Therefore, there are two oppositional effects
it terms of accuracy.

training test database
database CK MMI | FEEDTUM
CK 71.7% | 53.3%* | 31.6%**
MMI 47.5% | 60.0 % 41.9%*3
FEEDTUM | 39.3% | 45.8 % 53.5%

Table 6.3: Taking the complete data into account with constant observation
weighting adds more data to the evaluation, but also increases the amount of fuzzy
data.
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training test database
database CK MMI | FEEDTUM
CK 76.2% | 53.2%* | 32.3%**
MMI 493% | 61.6% | 42.7% *3
FEEDTUM | 41.9% | 48.7% 55.3%

Table 6.4: Applying the linear weighting scheme balances between amount of
training data and data fuzziness.

Please note the ratio of neutral images to images depicting facial expressions.
Only one third of each sequence depicts a neutral image, which means that per
sequence there is twice as much data for the facial expression then for the neutral
face. However, since we have six facial expressions, in total there is three times
the data for neutral faces than for depicted facial expressions. To compensate for
this imbalance in order not to emphasize neutral faces over facial expressions, the
weight of neutral images has to be divided by three. The factor required to balance
neutral and non-neutral images is calculated according to Equation 6.6, with a
referring to the required value. The idea behind this formula is to balance the
integrated observation weights values of neutral images and integrated observation
weights of non-neutral images, while considering that there are six different facial

expressions.
a-6- / Wy = / Wi (6.6)
Cr=neutral Cr#neutral
We apply Equation 6.6:
1 2 1
6= =2 S
“P3T3 T3

As Table 6.3 indicates, in general the accuracy drops, which demonstrates
that the effect of fuzzy training data is stronger than the increase in training data
quantity. Please note that despite the loss in accuracy, this approach still holds
the advantage of hand-modeling the point of transition between neutral and non-
neutral faces.

To balance between data quantity and data clarity we propose to apply the lin-
ear weighting function of Equation 6.4. The idea is that the nearer an image is
to the point of transition, the more fuzzy the facial expression label gets. There-
fore, the observation weight is highest for neutral and apex images and decreases
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towards the point of transition. Table 6.4 demonstrates that all classifiers in any
possible scenario gain from this weighting. Although some of these increased
accuracy values are not significant, the tendency is evident.

Obviously, more complex weighting functions would be applicable as well to
introduce expert knowledge on facial expression intensity modeling. However,
to avoid subjectivity in the data, we restrain from using such complex weighting
models.

6.7.4 Evaluation of Feature sets

As mention in Section 6.6.1, we propose a set of features consisting of two sub-
sets. This evaluation inspects the impact of the feature set selection on the clas-
sification accuracy. Again, the evaluation is conducted on all different database
scenarios. Tables 6.5, 6.6 and 6.7 present accuracy values for classifiers that are
trained with different feature sets. Classifiers using p"7* perform worst in almost
any scenario. Adding feature set p” ¥, which results in feature set p*'*, greatly
improves the classification accuracy, as a comparison of Table 6.5 and Table 6.7
reveals.

However, providing only feature set p?*/ increases the accuracy in most sce-
narios, again. This demonstrates that providing more data is not ensured to in-
crease classification accuracy, since a classifier might focus on misleading data.
In this case, the feature set p”'* includes also the features p”, which contain
information specific for the depicted person. Therefore, if the database consists
of images taken from only a small number of subjects, the classifier will rely
on person-specific information. In contrast, the p*7 feature set considers facial
motion as it is induced by facial expressions rather than facial structure. Since
accuracy values are lowest in any database combination for p?*®, we consider
these features to be very weak.

6.7.5 Specialization properties

All classifiers evaluated in a self-classification evaluation perform comparably
well when trained on p“*! or p/'"'" features, therefore we take a closer look
at the cross-database performance. Since the aim is to train classifiers that are
not specialized on a single database, accuracy values across databases should be
near the value in the self-classification scenario of the target database. The idea
behind this approach is that self-classification evaluation represents the highest
accuracy value that is obtainable on a database. A second motivation is that a
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training test database
database CK MMI | FEEDTUM
CK 61.4% | 45.2 % 27.5%
MMI 41.3% | 60.9%** 36.6%
FEEDTUM | 34.2% | 44.6 % 51.7%*°

Table 6.5: Evaluation across databases with linear weighting scheme and feature
set p"7 only.

training test database
database CK MMI | FEEDTUM
CK 78.9% | 53.2%*° 36.5%
MMI 60.8% | 61.3%* 46.6%
FEEDTUM | 52.3% | 51.4% 51.6%*°

Table 6.6: Evaluation across databases with linear weighting scheme and feature
set pt'1 only.

training test database
database CK MMI | FEEDTUM
CK 76.2% | 53.2 *°% 32.3%
MMI 49.3% | 61.6* % 42.7%
FEEDTUM | 41.9% | 48.7% 55.3%

Table 6.7: Evaluation across databases with linear weighting scheme and feature
set p"' ', repeated from Table 6.4 for simpler comparison.
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classifier, which generalizes perfectly would “hide” on which database it has been
trained. Therefore, we calculate a measurement for the specialization of a clas-
sifier as the mean difference of its accuracy in cross-database evaluation and the
self-classification evaluation value of the target database. The intention is to spot
classifiers that are specialized on their training database and that as a consequence
do not generalize well. The higher the value is, the more a classifier is special-
ized to a single databases. Specialization is calculated according to Equation 6.7,
where 7’51 _.4, Tefers to the accuracy of a classifier that is trained on database d;
and evaluated on d, using feature set F'. Note, that if d; = d», it represents a
self-classification evaluation setup. The databases d; € D and dy € D are taken
from D, which refers to the set of databases D = {CK, MMI, FEEDTUM}.
Table 6.8 presents specialization properties for all scenarios and feature sets. The
mean generalization value is 13.8 for the p'*! feature set and 19.7 for the p?*'*
feature set, which indicates that the p”*/ feature set is more robust. As mentioned
already in Section 6.7.4 this strengthens our finding that more data does not nec-
essarily improve the robustness of the classifier. Furthermore, there is a gap in
specialization between the CK and MMI database and the FEEDTUM database.
This indicates again the similarity of the CK and MMI database.

rf
F d—d d—d
= E R 6.7

deD without {d}

In a follow-up experiment, we train classifiers on two databases and evaluate
them on the third, remaining database. The p’*! features are used in all sce-
narios. The idea of this experiment is to observe the effect of adding data in
a cross-database setup. As Table 6.9 depicts, classification accuracies are close
together. When the MMI or CK database is added for training, classification
accuracy is higher than in any corresponding 1-on-1 experiment. For instance, the
aceuracy rprpprom_crx = 952.3% if only the FEEDTUM database is utilized
is increased to 757 prEprUM_cx = 61.5% when the MMI database is added.
The same effect is observable in the second scenario where the MMI database is
added: 7oy ppppruw = 36.5% increases to 7oy prEprUMm = 49.9%. As
mentioned, this effect is also evident with the CK database: v,/ rppprom =
46.6% increases to 1o prarr— rpppruym = 49-9% and 7 pppproa s = 41.9%
increases t0 7o pppprUM M = 98- 7%. However, the effect levels off when
the FEEDTUM database is added. This is reasonable, since it has a high special-
ization value, and there is no benefit when adding it to a database with a lower
specialization value. However, even the CK database and the MMI database ben-
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feature training database

set pFPS pFPI pFPP

CK 20.0% | 17.6% | 21.8%
MMI 11.6% | 11.5 % | 18.2%
FEEDTUM | 15.7% | 19.7% | 23.6%

FPI

Table 6.8: The specialization is significantly lower with p“** in all scenarios.

test database
CK MMI | FEEDTUM
result | 61.5% | 58.7 % 49.9%

Table 6.9: When multiple databases are combined for training, the evaluation
results are less widespread.

efit from merging, since they also have a specialization larger than 0.0.

6.8 Regression

In some applications not only the facial expression itself but also the facial ex-
pression intensity might be of interest. Therefore, we train regression algorithms
that determine the expressiveness from the face model parameters. We train one
regressor per facial expression that determines its intensity. Please note that there-
fore these regressors are provided with information that is not available in the
classification approach: the facial expression itself. Furthermore, since the neu-
tral class can be interpreted as depicting any facial expression with a very small
intensity, no regressor is trained for the neutral faces.

To evaluate the regressors, we calculate the correlation between the regres-
sor prediction and the expressiveness for all test images. Table 6.10 depicts the
average correlation of all facial expressions and in all scenarios. Due to the ob-
servation in the previous sections, only the p?*! features are presented here. A
striking observation is that regressors obtain high correlation values when tested
on the CK database, even higher than in the self classification scenario. This is
reasonable, since the highly exaggerated facial expressions in this database sup-
port the task of estimating intensity. Please note, again, that the facial expression
is known in this setup and merely the intensity is determined. Since, intuitively
speaking, the apex frames in this database depict stronger facial expressions than
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training test database
database CK | MMI | FEEDTUM
CK 0.83 | 0.45 0.43
MMI 0.75 | 0.64 0.42
FEEDTUM | 0.70 | 0.49 0.55

Table 6.10: Evaluation across databases with regression, linear weighting scheme
and p™'"! features.

in the MMI and FEEDTUM database, the regression algorithm is challenged with
the task to “extrapolate” the facial expression intensity over the training data. In
contrast, in the classification setup, the classifier is challenged with data that is not
reflected very well in the training data.

6.9 Across Facial Expressions

In this section, we inspect the accuracy of classification with respect to single
facial expressions. Instead of calculating the results from different database splits,
only one split is used but the confusion matrix is calculated from all scenarios.
The matrix in Table 6.11 states the probability that a facial expression is confused
with any other facial expression. For instance, the probability that a surprised face
is classified as a fearful face is 9.7%. As Table 6.11 indicates, the most stable
facial expressions are surprise, happiness and neutral.

Most confusions are between neutral faces and facial expressions. This is ex-
pected, especially for sadness, since it reflects the cases near the point of transition
and this facial expression involves only small changes in the face. However, be-
cause it is well distinguishable from other facial expressions, there are only small
confusion with other facial expressions. Please note that these confusions are
symmetric and there are many images depicting a neutral face that are confused
to depict a sad face.

A common confusion, which looks striking at first glance, is the confusion
from fear to happiness, since these emotions are quite oppositional. However, they
cause similar movements in the face, like stretching the lips. The same holds true
for the confusion between disgust and anger, which are mainly distinguishable by
either pressing the lips together or having the mouth lightly opened.

We perform a similar experiment to inspect the facial expression intensity es-
timation. Again we train one regressor per facial expression and calculate the
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True Classified as
lable neutral | surprise | fear | happiness | sadness | disgust | anger
neutral 76.2 24 4.3 2.8 10.5 1.9 1.9
surprise 4.4 83.2 9.7 0.0 0.9 1.4 0.0
fear 25.6 155 |31.0 12.6 1.6 114 2.0
happiness 9.0 0.0 2.9 74.4 23 8.0 2.7
sadness 40.6 2.0 5.8 0.0 44.6 33 2.9
disgust 18.1 0.0 4.6 8.8 4.7 43.7 20.6
anger 19.9 1.7 2.1 1.2 17.6 20.3 37.1

Table 6.11: This matrix depicts the probability that a facial expression is classified
as another and is calculated from all scenarios.

average correlation in all scenarios in Table 6.12. Happiness and surprise have
a high rate of correlation, which is reasonable, because those facial expressions
include the most facial movement.

6.10 Discussion

In this chapter, we presented our approach to determine facial expressions from
single images. We applied classifiers to determine the class label from model pa-
rameters. In contrast to the traditional approach, which considers apex images
only, we included the complete database data. The main focus has been the evalu-
ation of the approach, where we decided to use cross-database evaluation instead
of traditional self-classification evaluation.

Integrating the complete database in the training and test data holds advan-
tages, but also some disadvantages. One of the advantages is that it reflects real-
world conditions better and provides more flexibility in designing what is actu-
ally considered a facial expression and what is still a neutral face. Otherwise the
maximum-margin classifier will determine the split point ”’in the middle” between
a neutral face and an apex expression, which depends on the database content.
This is an advantage if more subtle facial expressions are of interest. However,
the main drawback is that the point of transition from neutral face to facial expres-
sion has to be specified, which is clearly a subjective decision. In this thesis, we
utilized a simple heuristic for this decision, but we did not prove that this meets the
perception of people well. More subjective decisions are induced by the choice of
the weighting function. Although, we consider that this thesis took a clear step,



6.10. DISCUSSION 111

surprise | fear | happiness | sadness | disgust | anger
0.65 | 0.56 0.75 0.37 0.61 0.51

Table 6.12: evaluation across facial expressions with regression

we are well aware that from this beginning much open research opportunities still
exists.

The advantage of the proposed cross-database evaluation is that it provides a
comparison of algorithms without the influence of database bias. It prevents algo-
rithms from being tuned towards single databases. This benefit becomes obvious
by comparing the different feature sets. If confronted with the task to chose one
to integrate in a running system this decision can be made either on the accuracy
in self-classification evaluation or cross-database evaluation. When inspecting the
results in self-classification evaluation, both feature sets p”*’ and p*** seem to
be comparable in accuracy. The superiority of the feature set p'*/ is visible only
in cross-database evaluation, hinted by our experiment on specialization in sec-
tion 6.7.5. If guided by accuracy values in self-classification evaluation only, the
choice might even be to use the apex-only classifiers introduced in Section 6.7.1.
However, inspecting their specialization (26.4 for CK, 24.3 for MMI and 23.7
for FEEDTUM) reveals their drawback. Please note, however, that cross-database
evaluation does not provide information how well a database corresponds to real-
world data. This decision is still left to the user and we decided this to be true with
the databases utilized in this thesis. Therefore, a valuable extension to this ap-
proach would be data that is actually captured in real-world conditions. However,
if such data is available, evaluation will still benefit from cross-database evalu-
ation. Specialization on the database still prevents classifiers from generalizing
well, even in this case.
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Human-machine interaction traditionally relies on a small number of devices,
of which keyboard, mouse, screen and speakers are the most common. However,
more advanced communication mechanisms have also been envisioned, inspected
and sometimes integrated. Often, these mechanisms are inspired by human-human
communication. In other cases, they are specifically tuned towards a single appli-
cation. An imaginary example is given in the movie "Minority Report”, where
a gesture-based interface is depicted with the idea in mind that this interface al-
lows for a much faster interaction than traditional human-machine interaction.
However, recent developments like the Wii-Controller or Microsoft’s Kinect sen-
sor shift such interfaces from imagination close to reality. The Wii-Controller
has been developed by Nintendo and is tracked via a infrared tracking bar. It
is designed for interactive gaming, but is also quite feasible for gesture recog-
nition [132]. Since the drawback of the Wii-controller is that it has to be held
in hands, vision-based approaches for gesture recognition have also been pro-
posed [88]. Very recently, Microsoft published the Kinect sensor which is able to
obtain registered optical/depth images and therefore allows for the reconstruction
of colored point clouds [142].

A large area, in which advanced interface technologies are applied is movie
production. For instance, depicting realistic faces with believable facial expres-
sions is an important topic in the movie industry, with well-known examples being
the movies "Matrix: Reloaded” and ”The curious case of Benjamin Button” [10].
The production of these movies relies on a motion capture technique, which de-
termines the facial expression of an actor to render a face with the same facial
expression in the movie scene. Since humans are very trained on recognizing and
interpreting human faces, as it has been mentioned in Chapter 6 already, these
faces have to be depicted highly realistic to create the impression of a realistic
scenery.

In this chapter, we focus on a selection of example applications that have been
realized relying on the methods presented in previous chapters. These applications
have been implemented partially in close cooperation with other disciplines and
institutes. The first application is a quick example how face model fitting might
be directly applicable in human-machine communication. The second and third
application are linked, with the third building upon the second, and are inspired
from “facial mimicry”, an effect known from psychology.
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7.1 Problem Statement

Research on automated facial expression recognition is mostly conducted without
a specific application on mind and conducted on artificial image data. However,
integrating facial expression recognition in running systems in real-world condi-
tions raises different challenges. Obvious challenges are frame rate, lighting con-
ditions, unpredicted human behavior or process communication. However, apart
from such technical challenges, also the question how to evaluate such a system is
raised. While technical measurements like accuracy and speed are still deducible
by recording the interaction and labeling the recordings, inspection of the human
factor requires different methods. To determine whether humans find the interac-
tion with a system convenient or how humans react to a machine that recognizes
facial expressions is difficult, at least, to determine from recordings.

7.2 Solution Idea

An established method to determine the opinion of humans on some fact are ques-
tionnaires. Psychologist are using this tool of evaluation since decades and there-
fore, we established cooperation with psychologists to utilize this method. We
combine facial expression recognition with a facial expression synthesis compo-
nent to create a system that responds to facial expressions in a way that is more in-
tuitive than numbers or bar plots, especially for technically inexperienced person
who are not familiar with automated facial expression recognition. This allows
for creating an experimental setup that attracts a large variety of people, which is
important to obtain unbiased surveys.

7.3 Related Work

Several authors have proposed the face as an alternative communication device
in human-machine interaction already. Breazeal et al. present the robotic head
”Kismet” that depicts facial expressions depending on its “emotions”, which are
represented by several internal, motivational states [12]. This robot uses micro-
phones to determine emotion in the user’s voice, but does not rely on the user’s
facial expression. A system that not only displays but also recognizes facial ex-
pressions has been proposed by Bartlett et al. [6]. Their system recognizes seven
basic emotions and depicts the recognized emotion on a virtual avatar. However,
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they do not include an emotion model, as Breazeal et al. did, and evaluation is
given on the CK database only, not via a user study. Furthermore, facial expres-
sions that are not directly related to the basic facial expressions, like yawning, are
not considered in this approach. A similar approach is presented by Tscherepanow
et al. [134]. Their approach is not bound to a fixed set of facial expressions, but
they determine single motor commands directly from the visible image to mimic
the facial expression. Unfortunately, they do not provide an evaluation of their
system. Some researchers inspected facial expressions on robots or humans in
dialogs, but these facial expressions are either depicted only by the robot or rec-
ognized in a wizard-of-oz setup [106, 6, 91]. The work presented in this thesis
summarizes several of our earlier publications and research, conducted in two
major stages. The first stage consisted of detecting the human facial expression
to mirror it on a robot head and we refer to our earlier work for a more detailed
description [16, 127]. The second stage integrated this in a human-machine dialog
and included an evaluation in cooperation with psychologists [44].

Some applications are clearly industry driven, such as the smile detection of
Whitehill et al. For their work, achieving high robustness is paramount since they
aim to integrate it in digital cameras, where smiling should serve as a trigger to
take pictures [55]. They aim at building a robust smile detection with the idea
to integrate it in digital cameras, where smiling should serve as a trigger to take
pictures. They create a very large database of training image to obtain this ro-
bustness. Shergill et al. propose to utilize facial expressions in marketing [124].
They observe that customers are discriminable in two categories: Customers that
visit a physical or virtual store to see the supply without the intend to actually buy
something and customers that enter the store with the proposition to do shopping.
Shergill et al. argue that facial expressions are an applicable tool to distinguish
these groups. Dhall et al. present a system that collects images based on the sim-
ilarity of facial expressions in a gallery to simplify its browsing [27]. A similar
idea is proposed by Kemelmacher et al., who determine the image from a gallery
that matches a given test image best with respect to the person’s head pose and
facial expression [65].

Head gestures, such as head shaking and nodding, are simple and efficient
communication instruments that are used by humans frequently in everyday life.
Therefore, integrating them allows for a fast communication also with technical
systems. Morency et al. present a system that integrates head gestures in tradi-
tional computer work like document browsing [89]. Another idea that is inspired
by a medical application is the integration of head gesture recognition in intelli-
gent wheel chairs for people who suffer from parkinson or quadriplegia [58]. We
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proposed a combined framework for head and hand gesture recognition in our ear-
lier work [139]. The part of it concerned with head gesture recognition is detailed
in this thesis, as well.

7.3.1 Conclusion

Two conclusions are drawn by many research groups: Integrating emotional feed-
back in human-machine interaction is a valuable goal and the face is a strong
human communication tool. However, none of the mentioned systems provides
combined facial expression recognition and synthesis that has been evaluated out-
side standard databases. Therefore, estimating the real benefit of facial expres-
sions on the human-machine interface is still open research. System evaluations
are usually focused on one aspect, either determining the technical parameters or
the impact on the user. However, both aspects are important to obtain an impres-
sion of the system benefit.

7.4 Communication Framework

The applications presented in this chapter are composed of several components,
each fulfilling a different task in the work chain. Designing the complete system
as a collection of collaborative modules holds several advantages: Modules can be
added and removed during runtime without having to reset the complete system,
which is important, if one of the components fails for some reason. Furthermore,
modules are simple to reuse in new projects. Examples of such modules are com-
ponents that capture the camera data, processing units that extract features from
these images, classification modules, for instance to extract head gestures from
the features, and modules that control the robotic head. A fast and robust commu-
nication framework provides data transfer between these modules. We integrate
the so-called "Real-time Database”(RTDB) for this purpose, which has originally
been developed for cognitive autonomous vehicles. As Goebel et al. demonstrate,
the RTDB is capable of dealing with large amount of data input streams of differ-
ent sources with different properties (i.e. data rate, packet losses, etc.) [43, 129].
Although, the RTDB is named “database”, it is more a shared-memory implemen-
tation that provides “write” and “read” methods on a publisher-subscriber basis.
This allows different software-modules the parallel access to the same input data
without any blocking effects.
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7.5 Head Gesture Recognition

Head gestures are a fast and convenient way to show agreement or disagreement
in everyday communication. Head shaking and nodding are efficient communica-
tion signals, which we obtain in real-time also from camera images. The system
extracts a 3D trajectory of the human head and then uses sequence-based classifi-
cation to determine a head gesture from it. To determine the trajectory, a 3D face
model is fit to the human’s face and tracked through subsequent images. Since no
facial expression information is required, we utilize a rigid face model to increase
the frame rate. The pose information is transmitted via the RTDB to a sequence-
classification module. Classification is performed via Hidden Markov Models,
which have proven to be a quick and real-time capable classification method.

7.5.1 Feature Extraction

Since head gestures are inherently dynamic, we extract head movement rather than
head position. The parameter vector of the rigid 3D model describes the model
pose in space. For each image we calculate the head movement from the pose
difference to the precedent image by p, — p,_,. Since we apply sequence classi-
fication rather than training classifiers for single images, we calculate a sequence
of head movements with a sliding window approach over the last /N images. The
buffering capability of the RTDB has proven very helpful in doing so. The Hidden
Markov Model is presented the feature vector (p, — P;_1, Pi—1 — P95 Pio —

Di 3 s PN —Pt—N-1

7.5.2 Evaluation

We collect a set of image sequences depicting head shaking and nodding, consist-
ing of 20 sample image sequences per class. Furthermore, a neutral head gesture
reflects no specific head movement. We perform a stratified cross-validation with
five folds to evaluate our approach. The obtained recognition results are presented
in Table 7.1.

7.6 Facial Expression Mirroring on a Robot Head

The second application presented in this chapter displays the facial expression
determined from camera images on a robot head. More specifically, this system
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Classified Sequence Label

as Shaking Neutral Nodding
Shaking 95% 5% 0%
Neutral 5% 85% 10%
Nodding 0% 0% 100%

Table 7.1: This table presents recognition rates of a HMM-based classification for
the head gestures. The results are obtained from a five-fold cross validation.

determines the activation intensity of several FACS action units and mirrors them
on the robotic head, allowing the robot to mirror the human’s facial expression.
Please note that the facial expression is not interpreted as being one of Ekman’s
universal facial expressions and therefore, the system is not limited to these facial
expressions. The motivation for this experiment is based on insights in psycho-
logical research.

As already mentioned, facial expressions play an important role in human-
human interaction. Humans that perceive emotional facial expressions on other
humans’ faces mirror these facial expressions within a few seconds, an effect
known as “’facial mimicry”. Recent research investigates, whether this reaction
is caused by the activation of so-called “mirror neurons” that have been proven
to be existent in the brain of monkeys and the human brain [107, 103]. There is
evidence that observing an emotional facial expression does not only cause the
observer to display the same facial expression but also induces the same emotion
in the observer [36]. Furthermore, feeling empathy for others is also connected
to the mirror neuron system [24, 40, 49]. Therefore, facial mimicry and empathy
are linked, since facial mimicry signals a feeling of empathy and might induces it
in the mirrored human, as well. This, in turn, can cause another mimicry reaction
with switched roles, building a feeling of social bonding over time.

An open research question is, whether this facial mimicry effect is repro-
ducible on the human-machine interface. The first experiment described in this
chapter will provide the basis required to answer this question with the help of a
robotic head. Obviously, if the facial mimicry effect should be evoked, the core
assumption is that humans perceive the robot head’s facial expression close to
a corresponding human facial expression. For instance, if the human raises the
eyebrows, than the robot’s eyebrows should be perceived raised by the human as
well, see Figure 7.1 for our experimental setup. Since it is difficult to evaluate
this during runtime, we conduct an off-line evaluation of the system. The core
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Figure 7.1: Demonstration setup with EDDIE (ot by kurt Fuchs).

idea of this evaluation is the development of a similarity metric of the mirrored
expression. This is achieved by conducting a user study to evaluate the degree, to
which facial expressions displayed by the robot head and humans are perceived
matching by untrained observers. The following experiment will then focus on
the facial mimicry effect itself.

7.6.1 Model Tracking and Facial Action Units Analysis

Both, the model tracking and the FACS analysis, rely on a neutral reference im-
age of the user. Since no previous information is available about the image content
(except for the fact that a face is visible in it) or about the person in front of the
robot head, model fitting is applied to determine reference model parameters p,,.
These reference parameters are specific for this person and are recalculated when
the system is confronted with a new person. The model fitting is conducted in a
two-step approach: Firstly, we fit a 2D shape model as described in Section 5.6
to determine the position of the face eyes and the face contour. From this infor-
mation, the face pose in 3D space is calculated. Then, in the second step, the face
shape parameters are calculated as described in Section 5.5.
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In subsequent images, the face model is tracked to determine the model pa-
rameters p,. The face vertex points v are projected onto the image plane using
perspective projection j to obtain their corresponding pixel coordinates v = j(v)
in the camera image. Applying this to the reference frame Z;, and the reference
model parameters p,,, we create pixel positions (. To estimate the corresponding
pixel positions in the current frame 7; captured at time step ¢, we apply an optical
flow method on Z; and Z, to calculate v;. Afterwards, model parameters p, are
approximated that minimize the error between v; — v;. To calculate the FACS
action unit activations, we rely on a subset of a that refers to the FACS system.
We extract p/ 4 from p, — p, by selecting model parameters that refer to Action
Units that are synthesizable by the robotic head. Therefore, pf4“* is a subset of
the p’*7 features.

7.6.2 Facial Expression Synthesis

For the facial expression synthesis, the robot head EDDIE is used. EDDIE has
been developed by Stefan Sosnowski at the “Institute of Automatic Control En-
gineering” (LSR), at the TU Miinchen and has been generously provided by him
for the conduction of this experiment. EDDIE is an emotion display with 23 de-
grees of freedom, mixing anthropomorphic and zoomorphic features [68]. With
this head, 13 out of the 21 emFACS action units can be displayed .

The emotional state of the display can be controlled in two ways, either re-
ferring to the discrete basic emotions found by Ekman et al. or referring to the
circumplex model of affect proposed by Russel et al.[31, 56]. Each state of the dis-
crete basic emotions was modeled according to the emotion to FACS mapping by
Ekman. With the robotic facial features being closely linked to the corresponding
action units, a linear transformation from action units activation levels to the joint-
space is used. This linear transformation is also used for the combined setup, were
the activation of action units is directly provided by the analysis module. Transi-
tions between states are animated by linear interpolation of the respective motor
commands of the start - / end-state.

7.6.3 Experimental validation

The goal of this experiment is to evaluate if humans perceive the robotic facial
expression close to a corresponding human facial expression. Since this is difficult
during runtime, we extract static facial expression images from the CK database
that has already been used in Chapter 6. The idea of the experiment is, to have the
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robot head mirror the facial expression visible in the example images, and have
human raters compare the original human facial expression and the mirrored robot
facial expression afterwards.

To determine the facial expression in these example images, we fit the face
model to them and extract the feature vector pf4“S. These feature values are
then provided to the facial expression synthesis module to have the robotic head
depict the facial expression. Since it is a known property of the database that
the first image of each sequence depicts a neutral face, we rely on them for the
calculation of pf“® to support the calculation of p/A““. In total, 21 pictures
are taken from the image database to determine the activation of the AUs with the
facial analysis module. From this procedure we gain pairs of images, with one
image depicting a human face and the corresponding second image depicting the
robotic head mimicking the human face, see Figure 7.2 for an example. Since
the data is automatically extracted and displayed by the system, as it would be in
the mirror setup, this evaluation is a benchmark of the mirroring. This is done
the same way as an actual video stream in the live mirroring setup is processed.
The action units recognized by the analysis components and synthesized by the
robot are AU2 (outer brow raiser), AU4 (brow lowerer), AUS (upper lid raiser),
AU7 (lid tightener), AU13 (lip corner depressor), AU26 (yaw drop), AU42 (eyes
closed).

7.6.4 Experiment Realization

To conduct the user study, a set of powerpoint slides with automatic data log-
ging was created. Participants got the verbal instructions beforehand to follow
the instructions on the screen and that they could work without a time limit.
Twenty persons, six female and fourteen male, contributed to the evaluation.
Since none of the persons is specifically trained on facial expression recognition
or FACS coding, we decided against asking them to rate activations of specific
action units. Instead, they were asked to rate human faces in four categories
( EyeBrows, EyeLids, Jaw, LipCorners) and in five intensities. Example an-
notation were shown to the participants to prevent wrong labeling due to mis-
understanding of the instructions, see Figure 7.3 (left) for the EFyelids rating
instruction. For the categories FyeBrows, EyeLids and LipCorners, a low
intensity represented lowered eye brows, closed eyes or depressed lip corners re-
spectively. In conclusion, a high intensity reflected raised eye brow, wide opened
eyes or raised lip corners. For the Jaw category, a low intensity referred to a
closed mouth and a high intensity to a wide open mouth.
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Figure 7.2: We create a set of image pairs with one image depicting a human and
a second image depicting the robot head mimicking the human. The participants
were not aware that they were presented pairs of images.

26 =1
Example ranking: Eye Opening Example ranking: Eye Opening
= = - = — - A,
o =il
= i
. - sl UL L

Figure 7.3: Participants were asked to rate human and robotic faces in four cate-
gories and five intensities.

In the first evaluation phase, the participants were presented eight images de-
picting human faces in a predefined order. These images did not have correspond-
ing images with the robotic head. The first phase served two reasons: First, to
ensure that the participants had correctly understood the task, second, to have a
reference of the users’ ability to rate facial expressions. In the second evaluation
phase, 21 images from the image database and 21 corresponding images of the
robotic head were presented to the participants in randomized order. Please note
that the participants were not informed that the image data includes matching
human-robotic head pairs. The order was different for every participant. Fig-
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ure 7.2 depicts an example of a human-robotic head pair without rating, i.e. all
sliders are in initial state. Similar to the first phase, participants were informed
on an introduction slide that a robotic head would now be depicted as well and
example ratings were given, see Figure 7.3 (right). There was no difference in the
rating mechanisms for human faces and robotic heads, except for the fact that two
images were presented for the robotic head. Participants were allowed to navigate
freely through the test with continue/back buttons.

7.6.5 Results

In this section, we inspect the finding of the experiment conduction. First, we
inspect the similarity of participants’ rating schemes. If different participants ap-
plied a different rating scheme, their rating would not be comparable, although
they might actually have the same perception of the activation of certain action
units. As mentioned in Section 7.6.3, the participants were presented eight train-
ing image with four sliders each, resulting in 32 slider values. The mean variance
for all slider values is 0.41, which demonstrates that participants rated the training
images very similarly and therefore their rating is comparable.

A similar idea is applied to inspect the consistency between the rating of a
human face and a corresponding robotic face. We denote the rating of the human
face in one of our L = 21 image pairs by one of the N = 20 participants with h%"
withl <! < L,1 <n < Nandc € {EyeBrows, EyeLids, Jaw, LipCorners}.
The ratings of the robotic face are denoted by 7", Per participant 217422 = 168
(21 image pairs, 4 sliders, 2 images per pair) values for all image pairs [/, and all
categories c are calculated. To inspect the similarity between human and robotic
face rating, we calculate e;* = b\ — ri™. Furthermore, to group our inspection
by category, we create data vectors ex that contain all values efi x-

We calculate a histogram of € gyeBrows:€ EyeLidss€Jaw AN €EyeBrows tO Obtain
an intuition of the rating discrepancy distribution, see Figure 7.4. For all cate-
gories the most frequent value of e. is 0, which indicates that participants rated
the robotic head and the human face equally. Furthermore, only a very small frac-
tion of values of e;* has e’* < —1 or e}* > 1, which leads to the conclusion that
ratings of the human face and the robotic head only rarely differ more than one
slider unit.

To obtain comparable numbers, we calculate mean and variance of €gyeBrows.
€EyeLidss €Jaw ANd €pyeBrows, see Table 7.2 and Figure 7.5 for a visualization.
Inspecting the small mean values confirms our findings. Larger values would im-
ply a general shift between the human and robotic head. For instance, a high
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Figure 7.4: Only a small fraction of rating differences between a human face and
a corresponding robotic head are larger than one slider unit.

mean value at Jaw would indicate that the robotic head’s yaw drop is always per-
ceived smaller than the human one. Furthermore, the variances for EyeBrows,
Jaw and LipCorners are all close to 1.0, which further strengthens our findings
that ratings of the human face and the robotic head only rarely differ more than
one slider unit in these categories. FyeLids, however, shows a larger variance,
which indicates that this has been the most difficult category to rate by the par-
ticipants. However, since the variance is still less than 2.0, the rough status (eyes
opened/eyes closed) still has been recognized correctly in general.

category | mean | variance
Eye Brows | 0.10 1.08
Eye Lids 0.28 1.40
Jaw 0.10 1.10
Lip Corners | 0.15 0.88
overall 0.16 1.11

Table 7.2: Mean and variance in the rating difference of a human face and corre-

sponding robotic head.
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7.7 Facial Expressions in a Human-Robot Dialog

Inspired by the insights that humans perceive the facial expression mirrored on
the robot close to the original, human facial expression, we integrate the system
in a running dialog. The idea of this experiment is two-fold: Firstly, to reproduce
the empathy inducing effect of facial mimicry and secondly to demonstrate that
human-robot interaction benefits from the integration of facial expression analy-
sis and synthesis in the interaction process. Users are asked to play a game of
”Akinator” with the robot head, while the robot head is in one of three states:
The robot head either ignores the human’s facial expression completely, or simply
mirrors the human’s facial expression, or determines its own reaction from a so-
cial model that takes the robot’s internal state and the user’s facial expression into
consideration. We now shortly introduce the components that have been added in
comparison with the last experiment: The ”Akinator” and the social model.

7.7.1 Dialog and Akinator

To create a backbone for the ongoing dialog, an interface to the ”Akinator” (see
www.akinator.com) is integrated. This web-based application, which is usually
executed in a browser, realizes a simple game, in which the ”Akinator” tries to
guess a person chosen by the user. In our application, the experiment participant
takes the role of a user and is asked to choose a person. The person may be a real or
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Figure 7.5: Mean errors in rating of human versus mirrored robotic expressions
grouped by action units
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fictional person, currently living or historical, taken from literature, the media or
public live. Then, EDDIE tries to guess the person by asking several questions and
using its interface to the ”Akinator” to transmit the user’s answer and to obtain the
next question. To answer Akinator’s questions, a set of fixed answers is presented
by the system. The set of answers is the same for every question and consists of:
”Yes”, ”Probably” / “Partially”, I don’t know”, ”Probably not”/ "Not really”, and
”No”. Example questions asked by the Akinator are: “’Is your character a girl?”,
”Does your character live in America” or "Does your character really exist?”.
Since it is the idea of this experiment to create the illusion that the participant is
in a dialog with EDDIE, traditional interface methods like mouse and keyboard
are not suitable. Instead, text-to-speech is used to present Akinator’s questions
acoustically to the participant and speech recognition is utilized to determine the
participant’s answers.

The interfaces and their interplay, including the text-to-speech subcomponent,
the speech recognizer and the communication to the ”Akinator” interface have
been provided by Jiirgen Blume from the Institute for Human-Machine Interac-
tion of the Technische Universitidt Miinchen. We would like to acknowledge his
contribution to the realization of this experiment.

7.7.2 Social Model

The utilized model is based on a reduced version of the ”Zurich Model of Social
Motivation” [46], which has again been provided by Stefan Sosnowski from the
Institute of Automatic Control Engineering of the Technische Universitdt Miinchen.
We provide only a short overview of the model here, but refer to Borutta et al. for
a more detailed description [11].

The model has been developed to describe the behavior of children in the
presence of other humans. In our implementation, both, the child and the human
are situated in a virtual environment. The child’s emotional state is modeled by
three interrelated subsystems: The autonomy system, the arousal system and the
security system. The child will try to achieve a situation, in which these three
subsystems are balanced. Actions occur due to changes in any of these subsystems
that disturb this balancing. Facial expressions are considered reactions to changes
in one of the subsystems and the subsequent adaption process [11]. For instance,
smile reactions are the result of a decline in autonomy like social distance changes,
environmental changes or conflicts.

Humans in the environment are described with three parameters: The familiar-
ity, the relevancy and the distance to the child. The familiarity models the degree,
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to which the child is familiar with the human. A high value would for instance
be assigned to the child’s mother, whereas a small value would be a complete
stranger. The relevancy models the strength of the impact the person’s presence
has on the child. A small value would indicate for instance a peasant who obvi-
ously ignores the child. An example for a high value is the child’s doctor. The
distance is calculated from the child’s position and the human’s position in the
virtual environment. Humans produce a potential of security and arousal in their
surrounding, depending on their settings of familiarity and relevancy. Depend-
ing on its internal state, the child moves in the environment to find a place that
supports its current need for arousal or security.

In our application, the robot takes the role of the child and the participant takes
the role of a human with high relevancy and medium familiarity. Since the phys-
ical robot is fixed on the table, we immobilize the virtual child, as well, so that it
can’t move either. The human’s position in front of the camera is obtained from
the face model pose and mapped to a position in the virtual environment. If the
participant moves, this influences the robot’s emotional subsystems, due to the
generated potential of arousal and security. For instance, it is possible to “scare”
the robot by quickly moving towards it. This produces a large amount of arousal,
which results in a surprise reaction of the robot. Further changes in the subsys-
tem are induced by detecting the human’s facial expression in this experiment.
Thereto, we extend the model with an interface to our facial expression recogni-
tion system. In contrast to the previous experiment described in section 7.6, not
only the activation of single action units is detected, but a classifier is trained as
described in Chapter 6 to detect the intensity of certain facial expression. We uti-
lize support vector regression that is trained on the p??! features to determine the
intensity of smiling or surprise from the user’s face. The required neutral image
is easily obtained in the beginning of the dialog. We model smiling at the robot
to increases its security state, which corresponds to the idea of providing security
to the robot. If the robot is in a balanced state, this results in a smiling back reac-
tion of the robot. Detected surprise increases the arousal level of the robot, which
corresponds to signaling the robot that something exciting has just happened, thus
also exciting” the robot.

7.7.3 Experiment Conduction

Experiment participants were seated in a quiet room with controlled lighting for
the experiment. They were grouped in three different groups referring to the con-
dition of the robot head, which was either not reacting to the participant’s facial
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expression, mirroring the facial expression or depicting its facial expression in-
duced by the social model. Participants were not informed about the goal of the
experiment beforehand and were only told that the experiment was about human-
robot interaction. Then they were instructed on the ”Akinator” game and asked to
pick a person of their choice for the game. Immediately after the game, they were
asked to fill in a randomized questionnaire, which is presented in Table 9.3 in the
Appendix. The goal of the experiment was to inspect whether the chosen condi-
tion influenced the user’s perceived empathy towards the robot, the performance
of the robot as it is subjectively perceived by the user and the user acceptance of
the robot. Please note that we did not measure the objective performance of the
robot here, which would be for instance the time it took the robot to guess the
person or the number of questions. The questionnaire and its evaluation has been
provided by Barbara Gonsior from the Institute of Automatic Control Engineering
of the Technische Universitit Miinchen.

The questionnaire has been designed to measure user acceptance in five dif-
ferent categories:

e Trust: The belief that the system performs with personal integrity and reli-
ability.

e Perceived Sociability: The perceived ability of the system to perform socia-
ble behavior.

e Social Presence: The experience of sensing a social entity when interacting
with the system.

e Perceived Enjoyment: Feelings of joy or pleasure associated by the user
with the use of the system.

e [ntention to Use: The outspoken intention to use the system over a longer
period in time.

To determine the user’s empathy and perceived performance, the questionnaire has
been split in two parts, depending on whether EDDIE was successful in guessing
the person or not. Participants answered the questions on a Likert scale with five
intensities from 1 (strong disagree) to 5 (strong agree). Some of the questions
were negated versions of other questions. The rating of these questions had to be
negated, too, during evaluation.
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category Condition
Neutral | Mirrored | Social Model

Empathy 3.1(1.3) | 3.7(1.1) 4.4(0.8)
Subjective Performance | 2.8(1.2) | 3.4(1.0) 4.1(0.9)
Trust 3.0(0.6) | 3.3(0.8) 3.7(0.5)
Perceived Sociability 3.2(1.0) | 3.6(1.0) 3.9(0.7)
Social Presence 2.8(0.6) | 2.8(0.7) 2.9(0.7)
Perceived Enjoyment 2.8(1.4) | 3.9(1.2) 4.2(0.7)
Intention to Use 3.0(1.3) | 3.5(1.0) 3.9(1.0)

Table 7.3: All categories show a clear tendency that ratings increase with the

condition. This tendency is strongest with ’subjective performance”, empathy”
and perceived enjoyment”.

7.7.4 Results

As Table 7.3 shows, the categories involving facial expressions are rated higher,
i.e. “better” from the user’s point of view, than the neutral condition. This is
specifically true for the "empathy” condition, which is important, because this in-
dicates that the behavior of the robot indeed evokes a feeling of empathy or sym-
pathy for the robot. Therefore, participants reacted on the robot’s facial mimicry.
This also correlates with the category “perceived enjoyment”, which indicates that
participants also enjoyed playing with EDDIE more, when it reacted to their facial
expressions. The category “subjective performance” together with the “intention
of use” category shows, that integrating facial expressions in the process improves
the user’s impression of the machine performance and provides strong motivation
to use or reuse the machine. People feel more satisfied with the machine perfor-
mance afterwards, independent of the actual or objective performance of the ma-
chine, than with an emotion-neutral interface, and are more likely to come back
and use it again. The difference between the conditions "Mirrored” and ”Social
Model” further indicates, that modeling the machine behavior itself still has im-
pact on the impression the machine provokes in the user. It is not only beneficial
to integrate facial expression recognition, but also to model the machine agent and
its internal state itself.
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7.8 Discussion

In this chapter, we depicted example applications that have been realized with the
techniques presented in earlier chapters. We shortly introduced head gestures for
intuitive human-machine communication and integrated facial expression recog-
nition with a robot head.

Although the experiment with the robot head might look like a nice toy for
engineers and computer scientists at first glance, it provided the opportunity to
gain interesting research insights. Although much research is conducted on facial
expression recognition for human-robot interaction, its beneficial effect is usu-
ally axiomatically assumed. Only little work is dedicated to inspecting the actual
benefit. Our evaluation proofs, that facial expression recognition is beneficial to
human-robot-interaction, an insight, from which a large community of researchers
will benefit, as well. However, this insight also raises further research questions
that still need to be answered, for instance, whether other reactions than empathy
are inducible, as well. Scientifically speaking, the idea to create a robot that is
able to induce anger in humans would be interesting, as well, as it would demon-
strate that the robot is perceived more as a person than as a machine. This again
raises the question, what is actually required for humans to perceive machines as
a social person rather than a lifeless object. Facial expressions seem to be part of
the answer.
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Chapter 8

Discussion and Future Work

Whitehill et al. recently recognized one of the major challenges that research on
facial expression recognitions systems is currently facing. Traditionally, facial
expression recognition systems are evaluated on standard databases. They offer
images of facial expressions that are acted according to the instructions of the
database authors. Whitehill et al. refer to these databases when they state that
It is conceivable that by evaluating performance on these data sets the field of
automatic expression recognition could be driving itself into algorithmic ’local
maxima’. ” [55]. In this thesis, we identified one of the driving factors of the
dangerous tendency to be the evaluation strategy that is typically applied to test
facial expression recognition algorithms. Mostly self-classification evaluation,
like percentage-split, stratified cross-validation or leave-one-out validation is ap-
plied. The reason for using the aforementioned databases is that obtaining real,
non-acted data is difficult and ethically doubtful, especially for facial expressions
displaying emotions like fear or sadness. However, this approach induces bias in
the database data due to the author’s instructions to subjects. This effect is ag-
gravated by the fact that many approaches consider apex facial expressions (facial
expressions with maximum intensity) only. This danger becomes evident when
conducting cross-database evaluation instead of self-classification evaluation. It
has been found by several research groups, that results in cross-database evalua-
tion are significantly below self-classification evaluation, these findings have not
sparked a major change in evaluation strategies so far. However, we concluded
that we can not expect algorithms to work robustly in real-world applications
if they do not even generalize to data taken from another database. The bene-
fits of this evaluation strategy are that it prevents classifiers from specializing on
database properties and allows for a more realistic comparison of classifiers, and
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thus wards against getting caught in a local maximum. Therefore, we inspected
the benefit of cross-database evaluation in more detail in order to demonstrate its
contribution to conducting meaningful evaluations.

The second danger in the tendency mentioned by Whitehill et al. is that it
results in a gap between the facial expressions that recognition algorithms are
trained on and facial expressions as they appear in the real world. This is unfortu-
nate, because practical application of facial expression recognition offers many in-
teresting research opportunities in human-machine interaction. There is no doubt,
that facial expressions are important elements of human communication. How-
ever, although its benefit in human-machine communication is usually assumed,
the question whether they have a similar, or at least significant, impact on human-
machine communication is still open. We approached this question and proposed
an answer by conducting an experiment in which a human participates in a dialog
with a robot head that itself depicts facial expressions and reacts to the human’s
facial expression. A survey conducted in close cooperation with psychologists
revealed that participants perceive the robot to work more effective and enjoy the
cooperation more when it reacts to their facial expression. The answer to this
question is of interest to the community, since it provides a strong motivation for
research in this area, not only as a theoretical pattern recognition problem but with
practical application in mind.

Our application required a face model that represents semantic information
about facial actions, like rising the eyebrows, in single parameters. Unfortunately,
face models like ASMs and AAMs are generated from statistics in manually la-
beled training data and their model parameters refer to statistical variances in the
annotation rather than semantic face movements. Fortunately, the Candide-III
face model provides model parameters with semantic interpretation. Since model
fitting strategies are usually tied to and only applicable with a specific type of
model, we proposed a novel fitting strategy, as well. Directly comparing two rep-
resentatives of major model fitting categories that are widely used, those utilizing
objective functions and those utilizing displacement expert, the later turned out to
be faster and more robust. Since the Candide-III model parameters refer the shape
and movement of specific facial components, we integrate an image representation
that specifically highlights these components. However, this image representation
is not bound to the Candide-III face model, but is embeddable into other fitting
strategies, as well.

We stated three contributions of this thesis in the introduction. We will now
visit them again to verify how they have been fulfilled.

We presented a system for facial expression recognition from camera images.
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The proposed approach processes images in three subsequent steps: A prepro-
cessing step that generates multi-band images from the raw image data, a model
fitting step that is applied to the publicly available Candide-III face model, and
finally a classification step that determines the facial expression from the model
parameters. Each of these steps works automatically and no manual interference
is required.

Furthermore, we presented evaluations for implementations of those steps that
are tuned to reflect robustness in real-world scenarios by integrating separate train-
ing and test databases. Our preprocessing method is specifically tuned to segment
the face from the image background and the facial components from the rest of
the face. We demonstrated that model fitting greatly benefits from integrating this
novel image representation in the fitting process, which is analyzed on the La-
beled Faces in the Wild” database. This database depicts images collected from
the media that offer a large variety with respect to age, ethnic background, clothing
style, background and head pose. The classifiers that determine the facial expres-
sion have been evaluated following a novel evaluation strategy in cross-database
scenarios to ward against overspecialization.

Finally, we presented applications of our algorithms to demonstrate several
possible applications of the presented techniques. We shortly introduced an ap-
plication to head gesture recognition, which is a convenient and efficient human
communication modality. Then, we integrated facial expression recognition in
a human-robot dialog. Apart from being a platform to demonstrate facial ex-
pression analysis and synthesis, it provided a research platform for emotions in
human-machine interaction.

Future work will consider integrating multi-band images not only in face model
fitting but also in face model tracking. Two important step have to be taken to
achieve this: Firstly, the computation of the multi-band images has be be con-
ducted faster than real-time. Since the calculation has large potential for paral-
lelization, the computation will be shifted to GPUs of modern graphics cards.
Secondly, the process will be reformulated to take prior knowledge about the per-
son visible in the camera images into consideration. This will be achieved by
adding person-characteristics, similar to the image-characteristics, which will fur-
ther speedup the process and increase its accuracy. Furthermore, we will integrate
real facial expression data in our classifier training and evaluation. This includes
two steps: assembly of a database from sources like media and evaluation of this
additional database with our cross-database strategy.

Another large point of interest is the integration of more recent sensor hard-
ware like the Kinect sensor. Although 3D data, for instance from laser scans, has
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been considered for facial expression recognition, practical application of such
techniques have always been difficult due to the sensor restrictions. With the
Kinect sensor, there is the opportunity to consider depth information in combina-
tion with camera images, synchronized, registered and in in real-time. It is to be
expected that this information will be particularly helpful in fitting the 3D model.
Preliminary experiment show that the head pose can be extracted in real-time from
this data and that the initial pose estimation of the 3D model also benefits from it.
This, in turn, will increase the fitting accuracy.

Inspecting the development in this area over the last decades reveals that face
image analysis receives a steadily growing interest from the scientific community
and industry alike. Facial expression recognition offers opportunities for advanced
pattern recognition as well as fascinating interdisciplinary research. Applications
already range from smile-shutters for digital cameras to face analysis for movie
production, documenting the progress that has been achieved through research
on the subject. However, some of the research questions that are still open were
outlined in this thesis, providing room for continued and interesting work. We
look forward to see the insights that researches all over the world will gain in the
years to come.
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AU | Name Facial muscles involved
1 | Inner Brow Raiser Frontalis (pars medialis)
2 | Outer Brow Raiser Frontalis (pars lateralis)
4 | Brow Lowerer Corrugator supercilii, Depressor supercilii
5 | Upper Lid Raiser Levator palpebrae superioris
6 | Cheek Raiser Orbicularis oculi (pars orbitalis)
7 | Lid Tightener Orbicularis oculi (pars palpebralis)
9 | Nose Wrinkler Levator labii superioris alaeque nasi
10 | Upper Lip Raiser Levator labii superioris
11 | Nasolabial Deepener | Zygomaticus minor
12 | Lip Corner Puller Zygomaticus major
13 | Cheek Puffer Levator anguli oris
14 | Dimpler Buccinator
15 | Lip Corner Depressor | Depressor anguli oris
16 | Lower Lip Depressor | Depressor labii inferioris
17 | Chin Raiser Mentalis
18 | Lip Puckerer Incisivii labii superioris and Incisivii labii in-
ferioris
20 | Lip stretcher Risorius and platysma
21 | Neck Tightener
22 | Lip Funneler Orbicularis oris
23 | Lip Tightener Orbicularis oris
24 | Lip Pressor Orbicularis oris
25 | Lips part Depressor labii inferioris or relaxation of
Mentalis, or Orbicularis oris
26 | Jaw Drop Masseter, relaxed Temporalis and internal
pterygoid
27 | Mouth Stretch Pterygoids and Digastric
28 | Lip Suck Orbicularis oris
31 | Jaw Clencher
38 | Nostril Dilator
39 | Nostril Compressor
43 | Eyes Closed Relaxation of Levator palpebrae superioris,
Orbicularis oculi (pars palpebralis)
45 | Blink Relaxation of Levator palpebrae superioris,
Orbicularis oculi (pars palpebralis)
46 | Wink Relaxation of Levator palpebrae superioris,

Orbicularis oculi (pars palpebralis)

Table 9.1: List of Action Units and their corresponding facial muscles, based
on [35].
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Facial expression parameters
Upper lip raiser (AU10)
Jaw drop (AU26/27)

Lip stretcher (AU20)

9 | Brow lowerer (AU4)

10 | Lip corner depressor (AU13/15)

11 | Outer brow raiser (AU2)

12 | Eyes closed (AU42/43/44/45)

13 | Lid tightener (AU7)

14 | Nose wrinkler (AU9)

15 | Lip presser (AU23/24)

16 | Upper lid raiser (AUS)

Shape parameters

17 | Head height

18 | Eyebrows vertical position

19 | Eyes vertical position

20 | Eyes, width

21 | Eyes, height

22 | Eye separation distance

23 | Cheeks z

24 | Nose z-extension

25 | Nose vertical position

26 | Nose, pointing up

27 | Mouth vertical position

28 | Mouth width

29 | Eyes vertical difference

o BN o)\

Table 9.2: The Candide-III face model parameters that model the face shape and
the FACS action units.
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Empathy
1 I am happy that Eddie guessed my person.
It’s a shame Eddie didn’t guess my person.
2 I would have been proud if Eddie hadn’t guessed my person.
I’m proud Eddie didn’t guess my person.

3 It would have been a pity if Eddie didn’t guess my person

it would have been nice if Eddie had guessed my person.
4 It took Eddie long to guess my person.

It took Eddie too long to guess my person.

Subjective Performance

1 I was impressed by how fast Eddie has guessed my person.
I had the feeling that Eddie nearly guessed my person.
2 Eddie has shown a good performance.
3 I think that Eddie has worked efficiently.
4 It took Eddie long to guess my person.
It took Eddie too long to guess my person.
Trust
1 I would believe Eddie if he gave me advice.
2 Eddie is inspiring confidence.
3 I feel that I can trust Eddie.
4 I do not trust Eddie’s statements.

Perceived Sociability

I like Eddie.

Eddies mimic and verbal statements fit together well.

Eddie was good conversation partner.

ESNRUSTE S

Eddie’s behavior was inappropriate.

Social Presence
I had the feeling that Eddie really looked at me.

I could imagine Eddie as a living being.

Sometimes it felt like Eddie had real feelings.

ESNRUSIE o)

Eddies behavior was not humanlike.

Perceived Enjoyment

It was fun to interact with Eddie.

The conversation with Eddie was fascinating.

I consider Eddie to be entertaining.

EEN VST o)

It’s boring when Eddie interacts with me.

Intention to Use

I would like to interact with Eddie more often.

I would take Eddie home with me.

I would like to play again with Eddie within the next few days.

ESNRUSTE S

I could imagine interacting with Eddie over an extended period of time.

Table 9.3: The questionnair used in the human-robot interaction experiment.
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