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Abstract

The management cost of the IT infrastructure can be very high, affecting
considerably the IT infrastructure return of investment and rising dramat-
ically the outlay for IT services. Most of this cost can be related to the
high complexity of managing a heterogeneous pool of IT resources. In
addition, the high dependability of IT management on the human factor
makes it more expensive and error-prone. The solution lies in automat-
ing complex management tasks using intelligent systems aware of their
environment and IT organization management objectives. These intelli-
gent systems would be sophisticated versions of the management appli-
cations that already exist. However, the existing management applications
are tightly coupled to the resources they are supposed to manage and are
quite intolerant to extensions to support other resources, mainly for the
use of proprietary protocols and closed standards. Thus, many different
management applications need to co-exist, and sharing management data
is for the most part impractical for interoperability constrains. Integration
of those management applications can be a difficult task involving the de-
velopment of a number of interfaces and/or wrappers. We do not only
need to enhance the existing IT management systems but we should pro-
vide a new organizational model for IT resources and IT management that
would be “automation-friendly” with the added constraint of being back-
ward compatible with existing IT infrastructure and as non-intrusive as
possible.

Our solution is composed of two parts: the Managed Resource Frame-
work (MRF), a framework to model classes and hierarchies of IT physical
and logical resources and to generate on demand WSDM-based service
representations for rapid composition and deployment, and the Semantic
Resource Management Infrastructure (SRMI) composed of structural ele-
ments to support the managed resources as well as Specific-Purpose Infer-
ence Engines (SPIE) that manage the resources in an autonomic manner
using management policies.

MRF is a plug-in based framework that allows to create resource mod-
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els and instantiate service representation of those resources. It allows
to automatically generate ready-to-deploy service representations of re-
sources from their semantic representations. The objective is to have a
computer aided process by which resources can be rapidly instantiated,
deployed and managed in a relatively quick and transparent manner for
the user. It can generate an archive that is backward compatible with tra-
ditional service containers, however, when used in conjunction with a MR
Container, software agents can then have access, among other things, to
the resource semantic representation, service interface, management in-
terface, client library, subscription-based notification and so on.

Automated management is done through the use of management mod-
els that describe a behavioral logic using rules. This logic is then incor-
porated into reasoners that have access to the resource models and the
resource instances. The reasoners infer course of action and initiate the
appropriate activities in accordance to the management models. The man-
agement models can be independent, inter-related or sometimes contra-
dictory. Mechanism are implemented to manage the interaction between
the different management models. Our system presents different levels
or scopes where automation is performed. This automation is distributed
over a number of specialized Automation Engines. Every automation en-
gine relies on intelligent systems that take care of performing the automa-
tion logic.

The ideas presented and discussed in this work are materialized in
SEROM (SERvice Oriented Management), a Java implementation of the
MRF and the SRMI. We used two real use cases to test our approach,
namely FinGrid, the German Financial Grid, and IBM’s E2E Automation
and Green IT.
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Zusammenfassung

In dieser Arbeit präsentieren wir eine Architektur und ein Framework für
eine automatische serviceorientierte Ressource-Managementlösung, die einen
semantikbasierten Ansatz nutzt. Basierend auf den zwei Prinzipien der
Vereinfachung und Automatisierung, ist das Ziel mit Hilfe einer einfachen
und praktikablen Lösung die Komplexität zu senken. Unser Lösungsvorschlag
besteht aus zwei Teilen, dem MRF und SRMI. Das MRF ist ein Plug-In
basiertes Framework, das der Modellierung von Klassen und Hierarchien
von physikalischen und logischen IT-Ressourcen dient und zur Gener-
ierung von On-Demand Service Representation für eine schnelle Zusam-
menstellung und Bereitstellung von Ressourcen. SRMI besteht aus struk-
turellen Elementen, um die zu verwaltenden Ressourcen darzustellen, und
stützt sich auf domain-spezifische Inference-Engines, die die Ressourcen
anhand eines Management-Modells automatisch verwalten.
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Chapter 1

Introduction

1.1 Overview

IT management complexity is a scourge that every institution has to cope
with. In this work we present an architecture and a framework for au-
tonomic service-based resource management using a semantic approach.
The objective is to lower complexity using a simple to use and practical so-
lution based on two principles: simplification and automation. The ideas
in this work are related to several technologies and research areas that we
will briefly present near the end of this introduction.

1.2 IT complexity

The major issue facing IT in companies nowadays is complexity. It spans
the IT infrastructure, applications and services as well as the business pro-
cesses related or based on IT and can hinder to great extent the ability of
the company to react to change and being competitive. Higher complex-
ity means higher costs of maintenance and more down time, leading to
inefficient use of the IT resources. This can lead to unexpected, or at best,
unpredictable system behavior making it near-impossible to offer guaran-
tees based on the IT infrastructure or honoring service level agreements
that involves IT. Needless to say that companies with better management
of their IT complexity have a significant competitive edge over compa-
nies without. Let it be with regards to service guarantees, rapid reaction
times, lower management cost or system stability in general. Moreover
complex IT leads to more erroneous decisions and the high dependabil-
ity of IT management on the human factor makes it more expensive and
error-prone, add to that the more IT is heterogeneous, the more there is a
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need for IT personnel with different and specialized, sometimes obscure
IT skills. Last but not least, there is a higher security risk with a more com-
plex or poorly managed IT as many parts of the global architecture would
be badly designed, incoherent and susceptible to malicious attacks.

In fact, in a recent study1, IT complexity was identified as the most
significant barrier to business growth. The same study shows that the
cost reductions gained from applications streamlining were higher than IT
outsourcing or offshoring. Managing complexity then, not only beneficial
to the companies but also to the national economies as an optimized IT
has a better return on investment than outsourcing!

1.2.1 Origin of IT complexity

IT complexity is rising mainly due to three issues, and these are: the sys-
tem scalability, the rapid rate of change, and the resources diversity.

1.2.1.1 System scalability

IT systems are always growing, be it for the continuous need to acquire
new software or hardware or the growth due to acquisitions or mergers
that bring together different companies with different IT systems, manage-
ment applications and often management cultures. Instead of two poorly
managed IT systems, we end up with a bigger mess with more patch work
than ever. In such scenarios, the objective of the IT department is to align
the business processes of the former companies and little is done towards
real integration or alignment of IT management.

1.2.1.2 Rapid rate of change

Although Moore’s law only considers the high rate of change in the perfor-
mance of CPUs, the global rate of change of IT innovation in hardware ar-
chitectures, software, protocols or communication is simply tremendous.
Companies need to invest a lot of effort into adapting and keeping up with
the rate of change. This change is driven by the client requests, the com-
petitors pressures or the need to adapt with the other business partners.
This never-ending adaptation process generates a considerable amount of
coexisting new and legacy systems that are sometimes conflicting and that
the IT department is required to support it all, simply because not all of
the companies partners have the same rate of IT change.

1Source: Findings in A.T. Kearney IT Innovation and Effectiveness Study, 2009
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1.2.1.3 Resource diversity

The deployment of different and heterogeneous platforms and solutions
engenders a complex pool of IT resources with different management ap-
plications, management protocols and even management philosophies.
This is mainly due to the fact that IT, while supporting all the business
processes, is pushed to adhere to some specific technologies quickly, by-
passing the IT department guidelines on systems adoption, if there are
any. Add to that the fact that IT became a commodity and that every em-
ployee may have their own smart phone or preferred IT environment that
the IT department has to integrate in some cases to the company infras-
tructure.

1.2.2 Lowering the IT complexity

IT complexity cannot be eliminated, but if ignored, it would only grow.
The IT complexity needs to be managed to control it under acceptable
terms. There are two vectors to manage or even considerably lower IT
complexity: managerial and technical. For the managerial aspect, it is im-
portant to adopt an IT governance structure for the IT department and to
follow IT management best practices such as the Information Technology
Infrastructure Library (ITIL) [56, 65, 63, 19, 94] or the Control Objectives
for Information and related Technology (COBIT) framework [55]. For the
technical aspect, many approaches can be taken to lower the IT complexity
with different results such as virtualization, inter-operability tools, process
management tools, automation tools, simplification or consolidation and
standardization.

1.2.3 Our proposed solution

It is possible to automate complex management tasks using intelligent sys-
tems aware of their environment and IT organization management objec-
tives. These intelligent systems would be sophisticated versions of the
management applications that already exist. However, the existing man-
agement applications are tightly coupled to the resources they are sup-
posed to manage and are quite intolerant to extensions to support other
resources, mainly for the use of proprietary protocols and closed stan-
dards. Thus, many different management applications need to co-exist,
and sharing management data is for the most part impractical for inter-
operability constrains. Integration of those management applications can
be a difficult task involving the development of a number of interfaces
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and/or wrappers. We do not only need to enhance the existing IT manage-
ment systems but we should provide a new organizational model for IT
resources and IT management that would be “automation-friendly” with
the added constraint of being backward compatible with existing IT in-
frastructure and as non-intrusive as possible.

We use a service orientation model where the service represents a con-
tained set of functionalities related to a resource or class of resources. Ser-
vices share similar communication protocols among them as well as uni-
fied management interfaces allowing other services or software agent to
interact with them in a predictable way. Although modeling and describ-
ing resources as similar software components, will provide the software
agents with access to the technical description of the resources and they
could then initiate and endure communication, however they will not be
able know what the service is actually doing. Another layer is needed
to allow software agents to also access or “know” the semantics of the re-
sources in a way similar to what a human would do for the purpose of as-
sessing the capabilities and properties of a resource. Describing resources
in a well-formed semantic language will not only provide a robust way to
manage knowledge about them and their environment but would allow
specialized inference engines to act on them to define their behavior in an
autonomic manner.

Our solution is composed of two parts, the Managed Resource Frame-
work (MRF) is a framework for automatically generating ready-to-deploy
service representations of resources from their semantic representations.
The objective is to have a computer-aided process by which resources can
be rapidly instantiated, deployed and managed in a relatively quick and
transparent manner for the user. The framework assumes the existence
of a semantic representation of a resource written in OWL, an ontology
language, that extends a basic resource model, and outputs a deployable
service representation called Managed Resource Archive (MRA). The only
human intervention during this process would be in the case there were
custom capabilities defined in the semantic representation and that lack
an implementation. The Managed Resource Archive is a deployable ser-
vice representation of the resource that is generated by the Managed Re-
source Framework. The MRA is a Web application formed by a bundle
of servlets, classes and other resources and intended to run on Managed
Resource Containers or on the classical Java servlet containers with, how-
ever, a loss of capabilities. Using the Managed Resource Framework, it
is possible to generate resource artifacts that constitute the Managed Re-
source Archive. MRF assumes a target based method by which, only one
or several constituent of the MRA could be generated as needed instead
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of the monolithic MRA. Important requirements for the MRF are simplic-
ity, practicability and usability. Many solutions that are meant to ease the
management of IT end up being too complex and sometimes they add to
the hassle of IT management, rendering their functionality moot and their
purpose subject to debate.

In the second part of this work, we present an architecture for auto-
nomic service-based management of the MRA services as created using
the MRF. The objective is to have an environment where we can test our
ideas and the suitability of the MRF. Automated management is done
through the use of management models that describe a behavioral logic
using rules. This logic is then incorporated into reasoners that have ac-
cess to the resource models and the resource instances. The reasoners in-
fer course of action and initiate the appropriate activities in accordance to
the management models. The management models can be independent,
inter-related or sometimes contradictory. Mechanism are implemented to
manage the interaction between the different management models.

The ideas presented and discussed in this work are materialized in
SEROM (SERvice Oriented Management), a Java implementation of the
MRF and use cases for the autonomic service-based management.

1.3 Context

This work was funded by the IBM Böblingen Research Lab with the pur-
pose of coming up with a practical solution for autonomic management of
resource applied to two contexts that were of interest to IBM at the time
when this work started. Namely Grid Computing with German Financial
Grid as use case and End-to-End Automation with Green IT as use case.

1.3.1 The German Financial Service Grid

The Financial Service Grid (FinGrid) [50] is a project funded by the Ger-
man Federal Ministry of Education and Research to develop a Grid archi-
tecture to virtualize services and processes in the financial sector and to
build banking Grid services based on an accounting and pricing infras-
tructure through the development of several prototypes. In this context,
we pursue research on the necessary components for a financial Grid to
better model an industrialization and pricing scheme. We draw the ar-
chitecture and implemented the resulting accounting and billing services
based on a service oriented model.
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1.3.2 End-to-End System Automation for Green IT

End-to-end (E2E) automation is a component of IBM’s Tivoli System Au-
tomation for Multiplatforms (TSAMP) that deals with the automation of
tasks in applications residing in different heterogeneous clusters. There
was an interest to use the E2E management model in the context of a Green
IT scenario. Green IT, or Green Computing, represents the environmen-
tally aware efforts for an efficient use of computing resources. It has three
big components: reducing the use of hazardous materials, improving the
recyclability of the computing materials and reducing the energy used by
those resources. In our case, we are only concerned with the latter compo-
nent, namely, reducing energy costs. The idea was to gather energy usage
and temperatures from different sensors in the data centers and use this
data to move around load from heavily used servers to lesser used and
thus “cooler” servers.

1.4 Related concepts

1.4.1 Service-Oriented Computing

In today’s world, IT systems and IT processes are becoming more and
more complex and more and more interconnected, making IT systems a
huge pool of interconnected heterogeneous mini-systems that need to be
managed in a coherent and consistent way. Moreover, those systems have
to be scalable not only from within, i.e. some component of the system,
but also by accepting the integration of external elements. We just de-
scribed the nightmare for any system administrator: managing a growing
pool of interconnected composition of heterogeneous legacy and recent
systems. That is a real problem with no easy solution. There are, however,
approaches to ease dealing with such a scenario. One of the most known
and established approaches is the Service-Orientation principle.

The Service Orientation principle is based on a simple idea that proved
its efficiency in dealing with “problems” ranging from organizing a birth-
day party to waging large scale warfare. This principle was in fact men-
tioned, among other places, in Book VI of The Art of War by Machiavelli.
This principle is nothing else than the famous “divide and conquer”! Di-
viding the problem into small chunks and “dealing” with every chunk
alone proved to lower the complexity and hence the difficulty of deal-
ing with problems. Service-orientation follows the same principle with
an added bonus, that is to reduce all the smaller chunks to the same rep-
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resentation called service.

Organizing the system into small and similar chunks solves immedi-
ately the heterogeneity problem and helps considerably with the complex-
ity and scalability. Service-orientation as a principle, can be thus defined
as a world vision where resources are clearly partitioned and consistently
represented. This model applies equally to a task, a solution or an enter-
prise. Applied to IT, service-orientation would be defined as a paradigm
for organizing and utilizing distributed capabilities that may be under the
control of different ownership domains. The last idea in the definition,
mainly that resources can be part of different ownership domains, is very
important because more and more IT capabilities are used by entities that
do not necessarily own them but are nonetheless part of the IT system.
Think of, as an example, Cloud Computing, namely remote services like
Google App Engine [43] or Amazon EC2 [3].

1.4.2 Grid Computing

Grids consist of a virtual platform for computation and data management
using a heterogeneous cluster of computer resources [11]. It enables users
and applications seamless access to vast IT capabilities. In his reference
paper [39], Foster provides a three-points checklist that a system has to
fulfill before it could be identified as a Grid. The first is that [the Grid]
coordinates resources that are not subject to centralized control. Meaning that
not only the Grid resources are geographically distributed but that those
resources belong to different administrative domains, i.e. different institu-
tions or departments. Issues like security, usage policies, accounting and
billing arise. This conveys the problem of the management of Grids as it
becomes very complicated to manage resources that are subject to differ-
ent usages and regulations. Issuing terms of usage and guarantees for the
utilization of the Grid is inconceivable when you have no global vision
of the Grid resources nor are they under your direct managerial control.
Moreover by their intrinsic nature, the majority of the existing Grid imple-
mentations lack the necessary flexibility for resource recomposition and
adaptation to changing user requirements and needs making the return of
investment (ROI) of a Grid system tied to the time frame of usability of
the Grid. A period that can be very short according to today’s adaptive
enterprise principles.
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1.4.2.1 Service-Oriented Architecture and the Grid

Service-Oriented Architecture (SOA) guidelines and web services tech-
nologies can be used to construct a solution for a flexible model for Grid
management that would tackle the fore-said challenges in the parent sec-
tion. According to OASIS2, SOA is a paradigm for organizing and utilizing
distributed capabilities that may be under the control of different owner-
ship domains. Some of the main drivers for SOA-based architectures are
to facilitate the manageable growth of large-scale enterprise systems and to fa-
cilitate Internet-scale provisioning and use of services. It revolves around the
concept that needs or requirements of one party are met by the capabili-
ties of another. The parties at either ends can be a person or a software
agent. Applying SOA principles to the Grid seems to be a natural process.
The Grid is composed of a set of distributed resources under the control
of different administrative domains and SOA is a model for organizing
such system. In fact this amalgam is not the product of pure hazard, the
standardization efforts for the Grid are channeled towards the adoption
of web services technologies. The most prominent example is the WSRF
[6] set of specifications that lay the necessary infrastructure and building
blocks for a Service Oriented Grid Architecture.

In SOA, the central mechanism for coupling needs and capabilities are
services, defined by the capability of performing work for another, speci-
fying the work offered for another and the offer to perform work for an-
other. The first step to meet SOA objectives is done through decomposition
or factoring of complex systems into smaller chunks for more convenient
design, implementation and maintenance. Those smaller chunks are what
services are supposed to be: small independent components easier to man-
age and control. SOA architectural models do not preconize the specific
use of web services, however they constitute the used de-facto standard.

1.4.2.2 Accessing resources through services

Web services are stateless application components, which are not suit-
able to describe and interact with Grid resources being logical or physical
(servers, storage media,...) that need to maintain a state. Web services use
the Simple Object Access Protocol (SOAP) to exchange messages. SOAP
constitutes the foundation layer for web services communication and is
mainly implemented over HTTP or HTTPS that are per se stateless. Web
services need therefore to define custom means to preserve statefulness. It
is here where WSRF gets into the picture.

2http://www.oasis-open.org
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The WSRF set of specifications provides a general solution using web
services to an originally specific problem: describing and representing
Grid resources. WSRF establish the concept of the Resource Properties
document that describes a view of a resource. The resource properties doc-
ument is referenced in the Web Service Description Language file (WSDL),
it describes the physical properties of a concrete resource and provides
the possibility to modify those properties through operations on the docu-
ment. A resource that is described using the resource properties document
is called a WS-Resource. Another relevant feature of WSRF is that it brings
a solution for management of a WS-Resource lifetime, faults and proper-
ties. Rendering Grid resource as WS-Resource and decomposing software
components into services is the first step towards an SOA enabled Grid
architecture with all the advantages that it can bring such as ease of man-
agement, adaptability and automation.

1.4.3 Autonomic Computing

Autonomic computing as coined by IBM [59] refers to self-managed dis-
tributed IT resources. The term was inspired from the human nervous
system, where the body responds to its environment without conscious
acts from the person. Tasks like breathing, sweat regulation or cellular
reparation are performed by the body without it being instructed to. Ap-
plied to IT, autonomic computing aims towards computing systems that
manage themselves based on high-level guidelines from human admin-
istrators. The ultimate goal is to lower the complexity of managing IT.
Autonomic computing does not aim at eliminating the role of the IT pro-
fessionals [85], but instead, it is supposed to relief them and to free them
to concentrate on their core business.

Autonomic computing has eight defining characteristics [53] that are
represented in four self-management areas:

self-configuration: systems should be able to configure themselves fol-
lowing high-level guidelines to adapt to new situations such as in-
stalling new software components without system disruption.

self-optimization: systems should be able to optimize themselves depend-
ing on the situation such as spawning new processes if augmented
load is sensed or turning off some sections of the system when they
are not used.

self-healing: systems should be able to heal and recover from failures or
other situation that would disrupt its normal behavior. The system
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should be able to discover the source of the problem and circumvent
it.

self-protection: systems should be able to to protect themselves from unau-
thorized access, viruses, tempering and other security breaches. Pro-
tection can also mean physical protection.

All these characteristics require at least the following capabilities of a self-
managed system:

• awareness

• ability to analyze

• ability to plan

• ability to affect its state or its environment state

We think that a self-managed system has to be aware of its state and its
environment and be able to analyze the situation and plan accordingly.
The plan needs then to be applied to the system itself or to its environment.

1.4.4 Semantic approach

By semantic approach we mean the use of the technologies rooted in the
semantic web as coined by Tim Berners-Lee when he defined it as "a web
of data that can be processed directly and indirectly by machines" [13]. To
achieve this objective he proposed to include semantic elements to the tra-
ditionally syntactical, hyperlink-based world wide web. The idea to incor-
porate machine-readable elements to allow software components to “un-
derstand” these additions went way beyond its application in the world
wide web to other aspects of IT. A domain of application is resource man-
agement where it is often not enough for the management applications
to know the technical aspects to communicate or command the managed
application. Allowing management applications to have a better under-
standing of its environment would empower them to interact with it in
ways not possible otherwise. The semantic web has a number of mature
technologies used to provide a formal description of concepts for the pur-
pose of describing and handling the resources represented by these con-
cepts. This topic will be discussed in more details in chapters 2 and 3.
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1.5 Methodology and structure of this work

The methodology used in this work is based on the design science paradigm
that has the objective to [52]: “... create and evaluate IT artifacts intended to
solve identified organizational problems. Such artifacts are represented in struc-
tured form that may vary from software, formal logic, and rigorous mathemat-
ics to informal natural language descriptions”. The design science methodol-
ogy has two design processes: build and evaluate [70]. Research is done
through the building of artifacts and their evaluation in regards to the
business needs. We follow the framework of the design science as out-
lined in [52] where we use an observational, experimental, and descriptive
evaluation method of the work.

In chapter 2 we give an introduction to the knowledge representation
and reasoning as well as to ontologies and the engineering of ontologies.
In chapter 3 we present and discuss the ideas of this work and the sys-
tem organization as well as the related work. In the chapters 4 and 5 we
present the two results of this work, namely the Managed Resource Frame-
work and the Semantic Resource Management Infrastructure. In chapter
6 we present the resulting prototype and we conclude in chapter 7 with a
summary and future work discussion.
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Chapter 2

Knowledge Representation and
Ontology Engineering

2.1 Overview

Knowledge Engineering is a research area in artificial intelligence that
deals with issues related to knowledge such as knowledge acquisition, rep-
resentation and application. Knowledge representation is an important field
that aims at representing knowledge using formal symbols for the pur-
pose of reasoning over this knowledge and generating implicit knowledge
through inferential procedures that are a formalization of the reasoning
notion. Several formalisms for knowledge representation have been sug-
gested. Most notable are rule sets [27], generalized graphs [36] and predicate
logic [62]. We will present different approaches for knowledge representa-
tion and concentrate more on the logic representation.

2.2 Knowledge representation problem

The notion of knowledge representation is not complex, and rather sim-
ple to explain. Knowledge representation deals with capturing a view or
a state of the world in some language or communication medium. It is
however important to emphasis the need for capturing such view. The ma-
jority of applications that make use of knowledge representation, need to
capture some knowledge for later manipulation, to reason on such knowl-
edge, or both. From that we can derive that the first issue that we are
confronted with is the knowledge representation language. There are two di-
mensions to a knowledge representation language, a syntactical dimension
and an inferential dimension. The syntax of a language is the set of rules

13



CHAPTER 2. KNOWLEDGE REPRESENTATION AND ONTOLOGY ENGINEERING

by which we can construct valid sentences (called expressions in our con-
text) in that language and it governs the way knowledge can be stored
explicitly. The inferential dimension is how readily the symbols in the
knowledge base can be manipulated to generate new (and valid) knowl-
edge, called implicit knowledge, from the already existing explicit knowl-
edge. This operation is performed by a component called an inference en-
gine. The inference engine uses a set of predefined rules to generate the
new knowledge that are called inference rules. An example of such a rule,
based on modus ponens, would be: “if ϕ then ψ” , applied to a knowledge
base containing the expression ϕ, it would infer that ψ is the case. There
are a number of other issues related to the representation language and the
knowledge representation model used. Some of those issues are presented
below [92]:

Expressive adequacy

The expressive adequacy deals with the expressiveness of the represen-
tation language. It answers the questions: How expressive should the
language be? Can all the aspects of the knowledge be captured using the
language? How easily this can be done? The most important thing to note
here is that the higher the expressiveness of a language is, the easier it is
to represent complex concepts and knowledge with it. However, this ex-
pressiveness goes in parallel with the complexity of the inference process,
to the point that the inference can take a large amount of computation and
even be undecidable, or in other words, not guaranteeing a result.

Reasoning efficiency

The reasoning efficiency is a general representation problem in computer
science: it is of little importance that an inference computation terminates
(or any computation for that matter) contrasted to the fact that this compu-
tation terminates in acceptable times. There is always a trade-off between
the expressive adequacy and the reasoning efficiency as mentioned earlier:
Typically, the more the language is expressive, the more computation over
objects represented using that language takes time. Choosing the accept-
able balance between reasoning efficiency and expressiveness is a complex
decision that depends of course on the definition of “acceptable” and on
the computational resources available to the inference engine.
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Primitives

Primitives are the atomic elements of the representation language. They
are used in composing more complex expressions and formulas. Choosing
the proper primitives for the language is of course important and affects
both the expressiveness and the reasoning efficiency.

Meta-representation

The meta-representation relates to the knowledge about knowledge. It
deals with representing the knowledge in a knowledge base and with rep-
resenting the structure of that knowledge.

Incompleteness

Incompleteness is a complex research topic that deals with knowledge that
is missing and how should the inference engine deal with that. What if the
unknown if it became to be known should contradict what we believe to
be true (the existing knowledge)? Shall we even allow such knowledge?

Real-world knowledge

The real-world knowledge is another complex research topic that deals
with formalization of notions like beliefs, desires and intentions and with
avoiding paradoxes related to self-referential propositions.

2.2.1 Levels of knowledge representation

Brachman discussed in his work on semantic networks five different lev-
els of knowledge representation [37], the implementation level, the logi-
cal level, the epistemological level, the conceptual level and the linguistic
level. This organization is, however, general enough to be broadened to
encompass other knowledge representation formalisms.

The implementation level

Deals with the implementation of the necessary constructs needed to use
the knowledge representation language on a computer. At the syntactical
level, the choice of the data structures to hold and organize the expres-
sions is the most important issue. At the inferential level, the concern is
with the implementation of algorithms that are used to infer facts from the
knowledge base.
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The logical level

Deals with the logical properties of the representation language at the syn-
tactical level. Especially about the meaning of formalisms that are used in
expressions. A famous example is the following: ϕ is-a ψ. What does
“is-a” in that context mean? Does it mean that every ϕ is a ψ? Or that
ϕ have all or some properties of ψ (inheritance)? Both are valid, but it is
desirable that the meaning of “is-a” to be unique and consistent. Another
issue is the expressive power of the language as stated earlier. To know
what knowledge can be represented and what cannot. At the inferential
level, the issue are the logical properties of the inference and especially the
soundness of the inference rules. Soundness, in logics, is the property that
the rules preserve the truth in the system. We say that a system is sound if
and only if its inference rules derive only expressions that are correct with
respects to the system’s semantics. Etymologically, the Germanic word
Sund as in Gesundheit is the origin of the word sound. Something is sound,
thus, it is healthy!

The epistemological level

Is concerned with the type or class of primitives and inference strategies
to be used, without specifying those primitives or strategies. Epistemol-
ogy or theory of knowledge is a philosophical branch that studies the nature
of knowledge or the meta-knowledge. In this context, the epistemolog-
ical level is not concerned with the actual primitives of the knowledge
but rather how those primitives should be organized and to which class
should they belong. Same goes for the inference strategies. As an exam-
ple, the inference strategies for theorem proving would be different from
those for medical diagnostics regardless of the strategies themselves.

The conceptual level

Deals with the actual primitives of a knowledge representation language
and the actual inference strategies. While in the epistemological level we
are concerned with the types of primitives and inference strategies, such
as semantic networks for instance, where we decide that concepts would be
represented as nodes and relationships as arcs between nodes and infer-
ences would be drawn from those arcs, at the conceptual level we could
specify that “is-a” would be a specific arc representing the inheritance
property.
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The linguistic level

Is the last level in Brachman work. It deals with the way a particular
knowledge is represented in a given knowledge representation formalism.
Our discussion here is in general about the knowledge representation for-
malism, so this level is not of particular importance for us in this work.

We should make a note here about the importance of the knowledge
domain for all the forementioned levels. The knowledge representation
scheme or model depends heavily on what domain we are dealing with.
In the mathematical domain, it would be easy to represent mathematical
concepts and inferences (mathematical rules) in a logical language, how-
ever this is less straight forward when we deal with other domains such
as medicine for instance where the exception is the rule.

2.3 Approaches to knowledge representation

There exist several approaches to knowledge representation. We present
here the most frequently used ones: semantic networks, production rule
systems and logic.

2.3.1 Semantic networks

The “modern” use of networks to represent knowledge on a computer
system begun with the seminal paper of Quillian (1968) [89] on the first
semantic memory model that covers both general knowledge and word
knowledge. All these networks share the property of describing relation-
ships between concepts using links between nodes that represent those
concepts. Semantic networks belong to the generic family of structured
objects as defined by Nilsson [82]. This family contains other formalism
such as Frames and Object-Oriented systems. Structured objects represent
knowledge using elements similar to the nodes and arcs of graph theory
or the slots and fillers of record structures [57].

Figure 2.1 is an illustrative example that shows a semantic network of
a vulgarized snapshot of the tree of life for the mamals cats and mice. It
presents concepts in ovals linked with labeled arrows. From the figure we
can read that “Penny is an instance of Cat” that “Cat is a Filidae” and that
"Filidae is a Carnivora” for instance. Note that we cannot conclude that
Penny is from the order Carnivora from the figure alone as there is no di-
rect link between the two. The information that the “is a” link is transitive
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Figure 2.1: A Semantic Network
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needs to be formalized somehow. Same with the fact that Penny can eat
mice that is not straight forward from the network shown in the figure.
We need more information, especially that the link “is a” is an inheritance,
meaning that “Cat” inherits all the properties of “Filidae”. Only then we
can say that the carnivore Penny can eat a mouse!

There is no way (from the network alone) to specify such properties
for the links or to have more control on the concepts such that the concept
“Filidae” is mutually exclusive with the concept “Muridae”. This lack of
semantics, let alone formalisms, lead many practitioners and researchers
to formalize semantic networks using other representation formalisms, es-
pecially predicate logic.

2.3.2 Production rule systems

Another way to represent knowledge is the use of rules that have the form
IF antecedent THEN consequent. The rule is satisfied when the antecedent
holds, which leads to the execution of the consequent. The antecedent is
also called the body of the rule and the consequent is called the head of the
rule. The production rule system consists of three components: working
memory, production memory and the inference engine.

The inference engine is a reasoning system that keeps its actual knowl-
edge in a database-like structure called the working memory. The working
memory gets updated in real-time with the changes in the system state.
The inference engine’s task is a three steps cycle [15]:

• matching and rule selection: recognize the rules that are applicable.

• resolution: resolve conflict among the resulting rules.

• firing: act accordingly by changing the working memory and firing
the appropriate actions.

It is called inference engine because it matches facts with the rules to in-
fer actions. The facts are stored in the working memory whereas the rules
are stored in what is called production memory. Facts maybe added or
removed from the working memory at run-time depending on the data
received. A system with a large number of rules and facts may find at a
certain time several rules to be true for a specific working memory state.
Chances are that some of these rules would conflict (shutdown the database
server vs. keep a high availability for premium clients to access the database).
The inference engine needs then to implement conflict resolution strate-
gies.
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Following are examples of production rules1 written in natural lan-
guage:

1. IF something is golden customer THEN it is also a customer

2. IF something is platinum customer THEN it is also a golden cus-
tomer

3. FACT the event “Event_0X” is a VM assignment

4. IF there is a VM assignment event for a golden customer and re-
source usage of less than 240 hours THEN the cost per second is
0.0002

The same rules reproduced in a formal logical language more suited for
computations:

1. customer(?c) : − golden(?c)

2. golden(?c) : − platinum(?c)

3. event(?e)

4. eventCost(?e, 0.0002) : − event(?e)∧ customer(?c)∧ LessThan(?u, 240∗
60 ∗ 60) ∧VMAssignement(?e) ∧ golden(?c)

Rules (1) and (2) are examples of inheritance. Rule (3) is a simple fact
whereas rule (4) is a more developed rule. The sign : − indicates an in-
verse implication, meaning that you should read the rules from right to
left or, if you prefer to read them for left to right, you need to know that
you have to start with the head of the rule then the conditions that would
make the head hold.

Production rules may seem at first glance similar to more classical con-
ditional statements that we find in programming languages, however there
are two distinctions between the two. The first is that in the production
rules, the antecedent is expressed as a pattern rather than a boolean ex-
pression. This can be emulated in the programming languages by using
a boolean function in the conditional statement that would compute the
complex pattern. However, the second distinction is a real and impor-
tant one. The control flow in the production system is defined solely by
the inference engine. Contrast that to the programming languages where
the control flow is passed sequentially or based on special constructs (e.g.
GOTO). This, on the other hand, does not give guarantees on the order of
executions of the rules in a production rule system.

1These rules are adapted examples from the FinGrid Accounting and Billing project
[50].
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2.3.3 Logic

One of the earliest definitions of logic is that logic is “the tool for distin-
guishing between the true and the false” (Averroes). Logic is used to study
the correctness of inferences. A correct inference is a truth preserving in-
ference, meaning that if the premises is correct, then the conclusion drawn
from this premises must be also correct. However, building a formal sys-
tem of correct inference requires that we construct it in a formal language,
which leads us to the definition of a formal language first. In fact, in math-
ematics and computer science, logic is the study of inferencial properties
of formal languages. There are three aspects of a declarative language (the
kind we use for representing knowledge), the syntax, the semantics and the
pragmatics. Constructing a formal language amounts to defining strings of
symbols that constitute the well-formed expressions or sentences. This as-
pect of logic is referred to as syntax. In C++ for instance the expression int

x(-10u); is a valid syntax whereas in C it is not. Validity of expressions
is important but it is not the finality, we want to have truth preserving
inference. Truth is a semantic notion related to the meaning of the expres-
sions. In other words we need to interpret the meaning of the expressions
to assert their validity. The expression int x(-10u); declares a variable
x of type int and assigns to it the unsigned value of -10. It may look in-
valid if we use our common sense, but the forementioned expression is
valid and compiles under gcc 4.4.4 as it follows the semantics of C++. The
pragmatics aspect is concerned with the use of the expressions of the lan-
guage and specifically the logical symbols that affect the interpretation of
the non-logical symbols like the logical consequence or conjunctivity for
instance.

Knowledge-based systems can be viewed at a symbolic level, or a knowl-
edge level [81]. Representation language formalism lies at the knowledge
level, where we are concerned with the expressive adequacy of the lan-
guage and its entailment relation. Logic being the study of entailment and
rules of inference, the tools of formal symbolic logic are ideally suited for
a knowledge representation system [15]. A popular logical language is the
first-order logic (FOL). Although we use a subset of FOL in this work, it is
of interest to have a short introduction of FOL here. We hope to introduce
some important concepts necessary for the comprehension of this chapter.
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2.3.4 First-order logic (FOL)

2.3.4.1 Syntax

The first thing that we define for FOL is its syntax. We do this by defining
the vocabulary then the formation rules.

Definition 2.1:
The vocabulary of FOL consists of:

1. constants {a1, a2, . . .}

2. variables {x1, x2, . . .}

3. connectives (∧,∨,→, ∃, ∀ and¬)

4. n-ary predicate symbols, n being positive integer
{

Pn
1 , Pn

2 , . . .
}

Concerning the formation rules, the following definition presents the
FOL’s allowed constructs used to form new expressions.

Definition 2.2:
Let φ and ψ be variables, ci a constant, xi a variable and Pn

j an n-ary pred-
icate, then the constructs:

(¬φ)
(φ ∧ ψ)
(φ ∨ ψ)
(φ→ ψ)
Pn

j (c1 . . . cn)
∃xj

[
φ

[
ci/xj

]]
and ∀xj

[
φ

[
ci/xj

]]
where φ [ci] is a sentence containing the constant ci and,
where φ

[
ci/xj

]
is the substitution of ci with the occurrences of xj

Are valid sentences.

You should note that the above definitions define a class of languages
rather than a specific language and this because the first definition states
that there should be constants, variables and predicates (the vocabulary) at
the epistemological level, i.e. without specifying what are those constants,
variables and predicates. For creating and actual language, we need to
act at the conceptual level by specifying a vocabulary or the constants and
predicates that would represent our domain knowledge.
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2.3.4.2 Semantics

The semantics deal with defining the meaning of the logical expressions in
FOL so we can define what would be a valid consequence. Which in itself
is the formalization of correct inference. However, we cannot explain the
meaning of every sentence in FOL for the simple reason that FOL allows
non-logical symbols with their meaning changing depending on the do-
main and the interpretation of knowledge. For example, the object “key-
board” can mean different things whether our context is IT or music in-
struments. So what we do is to specify the meaning of the expressions as
a function of the interpretation of the predicate symbols [15]. Such specification
is achieved in the following way: for any predicate P of arity 1, P1, there
exist a set of objects D that satisfy this property. As examples, if P1 is happy
for instance then D is the set of the happy people, or if P1 is the predicate
dualCore then D is the set of dual core processors or machines depending
on the domain knowledge. As a generalization, for n-ary predicates Pn, D
would be the set of n-objects sets that satisfy the property Pn. The pred-
icate parentOf is a binary predicate and the objects that satisfies it are the
binoms that have one of them a parent of the other. The following is a
definition of the semantics of FOL as we just described:

Definition 2.3:
An interpretation I in FOL is the ordred pair 〈D,I〉,
where D is a non-empty set of objects, called the domain of I,
and I is the interpretation mapping, such that

if ci is a constant then I (ci) ∈ D
if Pn

j is an n-ary predicate, then I
(

Pn
j

)
is an n-ary relation over D.

I
(

Pn
j

)
⊆ D× · · · ×D

Now that we defined an interpretation, we can define the meaning of
more complex sentences. We introduce the denotation term which simply
refers to the object referred by a certain term. So to find objects denoted by
parentOf(HerculePoirot) given an interpretation I, we use I to identify the
predicate parentOf and apply it on the object HerculePoirot inD to get some
other object inD that would be the denotation of parentOf(HerculePoirot). If
we have a term that uses a variable, then we need to have a mapping from
that variable to some object inD, called variable assignment overD. If x is a
variable, the element denoted by x using the variable assignment µ would
be µ [x]. The following definition formalizes the denotation concept:
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Definition 2.4:
Given an interpretation I and a variable assignement µ, the denotation
‖t‖I, of the term t is:

1. ‖x‖I, = µ [x] if x is a variable.

2. ‖Pn‖I, = Pn if Pn is an n-arry predicate over t1 · · · tn terms, where

Pn is the interpretation mapping of Pn, I (Pn) = P (u1 · · · un)
and ui = µ [ti]

Now we have enough tools to check wether a formula is true or false
given an interpretation. Formally we say that formula φ is satisfied in I,
written I, � or φ is not satisfied in I, written I, µ 2 φ. We can omit µ
from the expression when the formula does not have variables or when it
is clear from the context which variable assignment we use. The following
rules shows when a sentence is satisfied given an interpretation:

Definition 2.5:
I, � :

1. if φ is an n-ary predicate, then I � iff 〈µ [t1] · · · µ [tn]〉 ∈ I (φ)

2. if φ is a negation, ¬ψ, then I � iff I 2

3. if φ is a conjunction, ψ ∧ χ, then I � iff I � and I �

4. if φ is a disjunction, ψ ∨ χ, then I � iff I � or I � or both

5. if φ is a generalisation, (∀x) ψ, then I �

iff I′ � [x/a] for all interpretations I′ which are similar to I with
the exception of at most the individual a. Or, in other terms:

iff I, ′ � for every ′ that differs from µ on at most x

6. if φ is in the form (∃x) ψ, then I �

iff I′ � [x/a] where there exists I′, an interpretation similar to I

with the exception of at most the individual a. Or, in other terms:

iff I, ′ � for some ′ that differs from µ on at most x
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2.3.4.3 Pragmatics

We introduce in this section the concepts of logical consequence and entail-
ment, necessary to achieve the truth preserving inference. In the previous
section we defined when a sentence is valid given a certain interpretation.
However, we are more interested in the truth preserving inferences by ab-
stracting from any given interpretation. In other terms, a sentence is valid
if it is valid whatever interpretation we may use. We write � .

� iff ∀I, I �

A valid logical consequence is a generalization of the above. As an
example, let α, β and γ be sentences such that ∀ (α, β) and γ = ¬ (β ∧ ¬α).
For every interpretation where α is true we can see that γ is true regardless
of the non-logical symbols that α or β may have2. We say that γ is a logical
consequence of α or that α entails γ. More formally,

Definition 2.6:
Let S be a set of sentences, φ any sentence and I an interpretation.
We say that γ is a logical consequence of S or that S entails γ,
iff ∀I, ∀ψ ∈ S, if I � then I � .

We say that S is the premises and φ that is the conclusion. Another way
of formulating the logical consequence is that there is no interpretation I

such that I �S ∪ {¬φ}, the set S ∪ {¬φ} is unsatisfiable. The most impor-
tant conclusion to have here is that using logical consequence or entail-
ment, it is impossible for the premises to be true and the conclusion to be
false. In other terms, logical consequence is the mathematical formaliza-
tion of the notion of a correct inference. The importance of this formaliza-
tion is formidable as we have now a system with the proper tools to reason
in a logical way, very close to what a human would do! The meaning of
the non-logical symbols like the term HerculePoirot is non relevant. We just
proved that whatever interpretation we may have (HerculePoirot may be a
book character or the neighbor’s dog), if we logically entails that Hercule-
Poirot is smart, then it is smart because drawing logical conclusion using
logical consequence is safe.

2.3.4.4 Proof theory

The proof theory is a set of inference rules used to derive valid conclusions.
In [90] it is defines as “... an abstract specification of an inference machine

2γ = ¬ (β ∧ ¬true) = β ∨ true = true. Regardless of the value of β.
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that determines valid consequences of a set of sentences”. We say that a
sentence φ is proven from the set of sentences S if, using the proof theory
inference rules we can conclude φ from the sentences in S and we write
S ` φ. Proof theories can be characterized depending on their properties
such as soundness, completeness and decidability.

Soundness

A system is sound if and only if its inference rules derive only expressions
that are correct with respect to its semantics. Formally, if a system is sound
then:

if S ` φ then S � φ

This is the most desirable property of the proof theory for obvious reasons:
deriving incorrect results defies the purpose of using a reasoning system.

Completeness

A system is sound if its inference rules can derive all what could be true.
Completeness is the converse of soundness: if φ is true given any interpre-
tation then φ is a theorem of S. Formally, if a system is complete then:

if S � φ then S ` φ

Both soundness and completeness are necessary for a proof theory to
be truth preserving.

Decidability

Given a proof theory, a set of sentences S and a sentence φ, we say that a
system is decidable if proving that S � φ or that S 2 φ can be done in finite
time. When proving S � φ, some systems have an inference procedure
that can answer “yes” in finite time if S � φ is true, but have no inference
procedure that can answer “no” in finite time if S � φ is false. We say that
those systems are semi-decidable.

2.4 Analysis of methods of knowledge represen-
tation

In the following sections we discuss the advantages and disadvantages
of each method and present a justification for the choice that we did as
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knowledge representation formalism for this work. A deeper analysis of
the representation formalism can be found in [92, 90, 57, 97, 15]. In our
work we use a semantic representation of knowledge, mapped into a log-
ical formalism. Specifically, we use the description logic fragment of the
first-order logic.

2.4.1 Analysis of production rules systems

2.4.1.1 Advantages

The first advantage of rules is their modularity. Their intrinsic nature make
them contained pieces of knowledge independent of each other and of the
whole system where they reside. There is also a distinction between the
permanent knowledge that is stored in the knowledge base and the tempo-
rary knowledge in the working memory, that represent the needed pieces
of knowledge that the inference engine use/generate for its current prob-
lem [107]. The inference engine implementation is also independent of
the rules in the knowledge base, making it possible to use the same rules
with different inference engines as well as different control mechanism
(backward or forward chaining). The closeness of the rules to the human
language makes it easy for domain experts to capture their knowledge
into rules without the need to spend much effort in learning a formal lan-
guage. Another advantage is their restricted syntax, as what is allowed in
the head or the body of the rule is quite limited. The body contains simple
object-value-attribute triples, whereas the head contains one or few sim-
ple operations [90, 27]. The first advantage of the restricted syntax is the
ease by which we could test for the consistency of the knowledge base by
writing relatively simple consistency checking operations. The knowledge
base is consistent when no contradictory conclusions can be drawn from
it. If rules had a complex syntax, this checking would have been more
complex to put in place.

2.4.1.2 Disadvantages

The main disadvantages with the production rules systems have to do
with efficiency. The matching step in the inference engine cycle is compu-
tationally not efficient and can hinder the proper running of applications.
Another inefficient process is the conflict resolution step. We have a con-
flict when several rules are a match and it is unclear which rule to fire
first? Shall the result of the first fired rules affect the following rules? Shall
we execute all the rules in a specific sequence, or have a mechanism to
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select one or some of them? The inefficiencies for conflict resolution result
from the process of selecting the set of rules that match and that constitute
the conflict set, and from running a proper conflict resolution scheme. On
large systems, one can see that those operations would computationally
be very expensive. One of the most used solutions to optimize the conflict
resolution process is the use of a tree-structured sorting network of the rule
conditions called the Rete algorithm [38]. Although the restricted syntax
of rules has its clear advantages, it has also some problems, especially with
representing some types of knowledge such as incomplete knowledge.

2.4.2 Analysis of semantic networks

2.4.2.1 Advantages

Semantic networks in specific and structured objects in general have sev-
eral advantages. Many of these are at the epistemological level and have
to do with the way the knowledge is organized in those formalism. Se-
mantic networks offer a natural way to capture domain knowledge and
emulates how experts think about their domain, i.e. in terms of concepts,
classes and relationships, which is a clear advantages over the fact-based
approach. The visual organization of knowledge allows a quick grasp of
the whole system and permits to identify at first glance relationships that
may not appear clearly using other representation formalisms. Another
practical advantage is that in semantic networks, all the predicates about
a certain concept will be linked to that concept, contrast this to the fact-
based approach where we would have a number of facts (not necessary
at the same location) having that concept somewhere in them. Moreover,
theorem-provers are more efficient with the network organization of the
predicates than with the fact based one [92]. Another advantage relates
to the inference procedure of semantic networks. Although the inference
procedure of logic based systems is more powerful, the inference proce-
dure of semantic networks has its advantages, especially efficiency, due
to the simple, less expressive formalism of semantic networks and to the
inheritance property that semantic concepts have [90]. A last advantage
that is worth mentioning here is that, in semantic networks, the inference
procedure deals very well with default reasoning and default value. The
default value is a value that is true for an object until proven otherwise. If
there was such value it would have been linked to the object due to the fact
that properties are related to concepts in semantic networks. When the in-
ference procedure does not find such value linked, it can assume then the
default value for the object.
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2.4.2.2 Disadvantages

The biggest issue with semantic networks, frames or other structured ob-
jects is that their semantics are not well defined, that if they exist at all, and
the graphical representation of concepts and links leaves often some ques-
tions unanswered. We use the infamous example of “is-a” to illustrate the
issue. The expression:

P is a−→Q

is ambiguous, especially concerning the meaning of “is-a”. Now if we
rewrite the same expression using a logical formalization:

∀xP(x)→ Q(x)

Q(p)

the meaning is not only clear to the author, but also to the reader of the
expressions. For this reason mainly, logic is used as knowledge represen-
tation language for structured object.

2.4.3 Analysis of logic as knowledge representation lan-
guage

2.4.3.1 Advantages

From the previous sections it was clear that the first advantage of logic
is that it has a well defined model theory (semantics). We know exactly
what ∀x, P(x) → Q(x) means and we know how the inference engine
would deal with that expression. Another important advantage of having
well-defined semantics is that it allows to verify the soundness of the in-
ference procedure, the only guarantee that all inferred conclusions derived
from valid knowledge are valid conclusions. From earlier discussions, we
also noted that logic is very expressive and we also noted the difficulty of
the representation formalism to represent missing or incomplete knowl-
edge. In [74] the author argues that representing incomplete knowledge
can typically only be done using formal logic. Moreover the expressive-
ness of logic allows to represent temporal logic, that an object had a certain
property in the past and not anymore for instance, or to represent believes
or epistemic logic, that somebody believes that it is raining for instance. A
last advantage that has more to do with inference than with representation
is the proof theory, that all knowledge that is true in all models of a theory
can be proven: completeness.
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2.4.3.2 Disadvantages

Problems with logic as representation formalism can be seen at three lev-
els, namely at the implementational, logical and epistemological level. At
the implementational logic, due to the expressiveness of logic, the effi-
ciency of logic as a representation formalism can be quite expensive es-
pecially when little care is taken during implementations of the control
regimes [74, 90]. The second issue, at the logical level, is that some logics
are undecidable. FOL for instance is semi-decidable. Asking an inference
procedure wether φ ` S, will always conclude in finite time with true if
the answer is yes (decidability), however there is no guarantee that the
procedure will answer false in finite time if the answer is no (undecid-
ability). This property makes FOL a semi-decidable formalism with its
applications. It is again due to the expressiveness of logics (FOL in this
case). However, if decidability is important, the expressiveness can be re-
duced to achieve just that. Description logic (DL) for instance is a decidable
fragment of FOL that we will be discussing later on. At the last level, the
epistemological level, logic has some issues representing specific types of
knowledge and reasoning such as procedural knowledge, default reason-
ing and abductive reasoning.

2.5 Ontology and Ontology engineering method-
ology

2.5.1 Ontology

2.5.1.1 Definition

Ontology has its roots in philosophy, specifically in the metaphysics branch
of philosophy. It deals with the study of the nature of being and existence,
their basic constituents, and the relationships among those constituents.
Fundamental questions that Ontology tries to answer are “what is a phys-
ical object?”, “what are the different modes it can have?”, and “what cat-
egories can things be sorted into?”. Important concepts in Ontology are
particulars and universals and their relationships and the relationship be-
tween essence and existence as well as between extrinsic and intrinsic
properties.

In computer science we speak of an ontology instead of Ontology as in
philosophy. In [47], Gruber gave what became the most quoted definition
of an ontology: “An ontology is an explicit specification of a conceptual-
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ization”. This definition was later on extended and explained in [96]:

An ontology is a formal, explicit specification of a shared conceptu-
alization. Conceptualization refers to an abstract model of some phe-
nomenon in the world by having identified the relevant concepts of
that phenomenon. Explicit means that the type of concepts used, and
the constraints on their use are explicitly defined. Formal refers to the
fact that the ontology should be machine-readable. Shared reflects the
notion that an ontology captures consensual knowledge, that is, it is
not private of some individual, but accepted by a group.

So an ontology is a formal description of a domain using concepts and
relationships between those concepts. The example given in section 2.3.1
explaining figure 2.1 is an ontology, with “Filidae” and “Muridae” being
examples of concepts and “is a” and “eats” being examples of relation-
ships.

2.5.1.2 Forms and formalisms of ontologies

Depending on the application and the knowledge domain, ontologies can
be modeled using different techniques and be represented using differ-
ent formalisms. In any case, it is important to have a clear definition of
the knowledge modeling components (concepts and links for instance)
that are going to be used as building blocks of the ontology, the knowl-
edge representation formalism used to formally represent those building
blocks (logic, production rules, etc. See section 2.3) and the specific knowl-
edge representation formalism language to be used to implement the on-
tologies. Depending on the knowledge formalism used, ontologies can be
highly informal if we use natural language to represent them, however, if
we use a restricted and structured version of the natural language then the
ontologies are semi-informal. If we use a formal language, the ontologies
are then semi-formal, and finally, ontologies are called rigorously formal of
the representation used have formal semantics and truth-preserving proof
theory.

Ontologies were mainly built using AI modeling techniques based on
frames and FOL [42], however, with the advance of the semantic web, we
see more and more the use of description logics as basis for the knowledge
representation techniques used to build ontologies with the emergence of
new description logic languages used for the ontologies implementation.
Such languages are discussed in section 2.5.4. What follows is a discussion
of the modeling techniques most used to build ontologies.
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Frames and first-order logic

The first model using frames and FOL was proposed in [47], the author
proposed five modeling components: classes, relations, functions, formal
axioms and instances. We will be using the example given in section 2.3.1
explaining figure 2.1 to illustrate and give examples of the components.

classes: are a representation of an abstract concept. “Filidae” and
“Muridae” are examples of a class then, but not “Penny” as it is not an
abstract concept. Classes are generally organized into taxonomies. If we
remove “Penny” from figure 2.1 as well as the link “eats”, the new graph
(not anymore a network) is indeed a taxonomy or at least a significant (as
in domain significance) sub-taxonomy of the tree of life.

relations: are associations between the classes of the ontology. In fig-
ure 2.1, “is a” and “eats” are examples of such relations. They are both bi-
nary relations which is the general case. However there could be instances
where we could have relations of higher order.

functions: are a special case of relations where the n-th element is
unique for the n-1 preceding elements. The “Child(?person, ?mother)”
relationship is an example where mother would be unique for person.

formal axioms: are sentences used to model tautologies or sentences
that are always true. An example would be a formal sentence describing
the fact that cats cannot fly.

instances: are used to represent individuals in an ontology. “Penny”
is a clear example of such an individual that is an instance of the concept
“Cat”.

Description logic

In description logic, we use three kinds of modeling components to build
ontologies: concepts, roles and individuals.

concepts: represent classes of objects and are equivalent to the classes
concept in FOL.
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roles: are relationships between concepts and are equivalent to FOL’s
relationships and functions. In general, there are no derived roles in DL,
i.e. roles defined in terms of other roles as they lead to several reasoning
issues.

individuals: are instances of concepts and they are equivalent to FOL’s
instances. Individuals in DL are stored in the assertional knowledge base
(ABox) whereas the concepts are stored in the terminological knowledge
base (TBox).

Other modeling techniques

The techniques that we presented up to now are, of course, not the only
methods used to build and represent ontologies. Another used method is
modeling ontologies using database modeling techniques.

2.5.2 Ontology engineering

Ontology Engineering is the set of activities related to the ontology devel-
opment process, the ontology life cycle, and the methodologies, tools and
languages for building ontologies [42]. With ontology engineering we try
to model a settled view of reality represented as ontologies. However, this
contradicts the idea that the world depends on the person that looks at it
and on their viewpoint, therefore something that is always the same re-
gardless from where it is perceived is nonsensical [84]. Ontologies have,
therefore, to accommodate unity with variety as noted in [42], although it
is similar to the concepts of Golden Mean [51] in the Greek philosophy, the
two concepts are different in essence. It is more assimilated to discovering
unity in the variety of nature and the variety of our experience.

2.5.3 Design principles

Design principles are criterias for guiding and evaluating ontology de-
signs [48]. This section will outline the best practices in designing ontolo-
gies. Unfortunately there is still no standard design patterns for designing
ontologies [80]. However many ontology-related literature presented such
principles. We will try to summarize the most relevant in here.

Gruber, in his seminal paper [48], presented five principles for design-
ing ontologies, and these are clarity, coherence, extendibility, minimal en-
coding bias and minimal ontological commitment. These five principles,
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described as philosophical principles in [80], constitute a good and suffi-
cient starting point.

Clarity

Clarity is an important principle, described by Gruber [48] as follows:

An ontology should effectively communicate the intended meaning of
defined terms. Definitions should be objective. While the motivation
for defining a concept might arise from social situations or computa-
tional requirements, the definition should be independent of social or
computational context. Formalism is a means to this end. When a def-
inition can be stated in logical axioms, it should be. Where possible,
a complete definition (a predicate defined by necessary and sufficient
conditions) is preferred over a partial definition (defined by only nec-
essary or sufficient conditions). All definitions should be documented
with natural language.

The clarity objective is to remove the disambiguation from the ontology by
formalizing the definitions and stating the necessary and sufficient condi-
tions in the statements definitions. Definitions written in natural language
often carry ambiguities, formalizing the ontology definition using a formal
language allows to have a clearer and a consistent definition of concepts
and their relationships.

Coherence

Coherence is an important principle that, to the difference of the other
principles, is more concerned with inference than with knowledge repre-
sentation per se. Coherence states that the ontology needs to be coher-
ent. Specifically, the knowledge that is explicitly stated in the ontology
and the knowledge that is inferred have to be non-contradictory. This
is enforeced using formal axioms that would prohibit/invalidate any in-
ferred/imported knowledge that would contradict with the existing knowl-
edge. Gruber presented coherence in the following terms:

An ontology should be coherent: that is, it should sanction inferences
that are consistent with the definitions. At the least, the defining
axioms should be logically consistent. Coherence should also apply
to the concepts that are defined informally, such as those described in
natural language documentation and examples. If a sentence that can
be inferred from the axioms contradicts a definition or example given
informally, then the ontology is incoherent.

34



CHAPTER 2. KNOWLEDGE REPRESENTATION AND ONTOLOGY ENGINEERING

Extendibility

Extendibility is an essential principle that states that ontologies should be
designed in a way that supports extending them with concepts and vo-
cabularies that may not be known at the time when the ontology was
designed. Not only those principles have to be taken into consideration
while designing the ontologies, but there should be a conceptual founda-
tion allowing this objective. In Gruber words:

... one should be able to define new terms for special uses based on the
existing vocabulary, in a way that does not require the revision of the
existing definitions.

Minimal encoding bias

While discussing the minimal encoding bias, Gruber stated that:

The conceptualization should be specified at the knowledge level with-
out depending on a particular symbol-level encoding.

Encoding bias is defined as the dependability of ontological statements
that are made with regard to the symbolic level rather than the knowledge
level. In other terms, when the ontological definitions are closer to an
implementation detail than to the logical abstraction where they should
stick. This often happens with quantitative qualifications such as when
using formats of unit of measurement. An example would be describing
the weight of something as Number. To satisfy the minimal encoding bias,
we should describe the weight in WeightQuantity, where WeightQuantity
is a concept that has a WeightUnit and a Quantity defined. Such general-
izations although necessary and useful are not always possible to achieve,
and sometimes, it is better, mainly for simplification purposes, to have
some encoding bias. To get back to our example, most of the web ontol-
ogy standards support the XML Schema datatypes [80], so we may use
the “standard” definition of integer or float used by the XML Schema in-
stead of the forementioned Quantity. This is why our objective is only to
minimize the encoding bias instead of eliminating it. Ontology is a repre-
sentation, and to guarantee the conversion of the ontology to other repre-
sentation formats, the minimal encoding bias is an important principle to
follow.

Minimal ontological commitment

The last principle is the minimal ontological commitment that states that
the ontology detail level should not go deeper than what is necessary to
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share that knowledge. Assumptions about the modeled world should also
be kept to a minimum allowing others to extend or specialize other in-
stances of the ontology with more freedom. An example would be spec-
ifying that some event has a t composed of a year, a month and a day
without specifying if the date format would be ISO or US based. Gruber’s
explanation is:

Since ontological commitment is based on consistent use of vocab-
ulary, ontological commitment can be minimized by specifying the
weakest theory (allowing the most models) and defining only those
terms that are essential to the communication of knowledge consis-
tent with that theory.

2.5.4 Ontology languages

There is a number of ontology languages that differ by their knowledge
representation paradigm, their expressiveness or their decidability among
other things. We will first discuss the taxonomies of ontology languages
that we present here before introducing the most used and known ontol-
ogy languages.

2.5.4.1 Ontology languages Taxonomies

The first categorization of ontology languages is by the knowledge repre-
sentation paradigm. It can either be based on description logic, logic pro-
gramming or no specific formalism. There are however works that try to
combine description logic ontologies with logic programming-based rules
for interoperability and to gain from the advantages of both worlds. An
example is the Semantic Web Rule Language (SWRL) [54]. However, such
amalgam leads to an undecidable formalism. A solution would be to re-
strict the description logic ontologies to what is called DL-safe rules [77] in
such a way to preserve decidability. Another categorization for the ontol-
ogy languages is their expressiveness. More expressive languages permit
expressing more complex knowledge and allow more possibilities for in-
ference. The cost is a higher computational complexity. Several languages
offer different subsets with different degrees of expressiveness to serve a
larger spectrum of needs.

2.5.4.2 Languages

The Resource Description Framework are a family of specifications by
the W3C intended to describe and model resources. It has three funda-
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mental concepts: resources, properties and statements. Resources rep-
resent the objects that are described and are identified by a unique URI.
Properties describe relationships between resources and are themselves a
type of resources with URIs. Statements are object-attribute-value triples
used to assert the properties of resources where object represent a resource,
the attribute a property and value either a resource or a literal. RDF has
different serialization formats with the most used being the XML encod-
ing and the N3 [12] encoding. RDF has a schema definition language
called RDF Schema that can be used to create vocabularies used with RDF.
RDF(S) is semantically considered between DL and LP in what is called
description logic programs (DLP) [46] that is the intersection of DL and
LP.

OWL is a family of languages that are built on top of RDF(S) as seman-
tic web languages [88]. OWL has three different languages that differ in
their expressiveness and hence, reasoning adequacy. These are OWL-Lite,
OWL-DL and OWL-Full. OWL-Lite and OWL-DL are based on descrip-
tion logic and are decidable, whereas OWL-Full is much more expressive
as to be compatible with RDF(S) and is undecidable. OWL can be serial-
ized using RDF and/or XML.

WSML is another, more recent, family of semantic web languages [29].
It is composed of five languages that tries to represent the knowledge rep-
resentation formalisms of first-order logic, description logic and logic pro-
gramming. WSML is developed in the context of the Web Service Model-
ing Ontology (WSMO) [28] project as a formal semantic language. WSMO
is not a pure ontology language a it offers several construct aimed at an-
notating Web Services and it comes with some domain ontologies that de-
scribe Web Services.

2.6 Summary

In this chapter we presented the knowledge representation problem and
the different approaches to knowledge representation. For the purpose of
this work we use a semantic representation of knowledge, mapped into
a logical formalism. Specifically, we use the description logic fragment
of the first-order logic. We use the OWL ontology language to model re-
sources. OWL has DL and decidable subset called OWL-DL. Although
other OWL sub-languages can be used if simplicity or expressiveness is
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the main characteristic needed. We also presented a set of best-practices
to be used to create ontologies. This step was significant in our work, as
we had to define the design principles to be used in building our own
ontologies.
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Chapter 3

Service Orientation and Semantic
Approach

3.1 Overview

We are going to present in this chapter the foundation of our work as well
as present some design decisions. At the end of the chapter we will dis-
cuss some related work. We argue for the importance of having a service-
oriented foundation and how resources can then be modeled as services.
We will talk about the advantages incurred from augmenting the resources
with semantic description and how this augmentation can be manifested.
We had two important requirements for our solution, and these are the
principles of simplicity and automation. Simplicity in modeling and de-
ploying resources and automation in generating service representation of
resources and in managing the resources. The discussion in this chapter is
materialized in chapters 4 and 5.

3.2 Wisdom hierarchy

In designing our management model, we were inspired partially from
the Wisdom Hierarchy, known also as the Knowledge Hierarchy or with
the DIKW acronym. DIKW stands for Data, Information, Knowledge and
Wisdom. This hierarchy presents and describes the relationship between
these four concepts. Basically, that wisdom can be represented in terms of
knowledge, knowledge in terms of information and information in terms
of data. This concept is certainly not new and was mentioned in works
from several fields such as in Information Science or in Knowledge Man-
agement. It was also represented in literature in early works such as T.S.
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Eliot poem from 1934:

Where is the wisdom we have lost in knowledge?
Where is the knowledge we have lost in information?

This hierarchy was also used in IT context, although in a different way,
by Jeffery in [58]. This hierarchy is not fixed and can have other elements
added to it, such as “Understanding” or “Structured Data” (figure 3.1).
Although, the definition of the hierarchy elements is universal, it can be
tailored and extended depending on the domain or context.

Data, being at the first level, denotes raw facts taken as they are. From
a computing perspective, data would be the bits and bytes for instance.
In our model, data symbolizes the raw IT resources (here resource is to be
taken its in large sense) with the particularity that resource “format” or
formally, the data syntax, are multiple and do not conform to a grammar.
Structured Data is then data that conforms to a specific structure described
using a formal syntax. It is possible then to understand (for humans) or
process (for computers) the data if its structure is known before hand. As
an example, once the string http://www.example.com:8080 is known to
be a URL (that has a specific structure), it is easier to understand that that
string has three parts delimited by “://” and “:”. However the individ-
ual meaning of each of those elements cannot be derived solely from the
string structure. Semantics are used to add meaning to things such that we
would understand that the mentioned string is composed from a protocol,
a hostname and a port number. By augmenting the structured data with
semantics we obtain information. Information is the second level, it repre-
sents data processed in a way to be understood by a target audience. Thus
moving from object reference to object sense (Sinn und Bedeutung as de-
scribed by the philosopher Frege [40]). The third level, Knowledge, is hardly
distinguishable from information at the technical level. It is, however, con-
sidered as a view or as an organization of information for a specific context
or a specific purpose. Chapter 2 presented in details about Knowledge and
Knowledge Representation. Applying knowledge to our string example we
could know that it indeed addresses a service running on port 8080 on the
host www.example.com using the HTTP protocol. Wisdom is the last level
on this hierarchy, although some researchers argue for a later level de-
noted enlightenment, however, this view is not wide-spread. Wisdom is
adding value to the information and knowledge acquired with a certain
level of “personal” touch from the actor. To follow on our example, we
could argue that we should not use HTTP because it is not secure and use
the HTTPS protocol instead if it is available.
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Figure 3.1: From Data to Wisdom

The DIKW represents layered prerequisites to attain wisdom. But what
is wisdom in the context of IT and management of resources? And how
is that relevant to this work? Wisdom is defined as the knowledge of
the truth coupled with the proper judgment to act based on that truth.
Projecting this definition to Information Technology management, a wise
management system is an omnipotent system in the sense that it knows
the system state (truth) that it is capable of reacting to change in the sys-
tem with proper (i.e. compliant with the human administrator objectives)
actions.

Using the DIKW, we built a layered conceptual model where data is
the “raw” resources, syntax is a conceptual resource model, “linguistics”
semantics are the IT-appropriated semantics, information is the structured
resources that are semantically augmented and knowledge is the combi-
nation of information plus rules and predefined processes.

Another important issue is yet to be defined: what would be our con-
ceptual model, or how would we organize the resource in an optimal way?
In other terms we need to define the ecosystem of the resources or the Sys-
tem Organization.

3.3 System organization

Although we rely on intelligent agents for automation and dealing
with system state exceptions, our system needs a certain level of confor-
mity and defined expectation, especially while dealing with system com-
ponents. Confronting the intelligent agents with an unknown system rep-
resentation where resources may take unknown forms, use unknown com-
munication protocols or present unknown control interfaces is a real chal-
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lenge that is out of the scope of this work. We believe that such system
configuration is too complex to be tackled by autonomous systems and
we think that it is extremely difficult to come up with a system capable of
navigating through such a configuration. We assume that all the system
component have a certain degree of conformity making it (i.e. the system)
a homogeneous and integrated system. This conformity is expressed at the
level of component description and at the possible ways to interact with
those components. This level of predictability is necessary whenever we
deal with an automated or semi-automated management model, where
several management tasks are offloaded to software agents.

Having this conformity of resources at the description level coincide
with the service encapsulation that the service-orientation model follows.
Where the service represents a single, contained and self-standing set of
functionalities. In this model, everything is a service that shares similar
communication protocols with all other services, allowing other software
agents, services or not, to handle them in a predictable way. This im-
portant characteristic of service-orientation is an appealing argument that
motivated the use of that model as our conceptual model. The service-
orientation model is quite vague in its definitions leaving the room open
for interpretation and assumptions related to many design principles. Al-
though, it offers a lot of flexibility, this vagueness leads often to incompati-
ble service-oriented architectures defying the whole purpose of the model.
This is why we wanted to stick, as much as possible, to an abstraction level
that would, at the same time, adhere to the guiding principles for a service-
oriented system, while being extensible and compatible with the defacto
standards used for creating service oriented systems and the design deci-
sions that lead to them. This, in fact, justifies some design decisions such
as the choice of WS*-1 stack over REST [35] even if the latter is easier and
has a more performant implementation than the first, because the first is
indeed the defacto standard used in implementing service-oriented sys-
tems.

Even though modeling everything as a service would ease handling
system components by software agents, these latter would still miss the
semantics of the functionalities they are dealing with. In other terms, the
software agents would have access to the “technical” description of the
services and would be able to initiate and endure communication with the
services, however, they will not be able to know what the service is actu-
ally doing, or to distinguish (or find, as a matter of redundancy support
for instance) between different services supposedly doing the same thing.

1WS-* is used to refer to the collection of specifications related to the Web Services.
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Another layer of information is needed to allow software agents to un-
derstand what they are dealing with in a manner close to what a human
would do to apprehend the usefulness of a service. This layer is called the
knowledge layer, and is described in more details in a following section. But,
why would the software agents need an access to the knowledge layer? In
fact, it is not that difficult to automatize a system, in a majority of cases
it comes down to writing a set of scripts. The real value is coming from
enabling software agents to become more than automated agents and be
adaptive and even more: to behave in an autonomic manner.

The value of an autonomic system, defined as a self-governing system
is not to replace the role of the human administrator from the landscape
of system management, but to help in taking care of those tasks that can
be anticipated and follow a proper protocol. The autonomic behavior is
regulated using a set of policies that shape its actions and behavior. It has
some requirements such as the use of small, manageable components that
are well defined in a formal manner as to be comprehensible to the au-
tomation system. This definition should be independent of the implemen-
tation of those components for portability and integration with different
management systems.

3.3.1 The case for a homogeneous and integrated system

Seeing the rapid change and development in technology, growing IT pools
would be ultimately extended with systems different from the existing
ones. The final result would be a system having elements with a large
number of structural differences and variations. The variations that are
most relevant for us are the way the elements communicate (communica-
tion protocols, data structures, calls interfaces. . . etc.) and the environ-
ment where they are supposed to live in (architectural variations, deploy-
ment variations. . . etc.). The more variations we have, the more difficult
and complex the management would be. It is not possible to restraint the
incoming elements to adhere to certain structural constraints in order to
be used in the IT pool, because the functionalities needed may not have
been developed using these constraints (and from-scratch design and de-
velopment may not make sense), or simply because the new technology is
better. Other reasons may exist, but we need to agree that the status-quo
is that IT systems are by definition heterogeneous and this heterogeneity
is deemed to grow and not shrink, and that sometimes it is not an option
to restraint the IT system to a certain structural model. A solution would
be to create a generic umbrella that encapsulates resources in a transpar-
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ent way for the existing system infrastructure and allowing some proper
services to handle them in a standard way. This can be done by creating
a resource model, flexible enough to encompass a large span of resource
types, yet concise as not be too generic and thus adding to the system
complexity. The resources are described using a well formed language in
such a way to present the resource characteristics, capabilities, interaction
possibilities and management potential. Having a formal representation
of the resources allows us the transformation of the representation of the
resource to different formats depending on the needs or the context. Us-
ing the service-orientation model is appealing, however, SOA has some
shortcomings that need to be dealt with beforehand.

3.3.2 Service-orientation (divide and conquer)

In the face of IT complexity, service-orientation is a well suited strategy
to lower the complexity and simplify the management of IT by reorga-
nizing the basic component of IT systems into small chunks with unified
management interfaces. Resource’s properties and capabilities (manage-
ment capabilities or otherwise) are described using meta-data that is both
accessible to applications and Software developers. A service representa-
tion in the form of a software component is derived from this description
and used to interact with the resource through the advertised capabilities.
Having this environment where resources are clearly partitioned and con-
sistently represented is an efficient way with which we can lower the level
of IT complexity and remove the complexity related to the heterogeneity of
IT systems. The services as defined by the SOA specification [67] require,
among other things, a service contract, which is a document that specifies
an “agreement” on the details of the services as well as the communication
mechanisms used. This document is written in a formal description lan-
guage composed of two alphabets of symbols, an operational alphabet and
a data alphabet as well as a set of structuring primitives and logic connec-
tives [105]. Those elements are translated into an interface that represents
the single interaction point with the service. Using this interface, we can
access the internal state of the service and change it if need is to be. This
document, referred to as the description of the service, is a public formu-
lation of the characterization of the service [105] that allows developers
to publish the characteristics of the service as well as its communication
mechanisms without publishing any details on the implementation of the
service. Services can hence be materialized for development testing by just
having the service description alone. The description document acts as an

44



CHAPTER 3. SERVICE ORIENTATION AND SEMANTIC APPROACH

agreement or guarantees of how the service would really looks like even
before it is implemented.

Although this document specifies how to access the service and hence
the resource, it doesn’t describe what the service is for. Semantic technolo-
gies can be used for this task by adding a meaning to the service descrip-
tion. In this work we present a model for describing resources semanti-
cally and generating a service representation from the description.

3.3.3 The need for the knowledge level

Describing the resource characteristics, capabilities, interaction possibil-
ities and management potential in a formal language is not enough for
other software components to figure out the exact purpose of the resource
and the meaning of its capabilities. A language provides only syntactic
level description that necessitates the intervention of humans to appreci-
ate the value or the purpose of the resource. Hence the resources need
to be augmented by a semantic description that would capture the fore-
mentioned meaning. A serious problem in today’s IT management is the
lack of information related to the managed resources [22]. This lack of in-
formation can be sensed at different levels which add to the complexity of
the problem.

3.3.3.1 Effects of the lack of information

In what follows, we devised the areas at which such lack of information
can hinder the IT management process.

At the level of IT system: There is a lack of information on what is in-
stalled and where it is installed. Often the purpose of the system itself
is ambiguous if not unknown. Sometimes whole parts of the system that
are unused are up and running and nobody can make a clear decision of
the necessity of those components or if any other part of the system may
depend on those components.

At the level of the resources relationships: Often the information of the
relationships of resources to one another is missing. Information about
why and how a set of resources is related is generally not documented,
making failures analysis as well as problem source determination an ex-
tremely difficult tasks. Another problem that is also related to the first
point is that with the lack of such information, predicting the impact of a

45



CHAPTER 3. SERVICE ORIENTATION AND SEMANTIC APPROACH

change in a system is nearly impossible, with cascading effects and lattent
effects being the worse types of problems that may happen.

At the level of the resource itself: There is a lack of information about
the resource itself, its purpose, capabilities and requirements. If this in-
formation is ever stored, it is done separately of the resource in external
repositories that can get inconsistent if there is no system capable of re-
flecting into it the status of the resources in real-time. If such information
is available, maintenance would be done in an easier manner as data about
the resource would be available, which would allow making available the
resource’s needed ecosystem or changing it with an equivalent resource.

3.3.3.2 Affected tasks due to lack of information

All those problems affect considerably system management making it a
tedious and an unpredictable process. If we take the ITIL classification for
instance, lack of information affects all the processes used in managing IT.
We take as illustrative examples the following processes:

Incident management. Incident management is the IT task that is con-
cerned with restoring normal service operation as quickly as possible in
the event of an incident and minimizing the effects on normal operations.
An incident is defined as any event not part of the normal operations of a
service that may lead to a halt of the service or a degradation of the quality
of the service. Incidents are known problems or errors with a potentially
identified root cause (root causes are dealt with in the problem manage-
ment task). Different activities within incident management are affected
by the lack of information, notably:

• Incident detection and recording

• Classification and initial support

• Investigation and diagnosis

• Resolution and recovery

Problem management. Problem management is the IT task related to
the prevention of problems by identifying errors and determining the root
cause of those errors. It is tightly related to incident management as it
uses the incidents reports to identify the errors. Many activities are also
affected by the lack of information, such as:
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• Problem identification and recording

• Problem analysis

• Problem classification

• Error control

3.4 Semantically augmented resources

Describing resources semantically is crucial to understand what they are,
what they do and how to interact with them. This semantic augmenta-
tion amounts to adding meta-data to resources as descriptive layer, thus
publishing information about the resources in a standardized, machine-
readable way. If we want management systems in our model to interact
with the resources, we need more than the capacity to how to read infor-
mation about the resource (syntax parsing), namely what does the infor-
mation mean (semantics).

3.4.1 Benefiting from semantic augmentation at different
layers

The use of semantics in our system model is perceived at three different
layers: a descriptive layer, an integrative layer, and an autonomic layer.

Descriptive

Resources are described semantically to expose their properties, capabil-
ities, and management potential. The semantic description is used as a
starting point to generate resource representations to be used by special-
ized components for interaction purposes.

Integrative

Semantic data provides the meaning of resource characteristics and thus
specialized components can use newly encountered resources if the se-
mantic description of their capabilities matches the components needs for
instance.
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Autonomic

Semantic data can be used by autonomic agents for resource management
by inferring the course of action based on the semantic resource descrip-
tion. This description coupled with semantic policies permits to achieve
the autonomic level for management

3.4.2 Design issues

We rely on knowledge representation techniques to describe this seman-
tic augmentation. We especially rely on the reasoning techniques over a
set of knowledge and the the formal languages developed to capture this
knowledge. There are different important issues that we need to tackle
before creating our framework, they amount to different architectural and
modeling decisions and those are the augmentation model (see section
3.5), the description language, and the description model (see section 3.7).

3.5 Capturing the semantic data

An important question that rises when talking about the knowledge level
is how to associate the semantic description with the service representing
the resource. We present in this section a discussion and taxonomies for
the semantic augmentation of services. A presentation of the different re-
search in this area is presented in the related work section 3.8. We define
three taxonomies for augmenting services with semantic data: by abstrac-
tion level, by the semantics used to capture the service definition and by
the the service definition source for implementing the augmentation.

3.5.1 Service definition abstraction level

The first taxonomy is the service definition abstraction level, meaning, at
what abstraction level the definition of the semantic representation should
occur. The representation can be transparent, meaning that it is not visible
to the service nor to its ecosystem making the best solution if backward
compatibility is a requirement, because a transparent semantic represen-
tation would allow the service to be deployed and run on traditional sys-
tems that do not inherently support semantics.

In this model, the description has to be represented externally and in-
dependently on the service and the service description. The semantic rep-
resentation can also be articulate, i.e. visible and possibly required by the
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Figure 3.2: Abstraction Taxonomy

service and its ecosystem, making the deployment and running of the ser-
vice dependent on the presence of the semantic description. This descrip-
tion in the latter case can be implemented at the level of metadata or at the
level of the data. At the level of metadata the semantic description is repre-
sented en par with the service description document either in a combined
manner using extensibility elements of the service description document
or external to the description document and this latter having references
inside of it to the semantic description document. At the data level, the
semantic description is implemented at the level of the service implemen-
tation through an API that would expose the service concepts. Figure 3.2
shows the first taxonomy that we just discussed.

3.5.2 Service description development process

A second classification relates to the service description and what informa-
tion does it contain. The service description can either be contract based,
semantic based or both. In contract based description, the description doc-
ument is written in a classical service description language such as WSDL,
whereas in semantic based description, the description is written in a logic
based language. The description can also be written using both approaches,
either inline, where semantic data is added inline to the description doc-
ument such as in WSDL-S [2], or completely in parallel, where both de-
scriptions could be transparent to each other.
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3.5.3 Service definition original source

The third classification relates to the implementation of the augmentation.
As we discussed earlier, the resource can have a service description out-
lined in the service contract as well as a representation as a semantic de-
scription. If we suppose that the information contained in the service con-
tract definition is the same as the information contained in the semantic
description, then it is possible to recreate either document from the other.
In case one representation is not complete, then this conversion can only
be one way. The resource description reference is about which representa-
tion(s) describe completely the resource, and hence, which one is essential
and what are the conversion directions that we may have.

Implementations can be semantic-based, where the complete descrip-
tion of the resource is defined in the semantic representation. The service
contract can then be generated from this semantic representation and it
may or may not contain the complete description of the resource as de-
tailed in the semantic representation. As an example, consider a semantic
description containing information about the owners of a resource. This
information, because it is optional for the service contract, could be omit-
ted from the contract and we would still have a functional service contract
but an incomplete representation of the resource. Implementation can also
be contract-based, where the contract hold all the necessary information to
access the resource and the semantic representation is generated from this
contract and it contains just a subset of the information like the capabil-
ities and properties of the resource. The third way would be that both
representations are equivalent and one document can be generated from
the other.

3.5.4 Used approach

In our framework we use a transparent semantic representation where the
description is represented externally and in parallel to the service descrip-
tion. The service definition source is captured in the semantic document.
Using this configuration, our approach has the following advantages:

Single, compact reference source

All the resource description is stored in a single2, compact file, that the
framework use to derive the service contract and thus the service stub (or

2Although the description can span multiple files and use importing mechanisms, it
is considered at the end as a single source file.
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service implementation) and the client proxy among other things. Those
artifacts and files can be re-generated at will from the semantic descrip-
tion, minimizing greatly the size and amount of documents describing the
resource and making the transfer of the description of the resource over
the network quicker. Having also a single point of reference for the speci-
fication enables consistency for the resource descriptions.

Multiple representations

Using a semantic description allows to derive more than just the service
description that the service contract is supposed to achieve. The resource
semantic description can be used to generate as much descriptions as se-
mantic technology allows. Straight-forward examples would be generat-
ing a graphical representation of the resource and domain specific docu-
mentation such as security requirements.

Stricter formalism

Using logic allows to have higher expressiveness and better precision than
using XML and WSDL to describe the resource. We discussed the general
advantages of using logic in the previous chapter.

Backward compatibility

Having an external representation transparent to the WSDL representation
allows to have backward compatibility with traditional service containers
as the WSDL would be fully compatible with their requirements. This
is a very important and desirable feature because our solution promotes
integration with legacy systems for better transition to a fully manageable
system.

3.6 Managing resources

One important principle behind the creation of Web services was for ap-
plication integration, including legacy applications that were written us-
ing heterogeneous technologies and platforms. This was also the case for
management applications that not only had to deal with heterogeneous
resources, were themselves not inter-operable.
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3.6.1 Managing resources as services

Using Web services principles, it is possible for management applications
to use common messaging protocols between themselves and the manage-
able resources, thus becoming vendor-neutral and platform-independent
solutions [16]. In the WS-* landscape, there are two important and com-
peting sets of specifications that describe management messaging proto-
cols on top of the Web service stack, namely WSDM [16, 109, 17, 18] and
WS-Man [73]. There is an ongoing effort to merge the two specifications
[4] as conformity and standardization was a key objective in the design
of both specifications. Both specifications have a resource centric view of
management, where the common messaging protocol is used to communi-
cate directly with the resource through a standardized interface. Contrast
this with the traditional model where management applications were of-
ten contacting agents on behalf of the resources. This standard interface
is the interface of the Web service that represents the resources. In other
words, resources can be accessed only through the End Point Reference of
the Web service.

3.6.2 Representing resources as services

There is nothing special about representing a resource using a Web service,
if that resource is already offering some API to access its capabilities and
properties. It would be a matter of writing an interface to this API, acces-
sible through a well-defined Web service. However there are some issues
related to the intrinsic nature of Web services and resources. The most
prominent difference is the fact that Web services are stateless, meaning
that they do not keep data (a state) between different invocations. This
contradicts the view of the physical resource that keeps a state during its
lifetime. This stateless characteristic of Web services is not a limitation as
it was a design choice aiming at the Web services being light-weight Soft-
ware components. There are mechanisms that permit to emulate a statefull
behavior for Web services, with the most traditional being session cookies
or using persistent storage of state like a database or using WS-Session.

WSRF [6] proposes an elegant and integrated solution to the stateless
issue of Web services by using descriptive document called ResourceProp-
erties and introducing the concept of WS-Resource. The WSRF provides a
general solution using Web services to an originally specific problem: de-
scribing and representing Grid resources that are statefull in nature. An-
other relevant feature of WSRF is that it brings a solution for management
of a resource lifetime, faults and properties. Rendering resources as WS-
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Resource and decomposing software components into services is the first
step towards a SOA-enabled management architecture with all the advan-
tages that it can bring such as ease of management, adaptability and au-
tomation.

3.7 Modeling resources

We cannot describe what we don’t know; therefore, it is important to have
a clear definition of the basic constituent of our system, which is a re-
source. We define a resource as:

a logical representation of an IT entity that is defined by its state,
properties and capabilities and that can be further abstracted by rep-
resentations allowing different kinds of interactions.

IT entity is to be taken in its large definition; it encompasses physical re-
sources (e.g. servers or printers), software and services and can be ex-
tended to a certain degree to represent the human actor. The properties
represent the attributes and characteristics of the resource and can be sub-
divided into immutable properties that are fixed during the resource life-
time, and mutable properties that describe the resource state at any given
moment, hence the definition of state as being a snapshot of the resource
mutable properties. Resource capabilities represent the capacity of the re-
source to undergo a change or to affect its environment and are accessible
through defined interfaces.

Creating a resource model allows the definition and conceptualization
of an IT resource and its components. This degree of formalism is needed
when we intend for these resources to be used in an autonomic environ-
ment.

3.7.1 Resource concepts

Resource concepts are the different constituents that define or relate es-
sentially to a resource as defined previously. Due to the nature of the IT re-
sources, the concepts are not related to resource instances but to resource
classes. We would have for instance a class of printers sharing the same
concepts but differentiated by the state or values of the properties of those
concepts, both identifiers or non-identifiers concepts. So two printers can
be from the same class but may have a different number of papers in the
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Figure 3.3: Resource concepts

tray and would have different serial numbers or MAC addresses for in-
stances. The same example could be stated on computer programs or soft-
ware components. Therefore, unless specified otherwise, when we talk
about a resource, we imply a class of resources instead of a resource in-
stance.

The resource model is composed of different concepts that are shown
in figure 3.3. Those concepts are described in more detail in the following
subsections.

3.7.1.1 Property

A property is one of three concepts that define a resource. It is an essential
attribute of a resource and can be a resource by itself. Properties should
be typed, limiting the range and the format of the values that they can
hold as well as the operations on those values. Having a typed property
will facilitate the detection of warnings, errors and exceptions (a printer’s
number of papers in a tray approaching zero vs. a negative number of
papers). Resource properties can be required or optional, and mutable or
immutable. The immutable properties are those that are fixed during the
lifetime of the resource, and mutable properties are variable properties
that can hold different values. There must be at least one required and
immutable property that should be used to uniquely identify a resource
instance.
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3.7.1.2 State

The resource state is the second concept that defines a resource and is ex-
clusively related to the resource instance, i.e. resource classes have no
state. The resource state is a snapshot of the resource mutable proper-
ties. It is a view describing the resource in regards to its attributes. In the
printer example that we mentioned earlier, the number of papers is a mu-
table property that constitutes, along with other mutable properties, the
state of a specific printer identified by at least one immutable property.

3.7.1.3 Capability

Capability is the last concept that defines a resource. Resource capabili-
ties represent the capacity of the resource to undergo a change, initiate a
change in another resource, or affect its environment. A capability should
be sound with a defined result. The requirements of the capability (modi-
fiers, parameters,...) as well as the capability result should be well-defined
in an interface. Using again the printer example, printing would be the
most desirable capability of a printer with a well-defined result: printed
documents (or a well-defined error code).

3.7.1.4 Representation

A resource representation is a presentation and/or abstraction of a re-
source using a formal method for the purpose of allowing different types
of interaction with the resource or allowing apprehension of the resource
at different levels. A representation can be complete or partial. A resource
can have multiple representations. A service contract for instance, is a par-
tial representation of the resource for the purpose of defining the service
interface and communication mechanism.

3.7.1.5 Description

Description is the information associated with the resource in order to use
that resource and/or document the resource. The description contains a
component that is for human what representation is for machines, a tan-
gible presentation and/or abstraction of a resource using a formal, semi-
formal or even an informal, subjective description. The description also
contains components describing the access methodology to the resource
(a resource identifier’s description is part off the resource description).
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Figure 3.4: Resource concepts relationships

3.7.1.6 Policy

The policy is a set of constraints associated with the resource. They are
put in place by the resource owner to specify conditions related to the
use of the resource, such as security requirements, privacy, service level
agreements and so on.

3.7.1.7 Owner

The owner of the resource is the person/entity that owns or has the phys-
ical/legal responsibility of the resource. The resource inherits the security
credentials of its owner and this latter can set further restrictions/permis-
sion in the policy file.

3.7.2 Relationship between resources, concepts and service
representation

Figure 3.4 shows a diagram with the relationships among resource con-
cepts. We note that the policy is set by the owner and that the description
of the resource is a general concept that refers to the policy of the resource
and may contain different representations of the resource.

We aim at providing a framework to transform the resource into a ser-
vice. The service, as defined by [67] has also some concepts that define
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Figure 3.5: Resource and service concepts relationships

it. Most notable for our framework are the state, interface, life-cycle and
access control. We add to those concepts the semantic description of the
service. Figure 3.5 shows the connections between the resource concepts
and the service concepts.

3.7.2.1 Service interface

The service interface is a representation of the resource. It describes the
resource capabilities and provides access methods to the resource proper-
ties. It should be the sole access point to interact with the resource. Al-
though the interface is a representation of the resource, it is not a complete
representation i.e. a lossy representation as we cannot reproduce the full
definition of the resource from its service representation.

3.7.2.2 Service semantic

Service semantics describes the service representation of the resource and
is based on the OWL representation of the resource that is intended to be
complete. In other terms, it is possible to construct either the service or the
resource description from just the OWL representation.
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3.7.3 Resource ontology

The resource ontology has two important objectives. First, to capture all
the knowledge about a manageable resource as described in the previous
sections, and second, to be used as a required template that resource in-
stantiators have to rely upon when creating resource descriptions. The
reason behind the requirement that the resource descriptions should be
based on this template is for standardization and for coherence purposes,
in the sense that components that are supposed to interact with those re-
sources can expect a minimum set of elements, that are basic, yet sufficient
to interact with the resources. We followed the principles outlined in sec-
tion 2.5 for creating this ontology. We wanted the resource ontology to be
as abstract as possible to support extensions easily. However, if they deem
it necessary, system administrator can still use another ontology with the
condition of supplying an implementation of the semantic parsing and
vocabulary via Java classes. We should also note here that the following
ontology is not a one-to-one translation of the above mentioned figures
but contains the relevant concepts with addition to other necessary con-
cepts for the framework. We would add new classes to the ontology as we
come across new functionalities in the following sections.

3.7.3.1 Ontology classes, properties and individuals

Figure 3.6 shows an inheritance tree view of the different classes used in
the implementation of our framework. What follows are descriptions of
each of the classes:

AbstractResource

This class, as its name suggests, represents an abstract resource. All the
resource classes and instances should be a subclass of this class and thus
inherits from this class. The abstract resource has properties, capabilities,
description, owner and representation as figure 3.3 shows.

ResourceId

This class represents a unique identifier for the resource.

ManagedResource

This class represents a resource with management capabilities. It is a sub-
class of AbstractResource.
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Property

Every resource property is of type Property. A property has a name and a
type.

Capability

This class represents a resource capability. It has a name, a type and an
implementation.

ManagementCapability

The capabilities that are used to manage the resource should be of type
ManagementCapability. This class is a subclass of Capability.

BuiltInManagementCapability

Many management capabilities are shared among different resources and
across classes of resources. Some of those are part of the framework and
can be used when needed. Their implementation is generally also avail-
able and added when building the service.

Parameter

Resource capabilities can have parameters represented by the Parameter
class. Every parameter has a name and a type.

Description

Represents the resource description.

AbstractPolicy

Superclass for a policy class that follows a specific protocol.

Owner

Represents the owner of the resource.

Ontology classes are not enough to describe a model. A set of classes’
properties is also necessary to describe the characteristics of the classes
and their relationship among each other. Figure 3.7 shows the different
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Figure 3.6: AbstractResource Ontology

object properties used in our implementation. There exist also other data
properties associated with some classes and not shown in the figure such
as the capability data type or its implementation class. The built-in capa-
bilities can also be defined at this level, and for that, an individual needs
to be instantiated from the BuiltInManagementCapability class and, if need
there is, one or more parameter individuals that are needed by the capa-
bility. Figure 3.8 shows an example of a built-in capability SimpleMeta-
DataExchange along with its needed parameter GetMetadataMsg.

3.8 Related work

3.8.1 Semantic Web Services

There are numerous works done in the field of semantic Web Services,
such as WSDL-S [2] that tries to extend WSDL by adding some seman-
tic annotation to the file as XML tags that can reference entities in mod-
els outside the WSDL document. WSDL-S builds on the establishment of
WSDL as a service description language for ease of migration. WSDL-
S is intended to be a minimalist approach that tries to extend the pre-
existing Web Services with semantic annotation, which is quite different
from the other methods that try to create a more complete, sometimes
complex framework. Another effort is the Web Service Modeling Ontol-
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Figure 3.7: Resource classes with properties

Figure 3.8: Example of a built-in capability
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ogy (WSMO) that tries to describe all aspects of semantic web services
with the goal of automating the discovery, selection, composition, execu-
tion and other tasks related to the integration of web services. WSMO
is based on the Web Service Modeling Framework (WSMF) [34] and has
three working groups: WSMO [28], Web Service Modeling Language (WSML)
[29] that represents a family of languages used as representation format for
WSMO and Web Service Execution Environment (WSMX) [75] that acts as
a reference implementation of WSMO. WSMO is composed of four ele-
ments: ontologies that define the common representation of information,
web services that represent the services, goals that describes aspects of
the requests to web services and finally mediators that act like connector
between the different layers of WSMO. The major drawbacks of WSMO
are that it is a quite complex framework that uses proprietary technolo-
gies at almost every level. It does not use WSDL, but instead a new rep-
resentation formalism, it ignores UDDI for its own solution, and uses a
family of languages that are not XML conform and are meant to be re-
placements to the already established languages such as OWL and RDF.
Another work is OWL-S [71], an effort to define an ontology for semantic
markup of Web Services. OWL-S was meant to be a replacement to the
WSDL, however this effort was not successful. Other works on semantic
web services worth mentioning here are IRS-II [78], Meteor-S [104] and
SWSF [7, 8, 9].

3.8.2 Rules and policy languages

There are quite a number of rules and policy languages developed either
in academia or industry. Of interest, we mention Ponder [25, 66, 31], a
hierarchical policy language that tries to support a wide range of policy
types by providing an extension mechanism based on its hierarchical de-
sign. Ponder supports authorization, obligation, delegation and manage-
ment policies. Another interesting policy language is Rei [60], a Prolog-
based language that uses predicates to formalize rules, hence its support
for reasoning. It uses OWL-Lite with the possibility of combining it with
SWRL[54]. Rei also provides a simple protocol for negotiating between
the policy system and the managed system. One shortcoming of Rei is
its lack of events or triggered rules. The third related work is WS-Policy
[102, 103], a specification meant to add the support to web services the
ability to advertise their policy in XML, but also for the service consumers
to enforce security requirements. IT has some related specification such as
WS-PolicyAttachment [101] that is used to add the policies to WSDL and
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UDDI or WS-SecurityPolicy [79] that is used to specify security assertions
for other security-related WS-* stack specifications. Another interesting
domain-specific work is the Rule-Based Service Level Agreements (RB-
SLA) [87, 86], a declarative rule based approach for SLA representation
and service level management of services. Other works also of interest are
the eXtensible Access Control Modeling Language (XACML) [32], an OA-
SIS standard used specifically for security and privacy policy and KAoS
[100] a description-logic approach to policy representation.

3.8.3 Autonomic Computing

The autonomic computing vision had a high impact across the IT spectrum
with especially companies building autonomic systems and incorporating
them in their product lines. IBM started with two prototypes to validates
their architectural ideas [108]. The prototypes [30, 23] explore the use of
autonomic systems for data center management and resource allocation
with applications representing the autonomic elements. IBM has then in-
cluded autonomic computing capabilities in more than 50 of its products
[41] including some of its most important ones: Tivoli, WebSphere and
DB2. Other interesting work from IBM is the Policy Management for Auto-
nomic Computing (PMAC) which, when integrated with applications can
add support for self-management by evaluating policies and command-
ing the application. From Intel, we note the Autonomic Platform Research
(APR) that aims at building an autonomic platform composed of hard-
ware sensors as well as ambient sensors to be installed in the data centers,
and an autonomic and policy manager. Oracle had also introduced since
the version 10g of its database what is called the Autonomic Workload
Repository (AWR) that is used to automate many aspects of the database
in an autonomic manner. In the research community we note the work
in [106] that deals with resource allocation in an autonomic data center
with the objective of maximizing a specific utility function. In [21], the au-
thors present a work for resource management in a hosting center with an
emphasis on energy efficiency by moving application based on negotiated
SLAs. Another “competing” approach to the autonomic computing but
with the same objectives is presented in [5].

3.9 Summary

We are using service-orientation principles for our management model to
be able to organize the managed elements into small, homogeneous com-
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ponents with a defined access interface and communication protocol. We
augment these components with a semantic description to a add a knowl-
edge layer that allows handling them in a more autonomic manner and
to tackle the issue of the lack of information related to the managed re-
sources. Our solution follows the principles of simplicity and automation.
Simplicity in modeling and deploying resources and automation in gen-
erating service representation of resources and in managing the resources.
We also presented a resource model to be used as a basis for modeling
resources using a semantic description and generating service representa-
tions.
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Managed Resource Framework

4.1 Overview

As mentioned in section 3.7.1, resources may have different representa-
tions for different purposes. This chapter discusses the Managed Resource
Framework (MRF), a framework for automatically generating ready-to-deploy
service representations of resources from their semantic representations.
The objective is to have a computer aided process by which resources can
be rapidly instantiated, deployed and managed in a relatively quick and
transparent manner for the user.

4.2 From semantic representation to service rep-
resentation

The framework assumes the existence of a semantic representation of a
resource written in OWL that extends an AbstractManagedResource as de-
scribed in chapter 3 and outputs a deployable service representation called
Managed Resource Archive (MRA). The only “human” intervention during
this process would be necessary if there were custom capabilities defined
in the semantic representation and that lack an implementation (see figure
4.1).

Using the Managed Resource Framework, it is possible to generate re-
source artifacts that would eventually constitute the Managed Resource
Archive. The MRF assumes a target-based mechanism by which, only one
or several constituents of the MRA can be generated as needed instead of
the monolithic MRA, depending on the specified target.
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Figure 4.1: Managed Resource Framework (MRF) input/output

4.3 Automatic programming

The MRA files and their constituents are generated using Automatic Pro-
gramming techniques. Automatic programming, also called Generative Pro-
gramming, is the mechanism by which source code and other files and arti-
facts are automatically generated by a computer following a set of specifi-
cations. Automatic programming is mainly used to increase the developer
productivity and ease the development of systems; it is also used for code
reuse or component-based programming. There are two types of auto-
matic programming, inductive and deductive [69]. Inductive automatic pro-
gramming generates programs from a set of instances and other programs,
whereas deductive automatic programming generates programs from a
high-level description. Both methods have the objective of program synthe-
sis, which is the derivation of a program to meet a given specification. The
specification generally describes the relationship between the input and
the output without necessarily hinting on methods to use to achieve the
output from the input. The MRF uses a simple deductive-based method-
ology to generate the program for the Managed Resource (i.e. service rep-
resentation) as well as other support programs (proxy, libs... etc) that are
not intended to be runnable and other resource files and artifacts.

4.4 Managed Resource Archive

The Managed Resource Archive is a deployable service representation of
the resource that is generated by the Managed Resource Framework. The

66



CHAPTER 4. MANAGED RESOURCE FRAMEWORK

MRA is a Web application formed by a bundle of servlets, classes and
other resources and intended to run on Managed Resource Containers or
on Java Servlet Containers with, however, a loss of capabilities.

Once deployed, every MRA has a unique URI represented by its lo-
cation in the container. An example would be http://www.example.com/

site1/res_A42. Requests to the resource would have to start with that
URL as a prefix. Every request is then forwarded to the ServletContext

representing the resource. The ServletContext is an interface that de-
fines a servlet’s view of the Web application. It is up to the container
provider to provide an implementation to the ServletContext and to en-
sure the one to one correspondence between every resource and a single
ServletContext. A Web application may consist of servlets, utility Java
Classes, static documents, client-side Java applets, beans, and classes and
descriptive meta information. In this context, the MRA is composed of the
following elements that are described in details in the following section:

• Service Representation: Servlet

• Service Stub

• Proxy Library: Java Classes

• Proxy Source: Java source files

• HTML Documentation

• Service Contract: WSDL file(s)

• Semantic Representation: OWL file(s)

The process by which a resource is directly accessed by some software
agent is described bellow:

1. A resource capability is invoked

2. The resource client proxy constructs the HTTP request

3. The HTTP request is sent to the service container

4. From the request URL and the services configurations, the container
identifies the concerned resource, builds a request and response ob-
jects and invokes the appropriate capability using those objects.

5. The response object is filled with the capability result and sent back
to the client using the HTTP protocol.
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6. At the client side, the Java object representing the result is created
from the response and returned as the result of the call.

4.4.1 Constituents

4.4.1.1 Service Representation

The central component of the MRA is the service representation which
is compliant with Java Servlet specification version 2.5 [76]. Servlets are
platform-independent Java classes that are compiled to platform-neutral
byte code and are intended to run inside servlets engines. The servlets
engines are Web containers that are generally attached to, or are extensions
to Web servers. Servlets are used to generate dynamic content, and can be
loaded/unloaded at run-time into the Web containers. Servlets interact
with external applications via a request/response paradigm implemented
by the servlet container [76].

The service representation can be thought of as a lossy encoding of the
semantic representation of the resource in the Java language. It has an im-
plementation of all the resource capabilities or a call to an external library
that holds all or parts of the capabilities implementation. The service im-
plementation provides also methods to access or modify the properties of
the resource.

4.4.1.2 Service Stub

The service stub is the source code of the service representation (i.e. service
implementation) that is also included in the archive1. The implementation
of the custom capabilities of the resource can thus be modified and the
service recompiled and redeployed.

4.4.1.3 Proxy Library

The proxy library constitutes all the necessary libraries and APIs needed
to access the resource, its properties and its capabilities. The proxy library
is available at the client side and is linked to the application accessing the
service. The communication details, marshaling and unmarshaling of the
messages is hence transparent to the developer. Calling remotely a certain
resource capability can be done by including the resource proxy library

1In the implementation of the MRF framework, a flag can be turned on if the users are
not interested in including the service source code in the archive.

68



CHAPTER 4. MANAGED RESOURCE FRAMEWORK

and calling the capability as if it is a function to a locally accessible class.
The following code snapshot demonstrates how this is actually done:

Listing 4.1: An example of using the proxy library
import com . example . site1 . res_A42 . proxy . . .
c l a s s ResourceConsumerExample {

MyResource a = new MyResource ( ) ;
a . getCapabilityXYZ ( ) ;
/ / . . .

}

4.4.1.4 Proxy Source

The proxy source contains all the source code for the proxy. This can be
used and adapted by the developers to fit their particular needs, such as
changing a communication library that is based on a license would not fit
the application they are developing.

4.4.1.5 HTML Documentation

The HTML documentation is intended solely to the users and developers
and contains information about the resource, its properties and its capabil-
ities as well as on how to access it. It contains also the Java documentation
of the service representation and the proxy. It offers a user friendly inter-
face to download selectively the different resource artifacts. The HTML
documentation is intended as a starting point for administrators and de-
velopers with a human understandable description of the resource as well
as code examples on how to interact with the resource. All of those ele-
ments are of course automatically generated and do not need any action
from the user generating the MRAs.

4.4.1.6 Service Contract

The service contract is a central element necessary to generating most of
the other elements such as the service representation and the service stub.
It is an XML file written using the Web Service Description Language
(WSDL) and is generated from the semantic representation. The service
contract follows the W3C specification for WSDL 1.1 [24]. Once the ser-
vice is deployed, the service contract is published and can be accessed by
third parties if they are interested in developing their own clients that are
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different from the one provided with the archive or if they want to use
another language than Java that is used for the clients.

4.4.1.7 Semantic Representation

The semantic representation is also included and published in the archive.
It can be accessed by third-party applications interested in accessing the
semantic representation of the resource for any reason they see fit.

4.4.2 Directory Structure

As specified in [76], the MRA follows a specific directory structure to be
compatible with servlet containers. The MRA archive’s root is the docu-
ment root for the files that are part of the Web application. All the files that
should not be in the public document tree of the application should sit un-
der the WEB-INF/ directory. Anything under WEB-INF/ cannot be served
by the Web container, however, it is accessible to the servlet code through
method calls and can even be programatically exposed. The contents of
the MRA archive is the following:

• The /WEB-INF directory as described above.

– The /WEB-INF/web.xml deployment descriptor.

– The /WEB-INF/classes/ directory.

– The /WEB-INF/lib/ directory.

• The /META-INF directory

• The HTML documentation that is served if the service is pointed to
using an HTML browser.

The deployment descriptor is a required configuration file written in XML
and that defines among other things, the initialization parameters of the
servlet, the class mappings, welcome files and error pages. The follow-
ing listing shows a typical deployment descriptor file as generated by the
MRF:

Listing 4.2: An example of a generated deployment descriptor
1 <?xml version="1.0" encoding="UTF -8"?>

2 <web -app id="WebApp_ID" version="2.4"

3 xmlns="http://java.sun.com/xml/ns/j2ee"
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4 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -

instance"

5 xsi:schemaLocation="http://java.sun.com/xml/

ns/j2ee http://java.sun.com/xml/ns/j2ee/

web -app_2_4.xsd">

6 <display -name>Managed Resource Servlet </display -

name>

7 <context -param>

8 <param -name>MRFversion </param -name>

9 <param -value>0.9</param -value>

10 </context -param>

11 <servlet >

12 <display -name>Managed Resource Servlet </

display -name>

13 <servlet -name>ManagedResourceServlet </

servlet -name>

14 <servlet -class>org.apache.muse.core.

platform.mini.MiniServlet </servlet -

class>

15 </servlet >

16 <servlet -mapping >

17 <servlet -name>ManagedRersourceServlet </

servlet -name>

18 <url -pattern >/*</url -pattern >

19 </servlet -mapping >

20 <welcome -file -list>

21 <welcome -file>index.html</welcome -file>

22 </welcome -file -list>

23 <error -page>

24 <error -code>404</error -code>

25 <location >/404. html</location >

26 </error -page>

27 </web -app>

The classes directory contains the compiled service implementation
along with helper and utility classes. All those classes are generated by
the MRF and in a typical use case, no additional class is necessary as ad-
ditional functionality should go in the lib directory. The lib directory
contains the libraries used by the service classes in JAR format. At build
time, the MRF takes care of putting all the required libraries in that di-
rectory. The user can provide an additional list of libraries to be included
also.
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The /META-INF directory contains information used by the Java archive
tools and is not considered as web archive (WAR) content and thus will
not be served in response to a request and 404 error code will be returned
instead.

The HTML documentation is generated automatically by the MRF and
provides useful information for the developers intending to use the re-
sources. It also provides relative, but constant links to the different arti-
facts and libraries that are required to consume the resource. Giving the
URI of the resource, automatic agents can find those artifacts and libraries
at expected locations. We should note here that the MRF can also auto-
matically generate management capabilities that would serve those arti-
facts programatically to the software agents requesting them, however,
it is not possible to contact the resources if the agents do not have the re-
source client library or at least its service contract. Accessing them through
known URLs using the HTTP protocol is thus the way to be able to access
the other artifacts and capabilities of the managed resource. The HTML
documentation provide three main sections, first, the Resource Description
section, that provides a detailed description of the resource, its properties
and its capabilities. For every capability it documents the URI, operation
name, implementation class, return type and parameters. It also distin-
guishes between the user defined capabilities and the imported capabil-
ities that are standardized, resources-wide capabilities that the MRF also
provides. Second, the Client Access section documents the resource con-
tract, the client proxy and an automatically generated code sample that
shows how the developer can access the resource programatically. The
last section is the Downloads, that provides permanent links to download
the resource artifacts and libraries.

The MRA archive format follows the Java archive specification as de-
fined in the JAR File specification [98]. The MRA archive is a ZIP file with
the additional manifest file located in META-INF/MANIFEST.MF that defines,
through property-value pairs, several configuration parameters and infor-
mation related to the package.

4.4.3 Traditional service containers and MRA-capable con-
tainers

The servlet container is an application that provides the network services
such that other applications can access deployed services through MIME-
based requests and MIME-based responses mechanisms and manages their
life-cycle [76]. The servlet container must implement the Java Servlet spec-
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Figure 4.2: Managed Resource Archive constituents

ification. Because the MRA format follows the JAR specification, it is con-
sidered by the traditional service containers as a valid WAR that they are
able to deploy and expose, however, the additional features incorporated
into the MRA are not exposed. For these additional features to be exposed,
another layer is added on top of the traditional service containers that
would do this task. Although this layer is container dependent, an in-
terface was specified for the layers to implement. This allows the manage-
ment software agents querying the additional layers to be independent of
the service container. Currently, only the implementation for the Apache
Foundation’s Tomcat Servlet Container 2 is provided.

Figure 4.2 shows the different constituents of the MRA. Only the EPR is
used by the traditional servlet containers. This allows the MRA to be back-
ward compatible with the traditional servlet containers and at the same
time being able to expose its additional features. The layer is itself a man-
aged resource and encapsulates the service container. Using its interface, it
is possible to programatically deploy/undeploy MRAs, migrate MRAs to
other containers, inquire about their status and get the listing of deployed
MRAs.

2http://tomcat.apache.org
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Figure 4.3: Capabilities taxonomies

4.5 Resource capabilities definition

In the previous chapter, we defined a capability as the capacity of the re-
source to undergo a change, initiate a change in another resource, or affect
its environment. In organizing the capabilities we arranged them follow-
ing the taxonomy shown in figure 4.3.

4.5.1 Functional capabilities

The functional capabilities are the capabilities that define the behavior of
the resource. They can affect the resource itself, other resources or its en-
vironment. This type of capabilities, being resource-specific, is generally
defined by the resource owner and has no default implementation. How-
ever, once an implementation is provided, other resources from the same
resource class can share these implementations for their capabilities.

4.5.2 Management capabilities

The management capabilities are capabilities that have a management pur-
pose. They have either no effect on the resource (e.g. getResourceStatus)
or only affect the resource itself (e.g. startUp). They can be specific to a
class of resources, span multiple classes of resources or be part of a stan-
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dard set of management capabilities that all resources should/can imple-
ment.

The management capabilities can either be user-defined just like the
functional capabilities, or built-in. The standardized management capabil-
ities are built-in and can be associated to the resource at design time. The
MRF will then, generate all the necessary implementations and link it with
the resource. Section 4.7 describes the built-in capabilities in more details.
The management capabilities that can span multiple classes can either be
user defined or built-in. In the latter case, requirements are enforced at
the level of the semantic description to ensure that the default implemen-
tation of the management capability can be applied to the resource class
(e.g. startUp capability shared between different servlet containers and
web containers that are built using the same engine).

4.5.3 Providing an implementation for the capabilities

During the design phase of a resource, every capability description re-
quires a valid name for the capability, a list of valid parameters, a valid
result type and a valid implementation class name including the package.

When using such definitions to generate a resource’s MRA, the MRF
searches in the provided class path for the class that implements that ca-
pability. If the class is found, it will be included in the MRA linked libraries
that will be linked when building the archive. If the class is missing, the
MRF will generate a server stub for the capabilities and the developer has
to provide an implementation for the capabilities. Here is an example stub
as generated by MRF:

Listing 4.3: An example of a generated capability Class
1 package com . ibm . de . serom . pool . sampleresource . impl ;
2
3 import org . apache . muse . core . AbstractCapability ;
4
5 public c l a s s StartImpl extends AbstractCapability

implements IStartImpl

6 {
7 public boolean startCapability ( i n t after ) throws

Exception {
8 / /TODO implement s t a r t C a p a b i l i t y
9 throw new RuntimeException ( "Unimplemented Method:

startCapability" ) ;
10 }
11 }
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You should note here that, although the capabilities have no implemen-
tation, the above code is valid and can be compiled and a valid archive can
be built using it. However the capabilities will only throw the exception
RuntimeException if they are invoked, pointing to the missing implemen-
tation. Which is an effective way to quickly test if the resource “connectiv-
ity” is working by generating MRA, deploying it and calling the capabil-
ities without implementation. If the fore-mentioned exception is thrown
then the resource is behaving as expected, and any error happening dur-
ing the latter stages of development would be due to the user-provided
implementation of the capability.

The only requirement for providing the implementation of the capabil-
ity is to inherit a generated interface that defines the proper functions to
implement. The following code is the generated interface relative to the
above capability implementation:

Listing 4.4: An example of a generated capability Interface
1 package com . ibm . de . serom . pool . sampleresource . impl ;
2
3 public i n t e r f a c e IStartImpl

4 {
5 String PREFIX = "tns" ;
6 String NAMESPACE_URI = "http://de.ibm.com/serom/pool/

sampleresource/start" ;
7 public boolean startCapability ( i n t after ) throws

Exception ;
8 }

A good practice is to always create the capabilities implementation in
their proper packages and classes allowing for code reuse when generat-
ing other resources from the same resource class and providing this im-
plementation (that would be contained in a single JAR) to the MRF in its
class path so it would be included in the new MRAs without any further
intervention from the user.

4.6 Under The Hood

The MRF implementation of the management mechanisms is done fol-
lowing the Web Services Distributed Management (WSDM) set of stan-
dards [109, 17, 18]. WSDM defines protocols to allow services to expose
their manageability interface in a standard way such that any consumer
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that is WSDM-compliant is able to access the service manageability func-
tions. WSDM specification relies on several WS-* standards for its oper-
ations, namely WS-MetadataExchange [26], WS-ResourceFramework [6],
WS-ResourceProperties [45], WS-ResourceLifetime [95], WS-ServiceGroup
[68] and WS-Notification [44]. The manageability of a service is exposed
through a Web service and is accessed through that service end-point ref-
erence (EPR), called a manageability endpoint. Any software applica-
tion that accesses the manageability endpoint is called manageability con-
sumer. The manageability consumer can interact with the manageability
endpoint, and hence, the resource, in three distinct ways:

• The manageability consumer can retrieve management information
from the managed resource through calls to its management capabil-
ities.

• The manageability consumer can affect the state of the managed re-
source by changing its state through calls to its management capa-
bilities.

• The manageability consumer can receive notifications from the man-
aged resource if the consumer had subscribed to receive events from
the managed resource.

The methods stated above show that the relationship between the man-
aged resource and the manageability consumer can be a pull or a push
based communication mechanism depending on the nature of the resource
and the consumer and the rate by which the resource can produce events.
Producing events by the resource is, however, optional. WSDM does not,
in general, define the content of the messages exchanged between the
managed resource and the consumer, but only the communication pro-
tocol and the format of the exchanged data. Using MRF, the user can also
specify some WSDM-defined management capabilities to be added to the
resource definition. The MRF takes then care of generating the proper
configuration files and capabilities implementation. The following section
describes the WSDM-defined capabilities as well as other capabilities in-
herited from the other supporting WS-* standards.

4.7 Built-in capabilities

This section lists the different built-in capabilities in the MRF grouped by
the WS-* standards.
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WS-DistributedManagement (WSDM)

Advertisement

This capability notifies consumers of the creation and destruction events
of the managed resource.

Configuration

This capability provides the possibility to modify some configuration pa-
rameters of the resource to change its behavior or status.

CorrelatableProperties

This capability provides a list of configurable parameters that can be used
to compare resources and identify similar resources.

Description

This capability provides description and version properties of the man-
aged resource.

Identity

The identity capability return the ResourceId, a unique, final and non-mutable
identifier of the resource.

ManageabilityCharacteristics

This capability is used to get a list of all the supported capabilities of the
managed resource, the built-in as well as the custom capabilities.

Metrics

This capability lists the metrics used in measuring the resource perfor-
mance or its operations.

OperationalStatus

This capability returns the status of the managed resource as one of the
following values: Available, PartiallyAvailable, Unavailable or Unknown.
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State

This capability allows the managed resource to expose its state to the con-
sumers as well as it transitional state, or previous state.

WS-Notification (WSN)

Offers the possibility for consumers to register to a class of events that the
resource advertises.

WS-ResourceLifetime (WSRL)

Provides an interface to manage the lifetime of a managed resource.

WS-MetadataExchange (WSMEX)

GetMetadata

This capability is used to retrieve metadata information about a resource
EPR.

4.8 Writing a semantic description

Any descent graphical OWL editor can be used to write semantic descrip-
tions. We are going to describe here the most important steps needed to
write a sample resource. The first thing is to include the AbstractResource
ontology and any other ontology that the resource may inherit from a spe-
cific resource class (see listing 4.5).

Listing 4.5: Importing Abstract Resource ontology
<owl:Ontology rdf:about="">

<owl:imports rdf:resource="http://lrr.in.tum.de/serom/

mrf/AbstractResource.owl"/>

</owl:Ontology >

The resource is described in the <mrf:ManagedResource> tag, and it
should contain all the concepts that describe the resource. Listing 4.6
shows the structure of the <mrf:ManagedResource> tag with its most im-
portant constituents, namely the resource id, the resource properties and
the resource capabilities.
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Listing 4.6: Structure of a managed resource with its most important ele-
ments
<mrf:ManagedResource rdf:ID="...">

<mrf:hasResourceId > ... </mrf:ResourceId >

<mrf:hasProperty > ... </mrf:hasProperty >

<mrf:hasBuiltInManagementCapability rdf:resource="..."/

>

<mrf:hasManagementCapability > ... </

mrf:hasManagementCapability >

<mrf:hasCapability > ... </mrf:hasCapability >

</mrf:ManagedResource >

The resource id is composed of one ResourceId concept instance, that
is itself composed of a string that acts as an id3 and a reference to the
resource owner as shown in the following listing:

<mrf:hasResourceId >

<mrf:ResourceId rdf:ID="srId">

<mrf:rid rdf:datatype="http://www.w3.org /2001/

XMLSchema#string"

> ... </mrf:rid >

<mrf:owner rdf:datatype="http://www.w3.org /2001/

XMLSchema#string"

> ... </mrf:owner >

</mrf:ResourceId >

</mrf:hasResourceId >

The resource can have multiple properties. Every property need to
have a name and a type as shown in the following listing:

<mrf:hasProperty >

<mrf:Property rdf:ID="Type">

<mrf:name rdf:datatype="http://www.w3.org /2001/

XMLSchema#string"

>type</mrf:name >

<mrf:type rdf:datatype="http://www.w3.org /2001/

XMLSchema#string"

>string </mrf:type >

</mrf:Property >

</mrf:hasProperty >

3The datatype of the id is defined in AbstractResource as a string. This can be changed
to whatever seems appropriate for the application
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The resource capabilities can all be defined following the same pat-
terns. However, the built-in capabilities will more probably reference some
external resource that details the implementation information for that ca-
pability as shown below:

<mrf:hasBuiltInManagementCapability rdf:resource="http://

lrr.in.tum.de/serom/mrf/AbstractResource.owl#

SimpleMetaDataExchange"/>

These built-in capabilities, as their name suggests, should have a preex-
isting definition and a preexisting implementation accessible to the Man-
aged Resource Framework.

The other capabilities can also be defined as a reference to an external
resource or they can have their definition inlined. A capability must have
a name, a return type if it returns a result and optional parameters for the
capability request. The parameter definition can also be inline and has to
define a parameter name and type. The following listing shows how this
can be done:

<mrf:hasCapability >

<mrf:Capability rdf:ID="...">

<mrf:implClass rdf:datatype="http://www.w3.org /2001/

XMLSchema#string"

> ... </mrf:implClass >

<mrf:name rdf:datatype="http://www.w3.org /2001/

XMLSchema#string"

> ... </mrf:name >

<mrf:type rdf:datatype="http://www.w3.org /2001/

XMLSchema#string"

> ... </mrf:type >

<mrf:hasParameter >

<mrf:Parameter rdf:ID="...">

<mrf:isParameterOf rdf:resource="..."/>

<mrf:type rdf:datatype="http://www.w3.org /2001/

XMLSchema#string"

> ... </mrf:type >

<mrf:name rdf:datatype="http://www.w3.org /2001/

XMLSchema#string"

> ... </mrf:name >

</mrf:Parameter >

</mrf:hasParameter >

</mrf:Capability >

</mrf:hasCapability >
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The final document should have the minimum set of sections as de-
scribed above and should look like listing 4.7.

Listing 4.7: Structure of a semantic definition file
<rdf:RDF

<!--namespaces definitions -->

xmlns:rdf="http://www.w3.org /1999/02/22 -rdf -syntax -ns#"

xmlns:xsp="http://www.owl -ontologies.com /2005/08/07/ xsp

.owl#"

xmlns:owl="http://www.w3.org /2002/07/ owl#"

....

<!-- imports section -->

<owl:Ontology rdf:about="">

<owl:imports rdf:resource="http://lrr.in.tum.de/serom

/mrf/AbstractResource.owl"/>

...

</owl:Ontology >

<!-- resource description section -->

<mrf:ManagedResource rdf:ID="...">

<!-- resource description section -->

<mrf:hasResourceId > ... </mrf:ResourceId >

<!-- resource properties section -->

<mrf:hasProperty > ... </mrf:hasProperty >

<!-- resource built -in capabilities section -->

<mrf:hasBuiltInManagementCapability rdf:resource="...

"/>

<!-- resource management capabilities section -->

<mrf:hasManagementCapability > ... </

mrf:hasManagementCapability >

<!-- resource capabilities section -->

<mrf:hasCapability > ... </mrf:hasCapability >

</mrf:ManagedResource >

</rdf:RDF >
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4.9 Service contract generation

The Service Contract Generator creates a service contract following the
WSDL specification from the semantic description on the resource. The
resource semantic description file should have a structure following listing
4.7. Such representation is used to generate the service contract in WSDL.
Listing 4.10 shows a sample WSDL file that was generated using the MRF.
The WSDL file has five sections that we are going to outline here. Listings
4.8 and 4.9 are taken from the semantic definition file used to generate the
example shown for the WSDL file.

Listing 4.8: Example of a resource built-in capability definition
1 <mrf:hasBuiltInManagementCapability rdf:resource="http://

lrr.in.tum.de/serom/mrf/AbstractResource.owl#

SimpleMetaDataExchange"/>

Listing 4.9: Example of a capability definition
1 <mrf:hasCapability >

2 <mrf:Capability rdf:ID="Status">

3 <mrf:implClass rdf:datatype="http://www.w3.org /2001/

XMLSchema#string"

4 >com.ibm.de.serom.pool.sampleresource.impl.StatusImpl

</mrf:implClass >

5 <mrf:name rdf:datatype="http://www.w3.org /2001/

XMLSchema#string"

6 >Status </mrf:name >

7 <mrf:type rdf:datatype="http://www.w3.org /2001/

XMLSchema#string"

8 >string </mrf:type >

9 <mrf:hasParameter >

10 <mrf:Parameter rdf:ID="DetailLevel">

11 <mrf:isParameterOf rdf:resource="#Status"/>

12 <mrf:type rdf:datatype="http://www.w3.org /2001/

XMLSchema#string"

13 >integer </mrf:type >

14 <mrf:name rdf:datatype="http://www.w3.org /2001/

XMLSchema#string"

15 >detailLevel </mrf:name >

16 </mrf:Parameter >

17 </mrf:hasParameter >

18 </mrf:Capability >

19 </mrf:hasCapability >
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Types. This section is used to describe the data types used by the
capabilities and its parameters. Lines 19-67 in listing 4.10 are the types
used by the sample resource. XML Schema is used to define the data types
values. These are the different parameters and return values related to the
resource capabilities that are extracted from the semantic description and
used to generate the relevant data element. The current implementation of
the MRF only supports the native XML datatypes as defined by the XML
XSD Schema [99, 14]. However, the semantic parser used to parse the
semantic description and the artifacts generator can be easily extended to
support additional, more complex datatypes.

Messages. Messages (lines 68-94 in listing 4.10) represent the service
operations datatypes. Messages are composed of one or more message
parts that reference the types defined in the previous section. The mes-
sages are the service requests parameters and the service responses values.

Port Types. The port types (lines 96-124 in listing 4.10) are the set
of operations of the service and correspond to the resource capabilities.
The operations are the most important section of the WSDL file as they
describe the service through its functionalities and the way to interact with
it as well as the different messages involved in the operations.

Binding. The binding (lines 125-179 in listing 4.10) defines the proto-
col used for every port (SOAP in this case) as well as the message format.

Service. The Service (lines 181-185 in listing 4.10) references all the
previous section and associate them with the service. The service section
also defines the address under which the service will be deployed and its
name. This last bit of information is not taken from the semantic descrip-
tion, but is instead provided at configuration time to a component called
the MRF Resource Config component as every resource should have a
unique URL to which resource consumers can point to access the resource.
The address also specifies the physical location of the resource, or at least
the servlet container location that will be serving the resource.

Listing 4.10: A generated WSDL file for a sample resource
1 <?xml version="1.0" encoding="UTF -8"?>

2 <wsdl:definitions

3 targetNamespace="http://de.ibm.com/serom/pool/

sampleresource"
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4 xmlns:tns="http://de.ibm.com/serom/pool/

sampleresource"

5
6 xmlns="http:// schemas.xmlsoap.org/wsdl/"

7 xmlns:wsa="http://www.w3.org /2005/08/ addressing"

8 xmlns:wsdl="http:// schemas.xmlsoap.org/wsdl/"

9 xmlns:wsdl -soap="http:// schemas.xmlsoap.org/wsdl/soap

/"

10 xmlns:xsd="http://www.w3.org /2001/ XMLSchema"

11 xmlns:wsx="http:// schemas.xmlsoap.org/ws /2004/09/ mex"

12
13 xmlns:status="http://de.ibm.com/serom/pool/

sampleresource/status"

14 xmlns:stop="http://de.ibm.com/serom/pool/

sampleresource/stop"

15 xmlns:start="http://de.ibm.com/serom/pool/

sampleresource/start"

16
17 name="SampleResource">

18
19 <wsdl:types >

20 <xsd:schema

21 elementFormDefault="qualified"

22 targetNamespace="http://www.w3.org /2005/08/

addressing">

23 <xsd:include schemaLocation="WS-Addressing

-2005 _08.xsd"/>

24 </xsd:schema >

25 <xsd:schema

26 elementFormDefault="qualified"

27 targetNamespace="http:// schemas.xmlsoap.org/

ws /2004/09/ mex">

28 <xsd:include schemaLocation="WS-

MetadataExchange -2004 _09.xsd"/>

29 </xsd:schema >

30 <xsd:schema

31 elementFormDefault="qualified"

32 targetNamespace="http://de.ibm.com/serom/pool

/sampleresource/status">

33 <xsd:element name="StatusCapability">

34 <xsd:complexType >

35 <xsd:sequence >

36 <xsd:element name="detailLevel"
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type="xsd:integer"/>

37 </xsd:sequence >

38 </xsd:complexType >

39 </xsd:element >

40 <xsd:element name="StatusCapabilityResponse"

type="xsd:string" />

41 </xsd:schema >

42 <xsd:schema

43 elementFormDefault="qualified"

44 targetNamespace="http://de.ibm.com/serom/pool

/sampleresource/stop">

45 <xsd:element name="StopCapability">

46 <xsd:complexType >

47 <xsd:sequence >

48 <xsd:element name="after" type="

xsd:integer"/>

49 </xsd:sequence >

50 </xsd:complexType >

51 </xsd:element >

52 <xsd:element name="StopCapabilityResponse"

type="xsd:boolean" />

53 </xsd:schema >

54 <xsd:schema

55 elementFormDefault="qualified"

56 targetNamespace="http://de.ibm.com/serom/pool

/sampleresource/start">

57 <xsd:element name="StartCapability">

58 <xsd:complexType >

59 <xsd:sequence >

60 <xsd:element name="after" type="

xsd:integer"/>

61 </xsd:sequence >

62 </xsd:complexType >

63 </xsd:element >

64 <xsd:element name="StartCapabilityResponse"

type="xsd:boolean" />

65 </xsd:schema >

66
67 </wsdl:types >

68 <wsdl:message name="StatusCapabilityRequest">

69 <wsdl:part name="StatusCapabilityRequest" element

="status:StatusCapability" />

70 </wsdl:message >
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71 <wsdl:message name="StatusCapabilityResponse">

72 <wsdl:part name="StatusCapabilityResponse"

element="status:StatusCapabilityResponse" />

73 </wsdl:message >

74 <wsdl:message name="StopCapabilityRequest">

75 <wsdl:part name="StopCapabilityRequest" element="

stop:StopCapability" />

76 </wsdl:message >

77 <wsdl:message name="StopCapabilityResponse">

78 <wsdl:part name="StopCapabilityResponse" element=

"stop:StopCapabilityResponse" />

79 </wsdl:message >

80 <wsdl:message name="StartCapabilityRequest">

81 <wsdl:part name="StartCapabilityRequest" element=

"start:StartCapability" />

82 </wsdl:message >

83 <wsdl:message name="StartCapabilityResponse">

84 <wsdl:part name="StartCapabilityResponse" element

="start:StartCapabilityResponse" />

85 </wsdl:message >

86
87
88
89 <wsdl:message name="GetMetadataMsg">

90 <wsdl:part name="GetMetadataMsg" element="

wsx:GetMetadata" />

91 </wsdl:message >

92 <wsdl:message name="GetMetadataResponseMsg">

93 <wsdl:part name="GetMetadataResponseMsg" element=

"wsx:Metadata" />

94 </wsdl:message >

95
96 <wsdl:portType name="SampleResourcePortType">

97 <wsdl:operation name="StatusCapability">

98 <wsdl:input wsa:Action="http://de.ibm.com/

serom/pool/sampleresource/status/

StatusCapability"

99 name="StatusCapabilityRequest"

message="

tns:StatusCapabilityRequest" /

>

100 <wsdl:output wsa:Action="http://de.ibm.com/

serom/pool/sampleresource/status/
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StatusCapabilityResponse"

101 name="StatusCapabilityResponse"

message="

tns:StatusCapabilityResponse"

/>

102 </wsdl:operation >

103 <wsdl:operation name="StopCapability">

104 <wsdl:input wsa:Action="http://de.ibm.com/

serom/pool/sampleresource/stop/

StopCapability"

105 name="StopCapabilityRequest"

message="

tns:StopCapabilityRequest" />

106 <wsdl:output wsa:Action="http://de.ibm.com/

serom/pool/sampleresource/stop/

StopCapabilityResponse"

107 name="StopCapabilityResponse"

message="

tns:StopCapabilityResponse" /

>

108 </wsdl:operation >

109 <wsdl:operation name="StartCapability">

110 <wsdl:input wsa:Action="http://de.ibm.com/

serom/pool/sampleresource/start/

StartCapability"

111 name="StartCapabilityRequest"

message="

tns:StartCapabilityRequest" />

112 <wsdl:output wsa:Action="http://de.ibm.com/

serom/pool/sampleresource/start/

StartCapabilityResponse"

113 name="StartCapabilityResponse"

message="

tns:StartCapabilityResponse"

/>

114 </wsdl:operation >

115
116
117 <wsdl:operation name="GetMetadata">

118 <wsdl:input wsa:Action="http:// schemas.

xmlsoap.org/ws /2004/09/ mex/GetMetadata"

119 name="GetMetadataMsg" message="

tns:GetMetadataMsg"/>
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120 <wsdl:output wsa:Action="http:// schemas.

xmlsoap.org/ws /2004/09/ mex/

GetMetadataResponse"

121 name="GetMetadataResponseMsg"

message="

tns:GetMetadataResponseMsg"/>

122 </wsdl:operation >

123
124 </wsdl:portType >

125 <wsdl:binding name="SampleResourceBinding" type="

tns:SampleResourcePortType">

126 <wsdl -soap:binding style="document" transport="

http:// schemas.xmlsoap.org/soap/http" />

127 <wsdl:operation name="StatusCapability">

128 <wsdl -soap:operation soapAction="

StatusCapability" />

129 <wsdl:input >

130 <wsdl -soap:body

131 use="encoded"

132 encodingStyle="http:// schemas.xmlsoap

.org/soap/encoding/" />

133 </wsdl:input >

134 <wsdl:output >

135 <wsdl -soap:body

136 use="encoded"

137 encodingStyle="http:// schemas.xmlsoap

.org/soap/encoding/" />

138 </wsdl:output >

139 </wsdl:operation >

140 <wsdl:operation name="StopCapability">

141 <wsdl -soap:operation soapAction="

StopCapability" />

142 <wsdl:input >

143 <wsdl -soap:body

144 use="encoded"

145 encodingStyle="http:// schemas.xmlsoap

.org/soap/encoding/" />

146 </wsdl:input >

147 <wsdl:output >

148 <wsdl -soap:body

149 use="encoded"

150 encodingStyle="http:// schemas.xmlsoap

.org/soap/encoding/" />
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151 </wsdl:output >

152 </wsdl:operation >

153 <wsdl:operation name="StartCapability">

154 <wsdl -soap:operation soapAction="

StartCapability" />

155 <wsdl:input >

156 <wsdl -soap:body

157 use="encoded"

158 encodingStyle="http:// schemas.xmlsoap

.org/soap/encoding/" />

159 </wsdl:input >

160 <wsdl:output >

161 <wsdl -soap:body

162 use="encoded"

163 encodingStyle="http:// schemas.xmlsoap

.org/soap/encoding/" />

164 </wsdl:output >

165 </wsdl:operation >

166 <wsdl:operation name="GetMetadata">

167 <wsdl -soap:operation soapAction="GetMetadata"

/>

168 <wsdl:input >

169 <wsdl -soap:body

170 use="encoded"

171 encodingStyle="http:// schemas.xmlsoap

.org/soap/encoding/" />

172 </wsdl:input >

173 <wsdl:output >

174 <wsdl -soap:body

175 use="encoded"

176 encodingStyle="http:// schemas.xmlsoap

.org/soap/encoding/" />

177 </wsdl:output >

178 </wsdl:operation >

179 </wsdl:binding >

180
181 <wsdl:service name="SampleResourceService">

182 <wsdl:port name="SampleResourcePort" binding="

tns:SampleResourceBinding">

183 <wsdl -soap:address location="http://

localhost:8080/sampleresource/services

/SampleResource"/>

184 </wsdl:port >
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Figure 4.4: General view of the MRF components

185 </wsdl:service >

186 </wsdl:definitions >

4.10 Architectural views

4.10.1 General view

The Managed Resource Framework has a plug-in based architecture where
every component can get input from other components and outputs arti-
facts that can be fed to other components. Figure 4.4 shows a simplified
view of the MRF workflow, where components are represented as rect-
angles and their outputs as round-angles rectangles. The whole process
can be automatized with the human intervention happening optionally
between the Service Stub Generator and the Service Builder to implement
custom capabilities . MRF manages the MRA creation process as a project.
IT follows the concept of a target or a goal for specifying the needed arti-
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Figure 4.5: Semantic Parser component diagram

facts that have to be generated from a unique source of information, which
is the resource semantic description. The fact that MRF architecture is
plug-in based, allows the possibility to include new components with new
build targets. If there is, for instance, an interest in producing resource rep-
resentations as Flex 4 with AMF endpoints, a component that can generate
the necessary files from the resource model could be integrated into MRF,
and Flex objects could be generated by specifying the correct build target.

In the following section we describe the logical view of MRF by ex-
plaining each of the several components of the framework and presenting
some the activity diagram that can show the workflow of building ser-
vices.

4.10.2 Component view

4.10.2.1 Resource configuration

The resource configuration component is used for the initialization of the
MRF and contains the different parameters that the different MRF plug-ins
may use. Examples of these parameters are the different paths for the tem-
plates used, the class paths, the different namespaces and the deployment
host for instance.

4.10.2.2 Semantic parser

The Semantic Parser component parses the resource description file and
creates a resource model that provides fucnctionalities to query the model

4http://www.adobe.com/products/flex/
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Figure 4.6: Resource Artifact Generator component diagram

for different information on the resource and its capabilities and proper-
ties. The parser is fed a configuration file that contains details such as ad-
ditional semantic repositories that the semantic description may need, the
path or the repository to where the artifacts would be generated, deploy-
ment location of the resource and the build targets or the types of artifacts
to be generated. The parser relates to the Domain component that con-
tains the Resource Domain and the Vocabulary. Figure 4.5 represents the
Semantic Parser UML component diagram.

Domain. The Domain is a component that contains two other compo-
nents that are the vocabulary that holds a description and a mapping to all
the semantic properties and classes that are used to describe the resources,
and a resource domain that represent the model of a managed resource as
defined by the AbstractResource semantic model.

OWL Parser. The OWL Parser is, as its name suggests, an OWL parser
used to parse the semantic description of the resource. It is used to create
the resource model that contains the classes, properties, literals and all the
concepts that define a resource. The resource model is the main object
used throughout the MRF to handle the resource description.

4.10.2.3 Resource artifacts generator

The Resource Artifacts Generator component generates the necessary arti-
facts to create the resource service representation. The artifacts generated
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depend on the target chosen. What follows is a listing of the required arti-
facts for generating an MRA.

• Deployment Descriptor: The deployment descriptor is defined fol-
lowing an XML schema document and contains the elements for
configuring the web application and for its proper deployment in
a servlet container. The deployment descriptor contains information
on the servlet context initiation parameters, session configuration,
servlet declaration, servlet mappings, error pages and some other
elements.

• Service Contract: The service contract is built around a model for ser-
vice description using the Web Service Description Language (WSDL)

• Management Capability Artifacts: These are different files generated
that depend on the implementation of the WSDM specification.

Template Engine. The template engine is a component used to store and
manage the different templates that can be used to create or instantiate
new resources. New resource classes that inherit from the top level ontol-
ogy can be added to the template repository and used later on.

WSDM Config Generator. The WSDM Config generator is based on Muse5,
the Apache implementation for WSDM. It requires its own deployment
descriptor file called muse.xml that is used during the initialization step of
the resource. The classes generated by the MRF are referenced in muse.xml.

Service Contract Generator. The Service Contract Generator creates a
service contract following the WSDL specification from the semantic de-
scription of the resource as described in section 4.9.

4.10.2.4 Online documentation generator

The online documentation generator uses the resource semantic descrip-
tion and the other generated artifacts to generate an online documentation
in HTML. The documentation contains descriptions of the resource and
its properties and capabilities as well as the Java documentation and in-
formation on how to programatically access the resource along with code
snippets.

5http://ws.apache.org/muse
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Figure 4.7: Source Code Generator component diagram

4.10.2.5 Source code generator

Figure 4.7 shows the component diagram for the source code generator.
The source code generator can generate the source code for the service
representation of the resource as well as the client proxy to connect to the
resource. There are two components that take care of those tasks, the Ser-
vice Stub Generator and the Proxy Generator. The MRF extends the ex-
cellent open source implementation from the Apache foundation of the
WSDM and the W3C SOAP specifications in the implementation of both
components.

4.10.2.6 Builders and packager

The MRF has two builders, the Java builder used to build the generated
source code and the WAR builder that generates the MRA archive and the
proxy library.

95



CHAPTER 4. MANAGED RESOURCE FRAMEWORK

Figure 4.8: Builders component diagram

Java Builder. The Java builder is used to compile the java source files,
either for the service stub or for the client proxy. The Java builder can also
package the compiled classes into a JAR archive, especially for the client
proxy that can be then integrated into the MRA. A build file (listing 4.11) is
also generated to be used by the developers in case they need to customize
the build process.

Listing 4.11: Proxy builder xml file
1 <project name="Build Proxy" default="proxy">

2
3 <target name="init">

4 <basename property="NAME" file="${ basedir}"/>

5
6 <property name="JAVA_SRC_DIR" value="src"/>

7 <property name="JAVA_DEST_DIR" value="bin"/>

8 <property name="LIB_DIR" value="lib"/>

9
10 <property name="JAR_FILE" value="${NAME}.jar"/>

11
12 <path id="class.path">

13 <fileset dir="${ LIB_DIR}">

14 <include name="**/*. jar"/>

15 </fileset >

16 </path>

17 </target >

18
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19 <target name="clean">

20 <delete dir="${ JAVA_DEST_DIR}"/>

21 <delete file="${ JAR_FILE}"/>

22 </target >

23
24 <target name="java" depends="init">

25 <mkdir dir="${ JAVA_DEST_DIR}"/>

26 <javac srcdir="${ JAVA_SRC_DIR}" destdir="${

JAVA_DEST_DIR}" classpathref="class.path"/>

27 <jar destfile="${ JAR_FILE}">

28 <fileset dir="${ JAVA_DEST_DIR}">

29 <include name="**/*. class"/>

30 </fileset >

31 </jar>

32 </target >

33
34 <target name="proxy" depends="clean , java"/>

35
36 </project >

WAR Builder. The WAR builder packages the different artifacts gener-
ated by the MRF into the MRA archive. A builder and archiver file is also
generated to allow the customization of the process (listing 4.12).

Listing 4.12: Builder xml file

1 <?xml version="1.0"?>

2 <project name="project" default="war">

3 <target name="init">

4 <basename property="NAME" file="${ basedir}"/>

5 <property environment="env"/>

6 <property name="MUSE_HOME" value="${env.

MUSE_HOME}"/>

7 <property name="BUILD_DIR" value="build"/>

8 <property name="JAVA_SRC_DIR" value="

JavaSource"/>

9 <property name="WAR_FILE" value="${ BUILD_DIR

}/${ NAME}.war"/>

10 <property name="WEB_INF_DIR" value="${

BUILD_DIR }/WEB -INF"/>

11 <property name="LIB_DIR" value="${ WEB_INF_DIR

}/lib"/>
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12 <property name="CLASSES_DIR" value="${

WEB_INF_DIR }/ classes"/>

13 <path id="muse.class.path">

14 <fileset dir="${ MUSE_HOME }/ modules/ws

-fx-api/">

15 <include name="*.jar"/>

16 </fileset >

17 <fileset dir="${ MUSE_HOME }/ modules/ws

-fx-impl/">

18 <include name="*.jar"/>

19 </fileset >

20 <fileset dir="${ MUSE_HOME }/ modules/

core/">

21 <include name="*.jar"/>

22 </fileset >

23 <fileset dir="${ MUSE_HOME }/ modules/

mini/">

24 <include name="*.jar"/>

25 </fileset >

26 <fileset dir="${ MUSE_HOME }/lib/common

">

27 <include name="*.jar"/>

28 </fileset >

29 </path>

30 </target >

31 <target name="layout" depends="init , clean">

32 <copy file="${ basedir }/web.xml" todir="${

WEB_INF_DIR}" flatten="true"/>

33 <copy todir="${ CLASSES_DIR}">

34 <fileset dir="${ basedir}">

35 <include name="muse.xml"/>

36 <include name="wsdl /**"/>

37 <include name="router -entries /**"

/>

38 </fileset >

39 </copy>

40 <copy todir="${ LIB_DIR}" flatten="true">

41 <fileset dir="${ MUSE_HOME }/ modules">

42 <include name="ws-fx-api/*.jar"/>

43 <include name="ws-fx-impl /*.jar"/>

44 <include name="core /*.jar"/>

45 <include name="mini /*.jar"/>

46 </fileset >
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47 <fileset dir="${ MUSE_HOME }/lib/common">

48 <include name="*.jar"/>

49 </fileset >

50 </copy>

51 </target >

52 <target name="java" depends="layout">

53 <javac srcdir="${ JAVA_SRC_DIR}" destdir="${

CLASSES_DIR}" classpathref="muse.class.path"/>

54 </target >

55 <target name="war" depends="java">

56 <jar destfile="${ WAR_FILE}">

57 <fileset dir="${ BUILD_DIR}">

58 <include name="WEB -INF/**"/>

59 </fileset >

60 </jar>

61 </target >

62
63 <target name="proxy" depends="java">

64 <copy todir="${ BUILD_DIR}" flatten="true">

65 <fileset dir="clientProxy">

66 <include name="*.jar"/>

67 </fileset >

68 </copy>

69 <jar destfile="${ WAR_FILE}">

70 <fileset dir="${ BUILD_DIR}">

71 <include name="WEB -INF/**"/>

72 <include name="clientProxy.jar"/>

73 </fileset >

74 </jar>

75 </target >

76
77 <target name="clean" depends="init">

78 <delete dir="${ BUILD_DIR}"/>

79 </target >

80
81 <target name="run" depends="init">

82 <java classname="${main}">

83 <classpath >

84 <pathelement location="${ CLASSES_DIR}"/>

85 <fileset dir="${ LIB_DIR}">

86 <include name="*.jar"/>

87 </fileset >

88 </classpath >
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89 </java>

90 </target >

91 </project >

4.10.3 Other diagrams

Figure 4.9 shows the MRF activity diagram and figure 4.10 shows the MRF
sequence diagram. The activity diagram shows the flow of control within
the MRF. It is a graphical representation of the possible workflows that
happen inside the MRF. The rounded rectangles represent the different
activities, the small squares represents either an output pin or an input
pin, the black bar represent in this diagram a split of concurrent activities
and finally the black circle represents the final state.

The sequence diagrams shows how the different components interact
with each other in a timely fashion. The dotted vertical lines represent the
lifeline of the component on the top. The rectangles on top of the lifelines
are called activation boxes and represent an active component initiating
or reacting to a message. The messages are represented as arrows and
responses as dotted arrows.

4.11 Summary

We presented in this chapter the Managed Resource Framework (MRF),
a framework to automatically generate ready-to-deploy services from the
semantic description of resources. The resources can be semantically de-
scribed by extending a basic resource model called AbstractManagedResource
resulting in a rich document containing, among other things, the proper-
ties and capabilities of the resource as well as a description of the man-
agement layer for that resource. The objective is to have a computer aided
process by which resources can be rapidly instantiated, deployed and man-
aged in a relatively quick and transparent manner for the user.

The framework can generate an archive called the Managed Resource
Archive (MRA), that is an extension to the service archive that contains
in addition to the service impementation, the resource semantic descrip-
tion, the proxy libraries, the service contract and online documentation, to
name the most important.

The MRF uses a target-based mechanism, meaning that only parts of
the MRA can be generated depending on the target used during the exe-
cution of the MRF process.
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Figure 4.9: MRF activity diagram

101



CHAPTER 4. MANAGED RESOURCE FRAMEWORK

Figure 4.10: MRF sequence diagram
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Chapter 5

Semantic Resource Management
Infrastructure

5.1 Overview

The Semantic Resource Management Infrastructure (SRMI) is an infras-
tructure of services to allow access and management of resources uni-
formly, transparently and in a standard way. It allows to manage a set
of IT resources in an autonomous way following a SOA conceptual model
while relying on a semantic approach. The SRMI allows the separation of
management domains and supports a pluggable inference engines archi-
tecture.

5.2 Autonomic management

In the SEROM infrastructure (the SRMI implemention), there are services
used to access the different IT resources. These accesses are abstracted
from the rest of the system thanks to the MRF and the different MRAs,
that expose standard interfaces for accessing and managing the resources.
The autonomic management is based on the MAPE acronym that stands
for the four steps used in managing resources in an autonomic manner,
and these are: Monitor, Analyze, Plan and Execute. The management part,
represented in the center has these four main functions corresponding to
the MAPE steps. Monitoring is about the collection of usage and state data
of the managed resources. Analysis is based on the collected information
and extracts relevant issues that need to be tackled. Planning is about
creating plans of action to implement the specified changes done in the
previous function. Finally, execution is about committing those changes.
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Figure 5.1: MAPE loop
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Figure 5.2: Self-management control loop

The whole process is controlled based on some guidelines that can origi-
nate from different sources, such as policy usages or IT management best
practices, that represent the higher level in figure 5.1. After the execution
step is performed, monitoring the new state of the system is done (actually
the monitoring is performed on a continuous basis) to check if the state of
the system corresponds to the desired state. If not, a new cycle is initiated.
Hence, MAPE constitute an intelligent control loop (figure 5.2).

The objective of the controller in the closed loop is to bring the IT sys-
tem into some desired state by acting on the system resources following
some administrative guidelines. This closed loop is further developed and
incorporated into the global system in figure 5.1. The reference denotes the
desired state and the deviation: the difference between the actual state and
the desired state.

5.2.1 Minimal requirement for the self-managed system

Our self-managed system needs to exhibit at least the following four char-
acteristics to be able to act in an autonomic manner:

Awareness is the ability to sense information about the environment ei-
ther by querying the resources or by receiving timely notification
about resource state changes.

Ability to analyze allows making sense of the information gathered. This
analysis is based on some specified goals defined by the human man-
ager. The analysis function is an intelligent function that uses logic
to achieve its results.

Ability to plan allows the system to come up with an action plan to im-
plement the results reached in the previous function. Planning can
be as simple as sequential task execution or a complex graph with
dependencies and conflict resolution mechanisms.
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Ability to affect its state or its environment state allows the system to af-
fect itself or its environment based on the plan of the previous func-
tion. The changes can be done directly or delegated to other compo-
nents that take care of this task.

The self-managed system needs two external interfaces to achieve its goal:
sensor interface and effector interface. The sensor interface is used to get
external information of the different resources either directly or through
some monitoring interface. The effector interface is used to commit the
changes to the resource.

5.2.2 Conceptual model

The self-managed system is a goal-driven system. It derives its goals from
policies and rules that dictate its behavior and needs to be able to con-
trol itself and its environment based on these rules. There are two types
of knowledge involved in this process. A state knowledge about the self-
managed system and its environment and a behavioral knowledge that
specifies the goals of the self-managed system and generally how to reach
them. The first knowledge is gathered using the sensing ability of the sys-
tem based on its sensor interface, and the second knowledge is internally
stored in some logical representation. Logic plays an important role in the
self-managed system as it is logic that is used to derive the actions of the
system. Finally the actions are executed using the effector ability of the
self-managed system.

5.3 MAPE implementation in SRMI

In SRMI, the Automation Engine is the component that represent the anal-
ysis, planing and execution steps in the MAPE loop. Monitoring is done
by another component called the Monitor. The Automation Engine is com-
posed of a set of Domain-Specific Inference Engines (DSIE) and an Execu-
tion Engine. The DSIE takes care of the analysis and planning steps while
the Execution Engine deals with the execution step. Section 5.6.2.4 de-
scribes the Automation Engine and section 5.6.2.7 describes the Monitor.
The following section (5.4) describe in greater details the DSIE.
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5.4 Domain-specific inference engine (DSIE)

The Domain-Specific Inference Engine (DSIE) is a specialized inference
engine tightly related to a set of resource classes and/or management
model(s)(see section 5.4.1). The DSIE is highly customizable and can be
instantiated whenever there is a need. It is built on top of Jena [72][20],
an open source java framework for building Semantic Web applications
and includes a rule-based inference engine. Jena was designed such that
it is possible to plugin additional inference engines to derive additional
assertions depending on the new reasoner axioms and rules. We took ad-
vantage of this feature to build our custom inference engines on top of
Jena. We designed the DSIE to be a modular inference engine built as a
stack of different inference engines, mainly for engine reusability and ease
of development for the management applications developers.

5.4.1 Domain-based management

In SRMI, the management is domain-based, meaning that the manage-
ment logic depends on a specific definition of the context of the resources
and the definition of the resources. A definition of a management do-
main is the triplet: context specification, resource-specific definitions and
behavioral logic.

The context specification represents the management model, i.e. a formal
representation of the requirements needed in a management context.
If we take as an example the Billing context, where we would be in-
terested in producing usage bills for resources, then the formal def-
inition of a bill and its components (e.g. resource id, usage period,
cost per period unit, over-head cost, total cost... etc) and the billing
process (e.g. a billing request, checking the resources are actually bil-
lable, the terms of the billing... etc) and all the necessary elements for
a proper billing context would be our context specification.

The resource-specific definitions are the resource formal definitions that
are necessary and relevant for the management context. In our previ-
ous example of billing, the properties billable, oneOffCost, costPerSecond
would be examples of billing context-specific definitions of the re-
sources. Thanks to the semantic model used to describe resources,
a resource can “gain” these definitions by making it a sub-type of a
BillableResource class, that we would define as a sub-type of a Man-
agedResource with the forementioned properties.
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The behavioral logic is the logic to be used in the management context
and would be represented in the form of rules. In our previous ex-
ample of billing, a generate_bill rule can constitute the logic used
in generating bills. It can have many sub-rules that would have logic
such as if the resources is used for more than a day then apply a
flat-rate, or if the customer is of a certain class then apply a discount.

Management contexts can be composed of several other management con-
texts. Examples would be Reporting. If we define reporting as composed
of monitoring and billing, then the reporting management domain will be
the definitions of the monitoring and billing tasks along with the defini-
tions of the specificities of the requirements needed from the resources to
be used in those two operations, as well as all the behavioral logic that
formally determines the actions to perform accounting and billing. The
motivation behind the domain-based management is to be able to create
pluggable management tasks to be incorporated into the system when-
ever there is a need, without affecting the proper functioning of the exist-
ing management tasks. A system would be using Incident Management
context for instance and could have Reporting added without affecting
the first task. This is possible by creating independent domain-specific
inference engines (DSIE) that hold behavioral logic specific to the man-
agement context. This behavioral logic is called the domain logic. The
domain logic references some constructs specific to the management do-
main. Those constructs are defined in the schema of the management do-
main and in the resource-specific semantic description. And because a se-
mantic resource can inherit its definitions from multiple semantic models
(management domains schemata), it is possible for the resource to be part
of different DSIEs and hence different management contexts. However,
DSIEs can command actions that could affect the resource, and hence, in-
directly affect other DSIEs, therefore mechanisms need to be implemented
to deal with such scenarios.

5.4.2 Domain logic

As stated in the previous section, the domain logic is the behavioral logic
related to a management domain. It is defined as a collection of basic rules
that should capture all the logic that defines the management context. The
rules have premises and conclusions and they are used to infer new facts
or initiate some actions. The premises and the conclusions are composed
of terms called body terms for the premises and head terms for the conclu-
sion. The domain logic is modeled as a RuleSet object composed of Rule
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objects that are used by the DSIE reasoner at run-time. The Rule object is
used as the internal representation of a rule in Jena. Any rule syntax can
be used as long as interpreters are provided that can construct the Rule

objects. The textual representation of the RDF Schema that uses the triple
representation of RDF descriptions as well as the N3 notation [12] and
Turtle [10] are natively supported as rule syntax. The basic syntax for the
textual rules is presented below [91]:

Listing 5.1: JenaRules Syntax
Rule := bare−r u l e .

or [ bare−r u l e ]
or [ ruleName : bare−r u l e ]

bare−r u l e := term , . . . term −> hterm , . . . hterm
or term , . . . term <− term , . . . term

hterm := term
or [ bare−r u l e ]

term := ( node , node , node )
or ( node , node , functor )
or b u i l t i n ( node , . . . node )

functor := functorName ( node , . . . node )

node := uri−r e f
or p r e f i x : localname
or <uri−re f >
or ?varname
or ’ a l i t e r a l ’
or ’ lex ’^^ typeURI
or number

The terms can be rules, triple patterns or functors. The triple pat-
terns are composed of three nodes, and every node can be a variable, a
literal, some URI or an embedded functor. Examples of triple patterns
are (ns1:Resource1 rdf:type serom:ManagedResource) that states that
Resource1 is of type ManagedResource or (?ResourceA e2e:startsAfter

?ResourceB) that states that ResourceA has to start after ResourceB, the
startsAfter property is as defined in the context with the namespace e2e.
The functor has a name and a list of arguments that can be nodes of any
type but the functor type. There is a number of built-in functors, however
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it is possible for the user to create custom functors associated with their
semantic implementation, and hence act as the rule “action” if the functor
is present in the head of the rule. If the functor is present in the body of
the rule, it represents a predicate.

The symbol ’=>’ is used for forward chaining rules and the symbol ’<=’
is used for the backward chaining rules. Hybrid rules can be used, they
would be composed of one or more backward chaining rules in the head
of a forward chaining rule.

5.4.3 Schema and model instances

The schema represents the semantic model needed for the management
context. It is composed of a resource-specific model and the domain model.
A billable resource for instance would be augmented by a semantic model
defining the cost and terms of usages. A BillableResource model can be de-
fined and the resource can either be an instance of the BillableResource as
well as the ManagedResource or the BillableResource can itself be an instance
of the ManagedResource, depending on the design decisions.

The model instances are the instantiations of the schema. Typically
there is one instance of the management model and one instance for every
resource used in this management context.

5.4.4 Generic Reasoner

The generic reasoner is the base reasoner used in Jena that other reason-
ers can be built on top. It is a general purpose rule-based reasoner that
supports inference over RDF graphs. It provides forward chaining, back-
ward chaining and a hybrid reasoning model. The generic reasoner has an
implementation of the RETE algorithm [38] that acts as a forward chain-
ing engine and a tabled datalog engine that acts as the backward chaining
engine.

5.4.5 Custom Reasoner = Generic Reasoner + Domain Logic

The generic reasoner still needs some rules to set its behavior. Associat-
ing the generic reasoner with the domain logic allows having what we call
a custom reasoner, able to answer queries on some specific model. The
generic reasoner can be bound to one or several domain logic sets, allow-
ing to add functionalities to the reasoner when needed. As long as the
domain logic sets are on different namespaces, adding them to a generic
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reasoner will not lead to a clash between the rules, however, if the domain
logic sets act on the same namespaces, additional care needs to be used to
insure that the rules do not contradict themselves or that they don’t lead
to situations like deadlocks or starvation.

Another interesting feature of the generic reasoner is that it is possible
to define new procedural primitives called functors that have their seman-
tic implementation defined as Java functions. This allows a better integra-
tion of the rules in the Java environment and allows the rules to have as a
conclusion (or body) a call to a Java function thus allowing a concrete and
easy way to implement the rules actions especially when the action deals
with a change to the resource as the resource has often a Java interface to
interact with it.

5.4.6 Specialized Reasoner = Custom Reasoner + Schema

Having a custom reasoner is not enough because the rules would reference
classes of elements or concepts that are dependent on the management
context. We need to associate the custom reasoner with some RDF graphs
and models that define these concepts. This is what we define here as
schema: the necessary semantic models referenced from the domain logic.
The schema is called the ABox (for assertion box) and represents also the
facts in the knowledge base.

5.4.7 DSIE = Specialized Reasoner + Model Instances

A knowledge base is composed of the ABox and the TBox. The ABox is the
schema, whereas the TBox is the model instances. The TBox is the termino-
logical component of the knowledge base. The model instances represent
all the instances, or realizations of the concepts defined in the management
context schema or in the superset of concepts defining the manageable re-
sources. The managed resource representations are part of the instance
models. Once a specialized reasoner is associated with some model in-
stances we have what we call a domain-specific inference engine (DSIE)
that can be queried and can act on a set of resources. Specialized reason-
ers can be duplicated without consequences, however DSIEs are unique
as multiple copies of the same DSIE would reach the same conclusions.

A DSIE is defined by a specialized reasoner and some model instances
as we mentioned. However, some instances maybe shared among differ-
ent DSIEs. The controller (section 5.6.2.6) and scoping mechanisms are
used to attenuate the effect of DSIEs’ rules clashing, nevertheless, conflict
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Figure 5.3: Constructing a DSIE

resolution mechanism are also necessary as contradictory rules can be part
of the same DSIE. Figure 5.3 shows the components involved in the con-
struction of a DSIE.

5.4.8 Composing DSIEs from non-generic reasoners

Figure 5.4 shows the basic stacking of a reasoner. However, any of those
reasoner can be used as basis for another DSIE stacking. For instance we
could have a custom reasoner that we could add to additional domain
logic and a schema to create a new specialized reasoner. Or take a spe-
cialized reasoner and add to it some domain logic to create another spe-
cialized reasoner. This allows us to create some common reasoners to be
instantiated whenever they are needed and stack on top of them some new
logic or schemata to create our DSIEs. Candidates are OWL or RDF rea-
soners such as the ones present in Jena or in other external reasoner such
as Pellet [93]. Another candidate would be the specialized reasoner with
the basic ManagedResource model that every reasoner should extend.

5.5 Organization of the DSIEs and the Knowl-
edge Base

Two organizational models could be used for the DSIEs and the knowl-
edge base (KB). A centralized organization and a distributed organization.
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Figure 5.4: Inference engines stacking

In a centralized organization, we have a single KB that is accessed by all
the inference engines whereas a distributed organization decomposes the
KB to several smaller KBs assigned to each and every inference engine.

Even if the distributed organization seems to be the more natural choice
from the point of view of the inference engines, it has several drawbacks,
such as the decomposition rules, i.e. what part of the KB shall be assigned
to which inference engine? And what if some knowledge pertains to more
than one inference engine? What if an inference engine creates knowledge
that nullifies another piece of knowledge somewhere else? How could we
propagate new knowledge? Issues like synchronization, consistency and
prioritization makes using a distributed KB organization a very challeng-
ing issue.

In the centralized setting, a single KB is shared by all the inference
engines. This solution being easier to realize, still comes with some chal-
lenging issues. Every inference engine acts on a representation of the KB
that holds knowledge of interest to that engine while omitting knowledge
that does not compass the span of the engine. The span of an inference
engine is defined as all and only the knowledge related to the IE scope
and management domain. This KB representation is a local copy of the
management domain associating it with and only with that engine. This
association is transparent to the engines, meaning that it only sees a single
local KB that it has full control on. This method, while easing the man-
agement of KB access as well as not requiring special procedures for the
engine to access the KB, leads to another category of problems. Namely,
KB coherence, local KB selection procedure, KB access synchronization,
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access prioritization, infinite chain reaction, atomicity of transactions, con-
sistency, isolation (access lock), or durability (once a rule is run there shall
be no rollback) just to name a few.

In SRMI, we take a hybrid approach to tackle those problems. There is
one central component, called the Controller, that has a global view on the
knowledge base and feeds local copies for every DSIE. More details are
described in the related section of the controller (see section 5.6.2.6).

5.6 Architectural views

5.6.1 General view

Figure 5.5 gives an overview of the architecture of the SRMI with the Con-
troller playing a central role in organizing the flux of data between all the
major components of the system. In the component view section we will
describe every single major component in more details as well as its rela-
tionship with the other components.

5.6.2 Components view

5.6.2.1 Service Deployer

The Service Deployer is a managed resource itself that is used to deploy
other managed resources programatically. It can either deploy resources
to a special managed resource container: MRContainer, or it can deploy
resources to classic servlet containers. To deploy on a servlet container,
an adapter needs to exist, that would translate from the deployment com-
mands of the service deployer to the servlet container. This adapter is
specific to every servlet container and needs to extend the ServletContain-
erAdapter and override some functions, namely:

• deployServlet

• undeployServlet

• deleteServlet

• listDeployedServlets

• startServlet

• stopServlet

• getServletContainerStatus
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Figure 5.5: SRMI architecture overview 115
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Figure 5.6: Component diagram of the Service Deployer component and
the related components

5.6.2.2 MRContainer

The MRContainer is a servlet container with apecific support for MRA
and it can act also as a consumer interface for the standard management
capabilities. The MRContainer is implemented as a wrapper to a Java
servlet engine and supports the functions available from the ServletCon-
tainerAdapter from the previous section and it adds to that the following
functions:

• getSemanticResourceDescription

• getResourceContract

• getCapabilitiesList

• isCapabilitySupported

• getClientProxy

• getResourceArtifacts

Figure 5.6 shows the component diagram of the service deployer, MRCon-
tainer, and the related components.

5.6.2.3 Resource Registry

The resource registry, as its name suggests, is a registry holding informa-
tion about the resources. Specifically it is a table holding the following
information for every resource.

• Resource id

• Resource URI
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Figure 5.7: Automation Engine

• Resource deployment status (deployed/undeployed)

• Resource container id

• A list of the resource states (as a semantic graph) with time stamps.

The main purpose is to be able to locate any resource and to get the state
of the resource. To limit the number of states kept for every resource, the
number of states can be configured per resource either by number (e.g.
keep the last 10 states) or by time (e.g. keep the states of the last two
hours).

5.6.2.4 Automation Engine

The automation engine (see figure 5.7) is composed of a number of DSIEs
and an execution engine. The DSIEs are completely independent of each
other, in fact, they don’t “see” each other and their actions do not pre-
sume the existence of other engines. The DSIEs contained in one automa-
tion engine are said to be logically grouped as opposed to being physically
grouped. A set of DSIEs that are logically grouped are associated with the
same automation engine and share the same execution engine. The phys-
ical grouping is a low-level organization related to the DSIEs as services
themselves. As everything in SRMI is a service, the DSIEs are services that
need to be deployed into a service container. A set of DSIEs are physically
grouped if they are deployed in the same container.

There are several motivations for logical grouping. Logical grouping
of DSIEs allows organizing the engines in an easier manner. Every group
can have a rank that reflects its priority level (used to define workflows
and engines execution precedence rules). DSIEs can be logically grouped
because they belong to the same process or management task. Grouping
DSIEs by process for instance would make it easier to enable or disable
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Figure 5.8: Component diagram of the Automation Engine and related
components

that specific process. Like having for instance a “controlling” group con-
taining “monitoring”, “accounting”, “reporting” and “billing” DSIEs and
that can be enabled or disabled as a group and not as individual DSIEs.

The execution engine is itself composed of the execution planner and
the resource adapter. The execution planner is tasked with resolving any
conflicts that may rise from the different rules results. Once this is done
and a final list of actions is generated, the execution engine uses the re-
source adapter to get the needed resource handles to execute the necessary
operations.

5.6.2.5 Reasoner Factory

Figure 5.9 shows the component diagram of the Reasoner Factory and re-
lated components. The reasoner factory is used to create reasoners from
scratch or from other reasoners. The reasoner registry is a store that holds
references to different reasoners. Developers can create their own reason-
ers and then register them with the registry. This allows an easy access
to the reasoners and allows to easily locate some specific type of reasoner
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Figure 5.9: Component diagram of the Reasoner Factory and related com-
ponents

and not have to create a new one from scratch. There is also the domain
logic registry that holds different rules to be reused and shared between
different instances of reasoners.

5.6.2.6 Controller

Every resource has a unique identifier and it belongs to several names-
paces. These namespaces are inherited from the parent concepts that this
resource is derived from. For instance, the ManagedResource concept has
the namespace:
ns_mr=�http://lrr.in.tum.de/serom/mrf/ManagedResource�

and GreenResource concept has the namespace:
ns_gr=�http://lrr.in.tum.de/serom/mrf/GreenResource�

If a resource is a ManagedResource and a GreenResource then it belongs to
both namespaces ns_mr and ns_gr. In fact, not only the resources have
namespaces but also the management domains and every concept in SRMI.

During the initialization phase of a DSIE, it is associated to all the
namespaces that it should act upon. A green IT DSIE for instance would
register ns_gr, but not ns_bl, the billing namespace. This mechanism
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gives big hints to the controller to know which events are of interest to
which DSIE(s), lowering considerably the size of the copies to the DSIEs
local database, and minimizing the interaction between the DSIEs. This
mechanism is, however, not perfect and leaves some instances where two
DSIEs would act on the same resource at the same moment, it is then up
to the execution planner to resolve such issues. Algorithm 5.1 presents the
steps used in the Controller module to orchestrate the SRMI where step 1
refers to algorithm 5.2.

Algorithm 5.1 Controller Algorithm

1 Crea te a Management Context
2 Get s t a t e update s
3 F i l t e r e v en t s based on model i n s t a n c e ( s ) a f f e c t e d
4 Mark DSIE l o c a l KB f o r update
5 Update l o c a l knowledge ba s e s
6 A r u l e f i r i n g round i s t r i g g e r e d
7 Mark a f f e c t e d r e s o u r c e s w i th an i n c o h e r e n t s t a t e f l a g
8 Submit a c t i o n s to the p l a nn e r
9 Request a c t i o n s c o n f l i c t s r e s o l u t i o n

10 Execu t i on manager g e t s hand l e from the r e s o u r c e adap t e r
and s e q u e n t i a l l y e x e cu t e

11 Update r e s o u r c e s t a t e
12 Mark s t a t e as cohe r en t

Algorithm 5.2 Management Context creation by the Controller

1 I n s t a n t i a t e s ManagementContext o b j e c t
2 Load s u i t a b l e r e a s o n e r s from the r e g i s t r y
3 I n s t a n t i a t e DSIEs
4 As s o c i a t e w i th e v e r y r e a s o n e r domain l o g i c , domain

models and r e s o u r c e models
5 Re g i s t e r the l i s t o f r e s o u r c e s i n an i n t e r n a l r e s o u r c e

i nd e x
6 Re g i s t e r i n the ScopeTable the namespaces t ha t e v e r y

DSIE i s conce rned w i th
7 Crea te Automat ionEngine o b j e c t ( s ) and a s s o c i a t e e v e r y

DSIE wi th an automat ion eng i n e
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Figure 5.10: Component diagram of the Monitoring Service

5.6.2.7 Monitor

We use resource-specific monitoring in a way that for every type of re-
sources a monitoring collector agent takes care of collecting resource up-
dates. The best case scenario is when the resource offers the possibility
to register to its events using the notification system. That way the col-
lectors can register to the events and get state updates of the resources
as they happen. This method is referred to as a push mechanism where
the resources push updates by opposition to the pull mechanism where
the agents have to pull the updates themselves. This can be done by pe-
riodically invoking the State capability of the resource and updating its
model. The disadvantage of this method is that the resource state updates
are not instant, and shortening the interval time between every pull can
waste resources and lower the performance.
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5.7 Summary

We presented in this chapter the Semantic Resource Management Infras-
tructure (SRMI) a set of services that use the properties of the resources
having an MRA generated using the Managed Resource Framework to
manage these resources in a autonomic manner based on some set of rules.

We introduced some concepts for the SRMI such as the management
domains or the Domain-Specific Inference Engines (DSIE). The manage-
ment domains is specific definition of the context of the resources usages.
It allows to logically cluster resources, rules or management actions de-
pending on their purpose. The DSIE are modular inference engines that
support the addition (or removal) of domain logic and resource schema
to accommodate their management objectives in such a way to control in
a fine-grained manner the properties of the management system. This al-
lows to add management capabilities (e.g. accounting and billing) to the
system whenever they are needed.
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SEROM Prototype

SEROM (SERvice Oriented Management) is the prototype that was devel-
oped in the frame of this work. The MRF was fully implemented whereas
the SMRI had partial implementation sufficient as a proof of concept, al-
though some parts of it, like the accounting system were fully implemented
as a stand-alone system.

6.1 Managed Resource Framework

We developed a full implementation of the Managed Resource Framework
to materialize some concepts presented in this work. The development
environment was constituted of the Java programming language for the
richness of its libraries and APIs and its portability, eclipse1 as IDE and
Maven2 as project management tool.

MRF is being developed as a modular, plug-in based software to in-
sure the future extendability of the framework. It comes in two versions a
command line tool (figure 6.1) and an API to be programatically invoked.
MRF is target-based, meaning that a target needs to be specified while in-
voking the framework and these targets can be: model, wsdl, doc, source,
proxy, build or all. model can only be invoked programatically, all the
other targets can also be invoked from the command line tool. The model

target generates an internal model of the resource, this model is needed
by all the developed modules. wsdl generates the WSDL document from
the model, doc the online documentation, source the server stub and the
proxy skeleton source code, proxy the proxy client library, build builds the
WAR archive and finally all generates all of the above and packages the

1http://www.eclipse.org
2http://maven.apache.org
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Figure 6.1: Command line run of the MRF with the target package (same
as all)

archive into a deployable artifact. Every new module can provide new tar-
gets but it has to specify its required inputs from the existing targets. MRF
uses a templating system to generate the different documents. Appro-
priate templates are loaded at run-time and processed using the in mem-
ory model of the resource. The WSDM implementation used by MRF is
Apache Muse.

Several tests were successfully conducted to evaluate MRF, including
the generation of some of the SRMI components, and we think that the
MRF achieved the requirements of usability practicability and simplicity.
As an example, consider the WSDM tutorial at IBM’s Developer Works3

that aims at building a WSDM interface for an HTTP server with only
two basic capabilities: Start and Stop. In that tutorial the developer had
to write at the conclusion of the tutorial a 2000 lines WSDL document
that would be used as a contract for a manageable service for the HTTP
server. We used the same requirements presented in that tutorial and us-
ing MRF with the target wsdl we achieved similar result with a description
of around 20 lines of code that the developer had to write. Listing 6.1 is an
extended version of that description with additional properties, capabili-
ties and built-in capabilities.

Listing 6.1: A sample resource semantic description
1 <?xml version="1.0"?>

2 <rdf:RDF

3http://www.ibm.com/developerworks/tivoli/tutorials/ac-wsdmmuse/
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3 xmlns:rdf="http://www.w3.org /1999/02/22 -rdf -syntax -ns

#"

4 xmlns:protege="http:// protege.stanford.edu/plugins/

owl/protege#"

5 xmlns:xsp="http://www.owl -ontologies.com /2005/08/07/

xsp.owl#"

6 xmlns:owl="http://www.w3.org /2002/07/ owl#"

7 xmlns:pool="http://de.ibm.com/serom/resourcePool#"

8 xmlns:xsd="http://www.w3.org /2001/ XMLSchema#"

9 xmlns:swrl="http://www.w3.org /2003/11/ swrl#"

10 xmlns:mrf="http://lrr.in.tum.de/serom/mrf/

AbstractResource.owl#"

11 xmlns:swrlb="http://www.w3.org /2003/11/ swrlb#"

12 xmlns:rdfs="http://www.w3.org /2000/01/rdf -schema#"

13 xml:base="http://de.ibm.com/serom/resourcePool">

14 <owl:Ontology rdf:about="">

15 <owl:imports rdf:resource="http://lrr.in.tum.de/serom

/mrf/AbstractResource.owl"/>

16 </owl:Ontology >

17 <mrf:ManagedResource rdf:ID="sampleResource">

18 <mrf:hasProperty >

19 <mrf:Property rdf:ID="Type">

20 <mrf:name rdf:datatype="http://www.w3.org /2001/

XMLSchema#string">type</mrf:name >

21 <mrf:type rdf:datatype="http://www.w3.org /2001/

XMLSchema#string">string </mrf:type >

22 </mrf:Property >

23 </mrf:hasProperty >

24 <mrf:hasBuiltInManagementCapability rdf:resource="

http://lrr.in.tum.de/serom/mrf/AbstractResource.

owl#SimpleMetaDataExchange"/>

25 <mrf:hasResourceId >

26 <mrf:ResourceId rdf:ID="srId">

27 <mrf:rid rdf:datatype="http://www.w3.org /2001/

XMLSchema#string">sampleResource </mrf:rid >

28 <mrf:owner rdf:datatype="http://www.w3.org /2001/

XMLSchema#string">houssam </mrf:owner >

29 </mrf:ResourceId >

30 </mrf:hasResourceId >

31 <mrf:hasProperty >

32 <mrf:Property rdf:ID="Version">

33 <mrf:name rdf:datatype="http://www.w3.org /2001/

XMLSchema#string">version </mrf:name >
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34 <mrf:type rdf:datatype="http://www.w3.org /2001/

XMLSchema#string">string </mrf:type >

35 </mrf:Property >

36 </mrf:hasProperty >

37 <mrf:tns rdf:datatype="http://www.w3.org /2001/

XMLSchema#string">http://de.ibm.com/serom/pool/

sampleresource </mrf:tns >

38 <mrf:name rdf:datatype="http://www.w3.org /2001/

XMLSchema#string">SampleResource </mrf:name >

39 <mrf:hasManagementCapability >

40 <mrf:ManagementCapability rdf:ID="Stop">

41 <mrf:name rdf:datatype="http://www.w3.org /2001/

XMLSchema#string">Stop</mrf:name >

42 <mrf:implClass rdf:datatype="http://www.w3.org

/2001/ XMLSchema#string">com.ibm.de.serom.pool.

sampleresource.impl.StopImpl </mrf:implClass >

43 <mrf:hasParameter >

44 <mrf:Parameter rdf:ID="After">

45 <mrf:isParameterOf >

46 <mrf:ManagementCapability rdf:ID="Start">

47 <mrf:hasParameter rdf:resource="#After"/>

48 <mrf:name rdf:datatype="http://www.w3.org

/2001/ XMLSchema#string">Start</

mrf:name >

49 <mrf:type rdf:datatype="http://www.w3.org

/2001/ XMLSchema#string">boolean </

mrf:type >

50 <mrf:implClass rdf:datatype="http://www.

w3.org /2001/ XMLSchema#string">com.ibm.

de.serom.pool.sampleresource.impl.

StartImpl </mrf:implClass >

51 </mrf:ManagementCapability >

52 </mrf:isParameterOf >

53 <mrf:isParameterOf rdf:resource="#Stop"/>

54 <mrf:name rdf:datatype="http://www.w3.org

/2001/ XMLSchema#string">after</mrf:name >

55 <mrf:type rdf:datatype="http://www.w3.org

/2001/ XMLSchema#string">integer </mrf:type >

56 </mrf:Parameter >

57 </mrf:hasParameter >

58 <mrf:type rdf:datatype="http://www.w3.org /2001/

XMLSchema#string">boolean </mrf:type >

59 </mrf:ManagementCapability >
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60 </mrf:hasManagementCapability >

61 <mrf:hasManagementCapability rdf:resource="#Start"/>

62 <mrf:hasCapability >

63 <mrf:Capability rdf:ID="Status">

64 <mrf:implClass rdf:datatype="http://www.w3.org

/2001/ XMLSchema#string">com.ibm.de.serom.pool.

sampleresource.impl.StatusImpl </mrf:implClass >

65 <mrf:name rdf:datatype="http://www.w3.org /2001/

XMLSchema#string">Status </mrf:name >

66 <mrf:type rdf:datatype="http://www.w3.org /2001/

XMLSchema#string">string </mrf:type >

67 <mrf:hasParameter >

68 <mrf:Parameter rdf:ID="DetailLevel">

69 <mrf:isParameterOf rdf:resource="#Status"/>

70 <mrf:type rdf:datatype="http://www.w3.org

/2001/ XMLSchema#string">integer </mrf:type >

71 <mrf:name rdf:datatype="http://www.w3.org

/2001/ XMLSchema#string">detailLevel </

mrf:name >

72 </mrf:Parameter >

73 </mrf:hasParameter >

74 </mrf:Capability >

75 </mrf:hasCapability >

76 </mrf:ManagedResource >

77 </rdf:RDF >

Writing manageability interfaces, although being attractive, is not sim-
ple or practical and thus removing its value and interest in investing time
and effort to model every resource with huge documents that are manu-
ally written. Not only MRF could achieve the same result with a hundred-
fold less code lines but MRF also constructed semantic models that can be
used to generate several other artifacts including the client library and the
service implementation. Moreover the semantic document can be re-used
and extended for other resources.

MRF has the following modules developed:

Semantic Parser: generates an internal representation of the resource by
parsing the semantic representation and creating a model. It provides the
model target.

Resource Artifacts Generator: generates the WSDL document, the web.xml
document and several other configuration files for the WSDM implemen-
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Figure 6.2: Automatically generated online documentation - Introduction

tation muse. It provides the target wsdl and internal target artifacts.

Online documentation: generates the online documentation of the se-
mantic resource, which include detailed information for every property
and capability as well as information on using the resource. This module
provides the target doc. Figures 6.2, 6.3 and 6.4 show example screenshots
of the generated online documentation.

Source Generator: generates the service stub as well as the proxy skele-
ton for client connection. It also generates two Ant4 build scripts for every
source that can be used to automatically compile the generated classes.
The build script reference all the necessary WS-* connectivity libraries
(which are also included in MRF) and includes them in the Jar. The code
can be directly compiled and deployed and it will work, although invok-
ing non-implemented capabilities will throw the exception RuntimeException.
This module provides the target source.

4http://ant.apache.org/
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Figure 6.3: Automatically generated online documentation - Capabilities
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Figure 6.4: Automatically generated online documentation - Downloads

130



CHAPTER 6. SEROM PROTOTYPE

ProxyBuilder: generates the proxy client library that can be immediately
incorporated into client projects and used to interface with the resources.
The proxy library is self contained and include all the libraries necessary
for its proper working. The building uses the JDK building interface which
means that a proper JDK needs to be installed for this module to work. It
provides the proxy target.

MRABuilder: generates the service instantiation. It is similar to the ProxyBuilder
and uses the same parent module Builder. This module provide the build
target.

Packager: generates the MRA archive. It creates the necessary folder
structures and copies to it the necessary libraries and references XML doc-
ument. This module provides the target all.

6.2 Semantic Resource Management Infrastruc-
ture

We used the same development environment to develop SRMI as the one
used for MRF. The SRMI is intended as an infrastructure to use the gen-
erated MRAs in a management context. It is composed of several com-
ponents that can be stand alone and act independently to different de-
grees. The most appropriate example is the accounting system that is a
self-contained module that implements the WG-RUS specification. This
module is more detailed in the following section. Other components were
partially implemented to allow the testing of the use cases. Resources
states updates were simulated and were scripted to follow the test cases.
The most important module that was not implemented is the Execution
Planner where the operations to execute should have been reordered and
checked for conflicts, they are now executed sequentially as they are. The
most important components of SMRI are:

Resource deployer: is a service used to deploy the resources in servlet
containers or MRContainers. We provide a servlet container adapter to be
extended to add the support of any servlet container. Currently we have
the support of Apache Tomcat and all the containers that are based on it.
The adapter allows to perform the following standards functions on the
container:
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• deployServlet

• undeployServlet

• deleteServlet

• listDeployedServlets

• startServlet

• stopServlet

• getServletContainerStatus

MRContainer: is an MRA-aware servlet container. It is built on top of a
standard servlet container (Apache Tomcat) and adds the support of some
operations that make handling MRAs programatically easier. These oper-
ations are the same as the container adapter plus the following:

• getSemanticResourceDescription

• getResourceContract

• getCapabilitiesList

• isCapabilitySupported

• getClientProxy

• getResourceArtifacts

Automation Engine: is composed of the set of reasoners and the execu-
tion engine. The reasoners are built on top Jena a framework for semantic
applications that provides an extensible rule-based inference engine. It
allowed us to build custom inference engines with specific rules and com-
bine them to build more specialized reasoners. Jena reasoners can also be
used with external reasoners, Pellet, an OWL-DL reasoner is also made
available as a reasoner to be used. We use Jena rule language, a simple
rule language (described in section 5.4.2) used for the domain logic and
the behavioral rules. However, the Jena rule language does not support
advanced rules, especially reaction rules, such as the ContractLog frame-
work [86, 87]. Reaction rules are very important especially in a resource
management context (see future work section 7.2)
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Controller: is the SRMI orchestrator and is implemented as a monolithic
component. Its sole purpose is to test the MRF and SRMI and should nor-
mally be changed to a more appropriate piece of software depending on
the application as some of its parts may be unnecessary (e.g. events rout-
ing to appropriate reasoners) or too simple (e.g. internal resource registry).

6.3 FinGrid Accounting and Billing

In the frame of the FinGrid project, we built a general purpose, standard-
compliant, Grid accounting system that tracks resource usage for tasks,
like management, SLA enforcement or billing. We also built a rule-based
billing system, seamlessly integrated with the accounting module. The
billing system allows to generate bills from the resource usage according
to a set of billing policies. All the components of FinGrid are composed
within a SOA model.

The Financial Service Grid (FinGrid) is a project funded by the German
Federal Ministry of Education and Research, to develop a Grid architec-
ture to virtualize services and processes in the financial sector and to build
banking Grid services based on an accounting and pricing infrastructure
through the development of several prototypes. In this context, we pursue
research on the necessary components for a financial Grid to better model
an industrialization and pricing scheme. We draw the architecture and
implemented the resulting accounting and billing services.

For our test purposes, we modeled resources using MRF and wrote
basic billing rules and used the SRMI infrastructure to derive bills for the
resource usage.

6.3.1 Accounting Service

The purpose of this component is to provide an interface for collecting (up-
load) and accessing (download) accounting information of the resources
consumption and provision. Accounting is the collection of information
and data on the usage of resources resulting in a report of the resource
consumption and/or provision. The resulting report is generally used for
capacity planning, trend analysis, auditing, billing and/or cost allocation.
Gathered accounting information is in the form of an XML document com-
plying with the Usage Record (UR) Recommendation [64] proposed by the
Open Grid Forum (OGF).
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6.3.1.1 Resource Usage Specification Overview

Record Usage Service (RUS) [83] is a stable OGF draft defining a basic in-
frastructure for accounting and auditing, it specifies the service interface to
normalize operations on the accounting information of the resource usage
as described by the Usage Record (UR) specification. The UR document
can be maintained either centrally or in a distributed fashion. The RUS
would permit the upload of usage records or the extraction of necessary
information and possibly the aggregation of resource usage data. The RUS
service interface definition is based on WS-I Basic Profile 1.0. We are us-
ing our implementation of the RUS for managing the Usage Records XML
documents. Our RUS implementation also supports secured access based
on the implementation of WS-Security.

6.3.1.2 Usage Records

Gathered accounting information will be in the form of an XML document
complying with the Usage Record (UR) Standard defined by the OGF. The
UR standard specifies a common format for representing resource con-
sumption data. It contains basic accounting and usage information gath-
ered at the local Grid sites. The standard defines an XML Schema for the
UR that is conforming to the W3C XML Schema Specification. The Us-
age Record is an XML document that contains some required fields called
base properties that are necessary for identifying user and the job as well
as some items that are necessary for proper measurements. The usage
metrics are divided into three categories: base properties, differentiated
properties, and extensions. The base properties define the most common
metrics necessary for proper accounting, such as user and job identifica-
tion. The differentiated properties are task-related measurement metrics
that every site can accommodate to its particular needs. The last category
are the extensions, which are a set of metrics specific to the site and tasks
that can be added to the UR specification. The set of required items to be
accounted is, of course, site and situation dependent.

6.3.1.3 Metrics

Metrics are the measurable values gathered from the resources and repre-
sented in the UR document. For the purpose of our implementation, we
used the standard metrics of the UR recommendation as well as a set of
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custom metrics as extensions. The custom metrics offer capabilities that
were necessary to our use cases but that are not provided by the recom-
mendation. They relate to the categorization of clients and resources and
to the representation of the cost for the resource usages.

6.3.1.4 Collector Agent

We use collectors to gather accounting information from the local resources.
A Collector is resource environment-specific agent that collects accounting
data generated at the level of the resources. This data is then submitted to
the Accounting Service in the form of UR documents. There is no proper
standard for usage logs at the level of the resource manager. The collectors’
task is to extract the relevant data from the generated logs and transform
it into compliant OGF UR-WG document.

6.3.1.5 UR Repository

The RUS standard does not specify how the UR should be physically stored
and leaves this decision to the implementer. We opted for the most natural
way to store XML documents which is a native XML database. Our choice
settled on Apache Xindice5 for persistent storage. Xindice is a Java im-
plementation of a native XML database. The advantage of using a native
XML database is that we don’t have to worry about mapping our XML
document to a specific data structure to store in a normal RDBMS for in-
stance. We store documents as XML and we retrieve them as XML. Xindice
supports XPath 1.0 for querying XML documents (very handful for aggre-
gating results from different stored Usage Records) and XUpdate 1.0 for
updating XML documents. Xindice comes also with an implementation
of XML:DB API, so all operations on the XML database can be performed
using Java code. To interact with and access the native XML database,
we used an implementation of the XML:DB API for Java development.
XML:DB is vendor neutral and supports a wide array of databases. Our
implementation supports WS-Security as security layer for authentication
and authorization.

5http://xml.apache.org/xindice/
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6.3.1.6 Resource Usage Specification Details

Record format

The RUS specification has chosen the Usage Record specification as the
resource usage accounting format. We are using the UR schema file to
validate all the usage files before storing them in the database. If they are
not valid an invalid record exception is thrown to the client.

Mandatory elements

The Usage Record specification describe almost all elements as being op-
tional. However some Grid sites would require that some information
should always be recorded. RUS offer the possibility to be configured to
require the presence of some mandatory elements. Every record is checked
against those elements. If any is missing a mandatory element is missing
exception is thrown to the client. RUS specification do not specify how to
implement this. At the moment, the element are stored in a configuration
file that is loaded at the service initialization.

Record uniqueness

Every record stored has a unique id that can be generated by the RUS ser-
vice or provided by the client. There is no specific format for the id. Cur-
rently, the id is provided by the client, however depending on the needs
we can have ids generated by the service following a specific pattern. In
case the client provides an existing id, a duplicate id exception is thrown.

Record history

RUS specification suggest that some type of record history should be main-
tained, currently we store the creation time and the user who created the
record.

Operation result

All RUS operations return the rus:operationResult element that contains
a boolean “Status” element that is true if no error were reported. It con-
tains also an optional “Processed” element that contains the number of
records successfully processed. And finally a sequence of faults that gives
explicit details of the errors that occurred.
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RUS operations

We implemented all the functionalities of RUS as described in the RUS-
WG specification:

RUS::insertUsageRecords The insertUsageRecords port type enables users
to populate usage files into usage repository.

RUS::extractSpecUsageRecords Enables the client to find out usage records
using record identifier as keywords.

RUS::extractUsageRecords Enables the client to find out usage records
relating to certain search criteria.

RUS::extractRecordIds Enables the client to find all usage records relat-
ing to a more complicated set of requirements, returning just
the record identifiers and not the full usage records.

RUS::modifySpecUsageRecords This port type allows users to modify a
set of usage records identified by record identity with XUpdate
expression. The charge service, for example, could make use of
this port type to insert charge information to a usage record as
with usage information calculated.

RUS::modifyUsageRecords This operation will modify a set of Usage Records
according to a XUpdate expression. The resource manager, for
example, may use this port type to modify resource-specific
property (e.g. urf:MachineName) values.

RUS::replaceUsageRecords The replaceUsageRecords replaces records held
in the RUS.

RUS::deleteSpecificUsageRecords Enables the client to delete usage record(s)
from a usage file.

RUS::deleteUsageRecords Enables the client to delete all usage records
with the specified RUSRecordIds.

RUS::listMandatoryUsageRecordElements Enables the client to retrieve
a list of the usage record elements required by this RUS imple-
mentation.
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6.3.2 Billing Service

Billing is the process of generating bills from the resource usage data using
generally a set of predened billing policies. The bill can be in real money
or it can use more abstract notions depending on the site general policies.
We should note here that the billing service does not preconize the use of
a specific economic model. In fact it is independent from the economic
model to be used. FinGrid Billing permits the denition, storage and ma-
nipulation of billing rules through a set of services.

6.3.2.1 Billing Rules

The billing system supports two types of billing schemes: duration-specific
and one-off cost. The duration-specific type applies the billing rule based
on the usage duration whereas the one-off cost type is concerned with the
proper usage of the resources. The following is an example of a duration
specific rule, it specifies 0.0002 unit (Euro, Pounds...), for every second of
usage of the described resource and user type:
when EVENT = "VM Assignment " , CLIENT_TYPE = " Platinum " ,

RESOURCE_TYPE = "BLADE Type 4 " , RESOURCE_AGE < 240 * 60 * 60 ,
SERVICE_LEVEL = " Platinum " then COST_PER_SECOND = 0.0002

6.3.2.2 Billing architecture

Our billing model separates the logic of the billing service from the data or
the rules, and uses a hot-deployment scheme where users can manage the
billing rules and deploy them without restarting the billing service. This
separation make our services accessible to a wide audience of users. The
kind of users that would generally specify the billing policies but would
not be necessarily a developer.

6.3.2.3 Billing Portal

In the billing portal we can mark single or multiple usage records for
billing, generate usage bills and export the bills as XML files. However,
sometimes we would need a higher degree of control over which data to
be billed. Our implementation is powerful enough to support aggregation
of usage records over any combination of usage metrics elements as well
as ranges of times. It also supports aggregation of usage data using com-
plex XPath queries, giving the user a high degree of liberty in composing
usage records. Records of virtual organizations or some specific parts of
job can be then created using aggregation for a detailed billing document.

138



CHAPTER 6. SEROM PROTOTYPE

6.3.2.4 FinGrid Billing Service

The billing service provides port types to generate bills from usage data
according to predefined billing rules. The records can then be marked as
billed. We can also bill records created from aggregation results and save
the aggregation for later reference. Our billing service implementation
parses the usages records and extract the relevant usage metrics for the
billing process. It feeds this data to the inference engine working memory
and fires the evaluation process. The bills generation process is not auto-
mated and needs to be initiated. However, we do have a command line
version of our billing service that can be used with cron for instance for
automated and scheduled bills generation.

6.3.3 Use case

Goal

This test case demonstrates the autonomic service management capabili-
ties of the system and the use of the MRF and SRMI.

Summary

Usage bills are produced from resources usage records according to a set
of billing rules.

Actors

• The resource manager: Models resources.

• The billing rules manager: Creates billing rules.

• The billing process initiator: Initiate bills calculations.

Preconditions

• Resources are modeled using MRF.

• Resources are capable of producing usage record data (through a
specific RUS management capability)

• Existing billing rules that matches some resource usage.
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Triggers

The billing process is manually initiated whenever there is need for the
bills to be produced.

Basic Course of Events

Once the billing process initiated, the usage record documents are parsed
and the proper rules are applied. The rules call some Java function that
produce bills in the form of reports.

Post conditions

Bills are produced and the usage records documents used for their pro-
duction are marked as billed.

6.4 Green IT

Green IT is a fictional setting aimed at demonstrating the MRF and SRMI.
It has the objective of controlling the overheating servers by lowering their
load or moving their load to other similar server and turning them off. It
is based on a project about energy-aware resource management in IBM
Böblingen lab.

6.4.1 Background and objective

Energy efficiency was never an issue for the data centers, it was always
“performance at any cost”, the result is that since more than 15 years, the
performance of supercomputers saw a 10.000-fold increase compared to
a mere 300-fold increase for performance per watt [33]. Taking only into
account the server part (computational part ) and not the data storage and
communication (storage and networking parts), electricity use doubled
from 2000 to 2005, representing an aggregate annual growth rate of 16%
per year worldwide. If we consider the cooling equipment of the servers,
the total electricity consumption was 120 billion kWh in 2005 worldwide,
totaling a utility bill of 7.2 billion USD (2006 dollars) [61]. With an emission
of 0,35 kg of CO2 per kWh if produced from Gas burning plants or 1 kg if
produced from Coal burning plants, the energy consumed by the data cen-
ters confront us with a considerable environmental issue especially that
forecasts from [61] predicted that total electricity used by servers by 2010
would be 76% higher than it was in 2005.
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Green IT, or Green Computing, represents the environmentally aware
efforts for an efficient use of computing resources. It has three big com-
ponents: reducing the use of hazardous materials, improving the recycla-
bility of the computing materials and reducing the energy used by those
resources. Green IT is not a new concept, however it saw an increasing in-
terest lately, especially with the soaring prices for energy and an increased
awareness of environmental issues. It has its origins in the “Energy Star”
labeling program launched by the U.S. Environmental Protection Agency
to promote energy efficiency in several equipment types. Several other
labels and governmental regulations followed, such as the Swedish TCO
program or the European directives 2002/95/EC, concerning the reduc-
tion of hazardous substances, and 2002/96/EC concerning the waste elec-
trical and electronic equipment. There exist also a number of industrial
consortia and organization promoting best practices and pushing for a
“greener” IT.

In this context, we had a project with IBM Böblingen lab about Green
IT, where the objective was to use heat sensors from the servers in a data
center to harmonize the temperature in the data center by bringing the
individual temperatures of the over-heating servers down to near the av-
erage temperature and this by moving the servers load around. In our
fictive use case, we detect over-heating of a server and we move some
running applications to another idle server.

6.4.2 Use case

Goal

This test case demonstrates the autonomic service management capabili-
ties of the system and the use of the IT business process guidelines, namely
the ITIL event management, incident management and problem manage-
ment.

Summary

A server overheats. This is detected and the running job(s) are stopped/-
moved to other servers.

Actors

• The resource manager: Models resources.

• The Green IT rules manager: Creates rules.
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Preconditions

• Resources are modeled using MRF.

• There exist similar servers able to run the same jobs.

• Existing rules that matches some server state.

Triggers

During the normal record operations of resources usages, a trigger is launched
when a record operation causes an operational rule to fire. The rule de-
tects the heating of a server. For our testing purposes, we are simulat-
ing resources and manually inducing an overheat by modifying the server
temperature value.

Basic course of events

Event: It starts with an event that would cause the halt of the normal
functioning of a running job on a server.

Detection and record: The event is launched by the Green IT Monitor
(GIM) in response to a match of an operational rule. Namely, the server
acceptable temperature was exceeded. An incident record is opened and
all necessary information related to the incident is registered.

Classification and matching: The incident is classified according to dif-
ferent criterion such as the priority (derived in this example from the job
priority and the the operational rule priority), origin, scope, effects or type
of resource/job/operation. An RDF graph that represents the classifica-
tion is constructed for the purpose of matching this incident with previ-
ously occurring incidents or with predefined solutions to similar incident
classification. In the case that there is no directly induced solution from
the incident classification, a linked problem error is created and a problem
management process activity is initiated.

Investigation and diagnosis: A solution (or course of action) is iden-
tified at this stage. The server should have its load lowered and hence
the running job(s) should be stopped or better, moved. Following the job
semantic description and its requirements semantic description, another
server is identified that shall run the job or what’s remaining of it. A course
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of action is constructed in the form of a workflow and is escalated to the
execution engine for execution.

Resolution and recovery: The execution engine executes the workflow.
The job(s) are stopped and restarted on other servers. The actions are per-
formed through the resources (jobs, services, physical resources) manage-
ment endpoints. The incident is marked as resolved and closed.

Post conditions:

The KB is enhanced with new incident resolution records.

6.5 Summary

We implemented SEROM (SERvice Oriented Management) as a proto-
type for the concepts discussed in this work. We implemented MRF as
a modular, plug-in based software to insure the future extendability of the
framework. SRMI was developed as a set of independent services, some
of which were themselves generated using the MRF. We used two use
cases to test SEROM, a financial Grid Computing setting and a Green IT
end-to-end automation setting where the behavior of both MRF and SRMI
matched our expectations. The outlook of MRF and SRMI is promissing
with many of their components being used in Universities and companies
and with ongoing projects being developed based on SEROM (see section
7.1).
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Conclusion

7.1 Summary

Having pervasive computing induce a considerable amount of complex-
ity that system architects need to deal with. Growing number of intercon-
nected systems and services as well their increasing complexity makes the
management of a heterogeneous pool of IT resource a real nightmare. It is
clear that this complexity is the limiting factor for development, deploy-
ment and management of large-scale/complex systems. A solution would
be to leverage the IT infrastructure by enabling it to manage itself. This is
the aim of an Autonomic System, where the human administrator shifts
from managing the system directly to defining the policies and rules as in-
put to the system so it can achieve a state of self-management. In this work
we aimed at laying the foundation, and providing a solution for an intel-
ligent policy-based self-manged system. By intelligent we mean showing
sound judgment and rationality, capable of providing an intelligent solu-
tion to system complexity. By policy-based we infer that the input to the
system are a set of policies written by a human administrator. The result
is a self-managed adaptive and autonomous system that is easily config-
urable and achieves the predefined human service objectives.

Our solution was based on two principles: simplicity and automation.
We brought simplicity by providing a mechanism to model resource in a
standard and uniform way using an expressive language for the purpose
of generating software components that would provide a standard man-
agement interface to access and manage the resources represented by these
components. The simplicity is apparent in modeling the resources, in the
process by which the service artifacts were generated and the end-result:
simple manageable components. For the automation aspect, we aimed at
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automatizing everything from the component service generation to the re-
source management. The MRF automatically generates hundred of lines
of code and builds integrated archives that are ready to deploy, and in
the SRMI, the DSIEs are used to automatize management tasks based on
predefined rules.

We implemented SEROM (SERvice Oriented Management) as a proto-
type for the concepts discussed in this work. Due to the its modularity,
several of its constituents are independent and can be used as they are. As
an example, parts of SMRI (specifically RUS and the accounting system)
were deployed in projects at the University of Marburg, at Deutsch Bank
UK and at the IBM Böblingen Laboratory in a Grid related project due to
the fact that RUS was the only stable implementation of the OGF WG-RUS
specification [83] at the time of its development. There is also an interest to
use the SMRI in the context of a “green” data center at J.T. Watson research
laboratory. Due to the versatility of the MRF, there is also an interest for
it to be used as rapid prototyping system for system architectures for the
purpose of realistic testing of deployment at the IBM Böblingen Lab, and a
project is under planning to use the MRF for resource provisioning in the
Cloud [49].

7.2 Future Work

7.2.1 MRF project management interface

One of the works related to the MRF but that is not mature enough is the
eclipse based project management interface for MRF. This eclipse plug-in
is used to manage the process from the resource definition to the resource
monitoring passing by service generation and resource deployment. We
rely on eclipse’s rich client platform (RCP) to build the management inter-
face. It is composed of three editors: Java, OWL and XML editors, two per-
spectives: Resource-centered project management and deployment and
monitoring perspectives, as well as two builders: A Java builder and an
MRF builder used to build the MRA. There will also be wizards to help
the developers define resource, generate services and deploy resources.

7.2.2 Reaction rules

Rules definition and management is not a central focus of this work. How-
ever, we think that adding the support for reaction rules would add signif-
icant value due to their intrinsic nature and the kind of behaviors expected
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in an IT resource management setting. Event-condition-action (ECA) rules
are a natural candidate for that. Using ECA rules, we can automatically
perform management actions when some event occurs and the conditions
hold. The integration of ContractLog [87] with the SRMI is one the most
attractive options to achieve that.

7.2.3 Cloud Computing

We are currently working on a way for prototyping architectures based
on the generation of service representations of resources. This generated
infrastructure can be used to rapidly build on-demand settings for appli-
cation/scenario requirements in a Cloud Computing context where such
requirements can be as diverse as the applications running on the Cloud.
The resources used to build the infrastructure are semantically described
to capture their properties and capabilities. We use the MRF to automati-
cally generate service descriptions with an added manageability interface
from these semantic description. These services are then ready for deploy-
ment in a Cloud context. A paper entitled “Rapid Prototyping of Architec-
tures on the Cloud Using Semantic Resource Description” describing this
aspect of our work is accepted for publication.
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