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Abstract: The emergence of networked control systems urges the joint consideration of control
and communications. It is well known that event-based controllers outperform standard time-
triggered designs, when the transmission rate is constrained. This paper considers the design of
suboptimal event-based controllers in the presence of packet loss and delayed acknowledgement
for linear stochastic systems. The design objective consists of a quadratic cost reflecting the
control performance and a communication penalty term. Based on various restrictions on the
control design, optimal solutions within the corresponding class of event-based controller are
derived. A numerical validation illustrates the effectiveness of the proposed event-triggers and
gives a comparison to the optimal time-triggered controller.
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1. INTRODUCTION

Digital control systems are commonly designed so that
measurements are acquired periodically to update actu-
ator inputs. With the advent of networked control sys-
tems various benefits emerged by separating sensors, ac-
tuators and controllers into self-contained digital devices
with communicating capabilities. Those benefits including
flexibility, robustness and reconfigurability, come at the
price of new design challenges due to constraints imposed
by the digital communication system. It has been already
indicated in the literature comprising Astrém and Bern-
hardsson (2002); Cervin and Henningsson (2008), that
event-triggered control systems outperform standard time-
triggered sampled systems, when transmission rate con-
straints are incorporated. The work in Astrém and Bern-
hardsson (2002) shows that an event-triggered impulsive
controller is capable of reducing the state variance signif-
icantly compared to a time-triggered minimum variance
controller, while both having the same average transmis-
sion rate. In Cervin and Henningsson (2008), multiple
independent control loops share a common digital network.
There, it turns out that an event-triggered scheduling
scheme outperforms a time-triggered scheduling scheme in
terms of aggregate state variance.

The occurrence of time-delay and packet dropouts in
digital communication networks is unavoidable and needs
to be considered by the designer of the networked control
system. Most results on the design of optimal event-
based controllers neglect these shortcomings and only few
works incorporate time-delay and packet dropouts within
their design. In Rabi and Johansson (2009) the design
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of optimal level-triggered impulse control under packet
dropouts with multiple loops sharing a common network is
considered. The work in Bommannavar and Bagar (2008)
derives the optimal event-based controller in the presence
of packet dropouts and under a constraint on the number
of transmissions. In Xu and Hespanha (2004), optimal
event-based estimators are designed by imposing a penalty
on sending updates over a communication network with
fixed delay.

The main contribution of this paper is to develop opti-
mal event-based controllers under time-delay and packet
dropouts in the feedback link. The presence of both of
these degrading sources poses the need for an innovative
event-based control design. By assuming that the digi-
tal communication system provides an acknowledgement
mechanism, this paper gives two different design guidelines
for event-based controllers within a stochastic discrete-
time linear framework. The objective function is inspired
by work in Xu and Hespanha (2004). It consists of a
quadratic cost representing the control performance and a
communication cost penalizing update transmissions over
the channel. Except for the special case of undelayed ac-
knowledgements, it is very hard to find the optimal event-
based controller minimizing the objective function, as in-
dicated in Molin and Hirche (2009). This fact motivates us
to propose optimal event-based controllers within a certain
class of controllers. The first class prohibits the event-
trigger to transmit an update, if there is an outstanding
acknowledgement, whereas the second class finds the op-
timal event-trigger for a fixed controller at the actuator.
The results are based on novel reformulation techniques
developed in Molin and Hirche (2009) and recent gener-
alizations of state estimation for Markovian jump linear
systems with delayed observation derived in Matei et al.
(2008). A numerical validation shows that the proposed



suboptimal algorithms approach a lower bound of the cost
function very closely and outperform the optimal time-
triggered event-based controller.

This paper is organized into four sections. Section 2
gives the problem statement. In section 3, two suboptimal
approaches are proposed for the underlying problem and
their solutions are derived. The efficacy of the suboptimal
algorithms is validated in section 4.

Notation. In this paper, the operators tr[-] and ()T
denote the trace and the transpose operator of a square
matrix, respectively. The symbol 'A’ denotes the logi-
cal AND-operation. The operator 1. denotes the in-
dicator function. The expectation operator is denoted
by E[-] and the conditional expectation is denoted by E[-|-].
Sans-serif variables, e.g. xi, indicate realizations of ran-
dom variables. A sequence of a random process {zj}k
is denoted by Xk = [xo, ..
and X} = [z1,..., ] for aspecific time interval {I, . . ., k}.
If [ > k, then Xf is the empty set.

.,xy] for its complete history

2. PROBLEM FORMULATION

We consider the following stochastic time-invariant discrete-

time system P
Ti+1 = Az + Bug + wy, (1)

where A € R"*", B € R"*%. The variables, x; and uy
denote the state and the control input. They are taking val-
ues in R™ and RY, respectively. The system noise wy, takes
values in R™ and is an i.i.d. (independent identically dis-
tributed) zero-mean Gaussian distributed sequence with
covariance matrix >,. The initial state, zy is Gaussian
with mean mg and covariance ¥, .

The system model for the communication system is given
by an erasure channel in the forward link. Packet dropouts
are modeled as a Bernoulli process {qi} defined as

__[1 update successfully transmitted
= 0 packet dropout occurred

with packet dropout probability 8 = Plgx = 0]. We
assume a TCP-like communication protocol as introduced
in Schenato et al. (2007) for networked control systems.
The main feature of TCP-like communication protocols is
that a binary acknowledgement is sent over the reverse
link to the event-trigger, whenever a packet has been
transmitted successfully. It is assumed that the reverse
link is error-free. Forward and reverse link delay packets by
the duration of T7 and T3, respectively. Both, 77 and 75,
are positive and non-negative integer values. Let (2,4, P)
denote the probability space generated by the random
variables xg, {wg}r and {qx}r. System parameters and
statistics are known to the event-trigger and controller.
The event-trigger £ situated at the sensor side has access
to the complete observation history and decides, whether
the controller C should receive an update. The system
model is illustrated in Fig. 1.

The event-trigger output d; € {0,1} is defined as follows:
5. — 1 update is sent
70 nothing transmitted

If the event-trigger decides to update the controller, it
transmits the current state over the erasure channel to

the controller. The input signal at the controller is written

as:
yk 1 {x(z)
+T

Wlth Yo =" " =Y1,—1 :@

k=1Nqg =1
otherwise

(2)

The design objective is to find admissible event-triggering
policies f and control policies v that minimize the finite-
horizon criterion
N-1
J(t,y)=E lx%QNzN+ > 2k Quituf Ruk+\oy
k=0
The weighting matrices @), Qn are positive definite and
R is positive semi-definite. The positive factor A can be
regarded as the weight of penalizing information exchange
between sensor and controller. Admissible policies for the
event-trigger and the controller at time k are defined as
Borel-measurable functions of their past available data

(Sk :fk(I]f), Uk :’yk(Ig).

. (3)

The information patterns I,f and I,g of the event-trigger
and controller are defined as

Ilf = {Xka (sk_lv Qk_Tl_TQ}a

¥ = {Y" U1y

worked control system with
plant P, event-trigger £, controller C and a communi-
cation system. The forward link is an erasure channel
and the reverse link carries the acknowledgement.
Both links contain transmission delays 717, T5.

3. SUBOPTIMAL EVENT-BASED CONTROLLERS

Finding the optimal event-based controller is a hard prob-
lem for the underlying problem setting given by (3). The
controller and event-trigger have different information pat-
terns and it is well known by Witsenhausen (1968) that
such problems are generally very difficult to solve. The
situation is even worsened, as reformulation techniques
developed in Molin and Hirche (2009) are not applicable
due to the delay in the acknowledgement channel.

Due to these facts, we propose two types of suboptimal
event-based controllers in the following. The term subop-
timal refers to the optimal event-based controller under
certain restrictions within the design. First, we propose a
waiting strategy, where the event-trigger is prohibited to
transmit updates, until the acknowledgement of the last
transmission has been received. In the second approach,
we prespecify the control law v and derive the optimal
event-trigger. The prespecified controller is chosen to be
a certainty equivalence controller. The approach is called



dropout estimation strategy, as it involves the estimation,
whether a packet dropout occurred before receiving the
acknowledgement.

3.1 Waiting Strategy

The motivation for the waiting strategy is two-fold. On
the one hand, it is reasonable to wait for the acknowl-
edgement as it enhances predictability of the event-trigger
for the communication system. On the other hand, the
calculation of the optimal policy within this class turns out
to be a tractable problem. This is enabled by separating
the problem into numerically feasible subproblems with
similar arguments as in Molin and Hirche (2009). In order
to show such a property, we first reformulate the problem,
so that optimal policies implicitly use the waiting strategy.
We define an additional state variable sy given by

T +To—1 0p=1As,=0

Sk+1 = ¢ Sk — 1 0, =0As,>0 (4)
0 0k =0As,=0
with s = 0 and the following interconnection relation
which differs from Eq. (2)
Tk, Ok=1Agq,=1As;=0,
= 5
Ykt T {(Z), otherwise. 5)

Eq. (5) implies that even if 6 = 1, the update will be
blocked, when s, > 1. This reflects exactly the behavior
of the waiting strategy, as choosing d; = 1 when s > 0,
will have no effect on the system evolution, although the
communication penalty A is paid. Therefore, the optimal
event-triggering law always selects d = 0 for s > 0.

In order to derive the optimal policies, we first consider
the following related problem: First, assume that there
is an additional side information channel that transmits
the control input wug—_; and the dropout variable gr_r,
instantaneously to the event trigger £. Hence, the se-
quences U1 and Qﬁ;lTi(Tl +1y) ATe part of the infor-
mation pattern at the event-trigger at time k in the
following. We will observe later that this additional side
information is redundant for the optimal waiting strategy.
Second, consider the following prespecified event-trigger
that is constructed by an admissible event-trigger law f
and transformation 75 parameterized by an admissible
control law 4. The prespecified event-trigger is denoted
by fo75. We seek for the optimal control law minimizing
the cost given by Eq. (3) for given event-trigger f o 7.
Transformation 75 recalculates the state, received update
information and control input that would result, if control
policy &4 would have been used. These variables are denoted
by Zx, yr and uy, respectively. It can be shown that such
transformation is given by
k-1
T =T + Z AkimilB(’Ym(ﬂOv R gm) - Um)v
m=0

g = Yk (Uos Yo, - - - » Uk—1, Uk)
The resulting variables are then used by the event-trigger
law f; to calculate §y.

(6)

The key feature of this related problem is that the se-
quence {0} is independent of the control inputs chosen
for each sample path w € Q. With this fact, we can give
the following lemma.

Lemma 1. Let the event-trigger f o 75 be fixed with aug-
mented information pattern I,f uU*1tu QZI_ITI_(T1+T2).
Then, the optimal control policy v* minimizing cost func-
tion J from (3) is given by
u = 1 (Z§) = —Li E[zx|Z{] (7)
with
T -1 o7
Ly = (R4 B'Pr1B)  B'PiA,
P, =A"Py1A+Q— ATP1B
x (R+ B Py 1B) " BT Py A,

PN = QN;

where P, € R"*" is non-negative definite for all k.

Proof. Due to the fact that the sequence (i) is in-
dependent of the sequence of control inputs for each

sample path w € Q, the term E[ ;CV:_Ol A(Sk} in Eq. (3)

is constant and can be omitted from the optimization.
Similarly to Molin and Hirche (2009), it can be shown
that e, = z, — E[zx|ZS] is independent of applied controls.
Proceeding along the same lines as in Bertsekas (2005),
the resulting optimal control law is given by the linear
quadratic regulator and the least squares estimate of the
state as stated in above lemma.

Lemma 1 holds for any prespecified event-trigger f o 75
constructed by the tuple (¥, f). It is clear that the policy
pair v* and f o 75 are only optimal within a subset of
admissible policy pairs (v,f). In fact, this subset can be
viewed as an equivalence class defined by the following
equivalence relation. Two policies, (7!, f') and (72, f?), are
equivalent, if and only if
Ok = (60)r, we.

A fundamental property of equivalence classes is that the
complete solution space of admissible policies is parti-
tioned by the equivalence relation. As the form of the opti-
mal controller does not depend on the specific equivalence
class, we conclude that v* given by (7) is the optimal con-
trol law for our original problem under the assumption of

additional information U*~U Q’,erlTi (T1+75) Y the event-

trigger. This result enables us to restate the optimization
problem (3). By using an identity from Astrém (2006) the
cost function J defined in (3) can be written as
N—1
J(f,'y) =E {l‘gpol'o + Z wng_Hwk
k=0
N-1
+ Z (’U,k =+ kak)T(R + BTPkJrlB)(uk + kak) + )\54 s
k=0
where Lj and Py are given by Lemma 1. Taking into
account the optimal control law * given by (7), we obtain
the following optimization problem

N-1
JE(f) = mfiDE [ > (k- &) Thlar — £5) + )\54, (8)
k=0
where
&f = Efzx|Zf),

Iy=L (R+B"Pyy1B)Ly, k=0,....N—1. (9)
As E [asgPozo + Z;V;Ol wi Pyy1wg | is constant, this term

has been omitted from the optimization.



It should be noted that the state estimate :ig depends
on the chosen scheduling policy f. Therefore, the dynamic
programming principle can not be applied to solve prob-
lem (8). Proceeding along the same lines as in Molin and
Hirche (2009), it can be shown that the optimal scheduling
law possesses certain symmetry properties. These imply
that the least-squares estimate ig is given by the least-
squares estimate assuming a time-triggered transmission
scheme, i.e.

T, —1
T T1—m—1 ~C
xc _ A T — A BLkerSCker,
k+Ty m=0 for 0y = 1A g =1As =0,
(A— BLk)ig+T1_1, otherwise
(10)
with initial conditions
,CCk = (A BLk) (A—BLO)mO, I{/’:O,Tl — 1.

(11)
By now, we have assumed that the event-trigger has
additional information U*™! and Q* ™' at time k. In
the following, we will argue that this information is not
needed for the optimal event-triggering law. Without loss
of generality, we consider time step k1 and assume there

were no transmissions beforehand, i.e. 8" ~! = [0,...,0]T.
By Eq (10), we observe that
ZL'k = (A BLk) (A*BLo)mo, k:(),...,kl.

This implies that the dropout sequence Q*'~! has no

impact on the state estimates X Gk and the control in-
puts U* !, Therefore, the event-trigger does not need
to take into account the dropout sequence Q" ! and
control inputs U"~! can be recalculated by the event-
trigger with information pattern Ig If it has been decided
that dg, = 1, then the event- trlgger is idle for the duration
of T1 +T» — 1 and no information is needed during this
phase. At time step k1 + T3 + 75, the acknowledgement g,
is received by the event-trigger. Hence, the state esti-
mate :igl 11 and ug, +1 can be calculated with information

pattern I]fl. By induction, it follows that additional in-

formation U*~! and Q"™ is not needed for the optimal
event-triggering policy at any time step k.

In order to facilitate further illustration of results, we

consider 77 to be 1 in the following. By considering

Egs. (1), (4), (7) and (10), we define the estimation

error ey = xj, — &y, which transforms problem (8) into
N-1

min E [ Z e;gl"kek + A(Sk}, (12)
! k=0

Ckt+1 = (1 — ]l{sk:O}Qk(;k)Aek + wg

with initial conditions eg = g — mo and sj given by (4).
The optimal event-triggering policy will be a function of
the augmented state [eg, sx] and the optimization problem
(12) can be solved by the dynamic programming principle.
Similar results also apply for arbitrary 77.

Hence, the main result of this section is that the optimal
event-based controller within the waiting strategy can be
solved by standard methods. The controller is linear and
the gains are obtained by the Riccati equation, while the
state estimator is a linear predictor. The event-triggering
policy can be obtained by dynamic programming.

8.2 Dropout Estimation Strategy

The proposed event-based controller in the last section is
certainly suboptimal, as there are circumstances, where
another update should be sent, although the outstanding
acknowledgement has not been received yet. For example,
this would be the case, if a significant state disturbance is
observed, while the event-trigger has to wait. This fact mo-
tivates us to relax the waiting strategy and allow update
transmissions before an outstanding acknowledgement has
been received. In the following, we restrict the control law
to be predetermined by the optimal control law of the
waiting strategy. In other words, the control law is the
certainty equivalence controller given by Lemma 1. Under
this assumption, our focus is to find the event-triggering
policy that solves problem (8).

The control law is given by Eq. (7) and, similarly to
Eq. (10), the state estimate is given by

T -1
. ~ AT1$k _ Z ATlimilBLker:i'g_i_m, :
Thtr, = =0 fordp=1A g =1, (13)

(A= BLy)#% 1, 1, otherwise

with initial conditions given by Eq. (11). Above state
estimator differs only by its independence of s;. We define

T .C,T ~C,T T
2p = [T, 27, zk—i—Tl—l]

to be the state of the augmented dynamical system con-

sisting of plant P, controller C and the communication
channel. By Egs. (1), (7) and (13), we have

Tht1 = Azxy, — BLki'g + wy.
Above equation together with Eq. (13) determine the state
evolution of zi. The variable xj is now regarded as an
output observation of the event-trigger, as it reveals just
part of the augmented state zx. The plant state zx_ (7, 4 1,)
and dy_ (7, +1,) are known to the event-trigger, which im-
plies that the controller state #¢ 117, Can be recalculated
with knowledge of qi_(1,+7,) by Eq. (13) at time k. We

define the information state
£ = (X081 Qi) XOITT

which is regarded as the new argument for the event-
triggering law fi. In the following, we fix T3 to be 1 and
discuss the cases of To, = 1 and T3 = 2. In the end, we state
the main result for arbitrary 73,75. For T} = 1, the aug-
mented state variable 2, reduces to [z}, xi TIT. As #$ may
not be observed perfectly at the event-trigger, due to the
delay in the acknowledgement, finding the optimal event-
trigger policy constitutes a problem with partial state
information. It is well known that the conditional distribu-
tion PZkII,f is a sufficient statistic for problems with partial
state information, see e.g. Bertsekas (2005). The following
paragraph is concerned with the calculation of PZkII,f' The
variables, xj, is within I,f and therefore its conditional dis-
tribution is the Dirac distribution at . For d;_1 = 0, the
variable, ﬁ:i is Dirac distributed at Aﬁ:ifl. For 6,1 =1,
the distribution of 50% conditioned on I,‘f is given by
two values, (A — BLy)3$ | and Axp_1 — BLp3$ |, oc-
curring with conditional probability qu_71|1’§. It turns

out that gi_1 is statistically independent of all random
variables within I,‘f . Therefore, the conditional probability



distribution P

drk—1

of gi—1, i.e. given by .

|z¢ is given by the prior distribution

It can be observed that the case of T} = T = 1 consti-
tutes a special case, as the outstanding acknowledgement
is statistically independent of the information available
at the event-trigger at time k, i.e. qr—_; is statistically
independent of I,f . In contradistinction to this fact, ob-
servations at the scheduler can enhance the estimation of
outstanding acknowledgements in case of To > 1. This
motivates us to consider 1o > 1. In order to determine
the conditional probability distribution of outstanding ac-
knowledgements given I,f , we apply results established
in Matei et al. (2008). There, Markovian jump linear sys-
tems were considered and least-squares state estimators
were derived assuming delayed observations of outputs
and the discrete mode of the system. For our underlying
system, we regard outstanding acknowledgements as our
discrete modes to be estimated. These are given by QZ:lTZ.
Applying results from Matei et al. (2008), it can be shown
that the optimal estimator of the state zj is in general
a nonlinear function of the observations at the event-
trigger. The estimator is nonlinear, as measurements are
obtained before the discrete mode arrives at the event-
trigger. The advantage of the estimator is, that only recent
observations have to be taken in account in order to

derive the conditional probability distribution of Qﬁ:sz

given I,f. On the other hand, its computational complexity
increases exponentially with the number of outstanding
acknowledgements, which is in accordance with estima-
tion problems for Markovian jump linear systems with
unknown discrete states Bar-Shalom and Li (1993). In fact,
the number of outstanding acknowledgements is limited by
the round-trip time T + T within the proposed system
model. Hence, the calculation of the conditional probabil-
ity distribution is computationally tractable for moderate
round-trip times.

In the following, we present the conditional probability
distribution of Q’,Z:lT2 given I,‘f for the case Ty = 2.

Deriving the probability distribution of outstanding ac-
knowledgements for arbitrary 7% is performed similarly,
but needs to consider more variables of past observations.
Due to the fact that gr_; is statistically independent of
observations I,f , the conditional distribution of gr_1 is
given by its prior distribution. Contrary to that, the esti-
mation of the packet dropout occurring at time k — 2 can
be enhanced with the observation of zj. Applying Matei
et al. (2008) to the proposed framework, the conditional
distribution is determined by

a(q, 1§

Ey _ k
PQk—2|Ig (q“k) - Zeeo . a(f, Ii‘)

Oé(q, I(Ig) = P[qk*Q = q]ka\Ilfil,Qk*2 (Xk“i—lv Qk72)7
where fmk‘zgilek—2 is the probability density function of
x) given I,f_l, Qk_Q. This function is a multivariate Gaus-
sian function with covariance matrix ¥,, and mean mf
depending on gi_2 and di_a:
A-Tk—l - BLkA.Tk_g
Axj_y — BLyAZS_,
Axy_y — BL,AZ$_,

Op—2o=1Aqo2=1
Og—2=1Aqxr_2=0
Or—2=20

me =

We observe that

PQk—2|I,§ =P (14)

Qe—2|Tr,Tr—1,Tk 2,85 062

The calculation of quqllf for a specific gi_o requires only
the knowledge of xg, xx—_1, Tk—2, ,f:(,;LQ and dp_o.

Tracing back to our initial problem, that is the calculation
of P, L|TE> We have already seen that the main issue is the
determination of the conditional probability distribution
of #¢ given Z{. By Eq. (13), 2§ can take four different
values for 75 = 2, depending on ¢i_2, qx—1 and I,f.
Due to Eq. (14) and the fact that g1 is statistically
independent of Zf, the conditional distribution PZk\I;f
is given by xk, 0g—1, Tk—1, Tk—2, ﬁ:(,;LQ, and d;_o. In
other words, the main result is that these variables are
a sufficient statistic for solving (8), i.e. the optimal event-
triggering policy may be expressed as

fo(ZE) = fo (X5 5,007 2,35 ,), k=0,...,N—1
for and T = 2. Variables with negative indices are

omitted as arguments of fj. Similarly, it can be shown
for arbitrary 11,15 that

fk (I/f) = fk (XZ—maX(T17T2)7 0

Considering the arguments of fj, as the new state, the un-
derlying problem is a problem with full state information
and we can apply the dynamic programming algorithm to
find the optimal event-trigger law. In contrast to the initial
problem within this subsection, the state does not increase
in time, but only with max(7},7%). Therefore, finding the

k—1 o€
k—max(T1+T2)’ Xk—Tz)'

optimal event-trigger f is a numerically tractable problem
for large horizon N and moderate delays.

4. NUMERICAL VALIDATION

Suppose we have a scalar process P with A =1, B=1
and variances ¥,, = 1, ¥, = 1. Parameters of the cost
function are given by Q = Qn =1, R =10 and N = 100.
Subsequently, we analyze the performance for three dif-
ferent packet dropout probabilities 8 € {0,0,25,0.5},
forward delay T3 = 1 and reverse delay To € {1,2}. The
proposed suboptimal algorithms are compared with the
optimal time-triggered controller for various communica-
tion penalty A. The time-triggered strategy does not need
an acknowledgement channel. Therefore, it is independent
of T5. The optimal transmission timings of the time-
triggered controller are calculated by the deterministic
dynamic programming algorithm.

In addition, a lower bound on the cost is determined
by assuming that the acknowledgement channel has no
delay, i.e. To = 0. For such situation, it has been shown
in Molin and Hirche (2009) that the optimal event-based
controller can be calculated efficiently. It is clear that this
bound is not tight for 8 > 0. It can not be achieved by
any event-based controller, as it would impose to guess
always correctly, whether a packet dropout occurred before
the actual acknowledgement is received. A comparative
study is illustrated in Fig. 2 for different packet dropout
probabilities.

In all three cases, we observe that the dropout estimation
strategy outperforms the optimal time-triggered algorithm
and approaches the lower bound very closely. In fact, the
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Fig. 2. Performance comparison: without packet dropouts
(top); for packet dropout probability § = 0.25 (cen-
ter); for packet dropout probability 8 = 0.5 (bottom).

performance of the dropout estimation strategy and the
lower bound are equal for § = 0, because there is no
need in estimating packet dropouts for arbitrary 7. The
waiting strategy outperforms the optimal time-triggered
algorithm for A > 5. Delay Ty plays a crucial role for
the performance of the waiting strategy. In case of low
communication penalty A, the time-triggered algorithm is

better suited than the waiting strategy. This is a natural
consequence as transmissions prevail during horizon N
for small A\, but the waiting strategy does not permit to
transmit more than (ﬁ] times. Evidently, the dropout
estimation strategy shows better performance than the
waiting strategy at the cost of additional computations.

5. CONCLUSION

By considering a lossy communication network with delays
and an acknowledgement mechanism, this paper proposes
two types of optimal event-based control design under
two different assumptions. Despite of their computational
benefits compared to the optimal solution, it turns out
that both algorithms approach the optimal solution very
closely. The numerical validation indicates significantly
that the suboptimal algorithms outperform time-triggered
control design in the presence of communication penalties.
Future work comprises the consideration of output systems
and the extension of the communication model to erasure
channels with time-varying time-delay and Markovian
packet dropouts.
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