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Abstract— Digital control design is commonly constrained
to time-triggered control systems with equidistant sampling
intervals. The emergence of more and more complex and
distributed systems urges the development of advanced trig-
gering schemes that utilize computational and communication
resources efficiently. This paper considers a linear stochastic
continuous-time setting, where the design objective is to find
an event-triggered controller that optimally meets the trade-off
between control performance and resource utilization. This is
reflected by imposing a cost penalty on updating the controller
by current observations that is added to a quadratic control
cost. It is shown that the underlying optimization problem
results in an event-triggered controller, where the controller
is updated, when the estimation error of the controller exceeds
a apriori determined threshold. The controller design is related
to linear quadratic Gaussian regulation and to optimal stopping
time problems. Contrary to the initial problem, these can
be solved by standard methods of stochastic optimal control.
Numerical examples underline the effectiveness compared to
optimal time-triggered controllers.
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I. INTRODUCTION

Recently, many control problems have appeared, where

event-triggered exchange of information is favorable com-

pared to periodic time-triggered schemes. Examples can

be found in control over communications [1]–[4], multi-

agent systems [5], [6] and distributed optimization algorithms

[7]. It is proved in [1] that event-triggered impulse control

for scalar stochastic continuous-time systems reduces the

state variance significantly compared to a time-triggered

minimum variance controller with same average transmis-

sion rate. Within an impulsive stochastic continuous-time

framework, multiple independent control loops sharing a

common digital network are considered in [2]. There, it

turns out that an event-triggered scheduling scheme out-

performs a time-triggered scheduling scheme in terms of

aggregate state variance. Results in [7] indicate that an event-

triggered communication scheme for distributed network

utility maximization algorithms is scale-free with respect

to the network size. In contradistinction, a time-triggered

scheme scales poorly with network size. With respect to

connectivity maintenance for autonomous mobile agents, it

is shown in [5] that event-triggered control strategy reduce

the need of communication significantly, while maintaining

a certain degree of connectivity.
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All these problems have in common that they must deal

with limited exchange of information between engineering

entities. Instead of limiting the transmission rate, this paper

introduces a cost that penalizes updating the controller with

current observations. While the objective of the motivating

examples is to show the benefits of event-triggered control

schemes, there is no general specification how to choose

optimally the rules, when events should occur. The focus

of this paper is a single-loop control system to regulate an

Itǒ diffusion process, where sensor measurements are sent

over a digital network to the controller. The objective is to

find joint optimal controllers and schedulers based on a non-

classical cost function penalizing communication exchange

between sensor and controller. By scheduling, we refer to as

determining the optimal timings of the measurements to be

sent over the network. Hence, an event-triggered controller

consists of a (i) control policy that applies control inputs from

available observations and (ii) a scheduling policy assigning

transmission timings. The choice for this cost function is

inspired by related work for estimation problems with limited

communication capabilities [8], [9]. In [4], [10], optimal

controller and event-triggered schedulers are obtained for

stochastic continuous-time systems, when limiting the num-

ber of transmissions for a finite interval and control inputs

remain constant between transmissions. It is shown in [10]

that the optimal event-triggered controller can be calculated

analytically for the scalar Brownian motion process. Another

related problem has been considered in [11], where con-

trollers are derived under Poisson distributed observations. It

is shown that the therein proposed problem is related to linear

quadratic regulation with an exponentially discounted cost,

when the controller is allowed to be time-varying between

observation updates.

The main contribution of this paper is to find the optimal

event-triggered controller that minimizes the underlying cost

function. Built upon results from [12], it is showed within the

framework on continuous-time jump-diffusion processes that

the solution of the underlying optimization problem is closely

related to the linear quadratic Gaussian regulator problem

and to optimal stopping time problems. The optimal event-

triggered controller is a linear time-variant controller with

gains calculated by the Riccati differential equation and a

linear state estimator. The event-trigger is a threshold policy

of the difference between the actual state and the estimated

state at the controller. Optimal policies are obtained by

application standards methods of optimal stochastic control,

which has significant computational benefits compared to

the initial problem. The key innovation are reformulation

techniques of the underlying optimization problem in such



way that the separation principle of stochastic optimal control

is still valid. Besides, its numerical benefits, the obtained

results reveal additional properties in terms of optimality of

event-triggered controllers that are proposed in the litera-

ture [13], [14]. Therefore, the obtained results bridge the gap

between stochastic optimal control under costly observations

and event-triggered control design.

The remainder of the paper is organized into three sections.

Section II introduces the system model and gives the design

objective within the linear quadratic Gaussian framework.

In section III the initial problem is transformed into the

mentioned subproblems and the design procedure of the

optimal event-triggered controller is derived. A numerical

validation illustrates the efficacy of the proposed approach

in section IV.

Notation. In this paper, the operators tr[·] and (·)T denote

the trace and the transpose operator of a square matrix,

respectively. The variable P denotes the probability measure

on the abstract sample space denoted by Ω. The expectation

operator is denoted by E[·] and the conditional expectation

is denoted by E[·|·].

II. PROBLEM DESCRIPTION

We consider a stochastic system P evolving according to

the following stochastic differential equation defined as an

Itǒ diffusion

dxt = (Axt +But)dt+ dwt. (1)

where A ∈ R
n×n, B ∈ R

n×d. The variables, xt and ut

denote the state and the control input and are taking values

in R
n and R

d, respectively, for each time t. The initial

state, x0 is given a priori at scheduler and controller. The

variable w corresponds to the vector-valued Brownian motion

process in R
n with zero-mean and normalized variance. In

the following, we let (Ω,F ,P) denote the probability space

generated by the Brownian motion process on the inter-

val [0, T ]. Hence, we restrict our attention to finite horizon

problems with horizon T . Additionally, let Ft be the σ-

algebra generated by the random variables ws with s ≤ t.

The system model is illustrated in Figure 1. It is assumed

that the scheduler S situated at the sensor has complete

state information. Based on the observation, the scheduler

decides at any time t whether to send a state update xt to the

controller C. The controller situated at the actuator directly

manipulates the process P based on the information it

receives from the sensor. We assume that system parameters

and statistics are known to both scheduler and controller.

Let the process k be a counting process with k0 = 0.

The value of kt increases by 1, whenever a state update

is sent over the network. For convenience, the time index is

omitted in the following. Admissible transmission timings τk
are restricted to be measurable with respect to Ft, i.e. τk
is non-anticipative. Hence, k is an Ft-adapted process and

the transmission timings τk are stopping times [15]. In the

following the counting process k and the scheduling policy

have equal meaning.

Admissible control laws denoted by γ are time-variant

functions with the following structure:

ut = γ(xτk , τk, t), τk ≤ t < τk+1, (2)

where τ0 is defined to be 0. In case τk+1 is not defined,

the upper bound τk+1 is replaced by T . Let It = {xτk , τk}
denote the available information at the controller at time t.

The control laws γ are assumed to be Borel measurable.

A crucial assumption at this place is to allow time-varying

control inputs that has also been observed in [11] for

Poisson distributed observations. This also differs from the

analysis in [4], [10], where only constant control inputs are

considered between transmission timings.

The design objective is to find admissible policies γ and

counting process k that minimize the following cost function

J(γ, k) = E

[

∫ T

0

xT

t Qxt + uT

t Rutdt+ xT

TQTxT + λkT

]

.

(3)

The weighting matrices Q,QT and R are assumed to be

positive definite. The weighting factor λ > 0 refers to

the amount of penalizing information exchange between

sensor and controller, as E[kT ] is the average number of

transmissions during [0, T ].

PC

N

S

xτk
xtut

τk

Fig. 1. System model of the networked control system with process P ,
scheduler S , controller C and communication network N .

III. EVENT-TRIGGERED CONTROLLER

Determining the optimal control policy and counting pro-

cess that minimize (3) directly by given methods is not

feasible, as it is an joint optimal control and stopping time

problem with different information patterns. An information

pattern refers to the information available for the admissible

policy. Hence, results from dynamic programming are not

directly applicable. Therefore, the subsequent paragraph is

dedicated to show various properties of the underlying opti-

mization problem in order to facilitate the calculation of the

optimal solution.

First, it should be noticed that the optimal counting process

has only a finite number jumps P-almost surely. That is

due to the fact that the cost function (3) would be infinite

otherwise. In order to cater for well-definedness, we can

therefore restrict our attention to counting processes with

finite number of jumps in [0, T ] P-almost surely.



The following lemma is the central results of this paper:

Lemma 1: The optimal control policy γ∗ minimizing (3)

has the following structure:

ut = γ∗(xτk , τk, t) = −Lt E[xt|It], (4)

where

Lt = −R−1BTSt, (5)

−
dSt

dt
= ATSt + StA+Q− StBR−1BTSt, t ∈ [0, T ]

(6)

with initial condition ST = QT .

Proof: In order to prove the above lemma, we in-

troduce an equivalence class of admissible pairs of con-

trol and scheduling policies. The equivalence is denoted

by [(γ, k)]. The equivalence relation is defined as follows:

Two pairs (γ1, k1) and (γ2, k2) are equivalent, when

k1(ω) ≡ k2(ω), ∀ω ∈ Ω. (7)

This means transmissions occur at same times for any sample

path ω ∈ Ω. Besides, we assume that there is an additional

side channel transmitting control input ut to the scheduler S.

Hence, past control inputs are part of the information pattern

at the scheduler and will be subsequently considered as an

additional argument of k. We will later observe that the

side channel gives only redundant information to the optimal

scheduler.

Let us consider an arbitrary equivalence class [(γ̄, k̄)] in

the following. The set [(γ̄, k̄)] is parameterized by admissible

control laws γ, while the scheduling policy denoted by k̄ ◦ Tγ̄
is prespecified by k̄ and a transformation Tγ̄ constructed

by γ̄. The transformation Tγ̄ is defined as follows

x̄t = xt +

∫ t

0

eA(t−s)B(γ(x̄τs , τs, s)− us)ds.

This transformation recalculates the state that results, when k̄

and γ̄ were used and is independent of the applied con-

trols ut, t ∈ [0, T ]. This implies that the transmission

times τk are independent of ut, t ∈ [0, T ], which is in

accordance with Equation (7), i.e.

(γ, k̄ ◦ Tγ̄) ∈ [(γ̄, k̄)].

On the other, it should be noted that the prespecified

scheduling law k̄ ◦ Tγ̄ is not unique to represent the equiva-

lence class [(γ̄, k̄)]. But as it describes uniquely the behavior

of the scheduling law for any sample path within a equiva-

lence class, k̄ ◦ Tγ̄ replaces every other valid realization of

a prespecified scheduling law representing [(γ̄, k̄)] without

changing the evolution of the system.

Within a given equivalence class [(γ̄, k̄)] parameterized

by control policy γ, we want to find the optimal control

policy γ∗. For that reason, we state the following identity

taken from Lemma 7.1 in [16] with Lt and St chosen as in

(5) and (6):
∫ T

0

xT

t Qxt + uT

t Rutdt+ xT

TQTxT

=xT

0S0x0 +

∫ T

0

(ut + Ltxt)
TR(ut + Ltxt)dt

+

∫ T

0

tr[St]dt+

∫ T

0

dwT

t Stxt +

∫ T

0

xT

t Stdwt (8)

With Equation (8), the minimization of cost func-

tion J(γ, k̄ ◦ Tγ̄) defined in (3) can be written as

min
γ

J(γ, k̄ ◦ Tγ̄) = xT

0S0x0 +

∫ T

0

tr[St]dt+ E[λkT ]

+ min
γ

E

[

∫ T

0

(ut + Ltxt)
TR(ut + Ltxt)dt

]

.

As the sample paths of the counting process within [(γ̄, k̄)]
are equivalent for any γ, the communication cost, E[λkT ]
does not depend on the control policy chosen and can

be excluded from the minimization. With the estimation

error ∆t = xt − E[xt|It], we write further

E

[
∫ T

0

(ut + Ltxt)
TR(ut + Ltxt)dt

]

=E

[

∫ T

0

E
[

(ut + Ltxt)
TR(ut + Ltxt)|It

]

dt

]

=E

[
∫ T

0

(ut + Lt E[xt|It])
TR(ut + Lt E[xt|It])dt

]

+ E

[
∫ T

0

∆T

t L
T

t RLt∆tdt

]

. (9)

Last equality holds, because ∆t and E[xt|It] are orthog-

onal in the corresponding Hilbert space.
Next, we observe that ∆t is a random variable that does

not depend on the control law chosen within the equivalence

class for any t. This is due to linearity of the system evolution

given by (1) and the fact that the output and the internal state

of the scheduler is not controllable by ut. Therefore, the

last term in Equation (9) is constant within an equivalence

class and can therefore be omitted from the optimization.

The remaining cost function excluding all other constant

summands is non-negative due to R being a positive definite

matrix. The remaining cost attains 0, when the control law

is chosen to be given by

ut = −Lt E[xt|It].

Hence, the optimal controller within a equivalence class

is given by Equation (4). Within an equivalence class, the

control input ut can be recalculated at time t by Equation (4),

as the scheduling law is fixed. Therefore, the side information

channel transmitting the control inputs is not needed by the

scheduler.
Finally, by considering any arbitrary equivalence

class [(γ̄, k̄)], we are able to construct a pair (γ∗, k̄ ◦ Tγ̄)
having a cost

J(γ∗, k̄ ◦ Tγ̄) ≤ J(γ, k̄ ◦ Tγ̄).



Besides, the sets of equivalence classes partition the complete

space of admissible solutions. Thus, J attains its minimum

globally with γ∗ and a optimal scheduling law that is yet to

determine. This completes the proof.
Remark 1: It should be noted that in general the resulting

augmented output system has the dual effect for a fixed

scheduling policy. The term dual effect comes from the

dual role of the controller, i.e. (i) affecting state evolution

and (ii) probing the system to reduce estimation uncertainty

[17]. For systems, where the latter property is present, the

determination of the controller is in general very difficult.

By our construction of the equivalence relation, probing

the system by the controller will not reduce estimation

uncertainty, when considering scheduler k̄ ◦ Tγ̄ . This fact

facilitates the calculation of the optimal control law and the

task of regulating uncertainty within the system is fully taken

over by the scheduler.
Remark 2: It should be noted that a crucial assumption

of Lemma 1 is that the controller is allowed to be time-

varying. For time-invariant control laws, the proposed con-

sideration of equivalence classes does not carry over and

other approaches must be considered, e.g. [4], [10].
Remark 3: The additional side channel introduced in the

proof should be rather regarded as a technical means to prove

above lemma. It enables the use of standard approaches to

show that the separation principle holds within an equiva-

lence class. Eventually, any control input resulting from an

admissible control input can be recalculated by the scheduler

as ut is an Ft-adapted process.
The remaining issue is to derive the estimator E[xt|It] and

the scheduling policy. It should be noted that the estimator is

not necessarily equivalent to a estimator, where transmission

timings are predetermined beforehand. A counterexample

for this fact is given in [18] for the estimation of counting

processes. An intuitive explanation is that not receiving an

update can be used as information to improve state estimation

at the controller.
In the following, we revise the cost function defined in (3)

by taking Lemma 1 into account. Determining the optimal

scheduling policy reduces to

min
k

E

[

∫ T

0

∆T

t L
T

t RLt∆t + λkT

]

,

where ∆t = xt − E[xt|It] is the estimation error. At jumps

of k, that is at τk, the estimation error is zero, i.e.

∆τk = 0.

We observe that estimator and scheduler are coupled in that

the scheduler policy affects the estimator design and vice

versa. In other words, the state estimate E[xt|It] depends

on the scheduling policy k. This issue is resolved in the

following theorem by stating that the optimal estimator

is the equivalent to the state estimator for deterministic

transmission timings. Besides, Theorem 1 summarizes the

complete design procedure.
Theorem 1: The optimal event-triggered controller mini-

mizing (3) is given by

(a) control policy

ut = −Lt E[xt|It]

with Lt given by Equation (5),

(b) estimator

E[xt|It] = e(A−BLt)(t−τk)xτk and (10)

(c) scheduling policy k∗ which minimizes

JE(k) = min
k

E

[

∫ T

0

∆T

t L
T

t RLt∆t + λkT

]

, (11)

where ∆t is a jump-diffusion process
{

d∆t = A∆tdt+ dwt,

∆τk = 0
(12)

with initial condition ∆0 = 0.

Proof:

The structure of the optimal control policy is obtained by

Lemma 1. The decision, whether to transmit a state update

at time t is given by a Borel measurable set Ft ∈ R
n.

In order to cater for well-definedness, the complementary

set F̄t = Ft\R
n of this set is assumed to be open and

contain the origin for all t ∈ [0, T ]. In case of no update

is transmitted, this information can be used to improve state

estimation, because the controller knows for t 6= τk that ∆t

must be in F̄t. By considering the fact that the Brownian

motion process is a Martingale and the sub-level sets

Dc = {∆t|∆
T

t L
T

t RLt∆t ≤ c}

are point symmetric to the origin, it can be seen that

the sets F̄t are also point symmetric to the origin to be

optimal [12]. The remaining degree of freedom is a time-

varying bias term α(τkt
, t) added to the least-squares esti-

mate which does not incorporate additional knowledge about

transmission timings. Due to this fact and [19], the estimator

is given by

E[xt|It] = e(A−BLt)(t−τk)xτk + α(τkt
, t),

where α is a Borel-measurable functions of τkt
and t

mapping to R
n. The bias term α comprises the dependence

on the scheduling law k.

It turns out that any non-zero bias term α increases the

overall cost, as it increases the average estimation error and

transmissions occur more likely [12]. Hence, the optimal

estimator is equivalent to the optimal estimator for fixed

transmission timings. This implies that the optimal state

estimator does not depend on the scheduling policy and is

given by Equation (10). The estimation error evolution is then

given by Equation (12). As ∆t forms a time-inhomogeneous

Markov chain controlled by kt, the estimation error ∆t is

a sufficient statistic for determining the optimal scheduling

policy k by Equation (11), [20]. This completes the proof.

Remark 4: It can be observed from Equations (11)

and (12) that the optimal scheduler is a threshold policy
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Fig. 2. Optimal event-triggered scheduler with indicated switching thresh-
olds for different parameter sets. The upper graph considers no terminal
cost (QT = 0) of J . The lower graph considers cost J with terminal cost
xTQTx with QT = 1.

depending on the estimation error ∆t at time t. This ob-

servation reflects our intuition that the controller should

first be updated, when a certain amount of uncertainty is

surpassed. The threshold policy is computationally attractive,

as the scheduler at the sensor-side just needs to compute

the predicted estimate of the controller and compare it with

the current state. If the estimation error exceeds the apriori

determined threshold, the scheduler sends the current state

to the controller.

Remark 5: Optimization problem (11) can be solved

with stochastic dynamic programming by using discrete

approximations, which converge to the optimal solution,

see [21], [22]. These are used in the subsequent section in

order to determine the optimal event-trigger numerically.

IV. NUMERICAL VALIDATION

In order to conduct a numerical comparison with time-

triggered controllers, we consider a scalar diffusion process

given by (1) with A = 0, B = 1. The parameters of

cost function J in (3) are chosen to be Q = 1, R = 5
and for the terminal cost we consider QT ∈ {0, 1}. The

communication penalty takes values λ ∈ [0, 0.1]. We suppose

the optimization horizon is given by T = 1.

The optimal event-triggered controller given by Theorem 1

is compared with the optimal time-triggered controller which

may be asynchronous. For the time-triggered controller,

transmission timings are determined beforehand to minimize

the cost function J in (3). It is straight-forward to show that

for such type of controllers the optimal solution is given

by (a) and (b) of Theorem 1 and optimal transmission tim-

ings that are solved by deterministic dynamic programming.

Therefore, both optimal event-triggered and time-triggered

controller differ solely in the term JE given by (11).

Figure 2 illustrates the optimal event-triggered policy that

depends on the estimation error ∆t. The resetting thresholds

are indicated by the dashed lines for λ ∈ {0.001, 0.01}
and QT ∈ {0, 1}. In case ∆t reaches these thresholds, a

state update is sent to the controller and ∆t is set to zero.

It is clear that these thresholds increase with growing λ, as

transmissions are more costly and occur more sparsely.

In Figure 3 the optimal transmission timings for the

time-triggered controller are shown for various parameter

sets λ ∈ {0.01, 0.001} and QT ∈ {0, 1}. Transmission tim-

ings occur at jumps of kt. For the case of λ = 0.01 and

QT = 0, it is optimal not to sent any updates. For the con-

sidered settings, there is a similarity between optimal event-

triggered and time-triggered controller. When approaching

horizon T updates are transmitted less likely for both event-

triggered and time-triggered controller. This fact shows up

significantly, when the objective function has no terminal

cost.

Figure 4 gives a comparison between the optimal solution

given by Theorem 1 and the optimal controller that chooses

the transmission timings beforehand. As the optimal timings

for the optimal time-triggered controller are lower bounds for

optimal periodically sampled controllers, the dashed lines in

Figure 4 are lower bounds for the optimal periodically sam-

pled controller. It can be observed that the cost JE increases

by at least 50%, when optimal transmission timings are

determined beforehand instead of using the event-triggered

scheduler. For λ > 0.01 and no terminal cost, we have the

special case that it is optimal not to transmit any updates.

It is clear that for such setting event-trigger and time-trigger

have similar performance.

V. CONCLUSIONS

By considering an Itǒ diffusion process, this paper solves

the problem of jointly optimize the control and scheduling

policy of a non-classical cost function that incorporates

communication costs between sensor and controller. It is

showed that the underlying problem can be transformed into

tractable subproblems related to linear quadratic regulation

and optimal stopping times. These subproblems can be

solved by standard numerical methods. Numerical examples

demonstrate the efficacy of the proposed approach compared

to the optimal time-triggered controller. Future work includes

the extension to the infinite horizon case with discounted

cost, where ergodicity issues are to be considered, extension
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Fig. 3. Optimal time-triggered scheduling sequences for various parameter
sets. Update transmissions occur at jumps of k.

to partial observations at the sensor-side, non-ideal commu-

nications and extension to multi-terminal settings.

VI. ACKNOWLEDGMENTS

This work was supported in part by the German Research

Foundation (DFG) within the Priority Program SPP 1305

”Control Theory of Digitally Networked Dynamical Sys-

tems“.

REFERENCES
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