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Abstract

The use of multiple antennas at the transmitter and thevesein a wireless communication sys-
tem enables an efficient use of resources such as bandwiithearsmit power. On the other hand
this advantage comes along with an increased complexityea$ignal processing algorithms com-
pared to single-antenna systems. In this thesis four popplamization criteria for the design of
transmit and receive filters in Multiple-Input Multiple-@uut (MIMO) systems are covered. Those
include the problem of maximizing the weighted sum of thasgraission rates under a sum power
constraint. Quality of Service constraints in terms of mmnm and relative rate requirements for
each user are additionally taken into account and furtheziti@ problem of minimizing the trans-
mit power required to satisfy guaranteed rates for eachisgerated. The optimum solutions to
these problems are state-of-the-art, work iterativelyamdhumerically very complex. For practi-
cal purposes itis therefore desired to use algorithms tedéas complex but have some acceptable
performance losses. Those kind of methods are presentbdithesis along with a summary of
the optimum algorithms. In order to show the near optimunfigoerance of these algorithms not
only by simulations, analytical results are derived fortegss with infinite number of transmit
antennas and infinite number of users or infinite number @&iveantennas. In these large system
limits, the rates achievable by the algorithms become neiestic, although the characteristics
of the channel are random. The results obtained this waye ss\a good approximation of the
average performance in systems with finite parameters antharefore valuable for the analysis
of those systems.



1. Introduction

The use of multiple antennas in wireless communicatioresystenables strong performance im-
provements compared to single antenna systems. While Esantenna transmitter emits its sig-
nals omni-directional, with multiple antennas the transignals can be designed so that the sig-
nals emitted from different antennas superpose constalgtit desired spatial directions, whereas
they overlap destructively in other spatial directions.da&inally, receivers with multiple anten-
nas can combine certain signals constructively and beatfgoress interference from other trans-
mitters this way. Thus, significantly higher transmissiates than in single-antenna systems can
be achieved with the same amount of transmit power [1] or #meesperformance can be main-
tained at reduced transmit power, which diminishes interfee to other users. Thereby, these
Multiple-Input Multiple-Output (MIMO) systems ease satmultiplexing. This implies that a
multi-antenna transmitter transmits several differetadgmbols at the same time and on the same
frequency, which enables an efficient use of the rare reedhandwidth. Those data symbols can
be dedicated to different receivers or to the same recem@are they may be combined for error
correction or used for different data symbols. Vice versapdti-antenna receiver can better detect
data symbols from different transmitters. However, thes#gomance improvements come at the
price of increased complexity. Besides the increased renelvequirements of multiple antennas,
the numerical complexity of the signal processing algonghn the physical layer rises drastically.
While in single-antenna systems, the transmit power is tilg scalar parameter to optimize at
the physical layer, in multi-antenna systems the transndtraceive filters, that describe how the
signals for or from the antennas are combined, become veatoed. When only one transmitter
and one receiver are involved in the communication system,in single-user MIMO systems,
this fact is still manageable. There, the sum capacity, the. maximum theoretically achievable
sum of the error-free transmission rates, can be computeal ygular Value Decomposition
(SVD) [2]. However, in order to fully exploit the increasedrformance of spatial multiplexing, it
is inevitable to work with multi-user MIMO systems for mosesarios. In [3] for example, the
gains of multi-user MIMO compared to simpler transmissiohesnes based single-user MIMO
are evaluated. However, the computation of the sum capaciitieving filters in multi-user MIMO
systems is only possible with iterative, numerically irmexl algorithms. First, the optimum trans-
mit and receive strategy achieving sum capacity has beead@br the Multiple-Access Channel
(MAC) in [4], where several transmitters send different &ats to one common receiver. The
determination of optimum signal processing algorithmstfe MIMO broadcast channel, where
one transmitter emits different signals for several udeais,been enabled by the duality between
the broadcast channel and the dual MAC established in [5¢oirirast to the physical MAC de-
scribed above, where individual power constraints haveetmbt at each transmitter, in the dual
MAC a sum power constraint, which is the same as in the bradtennel, is considered over
all transmitters. This duality states that the same ratesehievable in the dual MAC as in the
broadcast channel. That is why the problem of determiniegogitimum signal processing filters
can be solved in the dual MAC, where the problem of sum ratemmaation becomes convex as
exploited in [6]. Nevertheless, that problem still has tosbéred iterative and in a numerically
complex manner. Additionally, the duality implies a nunsatiy complex transformation of the
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8 1. Introduction

filters optimum in the dual MAC to the broadcast channel aftewergence of the algorithm in the
dual MAC. In [7] the more general problem of weighted sum ragximization, where different
priorities can be assigned to the data streams, has firstdoderd for the broadcast channel. Fur-
ther computational burdens are introduced with additiaoalstraints on the rates, like minimum
rate requirements for each user as in [8], or relative ratesttaints as considered in [9], as those
problems are tackled by iteratively solving weighted sute raaximization problems. All those
algorithms are derived for frequency-flat channels, itere is only one temporal propagation path
between each transmitter and receiver. In case of mulbipaipagation, additional measures have
to be taken to mitigate the inter-symbol interference. @gtnal Frequency Multiplexing (OFDM)
can for example be applied to decompose each multi-patmeharto a system of frequency-flat
channels. Although the algorithms mentioned above arkeagfilicable in OFDM systems, the
dimensions of the matrices describing the effect of chapn@bagation increase making these
algorithms even more complex.

In order to overcome this drawback of high computational glexity, but still profit from the
benefits of multi-user MIMO, efficient and low complex algbms need to be developed, that
achieve the optimum solutions as close as possible. A puseesf this kind, named Successive
Encoding Successive Allocation Method (SESAM), has beepgsed for the problem of sum
rate maximization in [10], where it is shown by simulatiosults that it is able to achieve the sum
capacity at negligible performance losses. An extensidghdggroblem of sum rate maximization
with relative rate requirements is presented in [11]. Bo#thnods are based on the concepts of
spatial zero-forcing and successive resource allocatien,interference between spatially multi-
plexed data streams is suppressed completely, and daaanstage successively allocated to the
users. As the respective optimum algorithms, this methatilidbased on the principle of Dirty
Paper Coding (DPC). While its theoretical concept stathag parts of the interference can be
cancelled perfectly without affecting the transmissiadesais relatively simple, its near-optimum
implementation involves huge computational complexitivitgy up DPC introduces however ad-
ditional performance losses but further reduces the nwaldoad. In [12] the concepts of spatial
zero-forcing and successive resource allocation areftirerencorporated into an efficient algo-
rithm for sum rate maximization without DPC leading to adeéfe performance losses. However,
it has been designed for Multiple-Input Single-Output (@)Ssystems, where the receivers have
only one antenna.

In this book these concepts of successive resource albocatid spatial zero-forcing are used
to derive efficient near-optimum algorithms for a wide rammjeoptimization problems in the
MIMO broadcast channel. Chapter 3 focuses on the weightedrate maximization. Starting
with the original optimization problem, for which an optimualgorithm is reviewed in the first
section of Chapter 3, several simplifying steps are explhisnd introduced to this problem until
it can be solved efficiently and near-optimally. For thisgmse, first the case is covered that it is
still affordable to implement DPC, before further simpliions are made to consider the absence
of DPC. Quality of Service constrained optimization prabein the MIMO broadcast channel
are handled in Chapter 4. Those include the weighted sunmrai@mization under a transmit
sum power constraint and minimum rate requirements for aaehand the sum power minimiza-
tion to achieve target user rates. While the optimum algorgt, which are explained in the first
section of Chapter 4, rely on a iterative weighted sum ratgimization, the proposed efficient
methods work differently and are therefore only a littlernibre complex than the efficient algo-
rithms for weighted sum rate maximization. As in Chaptem& variants with and without DPC
are presented. Both Chapters 3 and 4 conclude with pregemtotedures for further reducing
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the computational complexity of the proposed algorithms mmmerical results. To underline the
close-to-optimum performance not only by simulation ressidome of the efficient algorithms will
be analyzed in the large system limit in Chapter 5. Theragbgaich case two system parameters
grow towards infinity, where their ratio remains fixed andténiln contrast to analysis methods,
where only one parameter, as the transmit power or the nuofilbgers, grows towards infinity, the
obtained results also serve as a good approximation of thiege performance in systems with
finite parameters having the same ratio. First, the numb&aasmit antennas and the number
of users become infinite, where for simplicity MISO systems analyzed. Afterwards MIMO
systems having infinite number of transmit and receive aratgrare analyzed. The notation and
system model used throughout this book are explained int€hamnd some concluding remarks
are given in Chapter 6.



2. Notation and System Model

Bold lower and uppercase letters denote vectors and msitriegpectively, where throughout this
book column vectors are use@.) " and(e)" describe the transpose and the Hermitian of a vector
or a matrix, respectivelyp;(A), tr(A), |A[, || Allr , and[A]; ; are theith eigenvalue, the trace,
the determinant, the Frobenius norm, and the element iniramd column; of the matrix A,
respectively. A" denotes the Moore-Penrose pseudo-inverse of the maAfrandvec(A) stacks

the columns of the matriXd in one vector.

ai
diag(ay,...,a,) =

Qp
denotes a diagonal matrix with the elememts . . , a,, on its diagonal and

Ay
blockdiag (A, ... A,) =
A,

is the notation for a block-diagonal matri¥; is the: x ¢ identity matrix,0; ; is thei x j zero
matrix, 1, is thei-dimensional all-ones vector aled denotes thg-th canonical unit vector.

span{A} ={y € C"|y = Az, 2 € C"}, null{A} ={x € C"|Ax =0,,,}

and (null{ A})* denote the range, the nullspace of the mattixc Cm x n and the orthogonal
complement to this nullspace, respectively.

For n-dimensional vectora € R™ andb € R" inequalities hold element-wise, i.&,< b is the
short notation for the system of inequalities

T T :
e;a<e;b Vi=1,....n

and for matrices the expression ‘0" implies positive semi-definiteness, i.&4, > 0 implies that
all eigenvalues ofA are larger or equal to zerda|", wherea € R", is the short notation for
max (0,1, a), where the maximum operator is applied element-wise, iig?, sets all negative
elements ina to zero. For a complex vectar € C* Re{a} andIm{a} returns the real and the
imaginary part of this vector, respectively.

Following [2], a random variable is Gaussian and circularly symmetric with meaand covari-
ance matrix@, which will be denoted as

x ~CN(z,Q)
in the following, if the vector{Re{w}} is a multivariate Gaussian variable with me%jnhe{:f}}
and covariance matrix

1 {Re{Q} — Im{Q}
2 [Im{Q} Re{@Q} |’

10



2. Notation and System Model 11

In this book a multi-user MIMO system with one base statioraccess point and users is
considered. The main focus is put on the downlink transimissie., the base station acts as
transmitter and the user terminals as receivers. The nuobatennas at the transmitter is denoted
by Nt andr; is the number of antennas at user The messages intended for each user are
different. Thus, from an information theoretic point ofwiea broadcast channel is analyzed [13].
Orthogonal Frequency Division Multiplexing (OFDM) is usedmitigate the interference caused
by multi-path propagation, commonly known as Intersymbtgiference (ISI), where the number
of carrier frequencies is denoted by An overview of the MIMO OFDM broadcast channel is
depicted in Figure 2.1. The source emits discrete symidls € Cé for each usek everyT,

s1(H) = _ | |
Transmit ! |
o(t) (t) Un(t) 'y (t)
N . Mod. - Demod. | 7* SP at R
sp(t)——f Signal :)@ Hi (1) @%:)@ k(1)
Processing 1
sk (t— | e (t) |
gic(t) yi(t)
L\ 5 Demod. SP at .

Figure 2.1: MIMO OFDM Broadcast Channel

seconds, so that

se(t) = > 6(t —nT.)si[n],
wheren, d, anddé(z) denote the index of the channel access, the number of syrirtboksmitted
to userk during one channel access, and the Dirac function respdctithe symbolss,[n] are
already preprocessed by source and channel coding, wher@sgumed that Gaussian codebooks
have been used for this purpose. This idealized choice isvatetl by the fact that those kind
of codebooks achieve the capacity of the MIMO broadcast asnshn [14]. Thus, the entries
of the s,[n] are circularly symmetric Gaussian with zero mean and umiamae, so thas[n] ~
CN(0,1,). Furthermore the transmission symbols for different useesuncorrelated. In the
following the different parts will be explained in detailefore a compact system model can be
introduced at the end, which will be used in the remainingobois.

Transmit Signal Processing

The signalss,(t) are processed at the transmitter as depicted in Figure 2.8rsADirty Paper
Coding (DPC) can be applied to the transmit signals. Durimchechannel access DPC further



12 2. Notation and System Model

Coding P? T,

iy =5 T == P>

1

P: Ty

Figure 2.2: Transmit Signal Processing

encodes the signais [n] leading to the symbols,[n], which are emitted every, seconds so that

zp(t) = > 6(t — nTy)xyn].

n=—0oo

The DPC principle has been proofed by Costa [15]. It doesImange the statistics of the signals,
i.e., xr[n] ~ CN (04, 0,14 ), and it states that interference that is known when a cesaimbol
[z, [n]]; is encoded does not affect that user’s rate. That rate isfthrerthe same as if this inter-
ference was not present. The interference for the symbaldattfirst on each carrier is unknown
and can therefore not be taken into account during encodlifigen another symbol is encoded at
second place on the same catrrier, the interference fronythba encoded first is known and can
be cancelled by DPC, while the remaining interference hbs toitigated by other measures. Cor-
respondingly, the interference for the symbol encodeddastbe eliminated completely by DPC.
Interference between symbols on different carriers isieted by OFDM, as shown in the next
section. Costa however only proofed the theoretical cancepPC. Practical near optimum im-
plementations for DPC are vector precoding [16] or the cgditheme from [17]. In the remainder
of this book the common idealized assumption will be made EHC can be implemented per-
fectly. As this implies a huge numerical effort, algorithmghout DPC will be introduced in
Sections 3.3 and 4.4, whesg [n| = si[n|,Vk = 1,..., K holds.

The linear precoding for each vectey(t) is split into the power allocation matricdd, € C% >4
and the beamforming matricds, € C““4, The jth column of the matrixI}, corresponds to
the beamforming vector for thgh data stream of usérnormalized to one, i.eejTTkHTkej = 1.
The P, are diagonal and contain the power aIIocations,da}éI?kej denotes the power allocated to
the jth data stream of usér. Thus theP, must be positive semidefinite. Additionally an average
transmit power constrain®r, is considered, which implies that

K

> tr(P) < Pry

k=1

must be fulfilled. Throughout this book the figures of meré& analyzed for a specific transmit and
receive strategy with fixed channel properties. For natali@onvenience the transmit filters do
therefore not depend on the channel access ind&he signake(t) € CYM after transmit signal
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processing is then given by

Zat—nT ZTkP xi[n Zat—nT n].

n=—0oo n=—0oo

OFDM Channel

The kth user’s channel is modeled byra x Ny channel matrixH,(t) and a tapped delay line
model is used to describe the effect of multi-path propagaflhus, theé:th user’'s channel matrix
is given by

Ly,
Hk(t) = ZHk,f(S(t — Tk,é)a

(=1

whereﬁM € C™*NT contains the complex attenuation coefficients of the chiasfrtbe propaga-
tion path with delayr, , andL; denotes the number of propagation paths of ésdihe properties
of the channels are assumed to be constant, which is wh&mﬁand the delays; , are indepen-
dent oft. The additive noisey,(t) € C"= experienced by uséris Gaussian circularly symmetric
with zero mean and power spectral dendRy, i.e., noise vectorgy,(t1) andny(t2) observed at
different time instances # t¢, are uncorrelated. Additionalhg(¢) is uncorrelated to the noise
vectors of other users. The effect of modulation, demodiatnd the cyclic prefix can be in-
cluded in the channel model to obtain an effective frequeapyesentation of the OFDM channel
as shown in Appendix Al. Thus, tie¢h user’s channel is modeled by the;, x C' Nt matrix

C Ly

Hy =" ST Hyoexp(j2n fu(rin — is)) Ser =

c=1 /=1

Ly,
= blockdiag <Z I:Ik,g exp(72m fo(me1 — Tk,Z))) , (2.1)

/=1
where
Sc,k - [Ork,(cfl)rka Irka Ork,(Cfc)rk} 5 Sc,T = [ONT,(cfl)NTa INT7 ONT,(Cfc)NT} 5 (22)

and the received signgi.(¢) is a sum of Dirac impulses, which is given by

ye(t) = Y 8t = ((n+ )T, + Tep + 1) yeln]

n=—oo

with Tg, being the length of the cyclic prefix in OFDM. The symbglgn| compute according to

yiln) = Hln] + nifn) = H, S Ty Piw,[n] + milnl, (2.3)

m=1

i.e., the symbolg, [n| experience no interference from the pervious transmit ®ysb,, [n — 1],
m =1,..., K. The effective noisg,[n] € C“"* contains circularly symmetric Gaussian variables
with zero mean and covariance matrix

Ry, = E [m[nln Z T RS, = f blockdiag (Rk, o Rk) L (24)
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whereT is defined via the system’s bandwidth

B=—.
T

Throughout this book it is assumed that the channel mat#fesr alternatively the matriceﬁu
and the delays; ., { = 1,..., L are perfectly known at usérand that the transmitter has com-
plete and perfect knowledge of the channel matriegsof all users. Clearly, this assumption is
idealized and most realistic in slowly time-varying sceosrlike for instance indoor office envi-
ronments. For an overview of finite-rate feedback schembsravthe channel matricdd,, are
perfectly known only at uset and fed back at a fixed and finite rate, the reader is referrgkBio
References [19] and [20] focus on finite feedback scheme$IDNDsystems, where correlations
between channel matrices of adjacent subcarriers areitegfor feedback reductions. The per-
formance of the algorithm presented in Section 3.2 with dv@ite rate feedback schemes has
been analyzed in [21], a new low complexity feedback metlowdtis algorithm has been pro-
posed in [22].

Receive Signal Processing

The signaly,(t) is finally processed by a linear filt€, ¢ C°"+*4 as depicted in Figure 2.3, so
that the estimatiog,(¢) of the transmit signas (¢) is given by

8k(t) = Gllyk(t).

The receive filter<s, are usually determined at the transmitter, as each usetysaware of its

Yi(t) D) S(t)

Gy

Figure 2.3: Signal Processing at Receiker

own channel matrix, but a good filter design must be basedekrtbwledge of all users’ channels.
The filters are therefore communicated in a signaling phaga® transmission. Similarly to [23]
or [24], first common pilot symbols are sent to the users, wiiee pilot symbols are precoded so
that the estimate is equal to the filters to be applied at ttevers. To detect which of the estimated
filters should be used by a certain user, user identifierseareaer the precoded channels in a
second phase. Alternatively, [25] proposes signaling masewith quantized feedforward of the
terminals’ filters.

Summarizing the results of the previous sections a compateism model can be established as
depicted in Figure 2.4. where a discrete signal model fontipputput and noise symbols is used.
The system parameters are summarized in Table 2.1. In theemdar of this book noise covariance
matrices

Ry = NoI;,
will be used, which implies that
NO 0'2
Rk = ?ICW - EnICrka
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[
/
N \/
J
i
|
¥

N|—=

=)

sk o >>1 ﬁ)@ >:>%: >:§ EA
Coding : P? T, H, G}
(optional) a:K[nL N N : el
sk |n] S 5 e |~ — >:>%ﬁ > $x(n]
P: Ty Hy G
nx[n]
Figure 2.4: Compact OFDM System Model
Parameter | Meaning
Nt Number of transmit antennas
Tk Number of receive antennas at uger
K Number of users
C Number of carriers
Pry Transmit power constraint
dy, Number of data streams allocated to uker
P, € CHxd Diagonal power allocation matrix of usgr
T;, € CONTxdx Precoding matrix of uset with normalized columns
H) € COmxChr Block diagonal OFDM channel matrix of user
G, € COrexdx Receive filter at uset
xp[n] ~ CN(0g, 1, 14,) Transmit symbol for usek duringnth transmission slot
ni[n] ~ CN(0¢,,, 22 1,,) | Additive noise for usek duringnth transmission slot
Sk[n] Estimated symbol at usérduringnth transmission slot
Table 2.1: Overview of System Parameters
with

o2 = NyB.

Using this simplification and the fact that the transmit spisk: ;. [n] and the effective noise vectors
nk[n| are circularly symmetric Gaussian random variablesktheiser can at most transmit error-
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free at arate

2 K
GIG2 + GYH, T, P, T'H!'G, + G{H,, | 3. TP, T| H'G,

meZy

Ry, = log,
) K
G!G.% +G/!H, | > T,P,T!| H]'G,

meIk,
-1
2 K
%JrGI,;IHk S T.P.T!| H'G,| GI!HT.PI'H!G,
m=1

meZy

= 10g2 Idk + GEGk

(2.5)

where it must be ensured that each maG#G,, is invertible, i.e., has rank,. In caseG;, contains
linearly dependent columns one has to combine those coltmrorse data stream, so that the rate
expressions in (2.5) can be statéfi. denotes the set of users that interfere with usein case
DPC is not usedZ,, contains all active users except ugerOtherwise, all users that are encoded
after userk can be found ir¥,, where for that case it is assumed in (2.5) that the encodiuher as

the same on all carriers and data streams of the same usearcaded simultaneously. Note that
the case of colored noise, i.e., th are not diagonal, can be easily considered by using channel

_1 . LN ~ ~
matricesH,, = R, ° H;, and receive filter&s;, = R;Gyin (2.5), whereH), and G,denote the
actual channel matrices and receive filters in the systemawifored noise, respectively.



3. Weighted Sum Rate Maximization in the MIMO Broadcast
Channel

The problem of weighted sum rate maximization is treatechia thapter. First, an optimum
algorithm will be presented in Section 3.1. The conceptspatial zero-forcing and successive
resource allocation will be introduced in Section 3.2 anebu® derive an efficient near-optimum
algorithm, when DPC can be applied at the transmitter. Du@@ocomplexity associated with
practical implementations of DPC, an algorithm without DR{Il be presented in Section 3.3.
Although these algorithms are already able to reduce theplity of the optimum algorithm
drastically at little performance losses, further compiereductions for these methods will be
presented in Section 3.4 before the chapter is concludddnuitnerical results in Section 3.5.

3.1 Optimum Algorithm

Mathematically, the maximization of a weighted sum of therasrates under a sum transmit
power constraint reads as

K
max Ry,
{Ty,Pr,Gr,7 (k) }o=1,.... K0 ;Mk ¥
K
st.Y tr(P) < Pr, e TiTie;=1Yj=1,...,Cr,Vk, P;=0,PdiagonalVk,
k=1

(3.1)

where the rates$;,, compute according to (2.5). The weights are given a priori and reflect the
priorities assigned to the corresponding user from higégens of the communication systepm),
can for example be proportional to the queue length of datagia waiting for transmission to
userk (e.g. [26] and references therein). Solving (3.1) leads tat@a vector on the boundary of
the capacity region [7, 14] and for this purpose DPC has topipied [14]. Hence, an optimum
encoding order has also to be found in (3.1), which is reftebtethe variableg (i), i = 1,..., K.
The userr(7) is encoded aith place, i.e., the function

Foll L KY s {1 K ie 7). (3.2)

maps the encoding positianfor DPC to a user index. According to the principle of DPC
explained in the last chapter, the sétdn (2.5) are given by

Tp = {7() € {1,..., K}|j > i, 7#(i) = k}. (3.3)

By using receive filters

NI

K —1
> TumT;{] H,?) H,T,P?, (3.4)

meZy,,m=k

on
G, = ICrk,E + H,,

17



18 3. Weighted Sum Rate Maximization in the MIMO Broadcasai@iel

which minimize the Mean Square Error (MSE) between the veckand the desired signal, the
ratesRiRy in (2.5) compute according to

K
Ic,, % + H,T,P,T"H} + H, > T.P,T)!| Hf
meZy

Ry = log, , (3.5)
K
Io,, %+ Hy | > T,P,TH| Hff

meZy

i.e., become independent of the receive fil&}s The rates in (3.5) correspond to the rates achiev-
able before receive filtering. As receive filtering can ordwér the rates and additionally the
constraints in (3.1) are independent of the receive filtéwes optimumG,, are given by (3.4) and
Problem (3.1) reads as

max Z ,LLkRk =

{Ty, Py 7t(k) }=1,...,

K
Iow, + SHLPTIHY + SH, | . T.P.T) | H!

m=1
meIy
{Ty, Py, 7%%2 Lo Ky Z Hik 10g2 K ’
I, + $Hy | Y T,P,TY| HY
B (=)
K
S.t. Ztr(Pk) < P, elTi'Te;=1Yj=1,....Cr,Vk, P, =0, P, diagonal Vk,
k=1

(3.6)

As the objective function in (3.6) depends only on the carmse matrice®), = T, BT} €
CCENT<CNT the maximization can also be conducted with respect téxhand can be stated as

K
I, +U—C%HkaHE+U—C%Hk > Qn| HY
=1

meZy

max lo ,
(Qu(k) e _,KZ“’“ 52 .
ICrk + %Hk Z Qm H]EI
m=1

meZy

K

st. Y tr(Qx) < Pr, Qi =0,k (3.7)

k=1

Note that the optimum transmit filter vectdls and P, can be obtained from any decomposition
of the optimumQ, = T}, P, T}, as long as the constraints on thein (3.6) are fulfilled. Choosing
theT}, as the eigenvectors @}, and P, as the diagonal matrix containing the corresponding non-
zero eigenvalues for example leads to a set of transmit fiketors fulfilling these constraints.
Unfortunately, Problem (3.7) is non-convex and can theeefmt be solved straightforwardly.
However, the duality between the broadcast channel anduhleMlltiple Access Channel (MAC)
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from [5] can be applied to obtain the optimum covariances emecbding order from a convex
optimization problem as described in the following. Theldyamplies that the transmitter in the
broadcast channel becomes the receiver in the dual MAC aridhhuser terminal sends the same
data symbols,[n] as dedicated to it in the broadcast channel to the receiberatiditive noise in

the dual MAC is also additive Gaussian with zero mean andrcovee matrix%ICNT. In contrast
to the physical MAC, the channel between usand the receiver is given b}’ and a sum power
constraintPr, across all users has to be fulfilled in the dual MAC. Additibnanstead of DPC
in the broadcast channel, the receiver applies Successiggdrence Cancellation (SIC). This
implies that interference from symbols decoded before taicesymbol can be subtracted before
decoding that symbol. This interference does thereforeathice the rate for that symbol. Under
these conditions arate vectdt,, . . ., Rx|" achievable with an encoding ordefi) and covariance
matricesQ;, . . ., Q fulfilling the power constraint in the broadcast channellso achievable
in the dual MAC under the same power constraint with covagamatriced¥V,, ¢ C¢™+*¢"+ and

a decoding ordef (7). The decoding order in the dual MAC is the reverse encodidgroof the
broadcast channel, i.e.,

7(i) = #(K —i+1), (3.8)

which implies that the user encoded last in the broadcasingids decoded first in the dual
MAC [5]. Note that thereby counterintuitively users thav@#o be considered as interferers in the
broadcast channel are suppressed by SIC in the dual MAC ardrersa. Thus, in the dual MAC
the users interfering with usérare given by those users not contained in the interferencg,se
of the broadcast channel, except ukgwhich does not interfere with itself. The relation between
the covariance®V,, in the dual MAC and th&),, in the broadcast channel is given by the duality
transformations in [5]. As a consequence, the encoding @i covariance matrices maximizing
the weighted sum rate in (3.7), can also be obtained from ght&id sum rate maximization in the
dual MAC, which is given by

K
Ion, + SHW . H + 5 | Y.  HI'W,H,
n n m=1

K =
mgI,, m#k
Wt e, i ;Mk log . ’
Ion: + % >, HiW,H,
T ot
K
st.Y tr(Wi) < P, Wy = 0,Vk, (3.9)
k=1

where the maximization is conducted directly over the beaatlencoding ordet(k), which is
related to the decoding order in the dual MAC via (3.8). Thempm decoding order in the dual
MAC is given as the inverse order of the weights [27], i.eg tiser with the smallest weight is
decoded first, the user with the second smallest weight éetcselcond and so forth until the user
with the highest weight is decoded last so that

paa) < pa@) < - < HEEK), (3.10)

which is equivalent to

(1) = i (2) (3.11)

\Y
\Y
=
/:t
3



20 3. Weighted Sum Rate Maximization in the MIMO Broadcasai@iel

using (3.8). The optimality of this decoding order can beofed similarly to Theorem 2 in [28],
where the MAC with single antenna users and a single antesugaver is considered. If a group
of users has equal weights, any decoding order within tlesigmill lead to the same optimum
of the objective function. Taking the optimum decoding ontéo account, Problem (3.9) can be
simplified to

max Apy logy |1, Witm)Him) || =
{With=1,.. .k ; pi 108y | tony + Z (m) ( )]
= max Rwsr(Wl7 e WK),
{Wite=1,.. .k
K
st.Y (W) < Py, Wi = 0,Vk, (3.12)

k=1

where
" k=K
Auk _ M (k) 5 .
Mz (k) — Ma(k+1), k:177K_1

Note that due to (3.11), thé\y, are greater or equal to zero. Finally Problem (3.9) consists
of an objective function concave in th&,, and convex constraints sets, which make the whole
problem convex. It could therefore be solved by interiomponethods (e.g. [29]). Nevertheless,
some more efficient algorithms have been published sincdisicgevery of the duality between the
MIMO broadcast channel and the dual MAC. Viswanathan etaleliirst proposed an iterative al-
gorithmin [7] to solve (3.12). In each iteration a rank-ompelate of one user’s covariance matrix is
performed, convergence is however very poor [30]. The &lgois in [31] and [32] use conjugate
gradient methods with projections, where the first algamithorks with the precoding matrices
in the dual uplink instead of the covariance matri¢®%. Hunger et al. propose an algorithm
in [30] which also relies on a projected gradient, but usésrdint update rules for the covariances
matrices in each step than [32]. It exhibits a faster corererg than the other mentioned algo-
rithms and wiII therefore be reviewed in the following. Beging with initial covariance matrices
Wk(o) = Czk ICT,C the algorithm iteratively updates the covariance matrscethat an increase

in weighted sum rate occurs until the improvement from oaatton to another is less than a pre-
defined threshold. Each iteration consists of two main steps, an unconstlagnadient update
and an orthogonal projection. The first step implies thatthariance matrices are changed in the
direction of the steepest ascent of the cost function acogtd

1 PTX
TSR (@ (W0, Wi Y)

Wk( 1) sz 1)

&, (Wl(i_l), o W}j‘”) ,

_ (3.13)
where Wk(’_l) denotes the covariance matrix of ugeafter theith iteration and the gradients

b, (WfH), o W[((H)) compute according to

W[(;;D) _ 8Rwsr(W1, . WK)

&, (Wfi*”, L S
k

K

C C
= Ap;——H,, | 1, —
Z 'LLJIIIQO'% k( ot g

j=r=1(k)

~1
H (i—1) o
> HY Wi Hﬁ(m)] ) H}' (3.14)
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where#~! (k) denotes the inverse of the encoding function in the broadtesnel, i.e.7~!(k)
is the encoding position of usér. The scaling withPr, divided by the sum of the gradients
in (3.13) increases the speed of convergence [30]. The r$avstep sized is initialized with
d® = 1 and possibly updated after the projections, which mightdmeasary as described later.

As the gradients,, (Wl(i_l), o W}f‘”) are positive semidefinite anti2) > 0, the matrices
Wk(i) are also positive semidefinite but do generally not fulfi# Bum power constraint. For this
reason a projection back onto the feasible domain is negessa second step. For this purpose
an orthogonal projection is used which minimizes the eretineen the matriceWk(’) and the

matriceku(i), which fulfill the sum power constraint. The error is therebgasured in terms of
the Frobenius norm so that

(i) _ : 20 i
{Wk }k:1 ..... T Wa(uir)gmln Z W, — W, o
{ k }k,1 ,,,,, K
K
st tr (W,ﬁ“) < Pr, W =0,V (3.15)

Solving the Karush-Kuhn-Tucker (KKT) [33] conditions ofddlem (3.15) yields
. . . + .
w U 20 - Mox| OO, (3.16)

where[A]" sets all negative elements in the matdxto zero ancU,gi) and 2,(;) stem from the
Eigenvalue Decomposition (EVD) of the matrix

WO — g OO, 3.17)

The Lagrange multipliek is determined iteratively so that the transmit power camstis fulfilled
with equality, i.e.,

K , K . +
(W)=Y u ([2,(;) ~ Moy ) = Pry,
k=1 k=1

which can be done as described in [30, Corollary 1]. It canéwaw happen that with the new
covariance matriceWk(Z) the weighted sum rate decreases compared to the previqusi.ste

Rusr (Wl(i), o W}?) < Rusr (Wl(i_l), o W}f‘l)) . In that case the step size with which the
gradients®,, (Wfi_l), cee W}f‘”) in (3.13) are multiplied has been chosen to large and must

therefore be reduced. For this purp@§e_1) is increased by one and the steps (3.13) and (3.15)
must be repeated. In case the weighted sum rate is still ldhaerin the previous step, further rep-
etitions are required until an increase in the objectivefiom is obtained, where in each repetition
4"V is increased by one. The value fdf " which finally leads to an increase in the weighted
sum rate is then retained for the next iteration, idé).,: dl(i_l). The steps required to solve (3.12)
are summarized in Algorithm 3.1.

Algorithm 3.1 has been proposed for single-carrier systehmeseC' = 1. By applying the algo-
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Algorithm 3.1 Projected Gradient Algorithm for Weighted Sum Rate Maxatiian in the Dual
MAC using Orthogonal Projections

1 WY = L1, Yk

e
2: d =1
3i=1
4: repeat

: (i-1) (i=1)\ _ 9Rwsr(Wi,.Wk)

5. &, (W1 W ) — el ‘Wfi” _____ i T
6: repeat

x-(1) (i—-1) 1 Pry (i—-1) (i—-1)
! Wil =W "t S o (ee (WY W}?*”))qjk <Wl o Wi )’Vk
8.  Compute EVDW,”) = U WU vk,

. . . + .
o: wl) = ol [2,(;) — AICNT} UM vk, where) is determined via implicit equation
. +

K b ([2{;’ — Moy | ) — Pry
100 if Rue (Wf“, L W}j)) < Rus: (Wfi*”, o W}j*”) then
11: di=D =qt-b 41
12: end if

13:  until Ry (Wf”,...,W}?) > Rysr (Wl(ifl)’---awf(;il»
14 d® = g(-Y)

15: 1=1+1

16: until Ry (Wfi), . W}é’) — Rust (Wl(Fl% ce Wl(gil)> <€
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rithm to multicarrier systems one would expect the compyeixi be cubic in the number of carri-
ers, as matrix inversions and EVDs@fVt x C'Nt matrices are required in (3.14) and (3.17), re-
spectively (see [34] for the complexity of matrix inverssosnd [35] for the complexity of EVDS).
By exploiting the block-diagonal structure of the channeltmeces H,, [c.f. (2.1)] however, the
complexity grows only linearly in the number of carriers. aths because the matricwk(“

are block-diagonal as long as all matricﬁsfi’l) are block-diagonal, since in this case Equa-

tions (3.13), (3.14), and (3.16) preserve the block-diafjstructure. With block-diagonal/,io)
and the fact that Algorithm 3.1 always converges [30], thenopm covariance matriced/;, will
therefore also exhibit a block-diagonal structure. A magenous proof for that fact can be found
in [36, Section 3.1.2.]. Thus, Equations (3.14) and (3.H5n) lse decomposed into independent
equations withVt x Nt matrices and therefore be solved more efficiently.

For the special case of equal weights, iLg.= ... = ux, Problem (3.12) reduces to the pure sum
rate maximization, which reads as

max log, |1, W ) H.o || =
{Wite=1,...K g [Lon: + Z (m) ( ( )]
K
st. Y (W) < Pr, Wi = 0,k (3.18)
k=1

Although Problem (3.18) can also be solved with Algorithrh, 3he simplified objective function
compared to (3.12) has induced the development of diffesehition methods. During one it-
eration of the iterative water-filling algorithm proposed6], first each user’s noise+interference
covariance matrix is computed assuming that the transmérc@mnce matrices of the other users re-
main the same as in the previous step. This assumption erablesed-form solution for transmit
covariance matrices maximizing an estimated sum rate. élimagrices are then used to update the
covariance matrices in the iterative algorithm. The coraponh of the update requires one matrix
inversion and a complete EVD for each user. To avoid the diffies related to the convergence
properties of iterative-waterfilling, a modification of thkgorithm is presented in [37] and in [38]
an improvement for the update rule of the covariance matigproposed to achieve faster conver-
gence. In [39] Yu solves Problem (3.18) via the minimizatidhe Lagrange dual function with
two nested loops. During the inner loop the optimum covagamatrices for a fixed Lagrange
multiplier are determined in an iterative manner, wherénatration again require&” matrix in-
versions and< EVDs, while in the outer loop this multiplier is adjusted licbnvergence. An
improvement of the convergence behavior can be achievetidoynbdification from [40]. Nev-
ertheless, those algorithms are not able to outperform &thaed from [41] in terms of speed of
convergence and computational complexity. The numeyicainplex EVDs are avoided by using
a scaled projected gradient algorithm that optimizes tleequers in the dual MAC instead of the
covariance matrices. Thus, complexity is further reduedithough/A matrix inversions are still
required in each iteration for the computation of gradients

3.2 Spatial Zero-Forcing and Successive Resource Allocan with Dirty Pa-
per Coding

Despite the advancements in reducing the computationaplesity of finding the optimum co-
variance matrices for weighted sum rate maximization, lizae been described in the previous
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section, achieving the optimum solution still remains a patationally complex problem. Al-
gorithm 3.1 features an iterative nature and each iteragguiresC' K inversions of Ny x Nt
matrices to compute the gradients of the objective fundtidrine 7 andC' K complete eigenvalue
decompositions olNt x Nt matrices in Line 8. Additionally, the complexity of the tsfarmation
of the optimum covariance matrices in the dual MAC to the Hoaat channel is approximately as
high as the complexity of one iteration of Algorithm 3.1. Flois reason an efficient non-iterative
algorithm for weighted sum rate maximization will be presehin this section that is able to
achieve the optimum solution closely at drastically reduo@mputational complexity.

3.2.1 State-of-the-Art Near Optimum Approaches

To attain an efficient near optimum method for weighted sute maximization two comple-
mentary simplifications will be made in the following, namdhe introduction of zero-forcing
constraints and a greedy resource allocation. Zero-fgroincombination with DPC has been
proposed in [42] for MISO systems. The optimum encoding adarsers and the selection of
users that receive non-zero powers is however only solvexhl®xhaustive search in [42], which
becomes infeasible with increasing number of users. Tu dmeh Bherefore propose in [43] to de-
termine an encoding order in a greedy manner, i.e., to erntbedgeser with the strongest norm of its
channel vector first and then to encode in each step thathegeads to the strongest increase in
sum rate provided that the encoding order determined inque\steps is kept fixed. A method for
complexity reduction of this algorithm based on Householdsformations is presented in [44].
For MIMO systems, zero-forcing and DPC has been combined5h vhere each user receives
as many data streams as it has receive antennas and allréatasbf the same user are encoded
simultaneously. It is shown in [45] that this scheme is asiytigally optimum for infinite SNR,
where any encoding order is optimum. For finite SNR, findirgdptimum set of active users and
the optimum encoding order for DPC is solved by an exhauseasch in [45], which is why a
greedy determination of the encoding order is describedi6h In each step the user to be encoded
next is the user that leads to the strongest increase in g@mfarthermore simplified selection
rules are proposed in [46] avoiding the explicit computagiof sum rates for each candidate user
in each step. Alternative simplified selection rules ars@néed in [47] and [48]. While the greedy
approach can be extended straightforwardly to the problenemhted sum rate maximization by
choosing in each step the user that leads to the strongesas®in weighted sum rate instead of
sum rate, the aforementioned simplifications are only apple to the problem of sum rate max-
imization. Furthermore the mentioned approaches assiharej, or zero data streams to user
which can be sub-optimum, especially with zero-forcingstaaints. For these reasons an efficient
algorithm for weighted sum rate maximization exploitingsal zero-forcing and a successive re-
source allocation will be presented in the following, whgr@ number of data streams allocated to
a certain usek can vary fron0 to r, and which exhibits the potential for further complexity ueel
tions, which will be explicated in Section 3.4. An algorittion weighted sum rate maximization,
that is based to some extend based on the same principles aich the complexity reductions
derived in Section 3.4 can also be applied, is presente®irfAapter 6]. However, this algorithm
is much more complex as it is of iterative nature and onetitaraxhibits the same complexity as
the method presented in the next sections.
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3.2.2 Spatial Zero-Forcing

As in Section 3.1, Problem (3.1) is the starting point fordleeivation of a near-optimum efficient
algorithm. To end up with such a method, first zero-forcingstmints are introduced to that
problem, so that after receive filtering each user expeeemo interference from other users.
Mathematically, the zero-forcing constraints can be emnhs

P:G/H,\T, P} =04 4,, Ymé&TI,Vk, (3.19)

where the multiplication withP;> assures that data streams wif |, = 0 do not impose zero-
forcing constraints. The sefg are given as defined in (3.3) and thus Problem (3.1) reads as

K
C 1
max log, | I, + — (GG GY'H.T.PT'H'G, =
{Tk’Pk’Gk’ﬁ(k)}k_le;Mk 2o [LCry, U%( k k) pddp L Ly 11, Gy
K
sty tr(P) < Pr, €] T'Tie;=1,Yj=1,....dk, P =0, P diagonal vk,
k=1
P:G/H,T, P} =04 4,, VYmé&TI,Vk. (3.20)

In contrast to the optimum, the receive filters cannot be reda@ priori from the optimization
problem as in (3.6), because the constraints in (3.20) aremger independent of the receive
filters. Additionally, the optimization with zero-forcingpnstraints cannot be conducted with re-
spect to the transmit covariance matrices. Neverthelesgréctical systems one is interested in
the transmit filters anyway, for which reason an algorithmectly delivering the transmit filters
and thus avoiding the final decomposition of the covarianagioes is desirable. Obviously, with
the additional constraints the optimum weighted sum ragaltiag from (3.20) will be smaller or
equal to the optimum value of the objective function in (3H9r high SNR, i.e., fory, — oo, the
zero-forcing constraints are fulfilled at the optimum anyvaad the two optimization problems
lead to the same solution. Additionally to these inter-ussp-forcing constraints, the matrices

1
G} H, T, P? will be constrained to be diagonal in the following, i.el,ddta streams of the same
user must not interfere with each other. In contrast to tkerdaser zero-forcing constraints, those

1
intra-user zero-forcing constraints do not influence thenoygm, as the matrice¥;, P> can be
multiplied from the right-hand side by an, x d;, orthonormal matrix without changing the ob-
jective function nor the constraints in Problem (32280 d these degrees of freedom can be used to

make the matriceé?l,ijTkP,f or equivalently the matrice&}! H, T}, diagonal. Additionally, the
matricesGy,, can be multiplied from the right-hand side by any invertile< d;,, matrix also with-
out changing the objective function nor the constraintsusTttonstraining=}! G, to be equal to
thed,, x d,, identity matrix does also not influence the optimum solutiddding those constraints

!As the matricesP;, are diagonal and the matric@% contain columns with norm one, the power constraint can
1 1 1 1
be also written a$ s, tr(Py) = S, tr (TkP,f p? T,f) = YK tr (TkP,j U U P? T,f) < Prx, where
U, € C%>dx js an arbitrary orthonormal matrix with, Ul = I, .
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to Problem (3.20) leads to the following optimization pierol

K
max lo
{Tk, Pr,Gr, (k) Ye=1,... . ;0 ; 1082

,,,,,

C
I, + EGEHkaPkaHHEGk ,
n

K
st.Y t(P) < Pr, € Ti'The; =1,Yj=1,...,d;,Vk, P, =0, P, diagonal, Vk,
k=1

PG H, T, Pi, = 04.4,, Ym €L,k GyHT; = diagonal vk, G}G) = I4,"k.
(3.21)

Introducing the vectors
ty,; = Trej, grj = Gre;j

and the scalars
-
pk,j = ej Pkej,

3 , 1 1
so thatT, P2e; = ./pr,tx;, the inter-user zero-forcing constrain®’ G H, T,, P2 = 04, 4,
become

w/pk,jpm,égllg{,ijtm,é = 0, \V/j = 1, ceey dk,‘v’ﬁ = 1, . ,dm,‘v’m € Ik, \V//{?,
the intra-user zero-forcing constraints read as
g]Iinktk,g = O,VJ = 1, .o .,dk,w = 1, .o .,dk,g #],Vk,

and the orthogonality constraints on the receive filtersifiéi@nt data streams allocated to the
same user, i.eGI Gy, = I, , can be re formulated as

Gimrj =0,Yi=1,... de,m=1,....dyj#m,Vk.

Thus, Problem (3.21) can be rewritten as

K dy,
C
max lo 14+ —ppiglt . Hity t2 Hlg, ) ,
{5590, Pk, Yi=1, ... dy k=1,... K AT (K) boo=1,..., K;Mkal 82 ( U%p/wgk,] 70k Sk g
K dg
S.t. Zzpk},j S PTXa tllijtk,] - 17 g]I:’]gk,j - ]-7 Pk,j Z Oavj - 17 <. '7dk7\v/k:7
k=1 j=1

glIg_I,mgk,] = Oa\v/] - ]-7' <. 7dkam - 17 . '7dk7j 7& ma\v/ka
w/pk,jpm,égllg{,ijtm,é = 0, \V/j = 1, ceey dk,‘v’ﬁ = 1, .. ,dm,‘v’m € Ik, \V//{?,
VePeeGh i Hitey =0,Yj =1, dp, V=1, dy, ( # j,VE. (3.22)
Hence, the MIMO broadcast channel is decomposed into amysfescalar subchannels free
of interference. Thejth data stream of usek can be transmitted error-free at a rate of
log, (1 + %pwg}jjﬂktk,jt}j’jﬂ,ﬁlgk,j) and the optimum power allocation boils down to a water-
filling alike algorithm so that the optimum, ; are given by

0.2

n
Dkj = [Nk —
! [ C’gifijtk,jtngEgk,j

(3.23)
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wheren is determined so that the transmit power constraint is kdfilvith equality, as shown in
Appendix A2. Despite the fact that the power allocation hesone relatively easy through the
zero-forcing constraints, Problem (3.22) is non-conveddifionally, neither transforming (3.22)
to the dual MAC nor introducing zero-forcing constraintstime dual MAC leads to a convex
problem. On the other hand, directly working in the broatichannel, as it will be done in the
following, offers the advantage of avoiding the numerigca&kpensive transformations from the
dual MAC to the broadcast channel required for the optimulutsm.

In multicarrier systems, wher€ > 1, the optimum broadcast covariance matrices have a block-
diagonal structure, which follows from the fact that theimptm covariance matrices in the dual
MAC are block-diagonal [36, Section 3.1.2] and the dualignsforms from [5] preserve this
structure. This implies that the optimum transmit filtdisand the optimum receive filtei&,,
also exhibit a block diagonal structure. This is not necglgsthe case with zero-forcing con-
straints at finite SNRs. Nevertheless, theand theG, will be enforced to be block-diagonal
in the following. Besides the fact that the optimum filtere Atock-diagonal and it is desired to
achieve this optimum as close as possible with a reduced leaitypalgorithm, the symbols can
be encoded independently on all carriers in this case, vehj@nt encoding necessary without
block-diagonal transmit filters would lead to long encoddedays and increased computational
complexity. Adding these constraints to Problem (3.22)liegpfor the vectorg,, ; andgy, ; that

all its elements must be zero except in the rows that correspmthe carriery(k, j), where

(k. §) : {1,...,K},{1,...,m}§xxdk} o {1, CY: (K §) v (k)

is the carrier over which th¢th data stream of usér will be transmitted. In the following the
condition of block-diagonal filters will be formulated as

t=S8:S.1t, 9=2>5.,5.19 (3.24)

with the selection matriceS. r andS. ;. defined in (2.2). Note that with this restriction inter-carr
interference is not present, i.e., the zero-forcing Cm\/mgi{ijtm,g = 0 are fulfilled

by (3.24), ifg; ; andt,, , are the filters for data streams on different carriers, writhe case for
y(k, §) # 7 (m, ).

The maximum weighted sum rate in the broadcast channel caotbeved by a user-wise encod-
ing [14], i.e., alld, data streams of usérare encoded at the same time. Additionally, the same
encoding order is applied on all carriers. With zero-fogcoonstraints, however, the encoding
function 7(7) as defined in (3.2) may no longer be optimum. For this reasemdhtriction on

a user-wise encoding in (3.22) is abolished and an arbigaopding order of the data streams
is allowed. This also implies that data streams of the saree msy be encoded at two non-
consecutive encoding positions, for example at first andificplace. For sum rate maximization,
l.e., equal weightg, = - - - = g, this relaxation of the encoding order is one of the key prope
ties of the Successive Encoding Successive Allocation bte(BESAM) presented in [10], which
distinguishes SESAM from other successive zero-forcing@gches such as [46]. Consequently,
the zero-forcing constraints in (3.23) need to be modifietbisws. Due to the block-diagonal
structure of the precoding vectors tfib data stream of uset experiences only interference from
data streams allocated to the same carrier, i.e., datarsgrga;j) for which y(m,¢) = ~(k,j)
holds. Interference from data streams encoded beforéhidata stream of uset is cancelled by
DPC. Those are the data streams on the cayfier, ¢) with 7(k, j) < w(m, ¢), where the encoding
function

(k. j) : {1,...,K},{l,...,ml?x(dk)} s {1,..., N7}
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returns the encoding position of thith data stream of uséron carriery(k, j). Thus the remaining
interference must be suppressed by the precoders and théoreing constraints therefore imply
that

V pm,épk,jgg,,éHmtk,j - 07 V(k’, j) Wlth 7(m7 E) = 7(]{:7 j) andﬂ-(kv j) > 7T(m, E) (325)

for all possible tuple$m, ¢). Note that the inter- as well as the intra-user zero-forcogstraints
are considered with (3.25), as the case= k is not excluded from (3.25). With the modified
encoding order, the optimum power allocation (3.23), aeddguirement on block diagonal filters,
Problem (3.22) becomes

K d,
C
max log, [ 1+ Hyt, jt)  H)! ) )
RSP - S ; M ]21 2 ( 2]% Jgk] kUi, jli 41 Gk, j
K dg o2 +
s.t. Pej = Prxs  Prj = |k — : ’

it =1, gign; =1V =1,... d"Fk,
;= SyT(k,j),TSw(k,j),Ttk,ja Gr,j = SyT(k,j),kSw(k,j),kgk,j,Vj =1,...,dy,Vk,
Gimry =0,Yi=1,...,de,m=1,... dy,j #m,Vk,

VPPt Hmtrj = 0,Y(m, £) with v(m, £) = ~y(k, j) andz(m, £) < x(k, j),V(k, 5).
(3.26)

3.2.3 Successive Resource Allocation

Problem (3.26) is still non-convex and furthermore comtwnal. That is because for its solution
one has to test all possible encoding#, j) and all possible carrier allocationgk, j) for the
maximum weighted sum rate, which becomes infeasible ajregith a moderate number of users
and carriers. For this reason a successive approach willitseied in the following. This implies
that for initialization all users have zero data streanss, d,, = 0, Vk. At first, a data stream is
allocated to that user that can achieve the largest weightede data stream rate. Consequently,
the userk(1) to which the first data stream is allocated, the correspgnttamsmit and receive
filters t;)1 and gi)1, and the carriery(k(1), 1) on which this data stream is transmitted are
determined according to

{tk(l),lagk(l),la Y(k(1),1),k(1)} = argmax ju;, logy (1 + PTxgHHkttHHl?Q)a

t.g,c.k
stt't=1 g'g=1 t=5/S.tt, g=5].5.19. (3.27)

The maximum is achieved by alignirg i) . andHf(l)tk(l),l so that

1

gr),1 = Hiyytra)a
\/ oy Hi Hreytr,

and Problem (3.27) reads as

{teaya,v(k(1),1),k(1)} = argrrzax prlogy(1 4+ PRt HI Ht), sttit=1, t= SCTTSQTt.
t,c,
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Thus, t;1),1 is the unit norm eigenvector corresponding to the princggénvalue of the ma-
trix H}j(l)Hk(l), which implicitly fulfills the carrier separation constnai(3.24) due to the block-
diagonal structure of the channel matrices. The casriéf1), 1) is therefore determined implic-
itly by the block matrix WithinH,Ij(l)Hk(l), which exhibits the maximum eigenvalue amongst all
block matrices. After solving the optimization, the vat@h, needs to be updated th = 1
andw(k(1),1) is given byr(k(1),1) = 1. Additionally, for the algorithm auxiliary variables.,

¢ = 1,...,C will be required in the following, where,. denotes the number of data streams
allocated to carrier and which are all initialized with zero except (),1), which is given by
nyk),1y = 1. For the future allocation steps, the carrier allocatidh(1), 1) the encoding po-
sition 7(k(1), 1) and the filterst, 1)1 andgy 1), are kept fixed. The user which receives a data
stream in the second step is then determined so that the t@dighhm rate becomes maximum
giveny(k(1),1), m(k(1),1), tyq), and gy, of the first step. Continuing this way and keep-
ing the carrier allocation, encoding position, transmid aaceive filters fixed after each step, the
optimization problem in théth step reads as

{8h(i).dugey +15 (i) dy iy +1, V(K (D), diy + 1), k(i) } = argmax

t.g,c.k
K dk’
C 2 C 2
Z o ZlogQ <1 +obr }gg,ij'tkuj}Q) + g log, (1 + —SPrdi+1 ]gHHktlz) ;
k=1 j=1 n n
sttlt=1 t=S8/:S.1t, g'g=1 g=5].5.9, (3.28)
+ +
p N % p n o
K = K — 5| 5 DPkdet1 = k— T3 >
C ‘gl?’,ij’tk’,j 9 § C ‘gHHkt‘Q
K dk’
Z Zpk’,j + Prdpr1 = Prxs /Prdp1PmiGon (Hut =0, V(m, ) with y(m, () = c,
k=1 j=1

Note all other zero-forcing constraints in (3.26) are awtoally fulfilled by fixing the transmit
precoders and receive filters from previous steps. Thatigus® the vectdy, ; must be orthogonal
to all vectorsH g, , with w(m, ¢) < w(k,j) andy(m, ) = v(k,j), whenpy. 4, 1pme # 0. As
in each step of the successive allocation the new data sisealways encoded last on the chosen
carrier, the vectorg,, , with =(m, ¢) < n(k,j) andvy(m, () = ~(k, j) have been determined in
steps previous to the step in which the vedtpy is computed. This implies that zero-forcing
constraints already considered in previous steps remdiith aad are not affected by the current
allocation.
As for the first allocated data stream, it is optimum in Prab(8.28) to align the receive filter of
the new data stream to the corresponding transmit filteriptieldl with the channel matrix so that
1

k(i) dpy+1 = Hk(i)tk(i),dkuﬂrl m m . (3.29)
\/ k(i),dk(i)+1Hk(i)Hk(i)tk(i)vdk(i)JFl

2
That is because such an alignment maximizes the channe|@ain, ., +1Hx i) tr(i),d, ., +1| and
2

the constraintgy, g
(i), dy iy +1, AS

dyy+1 = 0 are already considered by the zero-forcing constraints on

g/I:,ngtk(i),dk(i)H = glIg_I,égk(z'),dkarl \/tg(imk(i)HHE@)Hk(z)tk(i),dk(i)+1 = 0.



30 3. Weighted Sum Rate Maximization in the MIMO Broadcasadiel

Additionally, the carrier separation constraints on theenee filters are fulfilled as long as the
transmit filters obey to the carrier separation constrairhtst t,(C andg be the transmit and
receive vector that maximize (3.28) assuming that the nate stream is allocated to userFor

a given user allocation the optimum weighted sum rate isddyynmaximizing the channel gain

N2 . .
’g( M| = 0" H )

so that
{té)a ()} — argmax t" H)'Hyt, stt't=1t= S!St
t,c

th HEH,t =0, Y(m,()withy(m, () =c, (3.30)

Wherec,(j) is the carrier to which a data stream will be allocated if tegtrlata stream is allocated
to userk and it is initially assumed that,, ;px. 4,1 # 0. Defining the projection matriPéQC that
projects into

null {¢'\ H'Hy, ... &', H'Hy, ..t H{Hy, .. tg, HiHy}
the zero-forcing constraints can be inserted into the dlgtunction of Problem (3.30) so that

{t,(j, c,(;)} — argmax t" POCHIH Pt sttt =1 t=S7.S.1t. (3.31)
t.c
The maximum is achieved by choositl,(ﬁ to be the unit-norm eigenvector belonging to the prin-
cipal eigenvalue of the matri® ) H H, P{).. The projectorP\). exhibits like the Gramian
channel matricedd;' H; a block-diagonal structure, as all vectdrs, obey to the carrier sepa-
ration constraint (3.24). Therefore all eigenvectors @‘mhlatncesPéFZCH HHkPéPC also fulfill

the carrier separation constraint in (3.24). The optlmumle:tac,(g) is, as in the first step, given
implicitly by the position of this block of the matriPéQCHEHkPéQC which exhibits the strongest
principal eigenvalue. Note that the determination of tl@$mit filters according to (3.31) facili-
tates the computation of the projection matrid@&tl) for the next step, which can be computed
according to

(i) yrH +9 O pra (3
pith _ p@) PDPCHk( )Hk() k(i )t k(i) Hk( )Hk(')PDPc (3.32)
ppc — L DPC ( ),H (7) ( ) .
k(z) H;?(Z)Hk(i)PDchE( )Hk(z) k(i)

AS ti(i) dy 1 = tﬁj()l.) is the eigenvector corresponding to the principal eigere/aif the matrix
PSQCH,%H,C(Z-)PE()QC, it does certainly not lie in the nullspace of the projed®f, i.e.,

(@) _ pl) 406)
iy = Porcti) (3.33)
and
P L(up)cH (z)H k(i )tz(g() ) — P E()lD)CH (Z)Hk(i)P E()lD)Ctl(cZ()z') = (P L(up)cH (Z)Hk(z')P é2c> tl(cz()i)'
Using these properties in (3.32), the projeoféﬁcl) simply computes according to

i+1 7 H
Pl = Plc— 1t (3.34)
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Consequently, all transmit vectatis; are orthogonal to each other. Another consequence of (3.33)
Is that the vectors,(j) do not have to computed explicitly and it suffices to detesnthre principal
eigenvalueg, (PSQCHEHkPSQ ) That is because the weighted sum rate only depends on the
terms

. N2 . . . e (i i
o0 H )| = O EE ) = 0 P H Y B

and, ast,(f) is the eigenvector corresponding to the principal eigare/abf the matrix
PéZP)CHIIc-IHkPéZFZC’

1V PLYCHIH, Plyct) = 1 (P HL Plyc) 339)

The userk(i) can then be chosen according to

k(i) = argmax R\(,f,)SR(k:) (3.36)
k
where
- K dk’ C
R\(/t/)SR(k) = Z )25 Z 10g2 (1 -+ ;pk/dtll;l/’ngHk/tk/’j) +
k'=1 j=1 n
C ~ (i (i
+px log, (1 t SPrd+1P1 <P|§p)cH/?HkPé3c>) ,
n
+ +
p [77# J% ] p nu a,%
ki — K q H ) k,dp+1 — k — N . )
Ctp jHy Hyty ' Cp (PE()ZP)CHII: H, Py )
K dk’
Z Zpk’,j + Prdp+1 = Prx. (3.37)
k=1 j=1

Although very unlikely, it can however happen that a preslglwassigned data stream receives
zero power in the current allocation step, despite the fadtit has received a non-zero power in
a previous step. Assume that in thk step one obtains from (3.28) that ; = 0 for some tuple
(k', 7). Due to the properties of the successive allocation sucts@ can only occur for usefs
with pu # ). Then all transmit filters,, , for data streams allocated to the same caryiéf, c)
after thejth data stream of usér have been chosen in previous steps to fulfill the zero-fgrcin
constraints

g Hity, ¥(m, 0) with v(m, () = y(K', j) andm(m, £) > =(K, j), (3.38)

as in those stepg; ;p.,¢ # 0. In step: however, it is no longer necessary to fulfill (3.38), as
nowp ; = 0. A performance improvement can therefore be achieved mnmpating all transmit
filterst,,, and receive filterg,, , with v(m, ¢) = v(k’, j) andw(m, ¢) > =(k’, j) not considering
the zero-forcing constraints (3.38). _

Atthe end of theth stepty. i) a, ., +1 IS 9iven byt i) ., +1 = t;’()i), the variables (k(), dps) +1) =

CSZ» andm(k(z), drey + 1) = ", + 1 are stored for future steps adg; andn. (.4, +1) are
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incremented by one. For equal weights it is shown in [50] thiswe last data stream receives zero
power during testing, the corresponding user will not beced in future steps and can therefore
be excluded from the selection process without performagaactions. The algorithm terminates,
if the data stream allocated last receives zero powernceimprovements in weighted sum rate
can be achieved any more, or at the latest, if no degrees eddra are left to fulfill the zero-
forcing constraints, which happens aftémin (Vy, Zle 1) steps. The algorithm is summarized
in Algorithm 3.2. For equal weights, i.eu; =,...,= ux the algorithm is identical to the Suc-
cessive Encoding Successive Allocation Method (SESAMpesed in [10]. In this case the user
selection in (3.36) boils down to selecting the user, whictrm PSQCHEHkPéQC exhibits the
strongest principal eigenvalue.

The method proposed in [49, Chapter 8] also works with zerohfig, but uses a different suc-
cessive allocation scheme. It considers the dual probletineoiveighted sum rate maximization,
where the sum power constraint is dualized. The algoritlemaiively searches for the optimum
Lagrange multiplier corresponding to the power constiayrtisection, where in each step the user
allocation, transmit and receive filters are determinedsnaessive manner so that the dual func-
tion becomes optimum. That leads to the same rules for thertrit and receive filters as (3.31)
and (3.29), respectively. Thus, one iteration of this &dthar is as complex as Algorithm 3.2 in
total.

3.3 Spatial Zero-Forcing and Successive Resource Allocati without Dirty
Paper Coding

The algorithm presented in the previous section still satie DPC and numerically complex meth-
ods such as vector precoding [16] or the coding scheme fr@imfiist be used as practical imple-
mentation for DPC. The latter scheme also exhibits long eéimgpdelays. Tomlinson-Harashima
Precoding (THP) [51, 52] is a less complex implementatioDBfC, but associated with perfor-

mance losses. The reasons for those degradations arenelai[53]. Nevertheless, THP still

exhibits practical challenges, such as the implementationodulo operators at all receivers due
to the dynamics of the received signals. Therefore, an ggorfor weighted sum rate maximiza-

tion that solely relies on linear transmit and signal preogs will be proposed in this section.

Besides the fact that the algorithm does not rely on DPC nbis-iterative and therefore exhibits
a low computational complexity.

3.3.1 State-of-the-Art Near Optimum Approaches

When part of the multiuser interference cannot be canceéjedPC, the problem of maximizing
the weighted sum rate is non-convex. So far, there existdgarithm that solves this problem
optimally. Only for the special case of two users and siragleenna receivers a method to achieve
points on the boundary of the rate region achievable wigdiprecoding is presented in [54]. An
algorithm that converges to a local optimum in the vicinifyttee initial starting point is proposed
in [55]. As the algorithm requires in each iteration uplirdhlink conversions of the filters based
on the duality from [56] and a geometric program must be sbineach step, it is extremely com-
plex. The method in [57] is also iterative and relies on tHatsan of geometric programs. Besides
aiming at maximizing the weighted sum rate, [57] consideesaroblem of feedback reduction for
this optimization. Projected gradient methods are use88hdnd [59] for near optimum solutions
to the weighted sum rate maximization with linear precodifgr the problem sum rate maxi-
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Algorithm 3.2 Reduced Complexity Algorithm for Weighted Sum Rate Maxiatian with DPC

1: Initialization: d, = 0, T}, = [|, G, = [|,Vk=1,..., K, n.=0,Ve=1,...,C
2: Pipe= Ion,

=1

4: while i < C’min(szz1 rr, Nt) do

5:
6:

N

10:

11:

12:

13:

14:

15:
16:

17
18
19

for k=1to K do .
. K K/
R\(/:/)SR(k) = > log, (1 + %pk’,jt}j’,jﬂgﬂk’tkﬁj) +
k=1 j=1

+ 1 log, (1 + S Pkdr1P1 (PSQCHEHkPéQC>) :

+ +
Prg = | % p = (np %
0 ey s = g kydi+1 = k—
! Oty Ao et ;| * Cpm (PSP)CHEHkPép)C> ’
K dk’
Yo > P+ Pt = Prx
k=1 j=1

cl(f): index of block WithinPéQCHEHkPSQC that contains principal eigenvalue
end for ‘
k(i) = argmax R\(,f,)SR(k)
k

Remove data streams that have received zero power and ratE)R\@SR, PSQC transmit
and receive filters if necessary _
Bii)de +1 = ArgIMAX tPRCH, Hyo Plct, sttt=1, t=S7, St
k(i) i)’
1

k(1),dg ;) +1HIIC{(Z') Hk(i)tk(i),dkm +1

k() diiy+1 = Hio(iy i), dy iy +1 \/tH

Ty = [Tr(iy trti)dugsy +1), Grp) = [Gk(i)agk(i),dk(i)+1]
dk(i) = dk(z‘) + 1, ’y(/{i(i), dk(z‘)) = Cl(:()z‘)’ W(k(i), dk(i)) = ncs()~) + 1,nc<¢) =n + 1

k(i) k(i)
H(i+1) _ pli) H
Pppc’ = Pppc — tk(i%dk(i)tk(i),dk(i)
1=14+1
: end while
D P, Py < waterfilling with channel gaing', HY' Hty g, ...ty , Hi Hictg g,

cfork=1to K do
20:

P, = diag (pr1, .- Dra,)

21: end for
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mization it is proposed in [45] to determine first the covac@ matrices according to the iterative
water-filling algorithm optimum for the DPC case from [6] androject these matrices afterwards
so the part of the interference occurring through the alsseh®PC is cancelled. Algorithms for
selecting the appropriate subgroup of users for this meginegroposed in [60]. In order to ease
the objective function and the power allocation, zero4{fageconstraints can be introduced. In case
the total number of receive antennas in the system is loveer tithe number of transmit antennas,
Block-Diagonalization (BD) as proposed in [61] can be useddcompose the MIMO broadcast
channel into a system of scalar interference-free sub@&spover which the transmit power can
be distributed by a weighted water-filling algorithm. Howeun practical systems itis more likely
that the total number of receive antennas exceeds the nwhtvansmit antennas and there are not
enough degrees of freedom to serve all users simultanedttstyefore user selection algorithms
are proposed in [62] and [63] when the weights are equal farsalrs.

By introducing zero-forcing constraints optimization piems in the MIMO broadcast channel
become combinatorial, as one has to test all possible catbis of data stream allocations to
users, where the total number of data streams must not exiceedimber of transmit antennas.
Even in case the total number of receive antennas is smiadleithe number of transmit antennas it
is not necessarily optimum to allocate as many data streaeech user as it has receive antennas,
as proposed with BD in [61]. To avoid an exhaustive search¢hvhecomes infeasible already
with a moderate number of users, greedy approaches candhentsere in each step a data stream
is allocated to a user so that the increase in the objectivetiftn becomes maximum. For MISO
systems and sum rate as objective function such an appreadbelen proposed in [12], for which
a low complexity implementation is presented in [64]. Thenptexity can be further diminished
by excluding users from the allocation process which chiwewors are aligned closely to those
of the already selected users as proposed in [65]. The daomgether two channel vectors are
aligned closely is thereby based on an a priori fixed threskalue. Selecting channel vectors
as little aligned as possible by a method from graph theopyaposed in [66]. In [67] a greedy
maximization of weighted sum rate in MISO systems is considevhere a lower bound for the
weighted sum rate is utilized during user selection. Onesipddy to apply these algorithms to
systems with multiple antennas also at the receivers is tioqme SVDs at each receiver, apply
the left singular vectors as receive filters and treat eveogyrct of right singular vector and the
corresponding singular value as virtual user in a MISO sysis proposed in [65] for the algo-
rithm presented therein. An analysis for this algorithm ihWND systems with a large number
of users extending the results from [65] can be found in [6B}e concept of SVD receivers is
also used in [69] and [70], where additionally the aspecteefiback reduction is considered so
that each user only has to make known a singular vector toréimsritter if the corresponding
singular value is above a certain threshold. In [71] the dyespproach from [12] is extended to
MIMO systems by applying SVD receivers and modifying theseeivers in case more than one
data stream is allocated to the same user. Another possifoitiapplying the greedy algorithms
proposed for MISO systems to MIMO is antenna selection, @eery receive antenna is treated
as different virtual user, as considered in [72] for sum ragéximization with equal weights. The
general concept of an algorithm of this kind for an arbitrabjective function and an efficient
computation of the precoding vectors is described in [73inéye sophisticated antenna selection
for a preselected group of users, which have in sum lessveeaatennas than number of transmit
antennas, is presented [74].

Thus, most of the prior works dealing with greedy zero-fogcapproaches assume that the receive
filters are given a priori by singular or canonical unit vestand are, apart from [71], not changed
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during the execution of the algorithms. In [75] the sum ratapproximated in each step so that
the receive filters can be included into the successive aaion. However, besides the fact that
this approximation becomes more and more inaccurate watie@sing SNR, the receive filter de-
termination is reduced to a selection between the left samguectors for complexity reasons at
the end. The greedy algorithm from [23] chooses in each siepeceive filters to maximize the
SNR of the newly allocated subchannel ignoring the effethistfilter on the SNRs of previously
allocated subchannels. Furthermore the algorithm is megéor sum rate maximization only and
a fixed power allocation is assumed complicating its sttaigiward application to weighted sum
rate maximization. For this reason, in this section an algaor will be presented that is based on
greedy approach and zero-forcing but includes the recdigesfinto the successive weighted sum
rate maximization.

3.3.2 Spatial Zero-Forcing
When no DPC is used, the séisread as

Ik:{jE{l,...,K}‘j#k},

I.e., all other users interfere with user With those sets of interfering users, the same derivations
can be conducted as in Section 3.2.2 for the DPC case, iter; end intra-user zero-forcing
constraints are introduced, where the latter do not infleestimality, leading to the stream-
wise formulation of the optimization problem in (3.22), thptimum power allocation is given
by (3.23), and the carrier separation constraints are lesttald as in (3.24). Through the abstinence
of DPC, all signals can be encoded simultaneously, i.eretiseno optimum encoding order, and
interference from all data streams on the same carrier hias tmnsidered with the zero-forcing
constraints. Considering these changes compared to BrdBIl€6), the optimization for spatial
zero-forcing without DPC is given by

K dy,
C
max E i E log, (1 + ﬁpk,jggjﬂktmti{jﬂggk’j) ,
n

{te9k,57(k9) =1, dy, k=1, K = ]

K dyg o2 +
s.t. Prj = Pr«i Prj = |t — . '

tllijtk,j = 17 g;gjgk,j = 1, tk,j = S;r’TSQTtk,j, gk = S;Ijksquk,j, VJ = 1, ce dk,VkZ,
g,gngk,j =0,Vn=1,...,dg,7=1,....dg,j #n,Vk,
w/pk,jpm7ggTIfL7ZHmt;w- = 0,Y(m, 0) with y(m, €) = ~v(k,j),V(k,5) # (m,{). (3.39)

For notational convenience it will be assumed in the follmgvihat all data streams receive non-
zero powers, i.ep;; > 0,Vj = 1,...,d;, Vk. The casey; = 0 for some tuple(k, 7) will be
revisited later and should be avoided anyway by an inteiligdocation. Then, the zero-forcing
constraints read as

G Htij = 0,%(m, £) with y(m, €) = y(k, j),¥(k, j) # (m, €)

and the water-levej is given by

K dm

Pry + on
Tx m; 4:21 Capy (Hmtm ol (JHY g 0

itk g

77:
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By defining the composite channel mat#&.omp, as
[ QE1H1 1
gElel

Hcomp - :
H
gK,lHK

_gIH(,dKHI%_
and introducing the channel gains
Akj = g]Ig-I,ijtk,th];I,jHl?gk,j

as new variables, the zero-forcing constraints in (3.38)a@written compactly as

Hcomp[tl,la cee >tK,dK] = diag (\/ >\1,1, V4 )\K,dK>

so that Problem (3.39) reads as

1
K dy Prz+ 2 25
m=1/¢=1 ”
max max g [Lk g logy | Ak jttk = ,
{9k, 7 (Eod) i =1, dg k=1, K k5 A5 =1, dy k=1, K 1 i1 Ek’:l i Ay

S.t. Heomp[tis, - .-, trcay ] = diag (\/AM, o \/)\KAK) L My =0, Vi=1,...dVE,

tite; =1 GGk =1 ti;=SitSertij,  Grj = SipSerghy, Vi=1,...,dy,VE,
gllimgk,jzoa \V/j:]-7"'7dk7m:17"'7dk7j7ém7\v/k:7
H
Hcomp: [H{{gl,la ceey HngLdl? ey H]%QK,M ceey HI%QK,CZK} . (340)

The maximization with respect tq ; and\; ; is solved by

1
Akj = e T , (3.41)
en,m (HcomPHcomp) enk,j
where -

k'=1

denotes the row, in which thgeth data stream of uséris placed in the composite channel matrix
Homp, and

[tl,lu Ce 7tK,dK] = T = Hggmpdiag (\/ )\171, V4 )\K,dK>
— HY o (HeompH L)~ diag (, YR /AK,dK> .
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The proof can be found in Appendix A3. Due to (3.41) the spitfj_, S.7%, Al needed to
compute the water-level can be written compactly as

Mx
Il
Mw

ml
D52

m=1 /=1

Z (HoompHlsng) €0, =t [ (HuompHlbog) '] =
=1
( COmpHcomp) CompHg)mp(HcompHg)mp) }_ H OmpH (3.43)

= tr

'—‘H

and Problem (3.40) reads as

K d
- ! i Prys 2t H ompH
o > ey logy [ — —— ,
{9k,5:7(k.5)} g =1, dpy k=1, K 1 1 enk’j (HcompHcomp) €n, Zkle ,ulc’dk’
S-t-gk,j = ZkSc,kgk,ja Vi=1,...,d,VEk,
gl{:{,]gk,] - 17 gIIc—I,mgk,j - Oavj = 17 SRR dka m = 17 R dk)] # ma\v/ka
H
Hcomp= [HPQM, cee H1H91,d1, S H}%QK,M cee H}%QK,dK} . (3.44)

3.3.3 Successive Resource Allocation

Although with the zero-forcing constraints the transmiefis could be eliminated from the op-
timization, Problem (3.44) is still combinatorial and noorvex. For this purpose a successive
resource allocation is proposed as in the DPC case. Therefach user receives zero data streams
at the beginning, i.ed;, = 0 for all usersk. The userk(1) to which the first data stream is allo-
cated to, the corresponding receive filtgf,), and the carriery(k(1), 1) are determined so that
the weighted rate a user can achieve with single-strearartrission becomes maximum, i.e.,

{gray1,v(k(1),1),k(1)} = ATGIAX i log, (1 + Preg" H H}'g)
g.c

st.gllg=1, g= SCTJCSQ;CQ. (3.45)

Problem (3.45) is solved by choosimg;); as the unit norm eigenvector corresponding to the
principal eigenvalue of the matrikl;, ) HH(l) As with DPC, due to the block-diagonal structure
of the matricesH ) Hyy,), this solution fulfills the carrier separation constraintighe carrier
v(k(1), 1) is implicitly given by the index of that block matrix withifZ, 1)H,§I(1 that exhibits the
strongest principal eigenvalue. The u&é¢r) has to be found be evaluating the maximum single-
stream rates for all users with the corresponding optimueeive filters. Note that for equal
weights, k(1) is the user with the maximum principal eigenvalue of the ioesrH; H}'. At the
end of the first allocation, the variabg ) is updated tel,;) = 1. For the future allocation steps,
the receive filterg, 1), and the carrier allocation(k(1), 1) are kept fixed. Proceeding similarly
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with the next allocation steps, the successive allocatioblpm in thesth step can be written as

{9n@).diy+1, VE(D), diy + 1), k() } =

K dyr Lk ( Pr. S 4+ || HE 2)
= argmax Z X Z log, ’ TX_Uf H Comi}F
g.ck k'=1 j=1 ez;k’,j (HcompHg)mp) enk,/’j (Emzl ,umdm + /Mc)

Fok (PTXJ_C,% + HH‘:TJmpHg

—1
T (el (s + 1)

+puy log,

. 27 H
s.t.g = S;r,kSC,kga g'g=1, gllj,mg = 0,Vm with y(k,m) = ¢,  Hcomp= [HéomlpLHHlI:g] )
(3.46)
where '
HC(%L)’H = [H{{gl,h cee HFgl,du cee H}%QKJ, cee H}%QK,dK} (3.47)

denotes the composite channel matrix after sted. The objective function in (3.46) depends on
the diagonal elements of the matl(iﬂcom,)Hg,mp)71 [c.f. (3.43)] which are given by

( g"H P{VHg NG j<i

T H 1 _ HE, B HE J

€; (Hcomplicomp) € = f sl o (3.48)
— = =1
9" H P\ H}lg’ J

lin

as shown in Appendix A4.
Pj(z‘) _ T(z'fl)ejejTT(zel),H

is a rank one projector, where

i i—1 i—1 i1\t 1 i—1 i—1
76D = [60, 0] = (D) ding <\/>\§71 >,...,,/Ag(7d;).

contains the precoding vectors, if the allocation is stolpgieer step — 1. The matrix]f’,i(,f) Is a
projection matrix that projects into the nuIIspacd%féﬁqg so that

BY = Iy, — HEDH (HD H(z‘—l),H)*1 HD (3.49)

lin comp comp comp comp *

P is block-diagonal and®)) = Icy,.

a7 = T (H(i—l)H(z‘—mH)_l e (3.50)

ij comp ++comp
is the inverse channel gain of thth data stream in step— 1 so that

NG P S !
LN i i -1 :
Qny, elk,j (Héom}))Héoml)vH) €ny

Thus, it can be seen from (3.48) that with the additional Zercing constraints the channel gains
of the subchannels allocated in previous steps diminishtayr squal, which occurs for every
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column inT® which is orthogonal tgg™" H,,. With (3.48) the Frobenius norm of the pseudo-
inverse of the composite channel matrix as defined in (3.d@)puites according to

i—1 o .
> ¢"H P Hf'\ga[ ™" +1

= tr [ H 1 71] . +3 ol =
H ompHF ( ComPHcomp) gHHkP,,(n)HHg ; J
H ()
_9 B9 i 35
gHA(i)g ’
k
where the identity
K dk”
Y>> ¢"H.B) Hfga Zg H,P"Hj'go|""
k=1 j=1
and the definitions
AV = HPYHT B =Y H,PVH'\"V + I, (3.52)

j=1

and

have been used. Inserting these results into the objecinaion from (3.46) yields

{91600 1.7k D), doy + 1), k() } =

K

) ) X::lﬂmderﬂk
(P +al ) gAl g+ g"Bl"g
argmax log, =
ek E md =+ Kk
m=1
K A o Oz?(j_l_) Hr 1\ “
=X St o (A0 + P ) g ) <o ()
=1 j—1 ’ i Hk
s.t.g = SCTJCSQ;CQ, glg =1, g}img = 0,Ym with v(k,m) = c. (3.53)

As with DPC, Problem (3.53) is solved in two steps. First facle userkt the receive filterg,(j)
and the carrierj,(f) are determined to maximize the weighted sum rate assumatighté next data
stream is allocated to uskr Rewriting the sums of logarithms as the product of its arguis and
considering the fact that the logarithm is a monotonicallyréasing function, i.e., maximizing the
argument of the logarithm is identical to maximizing thedathm, the optimuny,(j) andcﬁj) can
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be found from

.4} -

K

) . . Z Hm 1

((PTX% + d“*”) g"AYg + gHB,(j)g> e k
argmax —
g.,c K mZ:I Hmdm‘i’ﬂk K dk/ ( ) ( ) (i—1) M/ Wk
(Zl umdmwk) 111 ( (A + m,P}) H]') gT) (+)
m= k'=1j5=
s.t.g = SCTJCSQ;CQ, glg =1, gk7mg = 0,VYm with v(k,m) = ¢, (3.54)

Problem (3.54) is still non-convex and is therefore in gaheot easy to solve. For the special case
1 = 2, Problem (3.54) is of the kind

I B
(g"Cyg) H
max ————, S.t =1

with 5 > 1 and the optimum receive filterg,(f) could therefore be found by the algorithm
from [76], which returns receive filters that comply with tbarrier separation constraint when
applied to block-diagonal matrices. As this algorithmésative and requires a matrix inversion in
each step, this option will not pursued in the following.teed it is proposed to maximize a lower

bound of the objective function, which is obtained by appdythe inequality between weighted
geometric and weighted arithmetic mean (e.g. [67, Lemm#olf)e denominator in (3.54) so that

K dy =D Pt 1\ zfgzlu;dmwk
[TT1 (0" (a0 + mpyg ) g™ ) (1)
k'=1j=1 o i Hk

K dk’

Fr 1) g" <A() (i) ) He 1
Ay + HkPn iy H,' )g+—
P vt B | 3y Hmo +

k=1 j=1 M

N , 1
H (A(Z)d(l—l) + B(l)>

k )9Sk :
Zm:l Mo + i

Inserting this lower bound instead of the true objectivection in (3.54), the problem of finding
the receive filter and carrier in stépeads as

m=1

K
i i i i Z Hon om0,
Pr5g" g+ g" (v VAl + B{') g

{g,(;), c,(c)} = argmax : :
g.c gH (&(zfl)Al(;) + B](;)) g

s.t.g = SCTJCSQ;CQ, glg =1, g}img = 0,Vm with v(k,m) = c. (3.55)

Note that in (3.55) the weighted sum ral?ﬁ)SR(k) obtainable if usek: receives a data stream in
stepi is lower bounded by

(4) = PTXU_C%
Riysa(k) > [ D ptndin + i, | logy | 1+ H (3.56)

o comol
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which has been obtained with (3.51). This lower bound cdiesiwith the bound in [77], where a
MISO system is considered and a different derivation is uiezthn be achieved by choosing the
unit-norm beamformers;, ; multiplied by the powers;, ; as

[V/Pratig, oo /Pranibidys - - - s V/PEALK A, - - oo /DR i e s /Phodprt bhodot1] =

1
-H:
| H ol

I.e., the optimum zero-forcing unit-norm beamformers bsul-optimum power allocation are
used. Problem (3.55) is equivalent to

‘ , HA(i)
{g,(;), c,(j)} = argmax 9 29
g.c gH <@(171)A§;) + BIEZ)) g
s.t.g = SCTJCSQ;CQ, glg =1, g}img = 0,Ym with v(k,m) = c. (3.57)

Dividing the objective function in (3.57) bgHA,(j)g, Problem (3.57) is maximized by the same
arguments as

N H A ()
{gg), c,(j)} = argmax 9 i 9 ’(‘“Z.)g
gc g''B,’g

s.t.g = SCTJCSQ;CQ, glg =1, g}img = 0,Ym with v(k,m) = c. (3.58)

Ignoring the constraints in (3.58) for the moment and sgttire derivative of the objective function
to zero yields

) HA(i) )

Ag)g - g I(g-)g BIE;Z) )
g''B,’g

which is a generalized eigenvalue problem. Thusnust be chosen to be a generalized eigen-
vector of the matrix pailA,(f) andB,(f). The objective function, which is equal to the generalized
eigenvalue of this matrix pair at the places, where its dé¢ike is zero, is maximized by choos-
ing g,(f) to be the eigenvector belonging to the principal generdligigenvalue of this matrix
pair. In the following it will shown that this solution of thenconstrained maximization fulfills
all constraints in (3.58). As the objective function is ipdadent of the norm qf, the norm one
constraint can be easily fulfilled by taking the unit-norrgesivector. The carrier separation con-
straint is fulfilled, as the matriceA,(f) and B,ff) are block-diagonal. That is due to the fact that
P and all P = Tl De;el T DH are block-diagonal, as the transmit filtersit 1) obey
to the carrier separation constraimﬁf’ is implicitly given by the index of this block within the
matrix pair A" and B\, that exhibits the strongest principal generalized eigkre: It remains
to proof thatg,(j) also fulfills the orthogonality constrainﬁmg,ii) = 0 for all tuples(k, m) with
v(k,m) = c,(f). As the matrixB,(f) is always invertible due to the positive semidefiniteneshef t
matricesHklA?j@Han_l), g,(f) is also the eigenvector corresponding to the principalreigkele

of the matrixB,(f)”lA,(f) and will therefore not lie imull {A,(f)} = null {Hkﬁ(i)HE}, ie.,

lin

Q ( 11{15{15.“’)151H}>L
9y € (nu k% lin k
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As gl H; is one row of Himp and Bl projects into the nullspace d{mp [c.f. (3.49)],
pl )HHgk,m = Ocn,,1 and thus

lin

lin

gk.m € null {HkP( )HH}

. 1 .
Due to the fact thay'” € (null {HkP“(n)H}jD , g\ is therefore orthogonal to al. ..
Note that in case no data stream has been allocated to o@?}riduring the previous steps, i.e.,

n o = 0, the receive filterg,(f) also maximizes the exact objective function in (3.54). Tikat
k

because the projection matrﬁqi(rf) has a block-diagonal structure and each block is a projector
affecting only the channel matrices of one carrier in thedpm:sHkP“(n)HH In case no data
stream has been allocated to carrj?r in a previous step, the blocks affecting this carrier in the
projection matrices are identity matrices. As the receifer§ must obey the carrier separation

constraint, the products " H, P\ H,g\" are in this case given by

lin

g() Hk‘P()Hkg](g)—glg A(Z kz —g;(g) Hkag,(:).

lin

Additionally, g{""" H, P" H}'g\" = 0 and consequently,”"' B;"g\" = 1, as the blocks within

15].(i) = T Ve;el T~V that correspond to carrlef; are zero matrices, as no data stream has
been allocated to this carrier in a previous step. Ignotegéerms independent gf the objective
function in (3.54) for the case ) =0 reads as

k

, . I
((d(l*l) + PTXQ) glil)yHHkHHgl(gZ) + 1) Z,,anl mdm + g
9" H H}lg,) a0~ 41

(3.59)

This objective function is maximized under the constrafram (3.54) by choosin@,(f) to be the
unit-norm eigenvector belonging to the principal eigeneadf the block matrix withH;, H}! that
corresponds to carriejff). This can be verified by solving (3.54) with the algorithmnfr¢76],
which can be used for objective functions as in (3.59) andciwhonverges in this case within one
iteration. _

Once the filtersg,(j) have been computed for all usetsthe userk(i) is determined so that the
weighted sum rate becomes maximum, i.e.,

dy

Ole:
" Cpy
= argmax Z g Z log, |min | 1, SO B0 Hig0 - +
’— gl -
M= oq (1 + ROz HAm @ ) Qnyr
. C
+ 11 log, [mm (1 —77( )g,(c) HAl )g(z)u )] (3.60)

n% (k) is the water-level for the weighted water-filling power alidion, if the next data stream is
allocated to usek. In case all data streams receive non-zero powgbsk) is given by

24 (i—1) Uzg(i%HB(i)g(i) o2a(i—1) o2
Pry + 725 OB NG Pry c .1 (D
(i)(k) c cgMAgl! Cm (B, A, (3.61)
n = e = I , .
Z luk’dk’ + Mk Z Mk’dk’ —+ iy

K=1 k=1
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which follows from the fact that

i),— i i),H 7 [ i),H 7 [
o (B AL) o Bl = g A5l 62
In case it is observed that the water-level is too small foata dtream, i.e.,
i Cuj
' (k) < -

(4),H () (%) )
02 1 n g, chPnI;J».HEQk a(iil)
n RONJIOMO ng ;

for some tuple(l%,j’ not only the water-level and the weighted sum rate but alsthahnel gains

on the affected carrier should be recomputed, as otherWetedata stream imposes zero-forcing
constraints on the transmit filters of the other data streanustherefore reduces their channel
gains, although it receives zero power. Thus, the correfipgrdata stream has to be removed
from the pseudo-inverchomp and the variablé; needs to be adjusted to this removal.

In contrast to DPC, where the receive filters for the currentgtream do not affect the channel
gains of the previously allocated data streams, a new daanstallocation possibly deteriorates
the channel gains of all subchannels on the same carrie(3c4B8)]. It can therefore happen that
the weighted sum rate is lower than in the previous step. itncidse the last allocation is not put
into effect and the algorlthm is termlnated Otherwig, is incremented by oney(k(7), dy())
andgyi).a,,, are given byy(k(i = ck andgxiy,d,, = g( . The prolectorP(Z+1 for the
next allocation step can then be computecf according to

(@) (1)
S56E+1) () Plln H k(i )gk( )dk(z)gk;( 1),dk (i) Hk(')PIin 0! () (4),H
Ijlin Plln - - 13"” - tk(-) dy s tk(') i (3.63)
. H P()HH )5l () ~R(1):Ak(4)
gk(z),dkm k() Elin” H (5 Ik ) di o)
The normalized transmit vectd)iZ for the data stream allocated in tith step is given by
4 PF”HH, ghii
(i) _ lin & (5) k), dk(')
tk(i)vdk’(i) - (3.64)

5 ()

becausd3I Hk(z)gk(z) dysy 1S Orthogonal to the rows aff (ém},) [c.f. (3.49)] and therefore orthog-

onal to the effectlve subchannels of all other data streamdscantains no component in the
nullspace ofHCémp As the row corresponding to the data stream aIIocateznhaDIace in the
pseudoinverse oﬂcomp fulfills the same properties (see Appendix A:H, gk(z) dyy @nd

(4) i)
tr(i) dpgs) A€ collinear analk( ) dugsy €N be obtained by normallznigIn Hk( )gk( )dy oy 1O ONE. The

relationship (3.63) also enables a computationally efitcigndate of the matrlceA,i so that

(i+1) (@) (4) (4),H H
ALY = AP - HA 0N, HL (3.65)

The coefficientsyy) can also be efficiently computed according to [c.f. (3.48)]

1 . .
,J = dray, k= k(1)
a(i) _ ng(i),dk( )Hk(z) I|n zlj(z)gk(i),dkm (3.66)

Nk,j i i i—1 !
(1+a( >()7,g§7,§§) (@ _) else

nk,]
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wheren,, ; is computed as stated in (3.42), ; considers the adjustment of the varialijg) from
stepi — 1 to stepi so that

)

Ao = n;w», k S k(l)
BT ey 1, else

k(i)+1
m(Z) = z dk’ and

k=1
(@) i—1
Vk,j = gllj(i),dk(i) Hk(z')t;;j ) (3.67)

can be obtained via an inner vector product. Note @ifg%ﬂs only different from zero for transmit
vectorst,(f’;l) corresponding to data streams allocated to the caxffsr The transmit filterst,(f’)

j
for the other data streams with, j) # (k(), di(;)) are determined according to

) _ o) (46-1) _ 40 W /@
th; = Brj (tk,j = Loy iy T O‘m(z’)) ) (3.68)

whereﬁ,(j;;. is a scaling factor so thaﬁ)j has unit norm and which is shown in Appendix A5. Each
update to obtaim,(;)j additionally requires only one vector subtraction wih nonzero entries and
one norm computation of a vector with lengtk, as the complex numbenéri)(i) andy,; have al-

ready been determined during the computation obtﬁffg. This update rule is more efficient than
the update of the pseudo-inverse via the LQ decompositidﬂi‘@%p proposed in [64], as the latter
requires in each step a multiplication of a matrix with amotlower-triangular matrix to compute
all precoding vectors. Unfortunately, no efficient update to obtain the matriceB,f“) from the
matricesB,(f) exists. That is why those matrices have to be computed froatcscwith the vec-
torst,(;)j. Note that in multicarrier systems due to the carrier sdfpar@onstraint the update rules

described above only affect those parts of the matrices @ok&that correspond to carriq(f()i),

all other parts remain unchanged. An overview of the spegsdurce allocation with zero-forcing
is given with Algorithm 3.3, a modification of algorithm fdn¢ MAC with individual power con-
straints can be found in [78]. Additional little performanicnprovements of Algorithm 3.3 can
be achieved by the following measures. Instead of runniagtgorithm in the broadcast channel
it can be run in the dual MAC. The filters obtained this way &enttransformed via the general
duality from [79] into the broadcast channel. Performamaerovements are possible by replacing
the receive filters computed in this manner by MMSE filters egppsed in [80]. Furthermore
one can recompute the transmit and receive filters in caseracan transmit more than one data
stream on the same carrier similar to [71]. An SVD of this issehannel matrix multiplied by
projection matrices that consider the other users’ zeroifig constraints is performed so that this
user’s channel gains become maximum while the other uskasirel gains are not affected by
this measure as described in [81].

3.4 Further Complexity Reductions

Although compared to the optimum algorithms the computaticomplexity could be drastically
reduced by the methods proposed in the previous two sectluree still require the computation
of eigenvalues and eigenvectors for each user in each st@pthis reason a user preselection
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Algorithm 3.3 Reduced Complexity Algorithm for Weighted Sum Rate Maxiatian without
DPC

1:
2:

10:
11:
12:
13:
14:

15:

16:

17:

18:
19:

20:

21:
22:

23:
24:

25:

Initialization: dj, = 0, G, = |, A = Inn, Yk =1,... K,i=1, P = Iy,
P(T,chpl (HkH/I:)),
R\(l\ll)SR = f(1) logy (1

(Hio Hy )
M

9 eigenvector corresponding to principal eigenvalue of mdtfk(l)H,?(l)
repeat
di(i) = dya) + 1

_ () _
Gk (i),driy — i(a) Gk(i) = [Gk(i)agk(i),dk(,)]

k(1) = argmax puy logy <1 +
k

(i) k()
; i B H gi).a i .
O‘Sz)(i) - — A(li) . ’tgj()z‘),dm) _ Fn Hi )(l) kD) m@i) =S dy
Ik(a), dk< SR IOELOKING! \/am(i) k'=1
5 (i+1) (@) (4),H
Bin 13“” a t k(i) dr iy k(1) dr (i)

for k=1to K do

cOmputeA““> from A" with (3.65)

Computea ; from a(z 1 with (3.66) andyk with (3.67)Vj =1,...,d,
end for
1=1+1
fork=1t0K do

BY —H, |5 z ti Vel 1,.)] HI + I,

k'=1j=

g,(f . generalized unit norm eigenvector for principal geneeadi eigenvalue of matrix

pair AY, B!"

K s .
k
RWSR(k) > b Y- logy |min | 1, o H g (- G-DH o ()Y +
k'=1 Jj=1 2( 149k R kg Mk 9k (i—1)
gl(cz),HAl(cz)gliz) nyt

+ 15, 10g, [min (1 Cng Al gl ﬂ
n(i): water-level for weighted water-filling with powePr, and subchannel gains

(0),H 4 () (i) c S r_
QQk A gi s . gg(gi)HHkP<k)/ H}]ﬂ{g}i) D j_la"'adk/ak _]-7"'7K
1+ N HAuS @ nit
end for

k(i) = arginax R\(l@)SR(k:)’ RWSR = mgx RWSR(k)

Remove data streams that have received zero power and ratotrgnsmit filters anﬂ\(,@)SR
if necessary _
until RWSR < R\(,f,gé)

Piis- - DE.dg <— weighted water-filling with power Pr, and subchannel gains

2 (z oy o (i—l)

oRo g
for k: =1to K do

i—1 i—1

Pk = dlag (pk:,l .. -pk,dk>a Tk = tl(<;,1 ), Ce 7tl(c,dk)

end for
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method will be presented in Section 3.4.1, which deselestssuthat will certainly not lead to
the maximum weighted sum rate by simple decision criter@dang the explicit computations of
the principal eigenvalues of these users. While this metables partially drastic complexity
reductions at no performance losses, the other two techsiguesented in this Section inhere
potential losses in weighted sum rate. A weaker lower boondhe weighted sum rate for the
algorithm without DPC will be introduced in Section 3.4.2hieh enables the computation of
candidate channel gains via ordinary instead of genechéigenvalue problems. In Section 3.4.3
a simplified user selection is presented for both algorithwith and without DPC, where the
user selection can be conducted without explicit eigemvalmputations. A further possibility
for reducing the computational complexity inducing pemfi@ance losses, that will not explained
here, is to apply subspace beamforming, where the spackddransmit filters is restricted to a
predefined subspace, as proposed in [82]. For algorithmmgebn DPC the method from [83]
can be used to identify a subgroup of users, with which the gaithose algorithms becomes
maximum compared to simple time or frequency division atpars.

3.4.1 User Preselection

The most complex part in the successive resource allocstioames is the user selection in (3.36)
with DPC, which requires the determination of principalezigalues for each user, and in (3.60)
without DPC, where a generalized eigenvalue, the correlipgreigenvector and the quadratic
forms g H, P\,) H}'g," have to be computed. Correspondingly, the complexity griimvs
early with the number of users. By the method to be preserggtithis complexity can be re-
duced at no performance losses. The basic principle is tgpuatarower and upper bounds for the
weighted sum rate, if the next data stream is allocated to ius©bviously, the bounds, which

will be denoted asl%\(,@)SR,Ib(k) andR\(,f,)SR’ub(k) in the following, must be obtainable at very low ad-

ditional effort. The maximum weighted sum ra‘ﬁé@SR achievable in stepis lower bounded by
the maximum lower bound amongst all users, i.e.,

max R\SC)SR,Ib(k) < max R\(,f,)SR(k) - R\(/:/)SR'

If the upper boundR\(,f,)SR’ub(m) of a certain user is smaller than the maximum lower bound
amongst all users that user will certainly not lead to the maximum weighted sum rate &pst
and can therefore be excluded from the user selection pacesepi. Additionally, if the upper
bound of a user’s rate is lower than the weighted sum fé&,‘g,? achieved in the previous step,
this user will certainly not be served in the next step, asavéhis user leads to the strongest
weighted sum rate amongst all users, the allocation is nalwcted as it would lead to a decrease
in weighted sum rate. Thus, it suffices to conduct the usectehs in (3.36) and (3.60) with a
possibly reduced user s8t”, which is given by

SW = {k c{l,....K} ’R\(lz)SR,ub(k) > m?X R\(/@)SR,Ib(g)v R\(/@)SR,ub(k) > R\(/f/géa) } :

In the remainder of this section the bourﬂ%)SR’ub(k) andR\(,f,)SR’,b(k) will be derived for the user
selection with DPC and the user selection without DPC. Altifothe bounds are assessed very
conservative, they turn out to be very effective in pragtasit will be shown by simulation results.
e Bounds for the Weighted Sum Rate achievable with DPC:

The weighted sum rate with DPC is a monotonically increatumgtion in the channel gains,
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as shown with Lemma A3.1. Thuﬁ’,\(,f))SR(k) as given by (3.37) is a monotonically increasing
function in p; ( PSacHI H, Pijc). As furthermore the channel gain§  HIHJt,. ; are
not affected by the new data stream allocation, the bourdhéoprincipal eigenvalue of the

matrix PE(,QCHHHkPé,,)C can be used to limit the weighted sum rate from below and above
These bounds are given by

tr (Sc,Tpéch/I:HkPL()QCScT,T>
max 5
‘ mk,c

< p (PéQCHIIc{HkPE()QC>

< max (tr (S PRH H PSS ) ), (3.69)

c

wherem,”, denotes an upper bound for the rank of the mas{ix P{)cHI H, PS).ST . Itis
equal to the number of receive antennas of dserinus the number of data streams already
allocated to use on carrierc. For single-carrier systems, (3.69) is identical to Equa(R.3.7)

in [35]. The extension to multi-carrier systems resultsrfrine fact thatPE(,P)CH HH,,CPE()P)C is
block diagonal and the multiplications witfi. and ST, which are defined in (2.2), select the
non-zero blocks corresponding to carrierithin these matrices and therefore

P1 (PE(JQCHEHkPL()QC> = maxp (SC,TPéQCHEHkPE(JQCSIT> . (3.70)

. B HLEYST)

The lower boundRWSR p(k) can then be obtained by insertimgcax all o

mkc

instead ofp, (PSQCHHH,CPSQC> into the expression for the weighted sum ratfq(k)

in (3.37). Correspondingly, the upper bouﬂa srutl k) is computed by using the upper bound

for py PSQCH,I;IHkPéPC in (3.37). In case all weights are equal, inserting thesetsinto

the formula for the weighted sum rate is not necessary, aach step this user leads to the
maximum increase in weighted sum rate that exhibits theergrincipal eigenvalue of the
matrix PE(QCH ,?Hkﬁéfﬁc. In this special case the s&t” can therefore be directly determined
according to

S0 = {k e{l,...,K} ’max tr <Sc,TP|§QCHEHkP[()2cScT,T>

mél |

> max
lc

as it has been proposed in [84].
The computation of the lower and upper bounds in (3.69) isiptesat little extra computa-
tional complexity, as the matricel?éQCH ,IijPéZFZC are required for the user selection process

anyway. Additionally, the expressioms(SC TPéQCHHHg ASQCST ) only change compared

to the previous step for the carrier= c,(C( )1) to which a data stream has been allocated to in
stepi — 1.
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e Bounds for the Weighted Sum Rate achievable without DPC:
When no DPC is used, it has already been stated in (3.56Rfﬁ§g(k) can be lower bounded

by
. K PTX%
R\(/tI)SR(k) Z <Z :umdm + Mk> log2 <1 + H = )

m=1 omp”

x :
= (Z i + uk> logy | 14 5 |
1 k

m=1

where (3.62) has been applied. B A" is block-diagonalp, < (i)”lA(")> is the max-

imum eigenvalue of the principal eigenvalues of the ma$n‘_6§g,ekB(Z A(Z S, whereS,
is defined in (2.2). Thus, one obtains

o (B(Z A@) = max py (s (B AD Sch> (3.71)
By using the inequality
. —1 .
p1 (Sc WBIAY ST ) = ((Sc,kBliZ)SZk> Sc,kAl(cl)S;I:k)

tr (Sc kA(i)Sch)
T <1+tr <SckB()ST m))

>
derived in Appendix A6, a lower bound for the weighted sure iatgiven by
PTXO._CQ

K
(4) _ A
Rwsr (k) = <Z i +M’“> logy | 1+ . _n(1-merer (e BUST)) | (872
Q; + min .

m=1
tr(Seraf’SsT,)

For the upper bound%\(,f,)SRyub(k) again Lemma A3.1 is used. Thus, the subchannel gains can
bounded from above and inserted into the weighted sum rateegsion to obtain an upper
bound for the weighted sum rate. It is assumed that the nelldgatied subchannel has no
detrimental effect on the previously allocated subcha)nehich implies that a lower bound
for the inverse channel gains, i.e., an upper bound for tbetlsannel gains, can be stated as

@H g Pl)

9, H Pnk/ HHgk (i-1) > -1

1+ GYNOG) U, 2y,
gl A gl N

The gain of the newly allocated subchannel can be upper leabaccording to

( )HA( )g/,‘C < max py (SakAS)SCT’k) < max tr (Sc,kAS)SCT’k)
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which follows from the fact thatAﬁj) is positive semi-definite. Using these inequalities
in (3.60), an upper bound fd%\(,f,)SR(k) is given by

5 SR s C i
R = 32 3o, [ (1,188
j=1

k=1 n=nys

+

C . A
+ puy logy {min (1, ;7752 max tr (Sk,cAg)ScT’O uk)] , (3.73)
n (&

with the water-levehlﬁ’g, which is, in case all estimated subchannel gains can beasea,
given by

1) o2

C max. tr (Sc,kAgj) S;r,k)

a2ali—

PTX+ C

o

K
> i di + i
k=1

Note that this upper bound is also valid for any choice of ikecélters with unit norm. Like-
wise to the DPC case, the bounds can be computed at almosra@#art, as the matriceaﬁj)

andB,f) are required for the user selection process anyway andrthette(Sc,kA,f)Slk> and

tr (Sc,kB,f)SZk> only change for the carrier= Cg()m)-

Note that the bounds for the eigenvalpjle(Sc,TPéQCH EH,CPSQCSCTT> stated in (3.69) and the

bounds for the eigenvalye ( S.. B, ' AL’ ST,) derived in Appendix A6 can also be used for
a carrier preselection as shown in the following by meant©/@ef@PC case. According to (3.70)
for each user the carriérmust be selected which matr&@,TPSQCH EHkPéQCSéTT exhibits the
strongest principal eigenvalue. If the upper bound for thiegipal eigenvalue on a certain carrier
is smaller than the maximum lower bound over all carriers darrier will certainly not exhibit
the strongest principal eigenvalue amongst all carriets Gan therefore be deselected without
explicitly computing the principal eigenvalue of its chahmatrix.

3.4.2 Maximization of a Weaker Lower Bound for Weighted Sum Rate without DPC

Solving a generalized eigenvalue problem for each user ¢h @location step still exhibits a
considerable amount of computational complexity due tonbeessity of inverting the matrices
B,ii). For this reason a weaker lower bound for the weighted sumwilt be derived in the
following, which enables a determination of the receivefgtvia ordinary eigenvalue problems.
The denominator in (3.58) can be upper bounded by

gd"Bg < g"gp, (Bm = (B,ff’) - (3.74)

which stems from the fact thatis constrained to have norm one. Thus, using (3.74) thevecei
filterSgI(tf;(k) maximizing a weaker lower bound than tbljﬁ determined from (3.58) are given by

H A ()
i i g A’g
{gl(b%(k?)a Cfb;(k)} = argmax ———
g,c n (B](gl)>

st.g= SCTJCSC,kg, gllg =1, g,Iimg = 0, Vm with v(k,m) = ¢, (3.75)
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which is solved by choosingb'z( ) to be the unit norm eigenvector corresponding to the praicip
eigenvalue of the matrlA( g HkP( )HH The carrlerc,(b)z( k) is given implicitly by the index

lin

of this block within the matrle,C , which exhibits the maximum principal eigenvalue. The fact
that the optlmunylbz( ) is orthogonal to all other receive filters of the same userlEshown

in the same way as with the vect(y,g). The userky, (i) is then determined as in (3.60) with the
receive filterSgI(tf;( k). Correspondingly, after théh step the variabld,,, ) is incremented by
one andgy,, (i),d,, 1S 9IVeNn bYgu,, (i).d,,, = gl(g%(km(z’)). Note that by determining the receive
filters according fo (3.75) besides avoiding the complexgyociated with computing generalized
eigenvalues, the matric@,ff) do not have to be computed explicitly which redundantizes li
15 in Algorithm 3.3. Additionally, the quadratic forrrg(tf;’H( )A( )gmz(k?) needed in (3.60) are

equal to the principal eigenvalue of the matric‘eg) and do therefore not have to be computed
explicitly. The user and carrier preselection explainethmprevious section can be applied with
these receive filters as well, as the lower bound and the ujgperd are independent of the choice
of receive filters.

Determining the receive filters according to (3.75) coroemjs to maximizing the channel gain of
the newly allocated subchannel, which is givengi™ ( )Hk(Z)R,(;)HE(Z)g,(b%(k( ), ignoring
the effect of its receive filter on the previously aIIocateﬂb@annels [c.f. (3.48)]. This choice
would be optimum, if DPC was applied in the successive schasm this case the choice of the
receive filters would not affect the gains of previously edited subchannels. Applying the receive
filters optimum for a successive approach with DPC to scesawhere no DPC is used, has been
proposed in [36, Section 4.1.3.1]. For sum rate maximirati@., equal weights, the successive
algorithm, where the receive filters are determined as BB[3has been derived in [81] and [85].
Due to its linear and successive nature it has been namea@diL8wecessive Allocation (LISA).
In [23] the receive filters for sum rate maximization withd®C are determined as in (3.58).
However, as therein a fixed allocation of power to data steesmassumed, its application to the
problem of weighted sum rate maximization is not straightérd.

3.4.3 User Selection based on Upper Bounds for the Weightedi® Rate

To reduce the computational complexity even further so fibvaéach subchannel allocation only
one principal eigenvalue and the corresponding eigenvaotaequired, it is proposed to select the
user in theith step to maximize the corresponding upper bound for thghted sum rate derived
in Section 3.4.1. Thus, in liné of Algorithm 3.2 and linel7 of Algorithm 3.3 the upper bounds
R\(,f))SR’ub(k) are computed instead of the actual weighted sum raé@g,e(k) and correspondingly
the userk(i) is determined to maximize this upper bound. Although it migé more intuitive
to select the user in thgh step according to the maximum lower bound, it is proposedse
the upper bound due to the reduced complexity required $ocamputation, especially in the
linear case. While the lower bound in (3.72) requires thenkadge of the matrice®"”, which

cannot be obtained by a simple update rule from the mat@é‘sl), the upper bound in (3.73) is
independent of these matrices.

3.5 Numerical Results

In order to show the performance of the near optimum low cexipt algorithms proposed in
this chapter a scenario witNy = 4 antennas at the transmitter ahd = 10 users is chosen.
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Each user is equipped with, = 2 receive antennas. The transmit signdt) propagates to
each user ovet different paths in time, where it is assumed that each cHanatix ISIM, (=
1,...,4,k=1,..., K contains circularly symmetric entries, which are indeparly drawn from

a complex Gaussian distribution with zero mean and uniavae.The temporal distance between
two consecutively arriving symbols is equallt60.s, i.€.,7.m — Thm—1 = 160ps,m = 2,...,4,
k=1,..., K. The intersymbol interference is canceled by OFDM with= 128 subcarrier, i.e.,

a cyclic prefix of sufficient length is used, and the centegdency is given by, = 5GHz. The
system’s bandwidth is equal t8 = 125MHz. Figure 3.1 exhibits the weighted sum rates per
subcarrier over the SNR averaged ov@n0 channel realizations in such a system, where the SNR
iIs computed from the ratio of transmit power to noise var@aricusers in the system have twice

8 —
- - -Optimum

—#—Succ. RA and ZF with DPC

71l -8~ Succ. RA and ZF without DPC

=¥~ Succ. RA and ZF without DPC (wsr user sel.)

|| == Succ. RA and ZF without DPC (simpl. Rx and wsr user sel)
-6~ Succ. RA and ZF without DPC (simpl. Rx and user sel)
—+— SVD receivers
Antenna Selection

Average Weighted Sum Rate (bpcu)

1 | | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
SNR (dB)

Figure 3.1: Average weighted sum rates in a system Witk 10 users withr;, = 2 receive antennasgyt =
4 transmit antennas; = 128 carrier andB = 125MHz. ji; = ..., 15 = 3, 6 = ..., 10 = =

the priority of the other users, so that

1 B B 2
157 :u6_--'7:u10_157

1= ... b5 =
where the weights are normalized so t@le i = 1. The proposed successive resource alloca-
tion and spatial zero-forcing with DPC, denoted as “Succ. &8 ZF with DPC” in Figure 3.1,
can almost achieve the same weighted sum rate as the optitgarittan. Giving up DPC leads to
further small performance losses. Less tBdB transmit power are required to achieve the same
weighted sum rate as with DPC. Furthermore it can be obséhatdhe methods for complexity
reduction proposed in Sections 3.4.2 and 3.4.3 lead togiblgliperformance lossesompared to
Algorithm 3.3, which is denoted as “Succ. RA and ZF without@mn Figure 3.1. The adjunct
“simpl. Rx” implies that the receiver filters are chosen toximaze a weaker lower bound for the
sum rate according to (3.75) and “simpl. Rx and user sel”taudilly includes a simplified user
selection to maximize an upper bound for the weighted suen Fair comparison the performance

2Recall that the method for complexity reduction from Set8o4.1 does not lead to any performance losses at all.
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of Orthogonal Frequency Division Multiple Access (OFDMAyhere one carrier is exclusively
occupied by one user, and for which a near-optimum algorighpnoposed in [86] is included into
Figure 3.1. Additionally the average weighted sum ratesezelble by using left singular vectors
(“SVD receivers”) and unit canonical vectors (“Antennae®gion”) are shown. Thereby the re-
ceive filters are fixed a priori and the successive framewatlk zero-forcing of Algorithm 3.3 is
used to determine the user allocation and transmit filtehgreveach product of receive filter and
channel matrix is treated as “virtual user”. However, alitjio those methods perform only slightly
inferior to the proposed algorithms, their complexity iglner, as the methods for complexity re-
duction from Sections 3.4.1 to 3.4.3 cannot be applied tmthe
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Figure 3.2: Main complexity of different algorithms in a sy® with ' = 10 users withr;, = 2 receive
antennasNt = 4 transmit antennas, SNR&dB, C' = 128 carrier andB = 125MHz.uy = ..., us =

1 _ _ 2
157 He = -5 110 = 15

Figure 3.2 compares the computational complexity of thetimastly parts of the algorithms avoid-
ing DPC with each other for the simulation parameters stabede. The computational complex-
ity is measured in the number of Floating Point Operatiorap§), where one flop corresponds
to one complex addition or multiplication. The block “Basiemplexity” includes the SVD'’s of
the channel matrice#l; for the SVD receivers, which are computed according to thei®
method [35] (see [35, Ch. 5.4.5] for its complexity quanéfion). For the successive resource
allocation and zero-forcing methods this block contairsdbmplexity of the matrix-matrix mul-
tiplications H; H}!, from which the principal eigenvalues are computed. The lremof flops
required for the basic operations as matrix-matrix multtggtions and additions as well as matrix
inversions, is adopted from [34]. Additionally, the blodlagonal structure of the involved ma-
trices is taken into account. The block “User selection’@npasses the complexity of all data
stream allocations conducted during the algorithms. Femptioposed method without DPC that
includes all steps from liné4 to line 18 of Algorithm 3.3 apart from the scalar water-filling, which
complexity can be neglected compared to the other parts @lbck therefore contains the num-
ber of flops required for the computation and the inversioﬂnefmatrices?,f), the matrix-matrix
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productsB,ii)’_lA,gi), the computation of its principal eigenvalues and the gpoeding eigen-
vectors, and the computation of the terg}8" Hy ¢, V|- HJg{". For the determination of
the principal eigenvalue and the corresponding eigenvélstopower method [35, Ch. 7.3.1] is
used, where the number of iterations required by this meltasdbeen acquired from averaging
over the number of iterations obtained from simulation$ilie same parameters as in Figure 3.1
at20dB. Note that for reasons of fairness, the complexity of teetive power method has been
considered here, although for the special case, 6f 2 simpler ways for determining the maxi-
mum eigenvalue and the corresponding eigenvector exiseriie simplified receivers according
to (3.75) are used, the computation of the matri@’%, its inversions and its multiplications with

the matrices4,f) are not necessary and consequently not considered in tresponding blocks.
Regarding the proposed user preselection, which does ot amy performance losses, the aver-
age number of preselected users has been determined wihntbkation setup from Figure 3.1.
In case of a priori fixed receive filters, the user selectiamlittle bit different. As each product of
receive filter and channel matrix is treated as differentttl” user, the weighted sum rate must
be compute(Ef:1 ri, instead of K times. In turn, no eigenvalues and eigenvectors are needed f
the user selection. Furthermore, for those algorithms onepdexity of the update of the matrices
A(i) according to (3.65) is not necessary. That is because icadlsis for the sum rate computation
only the product.og( JH AL )gk are required. For fixed receivers the prodlyfjé H,, can be re-
placed byh!, whereh!, denotes the effective channel of thi¢h virtual user. Consequently the

quadratic form@,(f)’HA(i)g,(f) can be obtained by inner vector products according to

7 7 7 7 i—1) i—1 7
o AL g = g EL PO g Hillgl) = BS by — REATY Uy

[c.f. (3.63)]. As by contrast, the algorithms proposed is tthapter require the explicit knowledge
of the matrlcesAk , the complexity required for their updates is subsumederbr “Update”.

As shown in Figure 3.2, without further measures for comipyerduction, denoted as “No simpl.”
in Figure 3.2, the proposed method is more complex than \®Wig receivers, which complexity
is visualized in the second bar from the right denoted as “SR#&D. However, as soon as the
receive filters are determined from an eigenvalue insteadgaineralized eigenvalue problem, the
corresponding complexity depicted in the third bar from lgfe (“Simpl Rx”) is already lower
than that of using SVD receivers, although the performarfi¢ckeolatter is on average worse than
that of the proposed methods. Applying the user preseledascribed in Section 3.4.1 reduces
the computational complexity shown with the bars “User eresnd “Simpl. Rx + u.p. ”, of the
proposed approaches BY.5% without performance loses. This way, the computationalper:

ity is still higher than that of antenna selection (“Ant..8eWhich exhibits the same complexity as
SVD receivers without considering the number of flops resglifior the SVDs. Nevertheless, by
conducting the user selection based on the upper bound fghtee sum rate and with simplified
receive filters, which complexity bar is labelled “Simplensel.” in Figure 3.2, antenna selection
is outperformed in terms of average weighted sum rate angbatational complexity.

For K = 2 users the rate regions achievable with the different algms can be visualized, as
it is done in Figure 3.3 for an SNR @bdB. The rate regions have been obtained by varying the
weights of uset betweer) and1, setting the weight of userto 1 — ;1 and running the algorithms
for weighted sum rate maximization. One channel realinagaised, where as before, the entries
ofthe L, = 4, k = 1, 2, temporal channel matrices for each user are independsnatiyn from a
Gaussian distribution with zero mean and unit variance haddgmporal difference between two
consecutive paths is equal 160s. The OFDM system haS = 128 subcarrier at a center fre-
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= = =Optimum

== SVD receivers
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Succ. RA and ZF with DPC
Succ. RA and ZF without DPC (simpl. Rx + User sel)

0

5

Figure 3.3: Rate regions fakk = 2 users withr;, = 2 receive antennasVt = 4 transmit antennas,
C =128, B = 125MHz, SNR= 20dB.

guency of5 GHz and a bandwidth aB = 125MHz is available. The region achievable with DPC
and successive resource allocation and spatial zeraafpedmost coincides with the optimum ca-
pacity region. The approaches without DPC are close to etr,avhere for a better visibility
from the proposed methods only the variant performing wartt simplified receivers and user
selection has been included. It performs negligible wdnae SVD receivers only at some parts of
the rate region and outperforms antenna selection anyvanettee rate region. Note that antenna
selection is the only method that does not use SVD receinetaseu; = 1 or us = 1, which is

why it is worse than all other methods at the borders of trenegion.



4. Quality of Service Constrained Utility Maximization in the
MIMO Broadcast Channel

Although, as mentioned in the previous chapter, weightea ate maximization is an important
tool for considering requirements of higher layers in thewomunication system, in many cases a
priori finding the appropriate weights fulfilling the demand the system turns out to be a non-
trivial problem. Assigning a higher weight to a certain uigan to another user for example,
does not automatically imply that this user attains a highér in the end. Additionally, some
mobile applications like video streams, require guarahtemimum transmission rates to function
properly. For this reason Quality of Service (QoS) constgare introduced in this section and
considered for utility maximization. First the general Ipleam setup will be explained and three
popular QoS constrained utility maximization problems wé introduced in Section 4.1, before
their optimum solution via the dual problem will be given iaciion 4.2. The remainder of the
chapter efficient is dedicated to near optimum approacheser An overview of state-of-the-
art near optimum algorithms in Section 4.3, the conceptgafial zero-forcing and successive
resource allocation will be applied to the QoS constrainath@zation problems in Section 4.4,
before the chapter is concluded with further complexityuettbns in Section 4.5 and numerical
results in Section 4.6.

4.1 Problem Setup
In general a QoS constrained utility maximization problean be written as
max  u(Wi,..., Wk, r),

{Witk=1,...Kk"

s.t. hy (T’) < 00171, ho (T’) = 002,17 {Wl, e WK} € CP,

reP (H, ... .HI Wy, ..., Wg) (4.1)
where the maximization is carried out with respect to thesat= [R;, . . ., RK]T and the covari-
ance matricedV,, in the dual MAC, from which the transmit covariance matrigeshe broad-
cast channels can be obtained with the duality transfoomgtfrom [5]. u (Wy,..., Wk, r),
Cp, hi(Ry,...,Rg) € C andhy (Ry,...,Rx) € C= denote the utility function, the con-
straint set on the covariance matridds, . . ., Wy, the vector of QoS inequality constraint func-

tions and the vector of QoS equality constraint functioespectively.c; andc, are the num-
ber of inequality and equality constraints, respective®Mong the lines of [87, Problem 3.1],

the relation between the ratég, ..., Rx and the covariance matrices is considered by the set
P (HY,...,H]L, W;,...,Wg). It contains the rate region of the MAC achievable with fixed
covariance matrice®, ..., Wy and is given by

P(H,...,Hi Wy,... Wg) =

= {r ZRi < log,

1€S

ICNT+ZHZHI/ViHi VS C{l,...,K}, Ry, 20,Vk},

1€S

55



56 4. Quality of Service Constrained Utility Maximizatiom the MIMO Broadcast
Channel

which can be derived from [13, Theorem 15.3.6] and the faattttie input symbols [r] and the
noise are multivariate Gaussian distribut®d(H{, ..., H}l, W;, ..., W) is a polyhedron with
2K 11 vertices and it can be shown that it fulfills the propertiea pblymatroid as defined in [27,
Definition 3.1]. The union of all polymatroids, whose coearte matrices fulfill the sum power
constraintPr, leads to the capacity region of the broadcast channel [88pteh2.4], i.e.

C(H,. .. HE Pr)= U P(HY,....HL,W,, ..., Wg).
Sy tr(Wy) < Pry

Here, three popular QoS constrained utility maximizatioobpems will be considered, although
the presented framework can also be applied to other prablégth a concave utility function and
a convex constraint set. In the following these problembheiintroduced by explaining the utility
functions, the power constraint set and the constrainttfong in (4.1).
¢ Weighted Sum Rate Maximization with Minimum Rate Requirements
The utility function is the weighted sum of the user’s rated @ach user’s rate must not be
lower than a predefined minimum rate, whetgmi, denotes the minimum required rate for
userk. The average sum transmit power must not exdegdnd all transmit covariance must
be positive semidefinite. Thus for the weighted sum rate mepgtion under minimum rate
requirements the functions and sets in (4.1) read as

w(Wy, ..., Wg,r)=p'r with = [u1,..., pux]"
R min Ry

hi(r) = : —| i | =Tmin—T
R min Ri

h, ("") = 0,1

K
Cp= {W1 € COMXOn L Wi € CORFO WL = 0Vk =1, K> (W) < PTX} :
k=1

An algorithm to solve this specific QoS constrained utilitgpximization optimally has been
proposed in [8]. It is based on an iterative search for apjtgweight vectors with which a
weighted sum rate maximization without minimum rate caaists leads to the same user rates
as with those constraints. In each iteration the weightdlaha@ept one user are kept fixed
and for that user its weight is determined by bisection sbithaninimum rate requirement is
fulfilled with equality. Obviously, each iteration requsréhe repeated solution of a weighted
sum rate maximization by Algorithm 3.1. Using the ellipsonthod [89] as presented in
the following, has been proposed by the same authors in [B®arly, the problem at hand
can be infeasible, as the transmit power constraint can baatdo fulfill all minimum rate
requirements. Nevertheless, the algorithm presenteceindt section is able to detect such a
case.

e Sum Rate Maximization with Relative Rate Constraints
With this problem the resulting rates of each pair of userstriulfill predefined ratios. Choos-
ing without loss of generality usérto be the reference user, these ratios are a priori given by
the valueg,, = g—’; for k = 2,..., K. The utility function is the sum rate, which is equiva-
lent to using the rate of uséras utility due to the fixed ratiog,.. Additionally, a sum power
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constraint is imposed. Hence, the utility function and tbestraints can be stated as

U(Wla"wWKa’r):Rl

h1 (T’) = 06171
R, o
ho(r)= | 0| =
Ry il

K
Cp: {Wl S (CCTIXCTI,...,WK S CCTKXCTK Wk i O,ka = laasztr(Wk) S PTX} .
k=1

With such a problem the intersection point of a line througk brigin and the point
[1,p9,...,px] and the boundary of the capacity region achievable with taesmit power
Pry is determined. Such a problem occurs for instance in [91ti@e8.4] and is also known
as rate balancing. The optimum solution has been proposéedyn Jindal in [9] and fits
perfectly into the framework presented in the next section.

Sum Power Minimization with Minimum Rate Requirements

In this case the users’ minimum rate requirements shouldlewed with the minimum possi-
ble transmit power. Thus, the utility is the negative sunmheftraces of the transmit covariance
matrices, and, is the set of positive semidefinite matrices, so that

K
uw(Wi, ..., Wi,r) ==Y tr (W)
k=1
Rl,min Rl
hy (r> = - = Tmin — T
RK,min RK

h,g ('I") = 00271
Cp={W; € CO . Wk € COxU i |Wy, = 0,Vk=1,...,K}.

An algorithm attempting to solve the sum power minimization MIMO systems has first
been presented in [92], which is however not optimum. In [@3]optimum algorithm for
scenarios Withz,f:1 rr < Nt is described. For general antenna configurations it is @ego
in [9] to iteratively solve the rate balancing problem wjth = };’;—g until a power constraint
is found so that the minimum rate constraints are fulfillethvaquality. In [8] Wunder and
Michel solve the power minimization problem in a way to theedhey propose to solve the
weighted sum rate maximization under minimum rate congsdyy alternating adjustments
of the users’ weights. Solving the power minimization pesblwith the framework to be

presented next corresponds to using the algorithm from [87]

4.2 Optimum Algorithm

In this section a general framework for the optimum solutmthe QoS constrained utility maxi-
mization problems presented in the last section will bemgive Section 4.2.1 the solution via the
dual problem will be described, where some algorithmicitketaie given in Section 4.2.2.
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4.2.1 Solution of the Dual Problem
For all instances of the QoS constrained utility maxim@atnentioned in the previous section the

constraint set on the variabl®®;, . .., Wi, r is convex. That can be proofed by showing that any
convex combination of two feasible variable s& ", ..., W\ r® andW,? ... W @

is again feasible. This is very simple for the inequality &gghality constraint functions and the
setCp, which are all linear in the rates and the covariance matri@spectively for the presented
optimization problems. The fact that

Ar® 4 (1 - \)r® e p (H{*, L HIDWY ca-oyw® L owld - A)W}?’)

VA, 0 < X\ <1 canbe shown via the concavity of the logarithm in the deteamt of a positive def-
inite Hermitian matrix [94, Theorem 7.6.7]. As additionyadll utility functions introduced above
are concave in the rates and covariance matrices, Probldmkidcomes a convex optimization
problem for the considered QoS maximizations. To obtainlgarghm for its solution the con-
cept of Lagrangian duality [33, Chapter 6] will be appliedheTdual problem of (4.1) with respect
to the rate equality and inequality constraints is given by

min sup {u(Wi,..., Wk, ) — 67 hi(r) — 6, ho(r)} . (4.2)

6,>0.,0
1=5,52 reP(H{{ ,,,,, HE Wy, WK)

The set€p andP (HF, L HE W WK) are convex, there exists a set of ratefor which
h,(7) < 0.1 andhsy(7) = 0., provided that the problem is feasible add ; € int{h.(r)}.
Thus, the conditions for strong duality from [33, Theorer®.4] are satisfied and the duality gap
is zero, i.e., the optimum in (4.2) is identical to the optimin the primal problem (4.1). For
this reason the solution of (4.2) will be pursued now. Foatiohal convenience Problem (4.2) is
reformulated as

mein max {u(Wh,....Wgk,r)—0"h(r)} = meing(O), s.t.C.0 <d.,

(4.3)
with
o—[0761]",  h(r)=[h[(rhI(m)]
andg(0) denotes the dual functio”; andd, resemble the linear constraints on the dual variables
in @ and are given by

—Iyg, minimum rate constraints Ok 1, minimum rate constraints
Co=1 |—Ig_ , yde =4 [0x_ .
¢ TK ", rate balancing ¢ Kbt , rate balancing
(4.4)

The supremum operator in (4.2) has been replaced by the mniaoperator as the constraint set
is compact, i.e., closed and bounded. The constraingiotroduced above for the rate balancing
problem do not change the result of the optimization problem reduce the search space for the
optimum value o, a property that will be helpful for the algorithm to be delsed next. That is
because for the rate balancing problem the dual functicssraa

g(0) = max we) { <1 — Z [Oz]k_1> Ry + Z 0], %} (4.5)

k=2
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In case[f.],,, < 0 the maximum operator sets the corresponding fatéo zero, as any other
feasible value for?, leads to a lower value of the objective function. Thigs], ., < 0 has the
same effect agf|, , = 0, which is considered by the constraint function in (4.4).e ®ame
argument holds fot — Zf:_ll [62]; < 0 and the corresponding rate,. The same result has also
been stated in [9, Theorem 1].

As every dual problem, (4.3) constitutes a convex optinoraproblem and the ellipsoid
method [89], [95] will be used in the following for its soloti. In each step the range of possible
solutions is confined to an ellipsoid, where the volume cedday the ellipsoid shrinks with every
iteration until convergence is achieved. The ellipsgid after theith iteration is characterized by
a cente®® and a matrixE® so that

e~ {o ‘ (6-69) BV (9-07) <1},

where the determination of the initial ellipsa@¢ is described in the next section. In each iteration
first the halfspace ‘ ' ‘ ,
HO = {007 — 6D T) al) < p) ), (4.6)

is determined. It is characterized by the veai6t and the scalab™ and will be used to shrink
the size of the ellipsoid. For that purpose it should not ainthe ellipsoid® completely but
still the optimum solution. In cas@” is feasible, i.e.C.0'” < d., the fact that-h (7)) is a
subgradient ofy(6) at® = 6% is exploited , where

{f“(i), Wl(i), ce VAVI(?} = argmax {u (Wh,...,Wg,r) — G(i)’Th(T)} . 4.7)

That is because

A

9(0) = u (W, ., W #0) — 67h (7))
> g (0%) — (67— 0" T)h (#P), VO with CH < d, (4.8)
which corresponds to the inequality from the definition ofuagradient of a convex function at
0 [33, Definition 3.2.3]. Another consequence from this défniis that for all feasiblé with
(6T —6DT) h (7)) < 0 the dual functiory(6) will be greater thary (), i.e., the optimum

solution to will not lie in the half-space defined this way.UEfor feasibled® the parameters of
the halfspacé{”) in (4.6) read as

ah = _h (,,s(i)) ’ p — .

In casef”) violates thejth constraint, i.e.[C’CO(")L =elCH" =: c] 6 > dc],, the subgradi-
enth ((#) does not exist. Instead the halfspa¢é) = {0 c; 8 — [d]; < 0} is taken, which

parameters are given by

a® — Cjcr b — [dc]j _ C;ce(i)-

The ellipsoid£(*Y is then determined to be the ellipsoid with minimum volumeesing the
space
EDNHD, (4.9)
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As proven in [95], this design criterion leads to the follogriupdate rules for the parameters of
the ellipsoid, which are given by

ity — g _ 1+oan E® g
(n+ 1)VaOTEDad
; ’(1—-a?) ; 2(1+ an) L )
gl _ " B0 _ D g g giT g
n? —1 n+ (1 +a)a@TEOq0 4@ )

wherea = 0 in casef” is feasible and

—p® c] 0 — [d].

J

o = —=
VaOTEOa®  Va®TEDgH

otherwise. n denotes the number of variables containedjn.e., n = K for minimum rate
constraints and = K — 1 for the rate balancing problem.

In [89] it is shown that the difference between the optimutu&af the dual function ang (6(V)
can be upper bounded by'hT ((#)) E®Oh ((#®), i.e., the algorithm can be terminated, if this
bound falls below a predefined threshelttading to the stopping criterion

VAT ((70) BOR((70) < c.

If on the other hand it is observed th@it) is infeasible and
clce(i) — [dc]j —VaW)TE®Hq > (

the problem is infeasible, which can happen, if the minimate requirements for the weighted
sum rate maximization cannot be fulfilled with the given sauit power constraint.

4.2.2 Algorithmic Details

In this section the open issues of the algorithm to solve QuoiStcained utility maximization prob-
lems presented above will be covered, namely the initiatimeof the ellipsoid, the computation
of the subgradienta ((#) and the reconstruction of the primal solution.

Initialization of the Ellipsoid

Obviously, the initial ellipsoid€® has to contain the optimum Lagrange multiplier minimiz-
ing (4.3). Furthermore its parameters should be easily coatybe, and the volume of the ellipsoid
should be small to achieve a fast convergence. For rate datgrihe parameters of the initial
ellipsoid are given by [9]

1
E9 = (1—-—)Ir_,
( K)m

For the remaining QoS constrained utility maximizationkgeons introduced in this chapter, the
optimum vector of Lagrangian multiplies can be constrained to lie in the cuboid

Cu - {0 |On,1 S 0 S emax}-
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£ is then chosen to be the ellipsoid with minimum volume cornghjecoveringC,. Thus, the
parameters of the initial ellipsoid are given by

1
0(0) - 5 Omax

EY = diag ([6; Uk

max}l ot [ max}n) K/4
For the weighted sum rate maximization under minimum rageirementsé,.x has been derived
in [90] to be equal to

S S
K (Rl—Rl,min)

Omax — Z Hj (Rj,su(PTx) - Rj) )
j=1 1
(RK*RK,min)

where the single-user rate

Rl Prx) = maxlog, [Iow, + HYWiH,|, st tr (W) < Pry

corresponds to the rate usgican achieve if it receives all available transmit power. Taies
R; must all be greater than the corresponding minimum r&gs, and achievable with a sum
power constraint less thaf,. Such a rate vector can for example be achieved by solvingatke
balancing problem withy,, = %, for k = 2,..., K under a sum power constraint 8§, — ¢,
wheree > 0. For this purpose also the near optimum algorithm to be ptedein Section 4.4
can be used. For the power minimization, in [87] it is progbt® determine for each usér
a set of sub-optimum covariance matrid@g(k), cee Wl(f) in the following way. For each user
J # k the minimum rate requiremet; i, has to be fulfilled with equality and thgh user’s rate

must be equal td?;, min + 1. A fixed decoding order of the users in the MAC is assumed aed th

matricesVV}m are determined successively. First the covariance mattiixeouser decoded last
Is computed so that its minimum rate requirement is fulfilgth equality. This matrix is kept
fixed and considered in the interference terms of the othersusates. With this simplification
the covariance matrix of the user decoded second last caarbputed so that its minimum rate
requirement is fulfilled with equality. This process is doned until the covariance matrix of
the user decoded first is computed and repeated until alllgesxenarios have been considered
where one user’s minimum rate requirement has been inadégsene. Finallyfn.x is given by

ijil tl“(W/j(K))

Computation of Subgradients

The computation of the subgradieritg (") requires the solution of (4.7). When a sum power
constraintis contained ify, Problem (4.7) is a weighted sum rate maximization, thatessolved
with Algorithm 3.1. That is because for the weighted sum nagéximization under minimum rate
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requirements

_ max { (,ﬂ n 0?”) 'r} 0 (4.10)

holds and for rate balancing this can be seen from (4.5). H®@stim power minimization, Prob-
lem (4.7) reads as

K
{(ﬁ(i), wi . WI((Z)} = argmax {Oﬁi)’TT - th (Wk)} : (4.11)
Wi )

k=1

Denoting the used transmit power gy = Zle tr (W},), the maximization in (4.11) can be split
according to

max max 0%2)71—/’1 - Paux — maX {RWSRma)(Paux) - Paux}
HE,Wl ,,,,, WK) Paux

The inner maximization corresponds to a weighted sum ratémization, which can be solved
efficiently using Algorithm 3.1 and the outer maximizatiomn ¢onducted over the function
Rwsrmax Paux) — Paux Which is concave in the scalar variabig,x and can therefore be solved
by the bisection method [33, Chapter 8.2]. That is beca@tiggrmax Paux) IS cONcave inPy,x and
the sum of concave functions is also concave. The first facbeasshown via

Rusrmax(AP + (1= NP = Ruse (AW 4 (1= NW, oWl 4 (1 )W)

> ARuer (Wf”, L W}Q)) 4 (1= A) Rwsr (WP, L W}ﬁ))
(4.12)

where Rys (W1, . . ., WK) is given by (3.12) and thWk(i) are the optimum covariance matrices
for the power constrain®y,i.e

K

{Wl . W(Z } = argmax Ryg(Wi,...,Wkg), s.t. Ztr(Wk) < Pl

W1x0,..,.Wg =0 '

The first inequality in (4.12) stems from the fact that thear@ance matriceSW,il) +(1 —A)W,f),
k=1,..., K fulfill the sum power constraint Pl + (1— A)Péﬁ% but are not necessarily optimum
for that sum power constraint. The second inequality diydotlows from the concavity of the
weighted sum rate in the covariance matrices of the dual MAC.

The bisection method requires the evaluation of the graslien

a(RWSRmax(Paux) - Paux) _ 8RWSRmax(Paux)
6Paux 6Paux

1, (4.13)
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where the poweFq has to be found, so that the gradient in (4.13) becomes zadinig to the
equality

8RWSRma>(Paux) -1
aPaux Popt .
The derivative
6RWSRmax(Paux) —y (P)
aPaux P

at a certain powep is given by the Lagrange multiplier from the weighted sune ragximization
corresponding to the sum power constramt.e.,

K
v (P) = argmin max Ogi)’Tr —v Ztr (Wy)—P | ¢,
K Wi) k=1
Wi =0

which follows from the local sensitivity analysis of a petiad convex optimization problem [29,
Section 5.6.3]. Thus, given an intenal Prnay containing,py, first a weighted sum rate max-
imization has to be solved with sum power constra@@ﬁé using for example Algorithm 3.1
and the corresponding Lagrange multiplie{2=) has to be determined. If (=) is greater
than one, the bisection method is continued in the intefyaPya./2], otherwise in the interval
[Prax/2; Pmax- Note that in comparison with the algorithm for power mirgation from [9], where
this problem is solved via an iterative application of thie taalancing problem, the presented ap-
proach requires only one execution of the ellipsoid methaltich shows a slow convergence
behavior, whereas the method from [9] relies on an iteratp@ication of the ellipsoid method.
Reconstruction of the Primal Solution

After the convergence of the ellipsoid method, it is stiltassary to compute the rat2snd the
covariance matriceﬁ/’l, e Wi optimum for (4.1) from the solution of the dual problem. Let

0" = argming(0), s.t.C.O0 <d.
0

be the optimum solution of the dual problem and

{r*, W, ..., Wi} = argmax {u(Wi,..., Wg,7)—6"Th(r)} =
reP(H{{ AAAAA HI%,WI AAAAA WK)
Wy,..,Wi€Cp

= argmax ) {[LT(H*)T -7 Z tr (Wk)} , (4.14)

k=1

be the rates and covariance matrices leading to the maxinfitime dual function, where
O )=p+6, n=0

for the weighted sum rate maximization with minimum rateuiegments [c.f. (4.10)],
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for rate balancing [c.f. (4.5)] and
po) =67, n=1

for the power minimization with minimum rate requirements.f| (4.11)]. In case
{r*, W, ..., W}} is a unique solution to (4.14), the maximizing variableshe primal prob-
lem are identical to the optimum variables of the dual prohlee.,# = r* and W), = W,

Vk = 1,...,K. As it has been shown in the previous section, the ratesnd the covariance
matricesWy, ..., W result from a weighted sum rate maximization. It can theetmasily be
detected whether the solution of the dual problem is unitjuease all entries in the vectgr(6*)

are different, there is only one single optimum decoding order in the duAOyiwhich is given
by the order of the weights [see (3.10)] and thus only one septimum rates and covariance
matrices. This can be shown as in the proof of Lemma 3.3 in [B#}erwise, no unique decoding
order results from (3.10). Any decoding order within thergdgaving equal weights and using
the same covariance matricég;’, ..., W for all decoding orders leads to different rate vectors
but the same value of the dual function. Additionally, anpvax combination of the rate vectors
obtained with different decoding orders is also optimumhweéspect to the dual function. This
implies that the dual function is maximized on a time-shgrigion of the capacity region. Those
regions correspond to these faces of the poly®pHE ', ... HI W, ..., W}.), where the con-
straints) ;5. Ri < log, }ICNT + D es, HZHI/VZ*HZM = 1,..., L are fulfilled with equality.S;
denotes thgth set containing at least two users having equal weights/aisdthe total number
of sets containing at least two users with equal weightsatBain the time-sharing region are not
directly achievable by successive decoding [36, Chap&BJ3.but only by time-sharing between
the corner points. While the dual function is maximized oerg\point of the time-sharing region,
the primal problem may be infeasible on parts of the timaishaegion or may even be solved by
one point on the time-sharing region only. For this reasddijteonal measures have to be taken to
reconstruct the primal solution from the dual in case soneesusave equal weights.

A naive approach would be to compute the rates for all posslbtoding orders and determine
the convex combination of the rate vectors obtained this salying the primal problem (4.1).
With increasing number of set$; and increasing cardinality of these sets, such an approa&ch b

comes more and more complex, (’;Ef:l |Sj|>! different decoding orders are possible. For this

reason a successive algorithm for the computation of the-sharing solution has been proposed
in [96], which is based on the method from [97]. The basic idda iteratively approximate the
polytopeP (HlH, L HEWE W;;) by another polytope with less extreme points, which
is contained completely i (H{',..., H}, Wy,...,W}). Denoting the polytope of théh
iteration asP®) (HY', ..., HI}, Wy, ..., W}), the primal problem in théth iteration reads as

maxu (WY, ... Wg r),
Sthi(r)<0.,1, ho(r)=04,,, recPY(HI .. HLW!. .. W}, (415)

where the maximization with respect to the covariance medrcan be skipped due to the fact
that the W, ..., W} are optimum on the whole time sharing region. The conditore

Due to the finite accuracy of the ellipsoid method, the caaegbme users have equal weights will occur very
rarely in practice. Thus, two weights; and\} should only be considered as different|if — A\;| > a, wherea
denotes an appropriate threshold.
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PO (HE, ... HY, Wy, ..., W) can be rewritten as

K+i
r<RY%, a>0xuy, Z [a], <1,
j=1
where RO = [R(l),ﬁ“),...,ﬁ(i—l)} contains the extreme points of the polytope

PO (HE, ... HY, Wy,...,W;) and#U) denotes the extreme point added after stepThe
matrix RV for the first iteration is given by

R(l) _ |:10g2 }ICNT + H{{Wl*Hll OKfl,l

e, . s Pmin + €1 |,
Og_11 log, ’ICNT + HEWEH | ™ K

wheree > 0 should be chosen so thag,, lies in the interior of the initial polytope, i.e., the ini-
tial problem should be feasible. Clearly for the rate balag@roblem, which is always feasible,
the last entry inR()) can be skipped. To save computational complexity by usinigitial poly-
tope with less extreme points, for the power minimizatioe can use the utility and constraint
functions of the rate balancing problem for the determoraof the time-sharing solution, where
the ratiosp, = % are given by the ratios of the minimum rates. That is becausba op-
timum all rate inequalities are fulfilled with equality, atherwise the transmit power could be
reduced without violating the minimum rate constraintsrtii@rmore the solution of such a rate
balancing solution with fixed covariance matrices will liethe same time-sharing region. Thus,
Problem (4.15) reads as
max u (Wi, ..., Wi r),
K+i
S.t. h,l ('I“) S 001,17 hg (’l") = 002,17 r— R(’)a S O, (81 Z OK+i,17 Z [a]j S 1, (416)

J=1

which is a linear program for the QoS constrained problertreduced in this chapter, that can
be efficiently solved (e.g. [33, Chapter 2.7]). Once the ot anda® for Problem (4.16)
has been obtained, the Lagrange multiph& corresponding to the third constraint in (4.16) is
computed according to

AW = argmin §(0) = argmin {u (W, ... W, f(i)) -07 (f(i) - R(i)d(i))} .
>0 >0

In case the maximum of the dual functignA”) of Problem (4.16) is identical to the maxi-
mum of the dual functiory(6*) of the original problem in (4.1), the optimum rates for the pr
mal problem have been found with the rat€¢8 and+ = ). That is because the optimum
utility from (4.16) gives a lower bound for the optimum uiyliin (4.1), as the constraint set
PO (HE, ... HY, Wy,..., W) is completely contained in the polytope from (4.1), i.ee th
constraint set in (4.15) is stricter than in the originalteon (4.1), and for both problems the
duality gap is zero. Correspondingly, the dual functjofA®)) is a lower bound fog(6*). Thus,

in case the optimum dual functions are equal, both problerad to the same optimum solu-
tion. Otherwise, i.e., ifj (A?)) < ¢(8*), a new extreme point has to be added to the polytope

PO (HE, ..., HE, Wy, ...,Wj). This point#® solves the problem

7 = argmax ATy, streP (HF, L HEWE W[*() , (4.17)

T
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which is a linear program that is solved by one of the extremeintp of
P (HY,...,H, Wy, ..., W}). As pointed outin [97]A(") is a subgradient of the optimum util-
ity in (4.16) with respect to changes in the constraint ve&6) .. Hence, by (4.17) this extreme
point of P (HY, ..., HE, Wy, ..., W) is added to the se®® (H}!,... HL, Wy,... , W)
that is aligned closest to the direction of strongest ingeeaf the utility function. The extreme
points of P (HlH, L HEWE L W;;) only differ in the encoding order of users having equal
weightszi(6*). The optimum extreme point with respect to (4.17) is therneaed by decoding
the users within each grou§) in increasing order of the corresponding weights\ifi, i.e., the
user withargmax, s, [A?], is decoded last amongst the users in gr6pvhereas the decoding
order amongst the different groups and the users havingiamgightsi(6*) remains the same
as in the original problem. The proof for optimality of thismbding order can be found in [96].
The whole algorithm for QoS constrained utility maximinatis summarized in Algorithm 4.1.
As it has been shown in this section, QoS constrained opdiiiz problems can be solved by
an iterative solution of weighted sum rate maximizationsie@pproach for efficient algorithms
would therefore be to apply the methods presented in thequehapter for weighted sum rate
maximization and determine the weights optimum for theinaQoS constrained problem with
the ellipsoid method. As it exhibits a considerable amoticbonputational complexity and slow
convergence behavior, more efficient algorithms for nedimopm solutions to QoS constrained
optimization problems will be presented next.

4.3 State-of-the-Art Near Optimum Approaches

Zero-forcing is also a popular concept for solving QoS c@iiséd utility maximization problems.
The simplest zero-forcing method is to allow only one usergagrier and separate the users by
the carriers, which leads to Orthogonal Frequency Divisittiple Access (OFDMA). The prob-
lem of power minimization under minimum rate requiremestsalved almost optimally under
the OFDMA constraint in [86] via the dual problem. Althoudtetalgorithm is presented for
Single-Input Single-Output (SISO) systems in [86], itsegdion to MIMO is straightforward by
applying left and right singular vectors as receive andgmaihfilters, respectively, as it is done
for example in [98]. In this paper one special case of the lbatancing problem, the so-called
Kalai-Smorodinsky bargaining solution is considered.98|[the rate balancing problem for SISO
OFDMA systems is considered, where an equal power allat&iassumed and the carriers are
successively allocated to the users. Thereby that usaevescecarrier in each step that rate achiev-
able with an equal power allocation is furthest away fromdhsired proportion of the sum rate.
By serving only one user per carrier, the spatial degreesdhoarever not fully exploited, which
is why OFDMA approaches inhere considerable performanssek One way to overcome this
drawback but remain with zero-forcing is to apply Block-Baamalization (BD) [61] on each car-
rier and perform QoS constrained power allocation over disalting scalar subchannels. In [100]
the performance of such a scheme is improved for the powarization problem by recalculat-
ing the receive and transmit filters. BD is combined with DIRQ101] for that problem, where
the main focus is put on determining the optimum encodingnorés already mentioned in the
last chapter, BD requires the total number of receive amteimthe system to be smaller than the
number of transmit antennas, an unlikely setup in pracigaglems. For that reason an algorithm
to allocate data streams to users for the power minimizgtioblem is presented in [102], where
zero-forcing transmit filters are applied at the transmidied the left singular vectors at the re-
ceivers. For the same problem, a successive allocationtafstiams to users in a MISO system
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Algorithm 4.1 Algorithm for QoS Constrained Utility Maximization Usinge Ellipsoid Method

1: Initialize ellipsoid:

Rate Balancingd®” = 115, E© = (1-+)Ix
Power minimization and weights sum rate maximization witimimum rate requirements:
0(0) - %Omax, E(O) = diag ([Q%wax]l ot [erznax]n) K/4

2: © = 1, convergence =FALSE

3: repeat
4:  if 0~V feasiblethen
5: Compute subgradienth ((7(")
6: a® = —h ((PD), b =0, =0
7 f (\/hT (70) EOR (7)) < g) then
8: convergence=TRUE
9: end if
10: else
11: Determine violated constraief .0 > [d],
. i) _ i) T pli _ —b
12: a() = Cjc b( ) = [dc]] — Cj’ce( ), o = W
13:  endif
14:  Update ellipsoid:
i+1) _ pli) _ 1+an () 1y (4)
0+l — g (n+1)\/a(i)’TE(i)a(i)E a
i n?2(1—a? i 2(14-an D (3 (i i
EUH) = % (E() - (n+1)(1+t(:v)a,(i))rE(i)a,(i)E( Jaa®TE! )>
15 1=1+1
16: until convergence=TRUE or detection of infeasibilty
(10" ~ [dd], — VaTDTEDal-1 > 0)
17: Find users having equal weighs(6¢ ")
18: if group of at least two users having equal weights exista
190 {r* Wy, ... Wi}= ALGMAX . cp (it i Wy, W) {u(Wy,...,Wg,7)— 09 Th(r)}
’ . ‘ Wi,...,.WgeCp
- logy |Ion: + Hy W H, Org-11
200 RW = 2 T LA M vxr , Riin + €1
OKfl,l 10g2 ’ICNT =+ H}%WKHK min K
21: g =1
22:  repeat
23: Obtain#\) anda¥) as maximizers in (4.16)
24: A6 = argming.q §(6@) = argming {u (Wl*, oo, Wi 'F(j)) -7 ('F(j) — R(j)d(j))}
25: 7#0) = argmax, ATy, streP (HY, ..., HE, Wy, .. W)
26: RU+D — [R(j)j,,am}
21 j=j+1
28: until g (0(1')) —g (:\(j71)> <e
29: end if
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with zero-forcing at the transmitter is proposed in [103JoSconstrained utility maximization
problems without zero-forcing constraints and linear g$rait and receive filters are considered
in [104], [55] and [57], where in the latter per-stream and per-user SINR requirements are
treated. Per-antenna power constraints are introducekDb] fo QoS constrained problems with
linear transmit and receive processing. All these algorgthave in common, that they are very
complex, as they work iteratively and in each iteration mipidownlink transformations are re-
quired, and that they are not guaranteed to converge to tialgbptimum solution. In [106] an
optimum iterative algorithm for linear transmit and reeefilters is presented for the problem of
sum power minimization under maximum requirements for eesenr's Mean Square Error (MSE),
which are related to rate constraints by an inequality betAMdSE and rate. A reduced complex-
ity but still iterative algorithm for the sum rate maximiiat with relative rate constraints without
DPC is presented in [107], a non-iterative approach for #raesproblem but with DPC at the
transmitter is proposed in [11].

4.4 Successive Resource Allocation and Spatial Zero-Fong

An efficient method to solve the general QoS constrained|@moip4.1) will be presented in this
section. For this purpose its dual problem

min sup {u(Wi,..., Wk, ) — 6{hi(r) — 65 ho(r)}, (4.18)

61>0c,,1,02
”

which is identical to Problem (4.2), will be used. The optimualue min ¢(6, 6,) of the

61>0.,,1,02
dual problem is equal to the optimum value of the utility ftion in the plrimal problem (4.1),
due to the strong duality shown in Section 4.2.1, which is wie/dual problem will be used as
a starting point for simplifications in this section. The cept of successive resource allocation
and spatial zero-forcing, which proofed to be effectived@ighted sum rate maximization in the
previous chapter, is applied to the dual function for QoSst@mned utility maximization problems
in this section. This implies that in each step the data str@éocations and receive filters obtained
in the previous steps are kept fixed and the filters for the yalbcated data stream and the
corresponding user allocation are determined so that tirease in the optimum value of the dual
function becomes maximum. Thus, in thk step a solution to

max  min max max ) {u (p?(k),7) — 6] hy(r) — 65 ho(r)} (4.19)
)

k  6120c1,1,02 p() (k)>0;1,1] p() (k)< Pr« reCr (p(i) (k

has to be found. The maximization ovetis done last as it is desired to find that user with the
maximum value of the dual function. For the power minimiaatproblem it is necessary to set
Pry = oo and
i () () i i () i i
P( )(k) = [pl,h o Prgy - 7pl(<czl,dk,17plg,)l’ oo ’pk,korl?pl(eJ)rl,l’ e >p§<),dx]
contains the powers allocated to the scalar subchannels thiegth subchannel is allocated to
userk. As described with the weighted sum rate maximization gobin the previous chapter,

these subchannels result from the decomposition of the Mbivt@dcast channel The variabltgs
are again initialized with zero and incremented by one e@oeé & subchannel is allocated to user
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k. With the successive resource allocation and zero-fortiregdependency of the utility from the
uplink covariance matrice®’, can be replaced by the power vecte? (k). The seCr (p(k))
contains all rates achievable if a new data stream is abbddat user, the receive filters and user
allocations from previous steps are kept fixed, the powecationp” (k) is used and the receive
filter for the new data stream and the transmit filters obefi@actrrier separation and zero-forcing
constraints. The rates in the vectoare computed from the filters and powers used in the broadcast
channel. Due to the duality from [5] these rates are idehticthe rates in the dual MAC used in
Problem (4.18). While such a rate computation destroys dhgexity of the problem in case the
optimum solution has to be found as in Section 4.2, the ssoeeproblem can be easier solved
this way as shown in the following. As already pointed out @tt¥n 4.2.1, due to the fact that
u (p®(k),r), hy (r) andh, (r) are linear functions irr, the maximization ovep” (k) andr

in (4.18) corresponds to a weighted sum rate maximizatiofiXed Lagrange multiplieré or, in
case of the power minimization problem, can be solved vidgemative application of a weighted
sum rate maximization. Thus, the optimum receive filterih@rewly allocated data stream and the
optimum transmit filters result from a weighted sum rate mmazation. Therefore, the optimum
transmit filter for the newly allocated data stream for DP@ ba obtained from from (3.31) and
the corresponding receive filter from (3.29). Accordingitycase no DPC is applied the receive
filter maximizing a lower bound for the weighted sum rate gegiby (3.58) and (3.64) and the
update rules (3.68) can be used to obtain the transmit filkeysll these filters are independent of
the weights, the maximization overe Cr (p'”(k)) can be solved by using the rates

r(pV(0) = [Ry (pO(K) ... Ric (PO (R)]

where using the results from Sections 3.2 and 3.3 the P&Lﬁ@)(”(k)) can be stated as

Zlog (1 +p§gJA§1J(k)) (4.20)
where
g, = dm mzk (4.21)
dn+1, m=%k

The channel gaing, ;(k) forj =1,...,d,,, m =1,..., K are given by

A9 (k) = C g H'H,.t,

0-2 m.j

for the DPC case [c.f. (3.37)] and by
C

2 (1 g\” Hku(LjfL,jH,?g,i” G
+ : R A
n RORJIOMO m.j

when no DPC can be used [c.f. (3.60)]. The gain of the newlycalied subchannel,(f’llkﬂ(k)
computes according to

(@) _
)\m,j(k) -

i C NG £ (i
)‘l(c,)dk-i-l(k) = ﬁpl (PéP)CHIIijPE()P)C>
n
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in case DPC is applied at the transmitter and
(i) C' )H 46) ()
)‘k,dkﬂ(k) = ggii) Al(c)gk
n

otherwise. As in the previous chapter, the cam@ron which the newly allocated subchannel
is transmitted if this subchannel is allocated to uses given by that block within the matrix
P HIH, PS). in the DPC case and the matr®" ' A" otherwise that exhibits the largest
principal eigenvalue. Thus, the carrier preselection psep at the end of Section 3.4.1 can be
applied to the QoS constrained utility maximization probéeas well. Problem (4.19) then reads
as

; (4) (4) _
I%mméﬁﬁ%ﬁwmmfﬁﬁwmgm{u@)(M"%p (k)))
—60{hy (r (p(i)(k))) — 60, hs (r (p(i)(k)))} . (4.22)

The optimum value of the dual function for a fixed ugers equal to—oo, if the constraints

of the primal problem are violated, i.e., there exists areinflwith el h, (r (p(k))) > 0 or
elhy (r (p¥(k))) # 0. Thatis definitely the case if the rate of a useis equal to zero, which
happens if no subchannel has been allocated to that user. sAdafterwards the maximum is
taken with respect to the user index, that user would neveebed. In order to work properly,
the algorithm therefore needs an initialization phase, hiictveach user receives one subchannel.
For this purpose a s& will be defined for the firsty allocation steps, which contains all users
that have been served in stepso : — 1. Those users are then excluded from the user selection
process in the stepgo K. Furthermore in the dual function only the constraints osthusers and
the uselk are considered so that the case that the optimum value otiiiduthction becomes oo

is avoided. During the initialization phase instead of 23 the following optimization problem has
to be solved

max min max
ke{l,.. . KN\S® 6120¢;,1,02 p() (k)>0; 1,17 p() (k)< Pry

{u @V k). v (PO (k) = TR (k.7 (D (k) — OIR (k.7 (PV(K))) } . (423)

" (k,r (p”(k))) contains a zero in every row, that corresponds to a minimuenc@nstraint of
a user that has not been served so far exceptiyser.,

T7 ) Ay - Jerh (r(PV(R)), €SV =k
e;h; (k,r(p (k;))) {0 clse )

For the sum rate maximization with relative rate constsittte first subchannel is allocated to
user1 and from the second step onwarl§’ (k, = (p'”(k))) contains a zero in every row that
corresponds to a relative rate constraint of a user that bebeen served so far except uger
which implies that

elhy (r (p9(k))), j+1€89 j=k—1
0 else '

eJTiL(zi) (k,'r (p(")(k))) = {
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Clearly, the QoS constrained utility maximization probkoannot be solved with the proposed
method, if there are too few degrees of freedom to allocaleast one subchannel to each user,
l.e., C' Nt must be at least equal to the number of users with non-zeeaeguirements. A more
complicated initialization algorithm is proposed in [10@here in theth step that user is chosen
that exhibits the largest difference in the objective fimtbetween allocating the next data stream
to the optimum carrier and the second best carrier. Howegethis algorithm requires twice as
many solutions of the dual problem as the initializationadi®d above, it will be not considered
here.

When the problem of weighted sum rate maximization undena@ower constraint and minimum
rate requirements is considered, it can happen that thdgonolemains infeasible, i.e., the opti-
mum value of the dual function goestaxo, even if at least one subchannel has been allocated to
each user. That is because the transmit power constrgirtian be too low to fulfill the minimum
rate requirements with a small number of subchannels. Tbushis problem at first the power
constraint is omitted in (4.22) and (4.23), i.&%x — oo, which corresponds to minimizing the
transmit power required to fulfill the minimum rates. If in@rtain step the used transmit power
falls below Pr,, i.e., 1]p" (k(j)) < Pry, the actual problem of weighted sum rate maximization
with minimum rate constraints is considered, as it has beepgsed in [57]. If all degrees of

freedom are exploited, i.e; min (NT, Z,ﬁil ri | subchannels have been allocated and the power

required to fulfill the minimum rate requirements is stilyher thanPr, the problem is infeasible
with the proposed successive allocation and spatial zmmnig method. In general, the algorithm
terminates when it is observed that the optimum value of tha flinction would decrease with

a new data stream allocation or all degrees of freedom aig use afterC’' min (NT, Z,ﬁil rk>
steps.

In the remainder it will shown how Problem (4.22) can be solie the QoS constrained utility
maximization problems introduced in Section 4.1. The sotubf Problem (4.23) during initial-
ization is similar and will be skipped for notational coni@mce. The maximization with respect
to £ has to be solved via an exhaustive search, which is why indlt@rfing Problem (4.22) will
be solved for fixed:. All three QoS constrained problems have in common that #vemization
overp” (k) leads to the following optimum powers

+
0 _ | Yo 1 4.24
P j [111(2) /\,(i)j(k?)] ) (4.24)

which follows from evaluating the Karush-Kuhn-Tucker (KKdonditions of such a problemn,,
is a function of the weight:,,, and the Lagrangian multiplie®, andé,. Due to the zero-forcing
constraints, the minimization with respect to the Lagrangnultipliers does not have to be solved
with the ellipsoid method, but with much simpler methods g3laned in the following for the
three problems from Section 4.1.
¢ Weighted Sum Rate Maximization with Minimum Rate Requirements
Inserting the utility and constraint functions of this Qo&strained optimization problem
into (4.22) leads to the dual problem

. T T (i) T, .
min ma; +6;)r k — 0, rmin = min 0
0:>0x 1 p”)(k)ZOi,l,l,T}z()“)(k)SPTx { (“ 1 ) (p ( ))} 1 T'min 010w, 9(61)

Thus, the inner maximization corresponds to a weighted suemmaximization for fixed,
andv,, = e} (u+ 6;)n for the optimum powers in (4.24), whergis chosen such that the
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sum power constraint is fulfilled with equality (see Appendi2). The optimum Lagrange
multipliers@; are then found in an iterative mann@ét. minimizes the dual function, if

g(0:1) —g(67) >0, VO, >0xk;.

g (671) can be lower bounded by using other powers than the optimwes fsom (4.24) with
the Lagrange multiplier8; so that

q(6,) = max X {(p"+6])r (P(k)} — 0] Tmin

PO (k)>0; 1,17 p) (k)< Py
= (p"+6])r(0:) — 6] Tmin
> (1T +607) 7 (6;) — 07 T
=90~ (67 =677 (ron— 7 (6))
where r (6;) results from inserting the optimum powers from (4.24) irnte rate expres-

sions (4.20) and the inequality results from the fact thatgbwers optimum fo#f; are not
necessarily optimum fa#;. Consequently,

9(01) = g(87) = (677~ 67 ) (rma — 7(67)). (4.25)
Thus,8; minimizes the dual function, if
(67 = 67) (rn = 7 (61)) 2 0, V0 > Oy,
This inequality is fulfilled in case
07" (rmin—7(07)) =0, and rmn— 7 (07) < O 1, (4.26)

which represent the primal feasibility and complementéagishess constraints of the weighted
sum rate maximization with minimum rate requirements, wiensubchannel gains are fixed
and the optimum subchannel powers should be found. Of cdjremuld be found be an
exhaustive search, i.e., all possible combinations of eatoes inf; are tested until (4.26) is

fulfilled. In the following a faster approach will be presedt Initially 0%0) = Ok Is taken
and the corresponding rate 0%0) are computed. In case all minimum rate requirements are

fulfilled, the optimum Lagrange multiplier has already b&@amd. Otherwise, a new Lagrange
multiplier will be determined as described for thith step in the following. For all users,

which rates are below the minimum rates, i€’ r (0?‘”) < Rminm, the corresponding

entries in0§j) will be non-zero and chosen such that the rates resulting tiee optimum
power allocation (4.24) are equal to the correspondingmmiim rates, all other entries 6{”

are set to zero. Thus, the non-zero entrieéﬁ’ﬁ are determined from the following implicit
equations:

Zl HWW )| | = Ryomin,  V¥m € MW
0gy | min " In(2) m.j = Ltm,min, m

Jr

- PTX7 (427)

memM ) m,j(k) mg M)
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whered,, is defined in (4.21) and1Y) contains all user which rateg r (0?‘”) are smaller
than or equal to the corresponding minimum rate requireyent

M) = {E =1,....K )e}’r <0§j_1)> < Rmin,e} :
This choice foreﬁj) assures that
gt (rmm _p (09’)) —0, (4.28)

ase! 0 = 0 form ¢ MY ande], (rmin —7r (09’)) =0 form € MUY, The setM~V is

completely contained in1), i.e., MU~1 c MU), as that set contains all users whose rates in
stepj—1 are lower or equal to the minimum rate requirements and fosars in the sep10—1)

the minimum rate requirements are fulfilled with equalityf.[¢4.28)]. Correspondingly the
vector 0(] Y contains zeroes at all places, whéﬁé has zero entries, and additionally at
places which correspond to users that are containgd i but not in MY~ . Consequently,

gD T (rmm - (09))) —0. (4.29)

Inserting (4.28) and (4.29) into (4.25) it can be concluded t

0(0) o 08) = (00" 01727) (s a1) -0

Thus, with the proposed iterative method the optimum of duwattion cannot get worse than
in the previous step. In case all rate requirements arel@dfithe inequality and the equality
in (4.26) hold and the optimur@; has been found. As (4.26) are the primal feasibility and
complementary slackness conditions of the primal probléailocating power to scalar sub-
channels leading to the maximum weighted sum rate under gpswer and minimum rate
constraints, and the powers resulting from (4.24) fulfi# dhual feasibility conditions of this
problem, the powers obtained this way lead to a KKT point efgghimal problem. As in this
case the objective function is concave and the constranttifons convex in the subchannel
powers, these powers are also optimum for the primal povi@cation problem.

Sum Rate Maximization with Relative Rate Constraints

For this instance of a QoS constrained utility maximizapooblem the dual problem in (4.22)
reads as

Ry (P(i) (k))
- 0 P2
min max Ry (pW(k)) — 0 | 1x_1R, (p'?(k)) — : =
02 p()(k)>0;1,1Tp® (k)< Pry ( ( )) 2 ( ( >) RK(P(i)(k))
PK

= min g(6).

As before, the inner maximization corresponds to weighted sate maximization for fixed
0, so that

v = (1 — 0;1;(_1) n, and v, =e! 0, m=2. . K
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in (4.24), wherey is chosen such that the transmit power constraint is fulfiléth equality.
Similarly to (4.25), the following inequality must hold

RQ(P(i)(k‘))
. P2
9(6:)—g(03) > (657 =01 [ 1 sy (PVR) = | >0, V6,
RK(P(i)(k))

PK

so thatd; minimizes the dual function. Together with the sum powerst@nt, the following
set of equalities must therefore be fulfilled

Ry () pm =R (65), m=2,....K

Czl (1—0;71—1](—1)77 : K dAm T 0* ’
B IR R
j=1 1H(2) )\17]-(]{?) m=2 j=1 1H(2) )\m,j(k>

which has a unique solution but must be solved iterativedydane in [11]. For fixedk =

* T
M the first K — 1 equations in (4.30) can be solved relatively easy. It i tueee

proposed in [11] to solve (4.30) by a bisection search forthafilling all equalities in this
system of equations. Together with (4.24), the equatior(g.80) are identical to the KKT
conditions of the primal power allocation problem, i.e.,emithe optimum powers for the rate
balancing problem with fixed subchannel gains should bedoés a KKT point is necessary
for the optimum and (4.30) has only one solution [11], the @m@aresulting from (4.30) are
also optimum for the primal power allocation.

e Sum Power Minimization with Minimum Rate Requirements
For this problem, the optimization of the dual function in22) reads as

min max 0l r (pV(k)) — pDT(k)1x} — 07 Pmin = min 6,),
91201(—1,1;)(2')(19)201-,1{ 1 (p ( )) b ( ) K} 1 Tmin 01201(—1,19( 1)

which leads tov,, = e 6, in the optimum powers in (4.24) via evaluating the KKT. By
inserting the optimum powers into the rate expressions @nididg ¢(0) with respect tad,;
and setting it to zero one obtains

dg(el)
d 6,

= Pmin — T (p(i)(k)) =0.

This leads to the following implicit equations fef 6,

Zlog2 (mln( f (‘;’;Agj<k))) = Rpminy, m=1,..., K (4.31)

As these equations lead to positive values for the elemeits the global minimum of;(6,)
does not violate the constraifls > 0x_,;. From these implicit equations it can also be
concluded that the powers obtained by the solution of theé pragblem lead to a feasible
solution of the primal problem.
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To summarize, the reduced complexity algorithms for ytitibnstrained optimization problems
have the same structure as Algorithm 3.2 in case DPC can bedgb the transmitter and as
Algorithm 3.3 otherwise. Instead of the weighted sum raténi@ 6 of Algorithm 3.2 and linel 7

of Algorithm 3.3, for each user the value of the dual function

d*(k) = min max max ) {u (p(i)(k), 7) — 0] hy(r) — 0 hy(r)}

0120¢,,1,02 p() (k)>0;,1,1] p() (k)< Prx reCr (p(i) (k

optimum for the successive resource allocation and spedral-forcing method is computed and
used for the selection process. During the initializatibage the modified optimum value of the
dual function

d*(k) = min ' max
0120c),1,02 p() (k) >0;,1,1] p(9) (k)< Pry

{u @O (k). (pO(k))) = 00T (R (kv (pO(K))) — 65T ()RS (kv (PV(H))) }

is used, where additionally only users can be selected that hot received a data stream yet.
In line 2 of Algorithm 3.3 furthermore that user has to be chosen thatmum rate requirement
can be fulfilled with a single data stream with minimum poweilrocase of the rate balancing
problem, usen is chosen. Additionally, the power allocations in lih& of Algorithm 3.2 and
line 22 of Algorithm 3.3 have to be replaced by the corresponding Qu$trained power allo-
cation problems leading to the powers (4.24) with the wkgeels stemming from the implicit
equations (4.27), (4.30) and (4.31). As shown previoublsé powers lead to feasible solutions,
which redundantizes the primal reconstruction and a plessiiplementation of time-sharing re-
quired for the optimum algorithm.

4.5 Further Complexity Reductions

Apart from the power minimization problem, the determioatof the Lagrange multiplie®; and

0, optimum in (4.19) can only be done in an iterative mannerhasva in the previous section,
although it has been possible to avoid the use of ellipsoithats. Especially, when the number of
users grows large, the complexity of the user selection eanrbe intractable, as for each user in
each step the optimum value of the dual function has to be atedp For this reason a simplified
user selection will be presented next, which has been peaplog the author in [108]. Instead of
looking for the minimum with respect &, and#é, in (4.22), the optimum Lagrange multipliers
from stepi — 1, denoted a8 " and#\ ", are taken so that Problem (4.22) simplifies to

max max {u k), r (pO(8)) = 60 Thy (r (p(R))) -

ko p(k)=041,1]p) (k)< Pr
—60Ths (r (pO(R)) } . (4.32)

This choice is motivated by the fact that, with increasinghber of allocation steps, the implicit
equations (4.27), (4.30) and (4.31) less and less changaghradding a new subchannel from
stepi — 1 to stepi, which implies that9" " and 8" are good estimates for the optimum
Lagrange multipliers in the previous step. This way, theemmaximization in (4.32) becomes a
weighted sum rate maximization for the the QoS constraitiétumaximization problems with a
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sum power constraint. For the weighted sum rate maximizatith minimum rate requirements,
Problem (4.32) reads as

T (i—1),T (4)
max max +6 ) r k
k pu)(/ﬁ)zoi’l,1Z,Tp(i)(/rg)§pTX (N ! (p ( ))

and for the rate balancing problem, (4.32) can be written as

Ry (P(i) (k))
p2

max max (1 - 1}7195;1)) Iy (p(i)(k)) + GQT’(i_l) )
ko p@(k)>0;1,1Tp (k)< Pr Ry (p (k)

PK

The dual problem of the power minimization is transformed eweighted sum rate maximization
by introducing an artificial power constraint, which imgighat the transmit power must be equal
to the optimum power of the previous step givenljy, p®~Y(k(i — 1)) so that Problem (4.22)
reads as

T,(i—1) (4)
m’?XP”)(k)ZOi,l,11'TP(”I(I;§1§X11'T—1P“_1)(k(i—l)) o " (p (k)) .

Thus, the user selection is done as for a weighted sum ratemzation and the optimum La-
grange muItipIiersﬂii) and Héi) need only be computed as described in the previous section fo
the userk(:) selected in step. While this measure on its own does not gain much complexity
reductions, it enables the application of user preselegresented in Section 3.4.1 and the user
selection based on an upper bound for weighted sum rate femtio® 3.4.3. Both methods have
turned out to be very effective for the weighted sum rate maation and will also lead to drastic
complexity reductions at almost no performance losses @8 constrained utility maximization
problems. Nevertheless, the proposed complexity reductanot be applied during initialization.
However, during this phase the number of candidate usersdva to be tested shrinks with each
step, as a user is excluded from the selection process aftdrchannel has been allocated to it.

4.6 Numerical Results

In Figure 4.1 the average weighted sum rates per subcaregiaited versus the SNR, which is
defined as the tenfold logarithm of the ratio of transmit powg, to noise variance?. There
are K = 5 users in the system, each equipped with= 2 antennas and the transmitter has
Nty = 4 antennas. The weighted sum rates are averageds00echannel realizations, where
for each channel realization there arg = 4 temporal propagation paths for each user. Each
channel matrixH; ., k =1,...,K,{ =1,...,4 consists of circularly symmetric Gaussian entries
with zero mean and unit variance, where the temporal disthatwveen two consecutively arriving
symbols is equal ta60.s, i.€., 7y m — Thm—1 = 160pusforallk =1..., K, m=2,...,4. OFDM
with C' = 16 carrier is employed to mitigate intersymbol interferennd ¢he bandwidth is equal
to B = 150kHz at a center frequency gf = 5GHz. As utility function the weighted sum rate is
used in Figure 4.1, where the even users have twice thetygrafrihe odd users so that

B B _1 B _2
Ml—M3—M5—7, uz—m—?,
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Figure 4.1: Average weighted sum rates with minimum ratestramts in a system witik” = 5 users with
rr = 2 receive antennasyt = 4 transmit antennag, = 16 carrier andB = 150kHz. j1; = pu3 = pus = %

po = pg = 2.

and minimum rate constraints are imposed for each user.€Ti@e constraints increase linearly
with the SNR, so that

Lk min

C

with R, o = lbpcu for all usersc. Thus, at0dB each user has a minimum rate requirement of
1bpcu per subcarrier. The increase of the rate requiremetitSMR is done so that the minimum
rate requirements come into effect for all SNR values. Thag,whe minimum rate requirements
are not fulfilled by simply maximizing the weighted sum rate,, the optimization is not solved
by the algorithms presented in Chapter 3.
As in the case of weighted sum rate maximization without munn rate requirements, the loss of
giving up DPC with the proposed method (“Succ RA and ZF witidBC”) is acceptable. The
adjunct “wsr user sel.” implies that the user selection seloleon a weighted sum rate maximiza-
tion with the Lagrange multipliers from the previous steps iAcan be seen in Figure 4.1, this
measure leads to negligible performance losses comparbe tmethod, where in each step the
dual function is evaluated exactly. Furthermore with theified user selection the user prese-
lection explained in Section 3.4.1 can be applied, whichredsiced the complexity of the user
selection by21.4% in the simulations. Additionally using simplified receigeaccording to (3.75)
leads to the curve labelled as “Succ RA and ZF without DPC gkiRx and wsr user sel.)” in
Figure 4.1. By selecting in each step the user for the negtstaéam according to an upper bound
for the weighted sum rate obtained with the Lagrange mugdtipfrom the previous step, which is
labeled with the adjunct “(simpl. Rx and user sel.)” leadsrt@ll performance losses compared to
the other methods. Nevertheless, the same average suns raiih &VD receivers, where the left
singular vectors are used as receive filters, can be achawkdntenna selection with canonical
unit vectors as receive filters is outperformed for all SNRiga.

= Ry, + SNR/4
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The close-to-optimum performance of the algorithms pregdda the last two chapters has been
shown by simulations results. Although impressing and lsinperformance can be obtained in
other scenarios, these results are only valid for a spaniallation setup and cannot be generalized
to an arbitrary set of parameters. In this chapter some tcalyesults will therefore be presented
for the some of the derived algorithms, when the temporahcbbmatrices contain Gaussian i.i.d.
entries. Direct expressions for the average objectivetfoncas the weighted sum rate, are how-
ever difficult to obtain. A common approach in the literatimethe analysis of greedy zero-forcing
approaches, which aim at sum rate maximization, is thezefotet the number of users grow to
infinity and to show that in this case the optimum can be aeu¢g5], [64], [68]. Conclusions to
the performance of the algorithm in a system with finite nundfeisers can however not directly
be drawn. For this reason results of large system analyflibevapplied in this chapter, where at
least two parameters go to infinity at a finite fixed ratio. la ldrge system limit many expressions
of random variables, especially the eigenvalues of largdom matrices, become deterministic.
This facilitates to find analytical expressions for the abje functions. As it will be seen, the
results obtained this way approximate the system perfocenguite well already with parameters
of moderate finite size. After giving a short overview of ldg&ire on large system analysis in
Section 5.1 and explaining some preliminaries in Secti@nthe case of infinite number of users
and transmit antennas in MISO systems will be treated ini@e&t3. MIMO systems with a fi-
nite number of users but infinite numbers of transmit andivecantennas will be considered in
Section 5.4.

5.1 Related Work

In this section a short overview on application examplesaajé systems analysis to communica-
tion systems will be given. For an extensive overview of famentals of large system analysis
and a some application examples the reader is referred 8j.[10 Code Division Multiple Ac-
cess (CDMA) systems, large system analysis is a populafdogerformance evaluation, when
the number of users and the length of the spreading sequemmksowards infinity. In [110] ex-
pressions for asymptotic signal-to-interference-raitiothe uplink are given for different receive
filters. This work is extended to time-varying channels angerfect channel knowledge in [111].
SINRs in the downlink of large CDMA systems for two kinds ofe@ve filters are derived in [112]
and [113], where the results are also applicable to muttama systems with the number of trans-
mit and receive antennas going to infinity at a finite fixedorakurthermore two kind of random
matrices are considered in the analysis, namely thoseioorga.i.d. entries and those consisting
of random orthonormal columns. In [114] inter-cell intedice is additionally taken into account
in these CDMA scenarios. For MIMO systems with channel magricontaining i.i.d. entries ex-
pressions for the ergodic capacity under statistical celdamowledge in the large system limit are
given in [115], where white Gaussian noise as well as colo@de originating from multi-user
interference is considered. An high SNR analysis of the @tenvith white noise is conducted
in [116]. Regularized beamforming in multiuser MISO syssamanalyzed in [117] for an infinite

78
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number of transmit antennas and users, where the asyngiyptptimum regularization param-
eter is determined for those parameters. The same largensyishit is used in [118] to obtain
asymptotic expressions for the ergodic sum rate, whenfoeooag and DPC are used at the trans-
mitter with quantized feedback of channel state infornmatiBesults for the large system rate in
single-user MISO and MIMO systems using Random Vector Quatidn (RVQ) are presented
in [119], where besides the number of antennas also the nuoilieedback bits grows towards
infinity.

Recently, the results from large system analysis have baglred to multi-cell MIMO systems.
While the examples for large system analysis in singlesystems cited above are based on ran-
dom matrices which contain random i.i.d. entries with zeeamor random orthonormal entries as
in [112] and [113], for multi-cell systems the random matg@ontain entries with different vari-
ances, as channel matrices modeling the interference feaghinoring cells in practice contain on
average smaller entries than the other channel matric¢s20j large system methods are used to
simplify the problem of finding the optimum power and useoedition for weighted ergodic sum
rate maximization with zero-forcing beamforming in mudgH MISO systems, where the param-
eters growing to infinity are the number of antennas at the b&ions and the number of users.
Thus, numerically complex Monte-Carlo simulations can beided. The same aim is pursued
in [121], where a similar problem as in [120] is consideretathout zero-forcing beamformers.
This algorithm is used iteratively in [122] to take fairnesgeria into account. Different coopera-
tion schemes in a two cell MISO scenario are compared with etteer for an infinite number of
transmit antennas and users in [123] and a multi-cell MIM&tay, where the number of transmit
and receive antennas tends towards infinity and only onepaseell is active, is analyzed in [124].
Considering correlations between the entries of the cHanagices or introducing random vari-
ables with non-zero means makes the large system analysésaomplicated than with indepen-
dent entries. That is why for those cases only results foetgedic capacity in single-user MIMO
systems exist. Reference [125] treats correlations betweeentries of the channel matrices and
in [126] Rician fading channels, where the random channdlioes have non-zero mean, are
considered. An algorithm for finding the transmit covarmungatrix maximizing the ergodic sum
capacity in a single-user MIMO system under Rician fadingresented in [127].

5.2 Preliminaries

The analysis in this chapter is focussed on scenarios, whereemporal channel matricefik,g
contain circularly symmetric Gaussian i.i.d. entries wiéno mean and varianeg ,, i.e.

vec (.EI&[) ~CN (OrkNT,h UIE,ZIWNT) )

Furthermore the channel matricEE,g are uncorrelated with each other. As the sum of indepen-
dent circularly symmetric Gaussian i.i.d. variables isiagacularly symmetric (e.g. [2, Lemma
4]), where the mean and the variance of the new random varisbjliven by the sum of the means
and the variances, respectively, of the summands, theesmfithe carrier channel matrices

Ly,

Hy.= S HiSIy = Hygexp (527 fo (o1 — 7o)
=1

are i.i.d. and are drawn from a circularly symmetric Gaussisstribution with zero mean and
variancezjf:’“1 o?,. In the remainder it will be assumed that all users’ channafrices in the
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frequency domain have the same variance

Ly,
2 _ 2
On = E Okt
=1

so that
vec (Hye) ~ CN (0, nr 1, 000 vy ) - (5.1)

Clearly, the channel matrices of different carriers arerelated with each other, as they are
computed from the same realizations of the temporal chernaeicesﬁu. Nevertheless, as will

be seen in the remainder, this property is not relevant ifetfye system limit.

If the matrices H;. are random variables, so are the eigenvalues
p1 (HE Hy.) ... .pn (Hi Hy.) of the matricesH' H;.. In general the empirical
eigenvalue distribution of an arbitrary random Hermitiaatrix A" A with A € C"*™

FAHA(x):%Hpi (AHA),izl,...,m’pZ— (AHA) §x}},

which states the fraction of eigenvalues that are smallequal thanz, is different for each
realization of the random matriA. As the dimensions of the matrit grow towards infinity at a
finite fixed ratiog = =, i.e.,m — oo, n — oo, the empirical eigenvalue distribution converges

to an asymptotic IimitFj{ﬁfA(:c) for many random matrices, which is the same for all realwresi
of the random matrix and only depends @nThe derivation oflﬁ’&(z) is called the asymptotic
eigenvalue distribution (aed)éoﬁz(x) so that

AP (@)

(o0) AP A

For the case of Gaussian i.i.d. entries with zero-mean aridntaa% in the matrix A, the asymp-
totic eigenvalue distributiomf&(:c) is given by the Matenko-Pastur distribution [128]

i@ = A (2.2,

where

159 (2, ) = [1 - %} 5@ + Ve _271; —l (5.2)

- 2 - 2
() ()
and 3 is equal to the ratio of columns to rows in the matdx An important application of the
asymptotic eigenvalue distributions, that will be usedhe temainder, is the replacement of the

sum of a function of the eigenvalues by an integral in thedangstem limit, where the sum is taken
over all eigenvalues of a matrix. That implies that

with

=Y ol (ama) . [T e e 53

i=1 m=p JO
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can be computed explicitly and is independent of the reidimaof the random matrixA in the
large system limit. In the following some important exanspler g (p; (A™A)) are introduced
that will be useful in the remainder of this chapter. Chogsin

1

(A"A Y= —
g (pi ) pi (AFA) — 2’
leads to the Stieltjes transform 41 4 (z) of the matrixA" A, which is defined as

m

1 1 1 1 <1
==Y =t (ATA - 2L,) = (00)
man4(2) TATA) 2 tr ( 2I,,) /o fang(z)do

- m xr—z
=1

(e.g.[109, Chapter 2.1.1]). Conversely, given the Sasltjansform of the matrid™ A its asymp-
totic eigenvalue distribution can be obtained from the is\@ formula

o 1 ,
fiama(@) = lim = T {mqna e + o)} (5.4)

Then-transformm 4u 4(7) is defined fory > 0 as

]
— (OO) d
Nana(?y) /O T fana(z)da

and is related to the Stieltjes-transform via

nava(y) = lmAHA <—l) : (5.5)
7 7

Finally, the Shannon transforiu 4 () of the matrix A" A is given as

Vana(y) = / logy | I, + 7 A" A fgogg(g;) du, (5.6)
0

where the notation from [109] has been used.

5.3 Large System Analysis in MISO Systems

In this section large system analysis is carried out in MI$&ems, where the number of transmit
antennas and the number of users go to infinity at a finite fiagd &, i.e.,

Nt
=7
All other parameters such as transmit powgy and number of carrier€’, remain finite, the
number of receive antennas is givenigy= 1 in MISO systems anyway. The analysis is carried
out for weighted sum rate as objective function under a suwepgonstraint. It is assumed that
there areV disjoint subgroups of users, where thig subgroup contains, K users and all users
in this group have the same weighting factqr The 3, are finite and describe the percentage of
users having priority:,,, SO thatZiV:1 B, = 1. Correspondingly, each group contains infinitely
many users. For notational convenience it is assumed tbatdicesn are chosen such that

Nt — o0, K — o0, «

M1>”‘>MN'
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When the same QoS constraints are imposed on each subgriodipitély many users, the achiev-
able rates in the large system limit can be derived in a simikanner than for weighted sum rate
maximization. However, as the expressions would get mea@ved than with weighted sum rate,
the following analysis is restricted to the weighted sune rabximization problem.

Clearly the results are directly applicable to MIMO systemisen antenna selection is applied at
the receivers. In that caseis given by the ratio of transmit antennas to sum of receivteraras.
Thus, the large system analysis with finiténolds for an infinite number of transmit antennas and
either a finite number of users and an infinite number of recantennas at each user or an infinite
number of users with finite number of transmit antennas. énftdtlowing, expressions for the
optimum weighted sum and the weighted sum rates achievathlesuccessive resource allocation
and zero-forcing with and without DPC will be given in thedarsystem limit.

e Optimum Weighted Sum Rate
As in Section 3.1, the problem of weighted sum rate maxinoras solved in the dual MAC
in the large system limit as well, because the rates achievalthe dual MAC are the same
is in the broadcast channel due to the duality from [5]. Caeisng the case of subgroups of
users having equal weights the problem of weighted sum rateémization from (3.12) reads
as

N . 2 B
max Applogy [ Ion, + — WiH: | | =
{Wile=1,.. K ; fin 1082 | FON o2 Z m) YV ELER(
K
sty tr(Wi) < Pr, W, = 0,VE, (5.7)

k=1

wherer (m) denotes the user encodedvah place in the broadcast channel and

=N
Aty = KN, n "
P = Hng1, <N

When the number of users and the number of transmit anteendsawards infinity, Algo-
rithm 3.18 can still be applied to obtain the optimum solatidNevertheless, it is possible in
the large system limit to derive an analytical expressiartlie weighted sum rate, which is
given by

RWSR opt
A
C'N+ N-|— K—o0, Z Hn

Nr_,
r

Zﬁj log, ( 25, w]mn) +

+log, (;—a) + <% — 1) logg(e)] , (5.8)
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wheree is Euler’s number. The variables, andw, stem from the system of implicit equations

ZAujLawn:)\wn, n=1,...,N
- 1+wnmjﬁ
j=n n
N
A(an—PTX> =0, A>0, w,>0,n=1,...,N
n=1
n 1 1 — %
> Bu= = d n=1,...,N, (5.9)
n'= a _ S Bm 1
! 1 (n;l ZZ’:I Bn’ 1+mnwmoﬁﬁ)

which is derived in Appendix A7, where it is also shown that 8ystem of implicit equa-
tions (5.9) always has a valid solution. In case all usersghts are equal, there is only one
subgroup, i.e.N = 1. Then, the system of equations (5.9) can be solved explmitithat

wy = Pry

2 1 2 2 1 2 2 2 9
mlzg 1— = _ On + U_H  —— o On +UHJn’
2 « 2Prya 2 « 2Prycx Prya

which follows from taking the positive solution resultingpin the quadratic equation of the
last line in (5.9). Thus, the large system sum capacity ismgly

Csum 1 OzPTX aa mq
C' Nt NTJ,VK_JOO, 510g2 I+ —m + log, p— + o2 — 1) logy(e)| .
J:a

and

n
K

e Successive Resource Allocation and Spatial Zero-Forcingith DPC:
In MISO systems, there is no optimization of receive filtéfsr equal weights, Algorithm 3.2
is therefore identical to the algorithm proposed in [43]. i\hhis paper only considers an
analysis, where the number of users goes to infinity, in tbcsien a large system analysis is
carried out for an infinite number of users as well as an iiniumber of transmit antennas.
As derived in Appendix A8, the weighted sum rate in this lasgsetem limit can be lower
bounded by

Nmax— 1 . Nmax— 1

Rwsrprc 1 Jmax 1

- n nl n - n nmaxl Nmax

CNr  xm= a 2; Bupin J0gs (npin) + | 5= = = El Br | Foran L0852 (11111)
R= "= n=

Nmax— 1

#3 sn |Buestog (Fs) = Bulogs (5,) + o (= Bucs) | +
n=1

jmax 1 jmax A A 1
+ Hrmax { (1 NT ) |:1n2 10g2 (1 NT ):| + <5nmax—1> |}Og2 (5nmax—1> 1n2:| } )

&_L]n( _M)
~ ’ op o?
R : "

_ 2
, and = Ohey—r

o , )
=1 > DButin + (jmfax - > Bn) Honmax

n=1



84

5. Large System Analysis

Jjmax IS determined so that

1 ‘ 1
Mnmex >~ and Jmax < min <1, —) : (5.11)
1 — TT NT (8%

where due to water-filling one of these inequalities is akvayfilled with equality. Equa-
tion (5.10) requires a user allocation in decreasing orfleveights, i.e., first all users in the
subgroup with the strongest weight are served, then the uséne subgroup with the second
largest weight and so forth. The index of this subgroup withlowest weight containing users
that are served is denoted by the indgxy in (5.10). Although (5.10) states a lower bound for
the weighted sum rate, which is tight for an arbitrary uséec®n within the same group, this
lower bound is valuable for analysis purposes, as it can be tasstate an upper bound for the
loss compared to the optimum and a lower bound for the gaireezable with DPC compared
to algorithms without DPC.

For the special case of sum rate maximization, i.e., allisezights are equal, Equation (5.10)
can be simplified and the sum rate can be lower bounded infifpe $gstem limit by

RSR,DPC jmax jmax jmax jmax

e N 1 —(1- ] 1— — .

ONe s Ny 08200 Ny )BT NT ) T iy
N1

K=<

The water-level) is given by

& — L L 1n ( JEaX>
o 0_2 o o T
T] —UH Jmax
Nt

andjmax is determined as described above with,, =

Successive Resource Allocation and Spatial Zero-Forcingitiout DPC:

Similarly to the DPC case, in MISO systems Algorithm 3.3 wetjual weights is identical to
an algorithm from literature, in this case it correspondtomethod presented in [12]. Again,
this paper considers only the case of infinite number of ysensreas in the following both
the number of users and number of transmit antennas tendds\vdinity at a finite fixed ratio
«. The asymptotic weighted sum rate in this limit can be lowairied by

jo’@"” i Rsrin(@) (5.12)
Ny,
where
n(p)—1 n(p)—1
R\(l\;“é)R,lin( maX— Brbin l0gy (pin) + | p — Z | Hn(p) 1085 (tn(p))
n=1 !
n(p)—1 n(p)—1 Pry _
Y Bt (o= D Bu | tag) | log, — Prof(a :()p+p |
n=1 n=1 nzl Bn,un + ( Z 6n> n

S.t.p < min(a, 1), (5.13)
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andn(p) is the index of the subgroup, which usgrx = pK belongs to. The derivation

of (5.12) is based on the fact that the gains of the scalarfmlmelsx,g?”) after jmax allocation
steps all converge to the same asymptotic limit

e 1 . «
)\](g,] | - (jmax) (Jmax) -1 imaxﬁ(—mo O-E"]max (; - 1) (514)
en <H o Heoms” ) €n,,, s, N,

where the computation of the finiueﬁjg?a*) is given by (3.50)n; ; is defined in (3.42), and
p denotes the fraction of users that are served. The largemylgnit in (5.14) is also used
in [120] and can obtained by the asymptotic limit

el (H(JmaX)H(jmax)vH)il €n,, = tr [(H(JmaX)H(jmax%H)*l enk’jeT ]

Nk, comp “*comp comp “*comp Nk,j

. ? -
Jmax, NT—00  Jmax

[(H(Jmax)H(Jmax) ) 1} tr <enk’jeT ) = # L (5.15)

comp comp Nk, j N-
J O-Hjmax J T _

As the matrices(Héé?”ﬁ‘,é) éé?”ﬁ,é) >_1 ande,, elkj are asymptotically free (see [109, Exam-
ple 2.45]), the trace of the product of these matrices napadlby the number of rows can be
written as a product of the normalized traces of the asynuatibt free matrices in the large
system limit (e.g. [109, Equation (2.185)]), wh (%”,}?,S) ande,, .e; havejma rows. Con-

nk’J
sidering that the matrlﬂc({)ﬂé"g) contains circularly symmetric i.i.d. entries with variane}
and Nt columns, and applying [109, Equation (2.104)] leads to &és¢ équality in (5.15). As
Jjmax = Nt would imply that the smallest eigenvalue of the maﬂﬁﬁ% (éVmTp becomes zero
in the large system limit, which is a consequence of the guaitcle law (e.g. [109, Equa-
tion (1.21)]), andHComlo éVnEE,H would therefore not be invertiblgyax is for sure smaller than
N7 in the large system limit leading to the constraint min(c«, 1) in (5.13). Computing
the weighted sum rate with the asymptotic channel gaingj%add the optimum power alloca-
tion, which can be done similar to the DPC case shown in AppeXgl leads to the asymptotic
limit in (5.13). Because all channel gains are equal in tihgelaystem limit, the water-level
is sufficiently high to serve the selected users. In (5.18)daptimum fraction of active users
p leading to the maximum asymptotic weighted sum rate has tebermined, which can be
done as shown in Appendix A9. The assumptiorﬂiﬁ?}?ﬁ) containing i.i.d. entries is only
valid for an arbitrary, i.e., not optimized selection ofimetusers. That is because an optimum
user selection implies that the active users are choserasththrows ian({;r,Q?g) are as orthog-
onal to each other as possible and therefore not indepentamn, Equations (5.12) and (5.13)
state a lower bound for the achievable weighted sum rateeitatige system limit. The bound
becomes tight, if it is asymptotically optimum to serve aeéts in the system or a random user
selection is applied instead of a greedy one. The resultS.&6) can also be used to derive
asymptotic expressions for Quality of Service constraingity maximization problems by
adjusting the asymptotic user and power allocation acogili
For sum rate maximization, Equation (5.13) simplifies to

1 PT « i
RWSR in(Q) = max aploga (1 + U—%Xaa (; - 1)) , S.t.p < min(a, 1),

which is a concave optimization problem and can thereforedbeed for example by bisec-
tion [33, Chapter 8.2].
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Figure 5.1: Comparison of normalized average sum ratesde Bystem sum rates in MISO systems with
a=2,C=1,04 =1, SNR=10dB.

Figure 5.1 exhibits the sum rates normalized to the numbegansmit antennas and averaged over
1000 circularly symmetric Gaussian channel matrices with= 1 in a single-carrier system with
C = 1. Correspondingly, there is no multipath propagation, ilg.= 1, Vk = 1,..., K. The
ratio o of transmit antennas to users is setite= 2 and SNR is equal ta0dB, i.e., £ = 10.
The weights of all users are equal so that there is one supgrousers, i.eqn = 1 anoful =1.

In each subfigure the large system sum rates of the corresgpalgorithms are compared to the
average sum rates obtained by simulations. Additiondilysum rates of each channel realization
are plotted in the corresponding subfigures by markers. H@stim capacity and the successive
resource allocation with zero-forcing and DPC (“Succ. RA @ with DPC”), the large system
sum rates serve as very good approximations for the avertageaes already with only a few
number of transmit antennas and users. When DPC is not dpgilihe transmitter (“Succ. RA
and ZF without DPC”), the large system sum rate is approastoedier by the average sum rate,
so that it serves only foNt > 20 as a very good approximation of the average sum rate. For all
three algorithms under consideration, the variances auherates shrink with increasing number
of transmit antennas, which is why the large system sum eds@sbecome good estimates of the
instantaneously achievable sum rates with an arbitrarprodlarealization for larger number of
transmit antennas.

When the number of users exceeds the number of transmitreageas in Figure 5.2, where the
same parameters as in the previous plot are used exceptwdrich is now set tax = % the large
system sum rates for the successive resource allocati@msshonly serve as lower bounds for
the average sum rates. As already mentioned, that is betai$gge system analysis does not
take into account the effect that with the successive regaifocation in each step a user is taken
that channel exhibits the strongest energy in the subspadlsegonal to the previously selected
channels, which is why the projection matrices can no lomgeassumed to be independent of
the channel matrices of the selected users. When the usesel@cted randomly in each step,
however, this assumption is correct. The large system stes therefore serve as a very good
approximation for such an allocation scheme. The average exhievable with that scheme are
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Figure 5.2: Comparison of normalized average sum rates amdpto large system sum rates in MISO
systems withw = £, C' =1, 0 = 1, SNR= 10dB.

plotted as dashed lines and denoted by the adjunct “randigur& 5.2. For the sum capacity, the
analytical result is still valid, which is why the asymptotate still approximates the average sum
capacity very well also in such a parameter setup, althoogliezrgence to the large system limit
is slower than withy = 2.

5.4 Large System Analysis of Successive Resource Allocatiand Spatial
Zero-Forcing with Dirty Paper Coding in MIMO Systems

By going from MISO to MIMO systems the large system analygtsgnore involved. For this
reason the problem of sum rate maximization, i.e., equalrigigs of the users, is considered
and the analysis is carried out with the successive resalloeation and spatial zero-forcing
with DPC explained in Section 3.2 only. Thus, the SuccesBiveoding Successive Allocation
Method (SESAM) from [10] will be analyzed in the following.nfapproximation of the sum rate
achievable with SESAM and a random user allocation has bessepted by the author and others
in [129] together with a large system analysis of competiggrthms as Block Diagonalization
with DPC [130] and without DPC [61]. The parameters growiogards infinity are the number
of transmit and receive antennas, where the rataf both is fixed and finite. Furthermore, for
simplicity it is assumed that all users have the same numbkneceive antennas, i.ey, = r, Vk =
1,..., K, sothat

Nt — 00, 71— 00, 5=¥-
The number of user&’, the number of carrier§’ and the transmit powefr, remain finite. To
obtain a large system expression for the sum rate achievathleSESAM, in the following a

numerical method will be presented to compute the asyngodagiribution fé‘EOS)AM(:c) of the sub-

channel gaing\(’j—g, which are normalized by the variance of the random chania¢lices and the
H

number of receive antennas for reasons that will become stemn. Similarly to the definition of
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the asymptotic eigenvalue distribution, the integral

A
/0 féOEOS)AM(x) dz

states the percentage of normalized subchannel gainsrthatraller or equal ta. Analogously
to (5.3), sums over functions of the subchannel gains caefdaced by integrals ové CEOS)A,\,l(x).
This implies that the sum rate achievable with SESAM in thigdasystem limit can be computed
according to

o0

Ramsesav 1 < i~

R = ;logQ (max(LnA]) = | loga (1) Jeedal) d, (5.16)
wherem = min(Nt, Kr) denotes the maximum number of subchannels that can be taboa
one carrier and

1
A= 5 (PéP)'CHk( o H k(i )Pép)c)
OH

is the normalized gain of théh subchannel [c.f. (3.35)]. Note that through this norzetion,

Hk( )Hk(i) are the Gramian matrcies of x Ny matrices with Gaussian i.i.d. entries with

varlance;. The asymptotic eigenvalue distribution of these matrisetherefore given by the
Marcenko-Pastur distributioffiyp(z, 5) [c.f. (5.2)] with parametep = 3. As the matrices con-
sidered have the same statistical properties on all caraied therefore the same asymptotic sum
rate can be achieved on all carriers like in the MISO casedénivations in this section are pre-
sented for single-carrier systems, i.e., the matridg$rave Nt rows. The extension to multicarrier
systems can then be done by multiplying the asymptotic stienwdh the number of carrier§,
dividing the noise variance b and allocation the powePrCLX on each subcarrier, which has been
considered in (5.16) and (5.17) to obtain general resulis.veriable; computes as

PT
% +> A=) f fSESAM(x> dx o2 mm(ﬁ K) f SESAM z)dx
n= rgaw N T’O'a " Amin _ Amin ’
max m—r00
f SESAM dx f f SESAM dz
>\m|n >\m|n
(5.17)

which corresponds to the water-level multiplied®f,. Amin = A;,.., IS the minimum subchannel

gain that receives non-zero power, i.e., it is given by thglicit equation

PTXUnmln(B T f fSESAM( z)dw

min

)\f féOEOS)AM(x> dz Amin

In order to obtainfS‘EOSAM( ), the asymptotic distribution of the maximum eigenvaluethefma-

trices — PE(,QCHH( yH )PE(,P)C, i = 1,...,m has to be found. For = 1 there |SPE()P)C = In,

and as the eigenvalues gngHHk asymptotlcally follow the Matenko-Pastur distribution (5.2)
H

with parameter? = j3, the normalized gain of the first subchannel is givembpy= (1 + \/B)z.
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Because the channel matrices of all users are assumed tahesame statistical properties,
all maximum eigenvalues converge to the same asymptotit énd the algorithm will select
an arbitrary user for the first subchannel. In the next stepldihgest eigenvalue of the matrix

#PS?CHE(DHM)PSQC is given by the second largest eigenvalue of theddako-Pastur distri-

z

bution with parametef = (3, as the projectoPéQp)C projects into the null-space of the eigenvector
corresponding to the principal eigenvector of the maﬁigl)Hk 1)- When the dimensions of the

matrix Hk(1 H,1) grow infinitely large, however, the difference of this vatoe\; = (1 + \/_)
can be hardly measured with finite precision. For the othersis# k(1), the maximum eigen-

2
values of the matrlcesLPDPCH HHkPéP)C are all given by( ﬁN]T\,f) . That is because
1 2 1 2 2).H 2 2).H
1 (o PRI ELPSC) = o (L VRV mHI VLV ) =
H H

1 2),H 2
o (o VR H V).
rog

where V2L € CN¥*M 1 is an orthonormal basis epan {PSQP)C} independent of;,. The ma-

trlcesf—HkVD(PC € C™N1 therefore contain Gaussian i.i.d. entries with variahcevhich
is why the asymptotic eigenvalue distribution can be oletdivia the Magenko- Pastur distribu-
tion with paramete3 = BNT L. Similarly to the case of usét(1), this effect is hardly mea-

surable on a computer with flnlte precision, as the faéﬁﬁ}l is almost equal to one for infi-
nite Nt, i.e., the strongest eigenvalue of the matfcbgﬁé?CHﬁl)Hk(l)Pé?C and the matrices
H

PéP)CHHHkPSQPC, k # k(1) are hardly distinguishable. For this reason in the follapanuser
aIIocatlon will be considered, where an infinite amount dichannels is consecutively allocated
to the same user. That implies that in each stepsubchannels are all allocated to the same user,
where0 < § < 1 denotes a predefined constant depending on the desiredinahagcuracy. Al-
though the algorithm as proposed in [10] probably leads tdferent user allocation in the large
system limit and this allocation scheme might not be optinmuthe successive scheme, it leads to
a lower bound for the sum rate. This bound becomes tight fallsmas the error introduced this
way is hardly measurable. With this allocation scheme, gyengtotic distributions of the gains
of the subchannels consecutively allocated to the samecasebe computed. The asymptotic
distribution of all subchannel gains is then given by thenmalized sum of these distributions.
Let f; C>O)( ) denote the asymptotic distribution of channel gains injtfregroup of subchannels

allocated to the same user. Thﬁs(ffSAM ) is given by

fsgdal®) = 3 £ ()

For simplicity it is assumed in the following thais chosen so thagt € N, although the following

results can be easily extended to the general case.fﬁﬁer) are the appropriately normalized
tails of the asymptotic eigenvalue distributions containthe ym strongest eigenvalues of the
matrlces—Pé(F?C 1)‘SmH)HH( JHy, VPR, wherek(j) = k((j — 1)dm + 1) is the user

to which thejth subgroup of subchannels is allocated to. Those eigessalarrespond to the
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subchannel gains allocated at once to the same user fronyjstep)dm + 1 to stepjém. These
eigenvalues are also the strongest eigenvalues of thecestri

1

. ((j—1)0m+1),H 1)om+1) —(j—1)ém —(j=1)ém
C; = EVD,(JC Hy Hy, Vose € CNT-U=1)mxNr=(j=1)dm (5.18)
where V{U: ") ¢ CNrxNr=(-1)9m denotes an orthonormal basissphin {PE(,(PJC 1)5””1)} )

that ( ((G—1) )y ((
5 ((i—1)6m+1) 1)6m+1 1)ém+1
P, IgP]C : VDPJC VDP]C M

With these definitions th¢}°°)(x) are given by

G0 () s S
fj(w)z{ e e w2

0, else

and

& (00) . 5m o 55
/x fo; (@) = 37— G-—1om 1—(—1)o€ (5.19)

m . K
fzﬁ:mm(l,g).

The factorM normalizes the tails oj"(cof)(x) so that each subgroup contribuigs$o the

where

integral [ SESAM( x) d 2z and the whole integral is equal to one, i.e.,

%
/ SESAM dx—Z/ f dx—Zézl.
j=1

Forj=1,C; = %H}j(l)Hk(l) andf(cof)(x) is therefore given by the tail of the M&nko-Pastur
distribution withg = g, i.e.,

fé?)(fc) = fwe(x, B).
For j = 2, the next subgroup of users can either be allocated to the seserk(1). In this
case f((f;)(:c) would be given by a truncated Maanko-Pastur distribution, so thgg,(z) =

15e fwe(z, B) for = < A, and fé‘f)(:c) = 0 otherwise. For the other userﬁ(gj)(:c) would
be given by the appropriate tails of the asymptotic eigamalistributions of the matrices

= Om ) g, VST - Assuming that the orthonormal bagdig?? t") of span {Pé‘,i”g“)}
is mdependent o), for k # k(1), the the a.e.d. of the matnceﬁ%VD‘SP’ngl)H,?HkVD‘SP’ng”

is given by the Matenko-Pastur distribution with = BNT%T‘”” = (1 —=46£). Thus, in case
the second group of subchannels is allocated to anothetheeuser:(1), (CO;)(x) is given by
fc"; (x) = fue(z, B(1—0¢)). That is because multiplying a matrix with Gaussian i.i.dries like
H,, with an independent orthonormal matrix I|F(é;3 (1) leads again to a matrix with Gaussian
i.i.d. entries having the same mean and variance as in tgaatiGaussian matrix but different

dimensions. This way—HkVD‘Sm“) is ar x Nt — dm matrix with Gaussian i.i.d. entries with
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zero mean and variang%e Likewise to the MISO case in the previous section, the apsiom of

H; andVD(‘SP’g“) being independent leads to a lower bound for the weightedratemas the user
selected for the second group of subchannels would be dptictaosen so that projectingd;,
with Pg,iyg“) almost preserves the strongest eigenvaludd ,0nd mostly affects the small eigen-
values. For the large system analysis the user for the segrangh of subchannels is randomly
chosen from the set of users that have not been served so lt&ough, this choice might not
lead to the maximum increase in the asymptotic sum rate finitedy leads to a higher sum rate
than allocating the second group of subchannels to the saarghan the first group. Proceeding
this way, it can be shown by evaluating the large system stes that the first< subgroups of
subchannels are all allocated to distinct users so that

$(@) = fuple, B1— (G — 1)6E), j=1,....K.

In the following it will be assumed that the first subgroup vibshannels is allocated to userthe
second to use? and so on. As shown in Appendix A10, the user scheduling irldtge system
limit continues this way also fof > K, so that usek receives a group of subchannels jot k,

j=k+ K andsoon. Foj > K, fé";)(:c) can however not be stated explicitly anymore. Instead
the Stieltjes-transform, (z) of the matrixC; is given by the implicit equation

Ai—ie fo; (@) 1= = K)&
/0 l—ﬁj—i-(x—z)mcj(z)dx_ 1—(j— K—1)¢ (5.20)
where
B = 1—(j —1)6¢
71— (- K)og

and which is derived in Appendix A10. Unfortunately, theseno explicit solution neither for
mg,(z) nor for f(c‘j_o)(:c) from (5.20). For this reasoﬁ(ci_o) (x) has to be sampled as described in
the following. First Equation (5.20) is solved forc, (2) with z = Xj_K. The imaginary part of
me, (\j_x) divided by is then equal tq‘(cof)(;\j_K), as given by (5.4). Due to the projections
from step(j — K')dm+1 to step(j —1)dm, the principal eigenvalue of the mati€X; will certainly
not be larger thalﬁj_K, which is the channel gain in st¢p— K)dm [c.f. (5.19)], the last step the
same user has received a subchannel. Tfﬁ?g%’,(:c) =0 forxz > 5\ij andﬁ\ij can be used as

a starting point for the sampling process. Aftﬁ‘é?;)(f\j,[() has been computedis reduced by a

~

constant sampling distane®and Equation (5.20) is solved foic, (z) with z = \;_g — A. This
sampling is continued untd = 0. The integrals Withfé‘f) (x) required in (5.19) and (5.20) can

then be evaluated numerically for example with the trapedonethod (e.g. [131]), wher]%‘f) (x)

is interpolated linearly between two neighboring samples.

In Figure 5.3 the ergodic sum rates normalized to the numb&ansmit antennas and averaged
over 1000 Gaussian channel realizations with = 1 are plotted versus the number of transmit
antennas in a single carrier system with= 1 at an SNR ofl0 dB. The ratio5 of transmit antennas

to receive antennas is setfo= 2. The average sum rate of SESAM is plotted as a line marked
as “SESAM”, whereas additionally each of the00 sum rates that has been achieved with one
channel realization is marked with a star. The large systemrsite obtained as described above
with § = 0.05 is plotted as a line with circles, where a sampling distarfcd e= 0.001 has been
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Figure 5.3: Comparison of ergodic sum rates with large system rate in a system with® = 5 users,
C =1 carrier,f = 2, SNR= 10dB andj = 0.05.

used to determine the asymptotic distributiqcé@(x). The large system sum rate obtained this
way serves as a very good approximation for the ergodic sterachievable with SESAM also for
finite system parameters and becomes exact for systems\With 16. Furthermore the variance
of the sum rate achievable with SESAM decreases with ingrgasimber of transmit antennas.

For comparison the average sum capacity has also beenéakindrigure 5.3.



6. Conclusion

Efficient low-complexity algorithms have been presentethis book for the MIMO broadcast
channel. The problem of weighted sum rate maximization uadgim transmit power constraint
has been tackled as well as several Quality of Service @nstt utility maximization problems.
Weighted sum rate and transmission power served as utilitgreas the QoS constraints have been
given by minimum rates or relative rate requirements. Fbogtimization problems it has been
shown by simulation results that the proposed algorithrasasate to achieve the optimum solu-
tions closely in multi-path Rayleigh fading scenarios, wi#°C can be applied at the transmitter.
Avoiding DPC by mitigating multi-user interference solély means of linear transmit and receive
signal processing leads to further small performance folssedrastic reductions in computational
complexity. The efficient algorithms are based on the ppiles of successive resource allocation
and spatial zero-forcing and work non-iteratively. Somehef presented algorithms have been
analyzed in the large system limit, where at least two sygiarameters go to infinity at a finite
fixed ratio. The analytical results obtained this way havenb&hown to be good approximations
for the ergodic performance of the system with finite paramsehaving the same ratio as in the
large system analysis.

The algorithms derived in this book require perfect chakmelwledge of all users’ channel ma-
trices at the transmitter. This assumption can no longer bdmtained in scenarios with short
channel coherence times, i.e., when the channel matrioesimeconstant only for a short period
of time. Thus, in those scenarios it is necessary to take isme@ous channel knowledge into
account when designing transmit and receive signal proagfiters. A possible extension to the
work presented in this book would therefore be to make thegmted algorithms robust against er-
roneous or outdated channel state information. Anothezasy future work is the consideration
of inter-cell interference. In this book, isolated cell¥d&een considered, but for an efficient use
of bandwidth it might be necessary to operate neighborifig tethe same frequency band. The
inter-cell interference caused this way must be taken intmant during filter design. In [132]
and [133], the method of successive resource allocatiorzaraiforcing without DPC has already
been adjusted to a two-cell interference scenario.
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Appendix

Al. Derivation of the OFDM Channel Model

In this appendix the relation between the OFDM channel wesi#l;, and the channelsl,(¢) in
the time domain, as stated in (2.1), and the derivation o&tlditive Gaussian noisg.[n] will be
given. Itis based on the model in [36, Ch. 1.3.]. At first, thedulation and cyclic prefix will be
explained, a block diagram detailing the correspondinglblo Figure 2.1 is given in Figure Al.
The vectorz(t) is convolved with rectangular pulse&, T') of durationT” and heightl, where

>

Si11 exp(j2n(t —nTy) f1)

&>
o
—~
~
SN—
X
—~
~
SN—

D@ 9

SC,,T exp(j2n(t — nTs) fo)

Figure Al: Modulation and Introduction of Cyclic Prefix (Motl CP)

1, 0<t<T
t,T) = ' - =
9(t.1T) {0, else.

Thus,
&(t)= > g(t—nT,T)x[n].

n=—oo

z(t) € CYM is then split intoC vectors of lengthVy, where each of those vectais(t) € CV is
transmitted on a different carrier and obtained by selgclin rows ofz(t) according to

iC(t) = |:0NT,(C—1)NT7 INTa ONT,(C—C)NT] i(t) = Sc,Ti(t)-

Eachz.(t) is modulated by a different basis functierp(j27(t — nT5)f.), where each basis
function defines a carrier of the OFDM system and

fe=Jo=B/2+ (c-1)B/C (A1)
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is the frequency over which the signal(¢) is transmitted.

B=— (A2)

and f, denote the bandwidth and the center frequency, respectiMet resulting signals are added
up, so that

C

C
T(t) = Y &(t) exp(j2n(t — nT.)f.) = Z > exp(j2n(t — nTy) f.)g(t — nTy, T)S,ra[n].

n=—oo c=1

Finally, a cyclic prefix is added to each of the signals

exp(j2m(t — nTy) f.)g(t — nTy, T)S.7x[n] € CT.

Mo

c=1

That implies that the original signais,(t) are delayed by a certain tin¥g,. As it will become
clear in the remaindetf,., should be chosen to be larger or equaliriz?c(rmk — Tka), 1€,
SIS

Tep > Ikré%f(m,Lk — k1), (A3)
whereS;, = {k € {1,..., K}|tr(P,) > 0} contains all users that receive non-zero power. The

interval betweemT, andnT; + Tt is filled by the lastlt, seconds of the original signa, (¢)
such that the transmit signal, (1) € C" results in
2, (t+T —Te), nTs <t<nT,+T
ga(t) = { U T ) e o (A%)

In case allf, are integer multiples of /7", which can always be assured by an appropriate choice
of fy, the functions:xp(j2n(t — nTy) f.) are periodic with a period of length. Hence by using
the enlarged windowing functiog(t, T’ + T¢p), Z,,(t) can be rewritten as

C
Z,(t) = Y _exp(j2m(t — nT, — Tep) fo)g(t — 0Ty, T + Tep) Sera[n]. (A5)

c=1

By choosindl’; = T + Tt, the nonzero parts of the signats,(¢) andz,(¢) do not overlap in time
for m # p. Finally, the transmit signak(¢) reads ase(t) = > - &, (t).
At the kth user, the signal

Lk’ [e.e]
@k(t):ZHk,@(t—Tké + M (t Z Zerwn t—Tie) + M(t Z Yrn(t) (AB)
/=1 n=—oo (=1 n=-—o0o

is received. The following removal of the cyclic prefix, deshation and sampling is depicted in
Figure A2 exemplarily for usek. In case of multi-path propagation, i.€., > 1, the non-zero
parts of the signalgy ,,—1(t) andy ,(t) overlap fornT; + 7,1 < t < nT, + 71, leading to
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Figure A2: Removal of Cyclic Prefix and Demodulation at Reeek

undesired intersymbol interference of the symb@b — 1] on the symbole[n]. By setting the
signalyy. ,(t) to zero during this period, i.e.,

. 0, nls+ 71 <t < nly+ 11+ Tep,
ykn(t) :{ k,1 k,1 cp (A7)

Yrn(t), else,

and choosindl, according to (A3), all parts ofj;(¢) containing intersymbol interference are
ignored. Thus, the signag; ,.(t) € C™ can be processed independently and only the further
processing of these signals is considered in the remairdititionally, due to the cyclic prefix

in (A4), the information useful for the detection of the sigim[n] contained in the intervalT, +

Ten <t < nTs + 71 + Tep is repeated in the interval

nTs+m1+1T <t <nly+711+Tep+T
ﬁ—/ \ J

-
:(n+1)Ts+7'k,1—Tcp :(n+1)TS+Tk,1

and therefore not lost by the removal of the cyclic prefix. @a other hand this interference
cancellation can only be achieved at the cost of additioalalyd .,,. The bandpass filter suppresses
all signals outside the frequency bafid— B/2 < f < f, + B/2. In the following it will be
assumed that this filter does not affect the signgl ZZ \ Hy o (t — 73,0). Although that
signal is not strictly band-limited, the energy out5|delmervalf0 B/2 < f < fo+B/2isvery
low and will therefore be neglected in the following. Thes®signal is definitely influenced and
the noisen,(t) after bandpass filtering remains Gaussian circularly symeneith zero mean,
but the covariance matrix becomésR, — —Rk and noise samples obtained at different time
instances are no longer uncorrelated, Where the autolatoreof the band-limited Gaussian noise
is given by

sin(m Bt) . sin (W%t)

r(r)=E [ﬁk(t)ﬁl?(t - 7')] Rkit = RkT- (A8)

The non-zero-part of each signgl ,.(¢) is then sampled ever¥//C seconds leading to the signal

C C

gk,n(t) = Z 5(t - tc(n))gk,n(tc(n)) = Z 5(t - tc(”))@k,c[”]? (Ag)

c=1 c=1

where .
C —
te(n) =nTs + Tep+ 1 + TT.
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TheseC' samples are collected by the serial-to-parallel converermade available at= (n +
)T + Tep + 711 to the Discrete-Fourier Transform (DFT) bldckThe DFT generateS' vectors
Yra[n], ..., grcln] € C™, where

C
N 1 § . d—1
Yrcln] = e Z Yr.a[n] exp (—]27rchT) ) (A10)
The signalyy, .(t) is therefore discrete and given by
Ure(t) = Y 0t = ((n+ V)T + Tep + 1)) Gcln]- (A11)

n=—oo

With equations (A5), (A6), (A7), (A9), and (A10), the sigegl, .[n] compute according to

Ly,
@M[n] = Z ﬂ gz Zexp <j27T(fb fc)TlT) eXp(jQWfb(Tk 1 — Tk g))chTID[n]—F
d 1

(=1 b=1

1 o d—1

— 7 —J — Al2
+ g Sttt e (—i2rs. S0 ) (12)

By using the identityf, — f. = &= [c.f. (A1), (A2)] and the fact that

C
1 ‘ (d—l)(b—c)) 1, b=c
— op— /) =
C;GXP (‘7 i C 0, else ’
Equation (A12) can be simplified to

Ly,

Yr.cl Z Hy exp (521 fo(Thn — Tht))Serx[n] + mp.c[n),
=1

where
t eX[) — '271 ’ —lT
nkc C E nk: d J c C .

By plugging the temporal dlstances: &T,n € {1,2,...,C — 1} between the noise samples
Nx(tqs(n)) into the autocorrelation function from (A8), it can be dedvthat the noise samples
Mk (ta(n)) are mutually uncorrelated. Therefong, . is a sum of uncorrelated Gaussian variables
and hence also Gaussian distributed with zero mean andiaogamatrix

Rk =E [nkc[ ]nl?c[ H -

-2 ZZE )it (ta(n))] eXp< j27ch 0 ):

b=1 d=1

=2 Z R; = —Rka (A13)

In caseC = 27 for integerp the Fast-Fourier Transform can be used as an efficient ingiéation for the DFT
block.
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which is identical for all carriers. Additionally, the noise vectorgy .[n| andn [n] of different
carriersc # ¢ are uncorrelated as

C
1 ~ T
B [meemie] = =5 ) Riexp (927r5<d - 1)fc) =0, (A14)
d=1

which can be stated as thfe are integer multiples of /7. Finally, the multiplication with the
selection matriceS_, and the following addition stacks the signgls.[n] received on the different
carriers into one vectay;[n] € C* so that

C Ly,

Zsckykc Z ckzﬁk,éeXp(jQch(Tk,l—Tw S.txn +Zsck”7kc =

~ Hualu) + o], _

which corresponds to (2.3). The covariance matriBgs= E [n;[n]n:[n]"] as given in (2.4) can
then be derived from (A13) and (A14).

A2. Optimum Power Allocation for Weighted Sum Rate Maximization over
Scalar Channels

In this section the optimum power allocation

C
{pk,j}jzl ..... di,k=1,... K = argmax Zukzlogg (1 +pk] 2)\ ) )

{Pr,j =1, dg k=1,.... K j—1

K d
S.t. szg < Pry

k=1 j=1

will be derived. The Karush-Kuhn-Tucker (KKT) conditionsthis problem read as

,ulco%Ak,j
02 (14 s G Mg

K dj
(ZZ}?M >_0 N>0, vpe; =0, v, >0¥j=1,..  d,k=1,... K.

k=1 j=1
(A15)

>_ﬁ_yk,j:07 \V/jzl,,dk,k’zl,,K

Multiplying the equations in the first line with the corresyling p;. ;, it can be shown that
2 2

| peIn2 oy +_ o *

wheren is chosen so that the transmit power constraint is fulfilléith wquality, fulfills all KKTs
in (A15).
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A3. Proof of Optimality of Using the Pseudo-inverse of the Cmposite Chan-
nel Matrix as Precoder under Zero-Forcing Constraints

In this section it is proofed that the optimum solution to tdpgimization problem

max f(Al,la sy Ad}(,f()

=1,...,

StAy 20, el T'Te, =1,Yj=1,....dVk, Heoml = diag (\/AM, L \/)\dKK) ,
where

de/ +], T = [tl,la---7tK,dk]7

k=1
and
K dk’
H CPTX+ z z C>‘k’
FA1, - Adge.r) =1ogy | Ak b ;
K 2 J O’% Zk’:l ,Lbk’dk’
is given by
1
Ay = (A16)
nkj ( CompHcomp) enk,j
and

T = Hppdiag <\/)\1,1a---7\/)\dK,K>- (A17)
Using the definition of a generalized inverse from [134], thenstraint Heompl' =

diag (\/A11, - - ., /Aax.i) is fulfilled by choosing
T = (Hgmp+ PLU) diag (\/Al,l, o A, K) (Himp+ PLU) A2, (A18)

whereP, = I — HggmpHcomp is a projector into the nullspace (Hggmp andU is an arbitrary
matrix. Inserting (A18) into the constraint functioa§ T"Te,, ; = 1 yields

el T'Te,, =el A% (Hiy,,+PU)" (Hg;mp+PLU) Aze,,

Nk, j Nk, j comp
_.T 1 + \H T H
= enm/l2 (Hcomp) COmp/l €n; T €, AU PLUA2 €ny;
_ T + + H _
= Ay (enk’ (Hiymp) " Homgens,, + €l U PLUen,m) ~ 1.

From these equality constraints the,; can be computed explicitly as

1
egk,(HJr) Hte,,  +el UHPernk’j.

Akyj =

As theU" P, U are positive semidefinite, i.ee, UHPernk > 0, at the optimumU =
0s~q4,,5 4, holds, if the objective function is a monotonlcally mcrenysfunctlon in each) ;.
Together with (A18) this leads to (A17). By furthermore gsthe fact that

(H;Jmp) H(;’E)mp ( COT“PI_I(E)mp)i1 HcompHg)mp (HcompHg)mp) o = (HcompHg,mp) o )
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the resultin (A16) can be obtained. Thus, to complete thefprbas to be shown that the objective
function is monotonically increasing i, ;. This can be done by using the following lemma:

Lemma A3.1 For fixed channel gaing, 1,..., A4, .., Ax1,- -, Ak.d, the weighted sum rate
RwsHA11, - - -, Ay i) Obtainable with an optimum power allocation is a monotofijc@&creasing
function in each channel gaiky, ;.

Proof. At places, whereRwsr(A11,- - -, Ay k) IS differentiable the lemma can be proofed by

taking the partial derivative with respect 2@ ;, which is done exemplarily for the case that all
subchannels receive non-zero powers in the following.

K dm
ORwsr(A 11, - -, Adye k) e L n ZZ“ -
Ok In2X; . Pret 3 (Z{f O 125 "
X CXir o B
In2 rd K'=1j4'=1 kg
n </«E1Mk k) SF dy

1 0’% Pk Jj
= — = : > 0.
2\, (’”"“ ncxk,j) In2\,7
It remains to show that at placgs; = . ;, where), ; is equal to%, Le.,
2

S, —
S e

the weighted sum rate does not increase whgnis decreased. Assuming that all other channel
gains remain constant this implies that

K dk’
PTX + E z_: C)‘k’ + E C)‘k . CA:C] )
k’#k i On
n= = : (A19)
Sp_y tdy piC Ay j

The weighted sum ratBwsr(\x ;) at Ay is therefore given by

~ K K dy ILL C>\
Rwsr (Ak J) Z o dir + g (dy — 1) | logy(n Z Z log, (u) _
n

k=1 k=1 j/'=1
K/ £k K/ #k

dk N
CA CAi
- E 10g2 (,uk O_Qk] ) + M (10g2(77) - 1Og2 (Iuk 0_2 kJ)) -

n n

K K dy
= Z prrdyy + pue(d — 1) | logy(n Z Z] 0g, ( k’CAk’ ’) Zl ( kc/\kj )
n

k=1 K'=1 j/'=1
k'#k k'#k J 757

When )\, is decreased by > 0, the jth subchannel of usér is deactivated and the water-level
has to be computed without considering the correspondibgrannel. That is why the weighted
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sum rate is non-differentiable at these places. Then a@&onstim rate can be achieved which is
given by

K K& 0 C’/\
Rwsr </\lc,j - 5) = | D s + p(di = 1) [ Togy () = > > "log, ( F R ) ;

n

k=1 k=1 j'=1
k' #k k' #k
with the waterlevel
K dk’
PTX+ZZCA,, ZC)\ y S d on
k'=1 3/=1 k7, =1 k. n Zﬂk’ Kk’ _CS\ - 2
i = Kk ik o k=1 ki 0Oq —
— — - — =,
O\
Z i s — [ Z i Ay — [l H J
k=1 k=1

where (A19) has been used to obtain the second last equdltliys, althoughRwsr(x,;) is
not differentiable at\,; = )., there is no discontinuity at this place, i.&wsg (Xm — g) —

Rwsr (ik,j> = 0, and the sum rate does not increase=for 0. O

In Problem (3.40) additionally the carrier separation ¢anstst,, ; = S,I(,w.)SW(,Q,j)S,Y(k,j)tk,j have

to be fulfilled in multicarrier systems withi’ > 1. As long as the receive filtets, ; obey the carrier
separation constraints, the transmit filters from (A17jilfuhe carrier separation constraints as
well. That is because

tk,j = T’emC i = Hcl‘j)mp( compI{(E,mp)i1 dlag <\/ )\171, Y )\dK,K> €n,.j
=H ompH (HHcomPHcompn) Henk,j V )"w"

whereIT is a permutation matrix witdI = ITT = IT-! that permutes the rows dcomp SO
that IT H.,mp becomes block-diagonal, which is possible, as longs agthdulfill the carrier
separation constraints. Thus, 1ajlvectorsg}j,jH,C with v(k, j) = 1 are accumulated in the firag
rows of IT H comp, followed by alln, VECtOI‘Sg,I:ij with (%, j) = 2 and so on, where, denotes
the number of data streams allocated to cari@ndIT H,mpcan be written as

HHcomp — blOdeiag (Hcompl, ey Hcompc’) 5

where Homp. € C"**T denotes the composite channel matrix on carri¢tence,

ty,; = Dlockdiag (Hiamg, (Hoom HLx

compl

) J HcompC (Hcompcﬂcompc) ) Ile,, ;\/ Ak,
== Tﬂenk,j >\k,j-

As T is block-diagonal, the columns i are arranged carrier-wise, i.e., the firgstcolumns are
collinear with the precoders on carrigrand the permutation matrild rearranges the columns of
T so that they, jth column of T'IT is collinear with the precoder of thih data stream of usér,
thet, ; fulfill the carrier separation constraint.
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A4. Computation of Inverse Channel Gains for Zero-Forcing wthout DPC

In this section, Equation (3.48) for the computation of theverse channel gains
ej (HmmpH‘f}Jmp)_1 e; will be derived. These are given by

— |Hcomp HH |
e! (H, I le. = —J_comp—j , (A20)
J ( compHcomp) J | Hcom pHcomp|
which follows from determining the matrix inverse via itsj@dt matrix (e.g. [94, Ch. 0.8.2])
and whereH ¢omp—; is built by removing thejth row from Heomp From (3.47) the determinant
|HcompH§)mp\ can be computed according to

_H(i—l)H(i—l),H H(i—l)HH
‘HcompHg)mp’ _ comp £Zcomp comp 11, g

(g"H Him"  g"HH}'g
Homp Hiomp™ Himp Hilg 0,1,
= || ¢"H.H%my" ¢"H,Hl'g 0, ,
0;—2,i—1 0 I,

— gHHkag ‘H i—1) H(i—l),H_

comp comp
1 -
' = 01 H (i—1),H
[t o,y ) [P O] [o"HH
0 I, 0; 21
= | Hmy Hnp "' | (9" H Hy'g—

— g"H H-DH (H@—l)H(i—l),H)*l Hi-UgH g>

comp comp comp comp

= |Himy Hind " " Hi Py H'g. (A21)
where the formula for the determinant of block matrices fI[ChBB] has been used in the third line

andP“(n) is given by (3.49). As shown in the followmg tﬂam have a block-diagonal structure.

Let IT be a permutation matrix withl = ITT = IT-! that permutes the columns (Hcomp
so that the first:; rows contain the effective channegj§‘ H,, of the first carrier, i.e., all data
streams withy(k, j) = 1, followed by then, effective channels of the second carrier and so on. As

the receive filtergy;, ; obey to the carrier separation constraint, the malfi¥ (ém},) has a block-

diagonal structure. Additionally, due to the propertiethaf permutation matrix, the projectﬁ}ﬁ?
can be written as
P — Icy, — Fl-DH (H(z’fl)H(z’fl),H)_l HO-D —

lin comp comp *-*comp comp

:ICNT _H(z 1), HH (HH(Z 1)H(z 1), HH) HH(Z 1)

comp comp *-+comp comp >

where the second term is a product of block-diagonal matiacel therefore also block-diagonal.
The determinant#chomp,ng)mp,j} for j < i can be obtained in a similar manner so that

i—1 i—1
’Hcomn JH comp— ]’ - ’Hc(omp) JHc(omp) j gHH P()Hk g,

where )
PO — Tow, — Hnd") (Higmy Him ) Hioma. (A22)

comp—j comp—j++comp—j comp—j
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comp—j

projects intanull {H Y } and is block-diagonal. AP( " has the same nuIIspaceE#’ except

for this component of thgth row ofHéém},), which is orthogonal to all other rows dffcomp ,itcan
also be written as

P pli | P(Z)Héém? eje ]H(émlp)P()

—J lin

= B + T Ve el TE-DA (A23)

el Hiomp PY Hinp e

The vectorP" )Hc(omp) e; is collinear withT—Ye;, asT~Ye; lies in the nullspace oHCgmt1 i

e, T0-Ve; ¢ null{H(Z 1)7.} = null{Pﬁij} and has no component in the nullspace of

comp—j

Hc(f;a}o), which follows from the properties of the columns of the m®invers of Heomp (C.f.
Appendix A3). Thus,

[z — gD gl-bH

comp— ]’ _’ comp—j£Lcomp—j

g H, (P“+T<Z ejel T, )H,ﬁlg. (A24)

lin
Forj = i it can be easily seen that

}Hcomn —i comg z‘ = }Hcém}) Hc(:(ljmlp)H ) (A25)
which is independent of. Inserting (A21), (A24) and (A25) into (A20) and introdugirthe
variables

’H(z 1) (i—1),H

comp—j comp J

— el (H(z‘—l)H(i_u,H)*l e;

j comp *+comp

)Hcomp HGDH

leads to the desired result.

A5. Derivation of the Update Rule for the Transmit Filters in a Successive
Algorithm without DPC

In this section the update rule for the transmit filters in ecgssive algorithm without DPC given
in Equation (3.68), which is conform with

(%) (%) @ /@
by = 6 < N tk( ),diciy Thii (i)) ’

z+1

will be proofed. The projection matrd?( . as defined in (A22) projects into

1—1 7
null {Hc(omplﬁm} Unull {g}j@)?dkm Hk(l-)} — null {Hggmp,nk,j}
and can therefore be written as
PY) HY g 90 0, Hiiy PO
P(Z_H) pi Dk k(i) IR0 di (i) Tk (i), dy iy T T RO =Ry 5
ari s N0 )
L G Heo P, Hi) 966 i,
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As explained in Appendix A4t is collinear with P, Higne,,, , so that

Nk,

7 5(2) (41 3
ty) = VPV H e,

—ny, ;- comp

_ a0 | p@) PE?%JH/I:(i)gk(i)vdw)g’I:(i)vdku)Hk(i)ﬁg%"”j H®OH

Y o gl?(i)vdk(i)Hk(i)ﬁii%k’jHl?(i)gk(i)vdk(i) e
k(i) di sy Hk(i)Pfﬁk,ij(z')gk(i),dkm

_ ~1§Z; tz(f,;l) B (P"(f? + tl(ci;l)tl(ci,;‘l)’H> Hl?(i)g’f(i)vdmgllc{(z'),dk(i) Hk(i)ti(f,;‘l) ’

5 (%) (i—1)4(i—1),H
k(i) Fti) (P n Tty )Hzlf(z-)gk@),dk(i)
(i-1) 5 (%) 5 (1) (i—1)
10 tk,j gl?(i),dk(i) Hy) By, Hkl;l(i)gk(i)vdk(i) - B, Hllj(z')gk(i),dk(i)g]?(i)dk(i) Hk(i)t,w-
S 50) | (1) (- 1)H

where (A23) has been used in the last but one Iine@@oﬁnd@,ﬁ% scale the vectors on the right
hand side so tha@ has unit norm. By using the fact that

H(0) pH _ 5 (i) (i)
B, Hk(i)gk(i)vdk(i) = \/gl?(z‘),dk(i) Hy) By, Hllj(z')gk(i)vdk(i)tk(z’),dkm
from Equation (3.64) and using the scaling factor

(%)
gII;I(z‘) iy H’f(i) Ijlin HII:(z‘)gk(i) (i)

80 = 5 T =
, , B(i) | 4(i—1)4(i—1),H

91(0).dyey HEG) (‘Plin T, Tty )H}fmgkm,dw
one obtains

(i—1)
gllj(i)adk(i) Hk(i)tk,j

- 0 (457 40,
) 5] 5] 1),Qk(4) - (Z)

which leads to the desired result by using the definition'§f, in (3.66) and the definition of;.,
in (3.67).

A6. Lower and Upper Bounds for a Generalized Eigenvalue Prolem

In this section we will derive a lower and an upper bound ferriaximum eigenvalue of a matrix

(I, + D)~' C, which are given by
tr(C)

r 1+ tr(D)]
incaseC € C™*"andD € C™" are positive semi-definite Hermitian matrices. For the migiue
from Equation (3.71) one obtaifs = Sc,kA,(f)SZk and

i—1
D = Sc,kBlii)S;l:k — I, = Z Sc,kalADj(i)H;?kaaf)-

J=1

<p (I, +D)"C) <tr(C)
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This maximum eigenvalue can be upper bounded by (e.g. [138, Theorem H.1.a])
p (L +D)" C) < py (I + D)) pu(C).

As the minimum eigenvalue of the matdx+ D is greater than or equal to one, whBnis positive
semi-definite, the maximum eigenvalue of its inverse is eguar smaller than one. Furthermore
the maximum eigenvalue of a positive semi-definite mattixss smaller than or equal to the trace
of that matrix which leads to the upper bound

p1 (I, + D)7'C) < tr(C).

For the derivation of the lower bound the lower bound for thexmmum eigenvalue from [35, Ch.
2.3] is used, so that
tr ((I, + D)~'C)
T
where equality holds, if all eigenvalues are identical. @terg the eigenvalue decompositions of
the matrice<C' and(Z, + D)~!

<p (I, + D)™'C), (A26)

rank(C) r 1

-1 _ L H

C= 2 n@uul,  (L+D)* =) o)

j=1
one obtains
rankC) r rank(C) r
_ Pz‘(C) Pz‘(C)
(L D)70) = 2 2y ) = 2 2 Ty

=1 j=1 i=1  j=1

(A27)
As D is positive semi-definite, all its eigenvalugg D) can be upper bounded by its trace, i.e.
p;(D) < tr(D). Hence, we the expression in (A27) can be lower bounded as

rank(C) r rankC) r rank(C)

pi(C) H, 12 pi(C) 2 pi(C) - H,, |2
2 Dy vl 2 2 . ey L 2 1+tr(D)Z|vjuZ"
J J=1 =1 J=1

=1 j=1 i=1
As the vectors,; form an orthonormal basis, we obtain

rank(C') rank(C')
az Z it az pi(C) _ tx(C)
— 1+ tr(D) + tr —~ 1+t(D) 1+tx(D)’

which leads together with (A26) to the the desired result.

A7. Derivation of the Large System Limit for the Optimum Weighted Sum
Rate in MISO Systems with Infinite Number of Transmit Antennas and
Users

To derive the large system limit for the optimum weighted sate in MISO Systems with infinite
number of transmit antennas and users, the Karush-Kuhkefweonditions of Problem (5.7) are
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considered, which read as

-1

N

C .
ZAMijk Icn, + Z Fom) W m) Ha(m) H{'W,. = \W,,, Vk,
j=n(k) "

K
A (Z tr(Wy) — PTX> =0, A>0, W;=0,Vk, (A28)

wheren(k) denotes the index of the subgroup ukdrelongs to and

J
K=Y B.K
n=1

As the problem of weighted sum rate maximization in the du&Gvis convex, the KKT are
necessary and sufficient and solving (A28) leads to a glop@om. As it has been shown in
Section 3.1, the covariance matrices optimum for (5.7) iD®IFsystems, automatically fulfill the
block-diagonality constraints, which implies for singletenna user terminals that the optimum
uplink covariance matrice®/;, € C“*“ become diagonal matrices, i.e.,

Wk = dlag (wk,l, N ,wk’c) .

Exploiting this fact and the block-diagonal structure c# tthannel matrice#f,,, the KKT condi-
tions in (A28) can be written as

-1

C A - - .
Z ,u‘_] 2h INT + - Z hfr(m),ch?(m)7cw7?(m),c hk,cwk,c = )\wk,m
In 20 o5 | =

j=n(k)

VEk, c

K C
5\ <Z Zwk,c - PTX) - 07 ;\ Z 07 W, ¢ Z 07Vk7 C, (A29)

k=1 c=1

where
HI = H S' = h
k.c c, T4 k= k.c

becomes a column vector in the MISO case. Note that for QoStined optimization problems,
instead of (A29) the KKT of the corresponding optimizationiem need to be considered. They
can be analyzed in the large system limit with the same taolgpplied in the following to the
weighted sum rate maximization problem.

Similarly to [127], the covariance matric®¥,, are considered to be deterministic in the following.
Under this assumption the KKT conditions (A29) are evaldatehe large system limit. First, the
terms ) .

K

C ~
hil, Iy + — Zh P Waim) e b

n

are evaluated in the large system limit f&r— oo and Nt — oo using standard methods from the
large system analysis (e.g. [112], [110]). First the maitmsersion lemma is applied so that the
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inverse matrices are independent of the vehtgr and

-1

. C e, . Mie,
th Iy, +— Riim ch?m Wi(m).c hj.= e , A30
ee | Ive+ 23 mz::l (m).cPm) W m), 4= T g Sy (A30)
where .
- C -
Micj = hk;’c INT + _2Bk,c,j hk,ca
an
and
Bk,CJ Z h ﬂ(m cWa(m),e — ilk,cilllicwk,c = ﬂk,c,jwk,c,ij R NT (Asl)
The matrix Hy..; € CN™K;=1 contains the vectorsﬁﬁﬁ(m),c, m = 1,...,K;, 7#(m) # k,

as columns, where the normalization @/ﬁlTTH is done so that the entries i}, ; are i.i.d.
with zero mean and variancﬁ, a property that will be required in the following. The matri
Wi.; € CKi—1xKi~1 s diagonal and contains the powets,,., m = 1,..., K;, #(m) # k.

The matrix (INT + %Bkw) is independent oﬂ,w, which is due to the fact that the powers

wy . are assumed to be deterministic and the vecftf;(,g)ﬁ belong to other users than ugerAs
furthermore the vectoifz,g,c contains i.i.d. entries, Lemma 2.7 from [137] can be applsedthat
my.c,; converges forNt — oo according to

C 71
2
Miej 7 OHET (INT + ;Bk,c,j) :

n

where the factor? takes into account that the elementsiif. do not have variance as required
in [137, Lemma 2.7]. Given the asymptotic eigenvalue dislnibnfg’:i 7_(x) of the matrixBy, . ;,

-1
the trace of(I Ny + %Bkm) can be computed according to

C & 1
tr | Ing + _Bk,c, ) =
( T 0’% J zzl 1+ f—%pi (Bk,c,j)

- 1 C Mi,c,j
NEV,F; Nt o 1+ % el fB,”J( )dx—NTTIBkw <a_ﬁ) =2 (A32)

[c.f. (5.5)]. Thus;mn . ; is a function of the;-transformyg, . () of the matrix By, . ;. Exploiting

the structure of the matriB, .. ; as defined in (A31) and the fact that the matri¢ég..; contain
I.i.d. entries with zero mean and varianﬁg, Theorem 2.39 from [109] can be applied to obtain

then-transformyp, | <J%> and thusmny, . ; from the implicit equation

mg. c,j

J 1 ¥
> Ba= = T . (A33)
n=1 @
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Furthermore in (A33) the facts have been used that for fgelar and K

and then-transform of the diagonal matri®¥; . ;of Nt is given by

K;

1 1
MWic,otie (1) = Kj —1 ; L+ Wi (my o7 NT
7 (m)#£k

Using (A30) and adding the implicit conditions (A33) to th&K conditions from (A29) leads to
the following system of equations to determine the optimamegrswy, .

M c,j N
E ,u] 2 c Wk,e = )\wk,ca \V/k’,C
ln20 1+wkcmk6j—2

on

j=n(k)
x(zzwkc— )_o $20, w20 vhe
k=1 c=1
J 1 — Mhiey
1 =
> B = ki Vj = n(k),...,N,Vk,c.
(6%

)
K] .
c C
m=1 1+my c ijr(m) c? 1+mk,c,jwk,c¥

The first and the last line in (A34) are identical for all carsc and for all users, which belong to
the same subgroup of users. Thus, the variablgs; are therefore identical for all carriers and
all users in the same subgroup and those users receive tleepsamer, which is in turn equally
distributed over the carriers of each user. Denotinghe total power allocated to theth subgroup
of users, they,, . are therefore given by

(A34)

W,

CB. K

Wk,c =

For the special case of sum rate maximization, i.e., wheasalis’ weights are equal, this implies
that an equal power allocatian, . = PTX is optimum in the dual uplink. For unequal weights, by
using the new variables

wy = we OB K, my = m]’\j’c’j k¢ (A35)
T
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and) = 21298 the system of equations (A34) can be reduced to

NtC !
al m
Z lu] . « wn_Awna ’I’Lzl, 7N
— 1+wnmjg2ﬂ
j=n "
N
A(an—PTX>—O, A>0, w,>0,n=1,...,N
n=1

Z Bm 1
m—1 ZZ’:I B"’ 1+mnwm%

<7n57n

1 o
> Bu—= d n=1,....N,
" -(d )

which is identical to the implicit systems of equations {8d where in the last line the asymptotic
equivalence

K;

1 Z 1 1
f(j -1 — 1+ mjwmga_gﬁm 1+ mjwkﬁ
K; J

1 B 1

1

Koo K 1+ mjwy,—%— S, B L+ M 5
J m=1 J monﬁm m=1 n’=1 n J mO'an

has been used. As (5.9) stems from the KKT of a concave ogtroiz problem, the system
of equations has a unique solution. Proceeding similarliheoKKT expression in (A29), the
weighted sum rate expression in (5.7) can be written as

Rwsr,opt= Z Ay, Z logy | Iny + ) hfr(m),chflg(m),cwfr(m),c
n=1 c=1

N C C
= App > logy [Ty, + —Ben
n=1 c=1 n

where

: ; 2 ; P
B, = Z Reim) P my Wi (m),e = Ba).en + Ra). el Wa).c (A36)

m=1
andB; ). is given by (A31). The large system sum rate can then be cadpua the Shannon
transform [c.f. (5.6)] of the matriBC,n according to

N C
C
RWSR,opt — E AMnE NtVg — />
Nt,K—o00 c,n o
Nr_, n=1 c=1 n
==

From [109, Theorem 2'39}713@" () is given by

A~

K,
Vg, (V) = FTVWC,M&NT (ngw (7)7) -

—log, (1,,(1) + (ns,,(1) = 1) logs(e). (A37)
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wheree is Euler's number and
Wc,n = dlag (wﬁ(l),c, c. 7w7}(n)’6) .

For K — oo, the termizﬁ(l),cﬁ?(l) W), can be neglected compared to the max .,

in (A36), as the latter matrix consists of an infinite sum afk@ne matrices ant;(,) . = ggi}}
converges to zero for infinit&’. Thus,

nBc,n (’y) = T]B‘fr(l),c,n (7)

in the large system limit andg_ ,, . (v) can be computed from the implicit equations (A32)
and (A33). Together with (A35) one obtains

c C Mr(1),e,n mp
nBc,n (_) = anr(l),c,n (_) = 0_2 NT - 9 (A38)

o2 o2 o

The Shannon transformw o2 N () of the diagonal matristy., 204 Nt reads as

1 E

VWgynO'aNT (7) = =

2o
(1 + YNTOHWa (7). ) o & ZBJKlogQ (1 + yw; BH )

(A39)

n =1

Inserting (A38) and (A39) into (A37), leads to the asymmeieighted sum rate

RWSR +YWSR,opt
CNT NT K—o00, Z AM” ZBJ 10g2 (1 + 25] wjmn) —+

N7 _
K
1 (Ja my, 1)1 ( )
+ 1o —_— + | — — (0] €
g2 N E{ g2 )

A8. Derivation of the Large System Lower Bound of the Weightd Sum Rate
in MISO Systems Achievable with Successive Resource Allagan and
Zero-Forcing with DPC

The channel gain of the data stream allocated inttmatep is given by
p1 (PE()QCH <Z>Hk<z‘>Pc§?=)c> =P (Hk< ) PSOcH <z>> = max by, Seth ScS thi.c

[c.f. (3.35)], where the last equallity follows from the bkediagonal structure of the matricé$
andPé’P)C and the fact that in MISO systems the matHSg(i)PéZgCHE(i) is diagonal.

which is identical to (5.8).

R = Hily . = SerHY ST,

denotes the Hermitian channel vector of ukgy on carrierc and contains circularly symmetric
i.i.d. entries with zero mean and variangg Recursively applying (3.34), the projectdi%éﬁ;)C are
given by

i—1

(7) () 4(),H
PDPC_ Ton: — thj) kj(J) )
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By furthermore exploiting the block-diagonal structuretwé precoding vecto the matrices
S. TPE(,ZPCSTT can be written as

(7 j i),H
S.tPReSly = I — > Sert)tiST,

7)
J’ Cr(s)=¢

where the sum is taken over all precoding vectors on the samer; i.e., over allj with c,(j()j) =c.

To obtain an analytical expression for the large system kiedy sum rate, in the following it
will be assumed that the vectotga.) are independent of the vectéy,; .. For the originally
proposed algorithm this is not the case, as the kggris chosen such that the weighted sum rate
becomes maximum, which implies that this user’'s channei gathe nullspace of the vectors
t”( ) should be as large as possible. The assumption is howeudiegiswhen in each step a
subchannelis allocated randomly to a user within the safngreup of users having equal weights
and only the order in which the subgroups can allocate sulmelsiis optimized. The large system
weighted sum rate to be presented in the following therefoelower bound for the weighted
sum rate achievable with the algorithm. With the assumml‘mf()j) being independent (fik(z‘),c’
Lemma 2.7 from [137] can be applied and the channel gainsandige system limit can be
computed according to

max hk(z cSc,TpéQCSITiLk(i),c o, Mmax o tr (SC,TPE()QCSZO

C

=of | Ny — min Z tkj()JHSCTTSC,Ttg()j) = o} (NT — min ng_l)) ., (A40)
¢ ) _ ¢
J’ k(5 ™¢
wheren!™" denotes the number of subchannels allocated on carmierring stepsl,...,i —

1 and the last equality follows from the fact that the vecttjci‘ are orthonormal and obey to
the carrier separation constraint (3.24). The large systeamnel gains (A40) are independent

of the user index:(:) and monotonically decreasing ininn'”. It is therefore asymptotically

optimum to schedule first all users in this subgroup havcilegakgest weight, then the users in the
subgroup having the second largest weight and so on. Theasitbo stops, itV subchannels have
been allocated on each carrier or all users have been seNad.that through the zero-forcing
constraints in caser < 1, i.e., K > Ny and for equal weights for all users, not all users are
served, whereas with the optimum algorithm all users receon-zero power (see Appendix A7).
Furthermore the same scheduling is applied on all carrizdisaad the same weighted sum rates
can be achieved on all carriers, @ only depends on the number of allocated subchannels on
carrierc. That implies that on each carrier a total powelfgfls used. The large system limit of
the weighted sum rate can therefore be computed according to

min(Nt,K)

. |
Rwspppe <= € D0 paglog (1 +Prt) 3 NTaH (1—Ni)) (A41)
T

—00
7j=1
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7(7) denotes the user to be encodedthtplace, where the encoding order is done in decreasing

order of weights and

+
2
n

CNTO'E' (1 — NLT>

is the power allocated to uséi(j) determined from weighted water-filling (see Appendix A2),
which implies thatj is chosen to fulfill the transmit power constraint with egyalAs the channel
gains are monotonically decreasing with the ingeand the users are served in decreasing order
of weights, there exists an encoding positiaay below which all users receive non-zero power
by the water-filling algorithm and above which all users reeeero power. Thus, (A41) can be
written as

Jmax .
J _
Rwsrppc Koy os Czﬂﬂj) log, (Wﬁ(ﬂ (1 - FT)) =

NT_ j=1

N
jmax jmax ]
Zf“fr(j) logg(ﬁﬂﬁ(j)) + Zﬂfr(j) log, (1 — F)] =
e j=

T

g

PrG) = | ) —

=C

Nmax— 1 Nmax—1
J
= C K Z ﬁnun 10g2(77ﬂn) + K ( ;‘(ax Z 5”) Mnmax lOgZ(np’nmax) +
n=1 n=1
S B K
Tmax— 1 n/=1 ] kmax j
+ nZ::l Hn n_lz: log, <1 — FT) + ) ; Hormax L0Zo <1 — FT) (A42)
=% Buk+1 =S Buk+l
n/=1 n/=1

Jmax Jmax

Pry 1
E AR Dy rura B 4 p>
— O_2N _ 0_2 & n j=1 Nroj (1*1\%1_) _ 02 —1 Nrof (17—1_)
?7 n H TO'rQ] H K Jmax 1 H Nmax—1 Jima Nmax— 1
(i) % Zl Bufin, + | 12— 21 B )t
Jj=1 n= n—=
(A43)
jmax IS chosen so that
1 1
nlu‘nmax Z - y and jﬂx < mln 17 — .
1-— JNL: Nt o

For QoS constrained optimization problems the same asytiogttannel gainsVyo3 (1 — JNL:>

can be achieved but a different user and power allocationdias considered.

The expressions in (A42) and (A43) still depend on infinitexswof functionsy (N ) overj. In

the large system limit these sums can be replaced by ingegval finite intervals according to
b/Nt

£1(4) ()0 o

a a/Nt
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Consequently, the asymptotic weighted sum rate at leashadfie with Algorithm 3.2 is given by

K N-|——>oo (0%
Nt _
K =«

Nmax—1 . Nmax— 1
Rwsrprc 1 Jmax 1
T AT o~ n nl n - n nmaxl Tmax
NoC E Brbin 10go (1htn) + N, o n§1 Bru | e 1082 (1) +
Jmax

1—pn Nr
Z /log21—)dp+unm / log, (1 — p)dp,

B -1 1- Bnmaxfl

wheref3, =1 — > Bu! and with the asymptotic water-level

n/=1

I;T—%XjL! 1 )dp

n=oja

nmaxfl

NMmax— 1 :
E ﬁn,un + (]max Z Bn) :unmax
n=1

Using the results of the integrals

1—fn
logy (1= p) dp = A1 logy (Bur) — Buoms (Bu) + 15 (B — Bt
1=Bn—1

Jmax
Nt

jmaX jmax jmax A 3
log,(1—p)dp=—(1— log, (1 — - ot ] (n_)
/ OgQ( p) P < NT ) OgQ ( NT) NT 1n2 + 5 max— 1 OgQ 5 max— 1 +

175"max—1

11— Bnmax—1
+ In2

Nt
1 1 jmax)
— —  dp=——In(1- =
O/o—au—p) P75 ( Ny

leads to the system of equations (5.10).
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A9. Weighted Sum Rate Computation in the Large System Limit ér Spatial
Zero-Forcing in MISO Systems

In this appendix a method to solve Problem (5.13) will be @nésd. For this purpose it is first
shown that the function

n(p)— n(p)—1
Riyekin(c ) Z Buttn 10go (1) + | £ — Z B | o) 1085 ()
n(p)—1 n(p)—1 PTO-2( _
Hla—p)+p
+ Z Mnﬁn + pP— Z ﬁn Hn(p) 10g2 n(p)—1 n(p)—1
=t 21 Bn,un + (p - 21 ﬁn) Hon(p)
is piecewise concave in the intervals< p < 5y, ..., 8, < p < min(l,«). In each of these

intervalsn(p) is constant and the derivative &,%)R’"n(a, p) with respect top can be computed
according to

aR\(/SCS))R,Iin(av p) 1 I;T—%Xaﬁ(oz —p)+p

= — n l n n 1 —
Hon(p) ng(ﬂ (P)) Hn(p) 1082 n(p)—1 n(p)—1
! Hon(p)

21 6nﬂn+ - ;1 Bn

n(p)—1 n(p)—1 . T
Z M”Bn + P — Z Bn Hn( (1 2X UH)
= _ Hnp)

ln2(iz ﬁ(a—p)+p) In2

_|_

and the second derivative is given by

~ (00 &
82R\(/VS)I?,Iin(O[7p) o 1 ( oq g ) lun(p)
d%p aln2 |1 ()% Ao —p) + n(p)-1 n(p) 1

n(i):—l ; n(i): 1ﬁ . ) 2
HnPn + P — n n ( —0 ) T N Mn
= o2 OH <%Xoa (afp)er) (p)

n(p)—1 n(p)—1 o
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Thus, the optimum solution to Problem (5.13) can be found détgminining the maximum large
system weighted sum rate in each inter¥ial; < p < min(«, 3,), n = 1,..., N, which can be
computed for example by the bisection method [33, Chap#y &1d then choosing the maximum
of these interval maxima.

A10. Derivation of An Implicit Equation for the Large System Analysis of
Successive Resource Allocation and Spatial Zero-Forcingith DPC

In this section Equation (5.20) stating that

/%—K fo, (@) 4y LU= K)¢
0 1 =B+ (x — 2)mg, (2) 1—(j—K—1)d
will be derived together with the optimum scheduling scheftee matrice”; are given by

C VDI(D]C 1)om+1),H HH( H j)VD(] 1)ém—+1)
[c.f. (5.18)]. As the nullspace oﬁé@c = VD(QCVSQ’CH is enlarged by one dimension with each
subchannel allocation as a consequence of (3.34),

span {PE(JQC} = span {VD(QC} C span {pég)c} , Vn <i. (A44)

Of special interest is the case= (j — 1)ém + 1 andn = (¢; — 1)dm + 1, where/; is the
highest index of a subgroup that has been allocated toiigebefore the allocation roung For
notational convenience in the remainder the following shotations will be used

() . j—1)dm-+1 = (¢5) ((£;—1)3m+1) 5(05) A((¢j—1)dm+1)
VD(IJD)C = VD(I(:’]C : )a Vorc = Vore ) Prgc = Pppe .

From (A44) it follows that
Y4l () v (i
VD(IJD)C = P, DPCVD(IJD)C
and consequently
4

o  G)VH B (6)
)VD%)C: VD(QC PéPJcHH» H;

C; = Vo Hj, H, o Hig)

e
iy Hig PoicVobe

A reduced eigenvalue decomposition of the maﬁé@éH&j)Hk(j)Péﬁé can be stated as

Pép():HH )H i )PDf;(): — ‘/1 2 )‘/iHv(éj) + w(éj)zr(ej)‘/rHv(éj)’ (A45)

whereZJ(é' Comxom is a diagonal matrix containing thien strongest eigenvalues of the matrix

ﬁé@éHH( )H i )P(F,C andV1 € CNom contains the corresponding eigenvectors. Due to the
multiplication with projection matricesPDF,CHH Hj; )Pépé contains at least/; — 1)dm zero
eigenvalues. Omitting these zero eigenvalues the rentpivii —¢;6m eigenvalues besides the:

25) )
strongest ones are subsumed in the magf¥) € CNr—tidmxNr—t;om gnd V() ¢ CNrxNr—tom
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contains the corresponding eigenvectors. Vﬁ%j) contains the transmit vectors for ttié, —
1)dm + 1th to the/,;omth data stream, the span v is composed as

span {Vr(zj)} = span {Pé%é — Vl(gj)Vl(gj)’H} = span {Péf;gl)} . (A46)

ThusV;) is abasis oﬂ%ﬁgl Furthermore, as all transmit vectors of data streams chos®re
steps, V1 ) lies innull {VDQC} and therefore

Hp) )~ () x-(),H
Cj = VDJ) PDPCH]?( )Hk(] PDPCVD(IJDC VD(IJDC Vi BBy VD(IJD)C :

The columns ofVDF,C are completely contained ispan {Vr(éj)} due to (A44) and (A46). By

introducing the matrixy/ ) e CNi—4omxNi—(-1om rapresentingVi\i- in the basisV;”', the
matrix Vi2). is given by
Vi) — oo
and thus
C; = ‘A/H,(j)zr(gj)f/(j).
The matrixV @ is uniformly distributed over the manifold Ofr —¢;0m x Nt —(j—1)dm complex

matrices withV*0V ) = Iy 15,. This is the case, if the subspace spanned/g is

uniformly distributed within the subspace spanned‘bgf’), which is equal tospan Pé@g Y

[c.f. (A46)]. To proof the latter statement, it has to be shdtat in each step of the algorithm, the
transmit vector for the newly allocated data stream is umfg taken from the set of unit norm
vectors orthogonal to the transmit vector of the previowalgcated data streams. The transmit
vector in thenth step is chosen to be the eigenvector corresponding tarithepmal eigenvalue of
the matrix ) )

PLLCHTY Hiy PP = VERRVAH Il Hi VIRV

and this transmit vector is uniformly distributed withipan {Vé,’j)c}, if the matrix of eigenvectors

of the matrixVD},I,’é”)H,ﬁn)Hk(n)VD(;)C is Haar-distributed, which applies, if the latter matrix is
unitarily invariant [109, Lemma 2.6]. This can be proved bgtuction. Suppose that in step- 1
the matriced/250" Y HY H, V" Y are unitarily invariant for all users. Then the transmit vector
for the data stream allocated in the— 1th step is uniformly distributed within the subspace of
unit-norm vectors orthogonal to the transmit vectors deteed in previous steps. This implies

that the representationi(™) € CN7—(n—1xN=(n=2) of V(") in the basisV . " so that
Vore = Vare V.

is uniformly distributed in the manifold oVt — (n — 1) x Nt — (n — 2) orthonormal matrices.
Thus,V (™ and consequently

VB HI HL Vg = VOV LV

is unitarily invariant for all userg, if VDPC" 1)HHH VDF,C IS unltarlly invariant for allk. To
complete the proof, it has therefore to be shown that thelmafVD HHHkVD(F,C are unitarily
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invariant, which follows from the facts thafé,?c = Iy, and the matricegd;, contain Gaussian
I.i.d. entries.

Thus, it has been shown thet?) is uniformly distributed over the manifold ¥y — ¢;0m x Ny —
(j — 1)ém complex matrices witV"-D V) = I'n.; 15,,, which will be used in the following

to derive the)-transform of the matrixC; = V10 3(9) V() For that purpose first Lemma 2.28
from [109] is applied, which states that

1 1
77C'j<7) =1-=

OF (), (A47)

;nzr G VHG)
J

where
- Ne—(—1dm 1 (j— 1)

- = A4
ﬁj NT — ﬁjém 1— gjég ( 8)

The matricesAZ‘r“")A andV W VHEG) are asymptotically free [109, Definition 2.19], as they aie-
pendent and” V0 is unitarily invariant, from which the asymptotic freeness be derived
with the proof of the theorem in [138]. From Theorem 2.68 amdriple 2.51 in [109], the-

transformnw)VHm2@7.) (7) is given by the implicit equation

B;
N (V) =noey | v+ :
VOVHG) 5 2 ( 77V<,;>VH,<J'>2,“"J'>(7)

By using (A47), thej-transformc, () is given implicitly by

(A49)

- - vBime, (7)
Bine,(v) =B +1=n_«) | = S -
e ’ i Binc,(v) — B +1
The diagonal elements of the mat®?) are given by the eigenvalues of the maif¥, except
the largestym ones, which correspond to the channel gains from step- 1)om + 1 to step

¢;0m [c.f. (A45)]. The asymptotic eigenvalue distribution okbtmatrix X\ is therefore given

by the a.e.d. of the matri&’,, truncated atigj, whereﬁgj is defined in (5.19), and normalized by

MG Thus, thep-transform of the matrix " can be written as
J

A, (00)
Nr— (t; = 1)om [ fer, (@)
, = d A50
0

Inserting (A50) into (A49) and using the relationship (Sd&fween the)- and the Stieltjes trans-
form leads to

A (c0)
/ fcej (x) do— Nt —{;0m
1— 6+ (x— z)me, (2) - Ne— (4 = 1om’

0

By using this implicit relationship to test in each step, wlaegroup of subchannels is allocated
to the same user, which user leads to the strongest increasen rate, it turns out that, as in
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the first K allocation rounds, it is optimum to serve each user evemllocations. Consequently
{; = j — K so that

s 1= D& 1- (-1

T 1406 1—(j— K)é¢

and
Nt —{iom 11— (j — K)é¢

Nr—(;—1)dm 1—(j—K—1)8¢’
which leads to the desired result in (5.20).




Bibliography

[1] G.J. Foschiniand M.J. Gans. On Limits of Wireless Comioations in a Fading Environ-
ment using Multiple Antennad/ireless Personal CommunicatiQiis311-355, 1998.

[2] I.E. Telatar. Capacity of Multi-Antenna Gaussian Chelsn European Transactions on
Communications10:585-595, 1999.

[3] N.Jindal and A. Goldsmith. Dirty-Paper Coding versusMB®for MIMO Broadcast Chan-
nels.IEEE Transactions on Information Theg®1(5):1783-1794, May 2005.

[4] W. Yu, W. Rhee, S. Boyd, and J.M. Cioffi. Iterative Watdlhiig for Gaussian Vector Mul-
tiple Access Channel$EEE Transactions on Information Thegiy0:145-151, 2004.

[5] S. Vishwanath, N. Jindal, and A. Goldsmith. Duality, Aevable Rates, and Sum-Rate Ca-
pacity of Gaussian MIMO Broadcast ChanndEEEE Transactions on Information Theory
49:2658-2668, 2003.

[6] N. Jindal, W. Rhee, S. A. Vishwanath, S. Jafar, and A. Goiidh. Sum Power Iterative
Water-filling for Multi-antenna Gaussian Broadcast Chasn&EE Transactions on Infor-
mation Theory51(4):1570-1580, April 2005.

[7] H. Viswanathan, S. Venkatesan, and H. Huang. Downlinkdc#y Evaluation of Cellu-
lar Networks With Known-Interference CancellatiolEEE Journal on Selected Areas in
Communications21(6):802—-811, June 2003.

[8] G.Wunder and T. Michel. Minimum Rates Scheduling for MIMOFDM Broadcast Chan-
nels. InProc. of 9th IEEE International Symposium on Spread Spaetffachniques and
Applications (ISSSTA 200§)ages 510-514, August 2006.

[9] J. Lee and N. Jindal. Symmetric Capacity of MIMO Downli@kannels. INEEE Interna-
tional Symposium on Information Theory (ISIpages 1031-1035, July 2006.

[10] P. Tejera, W. Utschick, G. Bauch, and J. A. Nossek. Sabnbl Allocation in Mul-
tiuser Multiple Input Multiple Output System$EEE Transactions on Information Theory
52(10):4721-4733, October 2006.

[11] P. Tejera, W. Utschick, J.A. Nossek, and G. Bauch. Ratkamiing in Multiuser MIMO
OFDM SystemsIlEEE Transactions on Communicatioig (5):1370-1380, May 2009.

[12] G. Dimi¢ and N.D. Sidoropoulos. On Downlink Beamforming with Grgétser Selection.
IEEE Transactions on Signal Processji$(10):3857-3868, October 2005.

[13] T.M. Cover and J.A. ThomasElements of Information ThearyJohn Wiley & Sons, 2nd
edition, 2006.

[14] H.Weingarten, Y. Steinberg, and S. Shamai. The Cap&gsgion of the Gaussian Multiple-
Input Multiple-Output Broadcast ChannellEEE Transactions on Information Theogry
52(9):3936-3964, September 2006.

[15] M.H.M. Costa. Writing on Dirty Paper. IEEE Transactions on Information Theory
29(3):439-441, May 1983.

[16] D. Schmidt, M. Joham, and W. Utschick. Minimum Mean Sgu&rror Vector Precoding.
European Transactions on Telecommunicatjdri®s219-231, 2007.

[17] S. ten Brink and U. Erez. A Close-to-Capacity Dirty Pafg®ding Scheme. I#roc. of
International Symposium on Information Theory (1Sidage 533, July 2004.

119



120 Bibliography

[18] D.J. Love, R.W. Heath, V.K.N. Lau, D. Gesbert, B.D. Rand M.Andrews. An Overview
of Limited Feedback in Wireless Communication SystelB&E Journal on Selected Areas
in Communications26(8):1341-1365, October 2008.

[19] H. Zhang, Y. Li, V. Stoplman, and N. van Waes. A ReduceddBack Approach for Pre-
coded MIMO-OFDM SystemslEEE Transactions on Wireless Communicatios(d):55—
58, 2007.

[20] N. Khaled, B. Mondal, G. Leus, R.W. Heath, and F. Petréterpolation-Based Multi-
Mode Precoding for MIMO-OFDM Systems with Limited FeedbadkEEE Transactions
on Wireless Communication®(3):1003-1013, March 2007.

[21] C. Guthy, W. Utschick, and G. Dietl. Finite Rate Feedb&chemes for the MIMO OFDM
Broadcast Channel. IRroc. of ITG Workshop on Smart Antenna808.

[22] C. Guthy, A. Krebs, and W. Utschick. Reduced EntropyaReaterization of MIMO Channel
Matrices for Finite-Rate Feedback. Broc. of 10