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Abstract

The use of multiple antennas at the transmitter and the receivers in a wireless communication sys-
tem enables an efficient use of resources such as bandwidth and transmit power. On the other hand
this advantage comes along with an increased complexity of the signal processing algorithms com-
pared to single-antenna systems. In this thesis four popular optimization criteria for the design of
transmit and receive filters in Multiple-Input Multiple-Output (MIMO) systems are covered. Those
include the problem of maximizing the weighted sum of the transmission rates under a sum power
constraint. Quality of Service constraints in terms of minimum and relative rate requirements for
each user are additionally taken into account and furthermore the problem of minimizing the trans-
mit power required to satisfy guaranteed rates for each useris treated. The optimum solutions to
these problems are state-of-the-art, work iteratively andare numerically very complex. For practi-
cal purposes it is therefore desired to use algorithms that are less complex but have some acceptable
performance losses. Those kind of methods are presented in this thesis along with a summary of
the optimum algorithms. In order to show the near optimum performance of these algorithms not
only by simulations, analytical results are derived for systems with infinite number of transmit
antennas and infinite number of users or infinite number of receive antennas. In these large system
limits, the rates achievable by the algorithms become deterministic, although the characteristics
of the channel are random. The results obtained this way serve as a good approximation of the
average performance in systems with finite parameters and are therefore valuable for the analysis
of those systems.
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1. Introduction

The use of multiple antennas in wireless communication systems enables strong performance im-
provements compared to single antenna systems. While a single-antenna transmitter emits its sig-
nals omni-directional, with multiple antennas the transmit signals can be designed so that the sig-
nals emitted from different antennas superpose constructively at desired spatial directions, whereas
they overlap destructively in other spatial directions. Additionally, receivers with multiple anten-
nas can combine certain signals constructively and better suppress interference from other trans-
mitters this way. Thus, significantly higher transmission rates than in single-antenna systems can
be achieved with the same amount of transmit power [1] or the same performance can be main-
tained at reduced transmit power, which diminishes interference to other users. Thereby, these
Multiple-Input Multiple-Output (MIMO) systems ease spatial multiplexing. This implies that a
multi-antenna transmitter transmits several different data symbols at the same time and on the same
frequency, which enables an efficient use of the rare resource bandwidth. Those data symbols can
be dedicated to different receivers or to the same receiver,where they may be combined for error
correction or used for different data symbols. Vice versa, amulti-antenna receiver can better detect
data symbols from different transmitters. However, these performance improvements come at the
price of increased complexity. Besides the increased hardware requirements of multiple antennas,
the numerical complexity of the signal processing algorithms in the physical layer rises drastically.
While in single-antenna systems, the transmit power is the only scalar parameter to optimize at
the physical layer, in multi-antenna systems the transmit and receive filters, that describe how the
signals for or from the antennas are combined, become vector-valued. When only one transmitter
and one receiver are involved in the communication system, i.e., in single-user MIMO systems,
this fact is still manageable. There, the sum capacity, i.e., the maximum theoretically achievable
sum of the error-free transmission rates, can be computed bya Singular Value Decomposition
(SVD) [2]. However, in order to fully exploit the increased performance of spatial multiplexing, it
is inevitable to work with multi-user MIMO systems for most scenarios. In [3] for example, the
gains of multi-user MIMO compared to simpler transmission schemes based single-user MIMO
are evaluated. However, the computation of the sum capacityachieving filters in multi-user MIMO
systems is only possible with iterative, numerically involved algorithms. First, the optimum trans-
mit and receive strategy achieving sum capacity has been solved for the Multiple-Access Channel
(MAC) in [4], where several transmitters send different symbols to one common receiver. The
determination of optimum signal processing algorithms forthe MIMO broadcast channel, where
one transmitter emits different signals for several users,has been enabled by the duality between
the broadcast channel and the dual MAC established in [5]. Incontrast to the physical MAC de-
scribed above, where individual power constraints have to be met at each transmitter, in the dual
MAC a sum power constraint, which is the same as in the broadcast channel, is considered over
all transmitters. This duality states that the same rates are achievable in the dual MAC as in the
broadcast channel. That is why the problem of determining the optimum signal processing filters
can be solved in the dual MAC, where the problem of sum rate maximization becomes convex as
exploited in [6]. Nevertheless, that problem still has to besolved iterative and in a numerically
complex manner. Additionally, the duality implies a numerically complex transformation of the
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8 1. Introduction

filters optimum in the dual MAC to the broadcast channel afterconvergence of the algorithm in the
dual MAC. In [7] the more general problem of weighted sum ratemaximization, where different
priorities can be assigned to the data streams, has first beensolved for the broadcast channel. Fur-
ther computational burdens are introduced with additionalconstraints on the rates, like minimum
rate requirements for each user as in [8], or relative rate constraints as considered in [9], as those
problems are tackled by iteratively solving weighted sum rate maximization problems. All those
algorithms are derived for frequency-flat channels, i.e., there is only one temporal propagation path
between each transmitter and receiver. In case of multi-path propagation, additional measures have
to be taken to mitigate the inter-symbol interference. Orthogonal Frequency Multiplexing (OFDM)
can for example be applied to decompose each multi-path channel into a system of frequency-flat
channels. Although the algorithms mentioned above are still applicable in OFDM systems, the
dimensions of the matrices describing the effect of channelpropagation increase making these
algorithms even more complex.

In order to overcome this drawback of high computational complexity, but still profit from the
benefits of multi-user MIMO, efficient and low complex algorithms need to be developed, that
achieve the optimum solutions as close as possible. A procedure of this kind, named Successive
Encoding Successive Allocation Method (SESAM), has been proposed for the problem of sum
rate maximization in [10], where it is shown by simulation results that it is able to achieve the sum
capacity at negligible performance losses. An extension tothe problem of sum rate maximization
with relative rate requirements is presented in [11]. Both methods are based on the concepts of
spatial zero-forcing and successive resource allocation,i.e., interference between spatially multi-
plexed data streams is suppressed completely, and data streams are successively allocated to the
users. As the respective optimum algorithms, this method isstill based on the principle of Dirty
Paper Coding (DPC). While its theoretical concept stating that parts of the interference can be
cancelled perfectly without affecting the transmission rates, is relatively simple, its near-optimum
implementation involves huge computational complexity. Giving up DPC introduces however ad-
ditional performance losses but further reduces the numerical load. In [12] the concepts of spatial
zero-forcing and successive resource allocation are therefore incorporated into an efficient algo-
rithm for sum rate maximization without DPC leading to acceptable performance losses. However,
it has been designed for Multiple-Input Single-Output (MISO) systems, where the receivers have
only one antenna.

In this book these concepts of successive resource allocation and spatial zero-forcing are used
to derive efficient near-optimum algorithms for a wide rangeof optimization problems in the
MIMO broadcast channel. Chapter 3 focuses on the weighted sum rate maximization. Starting
with the original optimization problem, for which an optimum algorithm is reviewed in the first
section of Chapter 3, several simplifying steps are explained and introduced to this problem until
it can be solved efficiently and near-optimally. For this purpose, first the case is covered that it is
still affordable to implement DPC, before further simplifications are made to consider the absence
of DPC. Quality of Service constrained optimization problems in the MIMO broadcast channel
are handled in Chapter 4. Those include the weighted sum ratemaximization under a transmit
sum power constraint and minimum rate requirements for eachuser and the sum power minimiza-
tion to achieve target user rates. While the optimum algorithms, which are explained in the first
section of Chapter 4, rely on a iterative weighted sum rate maximization, the proposed efficient
methods work differently and are therefore only a little bitmore complex than the efficient algo-
rithms for weighted sum rate maximization. As in Chapter 3, two variants with and without DPC
are presented. Both Chapters 3 and 4 conclude with presenting procedures for further reducing
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the computational complexity of the proposed algorithms and numerical results. To underline the
close-to-optimum performance not only by simulation results, some of the efficient algorithms will
be analyzed in the large system limit in Chapter 5. Thereby, in each case two system parameters
grow towards infinity, where their ratio remains fixed and finite. In contrast to analysis methods,
where only one parameter, as the transmit power or the numberof users, grows towards infinity, the
obtained results also serve as a good approximation of the average performance in systems with
finite parameters having the same ratio. First, the number oftransmit antennas and the number
of users become infinite, where for simplicity MISO systems are analyzed. Afterwards MIMO
systems having infinite number of transmit and receive antennas are analyzed. The notation and
system model used throughout this book are explained in Chapter 2 and some concluding remarks
are given in Chapter 6.



2. Notation and System Model

Bold lower and uppercase letters denote vectors and matrices, respectively, where throughout this
book column vectors are used.(•)T and(•)H describe the transpose and the Hermitian of a vector
or a matrix, respectively.ρi(A), tr(A), |A|, ‖A‖F , and[A]i,j are theith eigenvalue, the trace,
the determinant, the Frobenius norm, and the element in rowi and columnj of the matrixA,
respectively.A+ denotes the Moore-Penrose pseudo-inverse of the matrixA, andvec(A) stacks
the columns of the matrixA in one vector.

diag(a1, . . . , an) =






a1
. . .

an






denotes a diagonal matrix with the elementsa1, . . . , an on its diagonal and

blockdiag (A1, . . .An) =






A1

. . .
An






is the notation for a block-diagonal matrix.Ii is the i × i identity matrix,0i,j is thei × j zero
matrix,1i is thei-dimensional all-ones vector andej denotes thej-th canonical unit vector.

span{A} = {y ∈ C
m|y = Ax, x ∈ C

n}, null{A} = {x ∈ C
n|Ax = 0m,1}

and(null{A})⊥ denote the range, the nullspace of the matrixA ∈ Cm× n and the orthogonal
complement to this nullspace, respectively.
For n-dimensional vectorsa ∈ Rn andb ∈ Rn inequalities hold element-wise, i.e.,a ≤ b is the
short notation for the system of inequalities

eT

j a ≤ eT

j b, ∀j = 1, . . . , n

and for matrices the expression “� 0” implies positive semi-definiteness, i.e.,A � 0 implies that
all eigenvalues ofA are larger or equal to zero.[a]+, wherea ∈ Rn, is the short notation for
max(0n,1,a), where the maximum operator is applied element-wise, i.e.,[a]+ sets all negative
elements ina to zero. For a complex vectora ∈ Cn Re{a} andIm{a} returns the real and the
imaginary part of this vector, respectively.
Following [2], a random variablex is Gaussian and circularly symmetric with meanx̄ and covari-
ance matrixQ, which will be denoted as

x ∼ CN (x̄,Q)

in the following, if the vector

[
Re{x}
Im{x}

]

is a multivariate Gaussian variable with mean

[
Re{x̄}
Im{x̄}

]

and covariance matrix
1

2

[
Re{Q} − Im{Q}
Im{Q} Re{Q}

]

.

10



2. Notation and System Model 11

In this book a multi-user MIMO system with one base station oraccess point andK users is
considered. The main focus is put on the downlink transmission, i.e., the base station acts as
transmitter and the user terminals as receivers. The numberof antennas at the transmitter is denoted
by NT and rk is the number of antennas at userk. The messages intended for each user are
different. Thus, from an information theoretic point of view, a broadcast channel is analyzed [13].
Orthogonal Frequency Division Multiplexing (OFDM) is usedto mitigate the interference caused
by multi-path propagation, commonly known as Intersymbol Interference (ISI), where the number
of carrier frequencies is denoted byC. An overview of the MIMO OFDM broadcast channel is
depicted in Figure 2.1. The source emits discrete symbolssk[n] ∈ Cdk for each userk everyTs

s1(t)

sk(t)

sK(t)

x(t)
Mod.
+ CP

Transmit

Signal

Processing

x̄(t)

H̃1(t)

H̃k(t)

H̃K(t)

η̃1(t)

η̃k(t)

η̃K(t)

ȳ1(t)

ȳk(t)

ȳK(t)

Demod.

Demod.

Demod.

CP Rem.

CP Rem.

CP Rem.

y1(t)

yk(t)

yK(t)

ŝ1(t)

ŝk(t)

ŝK(t)

Rx 1

Rx k

Rx K

SP at

SP at

SP at

OFDM Channel

Figure 2.1: MIMO OFDM Broadcast Channel

seconds, so that

sk(t) =

∞∑

n=−∞
δ(t− nTs)sk[n],

wheren, dk, andδ(x) denote the index of the channel access, the number of symbolstransmitted
to userk during one channel access, and the Dirac function respectively. The symbolssk[n] are
already preprocessed by source and channel coding, where itis assumed that Gaussian codebooks
have been used for this purpose. This idealized choice is motivated by the fact that those kind
of codebooks achieve the capacity of the MIMO broadcast as shown in [14]. Thus, the entries
of thesk[n] are circularly symmetric Gaussian with zero mean and unit variance, so thatsk[n] ∼
CN (0, Idk). Furthermore the transmission symbols for different usersare uncorrelated. In the
following the different parts will be explained in detail, before a compact system model can be
introduced at the end, which will be used in the remaining chapters.

Transmit Signal Processing

The signalssk(t) are processed at the transmitter as depicted in Figure 2.2. At first Dirty Paper
Coding (DPC) can be applied to the transmit signals. During each channel access DPC further
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s1(t)

sk(t)

sK(t)

x(t)

x1(t)

xk(t)

xK(t)

Dirty

Paper

Coding

(optional)

P
1
2
1

P
1
2
k

P
1
2
K

T1

Tk

TK

...

...

...

...

Figure 2.2: Transmit Signal Processing

encodes the signalssk[n] leading to the symbolsxk[n], which are emitted everyTs seconds so that

xk(t) =
∞∑

n=−∞
δ(t− nTs)xk[n].

The DPC principle has been proofed by Costa [15]. It does not change the statistics of the signals,
i.e.,xk[n] ∼ CN (0dk ,0, Idk), and it states that interference that is known when a certainsymbol
[xk[n]]i is encoded does not affect that user’s rate. That rate is therefore the same as if this inter-
ference was not present. The interference for the symbol encoded first on each carrier is unknown
and can therefore not be taken into account during encoding.When another symbol is encoded at
second place on the same carrier, the interference from the symbol encoded first is known and can
be cancelled by DPC, while the remaining interference has tobe mitigated by other measures. Cor-
respondingly, the interference for the symbol encoded lastcan be eliminated completely by DPC.
Interference between symbols on different carriers is eliminated by OFDM, as shown in the next
section. Costa however only proofed the theoretical concept of DPC. Practical near optimum im-
plementations for DPC are vector precoding [16] or the coding scheme from [17]. In the remainder
of this book the common idealized assumption will be made that DPC can be implemented per-
fectly. As this implies a huge numerical effort, algorithmswithout DPC will be introduced in
Sections 3.3 and 4.4, wherexk[n] = sk[n], ∀k = 1, . . . , K holds.
The linear precoding for each vectorsk(t) is split into the power allocation matricesPk ∈ Cdk×dk

and the beamforming matricesTk ∈ CCNT×dk . Thejth column of the matrixTk corresponds to
the beamforming vector for thejth data stream of userk normalized to one, i.e.,eT

j T
H
k Tkej = 1.

ThePk are diagonal and contain the power allocations, i.e.,eT

j Pkej denotes the power allocated to
thejth data stream of userk. Thus thePk must be positive semidefinite. Additionally an average
transmit power constraintPTx is considered, which implies that

K∑

k=1

tr (Pk) ≤ PTx

must be fulfilled. Throughout this book the figures of merit are analyzed for a specific transmit and
receive strategy with fixed channel properties. For notational convenience the transmit filters do
therefore not depend on the channel access indexn. The signalx(t) ∈ CCNT after transmit signal
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processing is then given by

x(t) =

∞∑

n=−∞
δ(t− nTs)

K∑

k=1

TkP
1
2
k xk[n] =

∞∑

n=−∞
δ(t− nTs)x[n].

OFDM Channel

The kth user’s channel is modeled by ark × NT channel matrixH̃k(t) and a tapped delay line
model is used to describe the effect of multi-path propagation. Thus, thekth user’s channel matrix
is given by

H̃k(t) =

Lk∑

ℓ=1

H̃k,ℓδ(t− τk,ℓ),

whereH̃k,ℓ ∈ Crk×NT contains the complex attenuation coefficients of the channel of the propaga-
tion path with delayτk,ℓ andLk denotes the number of propagation paths of userk. The properties
of the channels are assumed to be constant, which is why theH̃k,ℓ and the delaysτk,ℓ are indepen-
dent oft. The additive noisẽηk(t) ∈ Crk experienced by userk is Gaussian circularly symmetric
with zero mean and power spectral densityR̃k, i.e., noise vectors̃ηk(t1) andη̃k(t2) observed at
different time instancest1 6= t2 are uncorrelated. Additionallỹηk(t) is uncorrelated to the noise
vectors of other users. The effect of modulation, demodulation and the cyclic prefix can be in-
cluded in the channel model to obtain an effective frequencyrepresentation of the OFDM channel
as shown in Appendix A1. Thus, thekth user’s channel is modeled by theCrk × CNT matrix

Hk =

C∑

c=1

ST

c,k

Lk∑

ℓ=1

H̃k,ℓ exp(j2πfc(τk,1 − τk,ℓ))Sc,T =

= blockdiag

(
Lk∑

ℓ=1

H̃k,ℓ exp(j2πfc(τk,1 − τk,ℓ))

)

, (2.1)

where

Sc,k =
[
0rk,(c−1)rk , Irk , 0rk,(C−c)rk

]
, Sc,T =

[
0NT,(c−1)NT , INT , 0NT,(C−c)NT

]
, (2.2)

and the received signalyk(t) is a sum of Dirac impulses, which is given by

yk(t) =

∞∑

n=−∞
δ(t− ((n+ 1)Ts + Tcp + τk,1))yk[n]

with Tcp being the length of the cyclic prefix in OFDM. The symbolsyk[n] compute according to

yk[n] = Hkx[n] + ηk[n] = Hk

K∑

m=1

TmP
1
2
mxm[n] + ηk[n], (2.3)

i.e., the symbolsyk[n] experience no interference from the pervious transmit symbolsxm[n − 1],
m = 1, . . . , K. The effective noiseηk[n] ∈ CCrk contains circularly symmetric Gaussian variables
with zero mean and covariance matrix

Rk = E
[
ηk[n]ηk[n]

H
]
=

1

T

C∑

c=1

ST

c,kR̃kSc,k =
1

T
blockdiag

(

R̃k, . . . , R̃k

)

, (2.4)
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whereT is defined via the system’s bandwidth

B =
C

T
.

Throughout this book it is assumed that the channel matricesHk or alternatively the matrices̃Hk,ℓ

and the delaysτk,ℓ, ℓ = 1, . . . , Lk are perfectly known at userk and that the transmitter has com-
plete and perfect knowledge of the channel matricesHk of all users. Clearly, this assumption is
idealized and most realistic in slowly time-varying scenarios, like for instance indoor office envi-
ronments. For an overview of finite-rate feedback schemes, where the channel matricesHk are
perfectly known only at userk and fed back at a fixed and finite rate, the reader is referred to[18].
References [19] and [20] focus on finite feedback schemes in OFDM systems, where correlations
between channel matrices of adjacent subcarriers are exploited for feedback reductions. The per-
formance of the algorithm presented in Section 3.2 with several finite rate feedback schemes has
been analyzed in [21], a new low complexity feedback method for this algorithm has been pro-
posed in [22].

Receive Signal Processing

The signalyk(t) is finally processed by a linear filterGk ∈ CCrk×dk as depicted in Figure 2.3, so
that the estimation̂sk(t) of the transmit signalsk(t) is given by

ŝk(t) = GH
k yk(t).

The receive filtersGk are usually determined at the transmitter, as each user is only aware of its

yk(t)
ŝk(t)

GH
k

Figure 2.3: Signal Processing at Receiverk

own channel matrix, but a good filter design must be based on the knowledge of all users’ channels.
The filters are therefore communicated in a signaling phase before transmission. Similarly to [23]
or [24], first common pilot symbols are sent to the users, where the pilot symbols are precoded so
that the estimate is equal to the filters to be applied at the receivers. To detect which of the estimated
filters should be used by a certain user, user identifiers are sent over the precoded channels in a
second phase. Alternatively, [25] proposes signaling schemes with quantized feedforward of the
terminals’ filters.

Summarizing the results of the previous sections a compact system model can be established as
depicted in Figure 2.4. where a discrete signal model for input, output and noise symbols is used.
The system parameters are summarized in Table 2.1. In the remainder of this book noise covariance
matrices

R̃k = N0Irk

will be used, which implies that

Rk =
N0

T
ICrk =

σ2
n

C
ICrk ,
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Figure 2.4: Compact OFDM System Model

Parameter Meaning

NT Number of transmit antennas
rk Number of receive antennas at userk
K Number of users
C Number of carriers
PTx Transmit power constraint
dk Number of data streams allocated to userk
Pk ∈ Cdk×dk Diagonal power allocation matrix of userk
Tk ∈ CCNT×dk Precoding matrix of userk with normalized columns
Hk ∈ CCrk×CNT Block diagonal OFDM channel matrix of userk
Gk ∈ C

Crk×dk Receive filter at userk
xk[n] ∼ CN (0dk ,1, Idk) Transmit symbol for userk duringnth transmission slot
ηk[n] ∼ CN (0Crk ,

N0B
C

ICrk) Additive noise for userk duringnth transmission slot
ŝk[n] Estimated symbol at userk duringnth transmission slot

Table 2.1: Overview of System Parameters

with

σ2
n = N0B.

Using this simplification and the fact that the transmit symbolsxk[n] and the effective noise vectors
ηk[n] are circularly symmetric Gaussian random variables, thekth user can at most transmit error-
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(2.5)

where it must be ensured that each matrixGH
kGk is invertible, i.e., has rankdk. In caseGk contains

linearly dependent columns one has to combine those columnsto one data stream, so that the rate
expressions in (2.5) can be stated.Ik denotes the set of users that interfere with userk. In case
DPC is not used,Ik contains all active users except userk. Otherwise, all users that are encoded
after userk can be found inIk, where for that case it is assumed in (2.5) that the encoding order is
the same on all carriers and data streams of the same user are encoded simultaneously. Note that
the case of colored noise, i.e., theRk are not diagonal, can be easily considered by using channel

matricesHk = R
− 1

2
k Ĥk and receive filtersGk = R

1
2
k Ĝkin (2.5), whereĤk andĜkdenote the

actual channel matrices and receive filters in the system with colored noise, respectively.



3. Weighted Sum Rate Maximization in the MIMO Broadcast
Channel

The problem of weighted sum rate maximization is treated in this chapter. First, an optimum
algorithm will be presented in Section 3.1. The concepts of spatial zero-forcing and successive
resource allocation will be introduced in Section 3.2 and used to derive an efficient near-optimum
algorithm, when DPC can be applied at the transmitter. Due tothe complexity associated with
practical implementations of DPC, an algorithm without DPCwill be presented in Section 3.3.
Although these algorithms are already able to reduce the complexity of the optimum algorithm
drastically at little performance losses, further complexity reductions for these methods will be
presented in Section 3.4 before the chapter is concluded with numerical results in Section 3.5.

3.1 Optimum Algorithm

Mathematically, the maximization of a weighted sum of the users’ rates under a sum transmit
power constraint reads as

max
{Tk,Pk ,Gk,π̂(k)}k=1,...,K

K∑

k=1

µkRk,

s.t.
K∑

k=1

tr(Pk) ≤ PTx, eT

j T
H
k Tkej = 1, ∀j = 1, . . . , Crk, ∀k, Pk � 0,Pk diagonal, ∀k,

(3.1)

where the ratesRk compute according to (2.5). The weightsµk are given a priori and reflect the
priorities assigned to the corresponding user from higher layers of the communication system.µk

can for example be proportional to the queue length of data packets waiting for transmission to
userk (e.g. [26] and references therein). Solving (3.1) leads to arate vector on the boundary of
the capacity region [7, 14] and for this purpose DPC has to be applied [14]. Hence, an optimum
encoding order has also to be found in (3.1), which is reflected by the variableŝπ(i), i = 1, . . . , K.
The user̂π(i) is encoded atith place, i.e., the function

π̂ : {1, . . . , K} 7→ {1, . . . , K}, i 7→ π̂(i). (3.2)

maps the encoding positioni for DPC to a user indexk. According to the principle of DPC
explained in the last chapter, the setsIk in (2.5) are given by

Ik = {π̂(j) ∈ {1, . . . , K}|j > i, π̂(i) = k}. (3.3)

By using receive filters

Gk =

(

ICrk

σ2
n

C
+Hk

[
K∑

m∈Ik ,m=k

TmPmT
H
m

]

HH
k

)−1

HkTkP
1
2
k , (3.4)

17
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which minimize the Mean Square Error (MSE) between the received and the desired signal, the
ratesRk in (2.5) compute according to

Rk = log2
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, (3.5)

i.e., become independent of the receive filtersGk. The rates in (3.5) correspond to the rates achiev-
able before receive filtering. As receive filtering can only lower the rates and additionally the
constraints in (3.1) are independent of the receive filters,the optimumGk are given by (3.4) and
Problem (3.1) reads as

max
{Tk,Pk,π̂(k)}k=1,...,K

K∑

k=1

µkRk =

max
{Tk,Pk,π̂(k)}k=1,...,K

K∑

k=1

µk log2
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s.t.
K∑

k=1

tr(Pk) ≤ PTx, eT

j T
H
k Tkej = 1, ∀j = 1, . . . , Crk, ∀k, Pk � 0,Pk diagonal, ∀k,

(3.6)

As the objective function in (3.6) depends only on the covariance matricesQk = TkPkT
H
k ∈

CCNT×CNT , the maximization can also be conducted with respect to theQk and can be stated as

max
{Qk,π̂(k)}k=1,...,K
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µk log2
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,

s.t.
K∑

k=1

tr(Qk) ≤ PTx, Qk � 0, ∀k. (3.7)

Note that the optimum transmit filter vectorsTk andPk can be obtained from any decomposition
of the optimumQk = TkPkT

H
k , as long as the constraints on theTk in (3.6) are fulfilled. Choosing

theTk as the eigenvectors ofQk andPk as the diagonal matrix containing the corresponding non-
zero eigenvalues for example leads to a set of transmit filtervectors fulfilling these constraints.
Unfortunately, Problem (3.7) is non-convex and can therefore not be solved straightforwardly.
However, the duality between the broadcast channel and the dual Multiple Access Channel (MAC)
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from [5] can be applied to obtain the optimum covariances andencoding order from a convex
optimization problem as described in the following. The duality implies that the transmitter in the
broadcast channel becomes the receiver in the dual MAC and thekth user terminal sends the same
data symbolssk[n] as dedicated to it in the broadcast channel to the receiver. The additive noise in
the dual MAC is also additive Gaussian with zero mean and covariance matrixσ

2
n
C
ICNT . In contrast

to the physical MAC, the channel between userk and the receiver is given byHH
k and a sum power

constraintPTx across all users has to be fulfilled in the dual MAC. Additionally, instead of DPC
in the broadcast channel, the receiver applies Successive Interference Cancellation (SIC). This
implies that interference from symbols decoded before a certain symbol can be subtracted before
decoding that symbol. This interference does therefore notreduce the rate for that symbol. Under
these conditions a rate vector[R1, . . . , RK ]

T achievable with an encoding orderπ̂(i) and covariance
matricesQ1, . . . ,QK fulfilling the power constraint in the broadcast channel, isalso achievable
in the dual MAC under the same power constraint with covariance matricesWk ∈ CCrk×Crk and
a decoding order̃π(i). The decoding order in the dual MAC is the reverse encoding order of the
broadcast channel, i.e.,

π̃(i) = π̂(K − i+ 1), (3.8)

which implies that the user encoded last in the broadcast channel is decoded first in the dual
MAC [5]. Note that thereby counterintuitively users that have to be considered as interferers in the
broadcast channel are suppressed by SIC in the dual MAC and vice versa. Thus, in the dual MAC
the users interfering with userk are given by those users not contained in the interference set Ik
of the broadcast channel, except userk, which does not interfere with itself. The relation between
the covariancesWk in the dual MAC and theQk in the broadcast channel is given by the duality
transformations in [5]. As a consequence, the encoding order and covariance matrices maximizing
the weighted sum rate in (3.7), can also be obtained from a weighted sum rate maximization in the
dual MAC, which is given by

max
{Wk,π̂(k)}k=1,...,K
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,

s.t.
K∑

k=1

tr(Wk) ≤ PTx, Wk � 0, ∀k, (3.9)

where the maximization is conducted directly over the broadcast encoding order̂π(k), which is
related to the decoding order in the dual MAC via (3.8). The optimum decoding order in the dual
MAC is given as the inverse order of the weights [27], i.e., the user with the smallest weight is
decoded first, the user with the second smallest weight decoded second and so forth until the user
with the highest weight is decoded last so that

µπ̃(1) ≤ µπ̃(2) ≤ . . . ≤ µπ̃(K), (3.10)

which is equivalent to
µπ̂(1) ≥ µπ̂(2) ≥ . . . ≥ µπ̂(K) (3.11)
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using (3.8). The optimality of this decoding order can be proofed similarly to Theorem 2 in [28],
where the MAC with single antenna users and a single antenna receiver is considered. If a group
of users has equal weights, any decoding order within this group will lead to the same optimum
of the objective function. Taking the optimum decoding order into account, Problem (3.9) can be
simplified to

max
{Wk}k=1,...,K

K∑

k=1

∆µk log2

∣
∣
∣
∣
∣
ICNT +

C

σ2
n

[
k∑

m=1

HH
π̂(m)Wπ̂(m)Hπ̂(m)

]∣
∣
∣
∣
∣
=

= max
{Wk}k=1,...,K

Rwsr(W1, . . .WK),

s.t.
K∑

k=1

tr(Wk) ≤ PTx, Wk � 0, ∀k, (3.12)

where

∆µk =

{

µπ̂(k), k = K,

µπ̂(k) − µπ̂(k+1), k = 1, . . . , K − 1
.

Note that due to (3.11), the∆µk are greater or equal to zero. Finally Problem (3.9) consists
of an objective function concave in theWk and convex constraints sets, which make the whole
problem convex. It could therefore be solved by interior point methods (e.g. [29]). Nevertheless,
some more efficient algorithms have been published since thediscovery of the duality between the
MIMO broadcast channel and the dual MAC. Viswanathan et al. have first proposed an iterative al-
gorithm in [7] to solve (3.12). In each iteration a rank-one update of one user’s covariance matrix is
performed, convergence is however very poor [30]. The algorithms in [31] and [32] use conjugate
gradient methods with projections, where the first algorithm works with the precoding matrices
in the dual uplink instead of the covariance matricesWk. Hunger et al. propose an algorithm
in [30] which also relies on a projected gradient, but uses different update rules for the covariances
matrices in each step than [32]. It exhibits a faster convergence than the other mentioned algo-
rithms and will therefore be reviewed in the following. Beginning with initial covariance matrices
W

(0)
k = PTx

C
∑K

k=1 rk
ICrk the algorithm iteratively updates the covariance matricesso that an increase

in weighted sum rate occurs until the improvement from one iteration to another is less than a pre-
defined thresholdε. Each iteration consists of two main steps, an unconstrained gradient update
and an orthogonal projection. The first step implies that thecovariance matrices are changed in the
direction of the steepest ascent of the cost function according to

Ŵ
(i)
k = W

(i−1)
k +
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(3.13)
whereW (i−1)

k denotes the covariance matrix of userk after theith iteration and the gradients
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whereπ̂−1(k) denotes the inverse of the encoding function in the broadcast channel, i.e.,̂π−1(k)
is the encoding position of userk. The scaling withPTx divided by the sum of the gradients
in (3.13) increases the speed of convergence [30]. The “inverse step size”d(i) is initialized with
d(0) = 1 and possibly updated after the projections, which might be necessary as described later.

As the gradientsΦk

(

W
(i−1)
1 , . . . ,W

(i−1)
K

)

are positive semidefinite andd(i−1) > 0, the matrices

Ŵ
(i)
k are also positive semidefinite but do generally not fulfill the sum power constraint. For this

reason a projection back onto the feasible domain is necessary in a second step. For this purpose
an orthogonal projection is used which minimizes the error between the matriceŝW (i)

k and the
matricesW (i)

k , which fulfill the sum power constraint. The error is therebymeasured in terms of
the Frobenius norm so that
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F
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s.t.
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tr
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k

)

≤ PTx, W̃
(i)
k � 0, ∀k. (3.15)

Solving the Karush-Kuhn-Tucker (KKT) [33] conditions of Problem (3.15) yields

W
(i)
k = U

(i)
k

[

Σ
(i)
k − λICNT

]+

U
(i),H
k , (3.16)

where[A]+ sets all negative elements in the matrixA to zero andU (i)
k andΣ(i)

k stem from the
Eigenvalue Decomposition (EVD) of the matrix

Ŵ
(i)
k = U

(i)
k Σ

(i)
k U

(i),H
k . (3.17)

The Lagrange multiplierλ is determined iteratively so that the transmit power constraint is fulfilled
with equality, i.e.,

K∑
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tr
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k

)

=

K∑

k=1

tr
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Σ
(i)
k − λICNT

]+
)

= PTx,

which can be done as described in [30, Corollary 1]. It can however happen that with the new
covariance matricesW (i)

k the weighted sum rate decreases compared to the previous step, i.e.,

Rwsr
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< Rwsr
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. In that case the step size with which the

gradientsΦk

(
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1 , . . . ,W

(i−1)
K

)

in (3.13) are multiplied has been chosen to large and must

therefore be reduced. For this purposed
(i−1)
i is increased by one and the steps (3.13) and (3.15)

must be repeated. In case the weighted sum rate is still lowerthan in the previous step, further rep-
etitions are required until an increase in the objective function is obtained, where in each repetition
d
(i−1)
i is increased by one. The value ford

(i−1)
i which finally leads to an increase in the weighted

sum rate is then retained for the next iteration, i.e.,d
(i)
i = d

(i−1)
i . The steps required to solve (3.12)

are summarized in Algorithm 3.1.
Algorithm 3.1 has been proposed for single-carrier systemswhereC = 1. By applying the algo-
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Algorithm 3.1 Projected Gradient Algorithm for Weighted Sum Rate Maximization in the Dual
MAC using Orthogonal Projections

1: W
(0)
k = PTx

C
∑K

k=1 rk
ICrk ∀k

2: d(0) = 1
3: i = 1
4: repeat
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12: end if
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rithm to multicarrier systems one would expect the complexity to be cubic in the number of carri-
ers, as matrix inversions and EVDs ofCNT × CNT matrices are required in (3.14) and (3.17), re-
spectively (see [34] for the complexity of matrix inversions and [35] for the complexity of EVDs).
By exploiting the block-diagonal structure of the channel matricesHk [c.f. (2.1)] however, the
complexity grows only linearly in the number of carriers. That is because the matricesW (i)

k

are block-diagonal as long as all matricesW
(i−1)
k are block-diagonal, since in this case Equa-

tions (3.13), (3.14), and (3.16) preserve the block-diagonal structure. With block-diagonalW (0)
k

and the fact that Algorithm 3.1 always converges [30], the optimum covariance matricesWk will
therefore also exhibit a block-diagonal structure. A more rigorous proof for that fact can be found
in [36, Section 3.1.2.]. Thus, Equations (3.14) and (3.17) can be decomposed intoC independent
equations withNT ×NT matrices and therefore be solved more efficiently.
For the special case of equal weights, i.e.,µ1 = . . . = µK , Problem (3.12) reduces to the pure sum
rate maximization, which reads as

max
{Wk}k=1,...,K
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s.t.
K∑

k=1

tr(Wk) ≤ PTx, Wk � 0, ∀k. (3.18)

Although Problem (3.18) can also be solved with Algorithm 3.1, the simplified objective function
compared to (3.12) has induced the development of differentsolution methods. During one it-
eration of the iterative water-filling algorithm proposed in [6], first each user’s noise+interference
covariance matrix is computed assuming that the transmit covariance matrices of the other users re-
main the same as in the previous step. This assumption enables a closed-form solution for transmit
covariance matrices maximizing an estimated sum rate. Those matrices are then used to update the
covariance matrices in the iterative algorithm. The computation of the update requires one matrix
inversion and a complete EVD for each user. To avoid the difficulties related to the convergence
properties of iterative-waterfilling, a modification of thealgorithm is presented in [37] and in [38]
an improvement for the update rule of the covariance matrices is proposed to achieve faster conver-
gence. In [39] Yu solves Problem (3.18) via the minimizationof the Lagrange dual function with
two nested loops. During the inner loop the optimum covariance matrices for a fixed Lagrange
multiplier are determined in an iterative manner, where each iteration again requiresK matrix in-
versions andK EVDs, while in the outer loop this multiplier is adjusted until convergence. An
improvement of the convergence behavior can be achieved by the modification from [40]. Nev-
ertheless, those algorithms are not able to outperform the method from [41] in terms of speed of
convergence and computational complexity. The numerically complex EVDs are avoided by using
a scaled projected gradient algorithm that optimizes the precoders in the dual MAC instead of the
covariance matrices. Thus, complexity is further reduced,althoughK matrix inversions are still
required in each iteration for the computation of gradients.

3.2 Spatial Zero-Forcing and Successive Resource Allocation with Dirty Pa-
per Coding

Despite the advancements in reducing the computational complexity of finding the optimum co-
variance matrices for weighted sum rate maximization, thathave been described in the previous
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section, achieving the optimum solution still remains a computationally complex problem. Al-
gorithm 3.1 features an iterative nature and each iterationrequiresCK inversions ofNT × NT

matrices to compute the gradients of the objective functionin Line 7 andCK complete eigenvalue
decompositions ofNT×NT matrices in Line 8. Additionally, the complexity of the transformation
of the optimum covariance matrices in the dual MAC to the broadcast channel is approximately as
high as the complexity of one iteration of Algorithm 3.1. Forthis reason an efficient non-iterative
algorithm for weighted sum rate maximization will be presented in this section that is able to
achieve the optimum solution closely at drastically reduced computational complexity.

3.2.1 State-of-the-Art Near Optimum Approaches

To attain an efficient near optimum method for weighted sum rate maximization two comple-
mentary simplifications will be made in the following, namely the introduction of zero-forcing
constraints and a greedy resource allocation. Zero-forcing in combination with DPC has been
proposed in [42] for MISO systems. The optimum encoding oderof users and the selection of
users that receive non-zero powers is however only solved byan exhaustive search in [42], which
becomes infeasible with increasing number of users. Tu and Blum therefore propose in [43] to de-
termine an encoding order in a greedy manner, i.e., to encodethe user with the strongest norm of its
channel vector first and then to encode in each step that user that leads to the strongest increase in
sum rate provided that the encoding order determined in previous steps is kept fixed. A method for
complexity reduction of this algorithm based on Householder transformations is presented in [44].
For MIMO systems, zero-forcing and DPC has been combined in [45], where each user receives
as many data streams as it has receive antennas and all data streams of the same user are encoded
simultaneously. It is shown in [45] that this scheme is asymptotically optimum for infinite SNR,
where any encoding order is optimum. For finite SNR, finding the optimum set of active users and
the optimum encoding order for DPC is solved by an exhaustivesearch in [45], which is why a
greedy determination of the encoding order is described in [46]. In each step the user to be encoded
next is the user that leads to the strongest increase in sum rate. Furthermore simplified selection
rules are proposed in [46] avoiding the explicit computations of sum rates for each candidate user
in each step. Alternative simplified selection rules are presented in [47] and [48]. While the greedy
approach can be extended straightforwardly to the problem of weighted sum rate maximization by
choosing in each step the user that leads to the strongest increase in weighted sum rate instead of
sum rate, the aforementioned simplifications are only applicable to the problem of sum rate max-
imization. Furthermore the mentioned approaches assign eitherrk or zero data streams to userk,
which can be sub-optimum, especially with zero-forcing constraints. For these reasons an efficient
algorithm for weighted sum rate maximization exploiting spatial zero-forcing and a successive re-
source allocation will be presented in the following, wherethe number of data streams allocated to
a certain userk can vary from0 to rk and which exhibits the potential for further complexity reduc-
tions, which will be explicated in Section 3.4. An algorithmfor weighted sum rate maximization,
that is based to some extend based on the same principles and to which the complexity reductions
derived in Section 3.4 can also be applied, is presented in [49, Chapter 6]. However, this algorithm
is much more complex as it is of iterative nature and one iteration exhibits the same complexity as
the method presented in the next sections.
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3.2.2 Spatial Zero-Forcing

As in Section 3.1, Problem (3.1) is the starting point for thederivation of a near-optimum efficient
algorithm. To end up with such a method, first zero-forcing constraints are introduced to that
problem, so that after receive filtering each user experiences no interference from other users.
Mathematically, the zero-forcing constraints can be written as

P
1
2
k GH

kHkTmP
1
2
m = 0dk ,dm , ∀m ∈ Ik, ∀k, (3.19)

where the multiplication withP
1
2
k assures that data streams with[Pk]j,j = 0 do not impose zero-

forcing constraints. The setsIk are given as defined in (3.3) and thus Problem (3.1) reads as

max
{Tk,Pk,Gk,π̂(k)}k=1,...,K

K∑

k=1

µk log2

∣
∣
∣
∣
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C
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k Gk

)−1
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k HkTkPkT
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k Gk

∣
∣
∣
∣
=

s.t.
K∑

k=1

tr(Pk) ≤ PTx, eT
j T

H
k Tkej = 1, ∀j = 1, . . . , dk, ∀k, Pk � 0,Pk diagonal, ∀k,

P
1
2
k GH

kHkTmP
1
2
m = 0dk ,dm , ∀m ∈ Ik, ∀k. (3.20)

In contrast to the optimum, the receive filters cannot be removed a priori from the optimization
problem as in (3.6), because the constraints in (3.20) are nolonger independent of the receive
filters. Additionally, the optimization with zero-forcingconstraints cannot be conducted with re-
spect to the transmit covariance matrices. Nevertheless, for practical systems one is interested in
the transmit filters anyway, for which reason an algorithm directly delivering the transmit filters
and thus avoiding the final decomposition of the covariance matrices is desirable. Obviously, with
the additional constraints the optimum weighted sum rate resulting from (3.20) will be smaller or
equal to the optimum value of the objective function in (3.1). For high SNR, i.e., forPTx →∞, the
zero-forcing constraints are fulfilled at the optimum anyway and the two optimization problems
lead to the same solution. Additionally to these inter-userzero-forcing constraints, the matrices

GH
kHkTkP

1
2
k will be constrained to be diagonal in the following, i.e., all data streams of the same

user must not interfere with each other. In contrast to the inter-user zero-forcing constraints, those

intra-user zero-forcing constraints do not influence the optimum, as the matricesTkP
1
2
k can be

multiplied from the right-hand side by anydk × dk orthonormal matrix without changing the ob-
jective function nor the constraints in Problem (3.20)1 and these degrees of freedom can be used to

make the matricesGH
kHkTkP

1
2
k or equivalently the matricesGH

kHkTk diagonal. Additionally, the
matricesGk can be multiplied from the right-hand side by any invertibledk× dk matrix also with-
out changing the objective function nor the constraints. Thus, constrainingGH

kGk to be equal to
thedk× dk identity matrix does also not influence the optimum solution. Adding those constraints

1As the matricesPk are diagonal and the matricesTk contain columns with norm one, the power constraint can

be also written as
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≤ PTx, where

Uk ∈ Cdk×dk is an arbitrary orthonormal matrix withUkU
H

k = Idk
.
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to Problem (3.20) leads to the following optimization problem

max
{Tk,Pk,Gk,π̂(k)}k=1,...,K
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s.t.
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tr(Pk) ≤ PTx, eT
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H
k Tkej = 1, ∀j = 1, . . . , dk, ∀k, Pk � 0,Pk diagonal, ∀k,
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(3.21)

Introducing the vectors
tk,j := Tkej , gk,j := Gkej

and the scalars
pk,j := eT

j Pkej ,

so thatTkP
1
2
k ej =

√
pk,jtk,j, the inter-user zero-forcing constraintsP

1
2
k G

H
kHkTmP
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m = 0dk,dm

become
√
pk,jpm,ℓg

H
k,jHktm,ℓ = 0, ∀j = 1, . . . , dk, ∀ℓ = 1, . . . , dm, ∀m ∈ Ik, ∀k,

the intra-user zero-forcing constraints read as

gH
k,jHktk,ℓ = 0, ∀j = 1, . . . , dk, ∀ℓ = 1, . . . , dk, ℓ 6= j, ∀k,

and the orthogonality constraints on the receive filters of different data streams allocated to the
same user, i.e.,GH

k Gk = Idk , can be re formulated as

gH
k,mgk,j = 0, ∀j = 1, . . . , dk, m = 1, . . . , dk, j 6= m, ∀k.

Thus, Problem (3.21) can be rewritten as

max
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H
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H
k,jHktk,ℓ = 0, ∀j = 1, . . . , dk, ∀ℓ = 1, . . . , dk, ℓ 6= j, ∀k. (3.22)

Hence, the MIMO broadcast channel is decomposed into a system of scalar subchannels free
of interference. Thejth data stream of userk can be transmitted error-free at a rate of

log2

(
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n
pk,jg

H
k,jHktk,jt

H
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H
k gk,j

)

and the optimum power allocation boils down to a water-

filling alike algorithm so that the optimumpk,j are given by

pk,j =

[

ηµk −
σ2

n

CgH
k,jHktk,jt

H
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H
k gk,j

]+

, (3.23)
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whereη is determined so that the transmit power constraint is fulfilled with equality, as shown in
Appendix A2. Despite the fact that the power allocation has become relatively easy through the
zero-forcing constraints, Problem (3.22) is non-convex. Additionally, neither transforming (3.22)
to the dual MAC nor introducing zero-forcing constraints inthe dual MAC leads to a convex
problem. On the other hand, directly working in the broadcast channel, as it will be done in the
following, offers the advantage of avoiding the numerically expensive transformations from the
dual MAC to the broadcast channel required for the optimum solution.
In multicarrier systems, whereC > 1, the optimum broadcast covariance matrices have a block-
diagonal structure, which follows from the fact that the optimum covariance matrices in the dual
MAC are block-diagonal [36, Section 3.1.2] and the duality transforms from [5] preserve this
structure. This implies that the optimum transmit filtersTk and the optimum receive filtersGk

also exhibit a block diagonal structure. This is not necessarily the case with zero-forcing con-
straints at finite SNRs. Nevertheless, theTk and theGk will be enforced to be block-diagonal
in the following. Besides the fact that the optimum filters are block-diagonal and it is desired to
achieve this optimum as close as possible with a reduced complexity algorithm, the symbols can
be encoded independently on all carriers in this case, whilea joint encoding necessary without
block-diagonal transmit filters would lead to long encodingdelays and increased computational
complexity. Adding these constraints to Problem (3.22) implies for the vectorstk,j andgk,j that
all its elements must be zero except in the rows that correspond to the carrierγ(k, j), where

γ(k, j) : {1, . . . , K},
{

1, . . . ,max
k

dk

}

7→ {1, . . . , C} : (k, j) 7→ γ(k, j)

is the carrier over which thejth data stream of userk will be transmitted. In the following the
condition of block-diagonal filters will be formulated as

t = ST

c,TSc,Tt, g = ST

c,kSc,kg (3.24)

with the selection matricesSc,T andSc,k defined in (2.2). Note that with this restriction inter-carrier
interference is not present, i.e., the zero-forcing constraints

√
pk,jpm,ℓg

H
k,jHktm,ℓ = 0 are fulfilled

by (3.24), ifgk,j andtm,ℓ are the filters for data streams on different carriers, whichis the case for
γ(k, j) 6= γ(m, ℓ).
The maximum weighted sum rate in the broadcast channel can beachieved by a user-wise encod-
ing [14], i.e., alldk data streams of userk are encoded at the same time. Additionally, the same
encoding order is applied on all carriers. With zero-forcing constraints, however, the encoding
function π̂(i) as defined in (3.2) may no longer be optimum. For this reason the restriction on
a user-wise encoding in (3.22) is abolished and an arbitraryencoding order of the data streams
is allowed. This also implies that data streams of the same user may be encoded at two non-
consecutive encoding positions, for example at first and fourth place. For sum rate maximization,
i.e., equal weightsµ1 = · · · = µK , this relaxation of the encoding order is one of the key proper-
ties of the Successive Encoding Successive Allocation Method (SESAM) presented in [10], which
distinguishes SESAM from other successive zero-forcing approaches such as [46]. Consequently,
the zero-forcing constraints in (3.23) need to be modified asfollows. Due to the block-diagonal
structure of the precoding vectors theℓth data stream of userm experiences only interference from
data streams allocated to the same carrier, i.e., data streams (k, j) for which γ(m, ℓ) = γ(k, j)
holds. Interference from data streams encoded before theℓth data stream of userm is cancelled by
DPC. Those are the data streams on the carrierγ(m, ℓ) with π(k, j) < π(m, ℓ), where the encoding
function

π(k, j) : {1, . . . , K},
{

1, . . . ,max
k

(dk)
}

7→ {1, . . . , NT}
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returns the encoding position of thejth data stream of userk on carrierγ(k, j). Thus the remaining
interference must be suppressed by the precoders and the zero-forcing constraints therefore imply
that

√
pm,ℓpk,jg

H
m,ℓHmtk,j = 0, ∀(k, j) with γ(m, ℓ) = γ(k, j) andπ(k, j) > π(m, ℓ) (3.25)

for all possible tuples(m, ℓ). Note that the inter- as well as the intra-user zero-forcingconstraints
are considered with (3.25), as the casem = k is not excluded from (3.25). With the modified
encoding order, the optimum power allocation (3.23), and the requirement on block diagonal filters,
Problem (3.22) becomes

max
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gH
k,mgk,j = 0, ∀j = 1, . . . , dk, m = 1, . . . , dk, j 6= m, ∀k,
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H
m,ℓHmtk,j = 0, ∀(m, ℓ) with γ(m, ℓ) = γ(k, j) andπ(m, ℓ) < π(k, j), ∀(k, j).

(3.26)

3.2.3 Successive Resource Allocation

Problem (3.26) is still non-convex and furthermore combinatorial. That is because for its solution
one has to test all possible encodingsπ(k, j) and all possible carrier allocationsγ(k, j) for the
maximum weighted sum rate, which becomes infeasible already with a moderate number of users
and carriers. For this reason a successive approach will be pursued in the following. This implies
that for initialization all users have zero data streams, i.e., dk = 0, ∀k. At first, a data stream is
allocated to that user that can achieve the largest weightedsingle data stream rate. Consequently,
the userk(1) to which the first data stream is allocated, the corresponding transmit and receive
filters tk(1),1 andgk(1),1, and the carrierγ(k(1), 1) on which this data stream is transmitted are
determined according to

{tk(1),1, gk(1),1, γ(k(1), 1), k(1)} = argmax
t,g,c,k

µk log2(1 + PTxg
HHktt

HHH
k g),

s.t. tHt = 1, gHg = 1, t = ST

c,TSc,Tt, g = ST

c,kSc,kg. (3.27)

The maximum is achieved by aligninggk(1),1 andHH
k(1)tk(1),1 so that

gk(1),1 = Hk(1)tk(1),1
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and Problem (3.27) reads as
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Thus, tk(1),1 is the unit norm eigenvector corresponding to the principaleigenvalue of the ma-
trix HH

k(1)Hk(1), which implicitly fulfills the carrier separation constraint (3.24) due to the block-
diagonal structure of the channel matrices. The carrierγ(k(1), 1) is therefore determined implic-
itly by the block matrix withinHH

k(1)Hk(1), which exhibits the maximum eigenvalue amongst all
block matrices. After solving the optimization, the variable dk needs to be updated todk = 1
andπ(k(1), 1) is given byπ(k(1), 1) = 1. Additionally, for the algorithm auxiliary variablesnc,
c = 1, . . . , C will be required in the following, wherenc denotes the number of data streams
allocated to carrierc and which are all initialized with zero exceptnγ(k(1),1), which is given by
nγ(k(1),1) = 1. For the future allocation steps, the carrier allocationγ(k(1), 1) the encoding po-
sition π(k(1), 1) and the filterstk(1),1 andgk(1),1 are kept fixed. The user which receives a data
stream in the second step is then determined so that the weighted sum rate becomes maximum
given γ(k(1), 1), π(k(1), 1), tk(1),1 andgk(1),1 of the first step. Continuing this way and keep-
ing the carrier allocation, encoding position, transmit and receive filters fixed after each step, the
optimization problem in theith step reads as
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s.t. tHt = 1, t = ST

c,TSc,Tt, gHg = 1, g = ST

c,kSc,kg, (3.28)
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√
pk,dk+1pm,ℓg

H
m,ℓHmt = 0, ∀(m, ℓ) with γ(m, ℓ) = c,

Note all other zero-forcing constraints in (3.26) are automatically fulfilled by fixing the transmit
precoders and receive filters from previous steps. That is because the vectortk,j must be orthogonal
to all vectorsHH

mgm,ℓ with π(m, ℓ) < π(k, j) andγ(m, ℓ) = γ(k, j), whenpk,dk+1pm,ℓ 6= 0. As
in each step of the successive allocation the new data streamis always encoded last on the chosen
carrier, the vectorsgm,ℓ with π(m, ℓ) < π(k, j) andγ(m, ℓ) = γ(k, j) have been determined in
steps previous to the step in which the vectortk,j is computed. This implies that zero-forcing
constraints already considered in previous steps remain valid and are not affected by the current
allocation.
As for the first allocated data stream, it is optimum in Problem (3.28) to align the receive filter of
the new data stream to the corresponding transmit filter multiplied with the channel matrix so that

gk(i),dk(i)+1 = Hk(i)tk(i),dk(i)+1
1
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That is because such an alignment maximizes the channel gain
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Additionally, the carrier separation constraints on the receive filters are fulfilled, as long as the
transmit filters obey to the carrier separation constraints. Let t(i)k andg

(i)
k be the transmit and

receive vector that maximize (3.28) assuming that the next data stream is allocated to userk. For
a given user allocation the optimum weighted sum rate is found by maximizing the channel gain
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H
mHmt = 0, ∀(m, ℓ) with γ(m, ℓ) = c, (3.30)

wherec(i)k is the carrier to which a data stream will be allocated if the next data stream is allocated
to userk and it is initially assumed thatpm,ℓpk,dk+1 6= 0. Defining the projection matrix̂P (i)

DPC that
projects into

null
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the zero-forcing constraints can be inserted into the objective function of Problem (3.30) so that
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The maximum is achieved by choosingt(i)k to be the unit-norm eigenvector belonging to the prin-
cipal eigenvalue of the matrix̂P (i)

DPCH
H
k HkP̂

(i)
DPC. The projectorP̂ (i)

DPC exhibits like the Gramian
channel matricesHH

k Hk a block-diagonal structure, as all vectorstm,ℓ obey to the carrier sepa-
ration constraint (3.24). Therefore all eigenvectors of the matricesP̂ (i)

DPCH
H
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the carrier separation constraint in (3.24). The optimum carrier c(i)k is, as in the first step, given
implicitly by the position of this block of the matrix̂P (i)

DPCH
H
k HkP̂

(i)
DPC which exhibits the strongest

principal eigenvalue. Note that the determination of the transmit filters according to (3.31) facili-
tates the computation of the projection matricesP̂

(i+1)
DPC for the next step, which can be computed

according to

P̂
(i+1)
DPC = P̂

(i)
DPC−

P̂
(i)
DPCH

H
k(i)Hk(i)t

(i)
k(i)t

(i),H
k(i) H

H
k(i)Hk(i)P̂

(i)
DPC

t
(i),H
k(i) H

H
k(i)Hk(i)P̂

(i)
DPCH

H
k(i)Hk(i)t

(i)
k(i)

. (3.32)

As tk(i),dk(i)+1 = t
(i)
k(i) is the eigenvector corresponding to the principal eigenvalue of the matrix

P̂
(i)
DPCH

H
k(i)Hk(i)P̂

(i)
DPC, it does certainly not lie in the nullspace of the projectorP̂

(i)
DPC, i.e.,

t
(i)
k(i) = P̂

(i)
DPCt

(i)
k(i), (3.33)

and

P̂
(i)
DPCH

H
k(i)Hk(i)t

(i)
k(i) = P̂

(i)
DPCH

H
k(i)Hk(i)P̂

(i)
DPCt

(i)
k(i) = ρ1

(

P̂
(i)
DPCH

H
k(i)Hk(i)P̂

(i)
DPC

)

t
(i)
k(i).

Using these properties in (3.32), the projectorP̂
(i+1)
DPC simply computes according to

P̂
(i+1)
DPC = P̂

(i)
DPC− t

(i)
k(i)t

(i),H
k(i) . (3.34)
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Consequently, all transmit vectorstk,j are orthogonal to each other. Another consequence of (3.33)
is that the vectorst(i)k do not have to computed explicitly and it suffices to determine the principal

eigenvaluesρ1
(

P̂
(i)
DPCH

H
k HkP̂

(i)
DPC

)

. That is because the weighted sum rate only depends on the
terms ∣

∣
∣g

(i),H
k Hkt

(i)
k

∣
∣
∣

2

= t
(i),H
k HH

k Hkt
(i)
k = t

(i),H
k P̂

(i)
DPCH

H
k HkP̂

(i)
DPCt

(i)
k

and, as t(i)k is the eigenvector corresponding to the principal eigenvalue of the matrix
P̂

(i)
DPCH

H
k HkP̂

(i)
DPC,

t
(i),H
k P̂

(i)
DPCH

H
k HkP̂

(i)
DPCt

(i)
k = ρ1

(

P̂
(i)
DPCH

H
k HkP̂

(i)
DPC

)

. (3.35)

The userk(i) can then be chosen according to

k(i) = argmax
k

R
(i)
WSR(k) (3.36)

where

R
(i)
WSR(k) =

K∑

k′=1

µk′

dk′∑

j=1

log2

(

1 +
C

σ2
n

pk′,jt
H
k′,jH

H
k′Hk′tk′,j

)

+

+µk log2
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1 +
C

σ2
n

pk,dk+1ρ1

(

P̂
(i)
DPCH

H
k HkP̂

(i)
DPC
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,

pk′,j =

[

ηµk′ −
σ2

n

CtHk′,jH
H
k′Hk′tk′,j

]+

, pk,dk+1 =



ηµk −
σ2

n

Cρ1

(

P̂
(i)
DPCH

H
k HkP̂

(i)
DPC

)





+

,

K∑

k′=1

dk′∑

j=1

pk′,j + pk,dk+1 = PTx. (3.37)

Although very unlikely, it can however happen that a previously assigned data stream receives
zero power in the current allocation step, despite the fact that it has received a non-zero power in
a previous step. Assume that in theith step one obtains from (3.28) thatpk′,j = 0 for some tuple
(k′, j). Due to the properties of the successive allocation such a case can only occur for usersk′

with µk′ 6= µk(i). Then all transmit filterstm,ℓ for data streams allocated to the same carrierγ(k′, c)
after thejth data stream of userk′ have been chosen in previous steps to fulfill the zero-forcing
constraints

gH
k′,jHk′tm,ℓ∀(m, ℓ) with γ(m, ℓ) = γ(k′, j) andπ(m, ℓ) > π(k′, j), (3.38)

as in those stepspk′,jpm,ℓ 6= 0. In stepi however, it is no longer necessary to fulfill (3.38), as
nowpk′,j = 0. A performance improvement can therefore be achieved by recomputing all transmit
filters tm,ℓ and receive filtersgm,ℓ with γ(m, ℓ) = γ(k′, j) andπ(m, ℓ) > π(k′, j) not considering
the zero-forcing constraints (3.38).
At the end of theith steptk(i),dk(i)+1 is given bytk(i),dk(i)+1 = t

(i)
k(i), the variablesγ(k(i), dk(i)+1) =

c
(i)
k(i) andπ(k(i), dk(i) + 1) = n

c
(i)
k(i)

+ 1 are stored for future steps anddk(i) andnγ(k(i),dk(i)+1) are
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incremented by one. For equal weights it is shown in [50] thatif the last data stream receives zero
power during testing, the corresponding user will not be selected in future steps and can therefore
be excluded from the selection process without performancereductions. The algorithm terminates,
if the data stream allocated last receives zero power, i.e.,no improvements in weighted sum rate
can be achieved any more, or at the latest, if no degrees of freedom are left to fulfill the zero-
forcing constraints, which happens afterCmin(NT,

∑K
k=1 rk) steps. The algorithm is summarized

in Algorithm 3.2. For equal weights, i.e.,µ1 =, . . . ,= µK the algorithm is identical to the Suc-
cessive Encoding Successive Allocation Method (SESAM) proposed in [10]. In this case the user
selection in (3.36) boils down to selecting the user, which matrix P̂

(i)
DPCH

H
k HkP̂

(i)
DPC exhibits the

strongest principal eigenvalue.
The method proposed in [49, Chapter 8] also works with zero-forcing, but uses a different suc-
cessive allocation scheme. It considers the dual problem ofthe weighted sum rate maximization,
where the sum power constraint is dualized. The algorithm iteratively searches for the optimum
Lagrange multiplier corresponding to the power constraintby bisection, where in each step the user
allocation, transmit and receive filters are determined in asuccessive manner so that the dual func-
tion becomes optimum. That leads to the same rules for the transmit and receive filters as (3.31)
and (3.29), respectively. Thus, one iteration of this algorithm is as complex as Algorithm 3.2 in
total.

3.3 Spatial Zero-Forcing and Successive Resource Allocation without Dirty
Paper Coding

The algorithm presented in the previous section still relies on DPC and numerically complex meth-
ods such as vector precoding [16] or the coding scheme from [17] must be used as practical imple-
mentation for DPC. The latter scheme also exhibits long encoding delays. Tomlinson-Harashima
Precoding (THP) [51, 52] is a less complex implementation ofDPC, but associated with perfor-
mance losses. The reasons for those degradations are explained in [53]. Nevertheless, THP still
exhibits practical challenges, such as the implementationof modulo operators at all receivers due
to the dynamics of the received signals. Therefore, an algorithm for weighted sum rate maximiza-
tion that solely relies on linear transmit and signal processing will be proposed in this section.
Besides the fact that the algorithm does not rely on DPC, it isnon-iterative and therefore exhibits
a low computational complexity.

3.3.1 State-of-the-Art Near Optimum Approaches

When part of the multiuser interference cannot be cancelledby DPC, the problem of maximizing
the weighted sum rate is non-convex. So far, there exists no algorithm that solves this problem
optimally. Only for the special case of two users and single-antenna receivers a method to achieve
points on the boundary of the rate region achievable with linear precoding is presented in [54]. An
algorithm that converges to a local optimum in the vicinity of the initial starting point is proposed
in [55]. As the algorithm requires in each iteration uplink downlink conversions of the filters based
on the duality from [56] and a geometric program must be solved in each step, it is extremely com-
plex. The method in [57] is also iterative and relies on the solution of geometric programs. Besides
aiming at maximizing the weighted sum rate, [57] considers the problem of feedback reduction for
this optimization. Projected gradient methods are used in [58] and [59] for near optimum solutions
to the weighted sum rate maximization with linear precoding. For the problem sum rate maxi-
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Algorithm 3.2 Reduced Complexity Algorithm for Weighted Sum Rate Maximization with DPC
1: Initialization: dk = 0,Tk = [],Gk = [], ∀k = 1, . . . , K, nc = 0, ∀c = 1, . . . , C

2: P̂
(1)
DPC = ICNT

3: i = 1
4: while i ≤ Cmin(

∑K
k=1 rk, NT) do

5: for k = 1 to K do

6: R
(i)
WSR(k) =

K∑

k′=1

µk′

dk′∑

j=1

log2

(

1 + C
σ2

n
pk′,jt

H
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H
k′Hk′tk′,j

)

+

+µk log2
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(

P̂
(i)
DPCH

H
k HkP̂

(i)
DPC

))

,
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[
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CtH
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HH
k′
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]+

, pk,dk+1 =

[

ηµk − σ2
n

Cρ1
(

P̂
(i)
DPCH

H
k HkP̂

(i)
DPC

)

]+

,

K∑

k′=1

dk′∑

j=1

pk′,j + pk,dk+1 = PTx

7: c
(i)
k : index of block withinP̂ (i)

DPCH
H
k HkP̂

(i)
DPC that contains principal eigenvalue

8: end for
9: k(i) = argmax

k
R

(i)
WSR(k)

10: Remove data streams that have received zero power and recomputeR
(i)
WSR, P̂ (i)

DPC transmit
and receive filters if necessary

11: tk(i),dk(i)+1 = argmax
t

tHP̂
(i)
DPCH

H
k(i)Hk(i)P̂

(i)
DPCt, s.t. tHt = 1, t = ST

c
(i)
k(i)

,T
S

c
(i)
k(i)

,T
t

12: gk(i),dk(i)+1 = Hk(i)tk(i),dk(i)+1
1

√

tH
k(i),dk(i)+1

HH
k(i)

Hk(i)tk(i),dk(i)+1

13: Tk(i) = [Tk(i), tk(i),dk(i)+1], Gk(i) = [Gk(i), gk(i),dk(i)+1]

14: dk(i) = dk(i) + 1, γ(k(i), dk(i)) = c
(i)
k(i), π(k(i), dk(i)) = n

c
(i)
k(i)

+ 1,n
c
(i)
k(i)

= n
c
(i)
k(i)

+ 1

15: P̂
(i+1)
DPC = P̂

(i)
DPC− tk(i),dk(i)t

H
k(i),dk(i)

16: i = i+ 1
17: end while
18: p1,1, . . . , pK,dK ← waterfilling with channel gainstH1,1H

H
1 H1t1,1, . . . , t

H
K,dK

HH
KHKtK,dK

19: for k = 1 toK do
20: Pk = diag (pk,1, . . . , pk,dk)
21: end for
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mization it is proposed in [45] to determine first the covariance matrices according to the iterative
water-filling algorithm optimum for the DPC case from [6] andto project these matrices afterwards
so the part of the interference occurring through the absence of DPC is cancelled. Algorithms for
selecting the appropriate subgroup of users for this methodare proposed in [60]. In order to ease
the objective function and the power allocation, zero-forcing constraints can be introduced. In case
the total number of receive antennas in the system is lower than the number of transmit antennas,
Block-Diagonalization (BD) as proposed in [61] can be used to decompose the MIMO broadcast
channel into a system of scalar interference-free subchannels, over which the transmit power can
be distributed by a weighted water-filling algorithm. However, in practical systems it is more likely
that the total number of receive antennas exceeds the numberof transmit antennas and there are not
enough degrees of freedom to serve all users simultaneously. Therefore user selection algorithms
are proposed in [62] and [63] when the weights are equal for all users.
By introducing zero-forcing constraints optimization problems in the MIMO broadcast channel
become combinatorial, as one has to test all possible combinations of data stream allocations to
users, where the total number of data streams must not exceedthe number of transmit antennas.
Even in case the total number of receive antennas is smaller than the number of transmit antennas it
is not necessarily optimum to allocate as many data streams to each user as it has receive antennas,
as proposed with BD in [61]. To avoid an exhaustive search, which becomes infeasible already
with a moderate number of users, greedy approaches can be used, where in each step a data stream
is allocated to a user so that the increase in the objective function becomes maximum. For MISO
systems and sum rate as objective function such an approach has been proposed in [12], for which
a low complexity implementation is presented in [64]. The complexity can be further diminished
by excluding users from the allocation process which channel vectors are aligned closely to those
of the already selected users as proposed in [65]. The decision whether two channel vectors are
aligned closely is thereby based on an a priori fixed threshold value. Selecting channel vectors
as little aligned as possible by a method from graph theory isproposed in [66]. In [67] a greedy
maximization of weighted sum rate in MISO systems is considered where a lower bound for the
weighted sum rate is utilized during user selection. One possibility to apply these algorithms to
systems with multiple antennas also at the receivers is to perform SVDs at each receiver, apply
the left singular vectors as receive filters and treat every product of right singular vector and the
corresponding singular value as virtual user in a MISO system as proposed in [65] for the algo-
rithm presented therein. An analysis for this algorithm in MIMO systems with a large number
of users extending the results from [65] can be found in [68].The concept of SVD receivers is
also used in [69] and [70], where additionally the aspect of feedback reduction is considered so
that each user only has to make known a singular vector to the transmitter if the corresponding
singular value is above a certain threshold. In [71] the greedy approach from [12] is extended to
MIMO systems by applying SVD receivers and modifying these receivers in case more than one
data stream is allocated to the same user. Another possibility for applying the greedy algorithms
proposed for MISO systems to MIMO is antenna selection, i.e., every receive antenna is treated
as different virtual user, as considered in [72] for sum ratemaximization with equal weights. The
general concept of an algorithm of this kind for an arbitraryobjective function and an efficient
computation of the precoding vectors is described in [73]. Amore sophisticated antenna selection
for a preselected group of users, which have in sum less receive antennas than number of transmit
antennas, is presented [74].
Thus, most of the prior works dealing with greedy zero-forcing approaches assume that the receive
filters are given a priori by singular or canonical unit vectors and are, apart from [71], not changed
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during the execution of the algorithms. In [75] the sum rate is approximated in each step so that
the receive filters can be included into the successive optimization. However, besides the fact that
this approximation becomes more and more inaccurate with increasing SNR, the receive filter de-
termination is reduced to a selection between the left singular vectors for complexity reasons at
the end. The greedy algorithm from [23] chooses in each step the receive filters to maximize the
SNR of the newly allocated subchannel ignoring the effect ofthis filter on the SNRs of previously
allocated subchannels. Furthermore the algorithm is proposed for sum rate maximization only and
a fixed power allocation is assumed complicating its straight-forward application to weighted sum
rate maximization. For this reason, in this section an algorithm will be presented that is based on
greedy approach and zero-forcing but includes the receive filters into the successive weighted sum
rate maximization.

3.3.2 Spatial Zero-Forcing

When no DPC is used, the setsIk read as

Ik = {j ∈ {1, . . . , K}|j 6= k},
i.e., all other users interfere with userk. With those sets of interfering users, the same derivations
can be conducted as in Section 3.2.2 for the DPC case, i.e., inter- and intra-user zero-forcing
constraints are introduced, where the latter do not influence optimality, leading to the stream-
wise formulation of the optimization problem in (3.22), theoptimum power allocation is given
by (3.23), and the carrier separation constraints are established as in (3.24). Through the abstinence
of DPC, all signals can be encoded simultaneously, i.e., there is no optimum encoding order, and
interference from all data streams on the same carrier has tobe considered with the zero-forcing
constraints. Considering these changes compared to Problem (3.26), the optimization for spatial
zero-forcing without DPC is given by

max
{tk,j ,gk,j ,γ(k,j)}j,=1,...,dk,k=1,...,K
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)

,
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ηµk −
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H
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H
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,

tHk,jtk,j = 1, gH
k,jgk,j = 1, tk,j = ST

c,TSc,Ttk,j, gk,j = ST

c,kSc,kgk,j, ∀j = 1, . . . , dk, ∀k,
gH
k,ngk,j = 0, ∀n = 1, . . . , dk, j = 1, . . . , dk, j 6= n, ∀k,

√
pk,jpm,ℓg

H
m,ℓHmtk,j = 0, ∀(m, ℓ) with γ(m, ℓ) = γ(k, j), ∀(k, j) 6= (m, ℓ). (3.39)

For notational convenience it will be assumed in the following that all data streams receive non-
zero powers, i.e.,pk,j > 0, ∀j = 1, . . . , dk, ∀k. The casepk,j = 0 for some tuple(k, j) will be
revisited later and should be avoided anyway by an intelligent allocation. Then, the zero-forcing
constraints read as

gH
m,ℓHmtk,j = 0, ∀(m, ℓ) with γ(m, ℓ) = γ(k, j), ∀(k, j) 6= (m, ℓ)

and the water-levelη is given by
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H
mgm,ℓ

∑K
k′=1 µk′dk′
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By defining the composite channel matrixHcomp as

Hcomp=















gH
1,1H1

...
gH
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...
gH
K,1HK

...
gH
K,dK

HH
K















and introducing the channel gains

λk,j = gH
k,jHktk,jt

H
k,jH

H
k gk,j

as new variables, the zero-forcing constraints in (3.39) can be written compactly as

Hcomp[t1,1, . . . , tK,dK ] = diag
(√

λ1,1, . . . ,
√

λK,dK

)

so that Problem (3.39) reads as

max
{gk,j ,γ(k,j)}j,=1,...,dk,k=1,...,K
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s.t.Hcomp[t1,1, . . . , tK,dK ] = diag
(√

λ1,1, . . . ,
√

λK,dK

)

, λk,j ≥ 0, ∀j = 1, . . . , dk, ∀k,
tHk,jtk,j = 1, gH

k,jgk,j = 1, tk,j = ST

c,TSc,Ttk,j, gk,j = ST
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gH
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[
HH

1 g1,1, . . . ,H
H
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H
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H
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. (3.40)

The maximization with respect totk,j andλk,j is solved by

λk,j =
1

eT
nk,j

(
HcompHH

comp

)−1
enk,j

, (3.41)

where

nk,j =

k−1∑

k′=1

dk′ + j (3.42)

denotes the row, in which thej th data stream of userk is placed in the composite channel matrix
Hcomp, and
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The proof can be found in Appendix A3. Due to (3.41) the sum
∑K

m=1

∑dk
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1
λm,ℓ

needed to
compute the water-levelη can be written compactly as
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and Problem (3.40) reads as

max
{gk,j ,γ(k,j)}j,=1,...,dk,k=1,...,K
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s.t.gk,j = ST
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]H
. (3.44)

3.3.3 Successive Resource Allocation

Although with the zero-forcing constraints the transmit filters could be eliminated from the op-
timization, Problem (3.44) is still combinatorial and non-convex. For this purpose a successive
resource allocation is proposed as in the DPC case. Therefore, each user receives zero data streams
at the beginning, i.e.,dk = 0 for all usersk. The userk(1) to which the first data stream is allo-
cated to, the corresponding receive filtergk(1),1 and the carrierγ(k(1), 1) are determined so that
the weighted rate a user can achieve with single-stream transmission becomes maximum, i.e.,

{gk(1),1, γ(k(1), 1), k(1)} = argmax
g,c,k

µk log2
(
1 + PTxg

HHkH
H
k g
)

s.t.gHg = 1, g = ST

c,kSc,kg. (3.45)

Problem (3.45) is solved by choosinggk(1),1 as the unit norm eigenvector corresponding to the
principal eigenvalue of the matrixHk(1)H

H
k(1). As with DPC, due to the block-diagonal structure

of the matricesHk(1)H
H
k(1), this solution fulfills the carrier separation constraint and the carrier

γ(k(1), 1) is implicitly given by the index of that block matrix withinHk(1)H
H
k(1) that exhibits the

strongest principal eigenvalue. The userk(1) has to be found be evaluating the maximum single-
stream rates for all users with the corresponding optimum receive filters. Note that for equal
weights,k(1) is the user with the maximum principal eigenvalue of the matricesHkH

H
k . At the

end of the first allocation, the variabledk(1) is updated todk(1) = 1. For the future allocation steps,
the receive filtergk(1),1 and the carrier allocationγ(k(1), 1) are kept fixed. Proceeding similarly
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with the next allocation steps, the successive allocation problem in theith step can be written as

{gk(i),dk(i)+1, γ(k(i), dk(i) + 1), k(i)} =

= argmax
g,c,k
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)
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∥
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eT
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(
HcompHH
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)−1
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(
∑K
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)





s.t.g = ST

c,kSc,kg, gHg = 1, gH
k,mg = 0, ∀m with γ(k,m) = c, Hcomp=

[
H(i−1),H

comp HH
k g
]H

,

(3.46)

where
H(i−1),H

comp =
[
HH

1 g1,1, . . . ,H
H
1 g1,d1 , . . . ,H

H
KgK,1, . . . ,H

H
KgK,dK

]
(3.47)

denotes the composite channel matrix after stepi− 1. The objective function in (3.46) depends on
the diagonal elements of the matrix

(
HcompH

H
comp

)−1
[c.f. (3.43)] which are given by

eT

j

(
HcompH

H
comp

)−1
ej =







(

1 +
gHHkP̂

(i)
j HH

k g

gHHkP̂
(i)
lin HH

k g

)

α
(i−1)
j j < i

1

gHHkP̂
(i)
lin HH

k g
, j = i

(3.48)

as shown in Appendix A4.
P̂

(i)
j = T (i−1)eje

T

j T
(i−1),H

is a rank one projector, where

T (i−1) =
[

t
(i−1)
1,1 , . . . , t

(i−1)
K,dK

]

=
(
H(i−1)

comp

)+
diag

(√

λ
(i−1)
1,1 , . . . ,

√

λ
(i−1)
K,dK

)

.

contains the precoding vectors, if the allocation is stopped after stepi − 1. The matrixP̂ (i)
lin is a

projection matrix that projects into the nullspace ofH
(i−1)
comp so that

P̂
(i)
lin = ICNT −H(i−1),H

comp

(
H(i−1)

comp H
(i−1),H
comp

)−1
H(i−1)

comp . (3.49)

P̂
(i)
lin is block-diagonal and̂P (1)

lin = ICNT.

α
(i−1)
j = eT

j

(
H(i−1)

comp H
(i−1),H
comp

)−1
ej (3.50)

is the inverse channel gain of thejth data stream in stepi− 1 so that

λ
(i−1)
k,j =

1

α
(i−1)
nk,j

=
1

eT
nk,j

(

H
(i−1)
comp H

(i−1),H
comp

)−1

enk,j

.

Thus, it can be seen from (3.48) that with the additional zero-forcing constraints the channel gains
of the subchannels allocated in previous steps diminish or stay equal, which occurs for every
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column inT (i) which is orthogonal togHHk. With (3.48) the Frobenius norm of the pseudo-
inverse of the composite channel matrix as defined in (3.46) computes according to

∥
∥H+

comp

∥
∥
2

F
= tr

[(
HcompH

H
comp

)−1
]

=
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j HH

k gα
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k g
+

i−1∑
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α
(i−1)
j =

=
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(i)
k g
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(i)
k g

+ α̂(i−1), (3.51)

where the identity
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k gα
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=
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and the definitions
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(i)
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k , B
(i)
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(i)
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k α
(i−1)
j + ICrk , (3.52)

and

α̂(i−1) =
i−1∑

j=1

α
(i−1)
j .

have been used. Inserting these results into the objective function from (3.46) yields

{

gk(i),dk(i)+1, γ(k(i), dk(i) + 1), k(i)
}

=

argmax
g,c,k

log2
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− log2

(
1
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)µk

s.t.g = ST

c,kSc,kg, gHg = 1, gH
k,mg = 0, ∀m with γ(k,m) = c. (3.53)

As with DPC, Problem (3.53) is solved in two steps. First for each userk the receive filterg(i)
k

and the carrierc(i)k are determined to maximize the weighted sum rate assuming that the next data
stream is allocated to userk. Rewriting the sums of logarithms as the product of its arguments and
considering the fact that the logarithm is a monotonically increasing function, i.e., maximizing the
argument of the logarithm is identical to maximizing the logarithm, the optimumg(i)

k andc(i)k can
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be found from
{

g
(i)
k , c

(i)
k

}

=
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s.t.g = ST

c,kSc,kg, gHg = 1, gH
k,mg = 0, ∀m with γ(k,m) = c, (3.54)

Problem (3.54) is still non-convex and is therefore in general not easy to solve. For the special case
i = 2, Problem (3.54) is of the kind

max
g

(
gHCg

)β

gHDg
, s.t.gHg = 1

with β > 1 and the optimum receive filtersg(i)
k could therefore be found by the algorithm

from [76], which returns receive filters that comply with thecarrier separation constraint when
applied to block-diagonal matrices. As this algorithm is iterative and requires a matrix inversion in
each step, this option will not pursued in the following. Instead it is proposed to maximize a lower
bound of the objective function, which is obtained by applying the inequality between weighted
geometric and weighted arithmetic mean (e.g. [67, Lemma 1])to the denominator in (3.54) so that
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Inserting this lower bound instead of the true objective function in (3.54), the problem of finding
the receive filter and carrier in stepi reads as

{

g
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k , c

(i)
k

}

= argmax
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s.t.g = ST

c,kSc,kg, gHg = 1, gH
k,mg = 0, ∀m with γ(k,m) = c. (3.55)

Note that in (3.55) the weighted sum rateR(i)
WSR(k) obtainable if userk receives a data stream in

stepi is lower bounded by

R
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(3.56)
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which has been obtained with (3.51). This lower bound coincides with the bound in [77], where a
MISO system is considered and a different derivation is used. It can be achieved by choosing the
unit-norm beamformerstk,j multiplied by the powerspk,j as

[√
p1,1t1,1, . . . ,

√
p1,d11t1,d1 , . . . ,

√
pK,1tK,1, . . . ,

√
pK,dKtK,dK ,

√
pk,dk+1tk,dk+1

]
=

= H+
comp

1
∥
∥H+

comp

∥
∥

F

,

i.e., the optimum zero-forcing unit-norm beamformers but asub-optimum power allocation are
used. Problem (3.55) is equivalent to

{

g
(i)
k , c

(i)
k

}

= argmax
g,c

gHA
(i)
k g

gH
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s.t.g = ST

c,kSc,kg, gHg = 1, gH
k,mg = 0, ∀m with γ(k,m) = c. (3.57)

Dividing the objective function in (3.57) bygHA
(i)
k g, Problem (3.57) is maximized by the same

arguments as

{

g
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k , c
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}
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k g

s.t.g = ST
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k,mg = 0, ∀m with γ(k,m) = c. (3.58)

Ignoring the constraints in (3.58) for the moment and setting the derivative of the objective function
to zero yields

A
(i)
k g =

gHA
(i)
k g

gHB
(i)
k g

B
(i)
k g,

which is a generalized eigenvalue problem. Thus,g must be chosen to be a generalized eigen-
vector of the matrix pairA(i)

k andB(i)
k . The objective function, which is equal to the generalized

eigenvalue of this matrix pair at the places, where its derivative is zero, is maximized by choos-
ing g

(i)
k to be the eigenvector belonging to the principal generalized eigenvalue of this matrix

pair. In the following it will shown that this solution of theunconstrained maximization fulfills
all constraints in (3.58). As the objective function is independent of the norm ofg, the norm one
constraint can be easily fulfilled by taking the unit-norm eigenvector. The carrier separation con-
straint is fulfilled, as the matricesA(i)

k andB(i)
k are block-diagonal. That is due to the fact that
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As gH
k,mHk is one row ofH(i−1)

comp and P̂
(i)
lin projects into the nullspace ofH(i−1)

comp [c.f. (3.49)],
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k is therefore orthogonal to allgk,m.

Note that in case no data stream has been allocated to carrierc
(i)
k during the previous steps, i.e.,

n
c
(i)
k

= 0, the receive filterg(i)
k also maximizes the exact objective function in (3.54). Thatis

because the projection matrix̂P (i)
lin has a block-diagonal structure and each block is a projector

affecting only the channel matrices of one carrier in the productsHkP̂
(i)
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k . In case no data
stream has been allocated to carrierc

(i)
k in a previous step, the blocks affecting this carrier in the

projection matrices are identity matrices. As the receive filters must obey the carrier separation
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been allocated to this carrier in a previous step. Ignoring the terms independent ofg, the objective
function in (3.54) for the casen

c
(i)
k
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This objective function is maximized under the constraintsfrom (3.54) by choosingg(i)
k to be the

unit-norm eigenvector belonging to the principal eigenvalue of the block matrix withHkH
H
k that

corresponds to carrierc(i)k . This can be verified by solving (3.54) with the algorithm from [76],
which can be used for objective functions as in (3.59) and which converges in this case within one
iteration.
Once the filtersg(i)

k have been computed for all usersk, the userk(i) is determined so that the
weighted sum rate becomes maximum, i.e.,
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η(i)(k) is the water-level for the weighted water-filling power allocation, if the next data stream is
allocated to userk. In case all data streams receive non-zero powers,η(i)(k) is given by
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+
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which follows from the fact that

ρ1

(

B
(i),−1
k A

(i)
k

)
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(i)
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k . (3.62)

In case it is observed that the water-level is too small for a data stream, i.e.,
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,

for some tuple
(

k̂, ĵ
)

not only the water-level and the weighted sum rate but also all channel gains

on the affected carrier should be recomputed, as otherwise that data stream imposes zero-forcing
constraints on the transmit filters of the other data streamsand therefore reduces their channel
gains, although it receives zero power. Thus, the corresponding data stream has to be removed
from the pseudo-inverseH(i)

comp and the variabledk̂ needs to be adjusted to this removal.
In contrast to DPC, where the receive filters for the current data stream do not affect the channel
gains of the previously allocated data streams, a new data stream allocation possibly deteriorates
the channel gains of all subchannels on the same carrier [c.f. (3.48)]. It can therefore happen that
the weighted sum rate is lower than in the previous step. In this case the last allocation is not put
into effect and the algorithm is terminated. Otherwisedk(i) is incremented by one,γ(k(i), dk(i))

andgk(i),dk(i) are given byγ(k(i), dk(i)) = c
(i)
k(i) andgk(i),dk(i) = g

(i)
k(i). The projectorP̂ (i+1)

lin for the
next allocation step can then be computed according to
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. (3.63)

The normalized transmit vectort(i)k(i),dk(i)
for the data stream allocated in theith step is given by

t
(i)
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(3.64)

becauseP̂ (i)
lin HH

k(i)gk(i),dk(i) is orthogonal to the rows ofH(i−1)
comp [c.f. (3.49)] and therefore orthog-

onal to the effective subchannels of all other data streams and contains no component in the
nullspace ofH(i)

comp. As the row corresponding to the data stream allocated atith place in the
pseudoinverse ofH(i)

comp fulfills the same properties (see Appendix A3),P̂
(i)
lin HH

k(i)gk(i),dk(i) and

t
(i)
k(i),dk(i)

are collinear andt(i)k(i),dk(i)
can be obtained by normalizinĝP (i)

lin HH
k(i)gk(i),dk(i) to one. The

relationship (3.63) also enables a computationally efficient update of the matricesA(i)
k so that
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k . (3.65)

The coefficientsα(i)
j can also be efficiently computed according to [c.f. (3.48)]
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, (3.66)
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wherenk,j is computed as stated in (3.42),n̂k,j considers the adjustment of the variabledk(i) from
stepi− 1 to stepi so that

n̂k,j =

{

nk,j, k ≤ k(i)

nk,j + 1, else
,

m(i) =
k(i)+1∑

k′=1

dk′ and

γ
(i)
k,j = gH

k(i),dk(i)
Hk(i)t

(i−1)
k,j (3.67)

can be obtained via an inner vector product. Note thatγ
(i)
k,j is only different from zero for transmit

vectorst(i−1)
k,j corresponding to data streams allocated to the carrierc

(i)
k(i). The transmit filterst(i)k,j

for the other data streams with(k, j) 6= (k(i), dk(i)) are determined according to

t
(i)
k,j = β

(i)
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(

t
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k,j − t

(i)
k(i),dk(i)

γ
(i)
k,j

√

α
(i)
m(i)

)

, (3.68)

whereβ(i)
k,j is a scaling factor so thatt(i)k,j has unit norm and which is shown in Appendix A5. Each

update to obtaint(i)k,j additionally requires only one vector subtraction withNT nonzero entries and

one norm computation of a vector with lengthNT, as the complex numbersα(i)
m(i) andγ(i)

k,j have al-

ready been determined during the computation of theα
(i)
nk,j . This update rule is more efficient than

the update of the pseudo-inverse via the LQ decomposition ofH
(i)
comp proposed in [64], as the latter

requires in each step a multiplication of a matrix with another lower-triangular matrix to compute
all precoding vectors. Unfortunately, no efficient update rule to obtain the matricesB(i+1)

k from the
matricesB(i)

k exists. That is why those matrices have to be computed from scratch with the vec-
torst(i)k,j. Note that in multicarrier systems due to the carrier separation constraint the update rules

described above only affect those parts of the matrices or vectors that correspond to carrierc(i)k(i),
all other parts remain unchanged. An overview of the spatialresource allocation with zero-forcing
is given with Algorithm 3.3, a modification of algorithm for the MAC with individual power con-
straints can be found in [78]. Additional little performance improvements of Algorithm 3.3 can
be achieved by the following measures. Instead of running the algorithm in the broadcast channel
it can be run in the dual MAC. The filters obtained this way are then transformed via the general
duality from [79] into the broadcast channel. Performance improvements are possible by replacing
the receive filters computed in this manner by MMSE filters as proposed in [80]. Furthermore
one can recompute the transmit and receive filters in case a user can transmit more than one data
stream on the same carrier similar to [71]. An SVD of this user’s channel matrix multiplied by
projection matrices that consider the other users’ zero-forcing constraints is performed so that this
user’s channel gains become maximum while the other users’ channel gains are not affected by
this measure as described in [81].

3.4 Further Complexity Reductions

Although compared to the optimum algorithms the computational complexity could be drastically
reduced by the methods proposed in the previous two sections, those still require the computation
of eigenvalues and eigenvectors for each user in each step. For this reason a user preselection
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Algorithm 3.3 Reduced Complexity Algorithm for Weighted Sum Rate Maximization without
DPC

1: Initialization: dk = 0,Gk = [],A
(i)
k = ICNT, ∀k = 1, . . . , K, i = 1, P̂ (1)

lin = ICNT

2: k(1) = argmax
k

µk log2

(

1 + PTxC
σ2

n
ρ1
(
HkH

H
k

))

,

R
(1)
WSR = µk(1) log2

(

1 + PTxC
σ2

n
ρ1

(

Hk(1)H
H
k(1)

))

3: g
(1)
k(1) eigenvector corresponding to principal eigenvalue of matrix Hk(1)H

H
k(1)

4: repeat
5: dk(i) = dk(i) + 1

6: gk(i),dk(i) = g
(i)
k(i), Gk(i) = [Gk(i), gk(i),dk(i)]

7: α
(i)
m(i) =

1

gH
k(i),dk(i)

A
(i)
k(i)

gk(i),dk(i)

, t(i)k(i),dk(i)
=

P̂
(i)
lin HH

k(i)
gk(i),dk(i)

√

α
(i)
m(i)

, m(i) =
k(i)∑

k′=1

dk′

8: P̂
(i+1)
lin = P̂

(i)
lin − t

(i)
k(i),dk(i)

t
(i),H
k(i),dk(i)

9: for k = 1 to K do
10: ComputeA(i+1)

k from A
(i)
k with (3.65)

11: Computeα(i)
nk,j from α

(i−1)
n̂k,j

with (3.66) andγ(i)
k,j with (3.67)∀j = 1, . . . , dk

12: end for
13: i = i+ 1
14: for k = 1 to K do

15: B
(i)
k = Hk

[
K∑

k′=1

dk′∑

j=1

t
(i−1)
k,j t

(i−1),H
k,j α

(i−1)
nk′,j

]

HH
k + ICrk

16: g
(i)
k : generalized unit norm eigenvector for principal generalized eigenvalue of matrix

pairA(i)
k , B(i)

k

17: R
(i)
WSR(k) =

K∑

k′=1

µk′

dk′∑

j=1

log2




min




1,

η(i)Cµk′

σ2
n

(

1+
g
(i),H
k

Hkt
(i−1)
k,j

t
(i−1),H
k,j

HH
k

g
(i)
k

g
(i),H
k

A
(i)
k

g
(i)
k

)

α
(i−1)
n
k′,j









+

+µk log2

[

min
(

1, C
σ2

n
η(i)g

(i),H
k A

(i)
k g

(i)
k µk

)]

η(i): water-level for weighted water-filling with powerPTx and subchannel gains
C
σ2

n
g
(i),H
k A

(i)
k g

(i)
K , C

σ2
n



1+
g
(i),H
k

HkP̂
(i)
n
k′,j

HH
k

g
(i)
k

g
(i),H
k

A
(i)
k

g
(i)
k



α
(i−1)
n
k′,j

, j = 1, . . . , dk′, k
′ = 1, . . . , K

18: end for
19: k(i) = argmax

k
R

(i)
WSR(k), R

(i)
WSR = max

k
R

(i)
WSR(k)

20: Remove data streams that have received zero power and recompute transmit filters andR(i)
WSR

if necessary
21: until R

(i)
WSR < R

(i−1)
WSR

22: p1,1, . . . , pK,dK ← weighted water-filling with power PTx and subchannel gains
C

σ2
nα

(i−1)
1

, . . . , C

σ2
nα

(i−1)
i−1

23: for k = 1 toK do
24: Pk = diag (pk,1 . . . pk,dk), Tk =

[

t
(i−1)
k,1 , . . . , t

(i−1)
k,dk

]

25: end for
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method will be presented in Section 3.4.1, which deselects users that will certainly not lead to
the maximum weighted sum rate by simple decision criteria avoiding the explicit computations of
the principal eigenvalues of these users. While this methodenables partially drastic complexity
reductions at no performance losses, the other two techniques presented in this Section inhere
potential losses in weighted sum rate. A weaker lower bound for the weighted sum rate for the
algorithm without DPC will be introduced in Section 3.4.2, which enables the computation of
candidate channel gains via ordinary instead of generalized eigenvalue problems. In Section 3.4.3
a simplified user selection is presented for both algorithmswith and without DPC, where the
user selection can be conducted without explicit eigenvalue computations. A further possibility
for reducing the computational complexity inducing performance losses, that will not explained
here, is to apply subspace beamforming, where the space for the transmit filters is restricted to a
predefined subspace, as proposed in [82]. For algorithms relying on DPC the method from [83]
can be used to identify a subgroup of users, with which the gain of those algorithms becomes
maximum compared to simple time or frequency division algorithms.

3.4.1 User Preselection

The most complex part in the successive resource allocationschemes is the user selection in (3.36)
with DPC, which requires the determination of principal eigenvalues for each user, and in (3.60)
without DPC, where a generalized eigenvalue, the corresponding eigenvector and the quadratic
forms g(i),H

k HkP̂
(i)
nk′,j

HH
k g

(i)
k have to be computed. Correspondingly, the complexity growslin-

early with the number of users. By the method to be presented next this complexity can be re-
duced at no performance losses. The basic principle is to compute lower and upper bounds for the
weighted sum rate, if the next data stream is allocated to user k. Obviously, the bounds, which
will be denoted asR(i)

WSR,lb(k) andR(i)
WSR,ub(k) in the following, must be obtainable at very low ad-

ditional effort. The maximum weighted sum rateR(i)
WSR achievable in stepi is lower bounded by

the maximum lower bound amongst all users, i.e.,

max
k

R
(i)
WSR,lb(k) ≤ max

k
R

(i)
WSR(k) = R

(i)
WSR.

If the upper boundR(i)
WSR,ub(m) of a certain userm is smaller than the maximum lower bound

amongst all users that userm will certainly not lead to the maximum weighted sum rate in step i
and can therefore be excluded from the user selection process in stepi. Additionally, if the upper
bound of a user’s rate is lower than the weighted sum rateR

(i−1)
WSR achieved in the previous step,

this user will certainly not be served in the next step, as even if this user leads to the strongest
weighted sum rate amongst all users, the allocation is not conducted as it would lead to a decrease
in weighted sum rate. Thus, it suffices to conduct the user selections in (3.36) and (3.60) with a
possibly reduced user setS(i), which is given by

S(i) =
{

k ∈ {1, . . . , K}
∣
∣
∣R

(i)
WSR,ub(k) ≥ max

ℓ
R

(i)
WSR,lb(ℓ), R

(i)
WSR,ub(k) ≥ R

(i−1)
WSR

}

.

In the remainder of this section the boundsR
(i)
WSR,ub(k) andR(i)

WSR,lb(k) will be derived for the user
selection with DPC and the user selection without DPC. Although the bounds are assessed very
conservative, they turn out to be very effective in practice, as it will be shown by simulation results.
• Bounds for the Weighted Sum Rate achievable with DPC:

The weighted sum rate with DPC is a monotonically increasingfunction in the channel gains,
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as shown with Lemma A3.1. Thus,R(i)
WSR(k) as given by (3.37) is a monotonically increasing

function in ρ1

(

P̂
(i)
DPCH

H
k HkP̂

(i)
DPC

)

. As furthermore the channel gainstHk′,jH
H
k′H

H
k′tk′,j are

not affected by the new data stream allocation, the bounds for the principal eigenvalue of the
matrix P̂

(i)
DPCH

H
k HkP̂

(i)
DPC can be used to limit the weighted sum rate from below and above.

These bounds are given by

max
c

tr
(

Sc,TP̂
(i)
DPCH

H
k HkP̂

(i)
DPCS

T

c,T

)

m
(i)
k,c

≤ ρ1

(

P̂
(i)
DPCH

H
k HkP̂

(i)
DPC

)

≤ max
c

(

tr
(

Sc,TP̂
(i)
DPCH

H
k HkP̂

(i)
DPCS

T

c,T

))

, (3.69)

wherem(i)
k,c denotes an upper bound for the rank of the matrixSc,TP̂

(i)
DPCH

H
k HkP̂

(i)
DPCS

T

c,T. It is
equal to the number of receive antennas of userk minus the number of data streams already
allocated to userk on carrierc. For single-carrier systems, (3.69) is identical to Equation (2.3.7)
in [35]. The extension to multi-carrier systems results from the fact thatP̂ (i)

DPCH
H
k HkP̂

(i)
DPC is

block diagonal and the multiplications withSc andST

c , which are defined in (2.2), select the
non-zero blocks corresponding to carrierc within these matrices and therefore

ρ1

(

P̂
(i)
DPCH

H
k HkP̂

(i)
DPC

)

= max
c

ρ1

(

Sc,TP̂
(i)
DPCH

H
k HkP̂

(i)
DPCS

T

c,T

)

. (3.70)

The lower boundR(i)
WSR,lb(k) can then be obtained by insertingmax

c

tr
(

Sc,TP̂
(i)
DPCH

H
k HkP̂

(i)
DPCS

T

c,T

)

m
(i)
k,c

instead ofρ1
(

P̂
(i)
DPCH

H
k HkP̂

(i)
DPC

)

into the expression for the weighted sum rateR
(i)
WSR(k)

in (3.37). Correspondingly, the upper boundR
(i)
WSR,ub(k) is computed by using the upper bound

for ρ1
(

P̂
(i)
DPCH

H
k HkP̂

(i)
DPC

)

in (3.37). In case all weights are equal, inserting these bounds into

the formula for the weighted sum rate is not necessary, as in each step this user leads to the
maximum increase in weighted sum rate that exhibits the largest principal eigenvalue of the
matrix P̂ (i)

DPCH
H
k HkP̂

(i)
DPC. In this special case the setS(i) can therefore be directly determined

according to

S(i) =
{

k ∈ {1, . . . , K}
∣
∣
∣max

c
tr
(

Sc,TP̂
(i)
DPCH

H
k HkP̂
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H
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,

as it has been proposed in [84].
The computation of the lower and upper bounds in (3.69) is possible at little extra computa-
tional complexity, as the matriceŝP (i)

DPCH
H
k HkP̂

(i)
DPC are required for the user selection process

anyway. Additionally, the expressionstr
(

Sc,TP̂
(i)
DPCH

H
ℓ HℓP̂

(i)
DPCS

T

c,T

)

only change compared

to the previous step for the carrierc = c
(i−1)
k(i−1) to which a data stream has been allocated to in

stepi− 1.
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• Bounds for the Weighted Sum Rate achievable without DPC:
When no DPC is used, it has already been stated in (3.56) thatR

(i)
WSR(k) can be lower bounded

by

R
(i)
WSR(k) ≥

(
K∑

m=1

µmdm + µk

)

log2
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∥
∥2

F

)

=

(
K∑

m=1

µmdm + µk

)

log2



1 +
PTx

C
σ2

n

α̂i +
1

ρ1
(

B
(i),−1
k A

(i)
k

)



 ,

where (3.62) has been applied. AsB
(i),−1
k A

(i)
k is block-diagonal,ρ1

(

B
(i),−1
k A

(i)
k

)

is the max-

imum eigenvalue of the principal eigenvalues of the matricesSc,kB
(i),−1
k A

(i)
k ST

c,k, whereSc,k

is defined in (2.2). Thus, one obtains
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)

= max
c

ρ1

(

Sc,kB
(i),−1
k A

(i)
k ST

c,k

)

. (3.71)

By using the inequality
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derived in Appendix A6, a lower bound for the weighted sum rate is given by
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. (3.72)

For the upper boundR(i)
WSR,ub(k) again Lemma A3.1 is used. Thus, the subchannel gains can

bounded from above and inserted into the weighted sum rate expression to obtain an upper
bound for the weighted sum rate. It is assumed that the newly allocated subchannel has no
detrimental effect on the previously allocated subchannels, which implies that a lower bound
for the inverse channel gains, i.e., an upper bound for the subchannel gains, can be stated as

(

1 +
g
(i),H
k HkP̂

(i)
nk′,j

HH
k g

(i)
k

g
(i),H
k A

(i)
k g

(i)
k
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≥ α(i−1)
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.

The gain of the newly allocated subchannel can be upper bounded according to

g
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c
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c,k

)
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which follows from the fact thatA(i)
k is positive semi-definite. Using these inequalities

in (3.60), an upper bound forR(i)
WSR(k) is given by

R
(i)
WSR,ub(k) =

K∑

k′=1

µk′

dk′∑

j=1

log2

[
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η
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ub max

c
tr
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k ST

c,k

)

µk

)]

, (3.73)

with the water-levelη(i)ub , which is, in case all estimated subchannel gains can be activated,
given by

η
(i)
ub =

PTx +
σ2

n α̂
(i−1)

C
+ σ2

n

C maxc tr
(

Sc,kA
(i)
k ST

c,k

)

K∑

k′=1

µk′dk′ + µk

.

Note that this upper bound is also valid for any choice of receive filters with unit norm. Like-
wise to the DPC case, the bounds can be computed at almost no extra effort, as the matricesA(i)

k

andB(i)
k are required for the user selection process anyway and the termstr

(

Sc,kA
(i)
k ST

c,k

)

and

tr
(

Sc,kB
(i)
k ST

c,k

)

only change for the carrierc = c
(i)
k(i−1).

Note that the bounds for the eigenvalueρ1
(

Sc,TP̂
(i)
DPCH

H
k HkP̂

(i)
DPCS

T

c,T

)

stated in (3.69) and the

bounds for the eigenvalueρ1
(

Sc,kB
(i),−1
k A

(i)
k ST

c,k

)

derived in Appendix A6 can also be used for

a carrier preselection as shown in the following by means of the DPC case. According to (3.70)
for each user the carrier̂c must be selected which matrixSĉ,TP̂

(i)
DPCH

H
k HkP̂

(i)
DPCS

T

ĉ,T exhibits the
strongest principal eigenvalue. If the upper bound for the principal eigenvalue on a certain carrier
is smaller than the maximum lower bound over all carriers this carrier will certainly not exhibit
the strongest principal eigenvalue amongst all carriers and can therefore be deselected without
explicitly computing the principal eigenvalue of its channel matrix.

3.4.2 Maximization of a Weaker Lower Bound for Weighted Sum Rate without DPC

Solving a generalized eigenvalue problem for each user in each allocation step still exhibits a
considerable amount of computational complexity due to thenecessity of inverting the matrices
B

(i)
k . For this reason a weaker lower bound for the weighted sum rate will be derived in the

following, which enables a determination of the receive filters via ordinary eigenvalue problems.
The denominator in (3.58) can be upper bounded by

gHB
(i)
k g ≤ gHgρ1

(

B
(i)
k

)

= ρ1

(

B
(i)
k

)

. (3.74)

which stems from the fact thatg is constrained to have norm one. Thus, using (3.74) the receive
filtersg(i)

lb2(k) maximizing a weaker lower bound than theg(i)
k determined from (3.58) are given by

{

g
(i)
lb2(k), c

(i)
lb2(k)

}

= argmax
g,c

gHA
(i)
k g

ρ1

(

B
(i)
k

)

s.t.g = ST

c,kSc,kg, gHg = 1, gH
k,mg = 0, ∀m with γ(k,m) = c, (3.75)
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which is solved by choosingg(i)
lb2(k) to be the unit norm eigenvector corresponding to the principal

eigenvalue of the matrixA(i)
k = HkP̂

(i)
lin HH

k . The carrierc(i)lb2(k) is given implicitly by the index
of this block within the matrixA(i)

k , which exhibits the maximum principal eigenvalue. The fact
that the optimumg(i)

lb2(k) is orthogonal to all other receive filters of the same user canbe shown
in the same way as with the vectorsg(i)

k . The userklb2(i) is then determined as in (3.60) with the
receive filtersg(i)

lb2(k). Correspondingly, after theith step the variabledklb2(i) is incremented by

one andgklb2(i),dklb2
is given bygklb2(i),dklb2

= g
(i)
lb2(klb2(i)). Note that by determining the receive

filters according to (3.75) besides avoiding the complexityassociated with computing generalized
eigenvalues, the matricesB(i)

k do not have to be computed explicitly which redundantizes line
15 in Algorithm 3.3. Additionally, the quadratic formsg(i),H

lb2 (k)A
(i)
k g

(i)
lb2(k) needed in (3.60) are

equal to the principal eigenvalue of the matricesA
(i)
k and do therefore not have to be computed

explicitly. The user and carrier preselection explained inthe previous section can be applied with
these receive filters as well, as the lower bound and the upperbound are independent of the choice
of receive filters.
Determining the receive filters according to (3.75) corresponds to maximizing the channel gain of
the newly allocated subchannel, which is given byg

(i),H
lb2 (k(i))Hk(i)P̂

(i)
lin HH

k(i)g
(i)
lb2(k(i)), ignoring

the effect of its receive filter on the previously allocated subchannels [c.f. (3.48)]. This choice
would be optimum, if DPC was applied in the successive scheme, as in this case the choice of the
receive filters would not affect the gains of previously allocated subchannels. Applying the receive
filters optimum for a successive approach with DPC to scenarios, where no DPC is used, has been
proposed in [36, Section 4.1.3.1]. For sum rate maximization, i.e., equal weights, the successive
algorithm, where the receive filters are determined as in (3.58), has been derived in [81] and [85].
Due to its linear and successive nature it has been named LInear Successive Allocation (LISA).
In [23] the receive filters for sum rate maximization withoutDPC are determined as in (3.58).
However, as therein a fixed allocation of power to data streams is assumed, its application to the
problem of weighted sum rate maximization is not straightforward.

3.4.3 User Selection based on Upper Bounds for the Weighted Sum Rate

To reduce the computational complexity even further so thatfor each subchannel allocation only
one principal eigenvalue and the corresponding eigenvector are required, it is proposed to select the
user in theith step to maximize the corresponding upper bound for the weighted sum rate derived
in Section 3.4.1. Thus, in line6 of Algorithm 3.2 and line17 of Algorithm 3.3 the upper bounds
R

(i)
WSR,ub(k) are computed instead of the actual weighted sum ratesR

(i)
WSR(k) and correspondingly

the userk(i) is determined to maximize this upper bound. Although it might be more intuitive
to select the user in theith step according to the maximum lower bound, it is proposed to use
the upper bound due to the reduced complexity required for its computation, especially in the
linear case. While the lower bound in (3.72) requires the knowledge of the matricesB(i)

k , which
cannot be obtained by a simple update rule from the matricesB

(i−1)
k , the upper bound in (3.73) is

independent of these matrices.

3.5 Numerical Results

In order to show the performance of the near optimum low complexity algorithms proposed in
this chapter a scenario withNT = 4 antennas at the transmitter andK = 10 users is chosen.
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Each user is equipped withrk = 2 receive antennas. The transmit signalx(t) propagates to
each user over4 different paths in time, where it is assumed that each channel matrix H̃k,ℓ, ℓ =
1, . . . , 4, k = 1, . . . , K contains circularly symmetric entries, which are independently drawn from
a complex Gaussian distribution with zero mean and unit variance.The temporal distance between
two consecutively arriving symbols is equal to160µs, i.e.,τk,m − τk,m−1 = 160µs,m = 2, . . . , 4,
k = 1, . . . , K. The intersymbol interference is canceled by OFDM withC = 128 subcarrier, i.e.,
a cyclic prefix of sufficient length is used, and the center frequency is given byfc = 5GHz. The
system’s bandwidth is equal toB = 125MHz. Figure 3.1 exhibits the weighted sum rates per
subcarrier over the SNR averaged over1000 channel realizations in such a system, where the SNR
is computed from the ratio of transmit power to noise variance. 5 users in the system have twice
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Figure 3.1: Average weighted sum rates in a system withK = 10 users withrk = 2 receive antennas,NT =
4 transmit antennas,C = 128 carrier andB = 125MHz. µ1 = . . . , µ5 =

1
15 , µ6 = . . . , µ10 =

2
15

the priority of the other users, so that

µ1 = . . . , µ5 =
1

15
, µ6 = . . . , µ10 =

2

15
,

where the weights are normalized so that
∑K

k=1 µk = 1. The proposed successive resource alloca-
tion and spatial zero-forcing with DPC, denoted as “Succ. RAand ZF with DPC” in Figure 3.1,
can almost achieve the same weighted sum rate as the optimum algorithm. Giving up DPC leads to
further small performance losses. Less than2dB transmit power are required to achieve the same
weighted sum rate as with DPC. Furthermore it can be observedthat the methods for complexity
reduction proposed in Sections 3.4.2 and 3.4.3 lead to negligible performance losses2 compared to
Algorithm 3.3, which is denoted as “Succ. RA and ZF without DPC” in Figure 3.1. The adjunct
“simpl. Rx” implies that the receiver filters are chosen to maximize a weaker lower bound for the
sum rate according to (3.75) and “simpl. Rx and user sel” additionally includes a simplified user
selection to maximize an upper bound for the weighted sum rate. For comparison the performance

2Recall that the method for complexity reduction from Section 3.4.1 does not lead to any performance losses at all.



52 3. Weighted Sum Rate Maximization in the MIMO Broadcast Channel

of Orthogonal Frequency Division Multiple Access (OFDMA),where one carrier is exclusively
occupied by one user, and for which a near-optimum algorithmis proposed in [86] is included into
Figure 3.1. Additionally the average weighted sum rates achievable by using left singular vectors
(“SVD receivers”) and unit canonical vectors (“Antenna Selection”) are shown. Thereby the re-
ceive filters are fixed a priori and the successive framework with zero-forcing of Algorithm 3.3 is
used to determine the user allocation and transmit filters, where each product of receive filter and
channel matrix is treated as “virtual user”. However, although those methods perform only slightly
inferior to the proposed algorithms, their complexity is higher, as the methods for complexity re-
duction from Sections 3.4.1 to 3.4.3 cannot be applied to them.

0

1

2

3

4

5

6
x 10

5

F
lo

at
in

g 
P

oi
nt

 O
pe

ra
tio

ns
 (

flo
ps

)

 

 

Basic complexity

User selection

Update

No simpl. User presel. Simpl. Rx Simpl. Rx + u.p. Simpl. user sel. SVD Rx Ant. sel.

Figure 3.2: Main complexity of different algorithms in a system withK = 10 users withrk = 2 receive
antennas,NT = 4 transmit antennas, SNR=20dB, C = 128 carrier andB = 125MHz.µ1 = . . . , µ5 =
1
15 , µ6 = . . . , µ10 =
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Figure 3.2 compares the computational complexity of the most costly parts of the algorithms avoid-
ing DPC with each other for the simulation parameters statedabove. The computational complex-
ity is measured in the number of Floating Point Operations (flops), where one flop corresponds
to one complex addition or multiplication. The block “Basiccomplexity” includes the SVD’s of
the channel matricesHk for the SVD receivers, which are computed according to the R-SVD
method [35] (see [35, Ch. 5.4.5] for its complexity quantification). For the successive resource
allocation and zero-forcing methods this block contains the complexity of the matrix-matrix mul-
tiplicationsHkH

H
k , from which the principal eigenvalues are computed. The number of flops

required for the basic operations as matrix-matrix multiplications and additions as well as matrix
inversions, is adopted from [34]. Additionally, the block-diagonal structure of the involved ma-
trices is taken into account. The block “User selection” encompasses the complexity of all data
stream allocations conducted during the algorithms. For the proposed method without DPC that
includes all steps from line14 to line18 of Algorithm 3.3 apart from the scalar water-filling, which
complexity can be neglected compared to the other parts. This block therefore contains the num-
ber of flops required for the computation and the inversion ofthe matricesB(i)

k , the matrix-matrix
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productsB(i),−1
k A

(i)
k , the computation of its principal eigenvalues and the corresponding eigen-

vectors, and the computation of the termsg
(i),H
k Hkt

(i−1)
k,j t

(i−1),H
k,j HH

k g
(i)
k . For the determination of

the principal eigenvalue and the corresponding eigenvector the power method [35, Ch. 7.3.1] is
used, where the number of iterations required by this methodhas been acquired from averaging
over the number of iterations obtained from simulations with the same parameters as in Figure 3.1
at 20dB. Note that for reasons of fairness, the complexity of the iterative power method has been
considered here, although for the special case ofrk = 2 simpler ways for determining the maxi-
mum eigenvalue and the corresponding eigenvector exist. When the simplified receivers according
to (3.75) are used, the computation of the matricesB

(i)
k , its inversions and its multiplications with

the matricesA(i)
k are not necessary and consequently not considered in the corresponding blocks.

Regarding the proposed user preselection, which does not incur any performance losses, the aver-
age number of preselected users has been determined with thesimulation setup from Figure 3.1.
In case of a priori fixed receive filters, the user selection isa little bit different. As each product of
receive filter and channel matrix is treated as different “virtual” user, the weighted sum rate must
be computed

∑K
k=1 rk instead ofK times. In turn, no eigenvalues and eigenvectors are needed for

the user selection. Furthermore, for those algorithms the complexity of the update of the matrices
A

(i)
k according to (3.65) is not necessary. That is because in thiscase for the sum rate computation

only the productsg(i),H
k A

(i)
k g

(i)
k are required. For fixed receivers the productsg

(i),H
k Hk can be re-

placed byĥH
k′, whereĥH

k′ denotes the effective channel of thek′th virtual user. Consequently the
quadratic formsg(i),H

k A
(i)
k g

(i)
k can be obtained by inner vector products according to

g
(i),H
k A

(i)
k g

(i)
k = g

(i),H
k HkP̂

(i)
lin g

(i)
k HH

k g
(i)
k = ĥH

k′P̂
(i−1)
lin ĥk′ − ĥH

k′t
(i−1)
k(i−1),dk(i−1)

t
(i−1),H
k(i−1),dk(i−1)

ĥk′

[c.f. (3.63)]. As by contrast, the algorithms proposed in this chapter require the explicit knowledge
of the matricesA(i)

k , the complexity required for their updates is subsumed in the bar “Update”.
As shown in Figure 3.2, without further measures for complexity reduction, denoted as “No simpl.”
in Figure 3.2, the proposed method is more complex than usingSVD receivers, which complexity
is visualized in the second bar from the right denoted as “SVDRx”. However, as soon as the
receive filters are determined from an eigenvalue instead ofa generalized eigenvalue problem, the
corresponding complexity depicted in the third bar from theleft (“Simpl Rx”) is already lower
than that of using SVD receivers, although the performance of the latter is on average worse than
that of the proposed methods. Applying the user preselection described in Section 3.4.1 reduces
the computational complexity shown with the bars “User presel.” and “Simpl. Rx + u.p. ”, of the
proposed approaches by31.5% without performance loses. This way, the computational complex-
ity is still higher than that of antenna selection (“Ant. sel.”), which exhibits the same complexity as
SVD receivers without considering the number of flops required for the SVDs. Nevertheless, by
conducting the user selection based on the upper bound for weighted sum rate and with simplified
receive filters, which complexity bar is labelled “Simpl. user sel.” in Figure 3.2, antenna selection
is outperformed in terms of average weighted sum rate and computational complexity.
For K = 2 users the rate regions achievable with the different algorithms can be visualized, as
it is done in Figure 3.3 for an SNR of20dB. The rate regions have been obtained by varying the
weights of user1 between0 and1, setting the weight of user2 to 1−µ1 and running the algorithms
for weighted sum rate maximization. One channel realization is used, where as before, the entries
of theLk = 4, k = 1, 2, temporal channel matrices for each user are independentlydrawn from a
Gaussian distribution with zero mean and unit variance and the temporal difference between two
consecutive paths is equal to160µs. The OFDM system hasC = 128 subcarrier at a center fre-
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Figure 3.3: Rate regions forK = 2 users withrk = 2 receive antennas,NT = 4 transmit antennas,
C = 128, B = 125MHz, SNR= 20dB.

quency of5 GHz and a bandwidth ofB = 125MHz is available. The region achievable with DPC
and successive resource allocation and spatial zero-forcing almost coincides with the optimum ca-
pacity region. The approaches without DPC are close to each other, where for a better visibility
from the proposed methods only the variant performing worstwith simplified receivers and user
selection has been included. It performs negligible worse than SVD receivers only at some parts of
the rate region and outperforms antenna selection anywhereon the rate region. Note that antenna
selection is the only method that does not use SVD receivers in caseµ1 = 1 or µ2 = 1, which is
why it is worse than all other methods at the borders of the rate region.



4. Quality of Service Constrained Utility Maximization in t he
MIMO Broadcast Channel

Although, as mentioned in the previous chapter, weighted sum rate maximization is an important
tool for considering requirements of higher layers in the communication system, in many cases a
priori finding the appropriate weights fulfilling the demands in the system turns out to be a non-
trivial problem. Assigning a higher weight to a certain userthan to another user for example,
does not automatically imply that this user attains a higherrate in the end. Additionally, some
mobile applications like video streams, require guaranteed minimum transmission rates to function
properly. For this reason Quality of Service (QoS) constraints are introduced in this section and
considered for utility maximization. First the general problem setup will be explained and three
popular QoS constrained utility maximization problems will be introduced in Section 4.1, before
their optimum solution via the dual problem will be given in Section 4.2. The remainder of the
chapter efficient is dedicated to near optimum approaches. After an overview of state-of-the-
art near optimum algorithms in Section 4.3, the concepts of spatial zero-forcing and successive
resource allocation will be applied to the QoS constrained optimization problems in Section 4.4,
before the chapter is concluded with further complexity reductions in Section 4.5 and numerical
results in Section 4.6.

4.1 Problem Setup

In general a QoS constrained utility maximization problem can be written as

max
{Wk}k=1,...,K ,r

u (W1, . . . ,WK , r) ,

s.t.h1 (r) ≤ 0c1,1, h2 (r) = 0c2,1, {W1, . . . ,WK} ∈ CP,

r ∈ P
(
HH

1 , . . . ,H
H
K ,W1, . . . ,WK

)
(4.1)

where the maximization is carried out with respect to the ratesr = [R1, . . . , RK ]
T and the covari-

ance matricesWk in the dual MAC, from which the transmit covariance matricesin the broad-
cast channels can be obtained with the duality transformations from [5]. u (W1, . . . ,WK , r),
CP, h1 (R1, . . . , RK) ∈ Cc1 andh2 (R1, . . . , RK) ∈ Cc2 denote the utility function, the con-
straint set on the covariance matricesW1, . . . ,WK , the vector of QoS inequality constraint func-
tions and the vector of QoS equality constraint functions, respectively. c1 and c2 are the num-
ber of inequality and equality constraints, respectively.Along the lines of [87, Problem 3.1],
the relation between the ratesR1, . . . , RK and the covariance matrices is considered by the set
P
(
HH

1 , . . . ,H
H
K ,W1, . . . ,WK

)
. It contains the rate region of the MAC achievable with fixed

covariance matricesW1, . . . ,WK and is given by

P
(
HH

1 , . . . ,H
H
K ,W1, . . . ,WK

)
=

=

{

r

∣
∣
∣
∣
∣

∑

i∈S
Ri ≤ log2

∣
∣
∣
∣
∣
ICNT +

∑

i∈S
HH

i WiHi

∣
∣
∣
∣
∣
, ∀S ⊆ {1, . . . , K}, Rk ≥ 0, ∀k

}

,
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which can be derived from [13, Theorem 15.3.6] and the fact that the input symbolsxk[n] and the
noise are multivariate Gaussian distributed.P

(
HH

1 , . . . ,H
H
K ,W1, . . . ,WK

)
is a polyhedron with

2K +1 vertices and it can be shown that it fulfills the properties ofa polymatroid as defined in [27,
Definition 3.1]. The union of all polymatroids, whose covariance matrices fulfill the sum power
constraintPTx leads to the capacity region of the broadcast channel [88, Chapter 2.4], i.e.

C
(
HH

1 , . . . ,H
H
K , PTx

)
=

⋃

∑K
k=1 tr(Wk)≤PTx

P
(
HH

1 , . . . ,H
H
K ,W1, . . . ,WK

)
.

Here, three popular QoS constrained utility maximization problems will be considered, although
the presented framework can also be applied to other problems with a concave utility function and
a convex constraint set. In the following these problems will be introduced by explaining the utility
functions, the power constraint set and the constraint functions in (4.1).
• Weighted Sum Rate Maximization with Minimum Rate Requirements

The utility function is the weighted sum of the user’s rates and each user’s rate must not be
lower than a predefined minimum rate, whereRk,min denotes the minimum required rate for
userk. The average sum transmit power must not exceedPTx and all transmit covariance must
be positive semidefinite. Thus for the weighted sum rate maximization under minimum rate
requirements the functions and sets in (4.1) read as

u (W1, . . . ,WK , r) = µTr with µ = [µ1, . . . , µK ]
T

h1 (r) =






R1,min
...

RK,min




−






R1
...

RK




 = rmin− r

h2 (r) = 0c2,1

CP =

{

W1 ∈ C
Cr1×Cr1 , . . . ,WK ∈ C

CrK×CrK

∣
∣
∣
∣
∣
Wk � 0, ∀k = 1, . . . , K,

K∑

k=1

tr(Wk) ≤ PTx

}

.

An algorithm to solve this specific QoS constrained utility maximization optimally has been
proposed in [8]. It is based on an iterative search for appropriate weight vectors with which a
weighted sum rate maximization without minimum rate constraints leads to the same user rates
as with those constraints. In each iteration the weights of all except one user are kept fixed
and for that user its weight is determined by bisection so that its minimum rate requirement is
fulfilled with equality. Obviously, each iteration requires the repeated solution of a weighted
sum rate maximization by Algorithm 3.1. Using the ellipsoidmethod [89] as presented in
the following, has been proposed by the same authors in [90].Clearly, the problem at hand
can be infeasible, as the transmit power constraint can be tolow to fulfill all minimum rate
requirements. Nevertheless, the algorithm presented in the next section is able to detect such a
case.

• Sum Rate Maximization with Relative Rate Constraints
With this problem the resulting rates of each pair of users must fulfill predefined ratios. Choos-
ing without loss of generality user1 to be the reference user, these ratios are a priori given by
the valuesρk = Rk

R1
for k = 2, . . . , K. The utility function is the sum rate, which is equiva-

lent to using the rate of user1 as utility due to the fixed ratiosρk. Additionally, a sum power
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constraint is imposed. Hence, the utility function and the constraints can be stated as

u (W1, . . . ,WK , r) = R1

h1 (r) = 0c1,1

h2 (r) =






R1
...
R1




−






R2

ρ2
...

RK

ρK






CP =

{

W1 ∈ C
Cr1×Cr1 , . . . ,WK ∈ C

CrK×CrK

∣
∣
∣
∣
∣
Wk � 0, ∀k = 1, . . . , K,

K∑

k=1

tr(Wk) ≤ PTx

}

.

With such a problem the intersection point of a line through the origin and the point
[1, ρ2, . . . , ρK ] and the boundary of the capacity region achievable with the transmit power
PTx is determined. Such a problem occurs for instance in [91, Section 3.4] and is also known
as rate balancing. The optimum solution has been proposed byLee in Jindal in [9] and fits
perfectly into the framework presented in the next section.

• Sum Power Minimization with Minimum Rate Requirements
In this case the users’ minimum rate requirements should be achieved with the minimum possi-
ble transmit power. Thus, the utility is the negative sum of the traces of the transmit covariance
matrices, andCp is the set of positive semidefinite matrices, so that

u (W1, . . . ,WK , r) = −
K∑

k=1

tr (Wk)

h1 (r) =






R1,min
...

RK,min




−






R1
...

RK




 = rmin− r

h2 (r) = 0c2,1

CP =
{
W1 ∈ C

Cr1×Cr1 , . . . ,WK ∈ C
CrK×CrK |Wk � 0, ∀k = 1, . . . , K

}
.

An algorithm attempting to solve the sum power minimizationfor MIMO systems has first
been presented in [92], which is however not optimum. In [93]an optimum algorithm for
scenarios with

∑K
k=1 rk ≤ NT is described. For general antenna configurations it is proposed

in [9] to iteratively solve the rate balancing problem withρk =
Rk,min

R1,min
until a power constraint

is found so that the minimum rate constraints are fulfilled with equality. In [8] Wunder and
Michel solve the power minimization problem in a way to the one they propose to solve the
weighted sum rate maximization under minimum rate constraints by alternating adjustments
of the users’ weights. Solving the power minimization problem with the framework to be
presented next corresponds to using the algorithm from [87].

4.2 Optimum Algorithm

In this section a general framework for the optimum solutionto the QoS constrained utility maxi-
mization problems presented in the last section will be given. In Section 4.2.1 the solution via the
dual problem will be described, where some algorithmic details are given in Section 4.2.2.
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4.2.1 Solution of the Dual Problem

For all instances of the QoS constrained utility maximization mentioned in the previous section the
constraint set on the variablesW1, . . . ,WK , r is convex. That can be proofed by showing that any
convex combination of two feasible variable setsW

(1)
1 , . . . ,W

(1)
K , r(1) andW (2)

1 , . . . ,W
(2)
K , r(2)

is again feasible. This is very simple for the inequality andequality constraint functions and the
setCP, which are all linear in the rates and the covariance matrices, respectively for the presented
optimization problems. The fact that

λr(1) + (1− λ)r(2) ∈ P
(

HH
1 , . . . ,H

H
K , λW

(1)
1 + (1− λ)W

(2)
1 , . . . ,W

(1)
K + (1− λ)W

(2)
K

)

∀λ, 0 ≤ λ ≤ 1 can be shown via the concavity of the logarithm in the determinant of a positive def-
inite Hermitian matrix [94, Theorem 7.6.7]. As additionally all utility functions introduced above
are concave in the rates and covariance matrices, Problem (4.1) becomes a convex optimization
problem for the considered QoS maximizations. To obtain an algorithm for its solution the con-
cept of Lagrangian duality [33, Chapter 6] will be applied. The dual problem of (4.1) with respect
to the rate equality and inequality constraints is given by

min
θ1≥0,θ2

sup
r∈P(HH

1 ,...,HH
K

,W1,...,WK)
W1,...,WK∈CP

{
u (W1, . . . ,WK , r)− θT

1 h1(r)− θT

2 h2(r)
}
. (4.2)

The setsCP andP
(
HH

1 , . . . ,H
H
K ,W1, . . . ,WK

)
are convex, there exists a set of ratesr̂, for which

h1(r̂) < 0c1,1 andh2(r̂) = 0c2,1 provided that the problem is feasible and0c2,1 ∈ int{h2(r)}.
Thus, the conditions for strong duality from [33, Theorem 6.2.4] are satisfied and the duality gap
is zero, i.e., the optimum in (4.2) is identical to the optimum in the primal problem (4.1). For
this reason the solution of (4.2) will be pursued now. For notational convenience Problem (4.2) is
reformulated as

min
θ

max
r∈P(HH

1 ,...,HH
K

,W1,...,WK)
W1,...,WK∈CP

{
u (W1, . . . ,WK , r)− θTh(r)

}
= min

θ
g(θ), s.t.Ccθ ≤ dc,

(4.3)
with

θ =
[
θT

1 θ
T

2

]T
, h(r) =

[
hT

1 (r)h
T

2 (r)
]T

andg(θ) denotes the dual function.Cc anddc resemble the linear constraints on the dual variables
in θ and are given by

Cc =







−IK , minimum rate constraints
[

−IK−1

1
T

K−1

]

, rate balancing
,dc =







0K,1, minimum rate constraints
[

0K−1,1

1

]

, rate balancing
.

(4.4)
The supremum operator in (4.2) has been replaced by the minimum operator as the constraint set
is compact, i.e., closed and bounded. The constraints onθ introduced above for the rate balancing
problem do not change the result of the optimization problem, but reduce the search space for the
optimum value ofθ, a property that will be helpful for the algorithm to be described next. That is
because for the rate balancing problem the dual function reads as

g(θ) = max
r∈P(HH

1 ,...,HH
K

,W1,...,WK)
W1,...,WK∈CP

{(

1−
K∑

k=2

[θ2]k−1

)

R1 +

K∑

k=2

[θ2]k−1

Rk

ρk

}

(4.5)
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In case[θ2]k+1 < 0 the maximum operator sets the corresponding rateRk to zero, as any other
feasible value forRk leads to a lower value of the objective function. Thus,[θ2]k+1 < 0 has the
same effect as[θ2]k+1 = 0, which is considered by the constraint function in (4.4). The same

argument holds for1 −∑K−1
j=1 [θ2]j < 0 and the corresponding rateR1. The same result has also

been stated in [9, Theorem 1].
As every dual problem, (4.3) constitutes a convex optimization problem and the ellipsoid
method [89], [95] will be used in the following for its solution. In each step the range of possible
solutions is confined to an ellipsoid, where the volume covered by the ellipsoid shrinks with every
iteration until convergence is achieved. The ellipsoidE (i) after theith iteration is characterized by
a centerθ(i) and a matrixE(i) so that

E (i) =
{

θ

∣
∣
∣

(
θ − θ(i)

)T
E(i)−1 (

θ − θ(i)
)
≤ 1

}

,

where the determination of the initial ellipsoidE (0) is described in the next section. In each iteration
first the halfspace

H(i) =
{
θ
∣
∣
(
θT − θ(i),T

)
a(i) ≤ b(i)

}
, (4.6)

is determined. It is characterized by the vectora(i) and the scalarb(i) and will be used to shrink
the size of the ellipsoid. For that purpose it should not contain the ellipsoidE (i) completely but
still the optimum solution. In caseθ(i) is feasible, i.e.,Ccθ

(i) ≤ dc, the fact that−h
(
r̂(i)
)

is a
subgradient ofg(θ) atθ = θ(i) is exploited , where
{

r̂(i), Ŵ
(i)
1 , . . . , Ŵ

(i)
K

}

= argmax
r∈P(HH

1
,...,HH

K
,W1,...,WK)

W1,...,WK∈CP

{
u (W1, . . . ,WK , r)− θ(i),Th(r)

}
. (4.7)

That is because

g(θ) ≥ u
(

Ŵ
(i)
1 , . . . , Ŵ

(i)
K , r̂(i)

)

− θTh
(
r̂(i)
)

≥ g
(
θ(i)
)
−
(
θT − θ(i),T

)
h
(
r̂(i)
)
, ∀θ with Ccθ ≤ dc, (4.8)

which corresponds to the inequality from the definition of a subgradient of a convex function at
θ(i) [33, Definition 3.2.3]. Another consequence from this definition is that for all feasibleθ with
(
θT − θ(i),T

)
h
(
r̂(i)
)
< 0 the dual functiong(θ) will be greater thang

(
θ(i)
)
, i.e., the optimum

solution to will not lie in the half-space defined this way. Thus for feasibleθ(i) the parameters of
the halfspaceH(i) in (4.6) read as

a(i) = −h
(
r̂(i)
)
, b(i) = 0.

In caseθ(i) violates thejth constraint, i.e.,
[
Ccθ

(i)
]

j
= eT

j Ccθ
(i) =: cTj,cθ

(i) > [dc]j , the subgradi-

enth
(
(r̂(i)

)
does not exist. Instead the halfspaceH(i) =

{

θ

∣
∣
∣cTj,cθ − [dc]j ≤ 0

}

is taken, which

parameters are given by
a(i) = cj,c, b(i) = [dc]j − cTj,cθ

(i).

The ellipsoidE (i+1) is then determined to be the ellipsoid with minimum volume covering the
space

E (i) ∩H(i). (4.9)
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As proven in [95], this design criterion leads to the following update rules for the parameters of
the ellipsoid, which are given by

θ(i+1) = θ(i) − 1 + αn

(n + 1)
√
a(i),TE(i)a(i)

E(i)a(i)

E(i+1) =
n2(1− α2)

n2 − 1

(

E(i) − 2(1 + αn)

(n + 1)(1 + α)a(i),TE(i)a(i)
E(i)a(i)a(i),TE(i)

)

,

whereα = 0 in caseθ(i) is feasible and

α =
−b(i)√

a(i),TE(i)a(i)
=

cTj,cθ
(i) − [dc]j√

a(i),TE(i)a(i)

otherwise. n denotes the number of variables contained inθ, i.e., n = K for minimum rate
constraints andn = K − 1 for the rate balancing problem.
In [89] it is shown that the difference between the optimum value of the dual function andg

(
θ(i)
)

can be upper bounded by
√

hT ((r̂(i))E(i)h ((r̂(i)), i.e., the algorithm can be terminated, if this
bound falls below a predefined thresholdε leading to the stopping criterion

√

hT ((r̂(i))E(i)h ((r̂(i)) ≤ ε.

If on the other hand it is observed thatθ(i) is infeasible and

cTj,cθ
(i) − [dc]j −

√
a(i),TE(i)a(i) > 0

the problem is infeasible, which can happen, if the minimum rate requirements for the weighted
sum rate maximization cannot be fulfilled with the given transmit power constraint.

4.2.2 Algorithmic Details

In this section the open issues of the algorithm to solve QoS constrained utility maximization prob-
lems presented above will be covered, namely the initialization of the ellipsoid, the computation
of the subgradientsh

(
(r̂(i)

)
and the reconstruction of the primal solution.

Initialization of the Ellipsoid
Obviously, the initial ellipsoidE (0) has to contain the optimum Lagrange multiplier minimiz-
ing (4.3). Furthermore its parameters should be easily computable, and the volume of the ellipsoid
should be small to achieve a fast convergence. For rate balancing, the parameters of the initial
ellipsoid are given by [9]

θ(0) =
1

K
1K−1

E(0) =

(

1− 1

K

)

IK−1.

For the remaining QoS constrained utility maximization problems introduced in this chapter, the
optimum vector of Lagrangian multipliersθ∗ can be constrained to lie in the cuboid

Cu = {θ |0n,1 ≤ θ ≤ θmax} .
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E (0) is then chosen to be the ellipsoid with minimum volume completely coveringCu. Thus, the
parameters of the initial ellipsoid are given by

θ(0) =
1

2
θmax

E(0) = diag
([
θ2

max

]

1
, . . . ,

[
θ2

max

]

n

)
K/4

For the weighted sum rate maximization under minimum rate requirements,θmax has been derived
in [90] to be equal to

θmax =
K∑

j=1

µj

(
Rj,su(PTx)− R̄j

)







1

(R̄1−R1,min)
...
1

(R̄K−RK,min)






,

where the single-user rate

Rj,su(PTx) = max
Wj

log2
∣
∣ICNT +HH

j WjHj

∣
∣ , s.t. tr (Wj) ≤ PTx

corresponds to the rate userj can achieve if it receives all available transmit power. Therates
R̄j must all be greater than the corresponding minimum ratesRj,min and achievable with a sum
power constraint less thanPTx. Such a rate vector can for example be achieved by solving therate
balancing problem withρk =

Rk,min

R1,min
, for k = 2, . . . , K under a sum power constraint ofPTx − ǫ,

whereǫ > 0. For this purpose also the near optimum algorithm to be presented in Section 4.4
can be used. For the power minimization, in [87] it is proposed to determine for each userk
a set of sub-optimum covariance matricesW

(k)
1 , . . . ,W

(k)
K in the following way. For each user

j 6= k the minimum rate requirementRj,min has to be fulfilled with equality and thekth user’s rate
must be equal toRk,min + 1. A fixed decoding order of the users in the MAC is assumed and the
matricesW (k)

j are determined successively. First the covariance matrix of the user decoded last
is computed so that its minimum rate requirement is fulfilledwith equality. This matrix is kept
fixed and considered in the interference terms of the other users’ rates. With this simplification
the covariance matrix of the user decoded second last can be computed so that its minimum rate
requirement is fulfilled with equality. This process is continued until the covariance matrix of
the user decoded first is computed and repeated until all possible scenarios have been considered
where one user’s minimum rate requirement has been increased by one. Finally,θmax is given by

θmax =








∑K
j=1 tr

(

W
(1)
j

)

...
∑K

j=1 tr
(

W
(K)
j

)







.

Computation of Subgradients
The computation of the subgradientsh

(
(r̂(i)

)
requires the solution of (4.7). When a sum power

constraint is contained inCP, Problem (4.7) is a weighted sum rate maximization, that canbe solved
with Algorithm 3.1. That is because for the weighted sum ratemaximization under minimum rate
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requirements

g(θ) = max
r∈P(HH

1
,...,HH

K
,W1,...,WK)

W1,...,WK∈CP

{
u (W1, . . . ,WK , r)− θ(i),Th(r)

}
=

= max
r∈P(HH

1
,...,HH

K
,W1,...,WK)

W1,...,WK∈CP

{(

µT + θ
(i),T
1

)

r
}

− θ
(i),T
1 rmin (4.10)

holds and for rate balancing this can be seen from (4.5). For the sum power minimization, Prob-
lem (4.7) reads as

{

(r̂(i), Ŵ
(i)
1 , . . . , Ŵ

(i)
K

}

= argmax
r∈P(HH

1
,...,HH

K
,W1,...,WK)

W1�0,...,WK�0

{

θ
(i),T
1 r −

K∑

k=1

tr (Wk)

}

. (4.11)

Denoting the used transmit power asPaux =
∑K

k=1 tr (Wk), the maximization in (4.11) can be split
according to

max
Paux







max
r∈P(HH

1
,...,HH

K
,W1,...,WK)

W1�0,...,WK�0,
∑K

k=1
tr(Wk)≤Paux

θ
(i),T
1 r − Paux







= max
Paux

{RWSRmax(Paux)− Paux}

The inner maximization corresponds to a weighted sum rate maximization, which can be solved
efficiently using Algorithm 3.1 and the outer maximization is conducted over the function
RWSRmax(Paux) − Paux, which is concave in the scalar variablePaux and can therefore be solved
by the bisection method [33, Chapter 8.2]. That is becauseRWSRmax(Paux) is concave inPaux and
the sum of concave functions is also concave. The first fact can be shown via

RWSRmax

(
λP (1)

aux + (1− λ)P (2)
aux

)
≥ Rwsr

(

λW
(1)
1 + (1− λ)W

(2)
1 , . . . , λW

(1)
K + (1− λ)W

(2)
K

)

≥ λRwsr

(

W
(1)
1 , . . . ,W

(1)
K

)

+ (1− λ)Rwsr

(

W
(2)
1 , . . . ,W

(2)
K

)

(4.12)

whereRwsr(W1, . . . ,WK) is given by (3.12) and theW (i)
k are the optimum covariance matrices

for the power constraintP (i)
aux,i.e.,

{

W
(i)
1 , . . . ,W

(i)
K

}

= argmax
W1�0,...,WK�0

Rwsr(W1, . . . ,WK), s.t.
K∑

k=1

tr(Wk) ≤ P (i)
aux.

The first inequality in (4.12) stems from the fact that the covariance matricesλW (1)
k +(1−λ)W (2)

k ,
k = 1, . . . , K fulfill the sum power constraintλP (1)

aux+(1−λ)P
(2)
aux but are not necessarily optimum

for that sum power constraint. The second inequality directly follows from the concavity of the
weighted sum rate in the covariance matrices of the dual MAC.
The bisection method requires the evaluation of the gradients

∂(RWSRmax(Paux)− Paux)

∂Paux
=

∂RWSRmax(Paux)

∂Paux
− 1, (4.13)
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where the powerPopt has to be found, so that the gradient in (4.13) becomes zero leading to the
equality

∂RWSRmax(Paux)

∂Paux

∣
∣
∣
∣
Popt

= 1.

The derivative
∂RWSRmax(Paux)

∂Paux

∣
∣
∣
∣
P

= ν (P )

at a certain powerP is given by the Lagrange multiplier from the weighted sum rate maximization
corresponding to the sum power constraintP , i.e.,

ν (P ) = argmin
ν

max
r∈P(HH

1
,...,HH

K
,W1,...,WK)

W1�0,...,WK�0

{

θ
(i),T
1 r − ν

(
K∑

k=1

tr (Wk)− P

)}

,

which follows from the local sensitivity analysis of a perturbed convex optimization problem [29,
Section 5.6.3]. Thus, given an interval[0;Pmax] containingPopt, first a weighted sum rate max-
imization has to be solved with sum power constraintPmax

2
using for example Algorithm 3.1

and the corresponding Lagrange multiplierν
(
Pmax
2

)
has to be determined. Ifν

(
Pmax
2

)
is greater

than one, the bisection method is continued in the interval[0;Pmax/2], otherwise in the interval
[Pmax/2;Pmax]. Note that in comparison with the algorithm for power minimization from [9], where
this problem is solved via an iterative application of the rate balancing problem, the presented ap-
proach requires only one execution of the ellipsoid method,which shows a slow convergence
behavior, whereas the method from [9] relies on an iterativeapplication of the ellipsoid method.
Reconstruction of the Primal Solution
After the convergence of the ellipsoid method, it is still necessary to compute the ratesr̃ and the
covariance matrices̃W1, . . . , W̃K optimum for (4.1) from the solution of the dual problem. Let

θ∗ = argmin
θ

g(θ), s.t.Ccθ ≤ dc

be the optimum solution of the dual problem and

{r∗,W ∗
1 , . . . ,W

∗
K} = argmax

r∈P(HH
1

,...,HH
K

,W1,...,WK)
W1,...,WK∈CP

{
u (W1, . . . ,WK , r)− θ∗,Th(r)

}
=

= argmax
r∈P(HH

1 ,...,HH
K

,W1,...,WK)
W1,...,WK∈CP

{

µ̂T(θ∗)r − η
K∑

k=1

tr (Wk)

}

, (4.14)

be the rates and covariance matrices leading to the maximum of the dual function, where

µ̂(θ∗) = µ+ θ∗, η = 0

for the weighted sum rate maximization with minimum rate requirements [c.f. (4.10)],

µ̂(θ∗) =

[
1−∑K−1

k=1 [λ∗]j
θ∗

]

, η = 0
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for rate balancing [c.f. (4.5)] and

µ̂(θ∗) = θ∗, η = 1

for the power minimization with minimum rate requirements [c.f. (4.11)]. In case
{r∗,W ∗

1 , . . . ,W
∗
K} is a unique solution to (4.14), the maximizing variables to the primal prob-

lem are identical to the optimum variables of the dual problem, i.e., r̃ = r∗ andW̃k = W ∗
k ,

∀k = 1, . . . , K. As it has been shown in the previous section, the ratesr∗ and the covariance
matricesW ∗

1 , . . . ,W
∗
K result from a weighted sum rate maximization. It can therefore easily be

detected whether the solution of the dual problem is unique.In case all entries in the vector̂µ (θ∗)
are different1, there is only one single optimum decoding order in the dual MAC, which is given
by the order of the weights [see (3.10)] and thus only one set of optimum rates and covariance
matrices. This can be shown as in the proof of Lemma 3.3 in [87]. Otherwise, no unique decoding
order results from (3.10). Any decoding order within the users having equal weights and using
the same covariance matricesW ∗

1 , . . . ,W
∗
K for all decoding orders leads to different rate vectors

but the same value of the dual function. Additionally, any convex combination of the rate vectors
obtained with different decoding orders is also optimum with respect to the dual function. This
implies that the dual function is maximized on a time-sharing region of the capacity region. Those
regions correspond to these faces of the polytopeP(HH

1 , . . . ,H
H
K ,W

∗
1 , . . . ,W

∗
K), where the con-

straints
∑

i∈Sj
Ri ≤ log2

∣
∣
∣ICNT +

∑

i∈Sj
HH

i W
∗
i Hi

∣
∣
∣, j = 1, . . . , L are fulfilled with equality.Sj

denotes thejth set containing at least two users having equal weights andL is the total number
of sets containing at least two users with equal weights. Points on the time-sharing region are not
directly achievable by successive decoding [36, Chapter 3.3.3], but only by time-sharing between
the corner points. While the dual function is maximized on every point of the time-sharing region,
the primal problem may be infeasible on parts of the time-sharing region or may even be solved by
one point on the time-sharing region only. For this reason, additional measures have to be taken to
reconstruct the primal solution from the dual in case some users have equal weights.
A naive approach would be to compute the rates for all possible decoding orders and determine
the convex combination of the rate vectors obtained this waysolving the primal problem (4.1).
With increasing number of setsSj and increasing cardinality of these sets, such an approach be-

comes more and more complex, as
(
∑L

j=1 |Sj|
)

! different decoding orders are possible. For this

reason a successive algorithm for the computation of the time-sharing solution has been proposed
in [96], which is based on the method from [97]. The basic ideais to iteratively approximate the
polytopeP

(
HH

1 , . . . ,H
H
K ,W

∗
1 , . . . ,W

∗
K

)
by another polytope with less extreme points, which

is contained completely inP
(
HH

1 , . . . ,H
H
K ,W

∗
1 , . . . ,W

∗
K

)
. Denoting the polytope of theith

iteration asP̂(i)
(
HH

1 , . . . ,H
H
K ,W

∗
1 , . . . ,W

∗
K

)
, the primal problem in theith iteration reads as

max
r

u (W ∗
1 , . . . ,W

∗
K , r) ,

s.t.h1 (r) ≤ 0c1,1, h2 (r) = 0c2,1, r ∈ P̂(i)
(
HH

1 , . . . ,H
H
K ,W

∗
1 , . . . ,W

∗
K

)
, (4.15)

where the maximization with respect to the covariance matrices can be skipped due to the fact
that theW ∗

1 , . . . ,W
∗
K are optimum on the whole time sharing region. The conditionr ∈

1Due to the finite accuracy of the ellipsoid method, the case that some users have equal weights will occur very
rarely in practice. Thus, two weightsλ∗

k andλ∗

j should only be considered as different, if|λ∗

j − λ∗

k| ≥ α, whereα
denotes an appropriate threshold.
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P̂(i)
(
HH

1 , . . . ,H
H
K ,W

∗
1 , . . . ,W

∗
K

)
can be rewritten as

r ≤ R̂(i)α, α ≥ 0K+i,1,

K+i∑

j=1

[α]j ≤ 1,

where R̂(i) =
[

R̂(1), r̂(1), . . . , r̂(i−1)
]

contains the extreme points of the polytope

P̂(i)
(
HH

1 , . . . ,H
H
K ,W

∗
1 , . . . ,W

∗
K

)
and r̂(j) denotes the extreme point added after stepj. The

matrix R̂(1) for the first iteration is given by

R̂(1) =

[
log2

∣
∣ICNT +HH

1 W
∗
1H1

∣
∣

0K−1,1
, . . . ,

0K−1,1

log2
∣
∣ICNT +HH

KW
∗
KHK

∣
∣
, rmin + ǫ1K

]

,

whereǫ > 0 should be chosen so thatrmin lies in the interior of the initial polytope, i.e., the ini-
tial problem should be feasible. Clearly for the rate balancing problem, which is always feasible,
the last entry inR̂(1) can be skipped. To save computational complexity by using aninitial poly-
tope with less extreme points, for the power minimization one can use the utility and constraint
functions of the rate balancing problem for the determination of the time-sharing solution, where
the ratiosρk =

Rk,min

R1,min
are given by the ratios of the minimum rates. That is because in the op-

timum all rate inequalities are fulfilled with equality, as otherwise the transmit power could be
reduced without violating the minimum rate constraints. Furthermore the solution of such a rate
balancing solution with fixed covariance matrices will lie in the same time-sharing region. Thus,
Problem (4.15) reads as

max
r,α

u (W ∗
1 , . . . ,W

∗
K , r) ,

s.t.h1 (r) ≤ 0c1,1, h2 (r) = 0c2,1, r − R̂(i)α ≤ 0, α ≥ 0K+i,1,
K+i∑

j=1

[α]j ≤ 1, (4.16)

which is a linear program for the QoS constrained problems introduced in this chapter, that can
be efficiently solved (e.g. [33, Chapter 2.7]). Once the solution r̄(i) andᾱ(i) for Problem (4.16)
has been obtained, the Lagrange multiplierλ̄(i) corresponding to the third constraint in (4.16) is
computed according to

λ̄(i) = argmin
θ≥0

ḡ(θ) = argmin
θ≥0

{

u
(
W ∗

1 , . . . ,W
∗
K , r̄

(i)
)
− θT

(

r̄(i) − R̂(i)ᾱ(i)
)}

.

In case the maximum of the dual function̄g
(
λ̄(i)
)

of Problem (4.16) is identical to the maxi-
mum of the dual functiong(θ∗) of the original problem in (4.1), the optimum rates for the pri-
mal problem have been found with the ratesr̄(i) and r̃ = r̄(i). That is because the optimum
utility from (4.16) gives a lower bound for the optimum utility in (4.1), as the constraint set
P̂(i)

(
HH

1 , . . . ,H
H
K ,W

∗
1 , . . . ,W

∗
K

)
is completely contained in the polytope from (4.1), i.e., the

constraint set in (4.15) is stricter than in the original Problem (4.1), and for both problems the
duality gap is zero. Correspondingly, the dual functionḡ

(
λ̄(i)
)

is a lower bound forg(θ∗). Thus,
in case the optimum dual functions are equal, both problems lead to the same optimum solu-
tion. Otherwise, i.e., if̄g

(
λ̄(i)
)
< g(θ∗), a new extreme point has to be added to the polytope

P̂(i)
(
HH

1 , . . . ,H
H
K ,W

∗
1 , . . . ,W

∗
K

)
. This pointr̂(i) solves the problem

r̂(i) = argmax
r

λ̄(i),Tr, s.t.r ∈ P
(
HH

1 , . . . ,H
H
K ,W

∗
1 , . . . ,W

∗
K

)
, (4.17)
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which is a linear program that is solved by one of the extreme points of
P
(
HH

1 , . . . ,H
H
K ,W

∗
1 , . . . ,W

∗
K

)
. As pointed out in [97],̄λ(i) is a subgradient of the optimum util-

ity in (4.16) with respect to changes in the constraint vector R̂(i)α. Hence, by (4.17) this extreme
point ofP

(
HH

1 , . . . ,H
H
K,W

∗
1 , . . . ,W

∗
K

)
is added to the set̂P(i)

(
HH

1 , . . . ,H
H
K ,W

∗
1 , . . . ,W

∗
K

)

that is aligned closest to the direction of strongest increase of the utility function. The extreme
points ofP

(
HH

1 , . . . ,H
H
K ,W

∗
1 , . . . ,W

∗
K

)
only differ in the encoding order of users having equal

weightsµ̂(θ∗). The optimum extreme point with respect to (4.17) is then achieved by decoding
the users within each groupSj in increasing order of the corresponding weights inλ̄(i), i.e., the
user withargmaxk∈Sj

[
λ̄(i)
]

k
is decoded last amongst the users in groupSj , whereas the decoding

order amongst the different groups and the users having unique weightsµ̂(θ∗) remains the same
as in the original problem. The proof for optimality of this decoding order can be found in [96].
The whole algorithm for QoS constrained utility maximization is summarized in Algorithm 4.1.
As it has been shown in this section, QoS constrained optimization problems can be solved by
an iterative solution of weighted sum rate maximizations. One approach for efficient algorithms
would therefore be to apply the methods presented in the previous chapter for weighted sum rate
maximization and determine the weights optimum for the original QoS constrained problem with
the ellipsoid method. As it exhibits a considerable amount of computational complexity and slow
convergence behavior, more efficient algorithms for near optimum solutions to QoS constrained
optimization problems will be presented next.

4.3 State-of-the-Art Near Optimum Approaches

Zero-forcing is also a popular concept for solving QoS constrained utility maximization problems.
The simplest zero-forcing method is to allow only one user per carrier and separate the users by
the carriers, which leads to Orthogonal Frequency DivisionMultiple Access (OFDMA). The prob-
lem of power minimization under minimum rate requirements is solved almost optimally under
the OFDMA constraint in [86] via the dual problem. Although the algorithm is presented for
Single-Input Single-Output (SISO) systems in [86], its extension to MIMO is straightforward by
applying left and right singular vectors as receive and transmit filters, respectively, as it is done
for example in [98]. In this paper one special case of the ratebalancing problem, the so-called
Kalai-Smorodinsky bargaining solution is considered. In [99] the rate balancing problem for SISO
OFDMA systems is considered, where an equal power allocation is assumed and the carriers are
successively allocated to the users. Thereby that user receives a carrier in each step that rate achiev-
able with an equal power allocation is furthest away from thedesired proportion of the sum rate.
By serving only one user per carrier, the spatial degrees canhowever not fully exploited, which
is why OFDMA approaches inhere considerable performance losses. One way to overcome this
drawback but remain with zero-forcing is to apply Block-Diagonalization (BD) [61] on each car-
rier and perform QoS constrained power allocation over the resulting scalar subchannels. In [100]
the performance of such a scheme is improved for the power minimization problem by recalculat-
ing the receive and transmit filters. BD is combined with DPC in [101] for that problem, where
the main focus is put on determining the optimum encoding order. As already mentioned in the
last chapter, BD requires the total number of receive antennas in the system to be smaller than the
number of transmit antennas, an unlikely setup in practicalsystems. For that reason an algorithm
to allocate data streams to users for the power minimizationproblem is presented in [102], where
zero-forcing transmit filters are applied at the transmitter and the left singular vectors at the re-
ceivers. For the same problem, a successive allocation of data streams to users in a MISO system
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Algorithm 4.1 Algorithm for QoS Constrained Utility Maximization Using the Ellipsoid Method
1: Initialize ellipsoid:

Rate Balancing:θ(0) = 1
K
1K−1, E(0) =

(
1− 1

K

)
IK−1

Power minimization and weights sum rate maximization with minimum rate requirements:
θ(0) = 1

2
θmax, E(0) = diag ([θ2

max]1 , . . . , [θ
2
max]n)K/4

2: i = 1, convergence =FALSE
3: repeat
4: if θ(i−1) feasiblethen
5: Compute subgradient−h

(
(r̂(i)

)

6: a(i) = −h
(
(r̂(i)

)
, b(i) = 0, α = 0

7: if
(√

hT ((r̂(i))E(i)h ((r̂(i)) ≤ ε
)

then
8: convergence=TRUE
9: end if

10: else
11: Determine violated constraintcTj,cθ

(i) > [dc]j
12: a(i) = cj,c, b(i) = [dc]j − cTj,cθ

(i), α = −b(i)√
a(i),TE(i)a(i)

13: end if
14: Update ellipsoid:

θ(i+1) = θ(i) − 1+αn

(n+1)
√
a(i),TE(i)a(i)

E(i)a(i)

E(i+1) = n2(1−α2)
n2−1

(

E(i) − 2(1+αn)

(n+1)(1+α)a(i),TE(i)a(i)E
(i)a(i)a(i),TE(i)

)

15: i = i+ 1
16: until convergence=TRUE or detection of infeasibilty
(

cTj,cθ
(i) − [dc]j −

√
a(i−1),TE(i)a(i−1) > 0

)

17: Find users having equal weightŝµ
(
θ(i−1)

)

18: if group of at least two users having equal weights existsthen
19: {r∗,W ∗

1 , . . . ,W
∗
K} = argmax

r∈P(HH
1 ,...,HH

K
,W1,...,WK)

W1,...,WK∈CP

{
u (W1, . . . ,WK , r)− θ(i),Th(r)

}

20: R̂(1) =

[
log2

∣
∣ICNT +HH

1 W
∗
1H1

∣
∣

0K−1,1
, . . . ,

0K−1,1

log2
∣
∣ICNT +HH

KW
∗
KHK

∣
∣
,Rmin + ǫ1K

]

21: j = 1
22: repeat
23: Obtainr̃(j) andα̃(j) as maximizers in (4.16)

24: λ̃(j) = argminθ≥0
g̃(θ) = argminθ≥0

{

u
(
W ∗

1 , . . . ,W
∗
K , r̃

(j)
)
− θT

(

r̃(j) − R̂(j)α̃(j)
)}

25: r̂(j) = argmaxr λ̃
(j),Tr, s.t.r ∈ P

(
HH

1 , . . . ,H
H
K ,W

∗
1 , . . . ,W

∗
K

)

26: R̂(j+1) =
[

R̂(j), r̂(j)
]

27: j = j + 1

28: until g
(
θ(i)
)
− g̃

(

λ̃(j−1)
)

< ε

29: end if
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with zero-forcing at the transmitter is proposed in [103]. QoS constrained utility maximization
problems without zero-forcing constraints and linear transmit and receive filters are considered
in [104], [55] and [57], where in the latter per-stream and not per-user SINR requirements are
treated. Per-antenna power constraints are introduced in [105] to QoS constrained problems with
linear transmit and receive processing. All these algorithms have in common, that they are very
complex, as they work iteratively and in each iteration uplink-downlink transformations are re-
quired, and that they are not guaranteed to converge to the global optimum solution. In [106] an
optimum iterative algorithm for linear transmit and receive filters is presented for the problem of
sum power minimization under maximum requirements for eachuser’s Mean Square Error (MSE),
which are related to rate constraints by an inequality between MSE and rate. A reduced complex-
ity but still iterative algorithm for the sum rate maximization with relative rate constraints without
DPC is presented in [107], a non-iterative approach for the same problem but with DPC at the
transmitter is proposed in [11].

4.4 Successive Resource Allocation and Spatial Zero-Forcing

An efficient method to solve the general QoS constrained Problem (4.1) will be presented in this
section. For this purpose its dual problem

min
θ1≥0c1,1,θ2

sup
r∈P(HH

1
,...,HH

K
,W1,...,WK)

W1,...,WK∈CP

{
u (W1, . . . ,WK , r)− θT

1 h1(r)− θT

2h2(r)
}
, (4.18)

which is identical to Problem (4.2), will be used. The optimum value min
θ1≥0c1,1,θ2

g(θ1, θ2) of the

dual problem is equal to the optimum value of the utility function in the primal problem (4.1),
due to the strong duality shown in Section 4.2.1, which is whythe dual problem will be used as
a starting point for simplifications in this section. The concept of successive resource allocation
and spatial zero-forcing, which proofed to be effective forweighted sum rate maximization in the
previous chapter, is applied to the dual function for QoS constrained utility maximization problems
in this section. This implies that in each step the data stream allocations and receive filters obtained
in the previous steps are kept fixed and the filters for the newly allocated data stream and the
corresponding user allocation are determined so that the increase in the optimum value of the dual
function becomes maximum. Thus, in theith step a solution to

max
k

min
θ1≥0c1,1,θ2

max
p(i)(k)≥0i,1,1T

i p
(i)(k)≤PTx

max
r∈CR(p(i)(k))

{
u
(
p(i)(k), r

)
− θT

1 h1(r)− θT

2h2(r)
}

(4.19)

has to be found. The maximization overk is done last as it is desired to find that user with the
maximum value of the dual function. For the power minimization problem it is necessary to set
PTx =∞ and

p(i)(k) =
[

p
(i)
1,1, . . . , p

(i)
1,dk

, . . . , p
(i)
k−1,dk−1

, p
(i)
k,1, . . . , p

(i)
k,dk+1, p

(i)
k+1,1, . . . , p

(i)
K,dK

]
T

contains the powers allocated to the scalar subchannels when the ith subchannel is allocated to
userk. As described with the weighted sum rate maximization problem in the previous chapter,
these subchannels result from the decomposition of the MIMObroadcast channel The variablesdk
are again initialized with zero and incremented by one each time a subchannel is allocated to user
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k. With the successive resource allocation and zero-forcing, the dependency of the utility from the
uplink covariance matricesWk can be replaced by the power vectorp(i)(k). The setCR

(
p(i)(k)

)

contains all rates achievable if a new data stream is allocated to userk, the receive filters and user
allocations from previous steps are kept fixed, the power allocationp(i)(k) is used and the receive
filter for the new data stream and the transmit filters obey to the carrier separation and zero-forcing
constraints. The rates in the vectorr are computed from the filters and powers used in the broadcast
channel. Due to the duality from [5] these rates are identical to the rates in the dual MAC used in
Problem (4.18). While such a rate computation destroys the convexity of the problem in case the
optimum solution has to be found as in Section 4.2, the successive problem can be easier solved
this way as shown in the following. As already pointed out in Section 4.2.1, due to the fact that
u
(
p(i)(k), r

)
, h1 (r) andh2 (r) are linear functions inr, the maximization overp(i)(k) andr

in (4.18) corresponds to a weighted sum rate maximization for fixed Lagrange multipliersθ or, in
case of the power minimization problem, can be solved via an iterative application of a weighted
sum rate maximization. Thus, the optimum receive filter for the newly allocated data stream and the
optimum transmit filters result from a weighted sum rate maximization. Therefore, the optimum
transmit filter for the newly allocated data stream for DPC can be obtained from from (3.31) and
the corresponding receive filter from (3.29). Accordingly,in case no DPC is applied the receive
filter maximizing a lower bound for the weighted sum rate is given by (3.58) and (3.64) and the
update rules (3.68) can be used to obtain the transmit filters. As all these filters are independent of
the weights, the maximization overr ∈ CR

(
p(i)(k)

)
can be solved by using the rates

r
(
p(i)(k)

)
=
[
R1

(
p(i)(k)

)
, . . . , RK

(
p(i)(k)

)]T
,

where using the results from Sections 3.2 and 3.3 the ratesRm

(
p(i)(k)

)
can be stated as

Rm

(
p(i)(k)

)
=

d̂m∑

j=1

log2

(

1 + p
(i)
m,jλ

(i)
m,j(k)

)

, (4.20)

where

d̂m =

{

dm, m 6= k

dm + 1, m = k
. (4.21)

The channel gainsλ(i)
m,j(k) for j = 1, . . . , dm, m = 1, . . . , K are given by

λ
(i)
m,j(k) =

C

σ2
n

tHm,jH
H
mHmtm,j

for the DPC case [c.f. (3.37)] and by

λ
(i)
m,j(k) =

C

σ2
n

(

1 +
g
(i),H
k HkP̂

(i)
nm,j

HH
k g

(i)
k

g
(i),H
k A

(i)
k g

(i)
k

)

α
(i−1)
nm,j

when no DPC can be used [c.f. (3.60)]. The gain of the newly allocated subchannelλ(i)
k,dk+1(k)

computes according to

λ
(i)
k,dk+1(k) =

C

σ2
n

ρ1

(

P̂
(i)
DPCH

H
k HkP̂

(i)
DPC

)
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in case DPC is applied at the transmitter and

λ
(i)
k,dk+1(k) =

C

σ2
n

g
(i),H
k A

(i)
k g

(i)
k

otherwise. As in the previous chapter, the carrierc
(i)
k on which the newly allocated subchannel

is transmitted if this subchannel is allocated to userk is given by that block within the matrix
P̂

(i)
DPCH

H
k HkP̂

(i)
DPC in the DPC case and the matrixB(i),−1

k A
(i)
k otherwise that exhibits the largest

principal eigenvalue. Thus, the carrier preselection proposed at the end of Section 3.4.1 can be
applied to the QoS constrained utility maximization problems as well. Problem (4.19) then reads
as

max
k

min
θ1≥0c1,1,θ2

max
p(i)(k)≥0i,1,1T

i p
(i)(k)≤PTx

{
u
(
p(i)(k), r

(
p(i)(k)

))
−

−θT

1 h1

(
r
(
p(i)(k)

))
− θT

2 h2

(
r
(
p(i)(k)

))}
. (4.22)

The optimum value of the dual function for a fixed userk is equal to−∞, if the constraints
of the primal problem are violated, i.e., there exists an index j with eT

j h1

(
r
(
p(i)(k)

))
> 0 or

eT

j h2

(
r
(
p(i)(k)

))
6= 0. That is definitely the case if the rate of a userm is equal to zero, which

happens if no subchannel has been allocated to that user so far. As afterwards the maximum is
taken with respect to the user index, that user would never beserved. In order to work properly,
the algorithm therefore needs an initialization phase, in which each user receives one subchannel.
For this purpose a setS(i) will be defined for the firstK allocation steps, which contains all users
that have been served in steps1 to i − 1. Those users are then excluded from the user selection
process in the stepsi toK. Furthermore in the dual function only the constraints of those users and
the userk are considered so that the case that the optimum value of the dual function becomes−∞
is avoided. During the initialization phase instead of (4.22) the following optimization problem has
to be solved

max
k∈{1,...,K}\S(i)

min
θ1≥0c1,1,θ2

max
p(i)(k)≥0i,1,1T

i p
(i)(k)≤PTx

{

u
(
p(i)(k), r

(
p(i)(k)

))
− θT

1 ĥ
(i)
1

(
k, r

(
p(i)(k)

))
− θT

2 ĥ
(i)
2

(
k, r

(
p(i)(k)

))}

. (4.23)

ĥ
(i)
1

(
k, r

(
p(i)(k)

))
contains a zero in every row, that corresponds to a minimum rate constraint of

a user that has not been served so far except userk, i.e.,

eT

j ĥ
(i)
1

(
k, r

(
p(i)(k)

))
=

{

eT

j h1

(
r
(
p(i)(k)

))
, j ∈ S(i), j = k

0 else
.

For the sum rate maximization with relative rate constraints, the first subchannel is allocated to
user1 and from the second step onwardsĥ

(i)
2

(
k, r

(
p(i)(k)

))
contains a zero in every row that

corresponds to a relative rate constraint of a user that has not been served so far except userk,
which implies that

eT

j ĥ
(i)
2

(
k, r

(
p(i)(k)

))
=

{

eT

j h2

(
r
(
p(i)(k)

))
, j + 1 ∈ S(i), j = k − 1

0 else
.
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Clearly, the QoS constrained utility maximization problems cannot be solved with the proposed
method, if there are too few degrees of freedom to allocate atleast one subchannel to each user,
i.e.,CNT must be at least equal to the number of users with non-zero rate requirements. A more
complicated initialization algorithm is proposed in [103], where in theith step that user is chosen
that exhibits the largest difference in the objective function between allocating the next data stream
to the optimum carrier and the second best carrier. However,as this algorithm requires twice as
many solutions of the dual problem as the initialization described above, it will be not considered
here.
When the problem of weighted sum rate maximization under a sum power constraint and minimum
rate requirements is considered, it can happen that the problem remains infeasible, i.e., the opti-
mum value of the dual function goes to−∞, even if at least one subchannel has been allocated to
each user. That is because the transmit power constraintPTx can be too low to fulfill the minimum
rate requirements with a small number of subchannels. Thus,for this problem at first the power
constraint is omitted in (4.22) and (4.23), i.e.,PTx → ∞, which corresponds to minimizing the
transmit power required to fulfill the minimum rates. If in a certain stepj the used transmit power
falls belowPTx, i.e.,1T

j p
(j)(k(j)) ≤ PTx, the actual problem of weighted sum rate maximization

with minimum rate constraints is considered, as it has been proposed in [57]. If all degrees of

freedom are exploited, i.e.,Cmin
(

NT,
∑K

k=1 rk

)

subchannels have been allocated and the power

required to fulfill the minimum rate requirements is still higher thanPTx, the problem is infeasible
with the proposed successive allocation and spatial zero-forcing method. In general, the algorithm
terminates when it is observed that the optimum value of the dual function would decrease with

a new data stream allocation or all degrees of freedom are used, i.e., afterCmin
(

NT,
∑K

k=1 rk

)

steps.
In the remainder it will shown how Problem (4.22) can be solved for the QoS constrained utility
maximization problems introduced in Section 4.1. The solution of Problem (4.23) during initial-
ization is similar and will be skipped for notational convenience. The maximization with respect
to k has to be solved via an exhaustive search, which is why in the following Problem (4.22) will
be solved for fixedk. All three QoS constrained problems have in common that the maximization
overp(i)(k) leads to the following optimum powers

p
(i)
m,j =

[

νm
ln(2)

− 1

λ
(i)
m,j(k)

]+

, (4.24)

which follows from evaluating the Karush-Kuhn-Tucker (KKT) conditions of such a problem.νm
is a function of the weightµm and the Lagrangian multipliersθ1 andθ2. Due to the zero-forcing
constraints, the minimization with respect to the Lagrangian multipliers does not have to be solved
with the ellipsoid method, but with much simpler methods as explained in the following for the
three problems from Section 4.1.
• Weighted Sum Rate Maximization with Minimum Rate Requirements

Inserting the utility and constraint functions of this QoS constrained optimization problem
into (4.22) leads to the dual problem

min
θ1≥0K,1

max
p(i)(k)≥0i,1,1T

i p
(i)(k)≤PTx

{(
µT + θT

1

)
r
(
p(i)(k)

)}
− θT

1 rmin = min
θ1≥0K,1

g(θ1)

Thus, the inner maximization corresponds to a weighted sum rate maximization for fixedθ1

andνm = eT

m (µ+ θ1) η for the optimum powers in (4.24), whereη is chosen such that the
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sum power constraint is fulfilled with equality (see Appendix A2). The optimum Lagrange
multipliersθ∗

1 are then found in an iterative manner.θ∗
1 minimizes the dual function, if

g (θ1)− g (θ∗
1) ≥ 0, ∀θ1 ≥ 0K,1.

g (θ1) can be lower bounded by using other powers than the optimum ones from (4.24) with
the Lagrange multipliersθ1 so that

g (θ1) = max
p(i)(k)≥0i,1,1T

i p
(i)(k)≤PTx

{(
µT + θT

1

)
r
(
p(i)(k)

)}
− θT

1 rmin

=
(
µT + θT

1

)
r (θ1)− θT

1 rmin

≥
(
µT + θT

1

)
r (θ∗

1)− θT

1 rmin

= g (θ∗
1)−

(

θT

1 − θ
∗,T
1

)

(rmin− r (θ∗
1))

wherer (θ1) results from inserting the optimum powers from (4.24) into the rate expres-
sions (4.20) and the inequality results from the fact that the powers optimum forθ1 are not
necessarily optimum forθ∗

1. Consequently,

g (θ1)− g (θ∗
1) ≥

(

θ
∗,T
1 − θT

1

)

(rmin− r (θ∗
1)) , (4.25)

Thus,θ∗
1 minimizes the dual function, if

(

θ
∗,T
1 − θT

1

)

(rmin− r (θ∗
1)) ≥ 0, ∀θ1 ≥ 0K,1.

This inequality is fulfilled in case

θ
∗,T
1 (rmin− r (θ∗

1)) = 0, and rmin− r (θ∗
1) ≤ 0K,1, (4.26)

which represent the primal feasibility and complementary slackness constraints of the weighted
sum rate maximization with minimum rate requirements, whenthe subchannel gains are fixed
and the optimum subchannel powers should be found. Of courseθ∗

1 could be found be an
exhaustive search, i.e., all possible combinations of zeroentries inθ∗

1 are tested until (4.26) is
fulfilled. In the following a faster approach will be presented. Initially θ

(0)
1 = 0K,1 is taken

and the corresponding ratesr
(

θ
(0)
1

)

are computed. In case all minimum rate requirements are

fulfilled, the optimum Lagrange multiplier has already beenfound. Otherwise, a new Lagrange
multiplier will be determined as described for thejth step in the following. For all usersm,

which rates are below the minimum rates, i.e.,eT

mr
(

θ
(j−1)
1

)

< Rmin,m, the corresponding

entries inθ(j)
1 will be non-zero and chosen such that the rates resulting from the optimum

power allocation (4.24) are equal to the corresponding minimum rates, all other entries inθ(j)
1

are set to zero. Thus, the non-zero entries inθ
(j)
1 are determined from the following implicit

equations:

d̂m∑

j=1

log2

(

min

(

1,
eT

mθ
(j)
1 η

ln(2)
λ
(i)
m,j(k)

))

= Rm,min, ∀m ∈M(j)

∑

m∈M(j)





(

eT

mθ
(j)
1 + µm

)

η

ln(2)
− 1

λ
(i)
m,j(k)





+

+
∑

m/∈M(j)

[

µmη

ln(2)
− 1

λ
(i)
m,j(k)

]+

= PTx, (4.27)
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whered̂m is defined in (4.21) andM(j) contains all user which rateseT

ℓ r
(

θ
(j−1)
1

)

are smaller

than or equal to the corresponding minimum rate requirement, i.e.,

M(j) =
{

ℓ = 1, . . . , K
∣
∣
∣e

T

ℓ r
(

θ
(j−1)
1

)

≤ Rmin,ℓ

}

.

This choice forθ(j)
1 assures that

θ
(j),T
1

(

rmin− r
(

θ
(j)
1

))

= 0, (4.28)

aseT

mθ
(j)
1 = 0 for m /∈ M(j) andeT

m

(

rmin− r
(

θ
(j)
1

))

= 0 for m ∈M(j). The setM(j−1) is

completely contained inM(j), i.e.,M(j−1) ⊂M(j), as that set contains all users whose rates in
stepj−1 are lower or equal to the minimum rate requirements and for all users in the setM(j−1)

the minimum rate requirements are fulfilled with equality [c.f. (4.28)]. Correspondingly the
vectorθ(j−1)

1 contains zeroes at all places, whereθ
(j)
1 has zero entries, and additionally at

places which correspond to users that are contained inM(j) but not inM(j−1). Consequently,

θ
(j−1),T
1

(

rmin− r
(

θ
(j)
1

))

= 0. (4.29)

Inserting (4.28) and (4.29) into (4.25) it can be concluded that

g
(

θ
(j−1)
1

)

− g
(

θ
(j)
1

)

≥
(

θ
(j),T
1 − θ

(j−1),T
1

)(

rmin− r
(

θ
(j)
1

))

= 0.

Thus, with the proposed iterative method the optimum of dualfunction cannot get worse than
in the previous step. In case all rate requirements are fulfilled, the inequality and the equality
in (4.26) hold and the optimumθ∗

1 has been found. As (4.26) are the primal feasibility and
complementary slackness conditions of the primal problem of allocating power to scalar sub-
channels leading to the maximum weighted sum rate under a sumpower and minimum rate
constraints, and the powers resulting from (4.24) fulfill the dual feasibility conditions of this
problem, the powers obtained this way lead to a KKT point of the primal problem. As in this
case the objective function is concave and the constraint functions convex in the subchannel
powers, these powers are also optimum for the primal power allocation problem.

• Sum Rate Maximization with Relative Rate Constraints
For this instance of a QoS constrained utility maximizationproblem the dual problem in (4.22)
reads as

min
θ2

max
p(i)(k)≥0i,1,1T

i p
(i)(k)≤PTx







R1

(
p(i)(k)

)
− θT

2






1K−1R1

(
p(i)(k)

)
−







R2(p(i)(k))
ρ2
...

RK(p(i)(k))
ρK



















=

= min
θ2

g(θ2).

As before, the inner maximization corresponds to weighted sum rate maximization for fixed
θ2, so that

ν1 =
(
1− θT

21K−1

)
η, and νm = eT

m−1θ2η, m = 2, . . . , K
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in (4.24), whereη is chosen such that the transmit power constraint is fulfilled with equality.
Similarly to (4.25), the following inequality must hold

g (θ2)− g (θ∗
2) ≥

(

θ
∗,T
2 − θT

2

)






1K−1R1

(
p(i)(k)

)
−







R2(p(i)(k))
ρ2
...

RK(p(i)(k))
ρK












≥ 0, ∀θ2

so thatθ∗
2 minimizes the dual function. Together with the sum power constraint, the following

set of equalities must therefore be fulfilled

R1 (θ
∗
2) ρm = Rm (θ∗

2) , m = 2, . . . , K

d̂1∑

j=1





(

1− θ
∗,T
2 1K−1

)

η

ln(2)
− 1

λ
(i)
1,j(k)





+

+
K∑

m=2

d̂m∑

j=1

[

eT

m−1θ
∗
2η

ln(2)
− 1

λ
(i)
m,j(k)

]+

= PTx, (4.30)

which has a unique solution but must be solved iteratively, as done in [11]. For fixedκ =
(1−θ∗ T

2 1K−1)
η

the firstK − 1 equations in (4.30) can be solved relatively easy. It i therefore
proposed in [11] to solve (4.30) by a bisection search for theη fulfilling all equalities in this
system of equations. Together with (4.24), the equations in(4.30) are identical to the KKT
conditions of the primal power allocation problem, i.e., when the optimum powers for the rate
balancing problem with fixed subchannel gains should be found. As a KKT point is necessary
for the optimum and (4.30) has only one solution [11], the powers resulting from (4.30) are
also optimum for the primal power allocation.

• Sum Power Minimization with Minimum Rate Requirements
For this problem, the optimization of the dual function in (4.22) reads as

min
θ1≥0K−1,1

max
p(i)(k)≥0i,1

{
θT

1 r
(
p(i)(k)

)
− p(i),T(k)1K

}
− θT

1 rmin = min
θ1≥0K−1,1

g(θ1),

which leads toνm = eT

mθ1 in the optimum powers in (4.24) via evaluating the KKT. By
inserting the optimum powers into the rate expressions and deriving g(θ) with respect toθ1

and setting it to zero one obtains

d g(θ1)

d θ1
= rmin− r

(
p(i)(k)

)
= 0.

This leads to the following implicit equations foreT

mθ1

d̂m∑

j=1

log2

(

min

(

1,
eT

mθ1

ln(2)
λ
(i)
m,j(k)

))

= Rm,min, m = 1, . . . , K (4.31)

As these equations lead to positive values for the elements in θ1, the global minimum ofg(θ1)
does not violate the constraintsθ1 ≥ 0K−1,1. From these implicit equations it can also be
concluded that the powers obtained by the solution of the dual problem lead to a feasible
solution of the primal problem.
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To summarize, the reduced complexity algorithms for utility constrained optimization problems
have the same structure as Algorithm 3.2 in case DPC can be applied at the transmitter and as
Algorithm 3.3 otherwise. Instead of the weighted sum rate inline 6 of Algorithm 3.2 and line17
of Algorithm 3.3, for each user the value of the dual function

d∗(k) = min
θ1≥0c1,1,θ2

max
p(i)(k)≥0i,1,1T

i p
(i)(k)≤PTx

max
r∈CR(p(i)(k))

{
u
(
p(i)(k), r

)
− θT

1 h1(r)− θT

2 h2(r)
}

optimum for the successive resource allocation and spatialzero-forcing method is computed and
used for the selection process. During the initialization phase the modified optimum value of the
dual function

d∗(k) = min
θ1≥0c1,1,θ2

max
p(i)(k)≥0i,1,1T

i p
(i)(k)≤PTx

{

u
(
p(i)(k), r

(
p(i)(k)

))
− θ̂

(i)T
1 (k)ĥ

(i)
1

(
k, r

(
p(i)(k)

))
− θ̂

(i)T
2 (k)ĥ

(i)
2

(
k, r

(
p(i)(k)

))}

is used, where additionally only users can be selected that have not received a data stream yet.
In line 2 of Algorithm 3.3 furthermore that user has to be chosen that minimum rate requirement
can be fulfilled with a single data stream with minimum power or in case of the rate balancing
problem, user1 is chosen. Additionally, the power allocations in line18 of Algorithm 3.2 and
line 22 of Algorithm 3.3 have to be replaced by the corresponding QoSconstrained power allo-
cation problems leading to the powers (4.24) with the water-levels stemming from the implicit
equations (4.27), (4.30) and (4.31). As shown previously, these powers lead to feasible solutions,
which redundantizes the primal reconstruction and a possible implementation of time-sharing re-
quired for the optimum algorithm.

4.5 Further Complexity Reductions

Apart from the power minimization problem, the determination of the Lagrange multipliersθ∗
1 and

θ∗
2 optimum in (4.19) can only be done in an iterative manner, as shown in the previous section,

although it has been possible to avoid the use of ellipsoid methods. Especially, when the number of
users grows large, the complexity of the user selection can become intractable, as for each user in
each step the optimum value of the dual function has to be computed. For this reason a simplified
user selection will be presented next, which has been proposed by the author in [108]. Instead of
looking for the minimum with respect toθ1 andθ2 in (4.22), the optimum Lagrange multipliers
from stepi− 1, denoted asθ(i−1)

1 andθ(i−1)
2 , are taken so that Problem (4.22) simplifies to

max
k

max
p(i)(k)≥0i,1,1T

i p
(i)(k)≤PTx

{

u
(
p(i)(k), r

(
p(i)(k)

))
− θ

(i−1),T
1 h1

(
r
(
p(i)(k)

))
−

−θ(i−1),T
2 h2

(
r
(
p(i)(k)

))}

. (4.32)

This choice is motivated by the fact that, with increasing number of allocation steps, the implicit
equations (4.27), (4.30) and (4.31) less and less change through adding a new subchannel from
step i − 1 to stepi, which implies thatθ(i−1)

1 and θ
(i−1)
2 are good estimates for the optimum

Lagrange multipliers in the previous step. This way, the inner maximization in (4.32) becomes a
weighted sum rate maximization for the the QoS constrained utility maximization problems with a
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sum power constraint. For the weighted sum rate maximization with minimum rate requirements,
Problem (4.32) reads as

max
k

max
p(i)(k)≥0i,1,1T

i p
(i)(k)≤PTx

(

µT + θ
(i−1),T
1

)

r
(
p(i)(k)

)

and for the rate balancing problem, (4.32) can be written as

max
k

max
p(i)(k)≥0i,1,1T

i p
(i)(k)≤PTx

(

1− 1
T

K−1θ
(i−1)
2

)

R1

(
p(i)(k)

)
+ θ

T,(i−1)
2







R2(p(i)(k))
ρ2
...

RK(p(i)(k))
ρK






.

The dual problem of the power minimization is transformed into a weighted sum rate maximization
by introducing an artificial power constraint, which implies that the transmit power must be equal
to the optimum power of the previous step given by1

T

i−1p
(i−1)(k(i − 1)) so that Problem (4.22)

reads as

max
k

max
p(i)(k)≥0i,1,1T

i p
(i)(k)≤1

T

i−1p
(i−1)(k(i−1))

θ
T,(i−1)
1 r

(
p(i)(k)

)
.

Thus, the user selection is done as for a weighted sum rate maximization and the optimum La-
grange multipliersθ(i)

1 andθ(i)
2 need only be computed as described in the previous section for

the userk(i) selected in stepi. While this measure on its own does not gain much complexity
reductions, it enables the application of user preselection presented in Section 3.4.1 and the user
selection based on an upper bound for weighted sum rate from Section 3.4.3. Both methods have
turned out to be very effective for the weighted sum rate maximization and will also lead to drastic
complexity reductions at almost no performance losses withQoS constrained utility maximization
problems. Nevertheless, the proposed complexity reduction cannot be applied during initialization.
However, during this phase the number of candidate users that have to be tested shrinks with each
step, as a user is excluded from the selection process after asubchannel has been allocated to it.

4.6 Numerical Results

In Figure 4.1 the average weighted sum rates per subcarrier are plotted versus the SNR, which is
defined as the tenfold logarithm of the ratio of transmit power PTx to noise varianceσ2

n. There
areK = 5 users in the system, each equipped withrk = 2 antennas and the transmitter has
NTx = 4 antennas. The weighted sum rates are averaged over500 channel realizations, where
for each channel realization there areLk = 4 temporal propagation paths for each user. Each
channel matrixHk,ℓ, k = 1, . . . , K, ℓ = 1, . . . , 4 consists of circularly symmetric Gaussian entries
with zero mean and unit variance, where the temporal distance between two consecutively arriving
symbols is equal to160µs, i.e.,τk,m− τk,m−1 = 160µs for all k = 1 . . . , K, m = 2, . . . , 4. OFDM
with C = 16 carrier is employed to mitigate intersymbol interference and the bandwidth is equal
to B = 150kHz at a center frequency offc = 5GHz. As utility function the weighted sum rate is
used in Figure 4.1, where the even users have twice the priority of the odd users so that

µ1 = µ3 = µ5 =
1

7
, µ2 = µ4 =

2

7
,



4.6 Numerical Results 77

0 2 4 6 8 10 12 14 16 18 20
1

2

3

4

5

6

7

8

SNR (dB)

A
ve

ra
ge

 W
ei

gh
te

d 
S

um
 R

at
e 

(b
pc

u)

 

 

Optimum

Succ. RA and ZF with DPC

Succ. RA and ZF without DPC

Succ. RA and ZF without DPC (wsr user sel.)

Succ. RA and ZF without DPC (simpl. Rx and wsr user sel)

Succ. RA and ZF without DPC (simpl. Rx and user sel)

SVD receivers

Antenna Selection

Figure 4.1: Average weighted sum rates with minimum rate constraints in a system withK = 5 users with
rk = 2 receive antennas,NT = 4 transmit antennas,C = 16 carrier andB = 150kHz. µ1 = µ3 = µ5 =

1
7 ,

µ2 = µ4 =
2
7 .

and minimum rate constraints are imposed for each user. Those rate constraints increase linearly
with the SNR, so that

Rk,min

C
= Rk,0 + SNR/4

with Rk,0 = 1bpcu for all usersk. Thus, at0dB each user has a minimum rate requirement of
1bpcu per subcarrier. The increase of the rate requirements with SNR is done so that the minimum
rate requirements come into effect for all SNR values. This way, the minimum rate requirements
are not fulfilled by simply maximizing the weighted sum rate,i.e., the optimization is not solved
by the algorithms presented in Chapter 3.
As in the case of weighted sum rate maximization without minimum rate requirements, the loss of
giving up DPC with the proposed method (“Succ RA and ZF without DPC”) is acceptable. The
adjunct “wsr user sel.” implies that the user selection is based on a weighted sum rate maximiza-
tion with the Lagrange multipliers from the previous step. As it can be seen in Figure 4.1, this
measure leads to negligible performance losses compared tothe method, where in each step the
dual function is evaluated exactly. Furthermore with the simplified user selection the user prese-
lection explained in Section 3.4.1 can be applied, which hasreduced the complexity of the user
selection by21.4% in the simulations. Additionally using simplified receivers according to (3.75)
leads to the curve labelled as “Succ RA and ZF without DPC (simpl. Rx and wsr user sel.)” in
Figure 4.1. By selecting in each step the user for the next data stream according to an upper bound
for the weighted sum rate obtained with the Lagrange multipliers from the previous step, which is
labeled with the adjunct “(simpl. Rx and user sel.)” leads tosmall performance losses compared to
the other methods. Nevertheless, the same average sum rate as with SVD receivers, where the left
singular vectors are used as receive filters, can be achievedand antenna selection with canonical
unit vectors as receive filters is outperformed for all SNR values.
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The close-to-optimum performance of the algorithms proposed in the last two chapters has been
shown by simulations results. Although impressing and similar performance can be obtained in
other scenarios, these results are only valid for a special simulation setup and cannot be generalized
to an arbitrary set of parameters. In this chapter some analytical results will therefore be presented
for the some of the derived algorithms, when the temporal channel matrices contain Gaussian i.i.d.
entries. Direct expressions for the average objective function, as the weighted sum rate, are how-
ever difficult to obtain. A common approach in the literaturefor the analysis of greedy zero-forcing
approaches, which aim at sum rate maximization, is therefore to let the number of users grow to
infinity and to show that in this case the optimum can be achieved [65], [64], [68]. Conclusions to
the performance of the algorithm in a system with finite number of users can however not directly
be drawn. For this reason results of large system analysis will be applied in this chapter, where at
least two parameters go to infinity at a finite fixed ratio. In the large system limit many expressions
of random variables, especially the eigenvalues of large random matrices, become deterministic.
This facilitates to find analytical expressions for the objective functions. As it will be seen, the
results obtained this way approximate the system performance quite well already with parameters
of moderate finite size. After giving a short overview of literature on large system analysis in
Section 5.1 and explaining some preliminaries in Section 5.2, the case of infinite number of users
and transmit antennas in MISO systems will be treated in Section 5.3. MIMO systems with a fi-
nite number of users but infinite numbers of transmit and receive antennas will be considered in
Section 5.4.

5.1 Related Work

In this section a short overview on application examples of large systems analysis to communica-
tion systems will be given. For an extensive overview of fundamentals of large system analysis
and a some application examples the reader is referred to [109]. In Code Division Multiple Ac-
cess (CDMA) systems, large system analysis is a popular toolfor performance evaluation, when
the number of users and the length of the spreading sequencestend towards infinity. In [110] ex-
pressions for asymptotic signal-to-interference-ratiosin the uplink are given for different receive
filters. This work is extended to time-varying channels and imperfect channel knowledge in [111].
SINRs in the downlink of large CDMA systems for two kinds of receive filters are derived in [112]
and [113], where the results are also applicable to multi-antenna systems with the number of trans-
mit and receive antennas going to infinity at a finite fixed ratio. Furthermore two kind of random
matrices are considered in the analysis, namely those containing i.i.d. entries and those consisting
of random orthonormal columns. In [114] inter-cell interference is additionally taken into account
in these CDMA scenarios. For MIMO systems with channel matrices containing i.i.d. entries ex-
pressions for the ergodic capacity under statistical channel knowledge in the large system limit are
given in [115], where white Gaussian noise as well as colorednoise originating from multi-user
interference is considered. An high SNR analysis of the scenario with white noise is conducted
in [116]. Regularized beamforming in multiuser MISO systems is analyzed in [117] for an infinite

78
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number of transmit antennas and users, where the asymptotically optimum regularization param-
eter is determined for those parameters. The same large system limit is used in [118] to obtain
asymptotic expressions for the ergodic sum rate, when zero-forcing and DPC are used at the trans-
mitter with quantized feedback of channel state information. Results for the large system rate in
single-user MISO and MIMO systems using Random Vector Quantization (RVQ) are presented
in [119], where besides the number of antennas also the number of feedback bits grows towards
infinity.
Recently, the results from large system analysis have been applied to multi-cell MIMO systems.
While the examples for large system analysis in single-cellsystems cited above are based on ran-
dom matrices which contain random i.i.d. entries with zero mean or random orthonormal entries as
in [112] and [113], for multi-cell systems the random matrices contain entries with different vari-
ances, as channel matrices modeling the interference from neighboring cells in practice contain on
average smaller entries than the other channel matrices. In[120] large system methods are used to
simplify the problem of finding the optimum power and user allocation for weighted ergodic sum
rate maximization with zero-forcing beamforming in multi-cell MISO systems, where the param-
eters growing to infinity are the number of antennas at the base stations and the number of users.
Thus, numerically complex Monte-Carlo simulations can be avoided. The same aim is pursued
in [121], where a similar problem as in [120] is considered but without zero-forcing beamformers.
This algorithm is used iteratively in [122] to take fairnesscriteria into account. Different coopera-
tion schemes in a two cell MISO scenario are compared with each other for an infinite number of
transmit antennas and users in [123] and a multi-cell MIMO system, where the number of transmit
and receive antennas tends towards infinity and only one userper cell is active, is analyzed in [124].
Considering correlations between the entries of the channel matrices or introducing random vari-
ables with non-zero means makes the large system analysis more complicated than with indepen-
dent entries. That is why for those cases only results for theergodic capacity in single-user MIMO
systems exist. Reference [125] treats correlations between the entries of the channel matrices and
in [126] Rician fading channels, where the random channel matrices have non-zero mean, are
considered. An algorithm for finding the transmit covariance matrix maximizing the ergodic sum
capacity in a single-user MIMO system under Rician fading ispresented in [127].

5.2 Preliminaries

The analysis in this chapter is focussed on scenarios, wherethe temporal channel matrices̃Hk,ℓ

contain circularly symmetric Gaussian i.i.d. entries withzero mean and varianceσ2
k,ℓ, i.e.

vec
(

H̃k,ℓ

)

∼ CN
(
0rkNT,1, σ

2
k,ℓIrkNT

)
.

Furthermore the channel matrices̃Hk,ℓ are uncorrelated with each other. As the sum of indepen-
dent circularly symmetric Gaussian i.i.d. variables is again circularly symmetric (e.g. [2, Lemma
4]), where the mean and the variance of the new random variable is given by the sum of the means
and the variances, respectively, of the summands, the entries of the carrier channel matrices

Hk,c = Sc,kHkS
T

c,T =

Lk∑

ℓ=1

H̃k,ℓ exp (j2πfc (τk,1 − τk,ℓ))

are i.i.d. and are drawn from a circularly symmetric Gaussian distribution with zero mean and
variance

∑Lk

ℓ=1 σ
2
k,ℓ. In the remainder it will be assumed that all users’ channel matrices in the
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frequency domain have the same variance

σ2
H =

Lk∑

ℓ=1

σ2
k,ℓ

so that
vec (Hk,c) ∼ CN

(
0rkNT,1, σ

2
HIrkNT

)
. (5.1)

Clearly, the channel matrices of different carriers are correlated with each other, as they are
computed from the same realizations of the temporal channelmatricesH̃k,ℓ. Nevertheless, as will
be seen in the remainder, this property is not relevant in thelarge system limit.
If the matrices Hk,c are random variables, so are the eigenvalues
ρ1
(
HH

k,cHk,c

)
, . . . , ρNT

(
HH

k,cHk,c

)
of the matricesHH

k,cHk,c. In general the empirical
eigenvalue distribution of an arbitrary random Hermitian matrixAHA with A ∈ Cn×m

FAHA(x) =
1

m

∣
∣
{
ρi
(
AHA

)
, i = 1, . . . , m

∣
∣ρi
(
AHA

)
≤ x

}∣
∣ ,

which states the fraction of eigenvalues that are smaller orequal thanx, is different for each
realization of the random matrixA. As the dimensions of the matrixA grow towards infinity at a
finite fixed ratioβ = m

n
, i.e.,m → ∞, n → ∞, the empirical eigenvalue distribution converges

to an asymptotic limitF (∞)

AHA
(x) for many random matrices, which is the same for all realizations

of the random matrix and only depends onβ. The derivation ofF (∞)

AHA
(x) is called the asymptotic

eigenvalue distribution (aed)f (∞)

AHA
(x) so that

f
(∞)

AHA
(x) =

dF
(∞)

AHA
(x)

dx
.

For the case of Gaussian i.i.d. entries with zero-mean and variance 1
n

in the matrixA, the asymp-

totic eigenvalue distributionf (∞)

AHA
(x) is given by the Mařcenko-Pastur distribution [128]

f
(∞)

AHA
(x) = f

(∞)
MP

(

x,
m

n

)

,

where

f
(∞)
MP (x, β̂) =

[

1− 1

β̂

]+

δ(x) +

√

[x− a]+ [b− x]+

2πβ̂x
(5.2)

with

a =

(

1−
√

β̂

)2

, b =

(

1 +

√

β̂

)2

and β̂ is equal to the ratio of columns to rows in the matrixA. An important application of the
asymptotic eigenvalue distributions, that will be used in the remainder, is the replacement of the
sum of a function of the eigenvalues by an integral in the large system limit, where the sum is taken
over all eigenvalues of a matrix. That implies that

1

m

m∑

i=1

g
(
ρi
(
AHA

))
−→

m,n→∞
m
n =β

∫ ∞

0

g(x)f
(∞)

AHA
(x) d x (5.3)
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can be computed explicitly and is independent of the realization of the random matrixA in the
large system limit. In the following some important examples for g

(
ρi
(
AHA

))
are introduced

that will be useful in the remainder of this chapter. Choosing

g
(
ρi
(
AHA

))
=

1

ρi (AHA)− z
,

leads to the Stieltjes transformmAHA(z) of the matrixAHA, which is defined as

mAHA(z) =
1

m

m∑

i=1

1

ρi (AHA)− z
=

1

m
tr
(
AHA− zIm

)−1
=

∫ ∞

0

1

x− z
f
(∞)

AHA
(x) d x

(e.g. [109, Chapter 2.1.1]). Conversely, given the Stieltjes transform of the matrixAHA its asymp-
totic eigenvalue distribution can be obtained from the inversion formula

f
(∞)

AHA
(x) = lim

ω→0

1

π
Im {mAHA(x+ jω)} . (5.4)

Theη-transformηAHA(γ) is defined forγ ≥ 0 as

ηAHA(γ) =

∫ ∞

0

1

1 + γx
f
(∞)

AHA
(x) d x

and is related to the Stieltjes-transform via

ηAHA(γ) =
1

γ
mAHA

(

−1

γ

)

. (5.5)

Finally, the Shannon transformVAHA(γ) of the matrixAHA is given as

VAHA(γ) =

∫ ∞

0

log2
∣
∣Im + γAHA

∣
∣ f

(∞)

AHA
(x) d x, (5.6)

where the notation from [109] has been used.

5.3 Large System Analysis in MISO Systems

In this section large system analysis is carried out in MISO systems, where the number of transmit
antennas and the number of users go to infinity at a finite fixed ratioα, i.e.,

NT →∞, K →∞, α =
NT

K
.

All other parameters such as transmit powerPTx and number of carriersC, remain finite, the
number of receive antennas is given byrk = 1 in MISO systems anyway. The analysis is carried
out for weighted sum rate as objective function under a sum power constraint. It is assumed that
there areN disjoint subgroups of users, where thenth subgroup containsβnK users and all users
in this group have the same weighting factorµn. Theβn are finite and describe the percentage of
users having priorityµn, so that

∑N
n=1 βn = 1. Correspondingly, each group contains infinitely

many users. For notational convenience it is assumed that the indicesn are chosen such that

µ1 > · · · > µN .
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When the same QoS constraints are imposed on each subgroup ofinfinitely many users, the achiev-
able rates in the large system limit can be derived in a similar manner than for weighted sum rate
maximization. However, as the expressions would get more involved than with weighted sum rate,
the following analysis is restricted to the weighted sum rate maximization problem.
Clearly the results are directly applicable to MIMO systems, when antenna selection is applied at
the receivers. In that caseα is given by the ratio of transmit antennas to sum of receive antennas.
Thus, the large system analysis with finiteα holds for an infinite number of transmit antennas and
either a finite number of users and an infinite number of receive antennas at each user or an infinite
number of users with finite number of transmit antennas. In the following, expressions for the
optimum weighted sum and the weighted sum rates achievable with successive resource allocation
and zero-forcing with and without DPC will be given in the large system limit.

• Optimum Weighted Sum Rate:
As in Section 3.1, the problem of weighted sum rate maximization is solved in the dual MAC
in the large system limit as well, because the rates achievable in the dual MAC are the same
is in the broadcast channel due to the duality from [5]. Considering the case of subgroups of
users having equal weights the problem of weighted sum rate maximization from (3.12) reads
as

max
{Wk}k=1,...,K

N∑

n=1

∆µn log2

∣
∣
∣
∣
∣
∣
∣
∣
∣

ICNT
+

C

σ2
n








n
∑

n′=1

βn′K

∑

m=1

HH
π̂(m)WkHπ̂(m)








∣
∣
∣
∣
∣
∣
∣
∣
∣

=

s.t.
K∑

k=1

tr(Wk) ≤ PTx, Wk � 0, ∀k, (5.7)

whereπ̂(m) denotes the user encoded atmth place in the broadcast channel and

∆µn =

{

µN , n = N,

µn − µn+1, n < N
.

When the number of users and the number of transmit antennas tend towards infinity, Algo-
rithm 3.18 can still be applied to obtain the optimum solution. Nevertheless, it is possible in
the large system limit to derive an analytical expression for the weighted sum rate, which is
given by

RWSR,opt

CNT
−→

NT,K→∞,
NT
K

=α

N∑

n=1

∆µn

[

1

α

n∑

j=1

βj log2

(

1 +
α

σ2
nβj

wjmn

)

+

+ log2

(
σ2

H

mn

)

+

(
mn

σ2
H

− 1

)

log2(e)

]

, (5.8)
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wheree is Euler’s number. The variablesmn andwn stem from the system of implicit equations
N∑

j=n

∆µj
mj

1 + wnmj
α

σ2
nβn

wn = λwn, n = 1, . . . , N

λ

(
N∑

n=1

wn − PTx

)

= 0, λ ≥ 0, wn ≥ 0, n = 1, . . . , N

n∑

n′=1

βn′

1

α
=

1− mn

σ2
H

1−
(

n∑

m=1

βm
∑n

n′=1
βn′

1
1+mnwm

α

σ2
nβm

) n = 1, . . . , N, (5.9)

which is derived in Appendix A7, where it is also shown that the system of implicit equa-
tions (5.9) always has a valid solution. In case all users’ weights are equal, there is only one
subgroup, i.e.,N = 1. Then, the system of equations (5.9) can be solved explicitly so that

w1 = PTx

and

m1 =
σ2

H

2

(

1− 1

α

)

− σ2
n

2PTxα
+

√
(
σ2

H

2

(

1− 1

α

)

− σ2
n

2PTxα

)2

+
σ2

Hσ
2
n

PTxα
,

which follows from taking the positive solution resulting from the quadratic equation of the
last line in (5.9). Thus, the large system sum capacity is given by

Csum

CNT
−→

NT,K→∞,
NT
K

=α

[
1

α
log2

(

1 +
αPTx

σ2
n

m1

)

+ log2

(
σ2

H

m1

)

+

(
m1

σ2
H

− 1

)

log2(e)

]

.

• Successive Resource Allocation and Spatial Zero-Forcing with DPC:
In MISO systems, there is no optimization of receive filters.For equal weights, Algorithm 3.2
is therefore identical to the algorithm proposed in [43]. While this paper only considers an
analysis, where the number of users goes to infinity, in this section a large system analysis is
carried out for an infinite number of users as well as an infinite number of transmit antennas.
As derived in Appendix A8, the weighted sum rate in this largesystem limit can be lower
bounded by

RWSR,DPC

CNT
−→

K,NT→∞

NT
K

=α

1

α

nmax−1∑

n=1

βnµn log2(ηµn) +

(

jmax

NT
− 1

α

nmax−1∑

n=1

βn

)

µnmax log2(ηµnmax)

+
nmax−1∑

n=1

µn

[

β̂n−1 log2

(

β̂n−1

)

− β̂n log2

(

β̂n

)

+
1

ln 2

(

β̂n − β̂n−1

)]

+

+ µnmax

{(

1− jmax

NT

)[
1

ln 2
− log2

(

1− jmax

NT

)]

+
(

β̂nmax−1

)[

log2

(

β̂nmax−1

)

− 1

ln 2

]}

,

(5.10)

where

β̂n = 1−
n∑

n′=1

βn′

α
, and η = σ2

Hα

PTx
σ2

n
− 1

σ2
H
ln
(

1− jmax

NT

)

nmax−1∑

n=1

βnµn +

(

jmax

K
−

nmax−1∑

n=1

βn

)

µnmax

.
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jmax is determined so that

ηµnmax ≥
1

1− jmax

NT

and
jmax

NT
≤ min

(

1,
1

α

)

, (5.11)

where due to water-filling one of these inequalities is always fulfilled with equality. Equa-
tion (5.10) requires a user allocation in decreasing order of weights, i.e., first all users in the
subgroup with the strongest weight are served, then the users in the subgroup with the second
largest weight and so forth. The index of this subgroup with the lowest weight containing users
that are served is denoted by the indexnmax in (5.10). Although (5.10) states a lower bound for
the weighted sum rate, which is tight for an arbitrary user selection within the same group, this
lower bound is valuable for analysis purposes, as it can be used to state an upper bound for the
loss compared to the optimum and a lower bound for the gain achievable with DPC compared
to algorithms without DPC.
For the special case of sum rate maximization, i.e., all users’ weights are equal, Equation (5.10)
can be simplified and the sum rate can be lower bounded in the large system limit by

RSR,DPC

CNT
−→

K,NT→∞

NT
K

=α

jmax

NT
log2(η)−

(

1− jmax

NT

)

log2

(

1− jmax

NT

)

− jmax

ln 2NT
.

The water-levelη is given by

η = σ2
H

PTx
σ2

N
− 1

σ2
H
ln
(

1− jmax

NT

)

jmax

NT

andjmax is determined as described above withµnmax = 1.
• Successive Resource Allocation and Spatial Zero-Forcing without DPC:

Similarly to the DPC case, in MISO systems Algorithm 3.3 withequal weights is identical to
an algorithm from literature, in this case it corresponds tothe method presented in [12]. Again,
this paper considers only the case of infinite number of users, whereas in the following both
the number of users and number of transmit antennas tend towards infinity at a finite fixed ratio
α. The asymptotic weighted sum rate in this limit can be lower bounded by

RWSR,lin

CNT
−→

K,NT→∞

NT
K

=α

R
(∞)
WSR,lin(α) (5.12)

where

R
(∞)
WSR,lin(α) = max

ρ

1
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n(ρ)−1∑
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βn

)
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,

s.t.ρ ≤ min(α, 1), (5.13)
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andn(ρ) is the index of the subgroup, which userjmax = ρK belongs to. The derivation
of (5.12) is based on the fact that the gains of the scalar subchannelsλ(jmax)

k,j afterjmax allocation
steps all converge to the same asymptotic limit

λ
(jmax)
k,j =

1

eT
nk,j

(

H
(jmax)
comp H

(jmax),H
comp

)−1

enk,j

−→
jmax,NT,K→∞

jmax
K

=ρ,
NT
K

=α

σ2
Hjmax

(
α

ρ
− 1

)

(5.14)

where the computation of the finiteλ(jmax)
k,j is given by (3.50),nk,j is defined in (3.42), and

ρ denotes the fraction of users that are served. The large system limit in (5.14) is also used
in [120] and can obtained by the asymptotic limit

eT
nk,j

(
H(jmax)

comp H
(jmax),H
comp

)−1
enk,j

= tr
[(
H(jmax)

comp H
(jmax),H
comp

)−1
enk,j

eT

nk,j

]

−→
jmax,NT→∞

1

jmax
tr
[(
H(jmax)

comp H
(jmax),H
comp

)−1
]

tr
(

enk,j
eT

nk,j

)

=
1

σ2
Hjmax

1
NT
jmax
− 1

(5.15)

As the matrices
(

H
(jmax)
comp H

(jmax),H
comp

)−1

andenk,j
eT

nk,j
are asymptotically free (see [109, Exam-

ple 2.45]), the trace of the product of these matrices normalized by the number of rows can be
written as a product of the normalized traces of the asymptotically free matrices in the large
system limit (e.g. [109, Equation (2.185)]), whereH(jmax)

comp andenk,j
eT

nk,j
havejmax rows. Con-

sidering that the matrixH(jmax)
comp contains circularly symmetric i.i.d. entries with variance σ2

H

andNT columns, and applying [109, Equation (2.104)] leads to the last equality in (5.15). As
jmax = NT would imply that the smallest eigenvalue of the matrixH

(NT)
compH

(NT),H
comp becomes zero

in the large system limit, which is a consequence of the quarter circle law (e.g. [109, Equa-
tion (1.21)]), andH(NT)

compH
(NT),H
comp would therefore not be invertible,jmax is for sure smaller than

NT in the large system limit leading to the constraintρ ≤ min(α, 1) in (5.13). Computing
the weighted sum rate with the asymptotic channel gains (5.14) and the optimum power alloca-
tion, which can be done similar to the DPC case shown in Appendix A8, leads to the asymptotic
limit in (5.13). Because all channel gains are equal in the large system limit, the water-level
is sufficiently high to serve the selected users. In (5.13) the optimum fraction of active users
ρ leading to the maximum asymptotic weighted sum rate has to bedetermined, which can be
done as shown in Appendix A9. The assumption ofH

(jmax)
comp containing i.i.d. entries is only

valid for an arbitrary, i.e., not optimized selection of active users. That is because an optimum
user selection implies that the active users are chosen so that the rows inH(jmax)

comp are as orthog-
onal to each other as possible and therefore not independent. Thus, Equations (5.12) and (5.13)
state a lower bound for the achievable weighted sum rate in the large system limit. The bound
becomes tight, if it is asymptotically optimum to serve all users in the system or a random user
selection is applied instead of a greedy one. The results of (5.15) can also be used to derive
asymptotic expressions for Quality of Service constrainedutility maximization problems by
adjusting the asymptotic user and power allocation accordingly.
For sum rate maximization, Equation (5.13) simplifies to

R
(∞)
WSR,lin(α) = max

ρ

1

α
ρ log2

(

1 +
PTx

σ2
n

σ2
H

(
α

ρ
− 1

))

, s.t.ρ ≤ min(α, 1),

which is a concave optimization problem and can therefore besolved for example by bisec-
tion [33, Chapter 8.2].
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Figure 5.1: Comparison of normalized average sum rates to large system sum rates in MISO systems with
α = 2, C = 1, σ2

H = 1, SNR= 10dB.

Figure 5.1 exhibits the sum rates normalized to the number oftransmit antennas and averaged over
1000 circularly symmetric Gaussian channel matrices withσ2

H = 1 in a single-carrier system with
C = 1. Correspondingly, there is no multipath propagation, i.e., Lk = 1, ∀k = 1, . . . , K. The
ratio α of transmit antennas to users is set toα = 2 and SNR is equal to10dB, i.e., PTx

σ2
n

= 10.
The weights of all users are equal so that there is one subgroup of users, i.e.,n = 1 andµ1 = 1.
In each subfigure the large system sum rates of the corresponding algorithms are compared to the
average sum rates obtained by simulations. Additionally, the sum rates of each channel realization
are plotted in the corresponding subfigures by markers. For the sum capacity and the successive
resource allocation with zero-forcing and DPC (“Succ. RA and ZF with DPC”), the large system
sum rates serve as very good approximations for the average sum rates already with only a few
number of transmit antennas and users. When DPC is not applied at the transmitter (“Succ. RA
and ZF without DPC”), the large system sum rate is approachedslowlier by the average sum rate,
so that it serves only forNT ≥ 20 as a very good approximation of the average sum rate. For all
three algorithms under consideration, the variances of thesum rates shrink with increasing number
of transmit antennas, which is why the large system sum ratesalso become good estimates of the
instantaneously achievable sum rates with an arbitrary channel realization for larger number of
transmit antennas.
When the number of users exceeds the number of transmit antennas, as in Figure 5.2, where the
same parameters as in the previous plot are used except forα, which is now set toα = 1

2
, the large

system sum rates for the successive resource allocation schemes only serve as lower bounds for
the average sum rates. As already mentioned, that is becausethe large system analysis does not
take into account the effect that with the successive resource allocation in each step a user is taken
that channel exhibits the strongest energy in the subspace orthogonal to the previously selected
channels, which is why the projection matrices can no longerbe assumed to be independent of
the channel matrices of the selected users. When the users are selected randomly in each step,
however, this assumption is correct. The large system sum rates therefore serve as a very good
approximation for such an allocation scheme. The average rates achievable with that scheme are
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Figure 5.2: Comparison of normalized average sum rates compared to large system sum rates in MISO
systems withα = 1

2 , C = 1, σ2
H = 1, SNR= 10dB.

plotted as dashed lines and denoted by the adjunct “rand” in Figure 5.2. For the sum capacity, the
analytical result is still valid, which is why the asymptotic rate still approximates the average sum
capacity very well also in such a parameter setup, although convergence to the large system limit
is slower than withα = 2.

5.4 Large System Analysis of Successive Resource Allocation and Spatial
Zero-Forcing with Dirty Paper Coding in MIMO Systems

By going from MISO to MIMO systems the large system analysis gets more involved. For this
reason the problem of sum rate maximization, i.e., equal priorities of the users, is considered
and the analysis is carried out with the successive resourceallocation and spatial zero-forcing
with DPC explained in Section 3.2 only. Thus, the SuccessiveEncoding Successive Allocation
Method (SESAM) from [10] will be analyzed in the following. An approximation of the sum rate
achievable with SESAM and a random user allocation has been presented by the author and others
in [129] together with a large system analysis of competing algorithms as Block Diagonalization
with DPC [130] and without DPC [61]. The parameters growing towards infinity are the number
of transmit and receive antennas, where the ratioβ of both is fixed and finite. Furthermore, for
simplicity it is assumed that all users have the same numberr of receive antennas, i.e.,rk = r, ∀k =
1, . . . , K, so that

NT →∞, r →∞, β =
NT

r
.

The number of usersK, the number of carriersC and the transmit powerPTx remain finite. To
obtain a large system expression for the sum rate achievablewith SESAM, in the following a
numerical method will be presented to compute the asymptotic distributionf (∞)

SESAM(x) of the sub-
channel gainsλk,j

rσ2
H

, which are normalized by the variance of the random channel matrices and the
number of receive antennas for reasons that will become clear soon. Similarly to the definition of
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the asymptotic eigenvalue distribution, the integral

∫ λ

0

f
(∞)
SESAM(x) d x

states the percentage of normalized subchannel gains that are smaller or equal toλ. Analogously
to (5.3), sums over functions of the subchannel gains can be replaced by integrals overf (∞)

SESAM(x).
This implies that the sum rate achievable with SESAM in the large system limit can be computed
according to

Rsum,SESAM

Cm
=

1

m

m∑

i=1

log2 (max[1, ηλi]) −→
m→∞

∫ ∞

λmin

log2 (ηx) f
(∞)
SESAM(x) dx, (5.16)

wherem = min(NT, Kr) denotes the maximum number of subchannels that can be allocated on
one carrier and

λi =
1

rσ2
H

ρ1

(

P̂
(i)
DPCH

H
k(i)Hk(i)P̂

(i)
DPC

)

is the normalized gain of theith subchannel [c.f. (3.35)]. Note that through this normalization,
1

rσ2
H
HH

k(i)Hk(i) are the Gramian matrcies ofr × NT matrices with Gaussian i.i.d. entries with

variance1
r
. The asymptotic eigenvalue distribution of these matricesis therefore given by the

Marčenko-Pastur distributionfMP(x, β) [c.f. (5.2)] with parameter̂β = β. As the matrices con-
sidered have the same statistical properties on all carriers and therefore the same asymptotic sum
rate can be achieved on all carriers like in the MISO case, thederivations in this section are pre-
sented for single-carrier systems, i.e., the matricesHk haveNT rows. The extension to multicarrier
systems can then be done by multiplying the asymptotic sum rate with the number of carriersC,
dividing the noise variance byC and allocation the powerPTx

C
on each subcarrier, which has been

considered in (5.16) and (5.17) to obtain general results. The variableη computes as

η = rσ2
H

PTx
σ2

N
+

imax∑

i=1

1
λirσ2

H

imax
−→
m→∞

rσ2
H

PTx
σ2

N
+ m

rσ2
H

∞∫

λmin

1
x
f
(∞)
SESAM(x) d x

m
∞∫

λmin

f
(∞)
SESAM(x) d x

=

PTx
σ2

N

σ2
H

min(β,K)
+

∞∫

λmin

1
x
f
(∞)
SESAM(x) d x

∞∫

λmin

f
(∞)
SESAM(x) d x

,

(5.17)
which corresponds to the water-level multiplied byrσ2

H. λmin = λimax is the minimum subchannel
gain that receives non-zero power, i.e., it is given by the implicit equation

PTxσ
2
n

σ2
H

min(β,K)
+

∞∫

λmin

1
x
f
(∞)
SESAM(x) dx

∞∫

λmin

f
(∞)
SESAM(x) d x

=
1

λmin
.

In order to obtainf (∞)
SESAM(x), the asymptotic distribution of the maximum eigenvalues ofthe ma-

trices 1
rσ2

H
P̂

(i)
DPCH

H
k(i)Hk(i)P̂

(i)
DPC, i = 1, . . . , m has to be found. Fori = 1 there isP̂ (i)

DPC = INT

and as the eigenvalues of1
rσ2

H
HH

k Hk asymptotically follow the Mařcenko-Pastur distribution (5.2)

with parameter̂β = β, the normalized gain of the first subchannel is given byλ1 =
(
1 +
√
β
)2

.



5.4 Large System Analysis of Successive Resource Allocation and Spatial Zero-Forcing
with Dirty Paper Coding in MIMO Systems 89

Because the channel matrices of all users are assumed to havethe same statistical properties,
all maximum eigenvalues converge to the same asymptotic limit and the algorithm will select
an arbitrary user for the first subchannel. In the next step the largest eigenvalue of the matrix
1

rσ2
H
P̂

(2)
DPCH

H
k(1)Hk(1)P̂

(2)
DPC is given by the second largest eigenvalue of the Marčenko-Pastur distri-

bution with parameter̂β = β, as the projector̂P (2)
DPC projects into the null-space of the eigenvector

corresponding to the principal eigenvector of the matrixHH
k(1)Hk(1). When the dimensions of the

matrixHH
k(1)Hk(1) grow infinitely large, however, the difference of this valueto λ1 =

(
1 +
√
β
)2

can be hardly measured with finite precision. For the other usersk 6= k(1), the maximum eigen-

values of the matrices1
rσ2

H
P̂

(2)
DPCH

H
k HkP̂

(2)
DPC are all given by

(

1 +
√

βNT−1
NT

)2

. That is because

ρ1

(
1

rσ2
H

P̂
(2)
DPCH

H
k HkP̂

(2)
DPC

)

= ρ1

(
1

rσ2
H

V
(2)

DPCV
(2),H

DPC HkH
H
k V

(2)
DPCV

(2),H
DPC

)

=

= ρ1

(
1

rσ2
H

V
(2),H

DPC HH
k HkV

(2)
DPC

)

,

whereV (2)
DPC ∈ C

NT×NT−1 is an orthonormal basis ofspan
{

P̂
(2)
DPC

}

independent ofHk. The ma-

trices 1√
rσH

HkV
(2)

DPC ∈ Cr×NT−1 therefore contain Gaussian i.i.d. entries with variance1
r
, which

is why the asymptotic eigenvalue distribution can be obtained via the Mařcenko-Pastur distribu-
tion with parameter̂β = βNT−1

NT
. Similarly to the case of userk(1), this effect is hardly mea-

surable on a computer with finite precision, as the factorNT−1
NT

is almost equal to one for infi-

nite NT, i.e., the strongest eigenvalue of the matrix1
rσ2

H
P̂

(2)
DPCH

H
k(1)Hk(1)P̂

(2)
DPC and the matrices

1
rσ2

H
P̂

(2)
DPCH

H
k HkP̂

(2)
DPC, k 6= k(1) are hardly distinguishable. For this reason in the following a user

allocation will be considered, where an infinite amount of subchannels is consecutively allocated
to the same user. That implies that in each stepδm subchannels are all allocated to the same user,
where0 < δ ≤ 1 denotes a predefined constant depending on the desired numerical accuracy. Al-
though the algorithm as proposed in [10] probably leads to a different user allocation in the large
system limit and this allocation scheme might not be optimumin the successive scheme, it leads to
a lower bound for the sum rate. This bound becomes tight for small δ, as the error introduced this
way is hardly measurable. With this allocation scheme, the asymptotic distributions of the gains
of the subchannels consecutively allocated to the same usercan be computed. The asymptotic
distribution of all subchannel gains is then given by the normalized sum of these distributions.
Let f (∞)

j (x) denote the asymptotic distribution of channel gains in thejth group of subchannels

allocated to the same user. Thenf
(∞)
SESAM(x) is given by

f
(∞)
SESAM(x) =

1
δ∑

j=1

f
(∞)
j (x).

For simplicity it is assumed in the following thatδ is chosen so that1
δ
∈ N, although the following

results can be easily extended to the general case. Thef
(∞)
j (x) are the appropriately normalized

tails of the asymptotic eigenvalue distributions containing theδm strongest eigenvalues of the
matrices 1

rσ2
H
P̂

((j−1)δm+1)
DPC HH

k̂(j)
Hk̂(j)P̂

((j−1)δm+1)
DPC , wherek̂(j) = k((j − 1)δm + 1) is the user

to which thejth subgroup of subchannels is allocated to. Those eigenvalues correspond to the
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subchannel gains allocated at once to the same user from step(j − 1)δm + 1 to stepjδm. These
eigenvalues are also the strongest eigenvalues of the matrices

Cj :=
1

rσ2
H

V
((j−1)δm+1),H

DPC HH
k̂(j)

Hk̂(j)V
((j−1)δm+1)

DPC ∈ C
NT−(j−1)δm×NT−(j−1)δm, (5.18)

whereV ((j−1)δm+1)
DPC ∈ CNT×NT−(j−1)δm denotes an orthonormal basis ofspan

{

P̂
((j−1)δm+1)
DPC

}

so

that
P̂

((j−1)δm+1)
DPC = V

((j−1)δm+1)
DPC V

((j−1)δm+1),H
DPC .

With these definitions thef (∞)
j (x) are given by

fj(x) =

{
1−(j−1)δξ

ξ
f
(∞)
Cj

(x) x ≥ λ̂j

0, else

and ∫ ∞

λ̂j

f
(∞)
Cj

(x) =
δm

NT − (j − 1)δm
=

δξ

1− (j − 1)δξ
, (5.19)

where

ξ =
m

NT
= min

(

1,
K

β

)

.

The factor 1−(j−1)δξ
ξ

normalizes the tails off (∞)
Cj

(x) so that each subgroup contributesδ to the

integral
∫∞
0

f
(∞)
SESAM(x) dx and the whole integral is equal to one, i.e.,

∫ ∞

0

f
(∞)
SESAM(x) d x =

1
δ∑

j=1

∫ ∞

0

f
(∞)
j (x) d x =

1
δ∑

j=1

δ = 1.

For j = 1, C1 =
1

rσ2
H
HH

k(1)Hk(1) andf (∞)
C1

(x) is therefore given by the tail of the Marčenko-Pastur

distribution withβ̂ = β, i.e.,
f
(∞)
C1

(x) = fMP(x, β).

For j = 2, the next subgroup of users can either be allocated to the same userk(1). In this
casef (∞)

C2
(x) would be given by a truncated Marčenko-Pastur distribution, so thatfC2(x) =

1
1−δξ

fMP(x, β) for x ≤ λ̂1 and f
(∞)
C2

(x) = 0 otherwise. For the other users,f (∞)
C2

(x) would
be given by the appropriate tails of the asymptotic eigenvalue distributions of the matrices
1

rσ2
H
V

(δm+1)
DPC HH

k HkV
(δm+1)

DPC . Assuming that the orthonormal basisV (δm+1)
DPC of span

{

P̂
(δm+1)
DPC

}

is independent ofHk for k 6= k(1), the the a.e.d. of the matrices1
rσ2

H
V

(δm+1)
DPC HH

k HkV
(δm+1)

DPC

is given by the Mařcenko-Pastur distribution witĥβ = βNT−δm
NT

= β (1− δξ). Thus, in case

the second group of subchannels is allocated to another userthan userk(1), f (∞)
C2

(x) is given by

f
(∞)
C2

(x) = fMP(x, β(1−δξ)). That is because multiplying a matrix with Gaussian i.i.d. entries like

Hk with an independent orthonormal matrix likeV (δm+1)
DPC leads again to a matrix with Gaussian

i.i.d. entries having the same mean and variance as in the original Gaussian matrix but different
dimensions. This way, 1√

rσH
HkV

(δm+1)
DPC is ar ×NT − δm matrix with Gaussian i.i.d. entries with
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zero mean and variance1
r
. Likewise to the MISO case in the previous section, the assumption of

Hk andV (δm+1)
DPC being independent leads to a lower bound for the weighted sumrate, as the user

selected for the second group of subchannels would be optimally chosen so that projectingHk

with P̂
(δm+1)
DPC almost preserves the strongest eigenvalues ofHk and mostly affects the small eigen-

values. For the large system analysis the user for the secondgroup of subchannels is randomly
chosen from the set of users that have not been served so far. Although, this choice might not
lead to the maximum increase in the asymptotic sum rate, it definitely leads to a higher sum rate
than allocating the second group of subchannels to the same user than the first group. Proceeding
this way, it can be shown by evaluating the large system sum rates that the firstK subgroups of
subchannels are all allocated to distinct users so that

f
(∞)
Cj

(x) = fMP(x, β(1− (j − 1)δξ)), j = 1, . . . , K.

In the following it will be assumed that the first subgroup of subchannels is allocated to user1, the
second to user2 and so on. As shown in Appendix A10, the user scheduling in thelarge system
limit continues this way also forj > K, so that userk receives a group of subchannels forj = k,
j = k +K and so on. Forj > K, f (∞)

Cj
(x) can however not be stated explicitly anymore. Instead

the Stieltjes-transformmCj
(z) of the matrixCj is given by the implicit equation

∫ λ̂j−K

0

fCj−K
(x)

1− β̃j + (x− z)mCj
(z)

d x =
1− (j −K)δξ

1− (j −K − 1)δξ
, (5.20)

where

β̃j =
1− (j − 1)δξ

1− (j −K)δξ
,

and which is derived in Appendix A10. Unfortunately, there is no explicit solution neither for
mCj

(z) nor for f (∞)
Cj

(x) from (5.20). For this reasonf (∞)
Cj

(x) has to be sampled as described in

the following. First Equation (5.20) is solved formCj
(z) with z = λ̂j−K . The imaginary part of

mCj
(λ̂j−K) divided byπ is then equal tof (∞)

Cj
(λ̂j−K), as given by (5.4). Due to the projections

from step(j−K)δm+1 to step(j−1)δm, the principal eigenvalue of the matrixCj will certainly
not be larger than̂λj−K, which is the channel gain in step(j −K)δm [c.f. (5.19)], the last step the
same user has received a subchannel. Thus,f

(∞)
Cj

(x) = 0 for x > λ̂j−K andλ̂j−K can be used as

a starting point for the sampling process. After,f
(∞)
Cj

(λ̂j−K) has been computedz is reduced by a

constant sampling distance∆ and Equation (5.20) is solved formCj
(z) with z = λ̂j−K −∆. This

sampling is continued untilz = 0. The integrals withf (∞)
Cj

(x) required in (5.19) and (5.20) can

then be evaluated numerically for example with the trapezoidal method (e.g. [131]), wheref (∞)
Cj

(x)
is interpolated linearly between two neighboring samples.
In Figure 5.3 the ergodic sum rates normalized to the number of transmit antennas and averaged
over1000 Gaussian channel realizations withσ2

H = 1 are plotted versus the number of transmit
antennas in a single carrier system withC = 1 at an SNR of10 dB. The ratioβ of transmit antennas
to receive antennas is set toβ = 2. The average sum rate of SESAM is plotted as a line marked
as “SESAM”, whereas additionally each of the1000 sum rates that has been achieved with one
channel realization is marked with a star. The large system sum rate obtained as described above
with δ = 0.05 is plotted as a line with circles, where a sampling distance of ∆ = 0.001 has been
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Figure 5.3: Comparison of ergodic sum rates with large system sum rate in a system withK = 5 users,
C = 1 carrier,β = 2, SNR= 10dB andδ = 0.05.

used to determine the asymptotic distributionsf
(∞)
Cj

(x). The large system sum rate obtained this
way serves as a very good approximation for the ergodic sum rate achievable with SESAM also for
finite system parameters and becomes exact for systems withNT ≥ 16. Furthermore the variance
of the sum rate achievable with SESAM decreases with increasing number of transmit antennas.
For comparison the average sum capacity has also been included in Figure 5.3.



6. Conclusion

Efficient low-complexity algorithms have been presented inthis book for the MIMO broadcast
channel. The problem of weighted sum rate maximization under a sum transmit power constraint
has been tackled as well as several Quality of Service constrained utility maximization problems.
Weighted sum rate and transmission power served as utility,whereas the QoS constraints have been
given by minimum rates or relative rate requirements. For all optimization problems it has been
shown by simulation results that the proposed algorithms are able to achieve the optimum solu-
tions closely in multi-path Rayleigh fading scenarios, when DPC can be applied at the transmitter.
Avoiding DPC by mitigating multi-user interference solelyby means of linear transmit and receive
signal processing leads to further small performance losses but drastic reductions in computational
complexity. The efficient algorithms are based on the principles of successive resource allocation
and spatial zero-forcing and work non-iteratively. Some ofthe presented algorithms have been
analyzed in the large system limit, where at least two systemparameters go to infinity at a finite
fixed ratio. The analytical results obtained this way have been shown to be good approximations
for the ergodic performance of the system with finite parameters having the same ratio as in the
large system analysis.
The algorithms derived in this book require perfect channelknowledge of all users’ channel ma-
trices at the transmitter. This assumption can no longer be maintained in scenarios with short
channel coherence times, i.e., when the channel matrices remain constant only for a short period
of time. Thus, in those scenarios it is necessary to take the erroneous channel knowledge into
account when designing transmit and receive signal processing filters. A possible extension to the
work presented in this book would therefore be to make the presented algorithms robust against er-
roneous or outdated channel state information. Another aspect of future work is the consideration
of inter-cell interference. In this book, isolated cells have been considered, but for an efficient use
of bandwidth it might be necessary to operate neighboring cells in the same frequency band. The
inter-cell interference caused this way must be taken into account during filter design. In [132]
and [133], the method of successive resource allocation andzero-forcing without DPC has already
been adjusted to a two-cell interference scenario.
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Appendix

A1. Derivation of the OFDM Channel Model

In this appendix the relation between the OFDM channel matricesHk and the channels̃Hk(t) in
the time domain, as stated in (2.1), and the derivation of theadditive Gaussian noiseηk[n] will be
given. It is based on the model in [36, Ch. 1.3.]. At first, the modulation and cyclic prefix will be
explained, a block diagram detailing the corresponding block in Figure 2.1 is given in Figure A1.
The vectorx(t) is convolved with rectangular pulsesg(t, T ) of durationT and height1, where

x(t)

x̂(t)
x̃(t)

x̄(t)
Cyclic
Prefix

g(t, T )

S1,T

Sc,T

SC,,T

...

...

x̂1(t)

x̂c(t)

x̂C(t)

exp(j2π(t− nTs)f1)

exp(j2π(t− nTs)fc)

exp(j2π(t− nTs)fC)

Figure A1: Modulation and Introduction of Cyclic Prefix (Mod. + CP)

g(t, T ) =

{

1, 0 ≤ t ≤ T,

0, else.

Thus,

x̂(t) =

∞∑

n=−∞
g(t− nTs, T )x[n].

x̂(t) ∈ CCNT is then split intoC vectors of lengthNT, where each of those vectorsx̂c(t) ∈ CNT is
transmitted on a different carrier and obtained by selectingNT rows ofx̂(t) according to

x̂c(t) =
[
0NT,(c−1)NT , INT, 0NT,(C−c)NT

]
x̂(t) = Sc,Tx̂(t).

Each x̂c(t) is modulated by a different basis functionexp(j2π(t − nTs)fc), where each basis
function defines a carrier of the OFDM system and

fc = f0 − B/2 + (c− 1)B/C (A1)
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is the frequency over which the signalx̂c(t) is transmitted.

B =
C

T
(A2)

andf0 denote the bandwidth and the center frequency, respectively. The resulting signals are added
up, so that

x̃(t) =

C∑

c=1

x̂c(t) exp(j2π(t− nTs)fc) =

∞∑

n=−∞

C∑

c=1

exp(j2π(t− nTs)fc)g(t− nTs, T )Sc,Tx[n].

Finally, a cyclic prefix is added to each of the signals

x̃n(t) =

C∑

c=1

exp(j2π(t− nTs)fc)g(t− nTs, T )Sc,Tx[n] ∈ C
NT .

That implies that the original signals̃xn(t) are delayed by a certain timeTcp. As it will become
clear in the remainder,Tcp should be chosen to be larger or equal tomax

k∈Sk

(τk,Lk
− τk,1), i.e.,

Tcp ≥ max
k∈Sk

(τk,Lk
− τk,1), (A3)

whereSk = {k ∈ {1, . . . , K}| tr(Pk) > 0} contains all users that receive non-zero power. The
interval betweennTs andnTs + Tcp is filled by the lastTcp seconds of the original signal̃xn(t)
such that the transmit signalx̄n(t) ∈ CNT results in

x̄n(t) =

{

x̃n(t+ T − Tcp), nTs ≤ t ≤ nTs + Tcp

x̃n(t− Tcp), nTs + Tcp ≤ t ≤ nTs + Tcp + T.
(A4)

In case allfc are integer multiples of1/T , which can always be assured by an appropriate choice
of f0, the functionsexp(j2π(t − nTs)fc) are periodic with a period of lengthT . Hence by using
the enlarged windowing functiong(t, T + Tcp), x̄n(t) can be rewritten as

x̄n(t) =

C∑

c=1

exp(j2π(t− nTs − Tcp)fc)g(t− nTs, T + Tcp)Sc,Tx[n]. (A5)

By choosingTs = T + Tcp the nonzero parts of the signalsx̄m(t) andx̄p(t) do not overlap in time
for m 6= p. Finally, the transmit signal̄x(t) reads as̄x(t) =

∑∞
n=−∞ x̄n(t).

At thekth user, the signal

ȳk(t) =

Lk∑

ℓ=1

H̃k,ℓx̄(t− τk,ℓ) + η̃k(t) =

∞∑

n=−∞

Lk∑

ℓ=1

H̃k,ℓx̄n(t− τk,ℓ) + η̃k(t) =

∞∑

n=−∞
ȳk,n(t) (A6)

is received. The following removal of the cyclic prefix, demodulation and sampling is depicted in
Figure A2 exemplarily for userk. In case of multi-path propagation, i.e.,Lk > 1, the non-zero
parts of the signals̄yk,n−1(t) and ȳk,n(t) overlap fornTs + τk,1 ≤ t ≤ nTs + τk,Lk

leading to
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ȳk(t)

ỹk(t) y̆k(t)

yk(t)

y̌k(t)
Removal
of CP

Band
pass

Serial

Parallel

to
DFT

Conv.

T
C

ST

1,k

ST

c,k

ST

C,k

...

...

ŷk,1(t)

ŷk,c(t)

ŷk,C(t)

Figure A2: Removal of Cyclic Prefix and Demodulation at Receiverk

undesired intersymbol interference of the symbolx[n − 1] on the symbolx[n]. By setting the
signalȳk,n(t) to zero during this period, i.e.,

ỹk,n(t) =

{

0, nTs + τk,1 ≤ t ≤ nTs + τk,1 + Tcp,

ȳk,n(t), else,
(A7)

and choosingTcp according to (A3), all parts of̄yk(t) containing intersymbol interference are
ignored. Thus, the signals̃yk,n(t) ∈ Crk can be processed independently and only the further
processing of these signals is considered in the remainder.Additionally, due to the cyclic prefix
in (A4), the information useful for the detection of the signalx[n] contained in the intervalnTs +
τk,1 ≤ t ≤ nTs + τk,1 + Tcp is repeated in the interval

nTs + τk,1 + T
︸ ︷︷ ︸

=(n+1)Ts+τk,1−Tcp

≤ t ≤ nTs + τk,1 + Tcp + T
︸ ︷︷ ︸

=(n+1)Ts+τk,1

and therefore not lost by the removal of the cyclic prefix. On the other hand this interference
cancellation can only be achieved at the cost of additional delayTcp. The bandpass filter suppresses
all signals outside the frequency bandf0 − B/2 ≤ f ≤ f0 + B/2. In the following it will be
assumed that this filter does not affect the signal

∑∞
n=−∞

∑Lk

ℓ=1 H̃k,ℓx̄n(t − τk,ℓ). Although that
signal is not strictly band-limited, the energy outside theintervalf0−B/2 ≤ f ≤ f0+B/2 is very
low and will therefore be neglected in the following. The noise signal is definitely influenced and
the noiseη̆k(t) after bandpass filtering remains Gaussian circularly symmetric with zero mean,
but the covariance matrix becomesBR̃k = C

T
R̃k and noise samples obtained at different time

instances are no longer uncorrelated, where the auto-correlation of the band-limited Gaussian noise
is given by

r(τ) = E
[
η̆k(t)η̆

H
k (t− τ)

]
= R̃k

sin(πBt)

πt
= R̃k

sin
(
πC

T
t
)

πt
. (A8)

The non-zero-part of each signalỹk,n(t) is then sampled everyT/C seconds leading to the signal

y̌k,n(t) =

C∑

c=1

δ(t− tc(n))ỹk,n(tc(n)) =

C∑

c=1

δ(t− tc(n))y̌k,c[n], (A9)

where

tc(n) = nTs + Tcp + τk,1 +
c− 1

C
T.



A1. Derivation of the OFDM Channel Model 97

TheseC samples are collected by the serial-to-parallel converterand made available att = (n +
1)Ts + Tcp + τk,1 to the Discrete-Fourier Transform (DFT) block1. The DFT generatesC vectors
ŷk,1[n], . . . , ŷk,C[n] ∈ Crk , where

ŷk,c[n] =
1

C

C∑

d=1

y̌k,d[n] exp

(

−j2πfc
d− 1

C
T

)

. (A10)

The signalŷk,c(t) is therefore discrete and given by

ŷk,c(t) =
∞∑

n=−∞
δ(t− ((n+ 1)Ts + Tcp + τk,1))ŷk,c[n]. (A11)

With equations (A5), (A6), (A7), (A9), and (A10), the signals ŷk,c[n] compute according to

ŷk,c[n] =

Lk∑

ℓ=1

H̃k,ℓ

C∑

b=1

1

C

C∑

d=1

exp

(

j2π(fb − fc)
d− 1

C
T

)

exp(j2πfb(τk,1 − τk,ℓ))Sc,Tx[n]+

+
1

C

C∑

d=1

η̆k(td(n)) exp

(

−j2πfc
d− 1

C
T

)

(A12)

By using the identityfb − fc =
b−c
T

[c.f. (A1), (A2)] and the fact that

1

C

C∑

d=1

exp

(

j2π
(d− 1)(b− c)

C

)

=

{

1, b = c

0, else
,

Equation (A12) can be simplified to

ŷk,c[n] =

Lk∑

ℓ=1

H̃k,ℓ exp(j2πfc(τk,1 − τk,ℓ))Sc,Tx[n] + ηk,c[n],

where

ηk,c[n] =
1

C

C∑

d=1

η̆k(td(n)) exp

(

−j2πfc
d− 1

C
T

)

.

By plugging the temporal distancesτ = n
C
T , n ∈ {1, 2, . . . , C − 1} between the noise samples

η̆k(td(n)) into the autocorrelation function from (A8), it can be derived that the noise samples
η̆k(td(n)) are mutually uncorrelated. Therefore,ηk,c is a sum of uncorrelated Gaussian variables
and hence also Gaussian distributed with zero mean and covariance matrix

R̂k = E
[
ηk,c[n]η

H
k,c[n]

]
=

=
1

C2

C∑

b=1

C∑

d=1

E
[
η̆k(tb(n))η̆

H
k (td(n))

]
exp

(

−j2πfc
d− b

C
T

)

=

=
1

C2

C∑

d=1

C

T
R̃k =

1

T
R̃k, (A13)

1In caseC = 2p for integerp the Fast-Fourier Transform can be used as an efficient implementation for the DFT
block.
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which is identical for all carriersc. Additionally, the noise vectorsηk,c[n] andηk,c′[n] of different
carriersc 6= c′ are uncorrelated as

E
[
ηk,cη

H
k,c′

]
=

1

C2

C∑

d=1

R̃k exp

(

j2π
T

C
(d− 1)fc

)

= 0, (A14)

which can be stated as thefc are integer multiples of1/T . Finally, the multiplication with the
selection matricesST

c,k and the following addition stacks the signalsŷk,c[n] received on the different
carriers into one vectoryk[n] ∈ CCrk so that

yk[n] =
C∑

c=1

ST

c,kŷk,c[n] =
C∑

c=1

ST

c,k

Lk∑

ℓ=1

H̃k,ℓ exp(j2πfc(τk,1 − τk,ℓ))Sc,Tx[n] +
C∑

c=1

ST

c,kηk,c[n] =

= Hkx[n] + η[n],

which corresponds to (2.3). The covariance matricesRk = E
[
ηk[n]ηk[n]

H
]

as given in (2.4) can
then be derived from (A13) and (A14).

A2. Optimum Power Allocation for Weighted Sum Rate Maximization over
Scalar Channels

In this section the optimum power allocation

{pk,j}j=1,...,dk,k=1,...,K = argmax
{p̂k,j}j=1,...,dk,k=1,...,K

K∑

k=1

µk

dk∑

j=1

log2

(

1 + p̂k,j
C

σ2
n

λk,j

)

,

s.t.
K∑

k=1

dk∑

j=1

p̂k,j ≤ PTx

will be derived. The Karush-Kuhn-Tucker (KKT) conditions of this problem read as

µk
C
σ2

n
λk,j

ln 2
(

1 + p̂k,j
C
σ2

n
λk,j

) − η̂ − νk,j = 0, ∀j = 1, . . . , dk, k = 1, . . . , K

η̂

(
K∑

k=1

dk∑

j=1

p̂k,j − PTx

)

= 0, η̂ ≥ 0, νk,j p̂k,j = 0, νk,j ≥ 0, ∀j = 1, . . . , dk, k = 1, . . . , K.

(A15)

Multiplying the equations in the first line with the corresponding p̂k,j, it can be shown that

pk,j =

[
µk ln 2

η̂
− σ2

n

Cλk,j

]+

=

[

ηµk −
σ2

n

Cλk,j

]+

,

whereη is chosen so that the transmit power constraint is fulfilled with equality, fulfills all KKTs
in (A15).
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A3. Proof of Optimality of Using the Pseudo-inverse of the Composite Chan-
nel Matrix as Precoder under Zero-Forcing Constraints

In this section it is proofed that the optimum solution to theoptimization problem

max
T ,{λk,j}

j=1,...,dk,k=1,...,K

f(λ1,1, . . . , λdK ,K)

s.t.λk,j ≥ 0, eT

nk,j
THTenk,j

= 1, ∀j = 1, . . . , dk, ∀k, HcompT = diag
(√

λ1,1, . . . ,
√

λdK ,K

)

,

where

nk,j =
k−1∑

k′=1

dk′ + j, T = [t1,1, . . . , tK,dk ] ,

and

f(λ1,1, . . . , λdK ,K) = log2







λk,j

µkC

σ2
n

PTx +
K∑

k′=1

dk′∑

j=1

σ2
n

Cλk′,j

∑K
k′=1 µk′dk′








,

is given by

λk,j =
1

eT
nk,j

(
HcompHH

comp

)−1
enk,j

(A16)

and
T = H+

compdiag
(√

λ1,1, . . . ,
√

λdK ,K

)

. (A17)

Using the definition of a generalized inverse from [134], theconstraint HcompT =
diag

(√
λ1,1, . . . ,

√
λdK ,K

)
is fulfilled by choosing

T =
(
H+

comp+ P⊥U
)
diag

(√

λ1,1, . . . ,
√

λdK ,K

)

=
(
H+

comp+ P⊥U
)
Λ

1
2 , (A18)

whereP⊥ = I −H+
compHcomp is a projector into the nullspace ofH+

comp andU is an arbitrary
matrix. Inserting (A18) into the constraint functionseT

nk,j
THTenk,j

= 1 yields

eT

nk,j
THTenk,j

= eT

nk,j
Λ

1
2

(
H+

comp+ P⊥U
)H (

H+
comp+ P⊥U

)
Λ

1
2enk,j

= eT
nk,j

Λ
1
2

(
H+

comp

)H
H+

compΛ
1
2enk,j

+ eT
nk,j

Λ
1
2UHP⊥UΛ

1
2enk,j

= λk,j

(

eT
nk,j

(
H+

comp

)H
H+

compenk,j
+ eT

nk,j
UHP⊥Uenk,j

)

= 1.

From these equality constraints theλk,j can be computed explicitly as

λk,j =
1

eT
nk,j

(H+)H H+enk,j
+ eT

nk,j
UHP⊥Uenk,j

.

As theUHP⊥U are positive semidefinite, i.e.,eT
nk,j

UHP⊥Uenk,j
≥ 0, at the optimumU =

0
∑

dk,
∑

dk holds, if the objective function is a monotonically increasing function in eachλk,j.
Together with (A18) this leads to (A17). By furthermore using the fact that

(
H+

comp

)H
H+

comp =
(
HcompH

H
comp

)−1
HcompH

H
comp

(
HcompH

H
comp

)−1
=
(
HcompH

H
comp

)−1
,
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the result in (A16) can be obtained. Thus, to complete the proof it has to be shown that the objective
function is monotonically increasing inλk,j. This can be done by using the following lemma:

Lemma A3.1 For fixed channel gainsλ1,1, . . . , λ1,d1, . . . , λK,1, . . . , λK,dK the weighted sum rate
RWSR(λ1,1, . . . , λdK ,K) obtainable with an optimum power allocation is a monotonically increasing
function in each channel gainλk,j.

Proof. At places, whereRWSR(λ1,1, . . . , λdK ,K) is differentiable the lemma can be proofed by
taking the partial derivative with respect toλk,j, which is done exemplarily for the case that all
subchannels receive non-zero powers in the following.

∂RWSR(λ1,1, . . . , λdK ,K)

∂λk,j
=

µk

ln 2λk,j
− 1

ln 2

(
K∑

k′=1

µk′dk′

) PTx+
K
∑

k′=1

d
k′
∑

j′=1

σ2
n

Cλ
k′,j′

∑K
k′=1 µk′dk′

σ2
n

Cλk,j

K∑

m=1

dm∑

ℓ=1

µm =

=
1

ln 2λk,j

(

µk −
σ2

n

ηCλk,j

)

=
pk,j

ln 2λk,jη
> 0.

It remains to show that at placesλk,j = λ̂k,j, whereλ̂k,j is equal to σ2
n

µkηC
, i.e.,

λ̂k,j =
σ2

n

µkηC

the weighted sum rate does not increase whenλk,j is decreased. Assuming that all other channel
gains remain constant this implies that

η =

PTx +
K∑

k′=1
k′ 6=k

dk′∑

j=1

σ2
n

Cλk′,j
+

dk∑

j′=1
j′ 6=j

σ2
n

Cλk,j′
+ σ2

n

Cλ̂k,j

∑K
k′=1 µk′dk′

=
σ2

n

µkCλ̂k,j

(A19)

The weighted sum rateRWSR(λ̂k,j) at λ̂k,j is therefore given by

RWSR

(

λ̂k,j

)

=






K∑

k′=1
k′ 6=k

µk′dk′ + µk(dk − 1)




 log2(η)−

K∑

k′=1
k′ 6=k

dk′∑

j′=1

log2

(
µk′Cλk′,j′

σ2
n

)

−

−
dk∑

j′=1
j′ 6=j

log2

(
µkCλk,j′

σ2
n

)

+ µk

(

log2(η)− log2

(

µkCλ̂k,j

σ2
n

))

=

=






K∑

k′=1
k′ 6=k

µk′dk′ + µk(dk − 1)




 log2(η)−

K∑

k′=1
k′ 6=k

dk′∑

j′=1

log2

(
µk′Cλk′,j′

σ2
n

)

−
dk∑

j′=1
j′ 6=j

log2

(
µkCλk,j′

σ2
n

)

Whenλ̂k,j is decreased byε > 0, thejth subchannel of userk is deactivated and the water-level
has to be computed without considering the corresponding subchannel. That is why the weighted
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sum rate is non-differentiable at these places. Then a constant sum rate can be achieved which is
given by

RWSR

(

λ̂k,j − ε
)

=






K∑

k′=1
k′ 6=k

µk′dk′ + µk(dk − 1)




 log2(η̂)−

K∑

k′=1
k′ 6=k

dk′∑

j′=1

log2

(
µk′Cλk′,j′

σ2
n

)

,

with the waterlevel

η̂ =

PTx +
K∑

k′=1
k′ 6=k

dk′∑

j′=1

σ2
n

Cλk′,j′
+

dk∑

j′=1
j′ 6=k

σ2
n

Cλk,j′

K∑

k′=1

µk′dk′ − µk

=

η

(
K∑

k′=1

µk′dk′

)

− σ2
n

Cλ̂k,j

K∑

k′=1

µk′dk′ − µk

=
σ2

n

µkCλ̂k,j

= η,

where (A19) has been used to obtain the second last equality.Thus, althoughRWSR(λk,j) is

not differentiable atλk,j = λ̂k,j, there is no discontinuity at this place, i.e.,RWSR

(

λ̂k,j − ε
)

−
RWSR

(

λ̂k,j

)

= 0, and the sum rate does not increase forε > 0. �

In Problem (3.40) additionally the carrier separation constraintstk,j = ST

γ(k,j)Sγ(k,j)Sγ(k,j)tk,j have
to be fulfilled in multicarrier systems withC > 1. As long as the receive filtersgk,j obey the carrier
separation constraints, the transmit filters from (A17) fulfill the carrier separation constraints as
well. That is because

tk,j = Tenk,j = HH
comp

(
HcompH

H
comp

)−1
diag

(√

λ1,1, . . . ,
√

λdK ,K

)

enk,j

= HH
compΠ

(
ΠHcompH

H
compΠ

)−1
Πenk,j

√

λk,j,

whereΠ is a permutation matrix withΠ = ΠT = Π−1 that permutes the rows ofHcomp so
thatΠHcomp becomes block-diagonal, which is possible, as longs as thegk,j fulfill the carrier
separation constraints. Thus, alln1 vectorsgH

k,jHk with γ(k, j) = 1 are accumulated in the firstn1

rows ofΠHcomp, followed by alln2 vectorsgH
k,jHk with γ(k, j) = 2 and so on, wherenc denotes

the number of data streams allocated to carrierc, andΠHcomp can be written as

ΠHcomp= blockdiag (Hcomp,1, . . . ,Hcomp,C) ,

whereHcomp,c ∈ C
nc×NT denotes the composite channel matrix on carrierc. Hence,

tk,j = blockdiag
(

HH
comp,1

(
Hcomp,1H

H
comp,1

)−1
, . . . ,HH

comp,C

(
Hcomp,CH

H
comp,C

)−1
)

Πenk,j

√

λk,j

= T̂Πenk,j

√

λk,j.

As T̂ is block-diagonal, the columns in̂T are arranged carrier-wise, i.e., the firstn1 columns are
collinear with the precoders on carrier1, and the permutation matrixΠ rearranges the columns of
T̂ so that thenk,jth column ofT̂Π is collinear with the precoder of thejth data stream of userk,
thetk,j fulfill the carrier separation constraint.
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A4. Computation of Inverse Channel Gains for Zero-Forcing without DPC

In this section, Equation (3.48) for the computation of the inverse channel gains
eT

j

(
HcompH

H
comp

)−1
ej will be derived. These are given by

eT

j

(
HcompH

H
comp

)−1
ej =

|Hcomp,−jH
H
comp,−j|

|HcompHH
comp|

, (A20)

which follows from determining the matrix inverse via its adjoint matrix (e.g. [94, Ch. 0.8.2])
and whereHcomp,−j is built by removing thejth row fromHcomp. From (3.47) the determinant
|HcompH

H
comp| can be computed according to
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∣
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∣
∣
∣
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∣ gHHkP̂

(i)
lin HH

k g, (A21)

where the formula for the determinant of block matrices from[135] has been used in the third line
andP̂ (i)

lin is given by (3.49). As shown in the following, thêP (i)
lin have a block-diagonal structure.

Let Π be a permutation matrix withΠ = ΠT = Π−1 that permutes the columns ofH(i−1)
comp

so that the firstn1 rows contain the effective channelsgH
k,jHk of the first carrier, i.e., all data

streams withγ(k, j) = 1, followed by then2 effective channels of the second carrier and so on. As
the receive filtersgk,j obey to the carrier separation constraint, the matrixΠH

(i−1)
comp has a block-

diagonal structure. Additionally, due to the properties ofthe permutation matrix, the projector̂P (i)
lin

can be written as

P̂
(i)
lin = ICNT −H(i−1),H

comp

(
H(i−1)

comp H
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)−1
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)−1
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comp ,

where the second term is a product of block-diagonal matrices and therefore also block-diagonal.
The determinants

∣
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H
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∣
∣ for j < i can be obtained in a similar manner so that
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where
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(

H
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)−1

H
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projects intonull
{

H
(i−1)
comp,−j

}

and is block-diagonal. AŝP (i)
−j has the same nullspace asP̂

(i)
lin except

for this component of thejth row ofH(i−1)
comp , which is orthogonal to all other rows ofH(i−1)

comp , it can
also be written as
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The vectorP̂ (i)
−jH

(i−1),H
comp ej is collinear withT (i−1)ej , asT (i−1)ej lies in the nullspace ofH(i−1)

comp,−j,

i.e., T (i−1)ej ∈ null
{

H
(i−1)
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}

= null
{
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}

and has no component in the nullspace of

H
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comp , which follows from the properties of the columns of the pseudo-invers ofHcomp (c.f.

Appendix A3). Thus,
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For j = i it can be easily seen that
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∣Hcomp,−iH

H
comp,−i

∣
∣ =

∣
∣H(i−1)

comp H
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∣
∣ , (A25)

which is independent ofg. Inserting (A21), (A24) and (A25) into (A20) and introducing the
variables

α
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leads to the desired result.

A5. Derivation of the Update Rule for the Transmit Filters in a Successive
Algorithm without DPC

In this section the update rule for the transmit filters in a successive algorithm without DPC given
in Equation (3.68), which is conform with

t
(i)
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(

t
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,

will be proofed. The projection matrix̂P (i+1)
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as defined in (A22) projects into
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and can therefore be written as
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As explained in Appendix A4,t(i)k,j is collinear withP̂ (i+1)
−nk,j

H
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so that
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where (A23) has been used in the last but one line andβ̂
(i)
k,j andβ̃(i)

k,j scale the vectors on the right

hand side so thatt(i)k,j has unit norm. By using the fact that
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which leads to the desired result by using the definition ofα
(i)
m(i) in (3.66) and the definition ofγ(i)

nk,j

in (3.67).

A6. Lower and Upper Bounds for a Generalized Eigenvalue Problem

In this section we will derive a lower and an upper bound for the maximum eigenvalue of a matrix
(Ir +D)−1

C, which are given by

tr(C)

r [1 + tr(D)]
≤ ρ1

(
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C
)
≤ tr (C)

in caseC ∈ C
r×r andD ∈ C

r×r are positive semi-definite Hermitian matrices. For the eigenvalue
from Equation (3.71) one obtainsC = Sc,kA
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k ST

c,k and

D = Sc,kB
(i)
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This maximum eigenvalue can be upper bounded by (e.g. [136, Ch.9, Theorem H.1.a])

ρ1
(
(Ir +D)−1

C
)
≤ ρ1

(
(Ir +D)−1

)
ρ1(C).

As the minimum eigenvalue of the matrixIr+D is greater than or equal to one, whenD is positive
semi-definite, the maximum eigenvalue of its inverse is equal to or smaller than one. Furthermore
the maximum eigenvalue of a positive semi-definite matrixC is smaller than or equal to the trace
of that matrix which leads to the upper bound

ρ1
(
(Ir +D)−1C

)
≤ tr(C).

For the derivation of the lower bound the lower bound for the maximum eigenvalue from [35, Ch.
2.3] is used, so that
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r
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(
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)
, (A26)

where equality holds, if all eigenvalues are identical. Denoting the eigenvalue decompositions of
the matricesC and(Ir +D)−1 as
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(A27)
As D is positive semi-definite, all its eigenvaluesρj(D) can be upper bounded by its trace, i.e.
ρj(D) ≤ tr(D). Hence, we the expression in (A27) can be lower bounded as
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As the vectorsvj form an orthonormal basis, we obtain
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which leads together with (A26) to the the desired result.

A7. Derivation of the Large System Limit for the Optimum Weighted Sum
Rate in MISO Systems with Infinite Number of Transmit Antennas and
Users

To derive the large system limit for the optimum weighted sumrate in MISO Systems with infinite
number of transmit antennas and users, the Karush-Kuhn-Tucker conditions of Problem (5.7) are
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considered, which read as

N∑
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= 0, λ̂ ≥ 0, Wk � 0, ∀k, (A28)

wheren(k) denotes the index of the subgroup userk belongs to and

K̂j =

j
∑

n=1

βnK.

As the problem of weighted sum rate maximization in the dual MAC is convex, the KKT are
necessary and sufficient and solving (A28) leads to a global optimum. As it has been shown in
Section 3.1, the covariance matrices optimum for (5.7) in OFDM systems, automatically fulfill the
block-diagonality constraints, which implies for single antenna user terminals that the optimum
uplink covariance matricesWk ∈ C

C×C become diagonal matrices, i.e.,

Wk = diag (wk,1, . . . , wk,C) .

Exploiting this fact and the block-diagonal structure of the channel matricesHk, the KKT condi-
tions in (A28) can be written as
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where
HH

k,c = Sc,TH
H
k S

T

c,k =: ĥk,c

becomes a column vector in the MISO case. Note that for QoS constrained optimization problems,
instead of (A29) the KKT of the corresponding optimization problem need to be considered. They
can be analyzed in the large system limit with the same tools as applied in the following to the
weighted sum rate maximization problem.
Similarly to [127], the covariance matricesWk are considered to be deterministic in the following.
Under this assumption the KKT conditions (A29) are evaluated in the large system limit. First, the
terms

ĥH
k,c



INT +
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n





K̂j∑
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ĥπ̂(m),cĥ
H
π̂(m),cwπ̂(m),c









−1

ĥk,c

are evaluated in the large system limit forK →∞ andNT →∞ using standard methods from the
large system analysis (e.g. [112], [110]). First the matrixinversion lemma is applied so that the
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inverse matrices are independent of the vectorĥk,c and
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where
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H
π̂(m),cwπ̂(m),c − ĥk,cĥ
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The matrixĤk,c,j ∈ CNT×K̂j−1 contains the vectors 1√
NTσH

ĥπ̂(m),c, m = 1, . . . , K̂j, π̂(m) 6= k,

as columns, where the normalization by1√
NTσH

is done so that the entries in̂Hk,c,j are i.i.d.

with zero mean and variance1
NT

, a property that will be required in the following. The matrix
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is independent of̂hk,c, which is due to the fact that the powers

wk,c are assumed to be deterministic and the vectorsĥπ̂(m),c belong to other users than userk. As
furthermore the vector̂hk,c contains i.i.d. entries, Lemma 2.7 from [137] can be applied, so that
mk,c,j converges forNT →∞ according to
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where the factorσ2
H takes into account that the elements inĥk,c do not have variance1 as required

in [137, Lemma 2.7]. Given the asymptotic eigenvalue distributionf (∞)
Bk,c,j

(x) of the matrixBk,c,j,
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[c.f. (5.5)]. Thus,mk,c,j is a function of theη-transformηBk,c,j
(γ) of the matrixBk,c,j. Exploiting

the structure of the matrixBk,c,j as defined in (A31) and the fact that the matricesĤk,c,j contain
i.i.d. entries with zero mean and variance1

NT
, Theorem 2.39 from [109] can be applied to obtain

theη-transformηBk,c,j
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)
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Furthermore in (A33) the facts have been used that for for largeNT andK
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=

j∑

n=1
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(γ) =
1

K̂j − 1

K̂j∑

m=1
ˆπ(m) 6=k

1

1 + γwπ̂(m),cσ
2
HNT

.

Using (A30) and adding the implicit conditions (A33) to the KKT conditions from (A29) leads to
the following system of equations to determine the optimum powerswk,c

N∑

j=n(k)

∆µj
C

ln 2σ2
n

mk,c,j

1 + wk,cmk,c,j
C
σ2

n

wk,c = λ̂wk,c, ∀k, c

λ̂

(
K∑

k=1

C∑

c=1

wk,c − PTx

)

= 0, λ̂ ≥ 0, wk,c ≥ 0, ∀k, c,

j
∑

n=1

βn
1

α
=

1− mk,c,j

NTσ2
H

1− 1
K̂j−1

(
K̂j∑

m=1

1
1+mk,c,jwπ̂(m),c

C

σ2
n

− 1
1+mk,c,jwk,c

C

σ2
n

) , ∀j = n(k), . . . , N, ∀k, c.

(A34)

The first and the last line in (A34) are identical for all carriersc and for all users, which belong to
the same subgroup of users. Thus, the variablesmk,c,j are therefore identical for all carriers and
all users in the same subgroup and those users receive the same power, which is in turn equally
distributed over the carriers of each user. Denotingwn the total power allocated to thenth subgroup
of users, thewk,c are therefore given by

wk,c =
wn

CβnK
.

For the special case of sum rate maximization, i.e., when allusers’ weights are equal, this implies
that an equal power allocationwk,c =

PTx
CK

is optimum in the dual uplink. For unequal weights, by
using the new variables

wn = wk,cCβnK, mn =
mk,c,j

NT
, ∀k, c (A35)
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andλ = λ̂ ln 2σ2
n

NTC
, the system of equations (A34) can be reduced to

N∑

j=n

∆µj
mj

1 + wnmj
α

σ2
nβn

wn = λwn, n = 1, . . . , N

λ

(
N∑

n=1

wn − PTx

)

= 0, λ ≥ 0, wn ≥ 0, n = 1, . . . , N

n∑

n′=1

βn′

1

α
=

1− mn

σ2
H

1−
(

n∑

m=1

βm
∑n

n′=1
βn′

1
1+mnwm

α

σ2
nβm

) n = 1, . . . , N,

which is identical to the implicit systems of equations (5.9) and where in the last line the asymptotic
equivalence

1

K̂j − 1





K̂j∑

m=1

1

1 +mjwm
α
σ2

n
βm

− 1

1 +mjwk
α

σ2
nβk





−→
K→∞

1

K̂j

K̂j∑

m=1

1

1 +mjwm
α

σ2
nβm

=

j
∑

m=1

βm
∑j

n′=1 βn′

1

1 +mjwm
α

σ2
nβm

has been used. As (5.9) stems from the KKT of a concave optimization problem, the system
of equations has a unique solution. Proceeding similarly tothe KKT expression in (A29), the
weighted sum rate expression in (5.7) can be written as

RWSR,opt=

N∑

n=1

∆µn

C∑

c=1

log2

∣
∣
∣
∣
∣
∣

INT +
C

σ2
n





K̂n∑

m=1

ĥπ̂(m),cĥ
H
π̂(m),cwπ̂(m),c





∣
∣
∣
∣
∣
∣

=
N∑

n=1

∆µn

C∑

c=1

log2

∣
∣
∣
∣
INT +

C

σ2
n

B̂c,n

∣
∣
∣
∣
,

where

B̂c,n =
K̂n∑

m=1

ĥπ̂(m),cĥ
H
π̂(m),cwπ̂(m),c = Bπ̂(1),c,n + ĥπ̂(1),cĥ

H
π̂(1),cwπ̂(1),c (A36)

andBπ̂(1),c,n is given by (A31). The large system sum rate can then be computed via the Shannon
transform [c.f. (5.6)] of the matrix̂Bc,n according to

RWSR,opt −→
NT,K→∞

NT
K

=α

N∑

n=1

∆µn

C∑

c=1

NTVB̂c,n

(
C

σ2
n

)

,

From [109, Theorem 2.39]VB̂c,n
(γ) is given by

VB̂c,n
(γ) =

K̂n

NT
VŴc,nσ2

HNT

(

ηB̂c,n
(γ)γ

)

−

− log2

(

ηB̂c,n
(γ)
)

+
(

ηB̂c,n
(γ)− 1

)

log2(e), (A37)
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wheree is Euler’s number and

Ŵc,n = diag
(
wπ̂(1),c, . . . , wπ̂(n),c

)
.

For K → ∞, the termĥπ̂(1),cĥ
H
π̂(1),cwπ̂(1),c can be neglected compared to the matrixBπ̂(1),c,n

in (A36), as the latter matrix consists of an infinite sum of rank one matrices andwπ̂(1),c =
wπ̂(1)

Cβ1K

converges to zero for infiniteK. Thus,

ηB̂c,n
(γ) = ηBπ̂(1),c,n

(γ)

in the large system limit andηBπ̂(1),c,n
(γ) can be computed from the implicit equations (A32)

and (A33). Together with (A35) one obtains

ηB̂c,n

(
C

σ2
n

)

= ηBπ̂(1),c,n

(
C

σ2
n

)

=
mπ(1),c,n

σ2
HNT

=
mn

σ2
H

. (A38)

The Shannon transformVŴc,nσ2
HNT

(γ) of the diagonal matrixŴc,nσ
2
HNT reads as

VŴc,nσ2
HNT

(γ) =
1

K̂n

K̂n∑

j=1

log2
(
1 + γNTσ

2
Hwπ̂(j),c

)
−→
K→∞

1

K̂n

n∑

j=1

βjK log2

(

1 + γwj
σ2

Hα

βjC

)

(A39)
Inserting (A38) and (A39) into (A37), leads to the asymptotic weighted sum rate

RWSR,opt

CNT
−→

NT,K→∞,
NT
K

=α

N∑

n=1

∆µn

[

1

α

n∑

j=1

βj log2

(

1 +
α

σ2
nβj

wjmn

)

+

+ log2

(
σ2

H

mn

)

+

(
mn

σ2
H

− 1

)

log2(e)

]

,

which is identical to (5.8).

A8. Derivation of the Large System Lower Bound of the Weighted Sum Rate
in MISO Systems Achievable with Successive Resource Allocation and
Zero-Forcing with DPC

The channel gain of the data stream allocated in theith step is given by

ρ1

(

P̂
(i)
DPCH

H
k(i)Hk(i)P̂

(i)
DPC

)

= ρ1

(

Hk(i)P̂
(i)
DPCH

H
k(i)

)

= max
c

ĥH
k(i),cSc,TP̂

(i)
DPCS

T

c,Tĥk(i),c

[c.f. (3.35)], where the last equality follows from the block-diagonal structure of the matricesHk

andP̂ (i)
DPC and the fact that in MISO systems the matrixHk(i)P̂

(i)
DPCH

H
k(i) is diagonal.

ĥk(i),c = HH
k(i),c = Sc,TH

H
k(i)S

T

c,k(i)

denotes the Hermitian channel vector of userk(i) on carrierc and contains circularly symmetric
i.i.d. entries with zero mean and varianceσ2

H. Recursively applying (3.34), the projectorŝP
(i)
DPC are

given by

P̂
(i)
DPC = ICNT −

i−1∑

j=1

t
(j)
k(j)t

(j),H
k(j) .
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By furthermore exploiting the block-diagonal structure ofthe precoding vectorst(j)k(j), the matrices

Sc,TP̂
(i)
DPCS

T

c,T can be written as

Sc,TP̂
(i)
DPCS

T

c,T = INT −
∑

j
∣

∣

∣c
(j)
k(j)

=c

Sc,Tt
(j)
k(j)t

(j),H
k(j) S

T

c,T,

where the sum is taken over all precoding vectors on the same carrier, i.e., over allj with c
(j)
k(j) = c.

To obtain an analytical expression for the large system weighted sum rate, in the following it
will be assumed that the vectorst(j)k(j) are independent of the vectorĥk(i),c. For the originally
proposed algorithm this is not the case, as the userk(i) is chosen such that the weighted sum rate
becomes maximum, which implies that this user’s channel gain in the nullspace of the vectors
t
(j)
k(j) should be as large as possible. The assumption is however justified, when in each step a

subchannel is allocated randomly to a user within the same subgroup of users having equal weights
and only the order in which the subgroups can allocate subchannels is optimized. The large system
weighted sum rate to be presented in the following thereforeis a lower bound for the weighted
sum rate achievable with the algorithm. With the assumptionof t(j)k(j) being independent of̂hk(i),c,
Lemma 2.7 from [137] can be applied and the channel gains in the large system limit can be
computed according to

max
c

ĥH
k(i),cSc,TP̂

(i)
DPCS

T

c,Tĥk(i),c −→
NT→∞

max
c

σ2
H tr

(

Sc,TP̂
(i)
DPCS

T

c,T

)

= σ2
H




NT −min

c

∑

j
∣

∣

∣c
(j)
k(j)

=c

t
(j),H
k(j) S

T

c,TSc,Tt
(j)
k(j)




 = σ2

H

(

NT −min
c

n(i−1)
c

)

, (A40)

wheren(i−1)
c denotes the number of subchannels allocated on carrierc during steps1, . . . , i −

1 and the last equality follows from the fact that the vectorst
(j)
k(j) are orthonormal and obey to

the carrier separation constraint (3.24). The large systemchannel gains (A40) are independent
of the user indexk(i) and monotonically decreasing inmin

c
n
(i)
c . It is therefore asymptotically

optimum to schedule first all users in this subgroup having the largest weight, then the users in the
subgroup having the second largest weight and so on. The allocation stops, ifNT subchannels have
been allocated on each carrier or all users have been served.Note that through the zero-forcing
constraints in caseα < 1, i.e., K > NT and for equal weights for all users, not all users are
served, whereas with the optimum algorithm all users receive non-zero power (see Appendix A7).
Furthermore the same scheduling is applied on all carriers and and the same weighted sum rates
can be achieved on all carriers, asn

(i)
c only depends on the number of allocated subchannels on

carrierc. That implies that on each carrier a total power ofPTx
C

is used. The large system limit of
the weighted sum rate can therefore be computed according to

RWSR,DPC −→
K,NT→∞

C

min(NT,K)
∑

j=1

µπ̃(j) log2

(

1 + pπ(j)
C

σ2
n

NTσ
2
H

(

1− j

NT

))

. (A41)
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π̃(j) denotes the user to be encoded atjth place, where the encoding order is done in decreasing
order of weights and

pπ̃(j) =



η̂µπ̃(j) −
σ2

n

CNTσ
2
H

(

1− j
NT

)





+

is the power allocated to userπ̃(j) determined from weighted water-filling (see Appendix A2),
which implies that̂η is chosen to fulfill the transmit power constraint with equality. As the channel
gains are monotonically decreasing with the indexj and the users are served in decreasing order
of weights, there exists an encoding positionjmax below which all users receive non-zero power
by the water-filling algorithm and above which all users receive zero power. Thus, (A41) can be
written as

RWSR,DPC −→
K,NT→∞

NT
K

=α

C

jmax∑

j=1

µπ̃(j) log2

(

ηµπ̃(j)

(

1− j

NT

))

=

= C

[
jmax∑

j=1

µπ̃(j) log2(ηµπ̃(j)) +

jmax∑

j=1

µπ̃(j) log2

(

1− j

NT

)]

=

= C

[

K
nmax−1∑

n=1

βnµn log2(ηµn) +K

(

jmax

K
−

nmax−1∑

n=1

βn

)

µnmax log2(ηµnmax) +

+

nmax−1∑

n=1

µn

n
∑

n′=1

βn′K

∑

j=
n−1
∑

n′=1

βn′K+1

log2

(

1− j

NT

)

+

kmax∑

j=
nmax−1
∑

n′=1

βn′K+1

µnmax log2

(

1− j

NT

)









(A42)

with nmax denoting the index of the last subgroup with users receivingnon-zero power and

η = η̂σ2
HNT

C

σ2
n

= σ2
H
NT

K

PTx
σ2

n
+

jmax∑

j=1

1

NTσ2
H

(

1− j
NT

)

jmax∑

j=1

µπ̃(j)
1
K

= σ2
Hα

PTx
σ2

n
+

jmax∑

j=1

1

NTσ2
H

(

1− j
NT

)

nmax−1∑

n=1

βnµn +

(

jmax

K
−

nmax−1∑

n=1

βn

)

µnmax

(A43)
jmax is chosen so that

ηµnmax ≥
1

1− jmax

NT

, and
jmax

NT
≤ min

(

1,
1

α

)

.

For QoS constrained optimization problems the same asymptotic channel gainsNTσ
2
H

(

1− jmax

NT

)

can be achieved but a different user and power allocation hasto be considered.

The expressions in (A42) and (A43) still depend on infinite sums of functionsg
(

j
NT

)

overj. In

the large system limit these sums can be replaced by integrals over finite intervals according to

b∑

j=a

g

(
j

NT

)

−→
b∫

a

g

(
j

NT

)

d j −→ NT

b/NT∫

a/NT

g (ρ) d ρ.
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Consequently, the asymptotic weighted sum rate at least achievable with Algorithm 3.2 is given by

RWSR,DPC

NTC
−→

K,NT→∞

NT
K

=α

1

α

nmax−1∑

n=1

βnµn log2(ηµn) +

(

jmax

NT
− 1

α

nmax−1∑

n=1

βn

)

µnmax log2(ηµnmax)+

+
nmax−1∑

n=1

µn

1−β̂n∫

1−β̂n−1

log2 (1− ρ) d ρ+ µnmax

jmax
NT∫

1−β̂nmax−1

log2 (1− ρ) d ρ,

whereβ̂n = 1−
n∑

n′=1

βn′

α
and with the asymptotic water-level

η = σ2
Hα

PTx
σ2

n
+

jmax
NT∫

0

1
σ2

H(1−ρ)
d ρ

nmax−1∑

n=1

βnµn +

(
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K
−

nmax−1∑

n=1

βn

)

µnmax

.

Using the results of the integrals

1−β̂n∫

1−β̂n−1

log2 (1− ρ) d ρ = β̂n−1 log2

(

β̂n−1

)

− β̂n log2

(

β̂n

)

+
1

ln 2

(

β̂n − β̂n−1

)

,

jmax
NT∫

1−β̂nmax−1

log2 (1− ρ) d ρ = −
(

1− jmax

NT

)

log2

(

1− jmax

NT

)

− jmax

NT ln 2
+ β̂nmax−1 log2

(

β̂nmax−1

)

+

+
1− β̂nmax−1

ln 2
,

jmax
NT∫

0

1

σ2
H (1− ρ)

d ρ = − 1

σ2
H

ln

(

1− jmax

NT

)

leads to the system of equations (5.10).
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A9. Weighted Sum Rate Computation in the Large System Limit for Spatial
Zero-Forcing in MISO Systems

In this appendix a method to solve Problem (5.13) will be presented. For this purpose it is first
shown that the function

R̂
(∞)
WSR,lin(α, ρ) =

1

α





n(ρ)−1
∑

n=1

βnµn log2(µn) +



ρ−
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∑
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µn(ρ)



 log2









PTx
σ2

n
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H(α− ρ) + ρ

n(ρ)−1∑

n=1

βnµn +

(

ρ−
n(ρ)−1∑

n=1

βn

)

µn(ρ)

















is piecewise concave in the intervals0 ≤ ρ ≤ β1, . . . , βn ≤ ρ ≤ min(1, α). In each of these
intervalsn(ρ) is constant and the derivative of̂R(∞)

WSR,lin(α, ρ) with respect toρ can be computed
according to

∂R̂
(∞)
WSR,lin(α, ρ)
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and the second derivative is given by
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Thus, the optimum solution to Problem (5.13) can be found by determining the maximum large
system weighted sum rate in each intervalβn−1 ≤ ρ ≤ min(α, βn), n = 1, . . . , N , which can be
computed for example by the bisection method [33, Chapter 8.2], and then choosing the maximum
of these interval maxima.

A10. Derivation of An Implicit Equation for the Large System Analysis of
Successive Resource Allocation and Spatial Zero-Forcing with DPC

In this section Equation (5.20) stating that

∫ λ̂j−K

0

fCj−K
(x)

1− β̃j + (x− z)mCj
(z)

d x =
1− (j −K)δξ

1− (j −K − 1)δξ

will be derived together with the optimum scheduling scheme. The matricesCj are given by

Cj = V
((j−1)δm+1),H

DPC HH
k̂(j)

Hk̂(j)V
((j−1)δm+1)

DPC

[c.f. (5.18)]. As the nullspace of̂P (i)
DPC = V

(i)
DPCV

(i),H
DPC is enlarged by one dimension with each

subchannel allocation as a consequence of (3.34),

span
{

P̂
(i)
DPC

}

= span
{

V
(i)

DPC

}

⊂ span
{

P̂
(n)
DPC

}

, ∀n < i. (A44)

Of special interest is the casei = (j − 1)δm + 1 andn = (ℓj − 1)δm + 1, whereℓj is the
highest index of a subgroup that has been allocated to userk̂(j) before the allocation roundj. For
notational convenience in the remainder the following short notations will be used

Ṽ
(j)

DPC := V
((j−1)δm+1)

DPC , Ṽ
(ℓj)

DPC = V
((ℓj−1)δm+1)

DPC , P̃
(ℓj)
DPC = P̂

((ℓj−1)δm+1)
DPC .

From (A44) it follows that

Ṽ
(j)

DPC = P̃
(ℓj)
DPCṼ

(j)
DPC

and consequently

Cj = Ṽ
(j),H

DPC HH
k̂(j)

Hk̂(j)Ṽ
(j)

DPC = Ṽ
(j),H

DPC P̃
(ℓj)
DPCH

H
k̂(j)

Hk̂(j)P̃
(ℓj)
DPCṼ

(j)
DPC.

A reduced eigenvalue decomposition of the matrixP̃
(ℓj)
DPCH

H
k̂(j)

Hk̂(j)P̃
(ℓj)
DPC can be stated as

P̃
(ℓj)
DPCH

H
k̂(j)

Hk̂(j)P̃
(ℓj)
DPC = V

(ℓj)
1 Σ

(ℓj)
1 V

H,(ℓj)
1 + V

(ℓj)
r Σ

(ℓj)
r V

H,(ℓj)
r , (A45)

whereΣ(ℓj )
1 ∈ Cδm×δm is a diagonal matrix containing theδm strongest eigenvalues of the matrix

P̃
(ℓj)
DPCH

H
k̂(j)

Hk̂(j)P̃
(ℓj)
DPC andV (ℓj)

1 ∈ CNT×δm contains the corresponding eigenvectors. Due to the

multiplication with projection matrices,̃P (ℓj)
DPCH

H
k̂(j)

Hk̂(j)P̃
(ℓj)
DPC contains at least(ℓj − 1)δm zero

eigenvalues. Omitting these zero eigenvalues, the remainingNT−ℓjδm eigenvalues besides theδm

strongest ones are subsumed in the matrixΣ
(ℓj)
r ∈ CNT−ℓjδm×NT−ℓjδm andV (ℓj)

r ∈ CNT×NT−ℓjδm
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contains the corresponding eigenvectors. AsV
(ℓj)
1 contains the transmit vectors for the(ℓj −

1)δm+ 1th to theℓjδmth data stream, the span ofV
(ℓj)

r is composed as

span
{

V
(ℓj)

r

}

= span
{

P̃
(ℓj)
DPC− V

(ℓj)
1 V

(ℓj),H
1

}

= span
{

P̃
(ℓj+1)
DPC

}

. (A46)

ThusV (ℓj)
r is a basis ofP̃ (ℓj+1)

DPC . Furthermore, as all transmit vectors of data streams chosen before

stepi, V (ℓj)
1 lies innull

{

Ṽ
(j)

DPC

}

and therefore

Cj = Ṽ
(j),H

DPC P̃
(ℓj)
DPCH

H
k̂(j)

Hk̂(j)P̃
(ℓj)
DPCṼ

(j)
DPC = Ṽ

(j),H
DPC V

(ℓj)
r Σ

(ℓj)
r V

H,(ℓj)
r Ṽ

(j),H
DPC .

The columns ofṼ (j)
DPC are completely contained inspan

{

V
(ℓj)

r

}

due to (A44) and (A46). By

introducing the matrixV̂ (j) ∈ CNT−ℓjδm×NT−(j−1)δm representingṼ (j)
DPC in the basisV (ℓj)

r , the
matrix Ṽ (j)

DPC is given by

Ṽ
(j)

DPC = V
(ℓj)

r V̂ (j)

and thus
Cj = V̂ H,(j)Σ

(ℓj)
r V̂ (j).

The matrixV̂ (j) is uniformly distributed over the manifold ofNT−ℓjδm×NT−(j−1)δm complex
matrices withV̂ H,(j)V̂ (j) = INT−(j−1)δm. This is the case, if the subspace spanned byṼ

(j)
DPC is

uniformly distributed within the subspace spanned byV
(ℓj)

r , which is equal tospan
{

P̃
(ℓj+1)
DPC

}

[c.f. (A46)]. To proof the latter statement, it has to be shown that in each step of the algorithm, the
transmit vector for the newly allocated data stream is uniformly taken from the set of unit norm
vectors orthogonal to the transmit vector of the previouslyallocated data streams. The transmit
vector in thenth step is chosen to be the eigenvector corresponding to the principal eigenvalue of
the matrix

P̂
(n)
DPCH

H
k(n)Hk(n)P̂

(n)
DPC = V

(n)
DPCV

H,(n)
DPC HH

k(n)Hk(n)V
(n)

DPCV
H,(n)

DPC

and this transmit vector is uniformly distributed withinspan
{

V
(n)

DPC

}

, if the matrix of eigenvectors

of the matrixV H,(n)
DPC HH

k(n)Hk(n)V
(n)

DPC is Haar-distributed, which applies, if the latter matrix is
unitarily invariant [109, Lemma 2.6]. This can be proved by induction. Suppose that in stepn− 1

the matricesV H,(n−1)
DPC HH

k HkV
(n−1)

DPC are unitarily invariant for all usersk. Then the transmit vector
for the data stream allocated in then − 1th step is uniformly distributed within the subspace of
unit-norm vectors orthogonal to the transmit vectors determined in previous steps. This implies
that the representatioñV (n) ∈ C

NT−(n−1)×NT−(n−2) of V (n)
DPC in the basisV (n−1)

DPC so that

V
(n)

DPC = V
(n−1)

DPC Ṽ (n),

is uniformly distributed in the manifold ofNT − (n − 1) × NT − (n − 2) orthonormal matrices.
Thus,Ṽ (n) and consequently

V
H,(n)

DPC HH
k HkV

(n)
DPC = Ṽ H,(n)V

H,(n−1)
DPC HH

k HkV
(n−1)

DPC Ṽ (n)

is unitarily invariant for all usersk, if V H,(n−1)
DPC HH

k HkV
(n−1)

DPC is unitarily invariant for allk. To
complete the proof, it has therefore to be shown that the matricesV H,(1)

DPC HH
k HkV

(1)
DPC are unitarily
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invariant, which follows from the facts thatV (1)
DPC = INT and the matricesHk contain Gaussian

i.i.d. entries.
Thus, it has been shown thatV̂ (j) is uniformly distributed over the manifold ofNT− ℓjδm×NT−
(j − 1)δm complex matrices witĥV H,(j)V̂ (j) = INT−(j−1)δm, which will be used in the following

to derive theη-transform of the matrixCj = V̂ H,(j)Σ
(ℓj)
r V̂ (j). For that purpose first Lemma 2.28

from [109] is applied, which states that

ηCj
(γ) = 1− 1

β̃j

+
1

β̃j

η
Σ

(ℓj )
r V̂ (j)V̂ H,(j)

(γ), (A47)

where

β̃j =
NT − (j − 1)δm

NT − ℓjδm
=

1− (j − 1)δξ

1− ℓjδξ
. (A48)

The matricesΣ(ℓj)
r andV̂ (j)V̂ H,(j) are asymptotically free [109, Definition 2.19], as they are inde-

pendent and̂V (j)V̂ H,(j) is unitarily invariant, from which the asymptotic freenesscan be derived
with the proof of the theorem in [138]. From Theorem 2.68 and Example 2.51 in [109], theη-
transformη

V̂ (j)V̂ H,(j)Σ
(ℓj )
r

(γ) is given by the implicit equation

η
V̂ (j)V̂ H,(j)Σ

(ℓj )
r

(γ) = η
Σ

(ℓj )
r

(

γ + γ
β̃j

η
V̂ (j)V̂ H,(j)Σ

(ℓj )
r

(γ)

)

.

By using (A47), theη-transformηCj
(γ) is given implicitly by

β̃jηCj
(γ)− β̃j + 1 = η

Σ
(ℓj )
r

(

γβ̃jηCj
(γ)

β̃jηCj
(γ)− β̃j + 1

)

. (A49)

The diagonal elements of the matrixΣ(ℓj)
r are given by the eigenvalues of the matrixCℓj except

the largestδm ones, which correspond to the channel gains from step(ℓj − 1)δm + 1 to step

ℓjδm [c.f. (A45)]. The asymptotic eigenvalue distribution of the matrixΣ(ℓj )
r is therefore given

by the a.e.d. of the matrixCℓj truncated at̂λℓj , whereλ̂ℓj is defined in (5.19), and normalized by
NT−(ℓj−1)δm

NT−ℓjδm
. Thus, theη-transform of the matrixΣ(ℓj)

r can be written as

η
Σ

(ℓj )
r

(γ) =
NT − (ℓj − 1)δm

NT − ℓjδm

λ̂ℓj∫

0

f
(∞)
Cℓj

(x)

1 + γx
d x, (A50)

Inserting (A50) into (A49) and using the relationship (5.5)between theη- and the Stieltjes trans-
form leads to

λ̂ℓj∫

0

f
(∞)
Cℓj

(x)

1− β̃j + (x− z)mCj
(z)

d x =
NT − ℓjδm

NT − (ℓj − 1)δm
.

By using this implicit relationship to test in each step, when a group of subchannels is allocated
to the same user, which user leads to the strongest increase in sum rate, it turns out that, as in
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the firstK allocation rounds, it is optimum to serve each user everyK allocations. Consequently
ℓj = j −K so that

β̃j =
1− (j − 1)δξ

1− ℓjδξ
=

1− (j − 1)δξ

1− (j −K)δξ

and
NT − ℓjδm

NT − (ℓj − 1)δm
=

1− (j −K)δξ

1− (j −K − 1)δξ
,

which leads to the desired result in (5.20).
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