
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Echtzeitsysteme und Robotik

An Implementation for Algorithmic Game Solving

and its Applications in System Synthesis

Chih-Hong Cheng

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Seidl

Prüfer der Dissertation:
1. Univ.-Prof. Dr. Alois Knoll

2. Univ.-Prof. Dr. Dr. h.c. Javier Esparza

Die Dissertation wurde am 22.08.2011 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 17.03.2022 angenommen.

II

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der praktischen Anwendung von
algorithmischer Spieletheorie. Spieletheorie ist ein aktiver Forschungsbereich
in der theoretischen Informatik und im Bereich formaler Methoden. Die Ar-
beit stellt das Werkzeug GAVS+ vor, das verschiedenste Arten von Spielen und
Gewinnbedingungen, die eine praktische Relevanz haben, umfasst. GAVS+ is
das erste Werkzeug, das die verschiedenen Ansätze in dem Bereich, umfassend
unterstützt. Auf Basis von dem Werkzeug wird das formale Fundament der
Spieltheorie mit einem praktischen Anwendungsfeld, der Synthese, verbunden.

Das erste Anwendungsfeld des Ansatzes ist die Synthese einer Konfiguration,
die die Sicherheit und Verklemmungsfreiheit von Systemen aus interagieren-
den, nicht veränderbaren Komponenten sicherstellt. Konkret werden die Pri-
oritäten von Anwendungen in dem Werkzeug BIP synthetisiert. Der Ansatz
erweitert damit existierende Werkzeuge, wie D-Finder, die zwar mögliche
Verklemmungen in BIP-Programmen erkennen können, aber nicht automatisch
eine korrekte Lösung berechnen können.

Das zweite Anwendungsfeld des Ansatzes ist die Anwendung der Spielethe-
orie zur Synthese von Plänen. Hierzu wurde GAVS+ um eine Unterstützung
von einer modifizierten Version von STRIPS/PDDL erweitert. Die Modifika-
tion betraf dabei die Erweiterung um einen zweiten Spieler, der beispielsweise
Störungen oder Fehler in der Systemumgebung repräsentieren kann.

Als letztes Anwendungsfeld wurde die Synthese von fehlertoleranten Syste-
men durch den Einsatz von Spieletheorie untersucht. Der Ansatz basiert dabei
auf drei Phasen: der Zeitabstraktion im ersten Schritt, der Synthese geeigneter
Fehlertoleranzmechanismen und schlies̈lich der Wiederherstellung der Zeitin-
formationen.

Zusammenfassend beweist diese Arbeit, dass Spieletheorie ein sehr mächtiges
Werkzeug für Syntheseprobleme in verteilten, eingebetteten Systemen darstellt.
Auch wenn es theoretischer Sicht selbst einfachste Probleme unentscheidbar
sind, können die Ansäetze durch Beschränkung des Lösungsraums praktisch
angewandt werden. Die Arbeit identifiziert deshalb erste Ansäetze wie der Lö-
sungsraum reduziert werden kann.

III

IV

Abstract

This thesis describes efforts in bringing algorithmic game solving from theoret-
ical results towards concrete applications. First, an implementation of a game-
solving library is presented. The library supports several game types with dif-
ferent winning conditions. Concerning applications, we first consider the prob-
lem of risk avoidance and deadlock prevention in component-based systems. A
technique called priority synthesis is presented, which enables to automatically
generate stateless precedence over actions to avoid risk and deadlock states. The
second application is related to behavioral-level synthesis. We extend PDDL to
include game aspects, develop algorithmic methods to speed up synthesis, and
present a case study in synthesizing controllers for FESTO MPS systems. Third,
we investigate how HW/SW level fault-tolerant synthesis can be combined with
games. Lastly, to study synthesis in distributed systems, we present initial in-
vestigations to compute resource-bounded strategies.

V

VI

Acknowledgements

First of all, I want to thank my supervisor, Prof. Alois Knoll, for providing me
the opportunity to prepare this thesis and for supporting my freedom in re-
search. I am very thankful to Prof. Javier Esparza for accepting to be my sec-
ond reviewer. His opinions are constructive since my early years in doctoral
studies. Many thanks to members in the PUMA doctoral program, the chair of
Embedded Systems and Robotics at the TU München, and Fortiss GmbH for the
pleasant atmosphere in research.

I am also fortunate to have many external collaborators who stimulate my re-
search spirit. They are Dr. Harald Ruess (Fortiss), Dr. Barbara Jobstmann (Ver-
imag), Prof. Saddek Bensalem (Verimag), Dr. Michael Luttenberger (TUM), Dr.
Christian Buckl (Fortiss), Mr. Michael Geisinger (Fortiss), Dr. Rongjie Yan (IS-
CAS), and Dr. Yu-Fang Chen (Academia Sinica). Dr. Ruess is an important
mentor of mine who gives me a flavor of research. My visits to Verimag were
wonderful experiences, and many thanks to Barbara and Prof. Bensalem. My
knowledge in formal methods came from Prof. Farn Wang (NTU), and I learned
embedded systems under Prof. Edward A. Lee (UC Berkeley). They were my
supervisors during my master studies, and they are continuously supportive
since then.

I also thank my parents for the wonderful family education and all the oppor-
tunities they offered me. My wife Tzuchen is very supportive concerning my
academic careers. I thank her for her understanding and love.

Finally, my best satisfaction during my doctoral studies is to know Jesus Christ
and accept him as my savor for the rest of my life. This thesis, although far from
perfect, should be devoted to the Lord.

VII

VIII

Contents

1 Introduction 1
1.1 Background . 1
1.2 Algorithmic Game Solving from Theory to Applications in Synthesis . . 2
1.3 Main Contributions of this Thesis . 3
1.4 Structure of this Thesis . 5

2 Games for Synthesis: a Very Short Introduction 7
2.1 Two-player, Turn-based Games over Finite Arenas 8
2.2 Two-player Games over Pushdown Game Graphs 13
2.3 Games of Concurrency . 18
2.4 Games of Imperfect / Incomplete Information 24
2.5 Distributed Games . 26
2.6 Other Games Having Practical Interests 30

3 GAVS+: An Open Platform for the Research of Algorithmic Game Solving 35
3.1 GAVS: An Earlier Version . 35
3.2 GAVS+: An Open Platform for the Research of Algorithmic Game Solving 40
3.3 Related Work . 50
3.4 Summary . 50

4 Application A. Priority Synthesis: Theories, Algorithms, and Tools 51
4.1 Introduction . 52
4.2 Introduction to the Behavior-Interaction-Priority (BIP) Framework . . . 53
4.3 Component-based Modeling and Priority Synthesis 54
4.4 A Framework of Priority Synthesis based on Fault-Localization and

Fault-Repair . 56
4.5 Handling Complexities . 64
4.6 Assume-guarantee Based Priority Synthesis 67
4.7 Evaluation: The VISSBIP toolkit . 72
4.8 Related Work . 76

IX

Contents

4.9 Summary . 77
4.10 Appendix . 79

5 Application B. Requirements and Optimizations for Software Controller
Synthesis - Extending PDDL with Game Semantics 87
5.1 Introduction . 88
5.2 PDDL and its Extension for Games . 90
5.3 Algorithms for Symbolic Game Creation, Game Solving, and Strategy

Creation . 94
5.4 Program Optimization for Local Game Solving 99
5.5 Implementation and Evaluation . 105
5.6 Summary . 112

6 Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems 115
6.1 Introduction . 116
6.2 Motivating Scenario . 117
6.3 System Modeling . 118
6.4 Step A: Front-end Translation from Models to Games 121
6.5 Step B: Solving Distributed Games . 127
6.6 Step C: Conversion from Strategies to Concrete Implementations 135
6.7 Implementation and Case Studies . 137
6.8 Related Work . 141
6.9 Concluding Remarks . 142
6.10 Appendix . 142

7 Resource-Bounded Strategies for Distributed Games 155
7.1 Introduction . 156
7.2 Preliminaries . 157
7.3 Distributed Safety Strategy based on Projections 161
7.4 Observation + Antichain + Decomposition 168
7.5 Related Work . 174
7.6 Outlook . 176

8 Conclusion 181

Bibliography 185

X

List of Figures

2.1 A spectrum of games for synthesis and their relations. 7
2.2 A simple finite game graph. 10
2.3 Run graphs over initial conditions 𝑆1𝑎𝑐 (a) and 𝑆1𝑎𝑏𝑐 (b). 17
2.4 Detailed step on computing the 𝒫-automaton using Cachat’s algorithm. 19
2.5 Snapshot for the definition of attractor in the ICALP paper [Cac02]. . . . 20
2.6 Snapshot of the membership algorithm in the ICALP paper [Cac02]. . . 20
2.7 A concurrent reachability game (rock-paper-scissor), where (−,−) rep-

resents all possible combinations over actions. 21
2.8 The concept of cage in computing almost-sure reachability set. 22
2.9 A game of imperfect information for temperature control. 25
2.10 An observation-based strategy automaton for the game in Figure 2.9. . . 27
2.11 Two local games modeling unreliable network transmission. 29
2.12 A simple stochastic game. 31
2.13 A simple Markov decision process for robot control. 32

3.1 A coarse overview on software packages in GAVS. 36
3.2 An example for constructing and executing a safety game. 38
3.3 The synthesized result in the form of the parity game in GAVS. 39
3.4 Game types and implemented algorithms in GAVS+, where "‡" indicates

that visualization is currently not available. 41
3.5 A simple APDS. 42
3.6 The menu bar for solving APDS. 43
3.7 The tree of complete interactive simulation for APDS in Figure 3.5. . . . 43
3.8 Constructing MDPs using the diamond vertices. 44
3.9 The SSG in Section 2.6 with labeled strategies. 45
3.10 The concurrent reachability game (left-or-right) described in [DAHK07]

and the generated strategy (almost-sure winning). 46
3.11 The concurrent reachability game (hide-and-run) described in [DAHK07]

and the generated strategy (limit-sure winning). 47

XI

List of Figures

3.12 Simple temperature control in Figure 2.10 modeled using GAVS+. 49

4.1 Locating fix candidates. 59
4.2 A simple scenario where conflicts are unavoidable on the fault-set. . . . 62
4.3 A scenario where the concrete system contains deadlock, but the abstract

system is deadlock free. 64
4.4 A system 𝒮 and its ♯-abstract system 𝒮Φ, where ΣΦ = Σ ∖ {𝑎, 𝑏, 𝑐}. 65
4.5 The relation between the languages. 68
4.6 A counterexample when we allow a shared interaction to have higher

priority than others. 70
4.7 The flow of the assume-guarantee priority synthesis. 71
4.8 Model construction using VISSBIP. 73
4.9 The automatically synthesized priority for the model in Figure 4.8. . . . 74
4.10 The dining philosopher problem modeled using VISSBIP. 75
4.11 The framework of priority synthesis presented in this chapter, where the

connection with the D-Finder tool [BGL+11] is left for future work. . . . 78
4.12 The transition system for the BIP model (without variables) in Figure 4.8. 80
4.13 The reduced system from the 3SAT instance 𝜑 = 𝑐1 ∧ 𝑐2 ∧ 𝑐3, where

𝑐1 := (𝑥1 ∨ ¬𝑥2 ∨ 𝑥3), 𝑐2 := (𝑥2 ∨ ¬𝑥3 ∨ ¬𝑥4), 𝑐3 := (¬𝑥4 ∨ ¬𝑥3 ∨ ¬𝑥2). . . 81
4.14 An example where priority synthesis is unable to find a set of priorities. 84

5.1 An illustration for the monkey experiment in AI. 90
5.2 Extended BNF for the domain in PDDL (partially modified

from [GAI+98]). 92
5.3 The domain of the monkey experiment described using PDDL. 93
5.4 Extended BNF for the problem in PDDL (partially modified

from [GAI+98]). 93
5.5 The problem instance of the monkey experiment described using PDDL. 93
5.6 The domain of monkey experiments when the experimenter can move

the banana once. 95
5.7 The conceptual flow executing GAVS+ for (a) planning problems and (b)

game problems. 95
5.8 The generated plan for the monkey experiment by GAVS+. 97
5.9 The newly introduced action for a monkey to climb down. 97
5.10 Hanoi tower domain described using PDDL. 100
5.11 The effect of constant replacement in game solving. 100
5.12 Hanoi tower problem (3 disks and 3 pegs) described using PDDL. 101
5.13 The effect of binary compaction in game solving. 𝐺≤1 (𝐺>1) represents

the subarena from the original arena where at most (least) one variable
in {𝑣1, 𝑣2, 𝑣3} is true. 102

5.14 The FESTO MPS demonstrator setup (up) and screenshot of its actual
execution (down). 108

5.15 The model train system setup (up) and screenshot of its actual execution
(down). 113

6.1 An example for two processes communicating over an unreliable network.117

XII

List of Figures

6.2 An illustration for Algorithm 5. 123
6.3 Comparison between DG and SDG . 126
6.4 Creating the SDG from IM, FT mechanisms, and faults. 127
6.5 Illustrations for the reduction from 3SAT to 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝐺0. 129
6.6 The concept of witness. 134
6.7 An example where FT primitives are introduced for synthesis. 137
6.8 A concept illustration for the control choices in the generated game. . . . 138
6.9 An illustration for applying LTM for the example in sec. 6.7.1, and the

corresponding linear constraints. 138
6.10 Screenshots of GECKO when executing the example in sec. 6.7.1. 140
6.11 Concept illustration of the overall approach for fault-tolerant synthesis;

IM+FT means that an IM model is equipped with FT mechanisms. . . . 142
6.12 An overview for the flow of model transformations, code generation,

and analysis scheme in Gecko. 146
6.13 An example for concretizing FTOS models to functional models with

timing annotations (some details omitted). TT stands for token transfer,
which will later be refined during function-architecture mappings. . . . 148

6.14 An example where integrity constraints are considered over the voter
component. 149

6.15 Process flow for the generation of integrity constraints. 150
6.16 Screenshots when designing systems using Gecko. 151

7.1 Two processes having a global priority 𝒫2.𝑑 ≺ 𝒫1.𝑏 and 𝒫2.𝑒 ≺ 𝒫1.𝑎
over actions (a), the generated local game (b), and the distributed game
modeling the interaction and priority (the dashed line means an non-
existing transition due to priority). 160

7.2 Two distributed games with safety-winning conditions. 161
7.3 (a) Abstract games 𝒢1 and 𝒢2 (MP0), and (b) fragment of the abstract

games when one step memory is pushed (MP1). Contents enclosed in
square brackets are the history. The "*" symbol is used for the ease of
explanation, meaning that the content is abstracted. 162

7.4 The resulting abstract game for the game in Figure 7.1. 164
7.5 A distributed game where cooperation is possible for winning. 165
7.6 The reduced distributed game for the SAT problem 𝜑 = (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧

(𝑥1 ∨ 𝑥2 ∨ 𝑥4). 166
7.7 A distributed game with three local games. 170
7.8 The global observation strategy automaton for the game in Figure 7.7. . 171
7.9 Direct decomposition for the global observation strategy automaton in

Figure 7.8; 𝐴′
3 is a proposed fix of 𝐴3. The box below indicates the corre-

sponding (previous-location, current-location) pair for the observation. . 173
7.10 Example for distributed strategies using finite-memory. 178

8.1 A summary over results in this thesis and their relations. 182

XIII

XIV

CHAPTER 1

Introduction

Contents
1.1 Background . 1
1.2 Algorithmic Game Solving from Theory to Applications in Synthesis 2
1.3 Main Contributions of this Thesis . 3
1.4 Structure of this Thesis . 5

1.1 Background

The quest of designing systems satisfying the specification is a fundamental issue in the
research of computer science. Verification is amongst one of the prevailing techniques,
where the goal is to check the correctness of designed systems under given mathemat-
ical specifications. Techniques for verification include model checking, type analysis,
theorem proving and many others. However, when a system is diagnosed as incorrect
by verification, it remains to be designers’ responsibilities to perform suitable modifi-
cations such that its operation satisfies the specification.

The motivation of this thesis originates from an alternative approach for increasing the
quality of systems called synthesis, which refers to a paradigm that automatically cre-
ates a system satisfying a given mathematical specification. As the process of creating
systems from specification requires no human-intervention, it is a very appealing ap-
proach. We target on the analysis of models containing controllable and uncontrollable
actions. Reflecting these models to system design, we can interpret the controllable por-
tion as all allowable action rules specified (e.g., for the design of an elevator system,
it corresponds to all allowable moves of the elevator), and interpret the uncontrollable
portion as the behavior of the environment (e.g., demand of users for the elevator). The
goal of our synthesis problem is to generate programs (either centralized or distributed)

1

1. Introduction

restricting / orchestrating controllable actions such that regardless of actions taken by
the environment, the behavior of the constrained model satisfies the specification. Note
that it is also possible that the environment is not included as part of the model; for this
the concept of synthesis still applies.

With the above restriction, it is natural to connect our synthesis framework with games.
Overall, games provide (i) an easy way to specify pre-defined behaviors for compo-
nents in concrete applications, (ii) an intuitive mathematical model for synthesis, and
(iii) natural translation between applications and synthesis models. Games of two cat-
egories are considered.

∙ (Two-player game) When the environment is contained as part of the model de-
scription, we interpret the synthesis problem as a two-player (or a two-party)
game between the system and the environment. The synthesized result (con-
troller program) should achieve goal-oriented behavior regardless of moves per-
formed by the environment. We may view the environment as malicious, i.e., it
performs all worst case scenarios to achieve conflicting goals opposite to goals of
the system. In games such as chess, this idea of opposite goals is similar: a player
should create a strategy (set of allowable moves) to win against his opponent.

∙ (One-player game) Similarly, one-player game can be used when the environment
is not included as part of the model. For example, sliding puzzles (e.g., rush
hour1) are games of this kind.

With the above analogy, it can be observed that automatic methods for synthesis are
closely related to techniques in algorithmic game solving, which is a discipline for study-
ing efficient methods to solve games. Except explicitly mentioned, we refer games
in this thesis as infinite games used in automata theory and theoretical computer sci-
ence [GTW02]. Infinite games are games where non-terminating (infinite) behavior
is the key of consideration; the game itself can be played on a finite or infinite game
graph. Notice that for algorithmic game solving, it contains another branch on solving
games in economics and on making strategic decisions. The branch above mentioned
is not considered within the scope of this thesis; for details, we refer interested readers
to [NRTV07].

1.2 Algorithmic Game Solving from Theory to Applications
in Synthesis

For algorithmic game solving, despite fruitful results in theory, our main focus is to
bridge the gap between theories and applications in synthesis. However, we find it
very difficult to find appropriate connections to concrete application domains, if our
starting point is a fixed result in theory. Therefore, we try to use the methodology of
application-driven research used in the Parallel Computing Laboratory (PARLAB), EECS,
University of California Berkeley. The following is summarized from a talk2 as the goal
statement of parallel programming in PARLAB [ABC+06]:

1http://en.wikipedia.org/wiki/Rush_Hour_(board_game)
2http://parlab.eecs.berkeley.edu/wiki/_media/berkeleyview2.ppt

2

http://en.wikipedia.org/wiki/Rush_Hour_(board_game)
http://parlab.eecs.berkeley.edu/wiki/_media/berkeleyview2.ppt

1. Introduction

For conventional wisdom in the research of computer science, computer sci-
entists solve individual parallel problems with clever language feature, new
compiler pass, or novel hardware widget (e.g., SIMD). Then scientists push
(or foist) CS nuggets/solutions on users. The problem is that it is difficult
for users to use proper solutions. An alternative approach is to work with
domain experts developing compelling applications to understand require-
ments. Based on these applications or requirements, provide HW/SW in-
frastructure necessary to build, compose, and understand parallel software
written in multiple languages.

Applying this concept to synthesis, we provoke to first study concrete problems. Then
we extract their underlying models and combine them with existing techniques in
games. Concerning novelty of our application-driven methodology, it mainly comes
from two aspects.

∙ Proposing new algorithms which glue concrete applications and games.

∙ From the need of applications, proposing new models or new algorithms cur-
rently absent in the research of games.

To achieve this goal, we find it important to first understand games with a broad knowl-
edge, followed by creating a framework which summarizes all types of games having
potentials to be applied in practice. For this, we consider a concrete, mature and open-
source implementation for games as foundational. It offers a platform for the communi-
cation between game theorists and practitioners. This is especially important for syn-
thesis, as its goal is to assist engineers (who mostly have little knowledge on formal
methods) to facilitate their design processes.

1.3 Main Contributions of this Thesis

The result of this thesis is the effort to connect algorithmic game solving from theories
to applications. Main contributions are summarized as follows.

∙ We create the tool GAVS+ [CBLK10, CKLB11] which collects most types of games
having practical interests with various winning conditions. We start with two-
player turn-based games [CBLK10], and then we expand its spectrum concerning
concurrency, infinite state, distributivity, probability [CKLB11], and lastly, games
of imperfect information and others. GAVS+ is the first library which summarizes
existing efforts in such a comprehensive way. With the library in hand, we start
bridging games in theory and concrete applications in synthesis; new algorithms
are introduced when required.

∙ The first application under investigation is the safety problem (including dead-
lock prevention) in interaction systems constructed by components; we use
the Behavior-Interaction-Priority (BIP) modeling language [BBS06] developed at
the Verimag Laboratory3 as an example. Tools based on verification (e.g., D-
finder [BBNS09]) are capable of deadlock finding for BIP systems while the bur-

3http://www-verimag.imag.fr

3

http://www-verimag.imag.fr

1. Introduction

den of deadlock removal remains. By understanding the problem and combin-
ing concepts in games, we create a technique called priority synthesis, which
results in a tool targeted for automatic supervisory control [CBJ+11]; it auto-
matically adds static priorities over interactions to restrict the system behavior
for safety. We formulate priority synthesis for BIP systems using the automata-
theoretic framework proposed by Ramadge and Wonham [RW89]. We focus
on the hardness of synthesizing priorities and show that finding a supervisor
based on priorities that ensures deadlock freedom of the supervised system is
NP-complete [CJBK11]. We describe the underlying algorithms and methods to
perform synthesis on complex systems [CBC+11].

∙ We study how to increase the use of behavioral-level synthesis. We argue that
an easy-to-use modeling language is required rather than existing approach in
LTL synthesis. For this we have implemented in GAVS+ novel features such that
the user can now process and synthesize planning (game) problems described in
the established STRIPS/PDDL language. It is achieved by introducing a slight ex-
tension which allows specifying a second player [CKLB11]. We also use program
optimization (transformation) techniques such that a smaller (w.r.t. size) game is
brought to the synthesis engine as input. The developed technique is evaluated
on the FESTO modular production systems [CGR+12b, CGR+12a].

∙ For the third application, we study how HW/SW level fault-tolerant synthesis
can be combined with games [CRBK11, CBK10]. Under strict assumptions, we
are able to complete the whole flow, which is based on (a) timing-abstraction to
convert systems to games, (b) game solving to select appropriate fault-tolerant
mechanisms, and (c) constraint resolution to restore timing information on con-
crete hardware. This first result is implemented in a software prototype.

∙ Finally, during our investigation, we found distributed games extremely power-
ful to capture synthesis problems in embedded systems. Unfortunately, in theory
even simple reachability or safety conditions are undecidable for such games.
Even so, methodologies of finding strategies with bounded resource are impor-
tant for practical applications. Our initial investigations to compute resource-
bounded strategies over such games constitute the last part of the thesis.

We relate three synthesis techniques from three perspectives.

∙ (Methodology) Synthesis can be categorized into two sub categories: complete
synthesis and partial synthesis. Complete synthesis is to synthesize the full func-
tionality, while partial synthesis is applied when system is nearly complete but
requires to increase features or remove unwanted behaviors. Overall, behavioral-
level synthesis studies complete synthesis, while priority synthesis (restriction-
based) and fault-tolerant synthesis (addition-based) are partial techniques.

∙ (Working models: level of abstraction) Behavioral-level synthesis uses PDDL as
its description language and is intended to generate abstract plans. Contrarily,
our fault-tolerant synthesis works on the process level and contains hardware
models in order to perform synthesis fitting timing constraints. Priority synthesis
works on a level of abstraction in between: It contains components, and these
components are implicitly related to dedicated hardware platforms.

4

1. Introduction

∙ (Distributivity) Behavioral-level synthesis generates monolithic controllers,
while fault-tolerant synthesis on HW/SW level generates distributed controllers.
Priority synthesis generates results in between: the created priorities can either
be implemented as a centralized controller or refined as a distributed controller.

1.4 Structure of this Thesis

The thesis is composed of eight parts discussing different aspects, where most of the
chapters have been published or are currently under review for conference proceed-
ings. After the introduction, the thesis continues in Chapter 2 with the concept of games
and descriptions of divergent game types having potential for practical use in synthe-
sis. For each type of the game, an outline of basic algorithms for game solving is listed.
Therefore, Chapter 2 can be viewed as the basis of this thesis.

∙ Chapter 3 presents the tool GAVS+. In this chapter, we focus on (i) how games can
be constructed using the graphical user interface (GUI) of GAVS+, (ii) how visual-
ization of strategies or intermediate results of computation is presented, and (iii)
the underlying software architecture as guidance for extending new algorithms
or new game types4. Contents of this chapter are mainly in [CBLK10, CKLB11].

∙ Chapter 4 describes the use and the underlying algorithms of VISSBIP, a tool
for constructing simple interaction systems and importantly, automatically syn-
thesizing priorities over actions to achieve system safety. For the ease of
understanding, we introduce the model of computation called (synchronous)
BIP [BBS06] before describing algorithmic issues. Contents of this chapter are
mainly in [CBC+11, CBJ+11, CJBK11].

∙ Chapter 5 presents the connection between games and the planning domain. In
the AI community, the PDDL language is used as the standard language to de-
scribe behavioral-level actions for robotics. We first give a brief description on
PDDL (restricted to Level 1 only), then describe the effort to represent the second
player (e.g., it can be used to model faults or environment uncertainties). With
this feature, it is possible to perform behavioral-level synthesis. Contents of this
chapter are in [CKLB11, CGR+12b, CGR+12a].

∙ Chapter 6 presents fault-tolerant synthesis in embedded systems. We first de-
scribe starting models for synthesis and (implementable) assumptions used in the
framework. Then we present algorithms to (i) generate games from models and
(ii) translate from the result of synthesis back to the model, including required
modifications. A simple instruction on our prototype tool GECKO is also listed.
Contents of this chapter are mainly in [CRBK11, CBK10].

∙ Chapter 7 describes three heuristic algorithms to find controller strategies for dis-
tributed games. These heuristics arise from the design intention how engineers
construct systems out of components to achieve goal-oriented behavior. Results
concerning reachability games are within [CRBK11].

4The tool is available at http://www6.in.tum.de/~chengch/gavs/

5

http://www6.in.tum.de/~chengch/gavs/

1. Introduction

∙ Chapter 8 gives a summary of the main results of this thesis. In addition, several
starting points for future / ongoing research are identified.

Related work is listed distributively in each chapter.

6

CHAPTER 2

Games for Synthesis: a Very Short Introduction

Abstract
We give concise1 descriptions on games for synthesis. We start with two-player, turn-
based games played on finite graphs, and then expand the spectrum concerning con-
currency, infinite state, distributivity, probability, games of imperfect information, and
time2. Figure 2.1 provides a summary on games described in this chapter and illustrates
their relations. Further game extensions by combining multiple extension criteria (e.g.,
stochastic pushdown games) are left to readers.

Two-player, turn-based games

Pushdown games

Games of incomplete /
imperfect information

Concurrent games

Timed games

Stochastic games (2.5 player)

MDPs (1.5 player)

Distributed games

on finite-game graphs

- finite game graph

+ infinite game graph

- turn-based

+ concurrency + probability

+ time- two-player

+ two-party
+ partial observability

Figure 2.1: A spectrum of games for synthesis and their relations.

1This chapter is intended to serve as a short tutorial for a quick grasp on games. Therefore, it only
contains required definitions to state algorithmic concepts. Yet examples are offered for the ease of
understanding. To collect results and algorithms with full detail is beyond the scope of the thesis.
Even for the newly published book [AG11] (available from January 2011), it is unable to cover every
aspect mentioned in this chapter.

2Direction of our expansion is based on reviewing existing work on games.

7

2. Games for Synthesis: a Very Short Introduction

Contents
2.1 Two-player, Turn-based Games over Finite Arenas 8
2.2 Two-player Games over Pushdown Game Graphs 13
2.3 Games of Concurrency . 18
2.4 Games of Imperfect / Incomplete Information 24
2.5 Distributed Games . 26
2.6 Other Games Having Practical Interests 30

2.1 Two-player, Turn-based Games over Finite Arenas

2.1.1 Definition

In this section, we define basic two-player, turn-based games on finite game graphs.
Contents of this section are reorganized from Chapter 2 of the book [GTW02]. We start
with the definition of arena (game graph), then proceed with plays on the arena, winning
conditions, and strategies.

2.1.1.1 Arena, play, and game

An arena or a game graph is a directed graph 𝐴 = (𝑉0 ⊎ 𝑉1, 𝐸) whose nodes (or locations)
are partitioned into two classes 𝑉0 and 𝑉1. We only consider the case of two partici-
pants in the following and call them player 0 (system) and player 1 (environment) for
simplicity. A play starting from node 𝑣0 is simply a maximal path 𝜋 = 𝑣0𝑣1 . . . in 𝐺
where we assume that player 𝑖 determines the move (𝑣𝑘, 𝑣𝑘+1) ∈ 𝐸 if 𝑣𝑘 ∈ 𝑉𝑖, 𝑖 = 0, 1.
With Occ(𝜋) (Inf(𝜋)) we denote the set of nodes visited (visited infinitely often) by a
play 𝜋.

Let 𝐴 be an arena defined above, refer 𝑊𝑖𝑛 ⊆ (𝑉0⊎𝑉1)
𝜔 to be the winning set over arena

𝐴. Then define a game 𝐺 as the pair (𝐴,𝑊𝑖𝑛). A play 𝜋 = 𝑣0𝑣1 . . . is won by player 0 if
(i) it is an infinite play and 𝜋 ∈ 𝑊𝑖𝑛 or (ii) it is a finite play 𝜋 = 𝑣0𝑣1 . . . 𝑣𝑘, 𝑣𝑘 ∈ 𝑉1 and
player 1 is unable to proceed a move (i.e., deadlock for player 1).

2.1.1.2 Winning conditions over the game graph

In this thesis, the winning set of a given game is defined using the notion of winning
condition. Given game graph 𝐴 = (𝑉0 ⊎ 𝑉1, 𝐸),

∙ the reachability condition is defined by 𝑊𝑖𝑛 = {𝑣0𝑣1 . . . ∈ (𝑉0 ⊎ 𝑉1)
𝜔 |

Occ(𝑣0𝑣1 . . .) ∩ 𝑉𝑔𝑜𝑎𝑙 ̸= ∅}, where 𝑉𝑔𝑜𝑎𝑙 ⊆ 𝑉0 ⊎ 𝑉1 is the set of goal states.

∙ the co-reachability condition is defined by 𝑊𝑖𝑛 = {𝑣0𝑣1 . . . ∈ (𝑉0 ⊎ 𝑉1)
𝜔 |

Occ(𝑣0𝑣1 . . .)∩𝑉𝑟𝑖𝑠𝑘 = ∅}, where 𝑉𝑟𝑖𝑠𝑘 ⊆ 𝑉0 ⊎𝑉1 is the set of risk states. Sometimes
co-reachability conditions are called safety conditions.

8

2. Games for Synthesis: a Very Short Introduction

∙ the Büchi condition is defined by 𝑊𝑖𝑛 = {𝑣0𝑣1 . . . ∈ (𝑉0 ⊎ 𝑉1)
𝜔 |

Inf(𝑣0𝑣1 . . .) ∩ 𝑉𝑔𝑜𝑎𝑙 ̸= ∅}, where 𝑉𝑔𝑜𝑎𝑙 is the set of goal states in 𝑉0 ⊎ 𝑉1.

∙ the Muller condition is defined by 𝐴𝑐𝑐 = {𝑣0𝑣1 . . . ∈ (𝑉0 ⊎ 𝑉1)
𝜔 |

Inf(𝑣0𝑣1 . . .) ∈ ℱ}, where ℱ ⊆ 2𝑉0⊎𝑉1 , and 2𝑉0⊎𝑉1 is the powerset of 𝑉0 ⊎ 𝑉1.

∙ the Staiger-Wagner condition is defined by 𝐴𝑐𝑐 = {𝑣0𝑣1 . . . ∈ (𝑉0 ⊎ 𝑉1)
𝜔 |

Occ(𝑣0𝑣1 . . .) ∈ ℱ}, where ℱ ⊆ 2𝑉0⊎𝑉1 , and 2𝑉0⊎𝑉1 is the powerset of 𝑉0 ⊎ 𝑉1.

∙ the Streett condition is defined by 𝑊𝑖𝑛 = {𝑣0𝑣1 . . . ∈ (𝑉0⊎𝑉1)
𝜔 | ∀𝑖 ∈ {1, . . . ,𝑚} :

Inf(𝑣0𝑣1 . . .) ∩ 𝐹𝑖 ̸= ∅ ⇒ Inf(𝑣0𝑣1 . . .) ∩ 𝐸𝑖 ̸= ∅}, where ∀𝑖 ∈ {1, . . . ,𝑚} : 𝐸𝑖, 𝐹𝑖 ⊆
𝑉0 ⊎ 𝑉1.

2.1.1.3 Parity and weak-parity conditions based on coloring

Here we describe the coloring function over vertices in the game arena, such that the
winning condition can also be defined using the associated color of a play. Given an
arena 𝐴 = (𝑉0 ⊎ 𝑉1, 𝐸), define the coloring function 𝑐 : 𝑉0 ⊎ 𝑉1 → 𝐶, where 𝐶 ⊂ N0

is a finite set of nonnegative integers. For a vertex 𝑣, define its color as 𝑐(𝑣); for a play
𝜋 = 𝑣0𝑣1 . . ., let 𝑐(𝜋) = 𝑐(𝑣0)𝑐(𝑣1) . . . be the coloring. With Occ(𝑐(𝜋)) (Inf(𝑐(𝜋))) we
denote the set of colors visited (visited infinitely often) by a play 𝜋. Given game graph
𝐴 = (𝑉0 ⊎ 𝑉1, 𝐸) with the coloring function 𝑐,

∙ the weak parity condition is defined by 𝐴𝑐𝑐 = {𝑣0𝑣1 . . . ∈ (𝑉0 ⊎ 𝑉1)
𝜔 |

max(Occ(𝑐(𝑣0)𝑐(𝑣1) . . .)) mod 2 = 0}.
∙ the parity condition is defined by 𝐴𝑐𝑐 = {𝑣0𝑣1 . . . ∈ (𝑉0 ⊎ 𝑉1)

𝜔 |
max(Inf(𝑐(𝑣0)𝑐(𝑣1) . . .)) mod 2 = 0}.

2.1.1.4 Strategies

Given a game 𝐺 = ((𝑉0 ⊎ 𝑉1, 𝐸),𝑊𝑖𝑛), a strategy for player 0 starting at vertex set
𝑉𝑠𝑡𝑎𝑟𝑡 is a partial function 𝑓 : (𝑉0 ⊎ 𝑉1)

* × 𝑉0 → 𝑉0 ⊎ 𝑉1 such that for all play prefix
𝑣0 . . . 𝑣𝑘, 𝑣0 ∈ 𝑉𝑠𝑡𝑎𝑟𝑡, 𝑓 assigns a successor vertex 𝑣𝑘+1 where (𝑣𝑘, 𝑣𝑘+1) ∈ 𝐸, if 𝑣𝑘 ∈ 𝑉0

and a successor exists. For player 0, play 𝜋 = 𝑣0𝑣1 . . . follows strategy 𝑓 if ∀𝑣𝑖 ∈ 𝑉0 :
𝑣𝑖+1 = 𝑓(𝑣0 . . . 𝑣𝑖). We call 𝑓 a winning strategy for player 0 if all plays following the
strategy while starting from 𝑉𝑠𝑡𝑎𝑟𝑡 is contained in 𝑊𝑖𝑛. Lastly, we refer a positional
(memoryless) strategy for player 0 as the function 𝑓 : 𝑉0 → 𝑉0⊎𝑉1 such that the history
of a play is not considered when deciding the next move. The above definitions on
strategies can be applied analogously for player 1.

A node 𝑣 is won by player 𝑖 if player 𝑖 can always choose his moves in a way that he
wins any resulting play starting from 𝑣; the winning region for 𝑖, i.e., the sets of nodes
won by player 𝑖 are denoted by 𝑊𝑖𝑛𝑖 (𝑖 ∈ {0, 1}).
Before stepping further, it is worth mentioning the determinacy result, which states that
given a game graph with the above winning conditions, 𝑊𝑖𝑛0 and 𝑊𝑖𝑛1 form a parti-
tion over 𝑉0 ⊎ 𝑉1. For details on determinacy results, we refer readers to the discussion
in Chapter 6 of [GTW02].

9

2. Games for Synthesis: a Very Short Introduction

2.1.1.5 Example

Here we give a simple example3 intended to illustrate all concepts mentioned above.
Consider the arena 𝐴 = (𝑉0 ⊎ 𝑉1, 𝐸) in Figure 2.2. In this thesis, we use rectangles to
represent player-1 vertices and circles for player-0 vertices.

v0v1 v2

Figure 2.2: A simple finite game graph.

∙ 𝑉0 = {𝑣0}, 𝑉1 = {𝑣1, 𝑣2}.
∙ 𝐸 = {(𝑣0, 𝑣1), (𝑣0, 𝑣2), (𝑣1, 𝑣0), (𝑣2, 𝑣0)}.

We outline some winning conditions and possible winning strategies.

∙ (Reachability) Define 𝑉𝑔𝑜𝑎𝑙 to be {𝑣1}, i.e., the goal is to reach vertex 𝑉1. Player 0
has a positional winning strategy from {𝑣0, 𝑣1, 𝑣2} by applying the edge (𝑣0, 𝑣1).

∙ (Safety) Define 𝑉𝑟𝑖𝑠𝑘 to be {𝑣2}, i.e., the goal is to never reach vertex 𝑉2. Player
0 has a positional winning strategy from {𝑣0, 𝑣1} by applying the edge (𝑣0, 𝑣1);
player 1 has a positional winning strategy from {𝑣2} by applying the edge (𝑣2, 𝑣0).

∙ (Muller) Define ℱ to be {{𝑣0, 𝑣1, 𝑣2}}, i.e., the goal is to reach all vertices infinitely
often. It can be checked that player 0 does not have any positional winning strat-
egy. However, he has winning strategies using memory to win from {𝑣0, 𝑣1, 𝑣2}.
E.g., if the previous location is 𝑣1 then go to 𝑣2; if the previous location is 𝑣2 then go to
𝑣1.

∙ (Streett) Define 𝐸1 = {𝑣2} and 𝐹1 = {𝑣1}, i.e., if a play reaches 𝑣1 infinitely of-
ten, then it should also reach 𝑣2 infinitely often. For player 0 positional strategy
suffices: on 𝑣0 move to 𝑣2.

2.1.2 Algorithms

In this section, we summarize existing algorithmic results. The focus is on (i) attrac-
tor computation, (ii) techniques for parity game solving, (iii) game reduction, and (iv)
symbolic encoding for computing attractors. Our selection of algorithms is based on
the implementation in GAVS+.

2.1.2.1 Attractor

We recall the definition of attractor, a term which is later used in the implementation of
the solvers: for 𝑖 ∈ {0, 1} and 𝑋 ⊆ 𝑉0 ⊎ 𝑉1, the map attr𝑖(𝑋) is defined by

attr𝑖(𝑋) := 𝑋 ∪ {𝑣 ∈ 𝑉𝑖 | 𝑣𝐸 ∩𝑋 ̸= ∅} ∪ {𝑣 ∈ 𝑉1−𝑖 | ∅ ≠ 𝑣𝐸 ⊆ 𝑋},

3This example is from the lecture in Summer School of Logic and Learning 2009 taught by Dr. Sophie
Pinchinat (http://videolectures.net).

10

http://videolectures.net

2. Games for Synthesis: a Very Short Introduction

i.e., attr𝑖(𝑋) extends 𝑋 by all those nodes from which either player 𝑖 can move to 𝑋
within one step or player 1−𝑖 cannot prevent to move within the next step. (𝑣𝐸 denotes
the set of successors of 𝑣.) Then Attr𝑖(𝑋) :=

⋃︀
𝑘∈N attr𝑘𝑖 (𝑋) contains all nodes from

which player 𝑖 can force any play to visit the set 𝑋 .

With the definition, for reachability games we can decide the winning region 𝑊𝑖𝑛0 by
computing Attr0(𝑉𝑔𝑜𝑎𝑙); for safety games derive 𝑊𝑖𝑛1 by computing Attr1(𝑉𝑟𝑖𝑠𝑘). With-
out loss of generality, here we assume that no deadlock occurs. Otherwise,

∙ for reachability games, we add all player-1 vertices without outgoing edges as
goal states.

∙ for safety games, we add all player-0 vertices without outgoing edges as risk
states.

[Example: computing the attractor] For the reachability game defined previously in
Section 2.1.1.5, attr10({𝑣1}) = {𝑣0, 𝑣1} and Attr0({𝑣1}) = attr20({𝑣1}) = {𝑣0, 𝑣1, 𝑣2}.
For Büchi games, the method of finding the winning region needs to first computing
the recurrence region. Given a set of goal states 𝑉𝑔𝑜𝑎𝑙, the recurrence region is defined as
the set of states 𝑉𝑟𝑒𝑐𝑢𝑟 ⊆ 𝑉𝑔𝑜𝑎𝑙 where there exists strategy to ensure that vertices in 𝑉𝑟𝑒𝑐𝑢𝑟

can be reached repeatedly. Computing the recurrence region applies similar concepts
as the attractor; details are omitted here. When the recurrence region is computed, then
by computing Attr0(𝑉𝑟𝑒𝑐𝑢𝑟) we derive 𝑊𝑖𝑛0.

2.1.2.2 Reduction

In this section, we outline reduction techniques which perform transformation be-
tween games having different winning conditions. Precisely, given two games 𝐺 =
((𝑉,𝐸),𝑊𝑖𝑛) and 𝐺′ = ((𝑉 ′, 𝐸′),𝑊𝑖𝑛′), a game reduction is a function 𝛾 : 𝑉 → 𝑉 ′ such
that player 0 wins 𝐺 from vertex 𝑣 ∈ 𝑉 iff player 0 wins 𝐺′ from vertex 𝛾(𝑣) ∈ 𝑉 ′.

∙ (Muller game) The algorithm performs reductions from Muller games to parity
games using the latest appearance record (LAR). Intuitively, LAR records the per-
mutation of all vertices in a Muller game: when a move (𝑣1, 𝑣2) is taken in the
Muller game, in the reduced parity game the permutation (between two corre-
sponding vertices) changes by moving 𝑣2 to the front of permutation and right-
shifting the original permutation (which starts with 𝑣1). The coloring is based on
evaluating the prefix of the permutation from 𝑣2 to the first position: if the set of
vertices from this prefix is an element of ℱ then it is labeled as even.

∙ (Streett game) The algorithm performs reductions from Streett games to parity
games using the index appearance record (IAR). Intuitively, given the specifica-
tion (𝐸1, 𝐹1), . . . , (𝐸𝑘, 𝐹𝑘) in a Streett game, IAR also updates the permutation
when executing a move, and keeps track of the visited 𝐸-sets and 𝐹 -sets in the
reduced game.

The arena of the reduced parity game can be interpreted as the strategy automaton
of the Muller or the Streett game. Notice that for Muller or Streett games, in general
the exponential blow-up of the memory size caused by the permutation of vertices is
unavoidable.

11

2. Games for Synthesis: a Very Short Introduction

2.1.2.3 Parity game solving using strategy improvement

Parity games, as shown in the previous section, offer a unified foundation for game
solving. We summarize properties of parity games.

∙ Parity games are determined, and positional strategy suffices [EJ91].

∙ Parity game can be solved in NP ∩ coNP.

Currently, techniques of solving parity games are based on a methodology called strat-
egy improvement [VJ00]. Under this setting, each strategy is evaluated (under a certain
criterion) such that the set of all strategies forms a partial order. Starting from an ini-
tial (arbitrary) strategy, player 0 and player 1 perform alternating iterations to improve
their strategy evaluation by modifying their strategies; the process ends until no im-
provement can be made on both sides.

The algorithm proposed in [VJ00] is a global method: it decides for every node 𝑣,
whether 𝑣 belongs to 𝑊𝑖𝑛0. Contrarily, local methods are methods deciding whether
a given node 𝑣 ∈ 𝑉0 ⊎ 𝑉1 belongs to 𝑊𝑖𝑛0. Local methods (e.g., algorithms in [FL10])
can be used in many applications where deciding whether an initial location belongs
to 𝑊𝑖𝑛0 is the only concern, e.g., model checking branching time logics and the satis-
fiability problem for modal 𝜇-calculus. The main idea of local strategy improvement
in [FL10] is to expand the game graph on-the-fly: if a subgraph is sufficient to define
the winner of a given initial node, then there is no need to explore others.

2.1.2.4 Symbolic computation for attractors using BDDs

Lastly, we outline how games can be solved symbolically with Binary Decision Diagrams
(BDD) [Bry86]. In GAVS+, game engines which are implemented symbolically4 include
winning conditions for reachability, safety, Büchi, weak-parity, and Staiger-Wagner.

∙ For all games (except Staiger-Wagner conditions), locations can be encoded as bit
vectors using binary encoding. Therefore, a total number of 2⌈log2(|𝑉0⊎𝑉1|)⌉ BDD
variables is used. The factor of 2 is used for the primed version of the location.

∙ For Staiger-Wagner games, as the strategy of winning requires memory exponen-
tial to the size of the vertex (a strategy need to keep track of all visited vertices),
for each location, two BDD variables are used for memory update (together with
the primed version).

∙ The attractor computation (similarly the recurrence region for Büchi games and
coloring in weak-parity games) can be computed efficiently using BDD. During
the computation, the list of strategy edges chosen (for player-0 in reachability,
Büchi, weak-parity games) should also be recorded. Further details are omitted.

2.1.2.5 Symbolic techniques for finding strategies using SAT

To compute strategies for reachability games, except using BDD-based approach, Mad-
husudan, Nam, and Alur also proposed a bounded-witness algorithm [AMN05] for solv-

4The implementation of GAVS+ is based on JDD [jdd], a Java-based BDD package.

12

2. Games for Synthesis: a Very Short Introduction

ing reachability games using SAT, a natural generalization of bounded model check-
ing [CBRZ01]. Notice that in their formulation, the game starts in the initial state but
in every step, the system and the environment pick a move simultaneously and the
state evolves according to this choice [AMN05]. Without mentioning details, we com-
ment that their formulation can be translated to the standard notation similar to ours
by creating a bipartite arena5.

Based on their experiments, the witness algorithm is not as efficient as the BDD-based
approach. Nevertheless, with some modifications, we find it useful and create a mod-
ification for solving distributed games. The witness algorithm will be discussed in
Chapter 6 together with distributed games.

2.2 Two-player Games over Pushdown Game Graphs

In this section, we consider two-player, turn-based games played over pushdown sys-
tems. A pushdown automaton extends a nondeterministic automaton where a (last-
in-first-out) stack is equipped. Transitions may also define update rules for the stack.
A pushdown system naturally models a program where recursion is used. Pushdown
games are extensions combining games and pushdown systems. One (potential) appli-
cation for pushdown games is automatic repair of recursive programs, a generalization
of Boolean program repair [JGB05].

To our knowledge, there are two representations to describe pushdown games, namely
(i) representation based on rewrite rules and (ii) representation based on recursive au-
tomata. These two formulations are equivalent concerning expressiveness. In the thesis
we use (i), i,e., we follow the formulation in the work of Cachat [Cac02, Cac03b].

2.2.1 Definition

2.2.1.1 Arena (APDS), play, and game

An alternating pushdown system (APDS) is a tuple 𝒜 = (𝑉0 ⊎ 𝑉1,Γ,Δ), where (i) 𝑉0 ⊎ 𝑉1

is the partition of locations for player 0 and 1, (ii) Γ is the set of stack alphabets, and
(iii) Δ ⊆ (𝑉0 ⊎ 𝑉1 × Γ) × (𝑉0 ⊎ 𝑉1 × Γ*) is the set of rewrite rules. A configuration of an
APDS is represented as 𝑣𝑤, where 𝑣 ∈ 𝑉0 ⊎ 𝑉1 is the current location and 𝑤 ∈ Γ* is
the current stack content. The arena in an APDS is the set of all configurations together

with transitions between configurations. We use 𝑣𝑤
𝛿−→ 𝑣′𝑤′ to represent the change of

configuration from 𝑣𝑤 to 𝑣′𝑤′ using the rewrite rule 𝛿. An infinite play starting from a
given configuration 𝑣0𝑤0, where 𝑣0 ∈ 𝑉0 ⊎ 𝑉1 and 𝑤0 ∈ Γ* is simply a maximal path

𝜋 = (𝑣0𝑤0)(𝑣1𝑤1) . . . in 𝐺 such that ∀𝑖 where 𝑣𝑖 ∈ 𝑉0 ⊎ 𝑉1 ∧ 𝑤𝑖 ∈ Γ*, ∃𝛿 ∈ Δ : 𝑣𝑖𝑤𝑖
𝛿−→

𝑣𝑖+1𝑤𝑖+1. For the definition of finite plays, it follows analogously. In a play, we assume

that player 𝑖 determines the move 𝑣𝑘𝑤𝑘
𝛿−→ 𝑣𝑘+1𝑤𝑘+1 if 𝑣𝑘 ∈ 𝑉𝑖, 𝑖 ∈ {0, 1}.

5Also, the formulation of reachability game in [AMN05] matches the case of sure-winning in concurrent
reachability games [DAHK07] (see Section 2.3 for complete definition). The algorithm of computing
sure-winning strategies uses precisely the concept of attractor.

13

2. Games for Synthesis: a Very Short Introduction

In this thesis normalization over rewrite rules is used, i.e., each rule 𝛿 ∈ Δ can only be
one of the following three types (we use the symbol →˓ to represent the update of a
rule).

∙ (Decrease stack size by 1) 𝛿 := ⟨𝑣, 𝛾⟩ →˓ ⟨𝑣′, 𝜀⟩
∙ (Keep stack size the same) 𝛿 := ⟨𝑣, 𝛾⟩ →˓ ⟨𝑣′, 𝛾′⟩
∙ (Increase stack size by 1) 𝛿 := ⟨𝑣, 𝛾⟩ →˓ ⟨𝑣′, 𝛾′𝛾′′⟩

where 𝑣, 𝑣′ ∈ 𝑉0 ⊎ 𝑉1, 𝛾, 𝛾′, 𝛾′′ ∈ Γ.

2.2.1.2 Winning conditions over APDS

Here we outline three winning conditions for player 0, namely reachability, Büchi, and
parity, following the constraints mentioned in [Cac02, Cac03b] for implemention.

∙ (Reachability) Reachability condition is defined via the set of goal configurations.
As the size of the pushdown game graph (the number of configurations) is infi-
nite, to compute the attractor of reachability conditions, in [Cac02] the set of goal
configurations is further constrained to be a regular set, i.e., it can be represented
by a finite automaton.

∙ (Büchi) Following the constraint for reachability conditions, for Büchi conditions
the set of goal configurations should be regular. Furthermore, in our implemen-
tation we use the set of the goal configurations with simplest form 𝑅 = 𝑉𝑔𝑜𝑎𝑙Γ

*. It
is indicated in [Cac02] that for each APDS 𝒜 having a regular set 𝑅𝑒𝑔 of config-
urations as a goal set, it can be translated to another APDS 𝒜 × 𝐴𝑅𝑒𝑔 having the
simplest form as the goal set, where 𝐴𝑅𝑒𝑔 is the automaton recognizing 𝑅𝑒𝑔.

∙ (Parity) Similar to parity conditions over finite game graphs, given an APDS de-
fine its coloring function 𝑐 : 𝑉0 ⊎ 𝑉1 → 𝐶, where 𝐶 is a finite set of nonnegative
integers. Given an APDS (𝑉0 ⊎ 𝑉1,Γ,Δ) with coloring function 𝑐, a configuration
𝑣𝑤, where 𝑣 ∈ 𝑉0 ⊎ 𝑉1 and 𝑤 ∈ Γ, has color 𝑐(𝑣).

2.2.1.3 Example

Here we give a simple example 𝒜 = (𝑉0 ⊎ 𝑉1,Γ,Δ), where

∙ 𝑉0 = {𝑆0, 𝑆2}
∙ 𝑉1 = {𝑆1}
∙ Γ = {𝑎, 𝑏, 𝑐}
∙ Δ = {⟨𝑆0, 𝑏⟩ →˓ ⟨𝑆1⟩, ⟨𝑆0, 𝑏⟩ →˓ ⟨𝑆1, 𝑎⟩, ⟨𝑆1, 𝑎⟩ →˓ ⟨𝑆2, 𝑎𝑏⟩,
⟨𝑆1, 𝑎⟩ →˓ ⟨𝑆2, 𝑎⟩, ⟨𝑆2, 𝑎⟩ →˓ ⟨𝑆2, 𝑎𝑏⟩, ⟨𝑆2, 𝑎⟩ →˓ ⟨𝑆2, 𝑎⟩, ⟨𝑆1, 𝑏⟩ →˓ ⟨𝑆𝑏, 𝑏⟩}.

This example will be used in Section 2.2.3 when we revisit the saturation algorithm
proposed in [Cac02, Cac03b].

14

2. Games for Synthesis: a Very Short Introduction

2.2.2 Algorithms

We summarize algorithms for pushdown games from [Cac02, Cac03b]. For reachability
and Büchi games, we describe (i) algorithms computing the winning region, and (ii)
how a strategy from an (accepting) initial configuration is extracted.

2.2.2.1 Reachability Games

For reachability analysis, the algorithm [Cac02] computing the winning region of a
given pushdown game is a generalization of the saturation method [EHRS00], which is
used for model-checking pushdown systems (PDS). A PDS can be viewed as an APDS
where 𝑉1 = ∅. In [EHRS00], the set of goal configurations is represented as an finite
automaton, called 𝒫-automaton. Notice that in a 𝒫-automaton, for each state represent-
ing the location of the pushdown system, initially it is not the destination of any edge.
Then the saturation method adds edges to the 𝒫-automaton with the following rule6.

If there exists ⟨𝑣, 𝛾⟩ →˓ ⟨𝑣′, 𝛾′⟩ (𝑣, 𝑣′ ∈ 𝑉0, 𝛾, 𝛾′ ∈ Γ), and if transition (𝑣′, 𝑞)
with label 𝛾′ is in the 𝒫-automaton then add a transition (𝑣, 𝑞) with transi-
tion label 𝛾 to the 𝒫-automaton. (*)

The whole process ends until no edge can be further added. To check if a given configu-
ration 𝑝𝑤 is contained in the 𝒫-automaton (membership problem), a backward analysis
from the accepting state is performed.

For reachability games, the set of all accepting configurations can also be computed
analogously. Initially, the (alternating) 𝒫-automaton represents the set of goal configu-
rations. Then the saturation method proceeds as follows.

∙ For 𝑣 ∈ 𝑉1, instead of adding an edge, a multi-edge is added. A multi-edge is
an edge having one source vertex but multiple destination vertices. Adding a
multi-edge represents all possibilities induced by player 1: for all rules having
the precondition ⟨𝑣, 𝛾⟩, it is the choice of player 1 to freely decide which rule to
use. Thus the multi-edge can be viewed as an ∀-transition.

∙ For 𝑣 ∈ 𝑉0, adding an edge follows the same saturation method for PDS.

To generate winning strategies (i.e., how to apply rewrite rules), two methods are pro-
posed in [Cac02].

∙ (Positional min-rank strategy) To apply positional min-rank strategy, during the
construction of the 𝒫-automaton, it is required to augment costs over each added
edge. For example, in (*), if the cost of (𝑣′, 𝛾′, 𝑞) is 𝑖, then the cost of (𝑣, 𝛾, 𝑞) equals
1 + 𝑖. When player 0 needs to decide the applied rewrite rule over configuration
𝑣𝑤, he performs a linear search over the 𝑃 -automaton augmented with costs from
vertex 𝑣 sequentially with alphabets in 𝑤. For the path which has the least sum of
cost from initial state to final state, the algorithm suggests the rewrite rule based
on the first edge of the path.

∙ (Pushdown strategy) A pushdown strategy refers to the strategy where a push-

6Here we only list the case where the stack size remains the same after the rule is applied; for other two
cases similar arguments follow.

15

2. Games for Synthesis: a Very Short Introduction

down stack is equipped for player 0 during the play to select the rewrite rule.
Given an initial configuration, generate the initial stack content during the test of
membership; as the test of membership is performed backwards, the stack con-
tent is filled with information over the selected edges of the𝒫-automaton. During
a play, for player 0, select the rewrite rule based on the stack content. Also, update
the stack based on the rule selected by player 0 or by player 1.

(Remark over two strategies [Cac02]) Positional strategies require linear execution time
in each step, and for strategies with pushdown memory each step can be executed in
constant time.

2.2.2.2 Büchi Games

We give an outline how to compute winning regions for Büchi games; for details we
refer readers to [Cac02]. For Büchi games, the requirement of recurrence condition
(visiting locations repeatedly) is implemented by multiple copies of the set of locations
in the 𝒫-automaton; recall that in reachability games only one copy is required. During
the 𝑖𝑡ℎ recurrence round, for each location 𝑣 ∈ 𝑉0 ⊎ 𝑉1, the algorithm introduces vertex
𝑣𝑖 in the 𝒫-automaton (representing the 𝑖𝑡ℎ copy), add an 𝜀-transition (𝑣𝑖, 𝑣𝑖−1) to the
𝑖 − 1𝑡ℎ copy, and apply the saturation algorithm. However, to achieve termination, at
the end of the round, the algorithm proceeds with two operations.

∙ For each transition going to vertices representing the 𝑖 − 1𝑡ℎ copy, modify the
transition to redirect it to the 𝑖𝑡ℎ copy; this is defined in [Cac02] as the projection
operator.

∙ Check whether the 𝑖𝑡ℎ copy and the 𝑖 − 1𝑡ℎ copy are having same outgoing tran-
sitions, where the concept of "sameness" is defined in [Cac02] via the contraction
operator. If the answer is positive, then terminate and report the set of winning
configurations.

To create the winning strategy, it follows similar approaches for reachability games.

2.2.2.3 Parity Games

We outline two methods for solving parity games.

1. (Reduction method [Cac03b]) This method performs a translation from a push-
down parity game to a finite game with parity condition. The translation ensures
that running the parity game over the finite game graph simulates the execution
in the corresponding pushdown game. As a finite game graph is unable to store
the content of the stack (which is infinite), it applies the concept of subgame - when
a push operation occurs in the APDS, in the reduced finite game player 0 needs
to make a guess: the guess answers "after popping the stack content, what is the
maximum color encountered between the push and the pop process". Player 1
then can challenge or agree with the guess of player 0.

∙ If player 1 challenges, then the game enters a subgame while the goal is to
check (i) the claim by player 0 when the pop-of-stack occurs and (ii) if the
content is never popped, then player 0 again needs to win the parity con-

16

2. Games for Synthesis: a Very Short Introduction

S1ac S2ac

S1abc S2abbc

S2abc

S2abc

S2abbbc . . .

(a)

(b)

Figure 2.3: Run graphs over initial conditions 𝑆1𝑎𝑐 (a) and 𝑆1𝑎𝑏𝑐 (b).

dition. Notice that here the algorithm applies the concept of summary, i.e.,
finite representation which summarizes important information of the visited
configuration. In this method, the summary is a subset of locations together
with their colors: when player 1 challenges, the claim made by player 0 is
stored as a summary and the play continues.

∙ If player 1 accepts, then the game visits a node having the guessed color, and
the play continues.

The drawback of this method is that creating the reduction generates an imme-
diate exponential blowup on the resulting parity game; in our preliminary eval-
uation, even for simple pushdown games with 3 locations, 3 colors, 2 alphabets
(including a bottom-of-stack alphabet) and 8 rules, the reduction algorithm cre-
ates a finite pushdown game having roughly 350 vertices.

2. (Saturation method [HO09]) Here we omit technical details, but mention that
the saturation method in [HO09] further extends the algorithm in [Cac02] used
for solving Büchi games. By defining the winning region of a pushdown parity
game using modal 𝜇-calculus [Wal96], the algorithm iteratively performs expan-
sions (for least fixpoints) and contractions (for greatest fixpoints). Termination
is achieved using the projection operator (the concept is described previously in
Section 2.2.2.2); when the algorithm stops, the winning region is precisely recog-
nized. Using saturation methods can avoid an immediate explosion, compared
to the first method.

2.2.3 Cachat’s Symbolic Algorithm [Cac03a, Cac02] Revisited

In this section, we briefly describe additional remarks over Cachat’s original saturation
method in order to construct the 𝒫-automaton correctly using examples, as we find
algorithm in [Cac03a, Cac02] lack of details.

We consider the APDS described in Section 2.2.1.3. Given the set of goal configurations
as {𝑆2𝑎𝑏𝑐}, we consider two cases with two initial configurations.

1. If the initial configuration be 𝑆1𝑎𝑐, then player 0 is able to win the game, as shown
in Figure 2.3a.

17

2. Games for Synthesis: a Very Short Introduction

2. If the initial configuration be 𝑆1𝑎𝑏𝑐, then player 0 is unable to win the game, as
shown in Figure 2.3b.

Based on the descriptions, given APDS𝒜with the set of goal configurations as {𝑆2𝑎𝑏𝑐},
detailed construction steps for the 𝒫-automaton are shown in Figure 2.4. Edges having
more than one arrows are multi-edges, e.g., the edge 𝑆1 → {1, 2} in Figure 2.4c. The
saturation method terminates at step (d).

In [Cac03a, Cac02], the correctness claim for the saturation algorithm is based on the
definition of attractor, as shown in Figure 2.5. The definition is correct by intuition.

In Figure 2.5, observe the definition of 𝐴𝑡𝑡𝑟𝑖+1
0 . For a player 1 configuration 𝑝𝑤 to be

added to the attractor, it should be the case that for all possible rewrite rules 𝛾 applica-
ble on 𝑝, after player 1 applies 𝛾 on 𝑝𝑤 and create new configuration 𝑞𝑣 (𝑝𝑤 →˓𝛾 𝑞𝑣), 𝑞𝑣
should be in 𝐴𝑡𝑡𝑟𝑖0.

Back to the example, we may compute the attractor (based on the definition in the
proof) as follows:

∙ 𝐴𝑡𝑡𝑟00 = {𝑆2𝑎𝑏𝑐} (goal configuration only), which is similar to Figure 2.4a.

∙ 𝐴𝑡𝑡𝑟10 = {𝑆2𝑎𝑏𝑐, 𝑆2𝑎𝑐}, which is similar to Figure 2.4b.

∙ Now consider configuration 𝑆1𝑎𝑐. 𝐴𝑡𝑡𝑟20 should contain 𝑆1𝑎𝑐:

1. For the rewrite rule ⟨𝑆1, 𝑎⟩ →˓ ⟨𝑆2, 𝑎𝑏⟩, the result after rewriting, i.e., 𝑆2𝑎𝑏𝑐 is
in 𝐴𝑡𝑡𝑟10.

2. For the rewrite rule ⟨𝑆1, 𝑎⟩ →˓ ⟨𝑆2, 𝑎⟩, the result after rewriting, i.e., 𝑆2𝑎𝑐 is
in 𝐴𝑡𝑡𝑟10.

Therefore, for step (c), we should construct two multi-edges (𝑆1, {2, 1}) and (𝑆1, {2, 2}),
as shown in Figure 2.47

When the saturation method terminates, the next step is to use membership algorithm
to test whether a given initial configuration is within the language of the 𝒫-automaton.
The snapshot of the membership algorithm is in Figure 2.6. Following the construction,
it can be observed that now the membership algorithm is able to differentiate between
two initial configurations 𝑆1𝑎𝑐 (accepting) 𝑆1𝑎𝑏𝑐 (non-accepting).

2.3 Games of Concurrency

In previous sections, games are turn-based, i.e., a location in an arena is either played
by player 0 or played by player 1, but not both. In this section, we consider situations
where both players make their choices simultaneously, and the combined choice de-
cides the next location. Games of this type are called concurrent games. Here we only
focus on generating strategies for reachability conditions. Definitions and algorithms
in this section are summarized from [DAHK07].

7From this example, we conclude an implicit algorithmic detail in Algorithm 1 of [Cac02]: we have to
apply the rule of player-1 to any possible combination of valid rule choices for each successor. Thanks to
Dr. Michael Luttenberger for the discussion and confirmation.

18

2. Games for Synthesis: a Very Short Introduction

S2

S0

S1

a b c

S2

S0

S1

a b c

a

b

(S2a ↪→ S2ab)

(S0b ↪→ S1)

S2

S0

S1

a b c

a

b

S1a ↪→ S2a
S1a ↪→ S2ab

a

S2

S0

S1

a b c

a

b
a

S0b ↪→ S1a

1 2 3

b

1 2 3

1 2 3

1 2 3

(a)

(b)

(c)

(d)

a

b

a

Figure 2.4: Detailed step on computing the 𝒫-automaton using Cachat’s algorithm.

19

2. Games for Synthesis: a Very Short Introduction

Figure 2.5: Snapshot for the definition of attractor in the ICALP paper [Cac02].

Figure 2.6: Snapshot of the membership algorithm in the ICALP paper [Cac02].

2.3.1 Definition

2.3.1.1 Arena, play, and game

A concurrent arena is a tuple 𝐴 = (𝑉, 𝛿,Σ0,Σ1), where 𝑉 is the set of locations, Σ𝑖, 𝑖 ∈
{0, 1} is the set of action symbols for player 𝑖, and 𝛿 : 𝑉 × Σ0 × Σ1 → 𝑉 is the transition
function8. A play starting from node 𝑣0 is simply a maximal path 𝜋 = 𝑣0𝑣1 . . . in 𝐴,
where from location 𝑣𝑖, the move (𝑣𝑖, 𝑣𝑘+1) is decided by 𝛿(𝑣𝑘, 𝜎0, 𝜎1) - player 0 chooses
𝜎0 ∈ Σ0 and independently player 1 chooses 𝜎1 ∈ Σ1. Given concurrent arena 𝐴, a
concurrent reachability game is created by defining the set of goal locations 𝑉𝑔𝑜𝑎𝑙 ⊆ 𝑉 .

2.3.1.2 Winning locations

Given a concurrent reachability game (𝐴, 𝑉𝑔𝑜𝑎𝑙), in [DAHK07] the author defines three
types of winning locations for player 0.

∙ (Sure winning) A location 𝑣 is sure winning iff player 0 has a strategy to reach
𝑉𝑔𝑜𝑎𝑙 from 𝑣, regardless of the strategy made by player 1.

∙ (Almost-sure winning) A location 𝑣 is almost-sure winning iff player 0 has a strat-

8Notice that compared to the definition in [DAHK07], our definition requires that for every location,
actions for player 0 and player 1 are completely defined. Our definition is simpler, and for reachability
conditions, we can translate the definition in [DAHK07] to ours: First, if 𝜎0 ∈ Σ0 is undefined at 𝑣,
then ∀𝜎1 ∈ Σ1 add transition from (𝑣, 𝜎0, 𝜎1) to a new self-absorbing sink location. Second, if 𝜎1 ∈ Σ1

is undefined at 𝑣, then add transition from (𝑣, 𝜎0, 𝜎1), where 𝜎0 is defined in 𝑣, to any goal location.

20

2. Games for Synthesis: a Very Short Introduction

egy to reach 𝑉𝑔𝑜𝑎𝑙 from 𝑣 with probability equal to 1, regardless of the strategy
made by player 1.

∙ (Limit-sure winning) A location 𝑣 is limit-sure winning iff for all 𝜀 > 0, player 0
has a strategy to reach 𝑉𝑔𝑜𝑎𝑙 from 𝑣 with probability greater than 1− 𝜀, regardless
of the strategy made by player 1.

2.3.1.3 Strategy

For concurrent reachability games, randomized strategies (strategies with probability)
are more powerful than deterministic strategies, contrary to the situation in turn-based
games. We explain this idea using the game specified in Figure 2.7, where player 0 and 1
are playing rock-paper-scissors. Assume that the game starts with the initial position
of draw (𝑆𝑑𝑟𝑎𝑤), a play proceeds and two players make their choices simultaneously.
It can be observed that if player 0 randomly chooses his move, then the probability of
endlessly staying in 𝑆𝑑𝑟𝑎𝑤 is 0. In other words, starting with 𝑆𝑑𝑟𝑎𝑤, player 0 has a ran-
domized strategy to reach {𝑆𝑤𝑖𝑛0 , 𝑆𝑤𝑖𝑛1} with probability equal to 1 (i.e., almost-sure
winning). Notice that all deterministic strategies are incomparable to the randomized
strategy mentioned above, i.e., for each deterministic strategy of player-0, there exists
a counter-strategy for player 1 to confine the play staying in 𝑆𝑑𝑟𝑎𝑤.

Sdraw

Swin0 Swin1

(rock, rock)

(paper, paper)

(scissor, scissor)

(−,−) (−,−)

(rock, scissor)

(paper, rock)

(scissor, paper)

(scissor, rock)

(rock, paper)

(paper, scissor)

Figure 2.7: A concurrent reachability game (rock-paper-scissor), where (−,−) repre-
sents all possible combinations over actions.

Formally, for current games, a strategy for player 𝑖 is a function 𝑓𝑖 : 𝑉
+ → 𝒟(Σ𝑖), where

𝑉 + represents the history of a game, and 𝒟(Σ𝑖) is the set of all probability distributions
over action symbols in Σ𝑖. For a probability distribution 𝑑 ∈ 𝒟 over Σ𝑖, it assigns
𝜎𝑖 ∈ Σ𝑖 a value 𝑑(𝜎𝑖), and

∑︀
𝜎𝑖∈Σ𝑖

𝑑(𝜎𝑖) = 1.

2.3.1.4 Example: Rock-paper-scissor game

We formulate the concurrent arena 𝐴 = (𝑉, 𝛿,Σ0,Σ1) in Figure 2.7.

∙ 𝑉 = {𝑆𝑑𝑟𝑎𝑤, 𝑆𝑤𝑖𝑛0 , 𝑆𝑤𝑖𝑛1}.
∙ Σ0 = Σ1 = {𝑟𝑜𝑐𝑘, 𝑝𝑎𝑝𝑒𝑟, 𝑠𝑐𝑖𝑠𝑠𝑜𝑟}.

21

2. Games for Synthesis: a Very Short Introduction

∙ 𝛿 = { (𝑆𝑑𝑟𝑎𝑤, 𝑟𝑜𝑐𝑘, 𝑟𝑜𝑐𝑘, 𝑆𝑑𝑟𝑎𝑤), (𝑆𝑑𝑟𝑎𝑤, 𝑝𝑎𝑝𝑒𝑟, 𝑝𝑎𝑝𝑒𝑟, 𝑆𝑑𝑟𝑎𝑤), (𝑆𝑑𝑟𝑎𝑤, 𝑠𝑐𝑖𝑠𝑠𝑜𝑟, 𝑠𝑐𝑖𝑠𝑠𝑜𝑟, 𝑆𝑑𝑟𝑎𝑤),

(𝑆𝑑𝑟𝑎𝑤, 𝑟𝑜𝑐𝑘, 𝑠𝑐𝑖𝑠𝑠𝑜𝑟, 𝑆𝑤𝑖𝑛0
), (𝑆𝑑𝑟𝑎𝑤, 𝑝𝑎𝑝𝑒𝑟, 𝑟𝑜𝑐𝑘, 𝑆𝑤𝑖𝑛0

), (𝑆𝑑𝑟𝑎𝑤, 𝑠𝑐𝑖𝑠𝑠𝑜𝑟, 𝑝𝑎𝑝𝑒𝑟, 𝑆𝑤𝑖𝑛0
),

(𝑆𝑑𝑟𝑎𝑤, 𝑠𝑐𝑖𝑠𝑠𝑜𝑟, 𝑟𝑜𝑐𝑘, 𝑆𝑤𝑖𝑛1
), (𝑆𝑑𝑟𝑎𝑤, 𝑟𝑜𝑐𝑘, 𝑝𝑎𝑝𝑒𝑟, 𝑆𝑤𝑖𝑛1

), (𝑆𝑑𝑟𝑎𝑤, 𝑝𝑎𝑝𝑒𝑟, 𝑠𝑐𝑖𝑠𝑠𝑜𝑟, 𝑆𝑤𝑖𝑛1
)}⋃︀

𝜎0∈Σ0,𝜎1∈Σ1
{(𝑆𝑤𝑖𝑛0 , 𝜎0, 𝜎1, 𝑆𝑤𝑖𝑛0), (𝑆𝑤𝑖𝑛1 , 𝜎0, 𝜎1, 𝑆𝑤𝑖𝑛1)}.

We summarize the winning locations of player 0 for the concurrent reachability game
𝐺 = (𝐴, {𝑆𝑤𝑖𝑛0 , 𝑆𝑤𝑖𝑛1}).
∙ Locations 𝑆𝑤𝑖𝑛0 and 𝑆𝑤𝑖𝑛1 are both sure, almost-sure, and limit-sure winning.

∙ Location 𝑆𝑑𝑟𝑎𝑤 is almost-sure and limit-sure winning.

2.3.2 Algorithms

In this section, we give conceptual ideas on how to compute the winning region and
derive winning strategies for sure, almost-sure, and limit-sure reachability winning
conditions.

2.3.2.1 Sure reachability

For sure reachability, the computation follows the concept of attractor for turn-based
reachability games. Given arena 𝐴 and the set of locations 𝑋 ⊆ 𝑉 , the map attr𝐶𝑅𝐺 is
defined by

attr𝐶𝑅𝐺(𝑋) := 𝑋 ∪ {𝑣 ∈ 𝑉 | ∃𝜎0 ∈ Σ0 · ∀𝜎1 ∈ Σ1 : 𝛿(𝑣, 𝜎0, 𝜎1) ∈ 𝑋}

attr𝐶𝑅𝐺(𝑋) extends 𝑋 by all those nodes from which player 0 can move to 𝑋 within
one step, regardless of actions taken by player 1. Then the sure winning region
SureWin0(𝑉𝑔𝑜𝑎𝑙) can be computed symbolically by

⋃︀
𝑘∈N attr𝑘𝐶𝑅𝐺(𝑉𝑔𝑜𝑎𝑙).

Consider the rock-paper-scissor example in Figure 2.7. In location 𝑆𝑑𝑟𝑎𝑤, for all actions
of player 0 (e.g., 𝑟𝑜𝑐𝑘), there exists a counter-action for player 1 (e.g., 𝑟𝑜𝑐𝑘) to stop
reaching {𝑆𝑤𝑖𝑛0 , 𝑆𝑤𝑖𝑛1}. Therefore, 𝑆𝑑𝑟𝑎𝑤 is not sure winning.

2.3.2.2 Almost-sure reachability

Vgoal

A = (V, δ,Σ0,Σ1)

Cage

Figure 2.8: The concept of cage in computing almost-sure reachability set.

Here we use Figure 2.8 to help understanding the idea of computing the almost-sure
winning region.

22

2. Games for Synthesis: a Very Short Introduction

∙ Initially, consider the cage created by player 1, defined as the set of vertices
𝐶0 ⊆ 𝑉 ∖ 𝑉𝑔𝑜𝑎𝑙 (vertices not-safe-escape) where player 1 can (i) perform restrictions
such that for all possible plays starting from 𝑣 ∈ 𝐶0 , the set of visited locations
are within 𝐶0 and (ii) ensure to never reach 𝑉𝑔𝑜𝑎𝑙. To reach the goal state with
probability equal to 1, player 0 must avoid entering 𝐶0 in all costs. For this, the
algorithm generates (i) a restricted vertex set 𝑈0 ⊆ 𝑉 ∖𝐶 where player 0 can con-
strain the play of not entering 𝐶0 and (ii) a restricted action set Σ00 ⊆ Σ0 that
player 0 can use.

∙ As player 0 now has fewer choices on actions, player 1 may again create a new
cage 𝐶1 ⊆ 𝑈0 ∖ 𝑉𝑔𝑜𝑎𝑙 to constrain the play. After player 1 creates the new cage,
player 0 must respond and create 𝑈1 and Σ01 respectively. The process continues
until step 𝑘, where player 1 is unable to constrain 𝑈𝑘 = 𝑈𝑘−1 ⊆ 𝑈𝑘−2 ⊆ . . . ⊆ 𝑈0.
Then 𝑈𝑘 is the set of almost-sure winning locations. Concerning the winning
strategy, player 0 should play with actions in Σ0𝑘 uniformly at random.

Consider the rock-paper-scissor example in Figure 2.7. As player 1 is unable to con-
strain the play in {𝑆𝑑𝑟𝑎𝑤} (e.g., for player 1’s action 𝑠𝑐𝑖𝑠𝑠𝑜𝑟, there exists action 𝑟𝑜𝑐𝑘 of
player 0 that enables to escape from {𝑆𝑑𝑟𝑎𝑤}), 𝐶0 = ∅. Therefore, player 0 can win by
playing at 𝑆𝑑𝑟𝑎𝑤 with actions in {𝑟𝑜𝑐𝑘, 𝑝𝑎𝑝𝑒𝑟, 𝑠𝑐𝑖𝑠𝑠𝑜𝑟} uniformly at random.

2.3.2.3 Limit-sure reachability

Back to the algorithm of computing winning regions for almost-sure reachability, at the
𝑖𝑡ℎ iteration, 𝐶𝑖 is the cage where player 0 should escape and 𝑈𝑖 is the region where
player 0 should stay. In almost-sure winning, player 0 does not risk to escape from
leaving 𝑈𝑖. For limit-sure reachability, it allows to risk from retreating 𝑈𝑖.

Instead of computing 𝐶𝑖 (not-safe-escape locations) at each round in the case of almost-
sure, the limit-sure algorithm now computes 𝐶 ′

𝑖, the set of (not-limit-escape locations)
for each iteration. To detect whether a location 𝑣 is limit-escape, given two sets 𝑈 ⊆ 𝑉 ,
𝐶 ⊆ 𝑈 of locations, a subroutine computes two sequences of sets of actions 𝒜0,𝒜1, . . .
(each is a subset of Σ0) and ℬ0,ℬ1, . . . (each is a subset of Σ1) until step 𝑖, where𝒜𝑖−1 =
𝒜𝑖 and ℬ𝑖−1 = ℬ𝑖. Here we explain the algorithm using an imaginary situation where
saturation is reached under three iterations, i.e., 𝐴1 = 𝐴2 and 𝐵1 = 𝐵2. The location is
limit-escape if 𝐵1 = 𝐵2 = Σ1.

1. Originally, 𝒜0 is as the subset of actions in Σ0 where player 0 can use them and
stay safe within 𝑈 , regardless of actions by player 1. ℬ0 is the subset of actions
in Σ1 where there exists an action in 𝒜0 that escapes from 𝐶 with non-zero one-
round probability and with zero risk of capture (i.e., outside 𝑈).

2. Compute 𝒜1, which is a subset of actions in Σ0 that either

∙ an action 𝜎0 ∈ Σ0 is also in 𝒜0, or

∙ an action 𝜎0 ∈ Σ0 incurs risk (i.e., outside 𝑈) by combining actions with ℬ0.

3. Compute ℬ1, which is a subset of actions in Σ1 where there exists an action in 𝒜1

that escapes from 𝐶 with positive probability.

4. Continue the process until saturation; here compute 𝒜2 and ℬ2.

23

2. Games for Synthesis: a Very Short Introduction

To derive the strategy, given 𝜀 > 0, in this example we should set the probability distri-
bution 𝑑, such that an action in𝒜1 ∖𝒜0 is with probability 𝜀, and an action in𝒜0 is with
probability 1−|𝒜1∖𝒜0|𝜀

|𝒜0| . Notice that for action 𝜎 ∈ 𝒜1 ∖ 𝒜0 (action to escape but suffer

from risk) and 𝜎′ ∈ 𝒜0 (action to stay safe), lim𝜀→0
𝑑(𝜎)
𝑑(𝜎′) = 0. We have the following

observation.

∙ For actions in 𝒜0, it does not run the risk.

∙ For action 𝜎 ∈ 𝒜1 ∖ 𝒜0, it jumps outside 𝐶, while it incurs risk with maximum
probability 𝑑(𝜎) = 𝜀.

∙ Therefore, when 𝜀 → 0, for the randomized strategy, the chance of risk ap-
proaches 0, and the chance of staying safe approaches 1. However, we can ob-
serve that if a location 𝑣 is limit-sure but not almost-sure winning, the expected
time to successfully escape (reach the goal) can be unbounded.

2.4 Games of Imperfect / Incomplete Information

In this section, we discuss an extension for two-player, turn-based games where imper-
fect information is imposed on player 0. Intuitively, imperfect information refers to the
phenomenon that player 0 should make decision with the constraint that he is unable
to precisely know his position: instead of position, an observation is assigned to player 0.
A motivating example for games of imperfect information can be found when synthe-
sizing a controller connected to a digital sensor which reads an analog signal. As no
concrete analog value is offered to the controller, the value obtained from the digital
sensor (with finite precision) can be viewed as an observation.

We summarize the fixed-point theory for solving games of imperfect information pro-
posed by De Wulf, Doyen, and Raskin [DWDR06], where later in Chapter 7 we utilize
this theory and propose an algorithm for distributed games. To connect the result with
distributed games, we adapt a different formulation than the one used in [DWDR06].

2.4.1 Definition

A game of imperfect information [Rei84, DWDR06] extends from a two-player, turn-based
game graph 𝐴 = (𝑉0 ⊎ 𝑉1, 𝐸), where player 0 is unaware of his position with absolute
precision. The imprecision is defined by an observation set (Obs, 𝛾) where 𝛾 : Obs→ 2𝑉0

such that ∀𝑣 ∈ 𝑉0 · ∃obs ∈ Obs : 𝑣 ∈ 𝛾(obs) (Obs is a finite set of identifiers). During
a play, when reaching a vertex 𝑣 ∈ 𝑉0, an arbitrary observation accompanied with 𝑣
will be assigned to player 0; he is only aware of the observation but not the location.
As the location is not known with precision, the successors are imprecise as well. Thus
edges for player 0 are labeled with elements in a set Σ of actions. A strategy for player 0
should be observation-based: it means that the strategy is a function 𝑓 : Obs+ → Σ
from the history of observations to actions. For all player 1’s edges, a unique label 𝑢 is
used.

24

2. Games for Synthesis: a Very Short Introduction

2.4.1.1 Example

We give a simple example to explain the concept. For Figure 2.9, consider the corre-
sponding arena of imperfect information 𝐴 = ((𝑉0 ⊎ 𝑉1, 𝐸), (𝑂𝑏𝑠, 𝛾),Σ).

∙ 𝑉0 = {𝑣0, 𝑣2, 𝑣4, 𝑣𝑟𝑖𝑠𝑘}, 𝑉1 = {𝑣1, 𝑣3, 𝑣𝑓𝑟𝑒𝑒𝑧𝑒, 𝑣𝑏𝑢𝑟𝑛}.
∙ Σ = {ℎ𝑒𝑎𝑡, 𝑐𝑜𝑜𝑙}.
∙ 𝐸 = {(𝑣0, ℎ𝑒𝑎𝑡, 𝑣1), (𝑣0, 𝑐𝑜𝑜𝑙, 𝑣𝑓𝑟𝑒𝑒𝑧𝑒), (𝑣1, 𝑢, 𝑣0), (𝑣1, 𝑢, 𝑣2), (𝑣2, 𝑐𝑜𝑜𝑙, 𝑣1), (𝑣2, ℎ𝑒𝑎𝑡, 𝑣3),

(𝑣3, 𝑢, 𝑣2), (𝑣3, 𝑢, 𝑣4), (𝑣4, 𝑐𝑜𝑜𝑙, 𝑣3), (𝑣4, ℎ𝑒𝑎𝑡, 𝑣𝑏𝑢𝑟𝑛), (𝑣𝑏𝑢𝑟𝑛, 𝑢, 𝑣𝑟𝑖𝑠𝑘), (𝑣𝑓𝑟𝑒𝑒𝑧𝑒, 𝑢, 𝑣𝑟𝑖𝑠𝑘)}.
∙ Obs = {𝑐𝑜𝑙𝑑, ℎ𝑜𝑡, 𝑑𝑎𝑛𝑔𝑒𝑟}.
∙ 𝛾(𝑐𝑜𝑙𝑑) = {𝑣0, 𝑣2}, 𝛾(ℎ𝑜𝑡) = {𝑣2, 𝑣4}, 𝛾(𝑑𝑎𝑛𝑔𝑒𝑟) = {𝑣𝑟𝑖𝑠𝑘}.

Assume that a game starts with the initial location 𝑣2. Based on the received observa-
tion (in Figure 2.9 a value within the set {cold,hot}; remember the application concern-
ing the reading of a digital sensor), the controller should decide either to heat up (ℎ𝑒𝑎𝑡)
or to cool down (𝑐𝑜𝑜𝑙) the system. The goal of the game is to create an observation-
based strategy such that the system never reaches the risk state 𝑣𝑟𝑖𝑠𝑘.

cold, hotcold

vfreeze vburn

cool

heat cool heat cool

heat

v0 v1 v2 v3 v4

hot

vrisk

danger

u u u u

uu

Figure 2.9: A game of imperfect information for temperature control.

2.4.2 Algorithms

Here we reuse the formulation in [DWDR06] to form the lattice of antichains of set of
states, where a state corresponds to the location of a distributed game [DWDR06].

Let 𝑆 be set of states. Let 𝑞, 𝑞′ ∈ 22
𝑆

, and define 𝑞 ⊑ 𝑞′ iff ∀𝑠 ∈ 𝑞 : ∃𝑠′ ∈ 𝑞′ : 𝑠 ⊆ 𝑠′. A set
𝑠 ⊆ 𝑆 is dominated in 𝑞 iff ∃𝑠′ ∈ 𝑞 : 𝑠 ⊂ 𝑠′, and define the set of dominated elements of
𝑞 as 𝐷𝑜𝑚(𝑞). Lastly, donote ⌈𝑞⌉ to be 𝑞 ∖ 𝐷𝑜𝑚(𝑞). ⟨𝐿,⊑,⨆︀,

d
,⊥,⊤⟩ forms a complete

lattice [DWDR06], where

∙ 𝐿 as the set {⌈𝑞⌉ | 𝑞 ∈ 22
𝑆}.

∙ For 𝑄 ⊆ 𝐿,
d
𝑄 = ⌈{⋂︀𝑞∈𝑄 𝑠𝑞 | 𝑠𝑞 ∈ 𝑞}⌉ is the greatest lower bound for 𝑄.

∙ For 𝑄 ⊆ 𝐿,
⨆︀
𝑄 = ⌈{𝑠 | ∃𝑞 ∈ 𝑄 : 𝑠 ∈ 𝑞}⌉ is the least upper bound for 𝑄.

∙ ⊥ = ∅, ⊤ = {𝑆}.
Without mentioning further details, we summarize how to use the operator
CPre [DWDR06] over an antichain of set of states 𝑞 to derive the set of Controllable
Predecessors; by iterating backwards from the set of all locations until saturation, an
observation-based strategy can be established. It is not difficult to observe that finding

25

2. Games for Synthesis: a Very Short Introduction

strategies for safety games amounts to finding strategies for continuous control: In a
safety game, if a risk location is in 𝑉0, we can remove all of its outgoing edges; is a risk
location is in 𝑉1, we can connect it to a new vertex 𝑣′ ∈ 𝑉0 where 𝑣′ has no outgoing
edges.

Define 𝐸𝑛𝑎𝑏𝑙𝑒𝑑(𝜎) to be the set of locations where an edge labeled 𝜎 is possible as an
outgoing edge, and 𝑃𝑜𝑠𝑡𝜎(𝑆) (similarly 𝑃𝑜𝑠𝑡𝑒(𝑆)) be the set of locations by taking the
edges labeled by 𝜎 (with transition 𝑒) from a set of locations 𝑆. Assume that the game
graph is bipartite. Then, CPre(𝑞) := ⌈{𝑠 ⊆ 𝑉0 | ∃𝜎 ∈ Σ · ∀obs ∈ Obs · ∃𝑠′ ∈ 𝑞 : 𝑠 ⊆
𝐸𝑛𝑎𝑏𝑙𝑒𝑑(𝜎)∧⋃︀𝑒∈𝐸1

𝑃𝑜𝑠𝑡𝑒(𝑃𝑜𝑠𝑡𝜎(𝑠))∩ 𝛾(obs) ⊆ 𝑠′)}⌉. Intuitively, CPre computes a set
of player locations, such that by playing a common move 𝜎, for all successor locations
after the environment moves, player can decide the set of locations it belongs using the
observation.

[Example: computing the observation-based strategy using the operator CPre]
For the game described in Section 2.4.1.1, we show intermediate steps when computing
the fix-point for the set of controllable predecessors CPre*(𝑉0 ⊎ 𝑉1).

∙ 𝑆1 = CPre({𝑉0 ⊎ 𝑉1}) = {{𝑣0, 𝑣2, 𝑣4}ℎ𝑒𝑎𝑡}; during the computation we use ℎ𝑒𝑎𝑡
for the term 𝜎 in the computation of CPre.

∙ 𝑆2 = CPre(𝑆1) = {{𝑣0, 𝑣2}ℎ𝑒𝑎𝑡, {𝑣2, 𝑣4}𝑐𝑜𝑜𝑙}.
∙ 𝑆3 = CPre(𝑆2) = 𝑆2, and the fixed point has reached. Here we illustrate detailed

steps for the element {𝑣0, 𝑣2}ℎ𝑒𝑎𝑡.
1. The action 𝜎 = ℎ𝑒𝑎𝑡 can be enabled at all locations in {𝑣0, 𝑣2}.
2. 𝑃𝑜𝑠𝑡𝜎({𝑣0, 𝑣2}) = {𝑣1, 𝑣3}.
3. 𝑃𝑜𝑠𝑡𝑒∈𝐸1({𝑣1, 𝑣3}) = {𝑣0, 𝑣2, 𝑣4}. Now consider all observations.

–
⋃︀

𝑒∈𝐸1
𝑃𝑜𝑠𝑡𝑒({𝑣1, 𝑣3}) ∩ 𝛾(𝑐𝑜𝑙𝑑) = {𝑣0, 𝑣2}. Let 𝑠′ = {𝑣0, 𝑣2} then the

condition holds.

–
⋃︀

𝑒∈𝐸1
𝑃𝑜𝑠𝑡𝑒({𝑣1, 𝑣3}) ∩ 𝛾(ℎ𝑜𝑡) = {𝑣2, 𝑣4}. Let 𝑠′ = {𝑣2, 𝑣4} then the

condition holds.

–
⋃︀

𝑒∈𝐸1
𝑃𝑜𝑠𝑡𝑒({𝑣1, 𝑣3}) ∩ 𝛾(𝑑𝑎𝑛𝑔𝑒𝑟) = ∅. Let 𝑠′ = {𝑣0, 𝑣2} then the condi-

tion holds.

When CPre*(𝑉0 ⊎ 𝑉1) is computed, if in the game, the starting location is 𝑣2 (with two
possible observations), the constructed strategy automaton can be found in Figure 2.10
(for details concerning the definition of the strategy automaton, we refer readers to
Chapter 7 of the thesis or the paper [DWDR06]). The strategy automaton starts with
vertex 𝑖𝑛𝑖𝑡. Initially at 𝑣2, if player 0 receives the observation cold, he updates the

strategy automaton by moving to the vertex ℎ𝑒𝑎𝑡 (using the edge 𝑖𝑛𝑖𝑡
cold−−→ ℎ𝑒𝑎𝑡), and

uses ℎ𝑒𝑎𝑡 as the performed action.

2.5 Distributed Games

We describe distributed games using the definition of Mohalik and Walukiewicz [MW03].
In this model there are no explicit means of interaction among processes as such in-

26

2. Games for Synthesis: a Very Short Introduction

init

heat cool

hot

hothot

cold

cold

cold

{v0, v2} {v2, v4}

Figure 2.10: An observation-based strategy automaton for the game in Figure 2.9.

teraction must take place through the environment. Moreover, each player has only a
local view of the global system state, whereas the (hostile) environment has access to
the global history. Distributed games are rich enough to model various variations of
distributed synthesis problems proposed in the literature [MW03].

2.5.1 Definition

2.5.1.1 Local Games

Here we perform a simple renaming over two-player, turn-based finite games defined
previously to define local arena. A local game graph or local arena is a directed graph
𝐺 = (𝑉𝑠⊎𝑉𝑒, 𝐸) whose nodes are partitioned into two classes 𝑉𝑠 and 𝑉𝑒. All definitions
are similar to con Section 2.1, where we use 𝑉0 ⊎ 𝑉1, and here we use 𝑉𝑠 ⊎ 𝑉𝑒. Two par-
ticipants, player 0 and player 1 are now called player (for player 0) and environment
(for player 1). We also use 𝐸𝑠 (𝐸𝑒) to represent the set of player (environment) edges in
𝐸.

2.5.1.2 Distributed games

Definition 1. For all 𝑖 ∈ {1, . . . , 𝑛}, let 𝐺 = (𝑉𝑠𝑖 ⊎ 𝑉𝑒𝑖, 𝐸𝑖) be a game graph with the
restriction that it is bipartite. A distributed game 𝒢 is of the form (𝒱𝑠 ⊎ 𝒱𝑒, ℰ , 𝐴𝑐𝑐)
∙ 𝒱𝑒 = 𝑉𝑒1 × . . .× 𝑉𝑒𝑛 is the set of environment vertices.
∙ 𝒱𝑠 = (𝑉𝑠1 ⊎ 𝑉𝑒1)× . . .× (𝑉𝑠𝑛 ⊎ 𝑉𝑒𝑛) ∖ 𝒱𝑒 is the set of player vertices.
∙ Let (𝑥1, . . . , 𝑥𝑛), (𝑥′1, . . . , 𝑥

′
𝑛) ∈ 𝒱𝑠 ⊎ 𝒱𝑒, then ℰ satisfies:

– If (𝑥1, . . . , 𝑥𝑛) ∈ 𝒱𝑠, ((𝑥1, . . . , 𝑥𝑛), (𝑥′1, . . . , 𝑥
′
𝑛)) ∈ ℰ if and only if ∀𝑖.(𝑥𝑖 ∈ 𝑉𝑠𝑖 →

(𝑥𝑖, 𝑥
′
𝑖) ∈ 𝐸𝑖) ∧ ∀𝑗. (𝑥𝑗 ∈ 𝑉1𝑗 → 𝑥𝑗 = 𝑥′𝑗).

– For (𝑥1, . . . , 𝑥𝑛) ∈ 𝒱𝑒, if ((𝑥1, . . . , 𝑥𝑛),
(𝑥′1, . . . , 𝑥

′
𝑛)) ∈ ℰ , then for every 𝑥𝑖, either 𝑥𝑖 = 𝑥′𝑖 or 𝑥′𝑖 ∈ 𝑉𝑠𝑖, and moreover

(𝑥1, . . . , 𝑥𝑛) ̸= (𝑥′1, . . . , 𝑥
′
𝑛)

9

9Another definition is to also add that all local moves of the environment should be explicitly listed in
the local game; this is not required, as mentioned in the paper [MW03]. Thus for the ease of read-

27

2. Games for Synthesis: a Very Short Introduction

∙ 𝐴𝑐𝑐 ⊆ (𝒱𝑠 ⊎ 𝒱𝑒)𝜔 is the winning condition10.

Notice that there is an asymmetry in the definition of environment’s and player’s
moves. In a move from player’s to environment’s position, all components which are
player’s position must change. In the move from environment’s to player’s, all compo-
nents are environment’s position but only some of them need to change.

In a distributed game 𝒢 = (𝒱𝑠 ⊎ 𝒱𝑒, ℰ , 𝐴𝑐𝑐), a play is defined analogously as defined
in local games: a play starting from node 𝑣0 is a maximal path 𝜋 = 𝑣0𝑣1 . . . in 𝒢 where
player determines the move (𝑣𝑘, 𝑣𝑘+1) ∈ ℰ if 𝑣𝑘 ∈ 𝒱𝑠; the environment decides when
𝑣𝑘 ∈ 𝒱𝑒. For a vertex 𝑥 = (𝑥1, . . . , 𝑥𝑛), we use the function 𝑝𝑟𝑜𝑗(𝑥, 𝑖) to retrieve the 𝑖-th
component 𝑥𝑖, and use 𝑝𝑟𝑜𝑗(𝑋, 𝑖) to retrieve the 𝑖-th component for a set of vertices 𝑋 .
For simplicity, denote 𝜋≤𝑗 as 𝑣0𝑣1 . . . 𝑣𝑗 and use 𝑝𝑟𝑜𝑗(𝜋≤𝑗 , 𝑖) for 𝑝𝑟𝑜𝑗(𝑣0, 𝑖) . . . 𝑝𝑟𝑜𝑗(𝑣𝑗 , 𝑖),
i.e., a sequence from 𝜋≤𝑗 by projecting over 𝑖𝑡ℎ element.

A distributed strategy of a distributed game for player is a tuple of functions 𝜉 =
⟨𝑓1, . . . , 𝑓𝑛⟩, where each function 𝑓𝑖 : (𝑉𝑠𝑖 ⊎ 𝑉𝑒𝑖)

* × 𝑉𝑠𝑖 → (𝑉𝑠𝑖 ⊎ 𝑉𝑒𝑖) is a local strat-
egy for 𝐺𝑖 based on its observable history of local game 𝑖 and current position of local
game 𝑖. A distributed strategy is positional if
𝑓𝑖 : 𝑉𝑠𝑖 → 𝑉𝑠𝑖⊎𝑉𝑒𝑖, i.e., the update of location depends only on the current position of lo-
cal game. Contrarily, for environment a strategy is a function 𝑓 : (𝒱𝑠⊎𝒱𝑒)+ → (𝒱𝑠⊎𝒱𝑒)
that assigns each play prefix 𝑣0 . . . 𝑣𝑘 a vertex 𝑣𝑘+1 where (𝑣𝑘, 𝑣𝑘+1) ∈ ℰ . The formu-
lation of distributed games models the asymmetry between the environment (full ob-
servability) and the a set of local controllers (partial observability).

Definition 2. A distributed game 𝒢 = (𝒱𝑠 ⊎𝒱𝑒, ℰ , 𝐴𝑐𝑐) is for player winning by a distributed
strategy 𝜉 = ⟨𝑓1, . . . , 𝑓𝑛⟩ over initial states 𝒱𝑖𝑛𝑖 ∈ 𝒱𝑒, if for every play 𝜋 = 𝑣0𝑣1𝑣2, . . . where
𝑣0 ∈ 𝒱𝑖𝑛𝑖, player wins 𝜋 following his own strategy (regardless of strategies of environment),
i.e.,
∙ 𝜋 ∈ 𝐴𝑐𝑐.
∙ ∀𝑖 ∈ N0. (𝑣𝑖 ∈ 𝒱𝑠 → (∀𝑗 ∈ {1, . . . , 𝑛}.(𝑝𝑟𝑜𝑗(𝑣𝑖, 𝑗) ∈ 𝑉𝑠𝑗 → 𝑝𝑟𝑜𝑗(𝑣𝑖+1, 𝑗) =

𝑓𝑗(𝑝𝑟𝑜𝑗(𝜋≤𝑖, 𝑗))).

Definition 3. Given distributed game graph (𝒱𝑠 ⊎ 𝒱𝑒, ℰ),
∙ the reachability condition is defined by 𝐴𝑐𝑐 = {𝑣0𝑣1 . . . ∈ (𝒱𝑠 ⊎ 𝒱𝑒)𝜔 |

Occ(𝑣0𝑣1 . . .) ∩ 𝒱𝑔𝑜𝑎𝑙 ̸= ∅}, where 𝒱𝑔𝑜𝑎𝑙 is the set of goal states in 𝒱𝑠 ⊎ 𝒱𝑒.
∙ the safety (co-reachability) condition is defined by 𝐴𝑐𝑐 = {𝑣0𝑣1 . . . ∈ (𝒱𝑠 ⊎ 𝒱𝑒)𝜔 |

Occ(𝑣0𝑣1 . . .) ∩ 𝒱𝑟𝑖𝑠𝑘 = ∅}, where 𝒱𝑟𝑖𝑠𝑘 is the set of risk states in 𝒱𝑠 ⊎ 𝒱𝑒.
∙ the Büchi condition is defined by 𝐴𝑐𝑐 = {𝑣0𝑣1 . . . ∈ (𝒱𝑠 ⊎ 𝒱𝑒)𝜔 |

Inf(𝑣0𝑣1 . . .) ∩ 𝒱𝑔𝑜𝑎𝑙 ̸= ∅}, where 𝒱𝑔𝑜𝑎𝑙 is the set of goal states in 𝒱𝑠 ⊎ 𝒱𝑒.

28

2. Games for Synthesis: a Very Short Introduction

Figure 2.11: Two local games modeling unreliable network transmission.

2.5.1.3 Example: Unreliable network protocols

To indicate the applicability of distributed games, we use a simple example (modeled
using the GAVS+ tool) to illustrate the communication of two processes over an un-
reliable network, as shown in Figure 2.11. Process1 and Process2 are modeled as
local games with initial location r0 and q0; these vertices are labeled with ":INI". For
the distributed game, we define the set of environment moves using 6 transitions, i.e.,
{((send,recv), (judge,success)), ((send,recv), (judge,fail))
((r3,q4), (repSuc,success)), ((r3,q5), (repSuc,fail)),
((r4,q4), (repFail,success)), ((r4,q5), (repFail,fail))}.
We give an intuitive explanation over the meaning of the game with an assumption
that the environment acts as an unreliable network.

1. The game starts at (r0,q0), meaning that two processes are preparing to commu-
nicate. For each local game, perform its only transition and move jointly to state
(send,recv).

2. At (send,recv), the environment has two choices.

ing, we only construct environment moves in the distributed game and avoid drawing complicated
environment edges in the local game.

10In this thesis we also use 𝒢 as the identifier for the distributed game graph (𝒱𝑠 ⊎ 𝒱𝑒, ℰ).

29

2. Games for Synthesis: a Very Short Introduction

∙ Use edge ((send,recv), (judge,success)). This is interpreted that the
network forwards the message successfully from Process1 to Process2.

∙ Use edge ((send,recv), (judge,fail)). This is interpreted that the net-
work discards the message; Process2 does not receive it from Process1.

3. Now the move of Process2 is deterministic, so we consider only Process1 at
location judge.

∙ If Process1 chooses its local edge (judge,r3), then it later reaches state
repSuc (report success). This is interpreted as follows: Process1 judges
that the message is sent successfully.

∙ If Process1 chooses its local edge (judge,r4), then it later reaches state
repFail (report failure). This is interpreted as follows: Process1 judges
that the message is sent unsuccessfully.

Therefore, provided the set of goal states 𝑉𝑔𝑜𝑎𝑙 = {(repSuc,success), (repFail,fail)},
having a distributed strategy of the game means that Process1 is guaranteed to have
correct knowledge on whether the message is sent successfully without the ability to
peer the state of Process2.

2.5.2 Algorithms

As the problem of finding strategies for distributed games is undecidable even when
restricted to safety, reachability, or Büchi winning conditions [Jan07], in this thesis we
focus on incomplete methods. Discussions on incomplete algorithms are postponed to
Chapter 6 and Chapter 7.

2.6 Other Games Having Practical Interests

2.6.1 Games with Probability

In this section, we consider extensions when uncertainty is introduced in the game.
Markov decision processes (MDPs, 11

2 -player games) [WW89] are optimization models for
decision making under stochastic environments used in economics and machine learn-
ing. Similarly, stochastic (21

2 -player) games [Sha53] are games consisting of controllable,
uncontrollable, and probabilistic vertices. Although in GAVS+, the graph drawing
framework supports general stochastic games, currently we focus on simple stochastic
games (SSG) [Con93]; many complicated games can be reduced to SSGs or solved by
algorithms similar to algorithms solving SSGs. For MDP and SSG, descriptions in this
thesis are mainly summarized from two review papers [WW89, Con93].

2.6.1.1 Simple Stochastic Games

An arena of a simple stochastic game (SSG) is a tuple 𝐴 = (𝑉0⊎𝑉1⊎𝑉 1
2
⊎{𝑠𝑖𝑛𝑘0, 𝑠𝑖𝑛𝑘1}, 𝐸),

where 𝑉0 and 𝑉1 are defined similarly as in two-player, turn-based games, 𝑉 1
2

is the set

30

2. Games for Synthesis: a Very Short Introduction

of stochastic locations, and 𝑠𝑖𝑛𝑘0 and 𝑠𝑖𝑛𝑘1 are two special vertices, called 0-sink and 1-
sink. 𝐸 is the set of transitions between locations. For each location 𝑣 ∈ 𝑉0 ⊎ 𝑉1 ⊎ 𝑉 1

2
,

it has two outgoing transitions. However, 𝑠𝑖𝑛𝑘0 and 𝑠𝑖𝑛𝑘1 do not have any outgoing
transitions. When a location 𝑣 ∈ 𝑉 1

2
is visited, the successor is decided uniformly at

random between destinations of two outgoing edges.

The problem of SSG is as follows. Given an arena 𝐴 and an initial location 𝑣𝑖𝑛𝑖 ∈
𝑉0 ⊎ 𝑉1 ⊎ 𝑉 1

2
, decide whether there exists a strategy for player 0 to reach 𝑠𝑖𝑛𝑘0 with

probability no less than 1
2 . Condon has shown that the problem is in NP∩coNP [Con92];

it is an open problem whether the problem is in P.

[Example] An example of SSG can be found in Figure 2.12, where

∙ 𝑉0 = {𝑣0}, 𝑉1 = {𝑣1}, 𝑉2 = {𝑣2}.
∙ 𝐸 = {(𝑣0, 𝑣1), (𝑣0, 𝑠𝑖𝑛𝑘1), (𝑣1, 𝑠𝑖𝑛𝑘0), (𝑣1, 𝑣2), (𝑣2, 𝑠𝑖𝑛𝑘0), (𝑣2, 𝑠𝑖𝑛𝑘1)}.

sink0

sink1

v0 v1

v2

Figure 2.12: A simple stochastic game.

In general, methods of solving simple stochastic games fall within three categories,
namely (i) value iteration, (ii) policy iteration, and (iii) reduction to quadratic program-
ming with non-convex objective functions [Con93]. Here we omit the latter and only
introduce (i) and (ii), as the first two methods are also applicable when solving MDPs.

∙ (Value Iteration) The method of value iteration, first proposed by Shap-
ley [Sha53], is a method of continuously updating the value of each location
(called vector) based on the values of its children. This method converges to the
optimal value in the limit, but may take exponential time to even get constant
factor of this value [Con93]. To initiate the iteration process, it is required to
start with an initial feasible vector; due to space limit we do not define it here and
refer readers to [Con93, Sha53] for details. In our implementation, the process of
finding an initial feasible vector is achieved by solving a linear constraint system.

∙ (Policy Iteration) The method of policy iteration, first proposed by Hoffman and
Karp [HK66], starts with an arbitrary strategy for player 0 (also for player 1).
Analogous to the process in solving parity conditions for two-player, turn-based
games (see Section 2.1.2.3 for the concept of strategy improvement), player 0 and
player 1 then iteratively update their strategies based on the currently evaluated
value until no change can be made for both players.

31

2. Games for Synthesis: a Very Short Introduction

2.6.1.2 Markov Decision Processes

An arena of a Markov decision process (MDP) is a tuple 𝐴 = (𝑉0 ⊎ 𝑉 1
2
, 𝐸, 𝛾), where 𝑉0

is the set of states (player 0 locations), 𝑉 1
2

is the set of actions (stochastic locations), and
𝐸 ⊆ (𝑉0× 𝑉 1

2
)⊎ (𝑉 1

2
×Q×Q× 𝑉0) is the set of transitions. For an edge 𝑒 = (𝑣, 𝑝, 𝑟, 𝑣′) ∈

𝐸, 𝑝 is the probability and 𝑟 is the immediate reward. For convenience, we denote 𝑝(𝑒),
𝑟(𝑒) to be the probability and reward associated with transition 𝑒. For transitions, an
additional constraint is imposed as follows: ∀𝑣 ∈ 𝑉 1

2
:
∑︀

(𝑣,𝑝,𝑟,𝑣′)∈𝐸 𝑝 = 1, meaning
that starting from a stochastic vertex, the sum of probabilities associated with outgoing
edges equals to 1. Lastly, 𝛾 ∈ [0, 1) is the discount value.

A strategy 𝑓 : 𝑉0 → 𝑉 1
2

assigns each state an action to execute. Given the discount
value 𝛾, starting with an initial vertex, a run following the strategy is an infinite tree 𝒯𝑓
(i.e., an unfolding of the MDP). In 𝒯𝑓 , a path 𝑝 = 𝑣0

𝑒0−→ 𝑣1
𝑒1−→ . . ., where (i) 𝑖 mod 2 =

0 → 𝑣𝑖 ∈ 𝑉0, (ii) 𝑖 mod 2 = 1 → 𝑣𝑖 ∈ 𝑉 1
2

and (iii) ∀𝑖 : 𝑒𝑖 ∈ 𝐸, can be assigned with
the cumulative discounted reward

∑︀∞
𝑖=0 𝛾

𝑖𝑝(𝑒2𝑖+1)𝑟(𝑒2𝑖+1). For player 0, the goal is find
an optimal strategy 𝑓𝑜𝑝𝑡 to maximize the cumulative discounted reward over the sum
of all paths in the corresponding tree 𝒯𝑓𝑜𝑝𝑡 .
[Example] Consider the Markov decision process in Figure 2.13. It models a robot
having two battery levels high and low, and contains actions including waiting,
searching, and battery recharging11. When executing an action, the robot changes
the battery level with certain probability and receives the reward. E.g., for action
𝑠𝑒𝑎𝑟𝑐ℎ𝐻 , it moves to location ℎ𝑖𝑔ℎ with probability 0.4 and generates an immediate
reward of value 6.

lowhigh

waitH

searchH

charge

waitL

searchL

p = 1, r = 0.2

p = 0.4, r = 6

p = 1, r = 0

p = 0.8, r = −5

p = 0.2, r = 4

p = 0.6, r = 1

p = 1, r = 0.2

Figure 2.13: A simple Markov decision process for robot control.

For algorithms computing optimal strategies for MDPs, for infinite horizon with dis-
count value, known methods include value iteration, policy iteration, and linear pro-
gramming. For finite horizon, algorithms are mainly based on dynamic programming.
For further details, we refer readers to the review paper [WW89].

11The example is adapted from the example in http://www.cse.lehigh.edu/~munoz/CSE335/.

32

http://www.cse.lehigh.edu/~munoz/CSE335/

2. Games for Synthesis: a Very Short Introduction

2.6.2 Timed Games

Lastly, we indicate an important extension called timed games [MPS95, BCFL04], com-
bining timed automata [AD94] and games. As for timed games, a mature research tool
called UPPAAL-Tiga [BCD+07a] is available (although the tool is not released as open-
source software), in our proposed framework we do not endeavor implementing such
games.

We remark on the decidability result for solving timed games, using the example of
safety. In [MPS95], solving a game is similar to the formulation for games of imper-
fect information in [DWDR06]: the algorithm continuously computes the controllable
predecessor. Nevertheless, to derive decidability results, the computation must guaran-
tee convergence, i.e., a fixed point must be reached. Thanks to the property of timed
automata where quotient construction is possible [AD94], for each quotient, its control-
lable predecessor is also a finite union of quotients. Further discussion of such games
is omitted, and we refer interested readers to [MPS95] for the formulation, to [BCFL04]
for efficient on-the-fly algorithms, and to [BCD+07a] for the UPPAAL-Tiga tool.

33

34

CHAPTER 3

GAVS+: An Open Platform for the Research of Algorithmic Game
Solving

Contents
3.1 GAVS: An Earlier Version . 35
3.2 GAVS+: An Open Platform for the Research of Algorithmic Game

Solving . 40
3.3 Related Work . 50
3.4 Summary . 50

3.1 GAVS: An Earlier Version

Reasoning on the properties of computer systems can often be reduced to deciding the
winner of a game played on a finite graph. In this section, we present GAVS1, an open
source tool (an earlier version of GAVS+) which allows to visualize and solve some
of the most common two-player games encountered in theoretical computer science,
amongst others reachability, Büchi and parity games. Our focus is on two-player, turn-
based games on finite graphs. During the introduction, we also explain the underlying
software architecture for the tool; GAVS+ is constructed on top of the software archi-
tecture.

The importance of these games results from the reduction of different questions regard-
ing the analysis of computer systems to two-player games played on finite graphs. For
example, liveness (safety) properties can easily be paraphrased as a game play on the
control-flow graph of a finite program: will the system always (never) visit a given
state no matter how the user might interact with the system? The resulting games are

1Short for “Game Arena Visualization and Synthesis”.

35

3. GAVS+: An Open Platform for the Research of Algorithmic Game Solving

gavs

gavs.arena gavs.engine gavs.swing

Figure 3.1: A coarse overview on software packages in GAVS.

usually called (co-)reachability if only finite program runs are considered. Similarly,
one obtains (co-)Büchi games when considering infinite runs. Another well-known ex-
ample is the class of parity games which correspond to the model-checking problem of
𝜇-calculus. Advantages of the game theoretic reformulation of these analysis problems
are the easier accessibility and the broadened audience.

The main goal of GAVS is to further enhance these advantages by providing educa-
tional institutions with a graphical tool for both constructing game graphs and also vi-
sualizing standard algorithms for solving them step-by-step. Still, symbolic methods,
where applicable, have been used in the implementation in order to ensure scalabil-
ity.

3.1.1 Software Architecture

GAVS consists of three major parts: (a) a graphical user interface (GUI), (b) synthe-
sis engines for different winning conditions, and (c) a two-way translation function
between graphical representations and internal formats acceptable by the engine. Fig-
ure 3.1 illustrates the software package (only at the coarsest level).

∙ The package gavs.arena contains data structures for internal representation of
games.

∙ The package gavs.swing contains the front-end GUI and the translation func-
tion. For the front-end, we use the library JGraphX [jgr] for the construction of
GUI.

∙ The package gavs.engine contains algorithms which compute strategies and
winning regions for games. Different synthesis engines are implemented in GAVS
as back-end. In the following, we give a brief description and categorize them
based on the algorithmic methodologies applied:

– SYMBOLIC TECHNIQUES: Algorithms of this type are implemented using
JDD [jdd], a Java-based BDD package. The supported winning conditions
include reachability, safety, Büchi, weak-parity, and Staiger-Wagner.

– EXPLICIT STATE OPERATING TECHNIQUES: Algorithms of this type are im-
plemented based on direct operations over the graph structure.

* Parity game In addition to an inefficient version which enumerates all
possibilities using BDDs, we have implemented the discrete strategy

36

3. GAVS+: An Open Platform for the Research of Algorithmic Game Solving

improvement algorithm adapted from [VJ00]; the algorithm allows the
number of nodes/vertices to exceed the number of colors in a game.

– REDUCTION TECHNIQUES: Algorithms of these games are graph transfor-
mations to other games with different types of winning conditions.

* Muller game The algorithm performs reductions to parity games using
the latest appearance record (LAR) [GTW02].

* Streett game The algorithm performs reductions to parity games using
the index appearance record (IAR) [GTW02].

We outline the underlying workflow after synthesis options are selected from the menu,
offering a guideline how to extend GAVS with new solvers/game types.

For each engine, a unique action defined in swing/EditorAction.java is invoked,
where an object of the data type mxGraph (the predefined data structure for a graph
in JGraphX) is retrieved. As (a) for the execution of synthesis algorithms, information
concerning visual representation is irrelevant, and (b) the retrieval of vertices and edges
in mxGraph requires complicated function calls, we regard this object not suitable to
be manipulated directly. Thus we translate it to a simpler graph structure (defined in
arena/GameArena.java), which offers a simple entry for users to extend GAVS with
new algorithms.

For symbolic algorithms, our simple graph structure is further translated into logic
formulae using BDDs. Under this setting, vertices are encoded using numbers in bi-
nary format, ensuring that no additional BDD variable is introduced. After the al-
gorithm is executed, GAVS contains mechanisms to interpret the BDD tree, annotate
the result of synthesis on the original model, and visualize the new model on the
GUI. To redirect the result of synthesis back to the GUI, a map structure with the type
HashMap<String, HashSet<String>> is required, where the key is the source ver-
tex and the value set contains destination vertices, describing the edges that should
be labeled by GAVS. For explicit state operating algorithms, mechanisms follow analo-
gously.

3.1.2 Example: Working with GAVS

Due to page limits, we give two small yet representative examples on using GAVS. We
refer the reader to the software homepage for a full-blown tutorial, and more and larger
examples.

3.1.2.1 Example: Safety Games

We give a brief description of how to use GAVS for constructing a safety game and
solving it step-by-step with the assist of fig. 3.2.

In the first step, the user constructs the game graph by simply drawing it using the
graphical interface, similar to Figure 3.2-a: the states 𝑉1 are called plant states and
are of rectangular shape, while the states 𝑉0 are called control states and are of circular
shape.

37

3. GAVS+: An Open Platform for the Research of Algorithmic Game Solving

(a) (b)

(c) (d)

v1

v2

v3 v4

v5v6

v7v8

v1

v2

v3 v4

v5v6

v7v8

v1

v2

v3 v4

v5v6

v7v8

v1

v2

v3 v4

v5v6

v7v8

Figure 3.2: An example for constructing and executing a safety game.

Next, the user specifies the target nodes 𝐹 , i.e., the nodes which player 0 tries to avoid.
GAVS supports both graphical and textual methods2. In Figure 3.2-b, states 𝑣4 and 𝑣7
are painted by the user with red color, offering an graphical description of risk states.

Finally, GAVS can be used to either compute the winning set 𝑊𝑖𝑛1 of player 1 immedi-
ately or to guide the user through the computation of 𝑊𝑖𝑛1 step-by-step. In Figure 3.2,
two intermediate steps are shown; in Figure 3.2-c and Figure 3.2-d, the set of red states
represents attr11({𝑣4, 𝑣7}) and attr21({𝑣4, 𝑣7}), respectively. For games with positional
strategies, the result of synthesis will be shown automatically on the graph with edges
labeled with "STR". In Figure 3.2, when safety game is played, edges (𝑣3, 𝑣2) and (𝑣3, 𝑣1)
are highlighted as safe transitions.

3.1.2.2 Example: Muller Games

For Muller and Streett games, instead of generating strategies directly, game reductions
are implemented for clearer understanding regarding the meaning of strategies. This is
due to the fact that the generated FSM strategies for Muller and Streett games require

2Graphical specification is only available with reachability, safety, and Büchi winning conditions; for
weak-parity and parity games, colors of vertices can also be labeled directly on the game graph.

38

3. GAVS+: An Open Platform for the Research of Algorithmic Game Solving

Figure 3.3: The synthesized result in the form of the parity game in GAVS.

memory which is in the worst case factorial to the number of states. It can be difficult
for users to comprehend.

To indicate how Muller game reduction is applied in GAVS, we revisit again Figure 2.2
in Section 2.1.1.5. A Muller game is defined by using the arena and setting ℱ to be
{{𝑣0, 𝑣1, 𝑣2}}, i.e., the goal is to reach all vertices infinitely often. It can be checked
that player 0 does not have any positional winning strategy. However, he has winning
strategies using memory to win from {𝑣0, 𝑣1, 𝑣2}. E.g., if the previous location is 𝑣1 then go
to 𝑣2; if the previous location is 𝑣2 then go to 𝑣1.

The reduced parity game generated by GAVS is shown in Figure 3.3, where each vertex
is of the format "[Vertex Permutation]LAR index : Color". The user then
can directly invoke the parity game engine and observe the created strategy. By inter-
preting the strategy using LAR, it is clear that for player 0, the generated strategy is to
follow the strategy described above. E.g.,

39

3. GAVS+: An Open Platform for the Research of Algorithmic Game Solving

∙ Starting with initial vertex 𝑣0, 𝑣0 should move to 𝑣1, as indicated in the re-
duced parity game, the strategy moves from vertex [v0v2v1]0:1 to vertex
[v1v0v2]2:6.

∙ Then 𝑣1 moves back to 𝑣0. In the reduced game, move from vertex [v1v0v2]2:6
to vertex [v0v1v2]1:3.

∙ Now at 𝑣0, player 0 should move to 𝑣2, as indicated in the reduced parity game,
the strategy moves from vertex [v0v1v2]1:3 to vertex [v2v0v1]2:6.

∙ The play continues, and the highest color visited infinitely often is 6.

3.2 GAVS+: An Open Platform for the Research of
Algorithmic Game Solving

We now present a major revision of the tool GAVS, i.e., the GAVS+ tool3. The number of
supported games has been greatly extended and now encompasses in addition many
classes important for the design and analysis of programs, e.g., it now allows to explore
concurrent / probabilistic / distributed games, games played on pushdown graphs,
and games of imperfect information. To our knowledge, GAVS+ is the first tool that
supports such a comprehensive set of different games.

GAVS+ has three main goals:

∙ support of game types currently under active research; many times an implemen-
tation of a solver is only hard to come by, or only partial implementations exist.

∙ support of different input and output formats in order to allow for both inter-
operability with other tools and for easy access of existing collections of models,
examples, and test cases in concrete application domains;

∙ ease of use by a unified graphical user interface (GUI) which allows to graphically
specify the game and explore the computed solution.

The last requirement is partially fulfilled by the previous version of GAVS+: the GUI
allows to visualize two-player, turn-based games on finite graph, solve the game, and
store intermediate results in order to visualize the algorithms step-by-step. This also
makes it a very useful tool for teaching these algorithms. In this section, we focus on
the first requirement; the second requirement is discussed in Chapter 5.

3.2.1 Supported Games in GAVS+

For a complete overview on all supported games we refer the reader to Figure 3.4, here,
we only give a very brief recap on newly added games.

∙ Concurrent games [DAHK07] are used to capture the condition when the next loca-
tion is based on the combined decision simultaneously made by control and envi-
ronment. When considering randomized strategies in reachability games (CRG),

3GAVS+ is a shortcut for Game Arena Visualization and Synthesis; the symbol + stands for an enhanced
version. It is available at http://www6.in.tum.de/~chengch/gavs.

40

http://www6.in.tum.de/~chengch/gavs

3. GAVS+: An Open Platform for the Research of Algorithmic Game Solving

Game type (visualization) Implemented algorithms
Fundamental game Symbolic: Reachability, Safety, Büchi,

Weak-parity, Staiger-Wagner
Explicit state: Parity (global discrete strategy improvement,
local strategy improvement)
Reduction: Muller, Streett

Concurrent game Sure reachability, Almost-sure reachability,
Limit-sure reachability

Game of imperfect Safety using antichain
information
Pushdown game‡ Reachability (positional min-rank strategy, PDS strategy),

Büchi (positional min-rank strategy), Parity (reduction)
Distributed game Reachability (bounded distributed positional strategy for

player-0), safety (projection, risk partition)
Markov decision process Policy iteration, Value iteration, Linear programming (LP)
Simple stochastic game Shapley (value iteration), Hoffman-Karp (policy iteration)

Figure 3.4: Game types and implemented algorithms in GAVS+, where "‡" indicates
that visualization is currently not available.

efficient algorithms to compute sure, almost-sure, and limit-sure winning regions
are available [DAHK07].

∙ Stochastic games model systems with uncertainty. The classical model of Markov
decision process (MDP, 11

2 -player game) [WW89] is widely used in economics and
machine learning and considers a single player who has to work against an envi-
ronment exhibiting random behavior. Adding an opponent to MDPs, one obtains
stochastic (21

2 -player) games [Sha53]. Currently we focus on the subclass of simple
stochastic games (SSG) [Con93]; many complicated games can be reduced to SSGs
or solved by algorithms similar to algorithms solving SSG. For implemented algo-
rithms for MDP and SSG, we refer readers to two survey papers [WW89, Con93]
for details.

∙ Games on pushdown graphs (APDS) arise naturally when recursive programs are
considered. Symbolic algorithms exist for reachability and Büchi winning condi-
tions [Cac03a], and for parity conditions, a reduction4 to two-player, finite-state
parity games based on summarization is possible [Cac03a].

∙ Distributed games [MW03] are games formulating multiple processes with no in-
teractions among themselves but only with the environment. Generating strate-
gies for such a game is very useful for distributed systems, as a strategy facilitates
orchestration of interacting components. Although the problem is undecidable in
general [MW03], finding a distributed positional strategy for player-0 of such a
system (𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝐺0), if it exists, is a practical problem. As 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝐺0

is NP-complete for reachability games [CRBK11], we modify the SAT-based wit-
ness algorithms in [AMN05] and implement a distributed version [CRBK11] for

4Currently, as the algorithm introduces an immediate exponential blowup in the graph, it is difficult to
solve the game using the built-in algorithm specified in [VJ00].

41

3. GAVS+: An Open Platform for the Research of Algorithmic Game Solving

bounded reachability games. Contents of distributed games are be described in
later chapters.

3.2.2 Working with GAVS+

3.2.2.1 Example: Pushdown Games (APDSs)

For games with infinite states, our interest is in games played over push-down graphs
(APDS), a natural extension when recursion is considered. Consider the following sim-
ple example:

∙ 𝑉0 = {𝑃0}
∙ 𝑉1 = {𝑃1}
∙ Γ = {𝑎}
∙ Δ = {⟨𝑃0, 𝑎⟩ →˓ ⟨𝑃0⟩, ⟨𝑃0, 𝑎⟩ →˓ ⟨𝑃0, 𝑎𝑎⟩, ⟨𝑃1, 𝑎⟩ →˓ ⟨𝑃0⟩, ⟨𝑃1, 𝑎⟩ →˓ ⟨𝑃0, 𝑎⟩.

Assume that the initial configuration is 𝑃1𝑎𝑎 and the set of goal configuration is {𝑃0𝑎𝑎}.
Then Figure 3.5 indicates the textual input format for GAVS+ to process the pushdown
game56.

Comments used in the pds file (example1.pds)

P0_STATE = {P0}

P1_STATE = {P1}

ALPHABET = {a}

RULE = {P0 a -> P0; P0 a -> P0 a a; P1 a -> P0; P1 a -> P0 a}

INIT = {P1 a a}

GOAL = {P0 a a}

Figure 3.5: A simple APDS.

∙ To solve the pushdown game for the reachability criteria, on the menu bar execute
GAVS+ -> Pushdown Game -> Reachability Game (from APDS), sim-
ilar to Figure 3.6.

∙ Once when the strategy is found, GAVS+ offers an option for interactive sim-
ulation: the user can act as the role of player-1 (environment) by selecting the
rewriting rule, while GAVS+ updates the internal data structure and outputs the
next move for player-0 (control). The supported strategy includes:

1. Positional min-rank strategy, and

2. PDS strategy.

∙ For Büchi games, only positional min-rank strategy simulation is offered.

5This example can be found in the GAVS+ software package with file name
GAVS_plus_testcase/APDS/example1.pds.

6Currently no visualization of APDS is possible. We will use recursive games for the visualization in our
future version.

42

3. GAVS+: An Open Platform for the Research of Algorithmic Game Solving

– In our implementation, we follow the algorithm by T. Cachat in [Cac02],
meaning that for games satisfying the Büchi condition, currently the engine
solves a restricted form (although it is equivalent to the general form), as
indicated in Section 2.2.2.2.

– Under this restriction, the goal configuration should be of the type 𝑉𝑔𝑜𝑎𝑙 ·Σ*,
where 𝑉𝑔𝑜𝑎𝑙 ⊆ 𝑉0⊎𝑉1 is the set of all configurations which has states starting
with the set of locations 𝑉𝑔𝑜𝑎𝑙. In the textual representation, e.g., with goal
location 𝑃 ∈ 𝑉0 ⊎ 𝑉1, the specification should be represented as {P}.

Figure 3.6: The menu bar for solving APDS.

For the game in Figure 3.5, the screenshot of interactive execution (including all choices
available by player-1) is shown in Figure 3.7.

∙ Result: In this example, the interactive simulation starts from selecting the inter-
active simulation type. Here we select with the option "Positional Min-rank
Strategy".

∙ The user is now playing the role of player-1 (spoiler) and selects the move based
on his wish. In Figure 3.7, for configuration 𝑃1𝑎𝑎, two rewrite rules ⟨𝑃1, 𝑎⟩ →˓
⟨𝑃0⟩, ⟨𝑃1, 𝑎⟩ →˓ ⟨𝑃0, 𝑎⟩ can be selected.

∙ Once when GAVS+ receives the move selected by the user, it performs the update
based on the Positional min-rank strategy (for positional min-rank strategy, the

Figure 3.7: The tree of complete interactive simulation for APDS in Figure 3.5.

43

3. GAVS+: An Open Platform for the Research of Algorithmic Game Solving

Figure 3.8: Constructing MDPs using the diamond vertices.

cost to reach the goal is computed and listed on the message box). For the above
example, when the user selects rule ⟨𝑃1, 𝑎⟩ →˓ ⟨𝑃0, 𝑎⟩, the configuration changes
to 𝑃0𝑎. GAVS+ pops out the window as an indication of the next move (⟨𝑃0, 𝑎⟩ →˓
⟨𝑃0, 𝑎𝑎⟩). Finally, the goal state is reached.

3.2.2.2 Example: Visualization and synthesis of MDPs

To visualize Markov decision processes, it is required to create actions (stochastic ver-
tices), which can be found in the "GAVS+" panel (diamond shape, see Figure 3.8).

For the MDP described in Section 2.6 (Figure 2.137), Figure 3.8 illustrates its modeling
in GAVS+. For example, in action searchH, the label "0.4:6" means that selecting
action searchH from location High may later go to location High with probability 0.4,
and generate reward of value 6.

∙ The goal of a MDP is to generate a strategy which optimizes the reward. Note
that a discount value between the interval [0, 1) is specified to avoid generating
infinite reward.

∙ Once when the game graph is constructed, to generate the strategy, currently in
GAVS+, we have implemented three algorithms for solving MDPs:

1. Value iteration (with visualization of intermediate steps). Execute
GAVS+ -> Markov Decision Process -> Infinite Horizon
Discounted -> Value Iteration.

7This example can be found in the GAVS+ software package with file name
GAVS_plus_Testcase/MDP/MDP.mxe.

44

3. GAVS+: An Open Platform for the Research of Algorithmic Game Solving

Figure 3.9: The SSG in Section 2.6 with labeled strategies.

– For value iteration, the algorithm stops when the calculated value is
very close to the previous calculated value (difference < 0.0001); as the
source code is fully available, users can modify this value freely.

2. Policy iteration (with visualization of intermediate steps).

3. Linear programming. It is implemented using the SimplexSolver in
Apache Common Math library [apa].

∙ Notice that compared to other games types (e.g., games implemented in GAVS)
where no information is stored on the edge label, for MDPs edges are labeled
with probability and rewards. Therefore clearing the strategy label should not
remove all contents on every edge. For this special purpose, on the menu bar
select GAVS+ -> MDP -> Clear strategy labels (for MDP).

3.2.2.3 Example: Visualization and synthesis of SSGs

For simple stochastic games, construction techniques can be applied similar to the con-
struction of MDPs. The only remark is that to differentiate 𝑠𝑖𝑛𝑘0 from other vertices,
the user needs to annotate a vertex with text ":P0SINK" (similarly label 𝑠𝑖𝑛𝑘1 with
text ":P1SINK"), similar to the labeling of color in two-player, turn-based games when
solving parity games.

Figure 3.9 shows resulting SSG constructed using GAVS+ in Section 2.6 (Figure 2.12),
where the optimal response for control and plant is highlighted in green8.

8This example can be found in the GAVS+ software package with file name
GAVS_plus_Testcase/SSG/Sample.mxe.

45

3. GAVS+: An Open Platform for the Research of Algorithmic Game Solving

Figure 3.10: The concurrent reachability game (left-or-right) described in [DAHK07]
and the generated strategy (almost-sure winning).

3.2.2.4 Example: Visualization and synthesis of concurrent reachability
games

Concurrent games are used to capture the condition where the control and environ-
ment simultaneously select their moves, and the next location is based on the combined
decision. The synthesis engine implemented in GAVS+ is able to solve the following
winning conditions in a concurrent game:

1. Sure reachability winning.

2. Almost-sure reachability winning.

3. Limit-sure reachability winning.

[Almost-sure winning] Figure 3.10 illustrates the left-or-right game example
from [DAHK07]9, where the scenario is as follows: In a play, player-0 continuously
throws a snow ball on the left or right window (with action symbol throwL and
throwR), and player-1 shows up each time on either the left or the right window
(with action symbol standL and standR). Choices of player-0 and player-1 are made
simultaneously. For player-0 to hit player-1, there are two possibilities, i.e.,

∙ Player-0 throws the ball to the left and player-1 stands on the left, or

∙ player-0 throws the ball to the right and player-1 stands on the right.

Instructions executing the engine and the generated results are as follows.

∙ (Construction) For the edge labeling, (act1, act2) means that player-0 uses ac-
tion act1 and player-1 selects act2. The symbol (-,-) is designed for user con-
venience; the engine will generate all possible combinations of action pairs in its

9This example can be found in the GAVS+ software package with file name
GAVS_plus_Testcase/CRG/LeftOrRightGame.mxe.

46

3. GAVS+: An Open Platform for the Research of Algorithmic Game Solving

Figure 3.11: The concurrent reachability game (hide-and-run) described in [DAHK07]
and the generated strategy (limit-sure winning).

internal representation. Lastly, for concurrent reachability games, a user should
use graph labeling (mark the target state in green) to create the specification.

∙ (Strategy Generation) To generate the strategy, execute GAVS+ -> Concurrent
Game -> Almost-sure Reachability Winning.

∙ (Strategy Interpretation) For this game, player-0 can hit player-1 (reaches state
S_hit) with probability 1 from S_throw, i.e., player-0 is almost-sure winning at
S_throw. On the strategy panel, the engine prints out the almost-sure winning
region. We observe that for S_throw, both actions throwL and throwR are
listed. This means that player-0 should play a random strategy which executes
throwL with probability 0.5 and executes throwR with probability 0.5.

[Limit-sure winning] Figure 3.11 illustrates the hide-or-run game example
from [DAHK07]10, where the scenario is as follows: Player-1 has only one snow
ball, and he can decide at each iteration either to throw the ball or to wait (with action
symbol throw and wait). Player-0 is initially hiding behind a wall (i.e., the games
starts with location S_hide); he can decide to run or to continue hiding (with action
symbol run and hide). We enumerate all situations at S_hide:

∙ When player-0 runs and player-1 throws the snow ball, player-0 gets wet (i.e., the
play reaches S_wet), which is undesirable.

∙ When player-0 runs and player-1 waits, player-0 can reach home (i.e., the play
reaches S_home).

10This example can be found in the GAVS+ software package with file name
GAVS_plus_Testcase/CRG/HideOrRunGame.mxe.

47

3. GAVS+: An Open Platform for the Research of Algorithmic Game Solving

∙ When player-0 hides and player-1 waits, continue next round (i.e., the play stays
in S_hide).

∙ When player-0 hides and player-1 throws the snow ball, player-0 can be safe (i.e.,
reach S_safe), as player-1 only has one snow ball.

For this game, player-0 has a limit-sure winning strategy at location S_hide, and an
almost-sure winning strategy at location S_safe11.

∙ For limit-sure winning strategies, the user should specify the 𝜀 value for limit-sure
winning, which is offered by GAVS+ using an additional dialog. Here assume
that 𝜀 is set to 0.1 by the user.

∙ For the generated strategy, given a winning position:

1. If a strategy is labeled with probability value, then it is executed based on
the probability value. Indicated on the strategy panel of Figure 3.11, the ran-
domized strategy for state S_hide is to perform action run with probability
0.1 and action hide with probability (1− 0.1).

2. Otherwise, all other strategies should perform uniformly at random with the
remaining probability from (1). For example, at position S_safe, player-0
should play actions hide and run with equal probability.

∙ Notice that for limit-sure winning, currently due to our algorithm implementa-
tion, if a state is a goal state, it will not be listed/reported on the strategy panel.

3.2.2.5 Example: Visualization and synthesis of games of imperfect
information

We revisit the game of imperfect information in Section 2.4 (Figure 2.9). In the
implementation of GAVS+, we follow the formulation by De Wulf, Doyen, and
Raskin [DWDR06]12. Therefore, the game graph looks slightly different:

∙ Each node is labeled with a set of observation identifiers. For example, the vertex
V_burn:2 has its name as V_burn and observation identifier 2.

– Following Figure 2.9, we interpret observation 2 as hot, and observation 1
as cold.

– Location V2 is labeled with ":INI", indicating that it is the initial location.

∙ Following the formulation in [DWDR06], actions are split into controllable and un-
controllable actions.

– In Figure 3.12, the self-loop of V_burn is labeled with "u:1", where u is the
action symbol, and 1 indicates that it is an uncontrollable action. Similarly,
for the edge labeled "heat:0", it is a controllable action with action symbol
heat.

11Precisely, at S_safe, player-0 has a sure-winning strategy. However, when invoking the limit-sure
engine, it only generates limit-sure and almost-sure strategies.

12In Section 2.4, we use an alternative formulation, as we need to connect games of imperfect information
with distributed games.

48

3. GAVS+: An Open Platform for the Research of Algorithmic Game Solving

Figure 3.12: Simple temperature control in Figure 2.10 modeled using GAVS+.

In [DWDR06], the execution proceeds by first receiving an observation. Then player-0
chooses an controllable action, followed by the environment who arbitrarily executes
an uncontrollable action. It is not difficult to observe that starting with vertex labeled
V2 with two possible observations 1 and 2 (i.e., cold and hot), Figure 3.12 models the
same temperature control system as Figure 2.9. At locations V_burn and V_freeze,
player-0 is unable to perform a move, and thus are considered as risk states.

On the strategy panel in Figure 3.12, we can examine the observation-based strategy (a
finite state machine) generated by GAVS+.

∙ Initially, starting with vertex V2, when the observation returns 1 or 2, the text
"1->[V2,V4]" indicates that player-0 is certain to be in the vertex set {V2, V4}.

∙ Then "[V2, V4](cool)" indicates that as player-0 is certain to be in the vertex
set {V2, V4}, he should play with the action symbol cool. If player-0 continues
the play by following the strategy, locations V_burn and V_freeze are never
reached.

49

3. GAVS+: An Open Platform for the Research of Algorithmic Game Solving

3.2.3 Invoking GAVS+ on the console using standardized input format

GAVS+ offers interfaces to invoke the engine from the console without using the GUI.
To observe engines supporting the console mode, on the console, execute "java -jar
GAVS+ -help", then the set of available parameters for console execution will be
listed. Details are omitted here.

3.3 Related Work

We give a brief recap on recent implementations in games, including GIST (for
probabilistic games) [CHJR10], Alpaga (for parity games of imperfect informa-
tion) [BCDW+09], UPPAAL-Tiga (for timed games) [BCD+07a]. Also after our im-
plementation and publication, we find a tool called GASt (short for Games, Automata
and Strategies) [ATW06]13 which also contains implementations for two-player finite
games. From automata theories, an implementation called GOAL [TCT+08] is avail-
able for the research of omega automata and temporal logic. The development of the
GOAL tool motivates our development of GAVS+.

Compared to tools mentioned above, the uniqueness of our tool relies on the fulfillment
of three features.

∙ The graphical user interface of GAVS+ enables users to construct the game with
intuition.

∙ GAVS+ supports game solving under a broad spectrum. Admittedly not all al-
gorithms are optimized, but for algorithms implemented with BDDs, they scale
nicely to relatively large examples.

∙ The open-source feature (GPLv3) of GAVS+ makes it easily accessible for inter-
ested researchers to modify the tool and integrate new features or algorithms.

3.4 Summary

In this section, we present GAVS+, containing a solver library for games together with
a unified front-end GUI. The tool targets to serve as an open platform for the research
community in algorithmic game solving. In addition, It is meant to serve as a play-
ground for researchers thinking of mapping interesting problems to game solving. We
list some used applications.

∙ We have collaborated with RWTH Aachen University to implement game solvers
which translates Muller game solving to safety game solving.14.

∙ In Chapter 4, VISSBIP, a tool to model BIP systems and perform priority synthe-
sis, is extended from GAVS+.

13We thank Dr. Barbara Jobstmann for her notification of the GASt tool.
14For details concerning the underlying technique, we refer interested readers to [NRZ11].

50

CHAPTER 4

Application A. Priority Synthesis: Theories, Algorithms, and Tools

Abstract
In this chapter, we present a concept called priority synthesis, which aims to automat-
ically generate a set of priorities such that the system constrained by the synthesized
priorities satisfies a given safety property or deadlock freedom. We formulate the problem,
explain the underlying complexity results, give algorithms for synthesis, and lastly,
propose extensions for more complex systems.

We formulate priority synthesis for BIP systems using the automata-theoretic frame-
work proposed by Ramadge and Wonham [RW89] (a direct modeling using game se-
mantics is also possible). In this framework, priority synthesis results in searching for a
supervisor from the restricted class of supervisors, in which each is solidly expressible
using priorities. While priority-based supervisors are easier to use, e.g., they support
the construction of distributed protocols, they are harder to compute. We show that
finding a supervisor based on priorities that ensures deadlock freedom of the super-
vised system is NP-complete in the size of the system. As priority synthesis is expen-
sive and we seek for strategies which largely maintain the original behavior, we present
a counter-example guided interactive synthesis (CEGIS) framework combing the con-
cept of fault-localization (using safety-game) and fault-repair (using SAT for conflict
resolution). For complex systems, we propose three complementary methods as pre-
processing steps for priority synthesis, namely (a) data abstraction to reduce compo-
nent complexities, (b) alphabet abstraction and ♯-deadlock to ignore components, and
(c) automated assumption learning for compositional priority synthesis.

For implementation, we have created VISSBIP, a software tool for visualizing and au-
tomatically orchestrating component-based systems consisting of a set of components
and their possible interactions. The graphical interface of VISSBIP allows the user to
interactively construct BIP models [BBS06], from which executable code (C/C++) is
generated. It also checks if the system satisfies a given safety property. If the check

51

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

fails, the tool automatically generates additional priorities on the interactions that en-
sure the desired property.

Contents
4.1 Introduction . 52
4.2 Introduction to the Behavior-Interaction-Priority (BIP) Framework . 53
4.3 Component-based Modeling and Priority Synthesis 54
4.4 A Framework of Priority Synthesis based on Fault-Localization and

Fault-Repair . 56
4.5 Handling Complexities . 64
4.6 Assume-guarantee Based Priority Synthesis 67
4.7 Evaluation: The VISSBIP toolkit . 72
4.8 Related Work . 76
4.9 Summary . 77
4.10 Appendix . 79

4.1 Introduction

Priorities define stateless-precedence relations between actions available in component-
based systems. They can be used to restrict the behavior of a system in order to avoid
undesired states. They are particularly useful to avoid deadlock states (i.e., states in
which all action are disabled), because they do not introduce new deadlock states and
therefore avoid creating new undesired states. Furthermore, due to their stateless prop-
erty and the fact that they operate on the interface of a component, they can be relatively
easy implemented in a distributed setting [GPQ10, BBQ11].

In this chapter, we present a concept called priority synthesis (first proposed in our tool
paper [CBJ+11]), which aims to automatically generate a set of priorities such that the
system constrained by the synthesized priorities satisfies a given safety property or dead-
lock freedom. We formulate the problem, explain the underlying complexity results, give
algorithms for synthesis, and lastly, propose extensions for more complex systems.

For theory, we formulate priority synthesis under BIP systems using an automata-
theoretic framework similar to [RW89]. Then, we focus on the hardness of synthesiz-
ing priorities, which constitutes one of our main contributions. We prove that, given a
labeled transition system, finding a set of priorities that ensures safety and deadlock
freedom is NP-complete in the size of the system. Our result is in contrast to the work
in [RW89], where a general (monolithic) supervisor, which is usually difficult to dis-
tribute, can be found in polynomial-time in the size of the system. Our priority-based
supervisors are easier to distribute but harder to compute. Contents concerning theo-
retical results can be found in the Appendix.

As priority synthesis is expensive, we present a CEGIS-based search framework for
priority synthesis, which mimics the process of fault-localization and fault-repair (Sec-
tion 4.4). Intuitively, a state is a fault location if it is the latest point from which there

52

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

is a way to avoid a failure, i.e., there exists (i) an outgoing action that leads to an at-
tracted state, a state from which all paths unavoidably reach a bad state, and (ii) there
exists an alternative action that avoids entering any of the attracted states. We com-
pute fault locations using the algorithm for safety games. Given a set of fault locations,
priority synthesis is achieved via fault-repair: an algorithm resolves potential conflicts
in priorities generated via fault-localization and finds a satisfying subset of priorities
as a solution for synthesis. Our symbolic encodings on the system, together with the
new variable ordering heuristic and other optimizations, help to solve problems much
more efficiently compared to our preliminary implementation in [CBJ+11]. Further-
more, it allows us to integrate an adversary environment model similar to the setting
in Ramadge and Wonham’s controller synthesis framework [RW89].

Abstraction or compositional techniques are widely used in verification of infinite state
or complex systems for safety properties but not all techniques ensure that synthesizing
an abstract system for deadlock-freeness guarantees deadlock-freeness in the concrete
system (Section 4.5). Therefore, it is important to find appropriate techniques to assist
synthesis on complex problems. We first revisit data abstraction (Section 4.5.1) for data
domain such that priority synthesis works on an abstract system composed by com-
ponents abstracted component-wise [BBSN08]. Second, we present a technique called
alphabet-abstraction (Section 4.5.2), handling complexities induced by the composition
of components. Lastly, for behavioral-safety properties (not applicable for deadlock-
avoidance), we develop theoretical results for compositional priority synthesis and utilize
automata-learning [Ang87] to automatically perform such task (Section 4.6).

We implemented the presented algorithms (except connection with the data abstrac-
tion module in D-Finder [BGL+11]) in the VISSBIP1 tool and performed experiments
to evaluate them (Section 4.7). VISSBIP is an open-source tool which enables users to
construct, analyze, and synthesize component-based systems. Our examples show that
the process using fault-localization and fault-repair generates priorities that are highly
desirable. Alphabet abstraction enables us to scale to arbitrary large problems. We also
present a model for distributed communication. In this example, the priorities synthe-
sized by our engine are completely local (i.e., each priority involves two local actions
within a component). Therefore, they can be translated directly to distributed con-
trol. We summarize related work and conclude with an algorithmic flow in Section 4.8
and 4.9.

4.2 Introduction to the Behavior-Interaction-Priority (BIP)
Framework

The Behavior-Interaction-Priority (BIP) framework2 provides a rigorous component-
based design flow for heterogeneous systems. Component-based systems can be mod-
eled using three ingredients: (a) Behaviors, which define for each basic component a
finite set of labeled transitions (i.e., an automaton), (b) Interactions, which define syn-

1VISSBIP is a shortcut for Visualization and Synthesis of Simple BIP models.
It is available at http://www6.in.tum.de/~chengch/vissbip.

2http://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.html?lang=en

53

http://www6.in.tum.de/~chengch/vissbip

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

chronizations between two or more transitions of different components, and (c) Priori-
ties, which are used to choose between possible interactions. A detailed description of
the BIP language can be found in [BBS06].

In the BIP framework [BBS06], the user writes a model using a programming language
based on the Behavior-Interaction-Priority principle. Using the BIP tool-set, this model
can be compiled to run on a dedicated hardware platforms. The core of the execution
is the BIP engine, which decides which interactions are executed and ensures that the
execution follows the semantics. The interactions and priorities are used to ensure
global properties of the systems. For instance, a commonly seen problem is mutual
exclusion, i.e., two components should avoid being in two dedicated states at the same
time. Intuitively, we can enforce this property by requiring that interactions that exit
one of the dedicated states have higher priority than interactions that enter the states.

4.3 Component-based Modeling and Priority Synthesis

4.3.1 Behavioral-Interaction-Priority Framework

To simplify the explanations, we focus on simple systems, i.e., systems without hierar-
chies and finite data types. Intuitively, a simple BIP system consists of a set of automata
(extended with data) that synchronize on joint labels.

Definition 4 (BIP System). We define a (simple BIP) system as a tuple 𝒮 = (𝐶,Σ,𝒫), where
∙ Σ is a finite set of events or interaction labels, called interaction alphabet,
∙ 𝐶 =

⋃︀𝑚
𝑖=1𝐶𝑖 is a finite set of components. Each component 𝐶𝑖 is a transition system

extended with data. Formally, 𝐶𝑖 is a tuple (𝐿𝑖, 𝑉𝑖,Σ𝑖, 𝑇𝑖, 𝑙
0
𝑖 , 𝑒

0
𝑖):

– 𝐿𝑖 = {𝑙𝑖1 , . . . , 𝑙𝑖𝑛} is a finite set of control locations.
– 𝑉𝑖 = {𝑣𝑖1 , . . . , 𝑣𝑖𝑝} is a finite set of (local) variables with a finite domain. Wlog

we assume that the domain is the Boolean domain B = {True,False}. We use
|𝑉𝑖| to denote the number of variables used in 𝐶𝑖. An evaluation (or assignment)
of the variables in 𝑉𝑖 is a functions 𝑒 : 𝑉𝑖 → B mapping every variable to a value
in the domain. We use ℰ(𝑉𝑖) to denote the set of all evaluations over the variables
𝑉𝑖. Given a Boolean formula 𝑓 ∈ ℬ(𝑉𝑖) over the variables in 𝑉𝑖 and an evaluation
𝑒 ∈ ℰ(𝑉𝑖), we use 𝑓(𝑒) to refer to the truth value of 𝑓 under the evaluation 𝑒.

– Σ𝑖 ⊆ Σ is a subset of interaction labels used in 𝐶𝑖.
– 𝑇𝑖 is the set of transitions. A transition 𝑡𝑖 ∈ 𝑇𝑖 is of the form (𝑙, 𝑔, 𝜎, 𝑓, 𝑙′), where

𝑙, 𝑙′ ∈ 𝐿𝑖 are the source and destination location, 𝑔 ∈ ℬ(𝑉𝑖) is called the guard
and is a Boolean formula over the variables 𝑉𝑖. 𝜎 ∈ Σ𝑖 is an interaction label
(specifying the event triggering the transition), and 𝑓 : 𝑉𝑖 → ℬ(𝑉𝑖) is the update
function mapping every variable to a Boolean formula encoding the change of its
value.

– 𝑙0𝑖 ∈ 𝐿𝑖 is the initial location and 𝑒0𝑖 ∈ ℰ(𝑉𝑖) is the initial evaluation of the vari-
ables.

∙ 𝒫 is a finite set of interaction pairs (called priorities) defining a relation ≺ ⊆ Σ × Σ

54

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

between the interaction labels. We require that ≺ is (1) transitive and (2) non-reflexive
(i.e., there are no circular dependencies) [GS03]. For (𝜎1, 𝜎2) ∈ 𝒫 , we sometimes write
𝜎1 ≺ 𝜎2 to highlight the property of priority.

Definition 5 (Configuration). Given a system 𝒮, a configuration (or state) 𝑐 is a tuple
(𝑙1, 𝑒1, . . . , 𝑙𝑚, 𝑒𝑚) with 𝑙𝑖 ∈ 𝐿𝑖 and 𝑒𝑖 ∈ ℰ(𝑉𝑖) for all 𝑖 ∈ {1, . . . ,𝑚}. We use 𝒞𝒮 to denote
the set of all reachable configurations. The configuration (𝑙01, 𝑒

0
1, . . . , 𝑙

0
𝑚, 𝑒0𝑚) is called the initial

configuration of 𝒮 and is denoted by 𝑐0.

Definition 6 (Enabled Interactions). Given a system 𝒮 and a configuration 𝑐 =
(𝑙1, 𝑒1, . . . , 𝑙𝑚, 𝑒𝑚), we say an interaction 𝜎 ∈ Σ is enabled (in 𝑐), if the following condi-
tions hold:

1. (Joint participation) ∀𝑖 ∈ {1, . . . ,𝑚}, if 𝜎 ∈ Σ𝑖, then ∃𝑔𝑖, 𝑓𝑖, 𝑙′𝑖 such that
(𝑙𝑖, 𝑔𝑖, 𝜎, 𝑓𝑖, 𝑙

′
𝑖) ∈ 𝑇𝑖 and 𝑔𝑖(𝑒𝑖) = True.

2. (No higher priorities enabled) For all other interaction 𝜎̄ ∈ Σ satisfying joint par-
ticipation (i.e., ∀𝑖 ∈ {1, . . . ,𝑚}, if 𝜎̄ ∈ Σ𝑖, then ∃(𝑙𝑖, 𝑔𝑖, 𝜎̄, 𝑓𝑖, 𝑙̄′𝑖) ∈ 𝑇𝑖 such that
𝑔𝑖(𝑒𝑖) = True), (𝜎, 𝜎̄) ̸∈ 𝒫 holds.

Definition 7 (Behavior). Given a system 𝒮, two configurations 𝑐 = (𝑙1, 𝑒1, . . . , 𝑙𝑚, 𝑒𝑚),
𝑐′ = (𝑙′1, 𝑒

′
1, . . . , 𝑙

′
𝑚, 𝑒′𝑚), and an interaction 𝜎 ∈ Σ enabled in 𝑐, we say 𝑐′ is a 𝜎-successor

(configuration) of 𝑐, denoted 𝑐
𝜎−→ 𝑐′, if the following two conditions hold for all components

𝐶𝑖 = (𝐿𝑖, 𝑉𝑖,Σ𝑖, 𝑇𝑖, 𝑙
0
𝑖 , 𝑒

0
𝑖):

∙ (Update for participated components) If 𝜎 ∈ Σ𝑖, then there exists a transition
(𝑙𝑖, 𝑔𝑖, 𝜎, 𝑓𝑖, 𝑙

′
𝑖) ∈ 𝑇𝑖 such that 𝑔𝑖(𝑒𝑖) = True and for all variables 𝑣 ∈ 𝑉𝑖, 𝑒′𝑖 = 𝑓𝑖(𝑣)(𝑒𝑖).

∙ (Stutter for idle components) Otherwise, 𝑙′𝑖 = 𝑙𝑖 and 𝑒′𝑖 = 𝑒𝑖.
Given two configurations 𝑐 and 𝑐′, we say 𝑐′ is reachable from 𝑐 with the interaction sequence
𝑤 = 𝜎1 . . . 𝜎𝑘 , denoted 𝑐

𝑤−→ 𝑐′, if there exist configurations 𝑐0, . . . , 𝑐𝑘 such that (i) 𝑐0 = 𝑐, (ii)
𝑐𝑘 = 𝑐′, and (iii) for all 𝑖 : 0 ≤ 𝑖 < 𝑘, 𝑐𝑖

𝜎𝑖+1−−−→ 𝑐𝑖+1. We denote the set of all configuration of 𝒮
reachable from the initial configuration 𝑐0 by ℛ𝒮 . The language of a system 𝒮, denoted ℒ(𝒮),
is the set {𝑤 ∈ Σ* | ∃𝑐′ ∈ ℛ𝒮 such that 𝑐0 𝑤−→ 𝑐′}. Note that ℒ(𝒮) describes the behavior of 𝒮,
starting from the initial configuration 𝑐0.

In this chapter, we adapt the following simplifications:

∙ We do not consider uncontrollable events (of the environment), since the BIP lan-
guage is currently not supporting them. However, our framework would allow
us to do so. More precisely, we solve priority synthesis using a game-theoretic
version of controller synthesis [RW89], in which uncontrollability can be mod-
eled. Furthermore, since we consider only safety properties, our algorithms can
be easily adapted to handle uncontrollable events.

∙ We do not consider data transfer during the interaction, as it is merely syntactic
rewriting over variables between different components. However, in our imple-
mentation, simple data transfer is supported.

55

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

4.3.2 Priority Synthesis for Safety and Deadlock Freedom

Definition 8 (Risk-Configuration/Deadlock Safety). Given a system 𝒮 = (𝐶,Σ,𝒫) and
the set of risk configuration 𝒞𝑟𝑖𝑠𝑘 ⊆ 𝒞𝒮 (also called bad states), the system is safe if the
following conditions hold. (A system that is not safe is called unsafe.)
∙ (Deadlock-free) ∀𝑐 ∈ ℛ𝒮 , ∃𝜎 ∈ Σ,∃𝑐′ ∈ ℛ𝒮 : 𝑐

𝜎−→ 𝑐′

∙ (Risk-state-free) 𝒞𝑟𝑖𝑠𝑘 ∩ℛ𝒮 = ∅.

Definition 9 (Priority Synthesis). Given a system 𝒮 = (𝐶,Σ,𝒫), and the set of risk config-
uration 𝒞𝑟𝑖𝑠𝑘 ⊆ 𝒞𝒮 , priority synthesis searches for a set of priorities 𝒫+ such that
∙ For 𝒫 ∪ 𝒫+, the defined relation ≺𝒫∪𝒫+ ⊆ Σ × Σ is also (1) transitive and (2) non-

reflexive.
∙ (𝐶,Σ,𝒫 ∪ 𝒫+) is safe.

Given a system 𝒮 , we define the size of 𝒮 as the size of the product graph induced by
𝒮, i.e, |𝑄| + |Σ| + |𝛿|, where 𝑄 is the set of vertices in the graph. Then, we have the
following result.

Theorem 1 (Hardness of priority synthesis [CJBK11]). Given a system 𝒮 = (𝐶,Σ,𝒫),
finding a set 𝒫+ of priorities such that (𝐶,Σ,𝒫 ∪ 𝒫+) is safe is NP-complete in the size of 𝒮.

Proof. We leave the proof as well as discussions concerning its relations to the work by
Ramadge and Wonham [RW89] to the appendix.

We briefly mention the definition of behavioral safety, which is a powerful notion to
capture erroneous behavioral-patterns for the system under design.

Definition 10 (Behavioral Safety). Given a system 𝒮 = (𝐶,Σ,𝒫) and a regular language
ℒ¬𝑃 ⊆ Σ* called the risk specification, the system is B-safe if ℒ(𝒮) ∩ ℒ¬𝑃 = ∅. A system
that is not B-safe is called B-unsafe.

It is well-known that the problem of asking for behavioral safety can be reduced to the
problem of risk-state freeness. More precisely, since ℒ¬𝑃 can be represented by a finite
automaton 𝒜¬𝑃 (the monitor), priority synthesis for behavioral safety can be reduced
to priority synthesis in the synchronous product of the system 𝒮 and𝒜¬𝑃 with the goal
to avoid any product state that has a final state of 𝒜¬𝑃 in the second component.

4.4 A Framework of Priority Synthesis based on
Fault-Localization and Fault-Repair

In this section, we describe our symbolic encoding scheme, followed by presenting our
priority synthesis mechanism using a fault-localization and repair approach.

56

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

4.4.1 System Encoding

Our symbolic encoding is inspired by the execution semantics of the BIP engine, which
during execution, selects one of the enabled interactions and executes the interaction.
In our engine, we mimic the process and create a two-stage transition: For each itera-
tion,

∙ (Stage 0) The environment raises all enabled interactions.

∙ (Stage 1) Based on the raised interactions, the controller selects one enabled in-
teraction (if there exists one) while respecting the priority, and updates the state
based on the enabled interaction.

Given a system 𝒮 = (𝐶,Σ,𝒫), we use the following sets of Boolean variables to en-
code 𝒮:

∙ {𝑠𝑡𝑔, 𝑠𝑡𝑔′} is the stage indicator and its primed version.

∙ ⋃︀
𝜎∈Σ{𝜎, 𝜎′} are the variables representing interactions and their primed version.

We use the same letter for an interaction and the corresponding variable, because
there is a one-to-one correspondence between them.

∙ ⋃︀
𝑖=1...𝑚 𝑌𝑖 ∪ 𝑌 ′

𝑖 , where 𝑌𝑖 = {𝑦𝑖1, . . . , 𝑦𝑖𝑘} and 𝑌 ′
𝑖 = {𝑦′𝑖1, . . . , 𝑦′𝑖𝑘} are the variables

and their primed version, respectively, used to encode the locations 𝐿𝑖. (We use
a binary encoding, i.e., 𝑘 = ⌈𝑙𝑜𝑔|𝐿𝑖|⌉). Given a location 𝑙 ∈ 𝐿𝑖, we use 𝑒𝑛𝑐(𝑙) and
𝑒𝑛𝑐′(𝑙) to refer to the encoding of 𝑙 using 𝑌𝑖 and 𝑌 ′

𝑖 , respectively.

∙ ⋃︀
𝑖=1...𝑚

⋃︀
𝑣∈𝑉𝑖
{𝑣, 𝑣′} are the variables of the components and their primed ver-

sion.

Algorithm 1: Generate Stage-0 transitions
input : System 𝒮 = (𝐶,Σ,𝒫)
output: Stage-0 transition predicate 𝒯𝑠𝑡𝑎𝑔𝑒0
begin

for 𝜎 ∈ Σ do
1 let predicate 𝑃𝜎 := True

for 𝜎 ∈ Σ do
for 𝑖 = {1, . . . ,𝑚} do

2 if 𝜎 ∈ Σ𝑖 then 𝑃𝜎 := 𝑃𝜎 ∧
⋁︀

(𝑙,𝑔,𝜎,𝑓,𝑙′)∈𝑇𝑖
(𝑒𝑛𝑐(𝑙) ∧ 𝑔)

let predicate 𝒯𝑠𝑡𝑎𝑔𝑒0 := 𝑠𝑡𝑔 ∧ ¬𝑠𝑡𝑔′
for 𝜎 ∈ Σ do

3 𝒯𝑠𝑡𝑎𝑔𝑒0 := 𝑇𝑠𝑡𝑎𝑔𝑒0 ∧ (𝜎′ ↔ 𝑃𝜎)

for 𝑖 = {1, . . . ,𝑚} do
4 𝒯𝑠𝑡𝑎𝑔𝑒0 := 𝑇𝑠𝑡𝑎𝑔𝑒0 ∧

⋀︀
𝑦∈𝑌𝑖

𝑦 ↔ 𝑦′ ∧⋀︀
𝑣∈𝑉𝑖

𝑣 ↔ 𝑣′

return 𝒯𝑠𝑡𝑎𝑔𝑒0

We use Algorithm 1 and 2 to create transition predicates 𝒯𝑠𝑡𝑎𝑔𝑒0 and 𝒯𝑠𝑡𝑎𝑔𝑒1 for Stage 0
and 1, respectively. Note that 𝒯𝑠𝑡𝑎𝑔𝑒0 and 𝒯𝑠𝑡𝑎𝑔𝑒1 can be merged but we keep them

57

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

Algorithm 2: Generate Stage-1 transitions
input : System 𝒮 = (𝐶,Σ,𝒫)
output: Stage-1 transition predicate 𝒯𝑠𝑡𝑎𝑔𝑒1
begin

let predicate 𝒯𝑠𝑡𝑎𝑔𝑒1 := False
for 𝜎 ∈ Σ do

let predicate 𝑇𝜎 := ¬𝑠𝑡𝑔 ∧ 𝑠𝑡𝑔′

for 𝑖 = {1, . . . ,𝑚} do
if 𝜎 ∈ Σ𝑖 then

1 𝑇𝜎 := 𝑇𝜎 ∧
⋁︀

(𝑙,𝑔,𝜎,𝑓,𝑙′)∈𝑇𝑖
(𝑒𝑛𝑐(𝑙) ∧ 𝑔 ∧ 𝜎 ∧ 𝜎′ ∧ 𝑒𝑛𝑐′(𝑙′) ∧⋀︀

𝑣∈𝑉𝑖
𝑣′ ↔ 𝑓(𝑣))

for 𝜎′ ∈ Σ, 𝜎′ ̸= 𝜎 do
2 𝑇𝜎 := 𝑇𝜎 ∧ 𝜎′ = False

for 𝑖 = {1, . . . ,𝑚} do
3 if 𝜎 ̸∈ Σ𝑖 then 𝑇𝜎 := 𝑇𝜎 ∧

⋀︀
𝑦∈𝑌𝑖

𝑦 ↔ 𝑦′ ∧⋀︀
𝑣∈𝑉𝑖

𝑣 ↔ 𝑣′

𝒯𝑠𝑡𝑎𝑔𝑒1 := 𝒯𝑠𝑡𝑎𝑔𝑒1 ∨ 𝑇𝜎

for 𝜎1 ≺ 𝜎2 ∈ 𝒫 do
4 𝒯𝑠𝑡𝑎𝑔𝑒1 := 𝒯𝑠𝑡𝑎𝑔𝑒1 ∧ ((𝜎1 ∧ 𝜎2)→ ¬𝜎1′)

return 𝒯𝑠𝑡𝑎𝑔𝑒1

separately, in order to (1) have an easy and direct way to synthesize priorities, (2) allow
expressing the freedom of the environment, and (3) follow the semantics of the BIP
engine.

∙ In Algorithm 1, Line 2 computes for each interaction 𝜎 the predicate 𝑃𝜎 represent-
ing all the configurations in which 𝜎 is enabled in the current configuration. In
Line 3, starting from the first interaction, 𝒯𝑠𝑡𝑎𝑔𝑒0 is continuously refined by con-
joining 𝜎′ ↔ 𝑃𝜎 for each interaction 𝜎, i.e., the variables 𝜎′ is true if and only if
the interaction 𝜎 is enabled. Finally, Line 4 ensures that the system configuration
does not change in stage 0.

∙ In Algorithm 2, Line 1, 2, 3 are used to create the transition in which interaction 𝜎
is executed (Line 2 ensures that only 𝜎 is executed; Line 3 ensures the stuttering
move of unparticipated components). Given a priority 𝜎1 ≺ 𝜎2, in configurations
in which 𝜎1 and 𝜎2 are both enabled (i.e., 𝜎1 ∧ 𝜎2 holds), the conjunction with
Line 4 removes the possibility to execute 𝜎1 when 𝜎2 is also available.

4.4.2 Step A. Finding Fix Candidates using Fault-localization

Synthesizing a set of priorities to make the system safe can be done in various ways,
and we use Figure 4.1 to illustrate our underlying idea. Consider a system starting from
state 𝑐1. It has two risk configurations 𝑐6 and 𝑐7. In order to avoid risk using priorities,
one method is to work on the initial configuration, i.e., to use the set of priorities {𝑒 ≺

58

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

a

d
e

c1
c2

c4

c3 c5

Attr(Crisk)

Crisk

c6

c7
b

a

c8

c

b
a

c9

Reach({c1})

g

Figure 4.1: Locating fix candidates.

𝑎, 𝑑 ≺ 𝑎}. Nevertheless, it can be observed that the synthesized result is not very
desirable, as the behavior of the system has been greatly restricted.

Alternatively, our methodology works backwards from the set of risk states and finds
states which is able to escape from risk. In Figure 4.1, as states 𝑐3, 𝑐4, 𝑐5 unavoidably
enter a risk state, they are within the risk-attractor (Attr(𝒞𝑟𝑖𝑠𝑘)). For state 𝑐2, 𝑐8, and
𝑐9, there exists an interaction which avoids risk. Thus, if a set of priorities 𝒫+ can
ensure that from 𝑐2, 𝑐8, and 𝑐9, the system can not enter the attractor, then 𝒫+ is the
result of synthesis. Furthermore, as 𝑐9 is not within the set of reachable states from
the initial configuration (Reach({𝑐1}) in Figure 4.1), then it can be eliminated without
consideration. We call {𝑐2, 𝑐8} a fault-set, meaning that an erroneous interaction can be
taken to reach the risk-attractor.

Under our formulation, we can directly utilize the result of algorithmic game solv-
ing [GTW02] to compute the fault-set. Algorithm 3 explains the underlying compu-
tation: For conciseness, we use ∃Ξ (∃Ξ′) to represent existential quantification over all
umprimed (primed) variables used in the system encoding. Also, we use the operator
SUBS(𝑋,Ξ,Ξ′) for variable swap (substitution) from unprimed to primed variables in
𝑋 : the SUBS operator is common in most BDD packages.

∙ In the beginning, we create 𝑃𝑖𝑛𝑖 for initial configuration, 𝑃𝑑𝑒𝑎𝑑 for deadlock (no
interaction is enabled), and 𝑃𝑟𝑖𝑠𝑘 for risk configurations.

∙ In Part A, adding a stage-0 configuration can be computed similar to adding the
environment state in a safety game. In a safety game, for an environment config-
uration to be added, there exists a transition which leads to the attractor.

∙ In Part A, adding a stage-1 configuration follows the intuition described earlier.
In a safety game, for a control configuration 𝑐 to be added, all outgoing transitions
of 𝑐 should lead to the attractor. This is captured by the set difference operation
PointTo ∖ Escape in Line 5.

∙ In Part B, Line 7 creates the transition predicate entering the attractor. Line 8 cre-
ates predicate OutsideAttr representing the set of stage-1 configuration outside
the attractor. In Line 9, by conjuncting with OutsideAttr we ensure that the al-
gorithm does not return a transition within the attractor.

∙ Part C removes transitions whose source is not within the set of reachable states.

59

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

Algorithm 3: Fault-localization
input : System 𝒮 = (𝐶,Σ,𝒫), 𝒯𝑠𝑡𝑎𝑔𝑒0 , 𝒯𝑠𝑡𝑎𝑔𝑒1
output: 𝒯𝑓 ⊆ 𝒯𝑠𝑡𝑎𝑔𝑒1 as the set of stage-1 transitions starting from the fault-set but

entering the risk attractor
begin

let 𝑃𝑖𝑛𝑖 := 𝑠𝑡𝑔 ∧⋀︀
𝑖=1...𝑚(𝑒𝑛𝑐(𝑙0𝑖) ∧

⋀︀
𝑣∈𝑉𝑖

𝑣 ↔ 𝑒0𝑖 (𝑣))

let 𝑃𝑑𝑒𝑎𝑑 := ¬𝑠𝑡𝑔 ∧⋀︀
𝜎∈Σ ¬𝜎

let 𝑃𝑟𝑖𝑠𝑘 := ¬𝑠𝑡𝑔 ∧⋁︀
(𝑙1,𝑒1,...,𝑙𝑚,𝑒𝑚)∈𝒞𝑟𝑖𝑠𝑘 (𝑒𝑛𝑐(𝑙1) ∧

⋀︀
𝑣∈𝑉1

𝑣 ↔ 𝑒1(𝑣) ∧ . . .

𝑒𝑛𝑐(𝑙𝑚) ∧⋀︀
𝑣∈𝑉𝑚

𝑣 ↔ 𝑒𝑚(𝑣))

// Part A: solve safety game
let Attr𝑝𝑟𝑒 := 𝑃𝑑𝑒𝑎𝑑 ∨ 𝑃𝑟𝑖𝑠𝑘, Attr𝑝𝑜𝑠𝑡 := False

1 while True do
// add stage-0 (environment) configurations

2 Attr𝑝𝑜𝑠𝑡,0 := ∃Ξ′ : (𝒯𝑠𝑡𝑎𝑔𝑒0 ∧ SUBS((∃Ξ′ : Attr𝑝𝑟𝑒),Ξ,Ξ′))
// add stage-1 (system) configurations

3 let PointTo := ∃Ξ′ : (𝒯𝑠𝑡𝑎𝑔𝑒1 ∧ SUBS((∃Ξ′ : Attr𝑝𝑟𝑒),Ξ,Ξ′))
4 let Escape := ∃Ξ′ : (𝒯𝑠𝑡𝑎𝑔𝑒1 ∧ SUBS((∃Ξ′ : ¬Attr𝑝𝑟𝑒),Ξ,Ξ′))
5 Attr𝑝𝑜𝑠𝑡,1 := PointTo ∖ Escape
6 Attr𝑝𝑜𝑠𝑡 := Attr𝑝𝑟𝑒 ∨Attr𝑝𝑜𝑠𝑡,0 ∨Attr𝑝𝑜𝑠𝑡,1 // Union the result

if Attr𝑝𝑟𝑒 ↔ Attr𝑝𝑜𝑠𝑡 then break // Break when the image saturates
else Attr𝑝𝑟𝑒 := Attr𝑝𝑜𝑠𝑡

// Part B: extract 𝒯𝑓
7 PointTo := 𝒯𝑠𝑡𝑎𝑔𝑒1 ∧ SUBS((∃Ξ′ : Attr𝑝𝑟𝑒),Ξ,Ξ′))
8 OutsideAttr := ¬Attr𝑝𝑟𝑒 ∧ (∃Ξ′ : 𝒯𝑠𝑡𝑎𝑔𝑒1)
9 𝒯𝑓 := PointTo ∧ OutsideAttr

// Part C: eliminate unused transition using reachable
states

let reach𝑝𝑟𝑒 := 𝑃𝑖𝑛𝑖, reach𝑝𝑜𝑠𝑡 := False
10 while True do

reach𝑝𝑜𝑠𝑡 := reach𝑝𝑟𝑒 ∨ SUBS(∃Ξ : (reach𝑝𝑟𝑒 ∧ (𝒯𝑠𝑡𝑎𝑔𝑒0 ∨ 𝒯𝑠𝑡𝑎𝑔𝑒1)),Ξ′,Ξ)
if reach𝑝𝑟𝑒 ↔ reach𝑝𝑜𝑠𝑡 then break // Break when the image
saturates
else reach𝑝𝑟𝑒 := reach𝑝𝑜𝑠𝑡

11 return 𝒯𝑓 ∧ reach𝑝𝑜𝑠𝑡

60

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

4.4.3 Step B. Priority Synthesis via Conflict Resolution - from Stateful to
Stateless

Due to our system encoding, in Algorithm 3, the return value 𝒯𝑓 contains not only
the risk interaction but also all possible interactions simultaneously available. Recall
Figure 4.1, 𝒯𝑓 returns three transitions, and we can extract priority candidates from
each transition.

∙ On 𝑐2, 𝑎 enters the risk-attractor, while 𝑏, 𝑔, 𝑐 are also available. We have the
following candidates {𝑎 ≺ 𝑏, 𝑎 ≺ 𝑔, 𝑎 ≺ 𝑐}.
∙ On 𝑐2, 𝑔 enters the risk-attractor, while 𝑎, 𝑏, 𝑐 are also available. We have the

following candidates {𝑔 ≺ 𝑏, 𝑔 ≺ 𝑐, 𝑔 ≺ 𝑎}3.

∙ On 𝑐8, 𝑏 enters the risk-attractor, while 𝑎 is also available. We have the following
candidate 𝑏 ≺ 𝑎.

From these candidates, we can perform conflict resolution and generate a set of prior-
ities that ensures avoiding the attractor. For example, {𝑎 ≺ 𝑐, 𝑔 ≺ 𝑎, 𝑏 ≺ 𝑎} is a set of
satisfying priorities to ensure safety. Note that the set {𝑎 ≺ 𝑏, 𝑔 ≺ 𝑏, 𝑏 ≺ 𝑎} is not a legal
priority set, because it creates circular dependencies. In our implementation, conflict
resolution is performed using SAT solvers: In the SAT problem, any priority 𝜎1 ≺ 𝜎2 is
presented as a Boolean variable 𝜎1 ≺ 𝜎2, which can be set to True or False. If the gen-
erated SAT problem is satisfiable, for all variables 𝜎1 ≺ 𝜎2 which is evaluated to True,
we add priority 𝜎1 ≺ 𝜎2 to 𝒫+. The synthesis engine creates four types of clauses.

1. [Priority candidates] For each edge 𝑡 ∈ 𝒯𝑓 which enters the risk attractor
using 𝜎 and having 𝜎1, . . . , 𝜎𝑒 available actions (excluding 𝜎), create clause
(
⋁︀

𝑖=1...𝑒 𝜎 ≺ 𝜎𝑖)
4.

2. [Existing priorities] For each priority 𝜎 ≺ 𝜎′ ∈ 𝒫 , create clause (𝜎 ≺ 𝜎′).

3. [Non-reflective] For each interaction 𝜎 used in (1) and (2), create clause (¬𝜎 ≺ 𝜎).

4. [Transitive] For any three interactions 𝜎1, 𝜎2, 𝜎3 used in (1) and (2), create clause
((𝜎1 ≺ 𝜎2 ∧ 𝜎2 ≺ 𝜎3)⇒ 𝜎1 ≺ 𝜎3).

When the problem is satisfiable, we only output the set of priorities within the priority
candidates (as non-reflective and transitive clauses are inferred properties). Admit-
tedly, here we still solve an NP-complete problem. Nevertheless,

∙ The number of interactions involved in the fault-set can be much smaller than Σ.

∙ As the translation does not involve complicated encoding, we observe from our
experiment that solving the SAT problem does not occupy a large portion (less
than 20% for all benchmarks) of the total execution time.

∙ The whole approach tries to establish a barrier to avoid entering bad states, mim-
icking the pervasive strategy.

3Notice that at least one candidate is a true candidate for risk-escape. Otherwise, during the attractor
computation, 𝑐2 will be included within the attractor.

4In implementation, Algorithm 3 works symbolically on BDDs and proceeds on cubes of the risk-edges
(a cube contains a set of states having the same enabled interactions and the same risk interaction),
hence it avoids enumerating edges state-by-state.

61

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

c2

Attr(Crisk)

Crisk

b
a

c1 b
a

Figure 4.2: A simple scenario where conflicts are unavoidable on the fault-set.

4.4.4 Optimization

Currently, we use the following optimization techniques compared to the preliminary
implementation of [CBJ+11].

4.4.4.1 Handling Unsatisfiability

In the resolution scheme in Section 4.4.3, when the generated SAT problem is unsatis-
fiable, we can redo the process by moving some states in the fault-set to the attractor.
This procedure is implemented by selecting a subset of priority candidates and anno-
tate to the original system. We call this process priority-repushing. E.g., consider the
system 𝒮 = (𝐶,Σ,𝒫) in Figure 4.2. The fault-set {𝑐1, 𝑐2} is unable to resolve the con-
flict: For 𝑐1 the priority candidate is 𝑎 ≺ 𝑏, and for 𝑐2 the priority candidate is 𝑏 ≺ 𝑎.
When we redo the analysis with 𝒮 = (𝐶,Σ,𝒫 ∪ {𝑎 ≺ 𝑏}), this time 𝑐2 will be in the
attractor, as now 𝑐2 must respect the priority and is unable to escape using 𝑎. Currently
in our implementation, we supports the repushing under fixed depth to increase the
possibility of finding a fix.

4.4.4.2 Initial Variable Ordering: Modified FORCE Heuristics

As we use BDDs to compute the risk-attractor, a good initial variable ordering can
greatly influence the total required time solving the game. Although finding an opti-
mal initial variable ordering is known to be NP-complete [THY93], many heuristics can
be applied to find a good yet non-optimal ordering5. The basic idea of these heuristics
is to group variables close if they participate in the same transition [CGP99]; experi-
ences have shown that this creates a BDD diagram of smaller size. Thus our goal is
to find a heuristic algorithm which can be computed efficiently while createing a good
ordering.

We adapt the concept in the FORCE heuristic [AMS03]. Although the purpose of the
FORCE heuristic is to work on SAT problems, we find the concept very beneficial in our
problem setting. We explain the concept of FORCE based on the example in [AMS03],
and refer interested readers to the paper [AMS03] for full details.

Given a CNF formula 𝐶 = 𝑐1 ∧ 𝑐2 ∧ 𝑐3, where 𝑐1 = (𝑎 ∨ 𝑐), 𝑐2 = (𝑎 ∨ 𝑑), 𝑐3 = (𝑏 ∨ 𝑑).

5Also, dynamic variable ordering, a technique which changes the variable ordering at run-time, can be
beneficial when no good variable ordering is known [CGP99]

62

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

∙ Consider a variable ordering ⟨𝑎, 𝑏, 𝑐, 𝑑⟩. For this ordering, we try to evaluate it
by considering the sum of the span. A span is the maximum distance between
any two variables within the same clause. For 𝑐1, under the ordering the span
equals 2; for 𝑐2 the span equals 3, and the sum of the span equals 7.

∙ Consider another variable ordering ⟨𝑐, 𝑎, 𝑑, 𝑏⟩. Then the sum of span equals 3.
Thus we consider that ⟨𝑐, 𝑎, 𝑑, 𝑏⟩ is superior than ⟨𝑎, 𝑏, 𝑐, 𝑑⟩.

∙ The purpose of the FORCE heuristic is to reduce the sum of such span. In the CNF
example, the name of the heuristics suggests that a conceptual force representing
each clause is grouping variables used within the clause.

Back to priority synthesis, consider the set of components
⋃︀𝑛

𝑖=1𝐶𝑖 together with inter-
action labels Σ. We may similarly compute the sum of all spans, where now a span is
the maximum distance between any two components participating the same interaction 𝜎 ∈ Σ.
Precisely, we analogize clauses and variables in the original FORCE heuristic with in-
teraction symbols and components. Therefore, we regard the FORCE heuristics equally
applicable to create a better initial variable ordering for priority synthesis.

[Algorithm Sketch] Our modified FORCE heuristics is as follows.

1. Create an initial order of vertices composed from a set of components
⋃︀𝑛

𝑖=1𝐶𝑖 and
interactions 𝜎 ∈ Σ. Here we allow the user to provide an initial variable ordering,
such that the FORCE heuristic can be applied more efficiently.

2. Repeat for limited time or until the span stops decreasing:

∙ Create an empty list.

∙ For each interaction label 𝜎 ∈ Σ, derive its center of gravity 𝐶𝑂𝐺(𝜎) by com-
puting the average position of all participated components. Use the average
position as its value. Add the interaction with the value to the list.

∙ For each component 𝐶𝑖, compute its value by
∑︀

𝜎∈𝑆𝑖𝑔𝑚𝑎𝑖
𝐶𝑂𝐺(𝜎)

|Σ𝑖| . Add the
component with the value to the list.

∙ Sort the list based on the value. The resulting list is considered as a new
variable ordering. Compute the new span and compare with the span from
the previous ordering.

4.4.4.3 Dense Variable Encoding

The encoding in Section 4.4.1 is dense compared to the encoding in [CBJ+11].
In [CBJ+11], for each component 𝐶𝑖 participating interaction 𝜎, one separate vari-
able 𝜎𝑖 is used. Then a joint action is done by an AND operation over all variables, i.e.,⋀︀

𝑖 𝜎𝑖. This eases the construction process but makes BDD-based game solving very
inefficient: For a system 𝒮, let Σ𝑢𝑠𝑒1 ⊆ Σ be the set of interactions where only one
component participates within. Then the encoding in [CBJ+11] uses at least 2|Σ∖Σ𝑢𝑠𝑒1|
more BDD variables than the dense encoding.

63

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

4.4.4.4 Safety Engine Speedup

Lastly, as our created game graph is bipartite, Algorithm 3 can be refined to work on
two separate images of stage-0 and stage-1, such that line 2 and line {3,4} are executed
in alternation.

4.5 Handling Complexities

In verification, it is standard to use abstraction and modularity to reduce the complex-
ity of the analyzed systems. Abstraction is also useful in synthesis. However, note
that if an abstract system is deadlock-free, it does not imply that the concrete system
is as well. E.g., in Figure 4.3, the system composed by 𝐶1 and 𝐶2 contains deadlock
(assume both 𝑎 and 𝑏 needs to be paired to be executed). However, when we over-
approximate 𝐶1 to an abstract system 𝐶𝛼

1 , a system composed by 𝐶𝛼
1 and 𝐶2 is dead-

lock free. On the other hand, deadlock-freeness of an under-approximation also does
not imply deadlock-freeness of a concrete system. An obvious example can be obtained
by under-approximating the system 𝐶1 in Figure 4.3 to an abstract system 𝐶𝛽

1 . Again,
the composition of 𝐶𝛽

1 and 𝐶2 is deadlock-free, while the concrete system is not.

l1 l2 l3l4

a

b

aa, b

C1 C2
Cα

1

a

l5

a

Cβ
1

Figure 4.3: A scenario where the concrete system contains deadlock, but the abstract
system is deadlock free.

In the following, we propose three techniques.

4.5.1 Data abstraction

Data abstraction techniques presented in the previous work [BBSN08] and imple-
mented in the D-Finder tool kit [BGL+11] are deadlock preserving, i.e., synthesizing the
abstract system to be deadlock free ensures that the concrete system is also deadlock
free. Basically, the method works on an abstract system composed by components
abstracted component-wise from concrete components. For example, if an abstraction
preserves all control variables (i.e., all control variables are mapped by identity) and the
mapping between the concrete and abstract system is precise with respect to all guards
and updates (for control variables) on all transitions, then it is deadlock preserving. For
further details, we refer interested readers to [BBSN08, BGL+11].

64

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

a

b

ca b ef e f . . .

C1 C2 C3 Cm

l11 l12

l13

l21

l22

l31

l32

a

b

ca b]]]] . . .

C1Φ C2Φ C3Φ CmΦ

l11 l12

l13

l21

l22

l31

l32

]]

S

SΦ

i h

Figure 4.4: A system 𝒮 and its ♯-abstract system 𝒮Φ, where ΣΦ = Σ ∖ {𝑎, 𝑏, 𝑐}.

4.5.2 Alphabet abstraction

Second, we present alphabet abstraction, targeting to synthesize priorities to avoid dead-
lock (but also applicable for risk-freeness with extensions). The underlying intuition is
to abstract concrete behavior of components out of concern.

Definition 11 (Alphabet Transformer). Given a set Σ of interaction alphabet. Let ΣΦ ⊆ Σ
be abstract alphabet. Define 𝛼 : Σ → (Σ ∖ ΣΦ) ∪ {♯} as the alphabet transformer, such that
for 𝜎 ∈ Σ,
∙ If 𝜎 ∈ ΣΦ, then 𝛼(𝜎) := ♯.
∙ Otherwise, 𝛼(𝜎) := 𝜎.

Definition 12 (Alphabet Abstraction: Syntax). Given a system 𝒮 = (𝐶,Σ,𝒫) and abstract
alphabet ΣΦ ⊆ Σ, define the ♯-abstract system 𝒮Φ to be (𝐶Φ, (Σ ∖ ΣΦ) ∪ {♯},𝒫Φ), where
∙ 𝐶Φ =

⋃︀
𝑖=1...𝑚𝐶𝑖Φ, where 𝐶𝑖Φ = (𝐿𝑖, 𝑉𝑖,Σ𝑖Φ, 𝑇𝑖Φ, 𝑙

0
𝑖 , 𝑒

0
𝑖) changes from 𝐶𝑖 by syntac-

tically replacing every occurrence of 𝜎 ∈ Σ𝑖 to 𝛼(𝜎).
∙ 𝒫 =

⋃︀
𝑖=1...𝑘 𝜎𝑖 ≺ 𝜎′

𝑖 changes to 𝒫Φ =
⋃︀

𝑖=1...𝑘 𝛼(𝜎𝑖) ≺ 𝛼(𝜎′
𝑖), and the relation defined

by 𝒫Φ should be transitive and nonreflexive.

The definition for a configuration (state) of a ♯-abstract system follows Definition 2.
Denote the set of all configuration of 𝒮Φ reachable from 𝑐0 as 𝒞𝒮Φ

. The update of config-
uration for an interaction 𝜎 ∈ Σ ∖ΣΦ follows Definition 3. The only difference is within
the semantics of the ♯-interaction.

Definition 13 (Alphabet Abstraction: Semantics for ♯-interaction). Given a configuration
𝑐 = (𝑙1, 𝑣1, . . . , 𝑙𝑚, 𝑣𝑚), the ♯-interaction is enabled if the following conditions hold.

1. (≥ 1 participants) Exists 𝑖 ∈ {1, . . . ,𝑚} where ♯ ∈ Σ𝑖Φ, ∃𝑡𝑖 = (𝑙𝑖, 𝑔𝑖, ♯, 𝑓𝑖, 𝑙
′
𝑖) ∈ 𝑇𝑖Φ

such that 𝑔(𝑣𝑖) = True.
2. (No higher priorities enabled) There exists no other interaction 𝜎♭ ∈ Σ, (♯, 𝜎♭) ∈ 𝒫Φ such

that ∀𝑖 ∈ {1, . . . ,𝑚} where 𝜎♭ ∈ Σ𝑖, ∃𝑡𝑖♭ = (𝑙𝑖, 𝑔𝑖♭, 𝜎𝑖♭, 𝑓𝑖♭, 𝑙
′′
𝑖) ∈ 𝑇𝑖, 𝑔𝑖♭(𝑣𝑖) = True.

Then for a configuration 𝑐 = (𝑙1, 𝑣1, . . . , 𝑙𝑚, 𝑣𝑚), the configuration after taking an enabled
♯-interaction changes to 𝑐♭ = (𝑙♭1, 𝑣

♭
1, . . . , 𝑙

♭
𝑚, 𝑣♭𝑚):

∙ (May-update for participated components) If ♯ ∈ Σ𝑖, then for transition 𝑡𝑖 =
(𝑙𝑖, 𝑔𝑖, ♯, 𝑓𝑖, 𝑙

′
𝑖) ∈ 𝑇𝑖Φ such that 𝑔𝑖(𝑣𝑖) = True, either

65

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

1. 𝑙♭𝑖 = 𝑙′𝑖, 𝑣
♭
𝑖 = 𝑓𝑖(𝑣𝑖), or

2. 𝑙♭𝑖 = 𝑙𝑖, 𝑣♭𝑖 = 𝑣𝑖.
Furthermore, at least one component updates (i.e., select option 1).
∙ (Stutter for unparticipated components) If ♯ ̸∈ Σ𝑖, 𝑙♭𝑖 = 𝑙𝑖, 𝑣♭𝑖 = 𝑣𝑖.

Lastly, the behavior of a ♯-abstract system follows Definition 4. In summary, the above
definitions indicate that in a ♯-abstract system, any local transitions having alphabet
symbols within ΣΦ can be executed in isolation or jointly. Thus, we have the following
result.

Lemma 1. Given a system 𝒮 and its ♯-abstract system 𝒮Φ, define ℛ𝒮 (ℛ𝒮Φ
) be the reachable

states of system 𝒮 (corresponding ♯-abstract system) from from the initial configuration 𝑐0.
Thenℛ𝒮 ⊆ ℛ𝒮Φ

.

Proof. Result from the comparison between Definition 6 and 13.

As alphabet abstraction looses the execution condition by overlooking paired interac-
tions, a ♯-abstract system is deadlock-free does not imply that the concrete system is
deadlock free. E.g., consider a system 𝒮 ′ composed only by 𝐶2 and 𝐶3 in Figure 4.4.
When Φ = Σ∖{𝑏}, its ♯-abstract system 𝒮 ′Φ is shown below. In 𝒮 ′, when 𝐶2 is at location
𝑙21 and 𝐶3 is at location 𝑙31, interaction 𝑒 and 𝑓 are disabled, meaning that there exists
a deadlock from the initial configuration. Nevertheless, in 𝒮 ′Φ, as the ♯-interaction is
always enabled, it is deadlock free.

In the following, we strengthen the deadlock condition by the notion of ♯-deadlock.
Intuitively, a configuration is ♯-deadlocked, if it is deadlocked, or the only interaction
available is the ♯-interaction.

Definition 14 (♯-deadlock). Given a ♯-abstract system 𝒮Φ, a configuration 𝑐 ∈ 𝒞𝒮Φ
is ♯-

deadlocked, if @𝜎 ∈ Σ ∖ ΣΦ, 𝑐
′ ∈ 𝒞𝒮Φ

such that 𝑐 𝜎−→ 𝑐′.

In other words, a configuration 𝑐 of 𝒮Φ is ♯-deadlocked implies that all interactions
labeled with Σ ∖ ΣΦ are disabled at 𝑐.

Lemma 2. Given a system 𝒮 and its ♯-abstract system 𝒮Φ, define𝒟 as the set of deadlock states
reachable from the initial state in 𝒮, and 𝒟♯ as the set of ♯-deadlock states reachable from the
initial state in 𝒮Φ. Then 𝒟 ⊆ 𝒟♯.

Proof. Consider a deadlock state 𝑐 ∈ 𝒟.

1. Based on Lemma 1, 𝑐 is also inℛ𝒮Φ
.

2. In 𝒮, as 𝑐 ∈ 𝒟, all interactions are disabled in 𝑐. Then correspondingly in 𝒮Φ, for
state 𝑐, any interaction 𝜎 ∈ Σ ∖ ΣΦ is also disabled. Therefore, 𝑐 is ♯-deadlocked.

Based on 1 and 2, 𝑐 ∈ 𝒟♯. Thus 𝒟 ⊆ 𝒟♯.

Theorem 2. Given a system 𝒮 and its ♯-abstract system 𝒮Φ, if 𝒮Φ is ♯-deadlock-free, then 𝒮 is
deadlock-free.

66

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

Proof. As 𝒮Φ is ♯-deadlock-free, we haveℛ𝒮Φ
∩𝒟♯ = ∅. According to Lemma 1 and 2, we

haveℛ𝒮 ⊆ ℛ𝒮Φ
and 𝒟 ⊆ 𝒟♯. Henceℛ𝒮 ∩ 𝒟 = ∅, implying that 𝒮 is deadlock-free.

(Algorithmic issues) Based on the above results, the use of alphabet abstraction and the
notion of ♯-deadlock offers a methodology for priority synthesis working on abstrac-
tion. Detailed steps are presented as follows.

1. Given a system 𝒮, create its ♯-abstract system 𝒮Φ by a user-defined ΣΦ ⊆ Σ. In
our implementation, we let users select a subset of components 𝐶𝑠1 , . . . , 𝐶𝑠𝑘 ∈ 𝐶,
and generate ΣΦ = Σ ∖ (Σ𝑠1 ∪ . . . ∪ Σ𝑠𝑘).

∙ E.g., consider system 𝒮 in Figure 4.4 and its ♯-abstract system 𝒮Φ. The ab-
straction is done by looking at 𝐶1 and maintaining Σ1 = {𝑎, 𝑏, 𝑐}.
∙ When a system contains no variables, the algorithm proceeds by eliminate-

ing components whose interaction are completely in the abstract alphabet.
In Figure 4.4, as for 𝑖 = {3 . . .𝑚}, Σ𝑖Φ = {♯}, it is sufficient to eliminate all of
them during the system encoding process.

2. If 𝒮Φ contains ♯-deadlock states, we could obtain a ♯-deadlock-free system by syn-
thesizing a set of priorities 𝒫+, where the defined relation≺+⊆ ((Σ∖ΣΦ)∪{♯})×
(Σ ∖ ΣΦ) using techniques presented in Section 4.4.

∙ In the system encoding, the predicate 𝑃♯𝑑𝑒𝑎𝑑 for ♯-deadlock is defined as
𝑠𝑡𝑔 = False ∧⋀︀

𝜎∈Σ∖ΣΦ
𝜎 = False.

∙ If the synthesized priority is having the form ♯ ≺ 𝜎, then translate it into a
set of priorities

⋃︀
𝜎′∈ΣΦ

𝜎′ ≺ 𝜎.

4.6 Assume-guarantee Based Priority Synthesis

We use an assume-guarantee based compositional synthesis algorithm for behavior
safety. Given a system 𝒮 = (𝐶1 ∪ 𝐶2,Σ,𝒫) and a risk specification described by a
deterministic finite state automaton 𝑅, where ℒ(𝑅) ⊆ Σ*. We use |𝒮| to denote the size
of 𝒮 and |𝑅| to denote the number of states of 𝑅. The synthesis task is to find a set of
priority rules 𝒫+ such that adding 𝒫+ to the system 𝒮 can make it B-Safe with respect
to the risk specification ℒ(𝑅). This can be done using an assume-guarantee rule that we
will describe in the next paragraph.

We first define some notations needed for the rule. The system 𝒮+ = (𝐶1∪𝐶2,Σ,𝒫∪𝒫+)
is obtained by adding priority rules 𝒫+ to the system 𝒮. We use 𝒮1 = (𝐶1,Σ,𝒫∩Σ×Σ1)
and 𝒮2 = (𝐶2,Σ,𝒫 ∩ Σ× Σ2) to denote two sub-systems of 𝒮. We further partition the
alphabet Σ into three parts Σ12, Σ1, and Σ2, where Σ12 is the set of interactions appear
both in the sets of components 𝐶1 and 𝐶2 (in words, the shared alphabet of 𝐶1 and
𝐶2), Σ𝑖 is the set of interactions appear only in the set of components 𝐶𝑖 (in words,
the local alphabet of 𝐶𝑖) for 𝑖 = 1, 2. Also, we require that the decomposition of the
system must satisfy that 𝒫 ⊆ Σ× (Σ1∪Σ2), which means that we do not allow a shared
interaction to have a higher priority than any other interaction. This is required for
the soundness proof of the assume-guarantee rule, as we also explained later that we
will immediately lose soundness by relaxing this restriction. For 𝑖 = 1, 2, the system

67

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

L(A)

L(A)

L(S1+) ∩ L(R)

L(S2+)

Figure 4.5: The relation between the languages.

𝒮𝑖+ = (𝐶𝑖∪{𝑑𝑖},Σ, (𝒫∩Σ×Σ𝑖)∪𝒫𝑖) is obtained by (1) adding priority rules 𝒫𝑖 ⊆ Σ×Σ𝑖

to 𝒮𝑖 and, (2) in order to simulate stuttering transitions, adding a component 𝑑𝑖 that
contains only one location with self-loop transitions labeled with symbols in Σ3−𝑖 (the
local alphabet of the other set of components). Then the following assume-guarantee
rule can be used to decompose the synthesis task into two smaller sub-tasks:

ℒ(𝒮1+) ∩ ℒ(𝑅) ∩ ℒ(𝐴) = ∅ (𝑎)

ℒ(𝒮2+) ∩ ℒ(𝐴) = ∅ (𝑏)

ℒ(𝒮+) ∩ ℒ(𝑅) = ∅ (𝑐)

The above assume-guarantee rule says that 𝒮+ is B-Safe with respect to ℒ(𝑅) iff there
exists an assumption automaton 𝐴 such that (1) 𝒮1+ is B-Safe with respect to ℒ(𝑅) ∩
ℒ(𝐴) and (2) 𝒮2+ is B-Safe with respect to ℒ(𝐴), where 𝐴 is the complement of 𝐴,
𝒫+ = 𝒫1 ∪ 𝒫2 and no conflict in 𝒫1 and 𝒫2. In the following, we prove the above
assume-guarantee rule is both sound and complete. Nevertheless, it is unsound for
deadlock freeness. An example can be found at the beginning of Section 4.5.

Theorem 3 (Soundness). Let 𝒫1 and 𝒫2 be two non-conflicting priority rules, 𝐴 be the as-
sumption automaton, 𝑅 be the risk specification automaton, 𝒮1+ = (𝐶1 ∪ {𝑑1},Σ, (𝒫 ∩ Σ ×
Σ1) ∪ 𝒫1), and 𝒮2+ = (𝐶2 ∪ {𝑑2},Σ, (𝒫 ∩ Σ × Σ2) ∪ 𝒫2), where 𝒫𝑖 ⊆ Σ × Σ𝑖 for 𝑖 = 1, 2
and 𝒫 ⊆ Σ× (Σ1 ∪Σ2). If ℒ(𝒮1+)∩ℒ(𝑅)∩ℒ(𝐴) = ∅ and ℒ(𝒮2+)∩ℒ(𝐴) = ∅. The priority
rule 𝒫1 ∪ 𝒫2 ensures that the system 𝒮 = (𝐶1 ∪ 𝐶2,Σ,𝒫) is B-Safe with respect to 𝑅.

Proof. First, from ℒ(𝒮1+) ∩ ℒ(𝑅) ∩ ℒ(𝐴) = ∅ and ℒ(𝒮2+) ∩ ℒ(𝐴) = ∅, we can obtain
the relation between those languages described in Figure 4.5. From the figure, one can
see that the two languages ℒ(𝒮1+) ∩ ℒ(𝑅) and ℒ(𝒮2+) are disjoint. This follows that
ℒ(𝒮1+)∩ℒ(𝑅)∩ℒ(𝒮2+) = ∅. By Lemma 3, we have ℒ(𝒮+)∩ℒ(𝑅) ⊆ ℒ(𝒮1+)∩ℒ(𝒮2+)∩
ℒ(𝑅) = ∅. Hence the set of priorities 𝒫1 ∪ 𝒫2 ensures that 𝒮 is B-Safe with respect to
𝑅.

68

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

Lemma 3 (Composition). Let 𝒮1 = (𝐶1 ∪ {𝑑1},Σ,𝒫1), and 𝒮2 = (𝐶2 ∪ {𝑑2},Σ,𝒫2), and
𝒮1+2 = (𝐶1 ∪ 𝐶2,Σ,𝒫1 ∪ 𝒫2) be three systems, where 𝒫𝑖 ⊆ Σ × Σ𝑖 for 𝑖 = 1, 2. We have
ℒ(𝒮1+2) ⊆ ℒ(𝒮1) ∩ ℒ(𝒮2).

Proof. For a word 𝑤 = 𝜎1, . . . , 𝜎𝑛 ∈ ℒ(𝒮1+2), we consider inductively from the first
interaction. If 𝜎1 is enabled in the initial configuration (𝑙1, 𝑣1, . . . , 𝑙𝑛, 𝑣𝑛, . . . 𝑙𝑚, 𝑣𝑚) of
𝒮1+2, then according to Definition 6, we have (1) if 𝜎1 is in the interaction alphabet
of component 𝑐𝑖 ∈ 𝐶1 ∪ 𝐶2, then there exist a transition (𝑙𝑖, 𝑔𝑖, 𝜎1, 𝑓𝑖, 𝑙

′
𝑖) in 𝑐𝑖 such that

𝑔𝑖(𝑣𝑖) = True and (2) there exists no transition (𝑙𝑖, 𝑔𝑖, 𝜎
′, 𝑓𝑖, 𝑙′𝑖) in components of 𝐶1 and

𝐶2 such that 𝑔𝑖(𝑣𝑖) = True and (𝜎1, 𝜎
′) ∈ 𝒫1 ∪ 𝒫2.

We want to show that 𝜎1 is also enabled in the initial configuration of 𝒮1. In order to
do this, we have to prove (1) components in 𝐶1 ∪ {𝑑1} can move with 𝜎1 and (2) there
exists no transition (𝑙𝑖, 𝑔𝑖, 𝜎

′, 𝑓𝑖, 𝑙′𝑖) in 𝐶1 ∪ {𝑑𝑖} such that 𝑔𝑖(𝑣𝑖) = True, 𝑙𝑖 is an initial
location, and (𝜎1, 𝜎

′) ∈ 𝒫1.

∙ For (1), we consider the following cases: (a) If 𝜎1 ∈ Σ12, components of 𝐶1 can
move with 𝜎1 and 𝑑1 can move with 𝜎1 via a self-loop transition. (b) If 𝜎1 ∈ Σ1,
components of 𝐶1 can move with 𝜎1 and it is not an interaction of 𝑑1. (c) If 𝜎1 ∈
Σ2, it is not an interaction of 𝐶1 and 𝑑1 can move with 𝜎1 via a self-loop transition.
Therefore, components in 𝐶1 ∪ {𝑑1} can move with 𝜎1.

∙ For (2), first, it is not possible to have such a transition in any component of 𝐶1

by the definition of 𝒮1+2 and Definition 6. Then, if the transition is in 𝑑𝑖, we have
𝜎′ ∈ Σ2 and it follows that (𝜎, 𝜎′) /∈ 𝒫1 ⊆ Σ× Σ1.

By the above arguments for (1) and (2), 𝜎1 is enabled in the initial configuration of 𝒮1.
By a similar argument, 𝜎1 is also enabled in the initial configuration of 𝒮2.

The inductive step can be proved using the same argument. Thus 𝑤 ∈ ℒ(𝒮1) and
𝑤 ∈ ℒ(𝒮2). It follows that ℒ(𝒮1+2) ⊆ ℒ(𝒮1) ∩ ℒ(𝒮2).

Theorem 4 (Completeness). Let 𝒮+ = (𝐶,Σ,𝒫 ∪ 𝒫+) be a system and 𝑅 be the risk specifi-
cation automaton. If ℒ(𝒮+)∩ℒ(𝑅) = ∅, then there exists an assumption automaton 𝐴, system
components 𝐶1 and 𝐶2 such that 𝐶 = 𝐶1 ∪𝐶2, 𝐶1 ∩𝐶2 = ∅, and two non-conflicting priority
rules 𝒫1 ⊆ Σ×Σ1 and 𝒫2 ⊆ Σ×Σ2 such that ℒ(𝐶1 ∪ {𝑑1},Σ,𝒫 ∪𝒫1)∩ℒ(𝑅)∩ℒ(𝐴) = ∅,
ℒ(𝐶2 ∪ {𝑑2},Σ,𝒫 ∪ 𝒫2) ∩ ℒ(𝐴) = ∅, and 𝒫+ = 𝒫1 ∪ 𝒫2.

Proof. Can be proved by taking 𝐶1 = 𝐶, 𝐶2 = ∅, 𝐴 as an automaton that recognizes Σ*,
𝒫1 = 𝒫+, and 𝒫2 = ∅.

Below we give an example that if we allow the priority 𝒫 to be any relation between
the interactions, then the assume-guarantee rule we used is unsound. The key is that
Lemma 3 will no longer be valid with the relaxed constraints to the priority. In Fig-
ure 4.6, both 𝐶1 and 𝐶2 has only one components, Σ1 = ∅, Σ2 = {𝑐}, and Σ12 = {𝑎, 𝑏}.
Assume that we have the priority rule 𝒫 = {𝑏 ≺ 𝑎} in 𝒮1, 𝒮2, and 𝒮. Then we get
ℒ(𝒮1) = {𝑎}, ℒ(𝒮2) = {𝑏+ 𝑐𝑎}, which implies ℒ(𝒮1)∩ℒ(𝒮2) = ∅. However, ℒ(𝒮) = {𝑏}.
Then we found a counterexample for Lemma 3. This produces a counterexample of
the soundness of the assume-guarantee rule. With a risk specification ℒ(𝑅) = {𝑏}, an
assumption automaton ℒ(𝐴) = Σ*, and priorities 𝒫 = 𝒫1 = 𝒫2 = {𝑏 ≺ 𝑎}, the subtasks

69

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

l1 l2 l3

a

b

a

C1 C2

l4 l6

l5

c

b

Figure 4.6: A counterexample when we allow a shared interaction to have higher pri-
ority than others.

of the assume-guarantee rule can be proved to be B-Safe. However, the system 𝒮 is
not B-Safe with respect to ℒ(𝑅). The reason why Σ12 can not be placed on the right-
hand side of 𝒫 , 𝒫1, and 𝒫2 is because even in the subsystem a shared interaction can
block other interactions successfully, when composing two systems together, it may no
longer block other interactions (as now they need to be paired).

Notice that (1) the complexity of a synthesis task is NP-complete in the number of
states in the risk specification automaton product with the size of the system and (2)
|𝒮| is approximately equals to |𝒮1| × |𝒮2|6. Consider the case that one decomposes the
synthesis task of 𝒮 with respect to ℒ(𝑅) into two subtasks using the above assume-
guarantee rule. The complexity original synthesis task is NP-complete in |𝒮| × |𝑅| and
the complexity of the two sub-tasks are |𝒮1| × |𝑅| × |𝐴| and |𝒮2| × |𝐴|7, respectively.
Therefore, if one managed to find a small assumption automaton 𝐴 for the assume-
guarantee rule, the complexity of synthesis can be greatly reduced. We propose to use
the machine learning algorithm L* [Ang87] to automatically find a small automaton
that is suitable for compositional synthesis. Next, we will first briefly describe the L*
algorithm and then explain how to use it for compositional synthesis.

The L* algorithm works iteratively to find a minimal deterministic automaton recogniz-
ing a target regular language 𝑈 . It assumes a teacher that answers two types of queries:
(a) membership queries on a string 𝑤, where the teacher returns true if 𝑤 is in 𝑈 and false
otherwise, (b) equivalence queries on an automaton 𝐴, where the teacher returns true if
ℒ(𝐴) = 𝑈 , otherwise it returns false together with a counterexample string in the dif-
ference of ℒ(𝐴) and 𝑈 . In the 𝑖-th iteration of the algorithm, the L* algorithm acquires
information of 𝑈 by posing membership queries and guess a candidate automaton 𝐴𝑖.
The correctness of the 𝐴𝑖 is then verified using an equivalence query. If 𝐴𝑖 is not a cor-
rect automaton (i.e., ℒ(𝐴) ̸= 𝑈), the counterexample returned from the teacher will be
used to refine the conjecture automaton of the (𝑖 + 1)-th iteration. The learning algo-
rithm is guaranteed to converge to the minimal deterministic finite state automaton of
𝑈 in a polynomial number of iterations8. Also the sizes of conjecture automata increase
strictly monotonically with respect to the number of iterations (i.e., |𝐴𝑖+1| > |𝐴𝑖| for all
𝑖 > 0).

The flow of our compositional synthesis is in Figure 4.7. Our idea of compositional
synthesis via learning is the following. We use the notations 𝒮+𝑖 to denote the system

6This is true only if the size of the alphabet is much smaller than the number of reachable configurations.
7Since 𝐴 is deterministic, the sizes of 𝐴 and its complement 𝐴 are identical.
8In the size of the minimal deterministic finite state automaton of 𝑈 and the longest counterexample

returned from the teacher.

70

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

L* Algorithm
(ii)L(S+1) ∩ L(R) ∩ L(Ai) = ∅
(i) L(S+2) ∩ L(Ai) = ∅

Priority Synthesis

ce ∈ L(S+2)

Success

Failed

No for (i)

Yes for (i), (ii)

Success, ce

Create priority candidate Create priority candidate to

Joint conflict resolution P+

ce ∈ L(S+2) ∩ L(Ai)

TakeTake

ce ∈ L(S+1) ∩ L(R)∩L(Ai)

Yes, ceCheck

No

Failed

Yes, ce

Failed to synthesize

The system
is safe and
no need to
synthesize

to avoid L(S2) ∩ L(Ai) avoid L(S1) ∩ L(R) ∩ L(Ai)

Yes for (ii)
Yes for (i)
No for (ii)

No for (i), (ii)

Check
Ai

Figure 4.7: The flow of the assume-guarantee priority synthesis.

𝒮𝑖 equipped with a stuttering component. First we use L* to learn the language ℒ(𝒮+2).
Since the transition system induced from the system 𝒮+2 has finitely many states, one
can see that ℒ(𝒮+2) is regular. For a membership query on a word 𝑤, our algorithm
simulates it symbolically on 𝒮+2 to see if it is in ℒ(𝒮+2). Once the L* algorithm poses
an equivalence query on a deterministic finite automaton 𝐴𝑖, our algorithm tests con-
ditions ℒ(𝒮+1) ∩ ℒ(𝑅) ∩ ℒ(𝐴𝑖) = ∅ and ℒ(𝒮+2) ∩ ℒ(𝐴𝑖) = ∅ one after another. So far,
our algorithm looks very similar to the compositional verification algorithm proposed
in [CGP03]. There are a few possible outcomes of the above test

1. Both condition holds and we proved the system is B-Safe with respect to ℒ(𝑅)
and no synthesis is needed.

2. At least one of the two conditions does not hold. In such case, we try to synthesize
priority rules to make the system B-Safe (see the details below).

3. If the algorithm fails to find usable priority rules, we have two cases:

a) The algorithm obtains a counterexample string 𝑐𝑒 in ℒ(𝒮+1) ∩ ℒ(𝑅) ∖ ℒ(𝐴𝑖)
from the first condition. This case is more complicated. We have to further
test if 𝑐𝑒 ∈ ℒ(𝒮+2). A negative answer implies that 𝑐𝑒 is in ℒ(𝐴𝑖)∖ℒ(𝒮+2). This
follows that 𝑐𝑒 can be used by L* to refine the next conjecture. Otherwise, our
algorithm terminates and reports not able to synthesize priority rules.

b) The algorithm obtains a counterexample string 𝑐𝑒 in ℒ(𝒮+2) ∖ ℒ(𝐴𝑖) from
the second condition, in such case, 𝑐𝑒 can be used by L* to refine the next
conjecture.

The deterministic finite state automata 𝑅, 𝐴𝑖, and also its complement 𝐴𝑖 can be treated
as components without data and can be easily encoded symbolically using the ap-
proach in Section 4.4.1. Also the two conditions can be tested using standard symbolic
reachability algorithms.

71

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

Compositional Synthesis

Recall that our goal is to find a set of suitable priority rules via a small automaton 𝐴𝑖.
Therefore, before using the 𝑐𝑒 to refine and obtain the next conjecture 𝐴𝑖+1, we first
attempt to synthesis priority rules using 𝐴𝑖 as the assumption automaton. Synthesis
algorithms in previous sections can then be applied separately to the system composed
of {𝒮+1 , 𝑅, 𝐴𝑖} and the system composed of {𝒮+2 , 𝐴𝑖} to obtain two non-conflicting prior-
ity rules 𝒫1𝑖 ⊆ (Σ1 ∪Σ12)×Σ1 and 𝒫2𝑖 ⊆ (Σ2 ∪Σ12)×Σ2. Then 𝒫1𝑖 ∪𝒫2𝑖 is the desired
priority for 𝒮 to be B-Safe with respect to 𝑅. To be more specific, we first compute the
CNF formulae 𝑓1 and 𝑓2 (that encode all possible priority rules that are local, i.e., we
remove all non-local priority candidates) of the two systems separately using the algo-
rithms in Section 4.4, and then check satisfiability of 𝑓1 ∧ 𝑓2. The priority rules 𝒫1𝑖 and
𝒫2𝑖 can be derived from the satisfying assignment of 𝑓1 ∧ 𝑓2.

4.7 Evaluation: The VISSBIP toolkit

We implemented the presented algorithms (except connection the data abstraction
module in D-Finder [BGL+11]) in the VISSBIP9 tool and performed experiments to
evaluate them. In this section, we first illustrate how to use VISSBIP to construct and
synthesize systems, followed by presenting our experimental results.

4.7.1 Visualizing Simple Interaction Systems

The user can construct a system using the drag-and-drop functionality of VISSBIP’s
graphical user interface shown in Figure 4.8. BIP objects (components, places, prop-
erties, and edges) can be simply dragged from the menu on the left to the drawing
window on the right.

We use the system shown in Figure 4.8 to illustrate how a system is represented.
The system consists of two components (Process1 and Process2) represented as
boxes. Each component has two places (high and low) and a local variable (var1
and var2, respectively). A place (also called location) is represented by a circle. A
green circle indicates that this place is an initial location of a behavioral component.
E.g., place low is marked as initial in Process1. Squares denotes variables defini-
tions and their initialization within a component. E.g., var1 and var2 are both ini-
tialized to 1. Edges between two locations represent transitions. Each transition is
of the format {precondition} port-name {postcondition}. E.g., the transi-
tion of Process1 from place low to high is labeled with port name a and upon
its execution the value of var1 is increased by 1. For simplicity we use port-name
bindings to construct interactions between components, i.e., that transitions using the
same port name are automatically grouped to a single interaction and are executed
jointly10. In the following, we refer to an interaction by its port name. Finally, addi-

9Available for download at http://www6.in.tum.de/~chengch/vissbip
10It is possible to pass data through an interaction. The user specifies the data flow associated to an

interaction in the same way she describes priorities. For details, we refer readers to the manual

72

http://www6.in.tum.de/~chengch/vissbip

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

Figure 4.8: Model construction using VISSBIP.

tional squares outside of any component, are used to define system properties such
as priorities over interactions and winning conditions (for synthesis or verification).
In particular, we use the keyword PRIORITY to state priorities. E.g., the statement
Process2.d < Process1.b means that whenever interactions b and d are avail-
able, the BIP engine always executes b. The keyword RISK is used to state risk
conditions. E.g., the condition RISK = {(Process1.high, Process2.high)}
states that the combined location pair (Process1.high, Process2.high) is never
reached. Apart from the stated conditions, we also implicitly require that the system is
deadlock-free, i.e., at anytime, at least one interaction is enabled. When only deadlock
avoidance is required, the keyword DEADLOCK can be used instead. Lines started with
are comments.

4.7.2 Safety synthesis by adding global priorities: examples

The user can invoke the synthesis engine on a system like to one shown in Figure 4.8.
The engine responds in one of the following three ways: (1) It reports that no additional
priorities are required. (2) It returns a set priority constraints that ensure the stated
property. (3) It states that no solution based on priorities can be found by the engine.

Figure 4.9 shows the Strategy panel of VISSBIP, which displays the results ob-
tained by invoking the synthesis engine on the example of Figure 4.8. Recall,
that in the example, we stated that the combined location pair (Process1.high,
Process2.high) is never reached. The engine reports that the priority constraint
Process1.a < Process2.f should be added. Note that if the system is in state
(Process1.low, Process2.low), then the interaction Process1.a (which is a joint
action from Process 1 and Process 2) would immediately leads to a risk state (a state sat-

73

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

Figure 4.9: The automatically synthesized priority for the model in Figure 4.8.

isfying the risk condition). This can be avoided by executing Process2.f first. The
new priority ensures that interaction f is executed forever, which is also deadlock-
free.

4.7.3 Example: Dining Philosophers Problem Revisited

We continue with the second example: How can priority synthesis be used as a tech-
nique to automatically generate solutions for the dining philosophers problem - a clas-
sic problem concerning resource contention among multiple processes.

The system modeled using VISSBIP in Figure 4.10 represents three philosophers sitting
around a table (the property square), where one fork is located between two philoso-
phers. As modeled in Figure 4.10, each philosopher always takes his/her left fork first.
Once he has the left fork, he takes his right fork. It can be observed that philosophers
may create deadlock when each one is holding a fork and is waiting for others to release
the fork.

VISSBIP generates three priorities, which can be viewed as politeness rules to yield
others using the fork: At any instance, each philosopher should wait to take his left fork if
he found that the philosopher to his left is able to take the fork between them. With some
pondering, it can be proved that the three priority rules specified in Figure 4.10 are
sufficient to avoid deadlock.

This example indicates the potential of priority synthesis for resource protection prob-
lems. For the set of priority fixes generated by VISSBIP (like the rules for philosophers),
it can be further refined as distributed / centralized protocols to orchestrate compo-
nents achieving goal-oriented behavior.

74

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

Figure 4.10: The dining philosopher problem modeled using VISSBIP.

4.7.4 Evaluation

To observe how our algorithm scales, in Table 5.7 we summarize results of synthesizing
priorities for the dining philosophers problem11. Our preliminary result in [CBJ+11]
fails to synthesize priorities when the number of philosophers is greater than 15 (i.e.,
a total of 30 components), while currently we are able to solve problems of 50 within
reasonable time. By analyzing the bottleneck, we found that 50% of the execution time
are used to construct clauses for transitive closure, which can be easily parallelized.
Also the synthesized result (i) does not starve any philosopher and (ii) ensures that
each philosopher only needs to observe his left and right philosopher, making the re-
sulting priority very desirable. Contrarily, it is possible to select a subset of components
and ask to synthesize priorities for deadlock freedom using alphabet abstraction. The
execution time using alphabet abstraction depends on the number of selected compo-
nents; in our case we select 4 components thus is executed extremely fast. Of course,

11Evaluated under Intel 2.93GHz CPU with 2048Mb RAM for JVM.

75

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

Table 4.1: Experimental results
Time (seconds) # of BDD variables

Problem NFM1 Opt.2 Ord.3 Abs.4 NFM Opt. Ord. Abs.
Phil. 10 0.813 0.303 0.291 0.208 202 122 122 38
Phil. 20 - 86.646 0.755 0.1 - 242 242 38
Phil. 25 - - 1.407 0.193 - - 302 38
Phil. 30 - - 3.74 0.235 - - 362 38
Phil. 35 - - 5.913 0.185 - - 422 38
Phil. 40 - - 10.21 0.197 - - 482 38
Phil. 45 - - 18.344 0.231 - - 542 38
Phil. 50 - - 30.384 0.288 - - 602 38
DPU v1 5.335 0.299 x x 168 116 x x
DPU v2 4.174 0.537 1.134R x 168 116 116R x
Traffic x x 0.651 x x x 272 x
1 Engine based on [CBJ+11].
2 Dense variable encoding
3 Opt. + initial variable ordering
4 Alphabet abstraction
R Priority repushing
x Not evaluated
- Timeout / not evaluated

the synthesized result is not very satisfactory, as it starves certain philosopher. Never-
theless, this is unavoidable when overlooking interactions done by other philosophers.
Except the traditional dining philosophers problem, we have also evaluated on (i) a
BIP model (5 components) for data processing in digital communication (DPU; See
Appendix 4.10.2 for description), (ii) a simplified protocol of automatic traffic control
(Traffic), and (iii) an antenna model for the Dala robot. The antenna model has 25 com-
ponents, and the engine is able to synthesize priorities to avoid deadlock within 30
seconds. Our preliminary evaluation on compositional priority synthesis is in Ap-
pendix 4.10.3.

4.8 Related Work

For deadlock detection, well-known model checking tools such as SPIN [Hol04] and
NuSMV [CCGR99] support deadlock detection by given certain formulas to specify
the property. D-Finder [BGL+11] applies compositional and incremental methods to
compute invariants for an over-approximation of reachable states to verify deadlock-
freedom automatically. Nevertheless, all the above tools do not provide any deadlock
avoidance strategies when real deadlocks are detected.

Synthesizing priorities is subsumed by the framework of controller synthesis pro-
posed by Ramadge and Wohnham [RW89], where the authors proposed an automata-
theoretical approach to restrict the behavior of the system (the modeling of environ-
ment is also possible). Essentially, when the environment is modeled, the framework
computes the risk attractor and creates a centralized controller. Similar results us-

76

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

ing centralized control can be dated back from [BHG+93] to the recent work by Au-
tili et al [AINT07] (the SYNTHESIS tool). Nevertheless, the centralized coordinator
forms a major bottleneck for system execution. Transforming a centralized controller
to distributed controllers is difficult, as within a centralized controller, the execution of
a local interaction of a component might need to consider the configuration of all other
components.

Priorities, as they are stateless, can be distributed much easier for performance and
concurrency. E.g., the synthesized result of dining philosophers problem indicates that
each philosopher only needs to watch his left and right philosophers without consider-
ing all others. We can continue with known results from the work of Graf et al. [GPQ10]
to distribute priorities, or partition the set of priorities to multiple controllers under lay-
ered structure to increase concurrency (see work by Bonakdarpour et al. [BBQ11]). Our
algorithm can be viewed as a step forward from centralized controllers to distributed
controllers, as architectural constraints (i.e., visibility of other components) can be en-
coded during the creation of priority candidates. Therefore, we consider the recent
work of Abujarad et al.[ABK09] closest to ours, where they proceeds by performing
distributed synthesis (known to be undecidable [PR90]) directly. In their model, they
take into account the environment (which they refer it as faults), and consider handling
deadlock states by either adding mechanisms to recover from them or preventing the
system to reach it. It is difficult to compare two approaches directly, but we give hints
concerning performance measure: (i) Our methodology and implementation works on
game concept, so the complexity of introducing the environment does not change. (ii)
In [ABK09], for a problem of 1033 states, under 8-thread parallelization, the total execu-
tion time is 3837 seconds, while resolving the deadlock of the 50 dining philosophers
problem (a problem of 1038 states) is solved within 31 seconds using our monolithic
engine.

Lastly, the research of deadlock detection and mechanisms of deadlock avoidance is
an important topic within the community of Petri nets (see survey paper [LZW08] for
details). Concerning synthesis, some theoretical results are available, e.g., [IMA02], but
efficient implementation efforts are, to our knowledge, lacking.

4.9 Summary

In this chapter, we explain the underlying algorithm for priority synthesis and propose
extensions to synthesize priorities for more complex systems. Figure 4.11 illustrates
a potential flow of priority synthesis. A system can be first processed using data ab-
straction to create models suitable for our analysis framework. Besides the monolithic
engine, two complementary techniques are available to further reduce the complexity
of problem under analysis. Due to the stateless property and the fact that they pre-
serve deadlock-freedom, priorities can be relatively easy implemented in a distributed
setting. Concretizing the concept, we implement VISSBIP for constructing simple BIP
systems together with a technique called priority synthesis, which automatically adds
priorities over interactions to maintain system safety and deadlock-freedom.

Lastly, as priority synthesis is essence a method of synthesizing simple component glues

77

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

Priority synthesis via localization and repair

Data abstraction
(connecting w. D-Finder)

Alphabet
abstraction

Compositional
reasoning

input

output

S
S
P+

Choice 2Choice 1

Handling Complexity

Figure 4.11: The framework of priority synthesis presented in this chapter, where the
connection with the D-Finder tool [BGL+11] is left for future work.

for conflict resolution, under suitable modifications, our technique is applicable for mul-
ticore/manycore systems working on task models for resource protection, which is our
next step.

78

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

4.10 Appendix

4.10.1 On the Hardness of Priority Synthesis

In this section, we formulate priority synthesis for BIP systems using the automata-
theoretic framework proposed by Ramadge and Wonham [RW89]. In this framework,
priority synthesis results in searching for a supervisor from the restricted class of su-
pervisors, in which each is solidly expressible using priorities. While priority-based su-
pervisors are easier to use, e.g., they support the construction of distributed protocols,
they are harder to compute. Then we focus on the hardness of synthesizing priorities
and show that finding a supervisor based on priorities that ensures deadlock freedom
of the supervised system is NP-complete.

4.10.1.1 Formulating BIP Models and Priority Synthesis based on Transition
Systems

We first translate simple BIP models (without variables) into automata, i.e., the logi-
cal discrete-event system (DES) model in [RW89]. Given a simple BIP model, we can
always construct the transition system representing the asynchronous product of its
components. We follow the definitions in [RW89] to simplify a comparison between
priority synthesis and the controller synthesis technique.

Definition 15 (Transition System). We define a transition system (called a logical DES model
or generator in [RW89]) as a tuple 𝐺 = (𝑄,Σ, 𝑞0, 𝛿), where
∙ 𝑄 is a finite set of states,

∙ Σ is a finite set of event or interaction labels, called interaction alphabet,
∙ 𝑞0 is the initial state, i.e., 𝑞0 ∈ 𝑄,
∙ 𝛿 : 𝑄×Σ→ 𝑄 ∪ {⊥} is a transition function mapping a state and an interaction label

to a successor state or a distinguished symbol ⊥ that indicates that the given state and
interaction pair has no successor. If 𝛿(𝑞, 𝜎) = ⊥ for some 𝑞 ∈ 𝑄 and 𝜎 ∈ Σ, then we
say 𝛿(𝑞, 𝜎) is undefined. We slightly abuse the notation and extend 𝛿 to sequences of
interactions in the usual way, i.e., 𝛿(𝑞, 𝜖) = 𝑞 and 𝛿(𝑞, 𝑤𝜎) = 𝛿(𝛿(𝑞, 𝑤), 𝜎) with 𝑤 ∈ Σ*

and 𝜎 ∈ Σ.
Denote the size of the transition system to be |𝑄|+ |Σ|+ |𝛿|.

Figure 4.12 illustrates the transition system for the BIP model in Figure 4.8. Transitions
in dashed lines are blocked by the priorities. Note that for the formulation in [RW89],
a logical DES model is able to further partition Σ into Σ𝑐 (controllable input) and Σ𝑢

(uncontrollable input), i.e., a transition system can also model a game. For systems
translated from BIP models the partition is not required. However, our hardness result
of cause applies to the alphabet-partitioned setting as well. We define the run of 𝐺
on a word 𝑤 = 𝑤0 . . . 𝑤𝑛 ∈ Σ* as the finite sequence of states 𝑞0𝑞1...𝑞𝑛+1 such that
for all 𝑖, 0 ≤ 𝑖 ≤ 𝑛, 𝛿(𝑞𝑖, 𝑤𝑖) = 𝑞𝑖+1. Note that if 𝛿(𝑞𝑖, 𝑤𝑖) is undefined for some 𝑖,
then there exists no run of 𝐺 on 𝑤. A state 𝑞 ∈ 𝑄 with no outgoing transitions, i.e.,
∀𝜎 ∈ Σ, 𝛿(𝑞, 𝜎) = ⊥, is called deadlock state. A system 𝐺 has a deadlock if there exists

79

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

low, low low, high

high, highhigh, low

f e

d

bab

c

d

c, e

(not existing due to d ≺ b)

Figure 4.12: The transition system for the BIP model (without variables) in Figure 4.8.

a word 𝑤 such that the run 𝑞0 . . . 𝑞|𝑤| of 𝐺 on 𝑤 ends in a deadlock state, i.e., 𝑞|𝑤| is a
deadlock state.

We now define the concept of supervisor, i.e., machinery that controls the execution of
the system by suppressing transitions.

Definition 16 (Supervisor). Given 𝐺 = (𝑄,Σ, 𝑞0, 𝛿), a supervisor for 𝐺 is a function 𝒞 :
𝑄×Σ→ {True,False}. The transition system 𝐺𝒞 obtained from 𝐺 under the supervision
of 𝒞 is defined as follows: 𝐺𝒞 = (𝑄,Σ, 𝑞0, 𝛿𝒞) with 𝛿𝒞(𝑞, 𝜎) = 𝛿(𝑞, 𝜎) ̸= ⊥, if 𝒞(𝑞, 𝜎) = True,
and 𝛿𝒞(𝑞, 𝜎) = ⊥ otherwise.

Definition 17. Given 𝐺 = (𝑄,Σ, 𝑞0, 𝛿), a zero-effect supervisor 𝒞∅ is a supervisor that
disables all undefined interactions, i.e., interactions leading to ⊥. Formally, for all states 𝑞 ∈ 𝑄
and interactions 𝜎 ∈ Σ, 𝒞∅(𝑞, 𝜎) = False iff 𝛿(𝑞, 𝜎) = ⊥. Note that 𝒞∅ has no effect on 𝐺,
i.e., 𝐺𝒞∅ = 𝐺.

Given a transition system, adding priorities to the system can be viewed as masking
some transitions. The masking can be formulated using supervisors.

Definition 18 (Priorities). Given an interaction alphabet Σ, a set of priorities 𝒫 is a finite
set of interaction pairs defining a relation ≺ ⊆ Σ × Σ between the interactions. We called
a priority set legal, if the relation ≺ is (1) transitive and (2) non-reflexive (i.e., there are no
circular dependencies) [GS03].

We are only interested in legal sets, as a supervisor from a non-legal set of priorities
may induce more deadlocks over the existing system. Note that given an arbitrary set,
we can easily check if there exists a corresponding legal set.

Definition 19 (Priority Supervisor). Given a transition system 𝐺 = (𝑄,Σ, 𝑞0, 𝛿) and a legal
priority set 𝒫 =

⋃︀𝑛
𝑖=0 𝜎𝑖 ≺ 𝜎′

𝑖
12 with 𝜎𝑖, 𝜎

′
𝑖 ∈ Σ, we define the corresponding supervisor 𝒞𝒫

inductively over the number of priority pairs as follows:
12We write 𝜎𝑖 ≺ 𝜎′

𝑖 instead of (𝜎𝑖, 𝜎
′
𝑖) to emphasize that priorities are not symmetric.

80

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

c11 = x1 c12 = ¬x2 c13 = x3

c21 = x2 c22 = ¬x3 c23 = ¬x4

⊥

c31 = ¬x4 c32 = ¬x3 c33 = ¬x2

>

x1

x1 x2

x2
x2

x2

x2

x2 x3

x3

x3

x3

x3

x3

x4

x4

x4

x4

r

Figure 4.13: The reduced system from the 3SAT instance 𝜑 = 𝑐1 ∧ 𝑐2 ∧ 𝑐3, where 𝑐1 :=
(𝑥1 ∨ ¬𝑥2 ∨ 𝑥3), 𝑐2 := (𝑥2 ∨ ¬𝑥3 ∨ ¬𝑥4), 𝑐3 := (¬𝑥4 ∨ ¬𝑥3 ∨ ¬𝑥2).

∙ Base case: 𝒞𝒫 = 𝒞∅, if 𝒫 = {}
∙ Inductive step: Let 𝒫 ′ = 𝒫 ∪ {𝜎𝑘 ≺ 𝜎′

𝑘}, then for all state 𝑞 ∈ 𝑄, if 𝒞𝒫(𝑞, 𝜎𝑘) =
𝒞𝒫(𝑞, 𝜎′

𝑘) = True, then 𝒞𝒫 ′(𝑞, 𝜎′
𝑘) = False and for all interactions 𝜎 ̸= 𝜎′

𝑘 :
𝒞𝒫 ′(𝑞, 𝜎) = 𝒞𝒫(𝑞, 𝜎), otherwise for all 𝜎 ∈ Σ : 𝒞𝒫 ′(𝑞, 𝜎) = 𝒞𝒫(𝑞, 𝜎).

Definition 20 (Safety). Given a transition system 𝐺 = (𝑄,Σ, 𝑞0, 𝛿) and the set of risk states
𝑄𝑟𝑖𝑠𝑘 ⊆ 𝑄, the system is safe if the following conditions holds.
∙ (Risk-free) ∀𝑤 ∈ Σ*, if 𝛿(𝑞0, 𝑤) ̸= ⊥, then 𝛿(𝑞0, 𝑤) ̸∈ 𝑄𝑟𝑖𝑠𝑘

∙ (Deadlock-free) ∀𝑤 ∈ Σ*, ∃𝜎 ∈ Σ s.t. if 𝛿(𝑞0, 𝑤) ̸= ⊥, then 𝛿(𝑞0, 𝑤𝜎) ̸= ⊥.
A system that is not safe is called unsafe.

Note that by removing all outgoing transitions for risk states every risk state is also a
deadlock state. Therefore, risk-freeness reduces to deadlock-freeness and there is no
need to handled it separately.

Definition 21 (Priority Synthesis). Given a transition system 𝐺 = (𝑄,Σ, 𝑞0, 𝛿), and the
set of risk states 𝑄𝑟𝑖𝑠𝑘 ⊆ 𝑄, priority synthesis searches for a set of priorities 𝒫 such that 𝐺
supervised by 𝒞𝒫 is safe.

4.10.1.2 Priority Synthesis is NP-Complete

We now state the main result, i.e., the problem of priority synthesis is NP-complete.

81

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

Theorem 5. Given a transition system 𝐺 = (𝑄,Σ, 𝑞0, 𝛿), finding a set 𝒫 of priorities such
that 𝐺 under 𝒞𝒫 is safe is NP-complete in the size of 𝐺.

Proof. Given a set of a priorities 𝒫 , checking if 𝐺𝒞𝒫 is safe can be done in polynomial
time by a simple graph search in 𝐺𝒞𝒫 for reachable states that have no outgoing edges.
Therefore, the problem is in NP.

For the NP-hardness, we give a polynomial-time reduction from Boolean 3-
Satisfiability (3-SAT) to Priority Synthesis. Consider a 3-SAT formula 𝜑 with the
set of variables 𝑋 = {𝑥1, . . . , 𝑥𝑛} and the set of clauses 𝐶 = {𝑐1, . . . , 𝑐𝑚}, where
each clause 𝑐𝑖 consists of the literals 𝑐𝑖1, 𝑐𝑖2, and 𝑐𝑖3. We construct a transition sys-
tem 𝐺𝜑 = (𝑄,Σ, 𝑞0, 𝛿) using Algorithm 4. The transition system has one state for
each literal 𝑐𝑗𝑖 and two designated states ⊤ and ⊥, indicating if an assignment sat-
isfies or does not satisfy the formula. For each variable 𝑥, the alphabet Σ of 𝐺
includes two interactions 𝑥𝑖 and 𝑥𝑖 indicating if 𝑥 is set to true or false, respec-
tively. The transition system consists of 𝑚 layers. Each layer corresponds to one
clause. The transitions allows one to move from layer 𝑖 to the layer 𝑖 + 1 iff the cor-
responding clause is satisfied. E.g., consider the 3SAT formula 𝜑 = 𝑐1 ∧ 𝑐2 ∧ 𝑐3 with
𝑐1 := (𝑥1 ∨¬𝑥2 ∨𝑥3), 𝑐2 := (𝑥2 ∨¬𝑥3 ∨¬𝑥4), 𝑐3 := (¬𝑥4 ∨¬𝑥3 ∨¬𝑥2), Figure 4.13 shows
the corresponding transition system.

We prove that 𝜑 is satisfiable iff there exists a set of priorities 𝒫 such that 𝐺𝜑 supervised
by 𝒞𝒫 is safe, i.e., in 𝐺𝜑 supervised by 𝒞𝒫 the state ⊥ is unreachable.

(→) Assume that 𝜑 is satisfiable, and let 𝑣 : 𝑋 → {0, 1} be a satisfying assignment.
Then, we create the priority set 𝒫 as follows:

𝒫 := {𝑥 ≺ 𝑥 | 𝑣(𝑥) = 1} ∪ {𝑥 ≺ 𝑥 | 𝑣(𝑥) = 0}

E.g., consider the example in Figure 4.13, a satisfying assignment for 𝜑 is 𝑣(𝑥1) = 1
and 𝑣(𝑥2) = 𝑣(𝑥3) = 𝑣(𝑥4) = 0, then we obtain 𝒫 = {𝑥1 ≺ 𝑥1, 𝑥2 ≺ 𝑥2, 𝑥3 ≺
𝑥3, 𝑥4 ≺ 𝑥4}.
Recall that 𝐺𝜑 under 𝒞𝒫 is safe iff it never reaches the state ⊥. In 𝐺𝜑, we can only
reach the state⊥, if the priorities allows us, in some layer 𝑖, to move from 𝑐𝑖1 to 𝑐𝑖2
to 𝑐𝑖3 and from there to ⊥. This path corresponds to an unsatisfied clause. Since
the priorities are generated from a satisfying assignment, in which all clauses are
satisfied, there is no layer in which we can move from 𝑐𝑖1 to ⊥.

(←) For the other direction, consider a set of priorities 𝒫 . Let 𝒫 ′ be the set of all
priorities in 𝒫 that refer to the same variable, i.e., 𝒫 ′ = {𝑝 ≺ 𝑞 ∈ 𝒫 | ∃𝑥 ∈ 𝑋 :
(𝑝 = 𝑥 ∧ 𝑞 = 𝑥) ∨ (𝑝 = 𝑥 ∧ 𝑞 = 𝑥)}. Since 𝒫 is a valid set of priorities (no
circular dependencies), the transition system 𝐺𝜑 has the same set of reachable
states under 𝒞𝒫 and under 𝒞𝒫 ′ . There, the state ⊥ is also avoided with using the
set 𝒫 ′. Given 𝒫 ′, we construct a corresponding satisfying assignment as follows:

𝑣(𝑥) =

⎧⎪⎨⎪⎩
0 𝑥 ≺ 𝑥 ∈ 𝒫 ′

1 𝑥 ≺ 𝑥 ∈ 𝒫 ′

0 otherwise.

82

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

Algorithm 4: Transition System Construction Algorithm
Data: 3SAT Boolean formula 𝜑 with 𝑛 variables and 𝑚 clauses
Result: Transition System 𝐺𝜑 = (𝑄,Σ, 𝑞0, 𝛿)
begin

𝑄 := {⊤,⊥}
for clause 𝑐𝑖 = (𝑐𝑖1 ∨ 𝑐𝑖2 ∨ 𝑐𝑖3), 𝑖 = 1, . . . ,𝑚 do

𝑄 := 𝑄 ∪ {𝑐𝑖1, 𝑐𝑖2, 𝑐𝑖3}
Σ =

⋃︀
𝑖=1...𝑛{𝑥𝑖, 𝑥𝑖} ∪ {𝑟}

for clause 𝑐𝑖 = (𝑐𝑖1 ∨ 𝑐𝑖2 ∨ 𝑐𝑖3) with variables 𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, 𝑖 = 1, . . . ,𝑚 do
if 𝑖 ̸= 𝑚 then

/* Connect the truth assignment to state 𝑐(𝑖+1)1 */
if 𝑥𝑖1 appears positive in 𝑐𝑖1 then

𝛿(𝑐𝑖1, 𝑥𝑖1) := 𝑐(𝑖+1)1; 𝛿(𝑐𝑖1, 𝑥𝑖1) := 𝑐𝑖2
else

𝛿(𝑐𝑖1, 𝑥𝑖1) := 𝑐(𝑖+1)1; 𝛿(𝑐𝑖1, 𝑥𝑖1) := 𝑐𝑖2

if 𝑥𝑖2 appears positive in 𝑐𝑖2 then
𝛿(𝑐𝑖2, 𝑥𝑖2) := 𝑐(𝑖+1)1; 𝛿(𝑐𝑖2, 𝑥𝑖2) := 𝑐𝑖3

else
𝛿(𝑐𝑖2, 𝑥𝑖2) := 𝑐(𝑖+1)1; 𝛿(𝑐𝑖2, 𝑥𝑖2) := 𝑐𝑖3

if 𝑥𝑖3 appears positive in 𝑐𝑖3 then
𝛿(𝑐𝑖3, 𝑥𝑖3) := 𝑐(𝑖+1)1; 𝛿(𝑐𝑖3, 𝑥𝑖3) := ⊥

else
𝛿(𝑐𝑖2, 𝑥𝑖3) := 𝑐(𝑖+1)1; 𝛿(𝑐𝑖3, 𝑥𝑖3) := ⊥

else
/* Connect the truth assignment to ⊤ */
if 𝑥𝑖1 appears positive in 𝑐𝑖1 then

𝛿(𝑐𝑖1, 𝑥𝑖1) := ⊤; 𝛿(𝑐𝑖1, 𝑥𝑖1) := 𝑐𝑖2
else

𝛿(𝑐𝑖1, 𝑥𝑖1) := ⊤; 𝛿(𝑐𝑖1, 𝑥𝑖1) := 𝑐𝑖2

if 𝑥𝑖2 appears positive in 𝑐𝑖2 then
𝛿(𝑐𝑖2, 𝑥𝑖2) := ⊤; 𝛿(𝑐𝑖2, 𝑥𝑖2) := 𝑐𝑖3

else
𝛿(𝑐𝑖2, 𝑥𝑖2) := ⊤; 𝛿(𝑐𝑖2, 𝑥𝑖2) := 𝑐𝑖3

if 𝑥𝑖3 appears positive in 𝑐𝑖3 then
𝛿(𝑐𝑖3, 𝑥𝑖3) := ⊤; 𝛿(𝑐𝑖3, 𝑥𝑖3) := ⊥

else
𝛿(𝑐𝑖2, 𝑥𝑖3) := ⊤; 𝛿(𝑐𝑖3, 𝑥𝑖3) := ⊥

𝛿(⊤, 𝑟) := ⊤
𝑞0 := 𝑐11
return (𝑄,Σ, 𝑞0, 𝛿)

83

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

a

b b

ab

a

v1

v2

v3

vrisk

Figure 4.14: An example where priority synthesis is unable to find a set of priorities.

The size the transition system 𝐺𝜑 is polynomial in 𝑛 and 𝑚. In particular, the transition
system 𝐺𝜑 has 3 ·𝑚+2 states, 2 ·𝑛+1 interaction letters, and 2 ·3 ·𝑚+1 transitions.

4.10.1.3 Discussion

The framework of priority systems in [GS03, BBS06, CBJ+11] offers a methodology to
incrementally construct a system satisfying safety properties while maintaining dead-
lock freedom. In this thesis, we use an automata-theoretic approach to formulate the
problem of priority synthesis, followed by giving an NP-completeness proof. We con-
clude that, although using priorities to control the system has several benefits, the price
to take is the hardness of an automatic method which finds appropriate priorities. Also,
based on the formulation, it is not difficult to show that it is possible to find a super-
visor in the framework of Ramadge and Wonham [RW89] while priority synthesis is
unable to find one. This is because priorities are stateless properties, and sometimes to
achieve safety, executing interactions conditionally based on states is required. E.g., for
the transition system in Figure 4.14, applying priority 𝑎 ≺ 𝑏 or 𝑏 ≺ 𝑎 is unable to ensure
system safety, but there exists a supervisor (for safety) which disables 𝑏 at state 𝑣2 and
𝑎 at 𝑣3.

4.10.2 Data Processing Units in Digital Communication

In digital communication, to increase the reliability of data processing units (DPUs),
one common technique is to use multiple data sampling. We have used VISSBIP to
model the components and synchronization for a simplified DPU. In the model, two
interrupts (SynchInt and SerialInt respectively) are invoked sequentially by a
Master to read the data from a Sensor. The Master may miss any of the two in-
terrupts. Therefore, SerialInt records whether the interrupt from SynchInt is lost
in the same cycle. If it is missed, SerialInt will assume that the two interrupts have
read the same value in the two continuous cycles. According to the values read from
the two continuous cycle, Master calculates the result. In case that the interrupt from
SerialInt is missing in the second cycle or both interrupts are missing in the first
cycle, Master will not calculate anything. Ideally, the calculation result from Master
should be the same as what is computed in SerialInt. The mismatch will lead to
global deadlocks.

The synthesis of VISSBIP focuses on the deadlock-freedom property. First, we have se-

84

4. Application A. Priority Synthesis: Theories, Algorithms, and Tools

lected the non-optimized engine. VISSBIP reports that it fails to generate priority rules
to avoid deadlock, in 4.174 seconds with 168 BDD variables. Then we have selected the
optimized engine and obtained the same result in 0.537 seconds with 116 BDD vari-
ables. The reason of the failure is that two contradictory priority rules are collected in
the synthesis. Finally, we have allowed the engine to randomly select a priority be-
tween the contradicts (priority-repushing). A successful priority is finally reported in
1.134 seconds to avoid global deadlocks in the DPU case study.

4.10.3 Compositional Priority Synthesis: A Preliminary Evaluation

Lastly, we conduct preliminary evaluations on compositional synthesis using dining
philosophers problem. Due to our system encoding, when decomposing the philoso-
phers problem to two subproblems of equal size, compare the subproblem to the origi-
nal problem, the number of BDD variables used in the encoding is only 22.5% less. This
is because the saving is only by replacing component construction with the assump-
tion; for interactions, they are all kept in the encoding of the subsystem. Therefore, if
the problem size is not big enough, the total execution time for compositional synthesis
is not superior than than monolithic method, as the time spent on inappropriate as-
sumptions can be very costly. Still, we envision this methodology more applicable for
larger examples, and it should be more applicable when the size of alphabet is small
(but with lots of components).

85

86

CHAPTER 5

Application B. Requirements and Optimizations for Software
Controller Synthesis - Extending PDDL with Game Semantics

Abstract
In this chapter, we study how to bring software controller synthesis to the level which is
easy for engineers to use. As existing methodologies in LTL synthesis for reactive sys-
tem design are not directly applicable for synthesizing component-based systems, we
alternatively extend the behavioral description language PDDL with game concepts.
Although the use of such high-level language eases modeling and creates understand-
able code, the size of the created game can be excessively large. We view and adapt
program optimization techniques as the key weapon for solving games locally, creat-
ing drastic performance gain. Results are implemented as an extension of the GAVS+
tool (called MGSyn), and in our evaluation, we have created automatic translation from
the generated control strategy to executable control code for a demonstrator of FESTO
modular production system.

Contents
5.1 Introduction . 88
5.2 PDDL and its Extension for Games . 90
5.3 Algorithms for Symbolic Game Creation, Game Solving, and Strat-

egy Creation . 94
5.4 Program Optimization for Local Game Solving 99
5.5 Implementation and Evaluation . 105
5.6 Summary . 112

87

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

5.1 Introduction

The motivation of this chapter starts with the goal of letting end-users perform con-
troller synthesis to the level which is light-weight for them to describe the system
while synthesizing the result within reasonable time. For this to be possible we fo-
cus on building easy-to-use tools. During our tool construction, we have encountered
the following challenges.

∙ (Challenge A: Ease of modeling) Our first task is to let engineers be comfortable
to describe a system setup, i.e., from a user’s perspective, to describe a system
under an appropriate level of abstraction. E.g, a user may define basic abili-
ties of each component as atomic actions separately (for component reuse). Then
based on individual problems, the user specifies topologies how systems are in-
terconnected from components, together with the specification1. For the above re-
quirements, we consider existing approaches in LTL synthesis in reactive system
design not directly applicable, as for such input language it is more hardware-
oriented, i.e., the user specifies input and output variables and their relation as a
whole. Therefore, we extend PDDL [GAI+98, FL03] (the de-facto language in AI
planning) under the game-theoretic concept, enabling users to model a system
with parameterized control actions as well as the behavior of the environment.
Also, we enable users to specify logic specifications formally using PDDL-like
formats.

∙ (Challenge B: Efficient game solving) After the first step, our engine performs
translation and solves a game under various winning conditions (e.g., reachabil-
ity, Buchi, Generalized Reactivity (1) conditions [PPS06]) to synthesize high-level
control actions; from these actions, executable code for dedicated platform is cre-
ated by automatic refinement. Although high-level language facilitates the use
of modeling, the size of the created arena is always formidably high. This low-
ers the speed of game solving drastically and hinders its applicability to complex
systems.

In this work, we do not propose new algorithms to solve games (as winning
conditions mentioned above are well studied). Instead, we argue that efficient
synthesis relies on performing game-solving algorithms on a subarena of inter-
est (based on the specification). We demonstrate that techniques within program
optimization under the context of controller synthesis may be viewed as weapons for lo-
cal game solving, leading to powerful performance gain in overall synthesis time.
Our methodology, as it is based on static checking, can be extended to existing
framework in LTL synthesis as preprocessing techniques.

∙ (Challenge C: Ease of refinement) Due to our language construct, the generated
strategy can already be presented in a user-understandable way where refine-
ment is likely. However, we also observe that (1) many applications are code

1We refer readers to Section 5.5 for an example how atomic actions are extracted from the FESTO modular
production system.

88

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

blocks chained together and executed repeatedly, and (2) it is difficult to under-
stand the strategy in reactive form, as programmers are used to sequential and
forward reasoning (while attractor is computed backwards). Therefore, for reach-
ability games, we further sequentialize the generated strategy based on extracting
witness from the attractor computation, such that users can freely choose between
sequentialized-reactive or reactive code.

For evaluation, we have extended our open-source tool GAVS+ which enables users
to easily construct and to automatically synthesize Java-like controller programs (with
support of various winning conditions), such that further refinement to platform spe-
cific code is likely.

∙ From the planning community, we have reused and modified examples from the
PDDL4J library [PDD], the MBP tool [BCP+01], as well as benchmarks from the
international planning competition. The main purpose is to obtain an idea con-
cerning our preprocessing scheme in subarena creation. We try to apply it on
basic planning problems where no environment move is modeled, and compare
with other PDDL-based planners. Despite that our program is implemented in
Java, it competes with them (implemented in C++, including those which uses
CUDD library) concerning the overall planning time on selected benchmarks. In
addition, our game setting enables us to create controllers for complex conditions
than these planners.

∙ From the verification community, we have reused examples from the paper by
Piterman, Pnueli, and Saár [PPS06]. Although our implementation is not as effi-
cient as other synthesis tools such as Anzu [JGWB07] or Unbeast [Ehl11], thanks
to the parameterized feature of actions, the generated strategy can be tailored by
our algorithm for the ease of understanding rather than merely outputting bit
patterns. We also report examples in (1) SW synthesis for FESTO MPS system
prototyping and (2) SW synthesis for model-train controller prototyping. E.g.,
for FESTO MPS model domain, without any optimization the generated strategy
has more than 8000 lines of code, while optimization enables to create highly un-
derstandable sequentialized-reactive code with < 500 lines. For FESTO MPS, for
educational purposes we have also created scripts supporting automatic transla-
tion from our synthesized behavioral-level code to executable.

The rest of the chapter is presented as follows. Section 5.2 reviews PDDL concerning
its syntax and semantics, followed by our extension to allow the description of a sec-
ond player. Section 5.3 describes the underlying translation algorithm which creates
symbolic encoding for linking to game engines. We briefly summarize GR(1) condition
and its algorithm in Section 5.3.2. For postprocessing and serialize reactive programs
(under reachability condition), we outline its algorithm in Section 5.3.3. Section 5.4
describes our preprocessing scheme based on program optimization. Section 5.5 de-
scribes our implementation and collects the experimental result. We briefly conclude
in Section 5.6.

(Motivating scenario) Throughout this chapter, we consider a classical scenario in ar-
tificial intelligence, where the goal is to develop intelligence for a (robot) monkey to
accomplish certain tasks. Figure 5.1 illustrates the experiment setup. There are four

89

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

p2 p3 p4p1

Figure 5.1: An illustration for the monkey experiment in AI.

positions p1, p2, p3 and p4 where a box, a knife, a fountain, a glass, as well as the
monkey can be placed arbitrarily based on the initial configuration. The banana is
hanging on the top of one location. The goal of the monkey may vary from simple
reachability (e.g., to drink water) to complicated ones involving subgoal achievement
(e.g., to repeatedly drink water and eat banana). Assume the goal of the monkey is to
get the banana hanging at high place, the monkey shall grasp the knife, push the box
to dedicated positions, climb up the box, and finally, cut the banana with the knife. We
refer the above sequence of actions as a plan for the task.

5.2 PDDL and its Extension for Games

5.2.1 PDDL: Syntaxes and Semantics

As the entire PDDL language is too broad for processing, we focus on a small portion
of PDDL (which we refer it as core PDDL) which is commonly seen from our collected
examples2. Table 5.1 summarizes the result, where requirements represent subsets of
features categorized in PDDL. For the ease of explanation, we omit typing in all of our
definitions (while it is implemented). For details concerning the PDDL language, we
refer interested readers to [GAI+98, FL03] for a full-blown manual.

In general, an instance under planning consists of two parts [GAI+98].

∙ A domain contains parameterized system descriptions, including constants,
predicates and actions (action schemata).

∙ A problem specifies what planners intend to solve. It contains objects, the initial
configuration and the goal specification.

Definition 22 (PDDL domain: Syntax [GAI+98]). Define the Extended BNF3 for a domain
in (core) PDDL by contents in Figure 5.2. Lines starting with characters ";" are comments.

[Example] Figure 5.3 contains the domain description for the monkey experiment.

∙ We define 6 constants, namely monkey, box, knife, bananas, waterfounntain
and glass.

2PDDL is designed with the anticipation that only a few planners will handle the entire PDDL lan-
guage [GAI+98].

3In Extended BNF form [GAI+98], symbol "*" represents zero or more elements, symbol "+" represents at
least one element, symbol "|" represents or, and objects enclosed in square brackets are optional fields.

90

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

Table 5.1: Requirements supported in our implementation. Descriptions of each
requirement are from the PDDL tutorial [GAI+98] and the PDDL4J li-
brary [PDD]

Requirement Description Supported?
:strips Basic STRIPS-style. Supported1

:negative-preconditions Allows not in goal and Supported
preconditions descriptions.

:disjunctive-preconditions Allows or in goal and Supported
preconditions descriptions.

:equality Supports = as built-in predicate. Supported
:conditional-effects Allows when in action effects Supported
:typing Allows type names in declaration Supported

of variables.
:safety Allows :safety conditions not supported

for a domain. in PDDL4J23

1 Currently quantification over objects is not supported for simplicity issues. Users may rewrite the
quantification by enumerating concrete objects in the problem. Also, we only support predicates
with two parameters.

2 We use (and extend) PDDL4J as our front-end language parser.
3 In our implementation the user may specify safety constraints.

∙ We define predicates, which are operators or functions that return a value that
is either true or false based on its parameters. For example, location ?x
takes an object (using one variable ?x) an returns the truth assignment.

∙ We define action schemata for the domain. For example, consider the action
GRAB-BANANAS.

– It uses one parameter ?y.

– To execute the action, it should satisfy the precondition where the monkey is
at location parameterized by ?y (location ?y), has the knife (hasknife)
and stands on the box (onbox ?y). Also the banana should be at location
?y (at bananas ?y).

– The effect turns the predicate hasbananas to true.

Definition 23 (PDDL problem: Syntax [GAI+98]). Define the Extended BNF for a problem
in (core) PDDL using contents in Figure 5.4 (for items defined previously in Definition 22,
it is not defined repeatedly). We use the <goal> field to store reachability, safety and Büchi
conditions, and for generalized reactivity conditions they are offered to the synthesis engine as
additional input.

[Example] Figure 5.5 contains the problem description of the monkey experiment.

∙ The problem pb1 is connected to the monkey domain in Figure 5.3.

∙ Objects including 4 locations (p1, p2, p3, p4) are created. All 4 constants specified
in the domain are used in the problem.

∙ The initial configuration specifies a scenario that the monkey is in p1, standing on
the floor without having a knife or a glass.

∙ The target of fetching the banana is described in the goal statement
":goal (and (hasbananas))", i.e., the purpose of the planning problem is to
reach the configuration where banana is fetched.

91

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

<domain> := (define (domain <name>)
[<extension-def>]
[<require-def>]
[<constants-def>]
[<predicate-def>]
<action-def>*)

<extension-def> := (:extends <domain-name>)
<require-def> := (:requirements <require-key>+)
<constants-def> := (:constants <name>+)
<predicates-def> := (:predicates <atomic formula skeleton>+)
<atomic formula skeleton> := (<predicate> <variable>*)
<predicate> := <name>
<variable> := ?<name>
<name> := identifier
<require-key> := Follow Table 5.1

<action-def> := (:action <action functor>
:parameters (<variable>*)
<action-def body>)

<action functor> := <name>
<action-def body> := :precondition <goal description> :effect <effect>
<goal description> := (and <goal description>*) | (not <goal description>)

| (not <goal description>) | <literal(term)>
<literal(t)> := <atomic formula(t)>

| (not <atomic formula(t)>)
<atomic formula(t)> := (<predicate> t*)
<term> := <name> | <variable>
<effect> := (and <effect>*) | <atomic formula(term)>

| (not <atomic formula(term)>) | (when <goal description> <effect>)

Figure 5.2: Extended BNF for the domain in PDDL (partially modified from [GAI+98]).

5.2.1.1 Configuration and Semantics

It is not difficult to observe that a problem under a given domain can be translated to a
transition system with a given initial state (all variables not appearing in the description
of :init are considered as false in initial state) and a set of goal states (all variables
not appearing in the description of :goal are considered as don’t-cares). Therefore,
the configuration and semantics follow the standard definition of automata.

5.2.2 Extension to Games

We focus on extensions to two-player, turn-based games over finite arena, while exten-
sions to other game types are left as future work. To fix our notation we refer player-0
as the system (with controllable moves) and player-1 as the environment (with uncon-
trollable moves). Our syntactic extension is achieved with two additional steps.

1. Introduce a binary predicate P0TRAN on each action in the domain file to partition
player-0 and player-1 states and transitions. For a given configuration, when
P0TRAN is evaluated to true, it is a system (player-0) configuration; otherwise it
represents an environment (player-1) configuration.

2. On the requirement field (:requirements), introduce a new requirement
":game". Also, ":negative-preconditions" should be added for game solv-

92

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

(define (domain monkey)
(:requirements :strips)
(:constants monkey box knife bananas waterfountain glass)
(:predicates (location ?x) (on-floor) (at ?m ?x) (hasknife) (onbox ?x)

(hasbananas) (hasglass) (haswater))
;; movement and climbing
(:action GO-TO

:parameters (?x ?y)
:precondition (and (location ?x) (location ?y) (on-floor)

(at monkey ?y))
:effect (and (at monkey ?x) (not (at monkey ?y))))

(:action GRAB-BANANAS
:parameters (?y)
:precondition (and (location ?y) (hasknife)

(at bananas ?y) (onbox ?y))
:effect (hasbananas))

(:action CLIMB
...)

(:action PUSH-BOX
...)

(:action GET-KNIFE
...)

(:action PICK-GLASS
...)

(:action GET-WATER
...)

)

Figure 5.3: The domain of the monkey experiment described using PDDL.

<problem> := (define (problem <name>)
(:domain <name>)

[<require-def>]
[<object declaration>]
[<init>]
<goal>)

<object declaration> := (:objects <name>+)
<init> := (:init <literal(name)>+)
<goal> := (:goal <goal description>)

Figure 5.4: Extended BNF for the problem in PDDL (partially modified from [GAI+98]).

(define (problem pb1)
(:domain monkey)
(:objects p1 p2 p3 p4 bananas monkey box knife waterfountain glass)
(:init (location p1) (location p2) (location p3) (location p4)

(at monkey p1) (on-floor) (at box p2) (at bananas p3) (at knife p4)
(at waterfountain p1) (at glass p2)

)
(:goal (and (hasbananas)))

)

Figure 5.5: The problem instance of the monkey experiment described using PDDL.

93

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

ing. This is because for environment moves, the precondition always comes with
(not P0TRAN).

[Example: Monkey-Experimenter Game] We consider a scenario extension where the
banana can be brought to other places by the experimenter. However, the maximum number
of movement done by the experimenter is limited to 1. Also, we assume that the model
operates under a turn-based scenario, i.e., the monkey and the experimenter perform
their moves in alternation. The above scenario can be naturally translated to a two-
player, turn-based game played on finite game graphs.

For the scenario of monkey experiment, let player-0 refer to the monkey and player-
1 refer to the experimenter. Figure 5.6 describes the domain description of the game
(some actions are omitted).

∙ For the introduced predicate, except P0TRAN which is introduced for state parti-
tioning, another predicate banana-moved is introduced to constrain the number
of disturbance moves (which should be at most 1) done by the experimenter.

∙ For existing actions (e.g., GRAB-BANANAS) the precondition statement should
conjunct with predicate "P0TRAN", indicating that it is a player-0 transition. Also,
the effect statement should conjunct with "not (P0TRAN)", indicating that the
next move belongs to the experimenter.

∙ Two additional actions TAKE-BANANAS and STAY-BANANAS are actions belong-
ing to player-1. For action TAKE-BANANAS, it constrains the maximum number
of movements to 1 using the predicate banana-moved.

5.3 Algorithms for Symbolic Game Creation, Game Solving,
and Strategy Creation

5.3.1 Outline of Synthesis

We first summarize the conceptual flow in our implementation when processing plan-
ning/game problems using Figure 5.7. The engine first combines an input instance
from the domain and the problem (domain-problem binding), then solves it with the
appropriate synthesis algorithms based on the specification. If it is impossible to satisfy
the specification, the engine reports a negative result. Otherwise, for planning it reports
an action sequence; for games it returns a strategy automaton (finite state machine) in
Java-like formats. Here we outline the underlying steps for the synthesis framework:

1. Based on the number of objects and predicates used in the problem description,
declare corresponding BDD variables to represent sets of states/transitions in the
symbolic form. Each (BDD) variable is a predicate where each parameter is con-
cretized with an object from the domain. Details of our preprocessing (optimiza-
tion) steps are described in Section 5.4.

2. Create the set of transitions in symbolic form. In the implementation, for each
action, the algorithm first assigns an object from the domain for each parameter.
Then it recursively traverses the abstract syntax tree (AST) of the precondition
and postcondition to build up the formula. Also, during the traversal of the AST

94

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

(define (domain monkey)
(:requirements :strips :negative-preconditions :game)
(:constants monkey box knife bananas waterfountain glass)
(:predicates (location ?x) (on-floor) (at ?m ?x) (hasknife) (onbox ?x)

(hasbananas) (hasglass) (haswater) (P0TRAN) (banana-moved))

...

(:action GRAB-BANANAS
:parameters (?y)
:precondition (and (P0TRAN) (location ?y) (hasknife)

(at bananas ?y) (onbox ?y))
:effect (and (not (P0TRAN)) (hasbananas)))

...

;; experimenter takes banana
(:action TAKE-BANANAS

:parameters (?x ?y)
:precondition (and (not (P0TRAN)) (not (banana-moved))

(location ?x) (location ?y) (at bananas ?y))
:effect (and (P0TRAN) (at bananas ?x) (not (at bananas ?y))

(banana-moved)))
;; experimenter does nothing
(:action STAY-BANANAS

:parameters ()
:precondition (and (not (P0TRAN)))
:effect (and (P0TRAN)))

)

Figure 5.6: The domain of monkey experiments when the experimenter can move the
banana once.

domain problem

PDDL planning engine

domain problem

PDDL game engine

Synthesizable? Synthesizable?

YES NO YES NO

action sequence finite state machine

Report negative

GAVS+GAVS+

Report negative

(a) (b)

Figure 5.7: The conceptual flow executing GAVS+ for (a) planning problems and (b)
game problems.

95

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

of the postcondition, it explicitly records variables being updated. After traversal,
for variable 𝑣 which is not updated, conjunct the generated transition by 𝑣 ↔ 𝑣′ to
ensure that the value of variable 𝑣 remains unchanged (𝑣′ stands for the primed
version).

Detailed steps are as follows.

a) Perform symbolic encoding to create the set of transitions for player-1.

b) Create a list 𝐿, where for each element in the list, it is an player-0 action
whose parameters are concretized by the domain of objects. E.g., in the mon-
key example, the symbolic representation of GRAB-BANANAS(p1) is stored
as an element in the list. List 𝐿 is used to interpret the resulting strategy in
later stages4. The set of transitions for player-0 amounts to the disjunction
over elements in list 𝐿.

3. Execute the engine selected by the user.

∙ For planning (reachability), a forward symbolic reachability engine is in-
voked. During computation, 𝑅𝑒𝑎𝑐ℎ𝑖, the image of symbolic step 𝑖 is stored
in a list as intermediate results. At step 𝑘, if the intersection between 𝑅𝑒𝑎𝑐ℎ𝑘
and the set of goal states 𝐺𝑜𝑎𝑙 is nonempty, perform backward analysis from
𝑅𝑒𝑎𝑐ℎ𝑘 ∩𝐺𝑜𝑎𝑙 to generate the sequence of witness 𝛿1 . . . 𝛿𝑘.

a) During the backward analysis, starting from 𝑊𝑖𝑡0 = 𝑅𝑒𝑎𝑐ℎ𝑘 ∩ 𝐺𝑜𝑎𝑙,
we need to generate 𝑊𝑖𝑡𝑖 from 𝑊𝑖𝑡𝑖−1. This is done by first comput-
ing 𝑃𝑟𝑒(𝑊𝑖𝑡𝑖−1), the preimage of 𝑊𝑖𝑡𝑖−1. Then 𝑊𝑖𝑡𝑖 = 𝑅𝑒𝑎𝑐ℎ𝑘−𝑖 ∩
𝑃𝑟𝑒(𝑊𝑖𝑡𝑖−1).

b) Create 𝛿𝑘−𝑖 by selecting action 𝛿 in 𝐿 such that 𝛿∩𝑊𝑖𝑡𝑘−𝑖+1∩𝑊𝑖𝑡′𝑘−𝑖 ̸= ∅
(𝑊𝑖𝑡′𝑘−𝑖 is the primed version of 𝑊𝑖𝑡𝑘−𝑖).

c) Reset 𝑊𝑖𝑡𝑘−𝑖+1 to by the result of performing existential quantification
over our all primed variables in 𝛿𝑘−𝑖 ∩𝑊𝑖𝑡𝑘−𝑖+1.

d) Continue step (a), (b), and (c) if initial state is not in 𝑊𝑖𝑡𝑘−𝑖+1.

∙ For reachability games, a backward attractor computation engine is invoked.
During the attractor computation, continuously record the set of transitions
𝑇 which leads to the goal state. When the initial state is contained in the
attractor, immediately stop the computation, and intersect 𝑇 with each ele-
ment 𝛿 (concretized action) in 𝐿 to derive the precondition to perform action
𝛿. Lastly, use built-in functions in GAVS+ to parse the precondition and cre-
ate Java-like statements. Details are explained in Section 5.3.3.

∙ For safety and Büchi games, creating the strategy follows the description in
Chapter 2.

∙ We have also created a winning condition combining reachability and safety.
For this criterion, the engine first applies safety game to created the set of all

4When viewing the PDDL engine as LTL synthesis tools, this step brings difference to others such as
Unbeast [Ehl11], where in these tools only bit-patterns can be represented as output. With such list 𝐿,
we can conjunct the generated strategy with concretized actions (both represented in BDDs) in 𝐿 to
derive precise preconditions for executing each action. This makes our generated strategy easier to
understand.

96

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

Figure 5.8: The generated plan for the monkey experiment by GAVS+.

(:action CLIMB_DOWN
:parameters (?x)
:precondition (and (P0TRAN) (not (on-floor)) (location ?x)

(onbox ?x) (at box ?x) (at monkey ?x))
:effect (and (not (P0TRAN)) (on-floor) (not (onbox ?x))))

Figure 5.9: The newly introduced action for a monkey to climb down.

safe transitions 𝛿𝑠𝑎𝑓𝑒 that avoids the set of bad states, followed by computing
the attractor to goal states using 𝛿𝑠𝑎𝑓𝑒 as player-0 moves.

∙ Contents concerning GR(1) are described in Section 5.3.2.

[Example: Planning] Under the problem setting, the result of planning by executing
GAVS+ is indicated on Figure 5.8, matching our expectations. In fact, it can be observed
that the synthesis engine contained in GAVS+ returns the shortest action sequence.

[Example: Monkey-Experimenter Game] Under this problem setting, GAVS+ reports
a negative result: it is impossible to have a strategy which guarantees that the monkey
can get the banana from the initial state. The reason comes from the situation when the
monkey has climbed up on the box, i.e., onbox is true. Under this setting, when the
experimenter moves the banana, the monkey is unable to proceed further, as no action
of climbing down is offered in the domain5.

[Fix of domain] Consider an additional CLIMB-DOWN action is offered in the domain,
similar to the action in Figure 5.96. By executing the action the monkey can step down
from the box (i.e., not (onbox ?x)) and again stand on the floor (on-floor). With

5This example can be found in the GAVS+ software package with the folder
GAVS_plus_Testcase/PDDL/synthesis/monkey/

6This example can be found in the GAVS+ software package with the folder
GAVS_plus_Testcase/PDDL/synthesis/monkeyUpAndDown/

97

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

this new action, GAVS+ is able to create a strategy, which is a finite-state machine (FSM)
outputted to a separate file using Java-like formats.

5.3.2 Solving Games under Generalized Reactivity(1) Conditions

Currently for game solving in PDDL, reachability, safety, Büchi, and Generalized Re-
activity(1) (GR(1)) conditions are supported. For the first three conditions, contents
of solving such games are listed in Chapter 2. In the following, we introduce the last
winning condition and sketch its algorithm.

Synthesizing full LTL specifications is known to be 2EXPTIME-complete (in terms of
the size of the specification) by the work of Pnueli and Ronser [PR89]. However, based
on the experience of Piterman, Pnueli and Saár [PPS06], many specifications in hard-
ware design can be summarized using the following form

(�♦𝑝1 ∧ . . . ∧�♦𝑝𝑚)→ (�♦𝑞1 ∧ . . . ∧�♦𝑞𝑛)

where "�" and "♦" are temporal operators with intuitive meaning of "always" and "in the
future"7, 𝑝𝑖, 𝑞𝑗 are boolean combinations over atomic propositions. Such specification,
called Generalized Reactivity[1] conditions, can be efficiently solved in time cubic to
the size of specification.

[Algorithm Sketch] Computing the winning region for such conditions requires
three layers of nested-fixpoint computation (as GR(1) can be represented as 𝜇-
calculus [Koz83] with alternation depth 3).

∙ The outer fixpoint characterizes the strategy change from moving from 𝑞𝑗 to
𝑞(𝑗+1)%𝑛 and so on (when 𝑞𝑗 is reached, then the system shall try to visit 𝑞(𝑗+1)%𝑛).

∙ The middle fixpoint characterizes the winning region of visiting 𝑞𝑗 .

∙ The inner fixpoint characterizes situations when trying to visit 𝑞𝑗 , it is possible to
perform alternative moves, i.e., to loop within any ¬𝑝𝑖 infinitely when (then the
specification trivially holds).

It is not difficult to observe that the resulting strategy should be a layered state machine,
as it contains functionalities of mode change (i.e., change from reaching 𝑞𝑗 to reaching
𝑞(𝑗+1)%𝑛).

5.3.3 Generating Strategies

We briefly remark on how strategies in game solving are interpreted from BDD to out-
put; we only list out reachability games while other winning conditions are omitted.
Let set 𝑇 be the set of synthesized control transitions leading to the goal. In Sec-
tion 5.3.1, we store a list 𝐿 of set of transitions where each element represents a transi-
tion concretized with parameters. For each 𝛿 in 𝐿,

∙ Intersect with 𝑇 . If the result is not empty, then perform existential quantification
over primed variables to derive the precondition 𝑐 when 𝛿 should be executed.

7Therefore, �♦ represents infinitely often.

98

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

∙ Printout 𝑐 as a union of cubes, and interpret the precondition based on each ele-
ment of the cube.

To create sequentialized-reactive code (see introduction for motivation), here we as-
sume that any execution of a plant transition shall immediately be followed by a con-
trol transition, and the initial state is a control location. Then the algorithm proceeds as
follows.

1. Starting with an initial state 𝑆0, intersect 𝑆0 with 𝑇 to derive the set of transitions
𝑇0 which steps closer to the goal state. Interpret 𝑇0 (using techniques above) as
step 𝑖 = 0 of the controller.

2. From 𝑇0, create the set of states 𝑆1 which is the successor state of 𝑇0 and is outside
of the goal state 𝐺𝑜𝑎𝑙. Partition 𝑆1 to be 𝑆1𝑠𝑦𝑠 ⊎ 𝑆1𝑒𝑛𝑣 by whether a state belongs
to control (𝑆1𝑠𝑦𝑠) or to environment (𝑆1𝑒𝑛𝑣). From 𝑆1𝑒𝑛𝑣, let environment perform
all possible moves to 𝑆1𝑒𝑛𝑣→𝑠𝑦𝑠, again the set of control states.

3. Repeat the first step where replace 𝑆0 by 𝑆1𝑠𝑦𝑠∪𝑆1𝑒𝑛𝑣→𝑠𝑦𝑠 ∖𝐺𝑜𝑎𝑙 and increment 𝑖.
If such a set is empty, then stop the execution, as no remaining states are required
to step closer to goal.

4. Here we assume that initial state is a control state. If the initial state is a plant
state, then first perform all possible environment moves to reach a set of control
states 𝑆′

0, then continue with (1) via replacing 𝑆0 by 𝑆′
0.

5.4 Program Optimization for Local Game Solving

Concerning automatic game creation, a standard translation from a system description
to the corresponding game creates a symbolic encoding of an arena with the num-
ber of locations (and thus the number of BDD-variables) formidably high. Denote
𝑃𝑖 to be the set of predicates of arity 𝑖, and assume 𝑖 ranges from 0 to 2 (which is
applicable for most examples). Furthermore, assume that for all predicates, during
the domain-problem binding, all parameters map to the same domain of constants
𝐶. Then when symbolically encoding the arena, the number of BDD variables used
equals 2(|𝑃0|+ |𝑃1||𝐶|+ |𝑃2||𝐶|2); the constant factor of 2 is used for a variable and its
primed version. With such construction, we are solving a game with an arena of size
2|𝑃0|+|𝑃1||𝐶|+|𝑃2||𝐶|2 .

For example, consider the Hanoi tower domain (from the PDDL4J library [PDD]) in
Figure 5.10, it contains three predicates clear, on, and smaller. Under a problem of 3
pegs and 8 disks (i.e., in PDDL form (:objects peg1 peg2 peg3 d1 d2 d3 d4
d5 d6 d7 d8)), the number of variables during the BDD construction equals 2(11 +
112 + 112) = 506. Although use of typing (i.e., separate between pegs and disks) helps
to alleviate the number of used BDD variables, we still need general variable-reduction
techniques that is applicable for most examples.

To increase the speed of synthesis (game solving), our idea is to construct and solve the
game on a subarena of high interest (based on the specification). In the following, we
use program optimization (static analysis over the domain-problem binding) to achieve
this goal. Formal proofs concerning correctness are not explicitly listed. Nevertheless,

99

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

(define (domain hanoi)
(:requirements :strips)
(:predicates

(clear ?x)
(on ?x ?y)
(smaller ?x ?y)

)
(:action MOVE

:parameters (?disc ?from ?to)
:precondition (and (smaller ?to ?disc)

(on ?disc ?from) (clear ?disc)(clear ?to))
:effect (and (clear ?from) (on ?disc ?to)

(not (on ?disc ?from))(not (clear ?to)))
)

)

Figure 5.10: Hanoi tower domain described using PDDL.

Gvar=T Gvar=F

vini

Reach(vini)

Goal

Figure 5.11: The effect of constant replacement in game solving.

we point out that the underlying correctness claim relies on the concept of invariants,
i.e., given property 𝑝, if

∙ 𝑝 holds on the initial configuration, and

∙ 𝑝 holds on every transition,

then for the set of all reachable states, property 𝑝 holds.

5.4.1 Optimization A: Constant Replacement

The idea behind constant replacement is to find a set of variables (predicates whose
parameters are concretized) whose value never changes during the synthesis process.
With such knowledge, we may omit declaring BDD variables for them and replace
them by true or false during the creation of symbolic transitions instead.

Figure 5.11 illustrates how constant replacement helps to solve a game locally. Let 𝑣𝑖𝑛𝑖
be the initial location of the arena 𝐺𝑣𝑎𝑟=𝑇 ∪𝐺𝑣𝑎𝑟=𝐹 . As for the set of all reachable loca-
tions 𝑅𝑒𝑎𝑐ℎ(𝑣𝑖𝑛𝑖), variable 𝑣𝑎𝑟 is always evaluated to true, then the set of all reachable
locations are within the subarena 𝐺𝑣𝑎𝑟=𝑇 of 𝐺. Therefore, as we are not interested in
𝐺𝑣𝑎𝑟=𝐹 (as it is never reachable), we only need to encode arena 𝐺𝑣𝑎𝑟=𝑇 , and replace
every occurrence of 𝑣𝑎𝑟 by true during our symbolic encoding. In other words, find-

100

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

(define (problem pb1)
(:domain hanoi)
(:requirements :strips)
(:objects peg1 peg2 peg3 d1 d2 d3)
(:init

(smaller peg1 d1) (smaller peg1 d2) (smaller peg1 d3)
(smaller peg2 d1) (smaller peg2 d2) (smaller peg2 d3)
(smaller peg3 d1) (smaller peg3 d2) (smaller peg3 d3)
(smaller d2 d1) (smaller d3 d1) (smaller d3 d2)
(clear peg2)
(clear peg3)
(clear d1)
(on d3 peg1)
(on d2 d3)
(on d1 d2)

)
(:goal (and (on d3 peg3) (on d2 d3) (on d1 d2))
)

)

Figure 5.12: Hanoi tower problem (3 disks and 3 pegs) described using PDDL.

ing a strategy starting from 𝑣𝑖𝑛𝑖 in the whole arena amounts to finding a strategy in
𝐺𝑣𝑎𝑟=𝑇 .

Consider again the problem of Hanoi tower (Figure 5.12), the predicate smaller is
used to describe the relation between (a) peg and disks and (b) two disks. Also from
the action schema in Figure 5.10, predicate smaller, once concretized, never changes
its value (e.g., (smaller peg1 d1) remains true). Therefore, we may safely ignore
the construction of smaller and replace the occurrence in concretized transitions by its
initial value. E.g., in Figure 5.12 during the symbolic transition construction, when en-
countering (smaller peg1 d1) in the precondition, return true. Under a problem
of 3 pegs and 8 disks, the number of variables during the BDD construction drastically
changes from 506 to 2(11 + 112) = 264, leading to a 48% spare of declared variables.

[Algorithm Sketch] Our implemented algorithm is as follows. Given a predicate
𝑝(𝑥1, . . . , 𝑥𝑛) where 𝑥1, . . . , 𝑥𝑛 are of domain 𝐶. If 𝑝 never occurs in any updates
(i.e., postcondition) of an action schema, then omit creating the set of variables
{𝑝(𝑐1, . . . , 𝑐𝑛)|𝑐1, . . . , 𝑐𝑛 ∈ 𝐶}. Furthermore,

∙ If 𝑝(𝑐1, . . . , 𝑐𝑛) occurs positively in the initial configuration of the problem,
then during the creation of symbolic transitions, replace every occurrence of
𝑝(𝑐1, . . . , 𝑐𝑛) by true.

∙ Otherwise, during the creation of symbolic transitions, replace every occurrence
of 𝑝(𝑐1, . . . , 𝑐𝑛) by false.

5.4.2 Optimization B: Binary Compaction

Our second technique is to perform binary encoding on a set of Boolean variables, if we
can be certain that at most one of them can be set to true in any time. E.g., consider
a sample predicate car-in having one parameter ?location, having an intuitive

101

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

vini Reach(vini)

(v1, v2, v3) = {(T, F, F), (F, T, F), (F, F, T), (F, F, F)}

(v1, v2, v3) = {(T, T, F), (F, T, T), (T, F, T), (T, T, T)}

G≤1
G>1 Goal

Figure 5.13: The effect of binary compaction in game solving. 𝐺≤1 (𝐺>1) represents
the subarena from the original arena where at most (least) one variable in
{𝑣1, 𝑣2, 𝑣3} is true.

meaning that it specifies whether a car is in certain city. Assume that for parameter
?location, its domain contains seven cities A, B, ..., G. For this predicate, the set of
three locations and a unique empty symbol (representing the car is not in all locations)
can be encoded as a number in binary format. Such a binary format uses only three
Boolean variables.

Figure 5.13 illustrates how binary compaction helps to solve a game locally. Let 𝑣𝑖𝑛𝑖
be the initial location of the arena 𝐺≤1 ∪ 𝐺>1. As for the set of all reachable locations
𝑅𝑒𝑎𝑐ℎ(𝑣𝑖𝑛𝑖), at most one variable in {𝑣1, 𝑣2, 𝑣3} is evaluated to true, then the set of all
reachable locations are within the subarena 𝐺≤1. Therefore, as we are not interested
in 𝐺>1 (as it is never reachable), we only need to encode arena 𝐺≤1. In other words,
finding a strategy starting from 𝑣𝑖𝑛𝑖 in the whole arena amounts to finding a strategy in
𝐺≤1.

To process, we further assume that the precondition and postcondition are represented
as a single conjunction of literals where negations are pushed close to atomic formula
(this occurs in all testcases of our benchmark suite as well as examples from the PDDL4J
library).

[Algorithm Sketch] Our implemented algorithm is as follows.

∙ (Predicate with one parameter) First perform applicability checking. Given pred-
icate 𝑝(𝑥) where 𝑥 is of domain 𝐶. we use ⌈log(|𝐶| + 1)⌉ binary variables
𝑝[1], . . . , 𝑝[⌈log(|𝐶| + 1)⌉] to represent the set of binary variables {𝑝(𝑐)|𝑐 ∈ 𝐶} if
the following conditions hold.

– In the initial configuration, at most one element {𝑝(𝑐)|𝑐 ∈ 𝐶} can appear
positively.

– For every parameterized action which uses parameters of concrete value
𝑥1, . . . , 𝑥𝑛, either (i) 𝑝 never occurs in both precondition and postcondition,
or (ii)

1. the precondition contains one positive occurrence of 𝑝.

102

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

2. in 1, if 𝑝 uses parameter 𝑥𝑖, then in the postcondition, we allow the fol-
lowing three cases.

a) 𝑝 never occurs.

b) 𝑝(𝑥𝑖) appears negatively.

c) There exists exactly one parameter 𝑥𝑗 , such that (i) 𝑝(𝑥𝑖) appears
negatively and (ii) 𝑝(𝑥𝑗) appears positively.

When the above check holds, order elements in 𝐶 by a list 𝑙𝑖𝑠𝑡(𝐶). Let |𝐶| be the
size of 𝐶. Denote 𝐵𝐷𝐷∪𝑖𝑣𝑎𝑟𝑖=𝑣𝑖 to be a set of transition relations where variable
𝑣𝑎𝑟𝑖 is evaluated to 𝑣𝑖 while other variables are unconstrained, 𝐵𝐷𝐷𝑓𝑎𝑙𝑠𝑒 to be
the empty set and 𝐵𝐷𝐷𝑡𝑟𝑢𝑒 to be the universe. During the creation of symbolic
transitions, in a precondition or a postcondition,

– When encountering 𝑝(𝑐𝑖), replace it by 𝐵𝐷𝐷{𝑝[1]=𝑡1,...,𝑝[⌈log(|𝐶|+1)⌉]=𝑡⌈log(|𝐶|+1)⌉},
where 𝑡⌈log(|𝐶|+1)⌉ . . . 𝑡1 represents the binary encoding of 𝑖𝑛𝑑𝑒𝑥(𝑐𝑖, 𝑙𝑖𝑠𝑡(𝐶)).

* Denote 𝑖𝑛𝑑𝑒𝑥(𝑎, 𝑙) to be the index of 𝑎 in list 𝑙 with starting index value
0.

– When encountering variable ¬𝑝(𝑐1), the algorithm further splits into three
cases.

* (i) When there exists 𝑝(𝑐1), then replace it by 𝐵𝐷𝐷𝑓𝑎𝑙𝑠𝑒 in the construc-
tion.

* (ii) When no 𝑝(𝑐𝑖) occurs, replace it by 𝐵𝐷𝐷{𝑝[1]=𝑡1,...,𝑝[⌈log(|𝐶|+1)⌉]=𝑡⌈log(|𝐶|+1)⌉},
where 𝑡⌈log(|𝐶|+1)⌉ . . . 𝑡1 represents the binary encoding of |𝐶|.
* (iii) When there exists 𝑝(𝑐2) where 𝑐1 ̸= 𝑐2, then omit the construction by

𝐵𝐷𝐷𝑡𝑟𝑢𝑒.

∙ (Predicate with two or more parameters) Currently for predicates with more param-
eters, we check if binary encoding works for the last parameter. E.g., for predi-
cate 𝑝(𝑥1, 𝑥2) where 𝑥1, 𝑥2 are having domain 𝐶, we check if the set of variables
𝑆 = {𝑝(𝑐, 𝑐1), . . . , 𝑝(𝑐, 𝑐𝑛)}, where 𝑐, 𝑐1, . . . , 𝑐𝑛 ∈ 𝐶, we can apply binary encoding
on 𝑆.

We remark on the correctness of such transformation for predicates with one parame-
ter.

∙ (Applicability checking) Using the concept of invariants ensures that within
{𝑝(𝑐)|𝑐 ∈ 𝐶}, at most one of it will be true starting from the initial configuration.
We also need the to represent the case where all of them are false. Therefore,
the set {0 . . . |𝐶|} of numbers suffices, and ⌈log(|𝐶| + 1)⌉ bits are required when
using binary encoding.

∙ (Creating the set of translation relations) When encountering 𝑝(𝑐𝑖), the algo-
rithm only performs a direct translation. However, ¬𝑝(𝑐1) needs to be considered
in detail. The split of three cases matches the case of (b) and (c) in the applicability
check.

1. For case (i), in the original system, conjunction of sets 𝐵𝐷𝐷𝑝(𝑐1)=𝑇 and
𝐵𝐷𝐷𝑝(𝑐1)=𝐹 should return an empty set.

103

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

2. For case (ii), we know that 𝑝 uses parameter 𝑐1 and

– 𝑝(𝑐1) appears positively in the precondition from item 1 of the applica-
bility check.

– 𝑝(𝑐1) appears negatively in the postcondition from item 2(b) of the ap-
plicability check.

Therefore, for variables {𝑝(𝑐)|𝑐 ∈ 𝐶}, none is set to true after the postcon-
dition. Thus we can safely represent it by the unique identifier |𝐶|.

3. For case (iii), if we follow 2, then 𝐵𝐷𝐷𝑝(𝑐2)=𝑇 ∧ 𝐵𝐷𝐷𝑝(𝑐1)=𝐹 in the original
system will turn into 𝐵𝐷𝐷𝑓𝑎𝑙𝑠𝑒 under our encoding, which is an incorrect
result. Therefore, we shall directly return 𝐵𝐷𝐷𝑝(𝑐2)=𝑇 . This is achieved by
omitting the construction of ¬𝑝(𝑐1) (or conjunct with 𝐵𝐷𝐷𝑡𝑟𝑢𝑒).

5.4.3 Optimization C: Goal-indifferent Variable Elimination

Our last optimization aims to identify variables that are unnecessary to satisfy the goal
specification, i.e., if there exists a winning strategy that modifies these variables, then
there exists another winning strategy that leaves them unchanged.

Recall the monkey example, if the goal of the monkey is to fetch the banana, then
whether the monkey holds the glass can be viewed as irrelevant: whenever there ex-
ists a strategy which grasps the glass (and thus changes the hasglass variable), there
exists another strategy that does not include grasping the glass. This knowledge corre-
sponds to inferring from the specification a set of actuators that are not required in the concrete
setup to reach the goal. This computation corresponds to computing the cone-of-influence
computation used in verification.

[Algorithm Sketch] The analysis step for reachability games, which can also be applied
to GR(1) games, proceeds as follows: first, add all variables that appears in the goal
condition, i.e., the variables that do not have a “don’t care” value in the goal condition,
in a set 𝑆. We use the set 𝑆 to store all the variables that have a potential influence on
the goal. Then select a set of actions Δ whose postcondition (i.e., the :effect field
in an action) changes variables in 𝑆. Add the set all variables 𝑆′ which appear in the
precondition (i.e., the :precondition field in an action) of Δ to 𝑆. Repeat until 𝑆
saturates, then treat variables not contained in 𝑆 as ̂︀𝑆. Denote the set of variables used
either in the precondition or in the postcondition by player-1 transitions as 𝑆𝑃1 . Then
variables within ̂︀𝑆 ∖ 𝑆𝑃1 can be omitted for construction.

The correctness relies on the following observations:

∙ For player-1, whether it can perform a move is insensitive to variables in ̂︀𝑆 ∖ 𝑆𝑃1

(i.e., outside 𝑆𝑃1). Therefore, these variables can be omitted for player-1, and we
do not restrict the ability of player-1.

∙ For player-0, to reach the goal, variables within ̂︀𝑆 ∖ 𝑆𝑃1 (i.e., within ̂︀𝑆) are not
useful at all, as they do not appear in all of the possible control decisions leading
to the goal.

E.g., consider the monkey example, where the goal is to fetch the banana. Initially, 𝑆

104

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

contains one element hasbanana. Action GET-BANANA(p3) contains hasbananas
in the postcondition, so we add (location p3), hasknife, (at bananas p3),
and (onbox p3) to 𝑆, as their values can be sensitive to hasbananas. Continue the
process, it can be concluded that hasglass and haswater are not included in 𝑆. Also,
for the experimenter, the set of variables used in MOVE-BANANAS and DO-NOTHING
do not include hasglass and haswater. Therefore, in our symbolic encoding we
safely ignore haswater and hasglass. Subsequently, we ignore constructing actions
PICK-GLASS and GET-WATER, as they only update hasglass and haswater.

5.5 Implementation and Evaluation

5.5.1 Implementation

We have implemented the above features as an extension of GAVS+. To parse input files
with the PDDL format, we use the open source library PDDL4J [PDD]. Concerning the
specification,

∙ To specify reachability, safety, and Büchi conditions, we reuse the :goal field
pre-existed in a PDDL problem.

∙ To specify LTL (GR(1)) conditions, we have explicitly implemented a GR(1) spec-
ification parser using the compiler construction tool JavaCC [Jav], such that users
can specify an LTL specification with an extended format similar to PDDL. Prior
to game solving, the specification is also translated such that 𝑝1, . . . , 𝑝𝑚, 𝑞1, . . . , 𝑞𝑛
are stored separately.

– For example, the following PDDL-like specification is used to specify the fol-
lowing generalized Büchi condition �♦𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑑𝑒𝑝) ∧ �♦𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑠𝑡𝑜𝑟𝑒).
([]<> (and (true))) -> ([]<> (and (position dep)) &&
[]<> (and (position store)))

5.5.2 Evaluation

In this section, we give a discussion between our work with others together with a
preliminary evaluation over our implementation. Results are collected from an Intel 3.0
Ghz Machine (with 4GB RAM). For GAVS+, we allocate 3000MB memory for the Java
Virtual Machine.

5.5.2.1 Effect of variable reduction (subarena creation)

We first give a general evaluation concerning the improvement by our preprocessing.
Table 5.2 summarizes the performance measure on the classic example of Hanoi tower.
We have also listed the result of the built-in GraphPlan algorithm [BF97] (a classic al-
gorithm in AI planning) implemented in PDDL4J [PDD]. Under the preprocessing, we
are able to solve more complex problems within reasonable amount of time. GraphPlan
algorithm scales badly.

105

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

Table 5.2: Experimental results (seconds)
Problem GraphPlan Symbolicn Symbolico Required steps to goal
Hanoi 4 0.69 1.127 0.554 15 steps
Hanoi 5 9.11 1.83 0.602 31 steps
Hanoi 6 t/o 4.34 0.934 63 steps
Hanoi 7 t/o 23.975 1.612 127 steps
Hanoi 8 t/o t/o 1.918 255 steps
Hanoi 9 t/o t/o 2.831 511 steps
Hanoi 10 t/o t/o 5.394 1023 steps
Hanoi 11 t/o t/o 13.515 2047 steps
t/o Timeout (> 400 seconds)
n GAVS+: No optimization
o GAVS+: Optimization based on variable reduction

5.5.2.2 Plan Generation

We continue our evaluation by comparing our implementation with other tools. For
this we have taken PDDL planners from the International Planning Competition
(IPC’11). We have downloaded planners with executables available for download,
namely seq-opt-gamer8 [KE11] and FastDownward [Hel06]9.

Examples in our benchmark suite are either from the PDDL4J library or from the plan-
ning competition10.

∙ (LOGISTICS from PDDL4J) In this domain a set of trucks, airplanes, airports are
located at different cities. The goal is to find a plan of transportation to send
pessengers/goods to desired destinations.

∙ (BARMAN from IPC’11) The following description is from the IPC’11 website: In
this domain there is a robot barman that manipulates drink dispensers, glasses and a
shaker. The goal is to find a plan of the robot’s actions that serves a desired set of drinks.
In this domain deletes of actions encode relevant knowledge given that robot hands can
only grasp one object at a time and given that glasses need to be empty and clean to be
filled.
∙ (VISIT-ALL from IPC’11) In this domain, a robot tries to traverse through all ter-

rains, where connections between terrains are set as constraints.

∙ (GRIPPER from PDDL4J) In this domain, a robot with a specified number of
arms is located in a room. The robot contains several predefined actions such
as pick-object, place-object, or move. The goal is distribute objects to the
their destinations.

Our implementation (Java-based, using JDD as our BDD package) is comparable with
other implementations despite the implemented language. On larger examples, GAVS+

8It won the first place in the 2008 international planning competition (sequential optimization track).
Also, it uses CUDD [CUD] for symbolic manipulation.

9FastDownward is now used by many teams as the initiative for attending the planning competition. It
includes many algorithms prebuilt.

10Examples are directly taken from the repository. We remove the cost function in the Barman example,
so all planners work on actions with unit cost.

106

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

Table 5.3: Experimental results (seconds)
Problem Symbolic𝑜1 Symbolic𝑜2 seq-opt-

gamer
FastDownward𝐻1

Logistics pb0 1.09 1.018 0.875 3.29
Logistics pb1 6.852 7.124 9.474 m, t/o
Logistics pb2 10.616 16.924 p.e. m, t/o
Logistics pb3 3.015 2.18 p.e. p.e.
Logistics pb4 16.63 16.273 14.477 m, t/o
Barman pb1 72.52 23.742 45.631 39.26
Barman pb2 66.088 22.241 70.704 39.97
Barman pb3 66.672 20.727 99.147 39.47
Barman pb4 55.572 21.503 117.996 39.67
Visitall pb4full 0.899 0.873 0.677 0.09
Visitall pb5full 1.762 1.481 3.368 46.52
Visitall pb6full 15.646 23.63 t/o m, t/o
Gripper pb4 1.913 3.3281 0.702 0.06
Gripper pb5 1.799 4.2211 1.149 0.80
Gripper pb6 31.219 57.1831 19.806 m, t/o
Gripper pb7 3.763 8.0791 6.240 m, t/o
t/o Timeout (> 300 seconds)
p.e. Parser error
m Memory error
𝑜1 GAVS+: Optimization based on variable reduction
𝑜2 GAVS+: Optimization based on variable reduction and FORCE ordering [AMS03]
1 GAVS+: The FORCE heuristic is applied only once
𝐻1 FastDownward: Use option -search "astar(blind)" specified in the manual

outperforms on BARMAN and VISIT-ALL domains, while results vary on the LOGISTICS

and GRIPPER domain11. Notice that using SAT or SMT solvers rather than BDD may
achieve better performance. Nevertheless, our purpose is to have an idea concerning
the compactness of our encoding for the use of game solving, and we view this result
only as an additional benefit.

5.5.2.3 Game Solving (A): FESTO MPS System

In this section, we study how PDDL-based game solving can be applied to assist the
control of FESTO MPS12, a modular production system. MPS is mostly used for teach-
ing purposes, but is a very good approximation for a real industrial automation pro-
cess. Each unit of the MPS processes small colored work pieces that are made out of
plastic or metal. Our demonstrator setup (see Figure 5.14) is composed of two modules,
a processing unit and a storage unit.

∙ The processing platform is built up from a rotating plate (green element in Fig-
ure 5.14), together a probe sensor (which tests the form of the workpiece) and a
drilling module (which processes on the workpiece).

11Here we list two results: one with FORCE heuristic and the other without; in our implementation we
tune our heuristic scheme to invoke FORCE when appropriate.

12http://www.festo-didactic.com/int-en/learning-systems/
mps-the-modular-production-system/

107

http://www.festo-didactic.com/int-en/learning-systems/mps-the-modular-production-system/
http://www.festo-didactic.com/int-en/learning-systems/mps-the-modular-production-system/

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

a

b

c

f

e

d

a

b

c

f

e

d

a

b

c

f

e

d

J

Level 3,2,1

Color
Sensor

Height
Probe

Drill

P4

Z A B

C

F

GHI

Storage

Lever 3

Lever 1

Lever 2

Processing

R1

R2

Work pieces
Conveyor belt

Storage Processing

Siemens
LOGO!

Siemens
LOGO!

Microcontroller

FESTO
FEC PLC

FESTO
FEC PLC

Desktop/Laptop

Ethernet (UDP/IP)RS232

Interpreter

Figure 5.14: The FESTO MPS demonstrator setup (up) and screenshot of its actual exe-
cution (down).

∙ The storing station contains a robot arm with a three-layer rack, used to store and
retrieve the object.

∙ Several rods are allocated on certain positions to move the object between the belt
and the module.

We have tried to model components of each module (together with their predefined
actions) using PDDL. Table 5.4 and 5.5 summarize some predicates and parameterized
actions used to specify the system. We then try to specify various specifications and
synthesize controllers (under sequentialized-reactive form)13.

We apply our techniques to synthesize controllers for the FESTO MPS. Table 5.6 reports
the time for the game engine to synthesize the strategy for different test cases. E.g., for
13The FORCE heuristics is not used in the synthesis process, as the number of interactions grows drasti-

cally and makes computing impossible. Instead, we only perform simple adjustments to make vari-
ables using the same constant close. We leave light-weight methods of finding good ordering heuristics
as future work.

108

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

Table 5.4: Predicates defined in the PDDL domain of a FESTO MPS system
Predicate Parameter - Type Intuitive meaning
in-robot ?pos - robotposition robot arm is in ?pos
at ?obj - object object ?obj is at position ?pos

?pos - (robotposition, beltposition, plateposition)
free-hand ?gri - gripper gripper ?gri has no object
carry ?obj - object, ?gri - gripper gripper ?gri carries object ?obj
belt-connected ?pos1, ?pos2 - beltposition transmission belt connected between

?pos1 and ?pos2
rod-located ?pos1, ?pos2 - (robotposition, rod can push from ?pos1 to ?pos2

beltposition, plateposition)
next ?pos1, ?pos2 - plateposition an object on the plate will move from

?pos1 to the next position ?pos2 when
rotating clockwise

drill-position ?pos - plateposition drill is at position ?pos
have-color-sensor ?pos - (robotposition, beltposition, plateposition) color sensor is at ?pos
color-sensor-on ?pos - (robotposition, beltposition, plateposition) color sensor at ?pos is on
color ?obj - object, ?col - colortype object ?obj has color ?col
have-form-sensor ?pos - (robotposition, beltposition, plateposition) form sensor is at ?pos
form-sensor-on ?pos - (robotposition, beltposition, plateposition) form sensor at ?pos is on
form ?obj - object, ?form - formtype object ?obj has shape ?form
P0TRAN none system or environment’s move

test case 3b in Table 5.6, the standard encoding needs a total number of 593×2 variables,
while with optimizations we only use 60 × 2 variables. Here we offer two levels of
optimization. Without optimization even case 2a cannot be synthesized. Deciding how
optimization for synthesis is applied is done automatically and the total time is within
than a second.

1. Our base setting is to move an object from position A to the rack. In this example
we modify the domain to disable all sensor actions, so it amounts to forward
reachability analysis. As the belt moving is only unidirectional (e.g., from A to B),
the generated action sequence has 14 steps consisting (a) belt-moving, (b) plate-
rotating, and (c) robot-arm processing. The processing time is 1.216 seconds.

2. Our first setting is to drill an object and store it on the rack based on the color.
Initially the color value is unknown, and shall only be known when triggering
the color sensor. Thus in our goal specification, we add an additional constraint
specifying that an object shall be of color white, red, or black. Our engine creates
sequentialzed reactive code-blocks in 1.49 seconds.

3. Our second setting is to modify from 1, and it is required that an object shall only
be drilled when it is facing up (formtype: up). When it is placed down, then it
shall be returned to position A back to the operator.

a) When removing one color and one layer of storage, the engine synthesizes
the code in 1.26 seconds.

b) When restricting each layer to only two storage positions, the engine synthe-
sizes the code in 1.36 seconds.

c) When restricting each layer to only three storage positions, the engine syn-
thesizes the code in 1.37 seconds.

4. The last setting is to modify from 2, and use the object detection sensor to detect

109

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

Table 5.5: Actions defined in the PDDL domain of a FESTO MPS system
Action Parameter - Type Intuitive meaning Change
robot-move ?pos1 ?pos2 - robotposition robot arm moves from ?pos1 to ?pos2 Sys -> Sys
robot-pick ?gri - gripper robot arm ?gri picks object ?obj Sys -> Sys

?pos - robotposition, ?obj - object (both at position ?pos)
robot-check ?pos - robotposition trigger sensor to check if ?pos is occupied Sys -> Env
return-check ?pos - robotposition return whether position ?pos is occupied Env -> Sys
robot-drop ?gri - gripper robot arm ?gri drops object ?obj Sys -> Sys

?pos - robotposition, ?obj - object (both at position ?pos)
belt-move ?obj - object, ?pos1 ?pos2 - beltposition belt transfers object ?obj from ?pos1 to ?pos2 Sys -> Sys
drill-in ?obj - object, ?pos - plateposition drill located at position ?pos drills the object Sys -> Sys
plate-rotate ?obj1 ... ?obj6 - object rotate the plate to move the object Sys -> Sys

?pos1 ... ?pos6 - ?plateposition
rod-push ?obj - object push the rod located between ?pos1 and Sys -> Sys

?pos1 ?pos2 - (robotposition, ?pos2 to change the position of object ?obj
beltposition, plateposition)

trigger-color- ?obj - object trigger the color sensor located at ?pos Sys -> Env
sensor ?pos - (robotposition, beltposition,

plateposition)
return-color- ?color - colortype ?obj - object return the color value ?color when the color Env -> Sys
value ?pos - (robotposition, beltposition, sensor located at ?pos is on

plateposition)
trigger-form- ?obj - object trigger the shape-detector located at ?pos Sys -> Env
sensor ?pos - (robotposition, beltposition,

plateposition)
return-form- ?form - formtype ?obj - object return the shape ?form when the Env -> Sys
value ?pos - (robotposition, beltposition, shape-detector located at ?pos is on

plateposition)

whether the rack is full. If it is full, then return object to position A back to the
operator.

a) When removing one color and one layer while restricting each remaining
layer to only two storage positions, the engine synthesizes the code in 1.65
seconds.

b) When removing one color and one layer while restricting each remaining
layer to only three storage positions, the engine synthesizes the code in 2.38
seconds.

c) When restricting each layer to only three storage positions while maintain-
ing three colors, the engine synthesizes the code in 1.97 seconds.

5.5.2.4 Game Solving (B): Other Examples

Table 5.7 summarizes the performance of our synthesis engine on other selected bench-
mark suites.

∙ (ROBOTPLANNING modified from MBP [BCP+01]) In this domain, a robot is
placed in a house with many rooms. The goal varies from simple reachability
to repeatedly visit several rooms (generalized Büchi). We also experiment coor-
dination within two robots: the goal is that two robots shall never be in the same
room, and in our synthesis framework, we let one robot perform its move freely
while the other shall win the safety game.

110

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

Table 5.6: Game solving time on FESTO MPS (seconds)
Case Partial Opt.H1 OptimizationH2 Remark
1 30.42 1.49 Storing by color
2a 29.93 1.26 1 + object detection
2b 86.34 1.36 1 + object detection
2c 97.47 1.37 1 + object detection
3a 231.21 1.65 2 + capacity detection
3b 420.06 2.38 2 + capacity detection
3c t.o. 1.97 2 + capacity detection
H1 Evaluated under an earlier (and slower) version of GAVS+ which is par-

tially optimized. We also raise the default memory setting to 6000 MB for
JVM.

H2 Evaluated under current version of GAVS+. We reduce the default memory
setting to 1000 MB for JVM.

t.o. Time out (> 500 seconds)

∙ (GRIPPER from PDDL4J) In this domain, we model the error of the robot arm, and
the purpose is to achieve goal-oriented behavior.

∙ (ELEVATOR from [PPS06]) In this domain, the request of the user is modeled, and
the goal is a GR(1) specification indicating that request shall be responded. See
the original paper [PPS06] for details.

∙ (MODELTRAIN) Lastly, we try to extract from the example shown in Figure 5.15 a
PDDL model for a train system. In this setting, we model the controller with the
ability to raise the red light (enforce the train to stop) and to perform change over
switches.

– To create precise modeling over interactions between the train and the track,
we have performed case split to partition the set of all tracks into three
categories, i.e., in Figure 5.15 the yellow rectangle (seg), the red circle
(splitsegP1), and the mesh rectangle (splitsegP2). For example, when
a train is on splitsegP2 moving towards splitsegP1, it suffers from de-
railing when two segments are not connected by switch and when no light
signal is on to stop the train.

– The goal is either to perform repeated traversal, to avoid derailing, or to
avoid collision (i.e., two trains are never within the same track during their
service to destinations).

– We have also experimented our variable reduction techniques under the ex-
tension of conditional effects. In this domain, this enables to further reduce
the number of declared variables by 30%.

During our evaluation, we found that it is slightly awkward to model simulta-
neous movement of multiple trains using PDDL, as PDDL lacks the ability to
describe parallel actions (e.g., we must model the behavior of two trains as the
set of product moves explicitly). We plan to support modularity under the exist-
ing framework in near future (similar to the BIP framework for component-based
design in Chapter 4).

111

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

Table 5.7: Experimental results (seconds)
Problem Execution Time𝑅 Remark
MBP pb1 0.401 reachability
MBP pb1 1.4 Büchi
MBP pb1 0.399 GR(1)
MBP pb2 6.45 Safety
MBP pb3 7.435 Safety
Gripper pb1 1.48 reachability
Gripper pb2 2.785 reachability
Gripper pb3 6.529 reachability
Gripper pb4 17.963 reachability
Elevator pb1 6.421 GR(1), 8 floors
Elevator pb2 15.557 GR(1), 16 floors
Elevator pb3 31.67 GR(1), 24 floors
Train pb1 1.163 Simple derail prevention (safety)
Train pb2 15.538 Repeated visit (generalized Büchi)
Train pb3 16.616 Collision avoidance (reachability+safety)
R Total time includes game creation, game solving, and strategy print-out. No opti-

mization (e.g., variable ordering, sequentialize strategy) is used.

5.6 Summary

5.6.1 Relation to other work

We compare our results with existing work in (a) local game solving, (b) planning in
artificial intelligence and (c) LTL synthesis.

Our key insight is to perform faster synthesis by solving games locally. The concept
of local game solving was only used in parity or winning conditions with known com-
plexity at least NP∩ co-NP [FL10, NRZ11]. Our concept to view program optimization
as techniques for local game solving is new, and our focus is only to solve games with
strategy finding in polynomial time, as when encountering large examples, we need to
solve games symbolically. Also, we found work by Marinov et al. [MKB+05] related,
as they also use techniques in program optimization for Alloy Analyzer to create opti-
mized SAT formulas. However, our optimization techniques are different from theirs,
and our transformation amounts to subgame solving.

Concrete theoretical results from synthesis and games encourage us to seek for appli-
cations in various domains. Under this initiative, we find it natural to relate synthesis
with planning problems in AI and robotics. The purpose of planning is to create a
sequence of actions under a given domain and problem setting such that goal configu-
ration can be reached from the initial configuration via configuration updates from the
generated action sequence. In a Dagstuhl seminar held previously in 2006 [KTV06], the
participants drew a conclusion that two fields (planning, synthesis) are intimately re-
lated and encouraged researchers to increase the interaction and collaboration between
two research communities. Nevertheless, for such collaboration to succeed, a platform
sharing mutual knowledge is required (yet lacking) for dialogue, which strengthens
our motivation.

112

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

1

2

3

4

5

6

7 8 9

10

13

11

12

Figure 5.15: The model train system setup (up) and screenshot of its actual execution
(down).

We briefly remark on other PDDL planners. Although a large collection of PDDL spe-
cific solvers is available, only [EK07] (i.e., the implementation seq-opt-gamer) is based
on a similar approach combining planning and games. The goal of [EK07] is to “study
the application and extension of planning technology for general game playing”. Therefore,
we find that games described in [KE11] are mostly AI games (e.g., tic-tac-toe, hanoi
tower specified in [KE11] as benchmark), where most of them are having reachability
objectives. Contrarily, our goal is rather to allow researchers in the verification com-
munity to profit from the rich collection of models coming from the AI community,
while introducing AI community prebuilt algorithms to plan for complex behaviors.
Therefore, our algorithms for safety, Büchi, and GR(1) brings difference with the tool
above. Besides, we have shown in our evaluation that our encoding scheme enables
faster processing (and thus faster game solving), despite of our Java implementation.

The concept of the second player is similar to non-deterministic planning, where un-
certainty can be modeled as the environment move. Thus we also give a brief remark
on the tool MBP [BCP+01], where they seek to perform planning on non-deterministic
domains. They propose three conditions, namely weak, strong, and strong cyclic plan-
ning. The weak condition means to make an optimistic assumption on the environ-
ment’s behavior, thus is equal to normal planning. The strong planning can be viewed
as an instance of reachability game. Lastly, the strong acyclic plan assumes that the
environment player can not indefinitely perform the bad behavior (something close
to almost-sure winning). Our argument over such tools follows from above. AL-

113

5. Application B. Requirements and Optimizations for Software Controller Synthesis -
Extending PDDL with Game Semantics

isp [MRL05] also performs synthesis by letting a user specify non-determinism over
choices, but its strategy finding is based on machine learning.

Concerning LTL synthesis, our main argument is emphasized in the introduction,
where our focus is on building a language with ease of refinement. In addition, our
optimization technique is general for preprocessing. E.g., during the evaluation with
the AMBA bus case study with the Anzu tool, Jobstmann et al. [JGWB07] manually
extract from the specification new mutual exclusion conditions specifying that at most
one variable is active. Then these conditions are added to constrain the system. The
above work can be summarized by our program optimization technique (B) - extract
conditions for binary encoding, but our approach is fully automatic. In our extended
technical report, we have experienced a speed up of an order of magnitude by applying
our optimization techniques on an arbiter example in the tool Anzu. Also, with such
knowledge, we directly change the symbolic encoding to use less BDD variables, thus
increasing the speed of synthesis.

5.6.2 Conclusion

In this chapter, we illustrate how games can be combined with PDDL for synthesizing
component-based systems. Our purpose is to create an easy-to-use modeling language
for behavioral-level synthesis. To create games, we need to adapt program optimiza-
tion techniques to create compact representation such that game engines are able to
synthesize strategies successfully (within reasonable computation resource). Further-
more, the generated strategies shall be further pruned for the ease of understanding.

Currently, we try to apply our results and implementation within two applications,
namely (1) the AutoPnP project, where the purpose is to model the ability of compo-
nents (for FESTO MPS) and use GAVS+ for controller synthesis, and (2) the JAMES
project for human-robot interaction, where the purpose is to create planners subject to
change with guaranteed safety (e.g., Büchi/reachability + safety). We have also cre-
ated a tool called MGSyn [CGR+12b], which uses the underlying engine to automate
the synthesis process for automation systems. To bring practical impact, an ongoing
work is to synthesize controllers with optimality criterion. E.g., it can be interesting
to use sketching [SLRBE05] to parallelize or distribute the generated program for per-
formance considerations. Besides, another direct extension which includes integer cost
(which can also be encoded symbolically using BDDs) for actions is under implemen-
tation. Lastly, to increase the speed of synthesis, we plan to study how other program
optimization techniques can be used while replacing our Java-based BDD engine with
native C implementation.

114

CHAPTER 6

Application C. A Game-Theoretic Approach for Synthesizing
Fault-Tolerant Embedded Systems

Abstract
We present an approach for fault-tolerant synthesis by combining predefined patterns
for fault-tolerance with algorithmic game solving. A non-fault-tolerant system, to-
gether with the relevant fault hypothesis and fault-tolerant mechanism templates in
a pool are translated into a distributed game, and we perform an incomplete search of
strategies to cope with undecidability. One result is that finding a distributed positional
strategy for reachability winning is NP-complete. The result of the game is translated
back to executable code concretizing fault-tolerant mechanisms using constraint solv-
ing. The overall approach is implemented to a prototype tool chain and is illustrated
using examples.

Contents
6.1 Introduction . 116
6.2 Motivating Scenario . 117
6.3 System Modeling . 118
6.4 Step A: Front-end Translation from Models to Games 121
6.5 Step B: Solving Distributed Games . 127
6.6 Step C: Conversion from Strategies to Concrete Implementations . . 135
6.7 Implementation and Case Studies . 137
6.8 Related Work . 141
6.9 Concluding Remarks . 142
6.10 Appendix . 142

115

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

6.1 Introduction

In this chapter, we investigate methods to perform automatic fault-tolerant (FT for
short) synthesis under the context of embedded systems, where our goal is to generate
executable code which can be deployed on dedicated hardware platforms.

Creating such a tool supporting the fully-automated process is very challenging as the
inherent complexity is high: bringing FT synthesis from theory to practice means solv-
ing a problem consisting of (a) interleaving semantics, (b) timing, (c) fault-tolerance,
(d) dedicated features of concrete hardware, and optionally, (e) the code generation
framework. To generate tamable results, we first constrain our problem space to some
simple yet reasonable scenarios (sec. 6.2). Based on these scenarios we can start system
modeling (sec. 6.3) taking into account all above mentioned aspects.

To proceed further, we find it important to observe the approach nowadays to under-
stand the need: for engineers working on ensuring fault-tolerance of a system, once
the corresponding fault model is decided, a common approach is to select some fault-
tolerant patterns [Han07] (e.g., fragments of executable code) from a pattern pool. Then
engineers must fine-tune these mechanisms, or fill in unspecified information in the
patterns to make them work as expected. With the above scenario in mind, apart
from generating complete FT mechanisms from specification, our synthesis technique
emphasizes automatic selection of predefined FT patterns and automatic tuning such
that details (e.g., timing) can be filled without human intervention. This also reduces
a potential problem where unwanted FT mechanisms are synthesized due to under-
specification. Following the statement, we translate the system model, the fault hy-
pothesis, and the set of available FT patterns into a distributed game [MW03] (sec. 6.4),
and a strategy generated by the game solver can be interpreted as a selection of FT
patterns together with guidelines of tuning.

For games, it is known that solving distributed games is, in most cases, undecid-
able [MW03]. To cope with undecidability, we restrict ourselves to the effort of finding
positional strategies (mainly for reachability games). We argue that finding positional
strategies is still practical, as the selected FT patterns may introduce additional mem-
ory during game creation. Hence, a positional strategy (by pattern selection) combined
with selected FT patterns generates mechanisms using memory. By posing this re-
striction, the problem of finding a strategy of the game (for control) is NP-Complete
(sec. 6.5), and searching techniques (e.g., SAT translation or combining forward search
with BDD) are thus applied to assist the finding of solutions.

The final step of the automated process is to translate the result of synthesis back to
concrete implementation: the main focus is to ensure that the newly synthesized mech-
anisms do not change the implementability of the original system (i.e., the new system
is schedulable). Based on our modeling framework, this problem can be translated to a
linear constraint system, which can be solved efficiently by existing tools.

To evaluate our methods, we have created our prototype software, which utilizes the
model-based approach to facilitate the design, synthesis, and code generation for fault-
tolerant embedded systems. We demonstrate two small yet representative examples
with our tool for a proof-of-concept (sec. 6.7); these examples indicate the applicability

116

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

InputRead(m);

MsgSend(m)[0ms, 40ms);

PrintOut(m);

Process A Process B

RecvMsg(m)[60ms, 100ms);

PrintOut(m);

Period = 100ms Period = 100ms

m ∈ {T, F} m ∈ {T, F},mv ∈ {>,⊥}

mv := ⊥;

Process

Variable

Action

Network N

Figure 6.1: An example for two processes communicating over an unreliable network.

of the approach. Lastly, we conclude this chapter with an overview of related work
(sec. 7.5) and a brief summary including the flow of our approach (sec. 6.9).

6.2 Motivating Scenario

6.2.1 Adding FT Mechanisms to Resist Message Loss

We give a motivating scenario in embedded systems to facilitate our mathematical def-
initions. The simple system described in Figure 6.1 contains two processes 𝒜, ℬ and
one bidirectional network 𝒩 . Processes 𝒜 and ℬ start executing sequential actions to-
gether with a looping period of 100𝑚𝑠. In each period, 𝒜 first reads an input using a
sensor to variable 𝑚, followed by sending the result to the network 𝒩 using the action
MsgSend(m), and outputing the value (e.g., to a log).

In process𝒜, for the action MsgSend(m), a message containing value of 𝑚 is forwarded
to𝒩 , and𝒩 broadcasts the value to all other processes which contain a variable named
𝑚, and set the variable 𝑚𝑣 in ℬ as⊤ (indicating that the content is valid). However,𝒜 is
unaware whether the message has been sent successfully: the network component𝒩 is
unreliable, which has a faulty behavior of message loss. The fault type and the frequency
of the faulty behavior are specified in the fault model: in this example for every complete
period (100𝑚𝑠), at most one message loss can occur.

In ℬ, its first action RecvMsg(m) has a property describing an interval [60, 100), which
specifies the release time and deadline of this action to be 60𝑚𝑠 and 100𝑚𝑠, respectively.
By posing the release time and the deadline, in this example, ℬ can finalize its deci-
sion whether it has received the message 𝑚 successfully using the equality constraint
(𝑚𝑣 = ⊥), provided that the time interval [40, 60) between (a) deadline of MsgSend(m)
and (b) release time of RecvMsg(m) overestimates the worst case transmission time for a
message to travel from 𝒜 to ℬ. After RecvMsg(m), it outputs the received value (e.g.,
to an actuator).

Due to the unreliable network, it is easy to observe that two output values may not be
the same. Thus the fault-tolerant synthesis problem in this example is to perform suitable
modification on𝒜 and ℬ, such that two output values from𝒜 and ℬ are the same at the
end of the period, regardless of the disturbance from the network.

117

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

6.2.2 Solving Fault-Tolerant Synthesis by Instrumenting Primitives

To perform FT synthesis in the example above, our method is to introduce several slots
(the size of slots are fixed by the designer) between actions originally specified in the
system. For each slot, an atomic operation can be instrumented, and these actions
are among the pool of predefined fault-tolerant primitives, consisting of message send-
ing, message receiving, local variable modifications, or null-ops. Under this setting
we have created a game, as the original transitions in the fault-intolerant system com-
bined with all FT primitives available constitute the controller (player-0) moves, and
the triggering of faults and the networking can be modeled as environment (player-1)
moves.

6.3 System Modeling

6.3.1 Platform Independent System Execution Model

We first define the execution model where timing information is included; it is used for
specifying embedded systems and is linked to our code-generation framework. In the
definition, for ease of understanding we also give each term intuitive explanations.

Definition 24. Define the syntax of the Platform-Independent System Execution Model
(PISEM) be 𝒮 = (𝒜,𝒩 , 𝒯).
∙ 𝒯 ∈ Q is the replication period of the system.
∙ 𝒜 =

⋃︀
𝑖=1...𝑛𝐴

𝒜𝑖 is the set of processes, where in 𝒜𝑖 = (𝑉𝑖 ∪ 𝑉𝑒𝑛𝑣𝑖 , 𝜎𝑖),
– 𝑉𝑖 is the set of variables, and 𝑉𝑒𝑛𝑣𝑖 is the set of environment variables. For simplicity

assume that 𝑉𝑖 and 𝑉𝑒𝑛𝑣𝑖 are of integer domain.
– 𝜎𝑖 := 𝜎1[𝛼1, 𝛽1); . . . ;𝜎𝑗 [𝛼𝑗 , 𝛽𝑗); . . . ;𝜎𝑘𝑖 [𝛼𝑘𝑖 , 𝛽𝑘𝑖) is a sequence of actions.
* 𝜎𝑗 := send(𝑝𝑟𝑒, 𝑖𝑛𝑑𝑒𝑥, 𝑛, 𝑠, 𝑑, 𝑣, 𝑐) | 𝑎← e | receive(𝑝𝑟𝑒, 𝑐) is an atomic

action (action pattern), where
· 𝑎, 𝑐 ∈ 𝑉𝑖,
· e is function from 𝑉𝑒𝑛𝑣𝑥 ∪ 𝑉𝑖 to 𝑉𝑖 (this includes null-op),
· 𝑝𝑟𝑒 is a conjunction of over equalities/inequalities of variables,
· 𝑠, 𝑑 ∈ {1, . . . , 𝑛𝐴} represents the source and destination,
· 𝑣 ∈ 𝑉𝑑 is the variable which is expected to be updated in process 𝑑,
· 𝑛 ∈ {1, . . . , 𝑛𝑁} is the network used for sending, and
· 𝑖𝑛𝑑𝑒𝑥 ∈ {1, . . . , 𝑠𝑖𝑧𝑒𝑛} is the index of the message used in the network.

* [𝛼𝑗 , 𝛽𝑗) is the execution interval, where 𝛼𝑗 ∈ Q is the release time and 𝛽𝑗 ∈ Q
is the deadline.

∙ 𝒩 =
⋃︀

𝑖=1...𝑛𝑁
𝒩𝑖, 𝒩𝑖 = (𝒯𝑖, 𝑠𝑖𝑧𝑒𝑖) is the set of network.

– 𝒯𝑖 : N → Q is a function which maps the index (or priority) of a message to the
worst case message transmission time (WCMTT).

– 𝑠𝑖𝑧𝑒𝑖 is the number of messages used in 𝒩𝑖.

118

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

[Example] Based on the above definitions, the system under execution in section 6.2.1
can be easily modeled by PISEM: let𝒜, ℬ, and𝒩 in section 6.2.1 be renamed in a PISEM
as 𝒜1, 𝒜2, and 𝒩1. For simplicity, we use 𝒜.𝑗 to represent the variable 𝑗 in process 𝒜,
assume that the network transmission time is 0, and let 𝑣𝑒𝑛𝑣 contain only one variable
𝑣 in 𝒜1. Then in the modeled PISEM, we have 𝒩1 = (𝑓 : N → 0, 1), 𝒯 = 100, and the
action sequence of process 𝒜1 is

𝑚← InputRead(𝑣)[0, 40);send(𝑡𝑟𝑢𝑒, 1, 1, 1, 2,𝑚,𝒜1.𝑚)[0, 40); 𝑣 ← PrintOut(𝑚)[40, 100);

For convenience, we use |𝜎𝑖| to represent the length of the action sequence 𝜎𝑖,
𝜎𝑗 .𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 to represent the deadline of 𝜎𝑗 , and 𝑖𝑆𝑒𝑡(𝜎𝑖) to represent a set containing
(a) the set of subscript numbers in 𝜎𝑖 and (b) |𝜎𝑖|+ 1, i.e., {1, . . . , 𝑘𝑖, 𝑘𝑖 + 1}.

Definition 25. The configuration of 𝒮 is (
⋀︀

𝑖=1...𝑛𝐴
(𝑣𝑖, 𝑣𝑒𝑛𝑣𝑖 ,Δ𝑛𝑒𝑥𝑡𝑖),⋀︀

𝑗=1...𝑛𝑁
(𝑜𝑐𝑐𝑢𝑗 , 𝑠𝑗 , 𝑑𝑗 , 𝑣𝑎𝑟𝑗 , 𝑐𝑗 , 𝑡𝑗 , 𝑖𝑛𝑑𝑗), 𝑡), where

∙ 𝑣𝑖 is the set of the current values for the variable set 𝑉𝑖,
∙ 𝑣𝑒𝑛𝑣𝑖 is the set of the current values for the variable set 𝑉𝑒𝑛𝑣𝑖 ,
∙ Δ𝑛𝑒𝑥𝑡𝑖 ∈ [1, |𝜎𝑖|+ 1] is the next atomic action index taken in 𝜎𝑖

1,
∙ 𝑜𝑐𝑐𝑢𝑗 ∈ {false,true} is for indicating whether the network is busy,
∙ 𝑠𝑗 , 𝑑𝑗 ∈ {1, . . . , 𝑛𝐴},
∙ 𝑣𝑎𝑟𝑗 ∈

⋃︀
𝑖=1,...,𝑛𝐴

(𝑉𝑖 ∪ 𝑉𝑒𝑛𝑣𝑖),
∙ 𝑐𝑗 ∈ Z is the content of the message,
∙ 𝑖𝑛𝑑𝑗 ∈ {1, . . . , 𝑠𝑖𝑧𝑒𝑗} is the index of the message occupied in the network,
∙ 𝑡𝑗 is the reading of the clock used to estimate the time required for transmission,
∙ 𝑡 is the current reading of the global clock.

The change of configuration is caused by the following operations.

1. (Execute local action) For machine 𝑖, let 𝑠 and 𝑗 be the current configuration for
𝑣𝑎𝑟 and Δ𝑛𝑒𝑥𝑡𝑖 , and 𝑣𝑖, 𝑣𝑒𝑛𝑣𝑖 are current values of 𝑉𝑖 and 𝑉𝑒𝑛𝑣𝑖 . If 𝑗 = |𝜎𝑖| + 1
then do nothing (all actions in 𝜎𝑖 have been executed in this cycle); else the action
𝜎𝑗 := 𝑣𝑎𝑟 ← e[𝛼𝑗 , 𝛽𝑗) updates 𝑣𝑎𝑟 from 𝑠 to e(𝑣𝑖, 𝑣𝑒𝑛𝑣𝑖), and changes Δ𝑛𝑒𝑥𝑡𝑖 to
𝑚𝑖𝑛{𝑥|𝑥 ∈ 𝑖𝑆𝑒𝑡(𝜎𝑖), 𝑥 > 𝑗}. This action should be executed between the time
interval 𝑡 ∈ [𝛼𝑗 , 𝛽𝑗).

2. (Send to network) For machine 𝑖, let 𝑠 and 𝑗 be the current configuration for
𝑣𝑎𝑟 and Δ𝑛𝑒𝑥𝑡𝑖 . If 𝑗 = |𝜎𝑖| + 1 then do nothing; else the action 𝜎𝑗 :=
send(𝑝𝑟𝑒, 𝑖𝑛𝑑𝑒𝑥, 𝑛, 𝑠, 𝑑, 𝑣, 𝑐)[𝛼𝑗 , 𝛽𝑗) should be processed between the time inter-
val 𝑡 ∈ [𝛼𝑗 , 𝛽𝑗), and changes Δ𝑛𝑒𝑥𝑡𝑖 to 𝑚𝑖𝑛{𝑥|𝑥 ∈ 𝑖𝑆𝑒𝑡(𝜎𝑖), 𝑥 > 𝑗}.
∙ When 𝑝𝑟𝑒 is evaluated to true (it can be viewed as an if statement),

it then checks the condition 𝑜𝑐𝑐𝑢𝑛 = 𝑓𝑎𝑙𝑠𝑒: if the condition holds,
it updates network 𝑛 with value (𝑜𝑐𝑐𝑢𝑛, 𝑠𝑛, 𝑑𝑛, 𝑣𝑎𝑟𝑛, 𝑐𝑛, 𝑡𝑛, 𝑖𝑛𝑑𝑛) :=
(𝑡𝑟𝑢𝑒, 𝑖, 𝑑, 𝑣, 𝑐, 0, 𝑖𝑛𝑑𝑒𝑥). Otherwise it blocks until the condition holds.

∙ When 𝑝𝑟𝑒 is evaluated to false, it skips the sending.

1Here an interval [1, |𝜎𝑖|+ 1] is used for the introduction of FT mechanisms described later.

119

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

3. (Process message) For network 𝑗, for configuration (𝑜𝑐𝑐𝑢𝑗 , 𝑠𝑗 , 𝑑𝑗 , 𝑣𝑎𝑟, 𝑐𝑗 , 𝑡𝑗 , 𝑖𝑛𝑑𝑗) if
𝑜𝑐𝑐𝑢𝑗 = 𝑡𝑟𝑢𝑒, then during 𝑡𝑗 < 𝒯𝑗(𝑖𝑛𝑑𝑗), a transmission occurs, which updates
𝑜𝑐𝑐𝑢𝑗 to false, 𝐴𝑑𝑗 .𝑣𝑎𝑟 to 𝑐𝑗 , and 𝐴𝑑𝑗 .𝑣𝑎𝑟𝑣 to true.

4. (Receive) For machine 𝑖, let 𝑠 and 𝑗 be the current configuration for 𝑐 and Δ𝑛𝑒𝑥𝑡𝑖 .
If 𝑗 = |𝜎𝑖|+ 1 then do nothing; else for receive(𝑝𝑟𝑒, 𝑐)[𝛼𝑗 , 𝛽𝑗) in machine 𝑖, it is
processed between the time interval 𝑡 ∈ [𝛼𝑗 , 𝛽𝑗) and changes Δ𝑛𝑒𝑥𝑡𝑖 to 𝑚𝑖𝑛{𝑥|𝑥 ∈
𝑖𝑆𝑒𝑡(𝜎𝑖), 𝑥 > 𝑗}2.

5. (Repeat Cycle) When 𝑡 = 𝒯 , 𝑡 is reset to 0, and for all 𝑥 ∈ {1, . . . , 𝑛𝐴}, Δ𝑛𝑒𝑥𝑡𝑥 are
reset to 1.

Notice that by using this model to represent the embedded system under analysis, we
make the following assumptions:

∙ All processes and networks in 𝒮 share a globally synchronized clock. Note that this
assumption can be fulfilled in many hardware platforms, e.g., components im-
plementing the IEEE 1588 [EFW02] protocol.

∙ For all actions 𝜎, 𝜎.𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 < 𝒯 ; for all send actions 𝜎 := send(𝑝𝑟𝑒, 𝑖𝑛𝑑𝑒𝑥, 𝑛, 𝑠, 𝑑, 𝑣, 𝑐),
𝜎.𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒+𝒯𝑛(𝑖𝑛𝑑𝑒𝑥) < 𝒯 , i.e., all processes and networks should finish its work
within one complete cycle.

6.3.2 Interleaving Model (IM)

Next, we establish the idea of interleaving model (IM) which is used to offer an inter-
mediate representation to bridge PISEM and game solving, such that (a) it captures the
execution semantics of PISEM without explicit statements of timing, and (b) by using
this model it is easier to connect to the standard representation of games.

Definition 26. Define the syntax of the Interleaving Model (IM) be 𝑆𝐼𝑀 = (𝐴,𝑁).
∙ 𝐴 =

⋃︀
𝑖=1...𝑛𝐴

𝐴𝑖 is the set of processes, where in 𝐴𝑖 = (𝑉𝑖 ∪ 𝑉𝑒𝑛𝑣𝑖 , 𝜎𝑖),
– 𝑉𝑖 is the set of variables, and 𝑉𝑒𝑛𝑣𝑖 is the set of environment variables.
– 𝜎𝑖 := 𝜎1[∧𝑚=1...𝑛𝐴 [𝑝𝑐1,𝑚𝑙𝑜𝑤

, 𝑝𝑐1,𝑚𝑢𝑝)]; . . . ;𝜎𝑗 [∧𝑚=1...𝑛𝐴 [𝑝𝑐𝑗,𝑚𝑙𝑜𝑤
, 𝑝𝑐𝑗,𝑚𝑢𝑝)]; . . . ;

𝜎𝑘𝑖 [∧𝑚=1...𝑛𝐴 [𝑝𝑐𝑘𝑖,𝑚𝑙𝑜𝑤
, 𝑝𝑐𝑘𝑖,𝑚𝑢𝑝)] is a fixed sequence of actions.

* 𝜎𝑗 := send(𝑝𝑟𝑒, 𝑖𝑛𝑑𝑒𝑥, 𝑛, 𝑠, 𝑑, 𝑣, 𝑐) | receive(𝑝𝑟𝑒, 𝑐) | 𝑎← e is an atomic
action, where 𝑎, 𝑐, 𝑒, 𝑝𝑟𝑒, 𝑣, 𝑛,
𝑠, 𝑑 are defined similarly as in PISEM.
* For 𝜎𝑗 , ∀𝑚 ∈ {1, . . . , 𝑛𝐴}, 𝑝𝑐𝑗,𝑚𝑙𝑜𝑤

, 𝑝𝑐𝑗,𝑚𝑢𝑝 ∈ {1, . . . , |𝜎𝑚|+ 2} is the lower
and the upper bound (PC-precondition interval) concerning
1. precondition of program counter in machine 𝑘, when 𝑚 ̸= 𝑖.
2. precondition of program counter for itself, when 𝑚 = 𝑖.

∙ 𝑁 =
⋃︀

𝑖=1...𝑛𝑁
𝑁𝑖, 𝑁𝑖 = (𝑇𝑖, 𝑠𝑖𝑧𝑒𝑖) is the set of network.

– 𝑇𝑖 : N → ⋀︀
𝑚=1...𝑛𝐴

({1, . . . , |𝜎𝑚| + 2}, {1, . . . , |𝜎𝑚| + 2}) is a function which

2In our formulation, the receive(𝑝𝑟𝑒, 𝑐) action can be viewed as a syntactic sugar of null-op; its
purpose is to facilitate the matching of send-receive pair with variable 𝑐.

120

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

maps the index (or priority) of a message to the PC-precondition interval of other
processes.

– 𝑠𝑖𝑧𝑒𝑖 is the number of messages used in 𝒩𝑖.

Definition 27. The configuration of 𝑆𝐼𝑀 is (
⋀︀

𝑖(𝑣𝑖, 𝑣𝑒𝑛𝑣𝑖 ,Δ𝑛𝑒𝑥𝑡𝑖),
⋀︀

𝑗(𝑜𝑐𝑐𝑢𝑗 , 𝑠𝑗 , 𝑑𝑗 , 𝑐𝑗)),
where 𝑣𝑖, 𝑣𝑒𝑛𝑣𝑖 ,Δ𝑛𝑒𝑥𝑡𝑖 , 𝑜𝑐𝑐𝑢𝑗 , 𝑠𝑗 , 𝑑𝑗 , 𝑐𝑗 are defined similarly as in PISEM.

The change of configurations in IM can be interpreted analogously to PISEM; we omit
details here but mention three differences:

1. For an action 𝜎𝑗 having the precondition [∧𝑚=1...𝑛𝐴 [𝑝𝑐𝑗,𝑚𝑙𝑜𝑤
, 𝑝𝑐𝑗,𝑚𝑢𝑝)], it should be

executed between 𝑝𝑐𝑗,𝑚𝑙𝑜𝑤
≤ Δ𝑛𝑒𝑥𝑡𝑚 < 𝑝𝑐𝑗,𝑚𝑢𝑝 , for all 𝑚.

2. For processing a message, constraints concerning the timing of transmission in
PISEM are replaced by referencing the PC-precondition interval of other pro-
cesses in IM, similar to 1.

3. The system repeats the cycle when ∀𝑥 ∈ {1, . . . , 𝑛𝐴}, Δ𝑛𝑒𝑥𝑡𝑥 = |𝜎𝑥| + 1 and ∀𝑥 ∈
{1, . . . , 𝑛𝑁}, 𝑜𝑐𝑐𝑢𝑥 = false.

6.4 Step A: Front-end Translation from Models to Games

6.4.1 Step A.1: From PISEM to IM

To translate from PISEM to IM, the key is to generate abstractions from the release time
and the deadline information specified in PISEM. As in our formulation, the system
is equipped with a globally synchronized clock, the execution of actions respecting
the release time and the deadline can be translated into a partial order. Algorithm 5
concretizes this idea by generating PC-intervals in all machines as

∙ temporal preconditions for an action to execute, or

∙ temporal preconditions for a network to finish its message processing, i.e., to up-
date a variable in the destination process with the value in the message3.

Starting from the initialization where no PC is constrained, the algorithm performs a
restriction process using four if-statements {(1), (2), (3), (4)} listed.

∙ In (1), if 𝜎𝑚.𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑇 𝑖𝑚𝑒 > 𝜎𝑛.𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒, then before 𝜎𝑚 is executed, 𝜎𝑛 should
have been executed.

∙ In (2), if 𝜎𝑚.𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 < 𝜎𝑛.𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑇 𝑖𝑚𝑒, then 𝜎𝑛 should not be executed before
executing 𝜎𝑚.

∙ Similar analysis is done with (3) and (4). However, we need to consider the com-
bined effect together with the network transmission time: we use 0 to represent
the best case, and 𝒯𝑛(𝑖𝑛𝑑) for the worst case.

[Example] For the example in sec. 6.2, consider the action 𝜎1 := 𝑚← InputRead(𝑣)[0, 40)

in 𝒜1 of a PISEM. Algorithm 5 returns 𝑚𝑎𝑝𝐿𝐵(𝜎) and 𝑚𝑎𝑝𝑈𝐵(𝜎) with two arrays
[1, 1] and [2, 2], indicated in Figure 6.2a. Based on the definition of IM, 𝜎1 should be

3Here we assume that in each period, for all 𝒩𝑗 , each message of type 𝑖𝑛𝑑 ∈ {1, . . . , 𝑠𝑖𝑧𝑒𝑗} is sent at most
once. In this way, the algorithm can assign an unique PC-precondition interval for every message type.

121

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

Algorithm 5: GeneratePreconditionPC
Data: PISEM model 𝒮 = (𝒜,𝒩 , 𝒯)
Result: Two maps 𝑚𝑎𝑝𝐿𝐵, 𝑚𝑎𝑝𝑈𝐵 which map from an action 𝜎 (or a msg processing

by network) to two integer arrays 𝑙𝑜𝑤𝑒𝑟[1 . . . 𝑛𝐴], 𝑢𝑝𝑝𝑒𝑟[1 . . . 𝑛𝐴]
begin

/* Initial the map for recording the lower and upper bound for action */
for action 𝜎𝑘 in 𝒜𝑖 of 𝒜 do

𝑚𝑎𝑝𝐿𝐵.𝑝𝑢𝑡(𝜎𝑘, new int[1. . .𝑛𝐴](1)) /* Initialize to 1 */
𝑚𝑎𝑝𝑈𝐵.𝑝𝑢𝑡(𝜎𝑘, new int[1. . .𝑛𝐴])
for 𝒜𝑗 ∈ 𝒜 do 𝑚𝑎𝑝𝑈𝐵.𝑔𝑒𝑡(𝜎𝑘)[j] := |𝜎𝑗 |+ 2 /* Initialize to upperbound */
𝑚𝑎𝑝𝐿𝐵.𝑔𝑒𝑡(𝜎𝑘)[i] = k; 𝑚𝑎𝑝𝑈𝐵.𝑔𝑒𝑡(𝜎)[i] = k+1; /* self PC */

for action 𝜎𝑚 in 𝒜𝑖 of 𝒜, 𝑚 = 1, . . . , |𝜎𝑖| do
for action 𝜎𝑛 in 𝒜𝑗 of 𝒜, 𝑛 = 1, . . . , |𝜎𝑗 | , 𝑗 ̸= 𝑖 do

1 if 𝜎𝑚.𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑇 𝑖𝑚𝑒 > 𝜎𝑛.𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 then
𝑚𝑎𝑝𝐿𝐵.𝑔𝑒𝑡(𝜎𝑚)[j] := max{𝑚𝑎𝑝𝐿𝐵.𝑔𝑒𝑡(𝜎𝑚)[j], 𝑛+ 1}

2 if 𝜎𝑚.𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 < 𝜎𝑛.𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑇 𝑖𝑚𝑒 then
𝑚𝑎𝑝𝑈𝐵.𝑔𝑒𝑡(𝜎𝑚)[j] := min{𝑚𝑎𝑝𝑈𝐵.𝑔𝑒𝑡(𝜎𝑚)[j], 𝑛+ 1};

/* Initialize the map for recording the lower and upper bound for msg
transmission */
for action 𝜎𝑘 = send(𝑝𝑟𝑒, 𝑖𝑛𝑑, 𝑛, 𝑠, 𝑑, 𝑣, 𝑐) in 𝒜𝑖 of 𝒜 do

𝑚𝑎𝑝𝐿𝐵.𝑝𝑢𝑡(𝑛.𝑖𝑛𝑑, new int[1. . .𝑛𝐴](1)) /* Initialize to 1 */
𝑚𝑎𝑝𝐿𝐵.𝑔𝑒𝑡(𝑛.𝑖𝑛𝑑)[i] := k+1 /* Strictly later than executing send() */
𝑚𝑎𝑝𝑈𝐵.𝑝𝑢𝑡(𝑛.𝑖𝑛𝑑, new int[1. . .𝑛𝐴])
for 𝒜𝑗 ∈ 𝒜 do 𝑚𝑎𝑝𝑈𝐵.𝑔𝑒𝑡(𝑛.𝑖𝑛𝑑)[j] := |𝜎𝑗 |+ 2 /* Initialize to upperbound */

for action 𝜎𝑘 = send(𝑝𝑟𝑒, 𝑖𝑛𝑑, 𝑛, 𝑠, 𝑑, 𝑣, 𝑐) in 𝒜𝑖 of 𝒜 do
for action 𝜎𝑚 in 𝒜𝑗 of 𝒜, 𝑛 = 1, . . . , |𝜎𝑗 | do

3 if 𝜎𝑘.𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑇 𝑖𝑚𝑒+ 0 > 𝜎𝑚.𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 then
𝑚𝑎𝑝𝐿𝐵.𝑔𝑒𝑡(𝑛.𝑖𝑛𝑑)[j] := max{𝑚𝑎𝑝𝐿𝐵.𝑔𝑒𝑡(𝑛.𝑖𝑛𝑑)[j], 𝑚+ 1}

4 if 𝜎𝑘.𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒+ 𝒯𝑛(𝑖𝑛𝑑) < 𝜎𝑚.𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑇 𝑖𝑚𝑒 then
𝑚𝑎𝑝𝑈𝐵.𝑔𝑒𝑡(𝑛.𝑖𝑛𝑑)[j] := min{𝑚𝑎𝑝𝑈𝐵.𝑔𝑒𝑡(𝑛.𝑖𝑛𝑑)[j], 𝑚+ 1};

122

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

PrintOut(m)[40ms, 100ms);

Process A Process B

RecvMsg(m)[60ms, 100ms);

PrintOut(m)[60ms, 100ms);

Period = 100ms Period = 100ms

m ∈ {T, F} m ∈ {T, F},mv ∈ {>,⊥}

mv := ⊥ [100ms, 100ms);

Process

Variable

Action

Network N

MsgSend(m)[0ms, 40ms);

[1, 5)

[1, 5)

[3, 5)

[1, 5)

Process A
Process B init

T1(1) = 15

InputRead(m)[0ms, 40ms);

[1, 5)

[1, 5)

[1, 2)

[1, 5)

Process A
Process B

[1, 2)

[1, 2)init

line 2

RecvMsg(m)[60ms, 100ms);

RecvMsg(m)[60ms, 100ms);

(a)

(b)

InputRead(m)[0ms, 40ms);

[1, 2)

Message sending time

line 4

[1, 5)

[1, 5)

[3, 5)

[1, 5)

Process A
Process B init

T1(1) = 30

RecvMsg(m)[60ms, 100ms);

(c)
[1, 5)

Message sending time

line 4 (no effect)

[1, 4)

line 4

mv := ⊥ [100ms, 100ms);

[3, 5)

[3, 5) [3, 5)

Figure 6.2: An illustration for Algorithm 5.

executed with the temporal precondition that no action in 𝒜2 is executed, satisfying
the semantics originally specified in PISEM. For the analysis of message sending time,
two cases are listed in Figure 6.2b and Figure 6.2c, where the WCMTT is estimated as
15ms and 30ms, respectively.

6.4.2 Step A.2: From IM to Distributed Game

Here we give main concepts how a game is created after step A.1 is executed. To create
a distributed game from a given interleaving model 𝑆𝐼𝑀 = (𝐴,𝑁), we need to proceed
with the following three steps:

6.4.2.1 Step A.2.1: Creating non-deterministic timing choices for existing
actions

During the translation from a PISEM 𝒮 = (𝒜,𝒩 , 𝒯) to its corresponding IM 𝑆𝐼𝑀 =
(𝐴,𝑁), for all process 𝒜𝑖 in 𝒜, for every action 𝜎[𝛼, 𝛽) where 𝜎[𝛼, 𝛽) ∈ 𝜎𝑖, algo-
rithm 1 creates the PC-precondition interval [∧𝑚=1...𝑛𝐴 [𝑝𝑐𝑚𝑙𝑜𝑤

, 𝑝𝑐𝑚𝑢𝑝)] of other pro-
cesses. Thus in the corresponding game, for 𝜎[∧𝑚=1...𝑛𝐴 [𝑝𝑐𝑚𝑙𝑜𝑤

, 𝑝𝑐𝑚𝑢𝑝)], each element
𝜎[∧𝑚=1...𝑛𝐴(𝑝𝑐𝑚)], where 𝑝𝑐𝑚𝑙𝑜𝑤

≤ 𝑝𝑐𝑚 < 𝑝𝑐𝑚𝑢𝑝 , is a nondeterministic transition choice
which can be selected separately by the game engine.

6.4.2.2 Step A.2.2: Introducing fault-tolerant choices as 𝜎𝑎
𝑏

In our framework, fault-tolerant mechanisms are similar to actions, which consist of
two parts: action pattern 𝜎 and timing precondition [∧𝑚=1...𝑛𝐴 [𝑝𝑐𝑚𝑙𝑜𝑤

, 𝑝𝑐𝑚𝑢𝑝)]. Com-

123

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

pared to existing actions where nondeterminism comes from timing choices, for fault-
tolerance transition choices include all combinations from (1) timing precondition and
(2) action patterns available from a predefined pool.

We use the notation 𝜎𝑎
𝑏
, where 𝑎

𝑏 ∈ Q∖N, to represent an inserted action pattern between
𝜎⌊𝑎

𝑏
⌋ and 𝜎⌈𝑎

𝑏
⌉. With this formulation, multiple FT mechanisms can be inserted within

two consecutive actions 𝜎𝑖, 𝜎𝑖+1 originally in the system, and the execution semantic
follows what has been defined previously: as executing an action updates Δ𝑛𝑒𝑥𝑡𝑖 to
𝑚𝑖𝑛{𝑥|𝑥 ∈ 𝑖𝑆𝑒𝑡(𝜎𝑖), 𝑥 > 𝑗}, updating to a rational value is possible. Note that as 𝜎𝑎

𝑏

is only a fragment without temporal preconditions, we use algorithm 6 to generate
all possible temporal preconditions satisfying the semantics of the original interleaving
model: after the synthesis only temporal conditions satisfying the acceptance condition
will be chosen.

Algorithm 6: DecideInsertedFTTemplateTiming
Data: 𝜎𝑐[∧𝑚=1...𝑛𝐴 [𝑝𝑐𝑐,𝑚𝑙𝑜𝑤

, 𝑝𝑐𝑐,𝑚𝑢𝑝)], 𝜎𝑑[∧𝑚=1...𝑛𝐴 [𝑝𝑐𝑑,𝑚𝑙𝑜𝑤
, 𝑝𝑐𝑑,𝑚𝑢𝑝)], which are

consecutive actions in 𝜎𝑖 of 𝐴𝑖 of 𝑆𝐼𝑀 = (𝐴,𝑁), and one newly added action
pattern 𝜎𝑎

𝑏
to be inserted between

Result: Temporal preconditions for action pattern 𝜎𝑎
𝑏
: [∧𝑚=1...𝑛𝐴 [𝑝𝑐𝑎

𝑏
,𝑚𝑙𝑜𝑤

, 𝑝𝑐𝑎
𝑏
,𝑚𝑢𝑝

)]

begin
for 𝑚 = 1, . . . , 𝑛𝐴 do

if 𝑚 ̸= 𝑖 then
𝑝𝑐𝑎

𝑏
,𝑚𝑙𝑜𝑤

:= 𝑝𝑐𝑐,𝑚𝑙𝑜𝑤
/* Use the lower bound of 𝑐 for its lower bound */

𝑝𝑐𝑎
𝑏
,𝑚𝑢𝑝

:= 𝑝𝑐𝑑,𝑚𝑢𝑝 /* Use the upper bound of 𝑑 for its upper bound */
else

𝑝𝑐𝑎
𝑏
,𝑚𝑙𝑜𝑤

:= 𝑎
𝑏 ; 𝑝𝑐𝑎

𝑏
,𝑚𝑢𝑝

:= 𝑑

We conclude this step with two remarks:

∙ For all existing actions, the non-deterministic choice generation in step A.2.1 must
be modified to contain these rational points introduced by FT mechanisms.

∙ A problem induced by FT synthesis is whether the system behavior changes due
to the introduction of FT mechanisms. We answer the problem by splitting into
two subproblems:

– [Problem 1] Whether the system is still schedulable due to the introduc-
tion of FT actions, as these FT actions also consume time. This can only be
answered when the result of synthesis is generated, and we leave this to
section 6.6.

– [Problem 2] Whether the networking behavior remains the same. This prob-
lem must be handled before game creation, as introducing a FT message may
significantly influence the worst case message transmission time (WCMTT)
of all existing messages, leading a completely different networking behav-
ior. The answer of this problem depends on many factors, including the
hardware in use, the configuration setting, and the analysis technique used
for the estimation of WCMTT. In Appendix A we give a simple analysis for

124

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

ideal CAN buses [DBBL07], which are used most extensively in industrial
and automotive embedded systems: in the analysis, we propose conditions
where newly added messages do not change the existing networking behav-
ior. Similar analysis can be done with other timing-predictable networks,
e.g., FlexRay [PPE+08].

6.4.2.3 Step A.2.3: Game Creation by Introducing Faults

In our implementation, we do not generate the primitive form of distributed games
(DG), as the definition of DG is too primitive to manipulate. Instead, algorithms in our
implementations are based on our created variant called symbolic distributed games
(SDG):

Definition 28. Define a symbolic distributed game 𝒢𝐴𝐵𝑆 = (𝑉𝑓⊎𝑉𝐶𝑇𝑅⊎𝑉𝐸𝑁𝑉 , 𝐴,𝑁, 𝜎𝑓 , 𝑝𝑟𝑒𝑑).
∙ 𝑉𝑓 , 𝑉𝐶𝑇𝑅, 𝑉𝐸𝑁𝑉 are disjoint sets of (fault, control, environment) variables.
∙ 𝑝𝑟𝑒𝑑 : 𝑉𝑓 × 𝑉𝐶𝑇𝑅 × 𝑉𝐸𝑁𝑉 → {true,false} is the partition condition.
∙ 𝐴 =

⋃︀
𝑖=1...𝑛𝐴

𝐴𝑖 is the set of symbolic local games (processes) , where in 𝐴𝑖 =
(𝑉𝑖 ∪ 𝑉𝑒𝑛𝑣𝑖 , 𝜎𝑖),

– 𝑉𝑖 is the set of variables, and 𝑉𝑒𝑛𝑣𝑖 ⊆ 𝑉𝐸𝑁𝑉 .
– 𝜎𝑖 :=

⋃︀
𝜎𝑖1⟨∧𝑚=1,...,𝑛𝐴𝑝𝑐𝑖1𝑚 ⟩; . . . ;

⋃︀
𝜎𝑖𝑘⟨∧𝑚=1,...,𝑛𝐴𝑝𝑐𝑖𝑘𝑚 ⟩ is a sequence, where

∀𝑗 = 1, . . . , 𝑘,
⋃︀
𝜎𝑖𝑗 ⟨∧𝑚=1,...,𝑛𝐴𝑝𝑐𝑖𝑗𝑚 ⟩ is a set of choice actions for player-0 in 𝐴𝑖.

* 𝜎𝑖𝑗 is defined similarly as in IM.
* ∀𝑚 = {1, . . . , 𝑛𝐴}, 𝑝𝑐𝑖𝑗𝑚 ∈ [𝑝𝑐𝑖𝑗 ,𝑚𝑙𝑜𝑤

, 𝑝𝑐𝑖𝑗 ,𝑚𝑢𝑝
), 𝑝𝑐𝑖𝑗 ,𝑚𝑙𝑜𝑤

, 𝑝𝑐𝑖𝑗 ,𝑚𝑢𝑝
∈ 𝑖𝑆𝑒𝑡(𝜎𝑚).

– 𝑉𝐶𝑇𝑅 =
⋃︀

𝑖=1...𝑛𝐴
𝑉𝑖.

∙ 𝑁 =
⋃︀

𝑖=1...𝑛𝑁
𝑁𝑖, 𝑁𝑖 = (𝑇𝑖, 𝑠𝑖𝑧𝑒𝑖, 𝑡𝑟𝑎𝑛𝑖) is the set of network processes.

– 𝑇𝑖 and 𝑠𝑖𝑧𝑒𝑖 are defined similarly as in IM.
– 𝑡𝑟𝑎𝑛𝑖 : 𝑉𝑓 × ({true,false} × {1, . . . , 𝑛𝐴}2 ×

⋃︀
𝑖=1,...,𝑛𝐴

(𝑉𝑖 ∪ 𝑉𝑒𝑛𝑣𝑖
) × Z ×

{1, . . . , 𝑠𝑖𝑧𝑒𝑖}) → 𝑉𝑓 × ({true,false} × {1, . . . , 𝑛𝐴}2 ×
⋃︀

𝑖=1,...,𝑛𝐴
(𝑉𝑖 ∪ 𝑉𝑒𝑛𝑣𝑖

) ×
Z × {1, . . . , 𝑠𝑖𝑧𝑒𝑖}) is the network transition relation for processing messages (see
sec. 6.3.1 for meaning), but can be influenced by additional variables in 𝑉𝑓 .

∙ 𝜎𝑓 : 𝑉𝑓 × 𝑉𝐶𝑇𝑅 × 𝑉𝐸𝑁𝑉 ×
⋀︀

𝑖=1...𝑛𝐴
𝑖𝑆𝑒𝑡(𝜎𝑖) → 𝑉𝐸𝑁𝑉 × 𝑉𝑓 ×

⋀︀
𝑖=1...𝑛𝐴

𝑖𝑆𝑒𝑡(𝜎𝑖) is the
environment update relation.

We establish an analogy between SDG and DG using Figure 6.3.

1. The configuration 𝑣 of a SDG is defined as the product of all variables used.

2. A play for a SDG starting from state 𝑣0 is a maximal path 𝜋 = 𝑣0𝑣1 . . ., where

∙ In 𝑣𝑘, player-1 determines the move (𝑣𝑘, 𝑣𝑘+1) ∈ 𝐸 when 𝑝𝑟𝑒𝑑(𝑣𝑘) is eval-
uated to true (false for player-0); the partition of vertices 𝑉0 and 𝑉1 in a
SDG is implicitly defined based on this, rather than specified explicitly as in
a distributed game.

∙ A move (𝑣𝑘, 𝑣𝑘+1) is a selection of executable transitions defined in 𝑁 , 𝜎𝑓 , or

125

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

DG SDG
State space product of all vertices product of all variables

in local games (including variables used
in local games)

Vertex partition (𝑉0 and 𝑉1) explicit partition use 𝑝𝑟𝑒𝑑 to perform partition
Player-0 transitions defined in local games defined in 𝜎𝑖 of 𝐴𝑖, for all

𝑖 ∈ {1, . . . , 𝑛𝐴}
Player-1 transitions explicitly specified defined in 𝑁 and 𝜎𝑓

in the global game

Figure 6.3: Comparison between DG and SDG

𝐴; in our formulation, transitions in 𝑁 and 𝜎𝑓 are all environment moves4,
while transitions in 𝐴 are control moves5.

3. Lastly, a distributed positional strategy for player-0 in a SDG can be defined anal-
ogously as to uniquely select an action from the set

⋃︀
𝜎𝛼𝑗 ⟨∧𝑚=1,...,𝑛𝐴 , 𝑝𝑐𝛼𝑗𝑚

⟩, for
all 𝐴𝑖 and for all program counter 𝑗 defined in 𝜎𝑖. Each strategy should be insen-
sitive of contents in other symbolic local games.

We now summarize the logical flow of game creation using Figure 6.4.

∙ (a) Based on the fixed number of slots (for FT mechanisms) specified by the user,
extend 𝐼𝑀 to 𝐼𝑀𝑓𝑟𝑎𝑐 to contain fractional PC-values induced by the slot.

∙ (b) Create 𝐼𝑀𝑓𝑟𝑎𝑐+𝐹𝑇 , including the sequence of choice actions (as specified in
the SDG) by

– Extracting action sequences defined in 𝐼𝑀𝑓𝑟𝑎𝑐 to choices (step A.2.1).

– Inserting FT choices (step A.2.2).

∙ (c) Introduce faults and partition player-0 and player-1 vertices: In engineering,
a fault model specifies potential undesired behavior of a piece of equipment, such
that engineers can predict the consequences of system behavior. Thus, a fault can
be formulated with three tuples6:

1. The fault type (an unique identifier, e.g., MsgLoss, SensorError).

2. The maximum number of occurrences in each period.

3. Additional transitions not included in the original specification of the system
(fault effects).

We perform the translation into a game using the following steps.

– For (1), introduce variables to control the triggering of faults.

4As the definition of distributed games features multiple processes having no interactions among them-
selves but only with the environment, a SDG is also a distributed game. In the following section, our
proof of results and algorithms are all based on DG.

5This constraint can be released such that transitions in 𝐴 can either be control (normal) or environment
(induced by faults) moves; here we leave the formulation as future work.

6For complete formulation of fault models, we refer readers to our earlier work [CBEK09].

126

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

IM IMfrac

of slots
Number FT mechanism

templates

IMfrac+FT

Fault models

SDGa b
c

Figure 6.4: Creating the SDG from IM, FT mechanisms, and faults.

– For (2), introduce counters to constrain the maximum number of fault occur-
rences in each period.

– For (3), for each transition used in the component influenced by the fault,
create a corresponding fault transition which is triggered by the variable
and the counter; similarly create a transition with normal behavior (also trig-
gered by the variable and the counter). Notice that our framework is able to
model faults actuating on the FT mechanisms, for instance, the behavior of
network loss on the newly introduced FT messages.

[Example] We outline how a game (focusing on fault modeling) is created with the
example in sec. 6.2; similar approaches can be applied for input errors or message cor-
ruption; here the modeling of input (for InputRead(m)) is skipped.

∙ Create the predicate 𝑝𝑟𝑒𝑑: 𝑝𝑟𝑒𝑑 is evaluated to false in all cases except (a) when
the boolean variable 𝑜𝑐𝑐𝑢 (representing the network occupance) is evaluated to
true and (b) when for all 𝑖 ∈ {1, . . . , 𝑛𝐴}, Δ𝑛𝑒𝑥𝑡𝑖 = |𝜎𝑖| + 1 (end of period); the
predicate partitions player-0 and player-1 vertices.

∙ For all process 𝑖 and program counter 𝑗, the set of choice actions⋃︀
𝜎𝛼𝑗 ⟨∧𝑚=1,...,𝑛𝐴 , 𝑝𝑐𝛼𝑗𝑚

⟩ are generated based on the approach described pre-
viously.

∙ Create variable 𝑣𝑓 ∈ 𝑉𝑓 , which is used to indicate whether the fault (MsgLoss)
has been activated in this period.

∙ In this example, as the maximum number of fault occurrences in each period is 1,
we do not need to create additional counters.

∙ For each message sending transition 𝑡 in the network, create two normal transi-
tions (𝑣𝑓 = true ∧ 𝑣′𝑓 = true) ∧ 𝑡 and (𝑣𝑓 = false ∧ 𝑣′𝑓 = false) ∧ 𝑡 in the
game.

∙ For each message sending transition 𝑡 in the network, generate a transition 𝑡′

where the message is sent, but the value is not updated in the destination. Create
a fault transition (𝑣𝑓 = false ∧ 𝑣′𝑓 = true) ∧ 𝑡′ in the game.

∙ Define 𝜎𝑓 to control 𝑣𝑓 : if for all 𝑖 ∈ {1, . . . , 𝑛𝐴}, Δ𝑛𝑒𝑥𝑡𝑖 = |𝜎𝑖|+ 1, then update 𝑣𝑓
to false as Δ𝑛𝑒𝑥𝑡𝑖 updates to 1 (reset the fault counter at the end of the period).

6.5 Step B: Solving Distributed Games

We summarize the result from [MW03] as a general property of distributed games.

Theorem 6. There exists distributed games with global winning strategy but (a) without dis-

127

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

tributed memoryless strategies, or (b) all distributed strategies require memory. In general, for
a finite distributed game, it is undecidable to check whether a distributed strategy exists from a
given position [MW03].

As the problem is undecidable in general, we restrict our interest in finding a dis-
tributed positional strategy for player 0, if there exists one. We also focus on games
with reachability winning conditions. By posing the restriction, the problem is NP-
Complete.

Theorem 7. [𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝐺0] Given a distributed game 𝒢 = (𝒱0 ⊎ 𝒱1, ℰ), an initial state
𝑥 = (𝑥1, . . . , 𝑥𝑛) and a target state 𝑡 = (𝑡1, . . . , 𝑡𝑛), deciding whether there exists a positional
(memoryless) distributed strategy for player-0 from 𝑥 to 𝑡 is NP-Complete.

Proof. We first start by recalling the definition of attractor, a term which is commonly
used in the game and later applied in the proof. Given a game graph 𝐺 = (𝑉0 ⊎ 𝑉1, 𝐸),
for 𝑖 ∈ {0, 1} and 𝑋 ⊆ 𝑉 , the map attr𝑖(𝑋) is defined by

attr𝑖(𝑋) := 𝑋 ∪ {𝑣 ∈ 𝑉𝑖 | 𝑣𝐸 ∩𝑋 ̸= ∅} ∪ {𝑣 ∈ 𝑉1−𝑖 | ∅ ≠ 𝑣𝐸 ⊆ 𝑋},

i.e., attr𝑖(𝑋) extends 𝑋 by all those nodes from which either player 𝑖 can move to 𝑋
within one step or player 1−𝑖 cannot prevent to move within the next step. (𝑣𝐸 denotes
the set of successors of 𝑣.) Then Attr𝑖(𝑋) :=

⋃︀
𝑘∈N attr𝑘𝑖 (𝑋) contains all nodes from

which player 𝑖 can force any play to visit the set 𝑋 .

We continue our argument as follows.

[NP] The reachability problem for a distributed game can be solved in NP: a solution
instance 𝜉 = ⟨𝑓1, . . . , 𝑓𝑛⟩ is a strategy which selects exactly one edge for every control
vertex in the local game. As the distributed game graph is known, after the selection
we calculate the reachability attractor Attr0({𝑡}) of the distributed game: during the
calculation we overlook transitions which is not selected (in the strategy) in the local
game. This means that in the distributed game, to add a control vertex 𝑣 ∈ 𝒱0 to the
attractor using the edge (𝑣, 𝑢), we must ensure that ∀𝑗 ∈ {1, . . . , 𝑛}. (𝑝𝑟𝑜𝑗(𝑣𝑖, 𝑗) ∈ 𝑉0𝑗 →
𝑝𝑟𝑜𝑗(𝑢, 𝑗) = 𝑝𝑟𝑜𝑗(𝑓𝑗(𝑣), 𝑗)). Lastly, we check if the initial state is contained; the whole
calculation and checking process can be done in deterministic P-time.

[NP-C] For completeness proof, we perform a reduction from 3SAT to the finding of
positional strategies in a distributed game. Given a set of 3CNF clauses {𝐶1, . . . , 𝐶𝑚}
under the set of literals {𝑣𝑎𝑟1, 𝑣𝑎𝑟1, . . . , 𝑣𝑎𝑟𝑛, 𝑣𝑎𝑟𝑛} and variables {𝑣𝑎𝑟1, . . . , 𝑣𝑎𝑟𝑛}, the
distributed game 𝒢 is created as follows (see Figure 6.5 for illustration):

∙ Create 3 local games 𝐺1, 𝐺2, and 𝐺3, where for 𝐺𝑖 = (𝑉0𝑖 ⊎ 𝑉1𝑖 , 𝐸𝑖):

– 𝑉0𝑖 = {𝑣𝑎𝑟1, . . . , 𝑣𝑎𝑟𝑛}, 𝑉1𝑖 = {𝑆, 𝑇𝑣𝑎𝑟1 , 𝐹𝑣𝑎𝑟1 , . . . , 𝑇𝑣𝑎𝑟𝑛 , 𝐹𝑣𝑎𝑟𝑛}.
– 𝐸𝑖 =

⋃︀
𝑗=1,...,𝑛{(𝑣𝑎𝑟𝑗 , 𝑇𝑣𝑎𝑟𝑗), (𝑣𝑎𝑟𝑗 , 𝐹𝑣𝑎𝑟𝑗)}.

∙ Create local game 𝐺4 = (𝑉04 ⊎ 𝑉14 , 𝐸4):

– 𝑉04 = {𝑂𝐾0, 𝑁𝑂0} ∪
⋃︀

𝑗=1,...,𝑚+𝑛{𝑣𝑗0}.
– 𝑉14 = {𝑆,𝑂𝐾1, 𝑁𝑂1} ∪

⋃︀
𝑗=1,...,𝑚+𝑛{𝑣𝑗1}.

– 𝐸4 =
⋃︀

𝑗=1,...,𝑚+𝑛{(𝑣𝑗0 , 𝑣𝑗1)} ∪ {(𝑂𝐾0, 𝑂𝐾1), (𝑁𝑂0, 𝑁𝑂1)}.

128

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

S T1 F1

G1 var1

T2 F2

var2

Tn Fn

varn

. . .
S

G2 var1 var2 varn

. . .

S

G3 var1 var2 varn

. . .
S

G4 v10

v11

. . .
vm0

vm1

vm+n0

vm+n1

. . .
OK1 NO1

(S, S, S, S)

(var1m , var2m , var3m , vm0)
. . .

T1 F1 T2 F2 Tn Fn

T1 F1 T2 F2 Tn Fn

Check clause 1 Check clause m
SAT SAT

(var1, var1, var1, vm+10)

Check var1
consistency

Check varn
consistency

(Tt1 , Ft2 , Ft3 , v11) (F1, F1, F1, vm+11)

(varn, varn, varn, vm+10)

(T1, T1, F1, vm+11)(T1, T1, T1, vm+11)(Tt1 , Tt2 , Tt3 , v11) (Tt1 , Tt2 , Ft3 , v11)

OK0 NO0

(var1, var1, var1, OK0) (var1, var1, var1, NO0)

(F1, F1, F1, OK1) (T1, T1, F1, OK1)(T1, T1, T1, OK1) . . . (F1, F1, F1, NO1) (T1, T1, F1, NO1)(T1, T1, T1, NO1) . . .

.

(var11 , var21 , var31 , v10) . . .

Figure 6.5: Illustrations for the reduction from 3SAT to 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝐺0.

∙ Second, create the distributed game 𝒢 from local games above, and define the set
of environment transition to include the following types using the 3SAT problem:

1. (Intention to check SAT) In the 3SAT problem, for clause 𝐶𝑖 = (𝑙1𝑖 ∨ 𝑙2𝑖 ∨ 𝑙3𝑖),
let the variable for literals 𝑙1𝑖 , 𝑙2𝑖 , 𝑙3𝑖 be 𝑣𝑎𝑟1𝑖 , 𝑣𝑎𝑟2𝑖 , 𝑣𝑎𝑟3𝑖 . Create a transition
in the distributed game from (𝑆, 𝑆, 𝑆, 𝑆) to (𝑣𝑎𝑟1𝑖 , 𝑣𝑎𝑟2𝑖 , 𝑣𝑎𝑟3𝑖 , 𝑣𝑖0).

2. (Intention to check consistency) In the 3SAT problem, for variable
𝑣𝑎𝑟𝑖, Create a transition in the distributed game from (𝑆, 𝑆, 𝑆, 𝑆) to
(𝑣𝑎𝑟𝑖, 𝑣𝑎𝑟𝑖, 𝑣𝑎𝑟𝑖, 𝑣𝑚+𝑖0).

3. (Result of clause) In the 3SAT problem, for clause 𝐶𝑖 = (𝑙1𝑖 ∨ 𝑙2𝑖 ∨ 𝑙3𝑖), let the
variable for the clause be 𝑣𝑎𝑟1𝑖 , 𝑣𝑎𝑟2𝑖 , 𝑣𝑎𝑟3𝑖 . We refer the vertex evaluating
𝑣𝑎𝑟𝑗𝑖 as true to 𝑇𝑖 in the local game 𝐺𝑗 ; similarly, we use 𝐹𝑖 for a variable
being evaluated false. For each clause 𝐶𝑖, enumerate over 8 cases for the
assignments of 𝑣𝑎𝑟1𝑖 , 𝑣𝑎𝑟2𝑖 , 𝑣𝑎𝑟3𝑖 which make 𝐶𝑖 true.

a) For cases which makes the assignment true, create an edge from the as-
signment to (𝑣𝑎𝑟1, 𝑣𝑎𝑟1, 𝑣𝑎𝑟1, 𝑂𝐾0); for example, if 𝑣𝑎𝑟1𝑖 = true, 𝑣𝑎𝑟2𝑖 =

false, 𝑣𝑎𝑟3𝑖 = true makes a satisfying assignment to 𝐶𝑖, create an edge
((𝑇1𝑖 , 𝐹2𝑖 , 𝑇3𝑖 , 𝑣𝑖1), (𝑣𝑎𝑟1, 𝑣𝑎𝑟1, 𝑣𝑎𝑟1, 𝑂𝐾0)).

129

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

b) For cases which makes the assignment false, create an edge from the
assignment to (𝑣𝑎𝑟1, 𝑣𝑎𝑟1, 𝑣𝑎𝑟1, 𝑁𝑂0).

4. (Result of variable consistency) For all 𝑖 ∈ {1, . . . , 𝑛}:
a) Create two edges ((𝑇𝑖, 𝑇𝑖, 𝑇𝑖, 𝑣𝑚+𝑖1), (𝑣𝑎𝑟1, 𝑣𝑎𝑟1, 𝑣𝑎𝑟1, 𝑂𝐾0)) and

((𝐹𝑖, 𝐹𝑖, 𝐹𝑖, 𝑣𝑚+𝑖1), (𝑣𝑎𝑟1, 𝑣𝑎𝑟1, 𝑣𝑎𝑟1, 𝑂𝐾0)).

b) For other 6 combinations (𝑇𝑖, 𝐹𝑖, 𝐹𝑖, 𝑣𝑚+𝑖1), (𝐹𝑖, 𝐹𝑖, 𝑇𝑖, 𝑣𝑚+𝑖1),
(𝑇𝑖, 𝐹𝑖, 𝐹𝑖, 𝑣𝑚+𝑖1), (𝑇𝑖, 𝑇𝑖, 𝐹𝑖, 𝑣𝑚+𝑖1), (𝐹𝑖, 𝑇𝑖, 𝑇𝑖, 𝑣𝑚+𝑖1),
(𝑇𝑖, 𝐹𝑖, 𝑇𝑖, 𝑣𝑚+𝑖1), create edges to (𝑣𝑎𝑟1, 𝑣𝑎𝑟1, 𝑣𝑎𝑟1, 𝑁𝑂0).

5. (Continuous execution) For all 𝑖 ∈ {1, . . . , 𝑛}:
a) For all combinations (𝑇𝑖, 𝐹𝑖, 𝐹𝑖, 𝑂𝐾1), (𝐹𝑖, 𝐹𝑖, 𝑇𝑖, 𝑂𝐾1), (𝑇𝑖, 𝐹𝑖, 𝐹𝑖, 𝑂𝐾1),

(𝐹𝑖, 𝐹𝑖, 𝑇𝑖, 𝑂𝐾1), (𝑇𝑖, 𝐹𝑖, 𝐹𝑖, 𝑂𝐾1), (𝑇𝑖, 𝑇𝑖, 𝐹𝑖, 𝑂𝐾1), (𝐹𝑖, 𝑇𝑖, 𝑇𝑖, 𝑂𝐾1),
(𝑇𝑖, 𝐹𝑖, 𝑇𝑖, 𝑂𝐾1), create edges to (𝑣𝑎𝑟1, 𝑣𝑎𝑟1, 𝑣𝑎𝑟1, 𝑂𝐾0).

b) For all combinations (𝑇𝑖, 𝐹𝑖, 𝐹𝑖, 𝑁𝑂1), (𝐹𝑖, 𝐹𝑖, 𝑇𝑖, 𝑁𝑂1), (𝑇𝑖, 𝐹𝑖, 𝐹𝑖, 𝑁𝑂1),
(𝐹𝑖, 𝐹𝑖, 𝑇𝑖, 𝑁𝑂1), (𝑇𝑖, 𝐹𝑖, 𝐹𝑖, 𝑁𝑂1), (𝑇𝑖, 𝑇𝑖, 𝐹𝑖, 𝑁𝑂1), (𝐹𝑖, 𝑇𝑖, 𝑇𝑖, 𝑁𝑂1),
(𝑇𝑖, 𝐹𝑖, 𝑇𝑖, 𝑁𝑂1), create edges to (𝑣𝑎𝑟1, 𝑣𝑎𝑟1, 𝑣𝑎𝑟1, 𝑁𝑂0).

We claim that {𝐶1, . . . , 𝐶𝑚} is satisfiable iff 𝒢 has a positional distributed strategy to
reach (𝑣𝑎𝑟1, 𝑣𝑎𝑟1, 𝑣𝑎𝑟1, 𝑂𝐾0) from (𝑆, 𝑆, 𝑆, 𝑆).

1. If {𝐶1, . . . , 𝐶𝑚} is satisfiable, let the set of satisfying literals be 𝐿′, and assume
that for all literals, in each pair (𝑣𝑎𝑟𝑖, 𝑣𝑎𝑟𝑖) exactly one of them is in 𝐿′ (this is
always possible). For the distributed game 𝒢, in local games 𝐺1, 𝐺2 and 𝐺3, let
the positional strategy for control vertex 𝑣𝑎𝑟𝑖 move to 𝑇𝑖 if 𝑣𝑎𝑟𝑖 ∈ 𝐿′, and move
to 𝐹𝑖 if 𝑣𝑎𝑟𝑖 ∈ 𝐿′ (for 𝐺4, simply use the local edge). In a play, as player-1 starts
the move, any of his selection leads to a player-0 vertex:

∙ If player-1 choose edges of type 1 (intension to check the clause of SAT), for
𝐺1, 𝐺2 and 𝐺3, the vertex uses its positional strategy, which corresponds to
the assignment in the clause. The combined move then forces player-1 to
choose an edge of type 3(a), leading to the target state.

∙ If player-1 choose edges of type 2 (intension to check the consistency), as
the positional strategies for 𝐺1, 𝐺2 and 𝐺3 are all derived from the same
satisfying instance of the 3SAT problem, for each strategy, it performs the
same move from 𝑣𝑎𝑟𝑖 to 𝑇𝑖 or to 𝐹𝑖; the combined move of player-0 forces
player-1 to choose an edge of type 4(a), leading to the target state.

2. Consider a distributed positional strategy ⟨𝑓1, 𝑓2, 𝑓3, 𝑓4⟩which reaches
(𝑣𝑎𝑟1, 𝑣𝑎𝑟1, 𝑣𝑎𝑟1, 𝑂𝐾0) from (𝑆, 𝑆, 𝑆, 𝑆). In 𝐺1, for each control vertex 𝑣𝑎𝑟𝑖, it
points to 𝑇𝑖 or 𝐹𝑖. The positional strategy of 𝐺1 generates a satisfying instance of
the 3SAT problem:

∙ Assign 𝑣𝑎𝑟𝑖 in the 3SAT problem to true if the strategy points vertex 𝑣𝑎𝑟𝑖 in
𝐺1 to 𝑇𝑖.

∙ Assign 𝑣𝑎𝑟𝑖 in the 3SAT problem to false if the strategy points vertex 𝑣𝑎𝑟𝑖
in 𝐺1 to 𝐹𝑖.

We analyze the size of the game and the time required to perform the reduction.

∙ For 𝑖 = 1, 2, 3, 𝐺𝑖 contains 3𝑛 + 1 vertices, and 𝐺4 has 2(𝑚 + 𝑛 + 2) + 1 vertices.

130

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

As the total vertices of the distributed game is the product, it is polynomial to the
original 3SAT problem instance.

∙ Consider the time required to perform reduction from 3SAT to 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝐺0:

– For 𝑖 = 1, 2, 3, 𝐺𝑖, they are constructed in 𝒪(𝑛).
– 𝐺4 is constructed in 𝒪(𝑚+ 𝑛).

– For the distributed game, vertices are constructed polynomial to 𝑚 and 𝑛,
more precisely 𝒪(𝑛3(𝑚+ 𝑛)).

– For edges in the distributed game, we consider the most complicated case,
i.e. creating an edge of type 3. Yet it takes constant time to check and es-
tablish the connection, and for each player-1 vertex except (𝑆, 𝑆, 𝑆, 𝑆) which
has 𝑚 + 𝑛 edges, at most 8 edges are created. Therefore, the total required
time for edge construction is also polynomial to 𝑚 and 𝑛.

Therefore, 3SAT ≤𝑝𝑜𝑙𝑦 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑎𝑙𝐷𝐺0, which concludes the proof.

With the NP-completeness proof, finding a distributed reachability strategy for dis-
tributed games amounts to the process of searching. For example, it is possible to
perform a bounded-depth forward search over choices of local transitions: during the
search, the selection of edges is constructed as a tree node in the search tree, and the set
of reachable vertices (represented as BDD) based on the selection is also stored in the
tree node. This method is currently implemented in our framework.

6.5.1 Solving Distributed Games using SAT Methods

Apart from the search method above, in this section we give an alternative approach
based on a reduction to SAT. Madhusudan, Nam, and Alur [AMN05] designed the
bounded witness algorithm (based on unrolling) for solving reachability (local) games.
Although based on their experiment, the witness algorihm is not as efficient as the
BDD based approach in centralized games, we find this concept potentially useful for
solving distributed games. For this, we have created a variation (Algorithm 7) for this
purpose.

To provide an intuition, first we paraphrase the concept of witness defined in [AMN05],
a set of states which witnesses the fact that player 0 wins. In [AMN05], consider the
generated SAT problem from a local game 𝐺 = (𝑉0 ⊎ 𝑉1, 𝐸) trying to reach from 𝑉𝑖𝑛𝑖𝑡

to 𝑉𝑔𝑜𝑎𝑙: for 𝑖 = 1, . . . , 𝑑 and vertex 𝑣 ∈ 𝑉0 ⊎ 𝑉1, variable ⟨𝑣⟩𝑖 = true when one of the
following holds:

1. 𝑣 ∈ 𝑉𝑖𝑛𝑖𝑡 and 𝑖 = 1 (if 𝑣 ̸∈ 𝑉𝑖𝑛𝑖𝑡 ∧ 𝑖 = 1 then ⟨𝑣⟩𝑖 = false).

2. 𝑣 ∈ 𝑉𝑔𝑜𝑎𝑙 (if 𝑣 ̸∈ 𝑉𝑔𝑜𝑎𝑙 ∧ 𝑖 = 𝑑 then ⟨𝑣⟩𝑖 = false).

3. 𝑣 ∈ 𝑉0 ∖ 𝑉𝑔𝑜𝑎𝑙 and ∃𝑣′ ∈ 𝑉0 ⊎ 𝑉1. ∃𝑒 ∈ 𝐸. ∃𝑗 > 𝑖. (𝑒 = (𝑣, 𝑣′) ∧ ⟨𝑣′⟩𝑗 = true)

4. 𝑣 ∈ 𝑉1 ∖ 𝑉𝑔𝑜𝑎𝑙 and ∀𝑒 = (𝑣, 𝑣′) ∈ 𝐸. ∃𝑗 > 𝑖. ⟨𝑣′⟩𝑗 = true

This recursive definition implies that if 𝑣 in 𝑉0 (resp. in 𝑉1) is not the goal but in the
witness set, then exists one (resp. for all) successor 𝑣′ which should either be (i) in a goal
state or (ii) also in the witness: note that for (ii), the number of allowable steps to reach
the goal is decreased by one. This definition ensures that all plays defined in the witness

131

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

Algorithm 7: PositionalDistributedStrategy_BoundedSAT_0
Data: Distributed game graph 𝒢 = (𝒱0 ⊎ 𝒱1, ℰ), set of initial states 𝑉𝑖𝑛𝑖𝑡, set of target

states 𝑉𝑔𝑜𝑎𝑙, the unrolling depth 𝑑
Result: Output: whether a distributed positional strategy exists to reach 𝑉𝑔𝑜𝑎𝑙 from

𝑣𝑖𝑛𝑖𝑡
begin

let clauseList := getEmptyList() /* Store all clauses for SAT solvers */
/* STEP 1: Variable creation */
for 𝑣 = (𝑣1, . . . , 𝑣𝑚) ∈ 𝒱0 ⊎ 𝒱1 do

create 𝑑 boolean variables ⟨𝑣1, . . . , 𝑣𝑚⟩1, . . . , ⟨𝑣1, . . . , 𝑣𝑚⟩𝑑;
for local control transition 𝑒 = (𝑥𝑖, 𝑥

′
𝑖) ∈ 𝐸𝑖, 𝑥𝑖 ∈ 𝑉0𝑖 do

create boolean variable ⟨𝑒⟩;
/* STEP 2: Initial state constraints */
for 𝑣 = (𝑣1, . . . , 𝑣𝑚) ∈ 𝒱0 ⊎ 𝒱1 do

if (𝑣1, . . . , 𝑣𝑚) ∈ 𝑉𝑖𝑛𝑖𝑡 then
clauseList.add([⟨𝑣1, . . . , 𝑣𝑚⟩1])

else
clauseList.add([¬⟨𝑣1, . . . , 𝑣𝑚⟩1])

/* STEP 3: Target state constraints */
for 𝑣 = (𝑣1, . . . , 𝑣𝑚) ∈ 𝒱0 ⊎ 𝒱1 do

if (𝑣1, . . . , 𝑣𝑚) ∈ 𝑉𝑔𝑜𝑎𝑙 then
clauseList.add([⟨𝑣1, . . . , 𝑣𝑚⟩1 ∧ . . . ∧ ⟨𝑣1, . . . , 𝑣𝑚⟩𝑑])

else
clauseList.add([¬⟨𝑣1, . . . , 𝑣𝑚⟩𝑑])

/* STEP 4: Unique selection of local transitions (for distributed positional strategy)
*/
for local control transition 𝑒 = (𝑥𝑖, 𝑥

′
𝑖) ∈ 𝐸𝑖, 𝑥𝑖 ∈ 𝑉0𝑖 do

for local transition 𝑒1 = (𝑥𝑖, 𝑥
′
𝑖1
), . . . , 𝑒𝑘 = (𝑥𝑖, 𝑥

′
𝑖𝑘
) ∈ 𝐸𝑖, 𝑒1 . . . 𝑒𝑘 ̸= 𝑒 do

clauseList.add([⟨𝑒⟩ ⇒ (¬⟨𝑒1⟩ ∧ . . . ∧ ¬⟨𝑒𝑘⟩)])

/* STEP 5: If a control vertex is in the attractor (winning region) but not a goal,
an edge should be selected to reach the goal state */
for 𝑣 = (𝑣1, . . . , 𝑣𝑚) ∈ 𝒱0 do

for 𝑣𝑖, 𝑖 = 1, . . . ,𝑚 do
if 𝑣𝑖 ∈ 𝑉0𝑖 ∖ 𝑉𝑔𝑜𝑎𝑙 then

let
⋃︀

𝑗 𝑒𝑗 be the set of local transitions starting from 𝑣𝑖 in 𝐺𝑖

if
⋃︀

𝑗 𝑒𝑗 ̸= 𝜑 then
clauseList.add([(

⋁︀
𝑖=1...𝑑⟨𝑣⟩𝑖)⇒ (

⋁︀
𝑗⟨𝑒⟩𝑗)])

continue with Algorithm 8.

132

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

Algorithm 8: PositionalDistributedStrategy_BoundedSAT_0 (continuing Algorithm 7)

begin
/* STEP 6: Impact of control edge selection (simultaneous progress) */
for 𝑣 = (𝑣1, . . . , 𝑣𝑚) ∈ 𝒱0 do

forall the edge combination (𝑒1, . . . , 𝑒𝑚): 𝑒𝑖 = (𝑣𝑖, 𝑣
′
𝑖) ∈ 𝐸𝑖 when 𝑣𝑖 ∈ 𝑉0𝑖 or

𝑒𝑖 = (𝑣𝑖, 𝑣𝑖) when 𝑥𝑖 ∈ 𝑉1𝑖 do
/* 𝑒𝑖 = (𝑣𝑖, 𝑣𝑖) when 𝑥𝑖 ∈ 𝑉1𝑖 are simply dummy edges for ease of
formulation */
for 𝑗 = 1, . . . , 𝑑− 1 do

clauseList.add([⟨𝑣1, . . . , 𝑣𝑚⟩𝑗 ⇒ ((
⋀︀

{𝑖|𝑣𝑖∈𝑉0𝑖
}⟨𝑒𝑖⟩)⇒ (⟨𝑣′1, . . . , 𝑣′𝑚⟩𝑗+1))])

/* STEP 7: Impact of environment vertex */
for environment vertex 𝑣 = (𝑣1, . . . , 𝑣𝑚) ∈ 𝒱1 do

let the set of successors be
⋃︀

𝑖 𝑣𝑖; for 𝑗 = 1, . . . , 𝑑− 1 do
clauseList.add([⟨𝑣⟩𝑗 ⇒ (

⋀︀
𝑖(⟨𝑣𝑖⟩𝑗+1 ∨ . . .∨, ⟨𝑣𝑖⟩𝑑))]);

/* STEP 8: Invoke the SAT solver: return true when satisfiable */
return invokeSATsolver(clauseList)

reaches the goal from the initial state within 𝑑 − 1 steps: If a play (starting from initial
state) has proceeded 𝑑−1 steps and reached 𝑢 ̸∈ 𝑉𝑔𝑜𝑎𝑙, then based on (2), ⟨𝑢⟩𝑑 should be
false. However, based on (1), (3), (4) the ⟨𝑢⟩𝑑 should be set to true (reachable from
initial states using 𝑑− 1 steps). Thus the SAT problem should be unsatisfiable.

In general, Algorithm 7 creates constraints based on the above concept, but compared
to the bounded local game reachability algorithm in [AMN05], it contains slight modi-
fications:

1. When a variable ⟨𝑣⟩𝑖 is evaluated to true, it means that vertex 𝑣 can reach the
target state within 𝑑 − 𝑖 steps, which is the same as what is defined in [AMN05].
However, we introduce more variables for edges in local games, which is shown
in STEP 1: when a variable ⟨𝑒⟩ is evaluated to true, the distributed strategy uses
the local transition 𝑒.

2. To achieve locality, we must include constraints specified in STEP 4: the positional
(memoryless) strategy disallows to change the use of local edges from a given
vertex.

3. We modify the impact of control edge selection in STEP 6 by adding an ad-
ditional implication "⟨𝑒⟩ ⇒" over the original constraint in the witness algo-
rithm [AMN05]. Here as in Mohalik and Walukiwitz’s formulation, all subgames
in a control position should proceed a move (the progress of a global move is a
combination of local moves), we need to create constraints considering all possi-
ble local edge combinations.

We explain the concept of the witness algorithm (Algorithm 7 and 8) using Figure 6.6,
where a sample witness of an imaginary distributed game is represented as a tree struc-
ture. We may interpret a witness as follows: a witness describes how the strategy un-

133

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

Unrolling Level 6

Unrolling Level 1

Unrolling Level 2

Unrolling Level 3

Unrolling Level 4

Unrolling Level 5

v1

v2

v31 v32 v33

v4

v51 v52

v6

Figure 6.6: The concept of witness.

avoidably leads each possible play starting from the initial location to a goal location.
In Figure 6.6, a goal state is labeled with the green color (e.g., 𝑣31). Starting from the
initial state 𝑣1 (instance of STEP 2 constraints), first the unique distributed positional
strategy decides the unique successor 𝑣2 (instance of STEP 4 and 6 constraints). From
𝑣1, it has three possible successors 𝑣31, 𝑣32, 𝑣33. The condition where three successors
should all lead to a goal state is captured by STEP 7 constraints. For 𝑣31 and 𝑣33, they
are goal states (instance of STEP 3 constraints). For 𝑣32, as it is not a goal state, again the
unique distributed positional strategy decides the next move; however, as it inevitably
reaches goal states (with a recursive probing), the corresponding Boolean variable in
the formula is set to true. With back propagation the corresponding variable of 𝑣2 is
also set to true. Following the argument above, it is not difficult to observe that if the
unrolling depth equals 6, the satisfiability of the generated SAT formula indeed creates
such a witness of the distributed game.

In appendix B, we give an alternate algorithm working with different formulation of
distributed games where in each control location, only one local game can move: a run
of the game may execute multiple local moves until it reaches a state where all local
games are in an environment position. We find this alternative formulation closer to
the interleaving semantics of distributed systems.

134

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

6.6 Step C: Conversion from Strategies to Concrete
Implementations

Once when the distributed game has returned a positive result, and assume that the
result is represented as an IM, the remaining problem is to check whether the synthe-
sized result can be translated to PISEM and thus further to concrete implementation.
If for each existing action or newly generated FT mechanism, the worst case execution
time is known (with available WCET tools, e.g., AbsInt7), then we can always answer
whether the system is implementable by a full system rescheduling, which can be com-
plicated. Nevertheless, based on our system modeling (assumption with a globally
synchronized clock), perform modification on the release time or the deadline on ex-
isting actions from the synthesized IM can be translated to a linear constraint system,
as in the synthesized IM each action contains a timing precondition based on program
counters. Here we give a simplified algorithm which performs local timing modification
(LTM). Intuitively, LTM means to perform partitions on either

1. the interval 𝑑 between the deadline of action 𝜎⌊𝑎
𝑏
⌋ and release time of 𝜎⌈𝑎

𝑏
⌉, if (a)

𝜎𝑎
𝑏

exists and (b) 𝑑 ̸= 0, or

2. the execution interval of action 𝜎⌊𝑎
𝑏
⌋, if 𝜎𝑎

𝑏
exists.

In the algorithm, we assume that for every action 𝜎𝑑, 𝑑 ∈ N where FT mechanisms are
not introduced between 𝜎𝑑 and 𝜎𝑑+1 during synthesis, its release-time and deadline
should not change; this assumption can be checked later or added explicitly to the
constraint system under solving (but it is not listed here for simplicity reasons). Then
we solve a constraint system to derive the release time and deadline of all FT actions
introduced. Algorithm 9 performs such execution8: for simplicity assume at most one
FT action exists between two actions 𝜎𝑖, 𝜎𝑖+1; in our implementation this assumption is
released:

∙ Item (1) performs a interval split between 𝜎⌊𝑎
𝑏
⌋ and 𝜎𝑎

𝑏
.

∙ Item (3) assigns the deadline of 𝜎⌊𝑎
𝑏
⌋ to be the original deadline of 𝜎𝑎

𝑏
.

∙ Item (4), (5) ensure that the reserved time interval is greater than the WCET.

∙ Item (6) to (11) introduce constraints from other processes:

– Item (6) (7) (8) consider existing actions which do not change the deadline
and release time; for these fetch the timing information from PISEM.

– Item (9) (10) (11) consider newly introduced actions or existing actions which
change their deadline and release time; for these actions use variables to
construct the constraint.

∙ Item (12) is a conservative dependency constraint between 𝜎𝑎
𝑏

and a send 𝜎𝑑.

7http://www.absint.com/
8Here we list case 2 only; for case 1 similar analysis can be applied.

135

http://www.absint.com/

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

Algorithm 9: LocalTimingModification
Data: Original PISEM 𝒮 = (𝒜,𝒩 , 𝒯), synthesized IM 𝑆 = (𝐴,𝑁)
Result: For each 𝜎𝑎

𝑏
and 𝜎⌊𝑎

𝑏
⌋, their execution interval [𝛼𝑎

𝑏
, 𝛽𝑎

𝑏
), [𝛼⌊𝑎

𝑏
⌋, 𝛽⌊𝑎

𝑏
⌋)

For convenience, use (𝑋 𝑖𝑛 𝒮) to represent the retrieved value 𝑋 from PISEM 𝒮.
begin

for 𝜎𝑎
𝑏
[∧𝑚=1...𝑛𝐴 [𝑝𝑐𝑎

𝑏
,𝑚𝑙𝑜𝑤

, 𝑝𝑐𝑎
𝑏
,𝑚𝑢𝑝

)] in 𝜎𝑖 of 𝐴𝑖 do
let 𝛼𝑎

𝑏
, 𝛽𝑎

𝑏
, 𝛼⌊𝑎

𝑏
⌋, 𝛽⌊𝑎

𝑏
⌋ // Create a new variable for the constraint system

/* Type A constraint: causalities within the process */
1 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠.add(𝛼𝑎

𝑏
= 𝛽⌊𝑎

𝑏
⌋)

2 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠.add(𝛼⌊𝑎
𝑏
⌋ = (𝛼⌊𝑎

𝑏
⌋𝑖𝑛 𝒮))

3 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠.add(𝛽𝑎
𝑏
= (𝛽⌊𝑎

𝑏
⌋𝑖𝑛 𝒮))

4 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠.add(𝛽𝑎
𝑏
− 𝛼𝑎

𝑏
> 𝑊𝐶𝐸𝑇 (𝜎𝑎

𝑏
))

5 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠.add(𝛽⌊𝑎
𝑏
⌋ − 𝛼⌊𝑎

𝑏
⌋ > 𝑊𝐶𝐸𝑇 (𝜎⌊𝑎

𝑏
⌋))

/* Type B constraint: causalities crossing different processes */
for 𝜎𝑎

𝑏
[∧𝑚=1...𝑛𝐴 [𝑝𝑐𝑎

𝑏
,𝑚𝑙𝑜𝑤

, 𝑝𝑐𝑎
𝑏
,𝑚𝑢𝑝

)] in 𝜎𝑖 of 𝐴𝑖 do
for 𝜎𝑑[∧𝑚=1...𝑛𝐴 [𝑝𝑐𝑑,𝑚𝑙𝑜𝑤

, 𝑝𝑐𝑑,𝑚𝑢𝑝)] in 𝜎𝑗 of 𝐴𝑗 do
if 𝑑 ∈ N and not exists 𝜎𝑥

𝑦
∈ 𝜎𝑗 where ⌊𝑥𝑦 ⌋ = 𝑑 then

6 if 𝑝𝑐𝑑,𝑗𝑢𝑝 < 𝑝𝑐𝑎
𝑏
,𝑗𝑙𝑜𝑤 then 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠.add((𝛽𝑑 𝑖𝑛 𝒮) < 𝛼𝑎

𝑏
)

7 if 𝑝𝑐𝑑,𝑗𝑙𝑜𝑤 > 𝑝𝑐𝑎
𝑏
,𝑗𝑢𝑝 then 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠.add((𝛼𝑑 𝑖𝑛 𝒮) > 𝛽𝑎

𝑏
)

if 𝜎𝑎
𝑏
:= send(𝑝𝑟𝑒, 𝑖𝑛𝑑, 𝑛, 𝑑𝑒𝑠𝑡, 𝑣, 𝑐) ∧ 𝑝𝑐𝑑,𝑗𝑙𝑜𝑤 > 𝑝𝑐𝑎

𝑏
,𝑗𝑢𝑝 then

8 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠.add((𝛼𝑑 𝑖𝑛 𝒮) > 𝛽𝑎
𝑏
+𝑊𝐶𝑀𝑇𝑇 (𝑛, 𝑖𝑛𝑑))

else
9 if 𝑝𝑐𝑑,𝑗𝑢𝑝 < 𝑝𝑐𝑎

𝑏
,𝑗𝑙𝑜𝑤 then 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠.add(𝛽𝑑 < 𝛼𝑎

𝑏
)

10 if 𝑝𝑐𝑑,𝑗𝑙𝑜𝑤 > 𝑝𝑐𝑎
𝑏
,𝑗𝑢𝑝 then 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠.add(𝛼𝑑 > 𝛽𝑎

𝑏
)

if 𝜎𝑎
𝑏
:= send(𝑝𝑟𝑒, 𝑖𝑛𝑑, 𝑛, 𝑑𝑒𝑠𝑡, 𝑣, 𝑐) ∧ 𝑝𝑐𝑑,𝑗𝑙𝑜𝑤 > 𝑝𝑐𝑎

𝑏
,𝑗𝑢𝑝 then

11 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠.add(𝛼𝑑 > 𝛽𝑎
𝑏
+𝑊𝐶𝑀𝑇𝑇 (𝑛, 𝑖𝑛𝑑))

/* Type C constraint: conservative data dependency constraints */
for 𝜎𝑎

𝑏
[∧𝑚=1...𝑛𝐴 [𝑝𝑐𝑎

𝑏
,𝑚𝑙𝑜𝑤

, 𝑝𝑐𝑎
𝑏
,𝑚𝑢𝑝

)] in 𝜎𝑖 of 𝐴𝑖 do
for 𝜎𝑑[∧𝑚=1...𝑛𝐴(𝑝𝑐𝑑,𝑚𝑙𝑜𝑤

, 𝑝𝑐𝑑,𝑚𝑢𝑝)] in 𝜎𝑗 of 𝐴𝑗 do
if 𝜎𝑑 := send(𝑝𝑟𝑒, 𝑖𝑛𝑑, 𝑛, 𝑑𝑒𝑠𝑡, 𝑣, 𝑐) ∧ 𝜎𝑎

𝑏
reads variable 𝑐 ∧ 𝑝𝑐𝑑,𝑗𝑢𝑝 < 𝑝𝑐𝑎

𝑏
,𝑗𝑙𝑜𝑤

then
12 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠.add((𝛽𝑑 𝑖𝑛 𝒮) +𝑊𝐶𝑀𝑇𝑇 (𝑛, 𝑖𝑛𝑑) < 𝛼𝑎

𝑏
)

solve 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 using (linear) constraint solvers.

136

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

InputRead(m);

MsgSend(m)[0ms, 40ms);

PrintOut(m); [99ms, 100ms)

Process A Process B

RecvMsg(m)[60ms, 99ms);

Period = 100ms Period = 100ms

m ∈ {T, F}

mv := ⊥;

Process

Variable

Action

Network N

RecvMsg(req);
if(reqv 6=⊥) rsp := m;

if(reqv 6=⊥) MsgSend(rsp);

if(mv =⊥) req := T ;

if(mv =⊥) MsgSend(req);
if(mv =⊥) m = rsp;

reqv :=⊥; rspv :=⊥;
reqv :=⊥; rspv :=⊥;PrintOut(m); [99ms, 100ms)

m ∈ {T, F},mv ∈ {>,⊥}
req, rsp ∈ {T, F}, reqv, rspv ∈ {>,⊥}req, rsp ∈ {T, F}, reqv, rspv ∈ {>,⊥}

Figure 6.7: An example where FT primitives are introduced for synthesis.

6.7 Implementation and Case Studies

For implementation, we have created our prototype software as an Eclipse-plugin,
called GECKO (we refer readers to a full report in the appendix on the design methodol-
ogy of Gecko), which offers an open-platform based on the model-based approach to fa-
cilitate the design, synthesis, and code generation for fault-tolerant embedded systems.
Currently the engine implements the search-based algorithms, and the SAT-based algo-
rithm is experimented independently under GAVS+.To evaluate our approach, here we
reuse the example in sec. 6.2 and perform automatic tuning synthesis for the selected
FT mechanisms.

6.7.1 Example from Section 2

In this example, the user selects a set of FT mechanism templates with the intention
to implement a fail-then-resend operation, which is shown in Figure 6.7. The selected
patterns introduce two additional messages in the system, and the goal is to orchestrate
multiple synchronization points introduced by the FT mechanisms between 𝒜 and ℬ
(the timing in FT mechanisms is unknown). The fault model, similar to sec. 6.2, assumes
that in each period at most one message loss occurs.

Once when GECKO receives the system description (including the fault model) and the
reachability specification, it translates the system into a distributed game. In Figure 6.8,
the set of possible control transitions are listed9; the solver generates an appropriate
PC-precondition for each action to satisfy the specification. In Figure 6.8, bold num-
bers (e.g., ⟨0000⟩) indicate the synthesized result. The time line of the execution (the
synthesized result) is explained as follows:

1. Process 𝒜 reads the input, sends MsgSend(𝑚), and waits.

2. Processℬ first waits until it is allowed to execute (RecvMsg(𝑚)). Then it performs
a conditional send MsgSend(𝑟𝑒𝑞) and waits.

3. Process 𝒜 performs RecvMsg(𝑟𝑒𝑞), following a conditional send MsgSend(𝑟𝑠𝑝).

9In our implementation, the PC starts from 0 rather than 1; which is different from the formulation in IM
and PISEM.

137

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

InputRead(m)[0000, 0001);

MsgSend(m)[0000, 0001);

PrintOut(m); [00101, 10000);

Process A Process B

RecvMsg(m)[00101, 01100);

Period = 100ms Period = 100ms

m ∈ {T, F} m ∈ {T, F},mv ∈ {>,⊥}
req, rsp ∈ {T, F}, reqv, rspv ∈ {>,⊥}

RecvMsg(req)[0000, 1100);

if(reqv 6=⊥) rsp := m [0000, 1100);

if(reqv 6=⊥) MsgSend(rsp) [0000, 1100);

if(mv =⊥) req := T [00101, 10000);

if(mv =⊥) MsgSend(req) [00101, 10000);

if(mv =⊥) m = rsp [00101, 10000);

PrintOut(m); [0011, 1100);

[000 00]

[001 00]

[001 01]

[001 10]

[001 11]

[010 00]

[011 00]

[00 00]

[00 01]

[00 10]

[00 11]

[01 00]

[10 00]

PCA PCB

〈0000〉

〈0000〉

〈00101〉

〈00101〉

〈00101〉〈0011〉

〈0011〉

〈0011〉

〈01000〉

〈0100〉

〈01100〉

[100 00] End of Period (with variable reset)

[11 00] End of Period (with variable reset)

req, rsp ∈ {T, F}, reqv, rspv ∈ {>,⊥}
0

1

5
4

6
4

7
4

2

3

4

1
4

2
4

3
4

0

1

2

3

Figure 6.8: A concept illustration for the control choices in the generated game.

A

B
b1
4

60 b2
4

b3
4

99

40 a5
4
a6

4
a7

4
99

a5
4
> 40

a6
4
− a5

4
> 1

a7
4
− a6

4
> 1

99− a7
4
> 1

b1
4
− 60 > 1

b2
4
− b1

4
> 1

b3
4
− b2

4
> 1

99− b3
4
> 1

a5
4
> b2

4
+ 1 + 3

a6
4
> b2

4
+ 1 + 3

a7
4
> b2

4
+ 1 + 3

a5
4
+ 1 < b3

4

a6
4
+ 1 < b3

4

a7
4
+ 1 < b3

4

b1
4
> 40 + 3

b2
4
> 40 + 3

b3
4
> a7

4
+ 1 + 3

Type A Type B

b1
4
+ 1 < a5

4

b2
4
+ 1 < a5

4

b1
4
+ 1 < 99

Type C

b3
4
− 40 > 3

Figure 6.9: An illustration for applying LTM for the example in sec. 6.7.1, and the cor-
responding linear constraints.

4. Process ℬ performs conditional assignment, which assigns the value of 𝑟𝑠𝑝 to 𝑚,
if 𝑚𝑣 is empty.

We continue the case study by stating assumptions over hardware and timing; these
can be specified in GECKO as properties of the model.

1. Process 𝒜 and ℬ are running on two Texas Instrument LM3S8962 development
boards10 under FreeRTOS11 (a real-time operating system), and messages are
communicating over a CAN bus.

2. For each existing or FT action, its WCET on the hardware is 1ms.

3. For all messages communicating using the network, the WCMTT is 3ms.

We apply the LTM algorithm, such that we can generate timing constraints on dedi-
cated hardware; these timing constraints will be translated to executable C code (based

10http://www.luminarymicro.com/products/LM3S8962.html
11http://www.freertos.org/

138

http://www.luminarymicro.com/products/LM3S8962.html
http://www.freertos.org/

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

on FreeRTOS). Figure 6.9 is used to assist the explanation of LTM, where variables used
in the linear constraint solver are specified as follows:

∙ 𝑎 5
4
: release time for action "RecvMsg(𝑟𝑒𝑞)" in process 𝒜.

∙ 𝑎 6
4
: release time for action "if(𝑟𝑒𝑞𝑣 ̸=⊥) 𝑟𝑠𝑝 := 𝑚" (and similarly, the deadline

for "RecvMsg(𝑟𝑒𝑞)") in process 𝒜 .

∙ 𝑎 7
4
: release time for action "if(𝑟𝑒𝑞𝑣 ̸=⊥) MsgSend(𝑟𝑠𝑝)" in process 𝒜.

∙ 𝑏 1
4
: release time for action "if(𝑚𝑣 =⊥) 𝑟𝑒𝑞 := 𝑇 " in process ℬ.

∙ 𝑏 2
4
: release time for action "if(𝑚𝑣 =⊥) MsgSend(𝑟𝑒𝑞)" in process ℬ.

∙ 𝑏 3
4
: release time for action "if(𝑚𝑣 =⊥) 𝑚 = 𝑟𝑠𝑝" in process ℬ.

As in process 𝒜, there exists a time interval [40, 99) between two existing actions
MsgSend(𝑚) and PrintOut(𝑚), the LTM algorithm will prefer to utilize this interval
than splitting [0, 40), as using [40, 99) generates the least modification on the schedul-
ing. The generated linear constraint system is also shown in Figure 6.9. An satisfying
instance for (𝑎 5

4
, 𝑎 6

4
, 𝑎 7

4
, 𝑏 1

4
, 𝑏 2

4
, 𝑏 3

4
) could be (72, 77, 82, 62, 67, 87); instructions concern-

ing the release time and the deadline for the generated fault-tolerant model can be
annotated based on this.

6.7.2 Another Example

For the second example, the user selects an inappropriate set of FT mechanisms12.
Compared to Figure 6.7, in process 𝒜 an equality constraint "if(𝑟𝑒𝑞𝑣 =⊥)" is used,
instead of "if(𝑟𝑒𝑞𝑣 ̸=⊥)". In this way, the combined effect of FT mechanisms in Exam-
ple B changes dramatically from that of Example A:

∙ When ℬ does not receive 𝑚 from 𝒜, it sends a request command.

∙ When 𝒜 receives a request message, it does not send the response; this violates
the original intention of the designer.

Surprisingly, GECKO reports a positive result with an interesting sequence! For all FT
actions in process 𝒜, they should be executed with the procondition of 𝑃𝐶ℬ equal to
0000, meaning that FT mechanisms in 𝒜 are executed before RecvMsg(𝑚) in ℬ starts.
In this way, 𝒜 always sends the message MsgSend(𝑟𝑠𝑝) containing the value of 𝑚, and
as at most one message loss exists in one period, the specification is satisfied.

6.7.3 Discussion

Concerning the running time of the above two examples, the searching engine (based
on forward searching + BDD for intermediate image storing) is able to report the result
in 3 seconds, while constraint solving is also relatively fast (within 1 second). Our
engine offers a translation scheme to dump the BDD to mechanisms in textual form;
this process occupies most of the execution time. Note that the NP-completeness result

12This is originally a design mistake when we specify our FT mechanism patterns; however interesting
results are generated.

139

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

(a) Pop-up window of Gecko

(b) Synthesized mechanism (interleaving model; textual form)

(c) Constraint system by LTM

(d) Results of synthesized timing constraints

Figure 6.10: Screenshots of GECKO when executing the example in sec. 6.7.1.

140

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

does not bring huge benefits, as another exponential blow-up caused by the translation
from variables to states is also unavoidable: this is the reason why currently we use a
forward search algorithm combining with BDDs in the implementation.

Nevertheless, this does not means that FT synthesis in practice is not possible; our
argument is as follows:

1. We have indicated that this method is applicable for small examples (similar to
the test case in the paper).

2. To fight with complexity we consider it important to respect the compositional
(layered) approach used in the design of embedded systems: once when a system
have been refined to several subsystems, it is more likely for our approach to be
applicable.

6.8 Related Work

Verification and synthesis of fault tolerance is an active field [FKL08, LM94, KA00,
GR09, BFS00, ORSvH95, AAE98, DF09]. Among all existing works, we find that the
work closest to ours is by Kulkarni et.al. [KA00]. Here we summarize the differences
in three aspects.

1. (Problem) As we are interested in real-time embedded systems, our starting
model resembles existing formulations used in the real-time community, where
time is explicitly stated in the model. Their work is more closely to protocol syn-
thesis and the starting model is based on (a composition of) FSMs.

2. (Approach) As our original intention is to facilitate the pattern selection and tun-
ing process, our approach does not seek for the synthesis of complete FT mech-
anisms and can be naturally connected to games (having a set of predefined
moves). Contrarily, their results focus on synthesizing complete FT mechanisms,
for example voting machines or mechanisms for Byzantine generals’ problem.

3. (Algorithm) To apply game-based approach for embedded systems, our algo-
rithms includes the game translation (timing abstraction) and constraint solving
(for implementability). In addition, our game formulation enables us to connect
and modify existing and rich results in algorithmic game solving: for instance,
we reuse the idea of witness in [AMN05] for distributed games, and it is likely
to establish connections between incomplete methods for distributed games and
algorithms for games of imperfect information [DWDR06].

A recent work by Girault et.al. [GR09] follows similar methodologies (i.e., on protocol
level FSMs) to [KA00] and performs discrete controller synthesis for fault-tolerance; the
difference between our work and theirs follows the argument above.

Lastly, we would like to comment on the application of algorithmic games. Several
important work for game analysis or LTL synthesis can be found from Bloem and
Jobstmann et.al. (the program repair framework [JGB05]), Henzinger and Chatterjee
et.al. (Alpaga and the interface synthesis [BCDW+09, DHJP08]), or David and Larson
et.al. (Uppaal TIGA [BCD+07b]). One important distinction is that due to our system
modeling, we naturally start from a problem of solving distributed games and need to

141

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

PISEM IM

Fault Model FT Mechanism
Choices

SDG

IM + FTPISEM + FTExecutable C code

a b c

de

(a) Safe abstraction

(b) Game creation

(c) Game solving

(d) Implementability analysis

(e) Code generation

Figure 6.11: Concept illustration of the overall approach for fault-tolerant synthesis;
IM+FT means that an IM model is equipped with FT mechanisms.

fight with undecidability immediately, while the above works are all based on a non-
distributed setting.

6.9 Concluding Remarks

This chapter presents a comprehensive approach (see Figure 6.11 for concept illustra-
tion) for the augmenting of fault-tolerance for real-time distributed systems under a
game-theoretic framework. We use simple yet close-to-reality models (PISEM) as a
starting point of FT synthesis, translate PISEM to distributed games with safe abstrac-
tions, perform game solving and later implementability analysis. The above flow is ex-
perimented in a prototype, enabling us to utilize model-based development framework
to perform FT synthesis. These mechanisms may have interesting applications in dis-
tributed process control and robotics. To validate our approach, we plan to increase the
maturity of our prototype system and study new algorithms for performance gains.

6.10 Appendix

6.10.1 A. The Need of Reestimating the WCMTT in CAN Buses when FT
messages are Introduced

To have an understanding whether newly introduced FT messages can change the ex-
isting networking behavior is both hardware and configuration dependent. In this sec-
tion, we only describe the behavior when FT messages are introduced in a Control Area
Network (CAN bus), which is widely used in automotive and automation domains.
Here we give configuration settings (conditions) such that newly introduced messages
do not influence the existing networking behavior. For details concerning the timing
analysis of CAN, we refer readers to [TBW95, DBBL07].

Proposition 1. Given an ideal CAN bus with message priority from 1 to 𝑘, when the three
conditions are satisfied:

1. No message with priority 𝑘 is not used in the existing network.
2. The predefined size of the message for priority 𝑘 is larger than all messages with priority

1 to 𝑘 − 1,
3. All FT messages are having priority smaller or equal to 𝑘, and the size is less than the

message size stated in (2).

142

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

When the WCMTT is derived using the analysis in [TBW95], concerning the WCMTT of all
messages with priority 1 to 𝑘, it is indifferent to the newly introduced messages.

Proof. (Outline) Based on the algorithm in [TBW95], for a message with priority 𝑖 ∈
{1, . . . , 𝑘}, its timing behavior only changes with two factors:

∙ (a) The blocking time caused by a message with lower priority 𝑗 > 𝑖 changes:
when a message with lower priority changes to a bigger message size, the block-
ing time increases.

∙ (b) The interference from messages with higher priority 𝑗 < 𝑖.

We proceed the argument as follows.

∙ For timing changes due to (b), as FT messages are all with lower priorities (based
on condition 3), they do not create or increase interferences with this type.

∙ For timing changes due to (a), we separate two two cases:

– As the size of all FT messages are smaller or equal than the message size
specified in (2), then the timing behavior for messages with priority 1 to
𝑘 − 1 do not change.

– Lastly, although the message with priority 𝑘 can change as it can now be
blocked by a lower priority message, such message does not exist based on
condition (1).

By the above information, in our framework we may assume that all messages trans-
mitted in a CAN bus are with lowest priority 𝑘 + 1, and then perform a simple timing
analysis at Step A.2.2 before creating the game; in this way, the problem is Step A.2.2
([Problem 2]) is safe to neglect.

6.10.2 B. Algorithm Modification for Interleaving of Local Games

(Remark) Compared to Mohalik and Walukiwitz’s formulation, as in this formulation,
only one subgame in a control position can proceed a move, we do not need to create
constraints considering all possible combinations in STEP 6, which is required in the
algorithm PositionalDistributedStrategy_BoundedSAT_0 (sec. 6.5).

6.10.3 C. GECKO: Tool-based Development of Light-weight Fault-tolerant
Embedded Systems

6.10.3.1 Introduction

In this section, we present Gecko, a prototype framework for model-driven develop-
ment of embedded (distributed) systems, focusing on fault-tolerance and dependability
aspects. The goal of Gecko is to introduce fault-tolerance aspects into existing design
flows of embedded systems with minimal overhead.

143

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

Algorithm 10: PositionalDistributedStrategy_ControlInLocalGameInterleaving_-
BoundedSAT_0
Data: Distributed game graph 𝒢 = (𝒱0 ⊎ 𝒱1, ℰ), set of initial states 𝑉𝑖𝑛𝑖𝑡, set of target

states 𝑉𝑔𝑜𝑎𝑙, the unrolling depth 𝑑
Result: Output: whether a distributed positional strategy exists to reach 𝑉𝑔𝑜𝑎𝑙 from

𝑣𝑖𝑛𝑖𝑡
begin

let clauseList := getEmptyList() /* Store all clauses for SAT solvers */
execute STEP 1 to STEP 5 mentioned in
PositionalDistributedStrategy_BoundedSAT_0
/* STEP 6: Impact of control edge selection */
for local control transition 𝑒 = (𝑥𝑖, 𝑥

′
𝑖) ∈ 𝐸𝑖, 𝑥𝑖 ∈ 𝑉0𝑖 do

for 𝑣 = (𝑣1, . . . , 𝑣𝑚) ∈ 𝒱0 ⊎ 𝒱1 where 𝑥𝑖 = 𝑣𝑖 do
for 𝑗 = 1, . . . , 𝑑− 1 do

clauseList.add([⟨𝑒⟩ ⇒ (⟨𝑣1, . . . , 𝑣𝑖−1, 𝑣𝑖, 𝑣𝑖+1, . . . , 𝑣𝑚⟩𝑗 ⇒
(⟨𝑣1, . . . , 𝑣𝑖−1, 𝑥

′
𝑖, 𝑣𝑖+1, . . . , 𝑣𝑚⟩𝑗+1∨. . .∨⟨𝑣1, . . . , 𝑣𝑖−1, 𝑥

′
𝑖, 𝑣𝑖+1, . . . , 𝑣𝑚⟩𝑑))])

/* STEP 7: Impact of environment vertex */
for environment vertex 𝑣 = (𝑣1, . . . , 𝑣𝑚) ∈ 𝒱1 do

let the set of successors be
⋃︀

𝑖 𝑣𝑖; for 𝑗 = 1, . . . , 𝑑− 1 do
clauseList.add([⟨𝑣⟩𝑗 ⇒ (

⋀︀
𝑖(⟨𝑣𝑖⟩𝑗+1 ∨ . . .∨, ⟨𝑣𝑖⟩𝑑))])

/* STEP 8: Invoke the SAT solver: return true when satisfiable */
return invokeSATsolver(clauseList)

The predecessor of Gecko is called FTOS, which was developed as a text-based mod-
eling tool for the support of designing fault-tolerant systems. Technical details about
FTOS can be found in [Buc08]. Since then, we have extended and reimplemented the
tool with the following goals:

∙ Closing the visibility gap between models and implementations. As FTOS works
over dedicated models of computation, a single-step transformation from model
sketches to executable code is non-intuitive. By introducing intermediate mod-
els (functional and architectural) and several analysis techniques, we acquire
stronger guarantees over the resulting artifact13. Furthermore, it enables a gen-
eralized usage for any application specific models to be introduced in the Gecko
development flow.

∙ Giving more control to the user with ease of use. The tool should allow users to
inspect intermediate results and to perform modifications on-the-fly. The latter
case can be useful, in case an automatic global optimization of system aspects
would require a search in a huge state space, while developers can find a nearly
optimal solution based on their experience.

The resulting tool has been developed as a plug-in under the Eclipse Modeling Frame-

13We are aware of theoretical frameworks of composition and refinement process of systems, whilst it is
not our current focus.

144

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

work (EMF) [emf, oaw], which is now called Gecko. It automates the implementation of
extra-functional aspects with a focus on fault-tolerance, integrates formal verification,
but also enables developers to manually optimize the system.

In the following, we introduce the design flow and components currently included in
Gecko using figure 6.12.

6.10.3.2 Functional Concretization

In the first step, a given application-specific model in high-level descriptions is concretized
into an abstract actor model that is based on concepts similar to actor-oriented lan-
guages, and contains explicit timing information based on specifications included in
the original models or information added by the user within this step. In fig. 6.12, the
application-specific model consists of four partial models, namely HW, SW, Fault, FT
(for fault tolerance). During the concretization, only SW and FT are involved, where
we mainly generate required actors, ports, and token transfers (similar to connectors
in Ptolemy [EJL+03], differences mentioned later) concretizing user specified fault-
tolerance mechanisms. Fig. 6.13 illustrates an example from model sketches (upper
part) to functional models (lower part). For the timing specification, we use the infor-
mation contained in the SW model, which is based on the concept of logical execution
time [HHK03, KS08].

The actor model concretizer in Gecko translates fault-tolerance mechanisms into accord-
ing actors represented by a tree structure, whose elements can reference other elements
of the model. To generate executable code for actors in later stages, for each platform
only a generalized tree interpreter is required. This greatly reduces the possibility of
programming errors when introducing new platforms, as no parameterized skeletons
for each actor and each platform are required14.

6.10.3.3 Function-Architectural Mapping under Local Scale

After the first transformation, different application-specific models are mapped to uni-
fied abstract actor models, allowing us to follow the same transformation scheme to
generate computational (software) models. These models concretize the implementation
of the communication between software components and the timing without concrete
parameters. These parameters are derived in the next phases, when the concrete hard-
ware is considered. These steps are performed by the simple platform analyzer as de-
picted in fig. 6.12.

The above process can be challenging concerning design space exploration with multi-
objective function optimization. Therefore, we constrain ourselves, and assume that
a major part of the functionalities are mapped to architectures by user-guided infor-
mation, as it is currently specified in the FTOS software and hardware model. Our
goal is to perform a local-scale design space exploration concerning extra-functional
properties, i.e., we consider how to integrate newly generated actors (for dependabil-

14For instance, when concretizing actors in UPPAAL verification models, all &, <, > tokens are replaced
by &𝑎𝑚𝑝;, &𝑙𝑡;, &𝑔𝑡;. This can be easily achieved by a partial modification of the tree interpreter.

145

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

Actor Model
Concretizer

SW FTHW Fault

Abstract
Actor Models

Abstract
Actor Models

Actor WCET
Annotation

Dependability
Model Gen.

Model Checking

Bus WCET
Annotation

Simple Platform Analyzer

HWHW

Platform
Template
Library

Network
Configuration

Combined
System Model

Combined
System Model

Fault

Network
Configuration

Fault

Network
Configuration

Pass
Fail

Pass
Fail

Partially integrated/
implemented

GECKO: An integrated
environment for light-
weight self-healing
systems

Integrity
Constraint
Generator

Function

Integrity
Constraints

Implementation

Figure 6.12: An overview for the flow of model transformations, code generation, and
analysis scheme in Gecko.

146

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

ity, fault-tolerance) and newly introduced token transfers, such that the specified de-
sign constraints are still satisfied. Currently Gecko generates the mapping based on a
small set of user-predefined parameters, and the analysis is done separately after the
concretized model is generated. The resulting artifact is a combined model including
network configurations (e.g., message groupings and priorities in the CAN bus).

The timing behavior in Gecko is based on (1) the required time for executing actor
blocks (WCET) plus (2) the required time for token transfers (WCTT), which is grouped
into messages in the architecture model. We follow two different approaches: a hard
real-time approach based on temporarily disabling the system interrupts (not applica-
ble for all applications) to assure the claimed WCET of actor blocks or a less stricter
approach based on simulation to acquire confidence about the system behavior.

1. With respect to timing behavior of the network, currently only CAN buses are
supported with analysis techniques. We implemented the CAN bus WCTT ana-
lyzer using the classical real-time scheduling theory [DBBL07, TBW95] based on
resource contention. Nevertheless, the analysis technique does not scale to indus-
trial examples, as in this idealized case, the CAN controller must have enough
TxObjects to accommodate all the outgoing message streams. Our implementa-
tion template deploys the system based on this assumption, and raises alarms if it
is violated. The mentioned problem is mainly an issue for models-of-computation
with aperiodic behavior.

2. With respect to execution time of our automatically generated actors, to have
stronger confidence for predictable timing, files containing the WCET of these
actors (with parameterized form) can be read into Gecko as supplementary files.

6.10.3.4 Generation of Dependability Models

Regarding dependability, currently we are interested in whether a system with
equipped fault-tolerant mechanisms is sufficient to resist faults defined in the fault-
hypothesis. To achieve this goal, Gecko generates the dependability model from a
combination of functional models, fault models, and network/hardware configura-
tion files; the result is created in formats acceptable by the verification engine UP-
PAAL [BDL04]. Fig. 6.12 indicates required components for the generation of the de-
pendability model:

1. The network and hardware configurations generated on the architectural level pro-
vide a sufficient abstraction on how faults are actuated. For instance, when a
fault with type MessageLoss is considered, token transfers grouped in one sin-
gle message can be lost simultaneously, which should be faithfully modeled.

2. The abstract actor model can be naturally translated into automata as input for
formal verification engines. Gecko supports this translation and uses logical time
/ action causalities to avoid excessive use of variables in the verification model.
Both actor actions and token transfers are represented by edges15.

15An edge update takes zero time; time consumption is explicitly added, which is similar to discrete-event
simulation in Ptolemy or SystemC [Sys].

147

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

INPUT2

INPUT3

INPUT1

TASK2

TASK3

TASK1

OUTPUT2

OUTPUT3

OUTPUT1

Vote

0ms0ms

0ms0ms

0ms0ms

10ms10ms

10ms10ms

10ms10ms

Measure Result

Input1 Task1 Simple
Vote

Decide Output1

Idle State

Normal State

Measure

R1
Result

Drive

Timing properties

TT

Input2 Task1 Simple
Vote

Decide Output3

Normal State

Measure

R2
Result

Drive

TT

Input3 Task1 Simple
Vote Decide Output3

Normal State

Measure

R3
Result

Drive

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

Figure 6.13: An example for concretizing FTOS models to functional models with tim-
ing annotations (some details omitted). TT stands for token transfer, which
will later be refined during function-architecture mappings.

3. The fault model is used to annotate non-deterministic edges on the original model.
As we try to eliminate the extensive use of clock variables, the sporadic behavior
for the occurrence of faults requires appropriate abstractions to be tailored into
the functional model.

Limitation: Currently, Gecko only generates partial stubs of the whole model. Specifi-
cations, as well as user defined functions must be annotated manually to the UPPAAL
model, such that meaningful analysis results can be derived.

6.10.3.5 Deriving Integrity Constraints

With the above framework, we plan to investigate new techniques and algorithms and
construct them on top of Gecko. In this section, we give an example how the tool can
benefit from integration of these techniques.

In the fault-tolerance community, integrity constraints are conditions that hold in normal
operation, but may fail to hold in the event of a fault [Hay09]. As sensors may have
imprecisions, deriving integrity constraints to distinguish between effects caused by
imprecisions or errors is crucial to prevent false alarms. Here a simplified scenario in
fig. 6.14 is given to motivate the discussion and indicate our current progress.

148

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

VOTER

A

B

C

z = (x+y)/2

Mem

x

y

s1
z

z = (x+y)/2

Mem

x

y

s2
z

z = (x+y)/2

Mem

x

y

s3
z

[-0.5, 0.5]

[-0.5, 0.5]

[-0.5, 0.5]

Figure 6.14: An example where integrity constraints are considered over the voter
component.

In fig. 6.14, three identical sensor units s1, s2, and s3 with imprecision ranging be-
tween [−0.5, 0.5] perform readings from the environment, and pass their readings to
the corresponding functional unit 𝑧 = (𝑥+ 𝑦)/2. Results from each functional unit are
transformed to the voter to detect erroneous results, and a copy of the previous result
directly from port 𝑧 is stored in the memory for next stage processing (similar to the
integral part of the PID control). It can be observed that due to accumulative sensor
imprecision, values on ports 𝐴 (similarly 𝐵 and 𝐶) can deviate from the actual value

with a maximum ranging over [((−0.5+0)
2 +

(−0.5+
(−0.5+0)

2
)

2 + . . .), ((0.5+0)
2 +

(0.5+
(0.5+0)

2
)

2 +
. . .)] = [−Σ∞

𝑖=2
1
2𝑖
,Σ∞

𝑖=2
1
2𝑖
] = [−0.5, 0.5]. Therefore, when |𝛼 − 𝛽| > 1 occurs, where

𝛼, 𝛽 ∈ {𝐴,𝐵,𝐶}, we are certain that either 𝛼 or 𝛽 contains a erroneous sensor reading
which leads to the result (or faulty in our definition)16; the integrity constraint can be
designed based on the above information. The absence of such a criteria (no bounded
interval available), indicates design errors. Following this example, in Gecko the pro-
cess flow of generating integrity constraints (algorithm omitted) is sketched in fig. 6.15:

1. (Preprocessing) By adapting techniques in compiler technologies, the equivalent
static single assignment (SSA) form using LLVM [LLV] can be generated, which
enables efficient manipulations in the next stage.

2. (Analysis) The analyzer module gives each register variable (in fig. 6.15, %0, %1,
%2, %3, %X, %Y, %Z) two values (𝑣𝑎𝑙𝑢𝑒, 𝑖𝑚𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛), and update these values
based on the following two types:

∙ Atomic machine instructions (in fig. 6.15, load, store, add, sdiv). Consider

16Here a single fault-occurrence assumption is applied, meaning that at most one sensor can generate
erroneous readings at any instance.

149

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

C code

SSA
Generator

Equivalent
SSA form

Analyzer

Report

Error
Estimation

define void @calculate(i32* nocapture %X,
i32* nocapture %Y, i32* nocapture %Z) nounwind {

entry:
%0 = load i32* %X, align 4 ; <i32> [#uses=1]
%1 = load i32* %Y, align 4 ; <i32> [#uses=1]
%2 = add i32 %1, %0 ; <i32> [#uses=1]
%3 = sdiv i32 %2, 2 ; <i32> [#uses=1]
store i32 %3, i32* %Z, align 4
ret void

}

void calculate (int *X, int *Y, int *Z) {
*Z = (*X + *Y)/2;

}

X= [-0.5, 0.5], Y= previous(Z), Z= new value

Figure 6.15: Process flow for the generation of integrity constraints.

in fig. 6.15 with the instruction %2 = add i32 %1, %0 ;. Given %0 with
imprecision [−0.5, 0.5], %1with imprecision [−0.25, 0.25], %2would have im-
precision ranging over [−0.75, 0.75].
∙ Global iterations (e.g., a sensor reads one new value from the environment,

load memory, which is recorded separately in the information "Error Estima-
tion" in fig. 6.15). Note that as fixed points may never be reached, the number
of iterations can be set explicitly.

Limitation: The integrity constraint generator module currently operates over functions
under affine transformations; for conditional operations, a decision by taking both edges
is approximated. The analysis works with sensor imprecision modeled using both in-
tervals and Gaussian distribution, which is also closed under linear transformations.

6.10.3.6 Evaluation and Extension

The above functionalities of Gecko is implemented under the Eclipse platform, and
Figure 6.16 shows some screenshots when designing with Gecko. Stepwise refine-
ment operations can be performed to generate models or executable code. A complete
demonstration using the tool over Luminary Micro LM3S8962 evaluation boards is also
available, where a model containing distributed voting using the CAN bus is designed
and deployed. To support detailed analysis, Gecko also enables designers to generate
SystemC modules from Gecko models; currently only loosely-timed modeling method-
ology (using b_transport() primitives) is available.

150

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

Console for CAN bus WCET

Option selection windows in Gecko

Gecko pop-up options in Eclipse IDE

Functional model concretization (xmi format)
Architectural model annotation with WCTT reports (xmi format)
Dependability verification (for UPPAAL 4.0 xml format)
Experimental code generation
SystemC TLM 2.0 model fragment generation (loosely timed)

Functional model concretization (xmi format)

Functional model concretization (xmi format)

Figure 6.16: Screenshots when designing systems using Gecko.
To provoke free extension and usage, the package will be released as an Eclipse add-on
under GPL 2.0. For extensions, introducing new mechanisms requires users to design
a parameterized skeleton using EMF, which can be easily adapted by referencing ex-
isting mechanisms; introducing new platforms requires users to implement links from
abstract instructions (e.g., Send(), Wait()) to concretized mechanisms.

6.10.3.7 Brief Overview on Related Work

In general, different tools focus on different aspects in the overall design flow. For
instance, Metropolis [BWH+03] focuses on the joint modeling of applications and ar-
chitectures, and Ptolemy focuses on the unified semantics for the execution of hetero-
geneous models of computation. Our focus, compared to others, is different: we expect

151

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

to offer simplified (light-weight) means to achieve dependability and fault-tolerance
under a unified design platform or to experiment novel techniques.

6.10.3.8 Concluding Remarks

Our contributions are summarized as follows:

∙ We presented a framework for embedded systems to equip with fault-tolerance
with reduced design efforts. We bind actor-oriented methodologies and fault-
tolerant patterns [Han07] using tree-structures, and perform local-scale design
space exploration (for communication), and tree translation (for actors) in the
refinement process.

∙ Analysis techniques are introduced (dependability model generation, simple tim-
ing analysis), or experimented (integrity constraint analysis) in Gecko.

∙ The tool enables interfacing and integration with other tooling by sharing a com-
mon platform (Eclipse IDE) and by translating Gecko models into SystemC mod-
els.

The introduction of model-driven development (MDD) is to facilitate the design pro-
cess by providing an abstraction of the system behavior, where complexities of the
system construction can be reduced. The Gecko tool, which is based on MDD and fo-
cuses on fault-tolerance and dependability aspects, will continue to be improved and
extended.

6.10.4 D. Brief Instructions on Executing Examples for Synthesis in
GECKO

Here we illustrate how FT synthesis is done in our prototype tool-chain using the ex-
ample in sec. 6.7.1: first we perform model transformation and generate a new model
which equips FT mechanisms. Then executable code can be generated based on per-
forming code-generation over the specified model (optional). Once when the GECKO

Eclipse add-on is installed (see our website for instructions), proceed with the follow-
ing steps:

∙ The model (F01_FT_Synthesis_Correct.xmi) for sec. 6.7.1 contains the fault
model, the hardware used in the system, and pre-inserted FT mechanism blocks,
but their timing information is unknown.

∙ Right click on the selected model under synthesis, choose "Verification" ->
"Gecko: Model Transformation and Analysis". A pop-up window sim-
ilar to fig. 6.10a is available.

∙ In the General tab, choose Symbolic FT synthesis using
algorithmic game theory.

∙ In the Platform Analysis tab, set up the default actor WCET and network
WCMTT to be 1 and 3.

∙ In the Output tab, select the newly generated output file.

∙ Press "Finish". Results of intermediate steps are shown in the console, including

152

6. Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant
Embedded Systems

FT mechanisms as interleaving models (fig. 6.10b), constraints derived from LTM
(fig. 6.10c), and results of timing (fig. 6.10d) after executing the constraint solver.

– In fig. 6.10b, the mechanism dumped from the engine specifies the action
"if(𝑟𝑒𝑞𝑣 ̸=⊥) MsgSend(𝑟𝑠𝑝)": note that this action implicitly implies that
when 𝑟𝑒𝑞𝑣 =⊥, a null-op which only updates the program counter should
be executed; this is captured by our synthesis framework.

– In fig. 6.10d, the total execution time is roughly 18s because the engine
dumps the result back to mechanisms in textual form, which consumes huge
amount of time: executing the game and performing constraint solving take
only a small portion of the total time.

∙ When the model is generated, users can again right click on the newly generated
model, and select Code Generation in the tab General: the code generator
then combines the model description and software templates for dedicated hard-
ware and OS to create executable C code.

153

154

CHAPTER 7

Resource-Bounded Strategies for Distributed Games

Abstract
Distributed games capture the interaction between a distributed system and its envi-
ronment under operation. Applications, to name a few, include synthesis for fault-
tolerance and distributed scheduling. As solving these games is undecidable even
for simplest winning conditions, resource-bounded methods, i.e., strategies with (and
computed from) limited resources, are fundamental gadgets to solve practical prob-
lems. In this chapter, we investigate such methods to synthesize controller strategies
for distributed games, mainly on safety conditions. We first discuss the method based
on projections (MP𝑐). This method can be further generalized using risk state partitions
(MPP𝑐), where each local game is responsible of not entering certain risk states (in the
distributed game), implying an implicit cooperation among local games. However, cre-
ating such partition for safety winning is NP-complete, therefore heuristics are required
to guide the partition process. Lastly, we create local observations and combine with
the lattice theory of antichains to give a method which generates the global observation
strategy automaton for the distributed game; this automaton is further decomposed to
several automata to generate local controllers.

Contents
7.1 Introduction . 156
7.2 Preliminaries . 157
7.3 Distributed Safety Strategy based on Projections 161
7.4 Observation + Antichain + Decomposition 168
7.5 Related Work . 174
7.6 Outlook . 176

155

7. Resource-Bounded Strategies for Distributed Games

7.1 Introduction

There is an ever-growing demand for scalable computing systems that supports goal-
oriented composition. These computing assemblies are usually built from interacting
components, where each component provides a specific, well-defined capability or ser-
vice. It is a challenging task to orchestrate components in order to realize novel, added-
value capabilities. In this chapter we focus on distributed synthesis [PR90], which is one
approach that addresses this problem. The distributed synthesis problem [PR90] asks,
given (i) a distributed architecture consisting of a set of processors communicating with
each other and the environment over a network of synchronous input/output channels
and (ii) a specification of the desired behavior, if there exists a distributed program that
realize the specification. (A distributed program is a set of programs or implementa-
tions, one implementation for every component.)

The distributed synthesis problem is undecidable for most classes of architec-
tures [PR90] and it stays undecidable when restricted to safety, reachability, or Büchi
winning conditions [Jan07]. Only for simple architectures such as pipelines and one-
way rings, the problem is decidable. For many applications, these architectures are
typically too restrictive. Furthermore, the associated synthesis algorithms have often a
very high complexity, e.g., non-elementary complexities [PR90].

Nevertheless, engineers perform distributed synthesis despite of this fact. They con-
struct a distributed system from components, examine if it satisfies certain properties
using verification or testing, and perform suitable modification until it works properly.
Therefore in this chapter we take a practitioner’s perspective. Our goal is to develop
and present a set of efficient heuristics for distributed synthesis on arbitrary architec-
tures. These methods reflect the way how users design systems, and should be inex-
pensive heuristics that are applicable in many interesting cases. The goal is, if these
methods satisfy the design intention, distributed synthesis can be automated to a level
of assistance - what is considered as a potential fix by a designer can be found automat-
ically using our methods.

We use distributed games [MW03, GLZ04], an alternative formalism for distributed syn-
thesis, to present our methods. In a distributed game, there are 𝑛 players (e.g., 𝑛 pro-
cesses) playing a game against a single hostile environment (e.g., a scheduler). There
is no explicit way for processes to interact, every such interaction has to go through
the environment. Each player has only a local view of the global state of the system. A
distributed strategy (program) is a collection of local strategies; one for each of the play-
ers. Distributed games have the same undecidability properties as the traditional dis-
tributed synthesis formalism but they provide (i) an easy way to integrate pre-defined
behaviors of the components and (ii) an intuitive translation from concrete applications
to the mathematical model for distributed synthesis. In Section 7.2.3, we give an exam-
ple, in which a distributed system with priorities [BBS06] together with a specification
is translated into a distributed game.

Our methods (see Table 7.1 for an overview and the underlying design intentions) syn-

156

7. Resource-Bounded Strategies for Distributed Games

Table 7.1: Heuristics and their corresponding design intentions

Index Resource-Bounded Algorithm Corresponding Design Intention
1 Projection Minimal fix by modifying a

single component
2 Projection + Risk Partition Simple cooperation without

mutual understanding among components
3 Local observation + Antichain Enhanced cooperation based on

the knowledge of global states
inferred from local processes

thesize distributed strategies with bounded resources, e.g., positional strategies, which
do not depend on the history of an execution. The synthesis of resource-bounded
strategies is particularly important in the domain of distributed embedded systems,
where only a limited amount of memory is available. We present our methods only for
safety games but extensions to reachability or Büchi games are straightforward.

The first heuristic, presented in Section 7.3.1, reflects the intention of minimum repair:
we may interpret the least modification over the system as modifying a single com-
ponent. It uses projections to obtain local abstractions of the distributed game, and
synthesizes local strategies with a finite history. The method runs in polynomial time
but it is overly conservative, in the sense that it does not account for possible coop-
erations between local processes. An immediate extension, presented in Section 7.3.3,
assigns each unsafe state to a process responsible for avoiding this state. This way of
partitioning the set of unsafe states corresponds to a simple (context-unaware) form
of cooperation between the processes. We show that the problem of finding a suitable
partitioning is NP-complete. Finally, for enhanced cooperation, the method presented
in Section 7.4 collects local observations derived from the distributed game graph. This
algorithm is based on concepts of games with imperfect information; it relies heavily on
antichains [DWDR06] and runs in EXPTIME. The complexity results are summarized
in Table 7.2. Finally, in Section 7.5, we compare our heuristics with previous work on
the distributed synthesis problem and provide an outlook in Section 7.6.

7.2 Preliminaries

We are describing distributed games as defined by Mohalik and Walukiewicz [MW03].
In this model there are no explicit means of interaction among processes as such in-
teraction must take place through the environment. Moreover, each player has only a
local view of the global system state, whereas the (hostile) environment has access to
the global history. Distributed games are rich enough to model various variations of
distributed synthesis problems proposed in the literature [MW03]. Partial contents for
this section can also be found in Chapter 2.

157

7. Resource-Bounded Strategies for Distributed Games

7.2.1 (Local) Games

A game graph or arena is a directed graph 𝐺 = (𝑉𝑠 ⊎ 𝑉𝑒, 𝐸) whose nodes are partitioned
into two classes 𝑉𝑠 and 𝑉𝑒. We only consider the case of two participants in the fol-
lowing and call them player (system) and environment for simplicity. A play starting
from node 𝑣0 is simply a maximal path 𝜋 = 𝑣0𝑣1 . . . in 𝐺 where we assume that player
determines the move (𝑣𝑘, 𝑣𝑘+1) ∈ 𝐸 if 𝑣𝑘 ∈ 𝑉𝑠; environment determines the move when
𝑣𝑘 ∈ 𝑉𝑒. With Occ(𝜋) (Inf(𝜋)) we denote the set of nodes visited (visited infinitely often)
by a play 𝜋. A winning condition defines when a given play 𝜋 is won by player; if 𝜋 is
not won by the player, it is won by environment. A node 𝑣 is won by player if player
can always choose his moves in such a way that he wins any resulting play starting
from 𝑣, similarly for environment. We also use 𝐸𝑠 (𝐸𝑒) to represent the set of player
(environment) edges in 𝐸.

7.2.2 Distributed games

Definition 29. For all 𝑖 ∈ {1, . . . , 𝑛}, let 𝐺 = (𝑉𝑠𝑖 ⊎ 𝑉𝑒𝑖, 𝐸𝑖) be a game graph with the
restriction that it is bipartite. A distributed game 𝒢 is of the form (𝒱𝑠 ⊎ 𝒱𝑒, ℰ , 𝐴𝑐𝑐)
∙ 𝒱𝑒 = 𝑉𝑒1 × . . .× 𝑉𝑒𝑛 is the set of environment vertices.
∙ 𝒱𝑠 = (𝑉𝑠1 ⊎ 𝑉𝑒1)× . . .× (𝑉𝑠𝑛 ⊎ 𝑉𝑒𝑛) ∖ 𝒱𝑒 is the set of player vertices.
∙ Let (𝑥1, . . . , 𝑥𝑛), (𝑥′1, . . . , 𝑥

′
𝑛) ∈ 𝒱𝑠 ⊎ 𝒱𝑒, then ℰ satisfies:

– If (𝑥1, . . . , 𝑥𝑛) ∈ 𝒱𝑠, ((𝑥1, . . . , 𝑥𝑛), (𝑥′1, . . . , 𝑥
′
𝑛)) ∈ ℰ if and only if ∀𝑖.(𝑥𝑖 ∈ 𝑉𝑠𝑖 →

(𝑥𝑖, 𝑥
′
𝑖) ∈ 𝐸𝑖) ∧ ∀𝑗. (𝑥𝑗 ∈ 𝑉1𝑗 → 𝑥𝑗 = 𝑥′𝑗).

– For (𝑥1, . . . , 𝑥𝑛) ∈ 𝒱𝑒, if ((𝑥1, . . . , 𝑥𝑛),
(𝑥′1, . . . , 𝑥

′
𝑛)) ∈ ℰ , then for every 𝑥𝑖, either 𝑥𝑖 = 𝑥′𝑖 or 𝑥′𝑖 ∈ 𝑉𝑠𝑖, and moreover

(𝑥1, . . . , 𝑥𝑛) ̸= (𝑥′1, . . . , 𝑥
′
𝑛)

1

∙ 𝐴𝑐𝑐 ⊆ (𝒱𝑠 ⊎ 𝒱𝑒)𝜔 is the winning condition2.

Notice that there is an asymmetry in the definition of environment’s and player’s
moves. In a move from player’s to environment’s position, all components which are
player’s position must change. In the move from environment’s to player’s, all compo-
nents are environment’s position but only some of them need to change.

In a distributed game 𝒢 = (𝒱𝑠 ⊎ 𝒱𝑒, ℰ , 𝐴𝑐𝑐), a play is defined analogously as defined
in local games: a play starting from node 𝑣0 is a maximal path 𝜋 = 𝑣0𝑣1 . . . in 𝒢 where
player determines the move (𝑣𝑘, 𝑣𝑘+1) ∈ ℰ if 𝑣𝑘 ∈ 𝒱𝑠; the environment decides when
𝑣𝑘 ∈ 𝒱𝑒. For a vertex 𝑥 = (𝑥1, . . . , 𝑥𝑛), we use the function 𝑝𝑟𝑜𝑗(𝑥, 𝑖) to retrieve the 𝑖-th
component 𝑥𝑖, and use 𝑝𝑟𝑜𝑗(𝑋, 𝑖) to retrieve the 𝑖-th component for a set of vertices 𝑋 .
For simplicity, denote 𝜋≤𝑗 as 𝑣0𝑣1 . . . 𝑣𝑗 and use 𝑝𝑟𝑜𝑗(𝜋≤𝑗 , 𝑖) for 𝑝𝑟𝑜𝑗(𝑣0, 𝑖) . . . 𝑝𝑟𝑜𝑗(𝑣𝑗 , 𝑖),
i.e., a sequence from 𝜋≤𝑗 by projecting over 𝑖𝑡ℎ element.

1Another definition is to also add that all local moves of the environment should be explicitly listed in
the local game; this is not required, as mentioned in the paper [MW03]. Thus for the ease of read-
ing, we only construct environment moves in the distributed game and avoid drawing complicated
environment edges in the local game.

2In this thesis we also use 𝒢 as the identifier for the distributed game graph (𝒱𝑠 ⊎ 𝒱𝑒, ℰ).

158

7. Resource-Bounded Strategies for Distributed Games

A distributed strategy of a distributed game for player is a tuple of functions 𝜉 =
⟨𝑓1, . . . , 𝑓𝑛⟩, where each function 𝑓𝑖 : (𝑉𝑠𝑖 ⊎ 𝑉𝑒𝑖)

* × 𝑉𝑠𝑖 → (𝑉𝑠𝑖 ⊎ 𝑉𝑒𝑖) is a local strat-
egy for 𝐺𝑖 based on its observable history of local game 𝑖 and current position of local
game 𝑖. A distributed strategy is positional if
𝑓𝑖 : 𝑉𝑠𝑖 → 𝑉𝑠𝑖⊎𝑉𝑒𝑖, i.e., the update of location depends only on the current position of lo-
cal game. Contrarily, for environment a strategy is a function 𝑓 : (𝒱𝑠⊎𝒱𝑒)+ → (𝒱𝑠⊎𝒱𝑒)
that assigns each play prefix 𝑣0 . . . 𝑣𝑘 a vertex 𝑣𝑘+1 where (𝑣𝑘, 𝑣𝑘+1) ∈ ℰ . The formu-
lation of distributed games models the asymmetry between the environment (full ob-
servability) and the a set of local controllers (partial observability).

Definition 30. A distributed game 𝒢 = (𝒱𝑠⊎𝒱𝑒, ℰ , 𝐴𝑐𝑐) is for player winning by a distributed
strategy 𝜉 = ⟨𝑓1, . . . , 𝑓𝑛⟩ over initial states 𝒱𝑖𝑛𝑖 ∈ 𝒱𝑒, if for every play 𝜋 = 𝑣0𝑣1𝑣2, . . . where
𝑣0 ∈ 𝒱𝑖𝑛𝑖, player wins 𝜋 following his own strategy (regardless of strategies of environment),
i.e.,
∙ 𝜋 ∈ 𝐴𝑐𝑐.
∙ ∀𝑖 ∈ N0. (𝑣𝑖 ∈ 𝒱𝑠 → (∀𝑗 ∈ {1, . . . , 𝑛}.(𝑝𝑟𝑜𝑗(𝑣𝑖, 𝑗) ∈ 𝑉𝑠𝑗 → 𝑝𝑟𝑜𝑗(𝑣𝑖+1, 𝑗) =

𝑓𝑗(𝑝𝑟𝑜𝑗(𝜋≤𝑖, 𝑗))).

Definition 31. Given distributed game graph (𝒱𝑠 ⊎ 𝒱𝑒, ℰ),
∙ the reachability winning condition is defined by 𝐴𝑐𝑐 = {𝑣0𝑣1 . . . ∈ (𝒱𝑠 ⊎
𝒱𝑒)𝜔 | Occ(𝑣0𝑣1 . . .) ∩ 𝒱𝑔𝑜𝑎𝑙 ̸= ∅}, where 𝒱𝑔𝑜𝑎𝑙 is the set of goal states in 𝒱𝑠 ⊎ 𝒱𝑒.

∙ the safety (co-reachability) winning condition is defined by 𝐴𝑐𝑐 = {𝑣0𝑣1 . . . ∈ (𝒱𝑠 ⊎
𝒱𝑒)𝜔 | Occ(𝑣0𝑣1 . . .) ∩ 𝒱𝑟𝑖𝑠𝑘 = ∅}, where 𝒱𝑟𝑖𝑠𝑘 is the set of risk states in 𝒱𝑠 ⊎ 𝒱𝑒.

∙ the Büchi winning condition is defined by 𝐴𝑐𝑐 = {𝑣0𝑣1 . . . ∈ (𝒱𝑠⊎𝒱𝑒)𝜔 | Inf(𝑣0𝑣1 . . .)∩
𝒱𝑔𝑜𝑎𝑙 ̸= ∅}, where 𝒱𝑔𝑜𝑎𝑙 is the set of goal states in 𝒱𝑠 ⊎ 𝒱𝑒.

7.2.3 Example: distributed scheduling [BBPS09]

For the scenario of distributed scheduling in BIP systems [BBPS09, BBS06], distributed
games offer an intuitive translation for visualizing and solving such problems. Con-
sider the distributed system with priorities [BBS06] shown in Figure 7.1. It consists of
two processes, 𝒫1 and 𝒫2 and six actions (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓). An action is executed by fol-
lowing the transitions with the matching label. If the label appears in several processes,
then this action synchronized the processes. E.g., 𝒫1 and 𝒫2 are synchronized on Ac-
tion 𝑎, i.e., they take the transitions labeled 𝑎 simultaneously. At any step, a schedule
decides which of available action to execute next. Priorities restrict the available ac-
tions. In our example, Action 𝑑 has a lower priority than Action 𝑏, i.e., whenever 𝑑 and
𝑏 are enabled (e.g., in global state (𝑣2, 𝑣3)), then Action 𝑑 must not be taken. The same
holds for Action 𝑎 and 𝑒. Given a specification, e.g., avoid global state (𝑣2, 𝑣4), we can
construct a distributed game (Figure 7.1c; circles are player vertices and squares are
environment vertices) that searches for local modification of the processes such that the
specification is satisfied independent of the choices of the scheduler. Continuing the
example of Figure 7.1c, starting with (𝑣1, 𝑣3), when moving to (𝑎, 𝑑), the environment
can move to either (𝑣2, 𝑣3) or (𝑣1, 𝑣4), representing the granting of action 𝑎 or 𝑑.

159

7. Resource-Bounded Strategies for Distributed Games

v1

v2

v3

v4
a

b a

d

ec

(v1, v3) (v1, v4)

(v2, v3) (v2, v4)

(a, d)

(b, d) (c, d)

(a, e) (a, a)

v1 v2

a cb

v3 v4

d ea

P2.d ≺ P1.b

(a)

(b) (c)

P1 P2

P1.a ≺ P2.e

f

(b, f) (c, f)

(a, f)

f

Figure 7.1: Two processes having a global priority 𝒫2.𝑑 ≺ 𝒫1.𝑏 and 𝒫2.𝑒 ≺ 𝒫1.𝑎 over ac-
tions (a), the generated local game (b), and the distributed game modeling
the interaction and priority (the dashed line means an non-existing transi-
tion due to priority).

7.2.4 Solving Games of Imperfect Information using Antichains

Here we reuse the formulation in [DWDR06] to form the lattice of antichains of set of
states, where a state corresponds to the location of a distributed game [DWDR06].

Let 𝑆 be set of states. Let 𝑞, 𝑞′ ∈ 22
𝑆

, and define 𝑞 ⊑ 𝑞′ iff ∀𝑠 ∈ 𝑞 : ∃𝑠′ ∈ 𝑞′ : 𝑠 ⊆ 𝑠′. A set
𝑠 ⊆ 𝑆 is dominated in 𝑞 iff ∃𝑠′ ∈ 𝑞 : 𝑠 ⊂ 𝑠′, and define the set of dominated elements of
𝑞 as 𝐷𝑜𝑚(𝑞). Lastly, donote ⌈𝑞⌉ to be 𝑞 ∖ 𝐷𝑜𝑚(𝑞). ⟨𝐿,⊑,⨆︀,

d
,⊥,⊤⟩ forms a complete

lattice [DWDR06], where

∙ 𝐿 as the set {⌈𝑞⌉ | 𝑞 ∈ 22
𝑆}.

∙ For 𝑄 ⊆ 𝐿,
d
𝑄 = ⌈{⋂︀𝑞∈𝑄 𝑠𝑞 | 𝑠𝑞 ∈ 𝑞}⌉ is the greatest lower bound for 𝑄.

∙ For 𝑄 ⊆ 𝐿,
⨆︀
𝑄 = ⌈{𝑠 | ∃𝑞 ∈ 𝑄 : 𝑠 ∈ 𝑞}⌉ is the least upper bound for 𝑄.

∙ ⊥ = ∅, ⊤ = {𝑆}.
A game of imperfect information [Rei84] works on a local game graph 𝐺 = (𝑉𝑠 ⊎ 𝑉𝑒, 𝐸),
where player is unaware of his position with absolute precision. This is defined by an
observation set (Obs, 𝛾) where 𝛾 : Obs → 2𝑉𝑠 such that ∀𝑣 ∈ 𝑉0 · ∃obs ∈ Obs : 𝑣 ∈
𝛾(obs) (Obs is a finite set of identifiers). During a play, when reaching a player vertex
𝑣 ∈ 𝑉0, an arbitrary observation accompanied with 𝑣 will be assigned to player; he is
only aware of the observation but not the location. As the location is not known with
precision, the successors are imprecise as well. Thus edges for player are labeled with
elements in a set Σ. A strategy for player is observation-based means that the it should
based on the observation to make the decision, which is an element in Σ.

Without mentioning further details, we summarize how to use the operator
CPre [DWDR06] over an antichain of set of states 𝑞 to derive the set of Controllable
Predecessors; by iterating backwards from the set of all locations until satura-

160

7. Resource-Bounded Strategies for Distributed Games

p1 p′1 p2 p′2

e1 e′1 e2 e′2
G1 G2

(e′1, e
′
2)

(e1, e
′
2) (e1, e2)

(e′1, e2)

(p1, p
′
2) (p1, p2)

(e′1, e
′
2)

(e1, e
′
2) (e1, e2)

(e′1, e2)

(p1, p
′
2) (p1, p2)

(a) (b)

Figure 7.2: Two distributed games with safety-winning conditions.

tion, an observation-based strategy can be established. Define 𝐸𝑛𝑎𝑏𝑙𝑒𝑑(𝜎) to be
the set of locations where an edge labeled 𝜎 is possible as an outgoing edge, and
𝑃𝑜𝑠𝑡𝜎(𝑆) (similarly 𝑃𝑜𝑠𝑡𝑒(𝑆)) be the set of locations by taking the edges labeled
by 𝜎 (with transition 𝑒) from a set of locations 𝑆. Assume that the game graph is
bipartite. Then, CPre(𝑞) := ⌈{𝑠 ⊆ 𝑉𝑠 | ∃𝜎 ∈ Σ · ∀obs ∈ Obs · ∃𝑠′ ∈ 𝑞 : 𝑠 ⊆
𝐸𝑛𝑎𝑏𝑙𝑒𝑑(𝜎)∧⋃︀𝑒∈𝐸1

𝑃𝑜𝑠𝑡𝑒(𝑃𝑜𝑠𝑡𝜎(𝑠))∩ 𝛾(obs) ⊆ 𝑠′)}⌉. Intuitively, CPre computes a set
of player locations, such that by playing a common move 𝜎, for all successor locations
after the environment moves, player can decide the set of locations it belongs using the
observation.

7.3 Distributed Safety Strategy based on Projections

7.3.1 Simple Projection

The first presented approach for safety games is based on projection. We call it method
using projections, MP for short. The idea is to look at each subgame in isolation: con-
sider a risk vertex (𝑣1, . . . , 𝑣𝑛) in the distributed game 𝒢. Obviously, a strategy of local
game 𝐺𝑖 avoids 𝑣𝑖 guarantees that the global state (𝑣1, . . . , 𝑣𝑛) is also avoided.

The method proceeds as follows: for each 𝑖, we abstract 𝒢 to a game 𝒢𝑖 that refers only
to the values of the 𝑖th component, i.e., the other components are projected away. Every
abstract state in 𝒢𝑖 that includes a risk state of 𝒢 is marked as an error state. Then,
we compute the environment attractor of the error states in 𝒢𝑖 to see if a winning local
strategy exists.

We illustrate this idea using the distributed game in Figure 7.2a (an example
from [MW03]). The resulting abstract games are in Figure 7.3a. Starting with node
(𝑒1, 𝑒2), the goal is to avoid {(𝑒′1, 𝑒2), (𝑒1, 𝑒′2)}.
∙ When abstracting component 2, 𝒢1 is created. Any positional move of the local

game 𝐺1 leads to risk in 𝒢1.

161

7. Resource-Bounded Strategies for Distributed Games

∙ When abstracting component 1, 𝒢2 is created. Any positional move of the local
game 𝐺2 leads to risk in 𝒢2.

(e′1, ∗)

(e1, ∗) (e1, ∗)

(e′1, ∗)
(p1, ∗) (p1, ∗)

(∗, e′2)

(∗, e′2) (∗, e2)

(∗, e2)
(∗, p′2) (∗, p2)

Ḡ1

(a)

(e′1[p1], ∗)

(e1[p1], ∗) (e1[p1], ∗)

(e′1[p1], ∗)
(p1[e1], ∗) (p1[e

′
1], ∗)

(∗, e′2[p′2])

(∗, e′2[p′2]) (∗, e2[p2])

(∗, e2[p2])
(∗, p′2[e2]) (∗, p2[e′2])

(b)

Ḡ2

Ḡ1

Ḡ2

Figure 7.3: (a) Abstract games 𝒢1 and 𝒢2 (MP0), and (b) fragment of the abstract games
when one step memory is pushed (MP1). Contents enclosed in square brack-
ets are the history. The "*" symbol is used for the ease of explanation, mean-
ing that the content is abstracted.

Therefore, this method cannot find a distributed winning strategy for this safety game,
even though there exists a winning strategy: In 𝒢1, if its previous state is 𝑒1, go to 𝑒′1, and
vice versa; in 𝒢2 follow the only move. This strategy makes a local decision based on
the finite observable history and the current position of a local game. We call a strategy
𝑐-forgetful, if a decision of a local game is made based on its history up to depth 𝑐.

Definition 32. A distributed strategy 𝜉 = ⟨𝑓1, . . . , 𝑓𝑛⟩ is 𝑐-forgetful, if for all 𝑖, 𝑓𝑖 : (𝑉𝑠𝑖 ⊎
𝑉𝑒𝑖 ∪ {�})𝑐 × 𝑉𝑠𝑖 → (𝑉𝑠𝑖 ⊎ 𝑉𝑒𝑖) is a local strategy based on (a) its observable history of local
game 𝑖 up to depth 𝑐 and (b) current position of local game 𝑖. The symbol � represents an empty
token in the history.

We now formally define the concept of abstract games and methods generating such
games to find 𝑐-forgetful distributed strategies. For ease of notation, we use 𝑣 � 𝑢 to
indicate that there exists an edge from 𝑣 to 𝑢 between two vertices in the distributed
game graph.

Definition 33. Let 𝒢 = (𝒱𝑠 ⊎ 𝒱𝑒, ℰ , 𝐴𝑐𝑐) be a safety game defined using the set of risk states
𝒱𝑟𝑖𝑠𝑘, and 𝑐 ∈ N0. Define the tuple of abstract games (𝒢1, . . . ,𝒢𝑛) of depth 𝑐, where 𝒢𝑖 =
(𝒱𝑠𝑖 ⊎ 𝒱𝑒𝑖, ℰ̄𝑖, 𝐴𝑐𝑐𝑖).
∙ 𝑣 = (𝑣1, . . . , 𝑣𝑛) ∈ 𝒱𝑠 ⊎ 𝒱𝑒 ⇔ 𝑣𝑖[𝑣ℎ1 . . . 𝑣ℎ𝑐]𝑣 ∈ 𝒱𝑠𝑖 ⊎ 𝒱𝑒𝑖, where 𝑣ℎ1 , . . . , 𝑣ℎ𝑐 ∈
𝑉𝑠𝑖 ⊎ 𝑉𝑒𝑖 ∪ {�}, and one of the following holds.

– In 𝒢, there exist 𝑣𝛼1 , . . . , 𝑣𝛼𝑐 ∈ 𝒱𝑠 ⊎ 𝒱𝑒 such that 𝑣𝛼𝑐 � . . . � 𝑣𝛼1 � 𝑣 and
∀𝑗 ∈ {1, . . . , 𝑐} : 𝑝𝑟𝑜𝑗(𝑣𝛼𝑗 , 𝑖) = 𝑣ℎ𝑗

.
– In 𝒢, there exist 𝑘 ≤ 𝑐, 𝑣𝛼1 , . . . , 𝑣𝛼𝑘

∈ 𝒱𝑠 ⊎ 𝒱𝑒 such that 𝑣𝛼𝑘
is an initial state,

𝑣𝛼𝑘
� . . . � 𝑣𝛼1 � 𝑣 and ∀𝑗 ∈ {1, . . . , 𝑘} : 𝑝𝑟𝑜𝑗(𝑣𝛼𝑗 , 𝑖) = 𝑣ℎ𝑗

. For 𝑘 > 𝑐,
𝑣ℎ𝑘

= �.

162

7. Resource-Bounded Strategies for Distributed Games

∙ 𝑣𝑖[𝑣ℎ1 . . . 𝑣ℎ𝑐]𝑣 ∈ 𝒱𝑠𝑖 ⇔ 𝑣𝑖 ∈ 𝑉𝑠𝑖.
∙ For 𝑣 = (𝑣1, . . . , 𝑣𝑛), 𝑢 = (𝑢1, . . . , 𝑢𝑛) ∈ 𝒱𝑠 ⊎ 𝒱𝑒, (𝑣, 𝑢) ∈ ℰ ⇔

(𝑣𝑖[𝑣ℎ1 . . . 𝑣ℎ𝑐]𝑣, 𝑢𝑖[𝑣𝑖 𝑢ℎ1 . . . 𝑢ℎ𝑐−1]𝑢) ∈ ℰ̄𝑖, where in 𝑣 (similarly for 𝑢) one of the
following holds.

– In 𝒢, there exists 𝑣𝛼1 , . . . , 𝑣𝛼𝑐 ∈ 𝒱𝑠 ⊎ 𝒱𝑒 such that 𝑣𝛼𝑐 � . . . � 𝑣𝛼1 � 𝑣 and
∀𝑗 ∈ {1, . . . , 𝑐} : 𝑝𝑟𝑜𝑗(𝑣𝛼𝑗 , 𝑖) = 𝑣ℎ𝑗

.
– In 𝒢, there exists 𝑘 ≤ 𝑐, 𝑣𝛼1 , . . . , 𝑣𝛼𝑘

∈ 𝒱𝑠 ⊎ 𝒱𝑒 such that 𝑣𝛼𝑘
is an initial state,

𝑣𝛼𝑘
� . . . � 𝑣𝛼1 � 𝑣 and ∀𝑗 ∈ {1, . . . , 𝑘} : 𝑝𝑟𝑜𝑗(𝑣𝛼𝑗 , 𝑖) = 𝑣ℎ𝑗

. For 𝑘 > 𝑐,
𝑣ℎ𝑘

= �.
∙ The safety condition 𝐴𝑐𝑐𝑖 is defined using the set of risk states {𝑣𝑖[𝑣ℎ1 . . . 𝑣ℎ𝑐]𝑣 | 𝑣 ∈
𝒱𝑟𝑖𝑠𝑘} ⊆ 𝒱𝑠𝑖 ⊎ 𝒱𝑒𝑖.
∙ For the initial state, (𝑣1, . . . , 𝑣𝑛) is initial in 𝒢 iff 𝑣𝑖[� . . .�]𝑣 is initial in 𝒢𝑖.

The method of MP𝑐 performs sequentially in three steps3.

1. First, construct (𝒢1, . . . ,𝒢𝑛) out of game 𝒢 and depth 𝑐. The definition of 𝒢𝑖 im-
plies a direct algorithm for construction: first create all vertices, and connect ver-
tices based on checking the relation between two vertices.

2. Second, solve 𝒢𝑖 in isolation and generate the set of risk edges. For vertex
𝑣𝑖[𝑣ℎ1 . . . 𝑣ℎ𝑐]𝑋 , 𝑣𝑖[𝑣ℎ1 . . . 𝑣ℎ𝑐]𝑌 , the risk edge should be taken as the union from
𝑋 and 𝑌 . The strategy for each local game is then to exclude the derived risk
edges.

3. If one of the abstraction game returns a safety strategy, then report that a safety
strategy exists.

Lemma 4. Given a distributed game 𝒢 (with 𝑛 local games) and 𝑐 ∈ N0, MP𝑐 can be computed
in time polynomial to 𝑛|𝒢|𝑐.

Proof. Given a distributed game 𝒢 and 𝑐 ∈ N0, the size of the generated abstract game
graph, i,e., 𝒢1, . . . ,𝒢𝑛, has the size bounded by |𝒢|𝑐. Therefore the construction is time
polynomial to the size of the distributed game. Considering the second step, for each
abstraction game, it can be solved by computing the attractor set (time linear to the
number of edges of the distributed game graph).

Returning to the example in Figure 7.1, by creating abstraction games (Figure 7.4) and
solve two games in isolation. We can generate two different safety strategies, namely

∙ apply {(𝑣1, 𝑎), (𝑣2, 𝑏)} on 𝒫1 or

∙ apply {(𝑣3, 𝑓), (𝑣4, 𝑎)} on 𝒫2.

7.3.2 Fixed-Size Strategy versus Fixed-Length History Strategy

For methods using projections, instead of considering strategies with the fixed length
history 𝑐 as in MP𝑐, an alternative approach is to consider the family of strategies using
constant memory size 𝑐. Our argument is as follows.

3For details we refer readers to the Appendix.

163

7. Resource-Bounded Strategies for Distributed Games

Ḡ1

(v1, ∗) (v1, ∗)

(v2, ∗) (v2, ∗)

(a, ∗)

(b, ∗) (c, ∗)

(a, ∗) (a, ∗)

(b, ∗) (c, ∗)

(∗, v3) (∗, v4)

(∗, v3) (∗, v4)

(∗, d)

(∗, d) (∗, d)

(∗, e) (∗, a)

(∗, f) (∗, f)

(a, ∗) (∗, f)

Ḡ2

Figure 7.4: The resulting abstract game for the game in Figure 7.1.

∙ It is easier to implement MP𝑐: For using constant memory size, the criterion of
memory update relies on the intelligence of designers. Contrarily, for MP𝑐, since
the memory update in a transition can be described using double-implications
between the preimage and the postimage, the method can be easily implemented
symbolically using BDDs. We refer readers to the Appendix for details on the
symbolic encoding.

∙ Our second argument is Lemma 5, specifying the incomparability between two
approaches: there are some distributed games where using constant memory size
for strategies is not enough.

Lemma 5. There exists a class of distributed games where the size of the minimum memory
used in the distributed strategy is proportional to the size of the game graph.

Proof. We leave the proof in the Appendix.

7.3.3 Projection + Risk Partition = Context-unaware Cooperation

The method described previously can find strategies for some problems, but it has lim-
itations due to its complete projection of risk states: When projecting all risk states onto
one abstraction game 𝒢𝑖, it is the sole responsibility of local game 𝑖 to win the game,
implying that no cooperation between local games is introduced. Based on this concept,
we interpret the cooperation between local games, for safety conditions, as the partition
of risk states.

Consider the distributed game in Figure 7.5. It can be observed that the MP algorithm
with 𝑐 = 0 (𝑐 = 1 as well) is unable to generate the strategy4, meaning that a restriction
over solely 𝒢1 or solely 𝒢2 is impossible. Now we partition the risk states based on the
following criteria.

1. For 𝐺1, it should ensure not entering (𝑒1, 𝑒
′
2) in the distributed game.

2. For 𝐺2, it should ensure not entering (𝑒′1, 𝑒2) in the distributed game.

4In the abstract game 𝒢1, both moves of 𝑝1 lead to risk; in 𝒢2, the only move of 𝑝′2 leads to a risk state.

164

7. Resource-Bounded Strategies for Distributed Games

If 𝐺1 has a strategy for 1 and 𝐺2 has a strategy for 2, then the system is safe: in each
safe location, for each successor state which is a risk state, there exists one local game
to ensure of not entering. In fact, one distributed memoryless strategy exists for Fig-
ure 7.5:

∙ For 𝒢1, from 𝑝1 move to 𝑒′1.

∙ For 𝐺2, from 𝑝2 move to 𝑒′′2 ; from 𝑝′2 move to 𝑒′2.

Given (a) distributed game 𝒢 with safety conditions defined by 𝒱𝑟𝑖𝑠𝑘, (b) a partition
(𝑅𝑖𝑠𝑘1, . . . , 𝑅𝑖𝑠𝑘𝑛), where 𝑅𝑖𝑠𝑘𝑖 ⊆ 𝒱𝑟𝑖𝑠𝑘 and

⨄︀
𝑖=1...𝑛𝑅𝑖𝑠𝑘𝑖 = 𝒱𝑟𝑖𝑠𝑘 and (c) an integer

𝑐, the method combining projection and partition (called MPP𝑐 for short) finds the dis-
tributed strategy with the following steps.

1. For all 𝑖 = 1, . . . , 𝑛, create abstraction game 𝒢𝑖 with history depth 𝑐, where in the
construction, the set of risk states 𝒱𝑟𝑖𝑠𝑘 is replaced by 𝑅𝑖𝑠𝑘𝑖.

2. Solve each abstraction game. If for each abstraction game, there exists a winning
strategy, then we have found a distributed strategy.

Nevertheless, it can be observed that creating a "good" partition of risk states is combi-
national, implying that heuristics should be used in practice.

Definition 34. Consider distributed game 𝒢 with safety conditions defined by 𝒱𝑟𝑖𝑠𝑘, define a
risk partition (𝑅𝑖𝑠𝑘1, . . . , 𝑅𝑖𝑠𝑘𝑛) over 𝒱𝑟𝑖𝑠𝑘 to be good when by applying it, MPP𝑐 finds a
distributed strategy for 𝒢.

p1 p′1 p2 p′2

e1 e′1 e2 e′2

G1 G2

(e′1, e
′
2)

(e1, e
′
2) (e1, e2)

(e′1, e2)

(p1, p
′
2) (p1, p2)

e′′2

(e1, e
′′
2)(e′1, e

′′
2)

Figure 7.5: A distributed game where cooperation is possible for winning.

Lemma 6. Given distributed game 𝒢, finding a good risk partition for MPP0

(𝐷𝐺𝑆𝑎𝑓𝑒𝑀𝑃𝑃0) is NP-complete to the size of the distributed game graph.

Proof. (NP) Finding a good risk partition for MPP0 is in NP: once when a risk partition
is selected, creating and solving all abstraction games to see if the distributed strategy
exists (i.e., checking if the risk partition is good) can be done in polynomial time to the
size of the distributed game graph.

(NP-C) We perform a reduction from 3SAT to 𝐷𝐺𝑆𝑎𝑓𝑒𝑀𝑃𝑃0 that operates in polyno-
mial time. To give intuitive ideas how the reduction is performed, for an example 3SAT
formula 𝜑 = (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥4), the reduced distributed game is shown in
Figure 7.6. Given a 3SAT Boolean formula 𝜑 with 𝑚 variables and 𝑙 clauses, we first
create 𝑚+ 1 local game graphs 𝐺1, . . . , 𝐺𝑚, 𝐺𝑐ℎ𝑜𝑜𝑠𝑒 as follows.

165

7. Resource-Bounded Strategies for Distributed Games

(Init1, . . . , Init4, S)

(x1, x2, x3, Inv4, C1) (x1, x2, Inv3, x4, C2)

(T, T, T, F, S1) (T, F, F, F, S1)

(x1 ∨ x2 ∨ x3) (x1 ∨ x2 ∨ x4)
Test SAT for clause

(F, T, F, F, S1). . .

Assignment
x1 = T, x2 = T, x3 = T

total of 8 vertices

(T, T, T, F, S2) (F, T, F, F, S2). . .
total of 8 vertices

Assignment
x1 = F, x2 = T, x4 = F

Assignment
x1 = T, x2 = F, x4 = F

Test SAT for clause

(SAT0, . . . , SAT0) (SAT1, . . . , SAT1)

x1 Inv1 SAT0

Init1SAT1T

F
Local game G1

x4 Inv4 SAT0

Init4SAT1T F

Local game G4

. . .
SAT0

SSAT1

Local game Gchoose

C1 C2

S1 S2

(T, F, F, F, S2)

F

Figure 7.6: The reduced distributed game for the SAT problem 𝜑 = (𝑥1∨𝑥2∨𝑥3)∧ (𝑥1∨
𝑥2 ∨ 𝑥4).

∙ For 𝑖 = 1, . . . ,𝑚, 𝐺𝑖 = (𝑉𝑠𝑖 ⊎ 𝑉𝑒𝑖 , 𝐸𝑖), where

– 𝑉𝑠𝑖 = {𝑥𝑖, 𝐼𝑛𝑣𝑖, 𝑆𝐴𝑇0}.
– 𝑉𝑒𝑖 = {𝑇, 𝐹, 𝑆𝐴𝑇1, 𝐼𝑛𝑖𝑡𝑖}.
– 𝐸𝑖 = {(𝑥𝑖, 𝑇), (𝑥𝑖, 𝐹), (𝐼𝑛𝑣𝑖, 𝐹), (𝑆𝐴𝑇0, 𝑆𝐴𝑇1)}.

∙ 𝐺𝑐ℎ𝑜𝑜𝑠𝑒 = (𝑉𝑠𝑐ℎ𝑜𝑜𝑠𝑒 ⊎ 𝑉𝑒𝑐ℎ𝑜𝑜𝑠𝑒 , 𝐸𝑐ℎ𝑜𝑜𝑠𝑒), where

– 𝑉𝑠𝑐ℎ𝑜𝑜𝑠𝑒 =
⋃︀

𝑗=1,...,𝑙 𝐶𝑗 ∪ {𝑆𝐴𝑇0}.
– 𝑉𝑒𝑐ℎ𝑜𝑜𝑠𝑒 =

⋃︀
𝑗=1,...,𝑙 𝑆𝑗 ∪ {𝑆𝐴𝑇0, 𝑆}.

– 𝐸𝑐ℎ𝑜𝑜𝑠𝑒 =
⋃︀

𝑗=1,...,𝑙(𝐶𝑗 , 𝑆𝑗) ∪ {(𝑆𝐴𝑇0, 𝑆𝐴𝑇1)}.
From local game graphs, we create the distributed game 𝒢 = (𝒱𝑠 ⊎ 𝒱𝑒, ℰ , 𝐴𝑐𝑐). Notice
that when performing a direct product over local game graphs, we have generated a
distributed game graph of size exponential to the number of variables. This breaks
the polynomial time reduction and should be avoided. Instead we construct a dis-
tributed game graph which is linear to the number of clauses, and algorithm MPP0

is performed on this smaller game graph. Algorithm 11 describes such construction
of the distributed game (see Figure 7.6 for concepts). The total number of vertices in
the generated distributed game is of size 9𝑙 + 3. The required time for construction is
polynomial to 𝑚 and 𝑙.

The final argument is to show that 𝜑 is satisfiable if and only if in the reduced game 𝒢,
there exists a good risk partition (for player to win from the initial state).

∙ (⇒) We first show how to create a partition of the risk states, followed by showing
the the distributed strategy.

166

7. Resource-Bounded Strategies for Distributed Games

Algorithm 11: Distributed Game Construction Algorithm
Data: 3SAT Boolean formula 𝜑 with 𝑚 variables and 𝑙 clauses, local game graphs

𝐺1, . . . , 𝐺𝑚, 𝐺𝑐ℎ𝑜𝑜𝑠𝑒

Result: Distributed game 𝒢 = (𝒱𝑠 ⊎ 𝒱𝑒, ℰ , 𝐴𝑐𝑐)
begin

Initialize 𝒱𝑠,𝒱𝑒, ℰ as empty sets.
Initialize the set of risk states 𝒱𝑟𝑖𝑠𝑘 as empty sets.
𝒱𝑒 := 𝒱𝑒 ∪ {(𝐼𝑛𝑖𝑡1, . . . , 𝐼𝑛𝑖𝑡𝑚, 𝑆)} // Initial vertex
𝒱𝑠 := 𝒱𝑠 ∪ {(𝑆𝐴𝑇0, . . . , 𝑆𝐴𝑇0)}
𝒱𝑒 := 𝒱𝑒 ∪ {(𝑆𝐴𝑇1, . . . , 𝑆𝐴𝑇1)}
// We use 𝑙𝛼 to represent the literal which can be either 𝑥𝛼 or 𝑥𝛼.
for clause 𝐶𝑙𝑎𝑢𝑠𝑒𝑖 = (𝑙𝛼 ∨ 𝑙𝛽 ∨ 𝑙𝛾) using variable 𝑥𝛼, 𝑥𝛽, 𝑥𝛾 , 𝑖 = 1, . . . , 𝑙 do
𝒱𝑠 := 𝒱𝑠∪{(𝑣1, . . . , 𝑣𝑗 , . . . , 𝑣𝑛, 𝐶𝑖)}: if 𝑗 ∈ {𝛼, 𝛽, 𝛾} then 𝑣𝑗 := 𝑥𝑗 else 𝑣𝑗 := 𝐼𝑛𝑣𝑗 .
for 8 possible assignments (𝑎𝛼, 𝑎𝛽, 𝑎𝛾) ∈ {𝑇, 𝐹}3 of 𝐶𝑙𝑎𝑢𝑠𝑒𝑖 do
𝒱𝑒 := 𝒱𝑒 ∪ {(𝑣′1, . . . , 𝑣′𝑗 , . . . , 𝑣′𝑛, 𝑆𝑖)}: if 𝑗 ∈ {𝛼, 𝛽, 𝛾} then 𝑣′𝑗 := 𝑎𝑗 else
𝑣′𝑗 := 𝐹 .
ℰ := ℰ ∪ {((𝑣1, . . . , 𝑣𝑗 , . . . , 𝑣𝑛, 𝐶𝑖),
(𝑣′1, . . . , 𝑣

′
𝑗 , . . . , 𝑣

′
𝑛, 𝑆𝑖))}

if assignment (𝑎𝛼, 𝑎𝛽, 𝑎𝛾) makes 𝐶𝑙𝑎𝑢𝑠𝑒𝑖 UNSAT then
𝒱𝑟𝑖𝑠𝑘 := 𝒱𝑟𝑖𝑠𝑘 ∪ {(𝑣′1, . . . , 𝑣′𝑗 , . . . , 𝑣′𝑛, 𝑆𝑖)}

else
ℰ := ℰ ∪ {((𝑣′1, . . . , 𝑣′𝑗 , . . . , 𝑣′𝑛, 𝑆𝑖),

(𝑆𝐴𝑇0, . . . , 𝑆𝐴𝑇0))}

ℰ := ℰ ∪ {((𝑆𝐴𝑇0, . . . , 𝑆𝐴𝑇0), (𝑆𝐴𝑇1, . . . , 𝑆𝐴𝑇1))}
ℰ := ℰ ∪ {((𝑆𝐴𝑇1, . . . , 𝑆𝐴𝑇1), (𝑆𝐴𝑇0, . . . , 𝑆𝐴𝑇0))}
Let 𝐴𝑐𝑐 be defined by the set of risk states 𝒱𝑟𝑖𝑠𝑘
return (𝒱𝑠 ⊎ 𝒱𝑒, ℰ , 𝐴𝑐𝑐)

1. If 𝜑 is satisfiable, let the set of the satisfying literals be (𝑙1, . . . , 𝑙𝑚). Define
the risk partition as follows: If for clause 𝐶𝑙𝑎𝑢𝑠𝑒𝑖, literal 𝑙𝑗 makes it SAT,
then add the risk vertex 𝑣 ∈ 𝒱𝑒 ∩ 𝒱𝑟𝑖𝑠𝑘 where ∃𝑣1 ∈ {𝑥1, 𝐼𝑛𝑣1} . . . ∃𝑣𝑚 ∈
{𝑥𝑚, 𝐼𝑛𝑣𝑚} · ((𝑣1, . . . , 𝑣𝑚, 𝐶𝑖), 𝑣) ∈ ℰ to 𝑅𝑖𝑠𝑘𝑗 (there is only one such vertex),
if it is not added to any partition before. As each clause in 𝜑 is satisfiable, for
every risk state 𝑣𝑖 (representing UNSAT of clause 𝑖) in 𝒢, it is contained by
one 𝑅𝑖𝑠𝑘𝑗 of the abstraction game 𝒢𝑗 , 𝑗 ∈ {1, . . . ,𝑚}.

– For example, in Figure 7.6, one satisfying assignment is (𝑥1, 𝑥2, 𝑥3, 𝑥4).
Then define the risk partition by setting 𝑅𝑖𝑠𝑘1 = {(𝐹, 𝑇, 𝐹, 𝐹, 𝑆1)},
𝑅𝑖𝑠𝑘4 = {(𝑇, 𝐹, 𝐹, 𝐹, 𝑆2)}, and 𝑅𝑖𝑠𝑘2 = 𝑅𝑖𝑠𝑘3 = ∅.

2. The set of satisfying literals also defines the positional strategy for each local
game: For literal 𝑙𝑗 = 𝑥𝑗 , in local game 𝐺𝑗 move from vertex 𝑥𝑗 to 𝑇 ; for
literal 𝑙𝑗 = 𝑥𝑗 , in local game 𝐺𝑗 move from vertex 𝑥𝑗 to 𝐹 .

167

7. Resource-Bounded Strategies for Distributed Games

3. Solving the game using MPP0 based on the partition specified in (1) gener-
ates the distributed strategy in (2).

∙ (⇐) For the other direction it follows similar arguments.

7.3.3.1 Limitation

Before ending this section, we consider the distributed game in Figure 7.2b, where we
cannot find a solution with 𝑐 = 0 or 𝑐 = 1, for all possible partitions of risk states.

∙ As the MPP method simply unrolls the game graph and is unaware of on cases
when 𝑐′ > 𝑐, it cannot inform us the impossibility of strategies.

∙ The result of directly solving the distributed game graph using attractor is un-
informative: it is known that if a global strategy (both local games can see con-
tents of others) does not exist, then no distributed strategy exists. However,
in this case there exists a global strategy by performing ((𝑝1, 𝑝2), (𝑒1, 𝑒2)) and
((𝑝1, 𝑝

′
2), (𝑒

′
1, 𝑒2)).

7.4 Observation + Antichain + Decomposition

We present a three-step algorithm to find safety strategies for distributed games. This
algorithm creates enhanced cooperation among local controllers.

7.4.1 Local Observations

The structure of a distributed game graph is important for generating the distributed
strategy using memory. From the view of control in a local game, during a play the
position of other local games is not known with absolute precision. However, this does
not mean that it knows nothing: as the game graph of the distributed game is known
prior to the play, each local control can infer its local observations (based on the structure
of the distributed game graph) and should use it when executing the strategy.

Consider the distributed game in Figure 7.2a where 𝐺1 and 𝐺2 are local game graphs.
For position 𝑝1, if its previous state is 𝑒1, then the local controller of 𝐺1 knows that
it can only be in the global state (𝑝1, 𝑝

′
2): the move (𝑒1, 𝑝1) assigns a local observation

{(𝑝1, 𝑝′2)} to 𝑝1. It can be further observed that 𝑝1 can clearly locate itself due to the
emptiness of the intersection between two observations induced by 𝑒1 and 𝑒′1. But for
the distributed game in Figure 7.2b, for 𝑝1, if its previous state is 𝑒1, then it can be either
(𝑝1, 𝑝

′
2) or (𝑝1, 𝑝2): the move (𝑒1, 𝑝1) assigns a local observation {(𝑝1, 𝑝′2), (𝑝1, 𝑝2)} to

𝑝1.

Definition 35. For a distributed game 𝒢, a local observation 𝑜𝑏𝑠 of local game 𝐺𝑖 maps from
an edge (𝑣1, 𝑣2) ∈ 𝐸𝑖 to 2𝒱𝑠⊎𝒱𝑒 . We denote the set of local observations for 𝐺𝑖 to be 𝑂𝑏𝑠𝑖.

Consider Figure 7.2b, for 𝐺1 we create two observations 𝑜𝑏𝑠11, 𝑜𝑏𝑠12 ∈ 𝑂𝑏𝑠1.

168

7. Resource-Bounded Strategies for Distributed Games

∙ For 𝑜𝑏𝑠11((𝑣𝑝𝑟𝑒, 𝑣)), it returns {(𝑝1, 𝑝′2), (𝑝1, 𝑝2)} when 𝑣𝑝𝑟𝑒 = 𝑒1 and 𝑣 = 𝑝1; else it
returns ∅.
∙ For 𝑜𝑏𝑠12((𝑣𝑝𝑟𝑒, 𝑣)), it returns {(𝑝1, 𝑝2)} when 𝑣𝑝𝑟𝑒 = 𝑒′1 and 𝑣 = 𝑝1; else it returns
∅.

(Generating local observations for distributed games) To create the set of lo-
cal observations 𝑂𝑏𝑠𝑖 for each local game 𝐺𝑖, proceed as follows. For the lo-
cal observation over edge (𝑎, 𝑏) in local game 𝐺𝑖, extract the set of edges 𝑆𝑒𝑡 :=
{𝑒 = ((𝑒1, . . . , 𝑒𝑛), (𝑠1, . . . , 𝑠𝑛)) | 𝑒 ∈ ℰ ∧ 𝑒𝑖 = 𝑎 ∧ 𝑠𝑖 = 𝑏} to create
{(𝑣1, . . . , 𝑣𝑛) | ∃((𝑒1, . . . , 𝑒𝑛), (𝑠1, . . . , 𝑠𝑛)) ∈ 𝑆𝑒𝑡 : (𝑣1, . . . , 𝑣𝑛) = (𝑠1, . . . , 𝑠𝑛)}. The al-
gorithm is straightforward and is omitted here.

Lemma 7. For a distributed game 𝒢, the size of 𝑂𝑏𝑠𝑖 in a local game 𝐺𝑖 is bounded by
𝒪(|𝑉𝑒𝑖||𝑉𝑠𝑖|), and for each observation 𝑜𝑏𝑠𝑖 ∈ 𝑂𝑏𝑠𝑖, 𝑜𝑏𝑠𝑖 may return a state set of size
𝒪(|𝒱𝑠 ⊎ 𝒱𝑒|).

Proof. Straightforward based on the definition.

Lemma 8. It takes time 𝒪((∑︀𝑛
𝑖=1 |𝑉𝑒𝑖||𝑉𝑠𝑖|)|𝒱𝑠 ⊎ 𝒱𝑒|) to create all local observations for a

distributed game 𝒢.

Proof. Straightforward based on the definition.

7.4.2 Distributed Controllable Predecessor

The second step of this algorithm computes the distributed controllable predecessor,
which is adapted from techniques of solving games of incomplete (imperfect) infor-
mation [DWDR06, Rei84, DWDHR06]. For a safety game, we can always modify the
game to let all risk states having no outgoing edges. By doing so, asking whether a sys-
tem is safe amounts to the query of continuous execution (no deadlock) for each local
controller. For details, see [DWDR06].

For a distributed game 𝒢, define 𝐸𝑛𝑎𝑏𝑙𝑒𝑑(⟨𝑒1, . . . , 𝑒𝑛⟩) be the set of states 𝑆 ∈ 𝒱𝑠 where
∀𝑠 = (𝑠1, . . . , 𝑠𝑛) ∈ 𝑆, for local game 𝐺𝑖, if 𝑠𝑖 ∈ 𝑉𝑠𝑖, then 𝑠𝑖 can move with one edge to
location 𝑒𝑖; else (the case when 𝑠𝑖 ∈ 𝑉𝑒𝑖) 𝑠𝑖 = 𝑒𝑖. Also, let 𝑃𝑜𝑠𝑡⟨𝜎1,...,𝜎𝑛⟩(𝑆) be the set 𝑆′

of reachable states from 𝑆 where ∀𝑒 = (𝑒1, . . . , 𝑒𝑛) ∈ 𝑆, ∃𝑠′ ∈ 𝑆′ such that 𝑒𝑖 moves via
the 𝑖th component of the environment edge ⟨𝜎1, . . . , 𝜎𝑛⟩ to 𝑝𝑟𝑜𝑗(𝑠′, 𝑖).

Let 𝑞 be an antichain of set of locations in the distributed game, define the distributed
controllable predecessor DCPre as follows.

DCPre(𝑞) := ⌈{𝑠 ⊆ 𝒱𝑠 | ∃𝑒1 ∈ 𝑉𝑒1 . . . ∃𝑒𝑛 ∈ 𝑉𝑒𝑛·
∀𝑜𝑏𝑠1 ∈ 𝑂𝑏𝑠𝑖 . . . ∀𝑜𝑏𝑠𝑛 ∈ 𝑂𝑏𝑠𝑛 · ∃𝑠′ ∈ 𝑞 :

𝑠 ⊆ 𝐸𝑛𝑎𝑏𝑙𝑒𝑑(⟨𝑒1, . . . , 𝑒𝑛⟩)∧⋃︀
⟨𝜎1,...,𝜎𝑛⟩∈ℰ(𝑃𝑜𝑠𝑡⟨𝜎1,...,𝜎𝑛⟩(𝑒1, . . . , 𝑒𝑛))
∩ 𝑜𝑏𝑠1(𝜎1) ∩ . . . ∩ 𝑜𝑏𝑠𝑛(𝜎𝑛) ⊆ 𝑠′}⌉

Intuitively, a set 𝑠 belongs to DCPre(𝑞) iff

169

7. Resource-Bounded Strategies for Distributed Games

(e′1, e
′
2, e3)

(p1, p
′
2, p3)

p1 p′1

p2 p′2

e1 e′1

e2 e′2

G1

G2

p3 p′3

e3 e′3

G3

(e′1, e
′
2, e
′
3) (e′1, e2, e3)

(e′1, e2, e
′
3)

(e1, e
′
2, e3) (e1, e

′
2, e
′
3) (e1, e2, e3)

(e1, e2, e
′
3)

(p1, p2, p3)

(p1, p
′
2, p
′
3)

Figure 7.7: A distributed game with three local games.

∙ In 𝑠, a tuple of controllable actions moving to (𝑒1, . . . , 𝑒𝑛) can be enabled, where
𝑒𝑖 is in 𝐺𝑖.

∙ When player moves to (𝑒1, . . . , 𝑒𝑛), after the environment has played, any local
observation suffices to determine in which set 𝑠′ of 𝑞 the next state lies.

∙ s is maximal.

Analysis We establish an analogy between DCPre and the definition of the controllable
predecessor CPre for games of imperfect information (Section 7.2.4):

∙ Relate the tuple ⟨𝑒1, . . . , 𝑒𝑛⟩ in DCPre to an edge label 𝜎 ∈ Σ for player in CPre.

∙ Relate the combined observation (𝑜𝑏𝑠1, . . . , 𝑜𝑏𝑠𝑛), where ∀𝑖 : 𝑜𝑏𝑠𝑖 ∈ 𝑂𝑏𝑠𝑖 in DCPre
to a single observation in CPre.

Therefore, calculating DCPre employs the same complexity as CPre but the number
of actions and the number of observations are larger (due to the distributed setting).
For concrete algorithm of CPre (a worklist algorithm over set of locations) it can be
found in [DWDR06] and is omitted here. By (a) calculating DCPre*({𝒱𝑠 ⊎ 𝒱𝑒}), i.e.,
applying DCPre continuously until the fixed point is reached and (b) intersecting the
result with the initial state, we can generate a global observation strategy automaton,
which is the similar to the strategy automaton for games of imperfect information. Here
we illustrate the process of automaton construction using an example. For algorithmic
details, we refer readers to [DWDR06] for the analogy.

Definition 36. For the distributed game 𝒢 with local observation 𝑂𝑏𝑠𝑖 for each local game 𝑖,
define the global observation strategy automaton 𝒜𝒢 = (𝒬, 𝑞0,ℒ, 𝛿).
∙ 𝒬 = DCPre*({𝒱𝑠 ⊎ 𝒱𝑒}) ∪ {𝑞0} is the set of states.
∙ 𝑞0 is the initial state.
∙ ℒ : 𝒬 ∖ {𝑞0} → {⟨𝜎1, . . . , 𝜎𝑛⟩ | 𝜎𝑖 ∈ 𝑉𝑒𝑖} is the state labeling.
∙ 𝛿 : 𝒬× {⟨𝑜𝑏𝑠1, . . . , 𝑜𝑏𝑠𝑛⟩ | 𝑜𝑏𝑠𝑖 ∈ 𝑂𝑏𝑠𝑖} → 𝒬 is the transition function.

Lemma 9. DCPre can be computed in EXPTIME to the size of the distributed game.

Proof. It is computable using the antichain algorithm in [DWDR06] running in

170

7. Resource-Bounded Strategies for Distributed Games

EXPTIME. The number of local observations created and the number of actions in the
distributed game do not change the EXPTIME complexity.

7.4.2.1 Example: Calculating DCPre*

Here we give an example how a global observation strategy automaton is constructed
from a distributed game. Consider the distributed game 𝒢 in Figure 7.7. To solve
the safety game, we first construct the set of local observations, and calculate the
DCPre*({𝒱𝑠 ⊎ 𝒱𝑒}). Let the set of initial states be {(𝑒′1, 𝑒′2, 𝑒3), (𝑒1, 𝑒2, 𝑒3)}.
∙ Local observations in 𝐺1 (𝑂𝑏𝑠1):

– (𝑜𝑏𝑠11) The edge (𝑒1, 𝑝1) creates an observation {(𝑝1, 𝑝′2, 𝑝3), (𝑝1, 𝑝′2, 𝑝′3)}.
– (𝑜𝑏𝑠12) The edge (𝑒′1, 𝑝1) creates an observation {(𝑝1, 𝑝2, 𝑝3)}.

∙ Local observations in 𝐺2 (𝑂𝑏𝑠2) is not required, as the strategy is fixed to posi-
tional only.

∙ Local observations in 𝐺3 (𝑂𝑏𝑠3):

– (𝑜𝑏𝑠31) The edge (𝑒3, 𝑝3) creates an observation {(𝑝1, 𝑝′2, 𝑝3), (𝑝1, 𝑝2, 𝑝3)}.
– (𝑜𝑏𝑠32) The edge (𝑒3, 𝑝

′
3) creates an observation {(𝑝1, 𝑝′2, 𝑝′3)}.

〈e′1, e′2, e3〉 〈e1, e2, e3〉

q0
obs11, obs31

obs11, obs32

obs12, obs31

obs12, obs31

obs11, obs31

obs11, obs32{(p1, p′2, p3), (p1, p′2, p′3)} {(p1, p2, p3)}

Figure 7.8: The global observation strategy automaton for the game in Figure 7.7.

The intermediate steps are as follows.

∙ 𝑆1 = DCPre({𝒱𝑠⊎𝒱𝑒}) = {(𝑝1, 𝑝2, 𝑝3)}⟨𝑒1,𝑒2,𝑒3⟩, {{(𝑝1, 𝑝′2, 𝑝3), (𝑝1, 𝑝′2, 𝑝′3)}⟨𝑒′1,𝑒′2,𝑒3⟩}.
Here for explanation we check each step of {(𝑝1, 𝑝2, 𝑝3)}:

– For {(𝑝1, 𝑝2, 𝑝3)}, the enabled control action is ⟨𝑒1, 𝑒2, 𝑒3⟩, meaning that
𝑃𝑜𝑠𝑡({(𝑝1, 𝑝2, 𝑝3)}) = (𝑒1, 𝑒2, 𝑒3).

– The environment then move to 𝑆′ = {(𝑝1, 𝑝′2, 𝑝3),
(𝑝1, 𝑝

′
2, 𝑝

′
3)}. Now intersect with all combinations of observations.

* Intersect 𝑜𝑏𝑠11(𝑒1) ∩ 𝑜𝑏𝑠31(𝑒3) we get {(𝑝1, 𝑝′2, 𝑝3)} ⊆ 𝑆.

* Intersect 𝑜𝑏𝑠11(𝑒1) ∩ 𝑜𝑏𝑠32(𝑒3) we get ∅ ⊆ 𝑆.

* Intersect 𝑜𝑏𝑠12(𝑒1) ∩ 𝑜𝑏𝑠31(𝑒3) we get ∅ ⊆ 𝑆.

* Intersect 𝑜𝑏𝑠12(𝑒1) ∩ 𝑜𝑏𝑠32(𝑒3) we get {(𝑝1, 𝑝′2, 𝑝′3)} ⊆ 𝑆.

171

7. Resource-Bounded Strategies for Distributed Games

Algorithm 12: Direct Decomposition
Data: Global observation strategy automaton 𝒜𝒢 = (𝒬, 𝑞0,ℒ, 𝛿) and local observations

(𝑂𝑏𝑠1, . . . , 𝑂𝑏𝑠𝑛)
Result: NFA {𝐴1, . . . , 𝐴𝑛}, 𝐴𝑖 = (𝑄𝑖, 𝑞0𝑖 , 𝐿𝑖, 𝛿𝑖). 𝛿𝑖 ⊆ 𝑄𝑖 ×𝑂𝑏𝑠𝑖 ×𝑄𝑖

begin
Denote 𝑝𝑟𝑜𝑗(⟨𝑎1, . . . , 𝑎𝑛⟩, 𝑖) as the 𝑖th component of in tuple ⟨𝑎1, . . . , 𝑎𝑛⟩
for 𝑖 = 1 . . . 𝑛 do

create 𝐴𝑖 from 𝒜𝒢 as follows:
𝑄𝑖 = 𝒬, 𝑞0𝑖 = 𝑞0
∀𝑞 ∈ 𝒬 : ℒ(𝑞) = ⟨𝑒1, . . . , 𝑒𝑛⟩ → 𝐿𝑖(𝑞) = 𝑒𝑖
∀𝑞1, 𝑞2 ∈ 𝒬 : 𝑞2 ∈ 𝛿(𝑞1, ⟨𝑒1, . . . , 𝑒𝑛⟩)→ 𝛿𝑖(𝑞1, 𝑒𝑖) = 𝑞2

– Thus, we add {(𝑝1, 𝑝2, 𝑝3)} to DCPre({𝑆})
∙ 𝑆2 = DCPre({𝑆1}) = 𝑆1, and we have reached the fixed point. Figure 7.8 shows

the generated global observation strategy automaton.

7.4.2.2 Example in Figure 7.2b

We now revisit the distributed game in Figure 7.2b by calculating DCPre*({𝒱𝑠⊎𝒱𝑒}).
∙ 𝑆1 = DCPre({𝒱𝑠 ⊎ 𝒱𝑒}) = {{(𝑝1, 𝑝2)}⟨𝑒1,𝑒2⟩, {(𝑝1, 𝑝′2)}⟨𝑒′1,𝑒′2⟩}.
∙ 𝑆2 = DCPre({𝑆1}) = {{(𝑝1, 𝑝′2)}⟨𝑒′1,𝑒′2⟩}.
∙ 𝑆3 = DCPre({𝑆2}) = {∅}; 𝑆4 = DCPre({𝑆3}) and the fixed point is reached.

Therefore, although the distributed game has a global strategy for safety, the calculation
of DCPre suggests the impossibility of practical strategies.

7.4.3 Direct Decomposition of Automaton for Strategies

The last step of our method is to decompose the global observation strategy automaton
𝒜𝒢 for the distributed game 𝒢 to a tuple of local strategy automata ⟨𝐴1, . . . , 𝐴𝑛⟩, where
each strategy automaton 𝐴𝑖 employs a distributed strategy for local game 𝐺𝑖. Formally,
𝐴𝑖 = (𝑄𝑖, 𝑞0𝑖 , 𝐿𝑖, 𝛿𝑖), where 𝑄𝑖 is the set of states, 𝑞0𝑖 is the initial state, 𝐿𝑖 ∈ 𝑉𝑖1 is the
labeling function (to indicate which action to take), and 𝛿𝑖 : 𝑄𝑖 ×𝑂𝑏𝑠𝑖 → 𝑄𝑖 is the state
update function.

As in 𝒜𝒢 , each edge is equipped with a tuple ⟨𝑜𝑏𝑠1, . . . , 𝑜𝑏𝑠𝑛⟩ for the indication of the
next move, it is at first natural to split 𝒜𝒢 to 𝐴𝑖, . . . , 𝐴𝑛 as follows: for an edge in 𝐴𝑖, it
is labeled by 𝜎𝑖, which is the 𝑖th component in the corresponding edge ⟨𝑜𝑏𝑠1, . . . , 𝑜𝑏𝑠𝑛⟩
in 𝒜𝒢 . Similar modification can be done on the labeling function. We refer this opera-
tion as a direct decomposition of a global observation strategy automaton, and Algo-
rithm 12 formulates this idea.

Nevertheless, the direct decomposition may be problematic and needs further fixing,
if the generated local strategy automata are nondeterministic. Consider the generated

172

7. Resource-Bounded Strategies for Distributed Games

global observation strategy automaton in Figure 7.8. The direct decomposition creates
three local strategy automata 𝐴1, 𝐴2, and 𝐴3 (𝐴2 is omitted as it is positional), as shown
in Figure 7.9. Consider the run of 𝐴3:

∙ Starting from 𝑞0, when receiving observation 𝑜𝑏𝑠31 (i.e., from previous location 𝑒3
to 𝑝3), the controller moves can move to two vertices labeled 𝑒3.

∙ If it moves to the left vertex, then it is not able to react to 𝑜𝑏𝑠32, implying a dead-
lock of moves.

obs11

obs12

obs11

obs12

q0

e′1 e1

obs32

obs31

obs31

obs31

q0

e3 e3

obs31

obs32
A1 A3

obs32

obs31

q0

e3

obs31

obs32
A′3

obs11 : (e1, p1) obs12 : (e
′
1, p1) obs31 : (e3, p3) obs32 : (e3, p

′
3)

Figure 7.9: Direct decomposition for the global observation strategy automaton in Fig-
ure 7.8; 𝐴′

3 is a proposed fix of 𝐴3. The box below indicates the correspond-
ing (previous-location, current-location) pair for the observation.

Still, if the decomposed local automata are all deterministic, we have a distributed so-
lution via direct decomposition.

Lemma 10. For distributed game 𝒢, if direct decomposition (using Algorithm 12) from the
global observation strategy automaton 𝒜𝒢 generates automata 𝐴1, . . . , 𝐴𝑛 which are all deter-
ministic, then 𝐴1, . . . , 𝐴𝑛 are the corresponding local strategy automata.

Proof. If 𝐴1, . . . , 𝐴𝑛 are deterministic, then for the product of 𝐴1, . . . , 𝐴𝑛, starting from
the initial state, 𝐴1 × . . .×𝐴𝑛 directly defines 𝒜.

7.4.4 Decomposing Automaton for Strategies via Fixing

For cases where direct decomposition generates non-deterministic automata, it is then
required to modify the generated result ⟨𝐴1, . . . , 𝐴𝑛⟩ to maintain determinacy and
deadlock freedom while ensuring the product behavior to be constrained by 𝒜𝒢 . For
this purpose, we consider the fixing of automata. For simplicity, from now on we assume
that for the safety game only one initial location exists.

Definition 37. For distributed game 𝒢, let the generated strategy automaton be 𝒜𝒢 and the
direct decomposition of the automaton be ⟨𝐴1, . . . , 𝐴𝑛⟩, where 𝐴𝑖 = (𝑄𝑖, 𝑞0𝑖 , 𝐿𝑖, 𝛿𝑖). Define an
automata fixing to be ⟨(𝐴′

1, 𝛾1), . . . , (𝐴
′
𝑛, 𝛾𝑛)⟩, where 𝐴′

𝑖 = (𝑄′
𝑖, 𝑞0𝑖 , 𝐿

′
𝑖, 𝛿

′
𝑖), 𝛿

′
𝑖 : 𝑄

′
𝑖 ×𝑂𝑏𝑠𝑖 →

𝑄′
𝑖. 𝛾𝑖 : 𝑄𝑖 → 𝑄′

𝑖 ∪ {NULL} is a function which maps vertices in 𝑄𝑖 to elements in 𝑄′
𝑖 or to a

special element NULL. A fix should follow the following properties.

173

7. Resource-Bounded Strategies for Distributed Games

1. ∀𝑞 ∈ 𝑄𝑖 : 𝛾𝑖(𝑞) ̸= NULL→ 𝐿𝑖(𝑞) = 𝐿′
𝑖(𝛾𝑖(𝑞)).

2. ∀𝑞 ∈ 𝑄𝑖 : 𝛾𝑖(𝑞) ̸= NULL → (∀𝑜𝑏𝑠 ∈ 𝑂𝑏𝑠𝑖 · ∀𝑞′ ∈ 𝑄𝑖 : 𝑞′ ∈ 𝛿𝑖(𝑞, 𝑜𝑏𝑠) → 𝛾𝑖(𝑞
′) =

𝛿′𝑖(𝛾𝑖(𝑞), 𝑜𝑏𝑠)).
3. ∀𝑞, 𝑞′ ∈ 𝑄′

𝑖 · ∀𝑜𝑏𝑠 ∈ 𝑂𝑏𝑠𝑖 : 𝑞′ = 𝛿′𝑖(𝑞, 𝑜𝑏𝑠) → (∃𝑞⋆ ∈ 𝑄′
𝑖 · ∃𝑜𝑏𝑠′ ∈ 𝑂𝑏𝑠𝑖 : 𝑞⋆ =

𝛿′𝑖(𝑞
′, 𝑜𝑏𝑠)).

4. The language defined by 𝒜𝒢 contains the language defined by 𝐴′
1 × . . .×𝐴′

𝑛.

We explain the meaning of the above properties as follows.

∙ For (1), the mapping preserves the action defined in the vertex label.

∙ For (2), if a vertex in 𝐴𝑖 is not dropped, then the transformation should pre-
serve all edges. At the same time it keeps determinacy in the fix (as in 𝛾𝑖(𝑞

′) =
𝛿′𝑖(𝛾𝑖(𝑞), 𝑜𝑏𝑠), 𝛿

′
𝑖(𝛾𝑖(𝑞), 𝑜𝑏𝑠) is a function).

∙ For (3), it is used to ensure the non-terminating behavior based on the structure
induced by (2).

Example We consider a fix over 𝐴3 by using 𝐴′
3 in Figure 7.9 (𝐴1 remains the same),

where 𝛾3 maps two vertices labeled 𝑒3 in 𝐴3 to a single vertex labeled 𝑒3. It can be
observed that it is a correct automata fix by examining the properties above. If 𝐺1 and
𝐺3 follow the strategies defined by 𝐴1 and 𝐴′

3, it is guaranteed that 𝒢 never reaches the
set of risk states.

7.4.4.1 Complexity for automata fixing

One important observation over the fixing is that as both the product automaton 𝐴′
1 ×

. . . × 𝐴′
𝑛 and 𝒜𝒢 are deterministic, the checking of language inclusion can be done in

polynomial time to the size of the automaton. This generates an intuitive NP algorithm
by creating an instance and check for all properties: this NP setting leads to the potential
of introducing SAT solvers for finding a fix.

7.5 Related Work

Previous work on distributed synthesis is mainly concerned with undecidability re-
sults [PR90, Jan07] or with identifying decidable architectural classes [PR90, FS05,
GLZ04, GLZ05, MW03]. As these decidable subclasses are very restrictive, we are
exploring a different route here by exploring algorithms for synthesizing distributed
strategies with certain bounds on resources only.

Except the work mentioned above, we find two directions trying to draw the line for de-
cidable results (for all architectures): Works from Gastin, Lerman and Zeitoun [GLZ04,
GLZ05] derive decidable results by replacing strategies using local memory (i.e., each
local game views its own location) to strategies using causal memory; this offers each
controller a view including all actions (also from other local games) causally in the
past. As stated in [GLZ05], it is an almost complete global view; under this setting, for
series-parallel systems it is decidable [GLZ05] while undecidability remains for some

174

7. Resource-Bounded Strategies for Distributed Games

other cases [GLZ04]. To fulfill the causal view, as stated in [GLZ05], external com-
munications between processes should be added in the implementation. Overall, this
approach might lead to implementation problems with concrete applications5. The al-
gorithms mentioned in this chapter are all based on respecting local strategies defined
in [MW03]. The second direction is from Madhusudan and Thiagarajan [MT02], where
they look at the distributed synthesis problem, and propose three rules to derive decid-
able results; when three rules are all satisfied then distributed synthesis is decidable.
For example, the R1 rule demands that a specification should be robust, i.e., if one lin-
earization of an execution is contained in the specification, then all of its linearizations
must also be [MT02]. R2 and R3 are constraints on the generated strategies, while these
constraints differs from algorithms specified in this work. E.g., R2 demands that each
local strategy can only remember the length of the local history but not the history it-
self [MT02]. As also mentioned in [MT02], rule R2 poses very strong restrictions on
the applicability to allow decidability. We also find that our concept of applying con-
stant depth memory is independently suggested in their potential extensions (which
they claim to be worth studying). For this, our motivation comes from the fact that
positional strategies are sometimes insufficient (in distributed games), while their mo-
tivation is to release the R2 constraint (for distributed synthesis). For them no concrete
algorithm is proposed.

Our algorithms use, adapt, and generalize many known ingredients from the literature,
including the concept of partitioning risk sets in and techniques for solving games of
incomplete information [Rei84] using the lattice of antichains [DWDHR06, DWDR06].
The algorithm MP𝑐 involving projection and partitioning of the risk set for synthesiz-
ing 𝑐-forgetful distributed strategies is a generalization of the risk set partitioning algo-
rithm with priority scheduling and model checking. Also our algorithms for generat-
ing local observations for local games and the notion of distributed controllable prede-
cessors, as a generalization of the controlled predecessor introduced in [DWDHR06],
together with the global observation strategy automaton are novel.

To sum up, we consider our approach orthogonal / complementary to the above re-
sults. We seek for general algorithms to find strategies for both decidable and undecid-
able classes, and our starting model (distributed game) offers intuitive translation from
concrete applications to distributed synthesis. Admittedly algorithms we propose are
essentially incomplete, but these resource-bounded strategies can work as fundamental
gadgets to bring distributed synthesis from theory to concrete applications, as empha-
sized in the introduction.

175

7. Resource-Bounded Strategies for Distributed Games

Table 7.2: Algorithms for strategy finding in distributed games

Resource-Bounded Algorithms Time Complexities
Projection P

Projection + Risk Partition NP

Local observation + Antichain EXPTIME

7.6 Outlook

Table 7.2 summarizes our results on algorithms of increasing complexity for synthesiz-
ing resource-bounded distributed strategies for distributed safety games. Although
we have restricted ourselves to safety winning conditions, extensions of these re-
sults to reachability and Büchi winning conditions should be straightforward; the an-
tichain method, for example, seems to be applicable for solving distributed reachability
games using the dual of the antichain lattice with the Post image operator for unfold-
ing [DWDHR06].

Indeed, the algorithms presented here are designed for tackling distributed schedul-
ing problems for component-based distributed systems on multicore platforms and for
priority synthesis of component-based BIP systems for realizing goal-directed behav-
ior. Preliminary experience with our prototype implementations of (a subset of) these
algorithms (see Appendix, which is provided for reference and is not part of the official
submission) in our synthesis engines GAVS+ and VISSBIP shows interesting results.
On the other hand, our experiments also point to necessary refinements and optimiza-
tions such as application-specific heuristics for guiding the process of partitioning risk
states in the MPP algorithm, based, for example, on discovering invariants of the game
or by applying machine learning techniques. An obvious extension is to use SMT back-
end solvers instead of SAT solvers for the symbolic representation and solving of dis-
tributed games, thereby handling certain classes of timed and hybrid systems. We also
need to consider the synthesis of (Pareto-)optimal strategies, for example, to generate
efficient (e.g. energy) strategies / schedules, and fault-tolerant distributed strategies in
case one or more of the players fail to play according to the rule book.

Another interesting line of research involves predetermining upper bounds on the
resources needed for distributed winning strategies for definable subclasses of dis-
tributed games.

5E.g., consider modeling an unreliable network to a distributed game, where the goal is to synthesize
strategies for processes to overcome the loss of message. When using causal view, these added com-
munications for implementing the causal view can also suffer from message loss. As the synthesized
result is based on the assumption that the causal view can be carried out, this assumption can hardly
be fulfilled.

176

7. Resource-Bounded Strategies for Distributed Games

Appendix A: Symbolic Algorithm for MP𝑐

We outline a symbolic version of the MP𝑐 algorithm, which has been implemented in
an experimental version of GAVS+ [CKLB11]. In the algorithm, we try to avoid con-
structing each abstraction game in isolation based on the definition. Given a distributed
game graph 𝒢 = (𝒱𝑠 ⊎ 𝒱𝑒, ℰ) constructed from 𝑛 local games, together with the set of
initial and risk states 𝒱𝑖𝑛𝑖, 𝒱𝑟𝑖𝑠𝑘, the algorithm proceeds with the following steps.

∙ Create a symbolic version of the augmented game 𝒢′ = (𝒱𝑠′ ⊎ 𝒱𝑒′, ℰ ′) which con-
tains memory slots and performs the memory update in each transition of 𝒢.

1. (Number of BDD variables) For 𝑖 = 1, . . . , 𝑛, in local game 𝐺𝑖 = (𝑉𝑠𝑖⊎𝑉𝑒𝑖, 𝐸𝑖),
we need to use (𝑐 + 1)⌈𝑙𝑜𝑔2(|𝑉𝑠𝑖 ⊎ 𝑉𝑒𝑖| + 1)⌉ bits to represent the state. We
use |𝑉𝑠𝑖 ⊎ 𝑉𝑒𝑖| + 1 rather than |𝑉𝑠𝑖 ⊎ 𝑉𝑒𝑖| because we need to represent the
empty memory token �. Thus the total number of BDD variables used is
2
∑︀

𝑖=1...𝑛(𝑐+1)⌈𝑙𝑜𝑔2(|𝑉𝑠𝑖⊎𝑉𝑒𝑖|+1)⌉ (a factor of 2 is for the preimage and the
postimage).

– We denote 𝑝𝑟𝑒(𝑏𝑑𝑑𝑣𝑎𝑟(𝑖, 𝑗)) as the preimage of the 𝑗-th history in
local game 𝐺𝑖 (𝑗 = 0 means the current state), similarly we use
𝑝𝑜𝑠𝑡(𝑏𝑑𝑑𝑣𝑎𝑟(𝑖, 𝑗)) for the postimage.

2. (Symbolic transition creation) The game construction requires an additional
step, i.e., when a transition in 𝒢 is performed, the memory should be up-
dated in 𝒢′. Therefore, define a memory update predicate 𝑝𝑟𝑒𝑑𝑀𝐸𝑀 :=

𝑛⋀︁
𝑖=1

𝑐−1⋀︁
𝑗=0

𝑝𝑟𝑒(𝑏𝑑𝑑𝑣𝑎𝑟(𝑖, 𝑗))⇔ 𝑝𝑜𝑠𝑡(𝑏𝑑𝑑𝑣𝑎𝑟(𝑖, 𝑗 + 1))

Thus transitions in ℰ should be conjuncted with 𝑝𝑟𝑒𝑑𝑀𝐸𝑀 to get ℰ ′.
3. (Transition pruning) We start from the initial state (with memory content

equals empty) and perform forward reachability analysis to derive the set of
reachable states 𝑅𝑒𝑎𝑐ℎ, where the memory update is correct. Then restrict
ℰ ′ generated in (2) to derive the set of outgoing transitions from 𝑅𝑒𝑎𝑐ℎ (still
call it ℰ ′). This step is required, as when we later calculate the risk attractor
(using backward computation), directly using transitions in (2) may overes-
timate the set of unsafe transitions. Also, eliminate any outgoing transitions
from risk states by performing set differences.

∙ Calculate the environment attractor Attr𝑒(𝑅𝑒𝑎𝑐ℎ ∩ 𝒱𝑟𝑖𝑠𝑘), which is the set of states
from which environment can enforce to move to a risk state, regardless of moves
done by player [GTW02]. Derive a set of risk edges, which are all the (player)
edges leading to the risk attractor. We compute the set of risk edges ℰ ′𝑟𝑖𝑠𝑘 with the
following formula: 𝑝𝑟𝑒(𝑅𝑒𝑎𝑐ℎ) ∩ ℰ ′𝑠 ∩ 𝑝𝑜𝑠𝑡(𝐴𝑡𝑡𝑟1(𝑅𝑒𝑎𝑐ℎ ∩ 𝒱𝑟𝑖𝑠𝑘)).
∙ For 𝑖 = 1 . . . 𝑛, perform the following.

1. For local game 𝑖, for ℰ ′𝑟𝑖𝑠𝑘 perform existential quantification over variables
of other games indexed from 1, . . . , 𝑖 − 1, 𝑖 + 1, . . . , 𝑛. By doing so, we have
generated the risk edges ℰ̄𝑖𝑟𝑖𝑠𝑘 in the abstraction game 𝒢𝑖.

177

7. Resource-Bounded Strategies for Distributed Games

p11 p21 p22

e11 e12 e21 e22

G1 G2

(e11, e22)

(e12, e22) (e12, e23)

(e11, e23)

(p11, p22) (p11, p23)

p23

e23e13

(e13, e22) (e13, e23)

(e12, e21)

(e11, e21)

(p11, p21)

(e13, e21)

Figure 7.10: Example for distributed strategies using finite-memory.

2. Check if starting from the initial state, performing forward reachability anal-
ysis using ℰ ′ ∖ ℰ̄𝑖𝑟𝑖𝑠𝑘 (the set of transitions where local game 𝐺𝑖 does not use
ℰ̄𝑖𝑟𝑖𝑠𝑘) would lead to risk states or deadlock states (induced by restricting
edges in ℰ̄𝑖𝑟𝑖𝑠𝑘). If not, then report a strategy of MP𝑐 by using edges
𝐸𝑖 ∖ ℰ̄𝑖𝑟𝑖𝑠𝑘 for local game 𝐺𝑖.

Appendix B: Proof of Lemma 5

For lemma 5, we prove the following statement: There exists an infinite set of dis-
tributed games {𝒢} composed from two local games with the following property:

1. For 𝒢, there exists a distributed strategy ⟨𝑓1, 𝑓2⟩ for safety winning.

2. For any distributed strategy ⟨𝑓1, 𝑓2⟩ specified in (1), the minimum size of the
memory used in 𝑓1 is at least |𝑉𝑠1⊎𝑉𝑒1|

2 .

Proof. (Sketch) Here we use two simplest cases to give an idea on how such family of
distributed games is created.

∙ Consider again the distributed game in Figure 7.2a. A finite memory strategy is
as follows: For local game 𝐺1, if its previous location is 𝑒1, then go to 𝑒′1, else go
to 𝑒1. Thus the memory size of the local strategy 𝑓1 is at least 2.

∙ For the distributed game in Figure 7.10, the distributed strategy is as follows:
For local game 𝐺1, if its previous state is 𝑒11, then go to 𝑒13; if its previous lo-
cation is 𝑒13 go to 𝑒12; else go to 𝑒11. As for each previous location, there exists a
unique move to avoid entering risk state, for 𝐺1 it should remember all (previous-
location, move) pairs. Thus the memory size of any 𝑓1 is at least 3.

We use the Algorithm 13 to create the family of distributed games. E.g., by applying
𝐾 = 3 the algorithm returns a distributed game similar to Figure 7.10. Given an integer
𝐾, the number of vertices created in 𝐺1 equals 𝐾+1, and the minimum size of memory
for 𝑓1 is at least 𝐾 (following the argument similar to the case in Figure 7.10).

178

7. Resource-Bounded Strategies for Distributed Games

Algorithm 13: Game Construction for Lemma 5
Data: Integer 𝐾 > 2
Result: Distributed game 𝐺 = (𝒱𝑠 ⊎ 𝒱𝑒, ℰ , 𝐴𝑐𝑐) from two local games 𝐺1 and 𝐺2

satisfying Lemma 5
begin

// Construct local game graph 𝐺1 = (𝑉𝑠1 ⊎ 𝑉𝑒1, 𝐸1)

𝑉𝑠1 = {𝑝11}, 𝑉𝑒1 =
⋃︀𝐾

𝑖=1 𝑒1𝑖, 𝐸1 =
⋃︀𝐾

𝑖=1(𝑝11, 𝑒1𝑖)
// Construct local game graph 𝐺2 = (𝑉𝑠2 ⊎ 𝑉𝑒2, 𝐸2)

𝑉𝑠2 =
⋃︀𝐾

𝑖=1 𝑝2𝑖, 𝑉𝑒2 =
⋃︀𝐾

𝑖=1 𝑒2𝑖, 𝐸2 =
⋃︀𝐾

𝑖=1(𝑝2𝑖, 𝑒2𝑖)

// Construct 𝒢 out of 𝐺1 and 𝐺2 𝒱𝑠 =
⋃︀𝐾

𝑖=1(𝑝11, 𝑝2𝑖), 𝒱𝑒 =
⋃︀𝐾

𝑖=1

⋃︀𝐾
𝑗=1(𝑒1𝑖, 𝑒2𝑗)

create work set 𝑆𝑒𝑡 =
⋃︀𝐾

𝑖=1

⋃︀𝐾
𝑗=1(𝑒1𝑖, 𝑒2𝑗)

create empty set 𝒱𝑟𝑖𝑠𝑘
// Construct edges for the control (player 0)
ℰ = ℰ ∪⋃︀𝐾

𝑖=1

⋃︀𝐾
𝑗=1((𝑝11, 𝑝2𝑗), (𝑒1𝑖, 𝑒2𝑗))

// Construct environment edges and add risk states
let integer 𝑏 = 1
while 𝑆𝑒𝑡 ̸= ∅ do

// (𝑒1𝑎, 𝑒2𝑏) is a safe state
Remove (𝑒1𝑎, 𝑒2𝑏) from 𝑆𝑒𝑡
// Add the edge (safe state has an outgoing edge)
ℰ = ℰ ∪ ((𝑒1𝑎, 𝑒2𝑏), (𝑝11, 𝑝2𝑐)) where 𝑐 ̸= 𝑏
// Add risk states
𝒱𝑟𝑖𝑠𝑘 = 𝒱𝑟𝑖𝑠𝑘 ∪

⋃︀𝐾
𝑑=1;𝑑̸=𝑎(𝑒1𝑑, 𝑒2𝑏)

𝒱𝑟𝑖𝑠𝑘 = 𝒱𝑟𝑖𝑠𝑘 ∪
⋃︀𝐾

𝑑=1;𝑑̸=𝑏(𝑒1𝑎, 𝑒2𝑑)

𝑆𝑒𝑡 = 𝑆𝑒𝑡 ∖⋃︀𝐾
𝑑=1;𝑑̸=𝑎(𝑒1𝑑, 𝑒2𝑏)

𝑆𝑒𝑡 = 𝑆𝑒𝑡 ∖⋃︀𝐾
𝑑=1;𝑑̸=𝑏(𝑒1𝑎, 𝑒2𝑑)

𝑏 = 𝑐 // Continue with the next round

Let 𝐴𝑐𝑐 be defined by the set of risk states 𝒱𝑟𝑖𝑠𝑘
return (𝒱𝑠 ⊎ 𝒱𝑒, ℰ , 𝐴𝑐𝑐)

179

180

CHAPTER 8

Conclusion

This thesis summarizes our existing efforts in bringing algorithmic game solving from
theoretical results to concrete applications, and most of our results have been published
on conferences in verification. Figure 8.1 gives a road map which summarizes our
results in this thesis.

Our major focus relies on an implementation of solver libraries realizing a broad spec-
trum of games. These games, e.g., turn-based / concurrent / probabilistic / incomplete
information games, or games on pushdown game graphs, can naturally relate to prob-
lems in synthesis.

To connect games to concrete applications, we adapt an application-driven approach,
and propose three synthesis techniques.

∙ Priority synthesis is a technique used for orchestrating component-based systems.
Given a set of Behavior-Interaction-Priority (BIP) components together with their
possible interactions and a safety property, the synthesis algorithm, based on
automata-based (game-theoretic) notions, restricts the set of possible interactions
in order to rule out unsafe states.

∙ Behavioral-level synthesis using PDDL offers a bridge between research in verifica-
tion and artificial intelligence. We perform a slight extension over the language
such that researchers in verification (algorithmic games) can profit from the rich
collection of examples coming from the AI community.

∙ For the third synthesis technique, we present an approach for HW/SW level fault-
tolerant synthesis by combining predefined patterns for fault-tolerance with algo-
rithmic game solving. A non-fault-tolerant system, together with the relevant
fault hypothesis and fault-tolerant mechanism templates in a pool are translated
into a distributed game, and we perform an incomplete search of strategies to
cope with undecidability.

181

8. Conclusion

1. Introduction

2. Games for synthesis: a review

3. GAVS+: Game Arena Visualization and Synthesis

4. Priority synthesis

VissBIP

Model
construction
+ BIP code
generation

Automata
theory for

priority
synthesis

Compositional
priority

synthesis

Priority synthesis
is NP-c

Automatic
synthesis of

static
priorities

5. Behavioral-level
synthesis using PDDL

Planning
via model
checking

Game solving

Implemented
under GAVS+

Clarifying details for Cachat’s
symbolic algorithm

Reachability

Finding
Distributed
positional

strategy is NP-c

SAT-based
witness algo

6. HW/SW-level FT
synthesis

Gecko Game
creation

Game
solving

Constraint
resolution

7. Distributed games as a
framework of distributed synthesis

Undecidability
results (known)

Resource-bounded
strategies

BIP analysis using
distributed games

Safety

Projection Risk partition Local observation
+ antichain

Successful
partitioning is NP-c

Program optimization
for local game solving

Figure 8.1: A summary over results in this thesis and their relations.

For the above techniques, we have proposed algorithms and created academic tools
(VISSBIP, GAVS+ for PDDL, and GECKO) to concretize our ideas.

By applying application-driven approaches, we found solving distributed games (an al-
ternative formalism for distributed synthesis), although undecidable in general, impor-
tant for concrete applications. We therefore elaborate on resource-bounded methods for
reachability and safety games, including new algorithms and complexity bounds. As
these resource-bounded methods reflect the design intention, our hope is to automate
distributed synthesis to a level of assistance - what is considered as a potential fix by
a designer can be found automatically using our methods. Most algorithms for solv-
ing distributed games with resource-bounded strategies have been implemented into
GAVS+, our solver library.

Future Work

In the following, we summarize some further directions created by the work in the
thesis; they are now under investigation by us and our collaborating researchers.

∙ Our initial result of priority synthesis has raised several interesting research prob-
lems, e.g., quality of priority synthesis or local starvation issues.

182

8. Conclusion

∙ For synthesis techniques to scale, an important factor is to exploit the structure
(modularity) of the problem. Performing synthesis with compositional methods
is an important research direction. Details include synthesizing priorities which
maintain stronger locality or modularization (for the ease of implementation), or
applying learning techniques in compositional verification [PGB+08, CCF+10] to
achieve compositional synthesis.

∙ Concerning fault-tolerant synthesis and games, we consider reinvestigating
timed games, expecting to design an open source implementation in our GAVS+
tool, preferably with new algorithms. By doing so, we hope to work on appli-
cations such as synthesizing monitors for control systems (e.g., model railway or
flight control).

183

184

Bibliography

[AAE98] A. Arora, P.C. Attie, and E.A. Emerson. Synthesis of fault-tolerant con-
current programs. In Proceedings of the 7th annual ACM symposium on
Principles of distributed computing (PODC’98), pages 173–182. ACM, 1998.

[ABC+06] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick. The landscape of parallel computing research: A view
from Berkeley. Technical Report UCB/EECS-2006-183, EECS Depart-
ment, University of California, Berkeley, Dec 2006.

[ABK09] F. Abujarad, B. Bonakdarpour, and S.S. Kulkarni. Parallelizing deadlock
resolution in symbolic synthesis of distributed programs. In Proceedings
of the 8th International Workshop on Parallel and Distributed Methods in Ver-
ification (PDMC’09), volume 14 of EPTCS, pages 92–106, 2009.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[AG11] K. R. Apt and E. Grädel. Lectures in Game Theory for Computer Scientists.
Cambridge University Press, 2011.

[AINT07] M. Autili, P. Inverardi, A. Navarra, and M. Tivoli. SYNTHESIS: a tool
for automatically assembling correct and distributed component-based
systems. In Proceedings of the 29th international conference on Software En-
gineering (ICSE’07), pages 784–787. IEEE Computer Society, 2007.

[AMN05] R. Alur, P. Madhusudan, and W. Nam. Symbolic computational tech-
niques for solving games. International Journal on Software Tools for Tech-
nology Transfer (STTT), 7(2):118–128, 2005.

[AMS03] F.A. Aloul, I.L. Markov, and K.A. Sakallah. FORCE: a fast and easy-to-
implement variable-ordering heuristic. In Proceedings of the 13th ACM
Great Lakes symposium on VLSI (GLSVLSI’03), pages 116–119. ACM, 2003.

[Ang87] D. Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87–106, 1987.

185

Bibliography

[apa] Commons Math: The Apache Commons Mathematics Library. http:
//commons.apache.org/math/.

[ATW06] C.S. Althoff, W. Thomas, and N. Wallmeier. Observations on deter-
minization of Büchi automata. Theoretical Computer Science, 363(2):224–
233, 2006.

[BBNS09] S. Bensalem, M. Bozga, T.H. Nguyen, and J. Sifakis. D-finder: A tool
for compositional deadlock detection and verification. In Proceedings of
the 21st International Conference in Computer Aided Verification (CAV’09),
volume 5643 of LNCS, pages 614–619. Springer, 2009.

[BBPS09] A. Basu, S. Bensalem, D. Peled, and J. Sifakis. Priority scheduling of
distributed systems based on model checking. In Proceedings of the 21st
International Conference on Computer Aided Verification (CAV’09), volume
5643 of LNCS, pages 79–93. Springer, 2009.

[BBQ11] B. Bonakdarpour, M. Bozga, and J. Quilbeuf. Automated distributed
implementation of component-based models with priorities. In Proceed-
ings of the 11th International conference on Embedded Software (EMSOFT’11),
2011. to appear.

[BBS06] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time
components in BIP. In Proceedings of the 4th IEEE International Confer-
ence on Software Engineering and Formal Methods (SEFM’06), pages 3–12.
IEEE, 2006.

[BBSN08] S. Bensalem, M. Bozga, J. Sifakis, and T.H. Nguyen. Compositional ver-
ification for component-based systems and application. In Proceedings of
the 6th International Symposium in Automated Technology for Verification and
Analysis (ATVA’08), volume 5311 of LNCS, pages 64–79. Springer-Verlag,
2008.

[BCD+07a] G. Behrmann, A. Cougnard, A. David, E. Fleury, K.G. Larsen, and
D. Lime. Uppaal-tiga: Time for playing games! In Proceedings of the
19th international conference on Computer Aided Verification (CAV’07), vol-
ume 4590 of LNCS, pages 121–125. Springer-Verlag, 2007.

[BCD+07b] G. Behrmann, A. Cougnard, A. David, E. Fleury, K.G. Larsen, and
D. Lime. Uppaal-tiga: Time for playing games! In Proceedings of the
19th international conference on Computer aided verification (CAV’07), vol-
ume 4590 of LNCS, pages 121–125. Springer-Verlag, 2007.

[BCDW+09] D. Berwanger, K. Chatterjee, M. De Wulf, L. Doyen, and T. Henzinger. Al-
paga: A tool for solving parity games with imperfect information. In Pro-
ceedings on the 16th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’10), volume 6015 of LNCS,
pages 58–61. Springer-Verlag, 2009.

[BCFL04] P. Bouyer, F. Cassez, E. Fleury, and K. Larsen. Optimal strategies in
priced timed game automata. In Proceedings of the 24th International Con-
ference on Foundations of Software Technology and Theoretical Computer Sci-
ence (FSTTCS’04), volume 3328 of LNCS, pages 423–429. Springer-Verlag,

186

http://commons.apache.org/math/
http://commons.apache.org/math/

Bibliography

2004.

[BCP+01] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Mbp: a
model based planner. In IJCAI-2001 Workshop on Planning under Uncer-
tainty and Incomplete Information (PRO-2), 2001.

[BDL04] G. Behrmann, A. David, and K. G. Larsen. A tutorial on UPPAAL. In
Marco Bernardo and Flavio Corradini, editors, Formal Methods for the De-
sign of Real-Time Systems: 4th International School on Formal Methods for
the Design of Computer, Communication, and Software Systems (SFM-RT’04),
number 3185 in LNCS, pages 200–236. Springer–Verlag, September 2004.

[BF97] A.L. Blum and M.L. Furst. Fast planning through planning graph analy-
sis. Artificial intelligence, 90(1-2):281–300, 1997.

[BFS00] C. Bernardeschi, A. Fantechi, and L. Simoncini. Formally verifying fault
tolerant system designs. The Computer Journal, 43(3):191–205, 2000.

[BGL+11] S. Bensalem, A. Griesmayer, A. Legay, T-H. Nguyen, J. Sifakis, and R-J.
Yan. D-Finder 2: Towards Efficient Correctness of Incremental Design. In
Proceedings of the 3rd NASA Formal Methods Symposium (NFM’11), LNCS.
Springer-Verlag, 2011.

[BHG+93] S. Balemi, G.J. Hoffmann, P. Gyugyi, H. Wong-Toi, and G.F. Franklin.
Supervisory control of a rapid thermal multiprocessor. Automatic Control,
IEEE Transactions on, 38(7):1040–1059, 1993.

[Bry86] R.E. Bryant. Graph-based algorithms for boolean function manipulation.
Computers, IEEE Transactions on, 100(8):677–691, 1986.

[Buc08] C. Buckl. Model-Based Development of Fault-Tolerant Real-Time Systems.
PhD thesis, Technische Universität München, Oct 2008.

[BWH+03] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli. Metropolis: An integrated electronic system
design environment. Computer, 36(4):45–52, april 2003.

[Cac02] T. Cachat. Symbolic strategy synthesis for games on pushdown graphs.
In Proceedings of the 29th International Colloquium on Automata, Languages
and Programming (ICALP’02), volume 2382 of LNCS, pages 704–715.
Springer-Verlag, 2002.

[Cac03a] T. Cachat. Games on Pushdown Graphs and Extensions. PhD thesis, RWTH
Aachen, 2003.

[Cac03b] T. Cachat. Uniform solution of parity games on prefix-recognizable
graphs. Electronic Notes in Theoretical Computer Science, 68(6):71–84, 2003.

[CBC+11] C.-H. Cheng, S. Bensalem, Y.-F. Chen, R-J. Yan, B. Jobstmann, A. Knoll,
C. Buckl, and H. Ruess. Algorithms for synthesizing priorities in
component-based systems. In Proceedings of the 9th International Sym-
posium on Automated Technology for Verification and Analysis (ATVA’11),
LNCS. Springer-Verlag, 2011.

[CBEK09] C.-H. Cheng, C. Buckl, J. Esparza, and A. Knoll. Modeling and verifica-
tion for timing satisfaction of fault-tolerant systems with finiteness. In

187

Bibliography

Proceedings of the 13th IEEE/ACM International Symposium on Distributed
Simulation and Real Time Applications (DS-RT’09), pages 208–215. IEEE
Computer Society, 2009.

[CBJ+11] C.-H. Cheng, S. Bensalem, B. Jobstmann, R-J. Yan, A. Knoll, and H. Ruess.
Model construction and priority synthesis for simple interaction systems.
In Proceedings of the 3rd NASA Formal Methods Symposium (NFM’11), vol-
ume 6617 of LNCS, pages 466–471. Springer-Verlag, 2011.

[CBK10] C.-H. Cheng, C. Buckl, and A. Knoll. Tool-based development for light-
weight fault-tolerant systems (poster abstract). In 16th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS’10), April 2010.

[CBLK10] C.-H. Cheng, C. Buckl, M. Luttenberger, and A. Knoll. GAVS: Game
arena visualization and synthesis. In Proceedings of the 8th International
Symposium on Automated Technology for Verification and Analysis (ATVA’10),
volume 6252 of LNCS, pages 347–352. Springer-Verlag, 2010.

[CGR+12a] C.-H. Cheng, M. Geisinger, H. Ruess, C. Buckl, and A. Knoll. Game solv-
ing for industrial automation and control. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automation (ICRA’12), May 2012.

[CGR+12b] C.-H. Cheng, M. Geisinger, H. Ruess, C. Buckl, and A. Knoll. MGSyn:
Automatic synthesis for industrial automation. In Proceedings of the 24th
International Conference on Computer Aided Verification (CAV’12), LNCS.
Springer-Verlag, 2012. to appear.

[CJBK11] C.-H. Cheng, B. Jobstmann, C. Buckl, and A. Knoll. On the hardness
of priority synthesis. In Proceedings of the 16th International Conference
on Implementation and Application of Automata (CIAA’11), volume 6807 of
LNCS. Springer-Verlag, 2011.

[CKLB11] C.-H. Cheng, A. Knoll, M. Luttenberger, and C. Buckl. GAVS+: An open
framework for the research of algorithmic game solving. In Proceedings of
the 17th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’11), volume 6605 of LNCS, pages 258–261.
Springer-Verlag, 2011.

[CCF+10] Y.F. Chen, E. M. Clarke, A. Farzan, M.-H. Tsai, Y.-K. Tsay, and B.-Y. Wang.
Automated assume-guarantee reasoning through implicit learning. In
Proceedings of the 22nd International Conference on Computer Aided Verifi-
cation (CAV’10), volume 6174 of LNCS, pages 511–526. Springer-Verlag,
2010.

[CCGR99] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a
new symbolic model verifier. In Proceedings of the 11th Conference on
Computer-Aided Verification (CAV’99), volume 1633 of LNCS, pages 495–
499. Springer-Verlag, 1999.

[CBRZ01] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001.

[CGP99] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT-Press,
1999.

188

Bibliography

[CGP03] J.M. Cobleigh, D. Giannakopoulou, and C.S. Păsăreanu. Learning as-
sumptions for compositional verification. In Proceedings of the 9th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’03), volume 2619 of LNCS, pages 331–346. Springer-
Verlag, 2003.

[CHJR10] K. Chatterjee, T. Henzinger, B. Jobstmann, and A. Radhakrishna. GIST:
A Solver for Probabilistic Games. In Proceedings of the 22nd International
Conference on Computer Aided Verification (CAV’11), volume 6174 of LNCS,
pages 665–669. Springer-Verlag, 2010.

[Con92] A. Condon. The complexity of stochastic games. Information and Compu-
tation, 96(2):203–224, 1992.

[Con93] A. Condon. On algorithms for simple stochastic games. Advances in com-
putational complexity theory, 13:51–73, 1993.

[CRBK11] C.-H. Cheng, H. Ruess, C. Buckl, and A. Knoll. Synthesis of fault-tolerant
embedded systems using games: from theory to practice. In Proceedings
of the 12th International Conference on Verification, Model Checking, and Ab-
stract Interpretation (VMCAI’11), volume 6538 of LNCS, pages 118–133.
Springer-Verlag, 2011.

[CUD] CUDD: CU decision diagram package. http://vlsi.colorado.
edu/~fabio/CUDD/.

[DAHK07] L. De Alfaro, T.A. Henzinger, and O. Kupferman. Concurrent reachabil-
ity games. Theoretical Computer Science, 386(3):188–217, 2007.

[DBBL07] R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. Controller Area Network
(CAN) schedulability analysis: Refuted, revisited and revised. Real-Time
Systems, 35(3):239–272, 2007.

[DF09] R. Dimitrova and B. Finkbeiner. Synthesis of fault-tolerant distributed
systems. In Proceedings of the 7th International Symposium on Automated
Technology for Verification and Analysis (ATVA’09), volume 5799 of LNCS,
pages 321–336. Springer-Verlag, 2009.

[DHJP08] L. Doyen, T.A. Henzinger, B. Jobstmann, and T. Petrov. Interface theo-
ries with component reuse. In Proceedings of the 8th ACM international
conference on Embedded software (EMSOFT’08), pages 79–88. ACM, 2008.

[DWDHR06] M. De Wulf, L. Doyen, T. Henzinger, and J. Raskin. Antichains: A
new algorithm for checking universality of finite automata. In Computer
Aided Verification (CAV’06), volume 4144 of LNCS, pages 17–30. Springer-
Verlag, 2006.

[DWDR06] M. De Wulf, L. Doyen, and J.F. Raskin. A lattice theory for solving games
of imperfect information. In Proceedings of the 9th International Workshop
in Hybrid Systems: Computation and Control (HSCC’06), volume 3927 of
LNCS, pages 153–168. Springer-Verlag, 2006.

[EFW02] J. Eidson, M.C. Fischer, and J. White. IEEE 1588 standard for a precision
clock synchronization protocol for networked measurement and control
systems. In 34 th Annual Precise Time and Time Interval (PTTI) Meeting,

189

http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/

Bibliography

pages 243–254, 2002.

[Ehl11] R. Ehlers. Unbeast: Symbolic bounded synthesis. In Proceedings of the
17th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’11), volume 6605 of LNCS, pages 272–
275. Springer-Verlag, 2011.

[EHRS00] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algo-
rithms for model checking pushdown systems. In Proceedings of the 12th
International Conference on Computer Aided Verification (CAV’00), number
1855 in LNCS, pages 232–247. Springer-Verlag, 2000.

[EJ91] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determi-
nacy. In Proceedings of the 32nd Annual Symposium on Foundations of Com-
puter Science (FOCS’91), pages 368–377. IEEE, 1991.

[EJL+03] J. Eker, J.W. Janneck, E.A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong. Taming heterogeneity - the Ptolemy approach.
Proceedings of the IEEE, 91(1):127–144, 2003.

[EK07] S. Edelkamp and P. Kissmann. Symbolic exploration for general game
playing in PDDL. In ICAPS-Workshop on Planning in Games, 2007.

[emf] Eclipse Modeling Framework. http://www.eclipse.org/modeling/

emf/.

[FKL08] D. Fisman, O. Kupferman, and Y. Lustig. On verifying fault tolerance of
distributed protocols. In Proceedings of the 14th international conference on
Tools and algorithms for the construction and analysis of systems (TACAS’08),
volume 4963 of LNCS, pages 315–331, Berlin, Heidelberg, 2008. Springer-
Verlag.

[FL03] M. Fox and D. Long. PDDL2.1: An extension to PDDL for express-
ing temporal planning domains. Journal of Artificial Intelligence Research,
20(1):61–124, 2003.

[FL10] O. Friedmann and M. Lange. Local strategy improvement for parity
game solving. In Proceedings of the 1st International Symposium on Games,
Automata, Logics and Formal Verification (GandALF’10), volume 25, pages
118–131. EPTCS, 2010.

[FS05] B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In Proceed-
ings. 20th Annual IEEE Symposium on Logic in Computer Science (LICS’05),
pages 321–330. IEEE, 2005.

[GAI+98] M. Ghallab, C. Aeronautiques, C.K. Isi, S. Penberthy, D.E. Smith, Y. Sun,
and D. Weld. PDDL-the planning domain definition language. Technical
Report CVC TR-98003/DCS TR-1165, Yale Center for Computer Vision
and Control, Oct 1998.

[GLZ04] P. Gastin, B. Lerman, and M. Zeitoun. Distributed games and distributed
control for asynchronous systems. In Proceedings of the 6th Latin American
Symposium on Theoretical Informatics (LATIN’04), volume 2976 of LNCS,
pages 455–465. Springer-Ver, 2004.

190

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/

Bibliography

[GLZ05] P. Gastin, B. Lerman, and M. Zeitoun. Distributed games with causal
memory are decidable for series-parallel systems. In Proceedings of the
24th International Conference on Foundations of Software Technology and The-
oretical Computer Science (FSTTCS’04), volume 3328 of LNCS, pages 275–
286. Springer-Ve, 2005.

[GPQ10] S. Graf, D. Peled, and S. Quinton. Achieving distributed control through
model checking. In Proceedings of the 22nd International Conference on Com-
puter Aided Verification (CAV’10), volume 6174 of LNCS, pages 396–409.
Springer-Verlag, 2010.

[GR09] A. Girault and É. Rutten. Automating the addition of fault folerance with
discrete controller synthesis. Formal Methods in System Design, 35(2):190–
225, 2009.

[GS03] G. Gößler and J. Sifakis. Priority systems. In Proceedings of the 2nd
International Symposium on Formal Methods for Components and Objects
(FMCO’03), volume 3188 of LNCS, pages 314–329. Springer-Verlag, 2003.

[GTW02] E. Gradel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games,
volume 2500 of LNCS. Springer-Verlag, 2002.

[Han07] R. Hanmer. Patterns for Fault Tolerant Software. Wiley Software Patterns
Series, 2007.

[Hay09] I.J. Hayes. Dynamically Detecting Faults via Integrity Constraints. In
Methods, Models and Tools for Fault Tolerance, volume 5454 of LNCS, pages
85–103. Springer-Verlag, 2009.

[Hel06] M. Helmert. The fast downward planning system. Journal of Artificial
Intelligence Research, 26(1):191–246, 2006.

[HHK03] T.A. Henzinger, B. Horowitz, and C.M. Kirsch. Giotto: A time-triggered
language for embedded programming. Proceedings of the IEEE, 91(1):84–
99, 2003.

[HK66] A.J. Hoffman and R.M. Karp. On nonterminating stochastic games. Man-
agement Science, 12(5):359–370, 1966.

[HO09] M. Hague and C. Ong. Winning regions of pushdown parity games: A
saturation method. In Proceedings of the 20th International Conference on
Concurrency Theory (CONCUR’09), volume 5710 of LNCS, pages 384–398.
Springer-Verlag, 2009.

[Hol04] G.J. Holzmann. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, 2004.

[IMA02] M.V. Iordache, J. Moody, and P.J. Antsaklis. Synthesis of deadlock pre-
vention supervisors using Petri nets. Robotics and Automation, IEEE Trans-
actions on, 18(1):59–68, 2002.

[Jan07] D. Janin. On the (high) undecidability of distributed synthesis problems.
In Proceedings of the 33rd Conference on Current Trends in Theory and Practice
of Computer Science (SOFSEM’07), volume 4362 of LNCS, pages 320–329.
Springer-Verlag, 2007.

191

Bibliography

[Jav] JavaCC: The Java Parser Generator. http://javacc.java.net/.

[jdd] The JDD project. http://javaddlib.sourceforge.net/jdd/.

[JGB05] B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game.
In Proceedings of the 17th International Conference on Computer Aided Veri-
fication (CAV’05), volume 3576 of LNCS, pages 226–238. Springer-Verlag,
2005.

[jgr] JGraphX: Java Graph Drawing Component. http://www.jgraph.
com/jgraph.html.

[JGWB07] B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem. Anzu: A tool for
property synthesis. In Proceedings of the 19th International Conference on
Computer Aided Verification (CAV’07), volume 4590 of LNCS, pages 258–
262. Springer-Verlag, 2007.

[KA00] S. Kulkarni and A. Arora. Automating the addition of fault-tolerance. In
Proceedings of the 6th International Symposium on Formal Techniques in Real-
Time and Fault-Tolerant Systems (FTRTFT’00), volume 1926 of LNCS, pages
339–359. Springer-Verlag, 2000.

[KE11] P. Kissmann and S. Edelkamp. Gamer, a general game playing agent.
KI-Künstliche Intelligenz, 25(1):1–4, 2011.

[Koz83] D. Kozen. Results on the propositional [mu]-calculus. Theoretical Com-
puter Science, 27(3):333–354, 1983.

[KS08] A.D. Kshemkalyani and M. Singhal. Distributed Computing: Principles, Al-
gorithms, and Systems. Cambridge University Press New York, NY, USA,
2008.

[KTV06] H. Kautz, W. Thomas, and M. Y. Vardi. 05241 executive summary – syn-
thesis and planning. In Henry Kautz, Wolfgang Thomas, and Moshe Y.
Vardi, editors, Synthesis and Planning, number 05241 in Dagstuhl Seminar
Proceedings, Dagstuhl, Germany, 2006. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

[LLV] The LLVM Compiler Infrastructure Project. http://llvm.org/.

[LM94] L. Lamport and S. Merz. Specifying and verifying fault-tolerant systems.
In Hans Langmaack, Willem-Paul de Roever, and Jan Vytopil, editors,
Proceedings of the 3rd International Symposium on Formal Techniques in Real-
Time and Fault-Tolerant Systems (FTRTFT’94), volume 863 of LNCS, pages
41–76. Springer-Verlag, 1994.

[LZW08] Z.W. Li, M.C. Zhou, and N.Q. Wu. A survey and comparison of Petri
net-based deadlock prevention policies for flexible manufacturing sys-
tems. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 38(2):173–188, 2008.

[MKB+05] D. Marinov, S. Khurshid, S. Bugrara, L. Zhang, and M. Rinard. Optimiza-
tions for compiling declarative models into boolean formulas. In Proceed-
ings of the 8th International Conference on Theory and Applications of Satisfi-
ability Testing (SAT’05), volume 3569 of LNCS, pages 632–637. Springer-

192

http://javacc.java.net/
http://javaddlib.sourceforge.net/jdd/
http://www.jgraph.com/jgraph.html
http://www.jgraph.com/jgraph.html
http://llvm.org/

Bibliography

Verlag, 2005.

[MPS95] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers
for timed systems. In Proceedings of the 12th Annual Symposium on Theo-
retical Aspects of Computer Science (STACS’95), volume 900 of LNCS, pages
229–242. Springer-Verlag, 1995.

[MRL05] B. Marthi, S. Russell, and D. Latham. Writing stratagus-playing agents
in concurrent alisp. In Proceedings of the IJCAI-05 Workshop on Reasoning,
Representation, and Learning in Computer Games, 2005.

[MT02] P. Madhusudan and P. Thiagarajan. A decidable class of asynchronous
distributed controllers. In Proceedings of the 13th International Conference
on Concurrency Theory (CONCUR’02), volume 2421 of LNCS, pages 445–
472. Springer-Verlag, 2002.

[MW03] S. Mohalik and I. Walukiewicz. Distributed games. In Proceedings of the
23rd International Conference on Foundations of Software Technology and The-
oretical Computer Science (FSTTCS’03), volume 2914 of LNCS, pages 338–
351. Springer-Verlag, 2003.

[NRTV07] N. Nisan, T. Roughgarden, E. Tardos, and V.V. Vazirani. Algorithmic Game
Theory. Cambridge University Press, 2007.

[NRZ11] D. Neider, R. Rabinovich, and M. Zimmermann. Solving muller games
via safety games. Technical Report AIB-2011-14, RWTH Aachen, 2011.

[oaw] openArchitectureWare Project. http://www.openarchitectureware.

org/.

[ORSvH95] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification
for fault-tolerant architectures: Prolegomena to the design of PVS. IEEE
Transactions on Software Engineering, 21(2):107–125, 1995.

[PDD] PDDL4J: Front-end parser library for PDDL. http://sourceforge.
net/projects/pdd4j/.

[PGB+08] C. Pasareanu, D. Giannakopoulou, M. Bobaru, J. Cobleigh, and H. Bar-
ringer. Learning to divide and conquer: applying the l* algorithm to
automate assume-guarantee reasoning. Formal Methods in System Design,
32:175–205, 2008.

[PPE+08] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing analysis of the
flexray communication protocol. Real-Time Systems, 39(1):205–235, 2008.

[PPS06] N. Piterman, A. Pnueli, and Y. Saar. Synthesis of reactive (1) designs. In
Proceedings of the 7th International Conference on Verification, Model Check-
ing, and Abstract Interpretation (VMCAI’06), volume 3855 of LNCS, pages
364–380. Springer-Verlag, 2006.

[PR89] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Pro-
ceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages (POPL’89), pages 179–190. ACM, 1989.

[PR90] A. Pneuli and R. Rosner. Distributed reactive systems are hard to synthe-
size. In Proceedings of the 31st Annual Symposium on Foundations of Com-

193

http://www.openarchitectureware.org/
http://www.openarchitectureware.org/
http://sourceforge.net/projects/pdd4j/
http://sourceforge.net/projects/pdd4j/

Bibliography

puter Science (FOCS’90), volume 0, pages 746–757 vol.2. IEEE Computer
Society, 1990.

[Rei84] J.H. Reif. The complexity of two-player games of incomplete informa-
tion. Journal of computer and system sciences, 29(2):274–301, 1984.

[RW89] P.J.G. Ramadge and W.M. Wonham. The control of discrete event sys-
tems. Proceedings of the IEEE, 77(1):81–98, 1989.

[Sha53] L.S. Shapley. Stochastic games. In Proceedings of the National Academy of
Sciences of the United States of America, volume 39, page 1095. National
Academy of Sciences, 1953.

[SLRBE05] A. Solar-Lezama, R. Rabbah, R. Bodík, and K. Ebcioğlu. Programming
by sketching for bit-streaming programs. In Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and implementation
(PLDI’05), pages 281–294. ACM, 2005.

[Sys] Open SystemC Initiative (OSCI). http://www.systemc.org/.

[TBW95] K. Tindell, A. Burns, and A.J. Wellings. Calculating controller area
network (CAN) message response times. Control Engineering Practice,
3(8):1163–1169, 1995.

[TCT+08] Y.K. Tsay, Y.F. Chen, M.H. Tsai, W.C. Chan, and C.J. Luo. Goal extended:
Towards a research tool for omega automata and temporal logic. In Pro-
ceedings of 14th international conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’08), volume 4963 of LNCS, pages
346–350. Springer-Verlag, 2008.

[THY93] S. Tani, K. Hamaguchi, and S. Yajima. The complexity of the optimal
variable ordering problems of shared binary decision diagrams. In Al-
gorithms and Computation, volume 762 of LNCS, pages 389–398. Springer-
Verlag, 1993.

[VJ00] J. Vöge and M. Jurdziński. A discrete strategy improvement algorithm
for solving parity games. In Proceedings of the 12th International Conference
on Computer Aided Verification (CAV’00), volume 1855 of LNCS, pages 202–
215. Springer-Verlag, 2000.

[Wal96] I. Walukiewicz. Pushdown processes: Games and model checking. In
Proceedings of the 8th International Conference on Computer Aided Verification
(CAV’96), volume 1102 of LNCS, pages 62–74. Springer-Verlag, 1996.

[WW89] C.C. White and D.J. White. Markov decision processes. European Journal
of Operational Research, 39(1):1–16, 1989.

194

http://www.systemc.org/

	Zusammenfassung
	Abstract
	Acknowledgements
	Content
	Figures
	1 Introduction
	1.1 Background
	1.2 Algorithmic Game Solving from Theory to Applications in Synthesis
	1.3 Main Contributions of this Thesis
	1.4 Structure of this Thesis

	2 Games for Synthesis: a Very Short Introduction
	2.1 Two-player, Turn-based Games over Finite Arenas
	2.2 Two-player Games over Pushdown Game Graphs
	2.3 Games of Concurrency
	2.4 Games of Imperfect / Incomplete Information
	2.5 Distributed Games
	2.6 Other Games Having Practical Interests

	3 GAVS+: An Open Platform for the Research of Algorithmic Game Solving
	3.1 GAVS: An Earlier Version
	3.2 GAVS+: An Open Platform for the Research of Algorithmic Game Solving
	3.3 Related Work
	3.4 Summary

	4 Application A. Priority Synthesis: Theories, Algorithms, and Tools
	4.1 Introduction
	4.2 Introduction to the Behavior-Interaction-Priority (BIP) Framework
	4.3 Component-based Modeling and Priority Synthesis
	4.4 A Framework of Priority Synthesis based on Fault-Localization and Fault-Repair
	4.5 Handling Complexities
	4.6 Assume-guarantee Based Priority Synthesis
	4.7 Evaluation: The VissBIP toolkit
	4.8 Related Work
	4.9 Summary
	4.10 Appendix

	5 Application B. Requirements and Optimizations for Software Controller Synthesis - Extending PDDL with Game Semantics
	5.1 Introduction
	5.2 PDDL and its Extension for Games
	5.3 Algorithms for Symbolic Game Creation, Game Solving, and Strategy Creation
	5.4 Program Optimization for Local Game Solving
	5.5 Implementation and Evaluation
	5.6 Summary

	6 Application C. A Game-Theoretic Approach for Synthesizing Fault-Tolerant Embedded Systems
	6.1 Introduction
	6.2 Motivating Scenario
	6.3 System Modeling
	6.4 Step A: Front-end Translation from Models to Games
	6.5 Step B: Solving Distributed Games
	6.6 Step C: Conversion from Strategies to Concrete Implementations
	6.7 Implementation and Case Studies
	6.8 Related Work
	6.9 Concluding Remarks
	6.10 Appendix

	7 Resource-Bounded Strategies for Distributed Games
	7.1 Introduction
	7.2 Preliminaries
	7.3 Distributed Safety Strategy based on Projections
	7.4 Observation + Antichain + Decomposition
	7.5 Related Work
	7.6 Outlook

	8 Conclusion
	Bibliography

